Code of Federal Regulations, 2011 CFR
2011-07-01
... LAKES SYSTEM Pt. 132, App. C Appendix C to Part 132—Great Lakes Water Quality Initiative Methodologies...; or consuming fish from the water, and water-related recreation activities using the Methodologies for... 40 Protection of Environment 22 2011-07-01 2011-07-01 false Great Lakes Water Quality Initiative...
Code of Federal Regulations, 2010 CFR
2010-07-01
... LAKES SYSTEM Pt. 132, App. C Appendix C to Part 132—Great Lakes Water Quality Initiative Methodologies...; or consuming fish from the water, and water-related recreation activities using the Methodologies for... 40 Protection of Environment 21 2010-07-01 2010-07-01 false Great Lakes Water Quality Initiative...
Polarization Resistance Measurement in Tap Water: The Influence of Rust Electrochemical Activity
NASA Astrophysics Data System (ADS)
Vasyliev, Georgii
2017-08-01
Corrosion rate of mild steel in tap water during 4300 h was estimated by LPR and weight-loss methods coupled with OCP measurements. The LPR results were found to be overestimated compared to the weight-loss data within initial 2000 h of exposure. The electrochemical activity of the rust separated from the metal surface was studied by cycling voltammetry using a home-built powder graphite electrode. High redox currents corresponding to the initial 2000 h of exposure were detected. Rust composition was characterized with IR and XRD, and the highest amounts of electrochemically active β- and γ-FeOOH were again detected for the initial 2000 h. Current consumption in rust transformation processes during LPR measurement in the galvanostatic mode accounts for overestimation of the corrosion rate. The time dependence of rust electrochemical activity correlates with OCP variation with time. During initial 2000 h, OCP values are shifted by 50 mV to cathodic side. For the period of a higher rust electrochemical activity, the use of a reduced B is suggested to increase accuracy of LPR technique in tap water.
Roles of water molecules in bacteria and viruses
NASA Astrophysics Data System (ADS)
Cox, C. S.
1993-02-01
In addition to water, microbes mainly comprise lipids, carbohydrates, proteins and nucleic acids. Their structure and function singularly and conjointly is affected by water activity. Desiccation leads to dramatic lipid phase changes whereas carbohydrates, proteins and nucleic acids initially suffer spontaneous, reversible low activation energy Maillard reactions forming products that more slowly re-arrange, cross-link etc. to give non-native states. While initial products spontaneously may reverse to native states by raising water activity, later products only do so through energy consumption and enzymatic activity eg. repair. Yet, native states of lipid membranes and associated enzymes are required to generate energy. Consequently, good reserves of high energy compounds (e.g. ATP) and of membrane stabilisers (e.g. trehalose) may be expected to enhance survival following drying and rehydration (e.g. anhydrobiotic organisms).
National Enforcement Initiative: Keeping Industrial Pollutants Out of the Nation’s Waters
This page describes EPA's enforcement activities on water pollution from raw sewage and contaminated stormwater. This is one of EPA's National Enforcement Initiatives. Both enforcement cases, and a map of enforcement actions are provided.
This page describes EPA's enforcement activities on water pollution from raw sewage and contaminated stormwater. This is one of EPA's National Enforcement Initiatives. Both enforcement cases, and a map of enforcement actions are provided.
ATP hydrolysis in Eg5 kinesin involves a catalytic two-water mechanism.
Parke, Courtney L; Wojcik, Edward J; Kim, Sunyoung; Worthylake, David K
2010-02-19
Motor proteins couple steps in ATP binding and hydrolysis to conformational switching both in and remote from the active site. In our kinesin.AMPPPNP crystal structure, closure of the active site results in structural transformations appropriate for microtubule binding and organizes an orthosteric two-water cluster. We conclude that a proton is shared between the lytic water, positioned for gamma-phosphate attack, and a second water that serves as a general base. To our knowledge, this is the first experimental detection of the catalytic base for any ATPase. Deprotonation of the second water by switch residues likely triggers subsequent large scale structural rearrangements. Therefore, the catalytic base is responsible for initiating nucleophilic attack of ATP and for relaying the positive charge over long distances to initiate mechanotransduction. Coordination of switch movements via sequential proton transfer along paired water clusters may be universal for nucleotide triphosphatases with conserved active sites, such as myosins and G-proteins.
Bull, R J; Robinson, M; Meier, J R; Stober, J
1982-01-01
Other workers have clearly shown that most, if not all, drinking water in the U.S. contains chemicals that possess mutagenic and/or carcinogenic activity by using bacterial and in vitro methods. In the present work, increased numbers of tumors were observed with samples of organic material isolated from 5 U.S. cities administered as tumor initiators in mouse skin initiation/promotion studies. Only in one case was the result significantly different from control. In studies designed to test whether disinfection practice contributes significantly to the tumor initiating activity found in drinking water mixed results have been obtained. In one experiment, water disinfected by chlorination, ozonation or combined chlorine resulted in a significantly greater number of papillomas when compared to nondisinfected water. In two subsequent experiments, where water was obtained from the Ohio River at different times of the year, no evidence of increased initiating activity was observed with any disinfectant. Analysis of water obtained at the comparable times of the year for total organic halogen, and trihalomethane formation revealed a substantial variation in the formation of these products. Considering the problems such variability poses for estimating risks associated with disinfection by-products, a model system which makes use of commercially obtained humic acid as a substrate for chlorination was investigated using the Ames test. Humic and fulvic acids obtained from two surface waters as well as the commercially obtained humic acid were without activity in TA 1535, TA 1537, TA 1538, TA 98 or TA 100 strains of S. typhimurium. Following treatment with a 0.8 molar ratio of chlorine (based on carbon) significant mutagenic activity was observed with all humic and fulvic acid samples. Comparisons of the specific mutagenic activity of the chlorinated products suggests that the commercial material might provide a useful model for studying health hazards associated with disinfection reactions by-products. PMID:7151763
NASA Astrophysics Data System (ADS)
Moss, Tyler; Was, Gary S.
2017-04-01
The objective of this study is to determine whether stress corrosion crack initiation of Alloys 600 and 690 occurs by the same mechanism in subcritical and supercritical water. Tensile bars of Alloys 690 and 600 were strained in constant extension rate tensile experiments in hydrogenated subcritical and supercritical water from 593 K to 723 K (320 °C to 450 °C), and the crack initiation behavior was characterized by high-resolution electron microscopy. Intergranular cracking was observed across the entire temperature range, and the morphology, structure, composition, and temperature dependence of initiated cracks in Alloy 690 were consistent between hydrogenated subcritical and supercritical water. Crack initiation of Alloy 600 followed an Arrhenius relationship and did not exhibit a discontinuity or change in slope after crossing the critical temperature. The measured activation energy was 121 ± 13 kJ/mol. Stress corrosion crack initiation in Alloy 690 was fit with a single activation energy of 92 ± 12 kJ/mol across the entire temperature range. Cracks were observed to propagate along grain boundaries adjacent to chromium-depleted metal, with Cr2O3 observed ahead of crack tips. All measures of the SCC behavior indicate that the mechanism for stress corrosion crack initiation of Alloy 600 and Alloy 690 is consistent between hydrogenated subcritical and supercritical water.
Scott, Chris G; Ducharme, Michel B; Haman, François; Kenny, Glen P
2004-11-01
We examined the effect of prior heating, by exercise and warm-water immersion, on core cooling rates in individuals rendered mildly hypothermic by immersion in cold water. There were seven male subjects who were randomly assigned to one of three groups: 1) seated rest for 15 min (control); 2) cycling ergometry for 15 min at 70% Vo2 peak (active warming); or 3) immersion in a circulated bath at 40 degrees C to an esophageal temperature (Tes) similar to that at the end of exercise (passive warming). Subjects were then immersed in 7 degrees C water to a Tes of 34.5 degrees C. Initial Tes cooling rates (initial approximately 6 min cooling) differed significantly among the treatment conditions (0.074 +/- 0.045, 0.129 +/- 0.076, and 0.348 +/- 0.117 degrees C x min(-1) for control, active, and passive warming conditions, respectively); however, secondary cooling rates (rates following initial approximately 6 min cooling to the end of immersion) were not different between treatments (average of 0.102 +/- 0.085 degrees C x min(-1)). Overall Tes cooling rates during the full immersion period differed significantly and were 0.067 +/- 0.047, 0.085 +/- 0.045, and 0.209 +/- 0.131 degrees C x min(-1) for control, active, and passive warming, respectively. These results suggest that prior warming by both active and, to a greater extent, passive warming, may predispose a person to greater heat loss and to experience a larger decline in core temperature when subsequently exposed to cold water. Thus, functional time and possibly survival time could be reduced when cold water immersion is preceded by whole-body passive warming, and to a lesser degree by active warming.
This page describes EPA's enforcement activities on water pollution from raw sewage and contaminated stormwater. This is one of EPA's National Enforcement Initiatives. Both enforcement cases, and a map of enforcement actions are provided.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-02-19
...; Information Collection Request for Application for Sustainable Water Leadership Program AGENCY: Environmental...: Application for Sustainable Water Leadership Program (formerly named the Annual National Clean Water Act... infrastructure initiatives and is now called the Sustainable Water Leadership Program. The Sustainable Water...
Carcinogenicity of by-products of disinfection in mouse and rat liver
DOE Office of Scientific and Technical Information (OSTI.GOV)
Herren-Freund, S.L.; Pereira, M.A.
1986-11-01
By-products of disinfection were tested for initiating and/or promoting activity in rat liver by using the rat liver foci bioassay. The assay uses an increased incidence of ..gamma..-glutamyltranspeptidase-positive foci (GGT foci) as an indicator of carcinogenicity. The by-products of disinfection, including chloramine, halogenated humic acids, halogenated ethanes, halogenated acetonitriles, halogenated methanes, halogenated ethylene, and N-Cl piperidine, did not initiate GGT foci, which would indicate that they are not capable of initiating carcinogenesis. Chloroform and halogenated benzenes were tested in this assay for their ability to promote the occurrence of GGT foci and tumors initiated by diethylnitrosamine (DENA). Chloroform either hadmore » no effect or inhibited the occurrence of GGT foci when administered subsequent to a single dose of DENA. However, when the chloroform was administered in drinking water concurrently with weekly doses of DENA, it enhanced the formation of liver tumors. Of 20 halogenated benzenes tested, only 1,2,4,5-tetrachlorobenzene and hexachlorobenzene promoted the occurrence of DENA-initiated GGT foci. Thus in rat liver, the tested by-products of drinking water disinfection did not demonstrate tumor-initiating activity, although a few appeared to possess tumor-promoting activity. Chloroform was also tested for tumor-promoting activity in 15-days-old Swiss mice initiated with ethylnitrosourea (ENU). ENU at 5 and 20 ..mu..g/g caused a dose-dependent increase in liver tumors. In male mice, chloroform inhibited both spontaneous and ENU-induced liver tumors. When administered in the drinking water, chloroform inhibited, whereas phenobarbital promoted, hepatocarcinogenesis in mice.« less
Creative Writing and the Water Cycle.
ERIC Educational Resources Information Center
Young, Rich; Virmani, Jyotika; Kusek, Kristen M.
2001-01-01
Uses the story "The Life of a Drop of Water" to initiate a creative writing activity and teach about the water cycle. Attempts to stimulate students' understanding of a scientific concept by using their imaginations. (YDS)
NASA Astrophysics Data System (ADS)
Vlasov, S. M.; Chichirova, N. D.; Chichirov, A. A.; Vlasova, A. Yu.; Filimonova, A. A.; Prosvirnina, D. V.
2018-02-01
A turbine-condensate cooling system is one of the less stable and most hard-to-control systems of maintaining optimal water chemistry. A laboratory recycling cooling water test facility, UVO-0.3, was developed for physical simulation of innovative zero-discharge water chemistry conditions and improvement of technological flowcharts of stabilization treatment of the initial and circulating water of the recycling cooling systems at thermal power plants. Experiments were conducted in the UVO-0.3 facility to investigate the processes that occur in the recycling water supply system and master new technologies of stabilization of the initial and circulating water. It is shown that, when using untreated initial water, scaling cannot be prevented even under low concentration levels. The main reason for the activation of scale depositing is the desorption of carbon dioxide that results in alkalization of the circulating water and, as a consequence, a displacement of the chemical reaction equilibrium towards the formation of slightly soluble hardness ions. Some techniques, viz., liming and alkalization of the initial water and the by-pass treatment of the circulating water, are considered. New engineering solutions have been developed for reducing the amount of scale-forming substances in the initial and circulating water. The best results were obtained by pretreating the initial water with alkalizing agents and simultaneously bypassing and treating part of the circulating water. The obtained experimental data underlie the process flowcharts of stabilization treatment of the initial and circulating TPP water that ensure scale-free and noncorrosive operation and meet the corresponding environmental requirements. Under the bypassing, the specific rates of the agents and the residual hardness are reduced compared with the conventional pretreatment.
Active sediment caps are being considered for addressing contaminated sediment areas in surface-water bodies. A demonstration of an active cap designed to reduce advective transport of contaminants using AquaBlok® (active cap material) was initiated in a small study a...
Bai, Xia; Wang, Xuemei
2018-06-19
A 15-year-old boy underwent hepatobiliary scintigraphy for suspected acute cholecystitis. The initial images revealed an activity in the neighborhood of normal gallbladder fossa, suggestive of possible activity in the gallbladder, which would be inconsistent with a diagnosis of acute cholecystitis. However, after drinking 6 oz of water, the activity was no longer seen. Acute cholecystitis was confirmed pathologically after cholecystectomy.
NASA Astrophysics Data System (ADS)
Craig, L.; Stillings, L. L.; Decker, D.; Thomas, J.
2013-12-01
In northern Ghana, groundwater is the main source of household water and is generally considered a safe and economical source of drinking water. However in some areas it contains fluoride (F-) concentrations above the 1.5 ppm limit recommended by the World Health Organization, putting the users at risk of fluorosis. The study area in the Upper East Region of northern Ghana has pockets of groundwater F- up to 4.6 ppm and, as a result, also has a high percentage of residents with dental fluorosis. They have no alternative water source and, because of the poverty and limited access to technology, the affected community lacks the capacity to set up advanced treatment systems. One proposed solution is to attach F- adsorption filters to the wells, since adsorption is considered a simple and cost effective approach for treating high F- drinking water. This study evaluates activated alumina as a sorbent for use in de-fluoridation filters in the study area. We evaluated the long-term adsorption capacity of activated alumina, as well as potential changes in F- adsorption rate and capacity with grain size. We measured differences in positive surface charge (as C m-2) via slow acid titration, as well as F- loading with varied prior hydration time. Experimental results from this research show no notable change in F- adsorption or positive surface charge when the activated alumina surface was pre-equilibrated in distilled water from 24 hours up to 30 weeks before the experiment. The results of F- loading show a maximum of ~3.4 mg F- sorbed per gm activated alumina (at initial pH ~6.9, initial F- 1 to 60 ppm, and 20 hr reaction time). The pH dependent surface charge shows a maximum of ~0.14 C m-2 at pH of ~4.4 and zero surface charge at pH ~8.5. F- loading experiments were conducted with grain size ranges 0.125 to 0.250 mm and 0.5 to 1.0 mm to evaluate changes in F- adsorption rate (initial pH ~6.9, initial F- 10 ppm) and F- loading (initial pH ~6.9, initial F- 1 to 60 ppm, 20 hr reaction time). The F- loading onto activated alumina did not change with grain size. However time to equilibrium increased dramatically with a decrease in grain size - after one hour of reaction time, the larger grain size adsorbed only 59% of F-, while at the finer grain size 90% was adsorbed. Future work will determine the volume of high F- water that can be treated before activated alumina needs to be regenerated or changed. These data will be incorporated into the design of a small-scale F-1 adsorption filter in the study area, and will predict the longevity of activated alumina as the sorbent.
Army Net Zero Installation Initiative and Cost Benefit Analysis Activity
2011-10-31
freshwater resources and returns water back to the same watershed so not to deplete the groundwater and surface water resources of that... freshwater resources & returns water back to the same watershed so not to deplete the groundwater & surface water resources of that region in quantity...Goals: Reduce freshwater demand through water efficiency & conservation Access/develop alternate water sources to offset freshwater demand Develop
Water Matters. Water Resources Teacher's Guide, Vol. 1.
ERIC Educational Resources Information Center
Kauffman, Sue Cox
This teachers guide is designed to accompany a series of posters developed through the U.S. Geological Survey's Water Resources Education Initiative, a cooperative effort between public and private education interests. It provides teacher guidance, background information, suggestions for a variety of classroom activities, and supplemental resource…
Rahman, N K; Kamaruddin, A H; Uzir, M H
2011-08-01
The influence of water activity and water content was investigated with farnesyl laurate synthesis catalyzed by Lipozyme RM IM. Lipozyme RM IM activity depended strongly on initial water activity value. The best results were achieved for a reaction medium with an initial water activity of 0.11 since it gives the best conversion value of 96.80%. The rate constants obtained in the kinetics study using Ping-Pong-Bi-Bi and Ordered-Bi-Bi mechanisms with dead-end complex inhibition of lauric acid were compared. The corresponding parameters were found to obey the Ordered-Bi-Bi mechanism with dead-end complex inhibition of lauric acid. Kinetic parameters were calculated based on this model as follows: V (max) = 5.80 mmol l(-1) min(-1) g enzyme(-1), K (m,A) = 0.70 mmol l(-1) g enzyme(-1), K (m,B) = 115.48 mmol l(-1) g enzyme(-1), K (i) = 11.25 mmol l(-1) g enzyme(-1). The optimum conditions for the esterification of farnesol with lauric acid in a continuous packed bed reactor were found as the following: 18.18 cm packed bed height and 0.9 ml/min substrate flow rate. The optimum molar conversion of lauric acid to farnesyl laurate was 98.07 ± 0.82%. The effect of mass transfer in the packed bed reactor has also been studied using two models for cases of reaction limited and mass transfer limited. A very good agreement between the mass transfer limited model and the experimental data obtained indicating that the esterification in a packed bed reactor was mass transfer limited.
Using 1H2O MR to measure and map sodium pump activity in vivo
NASA Astrophysics Data System (ADS)
Springer, Charles S.
2018-06-01
The cell plasma membrane Na+,K+-ATPase [NKA] is one of biology's most [if not the most] significant enzymes. By actively transporting Na+ out [and K+ in], it maintains the vital trans-membrane ion concentration gradients and the membrane potential. The forward NKA reaction is shown in the Graphical Abstract [which is elaborated in the text]. Crucially, NKA does not operate in isolation. There are other transporters that conduct K+ back out of [II, Graphical Abstract] and Na+ back into [III, Graphical Abstract] the cell. Thus, NKA must function continually. Principal routes for ATP replenishment include mitochondrial oxidative phosphorylation, glycolysis, and creatine kinase [CrK] activity. However, it has never been possible to measure, let alone map, this integrated, cellular homeostatic NKA activity in vivo. Active trans-membrane water cycling [AWC] promises a way to do this with 1H2O MR. In the Graphical Abstract, the AWC system is characterized by active contributions to the unidirectional rate constants for steady-state water efflux and influx, respectively, kio(a) and koi(a). The discovery, validation, and initial exploration of active water cycling are reviewed here. Promising applications in cancer, cardiological, and neurological MRI are covered. This initial work employed paramagnetic Gd(III) chelate contrast agents [CAs]. However, the significant problems associated with in vivo CA use are also reviewed. A new analysis of water diffusion-weighted MRI [DWI] is presented. Preliminary results suggest a non-invasive way to measure the cell number density [ρ (cells/μL)], the mean cell volume [V (pL)], and the cellular NKA metabolic rate [cMRNKA (fmol(ATP)/s/cell)] with high spatial resolution. These crucial cell biology properties have not before been accessible in vivo. Furthermore, initial findings indicate their absolute values can be determined.
Progress toward a National Water Census
Jones, Sonya A.
2015-01-01
By evaluating large-scale effects of changes in land use and land cover, water use, and climate on occurrence and distribution of water, water quality, and human and aquatic-ecosystem health, the NWC will also help to inform a broader initiative by the Department of the Interior, WaterSMART (Sustain and Manage America's Resources for Tomorrow), which provides multiagency funding to pursue a sustainable water supply for the Nation as directed under the SECURE Water Act. Through the NWC, the USGS actively engages Federal, regional, and local stakeholders to identify research priorities and leverages current studies and program activities to provide information that is relevant at both the national and regional scales.
NASA Astrophysics Data System (ADS)
Zolghadr, Amin Reza; Boroomand, Samaneh
2017-02-01
Drug absorption at an acceptable dose depends on the pair of solubility and permeability. There are many potent therapeutics that are not active in vivo, presumably due to the lack of capability to cross the cell membrane. Molecular dynamics simulation of radicicol, diol-radicicol, cyclopropane-radicicol and 17-DMAG were performed at water/octanol interface to suggest interfacial activity as a physico-chemical characteristic of these heat shock protein 90 (HSP90) inhibitors. We have observed that orally active HSP90 inhibitors form aggregates at the water/octanol and DPPC-lipid/water interfaces by starting from an initial configuration with HSP90 inhibitors embedded in the water matrix.
Key points in this presentation are: (1) How and why hydroclimatic province can help precipitation projection for water program engineering and management, (2) Implications of initial research results and planned further monitoring / research activities, (3) Five adaptation t...
NASA Technical Reports Server (NTRS)
Desai, Tapan G.; Lawson, John W.; Keblinski, Pawel
2010-01-01
Reactive molecular dynamics simulations are used to study initial stage of pyrolysis of ablation materials and their composites with carbon nanotubes and carbon fibers. The products formed during pyrolysis are characterized and water is found as the primary product in all cases. The water formation mechanisms are analyzed and the value of the activation energy for water formation is estimated. A detailed study on graphitic precursor formation reveals the presence of two temperature zones. In the lower temperature zone (less than 2000 K) polymerization occurs resulting in formation of large, stable graphitic precursors, and in the high temperature zone (greater than 2000 K) polymer scission results in formation of short polymer chains/molecules. Simulations performed in the high temperature zone on the phenolic resin composites (with carbon nanotubes and carbon fibers) shows that the presence of interfaces had no substantial effect on the chain scission rate or the activation energy value for water formation.
NASA Astrophysics Data System (ADS)
Craig, L.; Stillings, L. L.
2014-12-01
In northern Ghana, groundwater is the main source of household water and is generally considered safe to drink. However in some areas it contains fluoride (F-) concentrations above the 1.5 ppm limit recommended by the World Health Organization, putting the users at risk of fluorosis. The study area in the Upper East Region of Ghana has pockets of groundwater F- up to 4.6 ppm and, as a result, also has a high percentage of residents with dental fluorosis. They have no alternative water source and, because of poverty and limited access to technology, lack the capacity to set up advanced treatment systems. One proposed solution is to attach F- adsorption filters to the wells, since adsorption is considered a simple and cost effective approach for treating high F-drinking water. This study evaluates activated alumina as a sorbent for use in de-fluoridation filters in the study area. We evaluated the long-term adsorption capacity of activated alumina, and changes in F- adsorption rate and capacity with grain size. We measured differences in positive surface charge (C m-2) via slow acid titration, as well as F- loading with varied prior hydration time. Results from this research show no notable change in F- adsorption or positive surface charge when the activated alumina surface was pre-equilibrated in distilled water from 24 hours to 30 weeks. The results of F- loading show a maximum of ~3.4 mg F- sorbed per gm activated alumina (initial pH ~6.9, initial F- 1 to 60 ppm, 20 hr reaction time). The pH dependent surface charge is ~0.14 C m-2 at pH of ~4.4 and is zero at pH ~8.6. F- loading experiments were conducted with grain size 0.125 to 0.250 mm and 0.5 to 1.0 mm to evaluate changes in F- adsorption rate (initial pH ~6.9, initial F- 10 ppm) and F- loading (initial pH ~6.9, initial F- 1 to 60 ppm, 20 hr reaction time). The F- loading did not change with grain size. However time to equilibrium increased dramatically with a decrease in grain size - after one hour of reaction time, the larger grain size adsorbed only 59% of F-, while at the finer grain size 90% was adsorbed. Future work will determine the volume of high F- water that can be treated before activated alumina needs to be regenerated or changed. These data will aid in the design of a small-scale F- adsorption filter in the study area, and will predict the longevity of activated alumina as the sorbent.
Obroucheva, Natalie V; Lityagina, Snezhana V; Novikova, Galina V; Sin'kevich, Irina A
2012-01-01
In tropical recalcitrant seeds, their rapid transition from shedding to germination at high hydration level is of physiological interest but difficult to study because of the time constraint. In recalcitrant horse chestnut seeds produced in central Russia, this transition is much longer and extends through dormancy and dormancy release. This extended time period permits studies of the water relations in embryonic axes during the long recalcitrant period in terms of vacuolar status and water transport. Horse chestnut (Aesculus hippocastanum) seeds sampled in Moscow were stratified in cold wet sand for 4 months. Vacuole presence and development in embryonic axes were examined by vital staining, light and electron microscopy. Aquaporins and vacuolar H(+)-ATPase were identified immunochemically. Water channel operation was tested by water inflow rate. Vacuolar acid invertase was estimated in terms of activity and electrophoretic properties. Throughout the long recalcitrant period after seed shedding, cells of embryonic axes maintained active vacuoles and a high water content. Preservation of enzyme machinery in vacuoles was evident from retention of invertase activity, substrate specificity, molecular mass and subunit composition. Plasmalemma and tonoplast aquaporins and the E subunit of vacuolar H(+)-ATPase were also present. In non-dormant seeds prior to growth initiation, vacuoles enlarged at first in hypocotyls, and then in radicles, with their biogenesis being similar. Vacuolation was accompanied by increasing invertase activity, leading to sugar accumulation and active osmotic functioning. After growth initiation, vacuole enlargement was favoured by enhanced water inflow through water channels formed by aquaporins. Maintenance of high water content and desiccation sensitivity, as well as preservation of active vacuoles in embryonic axes after shedding, can be considered a specific feature of recalcitrant seeds, overlooked when studying tropical recalcitrants due to the short duration. The retained physiological activity of vacuoles allows them to function rapidly as dormancy is lost and when external conditions permit. Cell vacuolation precedes cell elongation in both hypocotyl and radicle, and provides impetus for rapid germination.
Wu, Mianbin; Xia, Liming
2002-06-01
Both laccase production by the white-rot fungus Coriolus versicolor and decolorization of dyestuff and dying waste water with crude solution of laccase were studied in this work. Laccase production meets the definition of secondary metabolism. For laccase production the optimum initial pH is 4.5. Addition of veratryl alcohol or elevated trace metals could both enhance the laccase activity, while Tween80 showed some inhibition. The immobilized mycelia of C. versicolor in polyurethane foam had less laccase production ability than mycelial pellets. A repeated batch cultivation process was found to be a very economical way for laccase harvest. The same pellets could be used for at least 14 times and average laccase activity of each batch could maintain 6.72 IU/mL. This method reduces the enzyme production course, medium consumption and the possibility of contamination, showing high efficient and great economic benefit. Good results were also obtained in decolorization experiments with the crude solution of laccase. With 3.3 IU/mL initial laccase activity, color removal of Acid Orange reached 98.5% after 24 h reaction. Also with 2.6 IU/mL initial laccase activity, color removal of dying waste water reached 93% after 24 h reaction.
Enceladus: Starting Hydrothermal Activity
NASA Technical Reports Server (NTRS)
Matson, D. L.; Castillo-Rogez, J. C.; Johnson, T. V.; Lunine, J. I.; Davies, A. G.
2011-01-01
We describe a process for starting the hydrothermal activity in Enceladus' South Polar Region. The process takes advantage of fissures that reach the water table, about 1 kilometer below the surface. Filling these fissures with fresh ocean water initiates a flow of water up from an ocean that can be self-sustaining. In this hypothesis the heat to sustain the thermal anomalies and the plumes comes from a slightly warm ocean at depth. The heat is brought to the surface by water that circulates up, through the crust and then returns to the ocean.
Automatic toilet seat lowering apparatus
Guerty, Harold G.
1994-09-06
A toilet seat lowering apparatus includes a housing defining an internal cavity for receiving water from the water supply line to the toilet holding tank. A descent delay assembly of the apparatus can include a stationary dam member and a rotating dam member for dividing the internal cavity into an inlet chamber and an outlet chamber and controlling the intake and evacuation of water in a delayed fashion. A descent initiator is activated when the internal cavity is filled with pressurized water and automatically begins the lowering of the toilet seat from its upright position, which lowering is also controlled by the descent delay assembly. In an alternative embodiment, the descent initiator and the descent delay assembly can be combined in a piston linked to the rotating dam member and provided with a water channel for creating a resisting pressure to the advancing piston and thereby slowing the associated descent of the toilet seat. A toilet seat lowering apparatus includes a housing defining an internal cavity for receiving water from the water supply line to the toilet holding tank. A descent delay assembly of the apparatus can include a stationary dam member and a rotating dam member for dividing the internal cavity into an inlet chamber and an outlet chamber and controlling the intake and evacuation of water in a delayed fashion. A descent initiator is activated when the internal cavity is filled with pressurized water and automatically begins the lowering of the toilet seat from its upright position, which lowering is also controlled by the descent delay assembly. In an alternative embodiment, the descent initiator and the descent delay assembly can be combined in a piston linked to the rotating dam member and provided with a water channel for creating a resisting pressure to the advancing piston and thereby slowing the associated descent of the toilet seat.
Unprecedented covalently attached ATRP initiator onto OH-functionalized mica surfaces.
Lego, Béatrice; Skene, W G; Giasson, Suzanne
2008-01-15
Mica substrates were activated by a plasma method leading to OH-functionalized surfaces to which an atom transfer radical polymerization (ATRP) radical initiator was covalently bound using standard siloxane protocols. The unprecedented covalently immobilized initiator underwent radical polymerization with tert-butyl acrylate, yielding for the first time end-grafted polymer brushes that are covalently linked to mica. The initiator grafting on the mica substrate was confirmed by time-of-flight secondary ion mass spectrometry (TOF-SIMS), while the change in the water contact angle of the OH-activated mica surface was used to follow the change in surface coverage of the initiator on the surface. The polymer brush and initiator film thicknesses relative to the virgin mica were confirmed by atomic force microscopy (AFM). This was done by comparing the atomic step-height difference between a protected area of freshly cleaved mica and a zone exposed to plasma activation, initiator immobilization, and then ATRP.
NASA Astrophysics Data System (ADS)
Rohleder, N.; Wirth, D.; Fraßl, W.; Kowoll, R.; Schlemmer, M.; Vogler, S.; Kirsch, K. A.; Kirschbaum, C.; Gunga, H.-C.
2005-08-01
Limited data are available on the response of stress systems to microgravity. Increased activity of stress systems is reported during space flight, but unchanged or decreased activity during simulated microgravity. We here investigated the impact of head-out water immersion on the activity of the hypothalamus-pituitary-adrenal (HPA) axis and the sympathetic-adrenal-medullary (SAM) system.Eight healthy young men were exposed to a six-hour water immersion in a thermo neutral bath and a control condition. Saliva samples were taken before, during, and after interventions to assess cortisol as an index for HPA axis activity, and salivary α-amylase as an index for SAM system activity.Cortisol levels uniformly decreased during both conditions. Amylase levels increased during both conditions, but were significantly lower during the first half of water immersion compared to the control condition.In conclusion, the HPA axis is not influenced by simulated microgravity, while SAM system activity shows initial decreases during water immersion.
Using 1H2O MR to measure and map sodium pump activity in vivo.
Springer, Charles S
2018-06-01
The cell plasma membrane Na + ,K + -ATPase [NKA] is one of biology's most [if not the most] significant enzymes. By actively transporting Na + out [and K + in], it maintains the vital trans-membrane ion concentration gradients and the membrane potential. The forward NKA reaction is shown in the Graphical Abstract [which is elaborated in the text]. Crucially, NKA does not operate in isolation. There are other transporters that conduct K + back out of [II, Graphical Abstract] and Na + back into [III, Graphical Abstract] the cell. Thus, NKA must function continually. Principal routes for ATP replenishment include mitochondrial oxidative phosphorylation, glycolysis, and creatine kinase [CrK] activity. However, it has never been possible to measure, let alone map, this integrated, cellular homeostatic NKA activity in vivo. Active trans-membrane water cycling [AWC] promises a way to do this with 1 H 2 O MR. Inthe Graphical Abstract, the AWC system is characterized by active contributions totheunidirectional rate constants for steady-state water efflux and influx, respectively, k io (a) and k oi (a). The discovery, validation, and initial exploration of active water cycling are reviewed here. Promising applications in cancer, cardiological, and neurological MRI are covered. This initial work employed paramagnetic Gd(III)chelate contrast agents [CAs]. However, the significant problems associated with in vivo CA use are also reviewed. A new analysis of water diffusion-weighted MRI [DWI] is presented. Preliminary results suggest a non-invasive way to measure the cell number density [ρ (cells/μL)], the mean cell volume [V (pL)], and the cellular NKA metabolic rate [ c MR NKA (fmol(ATP)/s/cell)] with high spatial resolution. These crucial cell biology properties have not before been accessible invivo. Furthermore, initial findings indicate their absolute values can be determined. Copyright © 2018 The Author. Published by Elsevier Inc. All rights reserved.
Towards the Implementation of the GEOSS Water Strategy
NASA Astrophysics Data System (ADS)
Lawford, R. G.; Cripe, D.
2014-12-01
Early in 2014, the Group on Earth Observations (GEO) adopted the GEOSS (Global Earth Observation System of Systems) Water Strategy as a potential guide for GEO-related water activities over the next decade. The Water Strategy outlines water-related issues and opportunities that fit within the general GEOSS framework that will be developed over the next decade (2016-2025). Implementation of a water strategy within the GEOSS framework can be complex because GEO Members and Participating Organizations contribute to GEO on a voluntary basis. In spite of these limitations efforts to consolidate an implementation plan have made significant advances during the past nine months. Progress towards the final GEOSS Water Strategy Implementation Plan will be reported and gaps in the plan will be identified. Specific responses to the strategy will address the need for user engagement, the development of integrated of data products, model hierarchies and user support systems, and the research that will be needed to expand the capabilities of GEOSS and its water services. One challenge for the implementation plan involves building a framework from the diverse and wide range of activities and opportunities presented by GEO Members and Participating Organizations. The priority themes within the GEO Water Strategy are being used to provide more focus for new initiatives. New activities related to these priority areas involving projects that link water and other GEO Societal Benefit Areas, as well as initiatives related to the Water-Energy-Food nexus and the Sustainable Development Goals will be described. The presentation will also explore the needs and opportunities for new satellites and other observational and information technologies to advance the implementation of the GEOSS water strategy objectives.
Shin, Oon Ha; Kim, Dae Yeon; Seo, Yong Weon
2017-07-01
The importance of the effect of phytochemical accumulation in wheat grain on grain physiology has been recognised. In this study, we tracked phytochemical concentration in the seed coat of purple wheat during the water-imbibition phase and also hypothesised that the speed of germination was only relevant to its initial phytochemical concentration. The results indicate that the speed of germination was significantly reduced in the darker grain groups within the purple wheat. Total phenol content was slightly increased in all groups compared to their initial state, but the levels of other phytochemicals varied among groups. It is revealed that anthocyanin was significantly degraded during the water imbibition stage. Also, the activities of peroxidase, ascorbate peroxidase, catalase, glutathione S-transferase, glutathione reductase, and glutathione peroxidase in each grain colour group did not correlated with germination speed. Overall antioxidant activity was reduced as imbibition progressed in each group. Generally, darker grain groups showed higher total antioxidant activities than did lighter grain groups. These findings suggested that the reduced activity of reactive oxygen species, as controlled by internal antioxidant enzymes and phytochemicals, related with germination speed during the water imbibition stage in grains with greater depth of purple colouring. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.
Adapting Aquatic Circuit Training for Special Populations.
ERIC Educational Resources Information Center
Thome, Kathleen
1980-01-01
The author discusses how land activities can be adapted to water so that individuals with handicapping conditions can participate in circuit training activities. An initial section lists such organizational procedures as providing vocal and/or visual cues for activities, having assistants accompany the performers throughout the circuit, and…
Obroucheva, Natalie V.; Lityagina, Snezhana V.; Novikova, Galina V.; Sin'kevich, Irina A.
2012-01-01
Backgrounds and aims In tropical recalcitrant seeds, their rapid transition from shedding to germination at high hydration level is of physiological interest but difficult to study because of the time constraint. In recalcitrant horse chestnut seeds produced in central Russia, this transition is much longer and extends through dormancy and dormancy release. This extended time period permits studies of the water relations in embryonic axes during the long recalcitrant period in terms of vacuolar status and water transport. Methodology Horse chestnut (Aesculus hippocastanum) seeds sampled in Moscow were stratified in cold wet sand for 4 months. Vacuole presence and development in embryonic axes were examined by vital staining, light and electron microscopy. Aquaporins and vacuolar H+-ATPase were identified immunochemically. Water channel operation was tested by water inflow rate. Vacuolar acid invertase was estimated in terms of activity and electrophoretic properties. Principal results Throughout the long recalcitrant period after seed shedding, cells of embryonic axes maintained active vacuoles and a high water content. Preservation of enzyme machinery in vacuoles was evident from retention of invertase activity, substrate specificity, molecular mass and subunit composition. Plasmalemma and tonoplast aquaporins and the E subunit of vacuolar H+-ATPase were also present. In non-dormant seeds prior to growth initiation, vacuoles enlarged at first in hypocotyls, and then in radicles, with their biogenesis being similar. Vacuolation was accompanied by increasing invertase activity, leading to sugar accumulation and active osmotic functioning. After growth initiation, vacuole enlargement was favoured by enhanced water inflow through water channels formed by aquaporins. Conclusions Maintenance of high water content and desiccation sensitivity, as well as preservation of active vacuoles in embryonic axes after shedding, can be considered a specific feature of recalcitrant seeds, overlooked when studying tropical recalcitrants due to the short duration. The retained physiological activity of vacuoles allows them to function rapidly as dormancy is lost and when external conditions permit. Cell vacuolation precedes cell elongation in both hypocotyl and radicle, and provides impetus for rapid germination. PMID:22593822
Try This: Construct a Water Catchment
ERIC Educational Resources Information Center
Teaching Science, 2017
2017-01-01
EngQuest, an initiative of Engineers Australia, provides an exciting, non-competitive way for students to participate in free, fun and educational engineering activities involving mathematics, science and technology. This article describes a project designed to teach middle school students how to construct a water catchment system. Water…
Fracturing of porous rock induced by fluid injection
NASA Astrophysics Data System (ADS)
Stanchits, Sergei; Mayr, Sibylle; Shapiro, Serge; Dresen, Georg
2011-04-01
We monitored acoustic emission (AE) activity and brittle failure initiated by water injection into initially dry critically stressed cylindrical specimens of Flechtingen sandstone of 50 mm diameter and 105-125 mm length. Samples were first loaded in axial direction at 40-50 MPa confining pressure at dry conditions close to peak stress. Subsequently distilled water was injected either at the bottom of specimen or via a central borehole at pore pressures of 5-30 MPa. Water injection into stressed porous sandstone induced a cloud of AE events located close to the migrating water front. Water injection was monitored by periodic ultrasonic velocity measurements across the sample. Propagation of the induced cloud of AE was faster in the direction parallel to bedding than normal to it, indicating permeability anisotropy. Water injection was associated with significant AE activity demonstrating increased contribution of tensile source type. Brittle failure was accompanied by increased contribution of shear and pore collapse source types. At a critical pore pressure, a brittle fault nucleated from a cloud of induced AE events in all samples. Microstructural analysis of fractured samples shows excellent agreement between location of AE hypocenters and macroscopic faults.
Alpha chymotrypsin coated clusters of Fe3O4 nanoparticles for biocatalysis in low water media.
Mukherjee, Joyeeta; Gupta, Munishwar N
2012-11-08
Enzymes in low water containing non aqueous media are useful for organic synthesis. For example, hydrolases in such media can be used for synthetic purposes. Initial work in this area was carried out with lyophilized powders of enzymes. These were found to have poor activity. Drying (removing bulk water) by precipitation turned out to be a better approach. As enzymes in such media are heterogeneous catalysts, spreading these precipitates over a large surface gave even better results. In this context, nanoparticles with their better surface to volume ratio provide obvious advantage. Magnetic nanoparticles have an added advantage of easy separation after the reaction. Keeping this in view, alpha chymotrypsin solution in water was precipitated over a stirred population of Fe3O4 nanoparticles in n-propanol. This led to alpha chymotrypsin activity coated over clusters of Fe3O4 nanoparticles. These preparations were found to have quite high transesterification activity in low water containing n-octane. Precipitation of alpha chymotrypsin over a stirred suspension of Fe3O4 nanoparticles (3.6 nm diameter) led to the formation of enzyme coated clusters of nanoparticles (ECCNs). These clusters were also magnetic and their hydrodynamic diameter ranged from 1.2- 2.6 microns (as measured by dynamic light scattering). Transmission electron microscopy (TEM), showed that these clusters had highly irregular shapes. Transesterification assay of various clusters in anhydrous n-octane led to optimization of concentration of nanoparticles in suspension during precipitation. Optimized design of enzyme coated magnetic clusters of nanoparticles (ECCN 3) showed the highest initial rate of 465 nmol min-1 mg-1protein which was about 9 times higher as compared to the simple precipitates with an initial rate of 52 nmol min-1 mg-1 protein.Circular Dichroism (CD)(with a spinning cell accessory) showed that secondary structure content of the alpha Chymotrypsin in ECCN 3 [15% α-helix, 37% β-sheet and 48% random coil] was identical to the simple precipitates of alpha chymotrypsin. A strategy for obtaining a high activity preparation of alpha chymotrypsin for application in low water media is described. Such high activity biocatalysts are useful in organic synthesis.
Role of ozone and granular activated carbon in the removal of mutagenic compounds.
Bourbigot, M M; Hascoet, M C; Levi, Y; Erb, F; Pommery, N
1986-01-01
The identification of certain organic compounds in drinking water has led water treatment specialists to be increasingly concerned about the eventual risks of such pollutants to the health of consumers. Our experiments focused on the role of ozone and granular activated carbon in removing mutagenic compounds and precursors that become toxic after chlorination. We found that if a sufficient dose of ozone is applied, its use does not lead to the creation of mutagenic compounds in drinking water and can even eliminate the initial mutagenicity of the water. The formation of new mutagenic compounds seems to be induced by ozonation that is too weak, although these mutagens can be removed by GAC filtration. Ozone used with activated carbon can be one of the best means for eliminating the compounds contributing to the mutagenicity of water. A combined treatment of ozone and activated carbon also decreases the chlorine consumption of the treated water and consequently reduces the formation of chlorinated organic compounds. PMID:3816720
Laroche, C; Gervais, P
2003-05-01
To help us understand the factors and mechanisms implicated in the death of microorganisms or their resistance to temperature in a low water activity environment, microorganisms were dried on the surface of glass beads before being subjected to high temperatures for a short period followed by rapid cooling. Two microorganisms were studied: the yeast Saccharomyces cerevisiae and the bacterium Lactobacillus plantarum. Experiments were carried out at 150, 200, and 250 degrees C, with four durations of heat treatment and seven levels of initial water activity between 0.10 and 0.70. We observed an unexpected range of water activity, between 0.30 and 0.50, at which microorganisms were more resistant to the various treatments, with maximal viability at 0.35 for L. plantarum and 0.40 for S. cerevisiae.
ARSENIC REMOVAL FROM DRINKING WATER BY ACTIVATED ALUMINA AND ANION EXCHANGE TREATMENT
In preparation of the U.S. Environmental Protection Agency (USEPA) revising the arsenic maximum contaminant level (MCL) in the year 2001, a project was initiated to evaluate the performance of nine, full-scale drinking water treatment plants for arsenic removal. Four of these sy...
Xenobiotic Kinetics and Toxicity among Fish and Mammals
1992-02-29
infusion studies similar to those described in the previous progress report for rat have been initiated. Due to its limited water solubility and lesser...potency in fish than rat, a solubilizing agent is needed and we have determined that 5% polysorbate 80 in water can be administered to fish without...affecting acetylcholinesterase (ACHE) activity. We have infused three fish and measured AChE activity in brain, heart, and jaw muscle after the fish
Zhao, Pin; Gao, Baoyu; Yue, Qinyan; Liu, Pan; Shon, Ho Kyong
2016-08-01
Octanoic acid (OA) was selected to represent fatty acids in effluent organic matter (EOM). The effects of feed solution (FS) properties, membrane orientation and initial permeate flux on OA fouling in forward osmosis (FO) were investigated. The undissociated OA formed a cake layer quickly and caused the water flux to decline significantly in the initial 0.5hr at unadjusted pH3.56; while the fully dissociated OA behaved as an anionic surfactant and promoted the water permeation at an elevated pH of 9.00. Moreover, except at the initial stage, the sudden decline of water flux (meaning the occurrence of severe membrane fouling) occurred in two conditions: 1. 0.5mmol/L Ca(2+), active layer facing draw solution (AL-DS) and 1.5mol/L NaCl (DS); 2. No Ca(2+), active layer-facing FS (AL-FS) and 4mol/L NaCl (DS). This demonstrated that cake layer compaction or pore blocking occurred only when enough foulants were absorbed into the membrane surface, and the water permeation was high enough to compact the deposit inside the porous substrate. Furthermore, bovine serum albumin (BSA) was selected as a co-foulant. The water flux of both co-foulants was between the fluxes obtained separately for the two foulants at pH3.56, and larger than the two values at pH9.00. This manifested that, at pH3.56, BSA alleviated the effect of the cake layer caused by OA, and OA enhanced BSA fouling simultaneously; while at pH9.00, the mutual effects of OA and BSA eased the membrane fouling. Copyright © 2016. Published by Elsevier B.V.
2013-01-01
adsorbed on wet carbon (13 wt% water ). Left to right: initial and t = 6, 13, and 16 days ..............................3 2. 31 P MAS NMR spectra...obtained for 10 wt% VX adsorbed on wet carbon (13 wt% water ) Left to right: initial and t = 24 days ...............................................4...of feed air. Each Class A Type II filter contained approximately 48.2 lb of granular, activated, coconut shell-based carbon. A given filter bank
Revealing the Interactional Features of Learning and Teaching Moments in Outdoor Activity
ERIC Educational Resources Information Center
Waters, Jane; Bateman, Amanda
2015-01-01
The data considered in this article was generated as part of a doctoral research study entitled: "A sociocultural consideration of child-initiated interaction with teachers in indoor and outdoor spaces" (Waters 2011) where child-initiated, teacher-child interaction in indoor and outdoor spaces were investigated. The purpose of the…
Code of Federal Regulations, 2012 CFR
2012-07-01
.... For the purposes of monitoring for gross alpha particle activity, radium-226, radium-228, uranium, and... monitoring: Systems must conduct initial monitoring for gross alpha particle activity, radium-226, radium-228...) For gross alpha particle activity, uranium, radium-226, and radium-228 monitoring, the State may waive...
"JCE" Classroom Activity #105. A Sticky Situation: Chewing Gum and Solubility
ERIC Educational Resources Information Center
Montes-Gonzalez, Ingrid; Cintron-Maldonado, Jose A.; Perez-Medina, Ilia E.; Montes-Berrios, Veronica; Roman-Lopez, Saurie N.
2010-01-01
In this Activity, students perform several solubility tests using common food items such as chocolate, chewing gum, water, sugar, and oil. From their observations during the Activity, students will initially classify the substances tested as soluble or insoluble. They will then use their understanding of the chemistry of solubility to classify the…
Atmospheric-pressure electric discharge as an instrument of chemical activation of water solutions
NASA Astrophysics Data System (ADS)
Rybkin, V. V.; Shutov, D. A.
2017-11-01
Results of experimental studies and numerical simulations of physicochemical characteristics of plasmas generated in different types of atmospheric-pressure discharges (pulsed streamer corona, gliding electric arc, dielectric barrier discharge, glow-discharge electrolysis, diaphragmatic discharge, and dc glow discharge) used to initiate various chemical processes in water solutions are analyzed. Typical reactor designs are considered. Data on the power supply characteristics, plasma electron parameters, gas temperatures, and densities of active particles in different types of discharges excited in different gases and their dependences on the external parameters of discharges are presented. The chemical composition of active particles formed in water is described. Possible mechanisms of production and loss of plasma particles are discussed.
Maureen Lynch
2006-01-01
For the past two years, three rural municipalities in the foothills of the Canadian Rockies have been working together to promote sustainability in their communities. The towns share the belief that water is an integral part of the community; they have formed a Tri Community Watershed Initiative to help manage their shared resource. Activities of the Initiative include...
Temperature-time distribution and thermal stresses on the RTG fins and shell during water cooling
NASA Technical Reports Server (NTRS)
Turner, R. H.
1983-01-01
Radioisotope thermoelectric generator (RTG) packages designed for space missions generally do not require active cooling. However, the heat they generate cannot remain inside of the launch vehicle bay and requires active removal. Therefore, before the Shuttle bay door is closed, the RTG coolant tubes attached to the heat rejection fins must be filled with water, which will circulate and remove most of the heat from the cargo bay. There is concern that charging a system at initial temperature around 200 C with water at 24 C can cause unacceptable thermal stresses in the RTG shell and fins. A computer model is developed to estimate the transient temperature distribution resulting from such charging. The thermal stresses resulting from the temperature gradients do not exceed the elastic deformation limit for the material. Since the simplified mathematical model for thermal stresses tends to overestimate stresses, it is concluded that the RTG can be cooled by introducing water at 24 C to the initially hot fin coolant tubes while the RTG is in the Shuttle cargo bay.
PV water pumping: NEOS Corporation recent PV water pumping activities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lane, C.
1995-11-01
NEOS Corporation has been very active in PV-powered water pumping, particularly with respect to electric utilities. Most of the recent activity has been through the Photovoltaic Services Network (PSN). The PSN is an independent, not-for-profit organization comprised of all types of electric utilities: rural electric coops, public power districts, investor-owned utilities, and power marketing agencies. The PSN`s mission is to work pro-actively to promote utility involvement in PV through education and training. PV information is distributed by the PSN in three primary forms: (1) consultation with PSN technical service representatives: (2) literature generated by the PSN; and (3) literature publishedmore » by other organizations. The PSN can also provide assistance to members in developing PV customer service programs. The PSN`s product support activities include consolidation of information on existing packaged PV systems and facilitation of the development of new PV product packages that meet utility-defined specifications for cost performance, and reliability. The PSN`s initial product support efforts will be focused on commercially available packaged PV systems for a variety of off-grid applications. In parallel with this effort, if no products exist that meet the PSN`s functional specifications, the PSN will initiate the second phase of product development support process by encouraging the development of new packaged systems. Through these services and product support activities, the PSN anticipates engaging all segments for the PV industry, thus providing benefits to PV systems suppliers as well as local PV service contractors.This paper describes field testing of pv power systems for water pumping.« less
U-series ages of solitary corals from the California coast by mass spectrometry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stein, M.; Wasserburg, G.J.; Chen, J.H.
1991-12-01
The purpose of this study is to evaluate the feasibility of dating fossil solitary corals from Pleistocene marine strandlines outside tropical latitudes using the recently developed high sensitivity, high-precision U-series technique based on thermal-ionization mass-spectrometry (TIMS). The TIMS technique is much more efficient than conventional {alpha} spectrometry and, as a result, multiple samples of an individual coral skeleton, or different specimens from the same bed can be analyzed. Detached and well-rounded fossil specimens of the solitary coral Balanophyllia elegans were collected from relict littoral deposits on emergent marine terraces along the California coast at Cayucos terrace, Shell Beach terrace, Nestormore » terrace, San Diego, Bird Rock terrace, San Diego. Attached living specimens were collected from the intertidal zone on the modern terrace at Moss Beach. The calculated initial {sup 234}U activities in the fossil specimens of Balanophyllia elegans are higher than the {sup 234}U activity in modern seawater or in the modern specimen. The higher initial activities could possibly reflect the influx of {sup 234}U-enriched continental water into Pleistocene coastal waters, or it could reflect the influx of {sup 234}U-enriched continental water into Pleistocene coastal waters, or it could reflect minor diagenetic alteration, a persistent and fundamental problem in dating all corals.« less
Technology development for lunar base water recycling
NASA Technical Reports Server (NTRS)
Schultz, John R.; Sauer, Richard L.
1992-01-01
This paper will review previous and ongoing work in aerospace water recycling and identify research activities required to support development of a lunar base. The development of a water recycle system for use in the life support systems envisioned for a lunar base will require considerable research work. A review of previous work on aerospace water recycle systems indicates that more efficient physical and chemical processes are needed to reduce expendable and power requirements. Development work on biological processes that can be applied to microgravity and lunar environments also needs to be initiated. Biological processes are inherently more efficient than physical and chemical processes and may be used to minimize resupply and waste disposal requirements. Processes for recovering and recycling nutrients such as nitrogen, phosphorus, and sulfur also need to be developed to support plant growth units. The development of efficient water quality monitors to be used for process control and environmental monitoring also needs to be initiated.
ERIC Educational Resources Information Center
Teaching Science, 2015
2015-01-01
EngQuest, an initiative of Engineers Australia, provides an exciting, non-competitive way for students to participate in free, fun and educational engineering activities involving mathematics, science and technology. This article provides a sample of one of the middle school activities in the program. The history of water wheels, and their use…
How Do River Meanders Change with Sea Level Rise and Fall?
