Efficacy of landscape scale woodland and savanna restoration at multiple spatial and temporal scales
Pittman, H. Tyler; Krementz, David G.
2016-01-01
The loss of historic ecosystem conditions has led forest managers to implement woodland and savanna ecosystem restoration on a landscape scale (≥10,000 ha) in the Ozark Plateau of Arkansas. Managers are attempting to restore and conserve these ecosystems through the reintroduction of disturbance, mainly short-rotation early-growing-season prescribed fire. Short-rotation early-growing season prescribed fire in the Ozarks typically occurs immediately before bud-break, through bud-break, and before leaf-out, and fire events occur on a three-to five-year interval. We examined short-rotation early-growing season prescribed fire as a restoration tool on vegetation characteristics. We collected vegetation measurements at 70 locations annually from 2011 to 2012 in and around the White Rock Ecosystem Restoration Area (WRERA), Ozark-St. Francis National Forest, Arkansas, and used generalized linear models to investigate the impact and efficacy of prescribed fire on vegetation structure. We found the number of large shrubs (>5 cm base diameter) decreased and small shrubs (<5 cm ground diameter) increased with prescribed fire severity. We found that horizontal understory cover from ground level to 1 m in height increased with time-since-prescribed-fire and woody ground cover decreased with the number of prescribed fire treatments. Using LANDFIRE datasets at the landscape scale, we found that since the initiation of a short-rotation early-growing season prescribed fire management regime, forest canopy cover has not reverted to levels characteristic of woodlands and savannas or reached restoration objectives over large areas. Without greater reductions in forest canopy cover and increases in forest-canopy cover heterogeneity, advanced regeneration will be limited in success, and woodland and savanna conditions will not return soon or to the extent desired.
Guilbault, Kimberly R.; Brown, C.S.; Friedman, J.M.; Shafroth, P.B.
2012-01-01
Russian olive (Elaeagnus angustifolia L.), a Eurasian tree now abundant along rivers in western North America, has an apparent southern distribution limit running through southern California, Arizona, New Mexico and Texas. We used field observations to precisely define this limit in relation to temperature variables. We then investigated whether lack of cold temperatures south of the limit may prevent the accumulation of sufficient chilling, inhibiting dormancy loss of seeds and buds. We found that Russian olive occurrence was more strongly associated with low winter temperatures than with high summer temperatures, and results of controlled seed germination and vegetative bud-break experiments suggest that the chilling requirements for germination and bud-break are partly responsible for the southern range limit. Both seed germination proportion and germination time decreased under conditions simulating those south of the range limit. Similarly, percentage bud break decreased when chilling dropped below values typical of the range limit. In 17–65% of the years from 1980 to 2000, the chilling accumulated at a site near the range limit (El Paso, TX) would lead to a 10% or more decrease in bud-break. The potential decline in growth could have large fitness consequences for Russian olive. If climate change exhibits a warming trend, our results suggest the chilling requirement for bud-break of Russian olive trees will not be met in some years and its southern range limit may retreat northward.
Ronald C. Wilkinson
1977-01-01
Variation in budbreak date among 37 half-sib families of white spruce in a replicated one-parent progeny test plantation in southern Maine was only 5 days. Differences in the mean date of budbreak between years were greater than those between families, but the genetic correlation between date of budbreak in different years was .661. Heritability estimates ranged from ....
SVP-like MADS Box Genes Control Dormancy and Budbreak in Apple
Wu, Rongmei; Tomes, Sumathi; Karunairetnam, Sakuntala; Tustin, Stuart D.; Hellens, Roger P.; Allan, Andrew C.; Macknight, Richard C.; Varkonyi-Gasic, Erika
2017-01-01
The annual growth cycle of trees is the result of seasonal cues. The onset of winter triggers an endodormant state preventing bud growth and, once a chilling requirement is satisfied, these buds enter an ecodormant state and resume growing. MADS-box genes with similarity to Arabidopsis SHORT VEGETATIVE PHASE (SVP) [the SVP-like and DORMANCY ASSOCIATED MADS-BOX (DAM) genes] have been implicated in regulating flowering and growth-dormancy cycles in perennials. Here, we identified and characterized three DAM-like (MdDAMs) and two SHORT VEGETATIVE PHASE-like (MdSVPs) genes from apple (Malus × domestica ‘Royal Gala’). The expression of MdDAMa and MdDAMc indicated they may play a role in triggering autumn growth cessation. In contrast, the expression of MdDAMb, MdSVPa and MdSVPb suggested a role in maintaining bud dormancy. Consistent with this, ectopic expression of MdDAMb and MdSVPa in ‘Royal Gala’ apple plants resulted in delayed budbreak and architecture change due to constrained lateral shoot outgrowth, but normal flower and fruit development. The association of MdSVPa and MdSVPb expression with floral bud development in the low fruiting ‘Off’ trees of a biennial bearing cultivar ‘Sciros’ suggested the SVP genes might also play a role in floral meristem identity. PMID:28421103
NASA Astrophysics Data System (ADS)
Pope, Katherine S.; Dose, Volker; Da Silva, David; Brown, Patrick H.; DeJong, Theodore M.
2015-06-01
Warming winters due to climate change may critically affect temperate tree species. Insufficiently cold winters are thought to result in fewer viable flower buds and the subsequent development of fewer fruits or nuts, decreasing the yield of an orchard or fecundity of a species. The best existing approximation for a threshold of sufficient cold accumulation, the "chilling requirement" of a species or variety, has been quantified by manipulating or modeling the conditions that result in dormant bud breaking. However, the physiological processes that affect budbreak are not the same as those that determine yield. This study sought to test whether budbreak-based chilling thresholds can reasonably approximate the thresholds that affect yield, particularly regarding the potential impacts of climate change on temperate tree crop yields. County-wide yield records for almond ( Prunus dulcis), pistachio ( Pistacia vera), and walnut ( Juglans regia) in the Central Valley of California were compared with 50 years of weather records. Bayesian nonparametric function estimation was used to model yield potentials at varying amounts of chill accumulation. In almonds, average yields occurred when chill accumulation was close to the budbreak-based chilling requirement. However, in the other two crops, pistachios and walnuts, the best previous estimate of the budbreak-based chilling requirements was 19-32 % higher than the chilling accumulations associated with average or above average yields. This research indicates that physiological processes beyond requirements for budbreak should be considered when estimating chill accumulation thresholds of yield decline and potential impacts of climate change.
Survival and First-Year Growth of Hardwoods Planted in Saturated Soils
F. T. Bonner
1966-01-01
Up to 16 weeks of soil saturation from the time of planting did not significantly affect survival, date of bud-break, or initiation of height growth of sycamore, sweetgum, and Nuttall oak seedlings. But when soil temperatures were rapidly increasing in mid-April, saturation for more than 10 to 12 weeks did severely reduce height, root, and stem-diameter growth....
Contrasting growth phenology of native and invasive forest shrubs mediated by genome size.
Fridley, Jason D; Craddock, Alaä
2015-08-01
Examination of the significance of genome size to plant invasions has been largely restricted to its association with growth rate. We investigated the novel hypothesis that genome size is related to forest invasions through its association with growth phenology, as a result of the ability of large-genome species to grow more effectively through cell expansion at cool temperatures. We monitored the spring leaf phenology of 54 species of eastern USA deciduous forests, including native and invasive shrubs of six common genera. We used new measurements of genome size to evaluate its association with spring budbreak, cell size, summer leaf production rate, and photosynthetic capacity. In a phylogenetic hierarchical model that differentiated native and invasive species as a function of summer growth rate and spring budbreak timing, species with smaller genomes exhibited both faster growth and delayed budbreak compared with those with larger nuclear DNA content. Growth rate, but not budbreak timing, was associated with whether a species was native or invasive. Our results support genome size as a broad indicator of the growth behavior of woody species. Surprisingly, invaders of deciduous forests show the same small-genome tendencies of invaders of more open habitats, supporting genome size as a robust indicator of invasiveness. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.
EARLY BUD-BREAK 1 (EBB1) is a regulator of release from seasonal dormancy in poplar trees
Yordanov, Yordan S.; Ma, Cathleen; Strauss, Steven H.; Busov, Victor B.
2014-01-01
Trees from temperate latitudes transition between growth and dormancy to survive dehydration and freezing stress during winter months. We used activation tagging to isolate a dominant mutation affecting release from dormancy and identified the corresponding gene EARLY BUD-BREAK 1 (EBB1). We demonstrate through positioning of the tag, expression analysis, and retransformation experiments that EBB1 encodes a putative APETALA2/Ethylene responsive factor transcription factor. Transgenic up-regulation of the gene caused early bud-flush, whereas down-regulation delayed bud-break. Native EBB1 expression was highest in actively growing apices, undetectable during the dormancy period, but rapidly increased before bud-break. The EBB1 transcript was localized in the L1/L2 layers of the shoot meristem and leaf primordia. EBB1-overexpressing transgenic plants displayed enlarged shoot meristems, open and poorly differentiated buds, and a higher rate of cell division in the apex. Transcriptome analyses of the EBB1 transgenics identified 971 differentially expressed genes whose expression correlated with the EBB1 expression changes in the transgenic plants. Promoter analysis among the differentially expressed genes for the presence of a canonical EBB1-binding site identified 65 putative target genes, indicative of a broad regulatory context of EBB1 function. Our results suggest that EBB1 has a major and integrative role in reactivation of meristem activity after winter dormancy. PMID:24951507
Chuine, Isabelle; Bonhomme, Marc; Legave, Jean-Michel; García de Cortázar-Atauri, Iñaki; Charrier, Guillaume; Lacointe, André; Améglio, Thierry
2016-10-01
The onset of the growing season of trees has been earlier by 2.3 days per decade during the last 40 years in temperate Europe because of global warming. The effect of temperature on plant phenology is, however, not linear because temperature has a dual effect on bud development. On one hand, low temperatures are necessary to break bud endodormancy, and, on the other hand, higher temperatures are necessary to promote bud cell growth afterward. Different process-based models have been developed in the last decades to predict the date of budbreak of woody species. They predict that global warming should delay or compromise endodormancy break at the species equatorward range limits leading to a delay or even impossibility to flower or set new leaves. These models are classically parameterized with flowering or budbreak dates only, with no information on the endodormancy break date because this information is very scarce. Here, we evaluated the efficiency of a set of phenological models to accurately predict the endodormancy break dates of three fruit trees. Our results show that models calibrated solely with budbreak dates usually do not accurately predict the endodormancy break date. Providing endodormancy break date for the model parameterization results in much more accurate prediction of this latter, with, however, a higher error than that on budbreak dates. Most importantly, we show that models not calibrated with endodormancy break dates can generate large discrepancies in forecasted budbreak dates when using climate scenarios as compared to models calibrated with endodormancy break dates. This discrepancy increases with mean annual temperature and is therefore the strongest after 2050 in the southernmost regions. Our results claim for the urgent need of massive measurements of endodormancy break dates in forest and fruit trees to yield more robust projections of phenological changes in a near future. © 2016 John Wiley & Sons Ltd.
How does synchrony with host plant affect the performance of an outbreaking insect defoliator?
Fuentealba, Alvaro; Pureswaran, Deepa; Bauce, Éric; Despland, Emma
2017-08-01
Phenological mismatch has been proposed as a key mechanism by which climate change can increase the severity of insect outbreaks. Spruce budworm (Choristoneura fumiferana) is a serious defoliator of North American conifers that feeds on buds in the early spring. Black spruce (Picea mariana) has traditionally been considered a poor-quality host plant since its buds open later than those of the preferred host, balsam fir (Abies balsamea). We hypothesize that advancing black spruce budbreak phenology under a warmer climate would improve its phenological synchrony with budworm and hence increase both its suitability as a host plant and resulting defoliation damage. We evaluated the relationship between tree phenology and both budworm performance and tree defoliation by placing seven cohorts of budworm larvae on black spruce and balsam fir branches at different lags with tree budburst. Our results show that on both host plants, spruce budworm survival and pupal mass decrease sharply when budbreak occurs prior to larval emergence. By contrast, emergence before budbreak decreases survival, but does not negatively impact growth or reproductive output. We also document phytochemical changes that occur as needles mature and define a window of opportunity for the budworm. Finally, larvae that emerged in synchrony with budbreak had the greatest defoliating effect on black spruce. Our results suggest that in the event of advanced black spruce phenology due to climate warming, this host species will support better budworm survival and suffer increased defoliation.
Greer, Dennis H; Weedon, Mark M
2012-05-01
High-light intensities and temperatures of the warm climate regions of Australia and elsewhere have a major effect on the growth and development of grapevines (Vitis vinifera L.). The objective of this research was to assess interactions between the light and seasonal temperatures by shading some vines and comparing these with vines exposed to high-light intensities. Canopy temperatures were monitored using infrared radiometers and budbreak, phenology, growth, yield, berry ripening and gas exchange determined over three growing seasons. Results showed canopies were generally about 4 °C cooler than air and shading extended this cooling. Irradiance, irrespective of seasonal temperatures, had no effect on time of budbreak, shoot phenology, stem growth, yield and bunch fresh weights while bunch and leaf dry weights were reduced in low-light. Bunch ripening was initially delayed by low-light but thereafter the ripening process was highly temperature-dependent. Rates increased linearly with increasing temperature in both low and high-light and were optimal at about 35 °C. Maximum photosynthetic capacity was impaired by low irradiance, in accordance with shade leaf attributes, and attributable to stomatal closure. No effects of the low photosynthetic capacity apparently carried-over to sugar accumulation, consistent with the strong sink capacity of bunches. Crown Copyright © 2012. Published by Elsevier Masson SAS. All rights reserved.
Sudawan, Boonyawat; Chang, Chih-Sheng; Chao, Hsiu-Fung; Ku, Maurice S B; Yen, Yung-Fu
2016-09-15
Hydrogen cyanamide (HC) and pruning (P) have frequently been used to break dormancy in grapevine floral buds. However, the exact underlying mechanism remains elusive. This study aimed to address the early mode of action of these treatments on accumulation of reactive oxygen species (ROS) and reactive nitrogen species (RNS) and expression of related genes in the dormancy breaking buds of grapevine in the summer. The budbreak rates induced by pruning (P), hydrogen cyanamide (HC), pruning plus hydrogen cyanamide (PHC) and water (control) after 8 days were 33, 53, 95, and 0 %, respectively. Clearly, HC was more effective in stimulating grapevine budbreak and P further enhanced its potency. In situ staining of longitudinal bud sections after 12 h of treatments detected high levels of ROS and nitric oxide (NO) accumulated in the buds treated with PHC, compared with HC or P alone. The amounts of ROS and NO accumulated were highly correlated with the rates of budbreak among these treatments, highlighting the importance of a rapid, transient accumulation of sublethal levels of ROS and RNS in dormancy breaking. Microarray analysis revealed specific alterations in gene expression in dormancy breaking buds induced by P, HC and PHC after 24 h of treatment. Relative to control, PHC altered the expression of the largest number of genes, while P affected the expression of the least number of genes. PHC also exerted a greater intensity in transcriptional activation of these genes. Gene ontology (GO) analysis suggests that alteration in expression of ROS related genes is the major factor responsible for budbreak. qRT-PCR analysis revealed the transient expression dynamics of 12 specific genes related to ROS generation and scavenge during the 48 h treatment with PHC. Our results suggest that rapid accumulation of ROS and NO at early stage is important for dormancy release in grapevine in the summer, and the identification of the commonly expressed specific genes among the treatments allowed the construction of the signal transduction pathway related to ROS/RNS metabolism during dormancy release. The rapid accumulation of a sublethal level of ROS/RNS subsequently induces cell wall loosening and expansion for bud sprouting.
The seasonal timing of warming that controls onset of the growing season.
Clark, James S; Melillo, Jerry; Mohan, Jacqueline; Salk, Carl
2014-04-01
Forecasting how global warming will affect onset of the growing season is essential for predicting terrestrial productivity, but suffers from conflicting evidence. We show that accurate estimates require ways to connect discrete observations of changing tree status (e.g., pre- vs. post budbreak) with continuous responses to fluctuating temperatures. By coherently synthesizing discrete observations with continuous responses to temperature variation, we accurately quantify how increasing temperature variation accelerates onset of growth. Application to warming experiments at two latitudes demonstrates that maximum responses to warming are concentrated in late winter, weeks ahead of the main budbreak period. Given that warming will not occur uniformly over the year, knowledge of when temperature variation has the most impact can guide prediction. Responses are large and heterogeneous, yet predictable. The approach has immediate application to forecasting effects of warming on growing season length, requiring only information that is readily available from weather stations and generated in climate models. © 2013 John Wiley & Sons Ltd.
Increasing chilling reduces heat requirement for floral budbreak in peach
USDA-ARS?s Scientific Manuscript database
Response to chilling temperatures is a critical factor in the suitability of peach [Prunus persica (L.) Batsch] cultivars to moderate climates such as in the southeastern United States. Time of bloom depends on the innate chilling requirement of the cultivar as well as the timing and quantity of co...
USDA-ARS?s Scientific Manuscript database
Spring frosts and subsequent crop losses threaten the economic sustainability of fruit crop producers all over the world. This study used a controlled-freezing technique to impose a post-budbreak freezing stress to grapevine shoots forced from one-node cuttings ['Albariño', 'Cabernet Franc', 'Cabern...
Response of chestnut oak and red oak to drought and fertilization: growth and physiology
M.D. Kleiner; M.D. Abrams; J.C. Schultz
1991-01-01
Chestnut oak (Quercus prinus L.) and red oak (Quercus rubra L.) seedlings were grown for two seasons under two nutrient regimes: fertilizer + (NPK) and fertilizer - (No NPK). Beginning two weeks after budbreak, water was withheld for 10 weeks during the second growing season. Leaf water potentials, gas exchange measurements and...
Ronald C. Wilkinson; Paul G. Schaberg
1992-01-01
Differences in 10-year heights, 4-year growth from 1987 through 1990, relative timing of budbreak and damage by the balsam twig aphid (Mindarus abietinus Koch.) among balsam fir (Abies balsamea (L.) Mill.) from 6 Vermont seed sources originating from different elevations were examined. Height differences among seed sources were...
Brian E. Potter; Terry Strong
2002-01-01
Phenology, the study of how plant or animal developmental stages relate to the organism's surrounding climate, is a well established discipline with roots dating back more than 2000 years (Hopp and Blair, 1973). For example, correlations are often noted between budbreak or first blossom and integrated air temperature (commonly referred to as heat sums.) The...
Muir, P S; Shirazi, A M
1996-01-01
The atmosphere in some areas is polluted with formaldehyde (HCHO); however, little is known about effects of HCHO on plants at concentrations resembling those in polluted areas. The effects of simulated fogwater enriched with HCHO on seedlings of Pseudotsuga menziesii (Mirbel) Franco (Douglas fir) and pendants of Lobaria pulmonaria (L.) Hoffm. were assessed. Plants were treated with HCHO-enriched fog (target concentrations of 100, 500, and 1000 microm) during five 4-night mist sessions. Growth and nitrogenase activity (acetylene reduction rate) for lichens and growth and timing of bud-break for Douglas fir were monitored. Nitrogenase activity was lowest in lichens treated at the highest HCHO concentration after all but the first mist session, and it declined significantly with increasing HCHO concentration after the final mist session (R(2) = 0.60, p = 0.02). However, differences in nitrogenase activity among treatments were generally not statistically significant (most p values from ANOVAs were >/= 0.20). Formaldehyde did not affect growth of the lichens. Budbreak of Douglas firs was slightly delayed and height growth was slightly depressed with increasing HCHO concentration, although effects were not statistically significant.
Anthony F. Lagalante; Nyssa Lewis; Michael E. Montgomery; Kathleen S. Shields
2006-01-01
The terpenoid content of eastern hemlock (Tsuga canadensis) foliage was measured over an annual cycle of development from bud opening, shoot elongation, shoot maturation, to bud-break at the start of the next growing season. The objective was to determine if variation in terpenoid composition is linked with spatial and temporal feeding preferences of...
Biology, spread, and biological control of winter moth in the eastern United States
Joseph Elkinton; George Boettner; Andrew Liebhold; Rodger Gwiazdowski
2015-01-01
The winter moth (Operophtera brumata L.; Lepidoptera: Geometridae) is an inchworm caterpillar that hatches coincident with bud-break on its hosts and feeds on a wide range of deciduous trees. It is one of a group of geometrid species that feed in early spring and then pupate in the top layer of the soil or litter beginning in mid-May. As postulated...
Mosedale, Jonathan R; Wilson, Robert J; Maclean, Ilya M D
2015-01-01
The cultivation of grapevines in the UK and many other cool climate regions is expected to benefit from the higher growing season temperatures predicted under future climate scenarios. Yet the effects of climate change on the risk of adverse weather conditions or events at key stages of crop development are not always captured by aggregated measures of seasonal or yearly climates, or by downscaling techniques that assume climate variability will remain unchanged under future scenarios. Using fine resolution projections of future climate scenarios for south-west England and grapevine phenology models we explore how risks to cool-climate vineyard harvests vary under future climate conditions. Results indicate that the risk of adverse conditions during flowering declines under all future climate scenarios. In contrast, the risk of late spring frosts increases under many future climate projections due to advancement in the timing of budbreak. Estimates of frost risk, however, were highly sensitive to the choice of phenology model, and future frost exposure declined when budbreak was calculated using models that included a winter chill requirement for dormancy break. The lack of robust phenological models is a major source of uncertainty concerning the impacts of future climate change on the development of cool-climate viticulture in historically marginal climatic regions.
Mosedale, Jonathan R.; Wilson, Robert J.; Maclean, Ilya M. D.
2015-01-01
The cultivation of grapevines in the UK and many other cool climate regions is expected to benefit from the higher growing season temperatures predicted under future climate scenarios. Yet the effects of climate change on the risk of adverse weather conditions or events at key stages of crop development are not always captured by aggregated measures of seasonal or yearly climates, or by downscaling techniques that assume climate variability will remain unchanged under future scenarios. Using fine resolution projections of future climate scenarios for south-west England and grapevine phenology models we explore how risks to cool-climate vineyard harvests vary under future climate conditions. Results indicate that the risk of adverse conditions during flowering declines under all future climate scenarios. In contrast, the risk of late spring frosts increases under many future climate projections due to advancement in the timing of budbreak. Estimates of frost risk, however, were highly sensitive to the choice of phenology model, and future frost exposure declined when budbreak was calculated using models that included a winter chill requirement for dormancy break. The lack of robust phenological models is a major source of uncertainty concerning the impacts of future climate change on the development of cool-climate viticulture in historically marginal climatic regions. PMID:26496127
Allard, Alix; Bink, Marco C.A.M.; Martinez, Sébastien; Kelner, Jean-Jacques; Legave, Jean-Michel; di Guardo, Mario; Di Pierro, Erica A.; Laurens, François; van de Weg, Eric W.; Costes, Evelyne
2016-01-01
In temperate trees, growth resumption in spring time results from chilling and heat requirements, and is an adaptive trait under global warming. Here, the genetic determinism of budbreak and flowering time was deciphered using five related full-sib apple families. Both traits were observed over 3 years and two sites and expressed in calendar and degree-days. Best linear unbiased predictors of genotypic effect or interaction with climatic year were extracted from mixed linear models and used for quantitative trait locus (QTL) mapping, performed with an integrated genetic map containing 6849 single nucleotide polymorphisms (SNPs), grouped into haplotypes, and with a Bayesian pedigree-based analysis. Four major regions, on linkage group (LG) 7, LG10, LG12, and LG9, the latter being the most stable across families, sites, and years, explained 5.6–21.3% of trait variance. Co-localizations for traits in calendar days or growing degree hours (GDH) suggested common genetic determinism for chilling and heating requirements. Homologs of two major flowering genes, AGL24 and FT, were predicted close to LG9 and LG12 QTLs, respectively, whereas Dormancy Associated MADs-box (DAM) genes were near additional QTLs on LG8 and LG15. This suggests that chilling perception mechanisms could be common among perennial and annual plants. Progenitors with favorable alleles depending on trait and LG were identified and could benefit new breeding strategies for apple adaptation to temperature increase. PMID:27034326
NASA Astrophysics Data System (ADS)
Hall, Andrew; Mathews, Adam J.; Holzapfel, Bruno P.
2016-09-01
Carbohydrates are accumulated within the perennial structure of grapevines when their production exceeds the requirements of reproduction and growth. The period between harvest and leaf-fall (the post-harvest period) is a key period for carbohydrate accumulation in relatively warmer grape-growing regions. The level of carbohydrate reserves available for utilisation in the following season has an important effect on canopy growth and yield potential and is therefore an important consideration in vineyard management. In a warming climate, the post-harvest period is lengthening and becoming warmer, evidenced through studies in wine regions worldwide that have correlated recent air temperature increases with changing grapevine phenology. Budbreak, flowering, veraison, and harvest have all been observed to be occurring earlier than in previous decades. Additionally, the final stage of the grapevine phenological cycle, leaf-fall, occurs later. This study explored the potential for increased post-harvest carbohydrate accumulation by modelling heat accumulation following harvest dates for the recent climate (1975-2004) and two warmer climate projections with mean temperature anomalies of +1.26 and +2.61 °C. Summaries of post-harvest heat accumulation between harvest and leaf-fall were produced for each of Australia's Geographical Indications (wine regions) to provide comparisons from the base temperatures to projected warmer conditions across a range of climates. The results indicate that for warmer conditions, all regions observe earlier occurring budbreak and harvest as well as increasing post-harvest growing degree days accumulation before leaf-fall. The level of increase varies depending upon starting climatic condition, with cooler regions experiencing the greatest change.
Allard, Alix; Bink, Marco C A M; Martinez, Sébastien; Kelner, Jean-Jacques; Legave, Jean-Michel; di Guardo, Mario; Di Pierro, Erica A; Laurens, François; van de Weg, Eric W; Costes, Evelyne
2016-04-01
In temperate trees, growth resumption in spring time results from chilling and heat requirements, and is an adaptive trait under global warming. Here, the genetic determinism of budbreak and flowering time was deciphered using five related full-sib apple families. Both traits were observed over 3 years and two sites and expressed in calendar and degree-days. Best linear unbiased predictors of genotypic effect or interaction with climatic year were extracted from mixed linear models and used for quantitative trait locus (QTL) mapping, performed with an integrated genetic map containing 6849 single nucleotide polymorphisms (SNPs), grouped into haplotypes, and with a Bayesian pedigree-based analysis. Four major regions, on linkage group (LG) 7, LG10, LG12, and LG9, the latter being the most stable across families, sites, and years, explained 5.6-21.3% of trait variance. Co-localizations for traits in calendar days or growing degree hours (GDH) suggested common genetic determinism for chilling and heating requirements. Homologs of two major flowering genes, AGL24 and FT, were predicted close to LG9 and LG12 QTLs, respectively, whereas Dormancy Associated MADs-box (DAM) genes were near additional QTLs on LG8 and LG15. This suggests that chilling perception mechanisms could be common among perennial and annual plants. Progenitors with favorable alleles depending on trait and LG were identified and could benefit new breeding strategies for apple adaptation to temperature increase. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology.
Assessing satellite-derived start-of-season measures in the conterminous USA
Schwartz, Mark D.; Reed, Bradley C.; White, Michael A.
2002-01-01
National Oceanic and Atmospheric Administration (NOAA)-series satellites, carrying advanced very high-resolution radiometer (AVHRR) sensors, have allowed moderate resolution (1 km) measurements of the normalized difference vegetation index (NDVI) to be collected from the Earth's land surfaces for over 20 years. Across the conterminous USA, a readily accessible and decade-long data set is now available to study many aspects of vegetation activity in this region. One feature, the onset of deciduous plant growth at the start of the spring season (SOS) is of special interest, as it appears to be crucial for accurate computation of several important biospheric processes, and a sensitive measure of the impacts of global change. In this study, satellite-derived SOS dates produced by the delayed moving average (DMA) and seasonal midpoint NDVI (SMN) methods, and modelled surface phenology (spring indices, SI) were compared at widespread deciduous forest and mixed woodland sites during 1990–93 and 1995–99, and these three measures were also matched to native species bud-break data collected at the Harvard Forest (Massachusetts) over the same time period. The results show that both SOS methods are doing a modestly accurate job of tracking the general pattern of surface phenology, but highlight the temporal limitations of biweekly satellite data. Specifically, at deciduous forest sites: (1) SMN SOS dates are close in time to SI first bloom dates (average bias of +0.74 days), whereas DMA SOS dates are considerably earlier (average bias of −41.24 days) and also systematically earlier in late spring than in early spring; (2) SMN SOS tracks overall yearly trends in deciduous forests somewhat better than DMA SOS, but with larger average error (MAEs 8.64 days and 7.37 days respectively); and (3) error in both SOS techniques varies considerably by year. Copyright © 2002 Royal Meteorological Society.
Augspurger, Carol K
2013-01-01
Climate change, with both warmer spring temperatures and greater temperature fluctuations, has altered phenologies, possibly leading to greater risk of spring frost damage to temperate deciduous woody plants. Phenological observations of 20 woody species from 1993 to 2012 in Trelease Woods, Champaign County, Illinois, USA, were used to identify years with frost damage to vegetative and reproductive phases. Local temperature records were used in combination with the phenological observations to determine what combinations of the two were associated with damage. Finally, a long-term temperature record (1889-1992) was evaluated to determine if the frequency of frost damage has risen in recent decades. Frost < or = -1.7 degrees C occurred after bud-break in 14 of the 20 years of observation. Frost damage occurred in five years in the interior and in three additional years at only the forest edge. The degree of damage varied with species, life stage, tissue (vegetative or reproductive), and phenological phase. Common features associated with the occurrence of damage to interior plants were (1) a period of unusual warm temperatures in March, followed by (2) a frost event in April with a minimum temperature < or = -6.1 degrees C with (3) a period of 16-33 days between the extremes. In the long-term record, 10 of 124 years met these conditions, but the yearly probability of frost damage increased significantly, from 0.03 during 1889-1979 to 0.21 during 1980-2012. When the criteria were "softened" to < or = -1.7 degrees C in April and an interval of 16-37 days, 31 of 124 years met the conditions, and the yearly damage probability increased significantly to 0.19 for 1889-1979 and 0.42 for 1980-2012. In this forest, the combination of warming trends and temperature variability (extremes) associated with climate change is having ecologically important effects, making previously rare frost damage events more common.
The Fate of Aspen in a World with Diminishing Snowpacks
NASA Astrophysics Data System (ADS)
Kavanagh, K.; Link, T. E.; Seyfried, M. S.; Kemp, K. B.
2010-12-01
Aspen (Populus tremuloides) productivity is tightly coupled with soil moisture. In the mountainous regions of the western USA, annual replenishment of soil moisture commonly occurs during snowmelt. Therefore, snow pack depth and duration can play an important role in sustaining aspen productivity. The presence of almost 50 years of detailed climate data across an elevational transect in the Reynolds Creek Experimental Watershed (RCEW) in southwestern Idaho offers a novel opportunity to better understand the role of shifting precipitation patterns on aspen productivity. Over the past 50 years, the proportion of the precipitation falling in the form of snow decreased by almost a factor of 2 at mid to low elevations in the RCEW, coupled with a roughly four week advance of snow ablation, and decline of large snow drifts that release moisture into the early summer. Results from growth ring increment, stable isotope analysis, sapflux and a process model (Biome BGC), will be used to determine the impact of shifting precipitation patterns on tree productivity along this transect over the past 50 years. Aspen trees located on moist microsites continue to transpire water and maintain high stomatal conductance 21 days later in the growing season relative to individuals on drier microsites. Predictions of net primary productivity (NPP) in aspen are very sensitive to precipitation patterns. NPP becomes negative as early as day 183 (90 days post budbreak) for years with little winter and spring precipitation whereas, in years with ample winter and spring precipitation, NPP remains positive until day 260 when leaf fall occurs. These results give unique insight into the conditions that deciduous tree species will encounter in a warming climate where snow water equivalent continues to diminish and soil moisture declines soon after budbreak occurs.
Gardiner, Breeana; Blake, Miranda; Harris, Raeleigh; Gee, Carena; Charaktis, Stella; Choong, Christine; Lade, Rebecca; Duff, Laura; Palermo, Claire
2013-12-01
The aim of this evaluation was to explore the quality, barriers, enablers and outcomes of a retail fresh fruit and vegetable initiative in rural communities identified to have poor geographic access to healthy food. A qualitative evaluation using in-depth interviews was conducted with rural store retailers across Victoria involved in the implementation of a retail fruit and vegetable initiative. Data were analysed using a thematic approach. Six of the 13 store retailers that were engaged in the initiative identified a range of qualities, barriers, enablers and outcomes. They reported that effective communication is essential for engaging retailers and sustaining participation. The choice and use of retail incentives may influence the community's purchase of fruit and vegetables. The community's attitude to fruit and vegetables, the staff's ability to promote produce and the capacity of the store to stock and sell fresh fruit and vegetables influenced perceived success. Barriers included difficulties receiving a regular supply of fresh fruit and vegetables, time constraints and storage facilities. This qualitative evaluation of a retail fruit and vegetable initiative found that effective leadership and communication from project workers, a range of retail incentives and the capacity of the store to promote, stock and sell fresh fruit and vegetables influenced perceived success. SO WHAT?: Fruit and vegetable retail initiatives in small rural community stores may have a role in supporting consumption of fruit and vegetables.
Palermo, Claire; Gardiner, Breeana; Gee, Carena; Charaktis, Stella; Blake, Miranda
2016-02-01
Retail stores are a promising setting for improving access to nutritious food. This study opportunistically evaluated an initiative that supported stores in small rural Victorian towns to sell fresh fruit and vegetables. It aimed to measure whether the initiative showed a trend towards improved access to fruit and vegetables in these rural communities. A mixed-methods, pre-post evaluation was employed to measure the range and price of 39 fruits and 45 vegetables, together with 15 interviews with stakeholders 2.5 years after the commencement of the initiative. Twenty-one of 35 eligible stores took up the initiative. Analysis of qualitative and quantitative data showed that the initiative improved the availability of and access to fruit and vegetables, and that stores have a role in improving access to fruit and vegetables. The overall range of fruit and vegetables increased over 18 months from a median of 10 varieties (n=10) to 17 varieties (n=15) (P=0.028) and the prices decreased over 12 months in five out of seven stores where data was available. The capacity to influence availability of fruit and vegetables was affected by time, human resources and community support. Sustaining change to fruit and vegetables access is challenging. Using stores for health promotion may be an effective strategy for improving rural populations' fruit and vegetable intake.
Modeling of bud break of Scots pine in northern Finland in 1908–2014
Salminen, Hannu; Jalkanen, Risto
2015-01-01
Bud break and height-growth of Scots pine (Pinus sylvestris L.) in the northern boreal zone in Lapland, Finland, was followed through the entire growing seasons in the periods 2001–2003 and 2008–2010 in sapling stands in two different locations in northern Finland set some 250 km apart along a latitudinal transect. Field measurements continued at the southern site also in 2011–2013. Air temperature was recorded hourly at the sites. A simple optimization algorithm (GA) was used to adjust parameters of the models predicting the timing of bud break of Scots pine in order to minimize the difference between observed and predicted dates. The models giving the best performance and century-long daily temperatures were used to reconstruct bud-break time series. The temperature observations were recorded for the period 1908–2014 in Sodankylä, which is located in-between the sapling stands in the north–south direction and for the period 1877–2014 in Karasjok, which is in Norway about 145 km north–west from the northernmost stand of this study. On average buds began to extend in the beginning of May in the southernmost stand and in mid-May in the northernmost stands, and the variation between years was in the range of 3 weeks. A simple day-length-triggered (fixed date) model predicted most accurately the date of bud break; root mean square error (RMSE) was 2 and 4 days in the northern and southern site, respectively. The reconstructed bud-break series indicated that based on temperature observations from Sodankylä, growth onset of Scots pine has clearly advanced since the 1960s, though it currently matches that of the early 1920s and early 1950s. The temperature record from Karasjok indicated a similar variation, though there was a weak linear trend advancing bud break by about 3–4 days over a 100-year period. PMID:25798141
Maier-Nöth, Andrea; Schaal, Benoist; Leathwood, Peter; Issanchou, Sylvie
2016-01-01
Children’s vegetable consumption falls below current recommendations, highlighting the need to identify strategies that can successfully promote better acceptance of vegetables. Recently, experimental studies have reported promising interventions that increase acceptance of vegetables. The first, offering infants a high variety of vegetables at weaning, increased acceptance of new foods, including vegetables. The second, offering an initially disliked vegetable at 8 subsequent meals markedly increased acceptance for that vegetable. So far, these effects have been shown to persist for at least several weeks. We now present follow-up data at 15 months, 3 and 6 years obtained through questionnaire (15 mo, 3y) and experimental (6y) approaches. At 15 months, participants who had been breast-fed were reported as eating and liking more vegetables than those who had been formula-fed. The initially disliked vegetable that became accepted after repeated exposure was still liked and eaten by 79% of the children. At 3 years, the initially disliked vegetable was still liked and eaten by 73% of the children. At 6 years, observations in an experimental setting showed that children who had been breast-fed and children who had experienced high vegetable variety at the start of weaning ate more of new vegetables and liked them more. They were also more willing to taste vegetables than formula-fed children or the no or low variety groups. The initially disliked vegetable was still liked by 57% of children. This follow-up study suggests that experience with chemosensory variety in the context of breastfeeding or at the onset of complementary feeding can influence chemosensory preferences for vegetables into childhood. PMID:26968029
Ransley, Joan Kathleen; Taylor, Elizabeth Faye; Radwan, Yara; Kitchen, Meaghan Sarah; Greenwood, Darren Charles; Cade, Janet Elizabeth
2010-11-01
To explore whether initiatives to promote fruit and vegetables in primary schools are associated with changes in children's diet. Cross-sectional dietary survey. Main outcome measures were intakes of fruit, vegetables and key nutrients; and a score for initiatives promoting fruit and vegetables in school. One hundred and twenty-nine English primary schools. Year 2 children (aged 6-7 years, n 2530). In schools running a gardening club, children ate more vegetables, 120 (95 % CI 111, 129) g/d, compared with those that did not, 99·3 (95 % CI 89·9, 109) g/d; and where parents were actively involved in school initiatives to promote fruit and vegetables, children's intake of vegetables was higher, 117 (95 % CI 107, 128) g/d, compared with those where parents were not involved, 105 (95 % CI 96·2, 114) g/d. In schools that achieved a high total score (derived from five key types of initiatives to promote fruit and vegetables in school) children ate more vegetables, 123 (95 % CI 114, 132) g/d, compared with those that did not, 97·7 (95 % CI 88·7, 107) g/d. Gardening, parental involvement and other activities promoting fruit and vegetables to children in school may be associated with increased intake of vegetables but not fruit. These effects were independent of deprivation status and ethnicity.
Effects of Canada goose herbivory on the tidal freshwater wetlands in Anacostia Park, 2009-2011
Krafft, Cairn C.; Hatfield, Jeffrey S.; Hammerschlag, Richard S.
2013-01-01
Herbivory has played a major role in dictating vegetation abundance and species composition at Kingman Marsh in Anacostia Park, Washington, D.C., since restoration of this tidal freshwater wetland was initiated in 2000. The diverse and robust vegetative cover that developed in the first year post-reconstruction experienced significant decimation in the second year, after the protective fencing was removed, and remained suppressed throughout the five-year study period. In June 2009 a herbivory study was initiated to document the impacts of herbivory by resident and nonmigratory Canada geese (Branta canadensis) to vegetation at Kingman Marsh. Sixteen modules consisting of paired fenced plots and unfenced control plots were constructed. Eight of the modules were installed in vegetated portions of the restoration site that had been protected over time by pre-existing fencing, while the remaining eight modules were placed in portions of the site that had not been protected over time and were basically unvegetated at the start of the experiment. Exclosure fencing was sufficiently elevated from the substrate level to allow access to other herbivores such as fish and turtles, while hopefully excluding mature Canada geese. The study was designed with an initial exclosure elevation of 20 cm. This elevation was chosen based on the literature, as adequate to exclude mature Canada geese, while maximizing access to other herbivores such as fish and turtles. Repeated measures analysis of variance (ANOVA) was used to analyze the differences between paired fenced and unfenced control plots for a number of variables including total vegetative cover. Differences in total vegetative cover were not statistically significant for the baseline data collected in June 2009. By contrast, two months after the old protective fencing was removed from the initially-vegetated areas to allow Canada geese access to the unfenced control plots, total vegetative cover had declined dramatically in the initially-vegetated unfenced control plots, and differences between paired fenced and unfenced control plots were statistically significant. These differences have remained steady and significant throughout the remainder of these first three years of the study. Total vegetative cover has followed a somewhat different path in the initially-unvegetated modules, where cover in the fenced plots did not significantly exceed cover in the unfenced control plots until the August 2010 sampling event. In spite of the slow start in the initially-unvegetated modules, differences between paired fenced plots and unfenced control plots have remained significant and even increased significantly over time. This indicates that total vegetative cover in the initially-unvegetated fenced plots and unfenced control plots is continuing to diverge over time as vegetation increases in the protected plots compared to the basically unvegetated unfenced control plots. Total vegetative cover has been composed almost entirely of native species during the first three years of the study, with cover by exotics averaging less than 1% during each sampling event. Species richness did not differ significantly between fenced plots and unfenced control plots during 2009, the first year of the study. Since August 2010, species richness has remained significantly greater in the fenced plots than in the unfenced control plots. These differences have remained relatively steady over time for both the initially-vegetated and initially unvegetated modules. During the study it became apparent that our elevated fence plots were more accessible to mature geese than we had expected. Even after lowering the exclosure fencing to 15 cm in 2010 and 10 cm in 2011, we documented geese inside exclosures in both years. Nonetheless the data indicate that even at 10 cm, we have limited the numbers of mature geese entering the fenced plots, rather than totally preventing their access through low spots in the uneven substrate surface. At an exclosure elevation of 10 cm and with a soft, mucky substrate, we are assuming that non-goose herbivores such as fish and turtles still have free access to the fenced plots. Annual wildrice (Zizania aquatica), known from previous studies to be especially palatable to Canada geese, has seen the greatest impact from partial access to the fenced plots by mature geese, moving from an overwhelming dominant in the initially-vegetated plots to a minor presence there by August 2011. Interestingly, pickerelweed (Pontederia cordata), also known to be highly palatable to Canada geese, has so far shown only minor herbivory in the fenced plots. By August 2011, pickerelweed had actually increased to significantly greater cover levels in the fenced plots compared to the unfenced control plots. In conclusion, the first three years of data document that vegetation exposed to full herbivory by resident and nonmigratory Canada geese for three years in the unfenced control plots showed significantly lower total vegetative cover and species richness compared to the vegetation in the fenced plots, which experienced reduced herbivory by resident and nonmigratory Canada geese. These effects were documented for modules located in both initially-vegetated and initially-unvegetated habitats.
Natural vegetation of Oregon and Washington.
Jerry F. Franklin; C.T. Dyrness
1973-01-01
Major vegetational units of Oregon and Washington and their environmental relationships are described and illustrated. After an initial consideration of the vegetation components in the two States, major geographic areas and vegetation zones are detailed. Descriptions of each vegetation zone include composition and succession, as well as discussion of variations...
Linking models and data on vegetation structure
NASA Astrophysics Data System (ADS)
Hurtt, G. C.; Fisk, J.; Thomas, R. Q.; Dubayah, R.; Moorcroft, P. R.; Shugart, H. H.
2010-06-01
For more than a century, scientists have recognized the importance of vegetation structure in understanding forest dynamics. Now future satellite missions such as Deformation, Ecosystem Structure, and Dynamics of Ice (DESDynI) hold the potential to provide unprecedented global data on vegetation structure needed to reduce uncertainties in terrestrial carbon dynamics. Here, we briefly review the uses of data on vegetation structure in ecosystem models, develop and analyze theoretical models to quantify model-data requirements, and describe recent progress using a mechanistic modeling approach utilizing a formal scaling method and data on vegetation structure to improve model predictions. Generally, both limited sampling and coarse resolution averaging lead to model initialization error, which in turn is propagated in subsequent model prediction uncertainty and error. In cases with representative sampling, sufficient resolution, and linear dynamics, errors in initialization tend to compensate at larger spatial scales. However, with inadequate sampling, overly coarse resolution data or models, and nonlinear dynamics, errors in initialization lead to prediction error. A robust model-data framework will require both models and data on vegetation structure sufficient to resolve important environmental gradients and tree-level heterogeneity in forest structure globally.
Relationships between substrate, surface characteristics, and vegetation in an initial ecosystem
NASA Astrophysics Data System (ADS)
Biber, P.; Seifert, S.; Zaplata, M. K.; Schaaf, W.; Pretzsch, H.; Fischer, A.
2013-12-01
We investigated surface and vegetation dynamics in the artificial initial ecosystem "Chicken Creek" (Lusatia, Germany) in the years 2006-2011 across a wide spectrum of empirical data. We scrutinized three overarching hypotheses concerning (1) the relations between initial geomorphological and substrate characteristics with surface structure and terrain properties, (2) the effects of the latter on the occurrence of grouped plant species, and (3) vegetation density effects on terrain surface change. Our data comprise and conflate annual vegetation monitoring results, biennial terrestrial laser scans (starting in 2008), annual groundwater levels, and initially measured soil characteristics. The empirical evidence mostly confirms the hypotheses, revealing statistically significant relations for several goal variables: (1) the surface structure properties, local rill density, local relief energy and terrain surface height change; (2) the cover of different plant groups (annual, herbaceous, grass-like, woody, Fabaceae), and local vegetation height; and (3) terrain surface height change showed significant time-dependent relations with a variable that proxies local plant biomass. Additionally, period specific effects (like a calendar-year optimum effect for the occurrence of Fabaceae) were proven. Further and beyond the hypotheses, our findings on the spatiotemporal dynamics during the system's early development grasp processes which generally mark the transition from a geo-hydro-system towards a bio-geo-hydro system (weakening geomorphology effects on substrate surface dynamics, while vegetation effects intensify with time), where pure geomorphology or substrate feedbacks are changing into vegetation-substrate feedback processes.
Phytoextraction of initial cutting of Salix matsudana for Cd and Cu.
Wang, Wen-Wen; Cheng, Liu Ke; Hao, Jie Wei; Guan, Xin; Tian, Xing-Jun
2016-06-27
Salix species are widely used as vegetation filters because of their flourishing root system and fast growth rate. However, studies have yet to determine whether the root system functions in vegetable filters with mixed heavy metal (HM) pollution or whether initial cutting participates in the phytoextraction of HMs. This study aims to determine the function of the root system and initial cutting as vegetation filters in the absorption and accumulation of Cd and Cu. Thick (>1 cm in diameter) and fine (<1 cm in diameter) initial cuttings of Salix matsudana were planted in a nutrient solution with single and mixed (Cd + Cu) treatments. The roots of several initial cuttings were removed daily to eradicate rhizofiltration. Results revealed that the existence of the root system altered distribution and interaction of Cd and Cu in plant organs and enhanced tolerance and phytoextraction capacity of plants. The initial cuttings could also absorb and accumulate HMs in the early growth stages of willow without roots. Cu inhibited the plant absorption and accumulation of Cd and promoted Cd transport to shoots. Cd inhibited the Cu absorption of the root system. Our study provided essential data regarding woody species as vegetation filters of HM pollution.
NASA Astrophysics Data System (ADS)
Rengers, F. K.; McGuire, L.; Coe, J. A.; Kean, J. W.; Baum, R. L.; Staley, D. M.; Godt, J.
2016-12-01
Within the critical zone there is a feedback between the state of soil and vegetation development, boundary conditions (e.g. topography, climate, hillslope aspect), and biogeochemical and geophysical process fluxes. Here we explore how one process—debris flows initiated by shallow landslides—is influenced by the critical zone development state and the imposed boundary conditions. In this study, we examine a rainstorm in September 2013 in the Colorado Front Range wherein 78% of 1138 debris flows were triggered on south-facing slopes. One hypothesis is that debris-flow initiation sites are controlled by long-term soil formation and bedrock weathering, which are aspect-dependent in the Front Range. A competing hypothesis is that debris flow initiation locations are controlled by present-day vegetation patterns within the critical zone. We tested these hypotheses with a regional investigation of the Green-Red Vegetation Index (GRVI), a metric used to identify the degree of vegetation cover. Although the majority of debris flows were observed on south-facing hillslopes, the GRVI analysis revealed that most debris-flow initiation locations had low tree density and high rainfall, regardless of hillslope aspect. We next numerically simulated soil pore pressure and slope stability using the September 2013 rainfall data at one site. Results suggest that spatial variations in soil depth and the relative extent of bedrock weathering on north- versus south-facing slopes are insufficient to explain the observed spatial variations in debris flow initiation. However, decreased debris flow initiation on north-facing slopes likely resulted from increased root reinforcement provided by trees on north-facing slopes. While the current vegetation regimes in the Colorado Front Range, and throughout much of the semi-arid southwestern U.S., are superimposed on a landscape where soil development and bedrock weathering (both of which affect slope stability) are responding to longer timescale processes, our analysis suggests landslide susceptibility was primarily governed by the local, geo-mechanical effects of vegetation during this extreme rainfall event.
Muthalif, M M; Rowland, L J
1994-04-01
The level of three major polypeptides of 65, 60, and 14 kD increased in response to chilling unit accumulation in floral buds of a woody perennial, blueberry (Vaccinium, section Cynaococcus). The level of the polypeptides increased most dramatically within 300 h of chilling and decreased to the prechilling level with the initiation of budbreak. Cold-hardiness levels were assessed for dormant buds of Vaccinium corymbosum and Vaccinium ashei after different chilling treatments until the resumption of growth. These levels coincided with the level of the chilling-responsive polypeptides. Like some other previously described cold-induced proteins in annual plants, the level of the chilling-induced polypeptides also increased in leaves in response to cold treatment; the chilling-induced polypeptides were heat stable, resisting aggregation after incubation at 95 degrees C for 15 min. By fractionating bud proteins first by isoelectric point (pI) and then by molecular mass, the pI values of the 65- and 60-kD polypeptides were found to be 7.5 to 8.0 and the pI value of the 14-kD polypeptide was judged to be 8.5. Purification of the 65- and 60-kD polypeptides, followed by digestion with endoproteinase Lys-C and sequencing of selected fragments, revealed similarities in amino acid composition between the 65- and 60-kD polypeptides and dehydrins. Indeed, antiserum to the lysine-rich consensus sequence EKKGIMDKIKEKLPG of dehydrin proteins cross-reacted to all three of the major chilling-responsive polypeptides of blueberry, identifying these as dehydrins or dehydrin-like proteins.
Muthalif, M M; Rowland, L J
1994-01-01
The level of three major polypeptides of 65, 60, and 14 kD increased in response to chilling unit accumulation in floral buds of a woody perennial, blueberry (Vaccinium, section Cynaococcus). The level of the polypeptides increased most dramatically within 300 h of chilling and decreased to the prechilling level with the initiation of budbreak. Cold-hardiness levels were assessed for dormant buds of Vaccinium corymbosum and Vaccinium ashei after different chilling treatments until the resumption of growth. These levels coincided with the level of the chilling-responsive polypeptides. Like some other previously described cold-induced proteins in annual plants, the level of the chilling-induced polypeptides also increased in leaves in response to cold treatment; the chilling-induced polypeptides were heat stable, resisting aggregation after incubation at 95 degrees C for 15 min. By fractionating bud proteins first by isoelectric point (pI) and then by molecular mass, the pI values of the 65- and 60-kD polypeptides were found to be 7.5 to 8.0 and the pI value of the 14-kD polypeptide was judged to be 8.5. Purification of the 65- and 60-kD polypeptides, followed by digestion with endoproteinase Lys-C and sequencing of selected fragments, revealed similarities in amino acid composition between the 65- and 60-kD polypeptides and dehydrins. Indeed, antiserum to the lysine-rich consensus sequence EKKGIMDKIKEKLPG of dehydrin proteins cross-reacted to all three of the major chilling-responsive polypeptides of blueberry, identifying these as dehydrins or dehydrin-like proteins. PMID:8016270
USDA-ARS?s Scientific Manuscript database
Higher levels of vegetable intake have been associated with decreased risks of heart disease, diabetes, stroke, several cancers, and possibly obesity, but vegetable intake is generally low. Preference is an important determinant of vegetable intake, and food preferences are initiated early in life, ...
Impacts of salt marsh plants on tidal channel initiation and inheritance
NASA Astrophysics Data System (ADS)
Schwarz, Christian; Ye, Qinghua; van der Wal, Daphne; Zhang, Liquan; Ysebaert, Tom; Herman, Peter MJ
2013-04-01
Tidal channel networks are the most prominent and striking features visible in tidal wetlands. They serve as major pathways for the exchange of water, sediments, nutrients and contaminants between the wetland and the adjacent open water body. Previous studies identified topography guided sheet flows, as the predominate process for tidal channel initiation. Guided through differences in local topography, sheet flows are able to locally exceed bottom shear stress thresholds, initiating scouring and incision of tidal channels, which then further grow through head ward erosion. The fate of these channels after plant colonization is described in literature as being inherited into the salt marsh through vegetation induced bank stabilization (further referred to as vegetation stabilized channel inheritance). In this study we present a combination of flume experiments and modelling simulations elucidating the impact of vegetation on tidal channel initiation. We first studied the impact of plant properties (stiff: Spartina alterniflora versus flexible: Scirpus mariqueter) on local sediment transport utilizing a flume experiment. Then a coupled hydrodynamic morphodynamic plant growth model was set up to simulate plant colonization by these two different species in the pioneer zone at the mudflat - salt marsh transition. Based on the model we investigated the ramifications of interactions between vegetation, sediment and flow on tidal channel initiation. We specifically compared the effect of vegetation properties (such as stiffness, growth velocity and stress tolerance) on emerging channel patterns, hypothesizing that vegetation mediated channel incision (vegetation induced flow routing and differential sedimentation/erosion patterns leading to tidal channel incision) plays an active role in intertidal landscape evolution. We finally extended our model simulation by imposing pre-existing mudflat channels with different maximum depths, to investigate the impact of existing channels on vegetation mediated channel incision. This simulated landscape development was then compared to aerial photographs from the Scheldt estuary (the Netherlands) and the Yangtze estuary (China). Our results suggest a significant impact of plant properties on tidal channel network emergence, specifically in respect to network drainage density and channel width. This emphasizes the repercussions of vegetation mediated channel incision on estuarine landscape development. Further do our results point to the existence of a threshold in pre-existing mudflat channel depth favoring either vegetation stabilized channel inheritance or vegetation mediated channel incision processes. Increasing depth in mudflat channels favors flow routing via these channels, leaving less flow and momentum remaining for the interaction between vegetation, sediment and flow and therefore vegetation mediated channel incision. This threshold will be influenced by field specific parameters such as hydrodynamics (tidal range, waves, and flow), sediments and predominant plant species. Hence our study not only demonstrates to importance of plant properties on landscape development it also shows that vegetation stabilized channel inheritance or vegetation mediated channel incision are two occurring mechanisms depending on ecosystem properties, adding important information for salt marsh management and conservation.
Exploring alternative methods for vegetation control and maintenance along roadsides.
DOT National Transportation Integrated Search
2003-02-01
The search for alternative methods for controlling : and maintaining vegetation along roadsides has : just begun. This work was initiated to find : alternatives to the traditional methods for roadside : vegetation maintenance that includes the use of...
Heath, Philippa; Houston-Price, Carmel; Kennedy, Orla B.
2013-01-01
Repeatedly looking at picture books about fruits and vegetables with parents enhances young children's visual preferences toward the foods in the book (Houston-Price et al., 2009a) and influences their willingness to taste these foods (Houston-Price et al., 2009b). This article explores whether the effects of picture book exposure are affected by infants' initial familiarity with and liking for the foods presented. In two experiments parents of 19- to 26-month-old toddlers were asked to read a picture book about a liked, disliked or unfamiliar fruit or vegetable with their child every day for 2 weeks. The impact of the intervention on both infants' visual preferences and their eating behavior was determined by the initial status of the target food, with the strongest effects for foods that were initially unfamiliar. Most strikingly, toddlers consumed more of the unfamiliar vegetable they had seen in their picture book than of a matched control vegetable. Results confirm the potential for picture books to play a positive role in encouraging healthy eating in young children. PMID:24653709
Heath, Philippa; Houston-Price, Carmel; Kennedy, Orla B
2014-01-01
Repeatedly looking at picture books about fruits and vegetables with parents enhances young children's visual preferences toward the foods in the book (Houston-Price et al., 2009a) and influences their willingness to taste these foods (Houston-Price et al., 2009b). This article explores whether the effects of picture book exposure are affected by infants' initial familiarity with and liking for the foods presented. In two experiments parents of 19- to 26-month-old toddlers were asked to read a picture book about a liked, disliked or unfamiliar fruit or vegetable with their child every day for 2 weeks. The impact of the intervention on both infants' visual preferences and their eating behavior was determined by the initial status of the target food, with the strongest effects for foods that were initially unfamiliar. Most strikingly, toddlers consumed more of the unfamiliar vegetable they had seen in their picture book than of a matched control vegetable. Results confirm the potential for picture books to play a positive role in encouraging healthy eating in young children.
USDA-ARS?s Scientific Manuscript database
Initiation of asexual sporulation in powdery mildews is preceded by a period of superficial vegetative growth of mildew colonies. We found evidence of signaling in Erysiphe necator that was promulgated at the colony center as early as five days after inoculation and stimulated sporulation throughout...
NASA Astrophysics Data System (ADS)
Kim, Y.; Wang, G.
2006-05-01
Soil moisture-vegetation-precipitation feedbacks tend to enhance soil moisture memory in some areas of the globe, which contributes to the subseasonal and seasonal climate prediction skill. In this study, the impact of vegetation on precipitation over North America is investigated using a coupled land-atmosphere model CAM3- CLM3. The coupled model has been modified to include a predictive vegetation phenology scheme and validated against the MODIS data. Vegetation phenology is modeled by updating the leaf area index (LAI) daily in response to cumulative and concurrent hydrometeorological conditions. First, driven with the climatological SST, a large group of 5-member ensembles of simulations from the late spring and summer to the end of year are generated with the different initial conditions of soil moisture. The impact of initial soil moisture anomalies on subsequent precipitation is examined with the predictive vegetation phenology scheme disabled/enabled ("SM"/"SM_Veg" ensembles). The simulated climate differences between "SM" and "SM_Veg" ensembles represent the role of vegetation in soil moisture-vegetation- precipitation feedback. Experiments in this study focus on how the response of precipitation to initial soil moisture anomalies depends on their characteristics, including the timing, magnitude, spatial coverage and vertical depth, and further how it is modified by the interactive vegetation. Our results, for example, suggest that the impact of late spring soil moisture anomalies is not evident in subsequent precipitation until early summer when local convective precipitation dominates. With the summer wet soil moisture anomalies, vegetation tends to enhance the positive feedback between soil moisture and precipitation, while vegetation tends to suppress such positive feedback with the late spring anomalies. Second, the impact of vegetation feedback is investigated by driving the model with the inter-annually varying monthly SST (1983-1994). With the predictive vegetation phenology disabled/enabled ("SM"/"SM_Veg" ensembles), the simulated climates are compared with the observation. This will present the role of an interactive or predictive vegetation phenology scheme in subseasonal and seasonal climate prediction. Specifically, the extreme climate events such as drought in 1988 and flood in 1993 over the Midwestern United States will be the focus of results analyses.
Development of freeze dried vegetables
NASA Technical Reports Server (NTRS)
Larson, R. W.
1970-01-01
The development of freeze dried vegetables to be used in the Apollo food system is discussed. After the initial selection and screening of vegetables, several types of freeze dried vegetables were prepared in small batches. From these small batches, two vegetables were judged satisfactory for further testing and evaluation. These vegetables, mashed potatoes and asparagus, were subjected to storage at 100 deg plus or minus 5 F. for two weeks and then taste tested. The vegetables were also tested to determine if they complied with the microbiological requirements for Apollo food. The space food prototype production guide for the vegetables is submitted.
Initial response of understory vegetation to three alternative thinning treatments
Liane R. Davis; Klaus J. Puettmann
2009-01-01
This study compares initial understory vegetation response among three thinning treatments and a control in 30 - to 50-year-old even-aged Pseudotsuga menziesii (Mirbel) Franco (Douglas-fir) stands. It was conducted on four sites on the western slope of the central Oregon Cascades. Treatments included a control (no thinning), a light thinning, and...
Klaus J. Puettmann; Erich Kyle Dodson; Adrian Ares; Carrie A. Berger
2013-01-01
The Density Management Study and Young Stand Th inning and Diversity Study were initiated to investigate whether alternative thinning treatments can accelerate the development of forests toward late-successional structures. An overview of overstory and understory vegetation responses indicates that the magnitude and direction of thinning eff ects initially varied among...
Stephen G. Pallardy
1995-01-01
The vegetation data set of the Missouri Forest Ecosystem Project (MOFEP, initiated by the Missouri Department of Conservation) in the Ozark Mountains of southeastern Missouri was ordinated by Detrended Correspondence Analysis (DCA) to identify vegetation gradients and potential environmental influences.
Powdered hide model for vegetable tanning
USDA-ARS?s Scientific Manuscript database
Powdered hide samples for this initial study of vegetable tanning were prepared from hides that were dehaired by a typical sulfide or oxidative process, and carried through the delime/bate step of a tanning process. In this study, we report on interactions of the vegetable tannin, quebracho with th...
Jilcott Pitts, Stephanie B; McGuirt, Jared T; Wu, Qiang; Rushing, Jill; Uslan, Daniella; Stanley, Karen K; Bullock, Sally L; Ward, Rachel K; Rafferty, Ann P; Ammerman, Alice S
2016-05-01
Using the Social Determinants of Health as the study's theoretical underpinning, the authors examined the impact of the North Carolina Community Transformation Grant Project farmers' market initiatives on changes in awareness and use of farmers' markets, and fruit and vegetable consumption. During the farmers' market season, the researchers conducted a random digit-dial telephone survey among residents in 3 rural North Carolina counties to examine changes in farmers' market awareness, shopping, and fruit and vegetable consumption. They examined change over 1 year using t tests, chi-square tests, and propensity score matching. In 1 county there were increases in farmers' market shopping and fruit and vegetable consumption, and in 1 county there were decreases in farmers' market shopping and fruit and vegetable consumption. The impact of farmers' market initiatives may be affected by county-specific socioeconomic contexts. Copyright © 2016 Society for Nutrition Education and Behavior. Published by Elsevier Inc. All rights reserved.
A. Sidney England; Mark K. Sogge; Roy A. Woodward
1989-01-01
Natural vegetation establishment and development were monitored for 3 1/2 years on a new, dredged-material island located within the breached levees at Donlon Island in the Sacramento-San Joaquin River Delta. Vegetation measurements and maps prepared annually indicate that marsh and riparian vegetation types have developed rapidly. Topographic data for the island has...
Tidal freshwater wetland herbivory in Anacostia Park
Krafft, Cairn; Hatfield, Jeff S.; Hammerschlag, Richard S.
2010-01-01
Herbivory has played a major role in dictating vegetation abundance and species composition at Kingman Marsh in Anacostia Park, Washington, D.C., since restoration of this tidal freshwater wetland was initiated in 2000. In June 2009 an herbivory study was established to document the impacts of resident Canada goose (Branta canadensis maxima) herbivory to vegetation at Kingman Marsh. Sixteen modules consisting of paired exclosed plots and unfenced control plots were constructed. Eight of the modules were installed in vegetated portions of the restoration site that had been protected over time by fencing, while the remaining eight modules were placed in portions of the site that had not been protected over time and were basically unvegetated at the start of the experiment. Since the experiment was designed to determine the impacts of herbivory by resident Canada geese as opposed to other herbivores, exclosure fencing was elevated 0.2 m to permit access by herbivores such as fish and turtles while excluding mature Canada geese. Repeated measures analysis of variance (ANOVA) was used to analyze the differences between paired exclosure and control plots for a number of variables including total vegetative cover. Differences in total vegetative cover were not significant for the baseline data collected in June. By contrast, two months after the old protective fencing was removed from the initially-vegetated areas to allow Canada geese access to the control plots, total vegetative cover had declined dramatically in the initially-vegetated control plots, and differences between paired exclosed and control plots were significant (P = 0.0026). No herbivory by Canada geese or other herbivores such as fish or turtles was observed in the exclosures. These results show that Canada goose herbivory has inflicted significant damage to the native wetland vegetation in the portions of Kingman Marsh that had been refenced and replanted. Significant differences in total vegetative cover were limited to the eight modules installed in areas already vegetated by previous restoration efforts and protected until the start of the study, suggesting that areas of Kingman that are essentially devoid of vegetation would take longer than a growing season to show signs of improvement once goose herbivory impacts have been reduced.
Stephen R. Shifley; Brian L., eds. Brookshire
2000-01-01
Describes vegetation and physical site conditions at the initiation (1991-1995) of the Missouri Ozark Forest Ecosystem Project (MOFEP) in the southeastern Missouri Ozarks. Provides detailed information on sampling protocols and summarizes initial conditions of the landscape experiment prior to harvest treatments. Summaries are by plot, by ~800-acre...
A new effort to model aquatic vegetation patterns in the St. Louis River Estuary was initiated in summer of 2010 for the purpose of informing wetland restoration planning in the St. Louis River Area of Concern (AOC) at 40th Avenue West in Duluth. Aquatic vascular plants were doc...
Yu, Jiahao; Zhang, Shuqin; Zhang, Lianfu
2018-01-01
During vegetable cooking, one of the most notable and common chemical reactions is the Maillard reaction, which occurs as a result of thermal treatment and dehydration. Amadori compound determination provides a very sensitive indicator for early detection of quality changes caused by the Maillard reaction, as well as to retrospectively assess the heat treatment or storage conditions to which the product has been subjected. In this paper, a hydrophilic interaction liquid chromatographic-electrospray ionization-tandem mass spectrometric method was developed for the analysis of eight Amadori compounds, and the initial steps of the Maillard reaction during cooking (steaming, frying and baking) bell pepper, red pepper, yellow onion, purple onion, tomato and carrot were also assessed by quantitative determination of these Amadori compounds. These culinary treatments reduced moisture and increased the total content of Amadori compounds, which was not dependent on the type of vegetable or cooking method. Moreover, the effect of steaming on Amadori compound content and water loss was less than that by baking and frying vegetables. Further studies showed that the combination of high temperature and short time may lead to lower formation of Amadori compounds when baking vegetables. Culinary methods differently affected the extent of initial Maillard reaction when vegetables were made into home-cooked products. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.
Yegorova, Svetlana; Betts, Matthew G.; Hagar, Joan; Puettmann, Klaus J.
2013-01-01
Quantitative associations between animals and vegetation have long been used as a basis for conservation and management, as well as in formulating predictions about the influence of resource management and climate change on populations. A fundamental assumption embedded in the use of such correlations is that they remain relatively consistent over time. However, this assumption of stationarity has been rarely tested – even for forest birds, which are frequently considered to be 'indicator species' in management operations. We investigated the temporal dynamics of bird-vegetation relationships in young Douglas-fir (Pseudotsuga menziesii) forests over more than a decade following initial anthropogenic disturbance (commercial thinning). We modeled bird occurrence or abundance as a function of vegetation characteristics for eight common bird species for each of six breeding seasons following forest thinning. Generally, vegetation relationships were highly inconsistent in magnitude across years, but remained positive or negative within species. For 3 species, relationships that were initially strong dampened over time. For other species, strength of vegetation association was apparently stochastic. These findings indicate that caution should be used when interpreting weak bird-vegetation relationships found in short-term studies and parameterizing predictive models with data collected over the short term.
Lateral vegetation growth rates exert control on coastal foredune hummockiness
and coalescing time
NASA Astrophysics Data System (ADS)
Goldstein, Evan B.; Moore, Laura J.; Durán Vinent, Orencio
2017-08-01
Coastal foredunes form along sandy, low-sloped coastlines and range in shape from continuous dune ridges to hummocky features, which are characterized by alongshore-variable dune crest elevations. Initially scattered dune-building plants and species that grow slowly in the lateral direction have been implicated as a cause of foredune hummockiness
. Our goal in this work is to explore how the initial configuration of vegetation and vegetation growth characteristics control the development of hummocky coastal dunes including the maximum hummockiness of a given dune field. We find that given sufficient time and absent external forcing, hummocky foredunes coalesce to form continuous dune ridges. Model results yield a predictive rule for the timescale of coalescing and the height of the coalesced dune that depends on initial plant dispersal and two parameters that control the lateral and vertical growth of vegetation, respectively. Our findings agree with previous observational and conceptual work - whether or not hummockiness will be maintained depends on the timescale of coalescing relative to the recurrence interval of high-water events that reset dune building in low areas between hummocks. Additionally, our model reproduces the observed tendency for foredunes to be hummocky along the southeast coast of the US where lateral vegetation growth rates are slower and thus coalescing times are likely longer.
McGuire, Luke; Rengers, Francis K.; Kean, Jason W.; Coe, Jeffrey A.; Mirus, Benjamin B.; Baum, Rex L.; Godt, Jonathan W.
2016-01-01
More than 1100 debris flows were mobilized from shallow landslides during a rainstorm from 9 to 13 September 2013 in the Colorado Front Range, with the vast majority initiating on sparsely vegetated, south facing terrain. To investigate the physical processes responsible for the observed aspect control, we made measurements of soil properties on a densely forested north facing hillslope and a grassland-dominated south facing hillslope in the Colorado Front Range and performed numerical modeling of transient changes in soil pore water pressure throughout the rainstorm. Using the numerical model, we quantitatively assessed interactions among vegetation, rainfall interception, subsurface hydrology, and slope stability. Results suggest that apparent cohesion supplied by roots was responsible for the observed connection between debris flow initiation and slope aspect. Results suggest that future climate-driven modifications to forest structure could substantially influence landslide hazards throughout the Front Range and similar water-limited environments where vegetation communities may be more susceptible to small variations in climate.
Della, Lindsay J; DeJoy, David M; Lance, Charles E
2008-01-01
Fruit and vegetable consumption affects the etiology of cardiovascular disease as well as many different types of cancers. Still, Americans' consumption of fruit and vegetables is low. This article builds on initial research that assessed the validity of using a consumer-based psychographic audience segmentation in tandem with the theory of planned behavior to explain differences among individuals' consumption of fruit and vegetables. In this article, we integrate the findings from our initial analyses with media and purchase data from each audience segment. We then propose distinct, tailored program suggestions for reinventing social marketing programs focused on increasing fruit and vegetable consumption in each segment. Finally, we discuss the implications of utilizing a consumer-based psychographic audience segmentation versus a more traditional readiness-to-change social marketing segmentation. Differences between these two segmentation strategies, such as the ability to access media usage and purchase data, are highlighted and discussed.
DeJoy, David M.; Lance, Charles E.
2014-01-01
Fruit and vegetable consumption impacts the etiology of cardiovascular disease as well as many different types of cancers. Still, Americans' consumption of fruit and vegetables is low. This article builds on initial research that assessed the validity of using a consumer-based psychographic audience segmentation in tandem with the theory of planned behavior to explain differences among individuals' consumption of fruit and vegetables. In this article, we integrate the findings from our initial analyses with media and purchase data from each audience segment. We then propose distinct, tailored program suggestions for reinventing social marketing programs focused on increasing fruit and vegetable consumption in each segment. Finally, we discuss the implications of utilizing a consumer-based psychographic audience segmentation versus more traditional readiness-to-change social marketing segmentation. Differences between these two segmentation strategies, such as the ability to access media usage and purchase data, are highlighted and discussed. PMID:18935880
The interaction between vegetation and channel dynamics based on experimental findings
NASA Astrophysics Data System (ADS)
Teske, R.; Van Dijk, W. M.; Van De Lageweg, W.; Kleinhans, M. G.
2012-12-01
Strong feedbacks exist between river channel dynamics, floodplain development and riparian vegetation. Several experimental studies showed how uniformly sown vegetation causes a shift from a braided river to a single-thread and sometimes meandering river. The objective of this study is to test what the effect of fluvially distributed seeds and vegetation settling is on channel pattern change and channel dynamics. The experiments were carried out in a flume of 3 m wide and 10 m long. We tested where the vegetation deposited in a braided and meandering river and how the morphology changed. We used a simple hydrograph of 0.25 hour high flow and 3.75 hour low flow, where alfalfa seeds were added during high flow. The bed sediment consisted of a poorly sorted sediment mixture ranging from fine sand to fine gravel. The evolution was recorded by a high-resolution laser-line scanner and a Digital Single Lens Reflex (DSLR) camera used for channel floodplain segmentation, water depth approximation and vegetation distribution. In an initially braided river, vegetation settled on the higher banks and stabilized the banks. In an initially meandering river, vegetation settled in the inner scrolls, and also on the outer banks when water level exceeded bankfull conditions. In agreement with earlier work, the outer bank was stabilized; erosion rate decreased and bends became sharper. The inner bend vegetation stabilized a part of the point bar and hydraulic resistance of the vegetation steered water in the channel and to the non-vegetated part of the inner bend. As result the meander bend became braided as water flows along the vegetation. Vegetation formed patches that grew over time and reduced channel dynamics. We conclude that self-settling vegetation decreased local bank erosion and that vegetated islands leads to a multi-thread system instead of single-threaded.
ERIC Educational Resources Information Center
Jamelske, Eric M.; Vernon, Erin
2018-01-01
Purpose/Objectives: The purpose of this study was to determine the impact of teacher encouragement on elementary school student vegetable snack consumption. Methods: Twelve Wisconsin elementary school teachers were randomly assigned different levels of encouragement procedures during vegetable snack time. The consumption levels of 218 students…
USDA-ARS?s Scientific Manuscript database
Light limitation caused by dense vegetation is one of the greatest threats to plant survival in natural environments. Plants detect such neighboring vegetation as a reduction in the red to far-red ratio (R:FR) of the incoming light. The low R:FR signal, perceived by phytochromes, initiates a set of ...
Impact of the USDA Fresh Fruit and Vegetable Program on Children's Consumption
ERIC Educational Resources Information Center
Jamelske, Eric M.; Bica, Lori A.
2012-01-01
Purpose/Objectives: The United States Department of Agriculture initiated its Fresh Fruit and Vegetable Program (FFVP) in 2002. This study investigates the impact of the FFVP on children's fruit and vegetable consumption. Methods: Participants were fourth- and fifth- graders from two program schools (n = 124) and two control schools (n = 134) in…
ERIC Educational Resources Information Center
Potter, Susan C.; Schneider, Doris; Coyle, Karin K.; May, Gary; Robin, Leah; Seymour, Jenna
2011-01-01
Background: During the 2004-2005 school year, the Mississippi Department of Education, Office of Child Nutrition, initiated a pilot program to distribute free fruit and vegetable snacks to students during the school day. This article describes the first-year implementation of the Mississippi Fruit and Vegetable Pilot Program. Methods: The process…
ERIC Educational Resources Information Center
Bica, Lori A.; Jamelske, Eric M.; Lagorio, Carla H.
2016-01-01
Purpose/Objectives: American children's consumption of fruits and vegetables (FVs) does not meet current recommendations. Hence, several federally funded, school-based programs have been initiated over the last several years. One such program is the United States Department of Agriculture Fresh Fruit and Vegetable Program (FFVP), which provides…
DOT National Transportation Integrated Search
2007-05-30
Research experiments were designed and initiated to determine if application placement technologies offer : a viable solution for vegetation management along North Carolina Roadsides. Select equipment was evaluated for : broomsedge (Andropogon virgin...
Roba, Hassan G; Oba, Gufu
2013-04-01
The recent greening of the Sahel region and increase in vegetation cover around pastoral settlements previously described as "man-made deserts", have raised important questions on the permanency of land degradation associated with the over-exploitation of woody plants. Evidence presented is mostly on increased wetness, while management by local communities has received limited attention. This study evaluated changes in woody vegetation cover around the settlements of Kargi and Korr in northern Kenya, using satellite imagery (1986/2000), ecological ground surveys and interviews with local elders, in order to understand long-term changes in vegetation cover and the role of local community in vegetation dynamics. At both settlements, there were increments in vegetation cover and reduction in the extent of bare ground between 1986 and 2000. At Kargi settlement, there were more tree seedlings in the centre of settlement than further away. Mature tree class was more abundant in the centre of Korr than outside the settlement. The success of the regeneration and recovery of tree cover was attributed to the actions of vegetation management initiative including stringent measures by the local Environmental Management Committees. This study provides good evidence that local partnership is important for sustainable management of resources especially in rural areas where the effectiveness of government initiative is lacking.