NASA Astrophysics Data System (ADS)
Scamardo, J. E.; Kim, W.
2016-12-01
River meander patterns are controlled by numerous factors, including variations in water discharge, sediment input, and base level. However, the effect of sea level rise and fall on meandering rivers has not been thoroughly quantified. This study examines geomorphic changes to meandering rivers as a result of sea level rise and fall. Twenty experimental runs using coarse-grained walnut shell sediment (D50= 500 microns) in a flume tank (2.4m x 0.6m x 0.1m) tested the optimal initial conditions for creating meandering rivers in a laboratory setting as well as variations in base level rise and fall rates. Geomorphic changes were recorded by camera images every 20 seconds for a duration of 4 hours per experiment. Seventeen experiments tested the effects of changes in initial base levels, water discharge between 200 and 400 mL/min, and sediment to water input ratios between 1:1000 and 1:250 while measuring sinuosity, channel geometry, and the timescale of the channel to reach a stable form. Sinuosity and channel activity increased with increasing water discharge, initial base level, and the sediment to water ratio to a point after which the activity decreased with increasing sediment input. Base-level change experiments used initial conditions of 400 mL/min, a 1:750 sediment to water input ratio, and a 6 cm initial base-level to induce river meanders for the initial 2 hours before base-level change occurred. Three separate experiments investigated the effects of increasing rates of sea level change: 0.07 cm/min, 0.1 cm/min, and 0.2 cm/min. Experimental sea level was decreased constantly from a high-stand of 6 cm to a low-stand of 2 cm back to the high-stand base-level in each experiment. The rates of change in the experiments scale roughly from central to glacial cycles. In all three experiments, sea level fall induced meander cut-off while sea level rise prompted greater rates of meander bend erosion and meander growth. Sinuosity increased by 12%, 13.5%, and 24%, respectively in the three experiments, with most sinuosity changes occurring in the downstream reach of the channel. These experiments could provide insight into long term effects of sea level change on modern meandering fluvial systems as well as provide a key to interpreting past fluvial changes in the stratigraphic record.
NASA Astrophysics Data System (ADS)
Blodgett, D. L.
2016-12-01
Recent prolonged droughts, catastrophic flooding, and the need to protect and restore aquatic ecosystems, has increased the emphasis on information sharing in the water resources science and engineering domains. Internationally the joint World Meteorological Organization (WMO) and Open Geospatial Consortium (OGC) Hydrology Domain Working Group (HDWG) has been working toward a comprehensive system of standards and best practices for the Hydrology Domain. In the U.S. the multi-agency led and open to all U.S. Advisory Committee on Water Information (ACWI) was tasked to implement an Open Water Data Initiative (OWDI), "that will integrate currently fragmented water information into a connected, national water data framework"[1]. The status of both will be presented with focus on a community hydrologic geospatial fabric. Hydrology observations data standardization was the emphasis of the first 5 years of the HDWG. This work included WaterML 2.0 parts 1 - timeseries and part 2 - ratings and gagings. In 2016, the first of two new hydrographic feature models, GroundwaterML2, was completed and the second, for surface water features, was in active development. The WMO Commission for Hydrology is considering adoption of all these standards and their adoption is central to the U.S. OWDI. OWDI participants have produced a special collection in the Journal of American Water Resources Association and several initiative working groups have concluded their activities. One early deliverable from the OWDI was a new easier to use structure for the NHDPlus dataset. Building on this, a project to create a national Network Linked Data Index (NLDI) is being undertaken as an open-source community endeavor. The NLDI centralizes river network data, network navigation tools, crawlers that index data to the network, and utilities to register or remove data from the network. Research that informed the design of the NLDI will be presented along with recent development and findings of the project. This specific activity will be put in the context of the methods for and status of international standards and best practices development intended to help realize such national and international goals. [1] http://acwi.gov/spatial/open_water_data_charge_to_fgdc_june23_2014.pdf
Alpha chymotrypsin coated clusters of Fe3O4 nanoparticles for biocatalysis in low water media
2012-01-01
Background Enzymes in low water containing non aqueous media are useful for organic synthesis. For example, hydrolases in such media can be used for synthetic purposes. Initial work in this area was carried out with lyophilized powders of enzymes. These were found to have poor activity. Drying (removing bulk water) by precipitation turned out to be a better approach. As enzymes in such media are heterogeneous catalysts, spreading these precipitates over a large surface gave even better results. In this context, nanoparticles with their better surface to volume ratio provide obvious advantage. Magnetic nanoparticles have an added advantage of easy separation after the reaction. Keeping this in view, alpha chymotrypsin solution in water was precipitated over a stirred population of Fe3O4 nanoparticles in n-propanol. This led to alpha chymotrypsin activity coated over clusters of Fe3O4 nanoparticles. These preparations were found to have quite high transesterification activity in low water containing n-octane. Results Precipitation of alpha chymotrypsin over a stirred suspension of Fe3O4 nanoparticles (3.6 nm diameter) led to the formation of enzyme coated clusters of nanoparticles (ECCNs). These clusters were also magnetic and their hydrodynamic diameter ranged from 1.2- 2.6 microns (as measured by dynamic light scattering). Transmission electron microscopy (TEM), showed that these clusters had highly irregular shapes. Transesterification assay of various clusters in anhydrous n-octane led to optimization of concentration of nanoparticles in suspension during precipitation. Optimized design of enzyme coated magnetic clusters of nanoparticles (ECCN 3) showed the highest initial rate of 465 nmol min-1 mg-1protein which was about 9 times higher as compared to the simple precipitates with an initial rate of 52 nmol min-1 mg-1 protein. Circular Dichroism (CD)(with a spinning cell accessory) showed that secondary structure content of the alpha Chymotrypsin in ECCN 3 [15% α-helix, 37% β-sheet and 48% random coil] was identical to the simple precipitates of alpha chymotrypsin. Conclusion A strategy for obtaining a high activity preparation of alpha chymotrypsin for application in low water media is described. Such high activity biocatalysts are useful in organic synthesis. PMID:23137100
Austin Youth River Watch Program: 1992-93 Final Report. Publication Number 92.33.
ERIC Educational Resources Information Center
Turner, Jeannine
The City of Austin (Texas) provides funds for an educational initiative to involve minority high school students in water quality issues and to reduce the dropout rate through positive role model interaction with academically successful students. Principal program activities were testing river water for pollutants and tutoring at-risk students by…
Chen, Qian-Qian; Hou, Chun-Chao; Wang, Chuan-Jun; Yang, Xiao; Shi, Rui; Chen, Yong
2018-06-06
NiFe-layered double hydroxide (NiFe LDH) is a state-of-the-art oxygen evolution reaction (OER) electrocatalyst, yet it suffers from rather poor catalytic activity for the hydrogen evolution reaction (HER) due to its extremely sluggish water dissociation kinetics, severely restricting its application in overall water splitting. Herein, we report a novel strategy to expedite the HER kinetics of NiFe LDH by an Ir4+-doping strategy to accelerate the water dissociation process (Volmer step), and thus this catalyst exhibits superior and robust catalytic activity for finally oriented overall water splitting in 1 M KOH requiring only a low initial voltage of 1.41 V delivering at 20 mA cm-2 for more than 50 h.
Liu, Hu; Yu, Yongsheng; Yang, Weiwei; Lei, Wenjuan; Gao, Manyi; Guo, Shaojun
2017-07-13
Controlling the surface defects of nanocrystals is a new way of tuning/boosting their catalytic properties. Herein, we report networked PdAg nanowires (NWs) with high-density defects as catalytic hot spots for efficient catalytic dehydrogenation of formic acid (FA) and catalytic reduction of nitrates. The networked PdAg NWs exhibit composition-dependent catalytic activity for the dehydrogenation reaction of FA without any additive, with Pd 5 Ag 5 NWs exhibiting the highest activity. They also show good durability, reflected by the retention of their initial activity during the dehydrogenation reaction of FA even after five cycles. Their initial TOF is 419 h -1 at 60 °C in water solution, much higher than those of the most Pd-based catalysts with a support. Moreover, they can efficiently reduce nitrates to alleviate nitrate pollution in water (conversion yield >99%). This strategy opens up a new green synthetic technique to design support-free heterogeneous catalysts with high-density defects as catalytic hot spots for efficient dehydrogenation catalysis of FA to meet the requirement of fuel cell applications and catalytic reduction of nitrates in water polluted with nitrates.
Looking for a substituent of spinach (Spinacia oleracea) chloroplasts
NASA Astrophysics Data System (ADS)
Chang, Ying Ping; Yeoh, Loo Yew; Chee, Swee Yong; Lim, Tuck Meng
2017-04-01
Spinach's chloroplasts electron transport features are often adapted to build biofuel cells or biosensors for environment conservation. This approach may raise food security issues. The present study aimed to test on in vitro functional activity of chloroplasts from selected underutilized leaves of: Pandan (Pandanus amaryllifolius), oil palm (Elaeis guineensis) and water lettuce (Pistia stratiotes) in comparison with spinach (Spinacia oleracea). The leaves' electrical conductivity was measured to evaluate the initial cell permeability. We applied Hill's reaction to determine the photoreduction capacity of the chloroplasts. Initial electrical conductivity of leaves ranged from 11.5 to 18.5 µs/cm/g followed the order of water lettuce
Sirotkin, Vladimir A; Kuchierskaya, Alexandra A
2017-10-01
We investigated water/organic solvent sorption and residual enzyme activity to simultaneously monitor preferential solvation/hydration of protein macromolecules in the entire range of water content at 25°C. We applied this approach to estimate protein destabilization/stabilization due to the preferential interactions of bovine pancreatic α-chymotrypsin with water-acetone (moderate-strength H-bond acceptor) and water-DMSO (strong H-bond acceptor) mixtures. There are three concentration regimes for the dried α-chymotrypsin. α-Chymotrypsin is preferentially hydrated at high water content. The residual enzyme activity values are close to 100%. At intermediate water content, the dehydrated α-chymotrypsin has a higher affinity for acetone/DMSO than for water. Residual enzyme activity is minimal in this concentration range. The acetone/DMSO molecules are preferentially excluded from the protein surface at the lowest water content, resulting in preferential hydration. The residual catalytic activity in the water-poor acetone is ∼80%, compared with that observed after incubation in pure water. This effect is very small for the water-poor DMSO. Two different schemes are operative for the hydrated enzyme. At high and intermediate water content, α-chymotrypsin exhibits preferential hydration. However, at intermediate water content, in contrast to the dried enzyme, the initially hydrated α-chymotrypsin possesses increased preferential hydration parameters. At low water content, no residual enzyme activity was observed. Preferential binding of DMSO/acetone to α-chymotrypsin was detected. Our data clearly demonstrate that the hydrogen bond accepting ability of organic solvents and the protein hydration level constitute key factors in determining the stability of protein-water-organic solvent systems. © 2017 Wiley Periodicals, Inc.
Polar cap formation on Ganymede
NASA Technical Reports Server (NTRS)
Shaya, E. J.; Pilcher, C. B.
1984-01-01
It is argued that Ganymede's polar caps are the remnants of a more extensive covering of water ice that formed during a period in which the satellite was geologically active. It is inferred that the initial thickness of this covering was a significant fraction of the gardening depth since the covering formed. This suggests an initial thickness of at least a few meters over heavily cratered regions such as the south polar grooved terrain. The absence of similar polar caps on Callisto apparently reflects the absence of comparable geologic activity in the history of this satellite.
Platinum-catalyzed hydrolysis etching of SiC in water: A density functional theory study
NASA Astrophysics Data System (ADS)
Van Bui, Pho; Toh, Daisetsu; Isohashi, Ai; Matsuyama, Satoshi; Inagaki, Kouji; Sano, Yasuhisa; Yamauchi, Kazuto; Morikawa, Yoshitada
2018-05-01
A comprehensive study of the physicochemical interactions and the reaction mechanism of SiC etching with water by Pt catalysts can reveal key details about the surface treatment and catalytic phenomena at interfaces. Therefore, density functional theory simulations were performed to study the kinetics of Pt-assisted water dissociation and breaking of a Si–C bond compared to the HF-assisted mechanism. These calculations carefully considered the elastic and chemical interaction energies at the Pt–SiC interface, activation barriers of Si–C bond dissociation, and the catalytic role of Pt. It was found that the Pt-catalyzed etching of SiC in water is initiated via hydrolysis reactions that break the topmost Si–C bonds. The activation barrier strongly depends on the elastic and chemical interactions. However, chemical interactions are a dominant factor and mainly contribute to the lowering of the activation barrier, resulting in an increased rate of reaction.
Method and apparatus for sampling low-yield wells
Last, George V.; Lanigan, David C.
2003-04-15
An apparatus and method for collecting a sample from a low-yield well or perched aquifer includes a pump and a controller responsive to water level sensors for filling a sample reservoir. The controller activates the pump to fill the reservoir when the water level in the well reaches a high level as indicated by the sensor. The controller deactivates the pump when the water level reaches a lower level as indicated by the sensors. The pump continuously activates and deactivates the pump until the sample reservoir is filled with a desired volume, as indicated by a reservoir sensor. At the beginning of each activation cycle, the controller optionally can select to purge an initial quantity of water prior to filling the sample reservoir. The reservoir can be substantially devoid of air and the pump is a low volumetric flow rate pump. Both the pump and the reservoir can be located either inside or outside the well.
Use of modified pine bark for removal of pesticides from stormwater runoff
Mandla A. Tshabalala
2003-01-01
Pesticide entrainment in stormwater runoff can contribute to non-point source pollution of surface waters. Granular activated carbon has been successfully used for removing pesticides from wastewater. However, implementation of granular activated carbon sorption media in stormwater filtration systems comes with high initial capital investment and operating costs....
Electrophysical properties of water and ice under isentropic compression to megabar pressures
NASA Astrophysics Data System (ADS)
Belov, S. I.; Boriskov, G. V.; Bykov, A. I.; Dolotenko, M. I.; Egorov, N. I.; Korshunov, A. S.; Kudasov, Yu. B.; Makarov, I. V.; Selemir, V. D.; Filippov, A. V.
2017-02-01
The relative permittivity and specific conductivity of water and ice are measured under isentropic compression to pressures above 300 GPa. Compression is initiated by a pulse of an ultrahigh magnetic field generated by an MK-1 magnetocumulative generator. The sample is placed in a coaxial compression chamber with an initial volume of about 40 cm3. The complex relative permittivity was measured by a fast-response reflectometer at a frequency of about 50 MHz. At the compression of water, its relative permittivity increases to ɛ = 350 at a pressure of 8 GPa, then drops sharply to ɛ = 140, and further decreases smoothly. It is shown that measurements of the relative permittivity under isentropic compression make it possible to determine interfaces between ordered and disordered phases of water and ice, as well as to reveal features associated with a change in the activation energy of defects.
Chen, Mengbin; Chou, Wayne K W; Al-Lami, Naeemah; Faraldos, Juan A; Allemann, Rudolf K; Cane, David E; Christianson, David W
2016-05-24
Aristolochene synthase (ATAS) is a high-fidelity terpenoid cyclase that converts farnesyl diphosphate exclusively into the bicyclic hydrocarbon aristolochene. Previously determined crystal structures of ATAS complexes revealed trapped active site water molecules that could potentially interact with catalytic intermediates: water "w" hydrogen bonds with S303 and N299, water molecules "w1" and "w2" hydrogen bond with Q151, and a fourth water molecule coordinates to the Mg(2+)C ion. There is no obvious role for water in the ATAS mechanism because the enzyme exclusively generates a hydrocarbon product. Thus, these water molecules are tightly controlled so that they cannot react with carbocation intermediates. Steady-state kinetics and product distribution analyses of eight ATAS mutants designed to perturb interactions with active site water molecules (S303A, S303H, S303D, N299A, N299L, N299A/S303A, Q151H, and Q151E) indicate relatively modest effects on catalysis but significant effects on sesquiterpene product distributions. X-ray crystal structures of S303A, N299A, N299A/S303A, and Q151H mutants reveal minimal perturbation of active site solvent structure. Seven of the eight mutants generate farnesol and nerolidol, possibly resulting from addition of the Mg(2+)C-bound water molecule to the initially formed farnesyl cation, but no products are generated that would suggest enhanced reactivity of other active site water molecules. However, intermediate germacrene A tends to accumulate in these mutants. Thus, apart from the possible reactivity of Mg(2+)C-bound water, active site water molecules in ATAS are not directly involved in the chemistry of catalysis but instead contribute to the template that governs the conformation of the flexible substrate and carbocation intermediates.
Motshekga, Sarah Constance; Sinha Ray, Suprakas; Maity, Arjun
2018-02-15
The use of polymer nanocomposites as novel materials for water remediation has emerged as a promising alternative for disinfection of bacteria contaminated water. Sodium alginate, a natural biopolymer has been investigated in this study by encapsulating antimicrobial zinc oxide nanoparticles supported bentonite. The confirmation of the alginate nanocomposites was done by use of TEM, SEM-EDS and XRD. The antimicrobial activity of the alginate nanocomposites was investigated by batch studies using surface water and synthetic bacteria contaminated water containing Staphylococcus aureus. The effect of nanocomposite amount and initial bacteria concentration has been studied. The inactivation results indicated that the nanocomposite effectively inactivated bacteria in both the synthetic and surface water. With an amount of 0.5 g of the nanocomposites, no bacteria was observed in the water after 70 min of contact time with initial bacteria concentration of 200 cfu/ml for synthetic water and within a min, no bacteria was observed in the water for surface water. It is worth noting that 200 cfu/ml is the bacteria concentration range in which environmental water is likely to contain. Therefore, the results of this study have indicated that the alginate nanocomposites can be deemed as a potential antimicrobial agent for water disinfection. Copyright © 2017 Elsevier Inc. All rights reserved.
Oliviero, T; Verkerk, R; Van Boekel, M A J S; Dekker, M
2014-11-15
Broccoli belongs to the Brassicaceae plant family consisting of widely eaten vegetables containing high concentrations of glucosinolates. Enzymatic hydrolysis of glucosinolates by endogenous myrosinase (MYR) can form isothiocyanates with health-promoting activities. The effect of water content (WC) and temperature on MYR inactivation in broccoli was investigated. Broccoli was freeze dried obtaining batches with WC between 10% and 90% (aw from 0.10 to 0.96). These samples were incubated for various times at different temperatures (40-70°C) and MYR activity was measured. The initial MYR inactivation rates were estimated by the first-order reaction kinetic model. MYR inactivation rate constants were lower in the driest samples (10% WC) at all studied temperatures. Samples with 67% and 90% WC showed initial inactivation rate constants all in the same order of magnitude. Samples with 31% WC showed intermediate initial inactivation rate constants. These results are useful to optimise the conditions of drying processes to produce dried broccoli with optimal MYR retention for human health. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Agayev, T. N.; Gadzhieva, N. N.; Melikova, S. Z.
2018-05-01
The radiation decomposition of water in a nano-ZrO2 + nano-SiO2 + H2O system at 300 K by the action of gamma radiation has been studied by Fourier transform IR spectroscopy. Water adsorption in the zirconium and silicon nanooxides is attributed to molecular and dissociative mechanisms. Active intermediates in this radiation-induced heterogeneous decomposition of water were detected including zirconium and silicon hydrides and hydroxyl groups. Variation in the ratio of ZrO2 and SiO2 nanopowders was shown to lead to change in their radiation catalytic activity compared to initial ZrO2.
Mlyniec, A; Ekiert, M; Morawska-Chochol, A; Uhl, T
2016-06-01
In this work, we investigate the influence of the surrounding environment and the initial density on the decomposition kinetics of polylactide (PLA). The decomposition of the amorphous PLA was investigated by means of reactive molecular dynamics simulations. A computational model simulates the decomposition of PLA polymer inside the bulk, due to the assumed lack of removal of reaction products from the polymer matrix. We tracked the temperature dependency of the water and carbon monoxide production to extract the activation energy of thermal decomposition of PLA. We found that an increased density results in decreased activation energy of decomposition by about 50%. Moreover, initiation of decomposition of the amorphous PLA is followed by a rapid decline in activation energy caused by reaction products which accelerates the hydrolysis of esters. The addition of water molecules decreases initial energy of activation as well as accelerates the decomposition process. Additionally, we have investigated the dependency of density on external loading. Comparison of pressures needed to obtain assumed densities shows that this relationship is bilinear and the slope changes around a density equal to 1.3g/cm(3). The conducted analyses provide an insight into the thermal decomposition process of the amorphous phase of PLA, which is particularly susceptible to decomposition in amorphous and semi-crystalline PLA polymers. Copyright © 2016 Elsevier Inc. All rights reserved.
Wet plume atop of the flattening slab: Insight into intraplate volcanism in East Asia
NASA Astrophysics Data System (ADS)
He, Lijuan
2017-08-01
Geophysical observations imply the intraplate volcanism in East Asia is related to dehydration of slab stagnating in the transition zone. To better understand the dynamics of such process, a thermochemical mantle convection model is constructed to simulate numerically the thermal evolution of slab and the transportation of water in the process of slab downgoing, flattening and stagnation. Equation of water transfer is included, and water effects on density and viscosity are considered. Model results indicate the warming of slab by surrounding mantle is rather slow. Water could be successfully dragged into the transition zone if the reference viscosity of the hydrous layer (with initial water of 2 wt%) is higher than 1017 Pa s and that of mantle is 1021 Pa s. Wet plumes could then originate in the flat-lying part of the slab, relatively far from the trench. Generally, the viscosity of the hydrous layer governs the initiation of wet plume, whereas the viscosity of the overlying mantle wedge controls the activity of the ascending wet plumes - they are more active in the weaker wedge. The complex fluid flow superposed by corner flow and free thermal convection influences greatly the water transport pattern in the upper mantle. Modeling results together with previous modeling infer three stages of water circulation in the big mantle wedge: 1) water is brought into the mantle transition zone by downward subducting slab under some specific thermo-rheological conditions, otherwise water is released at shallow depth near wedge tip; 2) wet plume generates from surface of the flattening slab warmed by surrounding mantle, and 3) water spreads over the big mantle wedge. Wet plume from the flattening Pacific Plate arrives at the lithospheric base and induces melting, which can explain the intraplate Cenozoic volcanoes in East Asia.
ERIC Educational Resources Information Center
Bosler, Ulrich; Lehmann, Jurgen
2001-01-01
Describes the cross-national educational network, Schools for a Living River Elbe. The project is thought to be the largest educational water-quality project in the world. The establishment of the project and the results of an initial survey show that the project is in a position to develop instructional and ecologically stimulating activities.…
Strong Effects of a Shelfbreak Jet on Microbial Enzyme Activities
NASA Astrophysics Data System (ADS)
Hoarfrost, A.; Balmonte, J. P.; Ziervogel, K.; Ghobrial, S.; Gawarkiewicz, G.; Arnosti, C.
2016-02-01
The activities of extracellular enzymes are critical in initiating microbial cycling of organic carbon, yet the dynamics of heterotrophic enzyme activities in marine environments are still poorly understood. Variations at a given site in rates of activity and the spectrum of organic substrates hydrolyzed may depend upon environmental context. We measured the extracellular enzymatic hydrolysis of 13 high- and low-molecular-weight organic substrates in surface and bottom waters along a closely spaced 4-station transect at 71 W on the North Atlantic continental shelf, in the vicinity of the shelfbreak front. This transect intersects a robust upwelling cell that typically shows high biologic productivity, and is locatable by changes in T/S profiles and chl a concentrations along sharp spatial gradients. At the time of sampling, cold pool waters over the continental shelf were relatively cold, 3.5 Deg. C, compared to 12 Deg. C over the upper continental slope. Satellite thermal imagery indicated that shelf water extended offshore and interacted with a large crest of the Gulf Stream. The surface and bottom waters associated with the upwelling jet were characterized by enzyme activities a factor of 20 more rapid than closer inshore waters, and surface water chl a concentrations that were two to three times higher than the inshore waters. The spectrum of enzyme activities also differed markedly between surface and bottom waters both within the jet and at near-shore stations. Microbial extracellular enzymatic activities were strongly influenced by differences in their environmental context along the continental slope and shelfbreak front. Constraining the factors controlling heterotrophic activity across the diverse marine environment is an important step in understanding microbial controls on carbon cycling.
Galmés, Jeroni; Ribas-Carbó, Miquel; Medrano, Hipólito; Flexas, Jaume
2011-01-01
Water stress decreases the availability of the gaseous substrate for ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) by decreasing leaf conductance to CO2. In spite of limiting photosynthetic carbon assimilation, especially in those environments where drought is the predominant factor affecting plant growth and yield, the effects of water deprivation on the mechanisms that control Rubisco activity are unclear. In the present study, 11 Mediterranean species, representing different growth forms, were subject to increasing levels of drought stress, the most severe one followed by rewatering. The results confirmed species-specific patterns in the decrease in the initial activity and activation state of Rubisco as drought stress and leaf dehydration intensified. Nevertheless, all species followed roughly the same trend when Rubisco activity was related to stomatal conductance (gs) and chloroplastic CO2 concentration (Cc), suggesting that deactivation of Rubisco sites could be induced by low Cc, as a result of water stress. The threshold level of Cc that triggered Rubisco deactivation was dependent on leaf characteristics and was related to the maximum attained for each species under non-stressing conditions. Those species adapted to low Cc were more capable of maintaining active Rubisco as drought stress intensified. PMID:21115663
Characterization and Potential Environmental Risks of Leachate from Shredded Rubber Mulches
Kanematsu, Masakazu; Hayashi, Ai; Denison, Michael S.; Young, Thomas M.
2009-01-01
In order to determine whether shredded rubber mulches (RM) posed water quality risks when used in stormwater best management practices (BMPs) such as bioretention basins, batch leaching tests were conducted to identify and quantify constituents in leachates from RM such as metal ions, nutrients, total organic carbon (TOC), and aryl hydrocarbon receptor (AhR) activity (determined by the chemically activated luciferase gene expression (CALUX) bioassay) at varied temperature and initial pH values. The results indicate that aqueous extracts of RM contain high concentrations of zinc (Zn) compared with wood mulches (WM), and its concentration increased at lower pH and higher temperature. Although methanol extracts of RM displayed high AhR activity, none of the aqueous extracts of RM had significant activity. Hence, while unknown constituents that have significant AhR activity are present in RM, they appear to be not measurably extracted by water under environmental conditions relevant for stormwater (5 < pH < 9, 10 < T < 40°C). Our results suggests that organic constituents in water extracts of RM which have AhR activity may not be of significant concern while leaching of Zn from RM appears to be a potentially larger water quality issue for RM. PMID:19450864
Water-resources activities of the U.S. Geological Survey in Kansas; fiscal years 1983 and 1984
Combs, L.J.
1985-01-01
The principal mission of the U.S. Geological Survey, Water Resources Division, in Kansas is to investigate the occurrence, quantity, quality, distribution, and movement of surface and ground waters throughout the State. Primary activities include the systematic collection, analysis, and interpretation of hydrologic data, evaluation of water demands, and water-resources research. Hydrologic investigations are conducted through four basic types of projects: (1) data-collection programs, (2) local or areal investigations, (3) statewide or regional investigations, and (4) research projects. These projects are funded through cooperative agreements with State and local agencies, transfer of funds from other Federal agencies, and direct Federal funds. Fifty water-related projects were ongoing during fiscal years 1983 and 1984 in Kansas. This report describes for each of these water-resources activities the problem that initiated the study, the objectives of the project, and the approach designed to achieve these objectives. Information on data-collection stations in Kansas is presented in maps and tables. A list of the 40 reports approved for publication by the U.S. Geological Survey, its cooperators, or technical and scientific organizations during 1983 and 1984 is provided. (USGS)
Thermal decomposition pathways of hydroxylamine: theoretical investigation on the initial steps.
Wang, Qingsheng; Wei, Chunyang; Pérez, Lisa M; Rogers, William J; Hall, Michael B; Mannan, M Sam
2010-09-02
Hydroxylamine (NH(2)OH) is an unstable compound at room temperature, and it has been involved in two tragic industrial incidents. Although experimental studies have been carried out to study the thermal stability of hydroxylamine, the detailed decomposition mechanism is still in debate. In this work, several density functional and ab initio methods were used in conjunction with several basis sets to investigate the initial thermal decomposition steps of hydroxylamine, including both unimolecular and bimolecular reaction pathways. The theoretical investigation shows that simple bond dissociations and unimolecular reactions are unlikely to occur. The energetically favorable initial step of decomposition pathways was determined as a bimolecular isomerization of hydroxylamine into ammonia oxide with an activation barrier of approximately 25 kcal/mol at the MPW1K level of theory. Because hydroxylamine is available only in aqueous solutions, solvent effects on the initial decomposition pathways were also studied using water cluster methods and the polarizable continuum model (PCM). In water, the activation barrier of the bimolecular isomerization reaction decreases to approximately 16 kcal/mol. The results indicate that the bimolecular isomerization pathway of hydroxylamine is more favorable in aqueous solutions. However, the bimolecular nature of this reaction means that more dilute aqueous solution will be more stable.
NASA Astrophysics Data System (ADS)
Cho, Min Kyung; Park, Hee-Young; Lee, Hye Jin; Kim, Hyoung-Juhn; Lim, Ahyoun; Henkensmeier, Dirk; Yoo, Sung Jong; Kim, Jin Young; Lee, So Young; Park, Hyun S.; Jang, Jong Hyun
2018-04-01
Herein, we investigate the effects of catholyte feed method and anode binder content on the characteristics of anion exchange membrane water electrolysis (AEMWE) to construct a high-performance electrolyzer, revealing that the initial AEMWE performance is significantly improved by pre-feeding 0.5 M aqueous KOH to the cathode. The highest long-term activity during repeated voltage cycling is observed for AEMWE operation in the dry cathode mode, for which the best long-term performance among membrane electrode assemblies (MEAs) featuring polytetrafluoroethylene (PTFE) binder-impregnated (5-20 wt%) anodes is detected for a PTFE content of 20 wt%. MEAs with low PTFE content (5 and 9 wt%) demonstrate high initial performance, rapid performance decay, and significant catalyst loss from the electrode during long-term operation, whereas the MEA with 20 wt% PTFE allows stable water electrolysis for over 1600 voltage cycles. Optimization of cell operating conditions (i.e., operation in dry cathode mode at an optimum anode binder content following an initial solution feed) achieves an enhanced water splitting current density (1.07 A cm-2 at 1.8 V) and stable long-term AEMWE performance (0.01% current density reduction per voltage cycle).
Poly(n-vinylpyrrolidone) hydrogels: 2.Hydrogel composites as wound dressing for tropical environment
NASA Astrophysics Data System (ADS)
Himly, N.; Darwis, D.; Hardiningsih, L.
1993-10-01
POLY(N-VINYLPYRROLIDONE) HYDROGELS: 2. HYDROGEL COMPOSITES AS WOUND DRESSING FOR TROPICAL ENVIRONMENT. The effects of irradiation on hydration and other properties of poly(vinylpyrrolidone) (PVP) hydrogel composites have been investigated. The aqueous solution of vinylpyrrolidone (VP) 10 wt % was mixed with several additives such as agar and polyethylen glycol (PEG). The solution was then irradiated with gamma rays from Cobalt-60 source at room temperature. Several parameters such as elongation at break (EB), tensile strength (TS), degree of swelling (DS), water vapor transmission rate (WVTR), equilibrium water content (EWC), microbial growth and penetration test, and water activity (Aw) were analysed at room temperature of 29 ±2°C humidity of 80 ± 10%. Results show that elongation at break of hydrogel membranes with initial composition of VP with agar, VP with agar and PEG were 240 % and 250 % kGy, the equilibrium water content of membranes were 96 to 90%, whereas degree of swelling were 55 to 10. The WVTR of hydrogel membranes with initial composition of VP with agar and PEG was 70 g m -2h -1, while the water activity was 0.9. Such hydrogel membranes exhibits the following properties: They are elastic, transparent, flexible, impermeable for bacteria. They absopt a high capacity of water, attached to healthy skin but not to the wound and they are easy to remove. These properties of the hydrogel membranes allow for applying as a wound dressings in tropical environment.
NASA Astrophysics Data System (ADS)
Arnosti, Carol; Ziervogel, Kai; Yang, Tingting; Teske, Andreas
2016-07-01
Aggregates generated in the laboratory from incubations of seawater and surface-water oil collected in the initial phase of the Deepwater Horizon oil spill resemble the oil-aggregates observed in situ. Here, we investigated the enzyme activities and microbial community composition of laboratory generated oil-aggregates, focusing on the abilities of these communities to degrade polysaccharides, which are major components of marine organic matter and are abundant constituents of exopolymeric substances (EPS) generated by oil-associated bacteria in response to the presence of oil. The patterns of polysaccharide-hydrolyzing enzyme activities in oil aggregates were very different from those in the water surrounding the aggregates after formation, and in the surface water that did not contain the oil. Specific oil aggregate-associated hydrolysis rates were also considerably higher than in the water surrounding the aggregates. The differences in initial hydrolysis profiles, and in evolution of these profiles with time, points to specialized metabolic abilities among the oil-aggregate communities compared to oil-water and ambient water communities. The composition of the oil-aggregate community indicates a multifunctional microbial assemblage containing primary oil-degrading and exopolysaccharide-producing members of the Gammaproteobacteria, and diverse members of the Alphaproteobacteria, Bacteroidetes and Planktomycetales that most likely participate in the breakdown of oil-derived bacterial biopolymers. Formation and aging of oil-aggregates encourages the growth and transformation of microbial communities that are specialized in degradation of petroleum, as well as their secondary degradation products.
NASA Technical Reports Server (NTRS)
Gazda, Daniel B.; Schultz, John R.; Wong, Wing; Algate, Michelle T.; Bryant, Becky; Castro, Victoria A.
2009-01-01
Contingency Water Containers (CWCs) are used to store potable and technical water that is transferred to the International Space Station (ISS) from the Shuttle orbiter vehicles. When CWCs are filled, water from the orbiter galley is passed through an ion exchange/activated carbon cartridge that removes the residual iodine biocide used on Shuttle before silver biocide is added. Removal of iodine and addition of silver is necessary to inhibit microbial growth inside CWCs and maintain compatibility with the water systems in the Russian segment of ISS. As part of nominal water transfer activities, crewmembers collect samples from several CWCs for postflight analysis. Results from the analysis of water transfer samples collected during the docked phases of STS-118/13A.1 and STS-120/10A showed that several of the CWCs contained up to 10(exp 4) CFU/mL of bacteria despite the fact that the silver concentrations in the CWCs were within acceptable limits. The samples contained pure cultures of a single bacteria, a Cupriavidus (formerly Wautersia) species that has been shown to be resistant to metallic biocides. As part of the investigation into the cause and remediation of the bacterial contamination in these CWCs, ground studies were initiated to evaluate the resistance of the Cupriavidus species to the silver biocides used on ISS and to determine the minimum effective concentration for the different forms of silver present in the biocides. The initial findings from those experiments are discussed herein.
Barriers and Solutions to Smart Water Grid Development.
Cheong, So-Min; Choi, Gye-Woon; Lee, Ho-Sun
2016-03-01
This limited review of smart water grid (SWG) development, challenges, and solutions provides an initial assessment of early attempts at operating SWGs. Though the cost and adoption issues are critical, potential benefits of SWGs such as efficient water conservation and distribution sustain the development of SWGs around the world. The review finds that the keys to success are the new regulations concerning data access and ownership to solve problems of security and privacy; consumer literacy to accept and use SWGs; active private sector involvement to coordinate SWG development; government-funded pilot projects and trial centers; and integration with sustainable water management.
Barriers and Solutions to Smart Water Grid Development
NASA Astrophysics Data System (ADS)
Cheong, So-Min; Choi, Gye-Woon; Lee, Ho-Sun
2016-03-01
This limited review of smart water grid (SWG) development, challenges, and solutions provides an initial assessment of early attempts at operating SWGs. Though the cost and adoption issues are critical, potential benefits of SWGs such as efficient water conservation and distribution sustain the development of SWGs around the world. The review finds that the keys to success are the new regulations concerning data access and ownership to solve problems of security and privacy; consumer literacy to accept and use SWGs; active private sector involvement to coordinate SWG development; government-funded pilot projects and trial centers; and integration with sustainable water management.
Draft framework for watershed-based trading
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1996-05-30
Effluent trading is an innovative way for water quality agencies and community stakeholders to develop common-sense, cost-effective solutions for water quality problems in their watersheds. Trading can allow communities to grow and prosper while retaining their commitment to water quality. The bulk of this framework discusses effluent trading in watersheds. Remaining sections discuss transactions that, while not technically fulfilling the definition of `effluent` trade, do involve the exchange of valued water quality or other ecological improvements between partners responding to market initiatives. This document therefore includes activities such as trades within a facility (intra-plant trading) and wetland mitigation banking, effluentmore » trading/watersheds/watershed management/water quality protection/water quality management.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tian, Chengcheng; Bao, Chunhui; Binder, Andrew
We employed poly(4-styrenesulfonic acid) brush-grafted silica particles, synthesized by surface-initiated atom transfer radical polymerization, as a reusable acid catalyst for dehydration of fructose to 5-hydroxymethylfurfural (HMF) in water. Furthermore, the particles exhibited a high activity with the HMF yield of up to 31%, in contrast to 26% from the corresponding free homopolymer catalyst.
NASA Astrophysics Data System (ADS)
Świetlicka, Izabela; Muszyński, Siemowit; Marzec, Agata
2015-04-01
The presented work covers the problem of developing a method of extruded bread classification with the application of artificial neural networks. Extruded flat graham, corn, and rye breads differening in water activity were used. The breads were subjected to the compression test with simultaneous registration of acoustic signal. The amplitude-time records were analyzed both in time and frequency domains. Acoustic emission signal parameters: single energy, counts, amplitude, and duration acoustic emission were determined for the breads in four water activities: initial (0.362 for rye, 0.377 for corn, and 0.371 for graham bread), 0.432, 0.529, and 0.648. For classification and the clustering process, radial basis function, and self-organizing maps (Kohonen network) were used. Artificial neural networks were examined with respect to their ability to classify or to cluster samples according to the bread type, water activity value, and both of them. The best examination results were achieved by the radial basis function network in classification according to water activity (88%), while the self-organizing maps network yielded 81% during bread type clustering.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Farmer, R.W.; Dussert, B.W.; Kovacic, S.L.
Laboratory studies have identified the cause of the pH rise, which occurs during water treatment with activated carbon, as an interaction between the naturally occurring anions and protons in the water and the carbon surface. The interaction can be described as an ion exchange type of phenomenon, in which the carbon surface sorbs the anions and corresponding hydronium ions from the water. These studies have shown that the anion sorption and resulting pH increase is independent of the raw material used for the activated carbon production, e.g. bituminous or subbituminous coal, peat, wood or coconut. Also, the pH excursions occurmore » with virgin, reactivated, and acid washed granular carbons. Current pH control technologies focus on adjustment of the wastewater pH prior to discharge or recycle of the initial effluent water until the pH increase abates. However, improved water pH control options have been realized by altering the carbon surface through controlled oxidation rather than the water chemistry or extended preprocessing at the treatment site.« less
NASA Astrophysics Data System (ADS)
Petrova, Zhaneta; Miteva, Kamelia
2013-04-01
The Power of Water Zh. Petrova, K. Miteva Bio Games, Sofia, Bulgaria (petrova.jani@gmail.com; miteva.kamelia@gmail.com) Lessons "The Power of Water" Due to our belief in the initial creativity of the children and their capacity for discover and perceive logically the world, we consider that the primary and even the pre-school learning have a significant influence in the process of suggesting the idea of respect to the natural forces. These classroom activities include a variety of hand- and self-made simulation models with natural materials and toys which lead the children to easy understanding of what could 'friendly' water do and how powerful, dangerous and not-friendly it could be. During the lessons the children draw their own conclusions of the causes and possible solutions of natural hazards caused by water in each of its forms - avalanches, inundations, floods, the water influence in activation of landslides. The children make on their own some of the models and test them via simulations. In the end they discuss what they have learned in groups.
Chen, Haizhen; Ni, Jinping; Chen, Jing; Xue, Wenwen; Wang, Jinggang; Na, Haining; Zhu, Jin
2015-06-05
Water and four small molecular alcohols are respectively used to activate corn cellulose (CN cellulose) with the aim to improve the dissolvability in DMAc/LiCl. Among all these activated agents, monohydric alcohols are found to produce the optimal effect of activation in the whole process including of activating, dissolving, and electrospinning of CN cellulose. Meanwhile, well distributed fibers with the diameter of 500nm-2μm are fabricated in electrospinning. Understanding the activation effect of monohydric alcohols with water and polyhydric alcohols, the most effective activated agent is ascertained with the characteristics of small molecular size, low viscosity, and single functionality. This work is definitely initiated to understand the critical principle of CN cellulose in dissolving. Accordingly, a feasible methodology is also established to prepare ultrafine cellulose fibers with good morphology in electrospinning. Copyright © 2015 Elsevier Ltd. All rights reserved.
Varanasi, Lakshman; Hosler, Jonathan
2011-01-01
In order to characterize protein structures that control proton uptake, forms of cytochrome c oxidase (CcO) containing a carboxyl or a thiol group in line with the initial, internal waters of the D pathway for proton transfer have been assayed in the presence and absence of subunit III. Subunit III provides approximately half of the protein surrounding the entry region of the D pathway. The mutant N139D-D132N contains a carboxyl group 6Å within the D pathway and lacks the normal, surface-exposed proton acceptor, Asp-132. With subunit III, the steady-state activity of this mutant is slow but once subunit III is removed its activity is the same as wild-type CcO lacking subunit III (∼1800 H+ s-1). Thus, a carboxyl group ∼25% within the pathway enhances proton uptake even though the carboxyl has no direct contact with bulk solvent. Protons from solvent apparently move to internal Asp-139 through a short file of waters, normally blocked by subunit III. Cysteine-139 also supports rapid steady-state proton uptake, demonstrating that an anion other than a carboxyl can attract and transfer protons into the D pathway. When both Asp-132 and Asp/Cys-139 are present, the removal of subunit III increases CcO activity to rates greater than that of normal CcO due to simultaneous proton uptake by two initial acceptors. The results show how the environment of the initial proton acceptor for the D pathway in these CcO forms dictates the pH range of CcO activity, with implications for the function of Asp-132, the normal proton acceptor. PMID:21344856
Miranda, Ronald-Alexander; Finocchio, Elisabetta; Llorca, Jordi; Medina, Francisco; Ramis, Gianguido; Sueiras, Jesús E; Segarra, Anna M
2013-10-07
PLLs were synthesized by the ring-opening polycondensation (ROP) method using α-L-leucine N-carboxyanhydride (NCA) and initialized by triethylamine (Et3N), water or rehydrated hydrotalcite (HTrus). The role of temperature, different initiators and water in ROP was further investigated. In general, the initiators used in the polymerization reaction lead to PLL alpha-helical chains containing 5-40 monomers with NCA endgroups via a monomer-activated mechanism. However, the water has a twofold effect on ROP, as both a nucleophile and a base, which involves competition between two different types of initiating mechanisms (nucleophilic attack or deprotonation of the NCA monomer) in the polymerization reaction. This competition provides as a main product NCA endgroups with an alpha-helical structure and leads to the formation of the PLL cyclic-chains and beta-sheet structures which reduce the polymer Mw and the PD of the polypeptide. Furthermore, the water can hydrolyze the NCA endgroups resulting in PLL alpha-helical chains that contain living groups as the main product. On the other hand, the HTrus presents a double role: as both an initiator and a support. The polymers synthesized in the presence of HTrus presented a HT-carboxylate endgroup. The PLLs immobilized in HTrus through an anion-exchange method performed for just 30 minutes presented the PLL immobilized in the interlayer space of the HTrus. The PLL chains of the immobilized counterpart are stabilized by H-bonding with the M-OH of the HT structure. All the polypeptides and biohybrid materials synthesized have been characterized using different techniques (EA, ICP, XRD, Raman, MALDI-TOF, ESI-TOF, FT-IR at increasing temperatures, TG/DT analyses and TEM).
Research on Coupling Method of Watershed Initial Water Rights Allocation in Daling River
NASA Astrophysics Data System (ADS)
Liu, J.; Fengping, W.
2016-12-01
Water scarcity is now a common occurrence in many countries. The situation of watershed initial water rights allocation has caused many benefit conflicts among regions and regional water sectors of domestic and ecology environment and industries in China. This study aims to investigate the method of watershed initial water rights allocation in the perspective of coupling in Daling River Watershed taking provincial initial water rights and watershed-level governmental reserved water as objects. First of all, regarding the allocation subsystem of initial water rights among provinces, this research calculates initial water rights of different provinces by establishing the coupling model of water quantity and quality on the principle of "rewarding efficiency and penalizing inefficiency" based on the two control objectives of water quantity and quality. Secondly, regarding the allocation subsystem of watershed-level governmental reserved water rights, the study forecasts the demand of watershed-level governmental reserved water rights by the combination of case-based reasoning and water supply quotas. Then, the bilaterally coupled allocation model on water supply and demand is designed after supply analysis to get watershed-level governmental reserved water rights. The results of research method applied to Daling River Watershed reveal the recommended scheme of watershed initial water rights allocation based on coordinated degree criterion. It's found that the feasibility of the iteration coupling model and put forward related policies and suggestions. This study owns the advantages of complying with watershed initial water rights allocation mechanism and meeting the control requirements of water quantity, water quality and water utilization efficiency, which help to achieve the effective allocation of water resources.
Trend analysis of a tropical urban river water quality in Malaysia.
Othman, Faridah; M E, Alaa Eldin; Mohamed, Ibrahim
2012-12-01
Rivers play a significant role in providing water resources for human and ecosystem survival and health. Hence, river water quality is an important parameter that must be preserved and monitored. As the state of Selangor and the city of Kuala Lumpur, Malaysia, are undergoing tremendous development, the river is subjected to pollution from point and non-point sources. The water quality of the Klang River basin, one of the most densely populated areas within the region, is significantly degraded due to human activities as well as urbanization. Evaluation of the overall river water quality status is normally represented by a water quality index (WQI), which consists of six parameters, namely dissolved oxygen, biochemical oxygen demand, chemical oxygen demand, suspended solids, ammoniacal nitrogen and pH. The objectives of this study are to assess the water quality status for this tropical, urban river and to establish the WQI trend. Using monthly WQI data from 1997 to 2007, time series were plotted and trend analysis was performed by employing the first-order autocorrelated trend model on the moving average values for every station. The initial and final values of either the moving average or the trend model were used as the estimates of the initial and final WQI at the stations. It was found that Klang River water quality has shown some improvement between 1997 and 2007. Water quality remains good in the upper stream area, which provides vital water sources for water treatment plants in the Klang valley. Meanwhile, the water quality has also improved in other stations. Results of the current study suggest that the present policy on managing river quality in the Klang River has produced encouraging results; the policy should, however, be further improved alongside more vigorous monitoring of pollution discharge from various point sources such as industrial wastewater, municipal sewers, wet markets, sand mining and landfills, as well as non-point sources such as agricultural or urban runoff and commercial activity.
Ozcan, Ahmet; Olmez, Elif Ozkirimli; Alakent, Burak
2013-05-01
In protein tyrosine phosphatase 1B (PTP1B), the flexible WPD loop adopts a closed conformation (WPDclosed ) in the active state of PTP1B, bringing the catalytic Asp181 close to the active site pocket, while WPD loop is in an open conformation (WPDopen ) in the inactive state. Previous studies showed that Asp181 may be protonated at physiological pH, and ordered water molecules exist in the active site. In the current study, molecular dynamics simulations are employed at different Asp181 protonation states and initial positions of active site water molecules, and compared with the existing crystallographic data of PTP1B. In WPDclosed conformation, the active site is found to maintain its conformation only in the protonated state of Asp181 in both free and liganded states, while Asp181 is likely to be deprotonated in WPDopen conformation. When the active site water molecule network that is a part of the free WPDclosed crystal structure is disrupted, intermediate WPD loop conformations, similar to that in the PTPRR crystal structure, are sampled in the MD simulations. In liganded PTP1B, one active site water molecule is found to be important for facilitating the orientation of Cys215 and the phosphate ion, thus may play a role in the reaction. In conclusion, conformational stability of WPD loop, and possibly catalytic activity of PTP1B, is significantly affected by the protonation state of Asp181 and position of active site water molecules, showing that these aspects should be taken into consideration both in MD simulations and inhibitor design. Copyright © 2013 Wiley Periodicals, Inc.
Ozone-initiated disinfection kinetics of Escherichia coli in water.
Zuma, Favourite; Lin, Johnson; Jonnalagadda, Sreekanth B
2009-01-01
The effect of ozonation on the rate of disinfection of Escherichia coli was investigated as a function of ozone concentration, ozonation duration and flow rates. Ozone was generated in situ using Corona discharge method using compressed oxygen stream and depending on the oxygen flux the ozone concentrations ranged from 0.91-4.72 mg/L. The rate of disinfection of all the three microbes followed pseudo-first-order kinetics with respect to the microbe count and first order with respect to ozone concentration. The influence of pH and temperature the aqueous systems on the rate of ozone initiated disinfection of the microbe was investigated. The inactivation was faster at lower pH than at basic pH. Molecular ozone is found more effective in disinfection than hydroxyl radicals. Two reported mechanisms for antimicrobial activity of ozone in water systems from the literature are discussed. Based on the experimental findings a probable rate law and mechanism are proposed. Ozonation of natural waters significantly decreased the BOD levels of the control and microbe contaminated waters.
Global Empowerment of Women in the Water Sector: A Mentoring Program through the Women-Water Nexus
NASA Astrophysics Data System (ADS)
Schifman, L. A.; Craver, V.
2017-12-01
According to a UNESCO report, women are underrepresented as world's researchers. Similarly, NSF recently reported that women hold less than one-fourth of senior faculty positions in academic institutions and research centers. These numbers are more staggering in countries outside of the U.S. For example, at the Jordan University of Science and Technology in the Middle East (Irbid, Jordan), only 4.6% of tenured positions in the faculty of engineering are women, with no female full professor appointments as of 2015. To address these issues, the Women-Water Nexus (WWN), part of the ASCE Environmental and Water Resources Institute, works to develop an international support network for water treatment and resources women scientists and engineers. We mainly focus on educational and professional development activities in order to increase the representation of women in leadership positions in academia, government, and private organizations. Here, we want to present and recruit mentors for our initiative called "Untapping the Power of Women in Water". The program will specifically be designed to support women in participating and preparing for professional international conferences. Any female researchers, scientists and engineers from the U.S., Turkey, Afghanistan, Jordan, and Kazakhstan could apply to be a mentee in the proposed program. While priority will be given to women in early- and mid-career positions as these types of activities are most valuable for promotion, we will support women across all career levels. The mentees will receive training from WWN mentors either through online tools such as webinars, or in-person workshops at the EWRI conference in Minneapolis, MN Jun 4-7, 2018. This initiative is currently under development and is supported in five countries: The United States, Turkey, Afghanistan, Jordan, and Kazakhstan. This program will promote essential skills for women to actively participate in the discussion and decision-making process related to water resources management, which are necessary to ensure sustainable development for the future.
Drogui, Patrick; Daghrir, Rimeh; Simard, Marie-Christine; Sauvageau, Christine; Blais, Jean François
2012-01-01
The occurrence of cyanobacterial toxins (blue-green algae) in drinking water sources is a big concern for human health. Removal of microcystin-LR (MC-LR) from drinking water was evaluated at the laboratory pilot scale using either granular activated carbon (GAC) or powdered activated carbon (PAC) and compared with the treatment using anthracite as filter material. Virgin GAC was more effective at removing MC-LR (initial concentration ranging from 9 to 47 microg L(-1)) to reach the World Health Organization recommended level (1.0 microg L(-1)). When the GAC filter was colonized by bacteria, the filter became less effective at removing MC-LR owing to competitive reactions occurring between protein adsorption (released by bacteria) and MC-LR adsorption. Using PAC, the concentration of MC-LR decreased from 22 to 3 microg L(-1) (removal of 86% of MC-LR) by the addition of 100 mg PAC L(-1).
Moderated, Water-Based, Condensational Particle Growth in a Laminar Flow
Hering, Susanne V.; Spielman, Steven R.; Lewis, Gregory S.
2014-01-01
Presented is a new approach for laminar-flow water condensation that produces saturations above 1.5 while maintaining temperatures of less than 30°C in the majority of the flow and providing an exiting dew point below 15°C. With the original laminar flow water condensation method, the particle activation and growth occurs in a region with warm, wetted walls throughout, which has the side-effect of heating the flow. The “moderated” approach presented here replaces this warm region with a two sections – a short, warm, wet-walled “initiator”, followed by a cool-walled “moderator”. The initiator provides the water vapor that creates the supersaturation, while the moderator provides the time for particle growth. The combined length of the initiator and moderator sections is the same as that of the original, warm-walled growth section. Model results show that this new approach reduces the added heat and water vapor while achieving the same peak supersaturation and similar droplet growth. Experimental measurements confirm the trends predicted by the modeling. PMID:24839342
NASA Astrophysics Data System (ADS)
Oikawa, S.; Takata, H.; Watabe, T.; Misonoo, J.; Kusakabe, M.