Robert A. Slesak; Stephen H. Schoenholtz; Timothy B. Harrington; Nathan A. Meehan
2011-01-01
We assessed the effect of harvest type (bole-only or whole-tree) and vegetation control treatments (initial or annual application of herbicide) on soil C and N at two contrasting sites in the Pacific Northwest. Pretreatment (2003) and posttreatment (2005) soil samples were collected by depth to 60 cm, and a stratified sampling approach based on four surface conditions...
NASA Astrophysics Data System (ADS)
de la Barrera, Francisco; Henríquez, Cristian
2017-10-01
The well-being of people living in cities is strongly dependent on the existence of urban vegetation because of the ecosystem services or benefits it provides. This is why governments develop plans to create green spaces, plant trees, promote the maintenance of vegetation in private spaces and also monitor their status over time. In Latin America, and particularly in Chile, the increase of urban vegetation has been stimulated through different initiatives and regulations. However, development of monitoring programs at the national level is scarce, so it is yet unknown if these initiatives and regulations have had positive effects. In this article, we monitor the change in urban vegetation in 13 Chilean cities located in a latitudinal gradient of practically zero to almost 1800 mm of annual rainfall. We calculated the trends in NDVI (2000-2016) as an indicator of change in urban greenery using data from the MODIS Subsets platform. Likewise, to assess whether the initiatives have had an effect we quantified the number of urban parks existing at the beginning of the period and how many were created during the study period. For this, we analysed official databases and high spatial resolution satellite images. Armed with said data, we assessed whether these new parks had impacted the tendency toward change in urban greenery. The results indicate that, in general, Chilean cities vary greatly inter-annually in urban greenery and have lost urban vegetation in the last 16 years, with significant losses in four of those cities. Two cities located in desert ecosystems represent an exception and showed positive trends in their urban vegetation. The rainfall in cities has an impact on the amount of vegetation, but not on their tendency to change, i.e. there are cities with loss of vegetation at all levels of precipitation. The creation of parks has not been able to reverse negative trends, which indicates the prevalence of other drivers of change that are not sufficiently compensated by initiatives and regulations that seek to increase urban vegetation. Today, planning and management of urban vegetation is a challenge for urban sustainability and must be addressed systematically, integrally and implemented via urban regulations. It is imperative to focus on cities in extenso, taking into consideration residential areas, private spaces, peri-urban areas, etc. Likewise, climate in each city, inter-annual variability and future changes must also be considered when designing green areas to make them resilient, prevent increases in maintenance costs and provide benefits for the inhabitants in perpetuity.
Marion, J.L.; Cole, D.N.
1996-01-01
We studied the impacts of camping on soil and vegetation at Delaware Water Gap National Recreation Area. We assessed the magnitude of impact on campsites that varied in amount of use and in topographic position. We also evaluated change over a 5-yr period on long-established, recently opened, and recently closed campsites, as well as on plots subjected to experimental trampling. Campsite impacts were intense and spatially variable. Amount of use and topographic position explained some of this variation. Soil and vegetation conditions changed rapidly when campsites were initially opened to use and when they were closed to use. Changes were less pronounced on the long-established campsites that remained open to use. In the trampling experiments, impact varied greatly with trampling intensity and between vegetation types. An open-canopy grassland vegetation type was much more resistant to trampling than a forb-dominated forest vegetation type. Campsite impacts increased rapidly with initial disturbance, stabilized with ongoing disturbance, and-in contrast to what has been found in most other studies-decreased rapidly once disturbance was terminated. Implications of these results for campsite management strategies, such as use concentration or dispersal, and rotation or closure of campsites, are discussed.
Asset management aided through vegetation management/zoysiagrass along NC roadsides.
DOT National Transportation Integrated Search
2016-08-30
Research experiments were designed and initiated to evaluate plant growth regulators and recently registered herbicides : for vegetation management along North Carolina roadsides, as well as warm-season turfgrass seed and sod practices to utilize : l...
SPRUCE S1 Bog Vegetation Survey and Peat Depth Data: 2009
Hanson, P. J. [Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee, U.S.A
2009-12-31
This data set reports the results of a field survey of the S1 Bog to characterize the vegetation and to determine peat depth. The survey was conducted on September 21 and 22, 2009. The initial survey of vegetation and peat depth characteristics of the target bog was conducted to evaluate the logical locations for installing replicated experimental blocks for SPRUCE. The goal was to identify multiple locations of uniform aboveground vegetation and belowground peat depth for positioning experimental units within the bog.
Costa, Michel Iskin da Silveira; Meza, Magno Enrique Mendoza
2006-12-01
In a plant-herbivore system, a management strategy called threshold policy is proposed to control grazing intensity where the vegetation dynamics is described by a plant-water interaction model. It is shown that this policy can lead the vegetation density to a previously chosen level under an overgrazing regime. This result is obtained despite both the potential occurrence of vegetation collapse due to overgrazing and the possibility of complex dynamics sensitive to vegetation initial densities and parameter uncertainties.
Fermentation of philippine vegetable blends.
Orillo, C A; Sison, E C; Luis, M; Pederson, C S
1969-01-01
Seven blends of Philipphine vegetables, two of which contained soybeans and one mongo bean sprouts, were prepared for fermentation and study of microbiological and chemical changes. The fermentations were typical lactic acid bacterial fermentations, initiated by Leuconostoc mesenteroides and continued by Lactobacillus brevis, Pediococcus cerevisiae, and L. plantarum. The combination of high acidity and low pH resembled other vegetable fermentations, such as sauerkraut. The procedure offers a method of preserving surplus vegetables, and, in addition, a method for incorporating and preserving the high-protein-containing soybeans.
Akiyama, Takuya; Inouye, Sumiko; Komano, Teruya
2003-01-01
Myxococcus xanthus is a gram-negative soil bacterium that undergoes multicellular development upon nutrient starvation. In the present study, two novel developmental genes, fruC and fruD, of M. xanthus were identified and characterized. The FruD protein has significant amino acid sequence similarity to the DivIVA proteins of many bacteria including Bacillus subtilis. Vegetative cells of the fruD mutant exhibited a filamentous phenotype. The fruC and fruD mutants displayed similar delayed-development phenotypes. The formation of tightly aggregated mounds by fruC and fruD mutants was slower than that by the wild-type strain. Spore formation by the fruC and fruD mutants initiated after 30 h poststarvation, whereas wild-type M. xanthus initiated spore formation after 18 h. The fruCD genes were constitutively expressed as an operon during vegetative growth and development. S1 mapping revealed that transcription initiation sites of the fruCD operon were located 114 (P1) and 55 bp (P2) upstream of the fruC initiation codon. Only the P1 promoter was active during vegetative growth, while both the P1 and P2 promoters were active during development. The FruD protein was produced as a cytoplasmic protein and formed an oligomer during vegetative growth and development. PMID:12754229
Leigh B. Lentile; Penelope Morgan; Andrew T. Hudak; Michael J. Bobbitt; Sarah A. Lewis; Alistair M. S. Smith; Peter R. Robichaud
2007-01-01
Vegetation response and burn severity were examined following eight large wildfires that burned in 2003 and 2004: two wildfires in California chaparral, two each in dry and moist mixed-conifer forests in Montana, and two in boreal forests in interior Alaska. Our research objectives were: 1) to characterize one year post-fire vegetation recovery relative to initial fire...
A. Dhar; C.D. Baker; H.B. Massicotte; Brian J. Palik; C.D.B. Hawkins
2016-01-01
Many studies have examined short-term changes in understory vegetation following prescribed burning. However, knowledge concerning longer term effects on both forest understory and overstory vegetation is lacking. This investigation was initiated to examine changes in understory (herbaceous and shrub) and overstory species composition almost four decades after logging...
NASA Astrophysics Data System (ADS)
Arkebauer, T. J.; Walter-Shea, E. A.
2017-12-01
Vegetation indices, based on canopy spectral reflectance, are widely used to infer physical and biological characteristics of vegetation. Understanding the changes in remotely sensed signals as vegetation responds to its changing environment is essential for full assessment of canopy structure and function. Canopy-level reflectance has been measured at Nebraska AmeriFlux sites US-Ne1, US-Ne2 and US-Ne3 for most years since flux measurements were initiated in 2001. Tower-mounted spectral sensors provided 10-minute averaged reflectance (in PAR and NIR spectral regions) every half hour through the growing season for maize and soybean. Canopy reflectance varied over diurnal and seasonal time periods which led to variations in vegetation indices. One source of variation is due to the interaction of incident solar radiant energy with canopy structure (e.g., reflectance varies with changes in solar zenith angle and direct beam fraction, vegetative fraction, and leaf angle distribution). Another source of variation results from changes in canopy function (e.g., fluctuations in gross primary production and invocation of photoprotective mechanisms with plant stress). We present here a series of diurnal "patterns" of vegetation indices (including Normalized Difference Vegetation Index and Chlorophyll Index) for maize and soybean under mostly clear sky conditions. We demonstrate that diurnal patterns change as the LAI of the canopy changes through the course of the growing season in a somewhat predictable pattern from plant emergence (low vegetative cover) through peak green LAI (full vegetation cover). However, there are changes in the diurnal pattern that we have yet to fully understand; this variation in pattern may indicate variation in canopy function. Initially, we have explored the pattern changes qualitatively and are currently developing more quantitative approaches.
Da Silva, David; Qin, Liangchun; DeBuse, Carolyn; DeJong, Theodore M
2014-09-01
Developing a conceptual and functional framework for simulating annual long-term carbohydrate storage and mobilization in trees has been a weak point for virtually all tree models. This paper provides a novel approach for solving this problem using empirical field data and details of structural components of simulated trees to estimate the total carbohydrate stored over a dormant season and available for mobilization during spring budbreak. The seasonal patterns of mobilization and storage of non-structural carbohydrates in bark and wood of the scion and rootstock crowns of the trunks of peach (Prunus persica) trees were analysed subsequent to treatments designed to maximize differences in source-sink behaviour during the growing season. Mature peach trees received one of three treatments (defruited and no pruning, severe pruning to 1·0 m, and unthinned with no pruning) in late winter, just prior to budbreak. Selected trees of each treatment were harvested at four times (March, June, August and November) and slices of trunk and root crown tissue above and below the graft union were removed for carbohydrate analysis. Inner bark and xylem tissues from the first to fifth rings were separated and analysed for non-structural carbohydrates. Data from these experiments were then used to estimate the amount of non-structural carbohydrates available for mobilization and to parameterize a carbohydrate storage sub-model in the functional-structural L-PEACH model. The mass fraction of carbohydrates in all sample tissues decreased from March to June, but the decrease was greatest in the severely pruned and unthinned treatments. November carbohydrate mass fractions in all tissues recovered to values similar to those in the previous March, except in the older xylem rings of the severely pruned and unthinned treatment. Carbohydrate storage sink capacity in trunks was empirically estimated from the mean maximum measured trunk non-structural carbohydrate mass fractions. The carbohydrate storage source available for mobilization was estimated from these maximum mass fractions and the early summer minimum mass fractions remaining in these tissues in the severe treatments that maximized mobilization of stored carbohydrates. The L-PEACH sink-source carbohydrate distribution framework was then used along with simulated tree structure to successfully simulate annual carbohydrate storage sink and source behaviour over years. The sink-source concept of carbohydrate distribution within a tree was extended to include winter carbohydrate storage and spring mobilization by considering the storage sink and source as a function of the collective capacity of active xylem and phloem tissue of the tree, and its annual behaviour was effectively simulated using the L-PEACH functional-structural plant model.
Da Silva, David; Qin, Liangchun; DeBuse, Carolyn; DeJong, Theodore M.
2014-01-01
Background and Aims Developing a conceptual and functional framework for simulating annual long-term carbohydrate storage and mobilization in trees has been a weak point for virtually all tree models. This paper provides a novel approach for solving this problem using empirical field data and details of structural components of simulated trees to estimate the total carbohydrate stored over a dormant season and available for mobilization during spring budbreak. Methods The seasonal patterns of mobilization and storage of non-structural carbohydrates in bark and wood of the scion and rootstock crowns of the trunks of peach (Prunus persica) trees were analysed subsequent to treatments designed to maximize differences in source–sink behaviour during the growing season. Mature peach trees received one of three treatments (defruited and no pruning, severe pruning to 1·0 m, and unthinned with no pruning) in late winter, just prior to budbreak. Selected trees of each treatment were harvested at four times (March, June, August and November) and slices of trunk and root crown tissue above and below the graft union were removed for carbohydrate analysis. Inner bark and xylem tissues from the first to fifth rings were separated and analysed for non-structural carbohydrates. Data from these experiments were then used to estimate the amount of non-structural carbohydrates available for mobilization and to parameterize a carbohydrate storage sub-model in the functional–structural L-PEACH model. Key Results The mass fraction of carbohydrates in all sample tissues decreased from March to June, but the decrease was greatest in the severely pruned and unthinned treatments. November carbohydrate mass fractions in all tissues recovered to values similar to those in the previous March, except in the older xylem rings of the severely pruned and unthinned treatment. Carbohydrate storage sink capacity in trunks was empirically estimated from the mean maximum measured trunk non-structural carbohydrate mass fractions. The carbohydrate storage source available for mobilization was estimated from these maximum mass fractions and the early summer minimum mass fractions remaining in these tissues in the severe treatments that maximized mobilization of stored carbohydrates. The L-PEACH sink–source carbohydrate distribution framework was then used along with simulated tree structure to successfully simulate annual carbohydrate storage sink and source behaviour over years. Conclusions The sink–source concept of carbohydrate distribution within a tree was extended to include winter carbohydrate storage and spring mobilization by considering the storage sink and source as a function of the collective capacity of active xylem and phloem tissue of the tree, and its annual behaviour was effectively simulated using the L-PEACH functional–structural plant model. PMID:24674986
Modeling mechanisms of vegetation change due to fire in a semi-arid ecosystem
White, J.D.; Gutzwiller, K.J.; Barrow, W.C.; Randall, L.J.; Swint, P.
2008-01-01
Vegetation growth and community composition in semi-arid environments is determined by water availability and carbon assimilation mechanisms specific to different plant types. Disturbance also impacts vegetation productivity and composition dependent on area affected, intensity, and frequency factors. In this study, a new spatially explicit ecosystem model is presented for the purpose of simulating vegetation cover type changes associated with fire disturbance in the northern Chihuahuan Desert region. The model is called the Landscape and Fire Simulator (LAFS) and represents physiological activity of six functional plant types incorporating site climate, fire, and seed dispersal routines for individual grid cells. We applied this model for Big Bend National Park, Texas, by assessing the impact of wildfire on the trajectory of vegetation communities over time. The model was initialized and calibrated based on landcover maps derived from Landsat-5 Thematic Mapper data acquired in 1986 and 1999 coupled with plant biomass measurements collected in the field during 2000. Initial vegetation cover change analysis from satellite data showed shrub encroachment during this time period that was captured in the simulated results. A synthetic 50-year climate record was derived from historical meteorological data to assess system response based on initial landcover conditions. This simulation showed that shrublands increased to the detriment of grass and yucca-ocotillo vegetation cover types indicating an ecosystem-level trajectory for shrub encroachment. Our analysis of simulated fires also showed that fires significantly reduced site biomass components including leaf area, stem, and seed biomass in this semi-arid ecosystem. In contrast to other landscape simulation models, this new model incorporates detailed physiological responses of functional plant types that will allow us to simulated the impact of increased atmospheric CO2 occurring with climate change coupled with fire disturbance. Simulations generated from this model are expected to be the subject of subsequent studies on landscape dynamics with specific regard to prediction of wildlife distributions associated with fire management and climate change.
Effect of moisture content on fed batch composting reactor of vegetable and fruit wastes.
Jolanun, B; Tripetchkul, S; Chiemchaisri, C; Chaiprasert, P; Towprayoon, S
2005-03-01
Vegetable and fruit wastes mixed with sawdust were composted in a laboratory scale reactor by controlling the waste feeding rate at 21 kg m(-3) day(-1) and aeration rate at 10.6 l m(-3) min(-1). The effects of initial moisture content on organic matter degradation and process performance of fed batch composting were investigated. The absolute amount of removal, removal percentage, and removal rate of dry mass obtained were substantially different among the initial moisture contents. The rapid rise of moisture content and the lowest absolute amount of removal observed were achieved in the 50% condition. The initial moisture content yielding the largest absolute amount of removal in both feeding and curing stage was 30% whereas the removal percentage and rate constant of waste decomposition were highest in the 50% condition. Examined by traditional soil physics method, the moisture content at 50-55% was suitable for satisfying the degree of free air space (65-70%) of compost during the fed batch composting. Most degradable organic matter was mainly consumed in the feeding stage as indicated by a higher removal rate of dry mass in all cases. It is recommended that the initial moisture content of 30% and mode of aeration and agitation should be adopted for achieving practical fed batch composting of vegetable and fruit wastes. The study also demonstrated that the composting kinetics of vegetable and fruit wastes mixed with sawdust can be described by a first order model.
NASA Technical Reports Server (NTRS)
Taconet, O.; Carlson, T.; Bernard, R.; Vidal-Madjar, D.
1986-01-01
Ground measurements of surface-sensible heat flux and soil moisture for a wheat-growing area of Beauce in France were compared with the values derived by inverting two boundary layer models with a surface/vegetation formulation using surface temperature measurements made from NOAA-AVHRR. The results indicated that the trends in the surface heat fluxes and soil moisture observed during the 5 days of the field experiment were effectively captured by the inversion method using the remotely measured radiative temperatures and either of the two boundary layer methods, both of which contain nearly identical vegetation parameterizations described by Taconet et al. (1986). The sensitivity of the results to errors in the initial sounding values or measured surface temperature was tested by varying the initial sounding temperature, dewpoint, and wind speed and the measured surface temperature by amounts corresponding to typical measurement error. In general, the vegetation component was more sensitive to error than the bare soil model.
Next generation dynamic global vegetation models: learning from community ecology (Invited)
NASA Astrophysics Data System (ADS)
Scheiter, S.; Higgins, S.; Langan, L.
2013-12-01
Dynamic global vegetation models are a powerful tool to project past, current and future vegetation patterns and the associated biogeochemical cycles. However, most models are limited by their representation of vegetation by using static and pre-defined plant functional types and by their simplistic representation of competition. We discuss how concepts from community assembly theory and coexistence theory can help to improve dynamic vegetation models. We present a trait- and individual-based dynamic vegetation model, the aDGVM2, that allows individual plants to adopt a unique combination of trait values. These traits define how individual plants grow, compete and reproduce under the given biotic and abiotic conditions. A genetic optimization algorithm is used to simulate trait inheritance and reproductive isolation between individuals. These model properties allow the assembly of plant communities that are adapted to biotic and abiotic conditions. We show (1) that the aDGVM2 can simulate coarse vegetation patterns in Africa, (2) that changes in the environmental conditions and disturbances strongly influence trait diversity and the assembled plant communities by influencing traits such as leaf phenology and carbon allocation patterns of individual plants and (3) that communities do not necessarily return to the initial state when environmental conditions return to the initial state. The aDGVM2 deals with functional diversity and competition fundamentally differently from current models and allows novel insights as to how vegetation may respond to climate change. We believe that the aDGVM2 approach could foster collaborations between research communities that focus on functional plant ecology, plant competition, plant physiology and Earth system science.
NASA Astrophysics Data System (ADS)
Greenberg, J. A.; Hou, Z.; Ramirez, C.; Hart, R.; Marchi, N.; Parra, A. S.; Gutierrez, B.; Tompkins, R.; Harpold, A.; Sullivan, B. W.; Weisberg, P.
2017-12-01
The Sierra Nevada Mountains experienced record-breaking snowfall during the 2016-2017 winter after a prolonged period of drought. We hypothesized that at lower elevations, the increased snowmelt would result in a significant increase in biomass across vegetation strata, but at higher elevations, the snowpack would result in a diminished growing season, and yield a suppression of growth rates particularly in the understory vegetation. To test these hypotheses, we sampled sites across the Plumas National Forest and Lake Tahoe Basin using a terrestrial laser scanner (TLS) in the early growing season, and then rescanned these sites in the late growing season. Herein, we present initial, early results from this analysis, focusing on the biomass and height changes in trees.
A gradient model of vegetation and climate utilizing NOAA satellite imagery. Phase 1: Texas transect
NASA Technical Reports Server (NTRS)
Greegor, D.; Norwine, J. (Principal Investigator)
1981-01-01
A climatological model/variable termed the sponge (a measure of moisture availability based on daily temperature maxima and minima, and precipitation) was tested for potential biogeograhic, ecological, and agro-climatological applications. Results, depicted in tabular and graphic form, suggest that, as generalized climatic index, sponge is particularly appropriate for large-area and global vegetation monitoring. The feasibility of utilizing NOAA/AVHRR data for vegetation classification was investigated and a vegetation gradient model that utilizes sponge and AVHRR data was initiated. Along an east-west Texas gradient, vegetation, sponge, and AVHRR pixel data (channels 1 and 2) were obtained for 12 locations. The normalized difference values for the AVHRR data when plotted against vegetation characteristics (biomass, net productivity, leaf area) and sponge values along the Texas gradient suggest that a multivariate gradient model incorporating AVHRR and sponge data may indeed be useful in global vegetation stratification and monitoring.
USDA-ARS?s Scientific Manuscript database
Vegetable fermentations rely on the proper succession of a variety of lactic acid bacteria (LAB) including Leuconostoc mesenteroides. L. mesenteroides initiates the fermentation, producing lactic and acetic acids, CO2, and many flavor compounds. As the fermentation proceeds, L. mesenteroides dies of...
Invasive plants in Arizona's forests and woodlands
Alix Rogstad; Tom DeGomez; Carol Hull Sieg
2007-01-01
Climate is critically linked to vegetation dynamics at many different spatial and temporal scales across the desert Southwest. Small-scale, short duration monsoon season thunderstorms can bring much needed precipitation to small patches of vegetation or can initiate widespread flooding. Long-term variations in climate related to ocean circulation patterns can create...
USDA-ARS?s Scientific Manuscript database
Vegetative treatment systems (VTS) have been developed and built as an alternative to conventional holding pond systems for managing run-off from animal feeding operations. Initially developed to manage runoff nutrients via uptake by grasses, their effectiveness at removing other runoff contaminant...
Shoot Morphogenesis Associated With Flowering in Populus deltoides (Salicaceae)
Cetin Yuceer; Samuel B. Land; Mark E. Kubiske; Richard L. Harkess
2003-01-01
Temporal and spatial formation and differentiation of axillary buds in developing shoots of mature eastern cottonwood (Populus deltoides) were investigated. Shoots sequentially initiate early vegetative, floral, and late vegetative buds. Associated with these buds is the formation of three distinct leaf types. In May of the first growing season, the...
NASA Astrophysics Data System (ADS)
Hanan, E. J.; Tague, C.; Choate, J.; Liu, M.; Adam, J. C.
2016-12-01
Disturbance is a major force regulating C dynamics in terrestrial ecosystems. Evaluating future C balance in disturbance-prone systems requires understanding the underlying mechanisms that drive ecosystem processes over multiple scales of space and time. Simulation modeling is a powerful tool for bridging these scales, however, model projections are limited by large uncertainties in the initial state of vegetation C and N stores. Watershed models typically use one of two methods to initialize these stores. Spin up involves running a model until vegetation reaches steady state based on climate. This "potential" state however assumes the vegetation across the entire watershed has reached maturity and has a homogeneous age distribution. Yet to reliably represent C and N dynamics in disturbance-prone systems, models should be initialized to reflect their non-equilibrium conditions. Alternatively, remote sensing of a single vegetation parameter (typically leaf area index; LAI) can be combined with allometric relationships to allocate C and N to model stores and can reflect non-steady-state conditions. However, allometric relationships are species and region specific and do not account for environmental variation, thus resulting in C and N stores that may be unstable. To address this problem, we developed a new approach for initializing C and N pools using the watershed-scale ecohydrologic model RHESSys. The new approach merges the mechanistic stability of spinup with the spatial fidelity of remote sensing. Unlike traditional spin up, this approach supports non-homogeneous stand ages. We tested our approach in a pine-dominated watershed in central Idaho, which partially burned in July of 2000. We used LANDSAT and MODIS data to calculate LAI across the watershed following the 2000 fire. We then ran three sets of simulations using spin up, direct measurements, and the combined approach to initialize vegetation C and N stores, and compared our results to remotely sensed LAI following the simulation period. Model estimates of C, N, and water fluxes varied depending on which approach was used. The combined approach provided the best LAI estimates after 10 years of simulation. This method shows promise for improving projections of C, N, and water fluxes in disturbance-prone watersheds.
Impact of small-scale vegetation structure on tephra layer preservation
Cutler, Nick A.; Shears, Olivia M.; Streeter, Richard T.; Dugmore, Andrew J.
2016-01-01
The factors that influence tephra layer taphonomy are poorly understood, but vegetation cover is likely to play a role in the preservation of terrestrial tephra deposits. The impact of vegetation on tephra layer preservation is important because: 1) the morphology of tephra layers could record key characteristics of past land surfaces and 2) vegetation-driven variability in tephra thickness could affect attempts to infer eruption and dispersion parameters. We investigated small- (metre-) scale interactions between vegetation and a thin (<10 cm), recent tephra layer. We conducted surveys of vegetation structure and tephra thickness at two locations which received a similar tephra deposit, but had contrasting vegetation cover (moss vs shrub). The tephra layer was thicker and less variable under shrub cover. Vegetation structure and layer thickness were correlated on the moss site but not under shrub cover, where the canopy reduced the influence of understory vegetation on layer morphology. Our results show that vegetation structure can influence tephra layer thickness on both small and medium (site) scales. These findings suggest that some tephra layers may carry a signal of past vegetation cover. They also have implications for the sampling effort required to reliably estimate the parameters of initial deposits. PMID:27845415
Post-fire vegetation and fuel development influences fire severity patterns in reburns.
Coppoletta, Michelle; Merriam, Kyle E; Collins, Brandon M
2016-04-01
In areas where fire regimes and forest structure have been dramatically altered, there is increasing concern that contemporary fires have the potential to set forests on a positive feedback trajectory with successive reburns, one in which extensive stand-replacing fire could promote more stand-replacing fire. Our study utilized an extensive set of field plots established following four fires that occurred between 2000 and 2010 in the northern Sierra Nevada, California, USA that were subsequently reburned in 2012. The information obtained from these field plots allowed for a unique set of analyses investigating the effect of vegetation, fuels, topography, fire weather, and forest management on reburn severity. We also examined the influence of initial fire severity and time since initial fire on influential predictors of reburn severity. Our results suggest that high- to moderate-severity fire in the initial fires led to an increase in standing snags and shrub vegetation, which in combination with severe fire weather promoted high-severity fire effects in the subsequent reburn. Although fire behavior is largely driven by weather, our study demonstrates that post-fire vegetation composition and structure are also important drivers of reburn severity. In the face of changing climatic regimes and increases in extreme fire weather, these results may provide managers with options to create more fire-resilient ecosystems. In areas where frequent high-severity fire is undesirable, management activities such as thinning, prescribed fire, or managed wildland fire can be used to moderate fire behavior not only prior to initial fires, but also before subsequent reburns.
Remote measurement of soil moisture over vegetation using infrared temperature measurements
NASA Technical Reports Server (NTRS)
Carlson, Toby N.
1991-01-01
Better methods for remote sensing of surface evapotranspiration, soil moisture, and fractional vegetation cover were developed. The objectives were to: (1) further develop a model of water movement through the soil/plant/atmosphere system; (2) use this model, in conjunction with measurements of infrared surface temperature and vegetation fraction; (3) determine the magnitude of radiometric temperature response to water stress in vegetation; (4) show at what point one can detect that sensitivity to water stress; and (5) determine the practical limits of the methods. A hydrological model that can be used to calculate soil water content versus depth given conventional meteorological records and observations of vegetation cover was developed. An outline of the results of these initiatives is presented.
Koseki, S; Itoh, K
2001-12-01
Effects of storage temperature (1, 5, and 10 degrees C) on growth of microbial populations (total aerobic bacteria, coliform bacteria, Bacillus cereus, and psychrotrophic bacteria) on acidic electrolyzed water (AcEW)-treated fresh-cut lettuce and cabbage were determined. A modified Gompertz function was used to describe the kinetics of microbial growth. Growth data were analyzed using regression analysis to generate "best-fit" modified Gompertz equations, which were subsequently used to calculate lag time, exponential growth rate, and generation time. The data indicated that the growth kinetics of each bacterium were dependent on storage temperature, except at 1 degrees C storage. At 1 degrees C storage, no increases were observed in bacterial populations. Treatment of vegetables with AcEW produced a decrease in initial microbial populations. However, subsequent growth rates were higher than on nontreated vegetables. The recovery time required by the reduced microbial population to reach the initial (treated with tap water [TW]) population was also determined in this study, with the recovery time of the microbial population at 10 degrees C being <3 days. The benefits of reducing the initial microbial populations on fresh-cut vegetables were greatly affected by storage temperature. Results from this study could be used to predict microbial quality of fresh-cut lettuce and cabbage throughout their distribution.
Field studies were initiated in 1973 to investigate the vegetative stabilization of processed oil shales and to follow moisture and soluble salt movement within the soil/shale profile. Research plots with two types of retorted shales (TOSCO II and USBM) with leaching and soil cov...
Jeffrey M. Kane; J. Morgan Varner; Eric E. Knapp
2010-01-01
Questions: What influence does mechanical mastication and other fuel treatments have on: (1) canopy and forest floor response variables that influence understory plant development; (2) initial understory vegetation cover, diversity, and composition; and (3) shrub and non-native species density in a secondgrowth ponderosa pine forest....
Cynthia D. Huebner; David W. McGill
2018-01-01
Regional (climate/soils) and local (aspect) physiography determine plant community composition. However, changes in initial floristic composition after a disturbance may be severe enough to alter the successional trajectory predicted by physiography. We addressed the question of which is more important, disturbance or physiography, in determining vegetation composition...
In Situ Biogeochemical Treatment Demonstration: Lessons Learned from ESTCP Project ER 201124
2015-12-09
vegetable oil fermentation to volatile fatty acids (VFA) also likely reduced the pH and this change could have reduced the FeS reactivity. 2.3.5...Initially about 6.5 ● Vegetable oil fermentation to VFAs ● Lower FeSx reactivity Need to balance iron and sulfur! 55 Critical Factors
Vegetation response to prescribed fire in the Kenai Mountains, Alaska.
Tina V. Boucher
2003-01-01
Between 1977 and 1997, 4000 ha were burned to promote regeneration of tree and shrub species used for browse by moose (Alces alces) in the Kenai Mountains. Species composition was documented along burned and unburned transects at 17 prescribed burn sites. Relationships among initial vegetation composition, physical site characteristics, browse...
Socioeconomic differences in the cost, availability and quality of healthy food in Sydney.
Crawford, Belinda; Byun, Roy; Mitchell, Emily; Thompson, Susan; Jalaludin, Bin; Torvaldsen, Siranda
2017-12-01
To compare the cost of a basket of staple foods, together with the availability and quality of fresh fruit and vegetables, by supermarket store type in high and low socioeconomic suburbs of Sydney. A food basket survey was undertaken in 100 supermarkets in the 20 highest and 20 lowest socioeconomic suburbs of Sydney. We assessed the cost of 46 foods, the range of 30 fresh fruit and vegetables and the quality of ten fresh fruit and vegetables. Two major supermarket retailers, a discount supermarket chain and independent grocery stores were surveyed. The food basket was significantly cheaper in low compared to high socioeconomic suburbs ($177 vs $189, p<0.01). Discount supermarkets were at least 30% cheaper than other supermarket stores. There were fewer varieties and poorer quality fruit and vegetables in stores in low socioeconomic suburbs. Food basket prices and the availability and quality of fruit and vegetables varied significantly by store type and socioeconomic status of suburb. Implications for public health: A nationwide food and nutrition surveillance system is required to inform public health policy and practice initiatives. In addition to the food retail environment, these initiatives must address the underlying contributors to inequity and food insecurity for disadvantaged groups. © 2017 The Authors.
Latitudinal Expansion of the Holocene Optimum in the East Asian Monsoon Region
NASA Astrophysics Data System (ADS)
Zhou, X.; Sun, L.; Zhan, T.; Huang, W.; Zhou, X.; Hao, Q.; He, X.; Zhao, C.; Zhang, J.; Qiao, Y.; Ge, J.; Yan, P.; Shao, D.; Chu, Z.; Yang, W.
2014-12-01
With increasingly abundant high resolution and high precision records of East Asian monsoon, its spatial and temporal dynamics during the Holocene have been extensively studied. However, partly due to the lack of records in high latitude areas and the age uncertainties, these studies characterized a wide range of spatial-temporal patterns of Holocene Optimum (HO). We reconstructed a 14,000-year record of vegetation using sediments from a crater lake in Northeast China. Analyses of the vegetation time series show that HO began around 6,000 a BP in Northeast China, significantly later than generally recognized. By comparison with Holocene records of vegetation in other regions of the East Asia, we found a marked northward shift of initial time of HO from 10,600 a BP in South China to 6,000 a BP in Northeast China, which appeared to be forced by the shrinkage of the northern hemisphere ice-sheet (NHIS) during early to mid Holocene. Finally, we fitted a regression model of initial HO time on latitude, which allows us to make prediction of initial HO time based on their geographical locations. This study reveals a strong relationship between latitude and initial HO times and provides a window towards understanding the joint forcing of high and low latitude factors on regional climate.
Zhang, Anping; Luo, Wenxiu; Sun, Jianqiang; Xiao, Hang; Liu, Weiping
2015-02-01
The application of greenhouse vegetable cultivation has dramatically expanded worldwide during the last several decades. However, little information is available on the distribution and uptake of pesticides in greenhouse vegetables. To bridge this knowledge gap, the present study was initiated to investigate the distribution and uptake of organochlorine pesticides (OCPs) in vegetables from plastic greenhouse and conventional cultivation methods. The uptake pathways of OCPs were not significantly different between these two cultivation methods. The arithmetic means of OCP concentrations in greenhouse vegetables were higher than those in conventional vegetables, although there was no significant difference. This small difference raised the concern of whether the tiny difference could be magnified to a significant difference by bioaccumulation in the food chain. The issue should be addressed by a well-designed scheme in future studies. Copyright © 2014 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kilkelly, M.K.; Berg, W.A.; Harbert, H.P. III
1981-08-01
Field studies were initiated in 1973 to investigate the vegetative stabilization of processed oil shales and to follow moisture and soluble salt movement within the soil/shale profile. Research plots with two types of retorted shales (TOSCO II and USBM) with leaching and soil cover treatments were established at two locations: low-elevation (Anvil Points) and high-elevation (Piceance Basin) in western Colorado. Vegetation was established by intensive management including leaching, N and P fertilization, seeding, mulching, and irrigation. After seven growing seasons, a good vegetative cover remained with few differences between treatments, with the exception of the TOSCO retorted shale, south-aspect, whichmore » consistently supported less perennial vegetative cover than other treatments. With time, a shift from perennial grasses to dominance by shrubs was observed. Rodent activity on some treatments had a significantly negative effect on vegetative cover.« less
Rengers, Francis K.; McGuire, Luke; Coe, Jeffrey A.; Kean, Jason W.; Baum, Rex L.; Staley, Dennis M.; Godt, Jonathan W.
2016-01-01
We explored regional influences on debris-flow initiation throughout the Colorado Front Range (Colorado, USA) by exploiting a unique data set of more than 1100 debris flows that initiated during a 5 day rainstorm in 2013. Using geospatial data, we examined the influence of rain, hillslope angle, hillslope aspect, and vegetation density on debris-flow initiation. In particular we used a greenness index to differentiate areas of high tree density from grass and bare soil. The data demonstrated an overwhelming propensity for debris-flow initiation on south-facing hillslopes. However, when the debris-flow density was analyzed with respect to total rainfall and greenness we found that most debris flows occurred in areas of high rainfall and low tree density, regardless of hillslope aspect. These results indicate that present-day tree density exerts a stronger influence on debris-flow initiation locations than aspect-driven variations in soil and bedrock properties that developed over longer time scales.
NASA Technical Reports Server (NTRS)
Dobson, M. Craig; Mcdonald, Kyle; Ulaby, Fawwaz T.; Sharik, Terry
1991-01-01
The mixed hardwood and conifer forests of northern Michigan were overflown by a 3-frequency airborne imaging radar in Apr. and Jul. 1990. A set of 10 x 10 km test sites near the University of Michigan Biological Station at Douglas Lake and within the Hiawatha National Forest in the upper peninsula of Michigan contained training stands representing the various forest species typical of forest communities across the ecotone between the coniferous boreal forest and mid-latitude hardwood and coniferous forests. The polarimetric radar data were externally calibrated to allow interdate comparisons. The Apr. flight was prior to bud-break of deciduous species and patchy snowcover was present. The Jul. flights occurred during and 2 days after heavy rain showers, and provide a unique opportunity to examine the differences in radar backscatter attributable to intercepted precipitation. Analyses show that there are significant changes in backscattering between biophysically dissimilar forest stands on any given date and also between dates for a given forest stand. These differences in backscattering can be related to moisture properties of the forest floor and the overlying canopy and also to the quantity and organizational structure of the above-ground biomass.
Response of Sierra Nevada vegetation and fire regimes to past climate changes
R. Scott Anderson
2004-01-01
The study of changing vegetation patterns within forested communities of the Sierra Nevada has had a long history, initiated by the great naturalist John Muir. More recently, paleoecologists, who study ecosystems of the past, have analyzed fossil plant remains recovered from lake and meadow sediments to understand the regional biogeography and disturbance history of...
James D. Haywood; Tessa A. Bauman; Richard A. Goyer; Finis L. Harris
2004-01-01
Without fire in the Southeastern United States, loblolly pine (Pinus taeda L.) often becomes the overstory dominant on sites historically dominated by longleaf pine (P. palustris Mill.). Beneath the loblolly pine canopy a mature midstory and understory develops of woody vegetation supporting draped fuels. The resulting deep shade...
ERIC Educational Resources Information Center
Cirignano, Sherri M.; Hughes, Luanne J.; Wu-Jung, Corey J.; Morgan, Kathleen; Grenci, Alexandra; Savoca, LeeAnne
2013-01-01
The Healthy, Hunger-Free Kids Act (HHFKA) of 2010 sets new nutrition standards for schools, requiring them to serve a greater variety and quantity of fruits and vegetables. Extension educators in New Jersey partnered with school nutrition professionals to implement a school wellness initiative that included taste-testing activities to support…
Timothy B. Harrington; Stephen H. Schoenholtz
2010-01-01
Although considerable research has focused on the influences of logging debris treatments on soil and forest regeneration responses, few studies have identified whether debris effects are mediated by associated changes in competing vegetation abundance. At sites near Matlock, Washington, and Molalla, Oregon, studies were initiated after timber harvest to quantify the...
Initial ecosystem restoration in the highly erodible Kisatchie Sandstone Hills
D. Andrew Scott
2014-01-01
Restoration of the unique and diverse habitats of the Kisatchie Sandstone Hills requires the re-introduction of fire to reduce fuel accumulation and promote herbaceous vegetation, but some soils in the area are extremely erodible, and past fires have resulted in high erosion rates. Overstory and understory vegetation, downed woody fuels, and other stand attributes were...
Robert A. Slesak; Timothy B. Harrington; Stephen H. Schoenholtz
2010-01-01
Experimental treatments of logging-debris retention (0%, 40%, or 80% surface coverage) and competing vegetation control (initial or annual applications) were installed at two sites in the Pacific Northwest following clearcutting Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco var. menziesii) stands to assess short term...
Mountain pine beetle impacts on vegetation and carbon stocks
Hawbaker, Todd J.; Briggs, Jennifer S.; Caldwell, Megan K.; Stitt, Susan
2013-01-01
In the Southern Rocky Mountains, an epidemic outbreak of mountain pine beetle (Dendroctonus ponderosae; MPB) has caused levels of tree mortality unprecedented in recorded history. The impacts of this mortality on vegetation composition, forest structure, and carbon stocks have only recently received attention, although the impacts of other disturbances such as fires and land-use/land-cover change are much better known. This study, initiated in 2010, aims to increase our understanding of MPB outbreaks and their impacts. We have integrated field-collected data with vegetation simulation models to assess and quantify how long-term patterns of vegetation and carbon stocks have and may change in response to MPB outbreaks and other disturbances.
Double Up Food Bucks program effects on SNAP recipients' fruit and vegetable purchases.
Steele-Adjognon, Marie; Weatherspoon, Dave
2017-12-12
To encourage the consumption of more fresh fruits and vegetables, the 2014 United Sates Farm Bill allocated funds to the Double Up Food Bucks Program. This program provided Supplemental Nutrition Assistance Program beneficiaries who spent $10 on fresh fruits and vegetables, in one transaction, with a $10 gift card exclusively for Michigan grown fresh fruits and vegetables. This study analyzes how fruit and vegetable expenditures, expenditure shares, variety and purchase decisions were affected by the initiation and conclusion, as well as any persistent effects of the program. Changes in fruit and vegetable purchase behaviors due to Double Up Food Bucks in a supermarket serving a low-income, predominantly Hispanic community in Detroit, Michigan were evaluated using a difference in difference fixed effects estimation strategy. We find that the Double Up Food Bucks program increased vegetable expenditures, fruit and vegetable expenditure shares, and variety of fruits and vegetables purchased but the effects were modest and not sustainable without the financial incentive. Fruit expenditures and the fruit and vegetable purchase decision were unaffected by the program. This study provides valuable insight on how a nutrition program influences a low-income, urban, Hispanic community's fruit and vegetable purchase behavior. Policy recommendations include either removing or lowering the purchase hurdle for incentive eligibility and dropping the Michigan grown requirement to better align with the customers' preferences for fresh fruits and vegetables.
Wikramanayake, Athula H.; Huang, Ling; Klein, William H.
1998-01-01
In sea urchin embryos, the animal-vegetal axis is specified during oogenesis. After fertilization, this axis is patterned to produce five distinct territories by the 60-cell stage. Territorial specification is thought to occur by a signal transduction cascade that is initiated by the large micromeres located at the vegetal pole. The molecular mechanisms that mediate the specification events along the animal–vegetal axis in sea urchin embryos are largely unknown. Nuclear β-catenin is seen in vegetal cells of the early embryo, suggesting that this protein plays a role in specifying vegetal cell fates. Here, we test this hypothesis and show that β-catenin is necessary for vegetal plate specification and is also sufficient for endoderm formation. In addition, we show that β-catenin has pronounced effects on animal blastomeres and is critical for specification of aboral ectoderm and for ectoderm patterning, presumably via a noncell-autonomous mechanism. These results support a model in which a Wnt-like signal released by vegetal cells patterns the early embryo along the animal–vegetal axis. Our results also reveal similarities between the sea urchin animal–vegetal axis and the vertebrate dorsal–ventral axis, suggesting that these axes share a common evolutionary origin. PMID:9689082
McConnell, Mark D; Monroe, Adrian P; Burger, Loren Wes; Martin, James A
2017-02-01
Advances in understanding avian nesting ecology are hindered by a prevalent lack of agreement between nest-site characteristics and fitness metrics such as nest success. We posit this is a result of inconsistent and improper timing of nest-site vegetation measurements. Therefore, we evaluated how the timing of nest vegetation measurement influences the estimated effects of vegetation structure on nest survival. We simulated phenological changes in nest-site vegetation growth over a typical nesting season and modeled how the timing of measuring that vegetation, relative to nest fate, creates bias in conclusions regarding its influence on nest survival. We modeled the bias associated with four methods of measuring nest-site vegetation: Method 1-measuring at nest initiation, Method 2-measuring at nest termination regardless of fate, Method 3-measuring at nest termination for successful nests and at estimated completion for unsuccessful nests, and Method 4-measuring at nest termination regardless of fate while also accounting for initiation date. We quantified and compared bias for each method for varying simulated effects, ranked models for each method using AIC, and calculated the proportion of simulations in which each model (measurement method) was selected as the best model. Our results indicate that the risk of drawing an erroneous or spurious conclusion was present in all methods but greater with Method 2 which is the most common method reported in the literature. Methods 1 and 3 were similarly less biased. Method 4 provided no additional value as bias was similar to Method 2 for all scenarios. While Method 1 is seldom practical to collect in the field, Method 3 is logistically practical and minimizes inherent bias. Implementation of Method 3 will facilitate estimating the effect of nest-site vegetation on survival, in the least biased way, and allow reliable conclusions to be drawn.
VegScape: U.S. Crop Condition Monitoring Service
NASA Astrophysics Data System (ADS)
mueller, R.; Yang, Z.; Di, L.
2013-12-01
Since 1995, the US Department of Agriculture (USDA)/National Agricultural Statistics Service (NASS) has provided qualitative biweekly vegetation condition indices to USDA policymakers and the public on a weekly basis during the growing season. Vegetation indices have proven useful for assessing crop condition and identifying the areal extent of floods, drought, major weather anomalies, and vulnerabilities of early/late season crops. With growing emphasis on more extreme weather events and food security issues rising to the forefront of national interest, a new vegetation condition monitoring system was developed. The new vegetation condition portal named VegScape was initiated at the start of the 2013 growing season. VegScape delivers web mapping service based interactive vegetation indices. Users can use an interactive map to explore, query and disseminate current crop conditions. Vegetation indices like Normal Difference Vegetation Index (NDVI), Vegetation Condition Index (VCI), and mean, median, and ratio comparisons to prior years can be constructed for analytical purposes and on-demand crop statistics. The NASA MODIS satellite with 250 meter (15 acres) resolution and thirteen years of data history provides improved spatial and temporal resolutions and delivers improved detailed timely (i.e., daily) crop specific condition and dynamics. VegScape thus provides supplemental information to support NASS' weekly crop reports. VegScape delivers an agricultural cultivated crop mask and the most recent Cropland Data Layer (CDL) product to exploit the agricultural domain and visualize prior years' planted crops. Additionally, the data can be directly exported to Google Earth for web mashups or delivered via web mapping services for uses in other applications. VegScape supports the ethos of data democracy by providing free and open access to digital geospatial data layers using open geospatial standards, thereby supporting transparent and collaborative government initiatives. NASS developed VegScape in cooperation with the Center for Spatial Information Science and Systems, George Mason University, Fairfax, VA. VegScape Ratio to Median NDVI
Development of full regeneration establishment models for the forest vegetation simulator
John D. Shaw
2015-01-01
For most simulation modeling efforts, the goal of model developers is to produce simulations that are the best representations of realism as possible. Achieving this goal commonly requires a considerable amount of data to set the initial parameters, followed by validation and model improvement â both of which require even more data. The Forest Vegetation Simulator (FVS...
Galván, Marcos; Ríos-Pérez, Fernanda; López-Rodríguez, Guadalupe; Guzmán-Saldaña, Rebeca; Fernández-Cortés, Trinidad Lorena; Camacho-Bernal, Gloria; Robles-Acevedo, Manuel
2016-09-20
In Mexican school-age children the consumption of vegetables and fruits (V&F) is less than 25% of the amount recommended by the World Health Organization. Evaluate the effectiveness of a promotion campaign about the consumption of V&F in urban school children from Hidalgo, Mexico. A non controlled community trial in 226 school-age children from private and public schools was conducted, we designed and distributed printed material for promoting the consumption of V&F among the school population, access to V&F was provided through planning and sales at school stores, and consumption was supervised by the teachers. At the end of the intervention vegetable consumption increased by 50 g and plain water in 100 mL (T-test, p < 0.05); the proportion of school-age children who identified the health benefits of the consumption of V&F increased significantly (68% initial, 87% final) and greater support from parents (61% initial, 92 final%) was achieved. A promotion campaign and improved access to vegetables, fruits and water in the school environment which is supported by parents and teachers can encourage healthier eating at school.
de Vries, Jan; Birkett, Anne; Hulshof, Toine; Verbeke, Kristin; Gibes, Kernon
2016-01-01
Cereal fibers are known to increase fecal weight and speed transit time, but far less data are available on the effects of fruits and vegetable fibers on regularity. This study provides a comprehensive review of the impact of these three fiber sources on regularity in healthy humans. We identified English-language intervention studies on dietary fibers and regularity and performed weighted linear regression analyses for fecal weight and transit time. Cereal and vegetable fiber groups had comparable effects on fecal weight; both contributed to it more than fruit fibers. Less fermentable fibers increased fecal weight to a greater degree than more fermentable fibers. Dietary fiber did not change transit time in those with an initial time of <48 h. In those with an initial transit time ≥48 h, transit time was reduced by approximately 30 min per gram of cereal, fruit or vegetable fibers, regardless of fermentability. Cereal fibers have been studied more than any other kind in relation to regularity. This is the first comprehensive review comparing the effects of the three major food sources of fiber on bowel function and regularity since 1993. PMID:26950143
de Vries, Jan; Birkett, Anne; Hulshof, Toine; Verbeke, Kristin; Gibes, Kernon
2016-03-02
Cereal fibers are known to increase fecal weight and speed transit time, but far less data are available on the effects of fruits and vegetable fibers on regularity. This study provides a comprehensive review of the impact of these three fiber sources on regularity in healthy humans. We identified English-language intervention studies on dietary fibers and regularity and performed weighted linear regression analyses for fecal weight and transit time. Cereal and vegetable fiber groups had comparable effects on fecal weight; both contributed to it more than fruit fibers. Less fermentable fibers increased fecal weight to a greater degree than more fermentable fibers. Dietary fiber did not change transit time in those with an initial time of <48 h. In those with an initial transit time ≥48 h, transit time was reduced by approximately 30 min per gram of cereal, fruit or vegetable fibers, regardless of fermentability. Cereal fibers have been studied more than any other kind in relation to regularity. This is the first comprehensive review comparing the effects of the three major food sources of fiber on bowel function and regularity since 1993.
Cohen, Juliana F W; Smit, Liesbeth A; Parker, Ellen; Austin, S Bryn; Frazier, A Lindsay; Economos, Christina D; Rimm, Eric B
2012-06-01
School cafeterias can play an important role in providing healthy meals. Although schools participating in the National School Lunch Program are required to meet minimum program standards, advocates recommend that innovations be sought to enhance menu dietary quality. This study evaluated the Chef Initiative, a 2-year pilot study in two Boston middle schools, designed to increase the availability and consumption of healthier school foods. Between 2007 and 2009, a professional chef trained cafeteria staff to prepare healthier school lunches (ie, more whole grains, fresh/frozen fruits and vegetables, and less sugar, salt, saturated fats, and trans fats). Meal nutrient compositions were monitored from 2007 to 2009, and a plate waste study conducted in the spring of 2009 compared food selection and consumption patterns among students at Chef Initiative schools, with students receiving standard school lunches at two matched control schools. Paired t tests and descriptive statistics were used to examine differences in menus and mixed-model analysis of variance was used to analyze differences in students' food selection and consumption between Chef Initiative and control schools. Overall, the Chef Initiative schools provided healthier lunches and the percent of foods consumed at Chef Initiative and control schools were similar (61.6% vs 57.3%; P=0.63). Of the areas targeted, there was greater whole-grain selection and vegetable consumption; 51% more students selected whole grains (P=0.02) and students consumed 0.36 more vegetable servings/day (P=0.01) at Chef Initiative schools. The potential of chefs collaborating with cafeteria staff to improve the availability, selection, and consumption of healthier meals is promising. Copyright © 2012 Academy of Nutrition and Dietetics. Published by Elsevier Inc. All rights reserved.
Howlett, Elizabeth A; Burton, Scot; Newman, Christopher L; Faupel, Michel A
2012-01-01
To assess whether state-sponsored agricultural marketing programs had a positive influence on adult consumers' fruit and vegetable consumption. Differences in fruit and vegetable consumption between 2000 and 2005 in states that initiated marketing campaigns during this period and those that did not were examined. A representative sample (n = 237,320) of adults aged 18 and older from states with and without marketing programs was used. The study used data from the 2000 and 2005 Behavioral Risk Factor Surveillance System. The number of fruit and vegetable servings per week and the percentage of respondents consuming five or more servings of fruits and vegetables per day were examined. Between-subjects analysis of variance and logistic regression. In the absence of a marketing campaign, there was a significant decrease in fruit and vegetable consumption between 2000 and 2005. In states with campaigns, consumption remained stable or increased. Marketing effects were stronger for women than for men. Conclusions . State-sponsored agricultural marketing programs had favorable effects on consumers' consumption of fruits and vegetables.
Growth of Aeromonas hydrophila on fresh vegetables stored under a controlled atmosphere.
Berrang, M E; Brackett, R E; Beuchat, L R
1989-01-01
The effects of controlled-atmosphere storage (CAS) on the survival and growth of Aeromonas hydrophila on fresh asparagus, broccoli, and cauliflower were examined. Two lots of each vegetable were inoculated with A. hydrophila 1653 or K144. A third lot served as an uninoculated control. Following inoculation, vegetables were stored at 4 or 15 degrees C under a CAS system previously shown to extend the shelf life of each commodity or under ambient air. Populations of A. hydrophila were enumerated on the initial day of inoculation and at various intervals for 10 days (15 degrees C) or 21 days (4 degrees C) of storage. Direct plating of samples with selective media was used to enumerate A. hydrophila. The organism was detected on most lots of vegetables as they were received from a commercial produce supplier. Without exception, the CAS system lengthened the time vegetables were subjectively considered acceptable for consumption. However, CAS did not significantly affect populations of A. hydrophila which survived or grew on inoculated vegetables. PMID:2802601
Monitoring the vernal advancement and retrogradation (green wave effect) of natural vegetation
NASA Technical Reports Server (NTRS)
Rouse, J. W., Jr. (Principal Investigator)
1973-01-01
The author has identified the following significant results. A comprehensive review of ERTS-1 MSS color composite imagery, obtained during the autumnal and vernal phases over the Great Plains Corridor test sites, shows that temporal changes in rangeland vegetation can be manually interpreted. The degree to which manual interpretations can be made from the MSS color composites appears to be limited primarily by variations in image reproduction quality. The vernal advancement and other phenophase related phenomena are observable from cycle to cycle and within a single frame for rangeland vegetation. Vegetation changes due to environmental conditions among the test sites and among grazing treatments within test sites are readily observable. An investigation has been initiated which will evaluate band-to-band ratios as an index of rangeland vegetation condition. Data currently available from August 1972 through April 1973 for the five southern test sites are being used to characterize band-to-band ratios as a function of quantity and quality of rangeland vegetation at each of the test sites.
Monitoring the vernal advancement and retrogradation (green wave effect) of natural vegetation
NASA Technical Reports Server (NTRS)
Rouse, J. W., Jr. (Principal Investigator)
1973-01-01
The author has identified the following significant results. Preliminary evaluation of autumnal phase ground truth data suggests that the sampling procedures at the Great Plains Corridor network test sites are adequate to show relatively small temporal changes in above-ground vegetation biomass and vegetation condition. Vegetation changes measured August through December, reflect grazing intensity and environmental conditions at the test sites. Preliminary analysis of black and white imagery suggests that detail in vegetation patterns is much greater than originally anticipated. A first look analysis of single band imagery and digital data at two locations shows that woodland, grassland, and cropland areas are easily delineated. Computer derived grey-scale maps from MSS digital data were shown to be useful in identifying the location of small fields and features of the natural and cultivated lands. Single band imagery and digital data are believed to have important application for synoptic land use mapping and inventory. Initial ratio analysis, using band 5 and 7 data, suggests the applicability in the greenness of a vegetative scene.
Recovery of endemic dragonflies after removal of invasive alien trees.
Samways, Michael J; Sharratt, Norma J
2010-02-01
Because dragonflies are very sensitive to alien trees, we assessed their response to large-scale restoration of riparian corridors. We compared three types of disturbance regime--alien invaded, cleared of alien vegetation, and natural vegetation (control)--and recorded data on 22 environmental variables. The most significant variables in determining dragonfly assemblages were percentage of bank cover and tree canopy cover, which indicates the importance of vegetation architecture for these dragonflies. This finding suggests that it is important to restore appropriate marginal vegetation and sunlight conditions. Recovery of dragonfly assemblages after the clearing of alien trees was substantial. Species richness and abundance at restored sites matched those at control sites. Dragonfly assemblage patterns reflected vegetation succession. Thus, initially eurytopic, widespread species were the main beneficiaries of the removal of alien trees, and stenotopic, endemic species appeared after indigenous vegetation recovered over time. Important indicator species were the two national endemics (Allocnemis leucosticta and Pseudagrion furcigerum), which, along with vegetation type, can be used to monitor return of overall integrity of riparian ecology and to make management decisions. Endemic species as a whole responded positively to restoration, which suggests that indigenous vegetation recovery has major benefits for irreplaceable and widespread generalist species.
Assessing parents' receptiveness to a vegetable-focussed in-school nutrition intervention.
Jongenelis, Michelle I; Pettigrew, Simone; Pratt, Iain S; Wright, Shannon; Myers, Gael
2017-10-01
Crunch&Sip is an Australian school-based initiative designed to increase the consumption of fruit, vegetables, and water among primary school children. To address the significant deficiencies in children's vegetable intake, the present study aimed to examine the responsiveness of parents (the main providers of food for Crunch&Sip) to a modified version of the program that focuses primarily on vegetable consumption. A total of 329 Western Australian parents completed an online questionnaire examining their support for a vegetable focus for Crunch&Sip and any perceived barriers, motivators, and facilitators. Most (80%) parents were supportive of a shift to a vegetable focus for Crunch&Sip. Belief in the effectiveness of Crunch&Sip at improving children's attitudes towards vegetables and increasing children's vegetable consumption was found to be significantly associated with levels of support. The most commonly nominated motivator was to improve their children's eating habits and the main facilitator was the perceived ability of teachers and peers to influence children's food consumption behaviours. Identified potential barriers included the difficulties associated with providing a variety of vegetables, maintaining freshness, and the preparation time required. The primary suggested strategy to overcome these barriers was for schools to conduct education sessions to provide information about vegetable provision options. The results suggest that parents can be supportive of school-based nutrition programs that specifically encourage the consumption of vegetables but they may require guidance to reduce the identified barriers related to vegetable provision. Copyright © 2017 Elsevier Ltd. All rights reserved.
Diversity, density, and development of early vegetation in a small clear-cut environment
Philip M. McDonald
1999-01-01
On a high quality site in northern California, frequency, density, foliar cover, and height were measured on every plant species present in an 8-acre clear-cut opening each year from 1976 through 1980. Plant species numbered 71, although no more than 62 were present during a given year. Categories of vegetation with the most plants per acre initially were shrubs,...
2010-09-01
is delineated in upper third in 2006 image. .............................................................................. 23 Figure 19. NDVI ...values are compared for SPOT imagery from 29 May 2006 and 24 August 2006. Fire areas with reduced NDVI from Malpais fire are clearly seen on both sides...results comparing vegetation type and normalized difference vegetation index ( NDVI ), and (4) presents initial results from the groundwater flow field
Morphogenesis in sea urchin embryos: linking cellular events to gene regulatory network states
Lyons, Deidre; Kaltenbach, Stacy; McClay, David R.
2013-01-01
Gastrulation in the sea urchin begins with ingression of the primary mesenchyme cells (PMCs) at the vegetal pole of the embryo. After entering the blastocoel the PMCs migrate, form a syncitium, and synthesize the skeleton of the embryo. Several hours after the PMCs ingress the vegetal plate buckles to initiate invagination of the archenteron. That morphogenetic process occurs in several steps. The non-skeletogenic cells produce the initial inbending of the vegetal plate. Endoderm cells then rearrange and extend the length of the gut across the blastocoel to a target near the animal pole. Finally, cells that will form part of the midgut and hindgut are added to complete gastrulation. Later, the stomodeum invaginates from the oral ectoderm and fuses with the foregut to complete the archenteron. In advance of, and during these morphogenetic events an increasingly complex gene regulatory network controls the specification and the cell biological events that conduct the gastrulation movements. PMID:23801438
Self-crafting vegetable snacks: testing the IKEA-effect in children.
Raghoebar, Sanne; van Kleef, Ellen; de Vet, Emely
2017-01-01
The purpose of this paper is to test whether the IKEA-effect (Norton et al. , 2012) - better liking for self-crafted products than for identical products crafted by others - can be exploited to increase liking and consumption of vegetable snacks in children. A between-subjects experiment was conducted at an after school care facility. In total, 86 children aged four to six either crafted a peacock with vegetables or with non-food objects following an example. After the task, children ate snack vegetables ad libitum, and rated their liking for the vegetables and pride in crafting the peacock. No significant main effect of the vegetable snack creation on consumption and liking was observed. Also, perceived pride did not mediate the effect of self-crafting vegetable snacks on consumption of and liking for vegetables. Vegetable consumption did not differ between children who were either simply exposed to vegetable snacks while crafting or those who were crafting the vegetable snacks themselves. The equal consumption might suggest that this is caused by simple exposure, but more research is needed comparing self-crafting and exposure to a condition where there is no initial exposure to vegetables. Although the IKEA-effect has been demonstrated in adults, this is one of the first studies evaluating the IKEA-effect in children and as a means to increase liking for a generally disliked product in this target group, i.e. vegetables. The IKEA-effect could not be replicated under these more stringent conditions, where the experimental set-up enabled disentangling exposure and crafting effects.
7 CFR 905.21 - Selection of initial members of the committee.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 7 Agriculture 8 2010-01-01 2010-01-01 false Selection of initial members of the committee. 905.21 Section 905.21 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing Agreements and Orders; Fruits, Vegetables, Nuts), DEPARTMENT OF AGRICULTURE ORANGES...
Phytoplasmal infection derails genetically preprogrammed meristem fate and alters plant architecture
Wei, Wei; Davis, Robert Edward; Nuss, Donald L.; Zhao, Yan
2013-01-01
In the life cycle of higher plants, it is the fate of meristem cells that determines the pattern of growth and development, and therefore plant morphotype and fertility. Floral transition, the turning point from vegetative growth to reproductive development, is achieved via genetically programmed sequential changes in meristem fate from vegetative to inflorescence, and to floral, leading to flower formation and eventual seed production. The transition is rarely reversible once initiated. In this communication, we report that a bacterial infection can derail the genetically programmed fate of meristem cells, thereby drastically altering the growth pattern of the host plant. We identified four characteristic symptoms in tomato plants infected with a cell wall-less bacterium, phytoplasma. The symptoms are a manifestation of the pathogen-induced alterations of growth pattern, whereas each symptom corresponds to a distinct phase in the derailment of shoot apical meristem fate. The phases include premature floral meristem termination, suppressed floral meristem initiation, delayed conversion of vegetative meristem to inflorescence meristem, and repetitive initiation and outgrowth of lateral vegetative meristems. We further found that the pathogen-induced alterations of growth pattern were correlated with transcriptional reprogramming of key meristem switching genes. Our findings open an avenue toward understanding pathological alterations in patterns of plant growth and development, thus aiding identification of molecular targets for disease control and symptom alleviation. The findings also provide insights for understanding stem cell pluripotency and raise a tantalizing possibility for using phytoplasma as a tool to dissect the course of normal plant development and to modify plant morphogenesis by manipulating meristem fate. PMID:24191032
Aid for Trade: an opportunity to increase fruit and vegetable supply.
Thow, Anne Marie; Priyadarshi, Shishir
2013-01-01
Low fruit and vegetable consumption is an important contributor to the global burden of disease. In the wake of the United Nations High-level Meeting on Non-Communicable Diseases (NCDs), held in September 2011, a rise in the consumption of fruits and vegetables is foreseeable and this increased demand will have to be met through improved supply. The World Health Organization, the Food and Agriculture Organization and the World Bank have highlighted the potential for developing countries to benefit nutritionally and economically from the increased production and export of fruit and vegetables.Aid for Trade, launched in 2005 as an initiative designed to link development aid and trade holistically, offers an opportunity for the health and trade sectors to work jointly to enhance health and development. The Aid for Trade work programme stresses the importance of policy coherence across sectors, yet the commonality of purpose driving the Aid for Trade initiative and NCD prevention efforts has not been explored.In this paper food supply chain analysis was used to show health policy-makers that Aid for Trade can provide a mechanism for increasing the supply of fruits and vegetables in developing countries. Aid for Trade is an existing funding channel with clear accountability and reporting mechanisms, but its priorities are determined with little or no input from the health sector. The paper seeks to enable public health policy-makers, practitioners and advocates to improve coherence between trade and public health policies by highlighting Aid for Trade's potential role in this endeavour.
Hupp, C.R.; Simon, A.
1991-01-01
This paper describes the recovery of stable bank form and development of vegetated depositional surfaces along the banks of channelized West Tennessee streams. Most perennial streams in West Tennessee were straightened and dredged since the turn of the century. Patterns of fluvial ecological responses to channelization have previously been described by a six-stage model. Dendrogeomorphic (tree-ring) techniques allowed the determination of location, timing, amount, and rate of bank-sediment deposition. Channel cross sections and ecological analyses made at 101 locations along 12 streams, encompassing bends and straight reaches, show that channel and bank processes initially react vertically to channelization through downcutting. A depositional surface forms on banks once bed-degradation and heightened bank mass wasting processes have eased or slowed. The formation of this depositional surface marks the beginning of bank recovery from channelization. Dominating lateral processes, characteristic of stable or natural channels, return during the formation and expansion of the depositional surface, suggesting a relation with thalweg deflection, point-bar development, and meanderloop extension. Characteristic woody riparian vegetation begins to grow as this depositional surface develops and becomes part of the process and form of restabilizing banks. The depositional surface initially forms low on the bank and tends to maintain a slope of about 24??. Mean accretion rates ranges from 5.9 cm/yr on inside bends to 0 cm/yr on most outside bends; straight reaches have a mean-accretion rate of 4.2 cm/yr. The relatively stable, convex upward, depositional surface expands and ultimately attaches to the flood plain. The time required for the recovery process to reach equilibrium averaged about 50 years. Indicative pioneer speccies of woody riparian vegetation include black willow, river birch, silver maple, and boxelder. Stem densities generally decrease with time after and initial flush of about 160 stems per 100 m2. Together bank accretion and vegetative regrowth appear to be the most important environmental processes involved in channel bank recovery from channelization or rejuvenation. ?? 1991.
Sorensen, Mathew D; Hsi, Ryan S; Chi, Thomas; Shara, Nawar; Wactawski-Wende, Jean; Kahn, Arnold J; Wang, Hong; Hou, Lifang; Stoller, Marshall L
2014-12-01
We evaluated the relationship between dietary fiber, fruit and vegetable intake, and the risk of kidney stone formation. Overall 83,922 postmenopausal women from the Women's Health Initiative observational study were included in the analysis and followed prospectively. Cox proportional hazards regression analyses were used to evaluate the associations between total dietary fiber, fruit and vegetable intake, and the risk of incident kidney stone formation, adjusting for nephrolithiasis risk factors (age, race/ethnicity, geographic region, diabetes mellitus, calcium supplementation, hormone therapy use, body mass index and calibrated caloric intake; and dietary water, sodium, animal protein and calcium intake). Women with a history of kidney stones (3,471) were analyzed separately. Mean age of the women was 64±7 years, 85% were white and 2,937 (3.5%) experienced a kidney stone in a median followup of 8 years. In women with no history of kidney stones higher total dietary fiber (6% to 26% decreased risk, p <0.001), greater fruit intake (12% to 25% decreased risk, p <0.001) and greater vegetable intake (9% to 22% decreased risk, p=0.002) were associated with a decreased risk of incident kidney stone formation in separate adjusted models. In women with a history of stones there were no significant protective effects of fiber, fruit or vegetable intake on the risk of kidney stone recurrence. Greater dietary intake of fiber, fruits and vegetables was associated with a reduced risk of incident kidney stones in postmenopausal women. The protective effects were independent of other known risk factors for kidney stones. In contrast, there was no reduction in risk in women with a history of stones. Copyright © 2014 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.
Hedwall, Per-Ola; Skoglund, Jerry; Linder, Sune
2015-02-01
The boreal forest is one of the largest terrestrial biomes and plays a key role for the global carbon balance and climate. The forest floor vegetation has a strong influence on the carbon and nitrogen cycles of the forests and is sensitive to changes in temperature conditions and nutrient availability. Additionally, the effects of climate warming on forest floor vegetation have been suggested to be moderated by the tree layer. Data on the effects of soil warming on forest floor vegetation from the boreal forest are, however, very scarce. We studied the effects on the forest floor vegetation in a long-term (18 years) soil warming and fertilization experiment in a Norway spruce stand in northern Sweden. During the first 9 years, warming favored early successional species such as grasses and forbs at the expense of dwarf shrubs and bryophytes in unfertilized stands, while the effects were smaller after fertilization. Hence, warming led to significant changes in species composition and an increase in species richness in the open canopy nutrient limited forest. After another 9 years of warming and increasing tree canopy closure, most of the initial effects had ceased, indicating an interaction between forest succession and warming. The only remaining effect of warming was on the abundance of bryophytes, which contrary to the initial phase was strongly favored by warming. We propose that the suggested moderating effects of the tree layer are specific to plant life-form and conclude that the successional phase of the forest may have a considerable impact on the effects of climate change on forest floor vegetation and its feedback effects on the carbon and nitrogen cycles, and thus on the climate.
Hedwall, Per-Ola; Skoglund, Jerry; Linder, Sune
2015-01-01
The boreal forest is one of the largest terrestrial biomes and plays a key role for the global carbon balance and climate. The forest floor vegetation has a strong influence on the carbon and nitrogen cycles of the forests and is sensitive to changes in temperature conditions and nutrient availability. Additionally, the effects of climate warming on forest floor vegetation have been suggested to be moderated by the tree layer. Data on the effects of soil warming on forest floor vegetation from the boreal forest are, however, very scarce. We studied the effects on the forest floor vegetation in a long-term (18 years) soil warming and fertilization experiment in a Norway spruce stand in northern Sweden. During the first 9 years, warming favored early successional species such as grasses and forbs at the expense of dwarf shrubs and bryophytes in unfertilized stands, while the effects were smaller after fertilization. Hence, warming led to significant changes in species composition and an increase in species richness in the open canopy nutrient limited forest. After another 9 years of warming and increasing tree canopy closure, most of the initial effects had ceased, indicating an interaction between forest succession and warming. The only remaining effect of warming was on the abundance of bryophytes, which contrary to the initial phase was strongly favored by warming. We propose that the suggested moderating effects of the tree layer are specific to plant life-form and conclude that the successional phase of the forest may have a considerable impact on the effects of climate change on forest floor vegetation and its feedback effects on the carbon and nitrogen cycles, and thus on the climate. PMID:25750720
NASA Astrophysics Data System (ADS)
Huang, J.; Chen, D.
2005-12-01
Vegetation water content (VWC) attracts great research interests in hydrology research in recent years. As an important parameter describing the horizontal expansion of vegetation, vegetation coverage is essential to implement soil effect correction for partially vegetated fields to estimate VWC accurately. Ground measurements of corn and soybeans in SMEX02 resulted in an identical expolinear relationship between vegetation coverage and leaf area index (LAI), which is used for vegetation coverage mapping. Results illustrated two parts of LAI growth quantitatively: the horizontal expansion of leaf coverage and the vertical accumulation of leaf layers. It is believed that the former part contributes significantly to LAI growth at initial vegetation growth stage and the latter is more dominant after vegetation coverage reaches a certain level. The Normalized Difference Water Index (NDWI) using short-wave infrared bands is convinced for its late saturation at high LAI values, in contrast to the Normalized Difference Vegetation Index (NDVI). NDWI is then utilized to estimate LAI, via another expolinear relationship, which is evidenced having vegetation species independency in study of corn and soybeans in SMEX02 sites. It is believed that the surface reflectance measured at satellites spectral bands are the mixed results of signals reflected from vegetation and bare soil, especially at partially vegetated fields. A simple linear mixture model utilizing vegetation coverage information is proposed to correct soil effect in such cases. Surface reflectance fractions for -rpure- vegetation are derived from the model. Comparing with ground measurements, empirical models using soil effect corrected vegetation indices to estimate VWC and dry biomass (DB) are generated. The study enhanced the in-depth understanding of the mechanisms how vegetation growth takes effect on satellites spectral reflectance with and without soil effect, which are particularly useful for modeling in hydrology, agriculture, forestry and meteorology etc.
NASA Astrophysics Data System (ADS)
Bras, R. L.; Istanbulluoglu, E.
2004-12-01
Topography acts as a template for numerous landscape processes that includes hydrologic, ecologic and biologic phenomena. These processes not only interact with each other but also contribute to shaping the landscape as they influence geomorphic processes. We have investigated the effects of vegetation on known geomorphic relations, thresholds for channel initiation and landform evolution, using both analytical and numerical approaches. Vegetation is assumed to form a uniform ground cover. Runoff erosion is modeled based on power function of excess shear stress, in which shear stress efficiency is inversely proportional to vegetation cover. Plant effect on slope stability is represented by additional cohesion provided by plant roots. Vegetation cover is assumed to reduce sediment transport rates due to physical creep processes (rainsplash, dry ravel, and expansion and contraction of sediments) according to a negative exponential relationship. Vegetation grows as a function of both available cover and unoccupied space by plants, and is killed by geomorphic disturbances (runoff erosion and landsliding), and wildfires. Analytical results suggest that, in an equilibrium basin with a fixed vegetation cover, plants may cause a transition in the dominant erosion process at the channel head. A runoff erosion dominated landscape, under none or loose vegetation cover, may become landslide dominated under a denser vegetation cover. The sign of the predicted relationship between drainage density and vegetation cover depends on the relative influence of vegetation on different erosion phenomena. With model parameter values representative of the Oregon Coast Range (OCR), numerical experiments conducted using the CHILD model. Numerical experiments reveal the importance of vegetation disturbances on the landscape structure. Simulated landscapes resemble real-world catchments in the OCR when vegetation disturbances are considered.
Synthesis and characterization of phosphonates from methyl linoleate and vegetable oils
USDA-ARS?s Scientific Manuscript database
Phosphonates were synthesized on a medium scale (~200 g) from three lipids: methyl linoleate (MeLin), high-oleic sunflower oil (HOSO), and soybean oil (SBO), and three dialkyl phosphites: methyl, ethyl, and n-butyl, using radical initiator. A staged addition of the lipid and the initiator was needed...
Kevin C. Ryan; Tonja S. Opperman
2013-01-01
LANDFIRE is the working name given to the Landscape Fire and Resource Management Planning Tools Project (http://www.landfire.gov). The project was initiated in response to mega-fires and the need for managers to have consistent, wall-to-wall (i.e., all wildlands regardless of agency/ownership), geospatial data, on vegetation, fuels, and terrain to support use of fire...
James D. Haywood
2009-01-01
To study how fire or herbicide use influences longleaf pine (Pinus palustris Mill.) overstory and understory vegetation, five treatments were initiated in a 5â6-year-old longleaf pine stand: check, biennial arborescent plant control by directed herbicide application, and biennial burning in March, May, or July. The herbicide or prescribed fire...
Robert A. Slesak; Stephen H. Schoenholtz; Timothy B. Harrington; Brian D. Strahm
2009-01-01
We examined the effect of logging-debris retention and competing-vegetation control (CCC, initial or annual applications) on dissolved organic carbon (DOC), dissolved organic nitrogen, and nitrate-N leaching to determine the relative potential of these practices to contribute to soil C and N loss at two contrasting sites. Annual CVC resulted in higher soil water...
Mummah, Sarah A; King, Abby C; Gardner, Christopher D; Sutton, Stephen
2016-08-08
Mobile technology may serve as a cost-effective and scalable tool for delivering behavioral nutrition interventions. This research sought to iteratively develop a theory-driven mobile app, Vegethon, to increase vegetable consumption. Development of Vegethon followed phases outlined by the IDEAS framework: 1) empathize with users (qualitative interviews, n = 18); 2) specify target behavior; 3) ground in behavioral theory; 4) ideate implementation strategies; 5) prototype potential products; 6) gather user feedback (qualitative interviews, n = 14; questionnaire, n = 41); 7) build minimum viable product; and 8) pilot potential efficacy and usability (pilot RCT, n = 17). Findings from each phase informed subsequent phases. The target population that informed intervention development was 18-50 years of age, had BMIs of 28-40 kg/m(2), and lived in the geographical area surrounding Stanford University. A full description of the final version of Vegethon is included in the paper. Qualitative findings that shaped initial intervention conception were: participants' interests in accountability without judgment; their desire for simple and efficient dietary self-monitoring; and the importance of planning meals in advance. Qualitative findings identified during intervention refinement were the need for a focus on vegetable self-monitoring; inclusion of vegetable challenges; simplification of features; advice and inspiration for eating vegetables; reminder notifications; and peer comparison. Pilot RCT findings suggested the initial efficacy, acceptance, and feasibility of the intervention. The final version of Vegethon enabled easy self-monitoring of vegetable consumption and included a range of features designed to engage the user (e.g., surprise challenges; leaderboard; weekly reports). Vegethon was coded for its inclusion of 18 behavior change techniques (BCTs) (e.g., goal setting; feedback; social comparison; prompts/cues; framing/reframing; identity). Vegethon is a theory-based, user-informed mobile intervention that was systematically developed using the IDEAS framework. Vegethon targets increased vegetable consumption among overweight adults and is currently being evaluated in a randomized controlled efficacy trial. Clinical Trials.gov: NCT01826591.