2013-07-01
The activities of artificial radionuclides in seawater samples collected off the coast of Miyagi, Fukushima, and Ibaraki Prefectures were measured as part of a monitoring program initiated by the Japanese Ministry of Education, Sports, Science and Technology immediately after the Fukushima Dai-ichi Nuclear Power Plant accident. The spatial and temporal distributions of those activities are summarized herein. The activities of strontium-90, iodine-131, cesium-134 and -137 (i.e. 90Sr, 131I, 134Cs, and 137Cs) derived from the accident were detected in seawater samples taken from areas of the coastal ocean adjacent to the power plant. No 131I was detected in surface waters (≤ 5 m depth) or in intermediate and bottom waters after 30 April 2011. Strontium-90 was found in surface waters collected from a few sampling stations in mid-August 2011 to mid-December 2011. Temporal changes of 90Sr activity in surface waters were evident, although the 90Sr activity at a given time varied widely between sampling stations. The activity of 90Sr in surface waters decreased slowly over time, and by the end of December 2011 had reached background levels recorded before the accident. Radiocesium, 134Cs and 137Cs, was found in seawater samples immediately after the accident. There was a remarkable change in radiocesium activities in surface waters during the first 7 months (March through September 2011) after the accident; the activity reached a maximum in the middle of April and thereafter decreased exponentially with time. Qualitatively, the distribution patterns in surface waters suggested that in early May radiocesium-polluted water was advected northward; some of the water then detached and was transported to the south. Two water cores with high 137Cs activity persisted at least until July 2011. In subsurface waters radiocesium activity was first detected in the beginning of April 2011, and the water masses were characterized by σt (an indicator of density) values of 25.5-26.5. From 9-14 May to 5-16 December 2011, the depths of the water masses increased with time, an indication that deepening of the isopycnal surfaces with time can be an important mechanism for the transport of radiocesium downward in coastal waters. During 4-21 February 2012, the water column became vertically homogeneous, probably because of convective mixing during the winter; the result was nearly constant values of radiocesium activity throughout the water column from the surface to the bottom (~200 m depth) at each station.
Federal-State Cooperative Program in Kansas, seminar proceedings, July 1985
Huntzinger, T.L.
1985-01-01
During the past few years, water-resource management in Kansas has undergone reorientation with the creation of the Kansas Water Authority and the Kansas Water office. New thrusts toward long-term goals based on the Kansas State Water plan demand strong communication and coordination between all water-related agencies within the State. The seminar discussed in this report was an initial step by the Kansas Water Office to assure the continued presence of a technical-coordination process and to provide an opportunity for the U.S. Geological Survey to summarize their technical-informational activities in Kansas for the benefit of State and Federal water agencies with the State. The seminar was held on July 8 and 9, 1985, in Lawrence, Kansas. The agenda included a summary of the data-collection activities and short synopses of projects completed within the past year and those currently underway. The data program discussions described the information obtained at the surface water, groundwater, water quality, and sediment sites in Kansas. Interpretive projects summarized included studies in groundwater modeling, areal hydrologic analysis, regional analysis of floods , low-flow, high-flow, and flow-volume characteristics, water quality of groundwater and lakes, and traveltime and transit-loss analysis. (USGS)
Zhao, Ying; Liu, Dongmei; Tang, Huan; Lu, Jing; Cui, Fuyi
2014-01-01
With the development of nanotechnology, more nanomaterials will enter into water environment system. Studying the existing form of nanomaterials in water environment will help people benefit from the correct use of them and to reduce the harm to human caused by them for some nanomaterials can bring polluting effect. Aggregation is a main behavior for nanoparticle in water environment. NZVI are used widely in many fields resulting in more NZVI in water environment. Molecular dynamics simulations and Materials Studio software are used to investigate the microaggregation behaviors of NZVI particles. Two scenes are involved: (1) particle size of NZVI in each simulation system is the same, but initial distance of two NZVI particles is different; (2) initial distance of two NZVI particles in each simulation system is the same, but particle size of NZVI is different. Atomistic trajectory, NP activity, total energy, and adsorption of H2O are analyzed with MS. The method provides new quantitative insight into the structure, energy, and dynamics of the aggregation behaviors of NZVI particles in water. It is necessary to understand microchange of NPs in water because it can provide theoretical research that is used to reduce polluting effect of NPs on water environment.
Liu, Dongmei; Tang, Huan; Lu, Jing; Cui, Fuyi
2014-01-01
With the development of nanotechnology, more nanomaterials will enter into water environment system. Studying the existing form of nanomaterials in water environment will help people benefit from the correct use of them and to reduce the harm to human caused by them for some nanomaterials can bring polluting effect. Aggregation is a main behavior for nanoparticle in water environment. NZVI are used widely in many fields resulting in more NZVI in water environment. Molecular dynamics simulations and Materials Studio software are used to investigate the microaggregation behaviors of NZVI particles. Two scenes are involved: (1) particle size of NZVI in each simulation system is the same, but initial distance of two NZVI particles is different; (2) initial distance of two NZVI particles in each simulation system is the same, but particle size of NZVI is different. Atomistic trajectory, NP activity, total energy, and adsorption of H2O are analyzed with MS. The method provides new quantitative insight into the structure, energy, and dynamics of the aggregation behaviors of NZVI particles in water. It is necessary to understand microchange of NPs in water because it can provide theoretical research that is used to reduce polluting effect of NPs on water environment. PMID:25250388
Satar, Rukhsana; Husain, Qayyum
2009-03-01
This paper demonstrates the direct immobilization of peroxidase from ammonium sulfate fractionated white radish proteins on an inorganic support, Celite 545. The adsorbed peroxidase was crosslinked by using glutaraldehyde. The activity yield for white radish peroxidase was adsorbed on Celite 545 was 70% and this activity was decreased and remained 60% of the initial activity after crosslinking by glutaraldehyde. The pH and temperature-optima for both soluble and immobilized peroxidase was at pH 5.5 and 40 degrees C. Immobilized peroxidase retained higher stability against heat and water-miscible organic solvents. In the presence of 5.0 mM mercuric chloride, immobilized white radish peroxidase retained 41% of its initial activity while the free enzyme lost 93% activity. Soluble enzyme lost 61% of its initial activity while immobilized peroxidase retained 86% of the original activity when exposed to 0.02 mM sodium azide for 1 h. The K(m) values were 0.056 and 0.07 mM for free and immobilized enzyme, respectively. Immobilized white radish peroxidase exhibited lower V(max) as compared to the soluble enzyme. Immobilized peroxidase preparation showed better storage stability as compared to its soluble counterpart.
Soileau, Suzanna; Miller, Kirk
2013-01-01
The quality of the Nation’s water resources are vital to the health and well-being of both our communities and the natural landscapes we value. The U.S. Geological Survey investigates the occurrence, quantity, quality, distribution, and movement of surface water and groundwater and provides this information to engineers, scientists, managers, educators, and the general public. This information also supplements current (2013) and historical water data provided by the National Water Information System. The U.S. Geological Survey collects and shares data nationwide, but how those data are used is often site specific; this variety of data assists natural-resource managers in addressing unique, local, and regional challenges.
Dynamic pesticide removal with activated carbon fibers.
Martín-Gullón, I; Font, R
2001-02-01
Rapid small-scale minicolumn tests were carried out to simulate the atrazine adsorption in water phase with three pelletized pitch-based activated carbon fibers (ACF) and one commercial granular activated carbon (GAC). Initial atrazine solutions were prepared with pretreated ground water. Minicolumn tests showed that the performance of highly activated carbon fibers (surface area of 1700 m2/g) is around 7 times better than the commercial GAC (with surface area at around 1100 m2/g), whereas carbon fibers with medium activation degree (surface area of 1500 m2/g) had a removal efficiency worse than the commercial carbon. The high removal efficiency of the highly activated ACF is due to the wide-opened microstructure of the material, with an appreciable contribution of the low size mesopores, maintaining at these conditions a fast kinetic adsorption rate rather than a selective adsorbent for micropollutants vs. natural organic matter.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Venkatraman, A.; Walawender, W.P.; Fan, L.T.
The term, activated carbon, is a generic name for a family of carbonaceous materials with well-developed porosities and consequently, large adsorptive capacities. Activated carbons are increasingly being consumed worldwide for environmental applications such as separation of volatiles from bulk gases and purification of water and waste-water streams. The global annual production is estimated to be around 300 million kilograms, with a rate of increase of 7% each year. Activated carbons can be prepared from a variety of raw materials. Approximately, 60% of the activated carbons generated in the United States is produced from coal; 20%, from coconut shells; and themore » remaining 20% from wood and other sources of biomass. The pore structure and properties of activated carbons are influenced by the nature of the starting material and the initial physical and chemical conditioning as well as the process conditions involved in its manufacture. The porous structures of charcoals and activated carbons obtained by the carbonization of kernels have been characterized.« less
NASA Astrophysics Data System (ADS)
Boll, J.; Cosens, B.; Fiedler, F.; Link, T.; Wilson, P.; Harris, C.; Tuller, M.; Johnson, G.; Kennedy, B.
2006-12-01
Recently, an interdisciplinary group of faculty from the University of Idaho was awarded a major internal grant for their project "Water of the West (WoW)" to launch an interdisciplinary Water Resources Graduate Education Program. This Water Resources program will facilitate research and education to influence both the scientific understanding of the resource and how it is managed, and advance the decision-making processes that are the means to address competing societal values. By educating students to integrate environmental sciences, socio-economic, and political issues, the WoW project advances the University's land grant mission to promote economic and social development in the state of Idaho. This will be accomplished through novel experiential interdisciplinary education activities; creation of interdisciplinary research efforts among water resources faculty; and focusing on urgent regional problems with an approach that will involve and provide information to local communities. The Water Resources Program will integrate physical and biological sciences, social science, law, policy and engineering to address problems associated with stewardship of our scarce water resources. As part of the WoW project, faculty will: (1) develop an integrative problem-solving framework; (2) develop activities to broaden WR education; (3) collaborate with the College of Law to offer a concurrent J.D. degree, (4) develop a virtual system of watersheds for teaching and research, and (5) attract graduate students for team-based education. The new program involves 50 faculty from six colleges and thirteen departments across the university. This university-wide initiative is strengthened by collaboration with the Idaho Water Resources Research Institute, and participation from off-campus Centers in Idaho Falls, Boise, Twin Falls, and Coeur d'Alene. We hope this presentation will attract university faculty, water resources professionals, and others for stimulating discussions on interdisciplinary approaches in water resources education.
NASA Technical Reports Server (NTRS)
Bazley, Jesse
2015-01-01
The International Space Station's (ISS) Regenerative Environmental Control and Life Support System (ECLSS) was launched in 2008 to continuously recycle urine and crew sweat into drinking water and oxygen using brand new technologies. This functionality was highly important to the ability of the ISS to transition to the long-term goal of 6-crew operations as well as being critical tests for long-term space habitability. Through the initial activation and long-term operations of these systems, important lessons were learned about the importance of system redundancy and operational workarounds that allow Systems Engineers to maintain functionality with limited on-orbit spares. This presentation will share some of these lessons learned including how to balance water through the different systems, store and use water for use in system failures and creating procedures to operate the systems in ways that they were not initially designed to do.
Mantle helium in ground waters of eastern North America: Time and space constraints on sources
Torgersen, T.; Drenkard, S.; Stute, M.; Schlosser, P.; Shapiro, A.
1995-01-01
Mantle helium in continental environments is generally considered to be the result of active volcanism and/or active extension. The latest episodes of volcanism in northeastern North America are the track of the New England hotspot (95–190 Ma) and the closure of the Iapetus sea (before 300 Ma). Thus, the identification of mantle helium in young ground waters of central New England is counter to the conventional wisdom. On the basis of evaluation of helium evolution in emplaced magmas, we postulate an “aged” mantle source for the excess helium component in ground waters of central New England that is either (1) a local, near-surface–emplaced, gas-rich magma that has retained significant volatiles (e.g., in fluid inclusions) or (2) a deeply emplaced gas-rich magma with high initial 2He/4He (10−5) and helium transport (with dispersion) through the crust over time. This gas-rich initial condition may support the concept of a volatile-enriched mantle wedge and thus explain the increased buoyancy flux of the New England hotspot as it traversed eastern North America, as has been suggested by others.
da Silva, Flávia Vieira; Yamaguchi, Natália Ueda; Lovato, Gilselaine Afonso; da Silva, Fernando Alves; Reis, Miria Hespanhol Miranda; de Amorim, Maria Teresa Pessoa Sousa; Tavares, Célia Regina Granhen; Bergamasco, Rosângela
2012-01-01
This study evaluates the performance of a polymeric microfiltration membrane, as well as its combination with a coconut granular activated carbon (GAC) pretreatment, in a gravitational filtration module, to improve the quality of water destined to human consumption. The proposed membrane and adsorbent were thoroughly characterized using instrumental techniques, such as contact angle, Brunauer-Emmett-Teller) and Fourier transform infrared spectroscopy analyses. The applied processes (membrane and GAC + membrane) were evaluated regarding permeate flux, fouling percentage, pH and removal of Escherichia coli, colour, turbidity and free chlorine. The obtained results for filtrations with and without GAC pretreatment were similar in terms of water quality. GAC pretreatment ensured higher chlorine removals, as well as higher initial permeate fluxes. This system, applying GAC as a pretreatment and a gravitational driven membrane filtration, could be considered as an alternative point-of-use treatment for water destined for human consumption.
NASA Astrophysics Data System (ADS)
Nakagawa, Takashi; Spiegelman, Marc W.
2017-04-01
We investigate the influence of the mantle water content in the early Earth on that in the present mantle using numerical convection simulations that include three processes for redistribution of water: dehydration, partitioning of water into partially molten mantle, and regassing assuming an infinite water reservoir at the surface. These models suggest that the water content of the present mantle is insensitive to that of the early Earth. The initial water stored during planetary formation is regulated up to 1.2 OMs (OM = Ocean Mass; 1.4 ×1021 kg), which is reasonable for early Earth. However, the mantle water content is sensitive to the rheological dependence on the water content and can range from 1.2 to 3 OMs at the present day. To explain the evolution of mantle water content, we computed water fluxes due to subducting plates (regassing), degassing and dehydration. For weakly water dependent viscosity, the net water flux is almost balanced with those three fluxes but, for strongly water dependent viscosity, the regassing dominates the water cycle system because the surface plate activity is more vigorous. The increased convection is due to enhanced lubrication of the plates caused by a weak hydrous crust for strongly water dependent viscosity. The degassing history is insensitive to the initial water content of the early Earth as well as rheological strength. The degassing flux from Earth's surface is calculated to be approximately O (1013) kg /yr, consistent with a coupled model of climate evolution and mantle thermal evolution.
Peeling the astronomical onion.
Rosu-Finsen, Alexander; Marchione, Demian; Salter, Tara L; Stubbing, James W; Brown, Wendy A; McCoustra, Martin R S
2016-11-23
Water ice is the most abundant solid in the Universe. Understanding the formation, structure and multiplicity of physicochemical roles for water ice in the cold, dense interstellar environments in which it is predominantly observed is a crucial quest for astrochemistry as these are regions active in star and planet formation. Intuitively, we would expect the mobility of water molecules deposited or synthesised on dust grain surfaces at temperatures below 50 K to be very limited. This work delves into the thermally-activated mobility of H 2 O molecules on model interstellar grain surfaces. The energy required to initiate this process is studied by reflection-absorption infrared spectroscopy of small quantities of water on amorphous silica and highly oriented pyrolytic graphite surfaces as the surface is annealed. Strongly non-Arrhenius behaviour is observed with an activation energy of 2 kJ mol -1 on the silica surface below 25 K and 0 kJ mol -1 on both surfaces between 25 and 100 K. The astrophysical implication of these results is that on timescales shorter than that estimated for the formation of a complete monolayer of water ice on a grain, aggregation of water ice will result in a non-uniform coating of water, hence leaving bare grain surface exposed. Other molecules can thus be formed or adsorbed on this bare surface.
Cleaning and activation of beryllium-copper electron multiplier dynodes.
NASA Technical Reports Server (NTRS)
Pongratz, M. B.
1972-01-01
Description of a cleaning and activation procedure followed in preparing beryllium-copper dynodes for electron multipliers used in sounding-rocket experiments to detect auroral electrons. The initial degreasing step involved a 5-min bath in trichloroethylene in an ultrasonic cleaner. This was followed by an ultrasonic rinse in methanol and by a two-step acid pickling treatment to remove the oxides. Additional rinsing in water and methanol was followed by activation in a stainless-steel RF induction oven.
NASA Technical Reports Server (NTRS)
Wu, Xiaohua; Diak, George R.; Hayden, Cristopher M.; Young, John A.
1995-01-01
These observing system simulation experiments investigate the assimilation of satellite-observed water vapor and cloud liquid water data in the initialization of a limited-area primitive equations model with the goal of improving short-range precipitation forecasts. The assimilation procedure presented includes two aspects: specification of an initial cloud liquid water vertical distribution and diabatic initialization. The satellite data is simulated for the next generation of polar-orbiting satellite instruments, the Advanced Microwave Sounding Unit (AMSU) and the High-Resolution Infrared Sounder (HIRS), which are scheduled to be launched on the NOAA-K satellite in the mid-1990s. Based on cloud-top height and total column cloud liquid water amounts simulated for satellite data a diagnostic method is used to specify an initial cloud water vertical distribution and to modify the initial moisture distribution in cloudy areas. Using a diabatic initialization procedure, the associated latent heating profiles are directly assimilated into the numerical model. The initial heating is estimated by time averaging the latent heat release from convective and large-scale condensation during the early forecast stage after insertion of satellite-observed temperature, water vapor, and cloud water formation. The assimilation of satellite-observed moisture and cloud water, together withy three-mode diabatic initialization, significantly alleviates the model precipitation spinup problem, especially in the first 3 h of the forecast. Experimental forecasts indicate that the impact of satellite-observed temperature and water vapor profiles and cloud water alone in the initialization procedure shortens the spinup time for precipitation rates by 1-2 h and for regeneration of the areal coverage by 3 h. The diabatic initialization further reduces the precipitation spinup time (compared to adiabatic initialization) by 1 h.
This chapter describes the potential of nanotechnology to provide new solutions to managing and cleaning our contaminated water and soil and improving the performance of conventional technologies used in cleanup efforts. Our initial efforts have been focused on key pollutants of ...
University Research Initiative Program for Combat Readiness
1999-05-01
found in sponge-associated bacteria Micrococcus luteus (Bultel-Ponce et al., 1998). Such compounds have antimicrobial activity. Water contact angles...Guyot, M. 1998. Metabolites from the sponge-associated bacterium Micrococcus luteus. J. Mar. Biotechnol. 6:233-236. 3. Incze, B.I., Sea Technol. 1996, 37
Degradation potentials of dissolved organic carbon (DOC) from thawed permafrost peat
Panneer Selvam, Balathandayuthabani; Lapierre, Jean-François; Guillemette, Francois; Voigt, Carolina; Lamprecht, Richard E.; Biasi, Christina; Christensen, Torben R.; Martikainen, Pertti J.; Berggren, Martin
2017-01-01
Global warming can substantially affect the export of dissolved organic carbon (DOC) from peat-permafrost to aquatic systems. The direct degradability of such peat-derived DOC, however, is poorly constrained because previous permafrost thaw studies have mainly addressed mineral soil catchments or DOC pools that have already been processed in surface waters. We incubated peat cores from a palsa mire to compare an active layer and an experimentally thawed permafrost layer with regard to DOC composition and degradation potentials of pore water DOC. Our results show that DOC from the thawed permafrost layer had high initial degradation potentials compared with DOC from the active layer. In fact, the DOC that showed the highest bio- and photo-degradability, respectively, originated in the thawed permafrost layer. Our study sheds new light on the DOC composition of peat-permafrost directly upon thaw and suggests that past estimates of carbon-dioxide emissions from thawed peat permafrost may be biased as they have overlooked the initial mineralization potential of the exported DOC. PMID:28378792
Mesoscale research activities with the LAMPS model
NASA Technical Reports Server (NTRS)
Kalb, M. W.
1985-01-01
Researchers achieved full implementation of the LAMPS mesoscale model on the Atmospheric Sciences Division computer and derived balanced and real wind initial states for three case studies: March 6, April 24, April 26, 1982. Numerical simulations were performed for three separate studies: (1) a satellite moisture data impact study using Vertical Atmospheric Sounder (VAS) precipitable water as a constraint on model initial state moisture analyses; (2) an evaluation of mesoscale model precipitation simulation accuracy with and without convective parameterization; and (3) the sensitivity of model precipitation to mesoscale detail of moisture and vertical motion in an initial state.
Strategies for ensuring global consistency/comparability of water-quality data
Klein, J.M.
1999-01-01
In the past 20 years the water quality of the United States has improved remarkably-the waters are safer for drinking, swimming, and fishing. However, despite many accomplishments, it is still difficult to answer such basic questions as: 'How clean is the water?' and 'How is it changing over time?' These same questions exist on a global scale as well. In order to focus water-data issues in the United States, a national Intergovernmental Task Force on Monitoring Water Quality (ITFM) was initiated for public and private organizations, whereby key elements involved in data collection, analysis, storage, and management could be made consistent and comparable. The ITFM recommended and its members are implementing a nationwide strategy to improve water-quality monitoring, assessment, and reporting activities. The intent of this paper is to suggest that a voluntary effort be initiated to ensure the comparability and utility of hydrological data on a global basis. Consistent, long-term data sets that are comparable are necessary in order to formulate ideas regarding regional and global trends in water quantity and quality. The author recommends that a voluntary effort similar to the ITFM effort be utilized. The strategy proposed would involve voluntary representation from countries and international organizations (e.g. World Health Organization) involved in drinking-water assessments and/or ambient water-quality monitoring. Voluntary partnerships such as this will improve curability to reduce health risks and achieve a better return on public and private investments in monitoring, environmental protection, and natural resource management, and result in a collaborative process that will save millions of dollars.In this work it is suggested that a voluntary effort be initiated to ensure the comparability and utility of hydrological data on a global basis. The strategy proposed would involve voluntary representation from countries and international organizations involved in drinking-water assessments and/or ambient water-quality monitoring.
Laiolo, Leonardo; Barausse, Alberto; Dubinsky, Zvy; Palmeri, Luca; Goffredo, Stefano; Kamenir, Yury; Al-Najjar, Tariq; Iluz, David
2014-09-15
The northern Gulf of Aqaba is an oligotrophic water body hosting valuable coral reefs. In the Gulf, phytoplankton dynamics are driven by an annual cycle of stratification and mixing. Superimposed on that fairly regular pattern was the establishment of a shallow-water fish-farm initiative that increased gradually until its activity was terminated in June 2008. Nutrient, water temperature, irradiation, phytoplankton data gathered in the area during the years 2007-2009, covering the peak of the fish-farm activity and its cessation, were analyzed by means of statistical analyses and ecological models of phytoplankton dynamics. Two datasets, one from an open water station and one next to the fish farms, were used. Results show that nutrient concentrations and, consequently, phytoplankton abundance and seasonal succession were radically altered by the pollution originating from the fish-farm in the sampling station closer to it, and also that the fish-farm might even have influenced the open water station. Copyright © 2014 Elsevier Ltd. All rights reserved.
Enhanced Oxidation Catalysts for Water Reclamation
NASA Technical Reports Server (NTRS)
Jolly, Clifford D.
1999-01-01
This effort seeks to develop and test high-performance, long operating life, physically stable catalysts for use in spacecraft water reclamation systems. The primary goals are to a) reduce the quantity of expendable water filters used to purify water aboard spacecraft, b) to extend the life of the oxidation catalysts used for eliminating organic contaminants in the water reclamation systems, and c) reduce the weight/volume of the catalytic oxidation systems (e.g. VRA) used. This effort is targeted toward later space station utilization and will consist of developing flight-qualifiable catalysts and long-term ground tests of the catalyst prior to their utilization in flight. Fixed -bed catalytic reactors containing 5% platinum on granular activated carbon have been subjected to long-term dynamic column tests to measure catalyst stability vs throughput. The data generated so far indicate that an order of magnitude improvement can be obtained with the treated catalysts vs the control catalyst, at only a minor loss (approx 10%) in the initial catalytic activity.
Endocrine Activities of Pesticides During Ozonation of Waters.
Westlund, Paul; Isazadeh, Siavash; Therrien, Alexandre; Yargeau, Viviane
2018-01-01
Two yeast-based bioassays were used to assess the endocrine activity potential of transformation products formed during the ozonation of water containing a variety of pesticides (propiconazole, atrazine, 2,4-dichlorophenoxyacetic acid [2,4-D], tebuconazole, climbazole, myclobutanil, irgarol, terbutryn, dicamba, mecoprop and diuron). Ozone experiments were conducted first in reverse osmosis water to isolate the effects of the pesticides and then in synthetic wastewater and wastewater effluent to investigate whether the results translated to more complex matrices. The findings demonstrate the recalcitrant nature of most pesticides during ozonation, with removals below 50%, except for irgarol, terbutryn and climbazole with removals up to 70%. This study is the first one to investigate the removal of the fungicides myclobutanil and tebuconazole by ozonation and is one of the first studies to investigate the androgenic activity of ozonation transformation products of contaminants of emerging concern. These findings also demonstrated that during ozonation the initial anti-androgenic activity was removed while the estrogenic activity remained undetected and the androgenic activity increased to levels up to 60% of the anti-androgenic activity of the DHT control. These results indicate that bioactivity should be considered in the evaluation of treatment performance and risks assessment associated to wastewater discharges.
NASA Astrophysics Data System (ADS)
Lazarovitch, Naftali; Perelman, Adi; Guerra, Helena; Vanderborght, Jan; Pohlmeier, Andreas
2016-04-01
Root water and nutrient uptake are among the most important processes considered in numerical models simulating water content and fluxes in the subsurface, as they control plant growth and production as well as water flow and nutrient transport out of the root zone. Root water uptake may lead to salt accumulation at the root-soil interface, resulting in rhizophere salt concentrations much higher than in the bulk soil. This salt accumulation is caused by soluble salt transport towards the roots by mass flow through the soil, followed by preferential adsorption of specific nutrients by active uptake, thereby excluding most other salts at the root-soil interface or in the root apoplast. The salinity buildup can lead to large osmotic pressure gradients across the roots thereby effectively reducing root water uptake. The initial results from rhizoslides (capillary paper growth system) show that sodium concentration is decreasing with distance from the root, compared with the bulk that remained more stable. When transpiration rate was decreased under high salinity levels, sodium concentration was more homogenous compared with low salinity levels. Additionally, sodium and gadolinium distributions were measured nondestructively around tomato roots using magnetic resonance imaging (MRI). This technique could also observe the root structure and water content around single roots. Results from the MRI confirm the solutes concentration pattern around roots and its relation to their initial concentration. We conclude that local water potentials at the soil-root interface differ from bulk potentials. These relative differences increase with decreasing root density, decreasing initial salt concentration and increasing transpiration rate. Furthermore, since climate may significantly influence plant response to salinity a dynamic climate-coupled salinity reduction functions are critical in while using macroscopic numerical models.
NASA Astrophysics Data System (ADS)
Sjoberg, Y.; Johansson, E.; Rydberg, J.
2017-12-01
In most arctic environments, the snowmelt is the main hydrologic event of the year as a large fraction of annual precipitation rapidly moves through the catchment. Flow can occur on top of the frozen ground surface or through the developing active layer, and flow pathways are critical determinants for biogeochemical transport. We study the linkages between micro topography, active layer thaw, and water partitioning on a hillslope in Greenland during late snowmelt season to explore how seasonal subsurface flow pathways develop. During snowmelt, a parallel surface drainage pattern appears across the slope, consisting of small streams, and water also collects in puddles across the slope. Thaw rates in the active layer were significantly higher (T-test p<0.01) on wet parts of the slope (0.8 cm/day), compared to drier parts of the slope (0.6 cm/day). Analyses of stable water isotopic composition show that snow had the lightest isotopic signatures, but with a large spread of values, while seasonally frozen ground and standing surface water (puddles) were heavier. The stream water became heavier over the two-week sampling period, suggesting an increasing fraction of melted soil water input over time. In contrast, standing surface water (puddles) isotopic composition did not change over time. In boreal catchments, seasonal frost has previously been found to not significantly influence flow pathways during most snowmelt events, and pre-event groundwater make out most of the stream water during snowmelt. Our results from a continuous permafrost environment show that both surface (overland) and subsurface flow pathways in the active layer are active, and that a large fraction of the water moving on the hillslope comes from melted ground ice rather than snow in the late snowmelt season. This suggests a possibility that flow pathways during snowmelt could shift to deeper subsurface flow following degradation of continuous permafrost.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barcikowski, W.; Nobel, P.S.
1984-03-01
Three species of cacti survived an average stem water loss of 81%. Fractional water loss was greater from water-storage tissue than from the chlorenchyma, as documented at the cellular level by determining changes in cell volume and at the tissue level by determining relative water content of chlorenchyma and storage tissues. For Carnegiea gigantea and Ferocactus acanthodes, this differential loss of water resulted from a decrease in the moles of solute per cell for storage tissue; hence, less water was retained at a given osmotic pressure than for the chlorenchyma. Opuntia basilaris lost less water from the chlorenchyma during droughtmore » because of a greater initial osmotic pressure in the chlorenchyma than in the storage tissue. Greater retention of water in the chlorenchyma would result in less disruption of photosynthetic activity in these cacti during drought.« less
NASA Astrophysics Data System (ADS)
Trinh Nguyen, Thuy Ai; Phu Dang, Van; Duy Nguyen, Ngoc; Le, Anh Quoc; Thanh Nguyen, Duc; Hien Nguyen, Quoc
2014-09-01
Porous ceramic candle filters (PCCF) were prepared by sintering silica from rice husk with silver nanoparticles (AgNPs)/zeolite A at about 1050 °C to create bactericidal PCCF/AgNPs for water disinfection. The silver content in PCCF/AgNPs was of 300-350 mg kg-1 determined by inductively coupled plasma-atomic emission spectroscopy (ICP-AES) and the average pore size of PCCF/AgNPs was of 50-70 Å measured by Brunauer-Emmett-Teller (BET) method. The bactericidal activity and silver release of PCCF/AgNPs have been investigated by flow test with water flow rate of 5 L h-1 and initial inoculation of E. coli in inlet water of 106 CFU/100 mL. The volume of filtrated water was collected up to 500 L. Results showed that the contamination of E. coli in filtrated water was <1 CFU/100 mL and the content of silver released from PCCF/AgNPs into filtrated water was <1 μg L-1, it is low, far under the WHO guideline of 100 μg L-1 at maximum for drinking water. Based on the content of silver in PCCF/AgNPs and in filtrated water, it was estimated that one PCCF/AgNPs could be used to filtrate of ˜100 m3 water. Thus, as-prepared PCCF/AgNPs releases low content of silver into water and shows effectively bactericidal activity that is promising to apply as point-of-use water treatment technology for drinking water disinfection.
Environmental Education in a Rural 11-16 Comprehensive School.
ERIC Educational Resources Information Center
Beckett, John
1995-01-01
Describes a four-phase strategy for integrating environmental education into the broad curriculum and community of a high school. Phase 1, Testing the Water, includes organizing displays and planting trees. Phase 2, Consolidating the Initiatives, involves curriculum development and conservation activism. Phase 3, Partial Integration and…
Federal Register 2010, 2011, 2012, 2013, 2014
2010-12-14
... activities anticipated to be addressed and conservation practices to be implemented; 4. The responsibilities... producers to implement approved conservation practices. Producers interested in applying must meet the... producers to implement agreed-to conservation practices in program contracts may not be considered any part...
Precipitation pulses and carbon fluxes in semiarid and arid ecosystems.
Huxman, Travis E; Snyder, Keirith A; Tissue, David; Leffler, A Joshua; Ogle, Kiona; Pockman, William T; Sandquist, Darren R; Potts, Daniel L; Schwinning, Susan
2004-10-01
In the arid and semiarid regions of North America, discrete precipitation pulses are important triggers for biological activity. The timing and magnitude of these pulses may differentially affect the activity of plants and microbes, combining to influence the C balance of desert ecosystems. Here, we evaluate how a "pulse" of water influences physiological activity in plants, soils and ecosystems, and how characteristics, such as precipitation pulse size and frequency are important controllers of biological and physical processes in arid land ecosystems. We show that pulse size regulates C balance by determining the temporal duration of activity for different components of the biota. Microbial respiration responds to very small events, but the relationship between pulse size and duration of activity likely saturates at moderate event sizes. Photosynthetic activity of vascular plants generally increases following relatively larger pulses or a series of small pulses. In this case, the duration of physiological activity is an increasing function of pulse size up to events that are infrequent in these hydroclimatological regions. This differential responsiveness of photosynthesis and respiration results in arid ecosystems acting as immediate C sources to the atmosphere following rainfall, with subsequent periods of C accumulation should pulse size be sufficient to initiate vascular plant activity. Using the average pulse size distributions in the North American deserts, a simple modeling exercise shows that net ecosystem exchange of CO2 is sensitive to changes in the event size distribution representative of wet and dry years. An important regulator of the pulse response is initial soil and canopy conditions and the physical structuring of bare soil and beneath canopy patches on the landscape. Initial condition influences responses to pulses of varying magnitude, while bare soil/beneath canopy patches interact to introduce nonlinearity in the relationship between pulse size and soil water response. Building on this conceptual framework and developing a greater understanding of the complexities of these eco-hydrologic systems may enhance our ability to describe the ecology of desert ecosystems and their sensitivity to global change.
Mullick, Aditi; Neogi, Sudarsan
2018-07-01
Environmental concern associated with the side effects of high fluoride content in ground water and surface water has prompted the researchers to look for an efficient, convenient and easy method. Considering the potential of a good adsorbent, present study reports the synthesis of a composite by impregnating zirconium on powdered activated carbon (AC) using ultrasound as the tool for synthesis and applying it for fluoride adsorption from water. The nature of the composite was determined through characterization by scanning electron microscopy (SEM), energy dispersive Xray (EDX), Xray diffraction (XRD), N 2 adsorption analysis (BET) and Fourier Transform Infrared Spectroscopy (FTIR) analysis. The pH pzc (point of zero charge) of the adsorbent was found to be 5.03; with the optimum pH obtained at 4 for adsorption of strong electronegative fluoride ions. The initial fluoride concentration was varied from 2.5 up to 20 mg.L -1 and the maximum adsorption capacity of 5 mg.g -1 was obtained. A maximum fluoride removal of 94.4% was obtained for an initial concentration of 2.5 mg.L -1 within an equilibrium time of 180 min. The adsorption isotherm followed the Langmuir isotherm model indicating a monolayer adsorption process and the adsorption kinetics followed pseudo second order model. The effects of various coexisting ions (HCO 3 - , NO 3 - , SO 4 2- , Cl - ) commonly present in the water were found to have negligible impact on the process performance. Conducting the adsorption-desorption studies for five consecutive cycles for an initial fluoride concentration of 10 mg.L -1 , the removal efficiency reduced from 86.2 to 32.6%. The ultrasonic method provided an easy route to synthesize the composite in less time and significantly reduced energy consumption by more than 96% compared to the conventional method. Copyright © 2018 Elsevier B.V. All rights reserved.
Dynamic Asphaltene-Stearic Acid Competition at the Oil-Water Interface.
Sauerer, Bastian; Stukan, Mikhail; Buiting, Jan; Abdallah, Wael; Andersen, Simon
2018-05-15
Interfacial tension (IFT) is one of the major parameters which govern the fluid flow in oil production and recovery. This paper investigates the interfacial activity of different natural surfactants found in crude oil. The main objective was to better understand the competition between carboxylic acids and asphaltenes on toluene/water interfaces. Dynamic IFT was measured for water-in-oil pendant drops contrary to most studies using oil-in-water drops. Stearic acid (SA) was used as model compound for surface-active carboxylic acids in crude. The influence of concentration of these species on dynamic IFT between model oil and deionized water was examined. The acid concentrations were of realistic values (total acid number 0.1 to 2 mg KOH/g oil) while asphaltene concentrations were low and set between 10 and 100 ppm. In mixtures, the initial surface pressure was entirely determined by the SA content while asphaltenes showed a slow initial diffusion to the interface followed by increased adsorption at longer times. The final surface pressure was higher for asphaltenes compared to SA, but for binaries, the final surface pressure was always lower than the sum of the individuals. At high SA concentration, surface pressures of mixtures were dominated entirely by the SA, although, Langmuir isotherm analysis shows that asphaltenes bind to the interface 200-250 times stronger than SA. The surface area/molecule for both SA and asphaltenes were found to be larger than the values reported in recent literature. Various approaches to dynamic surface adsorption were tested, showing that apparent diffusivity of asphaltenes is very low, in agreement with other works. Hence, the adsorption is apparently under barrier control. A possible hypothesis is that at the initial phase of the experiment and at lower concentration of asphaltenes, the interface is occupied by stearic acid molecules forming a dense layer of hydrocarbon chains that may repel the asphaltenes.
A brief overview on radon measurements in drinking water.
Jobbágy, Viktor; Altzitzoglou, Timotheos; Malo, Petya; Tanner, Vesa; Hult, Mikael
2017-07-01
The aim of this paper is to present information about currently used standard and routine methods for radon analysis in drinking waters. An overview is given about the current situation and the performance of different measurement methods based on literature data. The following parameters are compared and discussed: initial sample volume and sample preparation, detection systems, minimum detectable activity, counting efficiency, interferences, measurement uncertainty, sample capacity and overall turnaround time. Moreover, the parametric levels for radon in drinking water from the different legislations and directives/guidelines on radon are presented. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
Development of a preprototype hyperfiltration wash water recovery subsystem
NASA Technical Reports Server (NTRS)
1981-01-01
The use of hyperfiltration as a mode of reclamation of waste water on board an extended mission spacecraft was investigated. Two basic approaches are considered with respect to hyperfiltration of wash water recovery. The initial approach involves the use of a hollow fiber permeator and a tubular module, operating at ambient temperature. In this system, relatively large doses of biocides are used to control microbial activity. Since biocides require a long contact time, and many have adverse dematological effects as well as many interact with membrane material, a second approach is considered which involves operating at pasturization temperature.
NASA Astrophysics Data System (ADS)
Martz, L.
2004-05-01
The Water Resources Applications Project (WRAP) has been developed within the Global Energy and Water Cycle Experiment (GEWEX) to facilitate the testing of GEWEX products and their transfer to operational water managers. The WRAP activity builds upon projects within the GEWEX Continental Scale Experiments (CSEs), and facilitates dialogue between these CSEs and their local water management communities regarding their information needs and opportunities for GEWEX products to meet those needs. Participating Continental Scale Experiments are located in the United States, the Mackenzie River Basin in Canada, the Amazon River Basin in Brazil, the Baltic Sea drainage area, eastern Asia and the Murray-Darling Basin in Australia. In addition, the development of WRAP is facilitating the transfer of techniques and demonstration projects to other areas through collaboration with IAHS, UNESCO/WMO HELP, WMO Hydrology and WWAP. The initiation of CEOP presents a significant new opportunity for collaborations to support the application of global hydro-climatological scientific data and techniques to water resource management. Some important scientific and operational issues identified by water resource management professionals in earlier workshops will be reviewed, some scientific initiatives needed to address these issues will be presented, and some case study examples of the application of GEWEX knowledge to water resource problems will be presented. Against this background, the unique opportunities that CEOP provides to improve our use and management of water resources globally will be discussed.
Impact of Water Recovery from Wastes on the Lunar Surface Mission Water Balance
NASA Technical Reports Server (NTRS)
Fisher, John W.; Hogan, John Andrew; Wignarajah, Kanapathipi; Pace, Gregory S.
2010-01-01
Future extended lunar surface missions will require extensive recovery of resources to reduce mission costs and enable self-sufficiency. Water is of particular importance due to its potential use for human consumption and hygiene, general cleaning, clothes washing, radiation shielding, cooling for extravehicular activity suits, and oxygen and hydrogen production. Various water sources are inherently present or are generated in lunar surface missions, and subject to recovery. They include: initial water stores, water contained in food, human and other solid wastes, wastewaters and associated brines, ISRU water, and scavenging from residual propellant in landers. This paper presents the results of an analysis of the contribution of water recovery from life support wastes on the overall water balance for lunar surface missions. Water in human wastes, metabolic activity and survival needs are well characterized and dependable figures are available. A detailed life support waste model was developed that summarizes the composition of life support wastes and their water content. Waste processing technologies were reviewed for their potential to recover that water. The recoverable water in waste is a significant contribution to the overall water balance. The value of this contribution is discussed in the context of the other major sources and loses of water. Combined with other analyses these results provide guidance for research and technology development and down-selection.
NASA Astrophysics Data System (ADS)
Oikawa, S.; Takata, H.; Watabe, T.; Misonoo, J.; Kusakabe, M.
2013-03-01
The activities of artificial radionuclides in seawater samples collected off the coast of Miyagi, Fukushima, and Ibaraki Prefectures were measured as part of a monitoring program initiated by the Japanese government Ministry of Education, Sports, Science and Technology immediately after the Fukushima Dai-ichi nuclear power plant accident. The spatial and temporal distributions of those activities are summarized herein. The activities of strontium-90, iodine-131, cesium-134 and -137 (i.e. 90Sr, 131I, 134Cs, and 137Cs) derived from the accident were detected in seawater samples taken from areas of the coastal ocean adjacent to the power plant. No 131I was detected in surface waters (≤ 5 m depth) or in intermediate and bottom waters after 30 April 2011. Strontium-90 was found in surface waters collected from a few sampling stations in mid-August 2011 to mid-December 2011. Temporal changes of 90Sr activity in surface waters were evident, although the 90Sr activity at a given time varied widely between sampling stations. The activity of 90Sr in surface waters decreased slowly over time, and by the end of December 2011 had reached background levels recorded before the accident. Radiocesium, 134Cs and 137Cs, was found in seawater samples immediately after the accident. There was a remarkable change in 137Cs activities in surface waters during the first 7 months (March through September 2011) after the accident; the activity reached a maximum in the middle of April and thereafter decreased exponentially with time. Qualitatively, the distribution patterns in surface waters suggested that in early May 137Cs-polluted water was advected northward; some of the water then detached and was transported to the south. Two cores of the water with high 137Cs activity persisted at least until July 2011. In subsurface waters 137Cs activity was first detected in the beginning of April 2011, and the water masses were characterized by σt (an indicator of density) values of 25.5-26.5. From 9-14 May to 5-16 December 2011, the depths of the water masses increased with time, an indication that deepening of the isopycnals with time can be an important mechanism for the transport of 137Cs downward in coastal waters. During 4-21 February 2012, the water column became vertically homogeneous, probably because of convective mixing during the winter, the result being nearly constant values of 137Cs activity throughout the water column from the surface to the bottom (~200 m depth) at each station.
Water Science and Technology Board annual report 1987
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1988-01-01
In 1982, the National Research Council chose to recognize the importance of water resource issues by establishing the Water Science and Technology Board (WSTB). During the five years since its first meeting in November 1982, the WSTB has grown and matured. The WSTB has met 14 times to provide guidance and plan activities. Under the WSTB's direction, committees of experts have conducted approximately 30 studies on a broad array of topics, from dam safety to irrigation-induced water quality problems to ground water protection strategies. Studies have ranged in scope from the oversight of specific agency projects and programs to broadermore » scientific reviews, such as a disciplinary assessment of the hydrologic sciences initiated in 1987. In all cases, studies have the general theme of ultimately improving the scientific and technological bases of programs of water management and environmental quality. This fifth annual report of the WSTB summarizes the Board's accomplishments during 1987, its current activities, and its plans for the future. The report also includes information on Board and committee memberships, program organizations, and the reports produced. The report should provide the reader with a basic understanding of the WSTB's interests, achievements, and capabilities. The WSTB welcomes inquiries and suggestions concerning its activities and will provide more detailed information on any aspects of its work to those interested.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koehler, J.; Sylte, W.W.
1997-12-31
The deposition of atmospheric polyaromatic hydrocarbons (PAHs) into San Diego Bay was evaluated at an initial study level. This study was part of an overall initial estimate of PAH waste loading to San Diego Bay from all environmental pathways. The study of air pollutant deposition to water bodies has gained increased attention both as a component of Total Maximum Daily Load (TMDL) determinations required under the Clean Water Act and pursuant to federal funding authorized by the 1990 Clean Air Act Amendments to study the atmospheric deposition of hazardous air pollutants to the Great Waters, which includes coastal waters. Tomore » date, studies under the Clean Air Act have included the Great Lakes, Chesapeake Bay, Lake Champlain, and Delaware Bay. Given the limited resources of this initial study for San Diego Bay, the focus was on maximizing the use of existing data and information. The approach developed included the statistical evaluation of measured atmospheric PAH concentrations in the San Diego area, the extrapolation of EPA study results of atmospheric PAH concentrations above Lake Michigan to supplement the San Diego data, the estimation of dry and wet deposition with published calculation methods considering local wind and rainfall data, and the comparison of resulting PAH deposition estimates for San Diego Bay with estimated PAH emissions from ship and commercial boat activity in the San Diego area. The resulting PAH deposition and ship emission estimates were within the same order of magnitude. Since a significant contributor to the atmospheric deposition of PAHs to the Bay is expected to be from shipping traffic, this result provides a check on the order of magnitude on the PAH deposition estimate. Also, when compared against initial estimates of PAH loading to San Diego Bay from other environmental pathways, the atmospheric deposition pathway appears to be a significant contributor.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
LaFreniere, L. M.; Environmental Science Division
This document summarizes the performance of the groundwater and surface water restoration systems installed by the Commodity Credit Corporation of the U.S. Department of Agriculture (CCC/USDA) at the former CCC/USDA grain storage facility in Murdock, Nebraska, during the initial period of systems operation, from June 2005 through December 2006. In the Murdock project, several innovative technologies are being used to remove carbon tetrachloride contamination from a shallow aquifer underlying the town, as well as from water naturally discharged to the surface at the headwaters of a small creek (a tributary to Pawnee Creek) north of the town (Figure 1.1). Themore » restoration activities at Murdock are being conducted by the CCC/USDA as a non-time-critical removal action under the regulatory authority and supervision of the U.S. Environmental Protection Agency (EPA), Region VII. Argonne National Laboratory assisted the CCC/USDA by providing technical oversight for the restoration effort and facilities during this review period. Included in this report are the results of all sampling and monitoring activities performed in accord with the EPA-approved Monitoring Plan for this site (Argonne 2006), as well as additional investigative activities conducted during the review period. This document presents overviews of the treatment facilities (Section 2) and site operations and activities (Section 3), then describes the groundwater, surface water, vegetation, and atmospheric monitoring results (Section 4) and modifications and costs during the review period (Section 5). Section 6 summarizes the initial period of operation.« less
Ahmad, Ayyaz; Gu, Xiaogang; Li, Li; Lv, Shuguang; Xu, Yisheng; Guo, Xuhong
2015-11-01
Graphene oxide (GO) and nano-sized zero-valent iron-reduced graphene oxide (nZVI-rGO) composite were prepared. The GO and nZVI-rGO composite were characterized by transmission electron microscopy (TEM), Fourier transform infrared (FTIR), energy-dispersive spectroscopy (EDS), and Raman spectroscopy. The size of nZVI was about 6 nm as observed by TEM. The system of nZVI-rGO and persulfate (PS) was used for the degradation of trichloroethylene (TCE) in water, and showed 26.5% more efficiency as compared to nZVI/PS system. The different parameters were studied to determine the efficiency of nZVI-rGO to activate the PS system for the TCE degradation. By increasing the PS amount, TCE removal was also improved while no obvious effect was observed by varying the catalyst loading. Degradation was decreased as the TCE initial concentration was increased from 20 to 100 mg/L. Moreover, when initial solution pH was increased, efficiency deteriorated to 80%. Bicarbonate showed more negative effect on TCE removal among the solution matrix. To better understand the effects of radical species in the system, the scavenger tests were performed. The •SO4(-) and •O2(-) were predominant species responsible for TCE removal. The nZVI-rGO-activated PS process shows potential applications in remediation of highly toxic organic contaminants such as TCE present in the groundwater. Graphical abstract Persulfate activated by reduced graphene oxide and nano-sized zero-valent iron composite can be used for efficient degradation of trichloroethylene (TCE) in water.
33 CFR 385.24 - Project Management Plans.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Project Management Plans. 385.24... Processes § 385.24 Project Management Plans. (a) General requirements. (1) The Corps of Engineers and the... agencies, develop a Project Management Plan prior to initiating activities on a project. (2) The Project...
33 CFR 385.16 - Design agreements.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Design agreements. 385.16 Section... Processes § 385.16 Design agreements. (a) The Corps of Engineers shall execute a design agreement with each non-Federal sponsor for the projects of the Plan prior to initiation of design activities with that...
33 CFR 385.24 - Project Management Plans.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 33 Navigation and Navigable Waters 3 2013-07-01 2013-07-01 false Project Management Plans. 385.24... Processes § 385.24 Project Management Plans. (a) General requirements. (1) The Corps of Engineers and the... agencies, develop a Project Management Plan prior to initiating activities on a project. (2) The Project...
33 CFR 385.24 - Project Management Plans.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 33 Navigation and Navigable Waters 3 2012-07-01 2012-07-01 false Project Management Plans. 385.24... Processes § 385.24 Project Management Plans. (a) General requirements. (1) The Corps of Engineers and the... agencies, develop a Project Management Plan prior to initiating activities on a project. (2) The Project...
33 CFR 385.24 - Project Management Plans.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 33 Navigation and Navigable Waters 3 2011-07-01 2011-07-01 false Project Management Plans. 385.24... Processes § 385.24 Project Management Plans. (a) General requirements. (1) The Corps of Engineers and the... agencies, develop a Project Management Plan prior to initiating activities on a project. (2) The Project...
33 CFR 385.24 - Project Management Plans.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 33 Navigation and Navigable Waters 3 2014-07-01 2014-07-01 false Project Management Plans. 385.24... Processes § 385.24 Project Management Plans. (a) General requirements. (1) The Corps of Engineers and the... agencies, develop a Project Management Plan prior to initiating activities on a project. (2) The Project...
FACTORS AFFECTING THE DISSIPATION OF WINDSCALE RADIOACTIVE EFFLUENT IN THE IRISH SEA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shaw, A.E.; Charlesworth, F.R.
1952-02-20
diffusion, and residual currents was orginally assessed by Seligman and Scott in 1948. Further experimental work is described which has enabled a new assessment to be made. This work has included a measurement of the initial dilution of fresh water from the pipe line, and a study of the movement of water as indicated by drift bottles. lt is now envisaged that initial dilution, by a factor of 10, will be followed by eddy diffusion with the coefficients as measured by Seligman, and bulk movement primarily due to the force of the wind. Exceptions will occur when defined calm conditionsmore » exist. The discharged effluent will then tend to float on the surface with an initial dilution factor of only a few hundred and successive tidal releases will pour into the diffusing remains of the previous activity, there being no indications of residual currents. No work has been done to see if this more concentrated effluent can come ashore without further dilution. lt is recommended that, to avoid floating effluent, water should not be discharged during very calm weather. Maximum storage space can be assured by normally pumping effluent to sea at the next high tide after treatment. (auth)« less
Storage as a Metric of Catchment Comparison
McNamara, J.P.; Tetzlaff, D.; Bishop, K.; Soulsby, C.; Seyfried, M.; Peters, N.E.; Aulenbach, Brent T.; Hooper, R.
2011-01-01
The volume of water stored within a catchment, and its partitioning among groundwater, soil moisture, snowpack, vegetation, and surface water are the variables that ultimately characterize the state of the hydrologic system. Accordingly, storage may provide useful metrics for catchment comparison. Unfortunately, measuring and predicting the amount of water present in a catchment is seldom done; tracking the dynamics of these stores is even rarer. Storage moderates fluxes and exerts critical controls on a wide range of hydrologic and biologic functions of a catchment. While understanding runoff generation and other processes by which catchments release water will always be central to hydrologic science, it is equally essential to understand how catchments retain water. We have initiated a catchment comparison exercise to begin assessing the value of viewing catchments from the storage perspective. The exercise is based on existing data from five watersheds, no common experimental design, and no integrated modelling efforts. Rather, storage was estimated independently for each site. This briefing presents some initial results of the exercise, poses questions about the definitions and importance of storage and the storage perspective, and suggests future directions for ongoing activities. ?? 2011 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Murtinho, Felipe; Eakin, Hallie; López-Carr, David; Hayes, Tanya M.
2013-11-01
Despite debate regarding whether, and in what form, communities need external support for adaptation to environmental change, few studies have examined how external funding impacts adaptation decisions in rural resource-dependent communities. In this article, we use quantitative and qualitative methods to assess how different funding sources influence the initiative to adapt to water scarcity in the Colombian Andes. We compare efforts to adapt to water scarcity in 111 rural Andean communities with varied dependence on external funding for water management activities. Findings suggest that despite efforts to use their own internal resources, communities often need external support to finance adaptation strategies. However, not all external financial support positively impacts a community’s abilities to adapt. Results show the importance of community-driven requests for external support. In cases where external support was unsolicited, the results show a decline, or “crowding-out,” in community efforts to adapt. In contrast, in cases where communities initiated the request for external support to fund their own projects, findings show that external intervention is more likely to enhance or “crowds-in” community-driven adaptation.
Simultaneous effect of initial moisture content and airflow rate on biodrying of sewage sludge.