Competition between hardwood hammocks and mangroves
Sternberg, L.D.S.L.; Teh, S.Y.; Ewe, S.M.L.; Miralles-Wilhelm, F.; DeAngelis, D.L.
2007-01-01
The boundaries between mangroves and freshwater hammocks in coastal ecotones of South Florida are sharp. Further, previous studies indicate that there is a discontinuity in plant predawn water potentials, with woody plants either showing predawn water potentials reflecting exposure to saline water or exposure to freshwater. This abrupt concurrent change in community type and plant water status suggests that there might be feedback dynamics between vegetation and salinity. A model examining the salinity of the aerated zone of soil overlying a saline body of water, known as the vadose layer, as a function of precipitation, evaporation and plant water uptake is presented here. The model predicts that mixtures of saline and freshwater vegetative species represent unstable states. Depending on the initial vegetation composition, subsequent vegetative change will lead either to patches of mangrove coverage having a high salinity vadose zone or to freshwater hammock coverage having a low salinity vadose zone. Complete or nearly complete coverage by either freshwater or saltwater vegetation represents two stable steady-state points. This model can explain many of the previous observations of vegetation patterns in coastal South Florida as well as observations on the dynamics of vegetation shifts caused by sea level rise and climate change. ?? 2007 Springer Science+Business Media, LLC.
Elevation Control on Vegetation Organization in a Semiarid Ecosystem in Central New Mexico
NASA Astrophysics Data System (ADS)
Nudurupati, S. S.; Istanbulluoglu, E.; Adams, J. M.; Hobley, D. E. J.; Gasparini, N. M.; Tucker, G. E.; Hutton, E. W. H.
2015-12-01
Many semiarid and desert ecosystems are characterized by patchy and dynamic vegetation. Topography plays a commanding role on vegetation patterns. It is observed that plant biomes and biodiversity vary systematically with slope and aspect, from shrublands in low desert elevations, to mixed grass/shrublands in mid elevations, and forests at high elevations. In this study, we investigate the role of elevation dependent climatology on vegetation organization in a semiarid New Mexico catchment where elevation and hillslope aspect play a defining role on plant types. An ecohydrologic cellular automaton model developed within Landlab (component based modeling framework) is used. The model couples local vegetation dynamics (that simulate biomass production based on local soil moisture and potential evapotranspiration) and plant establishment and mortality based on competition for resources and space. This model is driven by elevation dependent rainfall pulses and solar radiation. The domain is initialized with randomly assigned plant types and the model parameters that couple plant response with soil moisture are systematically changed. Climate perturbation experiments are conducted to examine spatial vegetation organization and associated timescales. Model results reproduce elevation and aspect controls on observed vegetation patterns indicating that this model captures necessary and sufficient conditions that explain these observed ecohydrological patterns.
Hop, Kevin D.; Drake, Jim; Strassman, Andrew C.; Hoy, Erin E.; Jakusz, Joseph; Menard, Shannon; Dieck, Jennifer
2015-01-01
The Mississippi National River and Recreation Area (MISS) vegetation mapping project is an initiative of the National Park Service (NPS) Vegetation Inventory Program (VIP) to classify and map vegetation types of MISS. (Note: “MISS” is also referred to as “park” throughout this report.) The goals of the project are to adequately describe and map vegetation types of the park and to provide the NPS Natural Resource Inventory and Monitoring (I&M) Program, resource managers, and biological researchers with useful baseline vegetation information.The MISS vegetation mapping project was officially started in spring 2012, with a scoping meeting wherein partners discussed project objectives, goals, and methods. Major collaborators at this meeting included staff from the NPS MISS, the NPS Great Lakes Network (GLKN), NatureServe, and the USGS Upper Midwest Environmental Sciences Center. The Minnesota Department of Natural Resources (DNR) was also in attendance. Common to all NPS VIP projects, the three main components of the MISS vegetation mapping project are as follows: (1) vegetation classification, (2) vegetation mapping, and (3) map accuracy assessment (AA). In this report, each of these fundamental components is discussed in detail.With the completion of the MISS vegetation mapping project, all nine park units within the NPS GLKN have received vegetation classification and mapping products from the NPS and USGS vegetation programs. Voyageurs National Park and Isle Royale National Park were completed during 1996–2001 (as program pilot projects) and another six park units were completed during 2004–11, including the Apostle Islands National Lakeshore, Grand Portage National Monument, Indiana Dunes National Lakeshore, Pictured Rocks National Lakeshore, Saint Croix National Scenic Riverway, and Sleeping Bear Dunes National Lakeshore.
Hassanein, Mohamed; El-Sheimy, Naser
2018-01-01
Over the last decade, the use of unmanned aerial vehicle (UAV) technology has evolved significantly in different applications as it provides a special platform capable of combining the benefits of terrestrial and aerial remote sensing. Therefore, such technology has been established as an important source of data collection for different precision agriculture (PA) applications such as crop health monitoring and weed management. Generally, these PA applications depend on performing a vegetation segmentation process as an initial step, which aims to detect the vegetation objects in collected agriculture fields’ images. The main result of the vegetation segmentation process is a binary image, where vegetations are presented in white color and the remaining objects are presented in black. Such process could easily be performed using different vegetation indexes derived from multispectral imagery. Recently, to expand the use of UAV imagery systems for PA applications, it was important to reduce the cost of such systems through using low-cost RGB cameras Thus, developing vegetation segmentation techniques for RGB images is a challenging problem. The proposed paper introduces a new vegetation segmentation methodology for low-cost UAV RGB images, which depends on using Hue color channel. The proposed methodology follows the assumption that the colors in any agriculture field image can be distributed into vegetation and non-vegetations colors. Therefore, four main steps are developed to detect five different threshold values using the hue histogram of the RGB image, these thresholds are capable to discriminate the dominant color, either vegetation or non-vegetation, within the agriculture field image. The achieved results for implementing the proposed methodology showed its ability to generate accurate and stable vegetation segmentation performance with mean accuracy equal to 87.29% and standard deviation as 12.5%. PMID:29670055
Modeling Feedbacks Between Water and Vegetation in the Climate System
NASA Technical Reports Server (NTRS)
Miller, James R.; Russell, Gary L.; Hansen, James E. (Technical Monitor)
2001-01-01
Not only is water essential for life on earth, but life itself affects the global hydrologic cycle and consequently the climate of the planet. Whether the global feedbacks between life and the hydrologic cycle tend to stabilize the climate system about some equilibrium level is difficult to assess. We use a global climate model to examine how the presence of vegetation can affect the hydrologic cycle in a particular region. A control for the present climate is compared with a model experiment in which the Sahara Desert is replaced by vegetation in the form of trees and shrubs common to the Sahel region. A second model experiment is designed to identify the separate roles of two different effects of vegetation, namely the modified albedo and the presence of roots that can extract moisture from deeper soil layers. The results show that the presence of vegetation leads to increases in precipitation and soil moisture in western Sahara. In eastern Sahara, the changes are less clear. The increase in soil moisture is greater when the desert albedo is replaced by the vegetation albedo than when both the vegetation albedo and roots are added. The effect of roots is to withdraw water from deeper layers during the dry season. One implication of this study is that the insertion of vegetation into the Sahara modifies the hydrologic cycle so that the vegetation is more likely to persist than initially.
Soil-vegetation feedbacks driving early ecosystems genesis
NASA Astrophysics Data System (ADS)
Gwenzi, Willis; Hinz, Christoph; McGrath, Gavan; Veneklaas, Erik
2010-05-01
During the early phase of terrestrial ecosystems genesis feedbacks between soil and vegetation may become a key driver determining whether and how the systems will converge to a stable state. This is particular true for water-limited ecosystems for which water availability determines biomass. Based on a review of how vegetation growth affects soil hydraulic properties, we propose a simple conceptual model that captures the feedbacks between soil water storage in soil and soil hydraulic behaviour and vegetation biomass. The feedbacks that we considered are (i) vegetation biomass and soil water storage, (ii) root growth and infiltration capacity, (iii) vegetation biomass and bare soil evaporation, and (iv) root growth and soil water drainage. In water-limited environments, these feedbacks are responsible for highly organized vegetation patterns in space and may also lead to oscillating behaviour of soil water storage and vegetation biomass in time. Biomass overshooting as a result of initially high soil water content is predicted, which is consistent with observations made in forested catchments after clearing or during re-vegetation of mine tailings. We furthermore study how the oscillation of rainfall and evaporative demand affects the biomass fluctuations in time. We can show that such systems may converge to either an equilibrium point or a limit cycle. Climate oscillation can cause period doubling and for large periods it may control the biomass dynamics.
Increasing fruit and vegetable consumption and offerings to Somali children: the FAV-S pilot study.
Hearst, Mary O; Kehm, Rebecca; Sherman, Shelley; Lechner, Kate E
2014-04-01
To determine the feasibility, acceptability, and impact of a parent-centered intervention to increase fruit and vegetable servings and consumption among Somali children living in the United States. Pilot intervention that included Somali community health workers who organized groups of 3 or 4 women to participate in 2 initial educational sessions, including topics of health and nutrition, serving size, and label reading. A third session taught interactive cooking to increase skills in preparing fruits and vegetables and increasing the numbers of vegetables included in traditional Somali dishes. The final session was a trip to the grocery store to identify fruits and vegetables, determine ripeness, and explore frozen and canned fruits and vegetables for halal, low-sodium, and low-sugar products. Surveys were completed pre- and post-intervention. Study participants were recruited from a large housing complex in Minneapolis, Minnesota, with a high population of Somali immigrants. Somali women (N = 25) with children aged 3 to 10 years. The intervention was feasible and well accepted. In comparing pre- and post-intervention surveys, mothers reported providing their children significantly more frequent servings of fruits and vegetables at dinner, lunch, snack, and breakfast (vegetable only). There was a statistically significant increase in parent-reported intake of fruits and vegetables for themselves and their children. The FAV-S study was feasible and acceptable, and it demonstrated potential for increasing fruit and vegetable servings and consumption among Somali children. A larger-scale randomized trial is needed to assess the impact of this intervention.
Grassland plant composition alters vehicular disturbance effects in Kansas, USA.
Dickson, Timothy L; Wilsey, Brian J; Busby, Ryan R; Gebhart, Dick L
2008-05-01
Many "natural" areas are exposed to military or recreational off-road vehicles. The interactive effects of different types of vehicular disturbance on vegetation have rarely been examined, and it has been proposed that some vegetation types are less susceptible to vehicular disturbance than others. At Fort Riley, Kansas, we experimentally tested how different plant community types changed after disturbance from an M1A1 Abrams tank driven at different speeds and turning angles during different seasons. The greatest vegetation change was observed because of driving in the spring in wet soils and the interaction of turning while driving fast (vegetation change was measured with Bray-Curtis dissimilarity). We found that less vegetation change occurred in communities with high amounts of native prairie vegetation than in communities with high amounts of introduced C(3) grasses, which is the first experimental evidence we are aware of that suggests plant communities dominated by introduced C(3) grasses changed more because of vehicular disturbance than communities dominated by native prairie grasses. We also found that vegetation changed linearly with vehicular disturbance intensity, suggesting that at least initially there was no catastrophic shift in vegetation beyond a certain disturbance intensity threshold. Overall, the intensity of vehicular disturbance appeared to play the greatest role in vegetation change, but the plant community type also played a strong role and this should be considered in land use planning. The reasons for greater vegetation change in introduced C(3) grass dominated areas deserve further study.
The artifcial catchment Chicken Creek as a tool to study initial ecosystem development
NASA Astrophysics Data System (ADS)
Schaaf, W.; Elmer, M.; Fischer, A.; Gerwin, W.; Nenov, R.
2011-12-01
The artificial catchment Chicken Creek was constructed in 2005 to study the increasingly complex interactions of processes and structures during initial development of ecosystems. The 6ha area serves as the central research site for the Transregional Collaborative Research Center 38. Both internal and external factors could be identified as driving forces for the formation of structures and patterns in the artificial catchment during the first five years of development. Initial structures formed by the construction process (e.g. catchment morphology, subsurface structures like clay dams and dumping cones, caterpillar tracks at the surface) and initial substrate characteristics (e.g. texture, geochemistry) were decisive both for the distribution and flow of precipitation water and for vegetation succession. External factors like episodic events (e.g. heavy thunderstorms) triggered erosion and dissection during this initial phase, promoted by the low vegetation cover and the unconsolidated sandy substrate. These processes resulted in transport and redistribution of water and sediment within the catchment, mainly along the main slope, and the formation of new structural elements like gullies and channels, a sedimentation fan above and sediments within the pond. As a result, we observed an overall differentiation of the site, e.g. with respect to water availability and texture redistribution, into areas with abrasion or accumulation processes dominating and areas with stable surfaces. During further development, both external factors and processes within the catchment continued to influence the site. For example, beside the initial soil seed bank, the surrounding environment of the catchment clearly affected species invasion. The dissection and stability of surfaces may be an important factor for the establishment of plants and habitats as well as for the formation of vegetation patterns and biological soil crusts. The transformation of the initial geo-system into areas with evolving terrestrial or aquatic characteristics and from a very episodic to a more permanent stream network and discharge, together with the observed vegetation dynamics increased site diversity and heterogeneity with respect to water and nutrient availability and transformation processes compared to the more homogenous conditions at point zero. We expect that these more permanent structures and patterns established after five years will greatly influence the future development of the catchment with respect to e.g. input and accumulation of soil organic matter, nitrogen input and availability by symbiotic microbial N-fixation, development of root systems and soil food webs, weathering and soil formation, element cycling, and the water and element budget at the catchment scale.
Hanan, Erin J; Tague, Christina; Choate, Janet; Liu, Mingliang; Kolden, Crystal; Adam, Jennifer
2018-03-24
Disturbances such as wildfire, insect outbreaks, and forest clearing, play an important role in regulating carbon, nitrogen, and hydrologic fluxes in terrestrial watersheds. Evaluating how watersheds respond to disturbance requires understanding mechanisms that interact over multiple spatial and temporal scales. Simulation modeling is a powerful tool for bridging these scales; however, model projections are limited by uncertainties in the initial state of plant carbon and nitrogen stores. Watershed models typically use one of two methods to initialize these stores: spin-up to steady state or remote sensing with allometric relationships. Spin-up involves running a model until vegetation reaches equilibrium based on climate. This approach assumes that vegetation across the watershed has reached maturity and is of uniform age, which fails to account for landscape heterogeneity and non-steady-state conditions. By contrast, remote sensing, can provide data for initializing such conditions. However, methods for assimilating remote sensing into model simulations can also be problematic. They often rely on empirical allometric relationships between a single vegetation variable and modeled carbon and nitrogen stores. Because allometric relationships are species- and region-specific, they do not account for the effects of local resource limitation, which can influence carbon allocation (to leaves, stems, roots, etc.). To address this problem, we developed a new initialization approach using the catchment-scale ecohydrologic model RHESSys. The new approach merges the mechanistic stability of spin-up with the spatial fidelity of remote sensing. It uses remote sensing to define spatially explicit targets for one or several vegetation state variables, such as leaf area index, across a watershed. The model then simulates the growth of carbon and nitrogen stores until the defined targets are met for all locations. We evaluated this approach in a mixed pine-dominated watershed in central Idaho, and a chaparral-dominated watershed in southern California. In the pine-dominated watershed, model estimates of carbon, nitrogen, and water fluxes varied among methods, while the target-driven method increased correspondence between observed and modeled streamflow. In the chaparral watershed, where vegetation was more homogeneously aged, there were no major differences among methods. Thus, in heterogeneous, disturbance-prone watersheds, the target-driven approach shows potential for improving biogeochemical projections. © 2018 by the Ecological Society of America.
Synthesis and characterization of phosphonates from methyl linoleate and vegetable oils
USDA-ARS?s Scientific Manuscript database
Phosphonates were synthesized on a medium scale (~200 g) from three lipids: methyl linoleate (MeLin), high-oleic sunflower oil (HOSO) and soybean oil (SBO), and three dialkyl phosphites: methyl, ethyl and n-butyl, using a radical initiator. A staged addition of the lipid and the initiator to the dia...
Synthesis and characterization of phosphonates from methyl linoleate and vegetable oils
USDA-ARS?s Scientific Manuscript database
Phosphonates were synthesized on a medium scale (~200 g) from three lipids–methyl linoleate (MeLin), high-oleic sunflower oil (HOSO) and soybean oil (SBO), and three dialkyl phosphites–methyl, ethyl and n-butyl, using a radical initiator. A staged addition of the lipid and the initiator was used to ...
Ecology of bison, elk, and vegetation in an arid ecosystem
Schoenecker, Kathryn A.
2012-01-01
Herbivory has profound effects on vegetation production and structure in many different plant communities. The influence of herbivory on plants and ultimately ecosystem processes is shaped by the types of plants consumed, the intensity of herbivory, the evolutionary history of grazing, and the availability of water and nutrients to plants. The effect of ungulate herbivores on vegetation is of great interest to ecologists, land managers and agriculturalists. In addition, the Department of Interior recently established a Bison Conservation Initiative to provide for the conservation and restoration of North American plains- and wood bison, which includes establishing new populations and expanding existing populations. The San Luis Valley, Colorado, is being considered as a potential location for a bison conservation herd. Resource managers need to know the vegetation impacts of adding a second large ungulate to a system that already has elk.
Initial Expansion of C4 Vegetation in Australia During the Late Pliocene
NASA Astrophysics Data System (ADS)
Andrae, J. W.; McInerney, F. A.; Polissar, P. J.; Sniderman, J. M. K.; Howard, S.; Hall, P. A.; Phelps, S. R.
2018-05-01
Since the late Miocene, plants using the C4 photosynthetic pathway have increased to become major components of many tropical and subtropical ecosystems. However, the drivers for this expansion remain under debate, in part because of the varied histories of C4 vegetation on different continents. Australia hosts the highest dominance of C4 vegetation of all continents, but little is known about the history of C4 vegetation there. Carbon isotope ratios of plant waxes from scientific ocean drilling sediments off north-western Australia reveal the onset of Australian C4 expansion at 3.5 Ma, later than in many other regions. Pollen analysis from the same sediments reveals increasingly open C3-dominated biomes preceding the shift to open C4-dominated biomes by several million years. We hypothesize that the development of a summer monsoon climate beginning in the late Pliocene promoted a highly seasonal precipitation regime favorable to the expansion of C4 vegetation.
Interglacial vegetation succession: A view from southern Europe
NASA Astrophysics Data System (ADS)
Tzedakis, P. C.; Bennett, K. D.
Factors influencing interglacial vegetation development in southern Europe are considered in a series of comparisons of the vegetation and climatic signatures of selected periods. Multivariate analysis provides a method for standardizing comparison of interglacial vegetation successions, and insolation values and geological evidence supply information on the climatic character of individual periods. Application of this comparative approach to a long pollen record from northwest Greece presents an opportunity to examine a series of interglacial successions under constant background site characteristics, secure chronostratigraphical positions and minimal differences in species' immigration rates. The record of four interglacial period equivalent to marine oxygen isotopic substages 5e, 7c, 9c and 11c is examined. The comparison shows that the two earliest periods are characterized by similar vegetation development despite differences in climatic regimes. Dependence on initial conditions is one of the emergent aspects of the comparisons, suggesting that the nature of surviving populations during a cold stage may be critical in determining the course of interglacial succession.
NASA Technical Reports Server (NTRS)
Macari, Emir Jose
1990-01-01
The time between storms, the duration of storms, and the storm depths are studied in relation to vegetation controls on the disposition of rainfall. It is proposed that understanding the movement of water between the vegetation and soil (including evapotranspiration and infiltration) will be the gateway for modeling atmospheric flux and improving global climate models. The overall objective goal of the proposed research effort is to develop a field/lab methodology which will provide a better understanding of vegetation induced water movement. Water flow initiated from stem flow of wooded slopes feeds soil water pathways, which in turn feed the deeper ground water system and give rise to stream response. This is balanced by more water inputs via throughfall, where it percolates the soil matrix and allows much greater rates of evapotranspiration and atmospheric/soil moisture flux. This research study seeks to gain an understanding of the effect of vegetation on soil moisture, and the effect of this differential wetting on resulting evapotranspiration and atmospheric flux.
Code of Federal Regulations, 2010 CFR
2010-01-01
... and Orders; Fruits, Vegetables, Nuts), DEPARTMENT OF AGRICULTURE ONIONS GROWN IN CERTAIN DESIGNATED.... District means each of the geographical divisions of the production area initially established or as...
Aid for Trade: an opportunity to increase fruit and vegetable supply
Priyadarshi, Shishir
2013-01-01
Abstract Low fruit and vegetable consumption is an important contributor to the global burden of disease. In the wake of the United Nations High-level Meeting on Non-Communicable Diseases (NCDs), held in September 2011, a rise in the consumption of fruits and vegetables is foreseeable and this increased demand will have to be met through improved supply. The World Health Organization, the Food and Agriculture Organization and the World Bank have highlighted the potential for developing countries to benefit nutritionally and economically from the increased production and export of fruit and vegetables. Aid for Trade, launched in 2005 as an initiative designed to link development aid and trade holistically, offers an opportunity for the health and trade sectors to work jointly to enhance health and development. The Aid for Trade work programme stresses the importance of policy coherence across sectors, yet the commonality of purpose driving the Aid for Trade initiative and NCD prevention efforts has not been explored. In this paper food supply chain analysis was used to show health policy-makers that Aid for Trade can provide a mechanism for increasing the supply of fruits and vegetables in developing countries. Aid for Trade is an existing funding channel with clear accountability and reporting mechanisms, but its priorities are determined with little or no input from the health sector. The paper seeks to enable public health policy-makers, practitioners and advocates to improve coherence between trade and public health policies by highlighting Aid for Trade’s potential role in this endeavour. PMID:23397351
Lu, Meng-Xiao; Jiang, Wayne W.; Wang, Jia-Lei; Jian, Qiu; Shen, Yan; Liu, Xian-Jin; Yu, Xiang-Yang
2014-01-01
The residue behavior of chlorpyrifos, which is one of the extensively used insecticides all around the world, in six vegetable crops was assessed under greenhouse conditions. Each of the vegetables was subjected to a foliar treatment with chlorpyrifos. Two analytical methods were developed using gas chromatography equipped with a micro-ECD detector (LOQ = 0.05 mg kg−1) and liquid chromatography with a tandem mass spectrometry (LOQ = 0.01 mg kg−1). The initial foliar deposited concentration of chlorpyrifos (mg kg−1) on the six vegetables followed the increasing order of brassica chinensis
Munson, Seth M.; Long, A. Lexine; Wallace, Cynthia; Webb, Robert H.
2016-01-01
Question The decline and loss of perennial vegetation in dryland ecosystems due to global change pressures can alter ecosystem properties and initiate land degradation processes. We tracked changes of perennial vegetation using remote sensing to address the question of how prolonged drought and land-use intensification have affected perennial vegetation cover across a desert region in the early 21st century? Location Mojave Desert, southeastern California, southern Nevada, southwestern Utah and northwestern Arizona, USA. Methods We coupled the Moderate-Resolution Imaging Spectroradiometer Enhanced Vegetation Index (MODIS-EVI) with ground-based measurements of perennial vegetation cover taken in about 2000 and about 2010. Using the difference between these years, we determined perennial vegetation changes in the early 21st century and related these shifts to climate, soil and landscape properties, and patterns of land use. Results We found a good fit between MODIS-EVI and perennial vegetation cover (2000: R2 = 0.83 and 2010: R2 = 0.74). The southwestern, far southeastern and central Mojave Desert had large declines in perennial vegetation cover in the early 21st century, while the northeastern and southeastern portions of the desert had increases. These changes were explained by 10-yr precipitation anomalies, particularly in the cool season and during extreme dry or wet years. Areas heavily impacted by visitor use or wildfire lost perennial vegetation cover, and vegetation in protected areas increased to a greater degree than in unprotected areas. Conclusions We find that we can extrapolate previously documented declines of perennial plant cover to an entire desert, and demonstrate that prolonged water shortages coupled with land-use intensification create identifiable patterns of vegetation change in dryland regions.
Gustafson, Christopher R; Abbey, Bryce M; Heelan, Kate A
2017-06-01
Marketing techniques may improve children's vegetable consumption. However, student participation in the design of marketing materials may increase the material's salience, while also improving children's commitment and attitudes towards healthy eating. The impact of student-led design of vegetable promotional materials on choice and consumption was investigated using 1614 observations of students' vegetable choice and plate waste in four public elementary schools in Kearney, Nebraska. Data were collected on children's vegetable choice and consumption in four comparison groups: 1) control; 2) students designed materials only; 3) students were exposed to promotional materials only; and 4) students designed materials that were then posted in the lunchroom. Vegetable choice and consumption data were collected through a validated digital photography-based plate-waste method. Multivariate linear regression was used to estimate average treatment effects of the conditions at various time periods. Dependent variables were vegetable choice and consumption, and independent variables included the condition, time period, and interaction terms, as well as controls for gender and grade. Relative to baseline, students in group 4 doubled their vegetable consumption ( p < 0.001) when materials were posted. Vegetable consumption remained elevated at a follow-up 2-3 months later ( p < 0.05). Students in group 3 initially increased the quantity of vegetables selected ( p < 0.05), but did not increase consumption. In the follow-up period, however, students in group 3 increased their vegetable consumption ( p < 0.01). Involving elementary-aged students in the design of vegetable promotional materials that were posted in the lunchroom increased the amount of vegetables students consumed.
Spatial contexts for temporal variability in alpine vegetation under ongoing climate change
Fagre, Daniel B.; ,; George P. Malanson,
2013-01-01
A framework to monitor mountain summit vegetation (The Global Observation Research Initiative in Alpine Environments, GLORIA) was initiated in 1997. GLORIA results should be taken within a regional context of the spatial variability of alpine tundra. Changes observed at GLORIA sites in Glacier National Park, Montana, USA are quantified within the context of the range of variability observed in alpine tundra across much of western North America. Dissimilarity is calculated and used in nonmetric multidimensional scaling for repeated measures of vascular species cover at 14 GLORIA sites with 525 nearby sites and with 436 sites in western North America. The lengths of the trajectories of the GLORIA sites in ordination space are compared to the dimensions of the space created by the larger datasets. The absolute amount of change on the GLORIA summits over 5 years is high, but the degree of change is small relative to the geographical context. The GLORIA sites are on the margin of the ordination volumes with the large datasets. The GLORIA summit vegetation appears to be specialized, arguing for the intrinsic value of early observed change in limited niche space.
The Neumann Type of Pemphigus Vegetans Treated with Combination of Dapsone and Steroid
Son, Young-Min; Kang, Hong-Kyu; Yun, Jeong-Hwan; Roh, Joo-Young
2011-01-01
Pemphigus vegetans is a rare variant of pemphigus vulgaris and is characterized by vegetating lesions in the inguinal folds and mouth and by the presence of autoantibodies against desmoglein 3. Two clinical subtypes of pemphigus vegetans exist, which are initially characterized by flaccid bullae and erosions (the Neumann subtype) or pustules (the Hallopeau subtype). Both subtypes subsequently develop into hyperpigmented vegetative plaques with pustules and hypertrophic granulation tissue at the periphery of the lesions. Oral administration of corticosteroids alone does not always induce disease remission in patients with pemphigus vegetans. We report here on a 63-year-old woman with pemphigs vegetans. She had a 2-year history of vegetating, papillomatous plaques on the inguinal folds and erosions of the oral mucosa. The enzyme-linked immunosorbent assay was positive for anti-desmoglein 3, but it was negative for anti-desmoglein 1. She was initially treated with systemic steroid, but no improvement was observed. The patient was then successfully treated with a combination of systemic steroid and dapsone with a good clinical response. PMID:22346265
NASA Technical Reports Server (NTRS)
Cibula, William G.; Nyquist, Maurice O.
1987-01-01
An unsupervised computer classification of vegetation/landcover of Olympic National Park and surrounding environs was initially carried out using four bands of Landsat MSS data. The primary objective of the project was to derive a level of landcover classifications useful for park management applications while maintaining an acceptably high level of classification accuracy. Initially, nine generalized vegetation/landcover classes were derived. Overall classification accuracy was 91.7 percent. In an attempt to refine the level of classification, a geographic information system (GIS) approach was employed. Topographic data and watershed boundaries (inferred precipitation/temperature) data were registered with the Landsat MSS data. The resultant boolean operations yielded 21 vegetation/landcover classes while maintaining the same level of classification accuracy. The final classification provided much better identification and location of the major forest types within the park at the same high level of accuracy, and these met the project objective. This classification could now become inputs into a GIS system to help provide answers to park management coupled with other ancillary data programs such as fire management.
Kumar, S.; Sharma, K.D.; Sharma, U.K.; Gough, L.P.
1998-01-01
Richness, diversity and evenness of vegetation, after rehabilitation of gypsum mine spoils at Barmer were investigated in plots protected and planted one year and four years ago. There were four water harvesting treatments, viz., half-moon terraces, micro-catchments with 5% slope, ridge and furrow and control, wherein, indigenous and exotic trees and shrubs were planted at 5 ?? 5 m spacing. Sampling of the planted and natural vegetation, using quadrats and transacts, revealed much less species richness in unplanted control as compared to all treatments and in all the years. The species richness that increased initially (within one year) gradually declined over time (during four year), though the extent varied in different treatments. The water harvesting treatment showing maximum initial increase in richness also showed maximum decline over time, though decline was more in annual species. Two perennial species increased in richness with time. This was further proved from the trends in diversity and evenness indices. It was concluded that natural successional process was accelerated by rehabilitation providing stability to the habitat.
Code of Federal Regulations, 2010 CFR
2010-01-01
... and Orders; Fruits, Vegetables, Nuts), DEPARTMENT OF AGRICULTURE ONIONS GROWN IN SOUTH TEXAS Order... following districts of the production area are hereby initially established: District No. 1: (Coastal Bend...
Lydia P. Olander; F.N Scatena; Whendee L. Silver
1998-01-01
The impacts of road construction and the spread of exotic vegetation, which are common threats to upper elevation tropical forests, were evaluated in the subtropical cloud forests of Puerto Rico. The vegetation, soil and microclimate of 6-month-old road®lls, 35-year-old road®lls and mature forest with and without grass understories were compared. Recent road®lls had...
NASA Technical Reports Server (NTRS)
Schultink, G. (Principal Investigator)
1977-01-01
The author has identified the following significant results. A linear regression between percent nonvegetative land and the time variable was completed for the two sample areas. Sample area no. 1 showed an average vegetation loss of 1.901% per year, while the loss for sample area no. 2 amounted to 5.889% per year. Two basic reasons for the difference were assumed to play a role: the difference in access potential and the amount of already fragmented vegetation complexes in existence during the first year of the comparative analysis - 1970. Sample area no. 2 was located closer to potential access points and was more fragmented initially.
Riley, Eammon P; Trinquier, Aude; Reilly, Madeline L; Durchon, Marine; Perera, Varahenage R; Pogliano, Kit; Lopez-Garrido, Javier
2018-04-01
Sporulation in Bacillus subtilis is a paradigm of bacterial development, which involves the interaction between a larger mother cell and a smaller forespore. The mother cell and the forespore activate different genetic programs, leading to the production of sporulation-specific proteins. A critical gap in our understanding of sporulation is how vegetative proteins, made before sporulation initiation, contribute to spore formation. Here we present a system, spatiotemporally regulated proteolysis (STRP), which enables the rapid, developmentally regulated degradation of target proteins, thereby providing a suitable method to dissect the cell- and developmental stage-specific role of vegetative proteins. STRP has been used to dissect the role of two major vegetative sigma factors, σ H and σ A , during sporulation. The results suggest that σ H is only required in predivisional cells, where it is essential for sporulation initiation, but that it is dispensable during subsequent steps of spore formation. However, evidence has been provided that σ A plays different roles in the mother cell, where it replenishes housekeeping functions, and in the forespore, where it plays an unexpected role in promoting spore germination and outgrowth. Altogether, the results demonstrate that STRP has the potential to provide a comprehensive molecular dissection of every stage of sporulation, germination and outgrowth. © 2018 John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Birks, H. J. B.
1980-07-01
Modern pollen assemblages have been studied from surficial lake muds and moss polsters collected from five vegetated ice-cored moraines of the Klutlan Glacier. The youngest vegetated moraine (K-II) is characterized by high pollen values for Salix and Hedysarum, K-III by high Salix and Shepherdia canadensis and low Hedysarum and Picea, K-IV by high Betula, Salix, and Shepherdia, and K-V and the Harris Creek moraine (HCM) by high Picea. Variations are summarized by canonical variates analysis. A percentage pollen diagram from Gull Lake on the upland east of the glacier records vegetational development since the deposition of the White River volcanic ash 1220 14C yr ago. An initial species-rich treeless vegetation was replaced by birch-alder-willow shrub-tundra, and this by open Picea glauca forest similar to present vegetation around the lake. Sites on HCM show two basic stratigraphies. Triangle Lake reflects vegetational succession from Salix-Shepherdia canadensis scrub similar to that on K-III today, through open Picea woodland of K-IV type, to closed Picea forests of K-V and HCM. Heart Lake and Cotton Pond reflect vegetational development following melting of ice underlying the spruce forests of HCM. These two types are summarized by positioning the fossil spectra on the first two canonical variate axes of the modern surface spectra.
Potential in-class strategies to increase children's vegetable consumption.
Sharp, Gemma; Pettigrew, Simone; Wright, Shannon; Pratt, Iain S; Blane, Sally; Biagioni, Nicole
2017-06-01
The Crunch&Sip programme is a school-based nutrition initiative designed to increase the fruit, vegetable and water intakes of primary-school children. In recognition of the notable deficits in children's vegetable consumption, the present study explored the receptivity of school staff to a realignment of the Crunch&Sip programme to feature a primary focus on vegetable consumption. This involved investigating school staff members' perceptions of relevant barriers, motivators and facilitators. A multi-method approach was adopted that involved four focus groups and a survey (administered in paper and online formats) containing a mixture of open- and closed-ended items. Western Australia. Staff from Western Australian schools participated in the focus groups (n 37) and survey (n 620). School staff were strongly supportive of modifying the Crunch&Sip programme to focus primarily on children's vegetable consumption and this was generally considered to be a feasible change to implement. Possible barriers identified included children's taste preferences and a perceived lack of parental support. Suggested strategies to overcome these barriers were education sessions for parents and children, teachers modelling vegetable consumption for their students and integrating vegetable-related topics into the school curriculum. School staff are likely to support the introduction of school-based nutrition programmes that specifically encourage the consumption of vegetables. Potential barriers may be overcome through strategies to engage parents and children.
NASA Astrophysics Data System (ADS)
Janská, Veronika; Jiménez-Alfaro, Borja; Chytrý, Milan; Divíšek, Jan; Anenkhonov, Oleg; Korolyuk, Andrey; Lashchinskyi, Nikolai; Culek, Martin
2017-03-01
We modelled the European distribution of vegetation types at the Last Glacial Maximum (LGM) using present-day data from Siberia, a region hypothesized to be a modern analogue of European glacial climate. Distribution models were calibrated with current climate using 6274 vegetation-plot records surveyed in Siberia. Out of 22 initially used vegetation types, good or moderately good models in terms of statistical validation and expert-based evaluation were computed for 18 types, which were then projected to European climate at the LGM. The resulting distributions were generally consistent with reconstructions based on pollen records and dynamic vegetation models. Spatial predictions were most reliable for steppe, forest-steppe, taiga, tundra, fens and bogs in eastern and central Europe, which had LGM climate more similar to present-day Siberia. The models for western and southern Europe, regions with a lower degree of climatic analogy, were only reliable for mires and steppe vegetation, respectively. Modelling LGM vegetation types for the wetter and warmer regions of Europe would therefore require gathering calibration data from outside Siberia. Our approach adds value to the reconstruction of vegetation at the LGM, which is limited by scarcity of pollen and macrofossil data, suggesting where specific habitats could have occurred. Despite the uncertainties of climatic extrapolations and the difficulty of validating the projections for vegetation types, the integration of palaeodistribution modelling with other approaches has a great potential for improving our understanding of biodiversity patterns during the LGM.
Effects of sand fences on coastal dune vegetation distribution
NASA Astrophysics Data System (ADS)
Grafals-Soto, Rosana
2012-04-01
Sand fences are important human adjustments modifying the morphology of developed shores. The effects of sand fences on sediment transport and deposition in their initial stages have been well studied, but little is known about the effect of deteriorated sand fences that have become partially buried low scale barriers within the dune, potentially benefiting vegetation growth by protecting it from onshore stress. Data on vegetation, topography and fence characteristics were gathered at three dune sites in Ocean City, New Jersey on September 2007 and March 2008 to evaluate the effect of fences within the dune on vegetation distribution. Variables include: distance landward of dune toe, degree of sheltering from onshore stressors, net change in surface elevation (deposition or erosion), vegetation diversity and density, presence of remnant fence, and distance landward of fence. Results for the studied environment reveal that 1) vegetation diversity or density does not increase near remnant fences because most remnants are lower than average vegetation height and can not provide shelter; but 2) vegetation distribution is related to topographic variables, such as degree of sheltering, that are most likely the result of sand accretion caused by fence deployment. Fence deployment that prioritizes the creation of topographically diverse dunes within a restricted space may increase the diversity and density of the vegetation, and the resilience and value of developed dunes. Managers should consider the benefits of using sand fences on appropriately wide beaches to create a protective dune that is also diverse, functional and better able to adapt to change.
NASA Astrophysics Data System (ADS)
Istanbulluoglu, Erkan; Bras, Rafael L.
2005-06-01
Topography acts as a template for numerous landscape processes that include hydrologic, ecologic, and biologic phenomena. These processes not only interact with each other but also contribute to shaping the landscape as they influence geomorphic processes. We have investigated the effects of vegetation on thresholds for channel initiation and landform evolution using both analytical and numerical approaches. Vegetation is assumed to form a uniform ground cover. Runoff erosion is modeled based on a power function of excess shear stress, in which shear stress efficiency is inversely proportional to vegetation cover. This approach is validated using data. Plant effect on slope stability is represented by additional cohesion provided by plant roots. Vegetation cover is assumed to reduce sediment transport rates due to physical creep processes (rainsplash, dry ravel, and expansion and contraction of sediments) according to a negative exponential relationship. Vegetation grows as a function of both available cover and unoccupied space by plants and is killed by geomorphic disturbances (runoff erosion and landsliding) and wildfires. Analytical results suggest that in an equilibrium basin with a fixed vegetation cover, plants may cause a transition in the dominant erosion process at the channel head. A runoff erosion-dominated landscape, under none or poor vegetation cover, may become landslide dominated under a denser vegetation cover. The sign of the predicted relationship between drainage density and vegetation cover depends on the relative influence of vegetation on different erosion phenomena. With model parameter values representative of the Oregon Coast Range (OCR), numerical experiments conducted using the Channel Hillslope Integrated Landscape Development (CHILD) model confirm the findings based on the analytical theory. A highly dissected fluvial landscape emerges when surface is assumed bare. When vegetation cover is modeled, landscape relief increases, resulting in hollow erosion dominated by landsliding. Interestingly, our simulations underscore the importance of vegetation disturbances by geomorphic events and wildfires on the landscape structure. Simulated landscapes resemble real-world catchments in the OCR when such disturbances are considered.
Distributing free fresh fruit and vegetables at school: results of a pilot outcome evaluation.
Coyle, Karin K; Potter, Susan; Schneider, Doris; May, Gary; Robin, Leah E; Seymour, Jennifer; Debrot, Karen
2009-01-01
Consumption of fruit and vegetables among children is generally below recommended levels. This evaluation addressed two questions: (1) To what extent did children's attitudes toward, familiarity with, and preferences for fruit and vegetables change during the school year? and (2) To what extent did children's consumption of fruit and vegetables change during the school year? During the 2004-2005 school year, the Mississippi Department of Education, Child Nutrition Programs initiated a pilot program to distribute free fruit and vegetables to students (kindergarten through 12th grade) during the school day. Data were collected in 2004-2005 within a one-group pretest/posttest design using a self-report questionnaire (n=725) and 24-hour dietary recalls (n=207) with a sample of students from five schools in Mississippi. Data were analyzed in 2006-2007. Results showed greater familiarity with fruit and vegetables at all grade levels (p<0.05) and increased preferences for fruit among eighth- and 10th-grade students (p<0.01). Eighth-grade students also reported more positive attitudes toward eating fruit and vegetables (p<0.01), increased perceived self-efficacy to eat more fruit (p<0.01), and increased willingness to try new fruit. Finally, results showed increased consumption of fruit, but not vegetables, among eighth- and 10th-grade students (p<0.001). Distributing free fruit and vegetables at school may be a viable component of a more comprehensive approach for improving students' nutrition attitudes and behaviors. More program emphasis is needed on ways to promote vegetable consumption.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wiersma, G.B.; Kohler, A.; Boelcke, C.
1985-10-01
During 1984, a pilot project was initiated for monitoring pollution at Torres del Paine National Park in southern Chile and Olympic National Park in the United States. These are two of three initial sites that are to be established as part of an integrated global backgound monitoring network. Eventually, the plan is to establish a world-wide system of such sites. We collected and analyzed samples of the soil, water, air, and two species of plants (moss and lichen). We also collected and analyzed samples of the forest litter. We compared the samples of soil and vegetation against reference samples. Wemore » also compared samples of soil, vegetation, and of organic material from Torres del Paine against similar samples from Olympic and Sequoia-Kings Canyon National Parks in the United States. Although the data is preliminary, it is in agreement with out initial hypothesis that Torres del Paine and Olympic National Parks are not a polluted sites.« less
Robert L. Eng; John E. Toepfer; Jay A. Newell
1988-01-01
Cover requirements of prairie grouse are primarily related to vegetative structure, whereas food needs are species related. Seasonal distribution and intensity of grazing initially alter the structure and ultimately can alter species composition. Initial successful nests were found in areas of more and higher residual cover than unsuccessful nests. Nesting areas were...
NASA Astrophysics Data System (ADS)
Wang, H.
2017-12-01
Seasonal differences in climatic controls of vegetation growth in the Beijing-Tianjin Sand Source Region of China Bin He1 , Haiyan Wan11 State Key Laboratory of Earth Surface Processes and Resource Ecology, College of Global Change and Earth System Science, Beijing Normal University, Beijing 100875, China Corresponding author: Bin He, email addresses: hebin@bnu.edu.cnPhone:+861058806506, Address: Beijing Normal University, College of Global Change and Earth System Science, Beijing Normal University, Beijing 100875, China. Email addresses of co-authors: wanghaiyan@mail.bnu.edu.cnABSTRACTLaunched in 2000, the Beiing-Tainjin Sand Source Controlling Project (BTSSCP) is an ecological restoration project intended to prevent desertification in China. Evidence from multiple sources has confirmed increases in vegetation growth in the BTSSCP region since the initiation of the project. Precipitation and related soil moisture conditions typically are considered to be the main drivers of vegetation growth in this arid region. However, by investigating the relationships between vegetation growth and corresponding climatic factors, we identified seasonal variation in the climatic constraints of vegetation growth. In spring, vegetation growth is stimulated mainly by elevated temperature, whereas precipitation is the lead driver of summer greening. In autumn, positive effects of both temperature and precipitation on vegetation growth were observed. Furthermore, strong biosphere-atmosphere interactions were observed in this region. Spring warming promotes vegetation growth, but also reduces soil moisture. Summer greening has a strong cooling effect on land surface temperature. These results indicate that 1) precipitation-based projections of vegetation growth may be misleading; and 2) the ecological and environment consequences of ecological projects should be comprehensively evaluated. KEYWORDS: vegetation growth, climatic drivers, seasonal variation, BTSSCP
Code of Federal Regulations, 2010 CFR
2010-01-01
... and Orders; Fruits, Vegetables, Nuts), DEPARTMENT OF AGRICULTURE ONIONS GROWN IN SOUTH TEXAS Order... production area initially established pursuant to § 959.24 or as reestablished pursuant to § 959.25. ...
Increasing Access to Fruits and Vegetables: Perspectives From the New York City Experience
Yi, Stella S.; Nonas, Cathy
2015-01-01
Broad recognition now exists that price, availability, and other structural factors are meaningful barriers to fruit and vegetable consumption, particularly among low-income adults. Beginning in 2005, the New York City Department of Health and Mental Hygiene used the social–ecological model to develop a multifaceted effort to increase fruit and vegetable access citywide, with emphasis in low-income neighborhoods. Overall, the percentage of New York City adults who reported consuming no fruits and vegetables in the previous day decreased slightly over a 10-year period (2002: 14.3% [95% confidence interval = 13.4%, 15.2%]; 2012: 12.5% [95% confidence interval = 11.4%, 13.6%]; P for trend < .001). Our approach hypothesizes that complementary initiatives, implemented simultaneously, will create a citywide food environment that fuels changes in social norms and cultural preferences, increases consumer demand, and supports sustainable access to affordable produce. PMID:25790427
Increasing access to fruits and vegetables: perspectives from the New York City experience.
Sacks, Rachel; Yi, Stella S; Nonas, Cathy
2015-05-01
Broad recognition now exists that price, availability, and other structural factors are meaningful barriers to fruit and vegetable consumption, particularly among low-income adults. Beginning in 2005, the New York City Department of Health and Mental Hygiene used the social-ecological model to develop a multifaceted effort to increase fruit and vegetable access citywide, with emphasis in low-income neighborhoods. Overall, the percentage of New York City adults who reported consuming no fruits and vegetables in the previous day decreased slightly over a 10-year period (2002: 14.3% [95% confidence interval = 13.4%, 15.2%]; 2012: 12.5% [95% confidence interval = 11.4%, 13.6%]; P for trend < .001). Our approach hypothesizes that complementary initiatives, implemented simultaneously, will create a citywide food environment that fuels changes in social norms and cultural preferences, increases consumer demand, and supports sustainable access to affordable produce.
Response of the Vegetation-Climate System to High Temperature (Invited)
NASA Astrophysics Data System (ADS)
Berry, J. A.
2009-12-01
High temperature extremes may lead to inhibition of photosynthesis and stomatal closure at the leaf scale. When these responses occur over regional scales, they can initiate a positive feedback loop in the coupled vegetation-climate system. The fraction of net radiation that is used by the land surface to evaporate water decreases leading to deeper, drier boundary layers, fewer clouds, increased solar radiation reaching the surface, and possibility reduced precipitation. These interactions within the vegetation-climate system may amplify natural (or greenhouse gas forced) variations in temperature and further stress the vegetation. Properly modeling of this system depends, among other things, on getting the plant responses to high temperature correct. I will review the current state of this problem and present some studies of rain forest trees to high temperature and drought conducted in the Biosphere 2 enclosure that illustrate how experiments in controlled systems can contribute to our understanding of complex systems to extreme events.
Rekhy, Reetica; McConchie, Robyn
2014-08-01
Daily intake of fruits and vegetables worldwide remains well below the recommended WHO levels, despite the established health benefits associated with fruit and vegetable consumption. A diversity of policy interventions designed to increase consumption have been conducted in the developed economies around the globe for over a decade, involving significant monetary outlays. The impact of these initiatives remains at best, modest to low, in effecting a significant increase in daily consumption on a sustained basis. Several factors have been identified in both promoting and impeding the increase in fruit and vegetable consumption, including the effects of consumer behaviour. This paper reviews several of the major promotional campaigns from around the world and provides analysis of their level of success, with a view to developing novel approaches for formulating more effective marketing and promotional interventions that will prompt significant change. Copyright © 2014 Elsevier Ltd. All rights reserved.
Restoration of Soils and Vegetation on Reclamation Sites of the Kingisepp Phosphorite Field
NASA Astrophysics Data System (ADS)
Dmitrakova, Ya. A.; Abakumov, E. V.
2018-05-01
Processes of initial soil formation were studied on long-term monitoring plots on dump rocks of quarry no. 3 of the Phosphorite production company in Kingisepp district of Leningrad oblast. Observations were performed in 1998, 2004, and 2014. It was shown that vegetation succession on the plots proceeds relatively quickly, and that the species composition of phytocenoses formed is typical of the areas with soddy-calcareous soils. Soil development proved to be correlated with the development of vegetation. Maximum changes in soil characteristics were observed with an increase in the density of forest vegetation and a decrease in the role of herbs. The molecular composition of humic acids in the studied soils remained stable; in particular, the ratio of aliphatic to alkyl aromatic fragments was virtually constant. This phenomenon could be due to the great amount of aliphatic components in the falloff of coniferous species subjected to humification.
Spatial And Temporal Trends Of Organic Pollutants In Vegetation From Remote And Rural Areas
NASA Astrophysics Data System (ADS)
Bartrons, Mireia; Catalan, Jordi; Penuelas, Josep
2016-05-01
Persistent organic pollutants (POPs) and polycyclic aromatic hydrocarbons (PAHs) used in agricultural, industrial, and domestic applications are widely distributed and bioaccumulate in food webs, causing adverse effects to the biosphere. A review of published data for 1977-2015 for a wide range of vegetation around the globe indicates an extensive load of pollutants in vegetation. On a global perspective, the accumulation of POPs and PAHs in vegetation depends on the industrialization history across continents and distance to emission sources, beyond organism type and climatic variables. International regulations initially reduced the concentrations of POPs in vegetation in rural areas, but concentrations of HCB, HCHs, and DDTs at remote sites did not decrease or even increased over time, pointing to a remobilization of POPs from source areas to remote sites. The concentrations of compounds currently in use, PBDEs and PAHs, are still increasing in vegetation. Differential congener specific accumulation is mostly determined by continent—in accordance to the different regulations of HCHs, PCBs and PBDEs in different countries—and by plant type (PAHs). These results support a concerning general accumulation of toxic pollutants in most ecosystems of the globe that for some compounds is still far from being mitigated in the near future.
Adams, Jean; Halligan, Joel; Burges Watson, Duika; Ryan, Vicky; Penn, Linda; Adamson, Ashley J.; White, Martin
2012-01-01
Background Consumption of fruit and vegetables is important for health, but is often lower than recommended and tends to be socio-economically patterned with lower consumption in more deprived groups. In 2008, the English Department of Health introduced the Change4Life convenience store programme. This aimed to increase retail access to fresh fruit and vegetables in deprived, urban areas by providing existing convenience stores with a range of support and branded point-of-sale materials and equipment. Methods We undertook a mixed-methods study of the Change4Life convenience store programme in the North East of England around two years after initial implementation. Store mapping (n = 87; 100% stores) and systematic in-store observations (n = 74; 85% stores) provided information on intervention fidelity; the variety, purchase price and quality of fresh fruit and vegetables on sale; and purchase price compared to a major supermarket. Ten qualitative interviews with a purposive sample of retailers and other professionals explored experiences of the intervention and provided further insight on quantitative results. Results Intervention stores were primarily located in socio-economically disadvantaged areas. Fidelity, in terms of presence of branded materials and equipment, was low and much was not being used as intended. Fresh fruit and vegetables on sale were of high quality and had a purchase price around 10% more than comparable products at a major supermarket. Interviewees were supportive of the health improvement aim of the intervention. Retailers were appreciative of part-funding for chill cabinets and free point-of-sale materials. The intervention suffered from: poor initial and on-going communication between the intervention delivery team and retailers; poor availability of replacement point-of-sale materials; and failure to cement intended links with health workers and community organisations. Conclusions Overall, intervention fidelity was low and the intervention is unlikely to have had a substantial or long-term effect on customers’ consumption of fruit and vegetables. PMID:22761795
Bowers, Janice E.
1996-01-01
Should a platyopuntia expend all aerolar meristems in flower production, now new cladodes could be produced, and further reproductive effort and vegetative growth would cease. To investigate the trade-off between flower and cladode production, the numbers of flowers, fruits, and cladodes were monitored for 4 years on 30 Opuntia engelmannii Salm-Dyek, plants on Tumamoc Hill, Tucson, Arizona. Plant size controlled the number of flowers initiated each spring. The proportion of flowers that developed (i.e., did not abort) was perhaps determined by December-February rainfall in the months before bloom, with more being developed in the wettest years. Models based on different ratios of initiated cladodes to initiated flowers demonstrated that continued high investment in flowers and fruits would eventually terminate reproduction altogether; therefore periods of high sexual reproduction should alternate with periods of high vegetative growth. In the first 3 years of this study, the ratio of new cladodes to initiated flowers was low, showing a high investment in sexual reproduction. As suggested by the model, the population recouped this investment in the fourth year, when the number of new cladodes was nearly 3 times the 1992-1994 mean, and the number of initiated flowers was only 73% of the 3-year mean.
Initial Effects of Heavy Vehicle Trafficking on Vegetated Soils
2012-08-01
ER D C/ CR R EL T R -1 2 -6 Optimal Allocation of Land for Training and Non-training Uses ( OPAL ) Initial Effects of Heavy Vehicle...the outdoor loam test section. Optimal Allocation of Land for Training and Non-training Uses ( OPAL ) ERDC/CRREL TR-12-6 August 2012 Initial...mal Allocation of Land for Training and Non-Training Uses ( OPAL ) Pro- gram. The work was conducted by Nicole Buck and Sally Shoop of the Force
Fire regimes and vegetation change in tropical northern Australia during the late-Holocene
NASA Astrophysics Data System (ADS)
Mackenzie, Lydia; Moss, Patrick; Ulm, Sean; Sloss, Craig; Heijnis, Henk; Jacobsen, Geraldine
2016-04-01
This study explores the impact of human occupation and abandonment on fire regimes and vegetation communities in the South Wellesley Islands, Gulf of Carpentaria, tropical northern Australia, using charcoal and pollen analysis from four sediment records. Pollen analysis from wetland sediments reveal vegetation succession from mangrove communities to hypersaline mudflats and open woodlands occurred during the late-Holocene. Aquatic species replaced salt tolerant species as the prograding shoreline and dune development formed the Marralda wetlands by 800 cal a BP on the south east coast of Bentinck Island. Wetlands developed on the north and west coast by 500 and 450 cal a BP, respectively. The timing of wetland initiation indicates localised late-Holocene sea level regression, stabilisation and coastal plain development in the Gulf of Carpentaria. Wetland initiation encouraged permanent human occupation of the South Wellesley archipelago, with ongoing archaeological research finding permanent occupation in the last 1500 years, followed by a significant increase in sites from 700 years ago, which peaks over the last 300 years. Macro-charcoal (>125μm) accumulation rates provide a record of fire intensity and frequency across the Island. Both local and regional fire events increase in the last 700 years as traditional owners occupied the Island, with local fires occurring every 104 and 74 years on average (N= 4 and 5 respectively). In the 1950's traditional Indigenous Kaiadilt fire management practices ceased, with the frequency and peak magnitude of fire events significantly increasing and vegetation communities becoming more open. The South Wellesley Islands were unoccupied until the 1980's and were not influenced by European occupation. This study of an Island ecosystem during the late-Holocene provides insight into the effect of human presence and fire regimes on vegetation composition and distribution in a fire resilient environment.
Impacts of Greening Materials and Seed Pretreatment on Vegetation Development at an initial stage
NASA Astrophysics Data System (ADS)
Obriejetan, Michael
2015-04-01
Slope protection using greening measures as an integral part of soil-bioengineering is characterized by an increasing demand in research and practice. However, successful greening is a very complex issue due to the vast variety in specific slope characteristics such as morphology, soil properties and environmental factors. Because of practical experience in the greening of slopes and the results of further investigations in small-scale tests, it can be stated that the use of appropriate planting techniques, the quality of the materials used and the proper implementation of potential needed auxiliary materials at difficult locations are seen as key success criteria for sustainable vegetation development. Within this framework small-scale testing series were conducted regarding the influence of specific soil-properties, the use of auxiliary greening materials (fertilizer, mycorrhiza fungi, Bonded fiber matrix (BFM)…), application of different seed-pretreatment methods and influences of specific environmental factors (inclination, seeding depth) on vegetational development in an early phase. The aim of the series is to quantitatively and thus economically optimize the use of different greening-components and seed mixtures for practical application, while ensuring optimal development of vegetation. To quantify the influence of the treatment systems, vegetation cover ratio, biomass production (aboveground and belowground) and the germination of plant seeds served as main criteria for assessing the development in an initial stage. Selected findings for instance show that the admixture of mycorrhiza fungi can increase the cover ratio up to 23 % compared to untreated plots. In addition, pretreatment of seeds showed distinct effects too by shortening germination phase and increasing the capability of producing a higher amount of healthy sprouts. From a bioengineering perspective the results will serve as potential decisive advantage for successful implementation of greening measures.
Limbers, Christine A; Young, Danielle
2015-05-01
Executive functions play a critical role in regulating eating behaviors and have been shown to be associated with overeating which over time can result in overweight and obesity. There has been a paucity of research examining the associations among healthy dietary behaviors and executive functions utilizing behavioral rating scales of executive functioning. The objective of the present cross-sectional study was to evaluate the associations among fruit and vegetable consumption, intake of foods high in saturated fat, and executive functions using the Behavioral Rating Inventory of Executive Functioning-Adult Version. A total of 240 university students completed the Behavioral Rating Inventory of Executive Functioning-Adult Version, the 26-Item Eating Attitudes Test, and the Diet subscale of the Summary of Diabetes Self-Care Activities Questionnaire. Multiple linear regression analysis was conducted with two separate models in which fruit and vegetable consumption and saturated fat intake were the outcomes. Demographic variables, body mass index, and eating styles were controlled for in the analysis. Better initiation skills were associated with greater intake of fruits and vegetables in the last 7 days (standardized beta = -0.17; p < 0.05). Stronger inhibitory control was associated with less consumption of high fat foods in the last 7 days (standardized beta = 0.20; p < 0.05) in the multiple linear regression analysis. Executive functions that predict fruit and vegetable consumption are distinct from those that predict avoidance of foods high in saturated fat. Future research should investigate whether continued skill enhancement in initiation and inhibition following standard behavioral interventions improves long-term maintenance of weight loss. © The Author(s) 2015.
... K each day. Vitamin K is found in green leafy vegetables and some oils, such as canola ... hormone levels affect a woman’s risk of VTE. Building on the legacy of the Women’s Health Initiative, ...
Forest restoration: a global dataset for biodiversity and vegetation structure.
Crouzeilles, Renato; Ferreira, Mariana S; Curran, Michael
2016-08-01
Restoration initiatives are becoming increasingly applied around the world. Billions of dollars have been spent on ecological restoration research and initiatives, but restoration outcomes differ widely among these initiatives in part due to variable socioeconomic and ecological contexts. Here, we present the most comprehensive dataset gathered to date on forest restoration. It encompasses 269 primary studies across 221 study landscapes in 53 countries and contains 4,645 quantitative comparisons between reference ecosystems (e.g., old-growth forest) and degraded or restored ecosystems for five taxonomic groups (mammals, birds, invertebrates, herpetofauna, and plants) and five measures of vegetation structure reflecting different ecological processes (cover, density, height, biomass, and litter). We selected studies that (1) were conducted in forest ecosystems; (2) had multiple replicate sampling sites to measure indicators of biodiversity and/or vegetation structure in reference and restored and/or degraded ecosystems; and (3) used less-disturbed forests as a reference to the ecosystem under study. We recorded (1) latitude and longitude; (2) study year; (3) country; (4) biogeographic realm; (5) past disturbance type; (6) current disturbance type; (7) forest conversion class; (8) restoration activity; (9) time that a system has been disturbed; (10) time elapsed since restoration started; (11) ecological metric used to assess biodiversity; and (12) quantitative value of the ecological metric of biodiversity and/or vegetation structure for reference and restored and/or degraded ecosystems. These were the most common data available in the selected studies. We also estimated forest cover and configuration in each study landscape using a recently developed 1 km consensus land cover dataset. We measured forest configuration as the (1) mean size of all forest patches; (2) size of the largest forest patch; and (3) edge:area ratio of forest patches. Global analyses of the factors influencing ecological restoration success at both the local and landscape scale are urgently needed to guide restoration initiatives and to further develop restoration knowledge in a topic area of much contemporary interest. © 2016 by the Ecological Society of America.
Germino, Matthew J.
2013-01-01
The INL Site and other landscapes having sagebrush steppe vegetation are experiencing a simultaneous change in climate and floristics that result from increases in exotic species. Determining the separate and combined/interactive effects of climate and vegetation change is important for assessing future changes on the landscape and for hydrologic processes. This research uses the 72 experimental plots established and initially maintained for many years as the “Protective Cap Biobarrier Experiment” by Dr. Jay Anderson and the Stoller ESER program, and the experiment is also now referred to as the “INL Site Ecohydrology Study.” We are evaluating long-term impacts of different plant communities commonly found throughout Idaho subject to different precipitation regimes and to different soil depths. Treatments of amount and timing of precipitation (irrigation), soil depth, and either native/perennial or exotic grass vegetation allow researchers to investigate how vegetation, precipitation and soil interact to influence soil hydrology and ecosystem biogeochemistry. This information will be used to improve a variety of models, as well as provide data for these models.
Prach, Karel; Lencová, Kamila; Rehounková, Klára; Dvořáková, Helena; Jírová, Alena; Konvalinková, Petra; Mudrák, Ondřej; Novák, Jan; Trnková, Romana
2013-11-01
We performed detrended correspondence analysis (DCA) ordination to compare seven successional seres running in stone quarries, coal mining spoil heaps, sand and gravel pits, and extracted peatlands in the Czech Republic in central Europe. In total, we obtained 1,187 vegetation samples containing 705 species. These represent various successional stages aged from 1 to 100 years. The successional seres studied were more similar in their species composition in the initial stages, in which synathropic species prevailed, than in later successional stages. This vegetation differentiation was determined especially by local moisture conditions. In most cases, succession led to a woodland, which usually established after approximately 20 years. In very dry or wet places, by contrast, where woody species were limited, often highly valuable, open vegetation developed. Except in the peatlands, the total number of species and the number of target species increased during succession. Participation of invasive aliens was mostly unimportant. Spontaneous vegetation succession generally appears to be an ecologically suitable and cheap way of ecosystem restoration of heavily disturbed sites. It should, therefore, be preferred over technical reclamation.
Streby, Henry M; Kramer, Gunnar R; Peterson, Sean M; Andersen, David E
2018-01-01
Assessing outcomes of habitat management is critical for informing and adapting conservation plans. From 2013-2019, a multi-stage management initiative, led by the American Bird Conservancy (ABC), aims to create >25,000 ha of shrubland and early-successional vegetation to benefit Golden-winged Warblers ( Vermivora chrysoptera ) in managed forested landscapes of the western Great Lakes region. We studied a dense breeding population of Golden-winged Warblers at Rice Lake National Wildlife Refuge (NWR) in Minnesota, USA, where ABC initiative management was implemented to benefit the species. We monitored abundance before (2011-2014) and after (2015-2016) management, and we estimated full-season productivity (i.e., young recruited into the fall population) from predictive, spatially explicit models, informed by nest and fledgling survival data collected at sites in the western Great Lakes region, including Rice Lake NWR, during 2011 and 2012. Then, using biologically informed models of bird response to observed and predicted vegetation succession, we estimated the cumulative change in population recruitment over various scenarios of vegetation succession and demographic response. We observed an 32% decline in abundance of breeding pairs and estimated a 27% decline in per-pair full-season productivity following management, compared to no change in a nearby control site. In models that ranged from highly optimistic to progressively more realistic scenarios, we estimated a net loss of 72-460 juvenile Golden-winged Warblers produced from the managed site in the 10-20 years following management. Even if our well-informed and locally validated productivity models produced erroneous estimates and the management resulted in only a temporary reduction in abundance (i.e., no change in productivity), our forecast models still predicted a net loss of 137-260 juvenile Golden-winged Warblers from the managed area over the same time frame. Our study site represents only a small portion of a massive management initiative; however, the management at our site was conducted in accordance with the initiative's management plans, the resulting vegetation structure is consistent with that of other areas managed under the initiative, and those responsible for the initiative have described the management at our study site as successful Golden-winged Warbler management. Our assessment demonstrates that, at least for the only site for which pre- and post-management data on Golden-winged Warblers exist, the ABC management initiative is having a substantial and likely enduring negative impact on the species it purports to benefit. We suggest that incorporating region-specific, empirical information about Golden-winged Warbler-habitat relations into habitat management efforts would increase the likelihood of a positive response by Golden-winged Warblers.
Harrington, T.B.; Tappeiner, John C.
1997-01-01
At two sites in southwestern Oregon, height, diameter, and crown width of young Douglas-fir (Pseudotsuga menziesii) and sprout-origin tanoak (Lithocarpus densiflorus) were measured 1–11 years after reducing the density of a 2-year-old tanoak stand to 0%, 25%, 50%, and 100% of its initial cover. Some plots also included suppression of understory vegetation. Tanoak cover developed linearly with time, with steepness of the growth trajectory increasing at a diminishing rate with increasing percentage of initial tanoak cover. Fifth-year cover of understory vegetation declined linearly with increasing percentage of initial tanoak cover (R2 = 0.29). Survival of Douglas-fir (96–100%) differed little among initial abundances of tanoak, while growth trajectories for its size became increasingly exponential with decreasing percentage of initial tanoak cover. Eleventh-year heights of Douglas-fir were similar for 0%, 25%, and 50% of initial tanoak cover; however, diameter increased linearly with decreasing percentage of initial tanoak cover (R2 = 0.73), and the slope of the relationship steepened with understory suppression. Our results indicate that young stands exhibiting a wide range of stand compositions and productivities can be established by early manipulations of tanoak and understory abundance. Complete removal of tanoak plus understory suppression are necessary to maximize Douglas-fir growth, while productive, mixed stands can be achieved by removing 50% or more of tanoak cover.
Chee Yen, Wong; Mohd Shariff, Zalilah; Kandiah, Mirnalini; Mohd Taib, Mohd Nasir
2014-06-01
Understanding individual's intention, action and maintenance to increase fruit and vegetable intake is an initial step in designing nutrition or health promotion programs. This study aimed to determine stages of change to increase fruit and vegetable intake and its relationships with fruit and vegetable intake, self-efficacy, perceived benefits and perceived barriers. This cross-sectional study was conducted among 348 public university staff in Universiti Putra Malaysia. A pre-tested self-administered questionnaire and two days 24-hour diet recall were used. Half of the respondents (50%) were in preparation stage, followed by 43% in action/maintenance, 7% in pre-contemplation/contemplation stages. Respondents in action/maintenance stages had significantly higher self-efficacy (F = 9.17, P < 0.001) and perceived benefits (F = 5.07, P < 0.01) while respondents in pre-contemplation/contemplation and preparation stages had significantly higher perceived barriers (F = 4.83, P < 0.05). Perceived benefits tend to outweigh perceived barriers pre-ceding to taking action. Self-efficacy is important in motivating individuals to increase fruit and vegetable intake as self-efficacy and perceived barriers crossed over between preparation and action/maintenance. Respondents in action/maintenance stages had the highest adjusted mean serving of fruit and vegetable intake (F = 4.52, P < 0.05) but the intake did not meet recommendation. Intervention strategies should emphasize on increasing perceived benefits and building self-efficacy by providing knowledge and skills to consume a diet high in fruits and vegetables in order to promote healthy changes in having high fruit and vegetable intake.
Numerical study on anaerobic digestion of fruit and vegetable waste: Biogas generation
NASA Astrophysics Data System (ADS)
Wardhani, Puteri Kusuma; Watanabe, Masaji
2016-02-01
The study provides experimental results and numerical results concerning anaerobic digestion of fruit and vegetable waste. Experiments were carried out by using batch floating drum type digester without mixing and temperature setting. The retention time was 30 days. Numerical results based on Monod type model with influence of temperature is introduced. Initial value problems were analyzed numerically, while kinetic parameters were analyzed by using trial error methods. The numerical results for the first five days seems appropriate in comparison with the experimental outcomes. However, numerical results shows that the model is inappropriate for 30 days of fermentation. This leads to the conclusion that Monod type model is not suitable for describe the mixture degradation of fruit and vegetable waste and horse dung.
Mary Poppins was right: Adding small amounts of sugar or salt reduces the bitterness of vegetables.
Bakke, Alyssa J; Stubbs, Cody A; McDowell, Elliott H; Moding, Kameron J; Johnson, Susan L; Hayes, John E
2018-07-01
Only a quarter of adults and 7% of children consume recommended amounts of vegetables each day. Often vegetables are not initially palatable due to bitterness, which may lead children and adults to refuse to taste or eat them. The objective of this research was to determine if very small amounts of sugar or salt (common household ingredients) could lead to significant reductions in bitterness intensity and increased hedonic ratings of green vegetable purees. For Experiment 1, three different green vegetable purees (broccoli, spinach, and kale) were prepared with different levels of sugar (0%, 0.6%, 1.2%, and 1.8%) or salt (0 and 0.2%). Samples were evaluated using standard descriptive analysis techniques with nine adults who completed more than 20 h of green vegetable specific training as a group. For Experiment 2, each vegetable puree was prepared with either 0% or 2% sugar, and bitterness was assessed via a forced choice task with 84 adults. For Experiment 3, each vegetable puree was prepared with 0%, 1%, or 2% sugar and rated for liking on standard 9 point hedonic scales by 99 adults. Experiments 1 and 2 showed that addition of small amounts of sugar and salt each reduced the bitterness (and increased sweetness and saltiness) from all three vegetables without altering other sensory properties (e.g. texture or aroma). Experiment 3 showed that adding sugar to vegetable purees increased hedonic ratings for adult consumers. We also found parents had mixed attitudes about the idea of adding sugar to foods intended for infants and toddlers. Further research on the effects of bitterness masking especially for specific populations (e.g., infants and young children or adults who have higher sensitivity to bitter taste) is warranted. Copyright © 2018 Elsevier B.V. All rights reserved.
Yu, Yan; Hu, Senke; Yang, Yuxuan; Zhao, Xiaodan; Xue, Jianjun; Zhang, Jinghua; Gao, Song; Yang, Aimin
2017-08-02
A wide range of pesticides is applied for crop protection in vegetable cultivation in China. Regulation of pesticide maximum residue limits (MRLs) in vegetables is established but not fully enforced. And pesticide residues in vegetables were not well monitored. This study conducted the monitoring surveys from 2011 to 2013 to investigate the pesticides in vegetables in the northwest region of China. A multi-residue gas chromatography/mass spectrometry method (GC/MS) was used in determination of pesticides in vegetable samples. The χ 2 test was used to compare the concentration of pesticide residues. A total of 32 pesticide residues were detected in 518 samples from 20 types of vegetables in this study. 7.7% of the detected pesticide residues exceeded the MRLs. The percentages of residues that exceeded the MRLs for leafy, melon and fruit, and root vegetables were 11.2%, 5.1%, and 1.6%, respectively. There was no seasonal difference in the proportion of samples that exceeded the MRLs in different vegetables. A total of 84.3% (27/32) pesticides were detected at concentrations that exceeded MRLs. And of the 27 pesticides that exceeded the MRLs, 11 (40.7%) were banned for use in agriculture. The most frequently detected pesticides were Malathion (9.4%), Dichlorvos (8.7%), and Dimethoate (8.1%). The observed high rate of pesticides detected and high incidence of pesticide detection exceeding their MRLs in the commonly consumed vegetables indicated that the Good Agricultural Practices (GAP) may not be well followed. The management of pesticide use and control should be improved. Well-developed training programs should be initiated to improve pesticide application knowledge for farmers.
Lowe, C F; Horne, P J; Tapper, K; Bowdery, M; Egerton, C
2004-03-01
To measure children's consumption of, and liking for, fruit and vegetables and how these are altered by a peer modelling and rewards-based intervention. In this initial evaluation of the programme, children's consumption of fruit and vegetables were compared within and across baseline and intervention phases. Three primary schools in England and Wales. In total, 402 children, aged from 4 to 11 y. Over 16 days, children watched six video adventures featuring heroic peers (the Food Dudes) who enjoy eating fruit and vegetables, and received small rewards for eating these foods themselves. Fruit and vegetable consumption was measured (i) in school at lunchtime and snacktime using a five-point observation scale, with inter-rated reliability and weighed validation tests; and (ii) at home using parental recall. A questionnaire measured children's liking for fruit and vegetables before and after the intervention. Consumption during the intervention was significantly higher than during baseline at lunchtime and at snacktime (P<0.001 in all instances). Consumption outside school was significantly higher during the intervention on weekdays (P<0.05) but not weekend days. Following the intervention, children's liking for fruit and vegetables also showed a significant increase (P<0.001). The peer modelling and rewards-based intervention was shown to be effective in bringing about substantial increases in children's consumption of, and expressed liking for, fruit and vegetables. : Horticultural Development Council, Fresh Produce Consortium, ASDA, Co-operative Group, Safeway, Sainsbury, Somerfield, Tesco and Birds Eye Wall's.
Picotte, Joshua J.; Long, Jordan; Peterson, Birgit; Nelson, Kurtis
2017-01-01
The LANDFIRE Program produces national scale vegetation, fuels, fire regimes, and landscape disturbance data for the entire U.S. These data products have been used to model the potential impacts of fire on the landscape [1], the wildfire risks associated with land and resource management [2, 3], and those near population centers and accompanying Wildland Urban Interface zones [4], as well as many other applications. The initial LANDFIRE National Existing Vegetation Type (EVT) and vegetation structure layers, including vegetation percent cover and height, were mapped circa 2001 and released in 2009 [5]. Each EVT is representative of the dominant plant community within a given area. The EVT layer has since been updated by identifying areas of landscape change and modifying the vegetation types utilizing a series of rules that consider the disturbance type, severity of disturbance, and time since disturbance [6, 7]. Non-disturbed areas were adjusted for vegetation growth and succession. LANDFIRE vegetation structure layers also have been updated by using data modeling techniques [see 6 for a full description]. The subsequent updated versions of LANDFIRE include LANDFIRE 2008, 2010, 2012, and LANDFIRE 2014 is being incrementally released, with all data being released in early 2017. Additionally, a comprehensive remap of the baseline data, LANDFIRE 2015 Remap, is being prototyped, and production is tentatively planned to begin in early 2017 to provide a more current baseline for future updates.
San, Kaungmyat; Long, Janet; Michels, Corinne A; Gadura, Nidhi
2015-10-01
This study explores the role of membrane phospholipid peroxidation in the copper alloy mediated contact killing of Bacillus subtilis, a spore-forming gram-positive bacterial species. We found that B. subtilis endospores exhibited significant resistance to copper alloy surface killing but vegetative cells were highly sensitive to copper surface exposure. Cell death and lipid peroxidation occurred in B. subtilis upon copper alloy surface exposure. In a sporulation-defective strain carrying a deletion of almost the entire SpoIIA operon, lipid peroxidation directly correlated with cell death. Moreover, killing and lipid peroxidation initiated immediately and at a constant rate upon exposure to the copper surface without the delay observed previously in E. coli. These findings support the hypothesis that membrane lipid peroxidation is the initiating event causing copper surface induced cell death of B. subtilis vegetative cells. The findings suggest that the observed differences in the kinetics of copper-induced killing compared to E. coli result from differences in cell envelop structure. As demonstrated in E. coli, DNA degradation was shown to be a secondary effect of copper exposure in a B. subtilis sporulation-defective strain. © 2015 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.
San, Kaungmyat; Long, Janet; Michels, Corinne A; Gadura, Nidhi
2015-01-01
This study explores the role of membrane phospholipid peroxidation in the copper alloy mediated contact killing of Bacillus subtilis, a spore-forming gram-positive bacterial species. We found that B. subtilis endospores exhibited significant resistance to copper alloy surface killing but vegetative cells were highly sensitive to copper surface exposure. Cell death and lipid peroxidation occurred in B. subtilis upon copper alloy surface exposure. In a sporulation-defective strain carrying a deletion of almost the entire SpoIIA operon, lipid peroxidation directly correlated with cell death. Moreover, killing and lipid peroxidation initiated immediately and at a constant rate upon exposure to the copper surface without the delay observed previously in E. coli. These findings support the hypothesis that membrane lipid peroxidation is the initiating event causing copper surface induced cell death of B. subtilis vegetative cells. The findings suggest that the observed differences in the kinetics of copper-induced killing compared to E. coli result from differences in cell envelop structure. As demonstrated in E. coli, DNA degradation was shown to be a secondary effect of copper exposure in a B. subtilis sporulation-defective strain. PMID:26185055
Abiotic and biotic determinants of coarse woody productivity in temperate mixed forests.