Huiliñir, Cesar; Villegas, Manuel
2015-10-01
The simultaneous effect of initial moisture content (initial Mc) and air-flow rate (AFR) on biodrying performance was evaluated. For the study, a 3(2) factorial design, whose factors were AFR (1, 2 and 3 L/min kg(TS)) and initial Mc (59, 68 and 78% w.b.), was used. Using energy and water mass balance the main routes of water removal, energy use and efficiencies were determined. The results show that initial Mc has a stronger effect on the biodrying than the AFR, affecting the air outlet temperature and improving the water removal, with higher maximum temperatures obtained around 68% and the lowest maximum matrix temperature obtained at initial Mc = 78%.Through the water mass balance it was found that the main mechanism for water removal was the aeration, with higher water removal at intermediate initial Mc (68%) and high AFR (3 L/min kg(TS)). The energy balance indicated that bioreaction is the main energy source for water evaporation, with higher energy produced at intermediate initial Mc (68%). Finally, it was found that low values of initial Mc (59%) improve biodrying efficiency. Copyright © 2015 Elsevier Ltd. All rights reserved.
Access to safe water in rural Artibonite, Haiti 16 months after the onset of the cholera epidemic.
Patrick, Molly; Berendes, David; Murphy, Jennifer; Bertrand, Fabienne; Husain, Farah; Handzel, Thomas
2013-10-01
Haiti has the lowest improved water and sanitation coverage in the Western Hemisphere and is suffering from the largest cholera epidemic on record. In May of 2012, an assessment was conducted in rural areas of the Artibonite Department to describe the type and quality of water sources and determine knowledge, access, and use of household water treatment products to inform future programs. It was conducted after emergency response was scaled back but before longer-term water, sanitation, and hygiene activities were initiated. The household survey and source water quality analysis documented low access to safe water, with only 42.3% of households using an improved drinking water source. One-half (50.9%) of the improved water sources tested positive for Escherichia coli. Of households with water to test, 12.7% had positive chlorine residual. The assessment reinforces the identified need for major investments in safe water and sanitation infrastructure and the importance of household water treatment to improve access to safe water in the near term.
Antisense oligonucleotides suppress cell-volume-induced activation of chloride channels.
Gschwentner, M; Nagl, U O; Wöll, E; Schmarda, A; Ritter, M; Paulmichl, M
1995-08-01
Cell volume regulation is an essential feature of most cells. After swelling in hypotonic media, the simultaneous activation of potassium and chloride channels is believed to be the initial, time-determining step in cell volume regulation. The activation of both pathways is functionally linked and enables the cells to lose ions and water, subsequently leading to cell shrinkage and readjustment of the initial volume. NIH 3T3 fibroblasts efficiently regulate their volume after swelling and bear chloride channels that are activated by decreasing extracellular osmolarity. The chloride current elicited in these cells after swelling is reminiscent of the current found in oocytes expressing an outwardly rectifying chloride current termed ICln. Introduction of antisense oligodeoxynucleotides complementary to the first 30 nucleotides of the coding region of the ICln channel into NIH 3T3 fibroblasts suppresses the activation of the swelling-induced chloride current. The experiments directly demonstrate an unambiguous link between a volume-activated chloride current and a cloned protein involved in chloride transport.
MAPGEN : mixed initiative planning and scheduling for the Mars '03 MER mission
NASA Technical Reports Server (NTRS)
Ai-Chang, Mitchell; Bresina, John; Charest, Len; Jonsson, Ari; Hsu, Jennifer; Kanefsky, Bob; Maldague, Pierre; Morris, Paul; Rajan, Kanna; Yglesias, Jeffrey
2003-01-01
The Mars Exploration Rovers Mars '03 mission is one of NASA's most ambitious science missions to date. The rovers will be launched in the summer of 2003 with each rover carrying instruments to conduct remote and in-situ observation to elucidate the planet's past climate, water activity, and habitability. Science is the primary driver of MER and, as a consequence, making best use of the scientific instruments, within the available resources, is a crucial aspect of the mission. To address this critically, the MER project has selected MAPGEN (Mixed-Initiative Activity Plan GENerator) as an activity planning tool. MAPGEN combines two exiting systems, each with a strong heritage: APGEN the Activity Planning tool from the Jet Propulsion Laboratory and the Europs Planning/Scheduling system from NASA Ames Research Center. This paper discusses the issues arising from combining these tools in the context of this mission.
Rolston, Alec; Jennings, Eleanor; Linnane, Suzanne
2017-01-01
Internationally, water management is moving from the traditional top-down approach to more integrated initiatives focussing on community-led action. With inadequacies in previous engagement initiatives undertaken through the first cycle of River Basin Management Planning for the EU Water Framework Directive (WFD), the Republic of Ireland has only recently embraced this bottom-up approach. The attempted introduction of national charging for domestic water use in 2015 has resulted in significant public disquiet and protest movements against the national government. In April 2015 we undertook a survey of current opinion on water management and community engagement initiatives in the Republic of Ireland and the United Kingdom. A total of 520 survey responses identified that although freshwater bodies are important in peoples' lives, respondents were typically unaware of global initiatives such as Integrated Water Resources Management and Integrated Catchment Management. Overall, 81% of respondents did not feel included in decisions about their water environment despite an overwhelming 95% believing that local communities should have a say in how the water environment is managed. However, only 35.1% of respondents stated that they would be willing to attend local water management engagement initiatives. Rather than supporting individual gain, respondents identified social gains for the local community as avenues for increasing local involvement in water initiatives. In the Republic of Ireland, a water engagement initiative that implements the national framework local delivery model should be developed and implemented. This would 1) contribute to the second round of WFD River Basin Management Planning; 2) facilitate stronger connections between local communities and their water environment; and 3) foster bottom-up initiatives that empower communities regarding local water management issues.
Jennings, Eleanor; Linnane, Suzanne
2017-01-01
Internationally, water management is moving from the traditional top-down approach to more integrated initiatives focussing on community-led action. With inadequacies in previous engagement initiatives undertaken through the first cycle of River Basin Management Planning for the EU Water Framework Directive (WFD), the Republic of Ireland has only recently embraced this bottom-up approach. The attempted introduction of national charging for domestic water use in 2015 has resulted in significant public disquiet and protest movements against the national government. In April 2015 we undertook a survey of current opinion on water management and community engagement initiatives in the Republic of Ireland and the United Kingdom. A total of 520 survey responses identified that although freshwater bodies are important in peoples’ lives, respondents were typically unaware of global initiatives such as Integrated Water Resources Management and Integrated Catchment Management. Overall, 81% of respondents did not feel included in decisions about their water environment despite an overwhelming 95% believing that local communities should have a say in how the water environment is managed. However, only 35.1% of respondents stated that they would be willing to attend local water management engagement initiatives. Rather than supporting individual gain, respondents identified social gains for the local community as avenues for increasing local involvement in water initiatives. In the Republic of Ireland, a water engagement initiative that implements the national framework local delivery model should be developed and implemented. This would 1) contribute to the second round of WFD River Basin Management Planning; 2) facilitate stronger connections between local communities and their water environment; and 3) foster bottom-up initiatives that empower communities regarding local water management issues. PMID:28369136
Water and wastewater related issues in Sri Lanka.
Bandara, N J G J
2003-01-01
The primary problems concerning water resources in Sri Lanka are the depletion and degradation of the resource caused by various anthropogenic activities. Surface inland waters in urban areas are polluted heavily with domestic sewage and industrial effluents, and in rural areas with agricultural runoff. With regard to ground water in certain areas of the dry zone, there is a high fluoride content and in hard, rocky, alluvial areas, there is a high concentration of iron. In urban over-crowded cities, there is biological contamination of ground water. Over-utilization, particularly through tube wells, is another major problem affecting ground water resources in Sri Lanka. Oil spills, dumping of waste from ships, coral and sand mining, and activities are the main causes of marine pollution in the country. Except for pipe-borne water supply, irrigation and hydropower schemes, in general water resources in Sri Lanka are managed very poorly. Regulations are available to control most water related problems but enforcement of these regulations is lacking. The ultimate result of degradation and depletion of water resources is the increasing health hazards. Water-borne and vector-borne diseases are prevalent, particularly amongst urban low-income communities with poor sanitary facilities and drainage. Despite government initiatives and legislation, very slow progress has been made towards combating water pollution. This paper examines the most significant water and wastewater related issues in Sri Lanka and their controlling mechanisms.
Heterogeneous Nucleation of Methane Hydrate in a Water-Decane-Methane Emulsion
NASA Astrophysics Data System (ADS)
Shestakov, V. A.; Kosyakov, V. I.; Manakov, A. Yu.; Stoporev, A. S.; Grachev, E. V.
2018-07-01
Heterogeneous nucleation in disperse systems with metastable disperse phases plays an important role in the mechanisms of environmental and technological processes. The effect the concentration and activity of particles that initiate the formation of a new phase have on nucleation processes in such systems is considered. An approach is proposed that allows construction of a spectrum of particle activity characterizing the features of nucleation in a sample, based on the fraction of crystallized droplets depending on the level of supercooling and the use of Weibull's distribution. The proposed method is used to describe experimental data on the heterogeneous nucleation of methane hydrate in an emulsion in a water-decane-methane system.
Vacuolar biogenesis and aquaporin expression at early germination of broad bean seeds.
Novikova, Galina V; Tournaire-Roux, Colette; Sinkevich, Irina A; Lityagina, Snejana V; Maurel, Christophe; Obroucheva, Natalie
2014-09-01
A key event in seed germination is water uptake-mediated growth initiation in embryonic axes. Vicia faba var. minor (broad bean) seeds were used for studying cell growth, vacuolar biogenesis, expression and function of tonoplast water channel proteins (aquaporins) in embryonic axes during seed imbibition, radicle emergence and growth. Hypocotyl and radicle basal cells showed vacuole restoration from protein storage vacuoles, whereas de novo vacuole formation from provacuoles was observed in cells newly produced by root meristem. cDNA fragments of seven novel aquaporin isoforms including five Tonoplast Intrinsic Proteins (TIP) from three sub-types were amplified by PCR. The expression was probed using q-RT-PCR and when possible with isoform-specific antibodies. Decreased expression of TIP3s was associated to the transformation of protein storage vacuoles to vacuoles, whereas enhanced expression of a TIP2 homologue was closely linked to the fast cell elongation. Water channel functioning checked by inhibitory test with mercuric chloride showed closed water channels prior to growth initiation and active water transport into elongating cells. The data point to a crucial role of tonoplast aquaporins during germination, especially during growth of embryonic axes, due to accelerated water uptake and vacuole enlargement resulting in rapid cell elongation. Copyright © 2014 Elsevier Masson SAS. All rights reserved.
Preparation and assessment of carboxylate polyelectrolyte as draw solute for forward osmosis.
Cui, Hongtao; Zhang, Hanmin; Jiang, Wei; Yang, Fenglin
2018-02-01
Reverse draw solute diffusion not only reduces the water flux in forward osmosis (FO), but also contaminates the feed solution and eventually increases the regeneration cost of draw solution. In the present study, a new polyelectrolyte was synthesized as FO draw solute to address this problem. Acrylic acid and sodium p-styrenesulfonate monomers with hydrophilic group were used to fabricate carboxylate polyelectrolyte through free radical polymerization reaction. Results demonstrated that the osmotic pressure of carboxylate polyelectrolyte solution had a good linear relationship with concentration, and the viscosity of 0.18 g/mL solution was less than 5.4 cP. Active layer facing draw solution produced the initial water flux of 11.77 LMH and active layer facing feed solution yielded the initial water flux of 6.68 LMH when the concentration of draw solution was 0.18 g/mL. The reverse solute flux was around 1 gMH, and specific reverse solute flux of 0.18 g/mL carboxylate polyelectrolyte draw solution was 0.11 g/L which was much lower than that of traditional inorganic salts. Finally, diluted draw solution was regenerated via ultrafiltration, and the recovery efficiency of 94.78% was achieved. So, carboxylate polyelectrolyte can be suitable draw solute for FO.
A new dry hypothesis for the formation of Martian linear gullies
Diniega, Serina; Hansen, Candice J.; McElwaine, Jim N.; Hugenholtz, C.H.; Dundas, Colin M.; McEwen, Alfred S.; Bourke, Mary C.
2013-01-01
Long, narrow grooves found on the slopes of martian sand dunes have been cited as evidence of liquid water via the hypothesis that melt-water initiated debris flows eroded channels and deposited lateral levées. However, this theory has several short-comings for explaining the observed morphology and activity of these linear gullies. We present an alternative hypothesis that is consistent with the observed morphology, location, and current activity: that blocks of CO2 ice break from over-steepened cornices as sublimation processes destabilize the surface in the spring, and these blocks move downslope, carving out levéed grooves of relatively uniform width and forming terminal pits. To test this hypothesis, we describe experiments involving water and CO2 blocks on terrestrial dunes and then compare results with the martian features. Furthermore, we present a theoretical model of the initiation of block motion due to sublimation and use this to quantitatively compare the expected behavior of blocks on the Earth and Mars. The model demonstrates that CO2 blocks can be expected to move via our proposed mechanism on the Earth and Mars, and the experiments show that the motion of these blocks will naturally create the main morphological features of linear gullies seen on Mars.
CFD Lagrangian Modeling of Water Droplet Transport for ISS Hygiene Activity Application
NASA Technical Reports Server (NTRS)
Son, Chang H.
2013-01-01
The goal of this study was to assess the impacts of free water propagation in the Waste and Hygiene Compartment (WHC) installed in Node 3. Free water can be generated inside the WHC in small quantities due to crew hygiene activity. To mitigate potential impact of free water in Node 3 cabin the WHC doorway is enclosed by a waterproof bump-out, Kabin, with openings at the top and bottom. At the overhead side of the rack, there is a screen that prevents large drops of water from exiting. However, as the avionics fan in the WHC causes airflow toward the deck side of the rack, small quantities of free water may exit at the bottom of the Kabin. A Computational Fluid Dynamics (CFD) analysis of Node 3 cabin airflow enable identifying the paths of water transport. To simulate the droplet transport the Lagrangian discrete phase approach was used. Various initial droplet distributions were considered in the study. The droplet diameter was varied in the range of 5-20 mm. The results of the computations showed that most of the drops fall to the rack surface not far from the WHC curtain.
Lafreniere, Katherine C; Deshpande, Sameer; Bjornlund, Henning; Hunter, M Gordon
2013-11-15
Many attempts to implement resource management initiatives in Canadian and international communities have been resisted by stakeholders despite inclusion of their representatives in the decision-making process. Managers' failure to understand stakeholders' perspectives when proposing initiatives is a potential cause of this resistance. Our study uses marketing thought to enhance stakeholder theory by bringing in an audience-centric perspective. We attempt to understand how stakeholders perceive their interests in an organization and consequently decide how to influence that organization. By doing so, we investigate whether a disconnect exists between the perceptions of managers and those of stakeholders. Natural resource managers can utilize this knowledge to garner stakeholder support for the organization and its activities. We support this claim with findings from a water transfer plebiscite held in the Canadian province of Alberta. Sixteen personal interviews employing narrative inquiry were conducted to document voters' (i.e., irrigators') interpretations. Copyright © 2013 Elsevier Ltd. All rights reserved.
Jahangiri, Elham; Reichelt, Senta; Thomas, Isabell; Hausmann, Kristin; Schlosser, Dietmar; Schulze, Agnes
2014-08-08
The versatile oxidase enzyme laccase was immobilized on porous supports such as polymer membranes and cryogels with a view of using such biocatalysts in bioreactors aiming at the degradation of environmental pollutants in wastewater. Besides a large surface area for supporting the biocatalyst, the aforementioned porous systems also offer the possibility for simultaneous filtration applications in wastewater treatment. Herein a "green" water-based, initiator-free, and straightforward route to highly reactive membrane and cryogel-based bioreactors is presented, where laccase was immobilized onto the porous polymer supports using a water-based electron beam-initiated grafting reaction. In a second approach, the laccase redox mediators 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) and syringaldehyde were cross-linked instead of the enzyme via electron irradiation in a frozen aqueous poly(acrylate) mixture in a one pot set-up, yielding a mechanical stable macroporous cryogel with interconnected pores ranging from 10 to 50 µm in size. The membranes as well as the cryogels were characterized regarding their morphology, chemical composition, and catalytic activity. The reactivity towards waste- water pollutants was demonstrated by the degradation of the model compound bisphenol A (BPA). Both membrane- and cryogel-immobilized laccase remained highly active after electron beam irradiation. Apparent specific BPA removal rates were higher for cryogel- than for membrane-immobilized and free laccase, whereas membrane-immobilized laccase was more stable with respect to maintenance of enzymatic activity and prevention of enzyme leakage from the carrier than cryogel-immobilized laccase. Cryogel-immobilized redox mediators remained functional in accelerating the laccase-catalyzed BPA degradation, and especially ABTS was found to act more efficiently in immobilized than in freely dissolved state.
Beachrock morphology and genesis on a paraglacial beach
NASA Astrophysics Data System (ADS)
Cooper, J. A. G.; Green, A. N.; Wiles, E. A.
2017-10-01
Beachrock is present in deep, stable sections of a mixed sand and gravel beach at Whitepark Bay (55o14‧N) on the paraglacial coast of Northern Ireland. The beachrock was revealed following progressive and extreme beach erosion during two particularly stormy winters (2013/14 and 2014/15). It occurs as large (up to 1 m diameter, 0.2 m thick), rounded, disc-shaped concretions in which original beach bedding structures are preserved. Both sand and gravel beach facies are cemented. The cements are similar to those of tropical beachrocks and comprise an initial thin micrite rim, and subsequent grain rims of aragonitic needles. The cementation is attributed to saturation of beach groundwater with calcium carbonate sourced from adjacent Cretaceous chalk outcrop in cliffs behind the beach and dunes. The micrite rims suggest microbial activity in the initial cementation, possibly by scavenging from chalk and skeletal carbonate grains. Subsequent aragonite rims were formed through degassing of CO2 aided by tidal water level fluctuations. Despite similar cementation processes to low latitude beachrocks, only isolated concretions occur rather than extensive shore-parallel outcrops. Conditions necessary for cementation (and ultimately preservation) in this cold temperate and paraglacial setting include long-term beach stability, a carbonate source (in this case, adjacent chalk cliffs and stream sapping) and tidal water level fluctuations. Bacterial activity may initiate calcite precipitation. Following extreme storms and with progressive shoreline retreat prompted by rising sea levels, increased reporting of cold-water beachrocks is to be expected as formerly stable sections of beaches are exposed to wave action.
77 FR 73056 - Initial Test Programs for Water-Cooled Nuclear Power Plants
Federal Register 2010, 2011, 2012, 2013, 2014
2012-12-07
... NUCLEAR REGULATORY COMMISSION [NRC-2012-0293] Initial Test Programs for Water-Cooled Nuclear Power... (DG), DG-1259, ``Initial Test Programs for Water-Cooled Nuclear Power Plants.'' This guide describes the general scope and depth that the staff of the NRC considers acceptable for Initial Test Programs...
Climate change adaptation in regulated water utilities
NASA Astrophysics Data System (ADS)
Vicuna, S.; Melo, O.; Harou, J. J.; Characklis, G. W.; Ricalde, I.
2017-12-01
Concern about climate change impacts on water supply systems has grown in recent years. However, there are still few examples of pro-active interventions (e.g. infrastructure investment or policy changes) meant to address plausible future changes. Deep uncertainty associated with climate impacts, future demands, and regulatory constraints might explain why utility planning in a range of contexts doesn't explicitly consider climate change scenarios and potential adaptive responses. Given the importance of water supplies for economic development and the cost and longevity of many water infrastructure investments, large urban water supply systems could suffer from lack of pro-active climate change adaptation. Water utilities need to balance the potential for high regret stranded assets on the one side, with insufficient supplies leading to potentially severe socio-economic, political and environmental failures on the other, and need to deal with a range of interests and constraints. This work presents initial findings from a project looking at how cities in Chile, the US and the UK are developing regulatory frameworks that incorporate utility planning under uncertainty. Considering for example the city of Santiago, Chile, recent studies have shown that although high scarcity cost scenarios are plausible, pre-emptive investment to guard from possible water supply failures is still remote and not accommodated by current planning practice. A first goal of the project is to compare and contrast regulatory approaches to utility risks considering climate change adaptation measures. Subsequently we plan to develop and propose a custom approach for the city of Santiago based on lessons learned from other contexts. The methodological approach combines institutional assessment of water supply regulatory frameworks with simulation-based decision-making under uncertainty approaches. Here we present initial work comparing the regulatory frameworks in Chile, UK and USA evaluating their ability to incorporate uncertain climate and other changes into long-term infrastructure investment planning. The potential for regulatory and financial adaptive measures is explored in addition to a discussion on evaluating their appropriateness via various modelling-based intervention decision-making approaches.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
Many times the start up of granular activated carbon adsorption systems for the control of organic contaminants in wastewater cm exhibit unacceptable increases in the adscurber effluent pH. Experience shows that the duration of the pH increase ranges from several hours to several days, during which time several hundred bed volumes of water can be discharged with a pH in excess of 9. Laboratory studies have identified the cause of the pH rise as an interaction between the naturally occurring anions and protons ar the water and the carbon surface. The interaction can be described as an ion exchange typemore » of phenomenon, in which the carbon surface sorbs the anions and corresponding hydronium ions from the water. Capacities of the carbon for the anions range from 2 to 9 mg/g GAC, depending upon the water characteristics, the carbon type, the nature of the anion and its influent concentration. These studies have shown de the anion sorption and resulting pH increase is independent of the raw material used for die activated carbon production, e.g. bituminous or sub-bituminous coal, peat, wood or coconut. Also, the pH excursions occur with virgin, reactivated, and acid washed granular carbons. Current pH control technologies focus on adjustment of wastewater pH prior to discharge or recycle of the initial effluent water until the pH increase abates. However, improved water pH control options have been realized by altering the carbon surface rather than the water chemistry. The change to the carbon surface is accomplished through a controlled oxidation process. This process provides a more acidic carbon surface with a reduced affinity for the anions in the waste water. As a result, the pH excursions above 9 are eliminated and the initial effluent from the adsorption system can be discharged without further treatment.« less
Opie, Eugene L.
1949-01-01
During the initial period following immersion of parenchymatous cells of liver, kidney, or pancreas in various fluids immediately after their removal from the body water exchange is like that which occurs when water passes by osmosis through a semipermeable membrane; intake of water is proportional to the square root of the elapsed time and when liver tissue is immersed in solutions of sodium chloride movement of water is approximately proportional to the concentration of the solution. Solutions of sodium chloride isotonic for parenchymatous cells of liver have twice the molar concentration of sodium chloride in the blood serum; for those of the kidney slightly less than twice and for those of the pancreas three times this concentration. When interstitial tissue of thymus, omentum, or pancreas is immersed in water, it undergoes edema-like swelling caused by hydration of the colloids of the fibrous tissue; quantitative water exchange in an initial period accords with water movement by osmosis and is proportional to the square root of the elapsed time. Solutions of sodium chloride isotonic for fibrous tissue of the omentum have slightly greater molar concentration than the sodium chloride in the blood serum and for that of the thymus approximately the same as that of blood serum. Sodium chloride produces changes in fibrous tissue which increase with increasing concentration its power to hold water; the dense fibrous tissue of the corium of the skin and of the wall of the aorta takes up water in both weak an strong solutions of sodium chloride. The initial movement of water induced in tissues in the period immediately following removal from the body is dependent upon forces which are active during life but soon impaired by injury to the tissues. The molar concentration of the contents of secreting cells is greater than that of the blood serum and of the fluid surrounding them. These conditions are favorable to the passage of water from the tissue spaces to the cells. PMID:18107971
Piezoelectrically Initiated Pyrotechnic Igniter
NASA Technical Reports Server (NTRS)
Quince, Asia; Dutton, Maureen; Hicks, Robert; Burnham, Karen
2013-01-01
This innovation consists of a pyrotechnic initiator and piezoelectric initiation system. The device will be capable of being initiated mechanically; resisting initiation by EMF, RF, and EMI (electromagnetic field, radio frequency, and electromagnetic interference, respectively); and initiating in water environments and space environments. Current devices of this nature are initiated by the mechanical action of a firing pin against a primer. Primers historically are prone to failure. These failures are commonly known as misfires or hang-fires. In many cases, the primer shows the dent where the firing pin struck the primer, but the primer failed to fire. In devices such as "T" handles, which are commonly used to initiate the blowout of canopies, loss of function of the device may result in loss of crew. In devices such as flares or smoke generators, failure can result in failure to spot a downed pilot. The piezoelectrically initiated ignition system consists of a pyrotechnic device that plugs into a mechanical system (activator), which on activation, generates a high-voltage spark. The activator, when released, will strike a stack of electrically linked piezo crystals, generating a high-voltage, low-amperage current that is then conducted to the pyro-initiator. Within the initiator, an electrode releases a spark that passes through a pyrotechnic first-fire mixture, causing it to combust. The combustion of the first-fire initiates a primary pyrotechnic or explosive powder. If used in a "T" handle, the primary would ramp the speed of burn up to the speed of sound, generating a shock wave that would cause a high explosive to go "high order." In a flare or smoke generator, the secondary would produce the heat necessary to ignite the pyrotechnic mixture. The piezo activator subsystem is redundant in that a second stack of crystals would be struck at the same time with the same activation force, doubling the probability of a first strike spark generation. If the first activation fails to ignite, the device is capable of multiple attempts. Another unique aspect is in the design of the pyrotechnic device. There is an electrode that aids the generation of a directed spark and the use of a conductive matrix to support the first-fire material so that the spark will penetrate to the second electrode.
Ramirez, Sarah M; Stafford, Randall
2013-05-01
As a result of the rising national obesity rates, public health researchers and advocates have initiated a number of obesity prevention interventions to reduce the rates of overweight and obesity along with their related medical conditions and costs. Policymakers have also initiated a wide range of environmental and policies to support healthy eating and physical activity. Policies such as California's SB1413, which requires that free drinking water be served in school cafeterias during mealtimes, and subsequently the Healthy Hunger-Free Kids Act of 2010, assume an equal access to safe and healthy drinking water. As a result, these policies and their application may unintentionally, exacerbate the inequities already present. Unless we take reasonable steps to address the needs of high-need communities, these one-size-fits-all policy efforts may result in an unequal patchwork of disparities and may have a greater negative impact in high-need poor and rural areas.
Ramirez, Sarah M.; Stafford, Randall S.
2014-01-01
As a result of the rising national obesity rates, public health researchers and advocates have initiated a number of obesity prevention interventions to reduce the rates of overweight and obesity along with their related medical conditions and costs. Policymakers have also initiated a wide range of environmental and policies to support healthy eating and physical activity. Policies such as California’s SB1413, which requires that free drinking water be served in school cafeterias during mealtimes, and subsequently the Healthy Hunger-Free Kids Act of 2010, assume an equal access to safe and healthy drinking water. As a result, these policies and their application may unintentionally, exacerbate the inequities already present. Unless we take reasonable steps to address the needs of high-need communities, these one-size-fits-all policy efforts may result in an unequal patchwork of disparities and may have a greater negative impact in high-need poor and rural areas. PMID:23728054
Zhang, Ruo-Bing; Wu, Yan; Li, Guo-Feng; Wang, Ning-Hui; Li, Jie
2004-01-01
Degradation of the Indigo Carmine (IC) by the bipolar pulsed DBD in water-air mixture was studied. Effects of various parameters such as gas flow rate, solution conductivity, pulse repetitive rate and ect., on color removal efficiency of dying wastewater were investigated. Concentrations of gas phase o3 and aqueous phase H2O2 under various conditions were measured. Experimental results showed that air bubbling facilitates the breakdown of water and promotes generation of chemically active species. Color removal efficiency of IC solution can be greatly improved by the air aeration under various solution conductivities. Decolorization efficiency increases with the increase of the gas flow rate, and decreases with the increase of the initial solution conductivity. A higher pulse repetitive rate and a larger pulse capacitor C(p) are favorable for the decolorization process. Ozone and hydrogen peroxide formed decreases with the increase of initial solution conductivity. In addition, preliminary analysis of the decolorization mechanisms is given.
NASA Astrophysics Data System (ADS)
Shantz, N. C.; Pierce, J. R.; Chang, R. Y.-W.; Vlasenko, A.; Riipinen, I.; Sjostedt, S.; Slowik, J. G.; Wiebe, A.; Liggio, J.; Abbatt, J. P. D.; Leaitch, W. R.
2012-02-01
Evolution of the cloud condensation nucleus (CCN) activity of 36 ± 4 nm diameter anthropogenic aerosol particles at a water supersaturation of 1.0 ± 0.1% is examined for particle nucleation and growth. During the early stages of one event, relatively few of the anthropogenic particles at 36 nm were CCN active and their growth rates by water condensation were delayed relative to ammonium sulphate particles. As the event progressed, the particle size distribution evolved to larger sizes and the relative numbers of particles at 36 nm that were CCN active increased until all the 36 nm particles were activating at the end of the event. Based on the chemistry of larger particles and the results from an aerosol chemical microphysics box model, the increase in CCN activity of the particles was most likely the result of the condensation of sulphate in this case. Despite the increased CCN activity, a delay was observed in the initial growth of these particles into cloud droplets, which persisted even when the aerosol was most CCN active later in the afternoon. Simulations show that the delay in water uptake is explained by a reduction of the mass accommodation coefficient assuming that the composition of the 36 nm particles is the same as the measured composition of the 60-100 nm particles.
Pikkov, L; Kallas, J; Rüütmann, T; Rikmann, E
2001-02-01
Experimental research into the bench-scale production of activated carbon from waste-activated sludge from water purification, sawdust, peat, and their mixtures, by carbonisation and activation was undertaken. The research work was carried out to determine possible methods of production of cheap activated carbon from local raw materials and to use it in water purification technology. Along with the samples produced, several commercial activated carbons (namely RB-1, F 100, CA (adsorbent from military gas masks), BAY (product of the USSR)) were tested to compare adsorption properties in the adsorption of phenols, xylidines, amines, methylene blue and molasses. It has been found that the activated carbon produced from waste biosludge was of higher quality than that produced from either sawdust or peat, and performed similarly to RB-1 and F100 in adsorption tests. It was also determined that the activated carbon produced from biosludge could possibly be used in the post-treatment of wastewater. Residual sludge from the biological treatment of the wastewater from the purification of oil-shale in the chemical processing industry could cover up to 80% of the need for activated carbon. Some of this activated carbon could be used in the post-treatment of the same water, adsorbing polyalcaline phenols from the initial content of 4 mg l-1 to the demanded level of 1 mg l-1.
Chan, Man Nin; Kreidenweis, Sonia M; Chan, Chak K
2008-05-15
The initial phase (solid or aqueous droplet) of aerosol particles prior to activation is among the critical factors in determining their cloud condensation nuclei (CCN) activity. Single-particle levitation in an electrodynamic balance (EDB)was used to measure the phase transitions and hygroscopic properties of aerosol particles of 11 organic compounds with different solubilities (10(-1) to 102 g solute/100 g water). We use these data and other literature data to relate the CCN activity and hygroscopicity of organic compounds with different solubilities. The EDB data show that glyoxylic acid, 4-methylphthalic acid, monosaccharides (fructose and mannose), and disaccharides (maltose and lactose) did not crystallize and existed as metastable droplets at low relative humidity (RH). Hygroscopic data from this work and in the literature support earlier studies showing that the CCN activities of compounds with solubilities down to the order of 10(-1) g solute/100 g water can be predicted by standard Köhler theory with the assumption of complete dissolution of the solute at activation. We also demonstrate the use of evaporation data (or efflorescence data), which provides information on the water contents of metastable solutions below the compound deliquescence RH that can be extrapolated to higher dilutions, to predict the CCN activity of organic particles, particularly for sparingly soluble organic compounds that do not deliquesce at RH achievable in the EDB and in the hygroscopic tandem differential mobility analyzer.
Investigation of water seepage through porous media using X-ray imaging technique
NASA Astrophysics Data System (ADS)
Jung, Sung Yong; Lim, Seungmin; Lee, Sang Joon
2012-07-01
SummaryDynamic movement of wetting front and variation of water contents through three different porous media were investigated using X-ray radiography. Water and natural sand particles were used as liquid and porous media in this study. To minimize the effects of minor X-ray attenuation and uneven illumination, the flat field correction (FFC) was applied before determining the position of wetting front. In addition, the thickness-averaged (in the direction of the X-ray penetration) water content was obtained by employing the Beer-Lambert law. The initial inertia of water droplet influences more strongly on the vertical migration, compared to the horizontal migration. The effect of initial inertia on the horizontal migration is enhanced as sand size decreases. The pattern of water transport is observed to be significantly affected by the initial water contents. As the initial water contents increases, the bulb-type transport pattern is shifted to a trapezoidal shape. With increasing surface temperature, water droplets are easily broken on the sand surface. This consequently decreases the length of the initial inertia region. Different from the wetting front migration, the water contents at the initial stage clearly exhibit a preferential flow along the vertical direction. The water transport becomes nearly uniform in all directions beyond the saturation state.
Addressing the problems of the twenty-first century will require new initiatives that complement traditional regulatory activities. Existing regulations, such as the Clean Air Act and Clean Water Act are important safety nets in the United States for protecting human health and t...
The Open Water Data Initiative: Water information for a thirsty nation
Rea, Alan; Clark, Edward; Adams, Angela; Samuels, William B.
2015-01-01
Initial efforts of the Open Water Data Initiative have focused on three use cases covering flooding, drought, and contaminant spill response, with a goal of identifying critical water data resources and making them more accessible. Significant progress has been made in the past year, although much remains to be done.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-02-08
... of Energy, Water, and Solid Waste Sustainability Initiatives at Fort Bliss, TX AGENCY: Department of... associated with the implementation of the Energy, Water, and Solid Waste Initiatives at Fort Bliss. These initiatives will work to enhance the energy and water security of Fort Bliss, Texas, which is operationally...
Uptake, biotransformation, and elimination of rotenone by bluegills (Lepomis macrochirus )
Gingerich, W.H.; Rach, J.J.
1985-01-01
Yearling bluegills (Lepomis macrochirus) were exposed to sublethal concentrations of [14C]rotenone (5.2 μg/l) for 30 days in a continuous flow exposure system and then transferred to clean, flowing water for an additional 21-day depuration period. Rates of uptake and elimination and profile of the rotenoid metabolites in head, viscera, and carcass components were evaluated by 14C counting and by high performance liquid chromatography. Total [14C]rotenone derived activity was relatively uniform in all body components within 3 days after initial exposure and remained constant during the ensuing 27 days of exposure. Initial uptake rate coefficients were highest in viscera (Ku = 80· h -1) and were nearly identical for head (Ku = 14 · h) and carcass (Ku = 10 · h-1). Analyses of tissue extracts by high performance liquid chromatography confirmed the presence of at least six biotransformation products of rotenone. More than 60% of the activity extracted from viscera was present as a single peak which represented a compound that was extremely soluble in water. Rotenone composed only 0.3% of the extractable activity in viscera taken from fish exposed to rotenone for 30 days; however, rotenone accounted for 15.4% of extractable activity in the head and 20.1% in the carcass components. Rotenolone and 6',7'-dihydro-6'-,7'--dihydroxyrotenolone were tentatively identified as oxidation products in all tissue extracts. Elimination of 14C activity from all body components was biphasic; both phases followed first-order kinetics. The rate of elimination was nearly equal for all body components during the initial phase but was most rapid from viscera during the second phase of elimination. Bioconcentration factors for the head, viscera, and carcass were 165, 3,550, and 125, respectively, when calculated on the basis of total 14C activity but only 25.4, 11, and 26 when calculated as the concentration of parent material.
Experimental response of Salix cuttings to different flow regimes due to human activities
NASA Astrophysics Data System (ADS)
Gorla, Lorenzo; Signarbieux, Constant; Turberg, Pascal; Buttler, Alexandre; Perona, Paolo
2014-05-01
Hydropower production and other human activities change the natural flow regime of rivers, in turn impacting the riparian environment. The main challenge in order to define eco-sustainable flows is to quantify the effects in terms of geomorphology and ecosystem adaptation. We present 2-years controlled experiments to investigate riparian vegetation (Salix Viminalis) response to forced water table changing dynamics, from one water regime to another, in a temperate region (Switzerland). Three synthetic flow regimes have been simulated and applied to three batteries of Salix cuttings growing outdoor within plastic pots, each about 1 meter tall. In 2012 one treatment simulated a minimal flow policy for small run-of-river hydropower plants, which drastically impacts the low and the medium-low components of the hydrograph, but not the extremes. In 2013 we confirmed and completed some of 2012 results, by reproducing typical hydropeaking effects due to dam management and focusing on daily water table variations and offsets. For both the seasons, after an initial period where all pots undergone the same oscillations in order to uniform the plants initial conditions, the experiment started, and the water dynamic was changed. Cuttings transitory response dynamics has been quantified by continuous sap flow and water potential measurements, and by regularly collecting growth parameters, as well as leaves photosynthesis, fluorescence, and pictures of each plant. At the end of the experiment, all cuttings were carefully removed and the both above and below ground biomass analyzed in detail. Particularly, the 3D root structure was obtained by High Resolution Computer Tomography. Our analyses revealed a clear dependence between roots distribution and water regime reflecting the need for adaptation, in agreement with field observations of Pasquale et al. (2012). In particular, an initial strong difference in terms of stress and growth performances was then followed by a later adjustment in the roots system, notably detected from tomographic images. Macroscopic effects in terms of growth parameters at weekly time step have found correspondence at higher time resolution in terms of sap flow and stem pressure, strengthening our results interpretation. REFERENCES - Pasquale et al. "Effects of streamflow variability on the vertical root density distribution of willow cutting experiments." Ecological Engineering 40 (2012): 167-172. - Gorla et al., "Transient response of Salix cuttings to changing water level regimes", WRR, submitted.
Gao, Ji-xian; Wang, Tie-feng; Wang, Jin-fu
2010-05-01
The influence of SO2 dynamic adsorption behaviors using ZL50 activated carbon for flue gas desulphurization and denitrification under different SO2 volume fraction was investigated experimentally, and the kinetic analysis was conducted by kinetic models. With the increase of SO2 volume fraction in flue gas, the SO2 removal ratio and the activity ratio of ZL50 activated carbon decreased, respectively, and SO2 adsorption rate and capacity increased correspondingly. The calculated results indicate that Bangham model has the best prediction effect, the chemisorption processes of SO2 was significantly affected by catalytic oxidative reaction. The adsorption rate constant of Lagergren's pseudo first order model increased with the increase of inlet SO, volume fraction, which indicated that catalytic oxidative reaction of SO2 adsorbed by ZL50 activated carbon may be the rate controlling step in earlier adsorption stage. The Lagergren's and Bangham's initial adsorption rate were deduced and defined, respectively. The Ho's and Elovich's initial adsorption rate were also deduced in this paper. The Bangham's initial adsorption rate values were defined in good agreement with those of experiments. The defined Bangham's adsorptive reaction kinetic model can describe the SO2 dynamic adsorption rate well. The studied results indicated that the SO2 partial order of initial reaction rate was one or adjacent to one, while the O2 and water vapor partial order of initial reaction rate were constants ranging from 0.15-0.20 and 0.45-0.50, respectively.
Organic pollutants removal from 2,4,6-trinitrotoluene (TNT) red water using low cost activated coke.
Zhang, Mohe; Zhao, Quanlin; Ye, Zhengfang
2011-01-01
We treated 2,4,6-trinitrotoluene (TNT) red water from the Chinese explosive industry with activated coke (AC) from lignite. Since the composition of TNT red water was very complicated, chemical oxygen demand (COD) was used as the index for evaluating treatment efficiency. This study focused on sorption kinetics and equilibrium sorption isotherms of AC for the removal of COD from TNT red water, and the changes of water quality before and after adsorption were evaluated using high performance liquid chromatography, UV-Vis spectra and gas chromatography/mass spectroscopy. The results showed that the sorption kinetics of COD removal from TNT red water onto AC fitted well with the pseudo second-order model. The adsorption process was an exothermic and physical process. The sorption isotherm was in good agreement with Redlich-Peterson isotherm. At the conditions of initial pH = 6.28, 20 degrees C and 3 hr of agitation, under 160 g/L AC, 64.8% of COD was removed. The removal efficiencies of 2,4-dinitrotoluene-3-sulfonate (2,4-DNT-3-SO3-) and 2,4-dinitrotoluene-5-sulfonate (2,4-DNT-5-SO3-) were 80.5% and 84.3%, respectively. After adsorption, the acute toxicity of TNT red water reduced greatly, compared with that of unprocessed TNT red water.
NASA Astrophysics Data System (ADS)
Ye, Xuchun; Xu, Chong-Yu; Zhang, Qi
2017-04-01
In recent years, dramatic decline of water level of the Poyang Lake, China's largest freshwater lake, has raised wide concerns about the water security and wetland ecosystem. This remarkable hydrological change coincided with several factors like the initial operation of the Three Gorges Dam (TGD) in 2003, the big change of lake bottom topography due to extensive sand mining in the lake since 2000, and also climate change and other human activities in the Yangtze River basin may add to this complexity. Questions raised to what extent that the lake hydrological changes is caused by climate change and/or human activities. In this study, quantitative assessment was conducted to clarify the magnitude and mechanism of specific influencing factors on recent lake decline (2003-2014), with reference to the period of 1980-1999. The attempts were achieved through the reconstruction of lake water level scenarios by the framework of neural network. Major result indicates that the effect of lake bottom topography change due to sand mining activities has became the dominant factor for the recent lake decline, especially in winter season with low water level. However, the effect of TGD regulation shows strong seasonal features, its effect can accounts for 33%-42% of the average water level decline across the lake during the impoundment period of September-October. In addition, the effect of climate change and other human activities over the Yangtze River basin needs to be highly addressed, which is particularly prominent on reducing lake water level during the summer flood season and autumn recession period. The result also revealed that due to different mechanism, the responses of the lake water level to the three influencing factors are not consistent and show great spatial and temporal differences.
Coda, Rossana; Rizzello, Carlo G.; Nigro, Franco; De Angelis, Maria; Arnault, Philip; Gobbetti, Marco
2008-01-01
The antifungal activity of proteinaceous compounds from different food matrices was investigated. In initial experiments, water-soluble extracts of wheat sourdoughs, cheeses, and vegetables were screened by agar diffusion assays with Penicillium roqueforti DPPMAF1 as the indicator fungus. Water-soluble extracts of sourdough fermented with Lactobacillus brevis AM7 and Phaseolus vulgaris cv. Pinto were selected for further study. The crude water-soluble extracts of L. brevis AM7 sourdough and P. vulgaris cv. Pinto had a MIC of 40 mg of peptide/ml and 30.9 mg of protein/ml, respectively. MICs were markedly lower when chemically synthesized peptides or partially purified protein fractions were used. The water-soluble extract of P. vulgaris cv. Pinto showed inhibition toward a large number of fungal species isolated from bakeries. Phaseolin alpha-type precursor, phaseolin, and erythroagglutinating phytohemagglutinin precursor were identified in the water-soluble extract of P. vulgaris cv. Pinto by nano liquid chromatography-electrospray ionization-tandem mass spectrometry. When the antifungal activity was assayed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, all three proteins were inhibitory. A mixture of eight peptides was identified from the water-soluble extract of sourdough L. brevis AM7, and five of these exhibited inhibitory activity. Bread was made at the pilot plant scale by sourdough fermentation with L. brevis AM7 and addition of the water-soluble extract (27%, vol/wt; 5 mg of protein/ml) of P. vulgaris cv. Pinto. Slices of bread packed in polyethylene bags did not show contamination by fungi until at least 21 days of storage at room temperature, a level of protection comparable to that afforded by 0.3% (wt/wt) calcium propionate. PMID:18849463
Coda, Rossana; Rizzello, Carlo G; Nigro, Franco; De Angelis, Maria; Arnault, Philip; Gobbetti, Marco
2008-12-01
The antifungal activity of proteinaceous compounds from different food matrices was investigated. In initial experiments, water-soluble extracts of wheat sourdoughs, cheeses, and vegetables were screened by agar diffusion assays with Penicillium roqueforti DPPMAF1 as the indicator fungus. Water-soluble extracts of sourdough fermented with Lactobacillus brevis AM7 and Phaseolus vulgaris cv. Pinto were selected for further study. The crude water-soluble extracts of L. brevis AM7 sourdough and P. vulgaris cv. Pinto had a MIC of 40 mg of peptide/ml and 30.9 mg of protein/ml, respectively. MICs were markedly lower when chemically synthesized peptides or partially purified protein fractions were used. The water-soluble extract of P. vulgaris cv. Pinto showed inhibition toward a large number of fungal species isolated from bakeries. Phaseolin alpha-type precursor, phaseolin, and erythroagglutinating phytohemagglutinin precursor were identified in the water-soluble extract of P. vulgaris cv. Pinto by nano liquid chromatography-electrospray ionization-tandem mass spectrometry. When the antifungal activity was assayed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, all three proteins were inhibitory. A mixture of eight peptides was identified from the water-soluble extract of sourdough L. brevis AM7, and five of these exhibited inhibitory activity. Bread was made at the pilot plant scale by sourdough fermentation with L. brevis AM7 and addition of the water-soluble extract (27%, vol/wt; 5 mg of protein/ml) of P. vulgaris cv. Pinto. Slices of bread packed in polyethylene bags did not show contamination by fungi until at least 21 days of storage at room temperature, a level of protection comparable to that afforded by 0.3% (wt/wt) calcium propionate.
Micro enterprise initiative in water sector and poverty reduction .
Jose, T K
2003-01-01
The author reports on the Kerala model for water sector development, broadly adopted as a role model for poverty reduction and build up of social capital. It is a community based organisation with its focus on facilitating a stable income to the poor, and composed of a People's Plan Campaign, the Kudumbashree (women-based poverty eradication programme), with grassroot level neighbourhood groups, federated into an area development society. It promotes savings and credit channelling, capacity building and entrepreneurship development. Activities include awareness raising on water conservation and hygiene, utilization of student power, promotion of small, cheap and low technology projects that people can understand and undertake (small reservoirs, tanks, rainwater harvesting structures, water meters), as well as microenterprises, and training of women-based repair groups.
Overview of Current Hot Water Propulsion Activities at Berlin University of Technology
NASA Astrophysics Data System (ADS)
Kolditz, M.; Pilz, N.; Adirim, H.; Rudloff, P.; Gorsch, M.; Kron, M.
2004-10-01
The AQUARIUS working group has been founded in 1991 on the initiative of students at the Institute of Aeronautics and Astronautics at Berlin University of Technology. It works mainly on the development, manufacturing and testing of hot water propulsion systems. Upon having launched numerous single stage rockets, a two stage hot water rocket (AQUARIUS X-PRO) was developed and launched for the first time in world history. In order to perform thrust experiments for a deeper understanding of the propulsion efficiency and the influence of varying nozzle parameters on exhaust characteristics, a dedicated hot water test facility has been built. For more than five years,ground-based take-off assistance systems for future reusable launch vehicles have been the subject of intense investigation.
Development of paper-based electrochemical sensors for water quality monitoring
NASA Astrophysics Data System (ADS)
Smith, Suzanne; Bezuidenhout, Petroné; Mbanjwa, Mesuli; Zheng, Haitao; Conning, Mariette; Palaniyandy, Nithyadharseni; Ozoemena, Kenneth; Land, Kevin
2016-02-01
We present a method for the development of paper-based electrochemical sensors for detection of heavy metals in water samples. Contaminated water leads to serious health problems and environmental issues. Paper is ideally suited for point-of-care testing, as it is low cost, disposable, and multi-functional. Initial sensor designs were manufactured on paper substrates using combinations of inkjet printing and screen printing technologies using silver and carbon inks. Bismuth onion-like carbon nanoparticle ink was manufactured and used as the active material of the sensor for both commercial and paper-based sensors, which were compared using standard electrochemical analysis techniques. The results highlight the potential of paper-based sensors to be used effectively for rapid water quality monitoring at the point-of-need.
Ge, Shemin; McKenzie, Jeffrey; Voss, Clifford; Wu, Qingbai
2011-01-01
Permafrost dynamics impact hydrologic cycle processes by promoting or impeding groundwater and surface water exchange. Under seasonal and decadal air temperature variations, permafrost temperature changes control the exchanges between groundwater and surface water. A coupled heat transport and groundwater flow model, SUTRA, was modified to simulate groundwater flow and heat transport in the subsurface containing permafrost. The northern central Tibet Plateau was used as an example of model application. Modeling results show that in a yearly cycle, groundwater flow occurs in the active layer from May to October. Maximum groundwater discharge to the surface lags the maximum subsurface temperature by two months. Under an increasing air temperature scenario of 3?C per 100 years, over the initial 40-year period, the active layer thickness can increase by three-fold. Annual groundwater discharge to the surface can experience a similar three-fold increase in the same period. An implication of these modeling results is that with increased warming there will be more groundwater flow in the active layer and therefore increased groundwater discharge to rivers. However, this finding only holds if sufficient upgradient water is available to replenish the increased discharge. Otherwise, there will be an overall lowering of the water table in the recharge portion of the catchment.
Data Assimilation of SMAP Observations and the Impact on Weather Forecasts and Heat Stress
NASA Technical Reports Server (NTRS)
Zavodsky, Bradley; Case, Jonathan; Blankenship, Clay; Crosson, William; White, Khristopher
2014-01-01
SPoRT produces real-time LIS soil moisture products for situational awareness and local numerical weather prediction over CONUS, Mesoamerica, and East Africa ?Currently interact/collaborate with operational partners on evaluation of soil moisture products ?Drought/fire ?Extreme heat ?Convective initiation ?Flood and water borne diseases ?Initial efforts to assimilate L2 soil moisture observations from SMOS (as a precursor for SMAP) have been successful ?Active/passive blended product from SMAP will be assimilated similarly and higher spatial resolution should improve on local-scale processes
NASA Astrophysics Data System (ADS)
Daniels, A.; Kane, E. S.; Lilleskov, E. A.; Kolka, R. K.; Chimner, R. A.; Potvin, L. R.; Romanowicz, K. J.
2012-12-01
Northern wetlands, peatlands in particular, have been shown to store around 30% of the world's soil carbon and thus play a significant role in the carbon cycle of our planet. Carbon accumulation in peatlands is the result of retarded decomposition due to low oxygen availability in these water-logged environments. Changes in our planet's climate cycles are altering peatland hydrology and vegetation communities, resulting in changes in their ability to sequester carbon through increases in peat carbon oxidation and mineralization. To date, the consequences of altered hydrology and changes in vegetation communities, and their interactive effects on carbon storage, are not well understood. We have initiated a research plan that assesses the varying roles that water table variation and vegetation communities have on extracellular enzyme activity and labile carbon availability in porewater from an ombrotrophic bog. We assessed the effects of plant functional group (ericaceous shrubs, sedges, and bryophytes) and water table position on biogeochemical processes. Specifically, we measured dissolved organic carbon (DOC), total dissolved nitrogen (TDN), enzyme activity, organic acids, anions and cations, spectral indexes of aromaticity, and phenolic content in addressing our hypotheses of responses to climate change drivers. Research on these components will evaluate the relative importance of biology, water table, and their interactive affects on the porewater quality of peatlands. We hypothesized that oxygen availability will strongly influence decomposition in these systems but that this response will largely be mediated by changes in plant community and the enzymes associated with root exudates and mycorrhizae. To date, our data confirm vegetation and water table related patterns. Acetate and propionate concentrations in the sedge-dominated communities dropped significantly with depth and drainage, relative to the control and ericaceous treatments, which likely reflects changes in redox potential owing to physiological differences in sedges which contain aerenchyma cell, and a reduction in the products of anaerobic metabolism. DOC increased in the lowered water table treatments in all vegetation community types. Enzymatic activities have changed in response to water table level and vegetation community. While we have not detected significant levels of peroxidase enzymes in porewater, initial results indicate that hydrolase enzyme activities were higher in the sedge-dominated communities with a lowered water table. Through this research, we are hoping to advance our knowledge of the drivers behind peatland biogeochemistry and how ombrotrophic peat systems may respond to climate change influences.
Biswas, Gargi; Dutta, Manjari; Dutta, Susmita; Adhikari, Kalyan
2016-05-01
Low-cost water defluoridation technique is one of the most important issues throughout the world. In the present study, shale, a coal mine waste, is employed as novel and low-cost adsorbent to abate fluoride from simulated solution. Shale samples were collected from Mahabir colliery (MBS) and Sonepur Bazari colliery (SBS) of Raniganj coalfield in West Bengal, India, and used to remove fluoride. To increase the adsorption efficiency, shale samples were heat activated at a higher temperature and samples obtained at 550 °C are denoted as heat-activated Mahabir colliery shale (HAMBS550) and heat-activated Sonepur Bazari colliery shale (HASBS550), respectively. To prove the fluoride adsorption onto different shale samples and ascertain its mechanism, natural shale samples, heat-activated shale samples, and their fluoride-loaded forms were characterized using scanning electron microscopy, energy dispersive X-ray analysis, X-ray diffraction study, and Fourier transform infrared spectroscopy. The effect of different parameters such as pH, adsorbent dose, size of particles, and initial concentration of fluoride was investigated during fluoride removal in a batch contactor. Lower pH shows better adsorption in batch study, but it is acidic in nature and not suitable for direct consumption. However, increase of pH of the solution from 3.2 to 6.8 and 7.2 during fluoride removal process with HAMBS550 and HASBS550, respectively, confirms the applicability of the treated water for domestic purposes. HAMBS550 and HASBS550 show maximum removal of 88.3 and 88.5 %, respectively, at initial fluoride concentration of 10 mg/L, pH 3, and adsorbent dose of 70 g/L.
Responses of neurons to extreme osmomechanical stress.
Wan, X; Harris, J A; Morris, C E
1995-05-01
Neurons are often regarded as fragile cells, easily destroyed by mechanical and osmotic insult. The results presented here demonstrate that this perception needs revision. Using extreme osmotic swelling, we show that molluscan neurons are astonishingly robust. In distilled water, a heterogeneous population of Lymnaea stagnalis CNS neurons swelled to several times their initial volume, yet had a ST50 (survival time for 50% of cells) > 60 min. Cells that were initially bigger survived longer. On return to normal medium, survivors were able, over the next 24 hr, to rearborize. Reversible membrane capacitance changes corresponding to about 0.7 muF/cm2 of apparent surface area accompanied neuronal swelling and shrinking in hypo- and hyperosmotic solutions; reversible changes in cell surface area evidently contributed to the neurons' ability to accommodate hydrostatic pressures then recover. The reversible membrane area/capacitance changes were not dependent on extracellular Ca2+. Neurons were monitored for potassium currents during direct mechanical inflation and during osmotically driven inflation. The latter but not the former stimulus routinely elicited small potassium currents, suggesting that tension increases activate the currents only if additional disruption of the cortex has occurred. Under stress in distilled water, a third of the neurons displayed a quite unexpected behavior: prolonged writhing of peripheral regions of the soma. This suggested that a plasma membrane-linked contractile machinery (presumably actomyosin) might contribute to the neurons' mechano-osmotic robustness by restricting water influx. Consistent with this possibility, 1 mM N-ethyl-maleimide, which inhibits myosin ATPase, decreased the ST50 to 18 min, rendered the survival time independent of initial size, and abolished writhing activity. For neurons, active mechanical resistance of the submembranous cortex, along with the mechanical compliance supplied by insertion or eversion of membrane stores may account for the ability to withstand diverse mechanical stresses. Mechanical robustness such as that displayed here could be an asset during neuronal outgrowth or regeneration.
Atomically monodisperse nickel nanoclusters as highly active electrocatalysts for water oxidation
NASA Astrophysics Data System (ADS)
Joya, Khurram S.; Sinatra, Lutfan; Abdulhalim, Lina G.; Joshi, Chakra P.; Hedhili, M. N.; Bakr, Osman M.; Hussain, Irshad
2016-05-01
Achieving water splitting at low overpotential with high oxygen evolution efficiency and stability is important for realizing solar to chemical energy conversion devices. Herein we report the synthesis, characterization and electrochemical evaluation of highly active nickel nanoclusters (Ni NCs) for water oxidation at low overpotential. These atomically precise and monodisperse Ni NCs are characterized by using UV-visible absorption spectroscopy, single crystal X-ray diffraction and mass spectrometry. The molecular formulae of these Ni NCs are found to be Ni4(PET)8 and Ni6(PET)12 and are highly active electrocatalysts for oxygen evolution without any pre-conditioning. Ni4(PET)8 are slightly better catalysts than Ni6(PET)12 which initiate oxygen evolution at an amazingly low overpotential of ~1.51 V (vs. RHE; η ~ 280 mV). The peak oxygen evolution current density (J) of ~150 mA cm-2 at 2.0 V (vs. RHE) with a Tafel slope of 38 mV dec-1 is observed using Ni4(PET)8. These results are comparable to the state-of-the-art RuO2 electrocatalyst, which is highly expensive and rare compared to Ni-based materials. Sustained oxygen generation for several hours with an applied current density of 20 mA cm-2 demonstrates the long-term stability and activity of these Ni NCs towards electrocatalytic water oxidation. This unique approach provides a facile method to prepare cost-effective, nanoscale and highly efficient electrocatalysts for water oxidation.Achieving water splitting at low overpotential with high oxygen evolution efficiency and stability is important for realizing solar to chemical energy conversion devices. Herein we report the synthesis, characterization and electrochemical evaluation of highly active nickel nanoclusters (Ni NCs) for water oxidation at low overpotential. These atomically precise and monodisperse Ni NCs are characterized by using UV-visible absorption spectroscopy, single crystal X-ray diffraction and mass spectrometry. The molecular formulae of these Ni NCs are found to be Ni4(PET)8 and Ni6(PET)12 and are highly active electrocatalysts for oxygen evolution without any pre-conditioning. Ni4(PET)8 are slightly better catalysts than Ni6(PET)12 which initiate oxygen evolution at an amazingly low overpotential of ~1.51 V (vs. RHE; η ~ 280 mV). The peak oxygen evolution current density (J) of ~150 mA cm-2 at 2.0 V (vs. RHE) with a Tafel slope of 38 mV dec-1 is observed using Ni4(PET)8. These results are comparable to the state-of-the-art RuO2 electrocatalyst, which is highly expensive and rare compared to Ni-based materials. Sustained oxygen generation for several hours with an applied current density of 20 mA cm-2 demonstrates the long-term stability and activity of these Ni NCs towards electrocatalytic water oxidation. This unique approach provides a facile method to prepare cost-effective, nanoscale and highly efficient electrocatalysts for water oxidation. Electronic supplementary information (ESI) available: CCDC 1419754 and 1419731. For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/c6nr00709k
Dynamics of flood water infiltration and ground water recharge in hyperarid desert.
Dahan, Ofer; Tatarsky, Boaz; Enzel, Yehouda; Kulls, Christoph; Seely, Mary; Benito, Gererdo
2008-01-01
A study on flood water infiltration and ground water recharge of a shallow alluvial aquifer was conducted in the hyperarid section of the Kuiseb River, Namibia. The study site was selected to represent a typical desert ephemeral river. An instrumental setup allowed, for the first time, continuous monitoring of infiltration during a flood event through the channel bed and the entire vadose zone. The monitoring system included flexible time domain reflectometry probes that were designed to measure the temporal variation in vadose zone water content and instruments to concurrently measure the levels of flood and ground water. A sequence of five individual floods was monitored during the rainy season in early summer 2006. These newly generated data served to elucidate the dynamics of flood water infiltration. Each flood initiated an infiltration event which was expressed in wetting of the vadose zone followed by a measurable rise in the water table. The data enabled a direct calculation of the infiltration fluxes by various independent methods. The floods varied in their stages, peaks, and initial water contents. However, all floods produced very similar flux rates, suggesting that the recharge rates are less affected by the flood stages but rather controlled by flow duration and available aquifer storage under it. Large floods flood the stream channel terraces and promote the larger transmission losses. These, however, make only a negligible contribution to the recharge of the ground water. It is the flood duration within the active streambed, which may increase with flood magnitude that is important to the recharge process.
VIIRS validation and algorithm development efforts in coastal and inland Waters
NASA Astrophysics Data System (ADS)
Stengel, E.; Ondrusek, M.
2016-02-01
Accurate satellite ocean color measurements in coastal and inland waters are more challenging than open-ocean measurements. Complex water and atmospheric conditions can limit the utilization of remote sensing data in coastal waters where it is most needed. The Coastal Optical Characterization Experiment (COCE) is an ongoing project at NOAA/NESDIS/STAR Satellite Oceanography and Climatology Division. The primary goals of COCE are satellite ocean color validation and application development. Currently, this effort concentrates on the initialization and validation of the Joint Polar Satellite System (JPSS) VIIRS sensor using a Satlantic HyperPro II radiometer as a validation tool. A report on VIIRS performance in coastal waters will be given by presenting comparisons between in situ ground truth measurements and VIIRS retrievals made in the Chesapeake Bay, and inland waters of the Gulf of Mexico and Puerto Rico. The COCE application development effort focuses on developing new ocean color satellite remote sensing tools for monitoring relevant coastal ocean parameters. A new VIIRS total suspended matter algorithm will be presented for the Chesapeake Bay. These activities improve the utility of ocean color satellite data in monitoring and analyzing coastal and oceanic processes. Progress on these activities will be reported.
Mechanism of Urea Crystal Dissolution in Water from Molecular Dynamics Simulation.
Anand, Abhinav; Patey, G N
2018-01-25
Molecular dynamics simulations are used to determine the mechanism of urea crystal dissolution in water under sink conditions. Crystals of cubic and tablet shapes are considered, and results are reported for four commonly used water models. The dissolution rates for different water models can differ considerably, but the overall dissolution mechanism remains the same. Urea dissolution occurs in three stages: a relatively fast initial stage, a slower intermediate stage, and a final stage. We show that the long intermediate stage is well described by classical rate laws, which assume that the dissolution rate is proportional to the active surface area. By carrying out simulations at different temperatures, we show that urea dissolution is an activated process, with an activation energy of ∼32 kJ mol -1 . Our simulations give no indication of a significant diffusion layer, and we conclude that the detachment of molecules from the crystal is the rate-determining step for dissolution. The results we report for urea are consistent with earlier observations for the dissolution of NaCl crystals. This suggests that the three-stage mechanism and classical rate laws might apply to the dissolution of other ionic and molecular crystals.
Heptanuclear CoII5CoIII2 Cluster as Efficient Water Oxidation Catalyst.
Xu, Jia-Heng; Guo, Ling-Yu; Su, Hai-Feng; Gao, Xiang; Wu, Xiao-Fan; Wang, Wen-Guang; Tung, Chen-Ho; Sun, Di
2017-02-06
Inspired by the transition-metal-oxo cubical Mn 4 CaO 5 in photosystem II, we herein report a disc-like heptanuclear mixed-valent cobalt cluster, [Co II 5 Co III 2 (mdea) 4 (N 3 ) 2 (CH 3 CN) 6 (OH) 2 (H 2 O) 2 ·4ClO 4 ] (1, H 2 mdea = N-methyldiethanolamine), for photocatalytic oxygen evolution. The topology of the Co 7 core resembles a small piece of cobaltate protected by terminal H 2 O, N 3 - , CH 3 CN, and multidentate N-methyldiethanolamine at the periphery. Under the optimal photocatalytic conditions, 1 exhibits water oxidation activity with a turnover number (TON) of 210 and a turnover frequency (TOF initial ) of 0.23 s -1 . Importantly, electrospray mass spectrometry (ESI-MS) was used to not only identify the possible main active species in the water oxidation reaction but also monitor the evolutions of oxidation states of cobalt during the photocatalytic reactions. These results shed light on the design concept of new water oxidation catalysts and mechanism-related issues such as the key active intermediate and oxidation state evolution in the oxygen evolution process. The magnetic properties of 1 were also discussed in detail.
Recurring slope lineae in equatorial regions of Mars
McEwen, Alfred S.; Dundas, Colin M.; Mattson, Sarah S.; Toigo, Anthony D.; Ojha, Lujendra; Wray, James J.; Chojnacki, Matthew; Byrne, Shane; Murchie, Scott L.; Thomas, Nicolas
2014-01-01
The presence of liquid water is a requirement of habitability on a planet. Possible indicators of liquid surface water on Mars include intermittent flow-like features observed on sloping terrains. These recurring slope lineae are narrow, dark markings on steep slopes that appear and incrementally lengthen during warm seasons on low-albedo surfaces. The lineae fade in cooler seasons and recur over multiple Mars years. Recurring slope lineae were initially reported to appear and lengthen at mid-latitudes in the late southern spring and summer and are more common on equator-facing slopes where and when the peak surface temperatures are higher. Here we report extensive activity of recurring slope lineae in equatorial regions of Mars, particularly in the deep canyons of Valles Marineris, from analysis of data acquired by the Mars Reconnaissance Orbiter. We observe the lineae to be most active in seasons when the slopes often face the sun. Expected peak temperatures suggest that activity may not depend solely on temperature. Although the origin of the recurring slope lineae remains an open question, our observations are consistent with intermittent flow of briny water. Such an origin suggests surprisingly abundant liquid water in some near-surface equatorial regions of Mars.
Triple-activated blast furnace slag
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clarke, W.J.
1995-12-31
The current shortage of portland cement in the world will require the use of Ground Granulated Blast Furnace Slag (GGBFS) to fill demands in many industrialized countries. Therefore, an extensive series of triple-activated slag experiments have been undertaken to optimize an economical combination of mechanical properties for alkali-activated slags. Na{sub 2}OSiO{sub 2} (N Grade), Ca(OH){sub 2}, H{sub 2}O and Na{sub 2}CO{sub 3} have been added as activators in 5 to 10, 0 to 5 and 0 to 5 weight percentages of water and slag in a mix with a water:cement ratio of 1:1. Silica Fume and Sika 10 superplasticizer havemore » been added as 1 and 10 weight percent of slag. Set times, initial hardening times and compressive strengths at percentages of the mix to identify more refined formulations. Finally, the resulting aggregate to develop a triple-activated slag formulation with the ultimate objective of contributing toward satisfying the world shortage of high performance concrete.« less
Evaporative cooling and the Mpemba effect
NASA Astrophysics Data System (ADS)
Vynnycky, M.; Mitchell, S. L.
2010-10-01
The Mpemba effect is popularly summarized by the statement that “hot water can freeze faster than cold”, and has been observed experimentally since the time of Aristotle; however, there exist almost no theoretical models that predict the effect. With a view to initiating rigorous modelling activity on this topic, this paper analyzes in some depth the only available model in literature, which considers the potential role of evaporative cooling and treats the cooling water as a lumped mass. Certain omissions in the original work are highlighted and corrected, and results are obtained for a wide range of operating conditions—in particular, initial liquid temperature and cooling temperature. The implications and importance of the results of the model for experimental design are discussed, as are extensions of the model to handle more realistic 1-, 2- and 3-dimensional configurations.
Using surface water application to reduce 1,3-dichloropropene emission from soil fumigation.
Gao, Suduan; Trout, Thomas J
2006-01-01
High emissions from soil fumigants increase the risk of detrimental impact on workers, bystanders, and the environment, and jeopardize future availability of fumigants. Efficient and cost-effective approaches to minimize emissions are needed. This study evaluated the potential of surface water application (or water seal) to reduce 1,3-dichloropropene (1,3-D) emissions from soil (Hanford sandy loam) columns. Treatments included dry soil (control), initial water application (8 mm of water just before fumigant application), initial plus a second water application (2.6 mm) at 12 h, initial plus two water applications (2.6 mm each time) at 12 and 24 h, standard high density polyethylene (HDPE) tarp, initial water application plus HDPE tarp, and virtually impermeable film (VIF) tarp. Emissions from the soil surface and distribution of 1,3-D in the soil-gas phase were monitored for 2 wk. Each water application abruptly reduced 1,3-D emission flux, which rebounded over a few hours. Peak emission rates were substantially reduced, but total emission reduction was small. Total fumigant emission was 51% of applied for the control, 46% for initial water application only, and 41% for the three intermittent water applications with the remaining water treatment intermediate. The HDPE tarp alone resulted in 45% emission, while initial water application plus HDPE tarp resulted in 38% emission. The most effective soil surface treatment was VIF tarp (10% emission). Surface water application can be as effective, and less expensive than, standard HDPE tarp. Frequent water application is required to substantially reduce emissions.
Wierl, J.A.; Rappold, K.F.; Amerson, F.U.
1996-01-01
In 1992, the Wisconsin Department of Natural Resources (WDNR) in cooperation with the U.S. Geological Survey initiated a land-use inventory to identify sources of pollutants and track the land-management changes for eight evaluation monitoring watersheds established as part of the WDNR's Nonpoint Source Program. Each evaluation monitoring watershed is within a WDNR priority watershed. The U.S. Geological Survey is responsible for collection of water-quality data in the evaluation monitoring watersheds. An initial inventory was completed for each of the WDNR priority watersheds before nonpoint-source plans were developed for the control of nonpoint pollution. The land-use inventory described in this report expands upon the initial inventory by including nonpoint pollution sources that were not identified and also by updating changes in landuse and land-management practices. New sources of nonpoint pollution, not identified in the initial inventory, could prove to be important when monitored and modeled data are analyzed. This effort to inventory the evaluation monitoring watersheds will help with the interpretation of future land-use and water-quality data. This report describes landuse inventory methods, presents results of the inventory, and lists proposed future activities.
Zhernov, V A; Frolkov, V K; Zubarkina, M M
Both acupuncture and drinking mineral water can influence the metabolism of carbohydrates and lipids as well as their hormonal regulation, but the possibility of the application of these therapeutic factors for the correction of insulin resistance has not been studied in the patients presenting with metabolic syndrome. The objective of the present study was to evaluate the effects produced by the intake of drinking mineral water and acupuncture on the various parameters characterizing the patients suffering from metabolic syndrome in combination with altered insulin resistance. Ninety patients with this condition included in the study underwent the analysis of their the blood pressure, body mass index, blood glucose and lipid levels, insulin and cortisol secretion. We undertook the analysis of the effects of the single and repeated intakes of Essentuki No 17 mineral water included in the combined treatment of the patients with metabolic syndrome and revealed many common responses of the organism to its therapeutic action. Specifically, the stress-type reactions suggested the initiation of the adaptive processes in the system of hormonal regulation of carbohydrate and lipid metabolism. Simultaneously, the manifestations of insulin resistance became less pronounced indicating that both acupuncture and drinking mineral water suppressed the action of the main pathogenic mechanisms underlying the development of metabolic syndrome. Moreover, it was shown that acupuncture had a stronger hypotensive effect in the combination with the decrease of the overproduction of cortisol whereas the intake of the mineral water had a greater metabolic potential and contributed to the intensification of the basal secretion of glucocorticoids. Both reflexotherapy and drinking mineral water have a well apparent effect on the pathogenetic reactions of the metabolic syndrome and therefore can be used in addition to the standard therapy to activate the non-specific, phylogenetically established and enshrined at the genetic level self-healing responses by mainstreaming the adaptation processes and the formation of the adaptive reactions initiated by stressor components. The addition of acupuncture or domestic mineral water intake to the standard therapy of the patients suffering from metabolic syndrome significantly enhances the effectiveness of the treatment. The beneficial therapeutic action of acupuncture and drinking mineral water is underlain by their impact on the mechanisms of resistance to insulin that manifests itself as a decrease of the fasting secretion of this hormone and optimization of carbohydrate and lipid metabolism. The therapeutic effect of acupuncture and drinking mineral water is realized through the induction of the stress-initiating reactions which activate the processes of adaptation, with reflexotherapy largely acting on the cardiovascular system and drinking mineral water on the system responsible for insulin regulation of the metabolic processes.
Self-degradable Cementitious Sealing Materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sugama, T.; Butcher, T., Lance Brothers, Bour, D.
2010-10-01
A self-degradable alkali-activated cementitious material consisting of a sodium silicate activator, slag, Class C fly ash, and sodium carboxymethyl cellulose (CMC) additive was formulated as one dry mix component, and we evaluated its potential in laboratory for use as a temporary sealing material for Enhanced Geothermal System (EGS) wells. The self-degradation of alkali-activated cementitious material (AACM) occurred, when AACM heated at temperatures of {ge}200 C came in contact with water. We interpreted the mechanism of this water-initiated self-degradation as resulting from the in-situ exothermic reactions between the reactants yielded from the dissolution of the non-reacted or partially reacted sodium silicatemore » activator and the thermal degradation of the CMC. The magnitude of self-degradation depended on the CMC content; its effective content in promoting degradation was {ge}0.7%. In contrast, no self-degradation was observed from CMC-modified Class G well cement. For 200 C-autoclaved AACMs without CMC, followed by heating at temperatures up to 300 C, they had a compressive strength ranging from 5982 to 4945 psi, which is {approx}3.5-fold higher than that of the commercial Class G well cement; the initial- and final-setting times of this AACM slurry at 85 C were {approx}60 and {approx}90 min. Two well-formed crystalline hydration phases, 1.1 nm tobermorite and calcium silicate hydrate (I), were responsible for developing this excellent high compressive strength. Although CMC is an attractive, as a degradation-promoting additive, its addition to both the AACM and the Class G well cement altered some properties of original cementitious materials; among those were an extending their setting times, an increasing their porosity, and lowering their compressive strength. Nevertheless, a 0.7% CMC-modified AACM as self-degradable cementitious material displayed the following properties before its breakdown by water; {approx}120 min initial- and {approx}180 min final-setting times at 85 C, and 1825 to 1375 psi compressive strength with 51.2 to 55.0% porosity up to 300 C.« less
Hildenbrand, Zacariah L; Carlton, Doug D; Fontenot, Brian E; Meik, Jesse M; Walton, Jayme L; Thacker, Jonathan B; Korlie, Stephanie; Shelor, C Phillip; Kadjo, Akinde F; Clark, Adelaide; Usenko, Sascha; Hamilton, Jason S; Mach, Phillip M; Verbeck, Guido F; Hudak, Paul; Schug, Kevin A
2016-08-15
The recent expansion of natural gas and oil extraction using unconventional oil and gas development (UD) practices such as horizontal drilling and hydraulic fracturing has raised questions about the potential for environmental impacts. Prior research has focused on evaluations of air and water quality in particular regions without explicitly considering temporal variation; thus, little is known about the potential effects of UD activity on the environment over longer periods of time. Here, we present an assessment of private well water quality in an area of increasing UD activity over a period of 13months. We analyzed samples from 42 private water wells located in three contiguous counties on the Eastern Shelf of the Permian Basin in Texas. This area has experienced a rise in UD activity in the last few years, and we analyzed samples in four separate time points to assess variation in groundwater quality over time as UD activities increased. We monitored general water quality parameters as well as several compounds used in UD activities. We found that some constituents remained stable over time, but others experienced significant variation over the period of study. Notable findings include significant changes in total organic carbon and pH along with ephemeral detections of ethanol, bromide, and dichloromethane after the initial sampling phase. These data provide insight into the potentially transient nature of compounds associated with groundwater contamination in areas experiencing UD activity. Copyright © 2016 Elsevier B.V. All rights reserved.
Schaff, Katherine; Desautels, Alexandra; Flournoy, Rebecca; Carson, Keith; Drenick, Teresa; Fujii, Darlene; Lee, Anna; Luginbuhl, Jessica; Mena, Mona; Shrago, Amy; Siegel, Anita; Stahl, Robert; Watkins-Tartt, Kimi; Willow, Pam; Witt, Sandra; Woloshin, Diane; Yamashita, Brenda
2013-11-01
In Alameda County, California, significant health inequities by race/ethnicity, income, and place persist. Many of the county's low-income residents and residents of color live in communities that have faced historical and current disinvestment through public policies. This disinvestment affects community conditions such as access to economic opportunities, well-maintained and affordable housing, high-quality schools, healthy food, safe parks, and clean water and air. These community conditions greatly affect health. At the invitation of the Joint Center for Political and Economic Studies' national Place Matters initiative, Alameda County Supervisor Keith Carson's Office and the Alameda County Public Health Department launched Alameda County Place Matters, an initiative that addresses community conditions through local policy change. We describe the initiative's creation, activities, policy successes, and best practices.
Rankin, D.R.
2000-01-01
Bernalillo County officials recognize the importance of monitoring water quality and ground-water levels in rapidly developing areas. For this reason, water-quality and ground-water- level data were collected from 87 wells, 3 springs, and the Ojo Grande Acequia in the east mountain area of Bernalillo County between January 1990 and June 1999. The water samples were analyzed for selected nutrient species; total organic carbon; major dissolved constituents; methylene blue active substances; and dissolved arsenic. Analytical results were used to compute hardness, sodium adsorption ratio, and dissolved solids. Specific conductance, pH, air and water temperature, alkalinity, and dissolved oxygen were measured in the field at the time of sample collection. Ground-water levels were measured at the time of sample collection. From January 1990 through June 1993, water-quality and ground- water-level data were collected monthly from an initial set of 20 wells; these data were published in a 1995 report. During 1995, water samples and ground-water-level data were collected and analyzed from the initial set of 20 wells and from an additional 31 wells, 2 springs, and the Ojo Grande Acequia; these data were published in a 1996 report. Additional water-quality and ground-water-level data have been collected from sites in the east mountain area: 34 wells and the acequia during 1997, 14 wells and 1 spring during 1998, and 6 wells during 1999. Water-quality and ground- water-level data collected in the east mountain area during 1995 through 1999 are presented in tables. In addition, temporal trends for ground-water levels, concentrations of total and dissolved nitrite plus nitrate, concentrations of dissolved chloride, and specific conductance are presented for 20 selected wells in water-quality and water- level hydrographs.
Effect of microalgal treatments on pesticides in water.
Hultberg, Malin; Bodin, Hristina; Ardal, Embla; Asp, Håkan
2016-01-01
The effect of the microalgae Chlorella vulgaris on a wide range of different pesticides in water was studied. Treatments included short-term exposure (1 h) to living and dead microalgal biomass and long-term exposure (4 days) to actively growing microalgae. The initial pesticide concentration was 63.5 ± 3.9 µg L(-1). There was no significant overall reduction of pesticides after short-term exposure. A significant reduction of the total amount of pesticides was achieved after the long-term exposure to growing microalgae (final concentration 29.7 ± 1.0 µg L(-1)) compared with the long-term control (37.0 ± 1.2 µg L(-1)). The concentrations of 10 pesticides out of 38 tested were significantly lowered in the long-term algal treatment. A high impact of abiotic factors such as sunlight and aeration for pesticide reduction was observed when the initial control (63.5 ± 3.9 µg L(-1)) and the long-term control (37.0 ± 1.2 µg L(-1)) were compared. The results suggest that water treatment using microalgae, natural inhabitants of polluted surface waters, could be further explored not only for removal of inorganic nutrients but also for removal of organic pollutants in water.
Access to Safe Water in Rural Artibonite, Haiti 16 Months after the Onset of the Cholera Epidemic
Patrick, Molly; Berendes, David; Murphy, Jennifer; Bertrand, Fabienne; Husain, Farah; Handzel, Thomas
2013-01-01
Haiti has the lowest improved water and sanitation coverage in the Western Hemisphere and is suffering from the largest cholera epidemic on record. In May of 2012, an assessment was conducted in rural areas of the Artibonite Department to describe the type and quality of water sources and determine knowledge, access, and use of household water treatment products to inform future programs. It was conducted after emergency response was scaled back but before longer-term water, sanitation, and hygiene activities were initiated. The household survey and source water quality analysis documented low access to safe water, with only 42.3% of households using an improved drinking water source. One-half (50.9%) of the improved water sources tested positive for Escherichia coli. Of households with water to test, 12.7% had positive chlorine residual. The assessment reinforces the identified need for major investments in safe water and sanitation infrastructure and the importance of household water treatment to improve access to safe water in the near term. PMID:24106191
Cull, S G; Holbrey, J D; Vargas-Mora, V; Seddon, K R; Lye, G J
2000-07-20
Organic solvents are widely used in a range of multiphase bioprocess operations including the liquid-liquid extraction of antibiotics and two-phase biotransformation reactions. There are, however, considerable problems associated with the safe handling of these solvents which relate to their toxic and flammable nature. In this work we have shown for the first time that room-temperature ionic liquids, such as 1-butyl-3-methylimi- dazolium hexafluorophosphate, [bmim][PF(6)], can be successfully used in place of conventional solvents for the liquid-liquid extraction of erythromycin-A and for the Rhodococcus R312 catalyzed biotransformation of 1, 3-dicyanobenzene (1,3-DCB) in a liquid-liquid, two-phase system. Extraction of erythromycin with either butyl acetate or [bmim][PF(6)] showed that values of the equilibrium partition coefficient, K, up to 20-25 could be obtained for both extractants. The variation of K with the extraction pH was also similar in the pH range 5-9 though differed significantly at higher pH values. Biotransformation of 1,3-DCB in both water-toluene and water-[bmim][PF(6)] systems showed similar profiles for the conversion of 1,3-DCB initially to 3-cyanobenzamide and then 3-cyanobenzoic acid. The initial rate of 3-cyanobenzamide production in the water-[bmim][PF(6)] system was somewhat lower, however, due to the reduced rate of 1,3-DCB mass transfer from the more viscous [bmim] [PF(6)] phase. It was also shown that the specific activity of the biocatalyst in the water-[bmim] [PF(6)] system was almost an order of magnitude greater than in the water-toluene system which suggests that the rate of 3-cyanobenzamide production was limited by substrate mass transfer rather than the activity of the biocatalyst. Copyright 2000 John Wiley & Sons, Inc.
Application of RAD-BCG calculator to Hanford's 300 area shoreline characterization dataset
DOE Office of Scientific and Technical Information (OSTI.GOV)
Antonio, Ernest J.; Poston, Ted M.; Tiller, Brett L.
2003-07-01
Abstract. In 2001, a multi-agency study was conducted to characterize potential environmental effects from radiological and chemical contaminants on the near-shore environment of the Columbia River at the 300 Area of the U.S. Department of Energy’s Hanford Site. Historically, the 300 Area was the location of nuclear fuel fabrication and was the main location for research and development activities from the 1940s until the late 1980s. During past waste handling practices uranium, copper, and other heavy metals were routed to liquid waste streams and ponds near the Columbia River shoreline. The Washington State Department of Health and the Pacific Northwestmore » National Laboratory’s Surface Environmental Surveillance Project sampled various environmental components including river water, riverbank spring water, sediment, fishes, crustaceans, bivalve mollusks, aquatic insects, riparian vegetation, small mammals, and terrestrial invertebrates for analyses of radiological and chemical constituents. The radiological analysis results for water and sediment were used as initial input into the RAD-BCG Calculator. The RAD-BCG Calculator, a computer program that uses an Excel® spreadsheet and Visual Basic® software, showed that maximum radionuclide concentrations measured in water and sediment were lower than the initial screening criteria for concentrations to produce dose rates at existing or proposed limits. Radionuclide concentrations measured in biota samples were used to calculate site-specific bioaccumulation coefficients (Biv) to test the utility of the RAD-BCG-Calculator’s site-specific screening phase. To further evaluate site-specific effects, the default Relative Biological Effect (RBE) for internal alpha particle emissions was reduced by half and the program’s kinetic/allometric calculation approach was initiated. The subsequent calculations showed the initial RAD-BCG Calculator results to be conservative, which is appropriate for screening purposes.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Antonio, Ernest J.; Tiller, Brett L.; Domotor, S. L.
2005-08-01
Abstract. In 2001, a multi-agency study was conducted to characterize potential environmental effects from radiological and chemical contaminants on the near-shore environment of the Columbia River at the 300 Area of the U.S. Department of Energy’s Hanford Site. Historically, the 300 Area was the location of nuclear fuel fabrication and was the main location for research and development activities from the 1940s until the late 1980s. During past waste handling practices uranium, copper, and other heavy metals were routed to liquid waste streams and ponds near the Columbia River shoreline. The Washington State Department of Health and the Pacific Northwestmore » National Laboratory’s Surface Environmental Surveillance Project sampled various environmental components including river water, riverbank spring water, sediment, fishes, crustaceans, bivalve mollusks, aquatic insects, riparian vegetation, small mammals, and terrestrial invertebrates for analyses of radiological and chemical constituents. The radiological analysis results for water and sediment were used as initial input into the RESRAD BIOTA. The RESRAD BIOTA code showed that maximum radionuclide concentrations measured in water and sediment were lower than the initial screening criteria for concentrations to produce dose rates at existing or proposed limits. Radionuclide concentrations measured in biota samples were used to calculate site-specific bioaccumulation coefficients (Biv) to test the utility of the RESRAD BIOTA’s site-specific screening phase. To further evaluate site-specific effects, the default Relative Biological Effect (RBE) for internal alpha particle emissions was reduced by half and the program’s kinetic/allometric calculation approach was initiated. The subsequent calculations showed the initial RESRAD BIOTA results to be conservative, which is appropriate for screening purposes.« less
Menezes, Prashanth W; Indra, Arindam; Littlewood, Patrick; Schwarze, Michael; Göbel, Caren; Schomäcker, Reinhard; Driess, Matthias
2014-08-01
We present a facile synthesis of bioinspired manganese oxides for chemical and photocatalytic water oxidation, starting from a reliable and versatile manganese(II) oxalate single-source precursor (SSP) accessible through an inverse micellar molecular approach. Strikingly, thermal decomposition of the latter precursor in various environments (air, nitrogen, and vacuum) led to the three different mineral phases of bixbyite (Mn2 O3 ), hausmannite (Mn3 O4 ), and manganosite (MnO). Initial chemical water oxidation experiments using ceric ammonium nitrate (CAN) gave the maximum catalytic activity for Mn2 O3 and MnO whereas Mn3 O4 had a limited activity. The substantial increase in the catalytic activity of MnO in chemical water oxidation was demonstrated by the fact that a phase transformation occurs at the surface from nanocrystalline MnO into an amorphous MnOx (1
Granular flows at recurring slope lineae on Mars indicate a limited role for liquid water
NASA Astrophysics Data System (ADS)
Dundas, Colin M.; McEwen, Alfred S.; Chojnacki, Matthew; Milazzo, Moses P.; Byrne, Shane; McElwaine, Jim N.; Urso, Anna
2017-12-01
Recent liquid water flow on Mars has been proposed based on geomorphological features, such as gullies. Recurring slope lineae — seasonal flows that are darker than their surroundings — are candidate locations for seeping liquid water on Mars today, but their formation mechanism remains unclear. Topographical analysis shows that the terminal slopes of recurring slope lineae match the stopping angle for granular flows of cohesionless sand in active Martian aeolian dunes. In Eos Chasma, linea lengths vary widely and are longer where there are more extensive angle-of-repose slopes, inconsistent with models for water sources. These observations suggest that recurring slope lineae are granular flows. The preference for warm seasons and the detection of hydrated salts are consistent with some role for water in their initiation. However, liquid water volumes may be small or zero, alleviating planetary protection concerns about habitable environments.
Granular flows at recurring slope lineae on Mars indicate a limited role for liquid water
Dundas, Colin M.; McEwen, Alfred S.; Chojnacki, Matthew; Milazzo, Moses; Byrne, Shane; McElwaine, Jim; Urso, Anna
2017-01-01
Recent liquid water flow on Mars has been proposed based on geomorphological features, such as gullies. Recurring slope lineae — seasonal flows that are darker than their surroundings — are candidate locations for seeping liquid water on Mars today, but their formation mechanism remains unclear. Topographical analysis shows that the terminal slopes of recurring slope lineae match the stopping angle for granular flows of cohesionless sand in active Martian aeolian dunes. In Eos Chasma, linea lengths vary widely and are longer where there are more extensive angle-of-repose slopes, inconsistent with models for water sources. These observations suggest that recurring slope lineae are granular flows. The preference for warm seasons and the detection of hydrated salts are consistent with some role for water in their initiation. However, liquid water volumes may be small or zero, alleviating planetary protection concerns about habitable environments.
The Aging Water Infrastructure (AWI) research program is part of EPA’s larger effort called the Sustainable Water Infrastructure (SI) initiative. The SI initiative brings together drinking water and wastewater utility managers; trade associations; local watershed protection organ...
Zhang, Miao; Bommer, Martin; Chatterjee, Ruchira; ...
2017-07-18
In plants, algae and cyanobacteria, Photosystem II (PSII) catalyzes the light-driven splitting of water at a protein-bound Mn 4CaO 5-cluster, the water-oxidizing complex (WOC). In the photosynthetic organisms, the light-driven formation of the WOC from dissolved metal ions is a key process because it is essential in both initial activation and continuous repair of PSII. Structural information is required for understanding of this chaperone-free metal-cluster assembly. For the first time, we obtained a structure of PSII from Thermosynechococcus elongatus without the Mn 4CaO 5-cluster. Surprisingly, cluster-removal leaves the positions of all coordinating amino acid residues and most nearby water moleculesmore » largely unaffected, resulting in a pre-organized ligand shell for kinetically competent and error-free photo-assembly of the Mn 4CaO 5-cluster. First experiments initiating (i) partial disassembly and (ii) partial re-assembly after complete depletion of the Mn4CaO5-cluster agree with a specific bi-manganese cluster, likely a di-µ-oxo bridged pair of Mn(III) ions, as an assembly intermediate.« less
Zhang, Miao; Bommer, Martin; Chatterjee, Ruchira; Hussein, Rana; Yano, Junko; Dau, Holger; Kern, Jan; Dobbek, Holger; Zouni, Athina
2017-07-18
In plants, algae and cyanobacteria, Photosystem II (PSII) catalyzes the light-driven splitting of water at a protein-bound Mn 4 CaO 5 -cluster, the water-oxidizing complex (WOC). In the photosynthetic organisms, the light-driven formation of the WOC from dissolved metal ions is a key process because it is essential in both initial activation and continuous repair of PSII. Structural information is required for understanding of this chaperone-free metal-cluster assembly. For the first time, we obtained a structure of PSII from Thermosynechococcus elongatus without the Mn 4 CaO 5 -cluster. Surprisingly, cluster-removal leaves the positions of all coordinating amino acid residues and most nearby water molecules largely unaffected, resulting in a pre-organized ligand shell for kinetically competent and error-free photo-assembly of the Mn 4 CaO 5 -cluster. First experiments initiating (i) partial disassembly and (ii) partial re-assembly after complete depletion of the Mn 4 CaO 5 -cluster agree with a specific bi-manganese cluster, likely a di-µ-oxo bridged pair of Mn(III) ions, as an assembly intermediate.
Jefferies, L. K.
2016-01-01
The quality of dehydrated taro slices in accelerated storage (45°C and 75% RH) was determined as a function of initial water activity (a w) and package type. Color, rehydration capacity, thiamin content, and α-tocopherol content were monitored during 34 weeks of storage in polyethylene and foil laminate packaging at initial storage a w of 0.35 to 0.71. Initial a w at or below 0.54 resulted in less browning and higher rehydration capacity, but not in significantly higher α-tocopherol retention. Foil laminate pouches resulted in a higher rehydration capacity and increased thiamin retention compared to polyethylene bags. Type of packaging had no effect on the color of the samples. Product stability was highest when stored in foil laminate pouches at 0.4a w. Sensory panels were held to determine the acceptability of rehydrated taro slices using samples representative of the taro used in the analytical tests. A hedonic test on rehydrated taro's acceptability was conducted in Fiji, with panelists rating the product an average of 7.2 ± 1.5 on a discrete 9-point scale. Using a modified Weibull analysis (with 50% probability of product failure), it was determined that the shelf life of dehydrated taro stored at 45°C was 38.3 weeks. PMID:27891508
Tan, Dina; Zeng, Honghu; Liu, Jie; Yu, Xiaozhang; Liang, Yanpeng; Lu, Lanjing
2013-07-01
The kinetics of the degradation of trace nitrobenzene (NB) by a granular activated carbon (GAC) enhanced microwave (MW)/hydrogen peroxide (H202) system was studied. Effects of pH, NB initial concentration and tert-butyl alcohol on the removal efficiency were examined. It was found that the reaction rate fits well to first-order reaction kinetics in the MW/GAC/H202 process. Moreover, GAC greatly enhanced the degradation rate of NB in water. Under a given condition (MW power 300 W, H202 dosage 10 mg/L, pH 6.85 and temperature (60 +/- 5)degrees C), the degradation rate of NB was 0.05214 min-1when 4 g/L GAC was added. In general, alkaline pH was better for NB degradation; however, the optimum pH was 8.0 in the tested pH value range of 4.0-12.0. At H202 dosage of 10 mg/L and GAC dosage of 4 g/L, the removal of NB was decreased with increasing initial concentrations of NB, indicating that a low initial concentration was beneficial for the degradation of NB. These results indicated that the MW/GAC/H202 process was effective for trace NB degradation in water. Gas chromatography-mass spectrometry analysis indicated that a hydroxyl radical addition reaction and dehydrogenation reaction enhanced NB degradation.
Burkhart, J G; Helgen, J C; Fort, D J; Gallagher, K; Bowers, D; Propst, T L; Gernes, M; Magner, J; Shelby, M D; Lucier, G
1998-12-01
Water samples from several ponds in Minnesota were evaluated for their capacity to induce malformations in embryos of Xenopus laevis. The FETAX assay was used to assess the occurrence of malformations following a 96-hr period of exposure to water samples. These studies were conducted following reports of high incidences of malformation in natural populations of frogs in Minnesota wetlands. The purpose of these studies was to determine if a biologically active agent(s) was present in the waters and could be detected using the FETAX assay. Water samples from ponds with high incidences of frog malformations (affected sites), along with water samples from ponds with unaffected frog populations (reference sites), were studied. Initial experiments clearly showed that water from affected sites induced mortality and malformation in Xenopus embryos, while water from reference sites had little or no effect. Induction of malformation was dose dependent and highly reproducible, both with stored samples and with samples taken at different times throughout the summer. The biological activity of the samples was reduced or eliminated when samples were passed through activated carbon. Limited evidence from these samples indicates that the causal factor(s) is not an infectious organism nor are ion concentrations or metals responsible for the effects observed. Results do indicate that the water matrix has a significant effect on the severity of toxicity. Based on the FETAX results and the occurrence of frog malformations observed in the field, these studies suggest that water in the affected sites contains one or more unknown agents that induce developmental abnormalities in Xenopus. These same factors may contribute to the increased incidence of malformation in native species.
Burkhart, J G; Helgen, J C; Fort, D J; Gallagher, K; Bowers, D; Propst, T L; Gernes, M; Magner, J; Shelby, M D; Lucier, G
1998-01-01
Water samples from several ponds in Minnesota were evaluated for their capacity to induce malformations in embryos of Xenopus laevis. The FETAX assay was used to assess the occurrence of malformations following a 96-hr period of exposure to water samples. These studies were conducted following reports of high incidences of malformation in natural populations of frogs in Minnesota wetlands. The purpose of these studies was to determine if a biologically active agent(s) was present in the waters and could be detected using the FETAX assay. Water samples from ponds with high incidences of frog malformations (affected sites), along with water samples from ponds with unaffected frog populations (reference sites), were studied. Initial experiments clearly showed that water from affected sites induced mortality and malformation in Xenopus embryos, while water from reference sites had little or no effect. Induction of malformation was dose dependent and highly reproducible, both with stored samples and with samples taken at different times throughout the summer. The biological activity of the samples was reduced or eliminated when samples were passed through activated carbon. Limited evidence from these samples indicates that the causal factor(s) is not an infectious organism nor are ion concentrations or metals responsible for the effects observed. Results do indicate that the water matrix has a significant effect on the severity of toxicity. Based on the FETAX results and the occurrence of frog malformations observed in the field, these studies suggest that water in the affected sites contains one or more unknown agents that induce developmental abnormalities in Xenopus. These same factors may contribute to the increased incidence of malformation in native species. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 Figure 8 PMID:9831545
Weng, Xiao-Yan; Zheng, Chen-Juan; Xu, Hong-Xia; Sun, Jian-Yi
2007-12-01
The mechanisms of photoprotection of photosynthesis and dissipation of excitation energy in rice leaves in response to potassium (K) deficiency were investigated. Net photosynthetic rate and the activity of ribulose-1,5-bisphosphate carboxylase/oxygenase decreased under K deficiency. Compared with the control, non-photochemical quenching of Chl fluorescence increased in K-deficient plant, whereas the efficiency of excitation transfer (F'(v)/F'(m)) and the photochemical quenching coefficient (q(P)) decreased. Thus, thermal dissipation of excitation energy increased as more excess electrons were accumulated in the photosynthetic chain. The electron transport rate through PSII (J(f)) was more sensitive to O2 concentration, and the fraction of electron transport rate required to sustain CO2 assimilation and photorespiration (J(g)/J(f)) was significantly decreased under K deficiency compared with the control. Furthermore, the alternative electron transport (J(a)/J(f)) was increased, indicating that a considerable amount of electrons had been transported to O2 during the water-water cycle in the K-deficient leaves. Although the fraction of electron transport to photorespiration (J(o)/J(f)) was also increased in the K-deficient leaves, it was less sensitive than that of the water-water cycle. With the generation of reactive oxygen species level, the activities of superoxide dismutase and ascorbate peroxidase, two of the key enzymes involved in scavenging of active oxygen species in the water-water cycle, also increased in K-deficient rice. Therefore, it is likely that a series of photoprotective mechanisms were initiated in rice plants in response to K deficiency and the water-water cycle might be critical for protecting photosynthetic apparatus under K deficiency in rice.
Preventing Tooth Decay: A Guide for Implementing Self-Applied Fluoride in Schools.
ERIC Educational Resources Information Center
National Inst. of Dental Research (NIH), Bethesda, MD.
This guidebook was developed to assist citizens in initiating programs to prevent tooth decay in young children through the use of fluoridation. It contains outlines for determining the needs of the school and community for fluoride in drinking water, and presents the various steps and activities that are necessary for developing and implementing…
A Conceptual Change Model for Teaching Heat Energy, Heat Transfer and Insulation
ERIC Educational Resources Information Center
Lee, C. K.
2014-01-01
This study examines the existing knowledge that pre-service elementary teachers (PSETs) have regarding heat energy, heat transfer and insulation. The PSETs' knowledge of heat energy was initially assessed by using an activity: determining which container would be best to keep hot water warm for the longest period of time. Results showed that PSETs…
Biodegradation of resin acid sodium salts
Richard W. Hemingway; H. Greaves
1973-01-01
The sodium salts of resin acids were readily degraded by microflora from two types of river water and from an activated sewage sludge. A lag phase with little or no resin acid salt degradation but rapid bacterial development occurred which was greatly extended by a decrease in incubation temperature. After this initial lag phase, the resin acid salts were rapidly...
USDA-ARS?s Scientific Manuscript database
17ß-Estradiol (E2) is a natural, endocrine-disrupting, steroid hormone excreted by all vertebrates that can enter the environment from domestic animal and wildlife wastes. Multiple field studies using food animal manures as E2 sources suggest significant background concentrations of E2 (e.g., wildli...
Bu, Lingjun; Zhou, Shiqing; Shi, Zhou; Deng, Lin; Li, Guangchao; Yi, Qihang; Gao, Naiyun
2016-02-01
The degradation kinetics and mechanism of the antiepileptic drug oxcarbazepine (OXC) by UV-activated persulfate oxidation were investigated in this study. Results showed that UV/persulfate (UV/PS) process appeared to be more effective in degrading OXC than UV or PS alone. The OXC degradation exhibited a pseudo-first order kinetics pattern and the degradation rate constants (k obs) were affected by initial OXC concentration, PS dosage, initial pH, and humic acid concentration to different degrees. It was found that low initial OXC concentration, high persulfate dosage, and initial pH enhanced the OXC degradation. Additionally, the presence of humic acid in the solution could greatly inhibit the degradation of OXC. Moreover, hydroxyl radical (OH•) and sulfate radical (SO4 (-)••) were identified to be responsible for OXC degradation and SO4 (-)• made the predominant contribution in this study. Finally, major intermediate products were identified and a preliminary degradation pathway was proposed. Results demonstrated that UV/PS system is a potential technology to control the water pollution caused by emerging contaminants such as OXC.
CFD Model of Water Droplet Transport for ISS Hygiene Activity
NASA Technical Reports Server (NTRS)
Son, Chang H.
2011-01-01
The goal of the study is to assess the impacts of free water propagation in the Waste and Hygiene Compartment (WHC). Free water can be generated inside the WHC in small quantities due to crew hygiene activity. To mitigate potential impact of free water in Node 3 cabin the WHC doorway is enclosed by a waterproof bump-out, Kabin, with openings at the top and bottom. At the overhead side of the rack, there is a screen that prevents large drops of water from exiting. However, as the avionics fan in the WHC causes airflow toward the deck side of the rack, small quantities of free water may exit at the bottom of the Kabin. A Computational Fluid Dynamics (CFD) analysis of Node 3 cabin airflow made possible to identify the paths of water transport. The Node 3 airflow was computed for several ventilation scenarios. To simulate the droplet transport the Lagrangian discrete phase approach was used. Various initial droplet distributions were considered in the study. The droplet diameter was varied in the range of 2-20 mm. The results of the computations showed that most of the drops fall to the rack surface not far from the WHC curtain. The probability of the droplet transport to the adjacent rack surface with electronic equipment was predicted.
NASA Astrophysics Data System (ADS)
Cruz, Marta; Gomez, Cristina; Duran-Valle, Carlos J.; Pastrana-Martínez, Luisa M.; Faria, Joaquim L.; Silva, Adrián M. T.; Faraldos, Marisol; Bahamonde, Ana
2017-09-01
The photocatalytic activity of a home-made titanium dioxide (TiO2) and its corresponding composite based on graphene oxide (GO), the GO-TiO2 catalyst, has been investigated under UV-vis in the photodegradation of a mixture of four pesticides classified by the European Union as priority pollutants: diuron, alachlor, isoproturon and atrazine. The influence of two water matrices (ultrapure or natural water) was also studied. Natural water led to a decrease on the degradation of the studied pollutants when the bare TiO2 photocatalyst was employed, since this water contains both inorganic and organic species that are dissolved and commonly restrain the photocatalytic process. On the contrary, the photo-efficiency of the GO-TiO2 composite seems to be less affected by water matrix variation, with very good initial pesticide photodegradation rates under both natural and ultrapure water matrices. A comparative study between GO-TiO2 and the commercial Evonik TiO2 P25 catalyst was also carried out to analyze the photocatalytic degradation of these pesticides under visible light illumination conditions. Once again, a higher photocatalytic activity was found for the GO-TiO2 composite.
Khandare, Arjun L; Validandi, Vakdevi; Boiroju, Naveen
2018-02-17
The present study aimed to determine the serum trace elements (copper (Cu), zinc (Zn), calcium (Ca), magnesium (Mg)) along with erythrocyte carbonic anhydrase (CA) activity and effect of intervention with safe drinking water for 5 years in the school children of fluorosis endemic area. For this purpose, three categories of villages were selected based on drinking water fluoride (F): Category I (control, F = 1.68 mg/L), category II (affected F = 3.77 mg/L), and category III (intervention village) where initial drinking water F was 4.51 mg/L, and since the last 5 years, they were drinking water containing < 1.0 mg/L F. The results revealed that urinary F was significantly (P < 0.05) higher in category II compared to categories I and III. A significant (P < 0.05) increase in serum Cu and Mg was observed in category II compared to category I. Serum Zn and Ca was significantly (P < 0.05) decreased in categories II and III compared to category I. The erythrocyte CA activity was decreased in the category II compared to category I. However, in the category III, erythrocyte CA activity was comparable to the control group. In conclusion, F exposure altered elemental homeostasis which has restored to some extent on intervention by safe drinking water for 5 years in school-going children.
Sánchez-Polo, M; von Gunten, U; Rivera-Utrilla, J
2005-09-01
Based on previous findings (Jans, U., Hoigné, J., 1998. Ozone Sci. Eng. 20, 67-87), the activity of activated carbon for the transformation of ozone into *OH radicals including the influence of operational parameters (carbon dose, ozone dose, carbon-type and carbon treatment time) was quantified. The ozone decomposition constant (k(D)) was increased by the presence of activated carbon in the system and depending on the type of activated carbon added, the ratio of the concentrations of *OH radicals and ozone, the R(ct) value ([*OH]/[O3]), was increased by a factor 3-5. The results obtained show that the surface chemical and textural characteristics of the activated carbon determines its activity for the transformation of ozone into *OH radicals. The most efficient carbons in this process are those with high basicity and large surface area. The obtained results show that the interaction between ozone and pyrrol groups present on the surface of activated carbon increase the concentration of O2*- radicals in the system, enhancing ozone transformation into *OH radicals. The activity of activated carbon decreases for extended ozone exposures. This may indicate that activated carbon does not really act as a catalyst but rather as a conventional initiator or promoter for the ozone transformation into *OH radicals. Ozonation of Lake Zurich water ([O3] = 1 mg/L) in presence of activated carbon (0.5 g/L) lead to an increase in the k(D) and R(ct) value by a factor of 10 and 39, respectively, thereby favouring the removal of ozone-resistant contaminants. Moreover, the presence of activated carbon during ozonation of Lake Zurich water led to a 40% reduction in the content of dissolved organic carbon during the first 60 min of treatment. The adsorption of low concentrations of dissolved organic matter (DOM) on activated carbon surfaces did not modify its capacity to initiate/promote ozone transformation into *OH radicals.
A Study of Large Droplet Ice Accretions in the NASA-Lewis IRT at Near-Freezing Conditions
NASA Technical Reports Server (NTRS)
Miller, Dean R.; Addy, Harold E. , Jr.; Ide, Robert F.
1996-01-01
This report documents the results of an experimental study on large droplet ice accretions which was conducted in the NASA-Lewis Icing Research Tunnel (IRT) with a full-scale 77.25 inch chord Twin-Otter wing section. This study was intended to: (1) document the existing capability of the IRT to produce a large droplet icing cloud, and (2) study the effect of various parameters on large droplet ice accretions. Results are presented from a study of the IRT's capability to produce large droplets with MVD of 99 and 160 microns. The effect of the initial water droplet temperature on the resultant ice accretion was studied for different initial spray bar air and water temperatures. The initial spray bar water temperature was found to have no discernible effect upon the large droplet ice accretions. Also, analytical and experimental results suggest that the water droplet temperature is very nearly the same as the tunnel ambient temperature, thus providing a realistic simulation of the large droplet natural icing condition. The effect of temperature, droplet size, airspeed, angle-of attack, flap setting and de-icer boot cycling time on ice accretion was studied, and will be discussed in this report. It was found that, in almost all of the cases studied, an ice ridge formed immediately aft of the active portion of the de-icer boot. This ridge was irregular in shape, varied in location, and was in some cases discontinuous due to aerodynamic shedding.
An antivirally active sulfated polysaccharide from Sargassum horneri (TURNER) C. AGARDH.