Yuan, Zuoqiang; Ali, Arshad; Wang, Shaopeng; Gazol, Antonio; Freckleton, Robert; Wang, Xugao; Lin, Fei; Ye, Ji; Zhou, Li; Hao, Zhanqing; Loreau, Michel
2018-07-15
Forests play an important role in regulating the global carbon cycle. Yet, how abiotic (i.e. soil nutrients) and biotic (i.e. tree diversity, stand structure and initial biomass) factors simultaneously contribute to aboveground biomass (coarse woody) productivity, and how the relative importance of these factors changes over succession remain poorly studied. Coarse woody productivity (CWP) was estimated as the annual aboveground biomass gain of stems using 10-year census data in old growth and secondary forests (25-ha and 4.8-ha, respectively) in northeast China. Boosted regression tree (BRT) model was used to evaluate the relative contribution of multiple metrics of tree diversity (taxonomic, functional and phylogenetic diversity and trait composition as well as stand structure attributes), stand initial biomass and soil nutrients on productivity in the studied forests. Our results showed that community-weighted mean of leaf phosphorus content, initial stand biomass and soil nutrients were the three most important individual predictors for CWP in secondary forest. Instead, initial stand biomass, rather than diversity and functional trait composition (vegetation quality) was the most parsimonious predictor of CWP in old growth forest. By comparing the results from secondary and old growth forest, the summed relative contribution of trait composition and soil nutrients on productivity decreased as those of diversity indices and initial biomass increased, suggesting the stronger effect of diversity and vegetation quantity over time. Vegetation quantity, rather than diversity and soil nutrients, is the main driver of forest productivity in temperate mixed forest. Our results imply that diversity effect for productivity in natural forests may not be so important as often suggested, at least not during the later stage of forest succession. This finding suggests that as a change of the importance of different divers of productivity, the environmentally driven filtering decreases and competitively driven niche differentiation increases with forest succession. Copyright © 2018 Elsevier B.V. All rights reserved.
Quantitative analysis of SMEX'02 AIRSAR data for soil moisture inversion
NASA Technical Reports Server (NTRS)
Zyl, J. J. van; Njoku, E.; Jackson, T.
2003-01-01
This paper discusses in detail the characteristics of the AIRSAR data acquired, and provides an initial quantitative assessment of the accuracy of the radar inversion algorithms under these vegetated conditions.
Song, Qing-Kun; Zhao, Lin; Li, Jun; He, Yu-Ming; Jiang, Cui-Ping; Jiang, Hai-Dong; Qu, Chen-Xu
2013-01-01
Squamous cell carcinoma of esophagus (ESCC) is one of the most common cancers in China. Preserved vegetables are processed foods, consumed in high amounts in the high risk areas for ESCC. This study aimed to investigate the relationships of preserved vegetable consumption with SCC and precancer lesions. Cases from Yanting cancer hospital with pathological diagnosis of primary cancer, along with controls and individuals diagnosed with precancer lesions by endoscopy with iodine staining were interviewed. Trained staff collected data on dietary habits 1 year before the interview. An unconditional logistic regression model was used to estimate the risk odds ratios for preserved vegetable consumption with precancer lesions and cancer. Adjusting for potential confounders, intake of preserved vegetables (OR=2.92, 95%CI 1.32~6.47) and longer intake period (OR=5.78, 95%CI 2.26~14.80) were associated with higher risk of cancer. Compared with lowest intake frequency, the highest was associated with a 3.0-fold risk for precancer lesions and 3.59-fold risk for ESCC (both p<0.05). Consumption of preserved vegetables is a risk factor for esophageal lesions in high risk areas. The carcinogenicity of preserved vegetables needs investigation in further studies and public health strategies for reduction of consumption might be initiated in high risk areas.
NASA Astrophysics Data System (ADS)
Brodie, E.; Arora, B.; Beller, H. R.; Bill, M.; Bouskill, N.; Chakraborty, R.; Conrad, M. E.; Dafflon, B.; Enquist, B. J.; Falco, N.; Henderson, A.; Karaoz, U.; Polussa, A.; Sorensen, P.; Steltzer, H.; Wainwright, H. M.; Wang, S.; Williams, K. H.; Wilmer, C.; Wu, Y.
2017-12-01
In mountainous systems, snow-melt is associated with a large pulse of nutrients that originates from under-snow microbial mineralization of organic matter and microbial biomass turnover. Vegetation phenology in these systems is regulated by environmental cues such as air temperature ranges and photoperiod, such that, under typical conditions, vegetation greening and nutrient uptake occur in sync with microbial biomass turnover and nutrient release, closing nutrient cycles and enhancing nutrient retention. However, early snow-melt has been observed with increasing frequency in the mountainous west and is hypothesized to disrupt coupled plant-microbial behavior, potentially resulting in a temporal discontinuity between microbial nutrient release and vegetation greening. As part of the Watershed Function Scientific Focus Area (SFA) at Berkeley Lab we are quantifying below-ground biogeochemistry and above-ground phenology and vegetation chemistry and their relationships to hydrologic events at a lower montane hillslope in the East River catchment, Crested Butte, CO. This presentation will focus on data-model integration to interpret connectivity between biogeochemical cycling of nitrogen and vegetation nitrogen demand. Initial model results suggest that early snow-melt will result in an earlier accumulation and leaching loss of nitrate from the upper soil depths but that vegetation productivity may not decline as traits such as greater rooting depth and resource allocation to stems are favored.
Influence of Cassia grandis galactomannan on the properties of sponge cakes: a substitute for fat.
Andrade, Francisca Joyce E T; de Albuquerque, Priscilla B S; de Seixas, José Roberto P C; Feitoza, George S; Barros Júnior, Wilson; Vicente, António A; Carneiro-da-Cunha, Maria das Graças
2018-04-25
Here we have proposed to evaluate potential replacers of fat in sponge cake formulations. Our investigation consisted initially of monitoring the physical-chemical changes in sponge cake batters caused by gradually replacing the vegetable fat/margarine of a control sample (standard sponge cake recipe) with galactomannan extracted from the seeds of Cassia grandis. Several samples were prepared where a 100% concentration of vegetable fat was substituted with galactomannan in different concentrations. We then compared both microscopic and macroscopic characteristics of pure fat cake batter formulations and formulations with controlled fat/galactomannan mixtures. At this first stage, rheometry and optical microscopy were employed to characterize the rheological features and air bubble distribution in the batters. In the second stage, the effects of fat substitution with galactomannan, now for the final baked cakes, were also monitored. Scanning electron microscopy (SEM) and standard sensorial tests were performed in order to correlate the final color, texture, and taste characteristics of the final sponge cake and those characteristics obtained initially for the batter. According to the statistical analysis of the data, a 75% fat replacement with galactomannan at only 1.0% concentration was achieved, while successfully maintaining surface microstructure, sensory acceptance, and rheological behavior similar to the original formulation containing only fat. Regarding vegetable fat substitution with galactomannan, our results allow us to conclude that rheometry and bubble distribution tests on the initial batters are useful indicators of the final cake quality.
NASA Astrophysics Data System (ADS)
Cahill, K. N.; Cayan, D. R.; Dettinger, M.
2009-12-01
In the wine industry of California’s Napa Valley, there is great community interest in using legacy and modern observations of grapevine phenological stages to track trends in both phenology and climate. Although management such as changing pruning and winemaking preferences can affect phenological records, grapevines can serve as sensitive climate indicators. In collaboration with a local vintners’ organization, we conducted an outreach campaign to solicit contributions of climate and phenological data from winegrowers and winemakers. We received nearly 10,000 phenological records dating from 1940 to the present, including data on budbreak, bloom, véraison (color change), and harvest dates for 68 minor grape varieties (15% of the data) and 10 major varieties (85% of the data). Compiling a unified database from records collected by different individuals in different ways presented a challenge, and we developed several new approaches to using data from our newly compiled records to develop empirical corrections to standardize observations across the dataset. The time series of phenological observations, along with a companion set of regional climate observations, reveal, expectedly, a strong linkage to seasonal temperature and, unexpectedly, a significant association with winter precipitation. The series of harvest timing reports contains influences of both management and climate. We will also present lessons learned on data management, confidentiality, and science-stakeholder partnerships relevant for others interested in conducting community phenological partnerships.
Experimental investigation into the impact of vegetation on fan morphology and flow
NASA Astrophysics Data System (ADS)
Clarke, Lucy; McLelland, Stuart; Coulthard, Tom
2013-04-01
Riparian vegetation can significantly influence the geomorphology of fluvial systems, affecting channel geometry and flow dynamics. However, there is still limited understanding of the role vegetation plays in the development of alluvial fans, despite the large number of vegetated fans located in temperate and humid climates. An understanding of the feedback loops between water flow, sediment dynamics and vegetation is key to understanding the geomorphological response of alluvial fans. But it is difficult to investigate these relationships in the natural world due to the complexity of the geomorphic and biological processes and timescales involved. To examine the effects of vegetation on channel form, flow dynamics and morphology during fan evolution, a series of experiments were conducted using the Total Environment Simulator at the Deep, an experimental facility operated by the University of Hull. The experiments followed a 'similarity of processes' approach and so were not scaled to a specific field prototype. Live vegetation (alfalfa) was used to simulate the influence of vegetation on the fan development. A range of experiments were conducted on fan plots 2x2m in size, the same initial conditions and constant water discharge and sediment feed rates were used, but the vegetation density and amount of geomorphic time (when the sediment and water were running and there was active fan development) between seeding / vegetation growth varied between runs. The fan morphology was recorded at regular intervals using a laser scanner (at 1mm resolution) and high resolution video recording and overhead photography was also used to gain near-continuous data quantifying fan topography, flow patterns, channel migration and avulsion frequency. Image analysis also monitored the spatial extent of vegetation establishment. The use of these techniques allowed collection of high resolution spatial and temporal data on fan development with minimal disruption to the experiments. The results of the preliminary experiments showed that vegetation did influence the morphology and flow conditions during fan evolution. Vegetation reduced the number of active channels, and increasing the vegetation density also led to lower lateral migration rates, the formation of narrower and deeper channels and an increase in fan slope.
NASA Astrophysics Data System (ADS)
Mattox, A. M.
2011-12-01
Grasslands in many semi-arid regions of the world have seen an expansion of woody vegetation over the past century and many now exist largely as woodlands or shrublands. This "woody encroachment" results in numerous changes to ecosystem function, including alteration of element and water cycles. As in many parts of the world, these shrublands in south Texas have been subjected to a variety of management practices intended to reduce woody vegetation and increase the dominance of herbaceous vegetation. In addition to the intended change in vegetation structure, this activity has the potential to affect hydrologic fluxes and potentially increase deep drainage through reduced transpiration and rooting depths. However, there is significant uncertainty about the hydrologic response of vegetation to woody vegetation removal. We report here the results of a large manipulative experiment designed to assess the effects of woody vegetation removal on soil moisture movement in the vadose zone in an area that serves as a recharge zone for an unconsolidated sediment aquifer (Carrizo-Wilcox). In this study woody vegetation has been removed using a mechanical method (roller chopping) as well as a mechanical and chemical method (chainsaw removal + stump herbicide). The treated plots are located on three different soil types that represent the range of soils typical in this area. A water balance approach is used to assess soil moisture fluxes and potential deep drainage. In this first year of the study we quantified ecological and edaphic components that have the greatest effect on deep drainage, namely rooting depth, soil texture and antecedent soil water conditions. Exceptionally dry conditions this year have provided a unique opportunity to understand plant soil water interactions in the critical zone given the strong soil moisture limitations observed in the surface soil horizons. Understanding these interactions across different plant communities and soil textures are the initial steps to determining if ground water recharge may be increased through brush management. Rooting depth and volumetric water content were determined in the Chacon clay loam, Webb sandy loam and Antosa-Bobillo loamy sands. Two soil cores were taken to depths of 2 m in each of the 1/4 acre plots in each of the treated and untreated plots for a total of 54 cores. Rooting depths were determined through a combination of hydro-pneumatic root elutriation, comparison of soil water profiles in treated and untreated plots, as well as stem and soil water isotope analysis. Initial data indicates hydraulic redistribution is occurring in the loamy sand as well as the clay loam soils. Neutron probe measurements suggest that vegetation may be facilitating the movement of water into deeper soil horizons in the clay loam soils. In addition to improving our understanding of the relationships between vegetation structure and vadose zone hydrology, our results will be useful for managing water resources under increasing demand, climate change, and varied priorities for entities tasked with managing water resources.
Pearce, A R; Rastetter, E B; Kwiatkowski, B L; Bowden, W B; Mack, M C; Jiang, Y
2015-07-01
Abstract. We calibrated the Multiple Element Limitation (MEL) model to Alaskan arctic tundra to simulate recovery of thermal erosion features (TEFs) caused by permafrost thaw and mass wasting. TEFs could significantly alter regional carbon (C) and nutrient budgets because permafrost soils contain large stocks of soil organic matter (SOM) and TEFs are expected to become more frequent as the climate warms. We simulated recovery following TEF stabilization and did not address initial, short-term losses of C and nutrients during TEF formation. To capture the variability among and within TEFs, we modeled a range of post-stabilization conditions by varying the initial size of SOM stocks and nutrient supply rates. Simulations indicate that nitrogen (N) losses after the TEF stabilizes are small, but phosphorus (P) losses continue. Vegetation biomass recovered 90% of its undisturbed C, N, and P stocks in 100 years using nutrients mineralized from SOM. Because of low litter inputs but continued decomposition, younger SOM continued to be lost for 10 years after the TEF began to recover, but recovered to about 84% of its undisturbed amount in 100 years. The older recalcitrant SOM in mineral soil continued to be lost throughout the 100-year simulation. Simulations suggest that biomass recovery depended on the amount of SOM remaining after disturbance. Recovery was initially limited by the photosynthetic capacity of vegetation but became co-limited by N and P once a plant canopy developed. Biomass and SOM recovery was enhanced by increasing nutrient supplies, but the magnitude, source, and controls on these supplies are poorly understood. Faster mineralization of nutrients from SOM (e.g., by warming) enhanced vegetation recovery but delayed recovery of SOM. Taken together, these results suggest that although vegetation and surface SOM on TEFs recovered quickly (25 and 100 years, respectively), the recovery of deep, mineral soil SOM took centuries and represented a major ecosystem C loss.
Sediment burial stimulates the growth and propagule production of Spartina alterniflora Loisel.
NASA Astrophysics Data System (ADS)
Deng, Zifa; An, Shuqing; Zhao, Congjiao; Chen, Lin; Zhou, Changfang; Zhi, Yingbiao; Li, Hongli
2008-03-01
Spartina alterniflora Loisel., an extensively invasive species on the Chinese coast, is a focus of increasing management concern due to its high expansion rate in estuaries and tidal zone, and the significant damage it causes to native ecosystems. In order to understand the processes and mechanisms of invasion of S. alterniflora in China, the impact of three sediment types (sand, sand-loam mixture and loam) and five buried patterns (unburied, 50% burial of initial plant height, 75% burial of initial plant height, complete burial and repeated burial) on the growth of seedlings or ramets was investigated. Results showed that each of the three factors (sediment types, burial pattern and plant materials) and interactions between/among them, significantly affected height and clonal growth, and biomass accumulation and allocation. Plant height, total biomass and number of new vegetative propagules significantly increased with progressive burial treatments. However, the complete burial treatment resulted in the death of all plant materials, and the maximum values of three parameters were found in the 50% burial or repeated burial treatments. Plant responses were determined by the instantaneous thickness of sediment of each time burial rather than by the total quantity of repeated burial. The growth of S. alterniflora was not shown to be dependent on specific types of sediment in sedimentation environment. In contrast to the unburied control, the proportion of primary tillers produced directly from initial individuals and the ratio between the aboveground and belowground biomass were greater under burial treatments. Seedlings produced more new vegetative propagules than vegetative offspring in all experimental treatments, and the former were apt to produce ramets from rhizomes rather than primary tillers. It is concluded that under various sedimentation environments, the clonal spread efficiency of seedlings was higher than that of vegetative offspring, and there is a positive feedback relationship between sedimentation and the growth of S. alterniflora. Thus, moderate sedimentation may stimulate the invasion of exotic species, S. alterniflora in coastal China.
Liu, Juan; Luo, Xuwen; Wang, Jin; Xiao, Tangfu; Chen, Diyun; Sheng, Guodong; Yin, Meiling; Lippold, Holger; Wang, Chunlin; Chen, Yongheng
2017-05-01
Thallium (Tl) is a highly toxic rare element. Severe Tl poisoning can cause neurological brain damage or even death. The present study was designed to investigate contents of Tl and other associated heavy metals in arable soils and twelve common vegetables cultivated around a steel plant in South China, a newly-found initiator of Tl pollution. Potential health risks of these metals to exposed population via consumption of vegetables were examined by calculating hazard quotients (HQ). The soils showed a significant contamination with Tl at a mean concentration of 1.34 mg/kg. The Tl levels in most vegetables (such as leaf lettuce, chard and pak choy) surpassed the maximum permissible level (0.5 mg/kg) according to the environmental quality standards for food in Germany. Vegetables like leaf lettuce, chard, pak choy, romaine lettuce and Indian beans all exhibited bioconcentration factors (BCF) and transfer factors (TF) for Tl higher than 1, indicating a hyperaccumulation of Tl in these plants. Although the elevated Tl levels in the vegetables at present will not immediately pose significant non-carcinogenic health risks to residents, it highlights the necessity of a permanent monitoring of Tl contamination in the steel-making areas. Copyright © 2017 Elsevier Ltd. All rights reserved.
[Process study on hysteresis of vegetation cover influencing sand-dust events].
Xu, Xing-Kui; Wang, Xiao-Tao; Zhang, Feng
2009-02-15
Data analysis from satellite and weather stations during 1982-2000 shows nonlinear relationship between vegetation cover and sand-dust events is present in most part of China. Vegetation cover ratio in summer can impact significantly on the frequency of sand-dust storms from winter to spring in the source regions of sand-dust events. It is not quite clear about the hysteresis that vegetation cover in summer influence sand-dust events during winter and spring. A quasi-geostrophic barotropic model is used under the condition of 3 magnitude of frictional coefficient to investigate the cause of the hysteresis. Wind velocity shows a greatest decline at 90% during 72 h as initial wind velocity is 10 m/s for magnitude of frictional coefficient between atmosphere and water surface, greatest decline at 100% during 18 h for magnitude of frictional coefficient between atmosphere and bare soil and a 100% reduction of wind speed during 1 h for magnitude of frictional coefficient between atmosphere and vegetation cover. Observation and simulation prove that residual root and stem from summervegetation are one of factors to influence sand-dust events happened during winter and spring. Air inhibition from residual root and stem is a most important reason for hysteresis that vegetation cover influence sand-dust events.
E.R. McMurry; Rose-Marie Muzika; E.F. Loewenstein; K.W. Grabner; G.W. Hartman
2007-01-01
A study examining the effectiveness of prescribed fire and thinning as fuel reduction tools was initiated in the southeast Missouri Ozarks in 2001. Vegetation plots were established throughout 12 stands in each of 3 replicate blocks to monitor the effects of fire, thinning, and a combination of fire and thinning on the overstory, understory, and ground flora...
Hydrologic Evaluation of Landfill Performance (HELP) Model
The program models rainfall, runoff, infiltration, and other water pathways to estimate how much water builds up above each landfill liner. It can incorporate data on vegetation, soil types, geosynthetic materials, initial moisture conditions, slopes, etc.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-12-30
... Limited Shijiazhuang Global New Century Tools Co., Ltd. Sichuan Huili Tools Co. Task Tools & Abrasives... Global Logistics (Shanghai) Co., Ltd. APS Qingdao Cangshan Qingshui Vegetable Foods Co., Ltd. Chengwu...
Vegetative response to water availability on the San Carlos Apache Reservation
Petrakis, Roy; Wu, Zhuoting; McVay, Jason; Middleton, Barry R.; Dye, Dennis G.; Vogel, John M.
2016-01-01
On the San Carlos Apache Reservation in east-central Arizona, U.S.A., vegetation types such as ponderosa pine forests, pinyon-juniper woodlands, and grasslands have significant ecological, cultural, and economic value for the Tribe. This value extends beyond the tribal lands and across the Western United States. Vegetation across the Southwestern United States is susceptible to drought conditions and fluctuating water availability. Remotely sensed vegetation indices can be used to measure and monitor spatial and temporal vegetative response to fluctuating water availability conditions. We used the Moderate Resolution Imaging Spectroradiometer (MODIS)-derived Modified Soil Adjusted Vegetation Index II (MSAVI2) to measure the condition of three dominant vegetation types (ponderosa pine forest, woodland, and grassland) in response to two fluctuating environmental variables: precipitation and the Standardized Precipitation Evapotranspiration Index (SPEI). The study period covered 2002 through 2014 and focused on a region within the San Carlos Apache Reservation. We determined that grassland and woodland had a similar moderate to strong, year-round, positive relationship with precipitation as well as with summer SPEI. This suggests that these vegetation types respond negatively to drought conditions and are more susceptible to initial precipitation deficits. Ponderosa pine forest had a comparatively weaker relationship with monthly precipitation and summer SPEI, indicating that it is more buffered against short-term drought conditions. This research highlights the response of multiple, dominant vegetation types to seasonal and inter-annual water availability. This research demonstrates that multi-temporal remote sensing imagery can be an effective tool for the large scale detection of vegetation response to adverse impacts from climate change and support potential management practices such as increased monitoring and management of drought-affected areas. Different vegetation types displayed various responses to water availability, further highlighting the need for individual management plans for forest and woodland, especially considering the projected drier conditions in the Southwest U.S. and other arid or semi-arid regions around the world.
Dietary fruits and vegetables and cardiovascular diseases risk.
Alissa, Eman M; Ferns, Gordon A
2017-06-13
Diet is likely to be an important determinant of cardiovascular disease (CVD) risk. In this article, we will review the evidence linking the consumption of fruit and vegetables and CVD risk. The initial evidence that fruit and vegetable consumption has a protective effect against CVD came from observational studies. However, uncertainty remains about the magnitude of the benefit of fruit and vegetable intake on the occurrence of CVD and whether the optimal intake is five portions or greater. Results from randomized controlled trials do not show conclusively that fruit and vegetable intake protects against CVD, in part because the dietary interventions have been of limited intensity to enable optimal analysis of their putative effects. The protective mechanisms of fruit and vegetables may not only include some of the known bioactive nutrient effects dependent on their antioxidant, anti-inflammatory, and electrolyte properties, but also include their functional properties, such as low glycemic load and energy density. Taken together, the totality of the evidence accumulated so far does appear to support the notion that increased intake of fruits and vegetables may reduce cardiovascular risk. It is clear that fruit and vegetables should be eaten as part of a balanced diet, as a source of vitamins, fiber, minerals, and phytochemicals. The evidence now suggests that a complicated set of several nutrients may interact with genetic factors to influence CVD risk. Therefore, it may be more important to focus on whole foods and dietary patterns rather than individual nutrients to successfully impact on CVD risk reduction. A clearer understanding of the relationship between fruit and vegetable intake and cardiovascular risk would provide health professionals with significant information in terms of public health and clinical practice.
Dispersion and Transport of Cryptosporidium Oocysts from Fecal Pats under Simulated Rainfall Events
Davies, Cheryl M.; Ferguson, Christobel M.; Kaucner, Christine; Krogh, Martin; Altavilla, Nanda; Deere, Daniel A.; Ashbolt, Nicholas J.
2004-01-01
The dispersion and initial transport of Cryptosporidium oocysts from fecal pats were investigated during artificial rainfall events on intact soil blocks (1,500 by 900 by 300 mm). Rainfall events of 55 mm h−1 for 30 min and 25 mm h−1 for 180 min were applied to soil plots with artificial fecal pats seeded with approximately 107 oocysts. The soil plots were divided in two, with one side devoid of vegetation and the other left with natural vegetation cover. Each combination of event intensity and duration, vegetation status, and degree of slope (5° and 10°) was evaluated twice. Generally, a fivefold increase (P < 0.05) in runoff volume was generated on bare soil compared to vegetated soil, and significantly more infiltration, although highly variable, occurred through the vegetated soil blocks (P < 0.05). Runoff volume, event conditions (intensity and duration), vegetation status, degree of slope, and their interactions significantly affected the load of oocysts in the runoff. Surface runoff transported from 100.2 oocysts from vegetated loam soil (25-mm h−1, 180-min event on 10° slope) to up to 104.5 oocysts from unvegetated soil (55-mm h−1, 30-min event on 10° slope) over a 1-m distance. Surface soil samples downhill of the fecal pat contained significantly higher concentrations of oocysts on devegetated blocks than on vegetated blocks. Based on these results, there is a need to account for surface soil vegetation coverage as well as slope and rainfall runoff in future assessments of Cryptosporidium transport and when managing pathogen loads from stock grazing near streams within drinking water watersheds. PMID:14766600
Holocene Vegetation and Climate History of the Northern Bighorn Basin, Southern Montana
NASA Astrophysics Data System (ADS)
Lyford, Mark E.; Betancourt, Julio L.; Jackson, Stephen T.
2002-09-01
Records of Holocene vegetation and climate change at low elevations (<2000 m) are rare in the central Rocky Mountain region. We developed a record of Holocene vegetation and climate change from 55 14C-dated woodrat middens at two low-elevation sites (1275 to 1590 m), currently vegetated by Juniperus osteosperma woodlands, in the northern Bighorn Basin. Macrofossil and pollen analyses show that the early Holocene was cooler than today, with warming and drying in the middle Holocene. During the Holocene, boreal ( Juniperus communis, J. horizontalis) and montane species ( J. scopulorum) were replaced by a Great Basin species ( J. osteosperma). J. osteosperma colonized the east side of the Pryor Mountains 4700 14C yr B.P. Downward movement of lower treeline indicates wetter conditions between 4400 and 2700 14C yr B.P. Increased aridity after 2700 14C yr B.P. initiated expansion of J. osteosperma from the east to west side of the Pryor Mountains.
Holocene vegetation and climate history of the northern Bighorn Basin, southern Montana
Lyford, M.E.; Betancourt, J.L.; Jackson, S.T.
2002-01-01
Records of Holocene vegetation and climate change at low elevations (<2000 m) are rare in the central Rocky Mountain region. We developed a record of Holocene vegetation and climate change from 55 14C-dated woodrat middens at two low-elevation sites (1275 to 1590 m, currently vegetated by Juniperus osteosperma woodlands, in the northern Bighorn Basin. Macrofossil and pollen analyses show that the early Holocene was cooler than today, with warming and drying in the middle Holocene. During the Holocene, boreal (Juniperus communis, J. horizontalis) and montane species (J. scopulorum) were replaced by a Great Basin species (J. osteosperma). J. osteosperma colonized the east side of the Pryor Mountains 4700 14C yr B.P. Downward movement of lower treeline indicates wetter conditions between 4400 and 2700 14C yr B.P. Increased aridity after 2700 14C yr B.P. initiated expansion of J. osteosperma from the east to west side of the Pryor Mountains. ?? 2002 University of Washington.
NASA Technical Reports Server (NTRS)
Ambrosia, Vincent G.; Linthicum, K. G.; Bailey, C. L.; Sebesta, P.
1989-01-01
The NASA Ames Ecosystem Science and Technology Branch and the U.S. Army Medical Research Institute of Infectious Diseases are conducting research to detect Rift Valley fever (RVF) vector habitats in eastern Africa using active and passive remote-sensing. The normalized difference vegetation index (NDVI) calculated from Landsat TM and SPOT data is used to characterize the vegetation common to the Aedes mosquito. Relationships have been found between the highest NDVI and the 'dambo' habitat areas near Riuru, Kenya on both wet and dry data. High NDVI values, when combined with the vegetation classifications, are clearly related to the areas of vector habitats. SAR data have been proposed for use during the rainy season when optical systems are of minimal use and the short frequency and duration of the optimum RVF mosquito habitat conditions necessitate rapid evaluation of the vegetation/moisture conditions; only then can disease potential be stemmed and eradication efforts initiated.
Impact of Holocene climate variability on Arctic vegetation
NASA Astrophysics Data System (ADS)
Gajewski, K.
2015-10-01
This paper summarizes current knowledge about the postglacial history of the vegetation of the Canadian Arctic Archipelago (CAA) and Greenland. Available pollen data were used to understand the initial migration of taxa across the Arctic, how the plant biodiversity responded to Holocene climate variability, and how past climate variability affected primary production of the vegetation. Current evidence suggests that most of the flora arrived in the area during the Holocene from Europe or refugia south or west of the region immediately after local deglaciation, indicating rapid dispersal of propagules to the region from distant sources. There is some evidence of shrub species arriving later in Greenland, but it is not clear if this is dispersal limited or a response to past climates. Subsequent climate variability had little effect on biodiversity across the CAA, with some evidence of local extinctions in areas of Greenland in the late Holocene. The most significant impact of climate changes is on vegetation density and/or plant production.
Revegetation studies on Tosco II and USBM retorted oil shales
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kilkelly, M.K.; Harbert, H.P.; Berg, W.A.
1981-01-01
In 1973 studies on the revegetation of processed oil shales were initiated. The objectives of these studies were to investigate the vegetative stabilization of processed oil shales and to follow moisture and soluble salt movement in the retorted shale profile. Studies involving TOSCO II and USBM retorted shales were established at both a low-elevation (Anvil Points) and a high-elevation (Piceance Basin). Treatments included leaching and various depths of soil cover. After seven growing seasons a good vegetative cover remains with differences between treatments insignificant, with the exception of the TOSCO retorted shale south-aspect, which consistently supported less perennial vegetative covermore » than other treatments. With time, a shift from perennial grasses to dominance by shrubs was observed, especially on south-aspect slopes. 6 refs.« less
Multiscale sampling of plant diversity: Effects of minimum mapping unit size
Stohlgren, T.J.; Chong, G.W.; Kalkhan, M.A.; Schell, L.D.
1997-01-01
Only a small portion of any landscape can be sampled for vascular plant diversity because of constraints of cost (salaries, travel time between sites, etc.). Often, the investigator decides to reduce the cost of creating a vegetation map by increasing the minimum mapping unit (MMU), and/or by reducing the number of vegetation classes to be considered. Questions arise about what information is sacrificed when map resolution is decreased. We compared plant diversity patterns from vegetation maps made with 100-ha, 50-ha, 2-ha, and 0.02-ha MMUs in a 754-ha study area in Rocky Mountain National Park, Colorado, United States, using four 0.025-ha and 21 0.1-ha multiscale vegetation plots. We developed and tested species-log(area) curves, correcting the curves for within-vegetation type heterogeneity with Jaccard's coefficients. Total species richness in the study area was estimated from vegetation maps at each resolution (MMU), based on the corrected species-area curves, total area of the vegetation type, and species overlap among vegetation types. With the 0.02-ha MMU, six vegetation types were recovered, resulting in an estimated 552 species (95% CI = 520-583 species) in the 754-ha study area (330 plant species were observed in the 25 plots). With the 2-ha MMU, five vegetation types were recognized, resulting in an estimated 473 species for the study area. With the 50-ha MMU, 439 plant species were estimated for the four vegetation types recognized in the study area. With the 100-ha MMU, only three vegetation types were recognized, resulting in an estimated 341 plant species for the study area. Locally rare species and keystone ecosystems (areas of high or unique plant diversity) were missed at the 2-ha, 50-ha, and 100-ha scales. To evaluate the effects of minimum mapping unit size requires: (1) an initial stratification of homogeneous, heterogeneous, and rare habitat types; and (2) an evaluation of within-type and between-type heterogeneity generated by environmental gradients and other factors. We suggest that at least some portions of vegetation maps created at a coarser level of resolution be validated at a higher level of resolution.
Sediment and Vegetation Controls on Delta Channel Networks
NASA Astrophysics Data System (ADS)
Lauzon, R.; Murray, A. B.; Piliouras, A.; Kim, W.
2016-12-01
Numerous factors control the patterns of distributary channels formed on a delta, including water and sediment discharge, grain size, sea level rise rates, and vegetation type. In turn, these channel networks influence the shape and evolution of a delta, including what types of plant and animal life - such as humans - it can support. Previous fluvial modeling and flume experiments, outside of the delta context, have addressed how interactions between sediment and vegetation, through their influence on lateral transport of sediment, determine what type of channel networks develops. Similar interactions likely also shape delta flow patterns. Vegetation introduces cohesion, tending to reduce channel migration rates and strengthen existing channel banks, reinforcing existing channels and resulting in localized, relatively stable flow patterns. On the other hand, sediment transport processes can result in lateral migration and frequent switching of active channels, resulting in flow resembling that of a braided stream. While previous studies of deltas have indirectly explored the effects of vegetation through the introduction of cohesive sediment, we directly incorporate key effects of vegetation on flow and sediment transport into the delta-building model DeltaRCM to explore how these effects influence delta channel network formation. Model development is informed by laboratory flume experiments at UT Austin. Here we present initial results of experiments exploring the effects of sea level rise rate, sediment grain size, vegetation type, and vegetation growth rate on delta channel network morphology. These results support the hypothesis that the ability for lateral transport of sediment to occur plays a key role in determining the evolution of delta channel networks and delta morphology.
Lock, Karen; Pomerleau, Joceline; Causer, Louise; Altmann, Dan R.; McKee, Martin
2005-01-01
OBJECTIVE: We estimated the global burden of disease attributable to low consumption of fruit and vegetables, an increasingly recognized risk factor for cardiovascular disease and cancer, and compared its impact with that of other major risk factors for disease. METHODS: The burden of disease attributable to suboptimal intake of fruit and vegetables was estimated using information on fruit and vegetable consumption in the population, and on its association with six health outcomes (ischaemic heart disease, stroke, stomach, oesophageal, colorectal and lung cancer). Data from both sources were stratified by sex, age and by 14 geographical regions. FINDINGS: The total worldwide mortality currently attributable to inadequate consumption of fruit and vegetables is estimated to be up to 2.635 million deaths per year. Increasing individual fruit and vegetable consumption to up to 600 g per day (the baseline of choice) could reduce the total worldwide burden of disease by 1.8%, and reduce the burden of ischaemic heart disease and ischaemic stroke by 31% and 19% respectively. For stomach, oesophageal, lung and colorectal cancer, the potential reductions were 19%, 20%, 12% and 2%, respectively. CONCLUSION: This study shows the potentially large impact that increasing fruit and vegetable intake could have in reducing many noncommunicable diseases. It highlights the need for much greater emphasis on dietary risk factors in public health policy in order to tackle the rise in noncommunicable diseases worldwide, and suggests that the proposed intersectoral WHO/FAO fruit and vegetable promotion initiative is a crucial component in any global diet strategy. PMID:15744402
NASA Technical Reports Server (NTRS)
Kimes, Daniel S.; Nelson, Ross F.
1998-01-01
A number of satellite sensor systems will collect large data sets of the Earth's surface during NASA's Earth Observing System (EOS) era. Efforts are being made to develop efficient algorithms that can incorporate a wide variety of spectral data and ancillary data in order to extract vegetation variables required for global and regional studies of ecosystem processes, biosphere-atmosphere interactions, and carbon dynamics. These variables are, for the most part, continuous (e.g. biomass, leaf area index, fraction of vegetation cover, vegetation height, vegetation age, spectral albedo, absorbed photosynthetic active radiation, photosynthetic efficiency, etc.) and estimates may be made using remotely sensed data (e.g. nadir and directional optical wavelengths, multifrequency radar backscatter) and any other readily available ancillary data (e.g., topography, sun angle, ground data, etc.). Using these types of data, neural networks can: 1) provide accurate initial models for extracting vegetation variables when an adequate amount of data is available; 2) provide a performance standard for evaluating existing physically-based models; 3) invert multivariate, physically based models; 4) in a variable selection process, identify those independent variables which best infer the vegetation variable(s) of interest; and 5) incorporate new data sources that would be difficult or impossible to use with conventional techniques. In addition, neural networks employ a more powerful and adaptive nonlinear equation form as compared to traditional linear, index transformations, and simple nonlinear analyses. These neural networks attributes are discussed in the context of the authors' investigations of extracting vegetation variables of ecological interest.
76 FR 4279 - Coconino and Kaibab National Forests, Arizona, Four Forest Restoration Initiative
Federal Register 2010, 2011, 2012, 2013, 2014
2011-01-25
... understory vegetation. There is a need to reduce tree encroachment and increase/maintain grasses, forbs and... create tree groups and clumps that stimulate grass, forbs and individual tree growth. The strategic...
Humid site stabilization and closure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cutshall, N.H.
1981-01-01
The purpose of the work described here is to identify and evaluate the importance of factors that are expected to dictate the nature of site stabilization and closure requirements. Subsequent efforts will plan for implementation of such requirements. Two principal areas of site stabilization and closure effort will be pursued initially - geological management and vegetation management. The geological effort will focus on chemical weathering and surficial erosion. Such catastrophic geologic events as landslides, flooding, earthquakes, volcanos, etc. are already considered in site selection and operation and these factors will not be emphasized initially. Vegetation management will be designed tomore » control erosion, to minimize nuclide mobilization by roots and to be compatible with natural successional pressures. It is anticipated that the results of this work will be important both to site selection and operation as well as the actual stabilization and closure procedure.« less
Thematic Mapper research in the earth sciences
NASA Technical Reports Server (NTRS)
Salomonson, Vincent V.; Stuart, Locke
1989-01-01
This paper's studies were initiated under the NASA program for the purpose of conducting the earth sciences research using the Landsat Thematic Mapper. The goals of the program include studies of the factors influencing the growth, health, condition, and distribution of vegetation on the earth; the processes controlling the evolution of the earth's crust; the earth's water budget and the hydrologic processes that operate at local, regional, and global scales; the physical and chemical interaction between different types of surficial materials; and the interaction between the earth's surface and its atmosphere. Twenty-seven domestic and five foreign investigations were initiated in 1985, with the results from most of them already published (one study was terminated due to the delay in the TDRSS). Twelve of the studies addressed hydrology, snow and ice, coastal processes, and near-shore oceanographic phenomena; seven addressed vegetation, soils, or animal habitat; and twelve addressed geologic subjects.
Miller, Margaret; Pollard, Christina
2005-04-01
In 1990, the Department of Health in Western Australia (DOH) initiated a five-year campaign to increase awareness of the need to eat more fruit and vegetables and to encourage increased consumption. This paper describes aspects of the campaign and reviews the strengths and weaknesses of health and fruit and vegetable industry alliances to extend and sustain the campaign. The fruit and vegetable industry was engaged through information sharing, consultation, working groups and joint promotions. The partnership was examined in terms of six inter-sectoral action dimensions (necessity; opportunity and capacity to work together; established relationships for goal achievement; degree of planning; potential for evaluation; and sustainability of action). There were both need and opportunity for each sector to work together. Health had commitment, expertise and resources to plan, implement and evaluate the campaign. Industry had established channels of communication within the supply chain. Sustained health sector presence provided incentive, endorsement and policy direction. Resources and infrastructure limited partnership sustainability. Greatest potential for success occurred when participants' contributions were closely aligned to their core business and there was a body responsible for co-ordinating action.
NASA Astrophysics Data System (ADS)
Adamu, Bashir; Tansey, Kevin; Bradshaw, Michael J.
2013-10-01
The aim of this paper is to analyse spectral reflectance data from Landsat TM of vegetation that has been exposed to hydrocarbon contamination from oil spills from pipelines. The study is undertaken in an area of mangrove and swamp vegetation where the detection of an oil spill is traditionally difficult to make. We used a database of oil spill records to help identify candidate sites for spectral analysis. Extracted vegetation spectra were compared between polluted and nonpolluted sites and supervised (neural network) classification was carried out to map hydrocarbon (HC) contaminated sites from the sample areas. Initial results show that polluted sites are characterised by high reflectance in the visible (VIS) 0.4μm - 0.7μm, and a lower reflectance in the near-infrared (NIR) 0.7μm - 1.1μm. This suggests that the vegetation is in a stressed state. Samples taken from pixels surrounding polluted sites show similar spectral reflectance values to that of polluted sites suggesting possible migration of HC to the wider environment. Further work will focus on increasing the sample size and investigating the impact of an oil spill on a wider buffer zone around the spill site.
Vegetation function and non-uniqueness of the hydrological response
NASA Astrophysics Data System (ADS)
Ivanov, V. Y.; Fatichi, S.; Kampf, S. K.; Caporali, E.
2012-04-01
Through local moisture uptake vegetation exerts seasonal and longer-term impacts on the watershed hydrological response. However, the role of vegetation may go beyond the conventionally implied and well-understood "sink" function in the basin soil moisture storage equation. We argue that vegetation function imposes a "homogenizing" effect on pre-event soil moisture spatial storage, decreasing the likelihood that a rainfall event will result in a topographically-driven redistribution of soil water and the consequent formation of variable source areas. In combination with vegetation temporal dynamics, this may lead to the non-uniqueness of the hydrological response with respect to the mean basin wetness. This study designs a set of relevant numerical experiments carried out with two physically-based models; one of the models, HYDRUS, resolves variably saturated subsurface flow using a fully three-dimensional formulation, while the other model, tRIBS+VEGGIE, uses a one-dimensional formulation applied in a quasi-three-dimensional framework in combination with the model of vegetation dynamics. We demonstrate that (1) vegetation function modifies spatial heterogeneity in moisture spatial storage by imposing different degrees of subsurface flow connectivity; explore mechanistically (2) how and why a basin with the same mean soil moisture can have distinctly different spatial soil moisture distributions; and demonstrate (2) how these distinct moisture distributions result in a hysteretic runoff response to precipitation. Furthermore, the study argues that near-surface soil moisture is an insufficient indicator of the initial moisture state of a catchment with the implication of its limited effect on hydrological predictability.
NASA Astrophysics Data System (ADS)
Hong, Seungbum
Land and atmosphere interactions have long been recognized for playing a key role in climate and weather modeling. However their quantification has been challenging due to the complex nature of the land surface amongst various other reasons. One of the difficult parts in the quantification is the effect of vegetation which are related to land surface processes such soil moisture variation and to atmospheric conditions such as radiation. This study addresses various relational investigations among vegetation properties such as Normalized Difference Vegetation Index (NDVI), Leaf Area Index (LAI), surface temperature (TSK), and vegetation water content (VegWC) derived from satellite sensors such as Moderate Resolution Imaging Spectroradiometer (MODIS) and EOS Advanced Microwave Scanning Radiometer (AMSR-E). The study provides general information about a physiological behavior of vegetation for various environmental conditions. Second, using a coupled mesoscale/land surface model, we examined the effects of vegetation and its relationship with soil moisture on the simulated land-atmospheric interactions through the model sensitivity tests. The Weather Research and Forecasting (WRF) model was selected for this study, and the Noah land surface model (Noah LSM) implemented in the WRF model was used for the model coupled system. This coupled model was tested through two parameterization methods for vegetation fraction using MODIS data and through model initialization of soil moisture from High Resolution Land Data Assimilation System (HRLDAS). Then, this study evaluates the model improvements for each simulation method.
Projecting the impact of climate change on phenology of winter wheat in northern Lithuania
NASA Astrophysics Data System (ADS)
Juknys, Romualdas; Velička, Rimantas; Kanapickas, Arvydas; Kriaučiūnienė, Zita; Masilionytė, Laura; Vagusevičienė, Ilona; Pupalienė, Rita; Klepeckas, Martynas; Sujetovienė, Gintarė
2017-10-01
Climate warming and a shift in the timing of phenological phases, which lead to changes in the duration of the vegetation period may have an essential impact on the productivity of winter crops. The main purpose of this study is to examine climate change-related long-term (1961-2015) changes in the duration of both initial (pre-winter) and main (post-winter) winter wheat vegetation seasons and to present the projection of future phenological changes until the end of this century. Delay and shortening of pre-winter vegetation period, as well as the advancement and slight extension of the post-winter vegetation period, resulted in the reduction of whole winter wheat vegetation period by more than 1 week over the investigated 55 years. Projected changes in the timing of phenological phases which define limits of a main vegetation period differ essentially from the observed period. According to pessimistic (Representative Concentration Pathways 8.5) scenario, the advancement of winter wheat maturity phase by almost 30 days and the shortening of post-winter vegetation season by 15 days are foreseen for a far (2071-2100) projection. An increase in the available chilling amount is specific not only to the investigated historical period (1960-2015) but also to the projected period according to the climate change scenarios of climate warming for all three projection periods. Consequently, the projected climate warming does not pose a threat of plant vernalization shortage in the investigated geographical latitudes.
Smaldone, Gregory T; Jin, Yujie; Whitfield, Damion L; Mu, Andrew Y; Wong, Edward C; Wuertz, Stefan; Singer, Mitchell
2014-04-01
Nutrient sensors and developmental timers are two classes of genes vital to the establishment of early development in the social soil bacterium Myxococcus xanthus. The products of these genes trigger and regulate the earliest events that drive the colony from a vegetative state to aggregates, which ultimately leads to the formation of fruiting bodies and the cellular differentiation of the individual cells. In order to more accurately identify the genes and pathways involved in the initiation of this multicellular developmental program in M. xanthus, we adapted a method of growing vegetative populations within a constant controllable environment by using flow cell bioreactors, or flow cells. By establishing an M. xanthus community within a flow cell, we are able to test developmental responses to changes in the environment with fewer concerns for effects due to nutrient depletion or bacterial waste production. This approach allows for greater sensitivity in investigating communal environmental responses, such as nutrient sensing. To demonstrate the versatility of our growth environment, we carried out time-lapse confocal laser scanning microscopy to visualize M. xanthus biofilm growth and fruiting body development, as well as fluorescence staining of exopolysaccharides deposited by biofilms. We also employed the flow cells in a nutrient titration to determine the minimum concentration required to sustain vegetative growth. Our data show that by using a flow cell, M. xanthus can be held in a vegetative growth state at low nutrient concentrations for long periods, and then, by slightly decreasing the nutrient concentration, cells can be allowed to initiate the developmental program.
Dynamics of riparian plant communities, a new integrative ecohydrological modelling approach
NASA Astrophysics Data System (ADS)
García-Arias, Alicia; Francés, Félix
2015-04-01
The Riparian Vegetation Dynamic Model (RVDM) integrates the impacts of the hydrological extremes on the vegetation, the vegetation evolution and the competition between different vegetation classes. Considering a daily time step and a detailed spatial resolution, RVDM allows the analysis of the dynamic vegetation distribution in riverine areas during a simulated period. The riparian vegetation wellbeing and distribution are considered to be conditioned by the river hydrodynamics in RVDM. Using biomass loss functions, the stress caused by hydrological extreme events is translated into changes on the distribution of the vegetation. These extreme events are considered as removal and asphyxia associated to floods, and wilt related to droughts. The variables considered to determine the impacts are water shear stress, water table elevation and the soil moisture, respectively. RVDM includes the modelling of the natural evolution of the vegetation. The potential recruitment in bared areas, the plant growth and the succession/retrogression between plant categories are included in the model conceptualization. The recruitment takes place when seeds presence, germination and seedlings establishment overcome, so it depends on the plant reproductive period and the environmental conditions. Light use efficiency determines the vegetation growth in terms of biomass production while the soil moisture limits this biomass production and the successional evolution. Finally, the competition modelling considers the advantages between successional patterns under the specific soil moisture conditions of each unit area. Several meteorological, morphological, hydrological and hydraulic inputs are required. In addition, an initial vegetation condition is required for RVDM to start the simulation period. The model results on new vegetation maps that are considered as new inputs in the next model step. Following this approach the model simulates iteratively al the processes day by day. This model represents an improvement respect to previous models in the way of understanding the riparian dynamics. Currently, RVDM has been already implemented in a Mediterranean semi-arid river reach and a sensitivity analysis to analyze the influence of the different vegetation parameters has been performed. The good results obtained indicate that the model is suitable for scenarios analysis and for environmental flows establishment.
Examination of Soil Moisture Retrieval Using SIR-C Radar Data and a Distributed Hydrological Model
NASA Technical Reports Server (NTRS)
Hsu, A. Y.; ONeill, P. E.; Wood, E. F.; Zion, M.
1997-01-01
A major objective of soil moisture-related hydrological-research during NASA's SIR-C/X-SAR mission was to determine and compare soil moisture patterns within humid watersheds using SAR data, ground-based measurements, and hydrologic modeling. Currently available soil moisture-inversion methods using active microwave data are only accurate when applied to bare and slightly vegetated surfaces. Moreover, as the surface dries down, the number of pixels that can provide estimated soil moisture by these radar inversion methods decreases, leading to less accuracy and, confidence in the retrieved soil moisture fields at the watershed scale. The impact of these errors in microwave- derived soil moisture on hydrological modeling of vegetated watersheds has yet to be addressed. In this study a coupled water and energy balance model operating within a topographic framework is used to predict surface soil moisture for both bare and vegetated areas. In the first model run, the hydrological model is initialized using a standard baseflow approach, while in the second model run, soil moisture values derived from SIR-C radar data are used for initialization. The results, which compare favorably with ground measurements, demonstrate the utility of combining radar-derived surface soil moisture information with basin-scale hydrological modeling.
BELOWGROUND NITROGEN UPTAKE AND ALLOCATION ...
Anthropogenic nitrogen inputs coupled with rising sea level complicate predictions of marsh stability. As marsh stability is a function of its vegetation, it is important to understand the mechanisms that drive community dynamics. Many studies have examined aboveground dynamics and nutrient cycling, but few have studied the belowground uptake and allocation of nitrogen. Literature suggests that D. spicata may dominate the marsh platform in nutrient-rich conditions, though the mechanism driving the vegetation shift is unclear. Our study examines belowground nutrient uptake and allocation underlying these patterns. To determine whether D. spicata is a more efficient scavenger of nutrients than S. alterniflora we performed a 15N pulse-chase experiment. Tracer was added to mesocosms growing D. spicata and S. alterniflora in monoculture. After the initial pulse, a subset of pots were sacrificed weekly and partitioned into detailed depth intervals for 15N analysis of several belowground pools: live coarse and fine roots, live rhizomes, dead organic matter, and bulk sediment. Comparisons between D. spicata and S. alterniflora uptake and allocation can explain mechanisms of competitive advantage and predictions of D. spicata dominance. Additionally, we used denitrification enzyme assays (DEA) and greenhouse gas slurries to quantify denitrification rates and potentials. Initial results suggest that the vegetation types support similar N-relevant microbial communities. Th
Schwingshackl, Lukas; Hoffmann, Georg; Kalle-Uhlmann, Tamara; Arregui, Maria; Buijsse, Brian; Boeing, Heiner
2015-01-01
Background Randomized controlled trials provide conflicting results on the effects of increased fruit and vegetable consumption on changes in body weight. We aimed to perform a systematic review and meta-analysis of prospective cohort studies on fruit and vegetable consumption in relation to changes in anthropometric measures. Methods PubMed and EMBASE were searched up to July 2015 for prospective studies reporting on habitual fruit and/or vegetable consumption in relation to changes in body weight or waist circumference or to risk of weight gain/overweight/obesity in adults. Random-effects meta-analysis was applied to pool results across studies. Findings Seventeen cohort studies (from 20 reports) including 563,277 participants met our inclusion criteria. Higher intake of fruits was inversely associated with weight change (decrease) (beta-coefficient per 100-g increment, -13.68 g/year; 95% CI, -22.97 to -4.40). No significant changes could be observed for combined fruit and vegetable consumption or vegetable consumption. Increased intake of fruits was inversely associated with changes (decrease) in waist circumference (beta: -0.04 cm/year; 95% CI, -0.05 to -0.02). Comparing the highest combined fruit & vegetable, fruit, and vegetable intake categories were associated with a 9%, 17%, and 17% reduced risk of adiposity (odds ratio [OR]: 0.91, 95% CI, 0.84 to 0.99), (OR: 0.83, 95% CI, 0.71 to 0.99), and (OR: 0.83, 95% CI, 0.70 to 0.99), respectively. Conclusion This meta-analysis showed several inverse associations between fruit and vegetable intake and prospective improvements in anthropometric parameters, and risk of adiposity. The present meta-analysis seems to be limited by low study quality. Nevertheless, when combined with evolutionary nutrition and epidemiological modeling studies, these findings have public health relevance and support all initiatives to increase fruit and vegetable intake. PMID:26474158
NASA Astrophysics Data System (ADS)
Ahrends, H. E.; Oberbauer, S. F.; Tweedie, C.; Hollister, R. D.
2010-12-01
Knowledge of changing tundra vegetation and its response to climate variability is critical for understanding the land-atmosphere-interactions for the Arctic and the global system. However, vegetation characteristics, such as phenology, structure and species composition, are characterized by an extreme heterogeneity at a small scale. Manual observations of these variables are highly time-consuming, labor intensive, subjective, and disturbing to the vegetation. In contrast, recently developed robotic systems (networked infomechanical systems, NIMS) allow for performing non-intrusive spatially integrated measurements of vegetation communities. Within the ITEX (International Tundra Experiment) AON (Arctic Observation Network) project we installed a cable-based sensor system, running over a transect of approximately 50 m length and 2 m width, at two long-term arctic research sites in Alaska. The trolley was initially equipped with instruments recording the distance to vegetation canopy, up- and downwelling short- and longwave radiation, air and surface temperature and spectral reflection. We aim to study the thermal and spectral response of the vegetation communities over a wide range of ecosystem types. We expect that automated observations, covering the spatial heterogeneity of vegetation and surface characteristics, can give a deeper insight in ecosystem functioning and vegetation response to climate. The data can be used for scaling up vegetation characteristics derived from manual measurements and for linking them to aircraft and satellite data and to carbon, water and surface energy budgets measured at the ecosystem scale. Sampling errors due to cable sag are correctable and effects of wind-driven movements can be offset by repeat measurements. First hand-pulled test measurements during summer 2010 show strong heterogeneity of the observation parameters and a variable spectral and thermal response of the plants within the transects. Differences support the importance of our approach for upscaling purposes and for a comprehensive understanding of the arctic biome.
Modelling post-fire vegetation recovery in Portugal
NASA Astrophysics Data System (ADS)
Bastos, A.; Gouveia, C.; Dacamara, C. C.; Trigo, R. M.
2011-05-01
Wildfires in Mediterranean Europe have been increasing in number and extension over the last decades and constitute one of the major disturbances of these ecosystems. Portugal is the country with more burnt area in the last decade and the years of 2003 and 2005 were particularly devastating, the total burned areas of 425 000 and 338 000 ha being several times higher than the corresponding average. The year of 2005 further coincided with one of the most severe droughts since early 20th century. Due to different responses of vegetation to diverse fire regimes and to the complexity of landscape structures, fires have complex effects on vegetation recovery. Remote sensing has revealed to be a powerful tool in studying vegetation dynamics and in monitoring post-fire vegetation recovery, which is crucial to land-management and to prevent erosion. The main goals of the present work are (i) to assess the accuracy of a vegetation recovery model previously developed by the authors; (ii) to assess the model's performance, namely its sensitivity to initial conditions, to the temporal length of the input dataset and to missing data; (iii) to study vegetation recovery over two selected areas that were affected by two large wildfire events in the fire seasons of 2003 and 2005, respectively. The study relies on monthly values of NDVI over 11 yr (1998-2009), at 1 × 1 km spatial resolution, as obtained by the VEGETATION instrument. According to results from sensitivity analysis, the model is robust and able to provide good estimations of recovery times of vegetation when the regeneration process is regular, even when missing data is present. In what respect to the two selected burnt scars, results indicate that fire damage is a determinant factor of regeneration, as less damaged vegetation recovers more rapidly, which is mainly justified by the high coverage of Pinus Pinaster over the area, and by the fact that coniferous forests tend to recover slower than transitional woodland-shrub, which tend to dominate the areas following the fire event.
Modelling post-fire vegetation recovery in Portugal
NASA Astrophysics Data System (ADS)
Bastos, A.; Gouveia, C. M.; Dacamara, C. C.; Trigo, R. M.
2011-12-01
Wildfires in Mediterranean Europe have been increasing in number and extension over the last decades and constitute one of the major disturbances of these ecosystems. Portugal is the country with more burnt area in the last decade and the years of 2003 and 2005 were particularly devastating, the total burned areas of 425 000 and 338 000 ha being several times higher than the corresponding average. The year of 2005 further coincided with one of the most severe droughts since early 20th century. Due to different responses of vegetation to diverse fire regimes and to the complexity of landscape structures, fires have complex effects on vegetation recovery. Remote sensing has revealed to be a powerful tool in studying vegetation dynamics and in monitoring post-fire vegetation recovery, which is crucial to land-management and to prevent erosion. The main goals of the present work are (i) to assess the accuracy of a vegetation recovery model previously developed by the authors; (ii) to assess the model's performance, namely its sensitivity to initial conditions, to the temporal length of the input dataset and to missing data; (iii) to study vegetation recovery over two selected areas that were affected by two large wildfire events in the fire seasons of 2003 and 2005, respectively. The study relies on monthly values of NDVI over 11 years (1998-2009), at 1 km × 1 km spatial resolution, as obtained by the VEGETATION instrument. According to results from sensitivity analysis, the model is robust and able to provide good estimations of recovery times of vegetation when the regeneration process is regular, even when missing data is present. In respect to the two selected burnt scars, results indicate that fire damage is a determinant factor of regeneration, as less damaged vegetation recovers more rapidly, which is mainly justified by the high coverage of Pinus pinaster over the area, and by the fact that coniferous forests tend to recover slower than transitional woodland-shrub, which tend to dominate the areas following the fire event.
Influence of vegetation on water isotope partitioning across different northern headwater catchments
NASA Astrophysics Data System (ADS)
Gabor, R. S.; Tetzlaff, D.; Buttle, J. M.; Carey, S. K.; Laudon, H.; Mitchell, C. P. J.; McNamara, J. P.; Soulsby, C.
2014-12-01
The hydrology of high latitude catchments is sensitive to small changes in temperature, and likely to be impacted by changes in climate. Vegetation water usage can play a large role in catchment hydrologic pathways, affecting how water is stored, released, and partitioned within a landscape. Thus a better understanding of how vegetation impacts water partitioning in northern catchments can help us understand how climate change will impact high-latitude hydrology. As part of the VeWa project, five catchments were chosen between 44oN and 64oN in Europe and North America, to compare the role of vegetation in the movement of water across northern landscapes. These catchments vary in aspect as well as extent of snowpack and their vegetative landscapes include heather moorland, coniferous and deciduous forests, mixed grass, and tundra landscapes. Importantly, all the catchments have records of stable isotopes in different waters of the system. An initial comparison of the water isotopes in these catchments demonstrates variation between the catchments, with the lower latitude sites showing more fractionation suggestive of evapotranspiration. While all catchments show a depletion of heavy isotopes in the spring, the depletion is most evident in catchments with a heavier snowpack. The vegetative growing season during the summer months shows the greatest impact of evapotranspiration on isotopes, indicating that an increased summer in a warmer climate would likely alter water partitioning and storage dynamics in these regions.
Leewis, Mary-Cathrine; Reynolds, Charles M.; Leigh, Mary Beth
2014-01-01
Phytoremediation is a potentially inexpensive method of detoxifying contaminated soils using plants and associated soil microorganisms. The remote locations and cold climate of Alaska provide unique challenges associated with phytoremediation such as finding effective plant species that can achieve successful site clean-up despite the extreme environmental conditions and with minimal site management. A long-term assessment of phytoremediation was performed which capitalized on a study established in Fairbanks in 1995. The original study sought to determine how the introduction of plants (Festuca rubra, Lolium multiflorum), nutrients (fertilizer), or their combination would affect degradation of petroleum hydrocarbon (TPH) contaminated soils (crude oil or diesel) over time. Within the year following initial treatments, the plots subjected to both planting and/or fertilization showed greater overall decreases in TPH concentrations in both the diesel and crude oil contaminated soils relative to untreated plots. We re-examined this field site after 15 years with no active site management to assess the long-term effects of phytoremediation on colonization by native and non-native plants, their rhizosphere microbial communities and on petroleum removal from soil. Native and non-native vegetation had extensively colonized the site, with more abundant vegetation found on the diesel contaminated soils than the more nutrient-poor, more coarse, and acidic crude oil contaminated soils. TPH concentrations achieved regulatory clean up levels in all treatment groups, with lower TPH concentrations correlating with higher amounts of woody vegetation (trees & shrubs). In addition, original treatment type has affected vegetation recruitment to each plot with woody vegetation and more native plants in unfertilized plots. Bacterial community structure also varies according to the originally applied treatments. This study suggests that initial treatment with native tree species in combination with grasses could be an effective means for phytoremediating petroleum contaminated soils and promoting ecological recovery in cold regions. PMID:24501438
NASA Astrophysics Data System (ADS)
Williams, C. J.; Pierson, F. B.; Nouwakpo, S.; Weltz, M.
2016-12-01
Pinyon and juniper encroachment has altered vegetation structure, ecological condition, hydrologic function, and delivery of ecosystem goods and services on millions of hectares of sagebrush rangelands in the western US. Pinyon and juniper out-compete shrubs and herbaceous vegetation for water and nutrients and facilitate a decline in vigor and cover of understory plants. These cover declines educe a shift from biotic-controlled resource retention to abiotic-driven losses of critical soil resources over time (soil erosion feedback). Our research objective was to evaluate tree removal by mastication, burning, and cutting as a threshold-reversal mechanism for restoration of sagebrush steppe ecohydrologic resilience over a ten year period. We examined vegetation, soils, infiltration, runoff, and erosion from artificial rainfall and concentrated flow experiments across multiple scales in two late succession woodlands before and 1, 2, and 10 yr after tree removal to address two research questions: 1) Can tree removal decrease late-succession woodland ecohydrologic resilience by increasing vegetation and ground cover within the first 10 yr post-treatment?, and 2) Is the soil erosion feedback reversible in the later stages of woodland encroachment? Distributing shredded tree debris into bare areas improved infiltration and reduced soil erosion in the first few years following tree mastication. Cutting and placing downed trees in bare patches had no initial effect on runoff and erosion. Burning initially reduced infiltration and increased runoff and erosion at the sites, but favorable grass and forb cover recruitment 2 yr after burning reduced erosion from the mostly bare intercanopy between tree mounds. Our presentation of the overall study will chronicle these published pre-fire, 1 yr, and 2 yr responses and preliminary results from the 10th yr post-treatment to address the questions outlined above. The collective results advance understanding of pinyon and juniper encroachment on vegetation, hydrology, and erosion processes and the short-term and decadal ecohydrologic recovery of sagebrush steppe following tree removal by mastication, burning, and cutting.
NASA Astrophysics Data System (ADS)
Rönnholm, P.; Haggrén, H.
2012-07-01
Integration of laser scanning data and photographs is an excellent combination regarding both redundancy and complementary. Applications of integration vary from sensor and data calibration to advanced classification and scene understanding. In this research, only airborne laser scanning and aerial images are considered. Currently, the initial registration is solved using direct orientation sensors GPS and inertial measurements. However, the accuracy is not usually sufficient for reliable integration of data sets, and thus the initial registration needs to be improved. A registration of data from different sources requires searching and measuring of accurate tie features. Usually, points, lines or planes are preferred as tie features. Therefore, the majority of resent methods rely highly on artificial objects, such as buildings, targets or road paintings. However, in many areas no such objects are available. For example in forestry areas, it would be advantageous to be able to improve registration between laser data and images without making additional ground measurements. Therefore, there is a need to solve registration using only natural features, such as vegetation and ground surfaces. Using vegetation as tie features is challenging, because the shape and even location of vegetation can change because of wind, for example. The aim of this article was to compare registration accuracies derived by using either artificial or natural tie features. The test area included urban objects as well as trees and other vegetation. In this area, two registrations were performed, firstly, using mainly built objects and, secondly, using only vegetation and ground surface. The registrations were solved applying the interactive orientation method. As a result, using artificial tie features leaded to a successful registration in all directions of the coordinate system axes. In the case of using natural tie features, however, the detection of correct heights was difficult causing also some tilt errors. The planimetric registration was accurate.
NASA Astrophysics Data System (ADS)
Trefilova, O. V.; Efimov, D. Yu.
2015-08-01
The results of the integrated analysis of changes in the state of vegetation and soils (Cutanic Albeluvisol) at the different stages of natural forest regeneration (4-, 11- and 24-year-old felled areas) and in a mature fir forest of the short grass-green moss forest types in the northern part of the western slope of the Yenisei Ridge are presented. A dynamic trend of fir forests restoration to the formation of the structure characteristics of the initial forest types is shown to be performed through the stages of forest meadows and secondary short grass (forbs) and birch stands. The changes in vegetation are accompanied by the fast transformation of the soil properties towards the improvement of soil fertilization However, these changes are temporary.
Seasonal and Vegetational Variation in Albedo Measured During CERES Ground-Validation Pilot Study
NASA Technical Reports Server (NTRS)
Schuster, G. L.; Whitlock, C. H.; Plant, J. V.; Wheeler, R. J.; Moats, C. D.; Larman, K. T.; Ayers, J. K.; Feldl, E. K.
1997-01-01
The Clouds and the Earth's Radiant Energy System (CERES) satellite is scheduled for launch in the Fall of 1997 aboard the Tropical Rainfall Measuring Mission (TRMM). A surface measurement pilot study has been initiated in a 37-km region near Richmond, VA, for comparison with the CERES surface flux retrievals. Two-minute averaged upwelling and downwelling surface fluxes over a mostly deciduous forest have been recorded daily for the past two years, and show a broadband, shortwave daily albedo increase during the summer months. Evidence is presented that indicates vegetational changes in the forest as the overriding mechanism for this change. Upwelling flux measured over the entire region by helicopter-mounted instrumentation has been processed for four solar seasons. Future plans include the installation of four more albedo surface sites over various types of vegetation throughout the region.
NASA Astrophysics Data System (ADS)
Olliver, Elizabeth A.; Edmonds, Douglas A.
2017-09-01
Land building in deltaic environments occurs when sediment discharged from a river mouth is deposited subaqueously and transitions to subaerial land. The transition from subaqueous deposition to subaerial land is a critical process that marks the creation of relatively stable land, yet it is unclear what controls the speed and style of this transition. We define how this transition, herein termed the land building succession, varies in time and space for the freshwater, intertidal wetlands in Wax Lake Delta, LA. Using remote sensing and field data we classify land cover into sediment, water, or vegetation classes at maximum and minimum biomass. We see two succession patterns within Wax Lake Delta. Deltaic islands near the apex are initially covered by sediment and open water. Through time, open water and sediment coverage decreases as vegetation coverage increases. On the other hand, distal islands show little sediment exposure through time. In both cases, all deltaic islands become covered with vegetation by 2015. As vegetation colonizes the island, the topography organizes into two platforms vertically separated by ∼0.35 m. The lower, intertidal platform occurs in the island interiors and is commonly inundated by water and dominated by subaqueous or floating vegetation. The upper, subaerial platform occurs along island edges and is dominated by a variety of vegetation species including Salix nigra, Colocasia esculenta, and Polygonum punctatum. It takes an average of ∼10 years for the intertidal platform to transition to the subaerial platform. These two platforms are separated by the tidal range measured in Atchafalaya Bay, and the different vegetation communities occupying each platform suggest they are a manifestation of multiple stable states and arise due to vegetation and sedimentation feedbacks.
Risk assessment of vegetables irrigated with arsenic-contaminated water.
Bhatti, S M; Anderson, C W N; Stewart, R B; Robinson, B H
2013-10-01
Arsenic (As) contaminated water is used in South Asian countries to irrigate food crops, but the subsequent uptake of As by vegetables and associated human health risk is poorly understood. We used a pot trial to determine the As uptake of four vegetable species (carrot, radish, spinach and tomato) with As irrigation levels ranging from 50 to 1000 μg L(-1) and two irrigation techniques, non-flooded (70% field capacity for all studied vegetables), and flooded (110% field capacity initially followed by aerobic till next irrigation) for carrot and spinach only. Only the 1000 μg As L(-1) treatment showed a significant increase of As concentration in the vegetables over all other treatments (P < 0.05). The distribution of As in vegetable tissues was species dependent; As was mainly found in the roots of tomato and spinach, but accumulated in the leaves and skin of root crops. There was a higher concentration of As in the vegetables grown under flood irrigation relative to non-flood irrigation. The trend of As bioaccumulation was spinach > tomato > radish > carrot. The As concentration in spinach leaves exceeded the Chinese maximum permissible concentration for inorganic As (0.05 μg g(-1) fresh weight) by a factor of 1.6 to 6.4 times. No other vegetables recorded an As concentration that exceeded this threshold. The USEPA parameters hazard quotient and cancer risk were calculated for adults and adolescents. A hazard quotient value greater than 1 and a cancer risk value above the highest target value of 10(-4) confirms potential risk to humans from ingestion of spinach leaves. In our study, spinach presents a direct risk to human health where flood irrigated with water containing an arsenic concentration greater than 50 μg As L(-1).
Antonarakis, Alexander S; Saatchi, Sassan S; Chazdon, Robin L; Moorcroft, Paul R
2011-06-01
Insights into vegetation and aboveground biomass dynamics within terrestrial ecosystems have come almost exclusively from ground-based forest inventories that are limited in their spatial extent. Lidar and synthetic-aperture Radar are promising remote-sensing-based techniques for obtaining comprehensive measurements of forest structure at regional to global scales. In this study we investigate how Lidar-derived forest heights and Radar-derived aboveground biomass can be used to constrain the dynamics of the ED2 terrestrial biosphere model. Four-year simulations initialized with Lidar and Radar structure variables were compared against simulations initialized from forest-inventory data and output from a long-term potential-vegtation simulation. Both height and biomass initializations from Lidar and Radar measurements significantly improved the representation of forest structure within the model, eliminating the bias of too many large trees that arose in the potential-vegtation-initialized simulation. The Lidar and Radar initializations decreased the proportion of larger trees estimated by the potential vegetation by approximately 20-30%, matching the forest inventory. This resulted in improved predictions of ecosystem-scale carbon fluxes and structural dynamics compared to predictions from the potential-vegtation simulation. The Radar initialization produced biomass values that were 75% closer to the forest inventory, with Lidar initializations producing canopy height values closest to the forest inventory. Net primary production values for the Radar and Lidar initializations were around 6-8% closer to the forest inventory. Correcting the Lidar and Radar initializations for forest composition resulted in improved biomass and basal-area dynamics as well as leaf-area index. Correcting the Lidar and Radar initializations for forest composition and fine-scale structure by combining the remote-sensing measurements with ground-based inventory data further improved predictions, suggesting that further improvements of structural and carbon-flux metrics will also depend on obtaining reliable estimates of forest composition and accurate representation of the fine-scale vertical and horizontal structure of plant canopies.
Evaluation of spatial, radiometric and spectral Thematic Mapper performance for coastal studies
NASA Technical Reports Server (NTRS)
Klemas, V.; Ackleson, S. G.; Hardisky, M. A.
1985-01-01
On 31 March 1983, the University of Delaware's Center for Remote Sensing initiated a study to evaluate the spatial, radiometric and spectral performance of the LANDSAT Thematic Mapper for coastal and estuarine studies. The investigation was supported by Contract NAS5-27580 from the NASA Goddard Space Flight Center. The research was divided into three major subprojects: (1) a comparison of LANDSAT TM to MSS imagery for detecting submerged aquatic vegetation in Chesapeake Bay; (2) remote sensing of submerged aquatic vegetation - a radiative transfer approach; and (3) remote sensing of coastal wetland biomass using Thematic Mapper wavebands.
Annesi, James J.
2011-01-01
An emphasis on increasing self-regulation is an alternate to nutrition education, which has had poor results in the behavioral treatment of obesity. Although appropriately designed weight-loss treatments may enhance one’s self-regulatory ability to control eating, whether improvements are moderated by psychosocial factors such as initial self-regulatory skills use, self-efficacy to control eating, and mood is unknown. Severely obese women (BMI 35-50 kg·m-2) were randomized into 26-week treatments of exercise supported by cognitive-behavioral methods paired with either nutrition education (n = 114) or cognitive-behavioral methods applied to controlled eating (n = 121). Improvement in self-regulation for controlled eating was 36.9% greater (p < 0.01) for the group incorporating cognitive-behavioral methods for controlled eating. Change in self-regulation was significantly associated with self-regulation at baseline (β = -0.33). Both mood and self-efficacy for controlled eating significantly moderated this relationship. Increased self-regulation was associated with both increases in fruit and vegetable consumption and fruit and vegetable intake at treatment end. The present findings increase our understanding of psychosocial variables associated with increased self-regulatory skills usage and improvements in eating that, after replication, may be used to improve the effects of behavioral weight-loss treatments. Key points Initial self-regulatory abilities do not appear to affect improvements in self-regulation for eating, however direct training in behavioral skills are predictors of change. The relationship of self-regulation improvements and improved eating is significant, and affected by mood and self-efficacy in women with obesity. Instruction in behavioral skills such as cognitive restructuring and relapse prevention is associated with better improvements in eating than typical methods of nutrition education. Cognitive-behavioral methods for exercise may be paired with cognitive-behavioral methods for eating to maximize longer-term effects on eating behaviors. PMID:24149553
NASA Astrophysics Data System (ADS)
Fischer, A. D.; Anderson, D. M.; Moore, S.; Brosnahan, M.
2016-02-01
The Nauset Marsh System (NMS) on Cape Cod (MA, USA) has recurrent Alexandrium fundyense blooms that have caused nearly annual shellfishing closures due to paralytic shellfish poisoning. Blooms were observed over a multi-year period (2009-2015) to examine the effects of seasonal cooling and warming on the transition from resting cysts to vegetative cells in the plankton. The life cycle processes of cyst dormancy, germination, and vegetative cell growth are all uniquely sensitive to temperature, which can translate to changes in bloom initiation phenology. Bloom initiation (>100 cells/l-1) occurred as early as 14 February 2012, and as late as 15 April 2015. To quantitatively examine the mechanisms responsible for this two-month range, laboratory studies were performed. In experiments mimicking winter's onset, mature cysts were exposed to chilling temperatures (2-8°C), and at regular intervals the germination potential of cyst cohorts was evaluated. Next, in experiments mimicking a range of late-winter, early-spring temperatures, the time to germination was observed for cold-conditioned cysts. To account for the interannual temperature variability in the NMS and enable comparison to laboratory studies, we calculated growing degree-days and chilling-units, both metrics that tabulate accumulated temperature exposures. Here we pair laboratory studies with seven years of bloom data to present a conceptual model of three temperature-dependent phases of bloom initiation for A. fundyense: 1) Winter dormancy. As temperatures cool, cysts enter a state of dormancy during which germination is physiologically inhibited, until they experience a threshold of winter chilling. 2) Quiescence. Cysts are physiologically able to germinate, but require a specific amount of heat, oxygen, and light. 3) Growth. Germling cells transform to vegetative cells, which divide asexually as a function of heat to create the bloom. These results help to explain differences in bloom timing between years, and provide insights into potential responses of A. fundyense to climate change.
NASA Astrophysics Data System (ADS)
Plumb, Priscilla Bocskor; Day, Susan D.; Wynn-Thompson, Theresa M.; Seiler, John R.
2013-10-01
We studied stormwater detention basins where woody vegetation removal was suspended for 2 years in Virginia, USA to determine if woody vegetation can control Typha populations and how early woody plant succession interacts with Typha, other herbaceous vegetation, and site factors. Distribution and composition of woody vegetation, Typha and non- Typha herbaceous vegetation biomass, and site factors were assessed at 100 plots in four basins ranging in age from 7 to 17 years. A greenhouse study examined the interaction of shade and soil moisture on Typha biomass and persistence. Principal component analysis identified an environmental gradient associated with greater water table depths and decreased elevation that favored Typha but negatively influenced woody vegetation. Elevation was correlated with litter layer distribution, suggesting that initial topography influences subsequent environmental characteristics and thus plant communities. Soil organic matter at 0-10 cm ranged from 5.4 to 12.7 %. Woody plants present were native species with the exception of Ailanthus altissima and Pyrus calleryana. In the greenhouse, shade and reduced soil moisture decreased Typha biomass and rhizome length. The shade effect was strongest in flooded plants and the soil moisture effect was strongest for plants in full sun. Typha in dry soil and heavy shade had 95 % less total biomass and 83 % smaller rhizomes than Typha in flooded soil and full sun, but even moderate soil moisture reductions decreased above- and below-ground biomass by 63 and 56 %, respectively. Suspending maintenance allows restoration of woody vegetation dominated by native species and may suppress Typha invasion.