Hoshino, T; Hayashi, T; Hayashi, K; Hamada, J; Lee, J B; Sankawa, U
1998-07-01
A sulfated polysaccharide was isolated from the hot water extract of a brown alga, Sargassum horneri (TURNER) C. AGARDH. Fucose was detected as the main component sugar of this polysaccharide. This compound showed potent antiviral activity against herpes simplex virus type 1, human cytomegalovirus and human immunodeficiency virus type 1. Time-of-addition experiments suggested that it inhibited not only the initial stages of viral infection, such as attachment to and penetration into host cells, but also later replication stages after virus penetration.
Appendix—Models and theory for urea metabolism
Charlwood, P. A.
1965-01-01
1. Theories have been developed to try to interpret the effects of finite time of equilibration between plasma and body water, and the mechanism of renal function, on the variations of activity and specific activity of urea in plasma and urine after initial injection. 2. The magnitudes of errors likely to arise through approximations made in estimating the pool of body urea etc. have been derived. 3. Experimental results do not fit exactly with extreme models postulated, but are usually intermediate. PMID:14340104
Water Chemistry Control System for Recovery of Damaged and Degraded Spent Fuel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sindelar, R.; Fisher, D.; Thomas, J.
2011-02-18
The International Atomic Energy Agency (IAEA) and the government of Serbia have led the project cosponsored by the U.S, Russia, European Commission, and others to repackage and repatriate approximately 8000 spent fuel elements from the RA reactor fuel storage basins at the VIN?A Institute of Nuclear Sciences to Russia for reprocessing. The repackaging and transportation activities were implemented by a Russian consortium which includes the Sosny Company, Tekhsnabeksport (TENEX) and Mayak Production Association. High activity of the water of the fuel storage basin posed serious risk and challenges to the fuel removal from storage containers and repackaging for transportation. Themore » risk centered on personnel exposure, even above the basin water, due to the high water activity levels caused by Cs-137 leached from fuel elements with failed cladding. A team of engineers from the U.S. DOE-NNSA's Global Threat Reduction Initiative, the Vinca Institute, and the IAEA performed the design, development, and deployment of a compact underwater water chemistry control system (WCCS) to remove the Cs-137 from the basin water and enable personnel safety above the basin water for repackaging operations. Key elements of the WCCS system included filters, multiple columns containing an inorganic sorbent, submersible pumps and flow meters. All system components were designed to be remotely serviceable and replaceable. The system was assembled and successfully deployed at the Vinca basin to support the fuel removal and repackaging activities. Following the successful operations, the Cs-137 is now safely contained and consolidated on the zeolite sorbent used in the columns of the WCCS, and the fuel has been removed from the basins. This paper reviews the functional requirements, design, and deployment of the WCCS.« less
Active Cryovolcanism on Europa?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sparks, W. B.; Cracraft, M.; Deustua, S. E
Evidence for plumes of water on Europa has previously been found using the Hubble Space Telescope using two different observing techniques. Roth et al. found line emission from the dissociation products of water. Sparks et al. found evidence for off-limb continuum absorption as Europa transited Jupiter. Here, we present a new transit observation of Europa that shows a second event at the same location as a previous plume candidate from Sparks et al., raising the possibility of a consistently active source of erupting material on Europa. This conclusion is bolstered by comparison with a nighttime thermal image from the Galileomore » Photopolarimeter-Radiometer that shows a thermal anomaly at the same location, within the uncertainties. The anomaly has the highest observed brightness temperature on the Europa nightside. If heat flow from a subsurface liquid water reservoir causes the thermal anomaly, its depth is ≈1.8–2 km, under simple modeling assumptions, consistent with scenarios in which a liquid water reservoir has formed within a thick ice shell. Models that favor thin regions within the ice shell that connect directly to the ocean, however, cannot be excluded, nor modifications to surface thermal inertia by subsurface activity. Alternatively, vapor deposition surrounding an active vent could increase the thermal inertia of the surface and cause the thermal anomaly. This candidate plume region may offer a promising location for an initial characterization of Europa’s internal water and ice and for seeking evidence of Europa’s habitability.« less
Active Cryovolcanism on Europa?
NASA Astrophysics Data System (ADS)
Sparks, W. B.; Schmidt, B. E.; McGrath, M. A.; Hand, K. P.; Spencer, J. R.; Cracraft, M.; E Deustua, S.
2017-04-01
Evidence for plumes of water on Europa has previously been found using the Hubble Space Telescope using two different observing techniques. Roth et al. found line emission from the dissociation products of water. Sparks et al. found evidence for off-limb continuum absorption as Europa transited Jupiter. Here, we present a new transit observation of Europa that shows a second event at the same location as a previous plume candidate from Sparks et al., raising the possibility of a consistently active source of erupting material on Europa. This conclusion is bolstered by comparison with a nighttime thermal image from the Galileo Photopolarimeter-Radiometer that shows a thermal anomaly at the same location, within the uncertainties. The anomaly has the highest observed brightness temperature on the Europa nightside. If heat flow from a subsurface liquid water reservoir causes the thermal anomaly, its depth is ≈1.8-2 km, under simple modeling assumptions, consistent with scenarios in which a liquid water reservoir has formed within a thick ice shell. Models that favor thin regions within the ice shell that connect directly to the ocean, however, cannot be excluded, nor modifications to surface thermal inertia by subsurface activity. Alternatively, vapor deposition surrounding an active vent could increase the thermal inertia of the surface and cause the thermal anomaly. This candidate plume region may offer a promising location for an initial characterization of Europa’s internal water and ice and for seeking evidence of Europa’s habitability.
Collecting household water usage data: telephone questionnaire or diary?
2009-01-01
Background Quantitative Microbial Risk Assessment (QMRA), a modelling approach, is used to assess health risks. Inputs into the QMRA process include data that characterise the intensity, frequency and duration of exposure to risk(s). Data gaps for water exposure assessment include the duration and frequency of urban non-potable (non-drinking) water use. The primary objective of this study was to compare household water usage results obtained using two data collection tools, a computer assisted telephone interview (CATI) and a 7-day water activity diary, in order to assess the effect of different methodological survey approaches on derived exposure estimates. Costs and logistical aspects of each data collection tool were also examined. Methods A total of 232 households in an Australian dual reticulation scheme (where households are supplied with two grades of water through separate pipe networks) were surveyed about their water usage using both a CATI and a 7-day diary. Householders were questioned about their use of recycled water for toilet flushing, garden watering and other outdoor activities. Householders were also questioned about their water use in the laundry. Agreement between reported CATI and diary water usage responses was assessed. Results Results of this study showed that the level of agreement between CATI and diary responses was greater for more frequent water-related activities except toilet flushing and for those activities where standard durations or settings were employed. In addition, this study showed that the unit cost of diary administration was greater than for the CATI, excluding consideration of the initial selection and recruitment steps. Conclusion This study showed that it is possible to successfully 'remotely' coordinate diary completion providing that adequate instructions are given and that diary recording forms are well designed. In addition, good diary return rates can be achieved using a monetary incentive and the diary format allows for collective recording, rather than an individual's estimation, of household water usage. Accordingly, there is merit in further exploring the use of diaries for collection of water usage information either in combination with a mail out for recruitment, or potentially in the future with Internet-based recruitment (as household Internet uptake increases). PMID:19900290
Collecting household water usage data: telephone questionnaire or diary?
O'Toole, Joanne E; Sinclair, Martha I; Leder, Karin
2009-11-09
Quantitative Microbial Risk Assessment (QMRA), a modelling approach, is used to assess health risks. Inputs into the QMRA process include data that characterise the intensity, frequency and duration of exposure to risk(s). Data gaps for water exposure assessment include the duration and frequency of urban non-potable (non-drinking) water use. The primary objective of this study was to compare household water usage results obtained using two data collection tools, a computer assisted telephone interview (CATI) and a 7-day water activity diary, in order to assess the effect of different methodological survey approaches on derived exposure estimates. Costs and logistical aspects of each data collection tool were also examined. A total of 232 households in an Australian dual reticulation scheme (where households are supplied with two grades of water through separate pipe networks) were surveyed about their water usage using both a CATI and a 7-day diary. Householders were questioned about their use of recycled water for toilet flushing, garden watering and other outdoor activities. Householders were also questioned about their water use in the laundry. Agreement between reported CATI and diary water usage responses was assessed. Results of this study showed that the level of agreement between CATI and diary responses was greater for more frequent water-related activities except toilet flushing and for those activities where standard durations or settings were employed. In addition, this study showed that the unit cost of diary administration was greater than for the CATI, excluding consideration of the initial selection and recruitment steps. This study showed that it is possible to successfully 'remotely' coordinate diary completion providing that adequate instructions are given and that diary recording forms are well designed. In addition, good diary return rates can be achieved using a monetary incentive and the diary format allows for collective recording, rather than an individual's estimation, of household water usage. Accordingly, there is merit in further exploring the use of diaries for collection of water usage information either in combination with a mail out for recruitment, or potentially in the future with Internet-based recruitment (as household Internet uptake increases).
Alam, Nuhu; Yoon, Ki Nam; Lee, Jae Seong; Cho, Hae Jin; Lee, Tae Soo
2011-01-01
This study was initiated to screen the antioxidant activities, tyrosinase inhibitory effects on the fruiting bodies of Pleurotus ferulae extracted with acetone, methanol and hot water. The antioxidant activities were performed on β-carotene–linoleic acid, reducing power, DPPH, ferrous ions chelating abilities, and xanthine oxidase. In addition to this, phenolic compounds were also analyzed. The methanolic extract showed the strongest β-carotene–linoleic acid inhibition and high reducing power as compared to other extracts. The scavenging effects on DPPH radicals, the acetonic and methanolic extracts were more effective than hot water extracts. The strongest chelating effect was obtained from the methanolic extract as compared to the tested synthetic antioxidant. Gallic acid, protocatechuic acid, caffeic acid, vanillin, ferulic acid, naringin, resveratrol, naringenin, hesperetin, formononetin and biochanin-A were detected from acetonitrile and hydrochloric acid (5:1) solvent extract. Xanthine oxidase and tyrosinase inhibitory activities of acetonic, methanolic, and hot water extracts of P. ferulae increased with increasing concentration. The results suggested that consumption of P. ferulae might be beneficial to the antioxidant, xanthine oxidase, and tyrosinase protection system of the human body against oxidative damage and others complications. PMID:23961169
U.S. Geological Survey Science for the Wyoming Landscape Conservation Initiative-2010 Annual Report
Bowen, Zachary H.; Aldridge, Cameron L.; Anderson, Patrick J.; Assal, Timothy J.; Biewick, Laura; Blecker, Steven W.; Boughton, Gregory K.; Bristol, R. Sky; Carr, Natasha B.; Chalfoun, Anna D.; Chong, Geneva W.; Clark, Melanie L.; Diffendorfer, Jay E.; Fedy, Bradley C.; Foster, Katharine; Garman, Steven L.; Germaine, Stephen S.; Holloway, JoAnn; Homer, Collin G.; Kauffman, Matthew J.; Keinath, Douglas; Latysh, Natalie; Manier, Daniel J.; McDougal, Robert R.; Melcher, Cynthia P.; Miller, Kirk A.; Montag, Jessica; Potter, Christopher J.; Schell, Spencer; Shafer, Sarah L.; Smith, David B.; Stillings, Lisa L.; Tuttle, Michele L.W.; Wilson, Anna B.
2011-01-01
This is the third report produced by the U.S. Geological Survey (USGS) for the Wyoming Landscape Conservation Initiative (WLCI) to detail annual work activities. The first report described activities for 2007 and 2008, and the second report covered work activities for FY09. This third report covers work activities conducted in FY2010, and it continues the 2009 approach of reporting on all the individual activities to help give WLCI partners and other readers the full scope of what has been accomplished. New in this year's report is an additional section for each work activity that outlines the work planned for the following fiscal year. In FY2010, there were 35 ongoing/expanded, completed, or new projects conducted under the five major multi-disciplinary science and technical-assistance activities: (1) Baseline Synthesis; (2) Targeted Monitoring and Research; (3) Data and Information Management; (4) Integration and Coordination; and (5) Decisionmaking and Evaluation. The three new work activities were to (1) compile existing water data for the entire WLCI region and (2) develop regional curves (statistical models) for relating bankfull-channel geometry and discharge to drainages in the WLCI region, both of which will help guide long-term monitoring of water resources; and (3) initiate a groundwater-monitoring network to evaluate potential effects of energy-development activities on groundwater quality where groundwater is an important source of public/private water supplies. Results of the FY2009 work to develop methods for assessing soil organic matter and mercury indicated that selenium and arsenic levels may be elevated in the Muddy Creek Basin; thus, the focus of that activity was shifted in FY2010 to evaluate biogeochemical cycling of elements in the basin. In FY2010, two ongoing activities were expanded with the addition of more sampling plots: (a) the study of how greater sage-grouse (Centrocercus urophasianus) use vegetation-treatment areas (sites added to the Moxa Arch Natural Gas Development area) and (2) the study of cheatgrass (Bromus tectorum) occurrence in burn treatments of the Little Mountain Ecosystem. The activity that entails evaluating relationships between ungulate herbivory and fire on aspen (Populus tremuloides) recruitment also was expanded to include relationships between stand characteristics of and herbivory on aspen in various ecohydrological settings. The USGS continued compiling data and developing geospatial products from all of its WLCI activities to support (1) ranking and prioritizing of proposed conservation projects, (2) developing the WLCI Integrated Assessment, and (3) developing the WLCI 5-year Conservation Action Plan. Two activities were completed in FY2010: (1) the conceptual modeling and indicator selection for monitoring resource conditions across the WLCI region, and (2) the literature review on effects of oil and gas development in western regions of the United States, both of which are in the last stages of publication.
Zholdakova, Z I; Poliakova, E E; Lebedev, A T
2006-01-01
Many industrial chemicals found in waste waters are able to form organochlorine by-products during water disinfection. The transformation of seven model compounds, cyclohexene, n-butanol, diphenylmethane, acetophenone, aniline, 1-methylnaphthalene, and phenylxylylethane during a reaction with active chlorine was studied. Aqueous chlorine and sodium hypochlorite were used as chlorinating agents. The products of the reaction were analyzed by means of chromatomass-spectrometry. A schematic model of diphenylmethane transformation was proposed. Comparative evaluation of hazards associated with the model chemicals and their derivates confirmed that chlorination products can be more toxic and dangerous than the initial compounds, and may possess mutagenic and cancerigenic properties.
Neutron production by stopping 55 MeV deuterons in carbon and heavy water
NASA Astrophysics Data System (ADS)
Lhersonneau, G.; Malkiewicz, T.; Jones, P.; Ketelhut, S.; Trzaska, W. H.
2012-09-01
Neutron production by stopping 55 MeV deuterons in thick carbon and heavy-water targets has been measured by the activation method. The geometry was close to the one defined for the SPIRAL2 uranium-carbide target in the initial phase. A comparative method for obtaining the neutron flux has been used and is presented in detail. The neutron flux generated by 55 MeV deuterons on carbon is 2.3 times the flux at the deuteron energy of 40 MeV. The flux further increases by a factor 1.4 when using a heavy-water target. These results are discussed in the context of an energy upgrade of the SPIRAL2 driver accelerator.
Moisture Sorption Behaviour and Mould Ecology of Trade Garri Sold in South Eastern Nigeria
Samuel, Tochukwu; Ugwuanyi, J. Obeta
2014-01-01
Garri is a creamy white or yellow starchy grit produced by roasting to gelatinization and dryness of peeled, washed, mashed, and fermented dewatered cassava roots. It is the most important product of cassava in West and Central Africa. Mean moisture content of yellow and white garri was 11.11% and 10.81% within 24 hrs of sampling from the market, increasing to 17.27% and 16.14%, respectively, following 3 months of storage at room temperature. The water activity of samples varied from initial 0.587 to 0.934 following storage. Moisture sorption isotherms, determined by static gravimetric techniques at 20° and 30°C, showed temperature dependent BET Sigmoidal type II behaviour typical of carbohydrate rich foods but modulated very slightly by the content of palm oil. Equilibrium moisture content decreased with increase in temperature at constant water activity. A total of 10 fungal species belonging to the genera Mucor, Penicillium, Cephalosporium, Aspergillus, Scopulariopsis, Rhizopus, and Paecilomyces were identified, with range increasing with water activity of samples. PMID:26904621
NASA Astrophysics Data System (ADS)
Arrigo, J. S.; Famiglietti, J. S.; Murdoch, L. C.; Lakshmi, V.; Hooper, R. P.
2012-12-01
The Consortium of Universities for the Advancement of Hydrologic Science, Inc. (CUAHSI) continues a major effort towards supporting Community Hydrologic Modeling. From 2009 - 2011, the Community Hydrologic Modeling Platform (CHyMP) initiative held three workshops, the ultimate goal of which was to produce recommendations and an implementation plan to establish a community modeling program that enables comprehensive simulation of water anywhere on the North American continent. Such an effort would include connections to and advances in global climate models, biogeochemistry, and efforts of other disciplines that require an understanding of water patterns and processes in the environment. To achieve such a vision will require substantial investment in human and cyber-infrastructure and significant advances in the science of hydrologic modeling and spatial scaling. CHyMP concluded with a final workshop, held March 2011, and produced several recommendations. CUAHSI and the university community continue to advance community modeling and implement these recommendations through several related and follow on efforts. Key results from the final 2011 workshop included agreement among participants that the community is ready to move forward with implementation. It is recognized that initial implementation of this larger effort can begin with simulation capabilities that currently exist, or that can be easily developed. CHyMP identified four key activities in support of community modeling: benchmarking, dataset evaluation and development, platform evaluation, and developing a national water model framework. Key findings included: 1) The community supported the idea of a National Water Model framework; a community effort is needed to explore what the ultimate implementation of a National Water Model is. A true community modeling effort would support the modeling of "water anywhere" and would include all relevant scales and processes. 2) Implementation of a community modeling program could initially focus on continental scale modeling of water quantity (rather than quality). The goal of this initial model is the comprehensive description of water stores and fluxes in such a way to permit linkage to GCM's, biogeochemical, ecological, and geomorphic models. This continental scale focus allows systematic evaluation of our current state of knowledge and data, leverages existing efforts done by large scale modelers, contributes to scientific discovery that informs globally and societal relevant questions, and provides an initial framework to evaluate hydrologic information relevant to other disciplines and a structure into which to incorporate other classes of hydrologic models. 3) Dataset development will be a key aspect of any successful national water model implementation. Our current knowledge of the subsurface is limiting our ability to truly integrate soil and groundwater into large scale models, and to answering critical science questions with societal relevance (i.e. groundwater's influence on climate). 4) The CHyMP workshops and efforts to date have achieved collaboration between university scientists, government agencies and the private sector that must be maintained. Follow on efforts in community modeling should aim at leveraging and maintaining this collaboration for maximum scientific and societal benefit.
[Oxygen consumption rate and effects of hypoxia stress on enzyme activities of Sepiella maindron].
Wang, Chun-lin; Wu, Dan-hua; Dong, Tian-ye; Jiang, Xia-min
2008-11-01
The oxygen consumption rate and suffocation point of Sepiella maindroni were determined through the measurement of dissolved oxygen in control and experimental respiration chambers by Winkler's method, and the changes of S. maindroni enzyme activities under different levels of hypoxia stress were studied. The results indicated that the oxygen consumption rate of S. maindroni exhibited an obvious diurnal fluctuation of 'up-down-up-down', and positively correlated with water temperature (16 degrees C-28 degrees C) and illumination (3-500 micromol x m(-2) x s(-1)) while negatively correlated with water pH (6.25-9.25). With increasing water salinity from 18.1 to 29.8, the oxygen consumption rate had a variation of 'up-down-up', being the lowest at salinity 24. 8. Female S. maindroni had a higher oxygen consumption rate than male S. maindroni. The suffocation point of S. maindroni decreased with its increasing body mass, and that of (38.70 +/- 0.52) g in mass was (0.9427 +/- 0.0318) mg x L(-1). With the increase of hypoxia stress, the activities of superoxide dismutase (SOD), catalase (CAT) and peroxidase (POD) decreased after an initial increase, lipase activity decreased, protease activity had a variation of 'decrease-increase-decrease', and lactate dehydrogenase (LDH) activity had a trend of increasing first and decreasing then. The enzyme activities were higher under hypoxia stress than under normal conditions.
Final report of the decontamination and decommissioning of the BORAX-V facility turbine building
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arave, A.E.; Rodman, G.R.
1992-12-01
The Boiling Water Reactor Experiment (BORAX)-V Facility Turbine Building Decontamination and Decommissioning (D&D) Project is described in this report. The BORAX series of five National Reactor Testing Station (NRTS) reactors pioneered intensive work on boiling water reactor (BWR) experiments conducted between 1953 and 1964. Facility characterization, decision analyses, and D&D plans for the turbine building were prepared from 1979 through 1990. D&D activities of the turbine building systems were initiated in November of 1988 and completed with the demolition and backfill of the concrete foundation in March 1992. Due to the low levels of radioactivity and the absence of loosemore » contamination, the D&D activities were completed with no radiation exposure to the workers. The D&D activities were performed in a manner that no radiological health or safety hazard to the public or to personnel at the Idaho National Engineering Laboratory (INEL) remain.« less
Final report of the decontamination and decommissioning of the BORAX-V facility turbine building
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arave, A.E.; Rodman, G.R.
1992-12-01
The Boiling Water Reactor Experiment (BORAX)-V Facility Turbine Building Decontamination and Decommissioning (D D) Project is described in this report. The BORAX series of five National Reactor Testing Station (NRTS) reactors pioneered intensive work on boiling water reactor (BWR) experiments conducted between 1953 and 1964. Facility characterization, decision analyses, and D D plans for the turbine building were prepared from 1979 through 1990. D D activities of the turbine building systems were initiated in November of 1988 and completed with the demolition and backfill of the concrete foundation in March 1992. Due to the low levels of radioactivity and themore » absence of loose contamination, the D D activities were completed with no radiation exposure to the workers. The D D activities were performed in a manner that no radiological health or safety hazard to the public or to personnel at the Idaho National Engineering Laboratory (INEL) remain.« less
18 CFR 701.309 - Appeal of initial adverse determination.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 18 Conservation of Power and Water Resources 2 2013-04-01 2012-04-01 true Appeal of initial adverse determination. 701.309 Section 701.309 Conservation of Power and Water Resources WATER RESOURCES COUNCIL COUNCIL ORGANIZATION Protection of Privacy § 701.309 Appeal of initial adverse determination. (a...
18 CFR 701.309 - Appeal of initial adverse determination.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 18 Conservation of Power and Water Resources 2 2010-04-01 2010-04-01 false Appeal of initial adverse determination. 701.309 Section 701.309 Conservation of Power and Water Resources WATER RESOURCES COUNCIL COUNCIL ORGANIZATION Protection of Privacy § 701.309 Appeal of initial adverse determination. (a...
18 CFR 701.309 - Appeal of initial adverse determination.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 18 Conservation of Power and Water Resources 2 2011-04-01 2011-04-01 false Appeal of initial adverse determination. 701.309 Section 701.309 Conservation of Power and Water Resources WATER RESOURCES COUNCIL COUNCIL ORGANIZATION Protection of Privacy § 701.309 Appeal of initial adverse determination. (a...
18 CFR 701.309 - Appeal of initial adverse determination.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 18 Conservation of Power and Water Resources 2 2014-04-01 2014-04-01 false Appeal of initial adverse determination. 701.309 Section 701.309 Conservation of Power and Water Resources WATER RESOURCES COUNCIL COUNCIL ORGANIZATION Protection of Privacy § 701.309 Appeal of initial adverse determination. (a...
18 CFR 701.309 - Appeal of initial adverse determination.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 18 Conservation of Power and Water Resources 2 2012-04-01 2012-04-01 false Appeal of initial adverse determination. 701.309 Section 701.309 Conservation of Power and Water Resources WATER RESOURCES COUNCIL COUNCIL ORGANIZATION Protection of Privacy § 701.309 Appeal of initial adverse determination. (a...
[Treatment of carbonization effluent by the ultrasonic radiation and activated sludge process].
Ning, Ping; Xu, Jinqiu; Huang, Dongbin; Ma, Xiaoli; Xu, Xiaojun; Li, Ziyan
2003-05-01
The paper deals with the degradation of organic pollutants by the ultrasonic irradiation-activated sludge process. The treatment of the real coking wastewater of Kunming coke making-gas plant was studied with the water quality model. Using the ultrasonic irradiation-activated sludge process the organic pollutants in the real coking wastewater can be degraded effectively. The influence factors of the ultrasonic degradation effect such as initial concentration, aerated gas and ultrasonic density were investigated and mechanism was explored. The result shows that the ultrasonic degradation effect was high with the decrease of initial concentration of the CODCr, the presence of aerated gas and the increase of ultrasonic density. At the initial CODCr concentration of 807 mg/L, when air acted as aerated gas and only air itself (no ultrasound) was exerted on the wastewater, the degradation rate of the CODCr will be 4.5%. However, when the ultrasound of the intensity of 119.4 kW/m2 was exerted on the wastewater, the degradation rate of the CODCr will be 65%. Compared with the activated sludge process alone, the combination of the ultrasonic irradiation and activated sludge process can increase the degradation rate of the CODCr from 45% to 81%. The oxygen consumption rate of the carbonization effluent obviously decreased in the presence of the activated sludge. This shows the carbonization effluent is not biotoxic behind the ultrasonic irradiation.
Hasegawa, Yasushi; Inoue, Tatsuro; Kawaminami, Satoshi; Fujita, Miho
2016-07-01
To evaluate the neuroprotective effects of the organic components of scallop shells (scallop shell extract) on memory impairment and locomotor activity induced by scopolamine or 5-methyl-10,11-dihydro-5H-dibenzo (a,d) cyclohepten-5,10-imine (MK801). Effect of the scallop shell extract on memory impairment and locomotor activity was investigated using the Y-maze test, the Morris water maze test, and the open field test. Scallop shell extract significantly reduced scopolamine-induced short-term memory impairment and partially reduced scopolamine-induced spatial memory impairment in the Morris water maze test. Scallop shell extract suppressed scopolamine-induced elevation of acetylcholine esterase activity in the cerebral cortex. Treatment with scallop shell extract reversed the increase in locomotor activity induced by scopolamine. Scallop shell extract also suppressed the increase in locomotor activity induced by MK801. Our results provide initial evidence that scallop shell extract reduces scopolamine-induced memory impairment and suppresses MK-801-induced hyperlocomotion. Copyright © 2016 Hainan Medical College. Production and hosting by Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Oglesby, Robert J.; Marshall, Susan; Roads, John O.; Robertson, Franklin R.; Goodman, H. Michael (Technical Monitor)
2001-01-01
We constructed and analyzed wet and dry soil moisture composites for the mid-latitude GCIP region of the central US using long climate model simulations made with the NCAR CCM3 and reanalysis products from NCEP. Using the diagnostic composites as a guide, we have completed a series of predictability experiments in which we imposed soil water initial conditions in CCM3 for the GCIP region for June 1 from anomalously wet and dry years, with atmospheric initial conditions taken from June 1 of a year with 'near-normal' soil water, and initial soil water from the near-normal year and atmospheric initial conditions from the wet and dry years. Preliminary results indicate that the initial state of the atmosphere is more important than the initial state of soil water determining the subsequent late spring and summer evolution of sod water over the GCIP region. Surprisingly, neither the composites or the predictability experiments yielded a strong influence of soil moisture on the atmosphere. To explore this further, we have made runs with extreme dry soil moisture initial anomalies imposed over the GCIP region (the soil close to being completely dry). These runs did yield a very strong effect on the atmosphere that persisted for at least three months. We conclude that the magnitude of the initial soil moisture anomaly is crucial, at least in CCM3, and are currently investigating whether a threshold exists, below which little impact is seen. In a complementary study, we compared the impact of the initial condition of snow cover versus the initial atmospheric state over the western US (corresponding to the westward extension of the GAPP program follow-on to GCIP). In this case, the initial prescription of snow cover is far more important than the initial atmospheric state in determining the subsequent evolution of snow cover. We are currently working to understand the very different soil water and snow cover results.
Enzymatic hydrolysis of cellulose dissolved in N-methyl morpholine oxide/water solutions.
Ramakrishnan, S; Collier, J; Oyetunji, R; Stutts, B; Burnett, R
2010-07-01
In situ hydrolysis of cellulose (dissolving pulp) in N-methyl morpholine oxide (NMMO) solutions by commercially available Accellerase1000 is carried out. The yield of reducing sugars is followed as a function of time at three different temperatures and four different enzyme loadings to study the effect of system parameters on enzymatic hydrolysis. Initial results show that rates of hydrolysis of cellulose and yields of reducing sugars in the presence of NMMO-water is superior initially (ratio of initial reaction rates approximately 4) and comparable to that of regenerated cellulose (for times greater than 5h) when suspended in aqueous solutions. The usage of Accellerase1000 results predominantly in the formation of glucose with minimal amounts of cellobiose. This study proves the ability of cellulases to remain active in NMMO to carry out an in situ saccharification of cellulose thus eliminating the need to recover regenerated cellulose. Thus this work will form the basis for developing a continuous process for conversion of biomass to hydrogen, ethanol and other hydrocarbons. Copyright 2009 Elsevier Ltd. All rights reserved.
Efficacy of electrolyzed oxidizing water in inactivating Salmonella on alfalfa seeds and sprouts.
Kim, Chyer; Hung, Yen-Con; Brackett, Robert E; Lin, Chyi-Shen
2003-02-01
Studies have demonstrated that electrolyzed oxidizing (EO) water is effective in reducing foodborne pathogens on fresh produce. This study was undertaken to determine the efficacy of EO water and two different forms of chlorinated water (chlorine water from Cl2 and Ca(OCl)2 as sources of chlorine) in inactivating Salmonella on alfalfa seeds and sprouts. Tengram sets of alfalfa seeds inoculated with a five-strain cocktail of Salmonella (6.3 x 10(4) CFU/g) were subjected to 90 ml of deionized water (control), EO water (84 mg/liter of active chlorine), chlorine water (84 mg/liter of active chlorine), and Ca(OCl)2 solutions at 90 and 20,000 mg/liter of active chlorine for 10 min at 24 +/- 2 degrees C. The application of EO water, chlorinated water, and 90 mg/liter of Ca(OCl)2 to alfalfa seeds for 10 min reduced initial populations of Salmonella by at least 1.5 log10 CFU/g. For seed sprouting, alfalfa seeds were soaked in the different treatment solutions described above for 3 h. Ca(OCl)2 (20,000 mg/liter of active chlorine) was the most effective treatment in reducing the populations of Salmonella and non-Salmonella microflora (4.6 and 7.0 log10 CFU/g, respectively). However, the use of high concentrations of chlorine generates worker safety concerns. Also, the Ca(OCl)2 treatment significantly reduced seed germination rates (70% versus 90 to 96%). For alfalfa sprouts, higher bacterial populations were recovered from treated sprouts containing seed coats than from sprouts with seed coats removed. The effectiveness of EO water improved when soaking treatments were applied to sprouts in conjunction with sonication and seed coat removal. The combined treatment achieved 2.3- and 1.5-log10 CFU/g greater reductions than EO water alone in populations of Salmonella and non-Salmonella microflora, respectively. This combination treatment resulted in a 3.3-log10 CFU/g greater reduction in Salmonella populations than the control (deionized water) treatment.
NASA Astrophysics Data System (ADS)
Young, C. R.; Martin, J. B.
2016-02-01
Assessments of the potential for salt water intrusion due to sea level rise require consideration of both coastal hydrodynamic and human activity thresholds. In siliciclastic systems, sea level rise may cause salt intrusion to coastal aquifers at annual or decadal scales, whereas in karst systems salt intrudes at the tidal scalse. In both cases, human activity impacts the freshwater portion of the system by altering the water demand on the aquifer. We combine physicochemical and human activity data to evaluate impact of sea level rise on salt intrusion to siliclastic (Indian River Lagoon, Fl, USA) and karst (Puerto Morelos, Yucatan, Mexico) systems under different sea level rise rate scenarios. Two hydrodynamic modeling scenarios are considered; flux controlled and head controlled. Under a flux controlled system hydraulic head gradients remain constant during sea level rise while under a head controlled system hydraulic graidents diminish, allowing saltwater intrusion. Our model contains three key terms; aquifer recharge, groundwater discharge and hydraulic conductivity. Groundwater discharge and hydraulic conductivity were calculated based on high frequency (karst system) and decadal (siliciclastic system) field measurements. Aquifer recharge is defined as precipitation less evapotranspiration and water demand was evaluated based on urban planning data that provided the regional water demand. Water demand includes agricultural area, toursim, traffic patterns, garbage collection and total population. Water demand was initially estimated using a partial leaset squares regression based on these variables. Our model indicates that water demand depends most on agricultural area, which has changed significantly over the last 30 years. In both systems, additional water demand creates a head controlled scenario, thus increaseing the protential fo salt intrusion with projected sea level rise.
Initiation of Martian Outflow Channels: Related to the Dissociation of Gas Hydrate?
NASA Technical Reports Server (NTRS)
Max, Michael D.; Clifford, Stephen M.
2001-01-01
We propose that the disruption of subpermafrost aquifers on Mars by the thermal- or pressure-induced dissociation of methane hydrate may have been a frequent trigger for initiating outflow channel activity. This possibility is raised by recent work that suggests that significant amounts of methane and gas hydrate may have been produced within and beneath the planet's cryosphere. On Earth, the build-up of overpressured water and gas by the decomposition of hydrate deposits has been implicated in the formation of large blowout features on the ocean floor. These features display a remarkable resemblance (in both morphology and scale) to the chaotic terrain found at the source of many Martian channels. The destabilization of hydrate can generate pressures sufficient to disrupt aquifers confined by up to 5 kilometers of frozen ground, while smaller discharges may result from the water produced by the decomposition of near-surface hydrate alone.
Can Nor'wester events initiate stratospheric moistening?
NASA Astrophysics Data System (ADS)
Ganguly, Nandita D.; Chakraborty, Rohit; Maitra, Animesh
2017-11-01
The possibility of stratospheric moistening being initiated by deep convective Nor'wester events has been investigated over a period of three years spanning from 2013 to 2015 at a tropical location Kolkata, in India using radiosonde and satellite data. The back trajectories, instability indices, outgoing long wave radiation (OLR), convective available potential energy (CAPE), geopotential height maps, vertical pressure velocity, specific humidity, wind vectors and precipitable water vapour (PWV) have been examined to assess the convective activity prevailing over the atmosphere during these events. Increase in specific humidity, wind velocity at various levels of the lower atmosphere and CAPE values indicate an upwelling of moist air from the troposphere to lower stratosphere during Nor'westers. Decrease in OLR and large differences in the values of instability indices, relative humidity and precipitable water vapour during Nor'westers compared to normal convection also signify high intensity of convection and hence the possibility of higher stratospheric moistening during Nor'wester events.
Evaluating the benefits of risk prevention initiatives
NASA Astrophysics Data System (ADS)
Di Baldassarre, G.
2012-04-01
The likelihood and adverse impacts of water-related disasters, such as floods and landslides, are increasing in many countries because of changes in climate and land-use. This presentation illustrates some preliminary results of a comprehensive demonstration of the benefits of risk prevention measures, carried out within the European FP7 KULTURisk project. The study is performed by using a variety of case studies characterised by diverse socio-economic contexts, different types of water-related hazards (floods, debris flows and landslides, storm surges) and space-time scales. In particular, the benefits of state-of-the-art prevention initiatives, such as early warning systems, non-structural options (e.g. mapping and planning), risk transfer strategies (e.g. insurance policy), and structural measures, are showed. Lastly, the importance of homogenising criteria to create hazard inventories and build memory, efficient risk communication and warning methods as well as active dialogue with and between public and private stakeholders, is highlighted.
NASA Astrophysics Data System (ADS)
Zhan, Chang-Guo
2002-03-01
Phosphodiesterases are clinical targets for a variety of biological disorders, because this superfamily of enzymes regulate intracellular concentration of cyclic nucleotides that serve as the second messengers playing a critical role in a variety of physiological processes. Understanding structure and mechanism of a phosphodiesterase will provide a solid basis for rational design of the more efficient therapeutics. Although a three-dimensional X-ray crystal structure of the catalytic domain of human phosphodiesterase 4B2B was recently reported, it was uncertain whether a critical bridging ligand in the active site is a water molecule or a hydroxide ion. The identity of this bridging ligand has been determined by performing first-principles quantum chemical calculations on models of the active site. All the results obtained indicate that this critical bridging ligand in the active site of the reported X-ray crystal structure is a hydroxide ion, rather than a water molecule, expected to serve as the nucleophile to initialize the catalytic degradation of the intracellular second messengers.
Khasanov, Kh T; Davranov, K; Rakhimov, M M
2015-01-01
We demonstrated that a change in the catalytic activity of fungal lipases synthesized by Rhizopus microsporus, Penicillium sp. and Oospora lactis and their ability to absorb on different sorbents depended on the nature of groups on the solid phase surface in the model systems water: lipid and water: solid phase. Thus, the stability of Penicillium sp. lipases increased 85% in the presence ofsorsilen or DEAE-cellulose, and 55% of their initial activity respectively was preserved. In the presence of silica gel and CM-cellulose, a decreased rate of lipid hydrolysis by Pseudomonas sp. enzymes was observed in water medium, and the hydrolysis rate increased by 2.4 and 1.5 times respectively in the presence of aminoaerosil and polykefamid. In an aqueous-alcohol medium, aminoaerosil and polykefamid decreased the rate of substrate hydrolysis by more than 30 times. The addition of aerosil to aqueous and aqueous-alcohol media resulted in an increase in the hydrolysis rate by 1.2-1.3 times. Sorsilen stabilized Penicillium sp. lipase activity at 40, 45, 50 and 55 degrees C. Either stabilization or inactivation of lipases was observed depending on the pH of the medium and the nature of chemical groups localized on the surface of solid phase. The synthetizing activity of lipases also changed depending on the conditions.
Harnish, R.A.; McKnight, Diane M.; Ranville, James F.
1994-01-01
In November 1991, the initial phase of a study to determine the dominant aqueous phases that control the transport of plutonium (Pu), americium (Am), and uranium (U) in surface and groundwater at the Rocky Flats Plant was undertaken by the U.S. Geological Survey. By use of the techniques of stirred-cell spiral-flow filtration and crossflow ultrafiltration, particles of three size fractions were collected from a 60-liter sample of water from well 1587 at the Rocky Flats Plant. These samples and corresponding filtrate samples were analyzed for Pu and Am. As calculated from the analysis of filtrates, 65 percent of Pu 239 and 240 activity in the sample was associated with particulate and largest colloidal size fractions. Particulate (22 percent) and colloidal (43 percent) fractions were determined to have significant activities in relation to whole-water Pu activity. Am and Pu 238 activities were too low to be analyzed. Examination and analyses of the particulate and colloidal phases indicated the presence of mineral species (iron oxyhydroxides and clay minerals) and natural organic matter that can facilitate the transport of actinides in ground water. High concentrations of the transition metals copper and zinc in the smallest colloid fractions strongly indicate a potential for organic complexation of metals, and potentially of actinides, in this size fraction.
Perumpuli, P A B N; Watanabe, Taisuke; Toyama, Hirohide
2014-01-01
From the pellicle formed on top of brewing coconut water vinegar in Sri Lanka, three Acetobacter strains (SL13E-2, SL13E-3, and SL13E-4) that grow at 42 °C and four Gluconobacter strains (SL13-5, SL13-6, SL13-7, and SL13-8) grow at 37 °C were identified as Acetobacter pasteurianus and Gluconobacter frateurii, respectively. Acetic acid production by the isolated Acetobacter strains was examined. All three strains gave 4% acetic acid from 6% initial ethanol at 37 °C, and 2.5% acetic acid from 4% initial ethanol at 40 °C. Compared with the two other strains, SL13E-4 showed both slower growth and slower acetic acid production. As well as the thermotolerant SKU1108 strain, the activities of the alcohol dehydrogenase and the aldehyde dehydrogenase of SL13E-2 and SL13E-4 were more stable than those of the mesophilic strain. The isolated strains were used to produce coconut water vinegar at higher temperatures than typically used for vinegar production.
Luo, Xiaogang; Lei, Xiaojuan; Xie, Xiuping; Yu, Bo; Cai, Ning; Yu, Faquan
2016-10-20
Many efforts have been driven to decontaminate the drinking water, and the development of efficient adsorbents with the advantages of cost-effectiveness and operating convenience for the removal of Pb(2+) from water is a major challenge. This work was aimed to explore the possibility of using cellulose-based adsorbents for efficient adsorption of Pb(2+). The millimeter-scale magnetic cellulose-based nanocomposite beads were fabricated via an optimal extrusion dropping technology by blending cellulose with the carboxyl-functionalized magnetite nanoparticles and acid-activated bentonite in NaOH/urea aqueous solution, and then they had been tested to evaluate the effectiveness in the removal of Pb(2+) from water. The effects of contact time, initial heavy metal ion concentrations, adsorption isotherms and solution pH on the sorption behavior were studied. The thermodynamic parameters (ΔG, ΔH and ΔS) indicated that the adsorption processes were feasible, spontaneous, endothermic and mainly controlled by chemical mechanisms. The reusability of the adsorbent was also studied. Copyright © 2016 Elsevier Ltd. All rights reserved.
Inhibition of the pituitary-adrenal response to stress during deprivation-induced feeding
NASA Technical Reports Server (NTRS)
Heybach, J. P.; Vernikos-Danellis, J.
1979-01-01
Plasma corticosterone and plasma and pituitary ACTH concentrations were determined during feeding and after application of an acute stress at various times after food and water presentation to male rats maintained on a restricted feeding and watering schedule. Both plasma corticosterone and ACTH concentrations fell after the presentation of food and water, and this fall was accompanied by increased levels of ACTH in the pituitary gland. In addition, a rise in plasma levels of ACTH was inhibited in response to an acute stress applied at 0-5 min after presentation of food and water, but ACTH synthesis was not. This inhibition of ACTH and corticosterone secretion in response to stress was transient and dissipated as a relatively linear function of the interval between food presentation and application of the stress. The results suggest that this feeding-induced, corticosteroid-independent inhibition of pituitary-adrenal activity involves active inhibitory mechanisms operating initially on ACTH secretory processes of the pituitary and later on the synthesis of ACTH or on the secretion of hypothalamic corticotropin-releasing factor.
Graphene and Graphene Derivatives for Pharmaceutical Residual Removal from Drinking Water
NASA Astrophysics Data System (ADS)
Yu, Ming; Zhang, Haifeng
Strategy to keeping pharmaceuticals out of the nation's water supplies is the most essential and long-term procedure, while improving effective filtering systems at water treatment plants or at resident home is more practical and efficient. Current techniques including oxidation/ozonation, activated carbons, and filtration using membranes are relatively efficient when the concentration of pharmaceutical residues in the aquatic ecosystem is high, while when the concentration is relatively low, no one effective technique can remove so many different pharmaceuticals. To overcome such significant limitation, we are seeking to develop graphene based materials for pharmaceutical residual removal from drinking water and to initiate the study on dealing with this issue through fundamental understanding. Our results have shown that the graphene/graphene derivate could possess high adsorption rate to pharmaceutical residues (e.g., estradiol), promising their potential applications for pharmaceutical contamination removal from drinking water. Detailed information about the activities of the graphene with a variety of biomolecules, the type of adsorptions, and the effects of the attached hydroxyl, epoxyl, and carboxyl functional groups will be presented in the Meeting. The authors acknowledge computing resource support from the Cardinal Research Cluster at the University of Louisville.
Water-resources activities of the U.S. Geological Survey in Kansas; fiscal years 1987 and 1988
Combs, L. J.
1989-01-01
The principal mission of the U.S. Geological Survey, Water Resources Division, in Kansas is to investigate the occurrence, quantity, quality, distribution, and movement of surface and groundwater throughout the State. Primary activities include the systematic collection, analysis, and interpretation of hydrologic data, evaluation of water demands, and water resources research. Hydrologic investigations are conducted through four types of studies: (1) data collection programs; (2) statewide or regional investigations; (3) local or area investigations; and (4) research. These studies are funded through cooperative agreements with State and local agencies, transfer of funds from other agencies, and direct Federal funds. Thirty-six water related studies were ongoing during fiscal years 1987 and 1988 in Kansas. This report describes for each study the problem that initiated the study, the objectives of the study, the approach designed to achieve the objectives, and significant milestones and publications that resulted during fiscal years 1987 and 1988. Information on more than 2,100 data collection stations in Kansas is presented in maps and tables. A list of 46 reports and abstracts published or released by the U.S. Geological Survey, its cooperators, or technical and scientific organizations during 1987 and 1988 is provided. (USGS)
Water-resources activities of the U.S. Geological Survey in Kansas; fiscal years 1985 and 1986
Combs, L. J.
1987-01-01
The principal mission of the U.S. Geological Survey, Water Resources Division, in Kansas is to investigate the occurrence, quantity, quality, distribution, and movement of surface and groundwater throughout the State. Primary activities include the systematic collection, analysis and interpretation of hydrologic data, evaluation of water demands, and water resources research. Hydrologic investigations are conducted through: (1) data collection programs, (2) statewide or regional investigations, (3) local or areal investigations, and (4) research. These projects are funded through cooperative agreements with state and local agencies, transfer of funds from other federal agencies, and direct federal funds. Forty-three water related projects were ongoing during fiscal years 1985 and 1986 in Kansas. This report describes for each project the problem that initiated the study, the objectives of the project, the approach designed to achieve the objectives, and significant milestones or publications that resulted during fiscal years 1985 and 1986. Information on more than 2,150 data collection stations in Kansas is presented in maps and tables. A list of 47 project reports published or released by the U.S. Geological Survey, its cooperators, or technical and scientific organizations during 1985 and 1986 is provided. (Author 's abstract)
40 CFR Appendix E to Part 132 - Great Lakes Water Quality Initiative Antidegradation Policy
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 21 2010-07-01 2010-07-01 false Great Lakes Water Quality Initiative Antidegradation Policy E Appendix E to Part 132 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Part 132—Great Lakes Water Quality Initiative Antidegradation Policy Great Lakes States and Tribes...
78 FR 63516 - Initial Test Program of Emergency Core Cooling Systems for New Boiling-Water Reactors
Federal Register 2010, 2011, 2012, 2013, 2014
2013-10-24
... NUCLEAR REGULATORY COMMISSION [NRC-2012-0134] Initial Test Program of Emergency Core Cooling....79.1, ``Initial Test Program of Emergency Core Cooling Systems for New Boiling-Water Reactors.'' This... emergency core cooling systems (ECCSs) for boiling- water reactors (BWRs) whose licenses are issued after...
Pan, Fuxia; Li, Yaying; Chapman, Stephen James; Yao, Huaiying
2016-03-01
Rice straw application and flooding are common practices in rice production, both of which can induce changes in the microbial community. This study used soil microcosms to investigate the impact of water status (saturated and nonsaturated) and straw application (10 g kg(-1) soil) on soil microbial composition (phospholipid fatty acid analysis) and activity (MicroResp(™) method). Straw application significantly increased total PLFA amount and individual PLFA components independent of soil moisture level. The amount of soil fungal PLFA was less than Gram-negative, Gram-positive, and actinomycete PLFA, except the drained treatment with rice straw application, which had higher fungal PLFA than actinomycete PLFA at the initial incubation stage. Straw amendment and waterlogging had different effects on microbial community structure and substrate-induced pattern. PLFA profiles were primarily influenced by straw application, whereas soil water status had the greater influence on microbial respiration. Of the variation in PLFA and respiration data, straw accounted for 30.1 and 16.7 %, while soil water status explained 7.5 and 29.1 %, respectively. Our results suggest that (1) the size of microbial communities in paddy soil is more limited by carbon substrate availability rather than by the anaerobic conditions due to waterlogging and (2) that soil water status is more important as a control of fungal growth and microbial community activity.
Redesign of the Extravehicular Mobility Unit Airlock Cooling Loop Recovery Assembly
NASA Technical Reports Server (NTRS)
Steele, John; Elms, Theresa; Peyton, Barbara; Rector, Tony; Jennings, Mallory A.
2016-01-01
During EVA (Extravehicular Activity) 23 aboard the ISS (International Space Station) on 07/16/2013 an episode of water in the EMU (Extravehicular Mobility Unit) helmet occurred, necessitating a termination of the EVA (Extravehicular Activity) shortly after it began. The root cause of the failure was determined to be ground-processing short-comings of the ALCLR (Airlock Cooling Loop Recovery) Ion Beds which led to various levels of contaminants being introduced into the Ion Beds before they left the ground. The Ion Beds were thereafter used to scrub the failed EMU cooling water loop on-orbit during routine scrubbing operations. The root cause investigation identified several areas for improvement of the ALCLR Assembly which have since been initiated. Enhanced washing techniques for the ALCLR Ion Bed have been developed and implemented. On-orbit cooling water conductivity and pH analysis capability to allow the astronauts to monitor proper operation of the ALCLR Ion Bed during scrubbing operation is being investigation. A simplified means to acquire on-orbit EMU cooling water samples have been designed. Finally, an inherently cleaner organic adsorbent to replace the current lignite-based activated carbon, and a non-separable replacement for the separable mixed ion exchange resin are undergoing evaluation. These efforts are undertaken to enhance the performance and reduce the risk associated with operations to ensure the long-term health of the EMU cooling water circuit.
Ge, S.; McKenzie, J.; Voss, C.; Wu, Q.
2011-01-01
Permafrost dynamics impact hydrologic cycle processes by promoting or impeding groundwater and surface water exchange. Under seasonal and decadal air temperature variations, permafrost temperature changes control the exchanges between groundwater and surface water. A coupled heat transport and groundwater flow model, SUTRA, was modified to simulate groundwater flow and heat transport in the subsurface containing permafrost. The northern central Tibet Plateau was used as an example of model application. Modeling results show that in a yearly cycle, groundwater flow occurs in the active layer from May to October. Maximum groundwater discharge to the surface lags the maximum subsurface temperature by two months. Under an increasing air temperature scenario of 3C per 100 years, over the initial 40-year period, the active layer thickness can increase by three-fold. Annual groundwater discharge to the surface can experience a similar three-fold increase in the same period. An implication of these modeling results is that with increased warming there will be more groundwater flow in the active layer and therefore increased groundwater discharge to rivers. However, this finding only holds if sufficient upgradient water is available to replenish the increased discharge. Otherwise, there will be an overall lowering of the water table in the recharge portion of the catchment. Copyright 2011 by the American Geophysical Union.
Redesign of the Extravehicular Mobility Unit Airlock Cooling Loop Recovery Assembly
NASA Technical Reports Server (NTRS)
Steele, John; Elms, Theresa; Peyton, Barbara; Rector, Tony; Jennings, Mallory
2016-01-01
During EVA (Extravehicular Activity) 23 aboard the ISS (International Space Station) on 07/16/2013 an episode of water in the EMU (Extravehicular Mobility Unit) helmet occurred, necessitating a termination of the EVA (Extravehicular Activity) shortly after it began. The root cause of the failure was determined to be ground-processing short-comings of the ALCLR (Airlock Cooling Loop Recovery) Ion Beds which led to various levels of contaminants being introduced into the Ion Beds before they left the ground. The Ion Beds were thereafter used to scrub the failed EMU cooling water loop on-orbit during routine scrubbing operations. The root cause investigation identified several areas for improvement of the ALCLR Assembly which have since been initiated. Enhanced washing techniques for the ALCLR Ion Bed have been developed and implemented. On-orbit cooling water conductivity and pH analysis capability to allow the astronauts to monitor proper operation of the ALCLR Ion Bed during scrubbing operation is being investigated. A simplified means to acquire on-orbit EMU cooling water samples has been designed. Finally, an inherently cleaner organic adsorbent to replace the current lignite-based activated carbon, and a non-separable replacement for the separable mixed ion exchange resin are undergoing evaluation. These efforts are undertaken to enhance the performance and reduce the risk associated with operations to ensure the long-term health of the EMU cooling water circuit.
Schaff, Katherine; Flournoy, Rebecca; Carson, Keith; Drenick, Teresa; Fujii, Darlene; Lee, Anna; Luginbuhl, Jessica; Mena, Mona; Shrago, Amy; Siegel, Anita; Stahl, Robert; Watkins-Tartt, Kimi; Willow, Pam; Witt, Sandra; Woloshin, Diane; Yamashita, Brenda
2013-01-01
In Alameda County, California, significant health inequities by race/ethnicity, income, and place persist. Many of the county's low-income residents and residents of color live in communities that have faced historical and current disinvestment through public policies. This disinvestment affects community conditions such as access to economic opportunities, well-maintained and affordable housing, high-quality schools, healthy food, safe parks, and clean water and air. These community conditions greatly affect health. At the invitation of the Joint Center for Political and Economic Studies' national Place Matters initiative, Alameda County Supervisor Keith Carson's Office and the Alameda County Public Health Department launched Alameda County Place Matters, an initiative that addresses community conditions through local policy change. We describe the initiative's creation, activities, policy successes, and best practices. PMID:24179279
Li, Shao; Xue, Xu-Zhang; Guo, Wen-Shan; Li, Xia; Chen, Fei
2010-01-01
To study the effects of soil water content on the photosynthesis, fluorescence parameters, and root growth of greenhouse cucumber (Cucumis sativus L.), a pot experiment was conducted, using a negative pressure water supplying and controlling device to control soil moisture regime. Seven levels of water supply tension (WST), i. e., 1, 3, 5, 7, 9, 11, and 13 kPa, were designed. The WST was inversely proportional to soil water content, and the gravimetric soil water content was maintained in the range of 14.23%-42.32%. With increasing WST, the leaf net photosynthetic rate (P(n)) in different growth periods showed a parabolic trend, being higher when the WST was 7-11 kPa at initial flowering stage, and was 3-5 kPa at fruiting stage. The reason for the decreased P(n) at 9-13 kPa WST was stomatal limitation. Under 1-5 kPa WST, the actual photochemical efficiency (phi(PS II) had a high value, and the possibility of photo inhibition was small. Both the leaf transpiration rate and the chlorophyll content were positively correlated with leaf P(n) in different growth periods. Root growth and activity also had a parabolic trend with increasing WST. The maximum root dry mass and root activity happened at 7 kPa and 5 kPa WST, respectively. Our results indicated that a WST of 3-7 kPa was more profitable for the leaf photosynthesis and root growth of greenhouse cucumber.
Freezing-induced cellular and membrane dehydration in the presence of cryoprotective agents.
Akhoondi, Maryam; Oldenhof, Harriëtte; Sieme, Harald; Wolkers, Willem F
2012-09-01
FTIR and cryomicroscopy have been used to study mouse embryonic fibroblast cells (3T3) during freezing in the absence and presence of DMSO and glycerol. The results show that cell volume changes as observed by cryomicroscopy typically end at temperatures above -15°C, whereas membrane phase changes may continue until temperatures as low as -30°C. This implies that cellular dehydration precedes dehydration of the bound water surrounding the phospholipid head groups. Both DMSO and glycerol increase the membrane hydraulic permeability at subzero temperature and reduce the activation energy for water transport. Cryoprotective agents facilitate dehydration to continue at low subzero temperatures thereby decreasing the incidence of intracellular ice formation. The increased subzero membrane hydraulic permeability likely plays an important role in the cryoprotective action of DMSO and glycerol. In the presence of DMSO water permeability was found to be greater compared to that in the presence of glycerol. Two temperature regimes were identified in an Arrhenius plot of the membrane hydraulic permeability. The activation energy for water transport at temperature ranging from 0 to -10°C was found to be greater than that below -10°C. The non-linear Arrhenius behavior of Lp has been implemented in the water transport model to simulate cell volume changes during freezing. At a cooling rate of 1°C min(-1), ∼5% of the initial osmotically active water volume is trapped inside the cells at -30°C.
Finite Difference Formulation for Prediction of Water Pollution
NASA Astrophysics Data System (ADS)
Johari, Hanani; Rusli, Nursalasawati; Yahya, Zainab
2018-03-01
Water is an important component of the earth. Human being and living organisms are demand for the quality of water. Human activity is one of the causes of the water pollution. The pollution happened give bad effect to the physical and characteristic of water contents. It is not practical to monitor all aspects of water flow and transport distribution. So, in order to help people to access to the polluted area, a prediction of water pollution concentration must be modelled. This study proposed a one-dimensional advection diffusion equation for predicting the water pollution concentration transport. The numerical modelling will be produced in order to predict the transportation of water pollution concentration. In order to approximate the advection diffusion equation, the implicit Crank Nicolson is used. For the purpose of the simulation, the boundary condition and initial condition, the spatial steps and time steps as well as the approximations of the advection diffusion equation have been encoded. The results of one dimensional advection diffusion equation have successfully been used to predict the transportation of water pollution concentration by manipulating the velocity and diffusion parameters.
NASA Astrophysics Data System (ADS)
Saleth, R. Maria; Dinar, Ariel
2001-01-01
Utilizing both primary and secondary information pertaining to the water sector of Hyderabad City, India, this paper (1) evaluates the economics of various technically feasible supply augmentations options; (2) estimates the group-specific water demand and consumption response functions under alternative pricing behaviors; (3) calculates the net willingness to pay (NWTP, considered to be the value of raw water at source) of different user groups as derived from their respective price elasticities; (4) shows how inadequate the NWTP is to justify most supply augmentation options including intersectoral water transfers under the existing water rate structure; (5) argues that the economic and institutional conditions internal to urban water sector cannot justify an externally imposed water transfers, whether market-based or otherwise, as long as the water rate structure is inefficient and regressive; and (6) concludes by underlining the central role that the pricing option, both the level and structure, plays not only in activating a number of nonprice options but also in generating incentives for the emergence of new and the consolidation of existing institutional conditions needed to support economically rooted water transfers and conservation initiatives.
Selenium in Reservoir Sediment from the Republican River Basin
Juracek, Kyle E.; Ziegler, Andrew C.
1998-01-01
Reservoir sediment quality is an important environmental concern because sediment may act as both a sink and a source of water-quality constituents to the overlying water column and biota. Once in the food chain, sediment-derived constituents may pose an even greater concern due to bioaccumulation. An analysis of reservoir bottom sediment can provide historical information on sediment deposition as well as magnitudes and trends in constituents that may be related to changes in human activity in the basin. The assessment described in this fact sheet was initiated in 1997 by the U.S. Geological Survey (USGS), in cooperation with the Bureau of Reclamation (BOR), U.S. Department of the Interior, to determine if irrigation activities have affected selenium concentrations in reservoir sediment of the Republican River Basin of Colorado, Kansas, and Nebraska.
Weaver, D; Walker, L; Alcorn, D; Skinner, S
1994-05-01
Xeric-adaptation was studied during 28 days of total water deprivation (TWD) in Notomys alexis. Beyond 7 days, the initial reductions in body weight and increases in haematocrit, plasma renin and juxtaglomerular (JG) cell morphological activity returned to normal. Mus musculus showed similar changes at 7 days but could not be maintained thereafter. TWD decreased the blood pressure of Notomys but endogenous angiotensin and vasopressin did not support pressure to a greater extent than controls, as revealed by selective antagonists. The normal morphology of the JG apparatus in Notomys was similar to other rodents. Fluid volume and blood pressure maintenance during TWD in Notomys do not depend upon enhanced activities of the renin-angiotensin and antidiuretic hormonal systems.
NASA Astrophysics Data System (ADS)
Gillet, Virginie; McKay, Jennifer; Keremane, Ganesh
2014-11-01
In the Lower Limestone Coast, South Australia, a unique water allocation plan has been under consideration for several years. This plan is the first in Australia to consider forestry as a water affecting activity. Indeed, forestry plantations have a twofold impact on water-rainfall or aquifer recharge interception and direct extraction of groundwater in shallow water table areas-and alter the available water for irrigation as a result of the previous water budget. This paper examines how water is allocated across the competing requirements for water but also across the competing legal, economic and administrative scales embodied by the competing water users; and thus it also details the pre-judicial mechanism used to resolve the conflict over these competing scales. Qualitative and quantitative content analysis in Nvivo was applied to: (i) 180 local newspaper articles on the planning process, (ii) 65 submission forms filled in by the community during a public consultation on the draft water plan and (iii) 20 face-to-face interviews of keys stakeholders involved in the planning process. The social sustainability perspective taken in this study establishes the legal, economic and administrative competitive scales at stake in the conflict regarding water between forestry and irrigation. It also evidences the special feature of this paper, which is that to overcome these competitions and resolve the local conflict before judicial process, the water governance moved up in the administrative scale, from local/regional to State level. Initiated and initially prepared at regional level through the local Natural Resources Management Board, the water planning process was taken up to State level through the formation of an Interdepartmental Committee and the establishment of a Taskforce in charge of developing a policy. These were supported by an amendment of a State legislation on Natural Resources Management to manage the water impacts of forestry plantations.
Stephenson, Nathan L.; Peterson, Dave; Fagre, Daniel B.; Allen, Craig D.; McKenzie, Donald; Baron, Jill S.; O'Brian, Kelly
2007-01-01
Mountain ecosystems within our national parks and other protected areas provide valuable goods and services such as clean water, biodiversity conservation, and recreational opportunities, but their potential responses to expected climatic changes are inadequately understood. The Western Mountain Initiative (WMI) is a collaboration of scientists whose research focuses on understanding and predicting responses of western mountain ecosystems to climatic variability and change. It is a legacy of the Global Change Research Program initiated by the National Park Service (NPS) in 1991 and continued by the U.S. Geological Survey (USGS) to this day as part of the U.S. Climate Change Science Program (http://www.climatescience.gov/). All WMI scientists are active participants in CIRMOUNT, and seek to further its goals.
Further Development of Crack Growth Detection Techniques for US Test and Research Reactors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kohse, Gordon; Carpenter, David M.; Ostrovsky, Yakov
One of the key issues facing Light Water Reactors (LWRs) in extending lifetimes beyond 60 years is characterizing the combined effect of irradiation and water chemistry on material degradation and failure. Irradiation Assisted Stress Corrosion Cracking (IASCC), in which a crack propagates in a susceptible material under stress in an aggressive environment, is a mechanism of particular concern. Full understanding of IASCC depends on real time crack growth data acquired under relevant irradiation conditions. Techniques to measure crack growth in actively loaded samples under irradiation have been developed outside the US - at the Halden Boiling Water Reactor, for example.more » Several types of IASCC tests have also been deployed at the MITR, including passively loaded crack growth measurements and actively loaded slow strain rate tests. However, there is not currently a facility available in the US to measure crack growth on actively loaded, pre-cracked specimens in LWR irradiation environments. A joint program between the Idaho National Laboratory (INL) and the Massachusetts Institute of Technology (MIT) Nuclear Reactor Laboratory (NRL) is currently underway to develop and demonstrate such a capability for US test and research reactors. Based on the Halden design, the samples will be loaded using miniature high pressure bellows and a compact loading mechanism, with crack length measured in real time using the switched Direct Current Potential Drop (DCPD) method. The basic design and initial mechanical testing of the load system and implementation of the DCPD method have been previously reported. This paper presents the results of initial autoclave testing at INL and the adaptation of the design for use in the high pressure, high temperature water loop at the MITR 6 MW research reactor, where an initial demonstration is planned in mid-2015. Materials considerations for the high pressure bellows are addressed. Design modifications to the loading mechanism required by the size constraints of the MITR water loop are described. The safety case for operation of the high pressure gas-driven bellows mechanism is also presented. Key issues are the design and response of systems to limit gas flow in the event of a high pressure gas leak in the in-core autoclave. Integrity of the autoclave must be maintained and reactivity effects due to voiding of the loop coolant must be shown to be within the reactor technical specifications. The technical development of the crack growth monitor for application in the INL Advanced Test Reactor or the MITR can act as a template for adaptation of this technology in other reactors. (authors)« less
Su, Jun-feng; Shao, Si-cheng; Huang, Ting-lin; Ma, Fang; Zhang, Kai; Wen, Gang; Zheng, Sheng-chen
2016-01-01
Recently, algicidal bacteria have attracted attention as possible agents for the inhibition of algal water blooms. In this study, an aerobic denitrifying bacterium, R11, with high algicidal activity against the toxic Microcystis aeruginosa was isolated from lake sediments. Based on its physiological characteristics and 16S rRNA gene sequence, it was identified as Raoultella, indicating that the bacterium R11 has a good denitrifying ability at 30 °C and can reduce the concentration of nitrate-N completely within 36 h. Additionally, different algicidal characteristics against Microcystis aeruginosa were tested. The results showed that the initial bacterial cell density and algal cell densities strongly influence the removal rates of chlorophyll a. Algicidal activity increased with an increase in the bacterial cell density. With densities of bacterial culture at over 2.4 × 10(5) cell/mL, algicidal activity of up to 80% was obtained in 4 days. We have demonstrated that, with the low initial algal cell density (OD680 less than 0.220), the algicidal activity reached was higher than 90% after 6 days.
Vanraes, Patrick; Wardenier, Niels; Surmont, Pieter; Lynen, Frederic; Nikiforov, Anton; Van Hulle, Stijn W H; Leys, Christophe; Bogaerts, Annemie
2018-07-15
A falling film dielectric barrier discharge (DBD) plasma reactor combined with adsorption on activated carbon textile material was optimized to minimize the formation of hazardous oxidation by-products from the treatment of persistent pesticides (alachlor, diuron and isoproturon) in water. The formation of by-products and the reaction mechanism was investigated by HPLC-TOF-MS. The maximum concentration of each by-product was at least two orders of magnitude below the initial pesticide concentration, during the first 10 min of treatment. After 30 min of treatment, the individual by-product concentrations had decreased to values of at least three orders of magnitude below the initial pesticide concentration. The proposed oxidation pathways revealed five main oxidation steps: dechlorination, dealkylation, hydroxylation, addition of a double-bonded oxygen and nitrification. The latter is one of the main oxidation mechanisms of diuron and isoproturon for air plasma treatment. To our knowledge, this is the first time that the formation of nitrificated intermediates is reported for the plasma treatment of non-phenolic compounds. Copyright © 2018 Elsevier B.V. All rights reserved.
Fifty years of solid-phase extraction in water analysis--historical development and overview.
Liska, I
2000-07-14
The use of an appropriate sample handling technique is a must in an analysis of organic micropollutants in water. The efforts to use a solid phase for the recovery of analytes from a water matrix prior to their detection have a long history. Since the first experimental trials using activated carbon filters that were performed 50 years ago, solid-phase extraction (SPE) has become an established sample preparation technique. The initial experimental applications of SPE resulted in widespread use of this technique in current water analysis and also to adoption of SPE into standardized analytical methods. During the decades of its evolution, chromatographers became aware of the advantages of SPE and, despite many innovations that appeared in the last decade, new SPE developments are still expected in the future. A brief overview of 50 years of the history of the use of SPE in organic trace analysis of water is given in presented paper.
Supercritical waste oxidation of aqueous wastes
NASA Technical Reports Server (NTRS)
Modell, M.
1986-01-01
For aqueous wastes containing 1 to 20 wt% organics, supercritical water oxidation is less costly than controlled incineration or activated carbon treatment and far more efficient than wet oxidation. Above the critical temperature (374 C) and pressure (218 atm) of water, organic materials and gases are completely miscible with water. In supercritical water oxidation, organics, air and water are brought together in a mixture at 250 atm and temperatures above 400 C. Organic oxidation is initiated spontaneously at these conditions. The heat of combustion is released within the fluid and results in a rise in temperature 600 to 650 C. Under these conditions, organics are destroyed rapidly with efficiencies in excess of 99.999%. Heteroatoms are oxidized to acids, which can be precipitated out as salts by adding a base to the feed. Examples are given for process configurations to treat aqueous wastes with 10 and 2 wt% organics.
Petridis, Antonios; Therios, Ioannis; Samouris, Georgios; Koundouras, Stefanos; Giannakoula, Anastasia
2012-11-01
The olive tree (Olea europaea L.) is often exposed to severe water stress during the summer season. In this study, we determined the changes in total phenol content, oleuropein and hydroxytyrosol in the leaves of four olive cultivars ('Gaidourelia', 'Kalamon', 'Koroneiki' and 'Megaritiki') grown under water deficit conditions for two months. Furthermore, we investigated the photosynthetic performance in terms of gas exchange and chlorophyll a fluorescence, as well as malondialdehyde content and antioxidant activity. One-year-old self-rooted plants were subjected to three irrigation treatments that received a water amount equivalent to 100% (Control, C), 66% (Field Capacity 66%, FC(66)) and 33% (Field Capacity 33%, FC(33)) of field capacity. Measurements were conducted 30 and 60 days after the initiation of the experiment. Net CO(2) assimilation rate, stomatal conductance and F(v)/F(m) ratio decreased only in FC(33) plants. Photosynthetic rate was reduced mainly due to stomatal closure, but damage to PSII also contributed to this decrease. Water stress induced the accumulation of phenolic compounds, especially oleuropein, suggesting their role as antioxidants. Total phenol content increased in FC(33) treatment and oleuropein presented a slight increase in FC(66) and a sharper one in FC(33) treatment. Hydroxytyrosol showed a gradual decrease as water stress progressed. Malondialdehyde (MDA) content increased due to water stress, mostly after 60 days, while antioxidant activity increased for all cultivars in the FC(33) treatment. 'Gaidourelia' could be considered as the most tolerant among the tested cultivars, showing higher phenolic concentration and antioxidant activity and lower lipid peroxidation and photochemical damage after two months of water stress. The results indicated that water stress affected olive tree physiological and biochemical parameters and magnitude of this effect depended on genotype, the degree of water limitation and duration of treatment. However, the severity as well as the duration of water stress might exceed antioxidant capacity, since MDA levels and subsequent oxidative damage increased after two months of water deficit. Copyright © 2012 Elsevier Masson SAS. All rights reserved.
Lindh, Markus V; Figueroa, Daniela; Sjöstedt, Johanna; Baltar, Federico; Lundin, Daniel; Andersson, Agneta; Legrand, Catherine; Pinhassi, Jarone
2015-01-01
Anthropogenically induced changes in precipitation are projected to generate increased river runoff to semi-enclosed seas, increasing loads of terrestrial dissolved organic matter and decreasing salinity. To determine how bacterial community structure and functioning adjust to such changes, we designed microcosm transplant experiments with Baltic Proper (salinity 7.2) and Bothnian Sea (salinity 3.6) water. Baltic Proper bacteria generally reached higher abundances than Bothnian Sea bacteria in both Baltic Proper and Bothnian Sea water, indicating higher adaptability. Moreover, Baltic Proper bacteria growing in Bothnian Sea water consistently showed highest bacterial production and beta-glucosidase activity. These metabolic responses were accompanied by basin-specific changes in bacterial community structure. For example, Baltic Proper Pseudomonas and Limnobacter populations increased markedly in relative abundance in Bothnian Sea water, indicating a replacement effect. In contrast, Roseobacter and Rheinheimera populations were stable or increased in abundance when challenged by either of the waters, indicating an adjustment effect. Transplants to Bothnian Sea water triggered the initial emergence of particular Burkholderiaceae populations, and transplants to Baltic Proper water triggered Alteromonadaceae populations. Notably, in the subsequent re-transplant experiment, a priming effect resulted in further increases to dominance of these populations. Correlated changes in community composition and metabolic activity were observed only in the transplant experiment and only at relatively high phylogenetic resolution. This suggested an importance of successional progression for interpreting relationships between bacterial community composition and functioning. We infer that priming effects on bacterial community structure by natural episodic events or climate change induced forcing could translate into long-term changes in bacterial ecosystem process rates.
Lindh, Markus V.; Figueroa, Daniela; Sjöstedt, Johanna; Baltar, Federico; Lundin, Daniel; Andersson, Agneta; Legrand, Catherine; Pinhassi, Jarone
2015-01-01
Anthropogenically induced changes in precipitation are projected to generate increased river runoff to semi-enclosed seas, increasing loads of terrestrial dissolved organic matter and decreasing salinity. To determine how bacterial community structure and functioning adjust to such changes, we designed microcosm transplant experiments with Baltic Proper (salinity 7.2) and Bothnian Sea (salinity 3.6) water. Baltic Proper bacteria generally reached higher abundances than Bothnian Sea bacteria in both Baltic Proper and Bothnian Sea water, indicating higher adaptability. Moreover, Baltic Proper bacteria growing in Bothnian Sea water consistently showed highest bacterial production and beta-glucosidase activity. These metabolic responses were accompanied by basin-specific changes in bacterial community structure. For example, Baltic Proper Pseudomonas and Limnobacter populations increased markedly in relative abundance in Bothnian Sea water, indicating a replacement effect. In contrast, Roseobacter and Rheinheimera populations were stable or increased in abundance when challenged by either of the waters, indicating an adjustment effect. Transplants to Bothnian Sea water triggered the initial emergence of particular Burkholderiaceae populations, and transplants to Baltic Proper water triggered Alteromonadaceae populations. Notably, in the subsequent re-transplant experiment, a priming effect resulted in further increases to dominance of these populations. Correlated changes in community composition and metabolic activity were observed only in the transplant experiment and only at relatively high phylogenetic resolution. This suggested an importance of successional progression for interpreting relationships between bacterial community composition and functioning. We infer that priming effects on bacterial community structure by natural episodic events or climate change induced forcing could translate into long-term changes in bacterial ecosystem process rates. PMID:25883589
CLEANER-Hydrologic Observatory Joint Science Plan
NASA Astrophysics Data System (ADS)
Welty, C.; Dressler, K.; Hooper, R.
2005-12-01
The CLEANER-Hydrologic Observatory* initiative is a distributed network for research on complex environmental systems that focuses on the intersecting water-related issues of both the CUAHSI and CLEANER communities. It emphasizes research on the nation's water resources related to human-dominated natural and built environments. The network will be comprised of: interacting field sites with an integrated cyberinfrastructure; a centralized technical resource staff and management infrastructure to support interdisciplinary research through data collection from advanced sensor systems, data mining and aggregation from multiple sources and databases; cyber-tools for analysis, visualization, and predictive multi-scale modeling that is dynamically driven. As such, the network will transform 21st century workforce development in the water-related intersection of environmental science and engineering, as well as enable substantial educational and engagement opportunities for all age levels. The scientific goal and strategic intent of the CLEANER-Hydrologic Observatory Network is to transform our understanding of the earth's water cycle and associated biogeochemical cycles across spatial and temporal scales-enabling quantitative forecasts of critical water-related processes, especially those that affect and are affected by human activities. This strategy will develop scientific and engineering tools that will enable more effective adaptive approaches for resource management. The need for the network is based on three critical deficiencies in current abilities to understand large-scale environmental processes and thereby develop more effective management strategies. First we lack basic data and the infrastructure to collect them at the needed resolution. Second, we lack the means to integrate data across scales from different media (paper records, electronic worksheets, web-based) and sources (observations, experiments, simulations). Third, we lack sufficiently accurate modeling and decision-support tools to predict the underlying processes or subsequently forecast the effects of different management strategies. Water is a critical driver for the functioning of all ecosystems and development of human society, and it is a key ingredient for the success of industry, agriculture and, national economy. CLEANER-Hydrologic Observatories will foster cutting-edge science and engineering research that addresses major national needs (public and governmental) related to water and include, for example: (i) water resource problems, such as impaired surface waters, contaminated ground water, water availability for human use and ecosystem needs, floods and floodplain management, urban storm water, agricultural runoff, and coastal hypoxia; (ii) understanding environmental impacts on public health; (iii) achieving a balance of economic and environmental sustainability; (iv) reversing environmental degradation; and (v) protecting against chemical and biological threats. CLEANER (Collaborative Large-scale Engineering Analysis Network for Environmental Research) is an ENG initiative; the Hydrologic Observatory Network is GEO initiative through CUAHSI (Consortium of Universities for the Advancement of Hydrologic Science, Inc.). The two initiatives were merged into a joint, bi-directorate program in December 2004.
Neuhouser, Marian L; Di, Chongzhi; Tinker, Lesley F; Thomson, Cynthia; Sternfeld, Barbara; Mossavar-Rahmani, Yasmin; Stefanick, Marcia L; Sims, Stacy; Curb, J David; Lamonte, Michael; Seguin, Rebecca; Johnson, Karen C; Prentice, Ross L
2013-03-15
We used a biomarker of activity-related energy expenditure (AREE) to assess measurement properties of self-reported physical activity and to determine the usefulness of AREE regression calibration equations in the Women's Health Initiative. Biomarker AREE, calculated as the total energy expenditure from doubly labeled water minus the resting energy expenditure from indirect calorimetry, was assessed in 450 Women's Health Initiative participants (2007-2009). Self-reported AREE was obtained from the Arizona Activity Frequency Questionnaire (AAFQ), the 7-Day Physical Activity Recall (PAR), and the Women's Health Initiative Personal Habits Questionnaire (PHQ). Eighty-eight participants repeated the protocol 6 months later. Reporting error, measured as log(self-report AREE) minus log(biomarker AREE), was regressed on participant characteristics for each instrument. Body mass index was associated with underreporting on the AAFQ and PHQ but overreporting on PAR. Blacks and Hispanics underreported physical activity levels on the AAFQ and PAR, respectively. Underreporting decreased with age for the PAR and PHQ. Regressing logbiomarker AREE on logself-reported AREE revealed that self-report alone explained minimal biomarker variance (R(2) = 7.6, 4.8, and 3.4 for AAFQ, PAR, and PHQ, respectively). R(2) increased to 25.2, 21.5, and 21.8, respectively, when participant characteristics were included. Six-month repeatability data adjusted for temporal biomarker variation, improving R(2) to 79.4, 67.8, and 68.7 for AAFQ, PAR, and PHQ, respectively. Calibration equations "recover" substantial variation in average AREE and valuably enhance AREE self-assessment.
Huang, Yuanxing; Cui, Chenchen; Zhang, Daofang; Li, Liang; Pan, Ding
2015-01-01
Iron-loaded activated carbon was prepared and used as catalyst in heterogeneous catalytic ozonation of dibutyl phthalate (DBP). The catalytic activity of iron-loaded activated carbon was investigated under various conditions and the mechanisms of DBP removal were deduced. Characterization of catalyst indicated that the iron loaded on activated carbon was mainly in the form of goethite, which reduced its surface area, pore volume and pore diameter. The presence of metals on activated carbon positively contributed to its catalytic activity in ozonation of DBP. Iron loading content of 15% and initial water pH of 8 achieved highest DBP removal among all the tried conditions. Catalyst dosage of 10 mg L(-1) led to approximately 25% of increase in DBP (initial concentration 2 mg L(-1)) removal in 60 min as compared with ozone alone, and when catalyst dosage increased to 100 mg L(-1), the DBP removal was further improved by 46%. Based on a comparison of reaction rates for direct and indirect transformation of DBP, the increased removal of DBP in this study likely occurred via transformation of ozone into hydroxyl radicals on the catalyst surface. Copyright © 2014 Elsevier Ltd. All rights reserved.
GEWEX America Prediction Project (GAPP) Science and Implementation Plan
NASA Technical Reports Server (NTRS)
2004-01-01
The purpose of this Science and Implementation Plan is to describe GAPP science objectives and the activities required to meet these objectives, both specifically for the near-term and more generally for the longer-term. The GEWEX Americas Prediction Project (GAPP) is part of the Global Energy and Water Cycle Experiment (GEWEX) initiative that is aimed at observing, understanding and modeling the hydrological cycle and energy fluxes at various time and spatial scales. The mission of GAPP is to demonstrate skill in predicting changes in water resources over intraseasonal-to-interannual time scales, as an integral part of the climate system.
High Throughput Determination of VX in Drinking Water by ...
Methods Report This document provides the standard operating procedure for determination of the chemical warfare agent VX (O-Ethyl S-2-Diisopropylamino-Ethyl Methylphosphonothioate) in drinking water by isotope dilution liquid chromatography tandem mass spectrometer (LC/MS/MS). This method was adapted from one that was initially developed by the Centers for Disease Control and Prevention, in the National Center for Environmental Health for the determination and quantitation of VX in aqueous matrices. This method is designed to support site-specific cleanup goals of environmental remediation activities following a homeland security incident involving this analyte.
The U.S. Geological Survey Drinking Water Initiative
,
1997-01-01
Safe drinking-water supplies are critical to maintaining and preserving public health. Although the Nation's drinking water is generally safe, natural and introduced contaminants in water supplies throughout the country have adversely affected human health. This new U.S. Geological Survey (USGS) initiative will provide information on the vulnerability of water supplies to be used by water-supply and regulatory agencies who must balance water-supply protection with the wise use of public funds. Using the results of the initiative, they will be better able to focus on the supplies most at risk and the variability of contaminants of most concern, and so address the mandates of the Safe Drinking Water Act. With its store of geologic, hydrologic, and land use and land cover data and its network of information in every State, the USGS can help to identify potential sources of contamination, delineate source areas, determine the vulnerability of waters to potential contamination, and evaluate strategies being used to protect source waters in light of the scientific information available. Many recent and ongoing studies by the USGS concern drinking-water issues. This fact sheet highlights four particular studies begun under the Drinking Water Initiative.
Failor, K C; Schmale, D G; Vinatzer, B A; Monteil, C L
2017-12-01
A growing body of circumstantial evidence suggests that ice nucleation active (Ice + ) bacteria contribute to the initiation of precipitation by heterologous freezing of super-cooled water in clouds. However, little is known about the concentration of Ice + bacteria in precipitation, their genetic and phenotypic diversity, and their relationship to air mass trajectories and precipitation chemistry. In this study, 23 precipitation events were collected over 15 months in Virginia, USA. Air mass trajectories and water chemistry were determined and 33 134 isolates were screened for ice nucleation activity (INA) at -8 °C. Of 1144 isolates that tested positive during initial screening, 593 had confirmed INA at -8 °C in repeated tests. Concentrations of Ice + strains in precipitation were found to range from 0 to 13 219 colony forming units per liter, with a mean of 384±147. Most Ice + bacteria were identified as members of known and unknown Ice + species in the Pseudomonadaceae, Enterobacteriaceae and Xanthomonadaceae families, which nucleate ice employing the well-characterized membrane-bound INA protein. Two Ice + strains, however, were identified as Lysinibacillus, a Gram-positive genus not previously known to include Ice + bacteria. INA of the Lysinibacillus strains is due to a nanometer-sized molecule that is heat resistant, lysozyme and proteinase resistant, and secreted. Ice + bacteria and the INA mechanisms they employ are thus more diverse than expected. We discuss to what extent the concentration of culturable Ice + bacteria in precipitation and the identification of a new heat-resistant biological INA mechanism support a role for Ice + bacteria in the initiation of precipitation.
Role of peripheral reflexes in the initiation of the esophageal phase of swallowing
Medda, Bidyut K.; Babaei, Arash; Shaker, Reza
2014-01-01
The aim of this study was to determine the role of peripheral reflexes in initiation of the esophageal phase of swallowing. In 10 decerebrate cats, we recorded electromyographic responses from the pharynx, larynx, and esophagus and manometric data from the esophagus. Water (1–5 ml) was injected into the nasopharynx to stimulate swallowing, and the timing of the pharyngeal and esophageal phases of swallowing was quantified. The effects of transection or stimulation of nerves innervating the esophagus on swallowing and esophageal motility were tested. We found that the percent occurrence of the esophageal phase was significantly related to the bolus size. While the time delays between the pharyngeal and esophageal phases of swallowing were not related to the bolus size, they were significantly more variable than the time delays between activation of muscles within the pharyngeal phase. Transection of the sensory innervation of the proximal cervical esophagus blocked or significantly inhibited activation of the esophageal phase in the proximal cervical esophagus. Peripheral electrical stimulation of the pharyngoesophageal nerve activated the proximal cervical esophagus, peripheral electrical stimulation of the vagus nerve activated the distal cervical esophagus, and peripheral electrical stimulation the superior laryngeal nerve (SLN) had no effect on the esophagus. Centripetal electrical stimulation of the SLN activated the cervical component of the esophageal phase of swallowing before initiation of the pharyngeal phase. Therefore, we concluded that initiation of the esophageal phase of swallowing depends on feedback from peripheral reflexes acting through the SLN, rather than a central program. PMID:24557762
NASA Astrophysics Data System (ADS)
Gardiner, L. S.; Hatheway, B.; Rogers, J. D.; Casey, J. G.; Lackey, G.; Birdsell, D.; Brown, K.; Polmear, M.; Capps, S.; Rosenblum, J.; Sitterley, K.; Hafich, K. A.; Hannigan, M.; Knight, D.
2015-12-01
The AirWaterGas Teacher Professional Development Program, run by the UCAR Center for Science Education, brought together scientists and secondary science teachers in a yearlong program culminating in the development of curriculum related to the impacts of unconventional oil and gas development. Graduate students and research scientists taught about their research area and its relationship to oil and gas throughout three online courses during the 2015-16 school year, during which teachers and scientists engaged in active online discussions. Topics covered included climate change, oil and gas infrastructure, air quality, water quality, public health, and practices and policies relating to oil and gas development. Building upon their initial online interactions and a face-to-face meeting in March, teachers were paired with appropriate AirWaterGas team members as science advisors during a month-long residency in Boulder, Colorado. During the residency, graduate student scientists provided resources and feedback as teachers developed curriculum projects in collaboration with each other and UCAR science educators. Additionally, teachers and AirWaterGas researchers shared experiences on an oil and gas well site tour, and a short course on drilling methods with a drilling rig simulator. Here, we share lessons learned from both sides of the aisle, including initial results from program assessment conducted with the participating teachers.
Interaction of mining activities and aquatic environment: A review from Greek mine sites.
NASA Astrophysics Data System (ADS)
Vasileiou, Eleni; Kallioras, Andreas
2016-04-01
In Greece a significant amount of mineral and ore deposits have been recorded accompanied by large industrial interest and a long mining history. Today many active and/or abandoned mine sites are scattered within the country; while mining activities take place in different sites for exploiting various deposits (clay, limestone, slate, gypsum, kaolin, mixed sulphide ores (lead, zinc, olivine, pozzolan, quartz lignite, nickel, magnesite, aluminum, bauxite, gold, marbles etc). The most prominent recent ones are: (i) the lignite exploitation that is extended in the area of Ptolemais (Western Macedonia) and Megalopolis (Central Peloponnese); and (ii) the major bauxite deposits located in central Greece within the Parnassos-Ghiona geotectonic zone and on Euboea Island. In the latter area, significant ores of magnesite were exploited and mixed sulphide ores. Centuries of intensive mining exploitation and metallurgical treatment of lead-silver deposits in Greece, have also resulted in significant abandoned sites, such as the one in Lavrion. Mining activities in Lavrio, were initiated in ancient times and continued until the 1980s, resulting in the production of significant waste stockpiles deposited in the area, crucial for the local water resources. Ιn many mining sites, environmental pressures are also recorded after the mine closure to the aquatic environment, as the surface waters flow through waste dump areas and contaminated soils. This paper aims to the geospatial visualization of the mining activities in Greece, in connection to their negative (surface- and/or ground-water pollution; overpumping due to extensive dewatering practices) or positive (enhanced groundwater recharge; pit lakes, improvement of water budget in the catchment scale) impacts on local water resources.
Samarghandi, Mohammad Reza; Khiadani, Mehdi; Foroughi, Maryam; Zolghadr Nasab, Hasan
2016-01-01
Adsorption by activated alumina is considered to be one of the most practiced methods for defluoridation of freshwater. This study was conducted, therefore, to investigate the effect of natural organic matters (NOMs) on the removal of fluoride by activated alumina using response surface methodology. To the authors' knowledge, this has not been previously investigated. Physico-chemical characterization of the alumina was determined by scanning electron microscope (SEM), Brunauer-Emmett-Teller (BET), Fourier transform infrared spectroscopy (FTIR), X-ray fluorescence (XRF), and X-ray diffractometer (XRD). Response surface methodology (RSM) was applied to evaluate the effect of single and combined parameters on the independent variables such as the initial concentration of fluoride, NOMs, and pH on the process. The results revealed that while presence of NOM and increase of pH enhance fluoride adsorption on the activated alumina, initial concentration of fluoride has an adverse effect on the efficiency. The experimental data were analyzed and found to be accurately and reliably fitted to a second-order polynomial model. Under optimum removal condition (fluoride concentration 20 mg/L, NOM concentration 20 mg/L, and pH 7) with a desirability value of 0.93 and fluoride removal efficiency of 80.6%, no significant difference was noticed with the previously reported sequence of the co-exiting ion affinity to activated alumina for fluoride removal. Moreover, aluminum residual was found to be below the recommended value by the guideline for drinking water. Also, the increase of fluoride adsorption on the activated alumina, as NOM concentrations increase, could be due to the complexation between fluoride and adsorbed NOM. Graphical abstract ᅟ.
2014-01-01
Background Low cost 2,4-Dichlorophenolyxacetic acid (2,4-D) widely used in controlling broad-leafed weeds is frequently detected in water resources. The main objectives of this research were focused on evaluating the feasibility of using granular activated carbon modified with acid to remove 2,4-D from aqueous phase, determining its removal efficiency and assessing the adsorption kinetics. Results The present study was conducted at bench-scale method. The influence of different pH (3–9), the effect of contact time (3–90 min), the amount of adsorbent (0.1-0.4 g), and herbicide initial concentration (0.5-3 ppm) on 2,4-D removal efficiency by the granular activated carbon were investigated. Based on the data obtained in the present study, pH of 3 and contact time of 60 min is optimal for 2,4-D removal. 2,4-D reduction rate increased rapidly by the addition of the adsorbent and decreased by herbicide initial concentration (63%). The percent of 2,4-D reduction were significantly enhanced by decreasing pH and increasing the contact time. The adsorption of 2,4-D onto the granular activated carbon conformed to Langmuir and Freundlich models, but was best fitted to type II Langmuir model (R2 = 0.999). The second order kinetics was the best for the adsorption of 2,4-D by modified granular activated carbon with R2 > 0.99. Regression analysis showed that all of the variables in the process have been statistically significant effect (p < 0.001). Conclusions In conclusion, granular activated carbon modified with acid is an appropriate method for reducing the herbicide in the polluted water resources. PMID:24410737
Dehghani, Mansooreh; Nasseri, Simin; Karamimanesh, Mojtaba
2014-01-10
Low cost 2,4-Dichlorophenolyxacetic acid (2,4-D) widely used in controlling broad-leafed weeds is frequently detected in water resources. The main objectives of this research were focused on evaluating the feasibility of using granular activated carbon modified with acid to remove 2,4-D from aqueous phase, determining its removal efficiency and assessing the adsorption kinetics. The present study was conducted at bench-scale method. The influence of different pH (3-9), the effect of contact time (3-90 min), the amount of adsorbent (0.1-0.4 g), and herbicide initial concentration (0.5-3 ppm) on 2,4-D removal efficiency by the granular activated carbon were investigated. Based on the data obtained in the present study, pH of 3 and contact time of 60 min is optimal for 2,4-D removal. 2,4-D reduction rate increased rapidly by the addition of the adsorbent and decreased by herbicide initial concentration (63%). The percent of 2,4-D reduction were significantly enhanced by decreasing pH and increasing the contact time. The adsorption of 2,4-D onto the granular activated carbon conformed to Langmuir and Freundlich models, but was best fitted to type II Langmuir model (R2 = 0.999). The second order kinetics was the best for the adsorption of 2,4-D by modified granular activated carbon with R2 > 0.99. Regression analysis showed that all of the variables in the process have been statistically significant effect (p < 0.001). In conclusion, granular activated carbon modified with acid is an appropriate method for reducing the herbicide in the polluted water resources.
Prioritizing human pharmaceuticals for ecological risks in the freshwater environment of Korea.
Ji, Kyunghee; Han, Eun Jeong; Back, Sunhyoung; Park, Jeongim; Ryu, Jisung; Choi, Kyungho
2016-04-01
Pharmaceutical residues are potential threats to aquatic ecosystems. Because more than 3000 active pharmaceutical ingredients (APIs) are in use, identifying high-priority pharmaceuticals is important for developing appropriate management options. Priority pharmaceuticals may vary by geographical region, because their occurrence levels can be influenced by demographic, societal, and regional characteristics. In the present study, the authors prioritized human pharmaceuticals of potential ecological risk in the Korean water environment, based on amount of use, biological activity, and regional hydrologic characteristics. For this purpose, the authors estimated the amounts of annual production of 695 human APIs in Korea. Then derived predicted environmental concentrations, using 2 approaches, to develop an initial candidate list of target pharmaceuticals. Major antineoplastic drugs and hormones were added in the initial candidate list regardless of their production amount because of their high biological activity potential. The predicted no effect concentrations were derived for those pharmaceuticals based on ecotoxicity information available in the literature or by model prediction. Priority lists of human pharmaceuticals were developed based on ecological risks and availability of relevant information. Those priority APIs identified include acetaminophen, clarithromycin, ciprofloxacin, ofloxacin, metformin, and norethisterone. Many of these pharmaceuticals have been neither adequately monitored nor assessed for risks in Korea. Further efforts are needed to improve these lists and to develop management decisions for these compounds in Korean water. © 2015 SETAC.
Calvo-Polanco, Monica; Sánchez-Romera, Beatriz; Aroca, Ricardo
2014-01-01
Plants respond to salinity by altering their physiological parameters in order to maintain their water balance. The reduction in root hydraulic conductivity is one of the first responses of plants to the presence of salt in order to minimize water stress. Although its regulation has been commonly attributed to aquaporins activity, osmotic adjustment and the toxic effect of Na+ and Cl− have also a main role in the whole process. We studied the effects of 30 mM NaCl on Phaseolus vulgaris plants after 9 days and found different responses in root hydraulic conductivity over-time. An initial and final reduction of root hydraulic conductivity, stomatal conductance, and leaf water potential in response to NaCl was attributed to an initial osmotic shock after 1 day of treatment, and to the initial symptoms of salt accumulation within the plant tissues after 9 days of treatment. After 6 days of NaCl treatment, the increase in root hydraulic conductivity to the levels of control plants was accompanied by an increase in root fructose content, and with the intracellular localization of root plasma membrane aquaporins (PIP) to cortex cells close to the epidermis and to cells surrounding xylem vessels. Thus, the different responses of bean plants to mild salt stress over time may be connected with root fructose accumulation, and intracellular localization of PIP aquaporins. PMID:24595059
Jiang, Xiaowu; Wu, Jian; Zhang, Lifen; Cheng, Zhenping; Zhu, Xiulin
2016-01-01
How to simply and efficiently separate and recycle catalyst has still been a constraint for the wide application of atom transfer radical polymerization (ATRP), especially for the polymerization systems with hydrophilic monomers because the polar functional groups may coordinate with transition metal salts, resulting in abundant catalyst residual in the resultant water-soluble polymers. In order to overcome this problem, a latent-biphasic system is developed, which can be successfully used for ATRP catalyst separation and recycling in situ for various kinds of hydrophilic monomers for the first time, such as poly(ethylene glycol) monomethyl ether methacrylate (PEGMA), 2-hydroxyethyl methacrylate (HEMA), 2-(dimethylamino)ethyl methacrylate (DMAEMA), N,N-dimethyl acrylamide (DMA), and N-isopropylacrylamide (NIPAM). Herein, random copolymer of octadecyl acrylate (OA), MA-Ln (2-(bis(pyridin-2-ylmethyl)amino)ethyl acrylate), and POA-ran-P(MA-Ln) is designed as the macroligand, and heptane/ethanol is selected as the biphasic solvent. Copper(II) bromide (CuBr2 ) is employed as the catalyst, PEG-bound 2-bromo-2-methylpropanoate (PEG350 -Br) as the water-soluble ATRP initiator and 2,2'-azobis(isobutyronitrile) (AIBN) as the azo-initiator to establish an ICAR (initiators for continuous activator regeneration) ATRP system. Importantly, well-defined water-soluble polymers are obtained even though the recyclable catalyst is used for sixth times. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Research on the water-entry attitude of a submersible aircraft.
Xu, BaoWei; Li, YongLi; Feng, JinFu; Hu, JunHua; Qi, Duo; Yang, Jian
2016-01-01
The water entry of a submersible aircraft, which is transient, highly coupled, and nonlinear, is complicated. After analyzing the mechanics of this process, the change rate of every variable is considered. A dynamic model is build and employed to study vehicle attitude and overturn phenomenon during water entry. Experiments are carried out and a method to organize experiment data is proposed. The accuracy of the method is confirmed by comparing the results of simulation of dynamic model and experiment under the same condition. Based on the analysis of the experiment and simulation, the initial attack angle and angular velocity largely influence the water entry of vehicle. Simulations of water entry with different initial and angular velocities are completed, followed by an analysis, and the motion law of vehicle is obtained. To solve the problem of vehicle stability and control during water entry, an approach is proposed by which the vehicle sails with a zero attack angle after entering water by controlling the initial angular velocity. With the dynamic model and optimization research algorithm, calculation is performed, and the optimal initial angular velocity of water-entry is obtained. The outcome of simulations confirms that the effectiveness of the propose approach by which the initial water-entry angular velocity is controlled.
Woolley, Daniel G; Mantini, Dante; Coxon, James P; D'Hooge, Rudi; Swinnen, Stephan P; Wenderoth, Nicole
2015-04-01
Recent work has demonstrated that functional connectivity between remote brain regions can be modulated by task learning or the performance of an already well-learned task. Here, we investigated the extent to which initial learning and stable performance of a spatial navigation task modulates functional connectivity between subregions of hippocampus and striatum. Subjects actively navigated through a virtual water maze environment and used visual cues to learn the position of a fixed spatial location. Resting-state functional magnetic resonance imaging scans were collected before and after virtual water maze navigation in two scan sessions conducted 1 week apart, with a behavior-only training session in between. There was a large significant reduction in the time taken to intercept the target location during scan session 1 and a small significant reduction during the behavior-only training session. No further reduction was observed during scan session 2. This indicates that scan session 1 represented initial learning and scan session 2 represented stable performance. We observed an increase in functional connectivity between left posterior hippocampus and left dorsal caudate that was specific to scan session 1. Importantly, the magnitude of the increase in functional connectivity was correlated with offline gains in task performance. Our findings suggest cooperative interaction occurs between posterior hippocampus and dorsal caudate during awake rest following the initial phase of spatial navigation learning. Furthermore, we speculate that the increase in functional connectivity observed during awake rest after initial learning might reflect consolidation-related processing. © 2014 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Takano, Yoshinori; Yano, Hajime; Sekine, Yasuhito; Funase, Ryu; Takai, Ken
2014-04-01
Planetary protection has been recognized as one of the most important issues in sample return missions that may host certain living forms and biotic signatures in a returned sample. This paper proposes an initiative of sample capsule retrieval and onboard biosafety protocol in international waters for future biological and organic constituent missions to bring samples from possible habitable bodies in the solar system. We suggest the advantages of international waters being outside of national jurisdiction and active regions of human and traffic affairs on the condition that we accept the Outer Space Treaty. The scheme of onboard biological quarantine definitely reduces the potential risk of back-contamination of extraterrestrial materials to the Earth.
You, Fang; Dalal, Ram; Huang, Longbin
2018-08-01
Field evidence has been scarce about soil (or technosol) formation and direct phytostabilization of base metal mine tailings under field conditions. The present study evaluated key attributes of soil formation in weathered and neutral Cu-Pb-Zn tailings subject to organic amendment (WC: woodchips) and colonization of pioneer native plant species (mixed native woody and grass plant species) in a 2.5-year field trial under subtropical and semi-arid climatic conditions. Key soil indicators of engineered soil formation process were characterized, including organic carbon fractions, aggregation, microbial community and key enzymatic activities. The majority (64-87%) of the OC was stabilized in microaggregate or organo-mineral complexes in the amended tailings. The levels of OC and water soluble OC were elevated by 2-3 folds across the treatments, with the highest level in the treatment of WC and plant colonization (WC+P). Specifically, the WC+P treatment increased the proportion of water stable macroaggregates. Plants further contributed to the N rich organic matter in the tailings, favouring organo-mineral interactions and organic stabilization. Besides, the plants played a major role in boosting microbial biomass and activities in the treated tailings. WC and plants enhanced the contents of organic carbon (OC) associated with aggregates (e.g., physically protected OC), formation of water-stable aggregates (e.g., micro and macroaggregates), chemical buffering capacity (e.g., cation exchange capacity). Microbial community and enzymatic activities were also stimulated in the amended tailings. The present results showed that the formation of functional technosol was initiated in the eco-engineered and weathered Cu-Pb-Zn tailings under field conditions for direct phytostabilization. Copyright © 2018 Elsevier Ltd. All rights reserved.
Cechin, Inês; Corniani, Natália; de Fátima Fumis, Terezinha; Cataneo, Ana Catarina
2008-07-01
The effects and interaction of drought and UV-B radiation were studied in sunflower plants (Helianthus annuus L. var. Catissol-01), growing in a greenhouse under natural photoperiod conditions. The plants received approximately 1.7 W m(-2) (controls) or 8.6 W m(-2) (+UV-B) of UV-B radiation for 7 h per day. The UV-B and water stress treatments started 18 days after sowing. After a period of 12 days of stress, half of the water-stressed plants (including both UV-B irradiated or non-irradiated) were rehydrated. Both drought and UV-B radiation treatments resulted in lower shoot dry matter per plant, but there was no significant interaction between the two treatments. Water stress and UV-B radiation reduced photosynthesis, stomatal conductance and transpiration. However, the amplitude of the effects of both stressors was dependent on the interactions. This resulted in alleviation of the negative effect of drought on photosynthesis and transpiration by UV-B radiation as the water stress intensified. Intercelluar CO(2) concentration was initially reduced in all treatments compared to control plants but it increased with time. Photosynthetic pigments were not affected by UV-B radiation. Water stress reduced photosynthetic pigments only under high UV-B radiation. The decrease was more accentuated for chlorophyll a than for chlorophyll b. As a measure for the maximum efficiency of photosystem II in darkness F (v)/F (m) was used, which was not affected by drought stress but initially reduced by UV-B radiation. Independent of water supply, UV-B radiation increased the activity of pirogalol peroxidase and did not increase the level of malondialdehyde. On the other hand, water stress did not alter the activity of pirogalol peroxidase and caused membrane damage as assessed by lipid peroxidation. The application of UV-B radiation together with drought seemed to have a protective effect by lowering the intensity of lipid peroxidation caused by water stress. The content of proline was not affected by UV-B radiation but was increased by water stress under both low and high UV-B radiation. After 24 h of rehydration, most of the parameters analyzed recovered to the same level as the unstressed plants.
NASA Astrophysics Data System (ADS)
Domoroshchina, E. N.; Chernyshev, V. V.; Kuz'micheva, G. M.; Dorokhov, A. V.; Pirutko, L. V.; Kravchenko, G. V.; Chumakov, R. B.
2018-02-01
Zeolite Y and the NTD/Y nanocomposite, which were synthesized in situ (the addition of zeolite Y to the reaction mixture in the course of the synthesis of NTD by the sulfate method), were studied by a variety of methods. The decrease in the particle size (scanning electron microscopy) and the water content in pores (X-ray powder diffraction study, the full-profile Rietveld method, IR spectroscopy, differential scanning calorimetry), the increase in OH groups content and the decrease in the water content on the surface of zeolite (X-ray photoelectron spectroscopy) in the composition of NTD/Y compared to the initial zeolite Y were all established. A larger specific surface area of NTD/Y (Brunauer-Emmet-Teller method) compared to the initial zeolite Y is due to the fact that zeolite Y in the nanocomposite contains a smaller amount of water because of the synthesis conditions and the presence of nanocrystalline NTD on the surface of zeolite particles. It was found that NTD/Y nanocomposite exhibits a higher photocatalytic activity in the model decomposition reaction of methyl orange under UV and adsorption capacity for the extraction of P(V) and As(V) ions from aqueous media compared to the initial zeolite and pure NTD obtained under the same conditions, which differs from NTD/Y by the larger particle size, the smaller specific surface and the smaller content of OH groups and water on the surface. The role of Bronsted and Lewis centers in the realization of properties is discussed.
Sreethawong, Thammanoon; Ngamsinlapasathian, Supachai; Yoshikawa, Susumu
2014-05-01
This work focused on the improvement of the photocatalytic activity for Congo Red (CR) azo dye degradation of mesoporous-assembled 0.95 TiO2-0.05 In2O3 mixed oxide photocatalyst (with a TiO2-to-In2O3 molar ratio of 0.95:0.05) by loading with Ag nanoparticles. The mesoporous-assembled 0.95TiO2-0.05In2O3 mixed oxide photocatalyst was synthesized by a hydrolytic sol-gel method with the aid of a structure-directing surfactant, prior to loading with various Ag contents (0.5-2 wt.%) by a photochemical deposition method. The optimum Ag loading content was found to be 1.5 wt.%, exhibiting a great increase in photocatalytic CR dye degradation activity. The 1.5 wt.% Ag-loaded 0.95TiO2-0.05In2O3 mixed oxide photocatalyst was further applied for the CR dye degradation in the presence of water hardness. Different types (Ca2+ and Ca2+ -Mg2+ mixture) and concentrations (200 and 500 mg/l) of water hardness were investigated. The results showed that the water hardness reduced the photocatalytic CR dye degradation activity, particularly for the extremely hard water with 500 mg/l of Ca2+ -Mg2+ mixture. The adjustment of initial solution pH of the CR dye-containing hard water to an appropriate value was found to improve the photocatalytic CR dye degradation activity under the identical reaction conditions. Copyright © 2014 Elsevier Inc. All rights reserved.
40 CFR Appendix E to Part 132 - Great Lakes Water Quality Initiative Antidegradation Policy
Code of Federal Regulations, 2014 CFR
2014-07-01
... operational variability; (2) Changes in intake water pollutants; (3) Increasing the production hours of the... 40 Protection of Environment 22 2014-07-01 2013-07-01 true Great Lakes Water Quality Initiative... (CONTINUED) WATER PROGRAMS WATER QUALITY GUIDANCE FOR THE GREAT LAKES SYSTEM Pt. 132, App. E Appendix E to...
40 CFR Appendix F to Part 132 - Great Lakes Water Quality Initiative Implementation Procedures
Code of Federal Regulations, 2013 CFR
2013-07-01
... aquatic life criteria or values may be developed when: i. The local water quality characteristics such as... 40 Protection of Environment 23 2013-07-01 2013-07-01 false Great Lakes Water Quality Initiative... (CONTINUED) WATER PROGRAMS WATER QUALITY GUIDANCE FOR THE GREAT LAKES SYSTEM Pt. 132, App. F Appendix F to...