Michaud, D S; Pietinen, P; Taylor, P R; Virtanen, M; Virtamo, J; Albanes, D
2002-01-01
We examined the relation between dietary fruit and vegetables, carotenoids and vitamin intakes and the risk of bladder cancer among male smokers in a prospective cohort study. Over a median of 11 years, we followed 27 111 male smokers aged 50–69 years who were initially enrolled in the Alpha-Tocopherol Beta-Carotene Cancer Prevention Study. During this period, 344 men developed bladder cancer. All of these men had completed a 276-food item dietary questionnaire at baseline. Cox proportional hazards models were used to estimate the relative risks and 95% confidence intervals and to simultaneously adjust for age, smoking history, energy intake and intervention group. Consumption of fruits and vegetables was not associated with the risk of bladder cancer (relative risk=1.28; 95% confidence intervals CI: 0.89–1.84, for highest vs lowest quintile). Similarly, no associations were observed for groups of fruits or vegetables (berries and cruciferous vegetables), or for specific fruits and vegetables. Dietary intakes of alpha-carotene, beta-carotene, lycopene, lutein/zeaxanthin, beta-cryptoxanthin, vitamins A, E, and C, and folate were not related to the risk of bladder cancer. These findings suggest that fruit and vegetable intakes are not likely to be associated with bladder cancer risk. However, these results may not be generalisable to non-smokers. British Journal of Cancer (2002) 87, 960–965. doi:10.1038/sj.bjc.6600604 www.bjcancer.com © 2002 Cancer Research UK PMID:12434284
The Role of Vegetation Cover in Interactions between Climate and Erosion
NASA Astrophysics Data System (ADS)
Schildgen, T. F.; Torres-Acosta, V.; Düsing, W.; Garcin, Y.; Strecker, M. R.
2016-12-01
Interactions between tectonics, climate and erosion during mountain building are often considered to include a positive feedback between precipitation and erosion, with the onset of orographic rainfall inducing greater erosion, which in turn may drive faster deformation. Here, we consider two different case studies that explore specifically the relationship between climate and erosion. Within the Kenya Rift of East Africa, spatial variations in 10Be derived erosion rates show no clear dependency on yearly precipitation. Instead, we find that the data fall into two categories. In areas that are sparsely vegetated, erosion rates increase rapidly with slope, whereas in areas that are densely vegetated, erosion rates increase slowly with slope. These data imply that vegetation cover plays a major role in stabilizing hillslopes. From these results, we hypothesize that in a sparsely vegetated region, the onset of greater precipitation will lead to faster erosion, but only until vegetation becomes denser, after which erosion rates will strongly decrease. Initial results from an ongoing study that reconstruct paleo-erosion rates from a sedimentary archive support this hypothesis. Hence, we infer that in this region, vegetation cover acts as a negative feedback in the interactions between climate and erosion. Compared to East Africa, we find a very different relationship between climate and 10Be derived erosion rates in the Toro intermontane basin in NW Argentina. There, the fastest erosion rates occur in the wettest areas with dense vegetation cover, implying a positive feedback between increased precipitation and erosion rates. Also, paleo-erosion rates from the nearby Humahuaca Basin derived from fluvial terraces point to faster erosion during wetter periods in the past. In this region, the stabilizing effects of vegetation cover may be muted. Ultimately, whether increased precipitation leads to faster or slower erosion could hinge on the dominant erosion processes. Along the steep slopes of NW Argentina, landslides are the dominant process, and appear to be minimally affected by vegetation cover. In contrast, the more gentle hillslopes in East Africa appear to be stabilized by a dense vegetation cover.
Dazeley, Paul; Houston-Price, Carmel
2015-01-01
Activities that engage young children with the sensory properties of foods are popular with nursery schools, despite the lack of evidence for their efficacy in increasing children's consumption of healthy foods. This study provides the first empirical exploration of the effectiveness of a non-taste sensory activity program in a nursery school setting. Ninety-two children aged between 12 and 36 months were allocated either to an intervention group, who took part in looking, listening, feeling and smelling activities with unusual fruits and vegetables every day for 4 weeks, or to a non-intervention control group. In a subsequent mealtime taste test, children touched and tasted more of the vegetables to which they had been familiarized in their playtime activities than of a matched set of non-exposed foods. The results demonstrate that hands-on activities with unfamiliar fruits and vegetables can enhance children's willingness to taste these foods, and confirm the potential for such activities to support healthy eating initiatives. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.
NASA Astrophysics Data System (ADS)
1994-10-01
This paper contributes new information about the impacts from introduced plant invasions on the native Hawaiian vegetation as consequences of land disturbance and geothermal development activities. In this regard, most geothermal development is expected to act as another recurring source of physical disturbance which favors the spread and maintenance of introduced organisms throughout the region. Where geothermal exploration and development activities extend beyond existing agricultural and residential development, they will become the initial or sole source of disturbance to the naturalized vegetation of the area. Kilauea has a unique ecosystem adapted to the dynamics of a volcanically active landscape. The characteristics of this ecosystem need to be realized in order to understand the major threats to the ecosystem and to evaluate the effects of and mitigation for geothermal development in Puna. The native Puna vegetation is well adapted to disturbances associated with volcanic eruption, but it is ill-adapted to compete with alien plant species in secondary disturbances produced by human activities. Introduced plant and animal species have become a major threat to the continued presence of the native biota in the Puna region.
NASA Technical Reports Server (NTRS)
Zhang, Zhengqiu; Xue, Yongkang; MacDonald, Glen; Cox, Peter M.; Collatz, George J.
2015-01-01
Recent studies have shown that current dynamic vegetation models have serious weaknesses in reproducing the observed vegetation dynamics and contribute to bias in climate simulations. This study intends to identify the major factors that underlie the connections between vegetation dynamics and climate variability and investigates vegetation spatial distribution and temporal variability at seasonal to decadal scales over North America (NA) to assess a 2-D biophysical model/dynamic vegetation model's (Simplified Simple Biosphere Model version 4, coupled with the Top-down Representation of Interactive Foliage and Flora Including Dynamics Model (SSiB4/TRIFFID)) ability to simulate these characteristics for the past 60 years (1948 through 2008). Satellite data are employed as constraints for the study and to compare the relationships between vegetation and climate from the observational and the simulation data sets. Trends in NA vegetation over this period are examined. The optimum temperature for photosynthesis, leaf drop threshold temperatures, and competition coefficients in the Lotka-Volterra equation, which describes the population dynamics of species competing for some common resource, have been identified as having major impacts on vegetation spatial distribution and obtaining proper initial vegetation conditions in SSiB4/TRIFFID. The finding that vegetation competition coefficients significantly affect vegetation distribution suggests the importance of including biotic effects in dynamical vegetation modeling. The improved SSiB4/TRIFFID can reproduce the main features of the NA distributions of dominant vegetation types, the vegetation fraction, and leaf area index (LAI), including its seasonal, interannual, and decadal variabilities. The simulated NA LAI also shows a general increasing trend after the 1970s in responding to warming. Both simulation and satellite observations reveal that LAI increased substantially in the southeastern U.S. starting from the 1980s. The effects of the severe drought during 1987-1992 and the last decade in the southwestern U.S. on vegetation are also evident from decreases in the simulated and satellite-derived LAIs. Both simulated and satellite-derived LAIs have the strongest correlations with air temperature at northern middle to high latitudes in spring reflecting the effect of these climatic variables on photosynthesis and phenological processes. Meanwhile, in southwestern dry lands, negative correlations appear due to the heat and moisture stress there during the summer. Furthermore, there are also positive correlations between soil wetness and LAI, which increases from spring to summer. The present study shows both the current improvements and remaining weaknesses in dynamical vegetation models. It also highlights large continental-scale variations that have occurred in NA vegetation over the past six decades and their potential relations to climate. With more observational data availability, more studies with differentmodels and focusing on different regions will be possible and are necessary to achieve comprehensive understanding of the vegetation dynamics and climate interactions.
Utilization of common ditch vegetation in the reduction of fipronil and its sulfone metabolite.
Kröger, Robert; Moore, Matt T
2008-12-01
Fipronil, a phenylpyrazole insecticide, and its oxidative sulfone metabolite are two potential pollutants from treated rice and cotton production. A consequence of these pollutants occurring in surface runoff is degradation of downstream aquatic ecosystems. Utilization of primary intercept drainage ditches as management practices to reduce fipronil concentrations and loads has not been examined. This study used ditch mesocosms planted with monospecific stands of common emergent wetland vegetation to determine if certain plant species were more proficient in fipronil mitigation. Three replicates of four plant species were compared against a non-vegetated control to determine differences in water column outflow concentrations (microg L(-1)) and loads (microg). There were no significant differences between vegetated and control treatments in outflow concentrations (F = 0.35, P = 0.836) and loads (F = 0.35, P = 0.836). The range of fipronil reduction was 28-45% for both concentration and load. Unlike fipronil, fipronil sulfone concentrations and load increased by 96-328%. The increase in fipronil sulfone was hypothesized as a direct consequence of oxidation of fipronil within each mesocosm. The type of ditch vegetation had no effect on fipronil reduction. Future research needs to examine initial concentrations and hydraulic retention times to examine potential changes in reduction capacities.
Selection of antibiotics in detection procedure of Escherichia coli O157:H7 in vegetables
NASA Astrophysics Data System (ADS)
Hoang, Hoang A.; Nhung, Nguyen T. T.
2017-09-01
Detection of Escherichia coli O157:H7 in ready-to-eat fresh vegetables is important since this bacteria is considered as one of the most important pathogens in relation to public health. However, it could be a big challenge for detection of initial low concentrations of E. coli O157:H7 in the samples. In this study, selection of antibiotics that suppress growth of background bacteria to enable detection of E. coli O157:H7 in ready-to-eat fresh vegetables was investigated. Firstly, different combinations of two antibiotics, i.e. novobiocin (N) and vancomycin (V), in BHI broth were conducted. The three antibiotic combinations were preliminary examined their effect on the growth of E. coli O157:H7 and Bacillus spp. in broth based on OD600nm measurement. The combination of both the antibiotics was selected to examine their possibility to support detection of E. coli O157:H7 in vegetables. It was successful when two antibiotics showed their support in detection of E. coli O157:H7 at very low concentration of 2 CFU per one gram of lettuce. Usage of these antibiotics is simple and cheap in the detection procedure and could be applied to other types of ready-to-eat fresh vegetables popular in Vietnam.
Davis, Kristen L.
2017-01-01
Research exists on using instructional gardening programs with school age children as a means of improving dietary quality and for obesity prevention. This article examines the potential use of instructional gardens in childcare settings to improving fruit and vegetable intake in young children. A qualitative study was conducted with childcare providers. Participants (n = 20) were recruited via e-mails, letters, and follow-up phone calls. Interviews were recorded, transcribed, and coded to identify themes within two areas (1) childcare providers perceptions of children's fruit and vegetable consumption and (2) components necessary to initiate or improve instructional gardening programs. Themes associated with provider's perceptions of child fruit and vegetable consumption included benefits of consumption, willingness to try fruits and vegetables, meeting recommendations, and influence of the home and childcare environments on child eating. Benefits, barriers, and resources needed were identified as themes related to starting or improving instructional gardening programs. Benefits to gardening with preschoolers are consistent with those found in school-age populations. While several barriers exist, resources are available to childcare providers to address these barriers. Increased knowledge and awareness of resources are necessary to improve the success of gardening programs in the childcare setting with the goal of improving child diet quality. PMID:28607563
Davis, Kristen L; Brann, Lynn S
2017-01-01
Research exists on using instructional gardening programs with school age children as a means of improving dietary quality and for obesity prevention. This article examines the potential use of instructional gardens in childcare settings to improving fruit and vegetable intake in young children. A qualitative study was conducted with childcare providers. Participants ( n = 20) were recruited via e-mails, letters, and follow-up phone calls. Interviews were recorded, transcribed, and coded to identify themes within two areas (1) childcare providers perceptions of children's fruit and vegetable consumption and (2) components necessary to initiate or improve instructional gardening programs. Themes associated with provider's perceptions of child fruit and vegetable consumption included benefits of consumption, willingness to try fruits and vegetables, meeting recommendations, and influence of the home and childcare environments on child eating. Benefits, barriers, and resources needed were identified as themes related to starting or improving instructional gardening programs. Benefits to gardening with preschoolers are consistent with those found in school-age populations. While several barriers exist, resources are available to childcare providers to address these barriers. Increased knowledge and awareness of resources are necessary to improve the success of gardening programs in the childcare setting with the goal of improving child diet quality.
Wijnen, V J M; Eilander, H J; de Gelder, B; van Boxtel, G J M
2014-11-01
Auditory stimulation is often used to evoke responses in unresponsive patients who have suffered severe brain injury. In order to investigate visual responses, we examined visual evoked potentials (VEPs) and behavioral responses to visual stimuli in vegetative patients during recovery to consciousness. Behavioral responses to visual stimuli (visual localization, comprehension of written commands, and object manipulation) and flash VEPs were repeatedly examined in eleven vegetative patients every two weeks for an average period of 2.6months, and patients' VEPs were compared to a healthy control group. Long-term outcome of the patients was assessed 2-3years later. Visual response scores increased during recovery to consciousness for all scales: visual localization, comprehension of written commands, and object manipulation. VEP amplitudes were smaller, and latencies were longer in the patient group relative to the controls. VEPs characteristics at first measurement were related to long-term outcome up to three years after injury. Our findings show the improvement of visual responding with recovery from the vegetative state to consciousness. Elementary visual processing is present, yet according to VEP responses, poorer in vegetative and minimally conscious state than in healthy controls, and remains poorer when patients recovered to consciousness. However, initial VEPs are related to long-term outcome. Copyright © 2014 Elsevier Masson SAS. All rights reserved.
Lidar and Hyperspectral Remote Sensing for the Analysis of Coniferous Biomass Stocks and Fluxes
NASA Astrophysics Data System (ADS)
Halligan, K. Q.; Roberts, D. A.
2006-12-01
Airborne lidar and hyperspectral data can improve estimates of aboveground carbon stocks and fluxes through their complimentary responses to vegetation structure and biochemistry. While strong relationships have been demonstrated between lidar-estimated vegetation structural parameters and field data, research is needed to explore the portability of these methods across a range of topographic conditions, disturbance histories, vegetation type and climate. Additionally, research is needed to evaluate contributions of hyperspectral data in refining biomass estimates and determination of fluxes. To address these questions we are a conducting study of lidar and hyperspectral remote sensing data across sites including coniferous forests, broadleaf deciduous forests and a tropical rainforest. Here we focus on a single study site, Yellowstone National Park, where tree heights, stem locations, above ground biomass and basal area were mapped using first-return small-footprint lidar data. A new method using lidar intensity data was developed for separating the terrain and vegetation components in lidar data using a two-scale iterative local minima filter. Resulting Digital Terrain Models (DTM) and Digital Canopy Models (DCM) were then processed to retrieve a diversity of vertical and horizontal structure metrics. Univariate linear models were used to estimate individual tree heights while stepwise linear regression was used to estimate aboveground biomass and basal area. Three small-area field datasets were compared for their utility in model building and validation of vegetation structure parameters. All structural parameters were linearly correlated with lidar-derived metrics, with higher accuracies obtained where field and imagery data were precisely collocated . Initial analysis of hyperspectral data suggests that vegetation health metrics including measures of live and dead vegetation and stress indices may provide good indicators of carbon flux by mapping vegetation vigor or senescence. Additionally, the strength of hyperspectral data for vegetation classification suggests these data have additional utility for modeling carbon flux dynamics by allowing more accurate plant functional type mapping.
NASA Astrophysics Data System (ADS)
van der Kolk, Henk-Jan; Heijmans, Monique M. P. D.; van Huissteden, Jacobus; Pullens, Jeroen W. M.; Berendse, Frank
2016-11-01
Over the past decades, vegetation and climate have changed significantly in the Arctic. Deciduous shrub cover is often assumed to expand in tundra landscapes, but more frequent abrupt permafrost thaw resulting in formation of thaw ponds could lead to vegetation shifts towards graminoid-dominated wetland. Which factors drive vegetation changes in the tundra ecosystem are still not sufficiently clear. In this study, the dynamic tundra vegetation model, NUCOM-tundra (NUtrient and COMpetition), was used to evaluate the consequences of climate change scenarios of warming and increasing precipitation for future tundra vegetation change. The model includes three plant functional types (moss, graminoids and shrubs), carbon and nitrogen cycling, water and permafrost dynamics and a simple thaw pond module. Climate scenario simulations were performed for 16 combinations of temperature and precipitation increases in five vegetation types representing a gradient from dry shrub-dominated to moist mixed and wet graminoid-dominated sites. Vegetation composition dynamics in currently mixed vegetation sites were dependent on both temperature and precipitation changes, with warming favouring shrub dominance and increased precipitation favouring graminoid abundance. Climate change simulations based on greenhouse gas emission scenarios in which temperature and precipitation increases were combined showed increases in biomass of both graminoids and shrubs, with graminoids increasing in abundance. The simulations suggest that shrub growth can be limited by very wet soil conditions and low nutrient supply, whereas graminoids have the advantage of being able to grow in a wide range of soil moisture conditions and have access to nutrients in deeper soil layers. Abrupt permafrost thaw initiating thaw pond formation led to complete domination of graminoids. However, due to increased drainage, shrubs could profit from such changes in adjacent areas. Both climate and thaw pond formation simulations suggest that a wetter tundra can be responsible for local shrub decline instead of shrub expansion.
On the use of tower-flux measurements to assess the performance of global ecosystem models
NASA Astrophysics Data System (ADS)
El Maayar, M.; Kucharik, C.
2003-04-01
Global ecosystem models are important tools for the study of biospheric processes and their responses to environmental changes. Such models typically translate knowledge, gained from local observations, into estimates of regional or even global outcomes of ecosystem processes. A typical test of ecosystem models consists of comparing their output against tower-flux measurements of land surface-atmosphere exchange of heat and mass. To perform such tests, models are typically run using detailed information on soil properties (texture, carbon content,...) and vegetation structure observed at the experimental site (e.g., vegetation height, vegetation phenology, leaf photosynthetic characteristics,...). In global simulations, however, earth's vegetation is typically represented by a limited number of plant functional types (PFT; group of plant species that have similar physiological and ecological characteristics). For each PFT (e.g., temperate broadleaf trees, boreal conifer evergreen trees,...), which can cover a very large area, a set of typical physiological and physical parameters are assigned. Thus, a legitimate question arises: How does the performance of a global ecosystem model run using detailed site-specific parameters compare with the performance of a less detailed global version where generic parameters are attributed to a group of vegetation species forming a PFT? To answer this question, we used a multiyear dataset, measured at two forest sites with contrasting environments, to compare seasonal and interannual variability of surface-atmosphere exchange of water and carbon predicted by the Integrated BIosphere Simulator-Dynamic Global Vegetation Model. Two types of simulations were, thus, performed: a) Detailed runs: observed vegetation characteristics (leaf area index, vegetation height,...) and soil carbon content, in addition to climate and soil type, are specified for model run; and b) Generic runs: when only observed climates and soil types at the measurement sites are used to run the model. The generic runs were performed for the number of years equal to the current age of the forests, initialized with no vegetation and a soil carbon density equal to zero.
de la Estrella, Manuel; Mateo, Rubén G.; Wieringa, Jan J.; Mackinder, Barbara; Muñoz, Jesús
2012-01-01
Objectives Species Distribution Models (SDMs) are used to produce predictions of potential Leguminosae diversity in West Central Africa. Those predictions are evaluated subsequently using expert opinion. The established methodology of combining all SDMs is refined to assess species diversity within five defined vegetation types. Potential species diversity is thus predicted for each vegetation type respectively. The primary aim of the new methodology is to define, in more detail, areas of species richness for conservation planning. Methodology Using Maxent, SDMs based on a suite of 14 environmental predictors were generated for 185 West Central African Leguminosae species, each categorised according to one of five vegetation types: Afromontane, coastal, non-flooded forest, open formations, or riverine forest. The relative contribution of each environmental variable was compared between different vegetation types using a nonparametric Kruskal-Wallis analysis followed by a post-hoc Kruskal-Wallis Paired Comparison contrast. Legume species diversity patterns were explored initially using the typical method of stacking all SDMs. Subsequently, five different ensemble models were generated by partitioning SDMs according to vegetation category. Ecological modelers worked with legume specialists to improve data integrity and integrate expert opinion in the interpretation of individual species models and potential species richness predictions for different vegetation types. Results/Conclusions Of the 14 environmental predictors used, five showed no difference in their relative contribution to the different vegetation models. Of the nine discriminating variables, the majority were related to temperature variation. The set of variables that played a major role in the Afromontane species diversity model differed significantly from the sets of variables of greatest relative important in other vegetation categories. The traditional approach of stacking all SDMs indicated overall centers of diversity in the region but the maps indicating potential species richness by vegetation type offered more detailed information on which conservation efforts can be focused. PMID:22911808
Sant'Ana, Anderson S; Barbosa, Matheus S; Destro, Maria Teresa; Landgraf, Mariza; Franco, Bernadette D G M
2012-06-15
Growth potential (δ) is defined as the difference between the population of a microorganism at the end of shelf-life of specific food and its initial population. The determination of δ of Salmonella and Listeria monocytogenes in RTE vegetables can be very useful to determine likely threats to food safety. However, little is known on the behavior of these microorganisms in several RTE vegetables. Therefore, the aim of this study was to determine the δ of both pathogens in nine different types of RTE vegetables (escarole, collard green, spinach, watercress, arugula, grated carrot, green salad, and mix for yakisoba) stored at refrigeration (7°C) and abuse temperature (15°C). The population of aerobic microorganisms and lactic acid bacteria, including those showing antimicrobial activity has been also determined. Results indicated that L. monocytogenes was able to grow (δ≥0.5 log(10)) in more storage conditions and vegetables than Salmonella. Both microorganisms were inhibited in carrots, although a more pronounced effect has been observed against L. monocytogenes. The highest δ values were obtained when the RTE vegetables were stored 15°C/6days in collard greens (δ=3.3) and arugula (δ=3.2) (L. monocytogenes) and arugula (δ=4.1) and escarole (δ=2.8) (Salmonella). In most vegetables and storage conditions studied, the counts of total aerobic microorganisms raised significantly independent of the temperature of storage (p<0.05). Counts of lactic acid bacteria were higher in vegetables partially or fully stored at abuse temperature with recovery of isolates showing antimicrobial activity. In conclusion, the results of this study show that Salmonella and L. monocytogenes may grow and reach high populations in RTE vegetables depending on storage conditions and the definition of effective intervention strategies are needed to control their growth in these products. Copyright © 2012 Elsevier B.V. All rights reserved.
Food environment and fruit and vegetable intake in a urban population: a multilevel analysis.
Pessoa, Milene Cristine; Mendes, Larissa Loures; Gomes, Crizian Saar; Martins, Paula Andréa; Velasquez-Melendez, Gustavo
2015-10-05
Environmental, social and individual factors influence eating patterns, which in turn affect the risk of many chronic diseases. This study aimed to estimate associations between environmental factors and the consumption of fruit and vegetables among adults in a Brazilian urban context. Data from the surveillance system for risk factors for chronic diseases (VIGITEL) of Brazilian Ministry of Health were used. A cross-sectional telephone survey (VIGITEL - 2008-2010) was carried out with 5826 adults in the urban area of Belo Horizonte. Individual variables were collected. The frequency of fruit and vegetables consumption was assessed from number of servings, weekly frequency and an intake score was calculated. Georeferenced variables were used to characterize the food environment. The density of healthy food outlets (stores specialized in selling fruit and vegetables), unhealthy food outlets (bars, snack bars and food trucks/trailers) and the neighborhood family income were investigated and associated with fruit and vegetables intake score. Weighted multilevel linear regression was used to evaluate the associations between the environment variables and the fruit and vegetables intake score. Higher fruit and vegetables intake scores were observed in neighborhoods with higher density of healthy food outlets and higher income. Lower scores were observed in neighborhood with higher density of unhealthy food outlets. These associations were adjusted by individual variables such as gender, age, physical activity, sugar sweetened beverages consumption, education level and smoking. The food environment might explain some of the socioeconomic disparities with respect to healthy food intake and health outcomes. Healthy food stores are less common in socially disadvantaged neighborhoods, and therefore, healthy foods such as fruits and vegetables are less available or are of a lower quality in lower income areas. Food environment characteristics and neighborhood socioeconomic level had significant associations with fruit and vegetable intake score. These are initial findings that require further investigation within the middle income world populations and the role of the environment with respect to both healthy and unhealthy food acquisition and intake.
Assessment of post forest fire reclamation in Algarve, Portugal
NASA Astrophysics Data System (ADS)
Andrade, Rita; Panagopoulos, Thomas; Guerrero, Carlos; Martins, Fernando; Zdruli, Pandi; Ladisa, Gaetano
2014-05-01
Fire is a common phenomenon in Mediterranean landscapes and it plays a crucial role in its transformations, making the determination of its impact on the ecosystem essential for land management. During summer of 2012, a wildfire took place in Algarve, Portugal, on an area mainly covered by sclerophyllous vegetation (39.44%, 10080ha), broad-leaved forest (20.80%, 5300ha), agriculture land with significant areas of natural vegetation (17.40%, 4400ha) and transitional woodlands-shrubs (16.17%, 4100ha). The objective of the study was to determine fire severity in order to plan post-fire treatments and to aid vegetation recovery and land reclamation. Satellite imagery was used to estimate burn severity by detecting physical and ecological changes in the landscape caused by fire. Differenced Normalized Burn Ratio (DNBR) was used to measure burn severity with pre and post fire data of four Landsat images acquired in October 2011, February and August 2012 and April 2013. The initial and extended differenced normalized burn ratio (DiNBR and DeNBR) were calculated. The calculated burned area of 24291 ha was 552ha lower than the map data determined with field reports. The 19.5% of that area was burned with high severity, 45% with moderate severity and 28.3% with low severity. Comparing fire severity and regrowth with land use, it is shown in DiNBR that the most severely burned areas were predominantly sclerophyllous vegetation (37.6%) and broad-leaved forests (31.1%). From the DeNRB it was found that the reestablishment of vegetation was slower in mixed forests and higher in sclerophyllous vegetation and in land with significant areas of natural vegetation. Faster recovery was calculated for the land uses of sclerophyllous vegetation (46.7%) and significant regrowth in areas of natural vegetation and lands occupied by agriculture (25.4%). Next steps of the study are field validation and crossing with erosion risk maps before to take land reclamation decisions.
NASA Technical Reports Server (NTRS)
Musick, H. Brad; Schaber, Gerald G.; Breed, Carol S.
1995-01-01
The replacement of semidesert grassland by woody shrubland is a widespread form of desertification. This change in physiognomy and species composition tends to sharply reduce the productivity of the land for grazing by domestic livestock, increase soil erosion and reduce soil fertility, and greatly alter many other aspects of ecosystem structure and functioning. Remote sensing methods are needed to assess and monitor shrubland encroachment. Detection of woody shrubs at low density would provide a particularly useful baseline on which to access changes, because an initially low shrub density often tends to increase even after cessation of the disturbance (e.g., overgrazing, drought, or fire suppression) responsible for triggering the initial stages of the invasion (Grover and Musick, 1990). Limited success has been achieved using optical remote sensing. In contrast to other forms of desertification, biomass does not consistently decrease with a shift from grassland to shrubland. Estimation of green vegetation amount (e.g., by NDVI) is thus of limited utility, unless the shrubs and herbaceous plants differ consistently in phenology and the area can be viewed during a season when only one of these is green. The objective of this study was to determine if the potential sensitivity of active microwave remote sensing to vegetation structure could be used to assess the degree of shrub invasion of grassland. Polarimetric Airborne Synthetic Aperture Radar (AIRSAR) data were acquired for a semiarid site containing varied mixtures of shrubs and herbaceous vegetation and compared with ground observations of vegetation type and other landsurface characteristics. In this preliminary report we examine the response of radar backscatter intensity to shrub density. The response of other multipolarization parameters will be examined in future work.
Lavieri, Nicolas A; Sebranek, Joseph G; Cordray, Joseph C; Dickson, James S; Horsch, Ashley M; Jung, Stephanie; Manu, David K; Brehm-Stecher, Byron F; Mendonça, Aubrey F
2014-05-01
Sodium nitrite exerts an inhibitory effect on the growth of Listeria monocytogenes. The objective of this study was to investigate the effects of various nitrite concentrations from a vegetable source with and without high hydrostatic pressure (HHP) on the recovery and growth of L. monocytogenes on ready-to-eat restructured ham. A preconverted celery powder was used as the vegetable source of nitrite. Targeted concentrations of natural nitrite investigated were 0, 50, and 100 mg/kg. HHP treatments evaluated were 400 MPa for 4 min and 600 MPa for 1 or 4 min at 12 ± 2 °C (initial temperature of the pressurization fluid). Viable L. monocytogenes populations were monitored on modified Oxford medium and thin agar layer medium through 98 days of storage at 4 ± 1 °C. Populations on both media did not differ. The HHP treatment at 600 MPa for 4 min resulted in L. monocytogenes populations below the detection limit of our sampling protocols throughout the storage period regardless of the natural nitrite concentration. The combination of HHP at 400 MPa for 4 min or 600 MPa for 1 min with natural nitrite resulted in initial inhibition of viable L. monocytogenes. Ham formulations that did not contain natural nitrite allowed faster growth of L. monocytogenes than did those with nitrite, regardless of whether they were treated with HHP. The results indicate that nitrite from a vegetable source at the concentrations used in this study resulted in slower growth of this microorganism. HHP treatments enhanced the inhibitory effects of natural nitrite on L. monocytogenes growth. Thus, the combination of natural nitrite plus HHP appears to have a synergistic inhibitory effect on L. monocytogenes growth.
Vegetated agricultural drainage ditches for the mitigation of pyrethroid-associated runoff.
Bennett, Erin R; Moore, Matthew T; Cooper, Charles M; Smith, Sammie; Shields, F Douglas; Drouillard, Ken G; Schulz, Ralf
2005-09-01
Drainage ditches are indispensable components of the agricultural production landscape. A benefit of these ditches is contaminant mitigation of agricultural storm runoff. This study determined bifenthrin and lambda-cyhalothrin (two pyrethroid insecticides) partitioning and retention in ditch water, sediment, and plant material as well as estimated necessary ditch length required for effective mitigation. A controlled-release runoff simulation was conducted on a 650-m vegetated drainage ditch in the Mississippi Delta, USA. Bifenthrin and lambda-cyhalothrin were released into the ditch in a water-sediment slurry. Samples of water, sediment, and plants were collected and analyzed for pyrethroid concentrations. Three hours following runoff initiation, inlet bifenthrin and lambda-cyhalothrin water concentrations ranged from 666 and 374 microg/L, respectively, to 7.24 and 5.23 microg/L at 200 m downstream. No chemical residues were detected at the 400-m sampling site. A similar trend was observed throughout the first 7 d of the study where water concentrations were elevated at the front end of the ditch (0-25 m) and greatly reduced by the 400-m sampling site. Regression formulas predicted that bifenthrin and lambda-cyhalothrin concentrations in ditch water were reduced to 0.1% of the initial value within 280 m. Mass balance calculations determined that ditch plants were the major sink and/or sorption site responsible for the rapid aqueous pyrethroid dissipation. By incorporating vegetated drainage ditches into a watershed management program, agriculture can continue to decrease potential non-point source threats to downstream aquatic receiving systems. Overall results of this study illustrate that aquatic macrophytes play an important role in the retention and distribution of pyrethroids in vegetated agricultural drainage ditches.
NASA Astrophysics Data System (ADS)
Rüdiger, Christoph; Albergel, CléMent; Mahfouf, Jean-FrançOis; Calvet, Jean-Christophe; Walker, Jeffrey P.
2010-05-01
To quantify carbon and water fluxes between the vegetation and the atmosphere in a consistent manner, land surface models now include interactive vegetation components. These models treat the vegetation biomass as a prognostic model state, allowing the model to dynamically adapt the vegetation states to environmental conditions. However, it is expected that the prediction skill of such models can be greatly increased by assimilating biophysical observations such as leaf area index (LAI). The Jacobian of the observation operator, a central aspect of data assimilation methods such as the extended Kalman filter (EKF) and the variational assimilation methods, provides the required linear relationship between the observation and the model states. In this paper, the Jacobian required for assimilating LAI into the Interaction between the Soil, Biosphere and Atmosphere-A-gs land surface model using the EKF is studied. In particular, sensitivity experiments were undertaken on the size of the initial perturbation for estimating the Jacobian and on the length of the time window between initial state and available observation. It was found that small perturbations (0.1% of the state) typically lead to accurate estimates of the Jacobian. While other studies have shown that the assimilation of LAI with 10 day assimilation windows is possible, 1 day assimilation intervals can be chosen to comply with numerical weather prediction requirements. Moreover, the seasonal dependence of the Jacobian revealed contrasted groups of Jacobian values due to environmental factors. Further analyses showed the Jacobian values to vary as a function of the LAI itself, which has important implications for its assimilation in different seasons, as the size of the LAI increments will subsequently vary due to the variability of the Jacobian.
Effect of vegetable oils applied over acquired enamel pellicle on initial erosion.
Ionta, Franciny Querobim; Alencar, Catarina Ribeiro Barros de; Val, Poliana Pacifico; Boteon, Ana Paula; Jordão, Maisa Camillo; Honório, Heitor Marques; Buzalaf, Marília Afonso Rabelo; Rios, Daniela
2017-01-01
The prevalence of dental erosion has been recently increasing, requiring new preventive and therapeutic approaches. Vegetable oils have been studied in preventive dentistry because they come from a natural, edible, low-cost, and worldwide accessible source. This study aimed to evaluate the protective effect of different vegetable oils, applied in two concentrations, on initial enamel erosion. Initially, the acquired pellicle was formed in situ for 2 hours. Subsequently, the enamel blocks were treated in vitro according to the study group (n=12/per group): GP5 and GP100 - 5% and pure palm oil, respectively; GC5 and GC100 - 5% and pure coconut oil; GSa5 and GSa100 - 5% and pure safflower oil; GSu5 and GSu100 - 5% and pure sunflower oil; GO5 and GO100 - 5% and pure olive oil; CON- - Deionized Water (negative control) and CON+ - Commercial Mouthwash (Elmex® Erosion Protection Dental Rinse, GABA/positive control). Then, the enamel blocks were immersed in artificial saliva for 2 minutes and subjected to short-term acid exposure in 0.5% citric acid, pH 2.4, for 30 seconds, to promote enamel surface softening. The response variable was the percentage of surface hardness loss [((SHi - SHf) / SHf )×100]. Data were analyzed by one-way ANOVA and Tukey's test (p<0.05). Enamel blocks of GP100 presented similar hardness loss to GSu100 (p>0.05) and less than the other groups (p<0.05). There was no difference between GP5, GC5, GC100, GSa5, GSu100, GSa100, GSu5, GO5, GO100, CON- and CON+. Palm oil seems to be a promising alternative for preventing enamel erosion. However, further studies are necessary to evaluate a long-term erosive cycling.
NASA Technical Reports Server (NTRS)
Schultz, Christopher J.; Case, Jonathan L.; Hain, Christopher R.; White, Kristopher; Wachter, J. Brent; Nauslar, Nicholas; MacNamara, Brittany
2018-01-01
Lightning initiated wildfires are only 16% of the total number of wildfires within the United States, but account for 56% of the acreage burned. One of the challenges with lightning-initiated wildfires is their ability to "holdover" which means smolder for up to 2+ weeks before breaking out into a full fledged fire. This work helps characterize the percentage of holdover events due to lightning, and helps quantify changes in the land surface characteristics to help understand trends in soil moisture and vegetation stress that potentially contribute to the fire breaking out into a full wildfire.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lindroth, R.L.; Kinney, K.K.
1998-10-01
Elevated concentrations of atmospheric CO{sub 2} are likely to interact with other factors affecting plant physiology to alter plant chemical profiles and plant-herbivore interactions. The authors evaluated the independent and interactive effects of enriched CO{sub 2} and artificial defoliation on foliar chemistry of quaking aspen (Populus tremuloides) and sugar maple (Acer saccharum), and the consequences of such changes for short-term performance of the gypsy moth (Lymantria dispar). They grew aspen and maple seedlings in ambient and enriched CO{sub 2} environments at the University of wisconsin Biotron. Seven weeks after budbreak, trees in half of the rooms were subjected to 50%more » defoliation. Afterwards, foliage was collected for chemical analyses, and feeding trials were conducted with fourth-stadium gypsy moths. Enriched CO{sub 2} altered foliar levels of water, nitrogen, carbohydrates, and phenolics, and responses generally differed between the two tree species. Defoliation induced chemical changes only in aspen. They found no significant interactions between CO{sub 2} and defoliation for levels of carbon-based defenses (phenolic glycosides and tannins). CO{sub 2} treatment altered the performance of larvae fed aspen, but not maple, whereas defoliation had little effect on performance on insects. In general, results from this experimental system do not support the hypothesis that induction of carbon-based chemical defenses, and attendant effects on insects, will be stronger in a CO{sub 2}-enriched world.« less
Study of the water transportation characteristics of marsh saline soil in the Yellow River Delta.
He, Fuhong; Pan, Yinghua; Tan, Lili; Zhang, Zhenhua; Li, Peng; Liu, Jia; Ji, Shuxin; Qin, Zhaohua; Shao, Hongbo; Song, Xueyan
2017-01-01
One-dimensional soil column water infiltration and capillary adsorption water tests were conducted in the laboratory to study the water transportation characteristics of marsh saline soil in the Yellow River Delta, providing a theoretical basis for the improvement, utilization and conservation of marsh saline soil. The results indicated the following: (1) For soils with different vegetation covers, the cumulative infiltration capacity increased with the depth of the soil layers. The initial infiltration rate of soils covered by Suaeda and Tamarix chinensis increased with depth of the soil layers, but that of bare soil decreased with soil depth. (2) The initial rate of capillary rise of soils with different vegetation covers showed an increasing trend from the surface toward the deeper layers, but this pattern with respect to soil depth was relatively weak. (3) The initial rates of capillary rise were lower than the initial infiltration rates, but infiltration rate decreased more rapidly than capillary water adsorption rate. (4) The two-parameter Kostiakov model can very well-simulate the changes in the infiltration and capillary rise rates of wetland saline soil. The model simulated the capillary rise rate better than it simulated the infiltration rate. (5) There were strong linear relationships between accumulative infiltration capacity, wetting front, accumulative capillary adsorbed water volume and capillary height. Copyright © 2016 Elsevier B.V. All rights reserved.
Waterbird use of catfish ponds and migratory bird habitat initiative wetlands in Mississippi
Feaga, James S.; Vilella, Francisco; Kaminski, Richard M.; Davis, J. Brian
2015-01-01
Aquaculture can provide important surrogate habitats for waterbirds. In response to the 2010 Deepwater Horizon oil spill, the National Resource Conservation Service enacted the Migratory Bird Habitat Initiative through which incentivized landowners provided wetland habitats for migrating waterbirds. Diversity and abundance of waterbirds in six production and four idled aquaculture facilities in the Mississippi Alluvial Valley were estimated during the winters of 2011–2013. Wintering waterbirds exhibited similar densities on production (i.e., ∼22 birds/ha) and idled (i.e., ∼20 birds/ha) sites. A total of 42 species were found using both types of aquaculture wetlands combined, but there was considerable departure in bird guilds occupying the two wetland types. The primary users of production ponds were diving and dabbling ducks and American coots. However, idled ponds, with varying water depths (e.g., mudflats to 20 cm) and diverse emergent vegetation-water interspersion, attracted over 30 species of waterbirds and, on average, had more species of waterbirds from fall through early spring than catfish production ponds. Conservation through the Migratory Bird Habitat Initiative was likely responsible for this difference. Our results suggest production and idled Migratory Bird Habitat Initiative aquaculture impoundments produced suitable conditions for various waterbird species and highlight the importance of conservation programs on private lands that promote diversity in vegetation structure and water depths to enhance waterbird diversity.
Banks, M K; Schwab, P; Liu, B; Kulakow, P A; Smith, J S; Kim, R
2003-01-01
A field project located at the US Naval Base at Port Hueneme, California was designed to evaluate changes in contaminant concentrations and toxicity during phytoremediation. Vegetated plots were established in petroleum (diesel and heavy oil) contaminated soil and were evaluated over a two-year period. Plant species were chosen based on initial germination studies and included native California grasses. The toxicity of the impacted soil in vegetated and unvegetated plots was evaluated using Microtox, earthworm, and seed germination assays. The reduction of toxicity was affected more by contaminant aging than the establishment of plants. However, total petroleum hydrocarbon concentrations were lower by the end of the study in the vegetated plots when compared to the unvegetated soil. Although phytoremediation is an effective approach for cleaning-up of petroleum contaminated soil, a long-term management plan is required for significant reductions in contaminant concentrations.
King, David A.; Bachelet, Dominique M.; Symstad, Amy J.
2013-01-01
Since the initial application of MC1 to a small portion of WICA (Bachelet et al. 2000), the model has been altered to improve model performance with the inclusion of dynamic fire. Applying this improved version to WICA required substantial recalibration, during which we have made a number of improvements to MC1 that will be incorporated as permanent changes. In this report we document these changes and our calibration procedure following a brief overview of the model. We compare the projections of current vegetation to the current state of the park and present projections of vegetation dynamics under future climates downscaled from three GCMs selected to represent the existing range in available GCM projections. In doing so, we examine the consequences of different management options regarding fire and grazing, major aspects of biotic management at Wind Cave.
Initial evaluation of a student-run fruit and vegetable business in urban high schools.
Sikic, Nicholas I; Erbstein, Nancy; Welch, Kearnan; Grundberg, Ethan; Miller, Elizabeth
2012-11-01
This study examined the acceptability and feasibility of Fresh Producers, a student-run fruit and vegetable distribution program at three urban high schools located in low-income neighborhoods, and its potential impact on the nutrition and professional development of participating students. Thirteen focus groups conducted with 72 students explored the program's impact on their dietary habits and professional skill development, and discussed program challenges. Responses were coded for common themes by multiple investigators. Participants reported increased fruit and vegetable consumption, and improved interpersonal, team-building, and organizational skills. Challenges included integration into the school schedule and environment and limited faculty support for business activities. This program is acceptable and feasible for secondary school students in a variety of school settings. Students reported positive changes in professional skills and nutrition. Training and support for students and faculty, including strategies to improve program integration into the school context, could increase participation.
NASA Astrophysics Data System (ADS)
Maurer, Thomas; Gustavos Trujillo Siliézar, Carlos; Oeser, Anne; Pohle, Ina; Hinz, Christoph
2016-04-01
In evolving initial landscapes, vegetation development depends on a variety of feedback effects. One of the less understood feedback loops is the interaction between throughfall and plant canopy development. The amount of throughfall is governed by the characteristics of the vegetation canopy, whereas vegetation pattern evolution may in turn depend on the spatio-temporal distribution of throughfall. Meteorological factors that may influence throughfall, while at the same time interacting with the canopy, are e.g. wind speed, wind direction and rainfall intensity. Our objective is to investigate how throughfall, vegetation canopy and meteorological variables interact in an exemplary eco-hydrological system in its initial development phase, in which the canopy is very heterogeneous and rapidly changing. For that purpose, we developed a methodological approach combining field methods, raster image analysis and multivariate statistics. The research area for this study is the Hühnerwasser ('Chicken Creek') catchment in Lower Lusatia, Brandenburg, Germany, where after eight years of succession, the spatial distribution of plant species is highly heterogeneous, leading to increasingly differentiated throughfall patterns. The constructed 6-ha catchment offers ideal conditions for our study due to the rapidly changing vegetation structure and the availability of complementary monitoring data. Throughfall data were obtained by 50 tipping bucket rain gauges arranged in two transects and connected via a wireless sensor network that cover the predominant vegetation types on the catchment (locust copses, dense sallow thorn bushes and reeds, base herbaceous and medium-rise small-reed vegetation, and open areas covered by moss and lichens). The spatial configuration of the vegetation canopy for each measurement site was described via digital image analysis of hemispheric photographs of the canopy using the ArcGIS Spatial Analyst, GapLight and ImageJ software. Meteorological data from two on-site weather stations (wind direction, wind speed, air temperature, air humidity, insolation, soil temperature, precipitation) were provided by the 'Research Platform Chicken Creek' (https://www.tu-cottbus.de/projekte/en/oekosysteme/startseite.html). Data were combined and multivariate statistical analysis (PCA, cluster analysis, regression trees) were conducted using the R-software to i) obtain statistical indices describing the relevant characteristics of the data and ii) to identify the determining factors for throughfall intensity. The methodology is currently tested and results will be presented. Preliminary evaluation of the image analysis approach showed only marginal, systematic deviation of results for the different software tools applied, which makes the developed workflow a viable tool for canopy characterization. Results from this study will have a broad spectrum of possible applications, for instance the development / calibration of rainfall interception models, the incorporation into eco-hydrological models, or to test the fault tolerance of wireless rainfall sensor networks.
NASA Astrophysics Data System (ADS)
Yu, Q.; Shiklomanov, N. I.; Streletskiy, D. A.; Engstrom, R.; Epstein, H. E.
2015-12-01
Arctic ecosystems are changing dramatically due to changes in climate, vegetation and human activities. Northwestern Siberia is one of the regions which has been undergoing various land cover and land use changes associated primarily with animal husbandry and oil/gas development. These changes have been exacerbated by warming climatic conditions over the last fifty years. In this study, we investigated land cover and land use changes associated with oil and gas development southeast of the city of Nadym within the context of climate change based on multi-source and multi-temporal remote sensing imagery. The impacts of land use on surface vegetation, radiation, and hydrological properties were evaluated using the Normalized Difference Vegetation Index (NDVI), albedo and the Normalized Difference Water Index (NDWI). The results from a comparison between high spatial resolution imagery acquired in1968 and 2006 indicate that the vegetation cover was reduced in areas disturbed by oil and gas development. Vegetation cover increased in natural landscapes over the same period,. Water logging was found along the linear structures near the oil/gas development, while in natural landscapes the drying of thermokarst lakes is evident due to permafrost degradation. Derived indices suggest that the direct impacts associated with infrastructure development are mostly within 100 m distance from the disturbance source. While these impacts are rather localized they persist for decades despite partial recovery of vegetation after the initial disturbance.
NASA Astrophysics Data System (ADS)
Jones, Rachel A.; Williams, John W.; Jackson, Stephen T.
2017-08-01
The timing and drivers of vegetation dynamics and formation of no-analog plant communities during the last deglaciation in the unglaciated southeastern US are poorly understood. We present a multi-proxy record spanning the past 19,800 years from Cupola Pond in the Ozarks Mountains, consisting of replicate high-resolution pollen records, 25 AMS radiocarbon dates, and macrofossil, charcoal, and coprophilous spore analyses. Full-glacial Pinus and Picea forests gave way to no-analog vegetation after 17,400 yr BP, followed by development of Quercus-dominated Holocene forests, with late Holocene rises in Pinus and Nyssa. Vegetation transitions, replicated in different cores, are closely linked to hemispheric climate events. Rising Quercus abundances coincide with increasing Northern Hemisphere temperatures and CO2 at 17,500 yr BP, declining Pinus and Picea at 14,500 yr BP are near the Bølling-Allerød onset, and rapid decline of Fraxinus and rise of Ostrya/Carpinus occur 12,700 yr BP during the Younger Dryas. The Cupola no-analog vegetation record is unusual for its early initiation (17,000 yr BP) and for its three vegetation zones, representing distinct rises of Fraxinus and Ostrya/Carpinus. Sporormiella was absent and sedimentary charcoal abundances were low throughout, suggesting that fire and megaherbivores were not locally important agents of disturbance and turnover. The Cupola record thus highlights the complexity of the late-glacial no-analog communities and suggests direct climatic regulation of their formation and disassembly.
An improved SWAT vegetation growth module and its evaluation for four tropical ecosystems
NASA Astrophysics Data System (ADS)
Alemayehu, Tadesse; van Griensven, Ann; Taddesse Woldegiorgis, Befekadu; Bauwens, Willy
2017-09-01
The Soil and Water Assessment Tool (SWAT) is a globally applied river basin ecohydrological model used in a wide spectrum of studies, ranging from land use change and climate change impacts studies to research for the development of the best water management practices. However, SWAT has limitations in simulating the seasonal growth cycles for trees and perennial vegetation in the tropics, where rainfall rather than temperature is the dominant plant growth controlling factor. Our goal is to improve the vegetation growth module of SWAT for simulating the vegetation variables - such as the leaf area index (LAI) - for tropical ecosystems. Therefore, we present a modified SWAT version for the tropics (SWAT-T) that uses a straightforward but robust soil moisture index (SMI) - a quotient of rainfall (P) and reference evapotranspiration (ETr) - to dynamically initiate a new growth cycle within a predefined period. Our results for the Mara Basin (Kenya/Tanzania) show that the SWAT-T-simulated LAI corresponds well with the Moderate Resolution Imaging Spectroradiometer (MODIS) LAI for evergreen forest, savanna grassland and shrubland. This indicates that the SMI is reliable for triggering a new annual growth cycle. The water balance components (evapotranspiration and streamflow) simulated by the SWAT-T exhibit a good agreement with remote-sensing-based evapotranspiration (ET-RS) and observed streamflow. The SWAT-T model, with the proposed vegetation growth module for tropical ecosystems, can be a robust tool for simulating the vegetation growth dynamics in hydrologic models in tropical regions.
Process and Outcomes From a Youth-Led Campaign to Address Healthy Eating in an Urban High School.
Frerichs, Leah; Sjolie, Sarah; Curtis, Matthew; Peterson, Melissa; Huang, Terry T-K
2015-12-01
This article describes a pilot youth advocacy initiative for obesity prevention informed by social cognitive theory, social network theory, and theories of community mobilization. With assistance from school and health leaders, adolescent-aged youth led a cafeteria food labeling and social marketing campaign. We implemented an anonymous survey 2 weeks prior to and again at the conclusion of the campaign, and used cafeteria records to track servings of fruits and vegetables. The campaign resulted in a significant increase in youths' confidence to identify healthy foods (OR 1.97, 95 % CI 1.01, 3.84, p = .048), and a significant increase in per person per day servings of fruits (0.02, p = .03) and vegetables (0.01, p = .02). The results of our pilot were promising, and the integration of concepts from multiple theories benefited the implementation process. Obesity prevention initiatives should include strategies that encourage youth to create health promotion community networks and lead changes to their social and physical environments.
NASA Astrophysics Data System (ADS)
van Puijenbroek, Marinka E. B.; Nolet, Corjan; de Groot, Alma V.; Suomalainen, Juha M.; Riksen, Michel J. P. M.; Berendse, Frank; Limpens, Juul
2017-12-01
Dune development along highly dynamic land-sea boundaries is the result of interaction between vegetation and dune size with sedimentation and erosion processes. Disentangling the contribution of vegetation characteristics from that of dune size would improve predictions of nebkha dune development under a changing climate, but has proven difficult due to the scarcity of spatially continuous monitoring data. This study explored the contributions of vegetation and dune size to dune development for locations differing in shelter from the sea. We monitored a natural nebkha dune field of 8 ha, along the coast of the island Texel, the Netherlands, for 1 year using an unmanned aerial vehicle (UAV) with camera. After constructing a digital surface model and orthomosaic we derived for each dune (1) vegetation characteristics (species composition, vegetation density, and maximum vegetation height), (2) dune size (dune volume, area, and maximum height), (3) degree of shelter (proximity to other nebkha dunes and the sheltering by the foredune). Changes in dune volume over summer and winter were related to vegetation, dune size and degree of shelter. We found that a positive change in dune volume (dune growth) was linearly related to initial dune volume over summer but not over winter. Big dunes accumulated more sand than small dunes due to their larger surface area. Exposed dunes increased more in volume (0.81 % per dune per week) than sheltered dunes (0.2 % per dune per week) over summer, while the opposite occurred over winter. Vegetation characteristics did not significantly affect dune growth in summer, but did significantly affect dune growth in winter. Over winter, dunes dominated by Ammophila arenaria, a grass species with high vegetation density throughout the year, increased more in volume than dunes dominated by Elytrigia juncea, a grass species with lower vegetation density (0.43 vs. 0.42 (m3 m-3) week-1). The effect of species was irrespective of dune size or distance to the sea. Our results show that dune growth in summer is mainly determined by dune size, whereas in winter dune growth was determined by vegetation type. In our study area the growth of exposed dunes was likely restricted by storm erosion, whereas growth of sheltered dunes was restricted by sand supply. Our results can be used to improve models predicting coastal dune development.
Land Use Changes and the Possible Impacts Over the Water and Energy Balance in the South America
NASA Astrophysics Data System (ADS)
do Nascimento, M. G.; Herdies, D. L.
2011-12-01
In this work were performed two numerical experiments with the ETA regional model for South America trying to understand what the possible impacts of the land use changes on the water and energy balance, with an emphasis over the La Plata Basin. Thus, the experiments were performed for the period of 10 years, starting at 01/01/1999 until 12/31/2008. The differences between the experiments were the vegetation and land use map used as initial condition. On The control experiment (EXPCTRL) the vegetation and land use map was based on year 2000 and for the second experiment (EXPI) on conditions observed during the year 2008. The new NCEP-CFSR reanalysis were used in simulations as the initial and boundary condition. Since deforestation occurred in the Amazon Basin region affect the components of the water and energy balance in remote locations like the La Plata Basin, considering the transport of moisture between the tropics and subtropics through the Low Level Jets, the aim of this work is to analyze these results. The differences between EXP1 and EXPCTRL were observed in the components of the water and energy balance, for example, in the temperature, evapotranspiration, latent heat and sensible heat fluxes. These changes occurred primarily due to the better representation of land use changes as evidenced by the new map, with improved vegetation characteristics.
NASA Astrophysics Data System (ADS)
Li, Xinrong
2016-04-01
Biological soil crust (BSC) is a vital component in the stabilized sand dunes with a living cover up to more than 70% of the total, which has been considered as a bio-mediator that directly influences and regulates the sand dune ecosystem processes. However, its influences on soil hydrological processes have been long neglected in Chinese deserts. In this study, BSCs of different successional stages were chose to test their influence on the hydrological processes of stabilized dune, where the groundwater deep exceeds 30m, further to explore why occur the sand-binding vegetation replacement between shrubs and herbs. Our long-term observation (60 years) shows that cyanobacteria crust has been colonized and developed after 3 years since the sand-binding vegetation has been established and dune fixation using planted xerophytic shrubs and made sand barrier (straw-checkerboard) on shifting dune surface, lichen and moss crust occurred after 20 years, and the cover of moss dominated crust could reach 70 % after 50 years. The colonization and development of BSC altered the initial soil water balance of revegetated areas by influencing rainfall infiltration, soil evaporation and dew water entrapment. The results show that BSC obviously reduced the infiltration that occurred during most rainfall events (80%), when rainfall was greater than 5 mm or less than 20 mm. The presence of BSC reduced evaporation of topsoil after small rainfall (<5 mm) because its high proportion of finer particles slowed the evaporation rate, thus keeping the water in the soil surface longer, and crust facilitated topsoil evaporation when rainfall reached 10 mm. The amount of dew entrapment increases with the succession of BSC. Moreover, the effect of the later successional BSC to dew entrapment, rainfall infiltration and evaporation was more obvious than the early successional BSC on stabilized dunes. In general, BSC reduced the amount of rainfall water that reached deeper soil (0.4-3m), which is where the roots of shrubs are primarily distributed. These changes in the soil moisture pattern induced shifting of sand-binding vegetation from initial planted xerophytic shrub communities with higher coverage (35%) to complex communities dominated by shallow-rooted herbaceous species with low shrub coverage (9%). In correspondence with these changes, soil water balance of the initial vegetation systems (mean soil water kept 3.5%) was turned into a new balance of current vegetation (mean soil water maintains 1.5%). Above findings provide an important enlightenment for future desertification control and sand hazards prevention by revegetation.
A Drone-based Tropical Forest Experiment to Estimate Vegetation Properties
NASA Astrophysics Data System (ADS)
Henke, D.
2017-12-01
In mid-latitudes, remote sensing technology is intensively used to monitor vegetation properties. However, in the tropics, high cloud-cover and saturation effects of vegetation indices (VI) hamper the reliability of vegetation parameters derived from satellite data. A drone experiment over the Barro Colorado Island (BCI), Panama, with high temporal repetition rates was conducted in spring 2017 to investigate the robustness and stability of remotely sensed vegetation parameters in tropical environments. For this purpose, three 10-day flight windows in February, March and April were selected and drone flights were repeated on daily intervals when weather conditions and equipment allowed it. In total, 18 days were recorded with two different optical cameras on sensefly's eBee drone: one red, green, blue (RGB) camera and one camera with near infra-red (NIR), green and blue channels. When possible, the data were acquired at the same time of day. Pix4D and Agisoft software were used to calculate the Normalized Difference VI (NDVI) and forest structure. In addition, leave samples were collected ones per month from 16 different plant species and the relative water content was measured as ground reference. Further data sources for the analysis are phenocam images (RGB & NIR) on BCI and satellite images of MODIS (NDVI; Enhanced VI EVI) and Sentinel-1 (radar backscatter). The attached figure illustrates the main data collected on BCI. Initial results suggest that the coefficient of determination (R2) is relatively high between ground samples and drone data, Sentinel-1 backscatter and MODIS EVI with R2 values ranging from 0.4 to 0.6; on the contrary, R2 values between ground measurements and MODIS NDVI or phenocam images are below 0.2. As the experiment took place mainly during dry season on BCI, cloud-cover rates are less dominate than during wet season. Under these conditions, MODIS EVI, which is less vulnerable to saturation effects, seems to be more reliable than MODIS NDVI. During wet season, Sentinel-1 backscatter might be the most reliable satellite option to derive vegetation parameters in the tropics. For a more robust conclusion, additional data takes over several years and during dry as well as wet season are needed to confirm initial findings presented here.
NASA Astrophysics Data System (ADS)
Lee, Pei-Chen; Cheng, Chih-Hsin
2017-04-01
Landslides are critical natural disturbances in tropical and temperate areas and exert immense impacts on forest ecosystems and soil properties. The impacts of landslides on soil properties not only vary with their movement type, scale, or location but also have great spatial variation inside landslide. In this study, the effects of movement type (erosion and deposition) and succeeding vegetation on soil properties inside a landslide scar were evaluated. The study site was located in Chiufenernshan, central Taiwan. The landslide was triggered by the Chi-Chi Earthquake (Ritch magnitude 7.3) in 1999. A huge amount of waste debris (30 million m3) was moved along the sliding slope (with a tipping degree at 26o) and deposited in the lower parts. Total area size of landslide scar was 200 ha and about 30 - 50 m depth waste material was eroded/deposited in the upper/lower scar areas. After 17 years, the succeeding vegetation varied inside landslide scar. The erosion areas were covered with grass (Miscanthus floridulus) or left barren in some slopes. In contrast, a secondary forest, dominated with Trema orientalis, Lithocarpus konishii, Mallotus paniculatus, and Smilax bracteata, developed in the deposition areas. We collected soil samples in different landscape areas including (i) erosion areas without vegetation, (ii) erosion areas with grass vegetation, (iii) deposition areas, and (iv) adjacent undisturbed areas. Our results indicated that the erosion areas had higher bulk density, rock fragment and pH value, but less soil organic carbon, total nitrogen, total phosphorus and N-mineralization rate than both deposition and adjacent undisturbed areas. The soil properties without vegetation even showed the extreme end compared to the soils with grass vegetation. Soils at the deposition zone had similar rock fragment, bulk density, soil pH, soil organic carbon and N-mineralization rate values to the undisturbed site (p > 0.05). We speculate that movement types could determine the initial establishment of vegetation types and then influence soil properties under vegetation succession. Therefore, both waste movement types and vegetation and their interactions play important roles on soil properties.
Channel Patterns as the Result of Self-Organization Within the Flow-Sediment-Vegetation System
NASA Astrophysics Data System (ADS)
Tal, M.; Paola, C.
2003-12-01
The familiar patterns of braided and meandering rivers can be thought of as the result of self-organization within a "three-phase" system comprising fluid, sediment, and vegetation. Interactions between these three components are also largely responsible for the organization of river systems into separate and distinguishable channels and floodplains. Key elements of the self organization include the space and time characteristics of seed dispersal and plant growth as well as the statistics of occupation, abandonment, and reworking of the bed by the flow. Seeds are transported and dispersed readily by wind and water and opportunistically colonize areas of the channel that are abandoned or exposed at low flows. Vegetation increases bank stability through root reinforcement of the sediment and increases the threshold shear stress needed for erosion. In addition, vegetation offers resistance to the flow by increasing the drag and reducing the velocity, thus decreasing the stream power available for erosion and transport. Vegetation that is not removed while young will become stronger and increasingly resistant to erosion and removal by the flow. Thus a key organizing parameter in the flow-sediment-vegetation system is the time scale for establishment of the vegetation relative to a characteristic channel or bed mobility time. Experiments at the St. Anthony Falls Laboratory demonstrate how repeated cycling of vegetation seeding and water discharge changes an unvegetated braided channel morphology: the flow is gradually corralled into a single sinuous channel that largely tracks the thread of maximum velocity in the original braided network. The experiments are carried out in a large unconsolidated sand bed flume in which alfalfa sprouts are used to simulate riparian vegetation and offer the only form of cohesion in the system. An initial braided pattern is allowed to evolve freely in conjunction with alternating high and low discharges and repeated seedings. As the vegetation density and age increase with time, smaller and weaker channels are choked off leaving a single relatively narrow channel with a sinuous thalweg. This channel develops its own internal bar forms with smaller length scales than the original braid bars.
Engeman, Richard M.; Barnes, Victor G.; Anthony, Richard M.; Krupa, Heather W.
1997-01-01
The effects of vegetation management on northern pocket gopher (Thomomys talpoides) activity and damage to lodgepole pine (Pinus contorta) seedlings were studied using 2,4-D herbicide to alter the habitat. Treatments were applied to a large (8.1 ha) treatment unit and observed effects were compared with an untreated control unit of the same size. The greatly reduced forb and grass cover on the treated unit was associated with a corresponding decrease in pocket gopher activity that persisted for 6 years after initial treatment. Times until seedlings first incurred gopher damage and overall survival of seedlings were greatly increased on the treated unit.
NASA Astrophysics Data System (ADS)
Schafer, K. V.; Kurepa, S.; Duman, T.; Scott, M.; Pechmann, I.; Vanderklein, D. W.
2017-12-01
The effect of wetland restoration on soil respiration in tidal brackish marshes has not been comprehensively studied. In New Jersey, common mitigation efforts come in the form of the removal of an invasive haplotype of Phragmites australis and replanting of native species, resulting in significant habitat disturbance. This study investigated the differences in soil respiration within and between areas covered with P. australis, Spartina alterniflora, and Spartina patens. We performed static chamber measurements of soil respiration using an infrared gas analyzer to measure CO2 fluxes in a natural site and a mitigated site in the Meadowlands of New Jersey. Daytime measurements were performed in 10 random locations in areas populated with each of the vegetation types, to represent the spatial heterogeneity of the wetland area, during summer 2017. Due to the nature of the wetland, vegetation had to be removed to uncover the soil. Prior to measuring exposed soil respiration, we therefore measured CO2 flux including the vegetation within the chamber, which allowed us to additionally calculate the respiration including the vegetation. Furthermore, we assessed direct respiration of green leaves with leaf gas exchange measurements. Combining these different methodologies and scales allow us to estimate the function of different components that contribute to total respiration from the wetland, and how they change spatially and temporally. Initial results showed that soil respiration in P. australis patches was much higher than in both Spartina species, however average vegetation respiration per unit mass was similar across all three. Vegetation respiration and soil respiration are of the same order of magnitude in all three species as well. Also, when respiration with and without vegetation was combined, P. australis showed a considerably higher flux.
NASA Astrophysics Data System (ADS)
Klein, Cornelia; Bliefernicht, Jan; Heinzeller, Dominikus; Gessner, Ursula; Klein, Igor; Kunstmann, Harald
2017-05-01
West Africa is a hot spot region for land-atmosphere coupling where atmospheric conditions and convective rainfall can strongly depend on surface characteristics. To investigate the effect of natural interannual vegetation changes on the West African monsoon precipitation, we implement satellite-derived dynamical datasets for vegetation fraction (VF), albedo and leaf area index into the Weather Research and Forecasting model. Two sets of 4-member ensembles with dynamic and static land surface description are used to extract vegetation-related changes in the interannual difference between August-September 2009 and 2010. The observed vegetation patterns retain a significant long-term memory of preceding rainfall patterns of at least 2 months. The interannual vegetation changes exhibit the strongest effect on latent heat fluxes and associated surface temperatures. We find a decrease (increase) of rainy hours over regions with higher (lower) VF during the day and the opposite during the night. The probability that maximum precipitation is shifted to nighttime (daytime) over higher (lower) VF is 12 % higher than by chance. We attribute this behaviour to horizontal circulations driven by differential heating. Over more vegetated regions, the divergence of moist air together with lower sensible heat fluxes hinders the initiation of deep convection during the day. During the night, mature convective systems cause an increase in the number of rainy hours over these regions. We identify this feedback in both water- and energy-limited regions of West Africa. The inclusion of observed dynamical surface information improved the spatial distribution of modelled rainfall in the Sahel with respect to observations, illustrating the potential of satellite data as a boundary constraint for atmospheric models.
KINGSTON, N.; WALDREN, S.
2003-01-01
Quantitative surveys of the vegetation of south‐east Polynesian Islands are rarely undertaken owing to time and logistical restrictions; however they are fundamental in determining the conservation status of fragile island ecosystems. The aim of the research was to document quantitatively the vegetation of Pitcairn Island by investigating whether clearly definable plant communities existed on the island, and the underlying environmental gradients influencing these communities. Initially, 10 × 10 m quadrats were taken from all areas of the island, with environmental parameters recorded for each quadrat. The vegetation was then mapped from high altitude vantage points. Two‐way indicator species analysis was used to identify distinct plant communities, and canonical correspondence analysis was used to determine the underlying environmental gradients. The vegetation consists of 14 plant communities: four coastal, six forest, two fernland and two scrub communities. Large areas are covered by non‐native scrub vegetation, and by monospecific Syzygium jambos (rose‐apple) plantations. Less than 30 % of the island is covered by native forest, and these areas are limited to remote valleys. Fernlands also cover large areas, including both eroding areas and ridge tops. Coastal vegetation comprises rock and cliff communities with limited strand vegetation. The major environmental gradient affecting the composition of the plant communities is altitude, but anthropogenic influences also have a large effect, owing to forest clearance and introduced species. The light environment is affected by the canopy species, and determines what ground flora can develop. Identification of distinct plant communities has allowed for a system of nature reserves to be suggested, which conserve all of these plant communities and a significant proportion of the threatened plant species. PMID:12824069
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kercher, J.R.; Chambers, J.Q.
1995-10-01
We have developed a geographically-distributed ecosystem model for the carbon, nitrogen, and water dynamics of the terrestrial biosphere TERRA. The local ecosystem model of TERRA consists of coupled, modified versions of TEM and DAYTRANS. The ecosystem model in each grid cell calculates water fluxes of evaporation, transpiration, and runoff; carbon fluxes of gross primary productivity, litterfall, and plant and soil respiration; and nitrogen fluxes of vegetation uptake, litterfall, mineralization, immobilization, and system loss. The state variables are soil water content; carbon in live vegetation; carbon in soil; nitrogen in live vegetation; organic nitrogen in soil and fitter; available inorganic nitrogenmore » aggregating nitrites, nitrates, and ammonia; and a variable for allocation. Carbon and nitrogen dynamics are calibrated to specific sites in 17 vegetation types. Eight parameters are determined during calibration for each of the 17 vegetation types. At calibration, the annual average values of carbon in vegetation C, show site differences that derive from the vegetation-type specific parameters and intersite variation in climate and soils. From calibration, we recover the average C{sub v} of forests, woodlands, savannas, grasslands, shrublands, and tundra that were used to develop the model initially. The timing of the phases of the annual variation is driven by temperature and light in the high latitude and moist temperate zones. The dry temperate zones are driven by temperature, precipitation, and light. In the tropics, precipitation is the key variable in annual variation. The seasonal responses are even more clearly demonstrated in net primary production and show the same controlling factors.« less
Estimating Vegetation Height from WorldView-02 and ArcticDEM Data for Broad Ecological Applications
NASA Astrophysics Data System (ADS)
Meddens, A. J.; Vierling, L. A.; Eitel, J.; Jennewein, J. S.; White, J. C.; Wulder, M.
2017-12-01
Boreal and arctic regions are warming at an unprecedented rate, and at a rate higher than in other regions across the globe. Ecological processes are highly responsive to temperature and therefore substantial changes in these northern ecosystems are expected. Recently, NASA initiated the Arctic-Boreal Vulnerability Experiment (ABoVE), which is a large-scale field campaign that aims to gain a better understanding of how the arctic responds to environmental change. High-resolution data products that quantify vegetation structure and function will improve efforts to assess these environmental change impacts. Our objective was to develop and test an approach that allows for mapping vegetation height at a 5m grid cell resolution across the ABoVE domain. To accomplish this, we selected three study areas across a north-south gradient in Alaska, representing an area of approximately 130 km2. We developed a RandomForest modeling approach for predicting vegetation height using the ArcticDEM (a digital surface model produced across the Arctic by the Polar Geospatial Center) and high-resolution multispectral satellite data (WorldView-2) in conjunction with aerial lidar data for calibration and validation. Vegetation height was successfully predicted across the three study areas and evaluated using an independent dataset, with R2 ranging from 0.58 to 0.76 and RMSEs ranging from 1.8 to 2.4 m. This predicted vegetation height dataset also led to the development of a digital terrain model using the ArcticDEM digital surface model by removing canopy heights from the surface heights. Our results show potential to establish a high resolution pan-arctic vegetation height map, which will provide useful information to a broad range of ongoing and future ecological research in high northern latitudes.
NASA Astrophysics Data System (ADS)
Donohue, Randall J.; Roderick, Michael L.; McVicar, Tim R.; Yang, Yuting
2017-01-01
Elevated CO2 increases leaf-level water-use efficiency (ω) almost universally. How canopy-level transpiration and assimilation fluxes respond to increased ω is currently unclear. We present a simple, resource-availability-based hypothesis of how equilibrium (or mature) leaf and canopy transpiration and assimilation rates, along with leaf area index (L), respond to elevated CO2. We quantify this hypothesis in the form of a model and test it against observations from eight Free Air CO2 Enrichment sites that span a wide range of resource availabilities. Sites were grouped according to vegetation disturbance status. We find the model adequately accounts for the responses of undisturbed vegetation (R2 = 0.73, 11% error) but cannot account for the responses of disturbed vegetation (R2 = 0.47, 17% error). At undisturbed sites, the responses of L and of leaf and canopy transpiration vary predictably (7% error) with resource availability, whereas the leaf assimilation response is less predictable. In contrast, the L and transpiration flux responses at the disturbed (mostly forested) sites are highly variable and are not strongly related to resource availability. Initial analyses suggest that they are more strongly related to regrowth age than to resource availability. We conclude that (i) our CO2 response hypothesis is valid for capturing the responses of undisturbed vegetation only, (ii) that the responses of disturbed vegetation are distinctly different from undisturbed vegetation, and (iii) that these differences need to be accounted for when predicting the effects of elevated CO2 on land surface processes generally, and on leaf area and water fluxes in particular.
ARE AIRBORNE CONTAMINANTS A RISK FACTOR TO AQUATIC ECOSYSTEMS IN REMOTE WESTERN NATIONAL PARKS (USA)
The Western Airborne Contaminants Assessment Project (WACAP) was initiated in 2002 by the National Park Service to determine if airborne contaminants were having an impact on remote western ecosystems. Multiple sample media (snow, water, sediment, fish and terrestrial vegetation...
Nursing Telehealth Applications Initiative
2011-01-01
carb serving". Questions Episode 2 (Week 2) Topic Healthy Eating Nutritional Tip: A one cup serving of broccoli is the size of a tennis ball...of your plate, fill with non-starchy vegetables like broccoli , carrots, cucumbers, salad, tomatoes, and cauliflower. • Add a glass of non-fat milk
Anthocyanin rich black raspberries can be made even better
USDA-ARS?s Scientific Manuscript database
Our research group has worked the last 7 years on improving the phenological, vegetative, and phytochemical traits of US grown black raspberries. We have been awarded USDA/NIFA-Specialty Crops Research Initiative (SCRI) funding to continue our project as a multi-region and international collaboratio...
Anthocyanin rich black raspberries can be made even better
USDA-ARS?s Scientific Manuscript database
Our research group has worked the last seven years on improving the phenological, vegetative, and phytochemical traits of U.S. grown black raspberries. We have been awarded USDA/NIFA-Specialty Crops Research Initiative (SCRI) funding to continue our project as a multi-region and international collab...
Directional climate change and potential reversal of desertification in arid and semiarid ecosystems
USDA-ARS?s Scientific Manuscript database
Our objective was to determine if long-term increases in precipitation can maintain grasslands susceptible to desertification, and initiate a reversal of historic regime shifts on desertified shrublands. Long-term trends in desertification were documented using vegetation maps beginning in 1858. The...
Airborne Instrument Simulator for the Lidar Surface Topography (LIST) Mission
NASA Technical Reports Server (NTRS)
Yu, Anthony W.; Krainak, Michael A.; Harding, David J.; Abshire, James B.; Sun, Xiaoli; Cavanaugh, John; Valett, Susan; Ramos-Izquierdo, Luis
2010-01-01
In 2007, the National Research Council (NRC) completed its first decadal survey for Earth science at the request of NASA, NOAA, and USGS. The Lidar Surface Topography (LIST) mission is one of fifteen missions recommended by NRC, whose primary objectives are to map global topography and vegetation structure at 5 m spatial resolution, and to acquire global coverage with a few years. NASA Goddard conducted an initial mission concept study for the LIST mission 2007, and developed the initial measurement requirements for the mission.
Abrupt vegetation transitions characterise long-term Amazonian peatland development
NASA Astrophysics Data System (ADS)
Roucoux, K. H.; Baker, T. R.; Gosling, W. D.; Honorio Coronado, E.; Jones, T. D.; Lahteenoja, O.; Lawson, I. T.
2012-04-01
Recent investigations of wetlands in western Amazonia have revealed the presence of extensive peatlands with peat deposits of up to 8 m-thick developing under a variety of vegetation types (Lähteenoja et al. 2012). Estimated to cover 150,000 km2 (Schulman et al. 1999), these peatlands make a valuable contribution to landscape and biological diversity and represent globally important carbon stores. In order to understand the processes leading to peat formation, and the sensitivity of these environments to future climatic change, it is necessary to understand their long-term history. The extent to which peatland vegetation changes over time, the stability of particular communities, the controls on transitions between vegetation types and how these factors relate to the accumulation of organic matter are not yet known. We report the first attempt to establish the long-term (millennial scale) vegetation history of a recently-described peatland site: Quistococha, a palm swamp, or aguajal, close to Iquitos in northern Peru. The vegetation is dominated by Mauritia flexuosa and Mauritiella armata and occupies a basin which is thought to be an abandoned channel of the River Amazon. We obtained a 4 m-long peat sequence from the deepest part of the basin. AMS-radiocarbon dating yielded a maximum age of 2,212 cal yr BP for the base of the peat, giving an average accumulation rate of 18 cm per century. Below the peat are 2 m of uniform, largely inorganic pale grey clays of lacustrine origin, which are underlain by an unknown thickness of inorganic sandy-silty clay of fluvial origin. Pollen analysis, carried out at c. 88-year intervals, shows the last 2,212 years to be characterised by the development of at least four distinct vegetation communities, with peat accumulating throughout. The main phases were: (1) Formation of Cyperaceae (sedge) fen coincident with peat initiation; (2) A short-lived phase of local Mauritia/Mauritiella development; (3) Development of mixed wet woodland with abundant Myrtaceae; (4) Expansion of Mauritia/Mauritiella palm swamp vegetation c. 1000 years ago representing establishment of the present day vegetation community. Our results show that the vegetation at this site has undergone continuous change throughout the period of peat formation. The sequence of vegetation development is not straightforward, being characterised by abrupt transitions between vegetation types and reversals in the apparent trajectory of change. Overall this suggests that the system is highly dynamic on centennial to millennial timescales. This complexity may reflect vegetation responses to a combination of external (physical) and internal (biological) drivers and the presence of thresholds in the system. Future investigations will work towards understanding the processes that drive these vegetation transitions and predicting peatland vegetation responses to future climatic change.
Drought-induced vegetation shifts in terrestrial ecosystems: The key role of regeneration dynamics
NASA Astrophysics Data System (ADS)
Martínez-Vilalta, Jordi; Lloret, Francisco
2016-09-01
Ongoing climate change is modifying climatic conditions worldwide, with a trend towards drier conditions in most regions. Vegetation will respond to these changes, eventually adjusting to the new climate. It is unclear, however, how close different ecosystems are to climate-related tipping points and, thus, how dramatic these vegetation changes will be in the short- to mid-term, given the existence of strong stabilizing processes. Here, we review the published evidence for recent drought-induced vegetation shifts worldwide, addressing the following questions: (i) what are the necessary conditions for vegetation shifts to occur? (ii) How much evidence of drought-induced vegetation shifts do we have at present and where are they occurring? (iii) What are the main processes that favor/oppose the occurrence of shifts at different ecological scales? (iv) What are the complications in detecting and attributing drought-induced vegetation shifts? (v) What ecological factors can interact with drought to promote shifts or stability? We propose a demographic framework to classify the likely outcome of instances of drought-induced mortality, based upon the survival of adults of potential replacement species and the regeneration of both formerly dominant affected species and potential replacement species. Out of 35 selected case studies only eight were clearly consistent with the occurrence of a vegetation shift (species or biome shift), whereas three corresponded to self-replacements in which the affected, formerly dominant species was able to regenerate after suffering drought-induced mortality. The other 24 cases were classified as uncertain, either due to lack of information or, more commonly, because the initially affected and potential replacement species all showed similar levels of regeneration after the mortality event. Overall, potential vegetation transitions were consistent with more drought-resistant species replacing less resistant ones. However, almost half (44%) of the vegetation trajectories associated to the 35 case studies implied no change in the functional type of vegetation. Of those cases implying a functional type change, the most common one was a transition from tree- to shrub-dominated communities. Overall, evidence for drought-induced vegetation shifts is still limited. In this context, we stress the need for improved, long-term monitoring programs with sufficient temporal resolution. We also highlight the critical importance of regeneration in determining the outcome of drought-induced mortality events, and the crucial role of co-drivers, particularly management. Finally, we illustrate how placing vegetation shifts in a biogeographical and successional context may support progress in our understanding of the underlying processes and the ecosystem-level implications.
Peng, ChiehFu Jeff; Wikramanayake, Athula H.
2013-01-01
Pattern formation along the animal-vegetal (AV) axis in sea urchin embryos is initiated when canonical Wnt (cWnt) signaling is activated in vegetal blastomeres. The mechanisms that restrict cWnt signaling to vegetal blastomeres are not well understood, but there is increasing evidence that the egg’s vegetal cortex plays a critical role in this process by mediating localized “activation” of Disheveled (Dsh). To investigate how Dsh activity is regulated along the AV axis, sea urchin-specific Dsh antibodies were used to examine expression, subcellular localization, and post-translational modification of Dsh during development. Dsh is broadly expressed during early sea urchin development, but immunolocalization studies revealed that this protein is enriched in a punctate pattern in a novel vegetal cortical domain (VCD) in the egg. Vegetal blastomeres inherit this VCD during embryogenesis, and at the 60-cell stage Dsh puncta are seen in all cells that display nuclear β-catenin. Analysis of Dsh post-translational modification using two-dimensional Western blot analysis revealed that compared to Dsh pools in the bulk cytoplasm, this protein is differentially modified in the VCD and in the 16-cell stage micromeres that partially inherit this domain. Dsh localization to the VCD is not directly affected by disruption of microfilaments and microtubules, but unexpectedly, microfilament disruption led to degradation of all the Dsh pools in unfertilized eggs over a period of incubation suggesting that microfilament integrity is required for maintaining Dsh stability. These results demonstrate that a pool of differentially modified Dsh in the VCD is selectively inherited by the vegetal blastomeres that activate cWnt signaling in early embryos, and suggests that this domain functions as a scaffold for localized Dsh activation. Localized cWnt activation regulates AV axis patterning in many metazoan embryos. Hence, it is possible that the VCD is an evolutionarily conserved cytoarchitectural domain that specifies the AV axis in metazoan ova. PMID:24236196
Attempt at quantifying human-induced land-cover change during the Holocene in central eastern China
NASA Astrophysics Data System (ADS)
Li, Furong; Gaillard, Marie-José; Mazier, Florence; Sugita, Shinya; Xu, Qinghai; Li, Yuecong; Zhou, Zhongze
2016-04-01
China is one of the key regions of the world where agricultural civilizations already flourished several millennia ago. However, the role of human activity in vegetation change is not yet fully understood. As a contribution to the PAGES LandCover6k initiative, this study aims to achieve a first attempt at Holocene land-cover reconstructions in the temperate zone of China using the REVEALS model (Sugita, 2007). Pollen productivity estimates (PPEs) are key parameters required for the model and were lacking so far for major taxa characteristic of ancient cultural landscapes in that part of the world. Remains of traditional agricultural structures and practices are still found in the low mountain ranges of the Shandong province located in central-eastern China. The area was chosen for a study of pollen-vegetation relationships and calculation of pollen productivity estimates. Pollen counts and vegetation data from 37 random sites within an area of 200 x 100 km are used for calculation. The vegetation inventory within 100 meters from the pollen sampling site follows the standard methods of Bunting et al. (2013). Vegetation data beyond 100 meters up to 1.5 km from the pollen sampling site is extracted from satellite images. The PPEs are calculated using the three sub-models of the Extended R-value model and compared with existing PPEs from northern China's biomes and temperate Europe. The PPEs' relevance for reconstruction of past human-induced land-cover change in temperate China are evaluated. Key words China, traditional agricultural landscape, ERV model, pollen productivity estimates References Bunting, M. J., et al. (2013). "Palynological perspectives on vegetation survey: a critical step for model-based reconstruction of Quaternary land cover." Quaternary Science Reviews 82: 41-55. Sugita, S. (2007). "Theory of quantitative reconstruction of vegetation I: pollen from large sites REVEALS regional vegetation composition." The Holocene 17(2): 229-241.
NASA Astrophysics Data System (ADS)
Zhao, M.; Velicogna, I.; Kimball, J. S.
2017-12-01
Climate change such as more frequent heatwaves and drought is threatening our food security and ecosystem by reducing water supply to vegetation. Characterizing vegetation response to water supply changes is not only important for evaluating and mitigating climatic change impacts on ecosystem functions and services, but also to determine the feedback mechanisms that ecosystem response may generate on the climate itself. However, such characterization is not well-known at the global scale partly because large scale observations of underground water supply changes are limited. Satellite observations of soil moisture (SM) datasets such as from Soil Moisture Active and Passive (SMAP) and European Space Agency Climate Change Initiative (ESA CCI) do not penetrate more than a few centimeters and do not capture the entire root-zone. Here we employ a newly developed Drought Severity Index from Gravity Recovery and Climate Experiment (GRACE-DSI) to complement SM observations by informing total water supply changes in the entire terrestrial hydrological cycle. We use MODIS vegetation indices as proxies for vegetation growth and investigate their seasonal and interannual variability in relation to GRACE-DSI. We find that total water supply constrains vegetation growth across the entire continental US. Water constraint begins at an earlier date of year and lasts for a longer period in the lower latitude than in the higher latitude. We also find that water constraint occurs at different phenological stages depending on vegetation type. For instance, water constrain forest growth during reproductive period in eastern US but constrain shrub land growth during green-up in Arizona (Fig. 1). In western United States, eastern Australia and the horn of Africa, we find that vegetation growth changes closely follows GRACE-DSI but can have 16-day to one-month delay with respect to SM anomalies from SMAP and ESA CCI. This suggests that in these regions, vegetation is sensitive to water supply changes in the deeper soil layers than in the shallower surface.
Wind effect on diurnal thermally driven flow in vegetated nearshore of a lake
NASA Astrophysics Data System (ADS)
Lin, Y. T.
2014-12-01
In this study, a highly idealized model is developed to discuss the interplay of diurnal heating/cooling induced buoyancy and wind stress on thermally driven flow over a vegetated slope. Since the model is linear, the horizontal velocity components can be broken into buoyancy-driven and surface wind-driven parts. Due to the presence of rooted emergent vegetation, the circulation strength even under the surface wind condition is still significantly reduced, and the transient (adjustment) stage for the initial conditions is shorter than that without vegetation. The flow in shallows is dominated by a viscosity/buoyancy balance as the case without wind, while the effect of wind stress is limited to the upper layer in deep water. In the lower layer of deep regions, vegetative drag is prevailing except the near bottom regions, where viscosity dominates. Under the unidirectional wind condition, a critical dimensionless shear stress to stop the induced flow can be found and is a function of horizontal location . For the periodic wind condition, if the two forcing mechanisms work in concert, the circulation magnitude can be increased. For the case where buoyancy and wind shear stress act against each other, the circulation strength is reduced and its structure becomes more complex. However, the flow magnitudes near the bottom for and are comparable because surface wind almost has no influence.
Application and Evaluation of MODIS LAI, FPAR, and Albedo ...
MODIS vegetation and albedo products provide a more realistic representation of surface conditions for input to the WRF/CMAQ modeling system. However, the initial evaluation of ingesting MODIS data into the system showed mixed results, with increased bias and error for 2-m temperature and reduced bias and error for 2-m mixing ratio. Recently, the WRF/CMAQ land surface and boundary laywer processes have been updated. In this study, MODIS vegetation and albedo data are input to the updated WRF/CMAQ meteorology and air quality simulations for 2006 over a North American (NA) 12-km domain. The evaluation of the simulation results shows that the updated WRF/CMAQ system improves 2-m temperature estimates over the pre-update base modeling system estimates. The MODIS vegetation input produces a realistic spring green-up that progresses through time from the south to north. Overall, MODIS input reduces 2-m mixing ration bias during the growing season. The NA west shows larger positive O3 bias during the growing season because of reduced gas phase deposition resulting from lower O3 deposition velocities driven by reduced vegetation cover. The O3 bias increase associated with the realistic vegetation representation indicates that further improvement may be needed in the WRF/CMAQ system. The National Exposure Research Laboratory’s Atmospheric Modeling Division (AMAD) conducts research in support of EPA’s mission to protect human health and the environment. AMAD’s rese
Jakusz, J.W.; Dieck, J.J.; Langrehr, H.A.; Ruhser, J.J.; Lubinski, S.J.
2016-01-11
Similar to an AA, validation involves generating random points based on the total area for each map class. However, instead of collecting field data, two or three individuals not involved with the photo-interpretative mapping separately review each of the points onscreen and record a best-fit vegetation type(s) for each site. Once the individual analyses are complete, results are joined together and a comparative analysis is performed. The objective of this initial analysis is to identify areas where the validation results were in agreement (matches) and areas where validation results were in disagreement (mismatches). The two or three individuals then perform an analysis, looking at each mismatched site, and agree upon a final validation class. (If two vegetation types at a specific site appear to be equally prevalent, the validation team is permitted to assign the site two best-fit vegetation types.) Following the validation team’s comparative analysis of vegetation assignments, the data are entered into a database and compared to the mappers’ vegetation assignments. Agreements and disagreements between the map and validation classes are identified, and a contingency table is produced. This document presents the AA processes/results for Pools 13 and La Grange, as well as the validation process/results for Pools 13 and 26 and Open River South.
Struempler, Barbara J; Parmer, Sondra M; Mastropietro, Lisa M; Arsiwalla, Dilbur; Bubb, Robert R
2014-01-01
To increase fruit and vegetable (FV) consumption of youth in Body Quest: Food of the Warrior (BQ), a childhood obesity prevention program. Quasi-experimental. Supplemental Nutrition Assistance Program-Education eligible schools (n = 60). Third-grade students (n = 2,477). Treatment groups (n = 1,674) self-reported foods consumed through the School Lunch Program for 17 weekly assessments; they participated in BQ curriculum, iPad app education, and weekly FV tastings. Control groups (n = 803) completed only pre- and post-assessments. Weekly FV consumed through School Lunch Program. ANCOVA and growth modeling. From before to after the program, the treatment group demonstrated significant, moderate increases in fruit (P < .01) and vegetable (P < .001) consumptions, increasing from 7 to 8 weekly FV servings. After the program, the treatment group consumed significantly (P < .001) more FV than the control group. Fruit and vegetable consumption increased to class 10 and then stabilized. From before to after the program, all FV predictors were significantly higher and included gender (vegetables), race (FV), and free/reduced lunch (fruit). Nutrition programs can increase FV intake. Even moderate increases in FV intake can be an initial step for the prevention of chronic disease. Copyright © 2014 Society for Nutrition Education and Behavior. Published by Elsevier Inc. All rights reserved.
Surface soil phytoliths as vegetation and altitude indicators: a study from the southern Himalaya
An, Xiaohong; Lu, Houyuan; Chu, Guoqiang
2015-01-01
Phytoliths represent one of the few available altitudinal vegetation proxies for mountain ecosystems. This study analyzed 41 topsoil phytolith samples collected from five altitudinal zones in the southern Himalaya as far as, and beyond, the timberline, from tropical forest (up to 1,000 m a.s.l.) to subtropical forest (1,000–2,000 m a.s.l.), to temperate forest (2,000–3,000 m a.s.l.), to subalpine forest (3,000–4,100 m a.s.l.) and finally to alpine scrub (4,100–5,200 m a.s.l.). The statistical results show a good correlation between phytolith assemblages and these five altitudinal vegetation zones: the five phytolith assemblages identified effectively differentiated these five altitudinal vegetation zones. In particular, coniferous phytoliths accurately indicated the timberline. Additionally, we tested the phytolith index Ic (a proxy for estimating the percentage of Pooideae vis-à-vis the total grass content) as a quantifier of phytolith variety versus altitude. Ic increased along altitude, as expected. An investigation of phytoliths provided an initial basis for the analysis of the composition of gramineous vegetation. Furthermore, redundancy analysis and discriminant analysis also suggested a significant correlation between phytolith assemblages and altitude. Our research therefore provides an up-to-date analogue for the reconstruction of changes to palaeovegetation and palaeoaltitude in mountainous areas. PMID:26500137
Study on E. coli and Salmonella biofilms from fresh fruits and vegetables.
Amrutha, Balagopal; Sundar, Kothandapani; Shetty, Prathapkumar Halady
2017-04-01
Foodborne outbreaks associated with fresh fruits and vegetables are on the rise worldwide. Biofilm formation is one of the important traits of pathogens making them strongly attached to substrates as well as express virulence phenotypes. Present study investigates the biofilm forming ability of E. coli and Salmonella sp. isolated from fresh fruits and vegetables. A total of 53 strains, including 35 E. coli and 18 Salmonella sp. isolated from different fruit and vegetable samples were taken into account for the study. Initial screening for biofilm formation was done using Congo Red agar plate test. Results revealed that 22.8% E. coli and 22.2% Salmonella sp. were potential biofilm formers. However, the MTP (Micro-Titre Plate) assay suggested more isolates of both E. coli and Salmonella sp. were moderate to strong biofilm producers. Agar plate diffusion assay with Agrobacterium tumefaciens NTL-4 showed the production of quorum signaling molecules (AHLs) by three isolates of E. coli and one Salmonella sp. Two E. coli isolates showed a significant amount of EPS production indicating higher biofilm forming potential. The Presence of LUX R homologue gene ( sdi A) in two of the Salmonella isolates were confirmed by PCR which demonstrated their potential pathogenicity. Results of the work underline the biofilm forming and potentially virulent capacities of isolates from the surface of fruits and vegetables.
Initial Validation of NDVI time seriesfrom AVHRR, VEGETATION, and MODIS
NASA Technical Reports Server (NTRS)
Morisette, Jeffrey T.; Pinzon, Jorge E.; Brown, Molly E.; Tucker, Jim; Justice, Christopher O.
2004-01-01
The paper will address Theme 7: Multi-sensor opportunities for VEGETATION. We present analysis of a long-term vegetation record derived from three moderate resolution sensors: AVHRR, VEGETATION, and MODIS. While empirically based manipulation can ensure agreement between the three data sets, there is a need to validate the series. This paper uses atmospherically corrected ETM+ data available over the EOS Land Validation Core Sites as an independent data set with which to compare the time series. We use ETM+ data from 15 globally distributed sites, 7 of which contain repeat coverage in time. These high-resolution data are compared to the values of each sensor by spatially aggregating the ETM+ to each specific sensors' spatial coverage. The aggregated ETM+ value provides a point estimate for a specific site on a specific date. The standard deviation of that point estimate is used to construct a confidence interval for that point estimate. The values from each moderate resolution sensor are then evaluated with respect to that confident interval. Result show that AVHRR, VEGETATION, and MODIS data can be combined to assess temporal uncertainties and address data continuity issues and that the atmospherically corrected ETM+ data provide an independent source with which to compare that record. The final product is a consistent time series climate record that links historical observations to current and future measurements.
Behrens, Timothy K; Liebert, Mina L; Peterson, Hannah J; Howard Smith, Jennifer; Sutliffe, Jay T; Day, Aubrey; Mack, Jodi
2018-05-01
The purpose of this study is to examine the impact of a districtwide food best practices and preparation changes in elementary schools lunches, implemented as part of the LiveWell@School childhood obesity program, funded by LiveWell Colorado/Kaiser Permanente Community Health Initiative. Longitudinal study examining how school changes in best practices for food preparation impacted the types of side items offered from 2009 to 2015 in elementary school cafeterias in a high-need school district in southern Colorado. Specifically, this study examined changes in side items (fruits, vegetables, potatoes, breads, and desserts). In Phase 1 (2009-2010), baseline data were collected. During Phase 2 (2010-2011), breaded and processed foods (e.g., frozen nuggets, pre-packaged pizza) were removed and school chefs were trained on scratch cooking methods. Phase 3 (2011-2012) saw an increased use of fresh/frozen fruits and vegetables after a new commodity order. During Phase 4 (2013-2015), chef consulting and training took place. The frequency of side offerings was tracked across phases. Analyses were completed in Fall 2016. Because of limited sample sizes, data from Phases 2 to 4 (intervention phases) were combined for potatoes and desserts. Descriptive statistics were calculated. After adjusting for length of time for each phase, Pearson chi-square tests were conducted to examine changes in offerings of side items by phase. Fresh fruit offerings increased and canned fruit decreased in Phases 1-4 (p=0.001). A significant difference was observed for vegetables (p=0.001), with raw and steamed vegetables increasing and canned vegetables decreasing from Phase 1 to 4. Fresh potatoes (low in sodium) increased and fried potatoes (high in sodium) decreased from Phase 1 to Phases 2-4 (p=0.001). Breads were eliminated entirely in Phase 2, and dessert changes were not significant (p=0.927). This approach to promoting healthier lunch sides is a promising paradigm for improving elementary cafeteria food offerings. This article is part of a supplement entitled Building Thriving Communities Through Comprehensive Community Health Initiatives, which is sponsored by Kaiser Permanente, Community Health. Copyright © 2018 American Journal of Preventive Medicine. Published by Elsevier Inc. All rights reserved.
76 FR 51936 - Coconino and Kaibab National Forests, Arizona, Four-Forest Restoration Initiative
Federal Register 2010, 2011, 2012, 2013, 2014
2011-08-19
... habitat, soil productivity, and watershed function. DATES: Comments concerning the scope of the analysis... necessary soil, water, and vegetation attributes to be healthy and functioning at or near potential... have soils in satisfactory condition so that the soil can resist erosion, recycle nutrients and absorb...
Opportunities and challenges for developing an oilseed to renewable jet fuel industry
USDA-ARS?s Scientific Manuscript database
Military and commercial aviation have expressed interest in using renewable aviation biofuels, with an initial goal of 1 billion gallons of drop-in aviation biofuels by 2018. While these fuels could come from many sources, hydrotreated renewable jet fuel (HRJ) from vegetable oils have been demonstra...
Identification of SSR markers that differentiate bermudagrass cultivars derived from 'Tifgreen'
USDA-ARS?s Scientific Manuscript database
The release of the bermudagrass (Cynodon spp.) triploid hybrid ‘Tifgreen’ in 1956 launched an era of vegetatively propagated turfgrass. Plants with differences in phenotypes within this cultivar, or off-types, began to be identified soon after the initial plantings. For the past 50 years many of the...
7 CFR 982.32 - Initial members and nomination of successor members.
Code of Federal Regulations, 2010 CFR
2010-01-01
...) AGRICULTURAL MARKETING SERVICE (Marketing Agreements and Orders; Fruits, Vegetables, Nuts), DEPARTMENT OF... such handler during the two marketing years preceding the marketing year in which nominations are made... nearest whole ton) recorded by the Board as handled by each handler during the two marketing years...
In 1991, experimental transplantings of Vallisneria americana (tapegrass, vallisneria, or wildcelery) were initiated at selected sites which lacked grass beds along the north shore of Perdido Bay, located on the Alabama-Florida border. Abatement of organic and color-staining comp...
Manipulations to regenerate aspen ecosystems
Wayne D. Shepperd
2001-01-01
Vegetative regeneration of aspen can be initiated through manipulations that provide hormonal stimulation, proper growth environment, and sucker protection - the three elements of the aspen regeneration triangle. The correct course of action depends upon a careful evaluation of the size, vigor, age, and successional status of the existing clone. Soils and site...
The Vale rangeland rehabilitation program: an evaluation.
Harold F. Heady
1988-01-01
This manuscript discusses the initiation, execution, and outcome of an 11-year (1962-1972) rangeland rehabilitation program in southeastern Oregon. Res. Bull. PNW-RB-070 (1977) is updated with 1986 measurements and evaluations of vegetational conditions, wildlife, recreational use, livestock grazing, and management of public rangelands. The mix of multiple uses has...
The biophysical link between climate, water, and vegetation in bioenergy agro-ecosystems
USDA-ARS?s Scientific Manuscript database
Land use change for bioenergy feedstocks is likely to intensify as energy demand rises simultaneously with increased pressure to minimize greenhouse gas emissions. Initial assessments of the impact of adopting bioenergy crops as a significant energy source have largely focused on the potential for b...
Application and Evaluation of MODIS LAI, FPAR, and Albedo Products in the WRF/CMAQ System
MODIS vegetation and albedo products provide a more realistic representation of surface conditions for input to the WRF/CMAQ modeling system. However, the initial evaluation of ingesting MODIS data into the system showed mixed results, with increased bias and error for 2-m temper...
Air Pollution: Where Do Hydrocarbons Come From?
ERIC Educational Resources Information Center
Maugh, Thomas H., II
1975-01-01
Describes the controversy surrounding a report which concluded that, in certain areas and under certain conditions, hydrocarbons released from trees and other vegetation may be more important in the initiation of smog than those released from automobiles. Discusses relevant research which has not been able to support or refute this conclusion.…
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
This paper contributes new information about the impacts from introduced plant invasions on the native Hawaiian vegetation as consequences of land disturbance and geothermal development activities. In this regard, most geothermal development is expected to act as another recurring source of physical disturbance which favors the spread and maintenance of introduced organisms throughout the region. Where geothermal exploration and development activities extend beyond existing agricultural and residential development, they will become the initial or sole source of disturbance to the naturalized vegetation of the area. Kilauea has a unique ecosystem adapted to the dynamics of a volcanically active landscape. Themore » characteristics of this ecosystem need to be realized in order to understand the major threats to the ecosystem and to evaluate the effects of and mitigation for geothermal development in Puna. The native Puna vegetation is well adapted to disturbances associated with volcanic eruption, but it is ill-adapted to compete with alien plant species in secondary disturbances produced by human activities. Introduced plant and animal species have become a major threat to the continued presence of the native biota in the Puna region of reference.« less
Organoleptic testing of fish meatball fortified with various colored vegetables
NASA Astrophysics Data System (ADS)
Minantyo, Hari; Hariohoedojo, Alexander; Winarno, Prasetyon Sepsi
2017-03-01
Nowadays, many people tried to create and invent new varieties of food. They all tried to enrich the life of many people and increasing their quality of life using their food. The food that they create must be nutritious, safe and healthy. This can be achieved by combining various meat and vegetable products available on the market today. Previously, the research team found that fish meat had relatively high nutrition value. The research team believed that further increase in nutrition value can be achieved by combining fish meat and rich colored vegetables. This research came up with the creation of improved fish meatball fortified with various colored vegetables. With the initiation of ASEAN Free Trade Agreement, many culinary practitioners must pay more attention to the health and safety aspects of their food offerings. Indonesian government should also support this movement by providing education to those people who are not aware of the importance of healthy and safe food or snacks, especially meatballs. Meatballs are one of the most consumed snacks in Indonesia, because they are delicious and affordable. This new fish meatball creation will provide better alternatives to the commonly unhealthy meatballs available on Indonesian market today.
NASA Astrophysics Data System (ADS)
Strauch, R. L.; Istanbulluoglu, E.
2017-12-01
We develop a landslide hazard modeling approach that integrates a data-driven statistical model and a probabilistic process-based shallow landslide model for mapping probability of landslide initiation, transport, and deposition at regional scales. The empirical model integrates the influence of seven site attribute (SA) classes: elevation, slope, curvature, aspect, land use-land cover, lithology, and topographic wetness index, on over 1,600 observed landslides using a frequency ratio (FR) approach. A susceptibility index is calculated by adding FRs for each SA on a grid-cell basis. Using landslide observations we relate susceptibility index to an empirically-derived probability of landslide impact. This probability is combined with results from a physically-based model to produce an integrated probabilistic map. Slope was key in landslide initiation while deposition was linked to lithology and elevation. Vegetation transition from forest to alpine vegetation and barren land cover with lower root cohesion leads to higher frequency of initiation. Aspect effects are likely linked to differences in root cohesion and moisture controlled by solar insulation and snow. We demonstrate the model in the North Cascades of Washington, USA and identify locations of high and low probability of landslide impacts that can be used by land managers in their design, planning, and maintenance.
NASA Technical Reports Server (NTRS)
Case, Jonathan L.; Mungai, John; Sakwa, Vincent; Kabuchanga, Eric; Zavodsky, Bradley T.; Limaye, Ashutosh S.
2014-01-01
SPoRT/SERVIR/RCMRD/KMS Collaboration: Builds off strengths of each organization. SPoRT: Transition of satellite, modeling and verification capabilities; SERVIR-Africa/RCMRD: International capacity-building expertise; KMS: Operational organization with regional weather forecasting expertise in East Africa. Hypothesis: Improved land-surface initialization over Eastern Africa can lead to better temperature, moisture, and ultimately precipitation forecasts in NWP models. KMS currently initializes Weather Research and Forecasting (WRF) model with NCEP/Global Forecast System (GFS) model 0.5-deg initial / boundary condition data. LIS will provide much higher-resolution land-surface data at a scale more representative to regional WRF configuration. Future implementation of real-time NESDIS/VIIRS vegetation fraction to further improve land surface representativeness.
Territory and nest site selection patterns by Grasshopper Sparrows in southeastern Arizona
Ruth, Janet M.; Skagen, Susan K.
2017-01-01
Grassland bird populations are showing some of the greatest rates of decline of any North American birds, prompting measures to protect and improve important habitat. We assessed how vegetation structure and composition, habitat features often targeted for management, affected territory and nest site selection by Grasshopper Sparrows (Ammodramus savannarum ammolegus) in southeastern Arizona. To identify features important to males establishing territories, we compared vegetation characteristics of known territories and random samples on 2 sites over 5 years. We examined habitat selection patterns of females by comparing characteristics of nest sites with territories over 3 years. Males selected territories in areas of sparser vegetation structure and more tall shrubs (>2 m) than random plots on the site with low shrub densities. Males did not select territories based on the proportion of exotic grasses. Females generally located nest sites in areas with lower small shrub (1–2 m tall) densities than territories overall when possible and preferentially selected native grasses for nest construction. Whether habitat selection was apparent depended upon the range of vegetation structure that was available. We identified an upper threshold above which grass structure seemed to be too high and dense for Grasshopper Sparrows. Our results suggest that some management that reduces vegetative structure may benefit this species in desert grasslands at the nest and territory scale. However, we did not assess initial male habitat selection at a broader landscape scale where their selection patterns may be different and could be influenced by vegetation density and structure outside the range of values sampled in this study.
Yoghurts with addition of selected vegetables: acidity, antioxidant properties and sensory quality.
Najgebauer-Lejko, Dorota; Grega, Tadeusz; Tabaszewska, Małgorzata
2014-01-01
Yoghurt is a fermented milk of unique sensory, nutritive and dietetic value offered in a variety of types and in different flavours. Vegetables belong to the group of food products rich in antioxidant substances (e.g., vitamin C, carotenoids, tocopherols, polyphenols) which regular consumption lowers the risk of many diseases including cancers and cardiovascular disorders. The aim of the present work was to manufacture and assess the acidity, sensory quality and antioxidant capacity of yoghurts with addition of selected vegetables during 2-week refrigerated storage. The vegetable preparations (carrot, pumpkin, broccoli and red sweet pepper) were added to the cow's milk fermented using DVS type yoghurt culture after initial cooling to 15-20°C in the amount of 10% (w/w). The following analyses were performed: determination of pH, titratable acidity, antioxidant activity by ferric reducing antioxidant power (FRAP) and 2,2'-diphenyl-1-picrylhydrazyl (DPPH) method as well as sensory evaluation and were conducted after 1, 7 and 14 days of cold storage. The yoghurt supplementation with selected vegetables had no significant effect on the pH and titratable acidity level. The highest ability to scavenge DPPH radicals was stated for yoghurts with broccoli and red sweet pepper. The latter treatment gained the highest notes in sensory evaluation. All vegetable yoghurts were characterised by higher than the natural yoghurt FRAP values measured directly after production. However, the level of this parameter significantly decreased after storage. The red sweet pepper additive was the most beneficial regarding antioxidant properties and organoleptic acceptance of the studied yoghurts.
Esterhuizen, Johan; Njiru, Basilio; Vale, Glyn A; Lehane, Michael J; Torr, Stephen J
2011-09-01
Control of tsetse flies using insecticide-treated targets is often hampered by vegetation re-growth and encroachment which obscures a target and renders it less effective. Potentially this is of particular concern for the newly developed small targets (0.25 high × 0.5 m wide) which show promise for cost-efficient control of Palpalis group tsetse flies. Consequently the performance of a small target was investigated for Glossina fuscipes fuscipes in Kenya, when the target was obscured following the placement of vegetation to simulate various degrees of natural bush encroachment. Catches decreased significantly only when the target was obscured by more than 80%. Even if a small target is underneath a very low overhanging bush (0.5 m above ground), the numbers of G. f. fuscipes decreased by only about 30% compared to a target in the open. We show that the efficiency of the small targets, even in small (1 m diameter) clearings, is largely uncompromised by vegetation re-growth because G. f. fuscipes readily enter between and under vegetation. The essential characteristic is that there should be some openings between vegetation. This implies that for this important vector of HAT, and possibly other Palpalis group flies, a smaller initial clearance zone around targets can be made and longer interval between site maintenance visits is possible both of which will result in cost savings for large scale operations. We also investigated and discuss other site features e.g. large solid objects and position in relation to the water's edge in terms of the efficacy of the small targets.
NASA Astrophysics Data System (ADS)
Hallett, J. K. E.; Miller, D.; Roberts, D. A.
2017-12-01
Forest fires play a key role in shaping eco-systems. The risk to vegetation depends on the fire regime, fuel conditions (age and amount), fire temperature, and physiological characteristics such as bark thickness and stem diameter. The 2007 Zaca Fire (24 kilometers NE of Buellton, Santa Barbara County, California) burned 826.4 km2 over the course of 2 months. In this study, we used a time series of Landsat 5 Thematic Mapper and Landsat 8 Operational Land Imager imagery, to evaluate plant burn severity and post fire recovery as defined into classes of above average recovery, normal recovery, and below average recovery. We spectrally unmixed the images into green vegetation (GV), non-photosynthetic vegetation (NPV), soil surface (SOIL), and ash with a spectral library developed using Constrained Reference Endmember Selection (CRES). We delineated the fire perimeter using the differenced Normalized Burn Ratio (dNBR) and evaluated changes in this index and the Normalized Difference Vegetation Index through time. The results showed an immediate decline in GV and NPV fractions, with a rise in soil and ash fractions directly following the fire, with a slow recovery in GV fraction and a loss of bare soil cover. The was a sharp increase in the ash fraction following the fire and gradual decrease in the year after. Most areas have recovered as of 2017, with prominent recovery in the center of the burn scar and reduced recovery in areas to the south. These results indicate how post-fire vegetation varies based on initial burn severity and pre-fire GV and NPV fractions.
Fiedler, John L; Lividini, Keith; Bermudez, Odilia I
2015-02-01
Vitamin A deficiency is a serious health problem in Bangladesh. The 2011-12 Bangladesh Micronutrient Survey found 76·8% of children of pre-school age were vitamin A deficient. In the absence of nationally representative, individual dietary assessment data, we use an alternative--household income and expenditure survey data--to estimate the potential impact of the introduction of vitamin A-fortified vegetable oil in Bangladesh. Items in the household income and expenditure survey were matched to food composition tables to estimate households' usual vitamin A intakes. Then, assuming (i) the intra-household distribution of food is in direct proportion to household members' share of the household's total adult male consumption equivalents, (ii) all vegetable oil that is made from other-than mustard seed and that is purchased is fortifiable and (iii) oil fortification standards are implemented, we modelled the additional vitamin A intake due to the new fortification initiative. Nationwide in Bangladesh. A weighted sample of 12,240 households comprised of 55,580 individuals. Ninety-nine per cent of the Bangladesh population consumes vegetable oil. The quantities consumed are sufficiently large and, varying little by socio-economic status, are able to provide an important, large-scale impact. At full implementation, vegetable oil fortification will reduce the number of persons with inadequate vitamin A intake from 115 million to 86 million and decrease the prevalence of inadequate vitamin A intake from 80% to 60%. Vegetable oil is an ideal fortification vehicle in Bangladesh. Its fortification with vitamin A is an important public health intervention.
Champagne, Claude P; Moineau, Sylvain; Lafleur, Sonia; Savard, Tony
2017-05-01
Starter cultures are increasingly being used for the production of sauerkraut, kimchi and other fermented vegetables. The goal of this study was to determine whether the microencapsulation of a bacterial culture can prevent phage infection during vegetable fermentation. Lactobacillus plantarum HER1325 was microencapsulated in alginate beads. Some beads were used without further processing, while others were freeze-dried prior to testing. Fresh beads (diameter of 2 mm) and dried cultures of the lactobacilli (particle size of 53-1000 μm) were added to a vegetable juice medium (VJM) at 1 × 10 7 CFU/mL. The virulent phage HER325 was added at an initial titer of 1 × 10 4 PFU/mL. In the absence of phages, the pH of the vegetable juice dropped to 4.2 after 40 h of fermentation at 19 °C. In the presence of phage HER325, acidification by both the non-microencapsulated and microencapsulated starter cultures stopped after 24 h. In all assays, the alginate particles dissolved during the 40 h of VJM fermentation. When 15 g/L of calcium chloride was added to the VJM, the alginate beads did not dissolve and significant phage protection was observed. The results suggest that phage-protected microencapsulated starter cultures can be used for vegetable fermentation if means are taken to prevent them from dissolving during acidification. Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Wahyudi, A.'an J.; Afdal; Prayudha, Bayu; Dharmawan, I. W. E.; Irawan, Andri; Abimanyu, Haznan; Meirinawati, Hanny; Surinati, Dewi; Syukri, Agus F.; Yuliana, Chitra I.; Yuniati, Putri I.
2018-02-01
The increase of the anthropogenic carbon dioxide (CO2) affects the global carbon cycle altering the atmospheric system and initiates the climate changes. There are two ways to mitigate these changes, by maintaining the greenhouse gasses below the carbon budget and by conserving the marine and terrestrial vegetation for carbon sequestration. These two strategies become variable to the carbon sequestration index (CSI) that represents the potential of a region in carbon sequestration, according to its natural capacity. As a study case, we conducted carbon sequestration research in Bintan region (Bintan Island and its surrounding), Riau Archipelago province. This research was aimed to assess the CSI and its possibility for climate change mitigation. We observed carbon sequestration of seagrass meadows and mangrove, greenhouse gas (CO2) emission (correlated to population growth, the increase of vehicles), and CSI. Bintan region has 125,849.9 ha of vegetation area and 14,879.6 ha of terrestrial and marine vegetation area, respectively. Both vegetation areas are able to sequester 0.262 Tg C yr-1 in total and marine vegetation contributes about 77.1%. Total CO2 emission in Bintan region is up to 0.273 Tg C yr-1, produced by transportation, industry and land use sectors. Therefore, CSI of the Bintan region is 0.98, which is above the global average (i.e. 0.58). This value demonstrates that the degree of sequestration is comparable to the total carbon emission. This result suggests that Bintan’s vegetation has high potential for reducing greenhouse gas effects.
Perceived eating norms and children's eating behaviour: An informational social influence account.
Sharps, Maxine; Robinson, Eric
2017-06-01
There is initial evidence that beliefs about the eating behaviour of others (perceived eating norms) can influence children's vegetable consumption, but little research has examined the mechanisms explaining this effect. In two studies we aimed to replicate the effect that perceived eating norms have on children's vegetable consumption, and to explore mechanisms which may underlie the influence of perceived eating norms on children's vegetable consumption. Study 1 investigated whether children follow perceived eating norms due to a desire to maintain personal feelings of social acceptance. Study 2 investigated whether perceived eating norms influence eating behaviour because eating norms provide information which can remove uncertainty about how to behave. Across both studies children were exposed to vegetable consumption information of other children and their vegetable consumption was examined. In both studies children were influenced by perceived eating norms, eating more when led to believe others had eaten a large amount compared to when led to believe others had eaten no vegetables. In Study 1, children were influenced by a perceived eating norm regardless of whether they felt sure or unsure that other children accepted them. In Study 2, children were most influenced by a perceived eating norm if they were eating in a novel context in which it may have been uncertain how to behave, as opposed to an eating context that children had already encountered. Perceived eating norms may influence children's eating behaviour by removing uncertainty about how to behave, otherwise known as informational social influence. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
[Factors influencing the effectiveness of physical rehabilitation after myocardial infarction].
Sumin, A N; Beresneva, V L; Enina, T N; Verkhoshapova, T N; Kabova, E A; Valeeva, V I; Shapaurina, N V
2007-01-01
The aim of the study was to compare initial clinical, hemodynamic, and vegetative parameters in patients with myocardial infarction (MI) who had undergone physical rehabilitation with different results. The subjects were 106 male patients aged 48.6 +/- 0.95 years undergoing sanatorium rehabilitation after MI. According to the dynamics of exercise tolerance (ET) during the course of treatment, the subjects were divided into three groups: group one consisted of 39 patients with a significant ET growth of more than 10W, group two consisted of 47 patients with no changes in ET or its insignificant growth of less than 10W, and group three consisted of 20 patients with a decrease in ET revealed during a repeated test. In group three patients, the initial EchoCG examination revealed a higher degree of myocardial lesion, which was manifested by lowered ejection fraction and sphericity index, increased end-diastolic volume, and increased degree of left ventricular (LV) asynergy. Furthermore, day-time ventricular extrasystoles were more frequent in these patients; the number of patients with large-focal MI, LV aneurysm, and post-infarction stenocardia was also higher in group three. Correlation and multiple step regression analysis revealed that both initial parameters of vegetative nervous system, data from initial load test, and the EchoCG measurements of the right atrium were associated with the degree of ET growth according to VEM results. The data from the study are able to help individualize rehabilitation of MI patients, especially those with severe myocardial lesion.
García García, Tránsito; Ventroux, Magali; Derouiche, Abderahmane; Bidnenko, Vladimir; Correia Santos, Sara; Henry, Céline; Mijakovic, Ivan; Noirot-Gros, Marie-Françoise; Poncet, Sandrine
2018-01-01
Bacillus subtilis cells can adopt different life-styles in response to various environmental cues, including planktonic cells during vegetative growth, sessile cells during biofilm formation and sporulation. While switching life-styles, bacteria must coordinate the progression of their cell cycle with their physiological status. Our current understanding of the regulatory pathways controlling the decision-making processes and triggering developmental switches highlights a key role of protein phosphorylation. The regulatory mechanisms that integrate the bacterial chromosome replication status with sporulation involve checkpoint proteins that target the replication initiator DnaA or the kinase phosphorelay controlling the master regulator Spo0A. B. subtilis YabA is known to interact with DnaA to prevent over-initiation of replication during vegetative growth. Here, we report that YabA is phosphorylated by YabT, a Ser/Thr kinase expressed during sporulation and biofilm formation. The phosphorylation of YabA has no effect on replication initiation control but hyper-phosphorylation of YabA leads to an increase in sporulation efficiency and a strong inhibition of biofilm formation. We also provide evidence that YabA phosphorylation affects the level of Spo0A-P in cells. These results indicate that YabA is a multifunctional protein with a dual role in regulating replication initiation and life-style switching, thereby providing a potential mechanism for cross-talk and coordination of cellular processes during adaptation to environmental change. PMID:29619013
García García, Tránsito; Ventroux, Magali; Derouiche, Abderahmane; Bidnenko, Vladimir; Correia Santos, Sara; Henry, Céline; Mijakovic, Ivan; Noirot-Gros, Marie-Françoise; Poncet, Sandrine
2018-01-01
Bacillus subtilis cells can adopt different life-styles in response to various environmental cues, including planktonic cells during vegetative growth, sessile cells during biofilm formation and sporulation. While switching life-styles, bacteria must coordinate the progression of their cell cycle with their physiological status. Our current understanding of the regulatory pathways controlling the decision-making processes and triggering developmental switches highlights a key role of protein phosphorylation. The regulatory mechanisms that integrate the bacterial chromosome replication status with sporulation involve checkpoint proteins that target the replication initiator DnaA or the kinase phosphorelay controlling the master regulator Spo0A. B. subtilis YabA is known to interact with DnaA to prevent over-initiation of replication during vegetative growth. Here, we report that YabA is phosphorylated by YabT, a Ser/Thr kinase expressed during sporulation and biofilm formation. The phosphorylation of YabA has no effect on replication initiation control but hyper-phosphorylation of YabA leads to an increase in sporulation efficiency and a strong inhibition of biofilm formation. We also provide evidence that YabA phosphorylation affects the level of Spo0A-P in cells. These results indicate that YabA is a multifunctional protein with a dual role in regulating replication initiation and life-style switching, thereby providing a potential mechanism for cross-talk and coordination of cellular processes during adaptation to environmental change.
NASA Astrophysics Data System (ADS)
Mohandie, R. K.; Teng, M. H.
2009-12-01
Numerical and experimental studies were carried out to examine the mitigating capabilities of coral reefs and vegetations on tsunami and storm surge inundation. For long waves propagating over variable depth such as that over a reef, the nonlinear and dispersive Boussinesq equations were applied. For run-up onto dry land where the nonlinear effect dominates, the nonlinear and nondispersive shallow water equations were used. Long waves with various amplitudes and wavelengths propagating over coral reefs of different length and height were investigated to quantify under which conditions a coral reef may be effective in reducing the wave impact. It was observed that a reef can make a long wave separate into several smaller waves and it can also cause wave breaking resulting in energy dissipation. Our data suggest that both wave separation and breaking induced by coral reefs are effective at mitigating long wave run-up, with the latter being noticeably more effective than the former. As expected, it was observed that the higher the coral reef height, the more the reduction in wave run-up especially when the reef height is greater than 50% of the water depth. For reefs to be effective as a barrier for long waves such as tsunamis and storm surges, it was found that the reefs must be sufficiently long in the wave propagation direction, for example, with its length to be at least of the same magnitude as the wavelength or longer. In this study, it was shown that an effective reef can reduce the long wave run-up by as much as 25% and 50% by wave separation and wave breaking, respectively. Three types of vegetation, namely, grass, shrub and coconut trees, were modeled and tested in a wave tank against various initial wave amplitude and beach slopes in the Hydraulics Lab at the University of Hawaii (UH) to examine each particular type’s effectiveness in reducing wave run-up and to determine its roughness coefficient for wave run-up through numerical simulation and experimental measurement. These roughness coefficients were shown to be higher than the traditional Manning’s coefficient values for vegetation in channel flows. Also, the coefficients were shown to be a function of the ratio of the initial wave amplitude over the vegetation height and are relatively independent of the beach slope. The vegetation spacing and tree diameters in the lab models were selected based on the typical spacing and tree diameter observed in the field through a reduced scale. All three types of vegetation were found to be effective in reducing wave run-up especially on mildly sloped beaches with a reduction rate ranging from 20% to more than 50%. A numerical simulation that incorporated the effects of coral reef and the combined vegetation types showed that on a 5 degree slope the reduction in run-up was 61% as compared to an unprotected scenario. A larger scale experimental study on coconut and bushes in the NSF-funded tsunami basin at the OSU also showed these vegetations are effective at reducing wave run-up. These results can be helpful in achieving a better understanding of the role that coral reefs and vegetation play in tsunami and storm surge mitigation.
Hop, Kevin D.; Strassman, Andrew C.; Nordman, Carl; Pyne, Milo; White, Rickie; Jakusz, Joseph; Hoy, Erin E.; Dieck, Jennifer
2016-01-01
The National Park Service (NPS) Vegetation Mapping Inventory (VMI) Program is an effort to classify, describe, and map existing vegetation of national park units for the NPS Natural Resource Inventory and Monitoring (I&M) Program. The NPS VMI Program is managed by the NPS I&M Division and provides baseline vegetation information to the NPS Natural Resource I&M Program. The U.S. Geological Survey Upper Midwest Environmental Sciences Center, NatureServe, NPS Gulf Coast Network, and NPS Natchez Trace Parkway (NATR; also referred to as Parkway) have completed vegetation classification and mapping of NATR for the NPS VMI Program.Mappers, ecologists, and botanists collaborated to affirm vegetation types within the U.S. National Vegetation Classification (USNVC) of NATR and to determine how best to map them by using aerial imagery. Analyses of data from 589 vegetation plots had been used to describe an initial 99 USNVC associations in the Parkway; this classification work was completed prior to beginning this NATR vegetation mapping project. Data were collected during this project from another eight quick plots to support new vegetation types not previously identified at the Parkway. Data from 120 verification sites were collected to test the field key to vegetation associations and the application of vegetation associations to a sample set of map polygons. Furthermore, data from 900 accuracy assessment (AA) sites were collected (of which 894 were used to test accuracy of the vegetation map layer). The collective of all these datasets resulted in affirming 122 USNVC associations at NATR.To map the vegetation and open water of NATR, 63 map classes were developed. including the following: 54 map classes represent natural (including ruderal) vegetation types in the USNVC, 5 map classes represent cultural (agricultural and developed) vegetation types in the USNVC, 3 map classes represent nonvegetation open-water bodies (non-USNVC), and 1 map class represents landscapes that had received tornado damage a few months prior to the time of aerial imagery collection. Features were interpreted from viewing 4-band digital aerial imagery by means of digital onscreen three-dimensional stereoscopic workflow systems in geographic information systems. (The aerial imagery was collected during mid-October 2011 for the northern reach of the Parkway and mid-November 2011 for the southern reach of the Parkway to capture peak leaf-phenology of trees.) The interpreted data were digitally and spatially referenced, thus making the spatial-database layers usable in geographic information systems. Polygon units were mapped to either a 0.5 hectare (ha) or 0.25 ha minimum mapping unit, depending on vegetation type or scenario.A geodatabase containing various feature-class layers and tables present the locations of USNVC vegetation types (vegetation map), vegetation plot samples, verification sites, AA sites, project boundary extent, and aerial image centers. The feature-class layer and related tables for the vegetation map provide 13,529 polygons of detailed attribute data covering 21,655.5 ha, with an average polygon size of 1.6 ha; the vegetation map coincides closely with the administrative boundary for NATR.Summary reports generated from the vegetation map layer of the map classes representing USNVC natural (including ruderal) vegetation types apply to 12,648 polygons (93.5% of polygons) and cover 18,542.7 ha (85.6%) of the map extent for NATR. The map layer indicates the Parkway to be 70.5% forest and woodland (15,258.7 ha), 0.3% shrubland (63.0 ha), and 14.9% herbaceous cover (3,221.0 ha). Map classes representing USNVC cultural types apply to 678 polygons (5.0% of polygons) and cover 2,413.9 ha (11.1%) of the map extent.
2013-01-01
Background Vegetable intake has been related to lower risk of chronic illnesses in the adult years. The habit of vegetable intake should be established early in life, but many parents of preschoolers report not being able to get their child to eat vegetables. The Model of Goal Directed Behavior (MGDB) has been employed to understand vegetable parenting practices (VPP) to encourage a preschool child’s vegetable intake. The Model of Goal Directed Vegetable Parenting Practices (MGDVPP) provides possible determinants and may help explain why parents use effective or ineffective VPP. Scales to measure effective and ineffective vegetable parenting practices have previously been validated. This manuscript presents the psychometric characteristics and factor structures of new scales to measure the constructs in MGDVPP. Methods Participants were 307 parents of preschool (i.e. 3 to 5 year old) children, used for both exploratory (EFA) and confirmatory factor analyses (CFA). Data were collected via an internet survey. First, EFA were conducted using the scree plot criterion for factor extraction. Next, CFA assessed the fit of the exploratory derived factors. Then, classical test theory procedures were employed with all scales. Finally, Pearson correlations were calculated between each scale and composite effective and ineffective VPP as a test of scale predictive validity. Results Twenty-nine subscales (164 items) within 11 scales were extracted. The number of items per subscale ranged from 2 to 13, with three subscales having 10 or more items and 12 subscales having 4 items or less. Cronbach’s alphas varied from 0.13 to 0.92, with 17 being 0.70 or higher. Most alphas <0.70 had only three or four items. Twenty-five of the 29 subscales significantly bivariately correlated with the composite effective or ineffective VPP scales. Discussion This was the initial examination of the factor structure and psychometric assessment of MGDVPP scales. Most of the scales displayed acceptable to desirable psychometric characteristics. Research is warranted to add items to those subscales with small numbers of items, test their validity and reliability, and characterize the model’s influence on child vegetable consumption. PMID:24053779
Baranowski, Tom; Beltran, Alicia; Chen, Tzu-An; Thompson, Debbe; O'Connor, Teresia; Hughes, Sheryl; Diep, Cassandra; Baranowski, Janice
2013-09-22
Vegetable intake has been related to lower risk of chronic illnesses in the adult years. The habit of vegetable intake should be established early in life, but many parents of preschoolers report not being able to get their child to eat vegetables. The Model of Goal Directed Behavior (MGDB) has been employed to understand vegetable parenting practices (VPP) to encourage a preschool child's vegetable intake. The Model of Goal Directed Vegetable Parenting Practices (MGDVPP) provides possible determinants and may help explain why parents use effective or ineffective VPP. Scales to measure effective and ineffective vegetable parenting practices have previously been validated. This manuscript presents the psychometric characteristics and factor structures of new scales to measure the constructs in MGDVPP. Participants were 307 parents of preschool (i.e. 3 to 5 year old) children, used for both exploratory (EFA) and confirmatory factor analyses (CFA). Data were collected via an internet survey. First, EFA were conducted using the scree plot criterion for factor extraction. Next, CFA assessed the fit of the exploratory derived factors. Then, classical test theory procedures were employed with all scales. Finally, Pearson correlations were calculated between each scale and composite effective and ineffective VPP as a test of scale predictive validity. Twenty-nine subscales (164 items) within 11 scales were extracted. The number of items per subscale ranged from 2 to 13, with three subscales having 10 or more items and 12 subscales having 4 items or less. Cronbach's alphas varied from 0.13 to 0.92, with 17 being 0.70 or higher. Most alphas <0.70 had only three or four items. Twenty-five of the 29 subscales significantly bivariately correlated with the composite effective or ineffective VPP scales. This was the initial examination of the factor structure and psychometric assessment of MGDVPP scales. Most of the scales displayed acceptable to desirable psychometric characteristics. Research is warranted to add items to those subscales with small numbers of items, test their validity and reliability, and characterize the model's influence on child vegetable consumption.
Differences of cadmium absorption and accumulation in selected vegetable crops.
Ni, Wu-Zhong; Yang, Xiao-E; Long, Xin-Xian
2002-07-01
A pot experiment and a sandy culture experiment grown with three vegetable crops of Chinese cabbage (B. chinensis L., cv. Zao-Shu 5), winter greens (B. var. rosularis Tsen et Lee, cv. Shang-Hai-Qing) and celery (A. graveolens L. var. dulce DC., cv. Qing-Qin) were conducted, respectively. The initial soil and four incubated soils with different extractable Cd (0.15, 0.89, 1.38, 1.84 and 2.30 mg Cd/kg soil) were used for the pot experiment. Five treatments were designed (0, 0.0625, 0.125, 0.250 and 0.500 mg Cd/L) in nutrient solution in the sandy culture experiment. Each treatment in pot and sandy culture experiments was trireplicated. The objectives of the study were to examine Cd accumulation in edible parts of selected vegetable crops, its correlation with Cd concentrations in vegetable garden soil or in nutrient solution, and evaluate the criteria of Cd pollution in vegetable garden soil and in nutrient solution based on the hygienic limit of Cd in vegetables. Cadmium concentrations in edible parts of the three selected vegetable crops were as follows: 0.01-0.15 mg/kg fresh weight for Chinese cabbage, 0.02-0.17 mg/kg fresh weight for winter greens, and 0.02-0.24 mg/kg fresh weight for celery in the pot experiment, and 0.1-0.4 mg/kg fresh weight for Chinese cabbage, 0.1-1.4 mg/kg fresh weight for winter greens, and 0.05-0.5 mg/kg fresh weight for celery in the pot experiment (except no-Cd treatment). The order of the three test vegetable crops for cadmium accumulation in the edible parts was celery > winter greens > Chinese cabbage in both the pot experiment and the sandy culture experiment. Cadmium accumulation in edible parts or roots of the vegetable crops increased with increasing of cadmium concentration in the medium (soil or nutrient solution). And cadmium concentrations in edible parts of the test vegetable crops were significantly linearly related to the Cd levels in the growth media (soil and nutrient solution). Based on the regression equations established and the limit of cadmium concentration in vegetable products, the thresholds of Cd concentration in the growth medium evaluated was as follows: 0.5 mg/kg soil of extractable Cd for soil and 0.02 mg/L for nutrient solution. The high capacity for cadmium accumulation in the edible parts of different vegetable crops together with the absence of visual symptoms implies a potential danger for humans.
Harvey, John C
2006-04-01
In this article, Harvey notes the initial confusion about the statement made by the pope concerning artificial nutrition and hydration on patients suffering persistent vegetative states (PVS) due to misunderstanding through the translation of the pope's words. He clarifies and assesses what was meant by the statement. He also discusses the problems of terminology concerned with the subject of PVS. Harvey concludes that the papal allocution was in line with traditional Catholic bioethics, and that while maintaining the life of a patient is favorable, in particular cases this presumption wanes when it is clear that this treatment modality would be futile or very burdensome.
Reproductive Ontogeny of Wheat Grown on the MIR Space Station
NASA Technical Reports Server (NTRS)
Bubenheim, David L.; Stieber, Joseph
1997-01-01
The reproductive ontogeny of 'Super-Dwarf' wheat grown on the space station Mir is chronicled from the vegetative phase through flower development. Changes in the apical meristem associated with transition From the vegetative phase to floral initiation and development of the reproductive spike were all typical of 'Super Dwarf' wheat up to the point of anthesis. Filament elongation, which characteristically occurs just prior to anthesis and moves the anthers through the stigmatic branches thus facilitating pollination, did no1 xcur in the flowers of spikes grown on Mir. While development of spikes on tillers typically occurs later :han that of spikes on the main stem, all flowers appear to be arrested at the same developmental point.
Jilcott Pitts, Stephanie B; Wu, Qiang; Truesdale, Kimberly P; Laska, Melissa N; Grinchak, Taras; McGuirt, Jared T; Haynes-Maslow, Lindsey; Bell, Ronny A; Ammerman, Alice S
2017-10-07
In 2016, the North Carolina (NC) Legislature allocated $250,000 to the NC Department of Agriculture, to identify and equip small food retailers to stock healthier foods and beverages in eastern NC food deserts (the NC Healthy Food Small Retailer Program, HFSRP). The purpose of this study was to examine associations between food store environments, shopping patterns, customer purchases, and dietary consumption among corner store customers. We surveyed 479 customers in 16 corner stores regarding demographics, food purchased, shopping patterns, and self-reported fruit, vegetable, and soda consumption. We objectively assessed fruit and vegetable consumption using a non-invasive reflection spectroscopy device to measure skin carotenoids. We examined associations between variables of interest, using Pearson's correlation coefficients and adjusted linear regression analyses. A majority (66%) of participants were African American, with a mean age of 43 years, and a mean body mass index (BMI) of 30.0 kg/m². There were no significant associations between the healthfulness of food store offerings, customer purchases, or dietary consumption. Participants who said they had purchased fruits and vegetables at the store previously reported higher produce intake (5.70 (4.29) vs. 4.60 (3.28) servings per day, p = 0.021) versus those who had not previously purchased fresh produce. The NC Legislature has allocated another $250,000 to the HFSRP for the 2018 fiscal year. Thus, evaluation results will be important to inform future healthy corner store policies and initiatives.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Denton, Elsie M.; Dale, Virginia H.
The abstract is published online only. If you did not include a short abstract for the online version when you submitted the manuscript, the first paragraph or the first 10 lines of the chapter will be displayed here. If possible, please provide us with an informative abstract. The debris-avalanche deposit is one of the most disturbed areas created by the 1980 eruption of Mount St. Helens, with little survival of a few plant fragments and primary succession mostly being initiated by the seeds dispersed onto the newly emplaced material. Vegetation changes on the debris-avalanche deposit during the first 30 yearsmore » post eruption are analyzed considering the role of non-native species and potential future vegetation patterns on the deposit. We found that the aerial distribution of largely non-native seeds on a subset of plots at Mount St. Helens in 1980 has had a pronounced and enduring effect on subsequent vegetation communities.« less
NASA Astrophysics Data System (ADS)
Marlinda, L.; Al-Muttaqii, M.; Roesyadi, A.; Prajitno, D. H.
2017-05-01
The hierarchical Co-Ni/HZSM-5 catalyst with hierarchical pore structure was prepared by desilication and incipient wetness impregnation. Hydrocracking of non-edible vegetable oils at temperature of 400 °C, 20±5 bar for 2 h was performed in the presence of this type of catalyst under hydrogen initial pressure in pressured batch reactor. Non-edible vegetable oils, such as Reutealis trisperma (Blanco) airy shaw (sunan candlenut) and Hevea brasiliensis (rubber seed) were chosen to study the effect of the degree of saturation and lateral chain length on hydrocarbon compounds obtained through hydrocracking. Cerbera manghas oil was also tested for comparison because the composition of fatty acid was different with the other oils The hydrocracking test indicated that liquid product produced has a similar hydrocarbon compounds with petroleum diesel. The most abundant hydrocarbon is pentadecane (n-C15) and heptadecane (n-C17). The high aromatic compounds were found in liquid product produced in hydrocracking of Sunan candlenut oil.
Phenethyl Isothiocyanate: A comprehensive review of anti-cancer mechanisms
Gupta, Parul; Wright, Stephen E.; Kim, Sung-Hoon; Srivastava, Sanjay K.
2014-01-01
The epidemiological evidence suggests a strong inverse relationship between dietary intake of cruciferous vegetables and the incidence of cancer. Among other constituents of cruciferous vegetables, isothiocyanates (ITC) are the main bioactive chemicals present. Phenethyl isothiocyanate (PEITC) is present as gluconasturtiin in many cruciferous vegetables with remarkable anti-cancer effects. PEITC is known to not only prevent the initiation phase of carcinogenesis process but also to inhibit the progression of tumorigenesis. PEITC targets multiple proteins to suppress various cancer-promoting mechanisms such as cell proliferation, progression and metastasis. Pre-clinical evidence suggests that combination of PEITC with conventional anti-cancer agents is also highly effective in improving overall efficacy. Based on accumulating evidence, PEITC appears to be a promising agent for cancer therapy and is already under clinical trials for leukemia and lung cancer. This is the first review which provides a comprehensive analysis of known targets and mechanisms along with a critical evaluation of PEITC as a future anti-cancer agent. PMID:25152445
Crevasse Splays Versus Avulsions: A Recipe for Land Building With Levee Breaches
NASA Astrophysics Data System (ADS)
Nienhuis, Jaap H.; Törnqvist, Torbjörn E.; Esposito, Christopher R.
2018-05-01
Natural-levee breaches can not only initiate an avulsion but also, under the right circumstances, lead to crevasse splay formation and overbank sedimentation. The formative conditions for crevasse splays are not well understood, yet such river sediment diversions form an integral part of billion-dollar coastal restoration projects. Here we use Delft3D to investigate the influence of vegetation and soil consolidation on the evolution of a natural-levee breach. Model simulations show that crevasse splays heal because floodplain aggradation reduces the water surface slope, decreasing water discharge into the flood basin. Easily erodible and unvegetated floodplains increase the likelihood for channel avulsions. Denser vegetation and less potential for soil consolidation result in small crevasse splays that are not only efficient sediment traps but also short-lived. Successful crevasse splays that generate the largest land area gain for the imported sediment require a delicate balance between water and sediment discharge, vegetation root strength, and soil consolidation.
Effects of the herbicide glyphosate on avian community structure in the Oregon coast range
Morrison, M.L.; Meslow, E.C.
1984-01-01
A study was conducted on vegetative changes induced by the herbicide glyphosate, and the resultant habitat use of birds nesting on two clearcuts in western Oregon. About 23 percent of total plant cover was initially damaged by aerial application of glyphosate. Most measures of vegetation on the treated site decreased relative to the untreated site 1 year after glyphosate application. By 2 years post-spray, vegetation on the treated site had recovered to near pre-spray status. No difference in density of the bird community was evident between treated and untreated sites during all years of study although individual species densities were modified. Several bird species decreased their use of shrub cover, and increased their use of deciduous trees 1 year after treatment. By 2 years post-spray, many species had returned to pre-spray use of most measured habitat components. Results indicated that application of glyphosate can modify the density and habitat use of birds.
Effects of industrial processing on folate content in green vegetables.
Delchier, Nicolas; Ringling, Christiane; Le Grandois, Julie; Aoudé-Werner, Dalal; Galland, Rachel; Georgé, Stéphane; Rychlik, Michael; Renard, Catherine M G C
2013-08-15
Folates are described to be sensitive to different physical parameters such as heat, light, pH and leaching. Most studies on folates degradation during processing or cooking treatments were carried out on model solutions or vegetables only with thermal treatments. Our aim was to identify which steps were involved in folates loss in industrial processing chains, and which mechanisms were underlying these losses. For this, the folates contents were monitored along an industrial canning chain of green beans and along an industrial freezing chain of spinach. Folates contents decreased significantly by 25% during the washing step for spinach in the freezing process, and by 30% in the green beans canning process after sterilisation, with 20% of the initial amount being transferred into the covering liquid. The main mechanism involved in folate loss during both canning green beans and freezing spinach was leaching. Limiting the contact between vegetables and water or using steaming seems to be an adequate measure to limit folates losses during processing. Copyright © 2013 Elsevier Ltd. All rights reserved.
Angelini, Daniel J; Harris, Jacquelyn V; Burton, Laura L; Rastogi, Pooja R; Smith, Lisa S; Rastogi, Vipin K
2018-03-01
Environmental surface sampling is crucial in determining the zones of contamination and overall threat assessment. Viability retention of sampled material is central to such assessments. A systematic study was completed to determine viability of vegetative cells under nonpermissive storage conditions. Despite major gains in nucleic acid sequencing technologies, initial positive identification of threats must be made through direct culture of the sampled material using classical microbiological methods. Solutions have been developed to preserve the viability of pathogens contained within clinical samples, but many have not been examined for their ability to preserve biological agents. The purpose of this study was to systematically examine existing preservation materials that can retain the viability of Bacillus anthracis vegetative cells stored under nonpermissive temperatures. The results show effectiveness of five of seventeen solutions, which are capable of retaining viability of a sporulation deficient strain of B. anthracis Sterne when stored under nonrefrigerated conditions. © 2017 American Academy of Forensic Sciences.
Shanthi, M; Rajesh Banu, J; Sivashanmugam, P
2018-05-15
The present study explored the disintegration potential of fruits and vegetable residue through sodium dodecyl sulphate (SDS) assisted sonic pretreatment (SSP). In SSP method, initially the biomass barrier (lignin) was removed using SDS at different dosage, subsequently it was sonically disintegrated. The effect of SSP were assessed based on dissolved organic release (DOR) of fruits and vegetable waste and specific energy input. SSP method achieved higher DOR rate and suspended solids reduction (26% and 16%) at optimum SDS dosage of 0.035 g/g SS with least specific energy input of 5400 kJ/kg TS compared to ultrasonic pretreatment (UP) (16% and 10%). The impact of fermentation and biomethane potential assay revealed highest production of volatile fatty acid and methane yield in SSP (1950 mg/L, 0.6 g/g COD) than UP. The energy ratio obtained was 0.9 for SSP, indicating proposed method is energetically efficient. Copyright © 2018 Elsevier Ltd. All rights reserved.
Pérez-de-Mora, Alfredo; Madejón, Paula; Burgos, Pilar; Cabrera, Francisco; Lepp, Nicholas W; Madejón, Engracia
2011-10-01
We investigated the efficiency of various by-products (sugarbeet lime, biosolid compost and leonardite), based on single or repeated applications to field plots, on the establishment of a vegetation cover compatible with a stabilization strategy on a multi-element (As, Cd, Cu, Pb and Zn) contaminated soil 4-6 years after initial amendment applications. Results indicate that the need for re-treatment is amendment- and element-dependent; in some cases, a single application may reduce trace element concentrations in above-ground biomass and enhance the establishment of a healthy vegetation cover. Amendment performance as evaluated by % cover, biomass and number of colonizing taxa differs; however, changes in plant community composition are not necessarily amendment-specific. Although the translocation of trace elements to the plant biotic compartment is greater in re-vegetated areas, overall loss of trace elements due to soil erosion and plant uptake is usually smaller compared to that in bare soil. Copyright © 2011 Elsevier Ltd. All rights reserved.
Castillejo, Noelia; Martínez-Hernández, Ginés Benito; Monaco, Kamila; Gómez, Perla A; Aguayo, Encarna; Artés, Francisco; Artés-Hernández, Francisco
2017-01-01
Smoothies represent an excellent and convenient alternative to promote the daily consumption of fruit and vegetables in order to obtain their health-promoting benefits. Accordingly, a green fresh vegetables smoothie (77.2% cucumber, 12% broccoli and 6% spinach) rich in health-promoting compounds was developed. Soluble solids content, pH and titratable acidity of the smoothie were 4.3 ± 0.4°Bx, 4.49 ± 0.01 and 0.22 ± 0.02 mg citric acid 100 -1 g fw, respectively. Two thermal treatments to reduce microbial loads and preserve quality were assayed: T1 (3 min at 80 ℃) and T2 (45 s at 90 ℃). Fresh blended unheated samples were used as control (CTRL). The smoothie presented a viscoelastic behaviour. T1 and T2 treatments reduced initial microbial loads by 1.3-2.4 and 1.4-3.1 log units, respectively. Samples were stored in darkness at 5 and 15 ℃. Colour and physicochemical changes were reduced in thermal-treated samples throughout storage, which were better preserved at 5 ℃ rather than at 15 ℃. Vitamin C changes during storage were fitted with a Weibullian distribution. Total vitamin C losses of T1 and T2 samples during storage at 15 ℃ were greatly reduced when they were stored at 5 ℃. Initial total phenolic content (151.1 ± 4.04 mg kg -1 fw) was 44 and 36% increased after T1 and T2 treatments, respectively. The 3-p-coumaroyl quinic and chlorogenic acids accounted the 84.7 and 7.1% relative abundance, respectively. Total antioxidant capacity (234.2 ± 20.3 mg Trolox equivalent kg -1 fw) remained constant after the thermal treatments and was better maintained during storage in thermal-treated samples. Glucobrassicin accounted the 81% of the initial total glucosinolates content (117.8 ± 22.2 mg kg -1 fw) of the smoothie. No glucosinolates losses were observed after T2 treatment being better preserved in thermal-treated samples. Conclusively, a short time-high temperature mild thermal treatment (T2) showed better quality and bioactive compounds retention in a green fresh vegetable smoothie during low temperature storage. © The Author(s) 2016.
Multiscale remote sensing analysis to monitor riparian and upland semiarid vegetation
NASA Astrophysics Data System (ADS)
Nguyen, Uyen
The health of natural vegetation communities is of concern due to observed changes in the climatic-hydrological regime and land cover changes particularly in arid and semiarid regions. Monitoring vegetation at multi temporal and spatial scales can be the most informative approach for detecting change and inferring causal agents of change and remediation strategies. Riparian communities are tightly linked to annual stream hydrology, ground water elevations and sediment transport. These processes are subject to varying magnitudes of disturbance overtime and are candidates for multi-scale monitoring. My first research objective focused on the response of vegetation in the Upper San Pedro River, Arizona, to reduced base flows and climate change. I addressed the correlation between riparian vegetation and hydro-climate variables during the last three decades in one of the remaining undammed rivers in the southwestern U.S. Its riparian forest is threatened by the diminishing base flows, attributed by different studies either to increases in evapotranspiration (ET) due to conversion of grasslands to mesquite shrublands in the adjacent uplands, or to increased regional groundwater pumping to serve growing populations in surrounding urban areas and or to some interactions of those causes. Landsat 5 imagery was acquired for pre- monsoon period, when riparian trees had leafed out but before the arrival of summer monsoon rains in July. The result has showed Normalized Difference Vegetation Index (NDVI) values from both Landsat and Moderate Resolution Imaging Spectrometer (MODIS) had significant decreases which positively correlated to river flows, which decreased over the study period, and negatively correlated with air temperatures, which have increased by about 1.4°C from 1904 to the present. The predictions from other studies that decreased river flows could negatively impact the riparian forest were supported by this study. The pre-monsoon Normalized Different Vegetation Index (NDVI) average values in the adjacent uplands also decreased over thirty years and were correlated with the previous year's annual precipitation. Hence an increase in ET in the uplands did not appear to be responsible for the decrease in river flows in this study, leaving increased regional groundwater pumping as a feasible alternative explanation for decreased flows and deterioration of the riparian forest. The second research objective was to develop a new method of classification using very high-resolution aerial photo to map riparian vegetation at the species level in the Colorado River Ecosystem, Grand Canyon area, Arizona. Ground surveys have showed an obvious trend in which non-native saltcedar (Tamarix spp.) has replaced native vegetation over time. Our goal was to develop a quantitative mapping procedure to detect changes in vegetation as the ecosystem continues to respond to hydrological and climate changes. Vegetation mapping for the Colorado River Ecosystem needed an updated database map of the area covered by riparian vegetation and an indicator of species composition in the river corridor. The objective of this research was to generate a new riparian vegetation map at species level using a supervised image classification technique for the purpose of patch and landscape change detection. A new classification approach using multispectral images allowed us to successfully identify and map riparian species coverage the over whole Colorado River Ecosystem, Grand Canyon area. The new map was an improvement over the initial 2002 map since it reduced fragmentation from mixed riparian vegetation areas. The most dominant tree species in the study areas is saltcedar (Tamarix spp.). The overall accuracy is 93.48% and the kappa coefficient is 0.88. The reference initial inventory map was created using 2002 images to compare and detect changes through 2009. The third objective of my research focused on using multiplatform of remote sensing and ground calibration to estimate the effects of vegetation, land use patterns and water cycles. Climate change, hydrological and human uses are also leading to riparian, upland, grassland and crop vegetation changes at a variety of temporal and spatial scales, particularly in the arid and semi arid ecosystems, which are more sensitive to changes in water availability than humid ecosystems. The objectives of these studies from the last three articles were to evaluate the effect of water balance on vegetation indices in different plant communities based on relevant spatial and temporal scales. The new methodology of estimating water requirements using remote sensing data and ground calibration with flux tower data has been successfully tested at a variety sites, a sparse desert shrub environment as well as mixed riparian and cropland systems and upland vegetation in the arid and semi-arid regions. The main finding form these studies is that vegetation-index methods have to be calibrated with ground data for each new ecosystem but once calibrated they can accurately scale ET over wide areas and long time spans.
Analysis of Summertime Convective Initiation in Central Alabama Using the Land Information System
NASA Technical Reports Server (NTRS)
James, Robert S.; Case, Jonathan L.; Molthan, Andrew L.; Jedlovec, Gary J.
2011-01-01
During the summer months in the southeastern United States, convective initiation presents a frequent challenge to operational forecasters. Thunderstorm development has traditionally been referred to as random due to their disorganized, sporadic appearance and lack of atmospheric forcing. Horizontal variations in land surface characteristics such as soil moisture, soil type, land and vegetation cover could possibly be a focus mechanism for afternoon convection during the summer months. The NASA Land Information System (LIS) provides a stand-alone land surface modeling framework that incorporates these varying soil and vegetation properties, antecedent precipitation, and atmospheric forcing to represent the soil state at high resolution. The use of LIS as a diagnostic tool may help forecasters to identify boundaries in land surface characteristics that could correlate to favored regions of convection initiation. The NASA Shortterm Prediction Research and Transition (SPoRT) team has been collaborating with the National Weather Service Office in Birmingham, AL to help incorporate LIS products into their operational forecasting methods. This paper highlights selected convective case dates from summer 2009 when synoptic forcing was weak, and identifies any boundaries in land surface characteristics that may have contributed to convective initiation. The LIS output depicts the effects of increased sensible heat flux from urban areas on the development of convection, as well as convection along gradients in land surface characteristics and surface sensible and latent heat fluxes. These features may promote mesoscale circulations and/or feedback processes that can either enhance or inhibit convection. With this output previously unavailable to operational forecasters, LIS provides a new tool to forecasters in order to help eliminate the randomness of summertime convective initiation.
USDA-ARS?s Scientific Manuscript database
In this study we characterized fusaria that were associated with mango malformation disease (MMD) in México. From 2002 to 2009, 141 strains were isolated from symptomatic mango inflorescences and vegetative tissues from various cultivars in eight geographically diverse states. Initially, isolates ...
Priorities for Implementation of the Northern Pacific Coast Regional Shorebird Management Plan
Joseph B. Buchanan
2005-01-01
Marine and upland habitats in western Washington and Oregon provide essential conditions for many wintering and migratory shorebird species along the Pacific Flyway. Known or potential threats to shorebirds include loss or degradation of habitat, invasion of exotic vegetation and invertebrates, environmental pollution, and human disturbance. Initial priority activities...
Soil moisture causes dynamic adjustments to root reinforcement that reduce slope stability
Tristram C. Hales; Chelcy F. Miniat
2017-01-01
In steep soil-mantled landscapes, the initiation of shallow landslides is strongly controlled by the distribution of vegetation, whose roots reinforce the soil. The magnitude of root reinforcement depends on the number, diameter distribution, orientation and the mechanical properties of roots that cross potential failure planes. Understanding how these...
The California Wildlife/Fish Habitat Relationship System
William E. Grenfell; Hal Salwasser; William F. Laudenslayer
1982-01-01
The California Wildlife/Fish Habitat Relationships (WFHR) System is an ongoing effort to apply our knowledge of wildlife habitat requirements to identify and explain the consequences of proposed land use activities, particularly those activities that affect vegetation. The U.S. Forest Service initiated the WFHR program in California in 1976 and has developed it for all...
Prescribed Fire Education at Oklahoma State University: Training Our Future Pyros
John R. Weir
2008-01-01
The Rangeland Ecology and Management program at Oklahoma State University recognized the need for a practical, hands-on course designed for undergraduate and graduate students, with instruction on conducting prescribed fires for vegetation management, wildlife management, and livestock management. Two separate prescribed fire courses were initiated in the spring of...
USDA-ARS?s Scientific Manuscript database
Root and bulb vegetables (RBV) include carrots, celeriac, parsnips (Apiaceae), onions, garlic, and leek (Alliaceae) – food crops that are grown globally and consumed worldwide. Few data analysis platforms are currently available where data collection, annotation and integration initiatives are focus...
USDA-ARS?s Scientific Manuscript database
Root and bulb vegetables (RBV) include carrots, celeriac (root celery), parsnips (Apiaceae), onions, garlic, and leek (Alliaceae) – food crops grown globally and consumed worldwide. Few data analysis platforms are currently available where data collection, annotation and integration initiatives are ...
Timothy B. Harrington; Christa M. Dagley; M. Boyd Edwards
2002-01-01
Although overstory trees limit the abundance and species richness of herbaceous vegetation in longleaf pine (Pinus palustris Mill.) plantations, the responsible mechanisms are poorly understood because of confounding among limiting factors. In fall 1998, research was initiated to determine the separate effects of above- and belowground competition...
77 FR 64019 - National School Lunch Week, 2012
Federal Register 2010, 2011, 2012, 2013, 2014
2012-10-17
... meals for tens of millions of students every day. These meals are a vital source of fruits, vegetables... Michelle Obama's Let's Move! initiative, we are continuing to bring together stakeholders at every level of... hand this twelfth day of October, in the year of our Lord two thousand twelve, and of the Independence...
Dynamics of a threatened orchid in flooded wetlands
Carolyn Hull Sieg; Paige M. Wolken
1999-01-01
One of the three largest metapopulations of the western prairie fringed orchid (Platanthera praeclara) occurs on the Sheyenne National Grassland, in southeastern North Dakota. Our study was initiated in 1993 to quantify the effect of flooding on individual orchid plants. In 1993, 66 plants (33 flowering and 33 vegetative) growing in standing water...
Julie A. Bawcom
2007-01-01
Tree removal associated with clearcutting in a coastal redwood forest does not alone initiate numerous shallow landslides that deliver large quantities of sediment to watercourses. landslide inventory focused on the relationship between vegetation removal in predominantly second-growth redwood forest and shallow landslides. Deep-seated dormant landslide features were...
Brian L. Brookshire; Stephen R., eds. Shifley
1997-01-01
Describes the Missouri Ozark Forest Ecosystem Projects (MOFEP) that was initiated in 1991 in southeastern Missouri. Describes in detail the coordinated research studies examining vegetation dynamics, down wood, fungi, birds, small mammals, herpetofauna, invertebrates, and genetics. Soils, geolandforms, ecological landtypes, and climate at the sites are described....
The Western Airborne Contaminants Assessment Project (WACAP) was initiated in 2002 by the National Park Service to determine if airborne contaminants were having an impact on remote western ecosystems. Multiple sample media (snow, water, sediment, fish and terrestrial vegetation...
Barton D. Clinton; Corey R. Baker
2000-01-01
We characterized pit and mound (PM) topography resulting from catastrophic wind in the Coweeta Basin, and located 48 PMâs across a variety of forest types. Our measurements included pit length, width, and depth; and mound height, thickness, and width. Species of fallen trees were...
USDA-ARS?s Scientific Manuscript database
Broccoli is a cool weather vegetable crop with a vernalization requirement to initiate and maintain floral development. Breeding for heat tolerance in broccoli has the potential to both expand viable production areas and extend the growing season. A doubled haploid (DH) population of broccoli (Bras...
Collecting and describing macrofungi
D. Jean Lodge; Joseph F. Ammirati; Thomas E. O' Dell; Gregory M. Mueller
2004-01-01
Before initiating a survey or a monitoring program of any group of organisms in an area, an investigator should carry out some preliminary background research. Essential materials for the research include maps of the area and descriptions of its climate, geology, and vegetation. Learning to recognize the woody plant species and major plant associations likely to be...
USDA-ARS?s Scientific Manuscript database
A Coordinated Agricultural Project (CAP) entitled “Establishing an Eastern Broccoli Industry” is funded under the Specialty Crop Research Initiative (SCRI), and a primary component of the project is a system of regional hybrid broccoli trials conducted along the eastern seaboard. Hybrids currently ...
"First aid" for burned watersheds
J. S. Krammes; L. W. Hill
1963-01-01
Most of the vegetative cover on the San Dimas Experimental Forest was destroyed by a wildfire in 1960. Following the fire an emergency research program was initiated to test several "first -aid" treatments aimed at reducing flood and erosion damage from burned watersheds. This paper summarizes first - and second-year results of the research program.
USDA-ARS?s Scientific Manuscript database
Theoretical models predict that dryland ecosystems can cross critical thresholds after which vegetation loss is independent of initial drivers, but experimental data are nonexistent. We used a long-term (13 year) pulse-perturbation experiment featuring heavy grazing and shrub removal to determine i...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Youngman, A.L.; Lydy, M.J.; Williams, T.L.
1998-12-31
The purpose of this study was to determine whether a duckweed bioassay could be used to evaluate the downward migration of heavy metals in smelter soils. The duckweed bioassay was initially used to evaluate elutriates prepared from samples of smelter soils. These initial tests verified that the elutriates would elicit toxic responses. Elutriate testing was followed with an evaluation of leachate from untreated soil cores or soil cores that had been amended with organic matter either unplanted or planted to a grass-forb seed mixture. There was an inverse linear relationship between heavy-metal concentrations in leachate and NOEC and IC{sub 50}more » values expressed as percentages among all soil cores. Based on these preliminary duckweed bioassays, there were no differences between soil types or organic amended or non-amended soil, but leachate from vegetated soil cores were less toxic than were leachates from non-vegetated soil cores. Overall, the duckweed bioassays were useful in detecting heavy metal availability in elutriate and leachate samples from smelter soils.« less
NASA Astrophysics Data System (ADS)
Hueni, A.; Schweiger, A. K.
2015-12-01
Field spectrometry has substantially gained importance in vegetation ecology due to the increasing knowledge about causal ties between vegetation spectra and biochemical and structural plant traits. Additionally, worldwide databases enable the exchange of spectral and plant trait data and promote global research cooperation. This can be expected to further enhance the use of field spectrometers in ecological studies. However, the large amount of data collected during spectral field campaigns poses major challenges regarding data management, archiving and processing. The spectral database Specchio is designed to organize, manage, process and share spectral data and metadata. We provide an example for using Specchio based on leaf level spectra of prairie plant species collected during the 2015 field campaign of the Dimensions of Biodiversity research project, conducted at the Cedar Creek Long-Term Ecological Research site, in central Minnesota. We show how spectral data collections can be efficiently administered, organized and shared between distinct research groups and explore the capabilities of Specchio for data quality checks and initial processing steps.
Ono, Hiroshi; Nishio, Shoko; Tsurii, Jun; Kawamoto, Tetsuhiro; Sonomoto, Kenji; Nakayama, Jiro
2014-11-01
Nukadoko is a fermented rice bran mash traditionally used for pickling vegetables in Japan. To date, the production of both homemade and commercial nukadoko depends on natural fermentation without using starter cultures. Here, we monitored chemical and microbiological changes in the initial batch fermentation of nukadoko. Nukadoko samples were prepared by spontaneous fermentation of four different brands of rice bran, and microbiome dynamics were analyzed for 2 months. In the first week, non-Lactobacillales lactic acid bacteria (LAB) species, which differed among the samples, grew proportionally to pH decrease and lactate increase. Thereafter, Lactobacillus plantarum started growing and consumed residual sugars, causing further lactate increase in nukadoko. Finally, microbial communities in all tested nukadoko samples were dominated by L. plantarum. Taken together, our results suggest that the mixture of the fast-growing LAB species and slow-growing L. plantarum may be used as a suitable starter culture to promote the initial fermentation of nukadoko. Copyright © 2014 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.
Airborne Lidar Simulator for the Lidar Surface Topography (LIST) Mission
NASA Technical Reports Server (NTRS)
Yu, Anthony W.; Krainak, Michael A.; Abshire, James B.; Cavanaugh, John; Valett, Susan; Ramos-Izquierdo, Luis
2010-01-01
In 2007, the National Research Council (NRC) completed its first decadal survey for Earth science at the request of NASA, NOAA, and USGS. The Lidar Surface Topography (LIST) mission is one of fifteen missions recommended by NRC, whose primary objectives are to map global topography and vegetation structure at 5 m spatial resolution, and to acquire global surface height mapping within a few years. NASA Goddard conducted an initial mission concept study for the LIST mission in 2007, and developed the initial measurement requirements for the mission.
Rai, Santosh Kumar; Sharma, Meena; Jain, Madhu; Awasthi, Abhishek; Purshottam, Dharmendra Kumar; Nair, Narayanan Kuttanpillai; Sharma, Ashok Kumar
2010-11-01
An efficient in vitro process for rapid production of cloned plants of Uraria picta has been developed employing nodal stem segments taken from field-grown plants. Explants showed bud-break followed by regeneration of shoots with restricted growth within 12 days on modified Murashige and Skoog's medium supplemented with 0.25 mg l(-1) each of 6-benzylaminopurine and indole-3-acetic acid and 25 mg l(-1) adenine sulfate. Normal growth of shoots with good proliferation rate was achieved by reducing the concentrations of 6-benzylaminopurine and indole-3-acetic acid to 0.1 mg l(-1) each and incorporating 0.5 mg l(-1) gibberellic acid in the medium in which, on an average, 19.6 shoots per explant were produced. Further, during successive subcultures, increased concentrations of adenine sulfate (50 mg l(-l)) and gibberellic acid (2 mg l(-l)) along with the addition of 20 mg l(-l) DL: -tryptophan were found conducive to control the problem of necrosis of shoots. In this treatment, several "crops" of shoots were obtained from single culture by repeated subculturing of basal portion of stalk in long-term. Isolated shoots rooted 100% in 0.25 mg l(-1) indole-3-butyric acid. In vitro-raised plants after hardening in inorganic salt solution grew normally in soil and came to flowering. Genetic fidelity of in vitro-raised plants was ascertained by rapid amplified polymorphic DNA (RAPD) markers. Also, quantitative estimation of two isoflavonones in their root extracts further confirmed true-to-type nature of plantlets.
Modeling olive-crop forecasting in Tunisia
NASA Astrophysics Data System (ADS)
Ben Dhiab, Ali; Ben Mimoun, Mehdi; Oteros, Jose; Garcia-Mozo, Herminia; Domínguez-Vilches, Eugenio; Galán, Carmen; Abichou, Mounir; Msallem, Monji
2017-05-01
Tunisia is the world's second largest olive oil-producing region after the European Union. This paper reports on the use of models to forecast local olive crops, using data for Tunisia's five main olive-producing areas: Mornag, Jemmel, Menzel Mhiri, Chaal, and Zarzis. Airborne pollen counts were monitored over the period 1993-2011 using a Cour trap. Forecasting models were constructed using agricultural data (harvest size in tonnes of fruit/year) and data for several weather-related and phenoclimatic variables (rainfall, humidity, temperature, Growing Degree Days, and Chilling). Analysis of these data revealed that the amount of airborne pollen emitted over the pollen season as a whole (i.e., the Pollen Index) was the variable most influencing harvest size. Findings for all local models also indicated that the amount, timing, and distribution of rainfall (except during blooming) had a positive impact on final olive harvests. Air temperature also influenced final crop yield in three study provinces (Menzel Mhiri, Chaal, and Zarzis), but with varying consequences: in the model constructed for Chaal, cumulative maximum temperature from budbreak to start of flowering contributed positively to yield; in the Menzel Mhiri model, cumulative average temperatures during fruit development had a positive impact on output; in Zarzis, by contrast, cumulative maximum temperature during the period prior to flowering negatively influenced final crop yield. Data for agricultural and phenoclimatic variables can be used to construct valid models to predict annual variability in local olive-crop yields; here, models displayed an accuracy of 98, 93, 92, 91, and 88 % for Zarzis, Mornag, Jemmel, Chaal, and Menzel Mhiri, respectively.
Schwartzberg, Ezra G; Jamieson, Mary A; Raffa, Kenneth F; Reich, Peter B; Montgomery, Rebecca A; Lindroth, Richard L
2014-07-01
As the world's climate warms, the phenologies of interacting organisms in seasonally cold environments may advance at differing rates, leading to alterations in phenological synchrony that can have important ecological consequences. For temperate and boreal species, the timing of early spring development plays a key role in plant-herbivore interactions and can influence insect performance, outbreak dynamics, and plant damage. We used a field-based, meso-scale free-air forest warming experiment (B4WarmED) to examine the effects of elevated temperature on the phenology and performance of forest tent caterpillar (Malacosoma disstria) in relation to the phenology of two host trees, aspen (Populus tremuloides) and birch (Betula papyrifera). Results of our 2-year study demonstrated that spring phenology advanced for both insects and trees, with experimentally manipulated increases in temperature of 1.7 and 3.4 °C. However, tree phenology advanced more than insect phenology, resulting in altered phenological synchrony. Specifically, we observed a decrease in the time interval between herbivore egg hatch and budbreak of aspen in both years and birch in one year. Moreover, warming decreased larval development time from egg hatch to pupation, but did not affect pupal mass. Larvae developed more quickly on aspen than birch, but pupal mass was not affected by host species. Our study reveals that warming-induced phenological shifts can alter the timing of ecological interactions across trophic levels. These findings illustrate one mechanism by which climate warming could mediate insect herbivore outbreaks, and also highlights the importance of climate change effects on trophic interactions.
NASA Astrophysics Data System (ADS)
Honzakova, Katerina; Hoffmann, Peter; Jones, Julia; Thomas, Christoph
2017-04-01
There has been conflicting evidence as to whether high elevations are experiencing more pronounced climate warming than lower elevations in mountainous regions. In this study we analyze temperature records from H.J. Andrews Long Term Ecological Research, Oregon, USA and several nearby areas, comprising together 28 stations located in Cascade Mountains. The data, starting in 1958, are first checked for quality and homogenized using the Standard Normal Homogeneity Test. As a reference, composite climate time series based on the Global Historic Climate Network is created and together with cross-referencing against station records used to correct breaks and shifts in the data. In the next step, we investigate temperature patterns of the study site from 1958 to 2016 and compare them for valley and hill stations. In particular, we explore seasonality and inter-annual variability of the records and trends of the last day of frost. Additionally, 'cold' sums (positive and negative) are calculated to obtain a link between temperature and ecosystems' responses (such as budbreaks). So far, valley stations seem to be more prone to climate change than ridge or summit stations, contrary to current thinking. Building on previous knowledge, we attempt to provide physical explanations for the temperature records, focusing on wind patterns and associated phenomena such as cold air drainage and pooling. To aid this we analyze wind speed and direction data available for some of the stations since 1996, including seasonality and inter-annual variability of the observed flows.
NASA Astrophysics Data System (ADS)
Daniels, A.; Kane, E. S.; Lilleskov, E. A.; Kolka, R. K.; Chimner, R. A.; Potvin, L. R.; Romanowicz, K. J.
2012-12-01
Northern wetlands, peatlands in particular, have been shown to store around 30% of the world's soil carbon and thus play a significant role in the carbon cycle of our planet. Carbon accumulation in peatlands is the result of retarded decomposition due to low oxygen availability in these water-logged environments. Changes in our planet's climate cycles are altering peatland hydrology and vegetation communities, resulting in changes in their ability to sequester carbon through increases in peat carbon oxidation and mineralization. To date, the consequences of altered hydrology and changes in vegetation communities, and their interactive effects on carbon storage, are not well understood. We have initiated a research plan that assesses the varying roles that water table variation and vegetation communities have on extracellular enzyme activity and labile carbon availability in porewater from an ombrotrophic bog. We assessed the effects of plant functional group (ericaceous shrubs, sedges, and bryophytes) and water table position on biogeochemical processes. Specifically, we measured dissolved organic carbon (DOC), total dissolved nitrogen (TDN), enzyme activity, organic acids, anions and cations, spectral indexes of aromaticity, and phenolic content in addressing our hypotheses of responses to climate change drivers. Research on these components will evaluate the relative importance of biology, water table, and their interactive affects on the porewater quality of peatlands. We hypothesized that oxygen availability will strongly influence decomposition in these systems but that this response will largely be mediated by changes in plant community and the enzymes associated with root exudates and mycorrhizae. To date, our data confirm vegetation and water table related patterns. Acetate and propionate concentrations in the sedge-dominated communities dropped significantly with depth and drainage, relative to the control and ericaceous treatments, which likely reflects changes in redox potential owing to physiological differences in sedges which contain aerenchyma cell, and a reduction in the products of anaerobic metabolism. DOC increased in the lowered water table treatments in all vegetation community types. Enzymatic activities have changed in response to water table level and vegetation community. While we have not detected significant levels of peroxidase enzymes in porewater, initial results indicate that hydrolase enzyme activities were higher in the sedge-dominated communities with a lowered water table. Through this research, we are hoping to advance our knowledge of the drivers behind peatland biogeochemistry and how ombrotrophic peat systems may respond to climate change influences.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, R.
1992-01-01
The influence of variations of vegetation and soil moisture on surface weather and atmospheric circulation is studied through the use of the Simple Biosphere Model (SiB) and the Center for Ocean-Land-Atmosphere interactions (COLA) GCM. Tests for the SiB sensitivity to the conversion of the forest to other short vegetation or bare soil were performed at Amazonian and Great Plains sites, and a North Wales spruce forest site respectively. The results show that deforestation has a significant influence on the local surface energy budget and surface weather. The influence is especially prominent at the Amazon and Great Plains sites, and largermore » in summer than in other seasons. The influence on the partitioning of surface incoming radiative energy is generally constrained by the local atmospheric boundary condition. The sensitivity of the COLA GCM to changes in initial soil wetness (ISW) is determined by repeating three 10-day model integrations with the same initial and boundary conditions as the control runs except the values of ISW, which are revised at 69 model grid points covering much of the continental U.S. It is found that the relations between the changes in the 5-day mean forecast surface air temperature/surface specific humidity and the changes in ISW depend upon vegetation type and the values of ISW, and can be approximated by regression equations. These relations are also confirmed with independent data. With the ISW revised based on these regression equations the surface forecasts of the revised runs are consistently improved. The spatial scale of the ISW anomaly determines the degree and range of the influence. The influence of a small regional ISW change is mainly confined to the local region and to low atmospheric levels. The influence on surface fluxes is strong and persists for more than one month, but the effects on precipitation are relatively weak, changeable, and complex, particularly when an interactive cloud scheme is used.« less
NASA Astrophysics Data System (ADS)
Sachs, T.; Koebsch, F.; Boettcher, M. E.; Glatzel, S.; Liebner, S.; Matthias, W.; Koch, M.; Westphal, J.; Jurasinski, G.
2016-12-01
Rewetting is considered as common measure to stop aerobic peat decomposition and to re-establish the net natural C sink function of peatlands. In this long-term study, we accompanied the development of a degraded brackish peatland from drainage to year-round flooding. Based on eddy covariance measurements of CH4 and CO2 fluxes, remote sensing monitoring of vegetation succession and insights into major dissimilatory pathways, we develop a more differentiated perspective on the greenhouse gas (GHG) effect of rewetting measures conducted in brackish peatlands. Contrary to the common assumption that CH4 production is inhibited in coastal ecosystems, CH4 emissions increased remarkably after rewetting. Despite few local exceptions, sulfate - the major electron acceptor in marine environments - was completely converted to stable organic and metal sulfides. Sulfate depletion in concert with high substrate supply derived from a destabilized peat C pool and the extensive die-back of vegetation fuel CH4 emissions especially in the initial rewetting phase. CH4 fluxes are further interpreted in light of climate variables and vegetation data to differentiate between short-term response to climate variation and long-term trends based on ecosystem succession after flooding. High CH4 emissions in the initial rewetting phase are considered to be (at least partially) compensated as CO2 release by aerobic respiration decreases. However, our results indicate that flooding does not only cease CO2 release by ecosystem respiration, but that also CO2 uptake by canopy photosynthesis is affected to the same degree when vegetation cannot cope with the rapid rise in water level. Our study highlights the importance of a multi-year monitoring to cover the dynamic ecosystem development within the drainage-rewetting sequence. We further emphasize the relevance of interdisciplinary approaches to understand the complex interactions between ecosystem compartments as basic controls for GHG exchange.
Large CO2 and CH4 release from a flooded formerly drained fen
NASA Astrophysics Data System (ADS)
Sachs, T.; Franz, D.; Koebsch, F.; Larmanou, E.; Augustin, J.
2016-12-01
Drained peatlands are usually strong carbon dioxide (CO2) sources. In Germany, up to 4.5 % of the national CO2 emissions are estimated to be released from agriculturally used peatlands and for some peatland-rich northern states, such as Mecklenburg-Western Pomerania, this share increases to about 20%. Reducing this CO2 source and restoring the peatlands' natural carbon sink is one objective of large-scale nature protection and restoration measures, in which 37.000 ha of drained and degraded peatlands in Mecklenburg-Western Pomerania are slated for rewetting. It is well known, however, that in the initial phase of rewetting, a reduction of the CO2 source strength is usually accompanied by an increase in CH4 emissions. Thus, whether and when the intended effects of rewetting with regard to greenhouse gases are achieved, depends on the balance of CO2 and CH4 fluxes and on the duration of the initial CH4 emission phase. In 2013, a new Fluxnet site went online at a flooded formerly drained river valley fen site near Zarnekow, NE Germany (DE-Zrk), to investigate the combined CO2 and CH4 dynamics at such a heavily degraded and rewetted peatland. The site is dominated by open water with submerged and floating vegetation and surrounding Typha latifolia.Nine year after rewetting, we found large CH4 emissions of 53 g CH4 m-2 a-1 from the open water area, which are 4-fold higher than from the surrounding vegetation zone (13 g CH4 m-2 a-1). Surprisingly, both the open water and the vegetated area were net CO2 sources of 158 and 750 g CO2 m-2 a-1, respectively. Unusual meteorological conditions with a warm and dry summer and a mild winter might have facilitated high respiration rates, particularly from temporally non-inundated organic mud in the vegetation zone.
Directional Canopy Emissivity Estimation Based on Spectral Invariants
NASA Astrophysics Data System (ADS)
Guo, M.; Cao, B.; Ren, H.; Yongming, D.; Peng, J.; Fan, W.
2017-12-01
Land surface emissivity is a crucial parameter for estimating land surface temperature from remote sensing data and also plays an important role in the physical process of surface energy and water balance from local to global scales. To our knowledge, the emissivity varies with surface type and cover. As for the vegetation, its canopy emissivity is dependent on vegetation types, viewing zenith angle and structure that changes in different growing stages. Lots of previous studies have focused on the emissivity model, but few of them are analytic and suited to different canopy structures. In this paper, a new physical analytic model is proposed to estimate the directional emissivity of homogenous vegetation canopy based on spectral invariants. The initial model counts the directional absorption in six parts: the direct absorption of the canopy and the soil, the absorption of the canopy and soil after a single scattering and after multiple scattering within the canopy-soil system. In order to analytically estimate the emissivity, the pathways of photons absorbed in the canopy-soil system are traced using the re-collision probability in Fig.1. After sensitive analysis on the above six absorptions, the initial complicated model was further simplified as a fixed mathematic expression to estimate the directional emissivity for vegetation canopy. The model was compared with the 4SAIL model, FRA97 model, FRA02 model and DART model in Fig.2, and the results showed that the FRA02 model is significantly underestimated while the FRA97 model is a little underestimated, on basis of the new model. On the contrary, the emissivity difference between the new model with the 4SAIL model and DART model was found to be less than 0.002. In general, since the new model has the advantages of mathematic expression with accurate results and clear physical meaning, the model is promising to be extended to simulate the directional emissivity for the discrete canopy in further study.
Selection of nest-site habitat by interior least terns in relation to sandbar construction
Sherfy, M.H.; Stucker, J.H.; Buhl, D.A.
2012-01-01
Federally endangered interior least terns (Sternula antillarum) nest on bare or sparsely vegetated sandbars on midcontinent river systems. Loss of nesting habitat has been implicated as a cause of population declines, and managing these habitats is a major initiative in population recovery. One such initiative involves construction of mid-channel sandbars on the Missouri River, where natural sandbar habitat has declined in quantity and quality since the late 1990s. We evaluated nest-site habitat selection by least terns on constructed and natural sandbars by comparing vegetation, substrate, and debris variables at nest sites (na =a 798) and random points (na =a 1,113) in bare or sparsely vegetated habitats. Our logistic regression models revealed that a broader suite of habitat features was important in nest-site selection on constructed than on natural sandbars. Odds ratios for habitat variables indicated that avoidance of habitat features was the dominant nest-site selection process on both sandbar types, with nesting terns being attracted to nest-site habitat features (gravel and debris) and avoiding vegetation only on constructed sandbars, and avoiding silt and leaf litter on both sandbar types. Despite the seemingly uniform nature of these habitats, our results suggest that a complex suite of habitat features influences nest-site choice by least terns. However, nest-site selection in this social, colonially nesting species may be influenced by other factors, including spatial arrangement of bare sand habitat, proximity to other least terns, and prior habitat occupancy by piping plovers (Charadrius melodus). We found that nest-site selection was sensitive to subtle variation in habitat features, suggesting that rigor in maintaining habitat condition will be necessary in managing sandbars for the benefit of least terns. Further, management strategies that reduce habitat features that are avoided by least terns may be the most beneficial to nesting least terns. ?? 2011 The Wildlife Society.
Selection of nest-site habitat by interior least terns in relation to sandbar construction
Sherfy, Mark H.; Stucker, Jennifer H.; Buhl, Deborah A.
2012-01-01
Federally endangered interior least terns (Sternula antillarum) nest on bare or sparsely vegetated sandbars on midcontinent river systems. Loss of nesting habitat has been implicated as a cause of population declines, and managing these habitats is a major initiative in population recovery. One such initiative involves construction of mid-channel sandbars on the Missouri River, where natural sandbar habitat has declined in quantity and quality since the late 1990s. We evaluated nest-site habitat selection by least terns on constructed and natural sandbars by comparing vegetation, substrate, and debris variables at nest sites (n = 798) and random points (n = 1,113) in bare or sparsely vegetated habitats. Our logistic regression models revealed that a broader suite of habitat features was important in nest-site selection on constructed than on natural sandbars. Odds ratios for habitat variables indicated that avoidance of habitat features was the dominant nest-site selection process on both sandbar types, with nesting terns being attracted to nest-site habitat features (gravel and debris) and avoiding vegetation only on constructed sandbars, and avoiding silt and leaf litter on both sandbar types. Despite the seemingly uniform nature of these habitats, our results suggest that a complex suite of habitat features influences nest-site choice by least terns. However, nest-site selection in this social, colonially nesting species may be influenced by other factors, including spatial arrangement of bare sand habitat, proximity to other least terns, and prior habitat occupancy by piping plovers (Charadrius melodus). We found that nest-site selection was sensitive to subtle variation in habitat features, suggesting that rigor in maintaining habitat condition will be necessary in managing sandbars for the benefit of least terns. Further, management strategies that reduce habitat features that are avoided by least terns may be the most beneficial to nesting least terns.
Soil and biomass carbon re-accumulation after landslide disturbances
NASA Astrophysics Data System (ADS)
Schomakers, Jasmin; Jien, Shih-Hao; Lee, Tsung-Yu; Huang-Chuan, Jr.; Hseu, Zeng-Yei; Lin, Zan Liang; Lee, Li-Chin; Hein, Thomas; Mentler, Axel; Zehetner, Franz
2017-07-01
In high-standing islands of the Western Pacific, typhoon-triggered landslides occasionally strip parts of the landscape of its vegetative cover and soil layer and export large amounts of biomass and soil organic carbon (OC) from land to the ocean. After such disturbances, new vegetation colonizes the landslide scars and OC starts to re-accumulate. In the subtropical mountains of Taiwan and in other parts of the world, bamboo (Bambusoideae) species may invade at a certain point in the succession of recovering landslide scars. Bamboo has a high potential for carbon sequestration because of its fast growth and dense rooting system. However, it is still largely unknown how these properties translate into soil OC re-accumulation rates after landslide disturbance. In this study, a chronosequence was established on four former landslide scars in the Central Mountain Range of Taiwan, ranging in age from 6 to 41 years post disturbance as determined by landslide mapping from remote sensing. The younger landslide scars were colonized by Miscanthus floridulus, while after approx. 15 to 20 years of succession, bamboo species (Phyllostachys) were dominating. Biomass and soil OC stocks were measured on the recovering landslide scars and compared to an undisturbed Cryptomeria japonica forest stand in the area. After initially slow re-vegetation, biomass carbon accumulated in Miscanthus stands with mean annual accretion rates of 2 ± 0.5 Mg C ha- 1 yr- 1. Biomass carbon continued to increase after bamboo invasion and reached 40% of that in the reference forest site after 41 years of landslide recovery. Soil OC accumulation rates were 2.0 Mg C ha- 1 yr- 1, 6 to 41 years post disturbance reaching 64% of the level in the reference forest. Our results from this in-situ study suggest that recovering landslide scars are strong carbon sinks once an initial lag period of vegetation re-establishment is overcome.
NASA Astrophysics Data System (ADS)
Crump, S. E.; Sepúlveda, J.; Bunce, M.; Miller, G. H.
2017-12-01
Modern ecological studies are revealing that the "greening" of the Arctic, resulting from a poleward shift in woody vegetation ranges, is already underway. The increasing abundance of shrubs in tundra ecosystems plays an important role in the global climate system through multiple positive feedbacks, yet uncertainty in future predictions of terrestrial vegetation means that climate models are likely not capturing these feedbacks accurately. Recently developed molecular techniques for reconstructing past vegetation and climate allow for a closer look at the paleo-record in order to improve our understanding of tundra community responses to climate variability; our current research focus is to apply these tools to both Last Interglacial and Holocene warm times. Here we present initial results from a small lake on southern Baffin Island spanning the last 7.2 ka. We reconstruct climate with both bulk geochemical and biomarker proxies, primarily using biogenic silica and branched glycerol dialkyl glycerol tetraethers (brGDGTs) as temperature indicators. We assess shifts in plant community using multivariate analysis of sedimentary ancient DNA (sedaDNA) metabarcoding data. This combination of approaches reveals that the vegetation community has responded sensitively to early Holocene warmth, Neoglacial cooling, and possibly modern anthropogenic warming. To our knowledge, this represents the first combination of a quantitative, biomarker-based climate reconstruction with a sedaDNA-based paleoecological reconstruction, and offers a glimpse at the potential of these molecular techniques used in tandem.
Delgado Sandoval, Silvia del Carmen; Abraham Juárez, María Jazmín; Simpson, June
2012-03-01
Agave tequilana is a monocarpic perennial species that flowers after 5-8 years of vegetative growth signaling the end of the plant's life cycle. When fertilization is unsuccessful, vegetative bulbils are induced on the umbels of the inflorescence near the bracteoles from newly formed meristems. Although the regulation of inflorescence and flower development has been described in detail for monocarpic annuals and polycarpic species, little is known at the molecular level for these processes in monocarpic perennials, and few studies have been carried out on bulbils. Histological samples revealed the early induction of umbel meristems soon after the initiation of the vegetative to inflorescence transition in A. tequilana. To identify candidate genes involved in the regulation of floral induction, a search for MADS-box transcription factor ESTs was conducted using an A. tequilana transcriptome database. Seven different MIKC MADS genes classified into 6 different types were identified based on previously characterized A. thaliana and O. sativa MADS genes and sequences from non-grass monocotyledons. Quantitative real-time PCR analysis of the seven candidate MADS genes in vegetative, inflorescence, bulbil and floral tissues uncovered novel patterns of expression for some of the genes in comparison with orthologous genes characterized in other species. In situ hybridization studies using two different genes showed expression in specific tissues of vegetative meristems and floral buds. Distinct MADS gene regulatory patterns in A. tequilana may be related to the specific reproductive strategies employed by this species.
Doughty, David M.; Hunter, Ryan C.; Summons, Roger E.; Newman, Dianne K.
2010-01-01
2-Methylhopanes, molecular fossils of 2-methylbacteriohopanepolyol (2-MeBHP) lipids, have been proposed as biomarkers for cyanobacteria, and by extension, oxygenic photosynthesis. However, the robustness of this interpretation is unclear, as 2-methylhopanoids occur in organisms besides cyanobacteria and their physiological functions are unknown. As a first step towards understanding the role of 2-MeBHP in cyanobacteria, we examined the expression and intercellular localization of hopanoids in the three cell types of Nostoc punctiforme: vegetative cells, akinetes, and heterocysts. Cultures in which N. punctiforme had differentiated into akinetes contained approximately 10-fold higher concentrations of 2-methylhopanoids than did cultures that contained only vegetative cells. In contrast, 2-methylhopanoids were only present at very low concentrations in heterocysts. Hopanoid production initially increased 3-fold in cells starved of nitrogen but returned to levels consistent with vegetative cells within two weeks. Vegetative and akinete cell types were separated into cytoplasmic, thylakoid, and outer membrane fractions; the increase in hopanoid expression observed in akinetes was due to a 34-fold enrichment of hopanoid content in their outer membrane relative to vegetative cells. Akinetes formed in response either to low light or phosphorus limitation, exhibited the same 2-methylhopanoid localization and concentration, demonstrating that 2-methylhopanoids are associated with the akinete cell type per se. Because akinetes are resting cells that are not photosynthetically active, 2-methylhopanoids cannot be functionally linked to oxygenic photosyntheis in N. punctiforme. PMID:19811542
SCARANO, FABIO R.
2002-01-01
The Brazilian Atlantic rainforest consists of a typical tropical rainforest on mountain slopes, and stands out as a biodiversity hotspot for its high species richness and high level of species endemism. This forest is bordered by plant communities with lower species diversity, due mostly to more extreme environmental conditions than those found in the mesic rainforest. Between the mountain slopes and the sea, the coastal plains have swamp forests, dry semi‐deciduous forests and open thicket vegetation on marine sand deposits. At the other extreme, on top of the mountains (>2000 m a.s.l.), the rainforest is substituted by high altitude fields and open thicket vegetation on rocky outcrops. Thus, the plant communities that are marginal to the rainforest are subjected either to flooding, drought, oceanicity or cold winter temperatures. It was found that positive interactions among plants play an important role in the structuring and functioning of a swamp forest, a coastal sandy vegetation and a cold, high altitude vegetation in the state of Rio de Janeiro. Moreover, only a few species seem to adopt this positive role and, therefore, the functioning of these entire systems may rely on them. Curiously, these nurse plants are often epiphytes in the rainforest, and at the study sites are typically terrestrial. Many exhibit crassulacean acid metabolism. Conservation initiatives must treat the Atlantic coastal vegetation as a complex rather than a rainforest alone. PMID:12324276
NASA Astrophysics Data System (ADS)
Seo, H.; Kim, Y.; Kim, H. J.
2017-12-01
Every year wild fire brings about 400Mha of land burned therefore 2Pg of carbon emissions from the surface occur. In this way fire not only affects the carbon circulation but also has an effect on the terrestrial ecosystems. This study aims to understand role of fire on the geographic vegetation distribution and the terrestrial carbon balances within the NCAR CESM framework, specifically with the CLM-BGC and CLM-BGC-DV. Global climate data from Climate Research Unit (CRU)-National Centers for Environmental Prediction (NCEP) data ranging from 1901 to 2010 are used to drive the land models. First, by comparing fire-on and fire-off simulations with the CLM-BGC-DV, the fire impacts in dynamic vegetation are quantified by the fractional land areas of the different plant functional types. In addition, we examine how changes in vegetation distribution affect the total sum of the burned areas and the carbon balances. This study would provide the limits of and suggestions for the fire and dynamic vegetation modules of the CLM-BGC. AcknowledgementsThis work was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT & Future Planning (2015R1C1A2A01054800) and by the Korea Meteorological Administration R&D Program under Grant KMIPA 2015-6180. This work was also supported by the Yonsei University Future-leading Research Initiative of 2015(2016-22-0061).
NASA Astrophysics Data System (ADS)
Jaehyeong, L.; Kim, Y.; Erfanian, A.; Wang, G.; Um, M. J.
2017-12-01
This study utilizes the Standardized Precipitation-Evapotranspiration Index (SPEI) to investigate the projected effect of vegetation feedbacks on drought in West Africa using the Regional Climate Model coupled to the NCAR Community Land Model with both the Carbon and Nitrogen module (CN) and Dynamic Vegetation module (DV) activated (RegCM-CLM-CN-DV). The role of vegetation feedbacks is examined based on simulations with and without dynamic vegetation. The four different future climate scenarios from CCSM, GFDL, MIROC and MPI are used as the boundary conditions of RegCM for two historical and future periods, i.e., for 1981 to 2000 and for 2081 to 2100, respectively. Using SPEI, the duration, frequency, severity and spatial extents are quantified over West Africa and analyzed for two regions of the Sahel and the Gulf of Guinea. In this study, we find that the estimated annual SPEIs clearly indicate that the projected future droughts over the Sahel are enhanced and prolonged when DV is activated. The opposite is shown over the Gulf of Guinea in general. AcknowledgementsThis work was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT & Future Planning (2015R1C1A2A01054800), by the Korea Meteorological Administration R&D Program under Grant KMIPA 2015-6180 and by the Yonsei University Future-leading Research Initiative of 2015(2016-22-0061).
Foredune morphodynamics and seasonal sediment budget patterns at Humboldt Bay, Arcata, California.
NASA Astrophysics Data System (ADS)
Rader, A. M.; Walker, I. J.; Pickart, A.; Bauer, B. O.; Hesp, P.
2017-12-01
Coastal dune erosion, rebuilding, and ecosystem restoration are examined along a dune barrier system at Humboldt Bay, Arcata California. The long-term evolution of the system indicates progradation in the north (up to +0.51 m a-1) with densely vegetated, tall and topographically simple foredunes and landward retreat in the south (up to -0.49 m a-1) with sparsely vegetated, hummocky foredunes and blowouts. Spatial-temporal patterns of change from seasonal bare-Earth models during the early stages of a dynamic restoration project indicate that, in the year following initial removal of invasive vegetation (May 2015 - September 2016), the foredune system experienced a net positive sediment budget (+0.54 m3 m-2) while net erosion occurred on the beach (-0.38 m3 m-2). Five years of cross-shore profiles show a seaward migration of the foredune crest (+0.15 m mo-1) during the same time period. However, net erosion of the beach occurred during winter (November 2015 - April 2016), due to high-water and wave run-up during intense storms. Summer monitoring reveals site-wide accretion due to beach rebuilding and increased aeolian activity. As such, seasonal sediment budgets may be controlled primarily by the amount of beach sediment available for aeolian transport and secondarily by localized vegetation zonation on the upper beach and foredune. Further monitoring of the dune barrier system at Humboldt Bay throughout the remaining dynamic restoration process will provide further insight into the role of vegetation zonation and foredune morphodynamics.
Antioxidant activity evaluation of new dosage forms as vehicles for dehydrated vegetables.
Romero-de Soto, María Dolores; García-Salas, Patricia; Fernández-Arroyo, Salvador; Segura-Carretero, Antonio; Fernández-Campos, Francisco; Clares-Naveros, Beatriz
2013-06-01
A dehydrated vegetables mixture loaded in four pharmaceutical dosage forms as powder, effervescent granulate, sugar granulate and gumdrops were investigated for their antioxidant capacity using 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) radical scavenging capacity assay, oxygen radical absorbance capacity assay and ferric reducing antioxidant potential assay. Total phenolic content of dehydrated vegetables powder mixture was also measured by the Folin-Ciocalteu method, so as to evaluate its contribution to their total antioxidant function. The effect of different temperatures on stability of these systems after 90 days storage was also evaluated. These formulations presented strong antioxidant properties and high phenolic content (279 mg gallic acid equivalent/g of sample) and thus could be potential rich sources of natural antioxidants. Antioxidant properties differed significantly among selected formulations (p < 0.05). Generally, the losses were lower in samples stored under refrigeration. To interpret the antioxidant properties a kinetic approach was performed. Degradation kinetics for the phenolic content and antioxidant capacity followed a zero-order function. Effervescent granulate was the formulation which underwent faster degradation. Contrary, sugar granulate and gumdrops were much more slowly. Time required to halve the initial amount of phenolic compounds was 589 ± 45 days for samples stored at 4 º C, and 312 ± 16 days for samples stored at room temperature. These developed dosage forms are new and innovative approach for vegetable intakes in population with special requirements providing an improvement in the administration of vegetables and fruits.
Trajectories of water table recovery following the re-vegetation of bare peat
NASA Astrophysics Data System (ADS)
Shuttleworth, Emma; Evans, Martin; Allott, Tim; Maskill, Rachael; Pilkington, Michael; Walker, Jonathan
2016-04-01
The hydrological status of blanket peat influences a wide range of peatland functions, such as runoff generation, water quality, vegetation distribution, and rates of carbon sequestration. The UK supports 15% of the world's blanket peat cover, but much of this vital resource is significantly degraded, impacted by industrial pollution, overgrazing, wildfire, and climatic shifts. These pressures have produced a unique landscape characterised by severe gully erosion and extensive areas of bare peat. This in turn has led water tables to become substantially drawn down, impacting peatland function and limiting the resilience of these landscapes to future changes in climate. The restoration of eroding UK peatlands is a major conservation concern, and landscape-scale interventions through the re-vegetation of bare peat is becoming increasingly extensive in areas of upland Britain. Water table is the primary physical parameter considered in the monitoring of many peatland restoration projects, and there is a wealth of data on individual monitoring programmes which indicates that re-vegetation significantly raises water tables. This paper draws on data from multiple restoration projects carried out by the Moors for the Future Partnership in the Southern Pennines, UK, covering a range of stages in the erosion-restoration continuum, to assess the trajectories of water table recovery following re-vegetation. This will allow us to generate projections of future water table recovery, which will be of benefit to land managers and conservation organisations to inform future restoration initiatives.
Use of cccupancy models to evaluate expert knowledge-based species-habitat relationships
Iglecia, Monica N.; Collazo, Jaime A.; McKerrow, Alexa
2012-01-01
Expert knowledge-based species-habitat relationships are used extensively to guide conservation planning, particularly when data are scarce. Purported relationships describe the initial state of knowledge, but are rarely tested. We assessed support in the data for suitability rankings of vegetation types based on expert knowledge for three terrestrial avian species in the South Atlantic Coastal Plain of the United States. Experts used published studies, natural history, survey data, and field experience to rank vegetation types as optimal, suitable, and marginal. We used single-season occupancy models, coupled with land cover and Breeding Bird Survey data, to examine the hypothesis that patterns of occupancy conformed to species-habitat suitability rankings purported by experts. Purported habitat suitability was validated for two of three species. As predicted for the Eastern Wood-Pewee (Contopus virens) and Brown-headed Nuthatch (Sitta pusilla), occupancy was strongly influenced by vegetation types classified as “optimal habitat” by the species suitability rankings for nuthatches and wood-pewees. Contrary to predictions, Red-headed Woodpecker (Melanerpes erythrocephalus) models that included vegetation types as covariates received similar support by the data as models without vegetation types. For all three species, occupancy was also related to sampling latitude. Our results suggest that covariates representing other habitat requirements might be necessary to model occurrence of generalist species like the woodpecker. The modeling approach described herein provides a means to test expert knowledge-based species-habitat relationships, and hence, help guide conservation planning.
Derivation of global vegetation biophysical parameters from EUMETSAT Polar System
NASA Astrophysics Data System (ADS)
García-Haro, Francisco Javier; Campos-Taberner, Manuel; Muñoz-Marí, Jordi; Laparra, Valero; Camacho, Fernando; Sánchez-Zapero, Jorge; Camps-Valls, Gustau
2018-05-01
This paper presents the algorithm developed in LSA-SAF (Satellite Application Facility for Land Surface Analysis) for the derivation of global vegetation parameters from the AVHRR (Advanced Very High Resolution Radiometer) sensor on board MetOp (Meteorological-Operational) satellites forming the EUMETSAT (European Organization for the Exploitation of Meteorological Satellites) Polar System (EPS). The suite of LSA-SAF EPS vegetation products includes the leaf area index (LAI), the fractional vegetation cover (FVC), and the fraction of absorbed photosynthetically active radiation (FAPAR). LAI, FAPAR, and FVC characterize the structure and the functioning of vegetation and are key parameters for a wide range of land-biosphere applications. The algorithm is based on a hybrid approach that blends the generalization capabilities offered by physical radiative transfer models with the accuracy and computational efficiency of machine learning methods. One major feature is the implementation of multi-output retrieval methods able to jointly and more consistently estimate all the biophysical parameters at the same time. We propose a multi-output Gaussian process regression (GPRmulti), which outperforms other considered methods over PROSAIL (coupling of PROSPECT and SAIL (Scattering by Arbitrary Inclined Leaves) radiative transfer models) EPS simulations. The global EPS products include uncertainty estimates taking into account the uncertainty captured by the retrieval method and input errors propagation. A sensitivity analysis is performed to assess several sources of uncertainties in retrievals and maximize the positive impact of modeling the noise in training simulations. The paper discusses initial validation studies and provides details about the characteristics and overall quality of the products, which can be of interest to assist the successful use of the data by a broad user's community. The consistent generation and distribution of the EPS vegetation products will constitute a valuable tool for monitoring of earth surface dynamic processes.
Biomass is the main driver of changes in ecosystem process rates during tropical forest succession.
Lohbeck, Madelon; Poorter, Lourens; Martínez-Ramos, Miguel; Bongers, Frans
2015-05-01
Over half of the world's forests are disturbed, and the rate at which ecosystem processes recover after disturbance is important for the services these forests can provide. We analyze the drivers' underlying changes in rates of key ecosystem processes (biomass productivity, litter productivity, actual litter decomposition, and potential litter decomposition) during secondary succession after shifting cultivation in wet tropical forest of Mexico. We test the importance of three alternative drivers of ecosystem processes: vegetation biomass (vegetation quantity hypothesis), community-weighted trait mean (mass ratio hypothesis), and functional diversity (niche complementarity hypothesis) using structural equation modeling. This allows us to infer the relative importance of different mechanisms underlying ecosystem process recovery. Ecosystem process rates changed during succession, and the strongest driver was aboveground biomass for each of the processes. Productivity of aboveground stem biomass and leaf litter as well as actual litter decomposition increased with initial standing vegetation biomass, whereas potential litter decomposition decreased with standing biomass. Additionally, biomass productivity was positively affected by community-weighted mean of specific leaf area, and potential decomposition was positively affected by functional divergence, and negatively by community-weighted mean of leaf dry matter content. Our empirical results show that functional diversity and community-weighted means are of secondary importance for explaining changes in ecosystem process rates during tropical forest succession. Instead, simply, the amount of vegetation in a site is the major driver of changes, perhaps because there is a steep biomass buildup during succession that overrides more subtle effects of community functional properties on ecosystem processes. We recommend future studies in the field of biodiversity and ecosystem functioning to separate the effects of vegetation quality (community-weighted mean trait values and functional diversity) from those of vegetation quantity (biomass) on ecosystem processes and services.
NASA Astrophysics Data System (ADS)
Yang, Lei; Chen, Liding; Wei, Wei
2017-04-01
Soil water stored below rainfall infiltration depth is a reliable water resource for plant growth in arid and semi-arid regions. For decreasing serious soil erosion, large-scale human-introduced vegetation restoration was initiated in Chinese Loess Plateau in late 1990s. However, these activities may result in excessive water consumption and soil water deficit if no appropriate scientific guidance were offered. This in turn impacts the regional ecological restoration and sustainable management of water resources. In this study, soil water content data in depth of 0-5 m was obtained by long-term field observation and geostatistical method in 6 small watersheds covered with different land use pattern. Profile characteristics and spatial-temporal patterns of soil water were compared between different land use types, hillslopes, and watersheds. The results showed that: (1) Introduced vegetation consumed excessive amount of water when compared with native grassland and farmland, and induced temporally stable soil desiccation in depth of 0-5 m. The introduced vegetation decreased soil water content to levels lower than the reference value representing no human impact in all soil layers. (2) The analysis of differences in soil water at hillslope and watershed scales indicated that land use determined the spatial and temporal variability of soil water. Soil water at watershed scale increased with the increasing area of farmland, and decreased with increasing percentage of introduced vegetation. Land use structure determined the soil water condition and land use pattern determined the spatial-temporal variability of soil water at watershed scale. (3) Large-scale revegetation with introduced vegetation diminished the spatial heterogeneity of soil water at different scales. Land use pattern adjustment could be used to improve the water resources management and maintain the sustainability of vegetation restoration.
Sulfamethazine Sorption to Soil: Vegetative Management, pH, and Dissolved Organic Matter Effects.
Chu, Bei; Goyne, Keith W; Anderson, Stephen H; Lin, Chung-Ho; Lerch, Robert N
2013-01-01
Elucidating veterinary antibiotic interactions with soil is important for assessing and mitigating possible environmental hazards. The objectives of this study were to investigate the effects of vegetative management, soil properties, and >1000 Da dissolved organic matter (DOM) on sulfamethazine (SMZ) behavior in soil. Sorption experiments were performed over a range of SMZ concentrations (2.5-50 μmol L) using samples from three soils (Armstrong, Huntington, and Menfro), each planted to one of three vegetation treatments: agroforestry buffers strips (ABS), grass buffer strips (GBS), and row crops (RC). Our results show that SMZ sorption isotherms are well fitted by the Freundlich isotherm model (log = 0.44-0.93; Freundlich nonlinearity parameter = 0.59-0.79). Further investigation of solid-to-solution distribution coefficients () demonstrated that vegetative management significantly ( < 0.05) influences SMZ sorption (ABS > GBS > RC). Multiple linear regression analyses indicated that organic carbon (OC) content, pH, and initial SMZ concentration were important properties controlling SMZ sorption. Study of the two most contrasting soils in our sample set revealed that increasing solution pH (pH 6.0-7.5) reduced SMZ sorption to the Armstrong GBS soil, but little pH effect was observed for the Huntington GBS soil containing 50% kaolinite in the clay fraction. The presence of DOM (150 mg L OC) had little significant effect on the Freundlich nonlinearity parameter; however, DOM slightly reduced SMZ values overall. Our results support the use of vegetative buffers to mitigate veterinary antibiotic loss from agroecosystems, provide guidance for properly managing vegetative buffer strips to increase SMZ sorption, and enhance understanding of SMZ sorption to soil. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.
Ingham, Steven C; Losinski, Jill A; Andrews, Matthew P; Breuer, Jane E; Breuer, Jeffry R; Wood, Timothy M; Wright, Thomas H
2004-11-01
In this study we tested the validity of the National Organic Program (NOP) requirement for a > or =120-day interval between application of noncomposted manure and harvesting of vegetables grown in manure-fertilized soil. Noncomposted bovine manure was applied to 9.3-m2 plots at three Wisconsin sites (loamy sand, silt loam, and silty clay loam) prior to spring and summer planting of carrots, radishes, and lettuce. Soil and washed (30 s under running tap water) vegetables were analyzed for indigenous Escherichia coli. Within 90 days, the level of E. coli in manure-fertilized soil generally decreased by about 3 log CFU/g from initial levels of 4.2 to 4.4 log CFU/g. Low levels of E. coli generally persisted in manure-fertilized soil for more than 100 days and were detected in enriched soil from all three sites 132 to 168 days after manure application. For carrots and lettuce, at least one enrichment-negative sample was obtained < or =100 days after manure application for 63 and 88% of the treatments, respectively. The current > or =120-day limit provided an even greater likelihood of not detecting E. coli on carrots (> or =1 enrichment-negative result for 100% of the treatments). The rapid maturation of radishes prevented conclusive evaluation of a 100- or 120-day application-to-harvest interval. The absolute absence of E. coli from vegetables harvested from manure-fertilized Wisconsin soils may not be ensured solely by adherence to the NOP > or =120-day limit. Unless pathogens are far better at colonizing vegetables than indigenous E. coli strains are, it appears that the risk of contamination for vegetables grown in Wisconsin soils would be elevated only slightly by reducing the NOP requirement to > or =100 days.
Jones, Rachel A.; Williams, John W.; Jackson, Stephen T.
2017-01-01
The timing and drivers of vegetation dynamics and formation of no-analog plant communities during the last deglaciation in the unglaciated southeastern US are poorly understood. We present a multi-proxy record spanning the past 19,800 years from Cupola Pond in the Ozarks Mountains, consisting of replicate high-resolution pollen records, 25 AMS radiocarbon dates, and macrofossil, charcoal, and coprophilous spore analyses. Full-glacial Pinus and Picea forests gave way to no-analog vegetation after 17,400 yr BP, followed by development of Quercus-dominated Holocene forests, with late Holocene rises in Pinus and Nyssa. Vegetation transitions, replicated in different cores, are closely linked to hemispheric climate events. Rising Quercus abundances coincide with increasing Northern Hemisphere temperatures and CO2 at 17,500 yr BP, declining Pinus and Picea at 14,500 yr BP are near the Bølling-Allerød onset, and rapid decline of Fraxinus and rise of Ostrya/Carpinus occur 12,700 yr BP during the Younger Dryas. The Cupola no-analog vegetation record is unusual for its early initiation (17,000 yr BP) and for its three vegetation zones, representing distinct rises of Fraxinus and Ostrya/Carpinus. Sporormiella was absent and sedimentary charcoal abundances were low throughout, suggesting that fire and megaherbivores were not locally important agents of disturbance and turnover. The Cupola record thus highlights the complexity of the late-glacial no-analog communities and suggests direct climatic regulation of their formation and disassembly.
The Eco-Hydrological Role of Physical Surface Sealing in Dry Environments
NASA Astrophysics Data System (ADS)
Sela, Shai; Svoray, Tal; Assouline, Shmuel
2016-04-01
Soil surface sealing is a widespread natural process in dry environments occurring frequently in bare soil areas between vegetation patches. The low hydraulic conductivity that characterizes the seal layer reduces both infiltration and evaporation fluxes from the soil, and thus has the potential to affect local vegetation water availability and consequently transpiration rates. This effect is investigated here using two separate physically based models - a runoff model, and a root water uptake model. High resolution rainfall data is used to demonstrate the seal layer effect on runoff generation and vegetation water availability, while the seal layer effect on vegetation water uptake is studied using a long-term climatic dataset (44 years) from three dry sites presenting a climatic gradient in the Negev Desert, Israel. The Feddes water uptake parameters for the dominant shrub at the study site (Sarcopoterium spinosum) were acquired using an inverse calibration procedure using data from a lysimeter experiment. The results indicate that the presence of surface sealing increases significantly vegetation water availability through runoff generation. Following water infiltration, the shrub transpiration generally increases if the shrub is surrounded by a seal layer, but this effect can switch from positive to negative depending on initial soil water content, rainfall intensity, and the duration of the subsequent drying intervals. These factors have a marked effect on inter-annual variability of the seal layer effect on the shrub transpiration, which on average was found to be 26% higher under sealed conditions than in the case of unsealed soil surfaces. These results shed light on the importance of surface sealing on the eco-hydrology of dry environments and its contribution to the resilience of woody vegetation.
NASA Astrophysics Data System (ADS)
Olliver, E. A.; Edmonds, D. A.; Shaw, J.
2017-12-01
The coastal deltas of the world are vital ecosystems that disproportionately support the world's population and biological productivity. Recent studies indicate vegetation may have significant influence on the development and structure of the deltaic islands composing these deltas. However, there is little convincing data drawn from natural systems. Here we present a 2D numerical modeling study of the interaction of surface water flow and vegetation on Wax lake Delta, LA, USA. We use a seamless digital elevation model (DEM) of the Wax Lake Delta (WLD) as the initial topographic condition. The deltaic island elevation data for the DEM is derived from LiDAR data, while the channel and delta front bathymetry is derived from single and multi-beam data. The upstream boundary conditions are set by discharge data from the USGS gauge located in the Wax Lake Outlet at Calumet, LA and the downstream water level boundary condition comes from tidal data from the NOAA gauge located in the Atchafalaya Delta at Amerada Pass, LA. The deltaic islands in our seamless DEM are populated by two general vegetation communities of different canopy density and height: a subaerial-intermediate community and a subaqueous community. In our study we explore how variations in discharge coming into the delta and extent of the general vegetation communities at different times of the year influence the transport pathways and residence time of surface water on the levees and within the interdistributary wetlands of the deltaic islands. A better understanding of vegetation's influence on these elements of deltaic island development and organization could prove valuable for informing design of wetland restoration projects.
Quantifying Vegetation Structure with Lightweight, Rapid-Scanning Terrestrial Lidar
NASA Astrophysics Data System (ADS)
Paynter, I.; Genest, D.; Saenz, E. J.; Strahler, A. H.; Li, Z.; Peri, F.; Schaaf, C.
2016-12-01
Light Detection and Ranging (lidar) is proving a competent technology for observing vegetation structure. Terrestrial laser scanners (TLS) are ground-based instruments which utilize hundreds of thousands to millions of lidar observations to provide detailed structural and reflective information of their surroundings. TLS has enjoyed initial success as a validation tool for satellite and airborne estimates of vegetation structure, and are producing independent estimates with increasing accuracy. Reconstruction techniques for TLS observations of vegetation have also improved rapidly, especially for trees. However, uncertainties and challenges still remain in TLS modelling of vegetation structure, especially in geometrically complex ecosystems such as tropical forests (where observation extent and density is hampered by occlusion) and highly temporally dynamic coastal ecosystems (such as saltmarshes and mangroves), where observations may be restricted to narrow microstates. Some of these uncertainties can be mitigated, and challenges met, through the use of lidar instruments optimized for favorable deployment logistics through low weight, rapid scanning, and improved durability. We have conducted studies of vegetation structure in temperate and tropical forests, saltmarshes and mangroves, utilizing a highly portable TLS with considerable deployment flexibility, the Compact Biomass Lidar (CBL). We show results from studies in the temperate Long Term Ecological Research site of Harvard Forest (MA, USA); the tropical forested long-term Carbono sites of La Selva Biological Station (Sarapiqui, Costa Rica); and the saltmarsh LTER of Plum Island (MA, USA). These results demonstrate the improvements to observations in these ecosystems which are facilitated by the specifications of the CBL (and similar TLS) which are optimized for favorable deployment logistics and flexibility. We show the benefits of increased numbers of scanning positions, and specialized deployment platforms to meet ecosystem challenges.
Fan, Baoli; Zhang, Aiping; Yang, Yi; Ma, Quanlin; Li, Xuemin; Zhao, Changming
2016-01-01
The xerophytic desert shrub Haloxylon ammodendron (C. A. Mey.) Bunge. is distributed naturally in Asian and African deserts, and is widely used for vegetation restoration in the desert regions of Northern China. However, there are limited long-term chrono-sequence studies on the impact of changed soil properties and vegetation dynamics following establishment of this shrub on mobile sand dunes. In Minqin County, Gansu Province, we investigated soil properties and herbaceous vegetation development of 10, 20, 30, 40, 50-year-old H. ammodendron plantations on mobile sand dunes. Soil sampling at two depths (0–5 and 5–20 cm) under the shrubs determined SOC, nutrition and soil physical characteristics. The results showed that: establishment of H. ammodendron had improved soil physio-chemical properties, increased thickness of soil crusts and coverage of biological soil crusts (BSCs), and promoted development of topsoil over an extended period of 5 decades. Soil texture and soil nutrition improved along the chrono-sequence according to three distinct phases: i) an initial fast development from 0 to 10 years, ii) a stabilizing phase from 10 to 30 years followed by iii) a relatively marked restoration development in 40 and 50-year-old plantations. Meanwhile, herbaceous community coverage also markedly increased in 30-year-old plantations. However, both soil and vegetation restoration were very slow due to low annual precipitation in Minqin county compared to other Northern China sand afforestation sites. Canonical Correspondence Analysis results demonstrated that herbaceous plant development was closely associated with changes in soil texture (increased clay and silt percentage) and availability of soil nutrients. Thus our results indicated that selection of the long-lived shrub H. ammodendron is an essential and effective tool in arid desert re-vegetation. PMID:27992458
Effect of vegetable oils applied over acquired enamel pellicle on initial erosion
IONTA, Franciny Querobim; de ALENCAR, Catarina Ribeiro Barros; VAL, Poliana Pacifico; BOTEON, Ana Paula; JORDÃO, Maisa Camillo; HONÓRIO, Heitor Marques; BUZALAF, Marília Afonso Rabelo; RIOS, Daniela
2017-01-01
Abstract Objective The prevalence of dental erosion has been recently increasing, requiring new preventive and therapeutic approaches. Vegetable oils have been studied in preventive dentistry because they come from a natural, edible, low-cost, and worldwide accessible source. This study aimed to evaluate the protective effect of different vegetable oils, applied in two concentrations, on initial enamel erosion. Material and Methods Initially, the acquired pellicle was formed in situ for 2 hours. Subsequently, the enamel blocks were treated in vitro according to the study group (n=12/per group): GP5 and GP100 – 5% and pure palm oil, respectively; GC5 and GC100 – 5% and pure coconut oil; GSa5 and GSa100 – 5% and pure safflower oil; GSu5 and GSu100 – 5% and pure sunflower oil; GO5 and GO100 – 5% and pure olive oil; CON− – Deionized Water (negative control) and CON+ – Commercial Mouthwash (Elmex® Erosion Protection Dental Rinse, GABA/positive control). Then, the enamel blocks were immersed in artificial saliva for 2 minutes and subjected to short-term acid exposure in 0.5% citric acid, pH 2.4, for 30 seconds, to promote enamel surface softening. The response variable was the percentage of surface hardness loss [((SHi - SHf) / SHf )×100]. Data were analyzed by one-way ANOVA and Tukey’s test (p<0.05). Results Enamel blocks of GP100 presented similar hardness loss to GSu100 (p>0.05) and less than the other groups (p<0.05). There was no difference between GP5, GC5, GC100, GSa5, GSu100, GSa100, GSu5, GO5, GO100, CON− and CON+. Conclusion Palm oil seems to be a promising alternative for preventing enamel erosion. However, further studies are necessary to evaluate a long-term erosive cycling. PMID:28877281
NASA Astrophysics Data System (ADS)
Flantua, S. G. A.; Hooghiemstra, H.; Vuille, M.; Behling, H.; Carson, J. F.; Gosling, W. D.; Hoyos, I.; Ledru, M. P.; Montoya, E.; Mayle, F.; Maldonado, A.; Rull, V.; Tonello, M. S.; Whitney, B. S.; González-Arango, C.
2016-02-01
An improved understanding of present-day climate variability and change relies on high-quality data sets from the past 2 millennia. Global efforts to model regional climate modes are in the process of being validated against, and integrated with, records of past vegetation change. For South America, however, the full potential of vegetation records for evaluating and improving climate models has hitherto not been sufficiently acknowledged due to an absence of information on the spatial and temporal coverage of study sites. This paper therefore serves as a guide to high-quality pollen records that capture environmental variability during the last 2 millennia. We identify 60 vegetation (pollen) records from across South America which satisfy geochronological requirements set out for climate modelling, and we discuss their sensitivity to the spatial signature of climate modes throughout the continent. Diverse patterns of vegetation response to climate change are observed, with more similar patterns of change in the lowlands and varying intensity and direction of responses in the highlands. Pollen records display local-scale responses to climate modes; thus, it is necessary to understand how vegetation-climate interactions might diverge under variable settings. We provide a qualitative translation from pollen metrics to climate variables. Additionally, pollen is an excellent indicator of human impact through time. We discuss evidence for human land use in pollen records and provide an overview considered useful for archaeological hypothesis testing and important in distinguishing natural from anthropogenically driven vegetation change. We stress the need for the palynological community to be more familiar with climate variability patterns to correctly attribute the potential causes of observed vegetation dynamics. This manuscript forms part of the wider LOng-Term multi-proxy climate REconstructions and Dynamics in South America - 2k initiative that provides the ideal framework for the integration of the various palaeoclimatic subdisciplines and palaeo-science, thereby jump-starting and fostering multidisciplinary research into environmental change on centennial and millennial timescales.
NASA Astrophysics Data System (ADS)
Krofcheck, D. J.; Lippitt, C.; Loerch, A.; Litvak, M. E.
2015-12-01
Measuring the above ground biomass of vegetation is a critical component of any ecological monitoring campaign. Traditionally, biomass of vegetation was measured with allometric-based approach. However, it is also time-consuming, labor-intensive, and extremely expensive to conduct over large scales and consequently is cost-prohibitive at the landscape scale. Furthermore, in semi-arid ecosystems characterized by vegetation with inconsistent growth morphologies (e.g., piñon-juniper woodlands), even ground-based conventional allometric approaches are often challenging to execute consistently across individuals and through time, increasing the difficulty of the required measurements and consequently the accuracy of the resulting products. To constrain the uncertainty associated with these campaigns, and to expand the extent of our measurement capability, we made repeat measurements of vegetation biomass in a semi-arid piñon-juniper woodland using structure-from-motion (SfM) techniques. We used high-spatial resolution overlapping aerial images and high-accuracy ground control points collected from both manned aircraft and multi-rotor UAS platforms, to generate digital surface model (DSM) for our experimental region. We extracted high-precision canopy volumes from the DSM and compared these to the vegetation allometric data, s to generate high precision canopy volume models. We used these models to predict the drivers of allometric equations for Pinus edulis and Juniperous monosperma (canopy height, diameter at breast height, and root collar diameter). Using this approach, we successfully accounted for the carbon stocks in standing live and standing dead vegetation across a 9 ha region, which contained 12.6 Mg / ha of standing dead biomass, with good agreement to our field plots. Here we present the initial results from an object oriented workflow which aims to automate the biomass estimation process of tree crown delineation and volume calculation, and partition standing biomass into live and dead pools, in a change detection context.
NASA Astrophysics Data System (ADS)
A, Y.; Wang, G.
2017-12-01
Water shortage is the main limiting factor for semi-arid grassland development. However, the grassland are gradually degraded represented by species conversion, biomass decrease and ecosystem structure simplification under the influence of human activity. Soil water characteristics such as moisture, infiltration and conductivity are critical variables affecting the interactions between soil parameters and vegetation. In this study, Cover, Height, Shannon-Wiener diversity index, Pielou evenness index and Richness index are served as indexes of vegetation productivity and community structure. And saturated hydraulic conductivity (Ks) and soil moisture content are served as indexes of soil water characters. The interaction between vegetation and soil water is investigated through other soil parameters, such as soil organic matter content at different vertical depths and in different degradation area (e.g., initial, transition and degraded plots). The results show that Ks significantly controlled by soil texture other than soil organic matter content. So the influence of vegetation on Ks through increasing soil organic content (SOM) might be slight. However, soil moisture content (SMC) appeared significantly positive relationship with SOM and silt content and negative relationship with sand content at all depth, significantly. This indicated that capacity of soil water storage was influenced both by soil texture and organic matter. In addition, the highest correlation coefficient of SMC was with SOM at the sub-surficial soil layer (20 40 cm). At the depth of 20 40 cm, the soil water content was relatively steady which slightly influenced by precipitation and evaporation. But it significantly influenced by soil organic matter content which related to vegetation. The correlation coefficient between SOM and SMC at topsoil layer (0 20 cm) was lowest (R2=0.36, p<0.01), which indicated the influence of vegetation on soil water content not only by soil organic matter content but also the other influential factors, such as the root water uptake, precipitation and evaporation.
Reprint of: Synthesising the effects of land use on natural and managed landscapes.
Thackway, Richard; Specht, Alison
2015-11-15
To properly manage our natural and managed landscapes, and to restore or repair degraded areas, it is important to know the changes that have taken place over time, particularly with respect to land use and its cumulative effect on ecological function. In common with many places in the world, where the industrial revolution resulted in profound changes to land use and management, Australia's landscapes have been transformed in the last 200 years. Initially the VAST (Vegetation Assets, States and Transitions) system was developed to describe and map changes in vegetation over time through a series of condition states or classes; here we describe an enhancement to the VAST method which will enable identification of the factors contributing to those changes in state as a result of changes in management practice. The 'VAST-2' system provides a structure in which to compile, interpret and sequence a range of data about past management practices, their effect on site and vegetation condition. Alongside a systematic chronology of land use and management, a hierarchy of indices is used to build a picture of the condition of the vegetation through time: 22 indicators within ten criteria representing three components of vegetation condition-regenerative capacity, vegetation structure and species composition-are scored using information from a variety of sources. These indicators are assessed relative to a pre-European reference state, either actual or synthetic. Each component is weighted proportionally to its contribution to the whole, determined through expert opinion. These weighted condition components are used to produce an aggregated transformation score for the vegetation. The application of this system to a range of sites selected across Australia's tropical, sub-tropical and temperate bioregions is presented, illustrating the utility of the system. Notably, the method accommodates a range of different types of information to be aggregated. Copyright © 2015 Elsevier B.V. All rights reserved.
Glanz, Karen; Yaroch, Amy L
2004-09-01
Grocery stores and community settings are important and promising venues for environmental, policy, and pricing initiatives to increase fruit and vegetable intake. This article examines supermarket-based and community environmental, policy, and pricing strategies for increasing intake of fruits and vegetables and identifies promising strategies, research needs, and innovative opportunities for the future. The strategies, examples, and research reported here were identified through an extensive search of published journal articles, reports, and inquiries to leaders in the field. Recommendations were expanded with input from participants in the CDC/ACS-sponsored Fruit and Vegetable, Environment Policy and Pricing Workshop held in September of 2002. Four key types of grocery-store-based interventions include point-of-purchase (POP) information; reduced prices and coupons; increased availability, variety, and convenience; and promotion and advertising. There is strong support for the feasibility of these approaches and modest evidence of their efficacy in influencing eating behavior. Church-based programs, child care center policies, and multisectoral community approaches show promise. Both descriptive and intervention research are needed to develop and evaluate more effective environmental strategies to increase F&V intake in grocery stores and communities. Innovative strategies, partnerships, grass roots action involving economic development for low-income communities, and sustainability are important considerations.
NASA Astrophysics Data System (ADS)
Waller, Martyn P.; Hamilton, Sue
2000-03-01
A pollen diagram has been produced from the base of the Caburn (East Sussex) that provides a temporally and spatially precise record of vegetation change on the English chalklands during the mid-Holocene (ca. 7100 to ca. 3800 cal. yr BP). During this period the slopes above the site appear to have been well-wooded, with vegetation analogous to modern Fraxinus-Acer-Mercurialis communities in which Tilia was also a prominent constituent. However, scrub and grassland taxa such as Juniperus communis, Cornus sanguinea and Plantago lanceolata are also regularly recorded along with, from ca. 6000 cal. yr BP onwards, species specific to Chalk grassland (e.g. Sanguisorba minor). This supports suggestions that elements of Chalk grassland persisted in lowland England through the Holocene. Such communities are most likely to have occupied the steepest slopes, although the processes that maintained them are unclear. Human interference with vegetation close to the site may have begun as early as ca. 6350 cal. yr BP and initially involved a woodland management practice such as coppicing. From the primary Ulmus decline (ca. 5700 cal. yr BP) onwards, phases of limited clearance accompanied by cereal cultivation occurred. Taxus baccata was an important component of the woodland which regenerated between these phases.
Knapp, E.E.; Schwilk, D.W.; Kane, J.M.; Keeley, J.E.
2007-01-01
Although the majority of fires in the western United States historically occurred during the late summer or early fall when fuels were dry and plants were dormant or nearly so, early-season prescribed burns are often ignited when fuels are still moist and plants are actively growing. The purpose of this study was to determine if burn season influences postfire vegetation recovery. Replicated early-season burn, late-season burn, and unburned control units were established in a mixed conifer forest, and understory vegetation was evaluated before and after treatment. Vegetation generally recovered rapidly after prescribed burning. However, late-season burns resulted in a temporary but significant drop in cover and a decline in species richness at the 1 m 2 scale in the following year. For two of the several taxa that were negatively affected by burning, the reduction in frequency was greater after late-season than early-season burns. Early-season burns may have moderated the effect of fire by consuming less fuel and lessening the amount of soil heating. Our results suggest that, when burned under high fuel loading conditions, many plant species respond more strongly to differences in fire intensity and severity than to timing of the burn relative to stage of plant growth. ?? 2007 NRC.
Gibbs, Shawn G; Sayles, Harlan; Colbert, Erica M; Hewlett, Angela; Chaika, Oleg; Smith, Philip W
2014-05-28
The Adenosine triphosphate (ATP) bioluminescence assay was utilized in laboratory evaluations to determine the presence and concentration of vegetative and spore forms of Bacillus anthracis Sterne 34F2. Seventeen surfaces from the healthcare environment were selected for evaluation. Surfaces were inoculated with 50 µL of organism suspensions at three concentrations of 104, 106, 108 colony forming units per surface (CFU/surface) of B. anthracis. Culture-based methods and ATP based methods were utilized to determine concentrations. When all concentrations were evaluated together, a positive correlation between log-adjusted CFU and Relative Light Units (RLU) for endospores and vegetative cells was established. When concentrations were evaluated separately, a significant correlation was not demonstrated. This study demonstrated a positive correlation for ATP and culture-based methods for the vegetative cells of B. anthracis. When evaluating the endospores and combining both metabolic states, the ATP measurements and CFU recovered did not correspond to the initial concentrations on the evaluated surfaces. The results of our study show that the low ATP signal which does not correlate well to the CFU results would not make the ATP measuring devises effective in confirming contamination residual from a bioterrorist event.
Dynamics of multiple elements in fast decomposing vegetable residues.
Cao, Chun; Liu, Si-Qi; Ma, Zhen-Bang; Lin, Yun; Su, Qiong; Chen, Huan; Wang, Jun-Jian
2018-03-01
Litter decomposition regulates the cycling of nutrients and toxicants but is poorly studied in farmlands. To understand the unavoidable in-situ decomposition process, we quantified the dynamics of C, H, N, As, Ca, Cd, Cr, Cu, Fe, Hg, K, Mg, Mn, Na, Ni, Pb, and Zn during a 180-d decomposition study in leafy lettuce (Lactuca sativa var. longifoliaf) and rape (Brassica chinensis) residues in a wastewater-irrigated farmland in northwestern China. Different from most studied natural ecosystems, the managed vegetable farmland had a much faster litter decomposition rate (half-life of 18-60d), and interestingly, faster decomposition of roots relative to leaves for both the vegetables. Faster root decomposition can be explained by the initial biochemical composition (more O-alkyl C and less alkyl and aromatic C) but not the C/N stoichiometry. Multi-element dynamics varied greatly, with C, H, N, K, and Na being highly released (remaining proportion<20%), Ca, Cd, Cr, Mg, Ni, and Zn released, and As, Cu, Fe, Hg, Mn, and Pb possibly accumulated. Although vegetable residues serve as temporary sinks of some metal(loid)s, their fast decomposition, particularly for the O-alkyl-C-rich leafy-lettuce roots, suggest that toxic metal(loid)s can be released from residues, which therefore become secondary pollution sources. Copyright © 2017 Elsevier B.V. All rights reserved.
Beets, Michael W; Tilley, Falon; Weaver, Robert G; Turner-McGrievy, Gabrielle M; Moore, Justin B
2014-10-01
The objective of this study was to describe the 3-year outcomes (2011-2013) from the healthy lunchbox challenge (HLC) delivered in the US-based summer day camps (SDC) (8-10 hours day(-1), 10-11 weeks summer(-1), SDC) to increase children and staff bringing fruit, vegetables and water (FVW) each day. A single group pre- with multiple post-test design was used in four large-scale SDCs serving more than 550 children day(-1) (6-12 years). The percentage of foods/beverages brought by children/staff, staff promotion of healthy eating and children's consumption of FVW was assessed via direct observation over 98 days across three summers. For children (3308 observations), fruit and vegetables (>11-16%) increased; no changes were observed for FVW for staff (398 observations). Reductions in unhealthy foods/beverages (e.g. soda/pop and chips) were observed for both children and staff (minus -10% to 38%). Staff role modeling unhealthy eating/drinking initially decreased but increased by 2013. The majority of children who brought fruit/vegetables consumed them. The HLC can influence the foods/beverages brought to SDCs. Enhancements are required to further increase FVW brought and consumed. © The Author 2014. Published by Oxford University Press. All rights reserved. For permissions, please email: journals.permissions@oup.com.
The pace of Holocene vegetation change - testing for synchronous developments
NASA Astrophysics Data System (ADS)
Giesecke, Thomas; Bennett, K. D.; Birks, H. John B.; Bjune, Anne E.; Bozilova, Elisaveta; Feurdean, Angelica; Finsinger, Walter; Froyd, Cynthia; Pokorný, Petr; Rösch, Manfred; Seppä, Heikki; Tonkov, Spasimir; Valsecchi, Verushka; Wolters, Steffen
2011-09-01
Mid to high latitude forest ecosystems have undergone several major compositional changes during the Holocene. The temporal and spatial patterns of these vegetation changes hold potential information to their causes and triggers. Here we test the hypothesis that the timing of vegetation change was synchronous on a sub-continental scale, which implies a common trigger or a step-like change in climate parameters. Pollen diagrams from selected European regions were statistically divided into assemblage zones and the temporal pattern of the zone boundaries analysed. The results show that the temporal pattern of vegetation change was significantly different from random. Times of change cluster around 8.2, 4.8, 3.7, and 1.2 ka, while times of higher than average stability were found around 2.1 and 5.1 ka. Compositional changes linked to the expansion of Corylus avellana and Alnus glutinosa centre around 10.6 and 9.5 ka, respectively. A climatic trigger initiating these changes may have occurred 0.5 to 1 ka earlier, respectively. The synchronous expansion of C. avellana and A. glutinosa exemplify that dispersal is not necessarily followed by population expansion. The partly synchronous, partly random expansion of A. glutinosa in adjacent European regions exemplifies that sudden synchronous population expansions are not species specific traits but vary regionally.
Analysis of Rhizome Development in Oryza longistaminata, a Wild Rice Species.
Yoshida, Akiko; Terada, Yasuhiko; Toriba, Taiyo; Kose, Katsumi; Ashikari, Motoyuki; Kyozuka, Junko
2016-10-01
Vegetative reproduction is a form of asexual propagation in plants. A wide range of plants develop rhizomes, modified stems that grow underground horizontally, as a means of vegetative reproduction. In rhizomatous species, despite their distinct developmental patterns, both rhizomes and aerial shoots derive from axillary buds. Therefore, it is of interest to understand the basis of rhizome initiation and development. Oryza longistaminata, a wild rice species, develops rhizomes. We analyzed bud initiation and growth of O. longistaminata rhizomes using various methods of morphological observation. We show that, unlike aerial shoot buds that contain a few leaves only, rhizome buds initiate several leaves and bend to grow at right angles to the original rhizome. Rhizomes are maintained in the juvenile phase irrespective of the developmental phase of the aerial shoot. Stem elongation and reproductive transition are tightly linked in the aerial shoots, but are uncoupled in the rhizome. Our findings indicate that developmental programs operate independently in the rhizomes and aerial shoots. Temporal modification of the developmental pathways that are common to rhizomes and aerial shoots may be the source of developmental plasticity. Furthermore, the creation of new developmental systems appears to be necessary for rhizome development. © The Author 2016. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.
The role of fire in deep time ecosystems
NASA Astrophysics Data System (ADS)
Scott, Andrew C.; Bond, William J.; Collinson, Margaret E.; Glasspool, Ian J.; Brown, Sarah; Braman, Dennis R.
2010-05-01
Fires are very widespread in the world today and fire has also been common in the deep past. Fire is important in structuring contemporary World vegetation maintaining extensive open vegetation where the climate has the potential to support closed forests. The influence of fire on the structure of vegetation and plant traits present in a community vary depending on the fire regime. The fire regime is the characteristic pattern of fire frequency, severity (amount of biomass removed) and spatial extent. Fire regimes depend on the synergy between external physical factors and the properties of vegetation. Changes in the fire regime can be brought about by changes in external conditions such as climate, but also by changes in vegetation such as changes in flammability or productivity that influence the amount of fuel. For example, invasion of grasses into closed wooded habitats has initiated a ‘grass fire cycle' in many parts of the world triggering cascading changes in vegetation structure and composition from forest to open grassland or savanna woodland. The spread of flammable invasive species, especially grasses, has even altered fire regimes of fire-dependent flammable communities causing catastrophic ecosystem changes. We suggest that the spread of angiosperms in the Cretaceous was promoted by the development of novel fire regimes linked to the evolution of novel, highly productive (and flammable) plants. Within the limits of physical constraints on fire occurrence, Cretaceous angiosperms would have initiated a positive feedback analogous to the grass-fire cycle rapidly accumulating fuel that promoted more frequent fires, which maintained open habitats in which rapid growth-traits of angiosperms would be most favoured promoting rapid fuel accumulation etc. Frequent fires would have altered vegetation structure and composition both by increasing mortality rates of fire-damaged trees and reducing recruitment rates of seedlings and saplings where fires recurred before juveniles had reached "fire-proof" sizes. The effect would be to create more open conditions favouring plants with the angiosperm innovations of high photosynthetic rates, rapid maturation and rapid reproduction relative to gymnosperms. Fire has some analogies to large vertebrate herbivory, particularly in the potential to open forests and create habitat for low-growing sun-loving plants over extensive areas. The role of fire in favouring low-growing ‘ruderal', plants of open habitats is similar to that proposed for dinosaurs. A switch from high-browsing dinosaurs in the Jurassic to low-browsing dinosaurs in the Cretaceous has been noted and it has been argued that the switch in browse height would favour fast-growing angiosperms. The dinosaur hypothesis has recently been tested and found wanting, for example in the timing and coincidence of angiosperm abundance and low vs. high-browsing dinosaurs. Our research of the co-occurrence of dinosaur remains and charcoal assemblages in Dinosaur Provincial Park, Alberta, has suggested that it was a dominance of gymnospermous, woody vegetation that was ravaged by fire. In addition, the co-occurrence of dinosaur remains and charcoal is significant in demonstrating that the some dinosaur bone beds may have formed as a result of extensive post-fire erosion/rapid deposition cycles. In this paper we consider the evidence for and against fire as a major factor promoting vegetation change and angiosperm spread in the Cretaceous.
NASA Astrophysics Data System (ADS)
Sellers, Piers J.; Heiser, Mark D.; Hall, Forrest G.; Verma, Shashi B.; Desjardins, Raymond L.; Schuepp, Peter M.; Ian MacPherson, J.
1997-03-01
It is commonly assumed that biophysically based soil-vegetation-atmosphere transfer (SVAT) models are scale-invariant with respect to the initial boundary conditions of topography, vegetation condition and soil moisture. In practice, SVAT models that have been developed and tested at the local scale (a few meters or a few tens of meters) are applied almost unmodified within general circulation models (GCMs) of the atmosphere, which have grid areas of 50-500 km 2. This study, which draws much of its substantive material from the papers of Sellers et al. (1992c, J. Geophys. Res., 97(D17): 19033-19060) and Sellers et al. (1995, J. Geophys. Res., 100(D12): 25607-25629), explores the validity of doing this. The work makes use of the FIFE-89 data set which was collected over a 2 km × 15 km grassland area in Kansas. The site was characterized by high variability in soil moisture and vegetation condition during the late growing season of 1989. The area also has moderate topography. The 2 km × 15 km 'testbed' area was divided into 68 × 501 pixels of 30 m × 30 m spatial resolution, each of which could be assigned topographic, vegetation condition and soil moisture parameters from satellite and in situ observations gathered in FIFE-89. One or more of these surface fields was area-averaged in a series of simulation runs to determine the impact of using large-area means of these initial or boundary conditions on the area-integrated (aggregated) surface fluxes. The results of the study can be summarized as follows: 1. analyses and some of the simulations indicated that the relationships describing the effects of moderate topography on the surface radiation budget are near-linear and thus largely scale-invariant. The relationships linking the simple ratio vegetation index ( SR), the canopy conductance parameter (▽ F) and the canopy transpiration flux are also near-linear and similarly scale-invariant to first order. Because of this, it appears that simple area-averaging operations can be applied to these fields with relatively little impact on the calculated surface heat flux. 2. The relationships linking surface and root-zone soil wetness to the soil surface and canopy transpiration rates are non-linear. However, simulation results and observations indicate that soil moisture variability decreases significantly as an area dries out, which partially cancels out the effects of these non-linear functions.In conclusion, it appears that simple averages of topographic slope and vegetation parameters can be used to calculate surface energy and heat fluxes over a wide range of spatial scales, from a few meters up to many kilometers at least for grassland sites and areas with moderate topography. Although the relationships between soil moisture and evapotranspiration are non-linear for intermediate soil wetnesses, the dynamics of soil drying act to progressively reduce soil moisture variability and thus the impacts of these non-linearities on the area-averaged surface fluxes. These findings indicate that we may be able to use mean values of topography, vegetation condition and soil moisture to calculate the surface-atmosphere fluxes of energy, heat and moisture at larger length scales, to within an acceptable accuracy for climate modeling work. However, further tests over areas with different vegetation types, soils and more extreme topography are required to improve our confidence in this approach.
NASA Astrophysics Data System (ADS)
Finkelstein, D. B.; Pratt, L. M.
2004-12-01
Prevalence of wildfires or peat fires associated with seasonally dry conditions in the Cretaceous is supported by recent studies documenting the widespread presence of pyrolytic polycyclic aromatic hydrocarbons and fusinite. Potential roles of CO2 emissions from fire have been overlooked in many discussions of Cretaceous carbon-isotope excursions (excluding K-P boundary discussions). Enhanced atmospheric CO2 levels could increase fire frequency through elevated lightning activity. When biomass or peat is combusted, emissions of CO2 are more negative than atmospheric CO2. Five reservoirs (atmosphere, vegetation, soil, and shallow and deep oceans), and five fluxes (productivity, respiration, litter fall, atmosphere-ocean exchange, and surface-deep ocean exchange) were modeled as a closed system. The size of the Cretaceous peat reservoir was estimated by compilation of published early Cretaceous coal resources. Initial pCO2 was assumed to be 2x pre-industrial atmospheric levels (P.A.L.). Critical variables in the model are burning efficiency and post-fire growth rates. Assuming 1% of standing terrestrial biomass is consumed by wildfires each year for ten years (without combustion of peat), an increase of atmospheric CO2 (from 2.0 to 2.2x P.A.L.) and a negative carbon isotope excursion (-1.2 ‰ ) are recorded by both atmosphere and new growth. Net primary productivity linked to the residence time of the vegetation and soil reservoirs results in a negative isotope shift followed by a broad positive isotope excursion. Decreasing the rate of re-growth dampens this trailing positive shift and increases the duration of the excursion. Post-fire pCO2 and new growth returned to initial values after 72 years. Both negative and positive isotope excursions are recorded in the model in surface ocean waters. Exchange of CO2 with the surface- and deep-ocean dampens the isotopic shift of the atmosphere. Excursions are first recorded in the atmosphere (and new growth), followed by the ocean, vegetation, and soil reservoirs. Ten to twenty five-year cycles of drought and fire are not recorded as individual excursions in the soil reservoir as the rate of transfer between the vegetation and soil reservoirs homogenizes the signal. A wildfire-modeled excursion does not propagate a geologically significant excursion through time. Combustion of a peat reservoir is necessary to drive and validate a geologically and isotopically significant excursion. Assuming 0.5% of the standing early Cretaceous peat reservoir is consumed by fire for each year for ten years coupled with the earlier scenario, the atmospheric CO2 increases from 2.0 to 3.1x P.A.L., atmosphere, vegetation, and the surface ocean record a negative carbon isotope excursion of -5.1 ‰ , -3.8 ‰ and -1.8 ‰ respectively, with a duration of 741 years. Increasing the size of the vegetation reservoir translates the excursions from the centennial to millennial scale. For example, doubling the vegetation reservoir (from 1.4 to 2.8E+16 gC) for a 25 year global peat conflagration (0.5% combusted each year) results in a CO2 increase from 2.0 to 4.0x P.A.L., and the atmosphere, vegetation, and the surface ocean reservoirs with a negative carbon isotope excursion of -5.7 ‰ , -8.7 ‰ and -2.3 ‰ respectively. Addition of carbonaceous aerosols (black carbon and polycyclic aromatic hydrocarbons) to pelagic marine sediments could potentially serve as a high-resolution record of ancient fires and firmly tie isotopic shifts to paleofires.
NASA Astrophysics Data System (ADS)
Vest, K. R.; Elmore, A. J.; Okin, G. S.
2009-12-01
Desertification is a human induced global phenomenon causing a loss of biodiversity and ecosystem productivity. Semi-arid grasslands are vulnerable to anthropogenic impacts (i.e., groundwater pumping and surface water diversion) that decrease vegetation cover and increase bare soil area leading to a greater probability of soil erosion, potentially enhancing feedback processes associated with desertification. To enhance our understanding of interactions between anthropogenic, physical, and biological factors causing desertification, this study used a combination of modeling and field observations to examine the relationship between chronic groundwater pumping and vegetation cover change and its effects on soil erosion and stability. The work was conducted in Owens Valley California, where a long history of groundwater pumping and surface water diversion has lead to documented vegetation changes. The work examined hydrological, ecological and biogeochemical factors across thirteen sites in Owens Valley. We analyzed soil stability, vegetation and gap size, soil organic carbon, and we also installed Big Spring Number Eight (BSNE) catchers to calculate mass transport of aeolian sediment across sites. Mass transport calculations were used to validate a new wind erosion model that represents the effect of porous vegetation on surface windshear velocity. Results across two field seasons show that the model can be used to predict mass transport, and areas with increased groundwater pumping show a greater susceptibility to erosion. Sediment collected in BSNE catchers was positively correlated with site gap size. Additionally, areas with larger gap sizes have a greater threshold shear velocity and soil stability, yet mass transport was greater at these sites than at sites with smaller gap sizes. Although modeling is complicated by spatial variation in multiple model parameters (e.g., gap size, threshold shear velocity in gaps), our results support the hypothesis that soils with high organic matter are being eroded following the loss of vegetation cover due to groundwater decline leaving behind bare soil surfaces with less fertility hampering vegetation reestablishment. Desertification in this system is apparently easily initiated through groundwater decline due to the high friability of these meadow soils.
Mapping the response of riparian vegetation to possible flow reductions in the Snake River, Idaho
Johnson, W. Carter; Dixon, Mark D.; Simons, Robert W.; Jenson, Susan; Larson, Kevin
1995-01-01
This study was initiated to determine the general effects of potential flow reductions in the middle Snake River (Swan Falls Dam downstream to the Idaho-Oregon border) on its riparian vegetation. Considerable water from the river is currently used to irrigate the adjacent Snake River Plain, and increased demand for water in the future is likely. The problem was subdivided into several research components including: field investigation of the existing riparian vegetation and river environment, hydrological modeling to calculate the effects of one flow scenario on hydrological regime, and integration of vegetation and hydrological modeling results with a Geographic Information System (GIs) to map the riverbed, island, and bank conditions under the scenario flow. Field work was conducted in summer 1990. Riparian vegetation along 40 U.S. Geological Survey cross-sections was sampled at approximately 1.25 mile intervals within the 50 mile long study area. Cross-section and flow data were provided by the U.S. Geological. Survey. GIs mapping of land/water cover using ARC/INFO was based on 1987 aerial photographs. Riverbed contour maps were produced by linking cross-section data, topographic contouring software (anudem), and GIs. The maps were used to spatially display shallow areas in the channel likely to become vegetated under reduced flow conditions. The scenario would reduce flow by approximately 20% (160 MAF) and lower the river an average of 0.5 ft. The scenario flow could cause a drop in the elevation of the riparian zone comparable to the drop in mean river level and expansion of the lower riparian zone into shallow areas of the channel. The GIs maps showed that the shallow areas of the channel more likely to become vegetated under the scenario flow are located in wide reaches near islands. Some possible ecological consequences of the scenario flow include a greater area of riparian habitat, reduced flow velocity and sedimentation in shallow channels leading to channel deactivation, increased island visitation and nest predation by predatory mammals due to loss of a water barrier between some islands and banks, and larger populations of alien plant species in the new riparian vegetation.
Rautiainen, Susanne; Wang, Lu; Lee, I-Min; Manson, JoAnn E; Buring, Julie E; Sesso, Howard D
2015-05-01
Fruit, vegetable, and dietary fiber intake have been associated with lower risk of cardiovascular disease (CVD); however, little is known about their role in obesity prevention. Our goal was to investigate whether intake of fruits, vegetables, and dietary fiber is associated with weight change and the risk of becoming overweight and obese. We studied 18,146 women aged ≥45 y from the Women's Health Study free of CVD and cancer with an initial body mass index (BMI) of 18.5 to <25 kg/m². Fruit, vegetable, and dietary fiber intakes were assessed at baseline through a 131-item food-frequency questionnaire, along with obesity-related risk factors. Women self-reported body weight on annual questionnaires. During a mean follow-up of 15.9 y, 8125 women became overweight or obese (BMI ≥25 kg/m²). Intakes of total fruits and vegetables, fruits, and dietary fiber were not associated with the longitudinal changes in body weight, whereas higher vegetable intake was associated with greater weight gain (P-trend: 0.02). In multivariable analyses, controlling for total energy intake and physical activity along with other lifestyle, clinical, and dietary factors, women in the highest vs. lowest quintile of fruit intake had an HR of 0.87 (95% CI: 0.80, 0.94; P-trend: 0.01) of becoming overweight or obese. No association was observed for vegetable or dietary fiber intake. The association between fruit intake and risk of becoming overweight or obese was modified by baseline BMI (P-interaction: <0.0001) where the strongest inverse association was observed among women with a BMI <23 kg/m² (HR: 0.82; 95% CI: 0.71, 0.94). Our results suggest that greater baseline intake of fruit, but not vegetables or fiber, by middle-aged and older women with a normal BMI at baseline is associated with lower risk of becoming overweight or obese. © 2015 American Society for Nutrition.
Rautiainen, Susanne; Wang, Lu; Lee, I-Min; Manson, JoAnn E; Buring, Julie E; Sesso, Howard D
2015-01-01
Background: Fruit, vegetable, and dietary fiber intake have been associated with lower risk of cardiovascular disease (CVD); however, little is known about their role in obesity prevention. Objective: Our goal was to investigate whether intake of fruits, vegetables, and dietary fiber is associated with weight change and the risk of becoming overweight and obese. Methods: We studied 18,146 women aged ≥45 y from the Women’s Health Study free of CVD and cancer with an initial body mass index (BMI) of 18.5 to <25 kg/m2. Fruit, vegetable, and dietary fiber intakes were assessed at baseline through a 131-item food-frequency questionnaire, along with obesity-related risk factors. Women self-reported body weight on annual questionnaires. Results: During a mean follow-up of 15.9 y, 8125 women became overweight or obese (BMI ≥25 kg/m2). Intakes of total fruits and vegetables, fruits, and dietary fiber were not associated with the longitudinal changes in body weight, whereas higher vegetable intake was associated with greater weight gain (P-trend: 0.02). In multivariable analyses, controlling for total energy intake and physical activity along with other lifestyle, clinical, and dietary factors, women in the highest vs. lowest quintile of fruit intake had an HR of 0.87 (95% CI: 0.80, 0.94; P-trend: 0.01) of becoming overweight or obese. No association was observed for vegetable or dietary fiber intake. The association between fruit intake and risk of becoming overweight or obese was modified by baseline BMI (P-interaction: <0.0001) where the strongest inverse association was observed among women with a BMI <23 kg/m2 (HR: 0.82; 95% CI: 0.71, 0.94). Conclusion: Our results suggest that greater baseline intake of fruit, but not vegetables or fiber, by middle-aged and older women with a normal BMI at baseline is associated with lower risk of becoming overweight or obese. PMID:25934663
Fresh Fruit and Vegetable Program and Requests for Fruits and Vegetables Outside School Settings.
Ohri-Vachaspati, Punam; Dachenhaus, Elizabeth; Gruner, Jessie; Mollner, Kristina; Hekler, Eric B; Todd, Michael
2018-01-08
Consumption of fruits and vegetables (F/V) among elementary school-aged children remains inadequate, especially among low-income children. The US Department of Agriculture's Fresh Fruit and Vegetable Program (FFVP) provides F/V as snacks to children during the school day, outside of school meals. School-based initiatives are successful in changing behaviors in school settings; however, their influence on behaviors outside of schools needs investigation. To examine whether FFVP participation is associated with F/V requests at stores, self-efficacy to ask for and choose F/V at home, and F/V consumption. Cross-sectional study. Fourth graders in six classrooms (n=296) from three urban, low-income school districts in Phoenix, AZ, were surveyed during 2015; one FFVP and one non-FFVP school from each district that were similar in school size, percent free/reduced-price meal eligibility, and race/ethnicity of enrolled students were selected. Children's self-reported F/V requests during shopping, their self-efficacy to ask for and choose F/V at home, and F/V consumption on the previous day (non-FFVP school day) were measured using questions adapted from validated surveys. Multivariable mixed-effect regression models, adjusting for clustering of students within classes and classes within schools were explored. In models adjusting for individual-level factors (ie, age and sex) only, several significant positive associations were observed between school FFVP participation and healthier F/V outcomes. After additionally adjusting for school-level factors (ie, total enrollment and % Hispanic/Latino students) significant associations were observed between school FFVP participation and more requests for vegetables during shopping (P<0.001), higher scores on self-efficacy to choose vegetables at home (P=0.004), stronger preferences for vegetables (P<0.001), and more frequent consumption of fruit (P=0.006). School FFVP participation was associated with more requests for vegetables during shopping and higher self-efficacy to make healthy choices at home, suggesting the influence of the FFVP may extend beyond the school day. Copyright © 2018 Academy of Nutrition and Dietetics. Published by Elsevier Inc. All rights reserved.
Multi‐layered inhibition of Streptomyces development: BldO is a dedicated repressor of whiB
Chandra, Govind; Findlay, Kim C.; Buttner, Mark J.
2017-01-01
Summary BldD‐(c‐di‐GMP) sits on top of the regulatory network that controls differentiation in Streptomyces, repressing a large regulon of developmental genes when the bacteria are growing vegetatively. In this way, BldD functions as an inhibitor that blocks the initiation of sporulation. Here, we report the identification and characterisation of BldO, an additional developmental repressor that acts to sustain vegetative growth and prevent entry into sporulation. However, unlike the pleiotropic regulator BldD, we show that BldO functions as the dedicated repressor of a single key target gene, whiB, and that deletion of bldO or constitutive expression of whiB is sufficient to induce precocious hypersporulation. PMID:28271577
Design of a global soil moisture initialization procedure for the simple biosphere model
NASA Technical Reports Server (NTRS)
Liston, G. E.; Sud, Y. C.; Walker, G. K.
1993-01-01
Global soil moisture and land-surface evapotranspiration fields are computed using an analysis scheme based on the Simple Biosphere (SiB) soil-vegetation-atmosphere interaction model. The scheme is driven with observed precipitation, and potential evapotranspiration, where the potential evapotranspiration is computed following the surface air temperature-potential evapotranspiration regression of Thomthwaite (1948). The observed surface air temperature is corrected to reflect potential (zero soil moisture stress) conditions by letting the ratio of actual transpiration to potential transpiration be a function of normalized difference vegetation index (NDVI). Soil moisture, evapotranspiration, and runoff data are generated on a daily basis for a 10-year period, January 1979 through December 1988, using observed precipitation gridded at a 4 deg by 5 deg resolution.
Vegetative conditions and management options in even-age stands on the Monongahela National Forest
Gary W. Miller; James N. Kochenderfer; James Knibbs; John E. Baumgras
2001-01-01
In 1998, personnel with the Northeastern Research Station and the Monongahela National Forest initiated a comprehensive survey of even-age stands that regenerated between 1964 and 1990. Preliminary results indicate that clearcutting was successful in regenerating these young stands with a variety of woody and herbaceous plant species. Early cleanings using crop-tree...
ERIC Educational Resources Information Center
Berg, Celeste
2013-01-01
Sustainable food and dining is a popular topic on college and university campuses. Popular areas of focus include equipment upgrades in the kitchen, installation of campus or community gardens, and streamlining existing campus recycling operations, such as by converting campus vehicles to run on used vegetable oil from the dining hall. Research…
The Impact of the Chile Intervention on the Food Served in Head Start Centers in Rural New Mexico
ERIC Educational Resources Information Center
Morshed, Alexandra B.; Davis, Sally M.; Keane, Patricia C.; Myers, Orrin B.; Mishra, Shiraz I.
2016-01-01
Background: The Child Health Initiative for Lifelong Eating and Exercise is a multicomponent obesity-prevention intervention, which was evaluated among Head Start (HS) centers in American Indian and predominantly Hispanic communities in rural New Mexico. This study examines the intervention's foodservice outcomes: fruits, vegetables, whole grains,…
ERIC Educational Resources Information Center
Shah, Megha K.; Kieffer, Edith C.; Choi, Hwajung; Schumann, Christina; Heisler, Michele
2015-01-01
Background. Pregnancy is an opportune time to initiate diabetes prevention strategies for minority and underserved women, using culturally tailored interventions delivered by community health workers. A community-partnered randomized controlled trial (RCT) with pregnant Latino women resulted in significantly improved vegetable, fiber, added sugar,…
Dual-cropping loblolly pine for biomass energy and conventional wood products
D. Andrew Scott; Allan Tiarks
2008-01-01
Southern pine stands have the potential to provide significant feedstocks for the growing biomass energy and biofuel markets. Although initial feedstocks likely will come from low-value small-diameter trees, understory vegetation, and slash, a sustainable and continuous supply of biomass is necessary to support and grow a wood bioenergy market. As long as solidwood...
Initial riparian down wood dynamics in relation to thinning and buffer width
Paul D. Anderson; Deanna H. Olson; Adrian Ares
2013-01-01
Down wood plays many functional roles in aquatic and riparian ecosystems. Simplifi cation of forest structure and low abundance of down wood in stream channels and riparian areas is a common legacy of historical management in headwater forests west of the Cascade Range in the US northwest. Contemporary management practices emphasize the implementation of vegetation...
Saltcedar control and water salvage on the Pecos River, Texas, 1999 to 2003
Charles R. Hart; Larry D. White; Alyson McDonald; Zhuping Sheng
2007-01-01
A large scale ecosystem restoration program was initiated in 1997 on the Pecos River in western Texas. Saltcedar (Tamarix spp.), a non-native invasive tree, had created a near monoculture along the banks of the river by replacing most native vegetation. Local irrigation districts, private landowners, federal and state agencies, and private industry...
Effect of pruning the parent root on growth of aspen suckers
Ashbel F. Hough
1965-01-01
Various portions of the root systems of bigtooth aspen (Populus grandidentata) suckers were severed, and the subsequent height and radial growth of stems were measured. Aspen vegetative regeneration is heavily dependent on the parent roots for at least 25 years following initial suckering. The distal portion of the parent root contributes more to...
Plant succession on the Mount St. Helens debris-avalanche deposit and the role of non-native species
USDA-ARS?s Scientific Manuscript database
The debris-avalanche deposit is one of the most severely disturbed areas created by the 1980 eruption of Mount St. Helens, with little survival of a few plant fragments, and primary succession mostly being initiated by the seeds dispersed onto the newly emplaced material. Vegetation changes on the d...
Historical open forest ecosystems in the Missouri Ozarks: reconstruction and restoration targets
Brice B. Hanberry; D. Todd Jones-Farrand; John M. Kabrick
2014-01-01
Current forests no longer resemble historical open forest ecosystems in the eastern United States. In the absence of representative forest ecosystems under a continuous surface fire regime at a large scale, reconstruction of historical landscapes can provide a reference for restoration efforts. For initial expert-assigned vegetation phases ranging from prairie to...
2006-10-01
frame ( yellow symbols). Additional control points (red symbols) can be used if initial points do not provide an adequate orthographic solution ERDC TN...56, 245-252. Young, D. R., D. T. Specht , P. J. Clinton, and H. Lee. 1998. Use of color infrared photography to map dis- tributions of eelgrass and
R. Kasten Dumroese; Anthony S. Davis; Douglass F. Jacobs
2011-01-01
Planting koa (Acacia koa A. Gray) in Hawai'i, USA aids in restoration of disturbed sites essential to conservation of endemic species. Survival and growth of planted seedlings under vegetative competition typically increases with initial plant size. Increasing container size and fertilizer rate may produce larger seedlings, but high fertilization can lead to...
Robert L. Heath; Allen S. Lefohn; Robert C. Musselman
2009-01-01
Ozone interacts with plant tissue through distinct temporal processes. Sequentially, plants are exposed to ambient O3 hat (1) moves through the leaf boundary layer, (2) is taken up into plant tissue primarily through stomata, and (3) undergoes chemical interaction within plant tissue, first by initiating alterations and then as part of plant...
NASA Astrophysics Data System (ADS)
Falloon, P. D.; Dankers, R.; Betts, R. A.; Jones, C. D.; Booth, B. B. B.; Lambert, F. H.
2012-06-01
The aim of our study was to use the coupled climate-carbon cycle model HadCM3C to quantify climate impact of ecosystem changes over recent decades and under future scenarios, due to changes in both atmospheric CO2 and surface albedo. We use two future scenarios - the IPCC SRES A1B scenario, and a climate stabilisation scenario (2C20), allowing us to assess the impact of climate mitigation on results. We performed a pair of simulations under each scenario - one in which vegetation was fixed at the initial state and one in which vegetation changes dynamically in response to climate change, as determined by the interactive vegetation model within HadCM3C. In our simulations with interactive vegetation, relatively small changes in global vegetation coverage were found, mainly dominated by increases in scrub and needleleaf trees at high latitudes and losses of broadleaf trees and grasses across the Amazon. Globally this led to a loss of terrestrial carbon, mainly from the soil. Global changes in carbon storage were related to the regional losses from the Amazon and gains at high latitude. Regional differences in carbon storage between the two scenarios were largely driven by the balance between warming-enhanced decomposition and altered vegetation growth. Globally, interactive vegetation reduced albedo acting to enhance albedo changes due to climate change. This was mainly related to the darker land surface over high latitudes (due to vegetation expansion, particularly during winter and spring); small increases in albedo occurred over the Amazon. As a result, there was a relatively small impact of vegetation change on most global annual mean climate variables, which was generally greater under A1B than 2C20, with markedly stronger local-to-regional and seasonal impacts. Globally, vegetation change amplified future annual temperature increases by 0.24 and 0.15 K (under A1B and 2C20, respectively) and increased global precipitation, with reductions in precipitation over the Amazon and increases over high latitudes. In general, changes were stronger over land - for example, global temperature changes due to interactive vegetation of 0.43 and 0.28 K under A1B and 2C20, respectively. Regionally, the warming influence of future vegetation change in our simulations was driven by the balance between driving factors. For instance, reduced tree cover over the Amazon reduced evaporation (particularly during summer), outweighing the cooling influence of any small albedo changes. In contrast, at high latitudes the warming impact of reduced albedo (particularly during winter and spring) due to increased vegetation cover appears to have offset any cooling due to small evaporation increases. Climate mitigation generally reduced the impact of vegetation change on future global and regional climate in our simulations. Our study therefore suggests that there is a need to consider both biogeochemical and biophysical effects in climate adaptation and mitigation decision making.
NASA Astrophysics Data System (ADS)
Falloon, P. D.; Dankers, R.; Betts, R. A.; Jones, C. D.; Booth, B. B. B.; Lambert, F. H.
2012-11-01
The aim of our study was to use the coupled climate-carbon cycle model HadCM3C to quantify climate impact of ecosystem changes over recent decades and under future scenarios, due to changes in both atmospheric CO2 and surface albedo. We use two future scenarios - the IPCC SRES A1B scenario, and a climate stabilisation scenario (2C20), allowing us to assess the impact of climate mitigation on results. We performed a pair of simulations under each scenario - one in which vegetation was fixed at the initial state and one in which vegetation changes dynamically in response to climate change, as determined by the interactive vegetation model within HadCM3C. In our simulations with interactive vegetation, relatively small changes in global vegetation coverage were found, mainly dominated by increases in shrub and needleleaf trees at high latitudes and losses of broadleaf trees and grasses across the Amazon. Globally this led to a loss of terrestrial carbon, mainly from the soil. Global changes in carbon storage were related to the regional losses from the Amazon and gains at high latitude. Regional differences in carbon storage between the two scenarios were largely driven by the balance between warming-enhanced decomposition and altered vegetation growth. Globally, interactive vegetation reduced albedo acting to enhance albedo changes due to climate change. This was mainly related to the darker land surface over high latitudes (due to vegetation expansion, particularly during December-January and March-May); small increases in albedo occurred over the Amazon. As a result, there was a relatively small impact of vegetation change on most global annual mean climate variables, which was generally greater under A1B than 2C20, with markedly stronger local-to-regional and seasonal impacts. Globally, vegetation change amplified future annual temperature increases by 0.24 and 0.15 K (under A1B and 2C20, respectively) and increased global precipitation, with reductions in precipitation over the Amazon and increases over high latitudes. In general, changes were stronger over land - for example, global temperature changes due to interactive vegetation of 0.43 and 0.28 K under A1B and 2C20, respectively. Regionally, the warming influence of future vegetation change in our simulations was driven by the balance between driving factors. For instance, reduced tree cover over the Amazon reduced evaporation (particularly during June-August), outweighing the cooling influence of any small albedo changes. In contrast, at high latitudes the warming impact of reduced albedo (particularly during December-February and March-May) due to increased vegetation cover appears to have offset any cooling due to small evaporation increases. Climate mitigation generally reduced the impact of vegetation change on future global and regional climate in our simulations. Our study therefore suggests that there is a need to consider both biogeochemical and biophysical effects in climate adaptation and mitigation decision making.
Jilcott Pitts, Stephanie B.; Wu, Qiang; Truesdale, Kimberly P.; Laska, Melissa N.; Grinchak, Taras; McGuirt, Jared T.; Haynes-Maslow, Lindsey; Bell, Ronny A.; Ammerman, Alice S.
2017-01-01
In 2016, the North Carolina (NC) Legislature allocated $250,000 to the NC Department of Agriculture, to identify and equip small food retailers to stock healthier foods and beverages in eastern NC food deserts (the NC Healthy Food Small Retailer Program, HFSRP). The purpose of this study was to examine associations between food store environments, shopping patterns, customer purchases, and dietary consumption among corner store customers. We surveyed 479 customers in 16 corner stores regarding demographics, food purchased, shopping patterns, and self-reported fruit, vegetable, and soda consumption. We objectively assessed fruit and vegetable consumption using a non-invasive reflection spectroscopy device to measure skin carotenoids. We examined associations between variables of interest, using Pearson’s correlation coefficients and adjusted linear regression analyses. A majority (66%) of participants were African American, with a mean age of 43 years, and a mean body mass index (BMI) of 30.0 kg/m2. There were no significant associations between the healthfulness of food store offerings, customer purchases, or dietary consumption. Participants who said they had purchased fruits and vegetables at the store previously reported higher produce intake (5.70 (4.29) vs. 4.60 (3.28) servings per day, p = 0.021) versus those who had not previously purchased fresh produce. The NC Legislature has allocated another $250,000 to the HFSRP for the 2018 fiscal year. Thus, evaluation results will be important to inform future healthy corner store policies and initiatives. PMID:28991156
The Sensitivity of West African Squall Line Water Budgets to Land Cover
NASA Technical Reports Server (NTRS)
Mohr, Karen I.; Baker, R. David; Tao, Wei-Kuo; Famiglietti, James S.; Starr, David OC. (Technical Monitor)
2001-01-01
This study used a two-dimensional coupled land/atmosphere (cloud-resolving) model to investigate the influence of land cover on the water budgets of squall lines in the Sahel. Study simulations used the same initial sounding and one of three different land covers, a sparsely vegetated semi-desert, a grassy savanna, and a dense evergreen broadleaf forest. All simulations began at midnight and ran for 24 hours to capture a full diurnal cycle. In the morning, the latent heat flux, boundary layer mixing ratio, and moist static energy in the boundary layer exhibited notable variations among the three land covers. The broadleaf forest had the highest latent heat flux, the shallowest, moistest, slowest growing boundary layer, and significantly more moist static energy per unit area than the savanna and semi-desert. Although all simulations produced squall lines by early afternoon, the broadleaf forest had the most intense, longest-lived squall lines with 29% more rainfall than the savanna and 37% more than the semi-desert. The sensitivity of the results to vegetation density, initial sounding humidity, and grid resolution was also assessed. There were greater differences in rainfall among land cover types than among simulations of the same land cover with varying amounts of vegetation. Small changes in humidity were equivalent in effect to large changes in land cover, producing large changes in the condensate and rainfall. Decreasing the humidity had a greater effect on rainfall volume than increasing the humidity. Reducing the grid resolution from 1.5 km to 0.5 km decreased the temperature and humidity of the cold pools and increased the rain volume.
NASA Astrophysics Data System (ADS)
Tooth, Stephen; Nanson, Gerald C.
2000-10-01
As the distribution and abundance of vegetation in drylands is often controlled by the greater availability of water along river channels, riparian vegetation has the potential to influence significantly dryland river form, process and behaviour. This paper demonstrates how a small indigenous shrub, the inland teatree (Melaleuca glomerata), influences the formation and maintenance of anabranching channels in a reach of the ephemeral Marshall River, Northern Plains, arid central Australia. Here, the Marshall is characterized by ridge-form anabranching, where water and sediment are routed through subparallel, multiple channels of variable size which occur within a typically straight channel-train. Channels are separated by channel-train ridges - narrow, flow-aligned, vegetated features - or by wider islands. By providing a substantial element of boundary roughness, dense stands of teatrees growing on channel beds or atop the ridges and islands influence flow velocities, flow depths and sediment transport, resulting in flow diversion, bank and floodplain erosion, and especially sediment deposition. Ridges and islands represent a continuum of forms, and their formation and development can be divided into a three-stage sequence involving teatree growth and alluvial sedimentation.1Teatrees colonize a flat, sandy channel bed, initiating the formation of ridges by lee-side accretion. Individual ridges grow laterally, vertically and longitudinally and maintain a geometrically similar streamlined (lemniscate) form that presents minimum drag.2Individual ridges grow in size, and interact with neighbouring ridges, causing the lemniscate forms to become distorted. Ridges in the lee of other ridges tend to be protected from the erosive effects of floods and survive, whereas individual teatrees or small ridges exposed to flow concentrated between larger ridges, tend to be removed.3
NASA Astrophysics Data System (ADS)
Maezumi, S. Y.; Power, M. J.; Mayle, F. E.; McLauchlan, K.; Iriarte, J.
2015-01-01
Cerrãdo savannas have the greatest fire activity of all major global land-cover types and play a significant role in the global carbon cycle. During the 21st century, temperatures are predicted to increase by ~ 3 °C coupled with a precipitation decrease of ~ 20%. Although these conditions could potentially intensify drought stress, it is unknown how that might alter vegetation composition and fire regimes. To assess how Neotropical savannas responded to past climate changes, a 14 500 year, high-resolution, sedimentary record from Huanchaca Mesetta, a palm swamp located in the cerrãdo savanna in northeastern Bolivia, was analyzed for phytoliths, stable isotopes and charcoal. A non-analogue, cold-adapted vegetation community dominated the Late Glacial-Early Holocene period (14 500-9000 ka), that included trees and C3 Pooideae and C4 Panicoideae grasses. The Late Glacial vegetation was fire sensitive and fire activity during this period was low, likely responding to fuel availability and limitation. Although similar vegetation characterized the Early Holocene, the warming conditions associated with the onset of the Holocene led to an initial increase in fire activity. Huanchaca Mesetta became increasingly fire-dependent during the Middle Holocene with the expansion of C4 fire adapted grasses. However, as warm, dry conditions, characterized by increased length and severity of the dry season, continued, fuel availability decreased. The establishment of the modern palm swamp vegetation occurred at 5000 cal yr BP. Edaphic factors are the first order control on vegetation on the rocky quartzite mesetta. Where soils are sufficiently thick, climate is the second order control of vegetation on the mesetta. The presence of the modern palm swamp is attributed to two factors: (1) increased precipitation that increased water table levels, and (2) decreased frequency and duration of surazos leading to increased temperature minima. Natural (soil, climate, fire) drivers rather than anthropogenic drivers control the vegetation and fire activity at Huanchaca Mesetta. Thus the cerrãdo savanna ecosystem of the Huanchaca Plateau has exhibited ecosystem resilience to major climatic changes in both temperature and precipitation since the Late Glacial period.
NASA Astrophysics Data System (ADS)
Van, U. A.; Lamb, B. T.
2016-12-01
Wetlands are biologically diverse ecosystems that provide a number of ecosystems services, including flood protection, erosion prevention, and carbon sequestration. Wetlands often act as carbon sinks because the abundant plant life in wetlands does not decompose easily in the saturated conditions, leading to carbon accumulating in wetland soils. Due to the motion of tides, however, this stored carbon can be transported to the adjacent estuary. Our study site is in the northwestern shore of the Chesapeake Bay, focusing on the Kirkpatrick Marsh and the adjacent Rhode River estuary. The goal of this project is to use remotely sensed data and in situ measurements to understand carbon fluxes between the Kirkpatrick marsh and the Rhode river estuary. Satellite earth images are obtained from the Optical Land Imager (OLI) sensor aboard the Landsat 8 satellite through the USGS Earth Explorer online interface. Landsat imagery is then processed using various spatial analysis tools to calculate for vegetation indices such as Normalized Density Vegetation Index (NDVI), Transformed Vegetation Index (TVI) and Green Normalized Density Vegetation Index (GNDVI). One goal of this project is to compare the vegetation data obtained from the different indices and find out which index can optimize the wide categorization of vegetation over the wetland. We evaluated lesser known vegetation indices (TVI and GNDVI) to compare to NDVI. Preliminary results have shown TVI to be most effective when compared against NDVI and has a correlating factor of 0.987. In addition to using marsh vegetation indices, we are using water quality indices such as the Red/Green index to compare to in-situ water samples in the Rhode River. A YSI EXO2 sensor sits at the marsh-estuary interface and continuously measures water parameters such as turbidity, depth, fDOM and chlorophyll-A. We are attempting to understand if the marsh vegetation indices, water quality indices (remote sensing), and in-situ measurements of water quality are related to one another. Initial comparison between remotely sensed NDVI data and in-situ fDOM data have a correlating factor of 0.93. Understanding the processes affecting carbon cycling within wetlands is pivotal to knowing how to manage them in the future.
Yang, Ning; Zou, Dongsheng; Yang, Manyuan; Lin, Zhonggui
2016-01-01
Crust restoration is increasingly being done but we lack quantitative information on soil improvements. The study aimed to elucidate the dynamics involving soil microbial biomass carbon and soil dissolved organic carbon in the re-vegetation chronosequences of a hillslope land with purple soil in Hengyang, Hunan Province. The soil can cause serious disasters with both soil erosion and seasonal drought, and also becomes a typical representative of ecological disaster area in South China. Using the space-for-time method, we selected six typical sampling plots, designated as follows: grassplot community, meadow thicket community, frutex community, frutex and arbor community, arbor community, and top-level vegetation community. These plots were established to analyze the changes in soil microbial biomass carbon, soil microbial quotien, dissolved organic carbon, dissolved organic carbon/soil organic carbon, and soil basal respiration in 0-10, 10-20, and 20-40 cm soil layers. The relationships of these parameters with soils physic-chemical properties were also determined. The ecological environment of the 6 plant communities is similar and typical; they denoted six different successive stages of restoration on hillslopes with purple soils in Hengyang, Hunan Province. The soil microbial biomass carbon and soil basal respiration contents decreased with increasing soil depth but increased with re-vegetation. By contrast, soil microbial quotient increased with increasing soil depth and re-vegetation. From 0-10 cm soil layer to 20-40 cm soil layer, the dissolved organic carbon content decreased in different re-vegetation stages. In the process of re-vegetation, the dissolved organic carbon content increased in the 0-10 and 10-20 cm soil layers, whereas the dissolved organic carbon content decreased after an initial increase in the 20-40 cm soil layers. Meanwhile, dissolved organic carbon/soil organic carbon increased with increasing soil depth but decreased with re-vegetation. Significant correlations existed among soil microbial biomass carbon, soil microbial quotient, dissolved organic carbon, soil basal respiration and soil physic-chemical properties associated with soil fertility. The results showed that re-vegetation was conducive to the soil quality improvement and the accumulation of soil organic carbon pool of the hillslope land with purple soil in Hengyang, Hunan Province.
Yang, Ning; Zou, Dongsheng; Yang, Manyuan; Lin, Zhonggui
2016-01-01
Crust restoration is increasingly being done but we lack quantitative information on soil improvements. The study aimed to elucidate the dynamics involving soil microbial biomass carbon and soil dissolved organic carbon in the re-vegetation chronosequences of a hillslope land with purple soil in Hengyang, Hunan Province. The soil can cause serious disasters with both soil erosion and seasonal drought, and also becomes a typical representative of ecological disaster area in South China. Using the space-for-time method, we selected six typical sampling plots, designated as follows: grassplot community, meadow thicket community, frutex community, frutex and arbor community, arbor community, and top-level vegetation community. These plots were established to analyze the changes in soil microbial biomass carbon, soil microbial quotien, dissolved organic carbon, dissolved organic carbon/soil organic carbon, and soil basal respiration in 0–10, 10–20, and 20–40 cm soil layers. The relationships of these parameters with soils physic-chemical properties were also determined. The ecological environment of the 6 plant communities is similar and typical; they denoted six different successive stages of restoration on hillslopes with purple soils in Hengyang, Hunan Province. The soil microbial biomass carbon and soil basal respiration contents decreased with increasing soil depth but increased with re-vegetation. By contrast, soil microbial quotient increased with increasing soil depth and re-vegetation. From 0–10 cm soil layer to 20–40 cm soil layer, the dissolved organic carbon content decreased in different re-vegetation stages. In the process of re-vegetation, the dissolved organic carbon content increased in the 0–10 and 10–20 cm soil layers, whereas the dissolved organic carbon content decreased after an initial increase in the 20–40 cm soil layers. Meanwhile, dissolved organic carbon/soil organic carbon increased with increasing soil depth but decreased with re-vegetation. Significant correlations existed among soil microbial biomass carbon, soil microbial quotient, dissolved organic carbon, soil basal respiration and soil physic-chemical properties associated with soil fertility. The results showed that re-vegetation was conducive to the soil quality improvement and the accumulation of soil organic carbon pool of the hillslope land with purple soil in Hengyang, Hunan Province. PMID:27977678
Land surface sensitivity of mesoscale convective systems
NASA Astrophysics Data System (ADS)
Tournay, Robert C.
Mesoscale convective systems (MCSs) are important contributors to the hydrologic cycle in many regions of the world as well as major sources of severe weather. MCSs continue to challenge forecasters and researchers alike, arising from difficulties in understanding system initiation, propagation, and demise. One distinct type of MCS is that formed from individual convective cells initiated primarily by daytime heating over high terrain. This work is aimed at improving our understanding of the land surface sensitivity of this class of MCS in the contiguous United States. First, a climatology of mesoscale convective systems originating in the Rocky Mountains and adjacent high plains from Wyoming southward to New Mexico is developed through a combination of objective and subjective methods. This class of MCS is most important, in terms of total warm season precipitation, in the 500 to 1300m elevations of the Great Plains (GP) to the east in eastern Colorado to central Nebraska and northwest Kansas. Examining MCSs by longevity, short lasting MCSs (15 hrs) reveals that longer lasting systems tend to form further south and have a longer track with a more southerly track. The environment into which the MCS is moving showed differences across commonly used variables in convection forecasting, with some variables showing more favorable conditions throughout (convective inhibition, 0-6 km shear and 250 hPa wind speed) ahead of longer lasting MCSs. Other variables, such as convective available potential energy, showed improving conditions through time for longer lasting MCSs. Some variables showed no difference across longevity of MCS (precipitable water and large-scale vertical motion). From subsets of this MCS climatology, three regions of origin were chosen based on the presence of ridgelines extending eastward from the Rocky Mountains known to be foci for convection initiation and subsequent MCS formation: Southern Wyoming (Cheyenne Ridge), Colorado (Palmer divide) and northern New Mexico (Raton Mesa). Composite initial and boundary conditions were developed from reanalysis data, from which control runs of regional MCSs were made as well a series of idealized experiments with imposed large scale soil moisture (SM) anomalies to study to impact to each regional MCS on SM variations in initiation region as well down stream in the GP. Another idealized experiment was made to study the impact of varying the planetary boundary layer (PBL) parameterization in the context of the idealized SM variations. While the distribution of SM has a major impact on CAPE and the location and magnitude of CI, also important is the differences in shear driven by the differences in large scale SM, playing a major, and varying depending on where the regional MCSs interact with the shear anomalies. Utilizing a different PBL parameterization impacts the timing and amount of initial CI, impacting the total precipitation produced by the MCSs, but not nearly the magnitude of alteration to the MCS as varying the SM distribution. A climatology of CI in the Rocky Mountains and adjacent high plains is made using a high resolution observational dataset. From this climatology, the sensitivity of CI to land surface variables, including SM and vegetation is studied. It was found that the timing of CI had a stronger relationship with SM, with earlier CI over wetter than average soils, with the greatest difference in May in the north of the domain, nearly all statistical significant values across regions from north to south in June and July with little difference in August in the northern regions. Outside of May, which showed a strong relationship of earlier CI over less vegetated regions, the relationship was similar, but weaker than, that between SM and CI timing. Examining the CAPE, CIN and PW at CI and null points reveal that the values are generally more conducive to CI over wet soils and anomalously vegetated areas at both CI and null points, with stronger difference in the high plains in the east of regions. Examining the covariance of SM and vegetation at CI points revealed that July and August showed expected covariance relationships with concurrently measured convective variables (i.e., high SM/vegetation associated with high CAPE and vice versa for low SM/vegetation) while May and June higher CAPE and CIN over low vegetation anomalies. A climatology of elevated mixed layers in the central GP was conducted, revealing that the greatest number of EMLS occurred in the northern GP. Back trajectories (BT) were conducted from the radiosonde point of detection for 18 and 36 hours, revealing that the BT point mean for days with severe weather were further west and south from the origin point. The SM and vegetation was sampled at the BT point, revealing a negative, significant correlation with EML depth when pooling the northern stations in 18-hr BTs, and a significant, negative correlation with EVI when pooling the southern sites. A modeling case study was conducted in which an idealized SM anomaly was imposed over the EML origin region. Experiments were also conducted to test the sensitivity of ML formation and EML transport using different PBL parameterizations. While the YSU PBL parameterization produced the deeper PBL over anonymously dry soils in the EML origin region, the EML was not transported to the east as it was in those experiments using the MYNN parameterization, impacting the timing and extent of precipitation in the model runs.
Analysis of landslide overgrowing rates at Vaskiny Dachi key site, Central Yamal, Russia
NASA Astrophysics Data System (ADS)
Khomutov, A.
2009-04-01
An estimation of overgrowing of landslide-affected slopes by vegetation at three main landslide elements: shear surface, landslide body and "frontal zone" at Vaskiny Dachi key site is presented. Vaskiny Dachi key site is located in the watershed of Se-Yakha and Mordy-Yakha rivers on Central Yamal, Russia. The area is represented by highly-dissected alluvial-lacustrine-marine plains and terraces. The closest to Vaskiny Dachi climate station is Marresale, about 90 km southwest of Vaskiny Dachi, at the Kara sea coast. The weather here is probably somewhat cooler than at Vaskiny Dachi. The average annual (summer) air temperature at Marresale is -8.3° C (4.3° C) ("Russia's Weather" Server). To estimate vegetation cover dynamics on cryogenic landslides at "Vaskiny Dachi", data published by O.Rebristaya and others (1995) were used. Their observations were done in 1991-1993, and were supplemented by further field observations (Leibman et al., 2000, Khomutov & Leibman 2007) and by field and remote sensing observations in 2008. An estimation of vegetation cover dynamics on cryogenic landslides at "Vaskiny Dachi" leads to the following results. Immediately after landsliding in 1989, landslide shear surface was bare without any vegetation, landslide body had initial vegetation, and "frontal zone" was under liquefied sediment masses. "Frontal zone" formed in front of a landslide body, appears as a result of damming of drainage routes by a landslide body with flooding of the shear surface "upstream" of the landslide body, formation of a sedge-cottongrass meadow there, and swamping downstream (Khomutov & Leibman 2007). By 1993, landslide shear surface got overgrown by species subordinate in surrounding initial landscapes (Alopecurus alpinus, Festuca ovina, Calamagrostis neglecta, Poa alpigena ssp. Alpigena, etc.). Landslide body was covered by initial communities which got depressed: vitality of Salix polaris, Vaccinium vitis-idaea was reduced, dead off moss cover and overgrown Equiesetum arvense ssp. boreale were presented, pioneer moss species (Bryum sp., Ceratodon purpureus appropriate for disturbed habitats appeared. In the "frontal zone" transformed initial communities were observed and sedge communities with Carex glareosa were developing (Rebristaya et al. 1995). In 2005 landslide shear surface was characterized by abundance of pioneer grass and chamomile-grass with herb communities on rather dry portions (Deschampsia borealis, Puccinellia sibirica, Draba hirta, Tanacetum bipinnatum, Senecio congestus), and sedge (Carex glaerosa, Carex bigelowii ssp. arctisibirica) or cottongrass (Eriophorum angustifolium, Eriophorim vaginatum) meadows in depressions, but edges of gentle troughs were overgrowing poorly. On the landslide body, initial moss cover did not recover, on separate blocks crustose lichens developed. However, everywhere in more stable herb-shrub communities with Salix polaris typical moss cover formed. In "frontal zone" sedge bogs appeared. Some activation of overgrowing was noted in 2007-2008 in connection with favorable weather conditions with warm summers in preceding 2005-2006 and relatively high summer precipitation, but shear surfaces of majority of landslides got overgrown by 30-40 % because of poorly developed organic horizon and high erosion liability of these surfaces, as well as shear surfaces of small landslides on steep slopes. Different are landslides on gentle southern slopes. Their shear surfaces got overgrown by herb, cotton grass and sedge communities by 90% while communities on landslide bodies are similar to those on surrounding undisturbed slopes. Specific are landslides with actively developing thermoerosion on shear surface. Overgrowing and thermoerosion are developing simultaneously at such landslides. At one of such landslides depth of thermoerosion gully reached to 2 m in 2008. At the same time shear surface around the gully got overgrown by pioneer grass and chamomile-grass communities with equisetum and herbs by 50-100 %. These results serve as a basis for differentiation of landslides occurring at Vaskiny Dachi key site by remote sensing methods. References: Khomutov A.V, Leibman M.O (2007) Landscape dynamics under natural cryogenic processes and technogenic impact ("Vaskiny Dachi" key site) In: Proc. of the All-Russian conference "Biodiversity of Extreme North vegetation cover: inventory, monitoring, protection", Syktyvkar, Russia, pp.191-200. (In Russian) Leibman M.O, Kizyakov A.I, Archegova I.B, Gorlanova L.A (2000) Stages of cryogenic landslides on Yugorsky and Yamal Peninsulas. Kriosfera Zemli 4:67-75 (In Russian) Rebristaya O.V, Khitun O.V, Chernyadjeva I.V, Leibman M.O (1995) Dynamics of vegetation on the cryogenic landslides in the central part of the Yamal Peninsula. Botanical Journal 4:31-48 (In Russian) "Russia's Weather" Server. Climatic Data. Average daily temperatures http://meteo.infospace.ru/climate/html/index.ssi)
Thermal Performance of Vegetative Roofing Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Desjarlais, Andre Omer; Zaltash, Abdolreza; Atchley, Jerald Allen
2010-01-01
Vegetative roofing, otherwise known as green or garden roofing, has seen tremendous growth in the last decade in the United States. The numerous benefits that green roofs provide have helped to fuel their resurgence in industrial and urban settings. There are many environmental and economical benefits that can be realized by incorporating a vegetative roof into the design of a building. These include storm-water retention, energy conservation, reduction in the urban heat island effect, increased longevity of the roofing membrane, the ability of plants to create biodiversity and filter air contaminants, and beautification of the surroundings by incorporating green space.more » The vegetative roof research project at Oak Ridge National Laboratory (ORNL) was initiated to quantify the thermal performance of various vegetative roofing systems relative to black and white roofs. Single Ply Roofing Institute (SPRI) continued its long-term commitment to cooperative research with ORNL in this project. Low-slope roof systems for this study were constructed and instrumented for continuous monitoring in the mixed climate of East Tennessee. This report summarizes the results of the annual cooling and heating loads per unit area of three vegetative roofing systems with side-by-side comparison to black and white roofing systems as well as a test section with just the growing media without plants. Results showed vegetative roofs reduced heat gain (reduced cooling loads) compared to the white control system due to the thermal mass, extra insulation, and evapo-transpiration associated with the vegetative roofing systems. The 4-inch and tray systems reduced the heat gain by approximately 61%, while the reduction with the 8-inch vegetative roof was found to be approximately 67%. The vegetative roofing systems were more effective in reducing heat gain than in reducing heat losses (heating loads). The reduction in heat losses for the 4-inch and tray systems were found to be approximately 40% in the mixed climate of East Tennessee. It should be noted that these values are climate dependent. Vegetative roofs also reduced the temperature (heat exposure) and temperature fluctuations (thermal stress) experienced by the membrane. In the cooling season of East Tennessee, the average peak temperature of the 4-inch and tray systems was found to be approximately 94 F cooler than the control black roofing system. The average temperature fluctuations at the membrane for the 4-inch and tray systems were found to be approximately 10 F compared to 125 F for black and 64 F for white systems. As expected, the 8-inch vegetative roof had the lowest fluctuations at approximately 2 F. Future work will include modeling of the energy performance of vegetative roof panels in the test climate of East Tennessee. The validated model then will be used to predict energy use in roofs with different insulation levels and in climates different from the test climate.« less
The role of vegetation in shaping dune morphology
NASA Astrophysics Data System (ADS)
Duran Vinent, O.; Moore, L. J.; Young, D.
2012-12-01
Aeolian dunes naturally emerge under strong winds and sufficient sand supply. They represent the most dynamical feature of the arid and/or coastal landscape and their evolution has the potential to either increase desertification or reduce coastal vulnerability to storms. Although large-scale dune morphology mainly depends on the wind regime and sand availability, vegetation plays an important role in semiarid and/or coastal areas. It is well known that under certain conditions vegetation is able to stabilize dunes, driving a morphological transformation from un-vegetated mobile crescent dunes to static vegetated "parabolic" dunes, de facto paralyzing desertification and initiating land recovery. Furthermore, vegetation is also the primary ingredient in the formation of coastal foredunes, which determine vulnerability to storms, as low dunes are prone to storm-induced erosion and overwash. In both cases, the coupling of biological and geomorphic (physical) processes, in particular vegetation growth and sand transport, governs the evolution of morphology. These processes were implemented in a computational model as part of a previous effort. It was shown that, for a migrating dune, this coupling leads to a negative feedback for dune motion, where an ever denser vegetation implies ever lesser sand transport. The model also predicted the existence of a "mobility index", defined by the vegetation growth rate to sand erosion rate ratio, that fully characterizes the morphological outcome: for indices above a certain threshold biological processes are dominant and dune motion slows after being covered by plants; for lower indices, the physical processes are the dominant ones and the dune remains mobile while vegetation is buried or rooted out. Here, we extend this model to better understand the formation of coastal dunes. We include new physical elements such as the shoreline and water table, as well as different grass species and potential competition among them. Consistent with field observations, we find that basic dune morphology is primarily determined by grass species, with linear or hummocky dunes being built by some species, while others may prevent dune formation. We also find that the evolution of coastal dune morphology is controlled by at least two bio-geomorphic couplings: (1) between vegetation growth and sand transport, which leads to a positive feedback for dune growth, as certain beach grasses maximize growth under sand accretion, which means that an ever denser vegetation implies an ever higher accretion rate; and (2) between vegetation growth and shoreline position through the sand influx. While the first coupling is responsible for dune formation, the second one determines when dunes stop growing and thus controls final dune size. This is particularly relevant for accreting/eroding coastlines where we find that dune size, and thus coastal protection, is maximized for relatively small accretion rates while larger accretion rates lead to formation of a new, smaller dune ridge at the beach.
Riparian Vegetation Encroachment Ratios in rivers below large Dams
NASA Astrophysics Data System (ADS)
Garcia de Jalón, Diego; Martínez-Fernández, Vanesa; González del Tánago, Marta
2017-04-01
Large Dams and reservoirs change the natural flow regime and consequently cause many alterations in riparian vegetation dynamics which may be assessed at different spatial and temporal scales. In Mediterranean regions flow regulation is frequently associated with irrigation. Regulated rivers with this purpose very often show reduced discharges during the wet season when the reservoir is being filled and increased discharges during the dry season when irrigation takes place. This type of regulation frequently promotes riparian vegetation growth as soil moisture levels are increased during summer when a natural drought would otherwise limit its growth. Additionally, flow regulation by large dams promotes the aging of late seral riparian vegetation reducing the frequency of flood disturbance and consequently, the potential recruitment of pioneer species. In this work we study the response of woody riparian vegetation to flow regulation by large dams in four rivers from Central Spain: Jarama, Manzanares, Guadalix and Alberche. The aim is to quantify the annual vegetation encroachment ratios and to develop a model to understand the main controlling factors, such as floodplain and channel traits; flow regulation intensity; type of regulation; present vegetation canopy; distance to the dam; and time since dam commissioning. A temporal comparison using aerial photographs from 1956, 1966, 1972, 1991, 2011 and 2014 was done in thirteen river reaches downstream from large dams, to evaluate their morphological evolution.. Floodplain dimensions and channel and riparian vegetation changes were assessed by comparing different pre-dam and post-dam conditions. Recent coloured photographs with 0.5 m spatial resolution and older black-and-white photographs at 1:33 000 spatial scale were supplied by the National Geographic Institute of Spain (www.ign.es) and the Statistical Institute (www.madrid.org/nomecalles/Inicio.icm) from Madrid Community. Similar visual scales were used to cope with different air photographs resolution. Results show a generalized natural vegetation encroachment process. Two exceptions were found associated with farming (Jarama 3) and poplar plantation (Alberche 1) that occupied riparian soils.. Annual encroachment ratios, range from 1 to 55 Ha/km, with a mean value of 12 Ha per km of river length. Higher values are found in the lowest reaches, which are far from the dam (5 cases), and also in the years following the beginning of dam operation. However, other reaches showed a delay of several years in the encroaching process, likely associated to scarcity or absence of initial woody vegetation at the time when dam started working.
NASA Astrophysics Data System (ADS)
Obriejetan, M.; Florineth, F.; Rauch, H. P.
2012-04-01
As a consequence of land use change resulting in an increased number of slope protection constructions and with respect to effects associated with climate change like extremes in temperatures and temperature variations or increased frequency of heavy precipitation, adaptation strategies for sustainable erosion protection systems are needed which meet ecological compatibility and economical requirements. Therefore a wide range of different technical solutions respectively geotextiles and geotextile-related products (blankets, nettings, grids etc.) are available on the market differing considerably in function, material, durability and pricing. Manufacturers usually provide product-specific information pertaining to application field, functional range or (technical) installation features whereas vegetational aspects are frequently neglected while vegetation can contribute substantially to increased near-surface erosion protection respectively slope stability. Though, the success of sustainable erosion control is directly dependent on several vegetational aspects. Adequate development of a functional vegetation layer in combination with geotextiles is closely associated to application aspects such as seeding technique, sowing date and intensity, seed-soil contact or maintenance measures as well as to qualitative aspects like seed quality, germination rates, area of origin, production method or certification. As a general guideline, erosion control within an initial phase is directly related to restoration techniques whereas vegetation specifics with regard to species richness or species composition play a key role in medium to long-term development and slope protection. In this context one of the fundamental objectives of our study is the identification and subsequently the determination of the main interaction processes between technical and biological components of combined slope protection systems. The influence of different geotextile characteristics on specific vegetation properties are studied by setting up comparative test plots at a field study site located at a headrace channel of a hydroelectric power plant. Different vegetational parameters such as basal coverage, species richness, species composition, abundance/dominance values by using a refined Braun-Blanquet cover estimation scale were collected as well as local environmental properties. Results during the first vegetation period show distinct effects of geotextiles especially on overall vegetation coverage and grasses-herbs-ratio. Geotextile supported plots show 20% higher overall coverage but lower amount of herbs after three months of vegetation growth compared to control plots without installation of auxiliary materials. Furthermore coir blankets reveal higher penetration resistance for seed leaves of herbal plants compared to coir nettings. Hence technical erosion protection products, biological components and it's combination have to be closely coordinated in order to achieve specified revegetation objectives and meet long-term functionality.
NASA Astrophysics Data System (ADS)
Kinoshita, A. M.; Hale, B.; Hogue, T. S.
2012-12-01
Post-fire management decisions are guided by rainfall-runoff predictions, which ultimately influence downstream treatment and mitigation costs. The current study investigates evolving rainfall-runoff partitioning at the watershed scale over a two-year period after the 2010 Bull Fire which occurred in the southern Sequoia National Forest in California. Stage height was measured at five-minute intervals using pressure transducers, tipping buckets were installed for rainfall duration and intensity, and channel cross-sections were measured approximately every two months to detail sediment deposition or scour. We also utilize remotely sensed vegetation data to evaluate vegetation recovery in the studied watersheds and the corresponding relationship to storm runoff. Normalized Difference Vegetation Index (NDVI), a measure of vegetation greenness, is evaluated for its potential use as a key recovery indicator. Preliminary results focus on alterations in annual and seasonal precipitation and discharge relationships using in-situ data and Landsat NDVI values for the period of study. NDVI values are consistent with a comprehensive burn, with an acute decrease observed in the initial post-fire period. However, vegetation recovery is highly variable in the studied systems and influenced by shorter-term biomass pulses (grasses) while longer-term recovery of other species (chaparral and pine) is ongoing. Runoff ratios are elevated during early storms and show some recovery in the later part of the study period. The ability to accurately and confidently predict post-fire runoff and longer-term recovery is critical for monitoring values-at-risk, reducing mitigation costs, and improving warnings to downstream public communities.
NASA Astrophysics Data System (ADS)
Gottschalk, P.; Churkina, G.; Wattenbach, M.; Cubasch, U.
2010-12-01
The impact of urban systems on current and future global carbon emissions has been a focus of several studies. Many mitigation options in terms of increasing energy efficiency are discussed. However, apart from technical mitigation potential urban systems also have a considerable biogenic potential to mitigate carbon through an optimized management of organic carbon pools of vegetation and soil. Berlin city area comprises almost 50% of areas covered with vegetation or largely covered with vegetation. This potentially offers various areas for carbon mitigation actions. To assess the mitigation potentials our first objective is to estimate how large current vegetation and soil carbon stocks of Berlin are. We use publicly available forest and soil inventories to calculate soil organic carbon of non-pervious areas and forest standing biomass carbon. This research highlights data-gaps and assigns uncertainty ranges to estimated carbon resources. The second objective is to assess the carbon mitigation potential of Berlin’s vegetation and soils using a biogeochemical simulation model. BIOME-BGC simulates carbon-, nitrogen- and water-fluxes of ecosystems mechanistically. First, its applicability for Berlin forests is tested at selected sites. A spatial application gives an estimate of current net carbon fluxes. The application of such a model allows determining the sensitivity of key ecosystem processes (e.g. carbon gains through photosynthesis, carbon losses through decomposition) towards external drivers. This information can then be used to optimise forest management in terms of carbon mitigation. Initial results of Berlin’s current carbon stocks and its spatial distribution and preliminary simulations results will be presented.
Wnt6 activates endoderm in the sea urchin gene regulatory network
Croce, Jenifer; Range, Ryan; Wu, Shu-Yu; Miranda, Esther; Lhomond, Guy; Peng, Jeff Chieh-fu; Lepage, Thierry; McClay, David R.
2011-01-01
In the sea urchin, entry of β-catenin into the nuclei of the vegetal cells at 4th and 5th cleavages is necessary for activation of the endomesoderm gene regulatory network. Beyond that, little is known about how the embryo uses maternal information to initiate specification. Here, experiments establish that of the three maternal Wnts in the egg, Wnt6 is necessary for activation of endodermal genes in the endomesoderm GRN. A small region of the vegetal cortex is shown to be necessary for activation of the endomesoderm GRN. If that cortical region of the egg is removed, addition of Wnt6 rescues endoderm. At a molecular level, the vegetal cortex region contains a localized concentration of Dishevelled (Dsh) protein, a transducer of the canonical Wnt pathway; however, Wnt6 mRNA is not similarly localized. Ectopic activation of the Wnt pathway, through the expression of an activated form of β-catenin, of a dominant-negative variant of GSK-3β or of Dsh itself, rescues endomesoderm specification in eggs depleted of the vegetal cortex. Knockdown experiments in whole embryos show that absence of Wnt6 produces embryos that lack endoderm, but those embryos continue to express a number of mesoderm markers. Thus, maternal Wnt6 plus a localized vegetal cortical molecule, possibly Dsh, is necessary for endoderm specification; this has been verified in two species of sea urchin. The data also show that Wnt6 is only one of what are likely to be multiple components that are necessary for activation of the entire endomesoderm gene regulatory network. PMID:21750039
Low-cost grass restoration using erosion barriers in a degraded African rangeland
Kimiti, David W; Riginos, Corinna; Belnap, Jayne
2017-01-01
Rangeland degradation, typified by extensive bare ground and soil erosion, is a serious problem around the world. In sub-Saharan Africa, rangeland degradation threatens the food security of millions of people who depend on livestock and the region's large mammalian wildlife diversity. We tested the ability of five simple, low-cost erosion barriers to promote grass and forb establishment in a bare ground-dominated rangeland in Kenya. These treatments were: (1) trenches with small berms; (2) bundles of branches; and bundles of branches with (3) elephant dung balls, (4) burlap sacking, or (5) nylon mesh sacking inside them. We also tested whether barrier performance depended on (1) supplemental seeding with the grass Cenchrus ciliaris and (2) whether a barrier was located next to existing vegetation patches versus in the open. Within months, the trench and nylon mesh barriers had accumulated 20–50% more sediment than other treatments and had greater grass and forb seedling establishment. Seeding with Cenchrusresulted in higher herbaceous cover but was not necessary for other grasses to establish. After 3 years, the trench and nylon mesh barriers had created patches of new vegetation averaging 18–63% larger than patches created by the other treatments. Barriers that were initially adjacent to existing vegetation had created new vegetation patches averaging 65% larger than those created by solitary barriers. Results suggest that all barrier types increase grass cover but that trenches—especially if placed next to existing vegetation patches—are a particularly cost-effective way to reduce bare ground and erosion in degraded rangelands.
NASA Astrophysics Data System (ADS)
Yu, Qin; Epstein, Howard E.; Engstrom, Ryan; Shiklomanov, Nikolay; Strelestskiy, Dmitry
2015-12-01
Northwestern Siberia has been undergoing a range of land cover and land use changes associated with climate change, animal husbandry and development of mineral resources, particularly oil and gas. The changes caused by climate and oil/gas development Southeast of the city of Nadym were investigated using multi-temporal and multi-spatial remotely sensed images. Comparison between high spatial resolution imagery acquired in 1968 and 2006 indicates that 8.9% of the study area experienced an increase in vegetation cover (e.g. establishment of new saplings, extent of vegetated cover) in response to climate warming while 10.8% of the area showed a decrease in vegetation cover due to oil and gas development and logging activities. Waterlogging along linear structures and vehicle tracks was found near the oil and gas development site, while in natural landscapes the drying of thermokarst lakes is evident due to warming caused permafrost degradation. A Landsat time series dataset was used to document the spatial and temporal dynamics of these ecosystems in response to climate change and disturbances. The impacts of land use on surface vegetation, radiative, and hydrological properties were evaluated using Landsat image-derived biophysical indices. The spatial and temporal analyses suggest that the direct impacts associated with infrastructure development were mostly within 100 m distance from the disturbance source. While these impacts are rather localized they persist for decades despite partial recovery of vegetation after the initial disturbance and can have significant implications for changes in permafrost dynamics and surface energy budgets at landscape and regional scales.
Norman, Laura M.; Villarreal, Miguel; Pulliam, H. Ronald; Minckley, Robert L.; Gass, Leila; Tolle, Cindy; Coe, Michelle
2014-01-01
Desert marshes, or cienegas, are extremely biodiverse habitats imperiled by anthropogenic demands for water and changing climates. Given their widespread loss and increased recognition, remarkably little is known about restoration techniques. In this study, we examine the effects of gabions (wire baskets filled with rocks used as dams) on vegetation in the Cienega San Bernardino, in the Arizona, Sonora portion of the US-Mexico border, using a remote-sensing analysis coupled with field data. The Normalized Difference Vegetation Index (NDVI), used here as a proxy for plant biomass, is compared at gabion and control sites over a 27-year period during the driest months (May/June). Over this period, green-up occurred at most sites where there were gabions and at a few of the control sites where gabions had not been constructed. When we statistically controlled for differences among sites in source area, stream order, elevation, and interannual winter rainfall, as well as comparisons of before and after the initiation of gabion construction, vegetation increased around gabions yet did not change (or decreased) where there were no gabions. We found that NDVI does not vary with precipitation inputs prior to construction of gabions but demonstrates a strong response to precipitation after the gabions are built. Field data describing plant cover, species richness, and species composition document increases from 2000 to 2012 and corroborate reestablished biomass at gabions. Our findings validate that gabions can be used to restore riparian vegetation and potentially ameliorate drought conditions in a desert cienega.
Karlsen, Stein Rune; Jepsen, Jane Uhd; Odland, Arvid; Ims, Rolf Anker; Elvebakk, Arve
2013-11-01
The increased spread of insect outbreaks is among the most severe impacts of climate warming predicted for northern boreal forest ecosystems. Compound disturbances by insect herbivores can cause sharp transitions between vegetation states with implications for ecosystem productivity and climate feedbacks. By analysing vegetation plots prior to and immediately after a severe and widespread outbreak by geometrid moths in the birch forest-tundra ecotone, we document a shift in forest understorey community composition in response to the moth outbreak. Prior to the moth outbreak, the plots divided into two oligotrophic and one eutrophic plant community. The moth outbreak caused a vegetation state shift in the two oligotrophic communities, but only minor changes in the eutrophic community. In the spatially most widespread communities, oligotrophic dwarf shrub birch forest, dominance by the allelopathic dwarf shrub Empetrum nigrum ssp. hermaphroditum, was effectively broken and replaced by a community dominated by the graminoid Avenella flexuosa, in a manner qualitatively similar to the effect of wild fires in E. nigrum communities in coniferous boreal forest further south. As dominance by E. nigrum is associated with retrogressive succession the observed vegetation state shift has widespread implications for ecosystem productivity on a regional scale. Our findings reveal that the impact of moth outbreaks on the northern boreal birch forest system is highly initial-state dependent, and that the widespread oligotrophic communities have a low resistance to such disturbances. This provides a case for the notion that climate impacts on arctic and northern boreal vegetation may take place most abruptly when conveyed by changed dynamics of irruptive herbivores.
NASA Astrophysics Data System (ADS)
Nudurupati, S. S.; Istanbulluoglu, E.; Adams, J. M.; Hobley, D. E. J.; Gasparini, N. M.; Tucker, G. E.; Hutton, E. W. H.
2014-12-01
Topography plays a commanding role on the organization of ecohydrologic processes and resulting vegetation patterns. In southwestern United States, climate conditions lead to terrain aspect- and elevation-controlled ecosystems, with mesic north-facing and xeric south-facing vegetation types; and changes in biodiversity as a function of elevation from shrublands in low desert elevations, to mixed grass/shrublands in mid elevations, and forests at high elevations and ridge tops. These observed patterns have been attributed to differences in topography-mediated local soil moisture availability, micro-climatology, and life history processes of plants that control chances of plant establishment and survival. While ecohydrologic models represent local vegetation dynamics in sufficient detail up to sub-hourly time scales, plant life history and competition for space and resources has not been adequately represented in models. In this study we develop an ecohydrologic cellular automata model within the Landlab component-based modeling framework. This model couples local vegetation dynamics (biomass production, death) and plant establishment and competition processes for resources and space. This model is used to study the vegetation organization in a semiarid New Mexico catchment where elevation and hillslope aspect play a defining role on plant types. Processes that lead to observed plant types across the landscape are examined by initializing the domain with randomly assigned plant types and systematically changing model parameters that couple plant response with soil moisture dynamics. Climate perturbation experiments are conducted to examine the plant response in space and time. Understanding the inherently transient ecohydrologic systems is critical to improve predictions of climate change impacts on ecosystems.
Santos-Del-Blanco, L; Bonser, S P; Valladares, F; Chambel, M R; Climent, J
2013-09-01
A plastic response towards enhanced reproduction is expected in stressful environments, but it is assumed to trade off against vegetative growth and efficiency in the use of available resources deployed in reproduction [reproductive efficiency (RE)]. Evidence supporting this expectation is scarce for plants, particularly for long-lived species. Forest trees such as Mediterranean pines provide ideal models to study the adaptive value of allocation to reproduction vs. vegetative growth given their among-population differentiation for adaptive traits and their remarkable capacity to cope with dry and low-fertility environments. We studied 52 range-wide Pinus halepensis populations planted into two environmentally contrasting sites during their initial reproductive stage. We investigated the effect of site, population and their interaction on vegetative growth, threshold size for female reproduction, reproductive-vegetative size relationships and RE. We quantified correlations among traits and environmental variables to identify allocation trade-offs and ecotypic trends. Genetic variation for plasticity was high for vegetative growth, whereas it was nonsignificant for reproduction. Size-corrected reproduction was enhanced in the more stressful site supporting the expectation for adverse conditions to elicit plastic responses in reproductive allometry. However, RE was unrelated with early reproductive investment. Our results followed theoretical predictions and support that phenotypic plasticity for reproduction is adaptive under stressful environments. Considering expectations of increased drought in the Mediterranean, we hypothesize that phenotypic plasticity together with natural selection on reproductive traits will play a relevant role in the future adaptation of forest tree species. © 2013 The Authors. Journal of Evolutionary Biology © 2013 European Society For Evolutionary Biology.
Avalanche ecology and large magnitude avalanche events: Glacier National Park, Montana, USA
Fagre, Daniel B.; Peitzsch, Erich H.
2010-01-01
Large magnitude snow avalanches play an important role ecologically in terms of wildlife habitat, vegetation diversity, and sediment transport within a watershed. Ecological effects from these infrequent avalanches can last for decades. Understanding the frequency of such large magnitude avalanches is also critical to avalanche forecasting for the Going-to-the-Sun Road (GTSR). In January 2009, a large magnitude avalanche cycle occurred in and around Glacier National Park, Montana. The study site is the Little Granite avalanche path located along the GTSR. The study is designed to quantify change in vegetative cover immediately after a large magnitude event and document ecological response over a multi-year period. GPS field mapping was completed to determine the redefined perimeter of the avalanche path. Vegetation was inventoried using modified U.S. Forest Service Forest Inventory and Analysis plots, cross sections were taken from over 100 dead trees throughout the avalanche path, and an avalanche chronology was developed. Initial results indicate that the perimeter of this path was expanded by 30%. The avalanche travelled approximately 1200 vertical meters and 3 linear kilometers. Stands of large conifers as old as 150 years were decimated by the avalanche, causing a shift in dominant vegetation types in many parts of the avalanche path. Woody debris is a major ground cover up to 3 m in depth on lower portions of the avalanche path and will likely affect tree regrowth. Monitoring and measuring the post-avalanche vegetation recovery of this particular avalanche path provides a unique dataset for determining the ecological role of avalanches in mountain landscapes.