40 CFR Appendix F to Part 132 - Great Lakes Water Quality Initiative Implementation Procedures
Code of Federal Regulations, 2010 CFR
2010-07-01
... use of this methodology may be found in the Great Lakes Water Quality Initiative Technical Support... (CONTINUED) WATER PROGRAMS WATER QUALITY GUIDANCE FOR THE GREAT LAKES SYSTEM Pt. 132, App. F Appendix F to... that is freely dissolved in the ambient water is different than that used to derive the system-wide...
40 CFR Appendix F to Part 132 - Great Lakes Water Quality Initiative Implementation Procedures
Code of Federal Regulations, 2011 CFR
2011-07-01
... use of this methodology may be found in the Great Lakes Water Quality Initiative Technical Support... (CONTINUED) WATER PROGRAMS WATER QUALITY GUIDANCE FOR THE GREAT LAKES SYSTEM Pt. 132, App. F Appendix F to... that is freely dissolved in the ambient water is different than that used to derive the system-wide...
Methods development for total organic carbon accountability
NASA Technical Reports Server (NTRS)
Benson, Brian L.; Kilgore, Melvin V., Jr.
1991-01-01
This report describes the efforts completed during the contract period beginning November 1, 1990 and ending April 30, 1991. Samples of product hygiene and potable water from WRT 3A were supplied by NASA/MSFC prior to contract award on July 24, 1990. Humidity condensate samples were supplied on August 3, 1990. During the course of this contract chemical analyses were performed on these samples to qualitatively determine specific components comprising, the measured organic carbon concentration. In addition, these samples and known standard solutions were used to identify and develop methodology useful to future comprehensive characterization of similar samples. Standard analyses including pH, conductivity, and total organic carbon (TOC) were conducted. Colorimetric and enzyme linked assays for total protein, bile acid, B-hydroxybutyric acid, methylene blue active substances (MBAS), urea nitrogen, ammonia, and glucose were also performed. Gas chromatographic procedures for non-volatile fatty acids and EPA priority pollutants were also performed. Liquid chromatography was used to screen for non-volatile, water soluble compounds not amenable to GC techniques. Methods development efforts were initiated to separate and quantitate certain chemical classes not classically analyzed in water and wastewater samples. These included carbohydrates, organic acids, and amino acids. Finally, efforts were initiated to identify useful concentration techniques to enhance detection limits and recovery of non-volatile, water soluble compounds.
Institutional change to support regime transformation: Lessons from Australia's water sector
NASA Astrophysics Data System (ADS)
Werbeloff, Lara; Brown, Rebekah; Cocklin, Chris
2017-07-01
Institutional change is fundamental to regime transformation, and a necessary part of moving toward integrated water management. However, insight into the role of institutional change processes in such transitions is currently limited. A more nuanced understanding of institutional frameworks is necessary, both to advance understanding of institutional change in the context of transitions toward improved water management and to inform strategies for guiding such processes. To this end, we examine two contemporary cases of transformative change in Australia's urban water sector, exploring the evolution of institutional change in each city. This paper offers insights into regime transformation, providing guidance on types of institutional structures and the ways structure-change initiatives can be sequenced to support a transition. The results reveal the importance of regulation in embedding regime change and suggest that engagement with structural frameworks should begin early in transition processes to ensure the timely introduction of supporting regulation. Our findings also highlight the inextricable link between culture-based and structure-based change initiatives, and the importance of using a diverse range of institutional change mechanisms in a mutually reinforcing way to provide a strong foundation for change. These findings provide a foundation for further scholarly examination of institutional change mechanisms, while also serving to inform the strategic activities of transition-oriented organizations and actors.
Zhang, Miao; Bommer, Martin; Chatterjee, Ruchira; Hussein, Rana; Yano, Junko; Dau, Holger; Kern, Jan; Dobbek, Holger; Zouni, Athina
2017-01-01
In plants, algae and cyanobacteria, Photosystem II (PSII) catalyzes the light-driven splitting of water at a protein-bound Mn4CaO5-cluster, the water-oxidizing complex (WOC). In the photosynthetic organisms, the light-driven formation of the WOC from dissolved metal ions is a key process because it is essential in both initial activation and continuous repair of PSII. Structural information is required for understanding of this chaperone-free metal-cluster assembly. For the first time, we obtained a structure of PSII from Thermosynechococcus elongatus without the Mn4CaO5-cluster. Surprisingly, cluster-removal leaves the positions of all coordinating amino acid residues and most nearby water molecules largely unaffected, resulting in a pre-organized ligand shell for kinetically competent and error-free photo-assembly of the Mn4CaO5-cluster. First experiments initiating (i) partial disassembly and (ii) partial re-assembly after complete depletion of the Mn4CaO5-cluster agree with a specific bi-manganese cluster, likely a di-µ-oxo bridged pair of Mn(III) ions, as an assembly intermediate. DOI: http://dx.doi.org/10.7554/eLife.26933.001 PMID:28718766
User's Manual for the New England Water-Use Data System (NEWUDS)
Horn, Marilee A.
2003-01-01
Water is used in a variety of ways that need to be understood for effective management of water resources. Water-use activities need to be categorized and included in a database management system to understand current water uses and to provide information to water-resource management policy decisionmakers. The New England Water-Use Data System (NEWUDS) is a complex database developed to store water-use information that allows water to be tracked from a point of water-use activity (called a 'Site'), such as withdrawal from a resource (reservoir or aquifer), to a second Site, such as distribution to a user (business or irrigator). NEWUDS conceptual model consists of 10 core entities: system, owner, address, location, site, data source, resource, conveyance, transaction/rate, and alias, with tables available to store user-defined details. Three components--site (with both a From Site and a To Site), a conveyance that connects them, and a transaction/rate associated with the movement of water over a specific time interval form the core of the basic NEWUDS network model. The most important step in correctly translating real-world water-use activities into a storable format in NEWUDS depends on choosing the appropriate sites and linking them correctly in a network to model the flow of water from the initial From Site to the final To Site. Ten water-use networks representing real-world activities are described--three withdrawal networks, three return networks, two user networks, two complex community-system networks. Ten case studies of water use, one for each network, also are included in this manual to illustrate how to compile, store, and retrieve the appropriate data. The sequence of data entry into tables is critical because there are many foreign keys. The recommended core entity sequence is (1) system, (2) owner, (3) address, (4) location, (5) site, (6) data source, (7) resource, (8) conveyance, (9) transaction, and (10) rate; with (11) alias and (12) user-defined detail subject areas populated as needed. After each step in data entry, quality-assurance queries should be run to ensure the data are correctly entered so that it can be retrieved accurately. The point of data storage is retrieval. Several retrieval queries that focus on retrieving only relevant data to specific questions are presented in this manual as examples for the NEWUDS user.
UV-activated persulfate oxidation and regeneration of NOM-Saturated granular activated carbon.
An, Dong; Westerhoff, Paul; Zheng, Mengxin; Wu, Mengyuan; Yang, Yu; Chiu, Chao-An
2015-04-15
A new method of ultraviolet light (UV) activated persulfate (PS) oxidation was investigated to regenerate granular activated carbon (GAC) in drinking water applications. The improvements in iodine and methylene blue numbers measured in the GAC after ultraviolet- (UV) activated persulfate suggested that the GAC preloaded with natural organic matter (NOM) was chemically regenerated. An experimental matrix for UV-activated persulfate regeneration included a range of persulfate doses and different UV wavelengths. Over 87% of the initial iodine number for GAC was restored under the optimum conditions, perfulfate dosage 60 g/L and UV exposure 1.75 × 10(4) mJ/cm(2). The persulfate dosages had little effect on the recovery of the methylene blue number, which was approximately 65%. Persulfate activation at 185 nm was superior to activation at 254 nm. UV activation of persulfate in the presence of GAC produced acid, lowering the solution pH. Higher persulfate concentrations and UV exposure resulted in greater GAC regeneration. Typical organic and inorganic byproducts (e.g., benzene compounds and sulfate ions) were measured as a component of treated water quality safety. This study provides a proof-of-concept that can be used to optimize pilot-scale and full-scale UV-activated persulfate for regeneration of NOM-saturated GAC. Copyright © 2015 Elsevier Ltd. All rights reserved.
Survival of human pathogenic bacteria in different types of natural mineral water.
Serrano, Concepción; Romero, Margarita; Alou, Luis; Sevillano, David; Corvillo, Iluminada; Armijo, Francisco; Maraver, Francisco
2012-09-01
The aim of this study was to determine the survival of human pathogens (Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa) in five natural mineral waters (NMWs) with different properties and mineralization levels. Five NMWs from four Spanish spas with different dry residue at 110 °C were used: A = 76,935 mg/L; B = 1,827 mg/L; C = 808.4 mg/L; D = 283.8 mg/L; and E = 170.4 mg/L. An initial inoculum of 1 × 10(6) colony forming units (cfu)/mL was used for survival studies. Distilled water, chlorinated tap water and Mueller-Hinton broth were used as controls. Colony counts in all different waters were lower than those achieved with Mueller-Hinton broth over all incubation periods. A direct effect between the bacterial survival and the level of mineralization water was observed. The NMW E with low mineralization level along with the radioactive properties showed the highest antibacterial activity among all NMWs.
Using Naturally Occurring Radionuclides To Determine Drinking Water Age in a Community Water System.
Waples, James T; Bordewyk, Jason K; Knesting, Kristina M; Orlandini, Kent A
2015-08-18
Drinking water quality in a community water system is closely linked to the age of water from initial treatment to time of delivery. However, water age is difficult to measure with conventional chemical tracers; particularly in stagnant water, where the relationship between disinfectant decay, microbial growth, and water age is poorly understood. Using radionuclides that were naturally present in source water, we found that measured activity ratios of (90)Y/(90)Sr and (234)Th/(238)U in discrete drinking water samples of known age accurately estimated water age up to 9 days old (σest: ± 3.8 h, P < 0.0001, r(2) = 0.998, n = 11) and 25 days old (σest: ± 13.3 h, P < 0.0001, r(2) = 0.996, n = 12), respectively. Moreover, (90)Y-derived water ages in a community water system (6.8 × 10(4) m(3) d(-1) capacity) were generally consistent with water ages derived from an extended period simulation model. Radionuclides differ from conventional chemical tracers in that they are ubiquitous in distribution mains and connected premise plumbing. The ability to measure both water age and an analyte (e.g., chemical or microbe) in any water sample at any time allows for new insight into factors that control drinking water quality.
Peracetic acid disinfection: a feasible alternative to wastewater chlorination.
Rossi, S; Antonelli, M; Mezzanotte, V; Nurizzo, C
2007-04-01
The paper summarizes the results of a bench-scale study to evaluate the feasibility of using peracetic acid (PAA) as a substitute for sodium hypochlorite both for discharge into surface water and for agricultural reuse. Trials were carried out with increasing doses (1, 2, 3, 5, 10, and 15 mg/L) and contact times (6, 12, 18, 36, 42, and 54 minutes) to study disinfectant decay and bacterial removal and regrowth, using fecal coliform and Escherichia coli (E. coli) as process efficiency indicators. Peracetic acid decay kinetics was evaluated in tap water and wastewater; in both cases, PAA decays according to first-order kinetics with respect to time, and a correlation was found between PAA oxidative initial consumption and wastewater characteristics. The PAA disinfection efficiency was correlated with operating parameters (active concentration and contact time), testing different kinetic models. Two data groups displaying a different behavior on the basis of initial active concentration ranges (1 to 2 mg/L and 5 to 15 mg/L, respectively) can be outlined. Both groups had a "tailing-off" inactivation curve with respect to time, but the second one showed a greater inactivation rate. Moreover, the effect of contact time was greater at the lower doses. Hom's model, used separately for the two data groups, was found to best fit experimental data, and the disinfectant active concentration appears to be the main factor affecting log-survival ratios. Moreover, the S-model better explains the initial resistance of E. coli, especially at low active concentrations (< 2 mg/L) and short contact times (< 12 minutes). Microbial counts, performed by both traditional methods and flow cytometry, immediately and 5 hours after sample collection (both with or without residual PAA inactivation), showed that no appreciable regrowth took place after 5 hours, neither for coliform group bacteria, nor for total heterotrophic bacteria.
Rosenwasser, Alan M.; McCulley, Walter D.; Fecteau, Matthew
2014-01-01
Chronic alcohol (ethanol) intake alters fundamental properties of the circadian clock. While previous studies have reported significant alterations in free-running circadian period during chronic ethanol access, these effects are typically subtle and appear to require high levels of intake. In the present study we examined the effects of long-term voluntary ethanol intake on ethanol consumption and free-running circadian period in male and female, selectively bred ethanol-preferring P and HAD2 rats. In light of previous reports that intermittent access can result in escalated ethanol intake, an initial 2-week water-only baseline was followed by either continuous or intermittent ethanol access (i.e., alternating 15-day epochs of ethanol access and ethanol deprivation) in separate groups of rats. Thus, animals were exposed to either 135 days of continuous ethanol access or to five 15-day access periods alternating with four 15-day periods of ethanol deprivation. Animals were maintained individually in running-wheel cages under continuous darkness throughout the experiment to allow monitoring of free-running activity and drinking rhythms, and 10% (v/v) ethanol and plain water were available continuously via separate drinking tubes during ethanol access. While there were no initial sex differences in ethanol drinking, ethanol preference increased progressively in male P and HAD2 rats under both continuous and intermittent-access conditions, and eventually exceeded that seen in females. Free-running period shortened during the initial ethanol-access epoch in all groups, but the persistence of this effect showed complex dependence on sex, breeding line, and ethanol-access schedule. Finally, while females of both breeding lines displayed higher levels of locomotor activity than males, there was little evidence for modulation of activity level by ethanol access. These results are consistent with previous findings that chronic ethanol intake alters free-running circadian period, and show further that the development of chronobiological tolerance to ethanol may vary by sex and genotype. PMID:25281289
Li, Shiyu; Yang, Changliang; Peng, Changhui; Li, Haixia; Liu, Bin; Chen, Chuan; Chen, Bingyu; Bai, Jinyue; Lin, Chen
2018-06-15
The adsorption/desorption of arsenic (As) at the sediment-water interface in lakes is the key to understanding whether As can enter the ecosystem and participate in material circulation. In this study, the concentrations of As(III), total arsenic [As(T)], sulfide, iron (Fe), and dissolved organic carbon (DOC) in overlying water were observed after the initial sulfate (SO 4 2- ) concentrations were increased by four gradients in the presence and absence of microbial systems. The results indicate that increased SO 4 2- concentrations in overlying water triggered As desorption from sediments. Approximately 10% of the desorbed As was desorbed directly as arsenite or arsenate by competitive adsorption sites on the iron salt surface; 21% was due to the reduction of iron (hydr)oxides; and 69% was due to microbial activity, as compared with a system with no microbial activity. The intensity of microbial activity was controlled by the SO 4 2- and DOC concentrations in the overlying water. In anaerobic systems, which had SO 4 2- and DOC concentrations higher than 47 and 7 mg/L, respectively, microbial activity was promoted by SO 4 2- and DOC; As(III) was desorbed under these indoor simulation conditions. When either the SO 4 2- or DOC concentration was lower than its respective threshold of 47 or 7 mg/L, or when either of these indices was below its concentration limit, it was difficult for microorganisms to use SO 4 2- and DOC to enhance their own activities. Therefore, conditions were insufficient for As desorption. The migration of As in lake sediments was dominated by microbial activity, which was co-limited by SO 4 2- and DOC. The concentrations of SO 4 2- and DOC in the overlying water are thus important for the prevention and control of As pollution in lakes. We recommend controlling SO 4 2- and DOC concentrations as a method for controlling As inner-source pollution in lake water. Copyright © 2018 Elsevier Inc. All rights reserved.
Active Layer and Water Geochemistry Dynamics throughout the Yukon River Basin
NASA Astrophysics Data System (ADS)
Mutter, E. A.; Toohey, R.; Herman-Mercer, N. M.; Schuster, P. F.
2017-12-01
The hydrology of the Yukon River Basin has changed over the last several decades as evidenced by a variety of discharge, gravimetric, and geochemical analyses. The Indigenous Observation Network (ION), a community-based project, was initiated by the Yukon River Inter-Tribal Watershed Council and USGS. Capitalizing on existing USGS monitoring and research infrastructure and supplementing USGS collected data, ION investigates changes in surface water geochemistry and active layer dynamics throughout the Yukon River Basin. Over 1600 samples of surface water geochemistry (i.e., major ions, dissolved organic carbon, and 18O and 2H) have been collected at 35 sites throughout the Yukon River and its major tributaries over the past 15 years. Active layer dynamics (maximum thaw depth, soil temperature and moisture) have been collected at 20 sites throughout the Yukon River Basin for the past eight years. Important regional differences in geochemistry and active layer parameters linked to permafrost continuity and tributaries will be highlighted. Additionally, annual trends and seasonal dynamics describing the spatial and temporal heterogeneity of the watershed will be presented in the context of observed hydrological changes. These data assist the global effort to characterize arctic river fluxes and their relationship to the carbon cycle, weathering and permafrost degradation.
Vanraes, Patrick; Ghodbane, Houria; Davister, Dries; Wardenier, Niels; Nikiforov, Anton; Verheust, Yannick P; Van Hulle, Stijn W H; Hamdaoui, Oualid; Vandamme, Jeroen; Van Durme, Jim; Surmont, Pieter; Lynen, Frederic; Leys, Christophe
2017-06-01
Bio-recalcitrant micropollutants are often insufficiently removed by modern wastewater treatment plants to meet the future demands worldwide. Therefore, several advanced oxidation techniques, including cold plasma technology, are being investigated as effective complementary water treatment methods. In order to permit industrial implementation, energy demand of these techniques needs to be minimized. To this end, we have developed an electrical discharge reactor where water treatment by dielectric barrier discharge (DBD) is combined with adsorption on activated carbon textile and additional ozonation. The reactor consists of a DBD plasma chamber, including the adsorptive textile, and an ozonation chamber, where the DBD generated plasma gas is bubbled. In the present paper, this reactor is further characterized and optimized in terms of its energy efficiency for removal of the five pesticides α-HCH, pentachlorobenzene, alachlor, diuron and isoproturon, with initial concentrations ranging between 22 and 430 μg/L. Energy efficiency of the reactor is found to increase significantly when initial micropollutant concentration is decreased, when duty cycle is decreased and when oxygen is used as feed gas as compared to air and argon. Overall reactor performance is improved as well by making it work in single-pass operation, where water is flowing through the system only once. The results are explained with insights found in literature and practical implications are discussed. For the used operational conditions and settings, α-HCH is the most persistent pesticide in the reactor, with a minimal achieved electrical energy per order of 8 kWh/m 3 , while a most efficient removal of 3 kWh/m 3 or lower was reached for the four other pesticides. Copyright © 2017 Elsevier Ltd. All rights reserved.
2013-09-30
environmental factors that impact toxic algal blooms in the Great Lakes, including their initiation, development, and senescence. The project is...integrated with existing harmful algal bloom monitoring and observational activities through the NOAA Great Lakes Environmental Research Laboratory...holograms showing the orientation of Ditylum chains within a phytoplankton thin layer in East Sound, WA, 2013. IMPACT /APPLICATIONS The HOLOCAM
Parkhurst, David L.; Christenson, Scott C.; Schlottmann, Jamie L.
1989-01-01
Beginning in 1986, the Congress annually has appropriated funds for the U.S. Geological Survey to test and refine concepts for a National Water-Quality Assessment (NAWQA) Program. The long-term goals of a full-scale program would be to:Provide a nationally consistent description of current water-quality conditions for a large part of the Nation's surface- and ground-water resources;Define long-term trends (or lack of trends) in water quality; andIdentify, describe, and explain, as possible, the major factors that affect the observed water-quality conditions and trends.The results of the NAWQA Program will be made available to water managers, policy makers, and the public, and will provide an improved scientific basis for evaluating the effectiveness of water-quality management programs.At present (1988), the assessment program is in a pilot phase in seven project areas throughout the country that represent diverse hydrologic environments and water-quality conditions. The Central Oklahoma aquifer project is one of three pilot ground-water projects. One of the initial activities performed by each pilot project was to compile, screen, and interpret the large amount of water-quality data available within each study unit.The purpose of this report is to assess the water quality of the Central Oklahoma aquifer using the information available through 1987. The scope of the work includes compiling data from Federal, State, and local agencies; evaluating the suitability of the information for conducting a regional water-quality assessment; mapping regional variations in major-ion chemistry; calculating summary statistics of the available water-quality data; producing maps to show the location and number of samples that exceeded water-quality standards; and performing contingency-table analyses to determine the relation of geologic unit and depth to the occurrence of chemical constituents that exceed water-quality standards. This report provides an initial description of water-quality conditions in the Central Oklahoma aquifer study unit. No attempt was made in this report to determine the causes for regional variations in major-ion chemistry or to examine the reasons that some chemical constituents exceed water-quality standards.
Analysis of Water Extraction From Lunar Regolith
NASA Technical Reports Server (NTRS)
Hegde, U.; Balasubramaniam, R.; Gokoglu, S.
2012-01-01
Distribution of water concentration on the Moon is currently an area of active research. Recent studies suggest the presence of ice particles, and perhaps even ice blocks and ice-cemented regolith on the Moon. Thermal extraction of the in-situ water is an attractive means of sa tisfying water requirements for a lunar mission. In this paper, a model is presented to analyze the processes occurring during the heat-up of icy regolith and extraction of the evolved water vapor. The wet regolith is assumed to be present in an initially evacuated and sealed cell which is subsequently heated. The first step of the analysis invol ves calculating the gradual increase of vapor pressure in the closed cell as the temperature is raised. Then, in the second step, the cell is evacuated to low pressure (e.g., vacuum), allowing the water vapor to leave the cell and be captured. The parameters affecting water vap or pressure build-up and evacuation for the purpose of extracting water from lunar regolith are discussed in the paper. Some comparisons wi th available experimental measurements are also made.
NASA Astrophysics Data System (ADS)
Bryan, C. R.; Wells, R. K.; Burton, P. D.; Heath, J. E.; Dewers, T. A.; Wang, Y.
2011-12-01
Carbon sequestration via underground storage in geologic formations is a proposed approach for reducing industrial CO2 emissions. However, current models for carbon injection and long-term storage of supercritical CO2 (scCO2) do not consider the development and stability of adsorbed water films at the scCO2-hydrophilic mineral interface. The thickness and properties of the water films control the surface tension and wettability of the mineral surface, and on the core scale, affect rock permeability, saturation, and capillary properties. The film thickness is strongly dependent upon the activity of water in the supercritical fluid, which will change as initially anhydrous scCO2 absorbs water from formation brine. As described in a companion paper by the coauthors, the thickness of the adsorbed water layer is controlled by the disjoining pressure; structural and van der Waals components dominate at low water activity, while electrostatic forces become more important with increasing film thickness (higher water activities). As scCO2 water activity and water layer thickness increase, concomitant changes in mineral surface properties and reservoir/caprock hydrologic properties will affect the mobility of the aqueous phase and of scCO2. Moreover, the development of a water layer may be critical to mineral dissolution reactions in scCO2. Here, we describe the use of a quartz-crystal microbalance (QCM) to monitor adsorption of water by mineral surfaces. QCMs utilize a piezoelectrically-stimulated quartz wafer to measure adsorbed or deposited mass via changes in vibrational frequency. When used to measure the mass of adsorbed liquid films, the frequency response of the crystal must be corrected for the viscoelastic, rather than elastic, response of the adsorbed layer. Results are presented for adsorption to silica in N2 and CO2 at one bar, and in scCO2. Additional data are presented for water uptake by clays deposited on a QCM wafer. In this case, water uptake occurs by the combined processes of interlayer cation hydration, surface adsorption, and capillary condensation. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. This work is supported by the DOE Sandia LDRD Program.
Leachability of uranium and other elements from freshly erupted volcanic ash
Smith, D.B.; Zielinski, R.A.; Rose, W.I.
1982-01-01
A study of leaching of freshly erupted basaltic and dacitic air-fall ash and bomb fragment samples, unaffected by rain, shows that glass dissolution is the dominant process by which uranium is initially mobilized from air-fall volcanic ash. Si, Li, and V are also preferentially mobilized by glass dissolution. Gaseous transfer followed by fixation of soluble uranium species on volcanic-ash particles is not an important process affecting uranium mobility. Gaseous transfer, however, may be important in forming water-soluble phases, adsorbed to ash surfaces, enriched in the economically and environmentally important elements Zn, Cu, Cd, Pb, B, F, and Ba. Quick removal of these adsorbed elements by the first exposure of freshly erupted ash to rain and surface water may pose short-term hazards to certain forms of aquatic and terrestrial life. Such rapid release of material may also represent the first step in transportation of economically important elements to environments favorable for precipitation into deposits of commercial interest. Ash samples collected from the active Guatemalan volcanoes Fuego and Pacaya (high-Al basalts) and Santiaguito (hornblende-hypersthene dacite); bomb fragments from Augustine volcano (andesite-dacite), Alaska, and Heimaey (basalt), Vestmann Islands, Iceland; and fragments of "rhyolitic" pumice from various historic eruptions were subjected to three successive leaches with a constant water-to-ash weight ratio of 4:1. The volcanic material was successively leached by: (1) distilled-deionized water (pH = 5.0-5.5) at room temperature for 24 h, which removes water-soluble gases and salts adsorbed on ash surfaces during eruption; (2) dilute HCl solution (pH = 3.5-4.0) at room temperature for 24 h, which continues the attack initiated by the water and also attacks acid-soluble sulfides and oxides; (3) a solution 0.05 M in both Na,CO, and NaHCO, (pH = 9.9) at 80°C for one week, which preferentially dissolves volcanic glass. The first two leaches mimic interaction of ash with rain produced in the vicinity of an active eruption. The third leach accelerates the effect of prolonged contact of volcanic ash with alkaline ground water present during ash diagenesis.
Influence of anomalous temperature dependence of water density on convection at lateral heating
NASA Astrophysics Data System (ADS)
Bukreev, V. I.; Gusev, A. V.
2012-12-01
The article provides results of experimental investigation of a fresh water motion in a flume with limited dimensions at lateral heating. The initial water temperature in the flume ranged from 0 to 22 °C. It is shown that there are qualitative changes of the motion picture in the vicinity of initial temperature in the flume equal to the one at which water has maximal density (approximately 4 °C). At an initial temperature in the flume exceeding or equal to 4 °C, the heated water propagates in the form of a relatively thin surface jet, and at jet reflection from the flume end walls the heated water is accumulated only in the upper layer. When the initial temperature in the flume is below 4 °C the convective instability develops. A part of the heated water sinks to the bottom. The paper provides respective illustrations and quantitative data on the distribution of temperature and velocity.
Water infiltration in prewetted porous media: dynamic capillary pressure and Green-Ampt modeling
NASA Astrophysics Data System (ADS)
Hsu, S.; Hilpert, M.
2013-12-01
Recently, an experimental study has shown that the modified Green-Ampt (GA) model, which accounts for a velocity-dependent capillary pressure, can describe water infiltration in dry sand columns better than the classical GA model. Studies have also shown that the initial water content of prewetted porous media affects the dynamic capillary pressure during infiltration. In this study, we performed a series of downward water infiltration experiments in prewetted sand columns for four different initial water contents: 0%, 3.3%, 6.5%, and 13.8%. We also used three different ponding heights: 10 cm, 20 cm, and 40 cm. As expected, an increase in ponding height resulted in a monotonic increase in cumulative infiltration. However, we found anomalous behavior, in that the cumulative infiltration did not monotonically decrease as the initial water content increased. When modeling the experiments with the modified GA approach, we linked this anomalous behavior to the reduction factor in the model for dynamic capillary pressure that is a function of initial water content.
Code of Federal Regulations, 2010 CFR
2010-07-01
... LAKES SYSTEM Pt. 132, App. A Appendix A to Part 132—Great Lakes Water Quality Initiative Methodologies... 40 Protection of Environment 21 2010-07-01 2010-07-01 false Great Lakes Water Quality Initiative Methodologies for Development of Aquatic Life Criteria and Values A Appendix A to Part 132 Protection of...
Code of Federal Regulations, 2011 CFR
2011-07-01
... LAKES SYSTEM Pt. 132, App. A Appendix A to Part 132—Great Lakes Water Quality Initiative Methodologies... 40 Protection of Environment 22 2011-07-01 2011-07-01 false Great Lakes Water Quality Initiative Methodologies for Development of Aquatic Life Criteria and Values A Appendix A to Part 132 Protection of...
NASA Astrophysics Data System (ADS)
Regti, Abdelmajid; Laamari, My Rachid; Stiriba, Salah-Eddine; El Haddad, Mohammadine
2017-11-01
In this study, the adsorption potential of activated carbon prepared from Ziziphus mauritiana nuts for the removal of methylene blue (MB) from aqueous solution has been investigated using batch mode experiments. The effects of some operating parameters on the removal dye such as, initial pH (2-12), temperature (298-328 K), initial MB concentration (20-100 mg L-1), and contact time (5-70 min) were investigated. Adsorption kinetic showed that the rate adsorption followed the pseudo-second-order kinetic model. Four adsorption isotherms models were applied to experimental equilibrium data (Langmuir, Freundlich, Redlich-Peterson, and Fritz-Schlunder) and the different constants were calculated using non-linear equations models. Fritz-Schlunder model was found the best one to describe the adsorption process which suggests that the adsorption of MB onto activated carbon derived from Ziziphus mauritiana is heterogeneous with a multilayer. Thermodynamic adsorption showed that the process was endothermic and spontaneous in nature.
Zhang, Hongmei; Qi, Yan; Wang, Lei; Zhang, Shaokang; Deng, Xiangyu
2017-12-18
Salmonella survival was characterized and modeled during thermal dehydration of fresh garlic and storage of dehydrated garlic products. In our experiments that simulated commercial dehydration processing at 80±5°C, moderate level of Salmonella contamination (4-5logCFU/g) on fresh garlic was reduced below the enumeration limit (1.7logCFU/g) after 4.5h of dehydration and not detectable by culture enrichment after 7h. With high level of contamination (7-8logCFU/g), the Salmonella population persisted at 3.6logCFU/g after 8h of processing. By increasing the dehydration temperature to 90±5°C, the moderate and high levels of initial Salmonella load on fresh garlic dropped below the enumeration limit after 1.5 and 3.75h of processing and became undetectable by culture enrichment after 2.5 and 6h, respectively. During the storage of dried garlic products, Salmonella was not able to grow under all tested combinations of temperature (25 and 35°C) and water activity (0.56-0.98) levels, suggesting active inhibition. Storage temperature played a primary role in determining Salmonella survival on dehydrated garlic flakes. Under a typical storage condition at 25°C and ambient relative humidity, Salmonella could persist over months with the population gradually declining (4.3 log reduction over 88days). Granular size of dehydrated garlic had an impact on Salmonella survival, with better survival of the pathogen observed in bigger granules. At the early stage of dehydrated garlic storage (until 7days), rising water activity appeared to initially promote but then inhibited Salmonella survival, resulting in a water activity threshold at 0.73 where Salmonella displayed strongest persistence. However, this phenomenon was less apparent during extended storage (after 14days). Copyright © 2017 Elsevier B.V. All rights reserved.
Self-Propagating Frontal Polymerization in Water at Ambient Pressure
NASA Technical Reports Server (NTRS)
Olten, Nesrin; Kraigsley, Alison; Ronney, Paul D.
2003-01-01
Advances in polymer chemistry have led to the development of monomers and initiation agents that enable propagating free-radical polymerization fronts to exist. These fronts are driven by the exothermicity of the polymerization reaction and the transport of heat from the polymerized product to the reactant monomer/solvent/initiator solution. The thermal energy transported to the reactant solution causes the initiator to decompose, yielding free radicals, which start the free radical polymerization process as discussed in recent reviews. The use of polymerization processes based on propagating fronts has numerous applications. Perhaps the most important of these is that it enables rapid curing of polymers without external heating since the polymerization process itself provides the high temperatures necessary to initiate and sustain polymerization. This process also enables more uniform curing of arbitrarily thick samples since it does not rely on heat transfer from an external source, which will necessarily cause the temperature history of the sample to vary with distance from the surface according to a diffusion-like process. Frontal polymerization also enables filling and sealing of structures having cavities of arbitrary shape without having to externally heat the structure. Water at atmospheric pressure is most convenient solvent to employ and the most important for practical applications (because of the cost and environmental issues associated with DMSO and other solvents). Nevertheless, to our knowledge, steady, self-propagating polymerization fronts have not been reported in water at atmospheric pressure. Currently, polymerization fronts require a high boiling point solvent (either water at high pressures or an alternative solvent such as dimethyl sulfoxide (DMSO) (boiling point 189 C at atmospheric pressure.) Early work on frontal polymerization, employed pressures up to 5000 atm in order to avoid boiling of the monomer/solvent/initiator solution. High boiling point solutions are needed because in order to produce a propagating front, a high front temperature is needed to produce sufficiently rapid decomposition of the free radical initiator and subsequent free radical polymerization and heat release at a rate faster than heat losses remove thermal energy from the system. (While the conduction heat loss rate increases linearly with temperature, the free radical initiator decomposition is a high activation energy process whose rate increases much more rapidly than linearly with temperature, thus as the temperature decreases, the ratio of heat loss to heat generation increases, eventually leading to extinction of the front if the temperature is too low.) In order to obtain atmospheric pressure frontal polymerization in water, it is necessary to identify a monomer/initiator combination that is water soluble and will not extinguish even when the peak temperature (T*) is less than 100 C. In this work acrylic acid (AA) was chosen as the monomer because is it one of the most reactive monomers and can polymerize readily at low temperatures even without initiators. Ammonium persulfate (AP) was chosen as the initiator because it decomposes readily at low temperatures, produces relatively few bubbles and is commercially available. The propagation rates and extinction conditions of the fronts are studied for a range of AA and AP concentrations. Small amounts of fumed silica powder (Cab-o-sil, Cabot Corporation) were added to the solutions to inhibit buoyancy induced convection in the solutions; future studies will investigate the effects of buoyant convection within the solutions.
Making the connections: AIDS and water.
Ball, Anna-Marie
2006-01-01
Acknowledging AIDS as a crosscutting development issue, a Zambian rural water supply project that provides safe accessible water to rural communities embarked on a new initiative to mainstream AIDS into the water sector. The work of providing safe water takes the predominantly male workforce away from their spouses and families, into the rural villages of Zambia's Eastern Province, for long periods of time. With an HIV prevalence rate of 16.1%, the risk of HIV exposure exists for both employees and rural villagers. AIDS mainstreaming activities were designed to target both groups. An AIDS mainstreaming strategy was developed by identifying components that could be influenced in the external domain (the organization's usual work) and the internal domain (the workplace). Basic questions were addressed such as: how does AIDS affect the organization, how might the usual work aggravate susceptibility to HIV infection, and where is the comparative advantage? A workplace program including peer education, employee health education (including condoms) and a workplace policy was established for employees. For the target population, a series of five messages connecting safe water and AIDS was developed and disseminated through educational drama, community meetings and trainings, and integrated into the regular water, sanitation and hygiene activities. As an efficient utilization of resources that makes a broad impact, AIDS mainstreaming does not change the sector's mandate but takes advantage of the extensive geographic coverage and natural distribution system of water projects to disseminate AIDS information and make linkages with AIDS partners.
Science in and out of the classroom: A look at Water Resource at Gammams Water Care Works, Namibia
NASA Astrophysics Data System (ADS)
Iileka-Shinavene, Leena
2016-04-01
Primary school pupils in Van Rhyn School in Namibia are taught Natural Sciences from grade 4 at the age of 9. The curriculum is mainly theory/classroom based and natural science is taught through theory and various practical activities. However occasionally teachers have opportunities to supplement the pupils' learning experience through outdoor activities such as excursions to museums, municipal works and science fairs. Apart from enhancing the learning experience and improving understanding, such activities make the Natural science subject more interesting subject to learners. Water, a scarce/limited resource in Namibia, is one of the topics we cover in Natural sciences. Sustainable management of water is one of the top priorities of the government, which through various initiatives including the National Development Plan supports innovative ideas and technologies to reclaim water from sewage, recycling of industry and mining water and use semi-purified water for public recreational places. Most of the water used in Windhoek is reclaimed by City of Windhoek. To better illustrate this to the pupils, a school trip with 40 pupils of seventh grade was taken to the City of Windhoek's Gammams Water Care works. The aim of the trip was to show how the sewage purification process works and how the water is reclaimed from sewage. A guided tour of the water works was given by the resident scientists and the pupils were provided with the worksheet to complete after the tour around the Centre. They were encouraged to ask questions in all stages of water purification process and write down short notes. Most learners completed their worksheet during the tour session as they are getting information from the tour guide. The rest had to retrieve information and do further research as they got back to class so they could complete their worksheets. After the tour to Gammams, learners were asked to share what they had learned with the lower grades, 5 and 6, in a classroom presentation campaigned as " Water management resources Awareness" Apart from enjoying the trip, the learners also gained knowledge of how the City manages the water resources and how to manage water on personal basis.
Zhou, Peiling; Grady, Sue C; Chen, Guo
2017-11-01
Although the general population in China is physically active, only 45% of older adults meet the World Health Organization's recommendation for weekly moderate-to-vigorous exercise, to achieve health benefits. This percentage is even lower (9.8%) in urban China. It is, therefore, important to understand the pathways by which physical activity behaviors are impacted by the built environment. This study utilized a mixed methods approach-interviews (n = 42) and longitudinal (2010-2015) health survey data (n = 3094) for older people residing in three neighborhoods in Huainan, a mid-sized city in Anhui Province, central eastern China. First, a content analysis of interview data was used to identify individual and built environment factors (motivators and barriers) that impacted physical activity within older people's activity spaces. Second, a multilevel path analysis was conducted using the health survey data to demonstrate the pathways by which these motivators and barriers contributed to the initiation, regulation, and maintenance of physical activity. This study found (a) that the liveliness of an apartment building and its proximity to functional spaces (fast-food stores, farmer's markets, supermarkets, pharmacies, schools, hospitals, PA facilities and natural and man-made water bodies) were important factors in attracting sedentary older people to initiate physical activity; (b) the social networks of apartment neighbors helped to initiate, regulate, and maintain physical activity; and housing closeness to functional spaces was important in maintaining physical activity, particularly for those older people with chronic diseases. To increase older people's overall physical activity, future interventions should focus on residential form and access to functional spaces, prior to investing in large-scale urban design interventions. Copyright © 2017 Elsevier Ltd. All rights reserved.
Hong, Siqi; Cannon, Fred S; Hou, Pin; Byrne, Tim; Nieto-Delgado, Cesar
2017-10-01
Polypyrrole modified activated carbon was used to remove sulfate from acid mine drainage water. The polypyrrole modified activated carbon created positively charged functionality that offered elevated sorption capacity for sulfate. The effects of the activated carbon type, approach of polymerization, preparation temperature, solvent, and concentration of oxidant solution over the sulfate adsorption capacity were studied at an array of initial sulfate concentrations. A hardwood based activated carbon was the more favorable activated carbon template, and this offered better sulfate removal than when using bituminous based activated carbon or oak wood activated carbon as the template. The hardwood-based activated carbon modified with polypyrrole removed 44.7 mg/g sulfate, and this was five times higher than for the pristine hardwood-based activated carbon. Various protocols for depositing the polypyrrole onto the activated carbon were investigated. When ferric chloride was used as an oxidant, the deposition protocol that achieved the most N + atomic percent (3.35%) while also maintaining the least oxygen atomic percent (6.22%) offered the most favorable sulfate removal. For the rapid small scale column tests, when processing the AMD water, hardwood-based activated carbon modified with poly pyrrole exhibited 33 bed volume compared to the 5 bed volume of pristine activated carbons. Copyright © 2017 Elsevier Ltd. All rights reserved.
Fluoride removal in water by a hybrid adsorbent lanthanum-carbon.
Vences-Alvarez, Esmeralda; Velazquez-Jimenez, Litza Halla; Chazaro-Ruiz, Luis Felipe; Diaz-Flores, Paola E; Rangel-Mendez, Jose Rene
2015-10-01
Various health problems associated with drinking water containing high fluoride levels, have motivated researchers to develop more efficient adsorbents to remove fluoride from water for beneficial concentrations to human health. The objective of this research was to anchor lanthanum oxyhydroxides on a commercial granular activated carbon (GAC) to remove fluoride from water considering the effect of the solution pH, and the presence of co-existing anions and organic matter. The activated carbon was modified with lanthanum oxyhydroxides by impregnation. SEM and XRD were performed in order to determine the crystal structure and morphology of the La(III) particles anchored on the GAC surface. FT-IR and pK(a)'s distribution were determined in order to elucidate both the possible mechanism of the lanthanum anchorage on the activated carbon surface and the fluoride adsorption mechanism on the modified material. The results showed that lanthanum ions prefer binding to carboxyl and phenolic groups on the activated carbon surface. Potentiometric titrations revealed that the modified carbon (GAC-La) possesses positive charge at a pH lower than 9. The adsorption capacity of the modified GAC increased five times in contrast to an unmodified GAC adsorption capacity at an initial F(-) concentration of 20 mg L(-1). Moreover, the presence of co-existing anions had no effect on the fluoride adsorption capacity at concentrations below 30 mg L(-1), that indicated high F(-) affinity by the modified adsorbent material (GAG-La). Copyright © 2015 Elsevier Inc. All rights reserved.
A quantum chemical study of the decomposition of Keggin-structured heteropolyacids.
Janik, Michael J; Bardin, Billy B; Davis, Robert J; Neurock, Matthew
2006-03-09
Heterpolyacids (HPAs) demonstrate catalytic activity for oxidative and acid-catalyzed hydrocarbon conversion processes. Deactivation and thermal instability, however, have prevented their widespread use. Herein, ab initio density functional theory is used to study the thermal decomposition of the Keggin molecular HPA structure through the desorption of constitutional water molecules. The overall reaction energy and activation barrier are computed for the overall reaction HnXM12O40-->Hn-2XM12O39+H2O. and subsequently used to predict the effect of HPA composition on thermal stability. For example, the desorption of a constitutional water molecule is found to be increasingly endothermic in the order silicomolybdic acid (H4SiMo12O40)
Mohebali, Ghasemali; Kaytash, Ashk; Etemadi, Narges
2012-10-01
Water-oil emulsions occur throughout oil production, transportation, and processing. The breaking of the water/oil emulsion improves oil quality and as a consequence chemically synthesized de-emulsifiers are commonly used in the petroleum industries. Microbial de-emulsifiers represent potential alternatives to the chemicals and may become important products for petroleum industries. The main goal of this work was isolation, identification, and characterization of an efficient de-emulsifying bacterium. Following a multi-step enrichment programme a de-emulsifying bacterium, Ochrobactrum anthropi strain RIPI5-1was isolated from the oil-polluted sandy bank of Siri Island, Iran. The presence of an oil phase in growth medium was found to be unnecessary for production of the de-emulsifier. The de-emulsifying activity of both the whole culture and the cells of this strain was examined using a model multiple water-crude oil (w/o/w) emulsion. This w/o/w emulsion was used for the first time in microbial de-emulsification research. Whole cells of strain RIPI5-1 exhibited high de-emulsifying activity during the late-exponential growth and stationary phases; de-emulsifying activity of the whole culture was highest during the early-exponential growth phase. The time course of de-emulsification by whole culture and whole cells of strain RIPI5-1 was investigated; the initial rate (DeI(1)) of breaking of the multiple water-crude oil emulsion by whole culture and whole cells was calculated as 11% and 54%, respectively. However, overall de-emulsification (DeI(8.5)) for whole culture and whole cells was calculated as 63% and 72%, respectively. A clear correlation was observed between cell surface hydrophobicity and the de-emulsifying activity of whole cells. With the water/kerosene emulsion, emulsion half-life (t(1/2)) was found to be <0.5h. The potential activity of this strain was also explained using a complex oilfield emulsion. Copyright © 2012 Elsevier B.V. All rights reserved.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-11-16
... basin water supplies. Initial efforts in the mid-1980s (Phase 1) focused on improving fish passage by... initiated a separate evaluation of the Yakima basin's water supply problems, including consideration of... wildlife habitat, dry-year irrigation demands, and municipal water supply demands. Specific needs that the...
40 CFR Appendix B to Part 132 - Great Lakes Water Quality Initiative
Code of Federal Regulations, 2011 CFR
2011-07-01
... WATER QUALITY GUIDANCE FOR THE GREAT LAKES SYSTEM Pt. 132, App. B Appendix B to Part 132—Great Lakes Water Quality Initiative Methodology for Deriving Bioaccumulation Factors Great Lakes States and Tribes... system. For log KOW, the log of the octanol-water partition coefficient is a base 10 logarithm. Uptake...
40 CFR Appendix B to Part 132 - Great Lakes Water Quality Initiative
Code of Federal Regulations, 2010 CFR
2010-07-01
... WATER QUALITY GUIDANCE FOR THE GREAT LAKES SYSTEM Pt. 132, App. B Appendix B to Part 132—Great Lakes Water Quality Initiative Methodology for Deriving Bioaccumulation Factors Great Lakes States and Tribes... system. For log KOW, the log of the octanol-water partition coefficient is a base 10 logarithm. Uptake...
Stress corrosion crack initiation of alloy 600 in PWR primary water
Zhai, Ziqing; Toloczko, Mychailo B.; Olszta, Matthew J.; ...
2017-04-27
Stress corrosion crack (SCC) initiation of three mill-annealed alloy 600 heats in simulated pressurized water reactor primary water has been investigated using constant load tests equipped with in-situ direct current potential drop (DCPD) measurement capabilities. SCC initiation times were greatly reduced by a small amount of cold work. Shallow intergranular attack and/or cracks were found on most high-energy grain boundaries intersecting the surface with only a small fraction evolving into larger cracks and intergranular SCC growth. Crack depth profiles were measured and related to DCPD-detected initiation response. Lastly, we discuss processes controlling the SCC initiation in mill-annealed alloy 600.
Stress corrosion crack initiation of alloy 600 in PWR primary water
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhai, Ziqing; Toloczko, Mychailo B.; Olszta, Matthew J.
Stress corrosion crack (SCC) initiation of three mill-annealed alloy 600 heats in simulated pressurized water reactor primary water has been investigated using constant load tests equipped with in-situ direct current potential drop (DCPD) measurement capabilities. SCC initiation times were greatly reduced by a small amount of cold work. Shallow intergranular attack and/or cracks were found on most high-energy grain boundaries intersecting the surface with only a small fraction evolving into larger cracks and intergranular SCC growth. Crack depth profiles were measured and related to DCPD-detected initiation response. Lastly, we discuss processes controlling the SCC initiation in mill-annealed alloy 600.
Marinho-Buzelli, Andresa R; Masani, Kei; Rouhani, Hossein; Barela, Ana M; Fernandes, Gustavo T B; Verrier, Mary C; Popovic, Milos R
2017-10-01
Gait initiation is defined as the transition from stationary standing to steady-state walking. Despite the frequent use of therapy pools for training walking in early stages of rehabilitation, none have been reported on the effects of immersion on gait initiation. We aimed to analyze the center of pressure (COP) trajectories, the vertical and anteroposterior impulses and upper and lower trunk accelerations during anticipatory (APA) and execution phases of gait initiation. In the COP trajectory, the execution (EXE) phase was further subdivided in two phases: predominantly mediolateral (EXE1), and predominantly anteroposterior (EXE2). Able-bodied participants initiated gait while standing on a force plate and walked approximately 4 steps following a visual cue. The participants were wearing three inertial sensors placed on the lower and upper trunk, and on the stance shank. Individuals performed 10 trials each on land and in water, in two consecutive days. The lengths and velocities of COP trajectories increased in water compared to land during APA, while the COP length increased and the COP velocity reduced in water during EXE2. The anteroposterior impulses increased in water during EXE. Lower trunk acceleration was smaller in water while the upper trunk acceleration did not differ, resulting in the larger ratio of upper to lower trunk acceleration in water during EXE. Overall, immersion in water increases COP length during gait initiation, and reduces COP velocity during EXE2, indicating a new postural strategy in water. The aquatic medium may be favorable for individuals who need weight support, gradual resistance and a longer time to execute gait initiation. Copyright © 2017 Elsevier B.V. All rights reserved.
CORROSION FILM REMOVAL AS AN INDICATION OF DECONTAMINATION EFFECTIVENESS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weed, R.D.
1958-11-10
The decontamination of high-temperature, highpressure recirculation loops and components is being investigated. The Turco-4501 process and certain promising modificatibns of this process are being evaluated according to their film-removing qualities. Two of the processes exhibited more promise than others. These were the Turco-4501 process, substituting either oxalic acid or a chromic acid solution lor the nitric acid. Other variations were also tested and results are reported. (W.L.H.) l8636 The dissipation of effluent into sea water by initial dilution eddy diffusion and residual currents was originally assessed by Seligman and Scott in 1948. Further experimental work is described which has enabledmore » a new urement of the initial dilution of fresh water from the pipe line, and a study of the movement of water as indicated by driff bottles. It is now envisaged that initial dilution by a factor of 10/sup 4/, will be followed by eddy diffusion with the coefficients as measured by Seligman and bulk movement primarily due to the force of the wind Exceptions will occur when defined calm conditions exist. The discharged effluent will then tend to float on the surface with an initial dilution factor of only a few diffussing remains of the previous activity there being no incations of residual currents. No work has been done a see if this more concentrated effluent can come ashore without further dilution. It is recommended that, a avoid floating effluent, water should not be discharged July. Thc p1imhry ob!ect of this inveBtigation was 10 gtudy during very calm weather. Maximum storage space can he assured by normaally pumping effluent to sea at the rffi hQh tide affer treatment. (auth) during very calm weather. Maximum storage space can be assured by normally pumping effluent to sea at the« less
Ocean Bottom Seismograph Performance during the Cascadia Initiative
NASA Astrophysics Data System (ADS)
Aderhold, K.; Evers, B.
2015-12-01
The Ocean Bottom Seismograph Instrument Pool (OBSIP) provides instrumentation and operations support for the Cascadia Initiative community experiment. This experiment investigates geophysical processes across the Cascadia subduction zone through a combination of onshore and offshore seismic data. The recovery of Year 4 instruments in September 2015 marks the conclusion of a multi-year experiment that utilized 60 ocean-bottom seismographs (OBSs) specifically designed for the subduction zone boundary, including shallow/deep water deployments and active fisheries. The new instruments feature trawl-resistant enclosures designed by Lamont-Doherty Earth Observatory (LDEO) and Scripps Institution of Oceanography (SIO) for shallow deployment [water depth ≤ 500 m], as well as new deep-water instruments designed by Woods Hole Oceanographic Institute (WHOI). Existing OBSIP instruments were also deployed along the Blanco Transform Fault and on the Gorda Plate through complementary experiments. Stations include differential pressure gauges (DPG) and absolute pressure gauges (APG). All data collected from the Cascadia, Blanco, and Gorda deployments will be freely available through the Incorporated Research Institutions for Seismology (IRIS) Data Management Center (DMC). The Cascadia Initiative is the largest amphibious seismic experiment undertaken to date and demonstrates an effective structure for community experiments through collaborative efforts from the Cascadia Initiative Expedition Team (CIET), OBSIP (institutional instrument contributors [LDEO, SIO, WHOI] and Management Office [IRIS]), and the IRIS DMC. The successes and lessons from Cascadia are a vital resource for the development of a Subduction Zone Observatory (SZO). To guide future efforts, we investigate the quality of the Cascadia OBS data using basic metrics such as instrument recovery and more advanced metrics such as noise characteristics through power spectral density analysis. We also use this broad and diverse deployment to determine how water depth and instrument shielding influence recorded data. Additionally, multi-year data collection allows us to identify temporal noise trends so that we can take advantage of quieter seasons for future deployments.
NASA Astrophysics Data System (ADS)
Nehrir, A. R.; Hoffman, D. S.; Repasky, K. S.; Todt, B.; Sharpe, T.; Half Red, C.; Carlsten, J. L.
2009-12-01
Coupled atmospheric components of the lower troposphere including aerosols and water vapor have a large affect on the chemical processes that drive the earth’s complex climate system. Aerosols can affect the earth’s global radiation budget directly by absorbing or reflecting incoming solar radiation, and indirectly by changing the microphysical properties of clouds by serving as cloud condensation nuclei (CCN). An increase in CCN results in higher cloud droplet concentration which has been shown to suppress drizzle formation and lead to more reflective clouds. The changes in the cloud microphysical structure due to the interaction of aerosols and water vapor result in more incoming solar radiation being reflected back into space, leading to a net negative radiative forcing in the global radiation budget. The uncertainty in this radiative forcing reflects the uncertainty in the understanding of the aerosol indirect effect and its role in the climate system. To better understand the aerosol direct and indirect effects, lidar measurements of aerosol properties and water vapor distributions can provide important information to enhance our understanding of the role of aerosols in the climate system. The LIDAR group at Montana State University has initiated a program to simultaneously study aerosols, water vapor, and cloud formation with high spatial and temporal resolution using both active and passive sensors. Aerosol distributions and radiative properties are currently being studied with a two-color LIDAR system at 1064 and 532 nm. In addition, a three color, high spectral resolution LIDAR system at 1064,532, and 355 nm has also been developed and is starting to take initial data. Daytime and nighttime boundary layer water vapor number density profiles are also currently being studied with an external cavity diode oscillator/diode amplifier based micro-pulsed differential absorption lidar (DIAL) instrument at the 830 nm water vapor absorption band. Cloud formation studies are being conducted by a simultaneous, spatially correlated digital sky imaging camera system where aerosol loading and water vapor distributions are monitored as a function of lateral distance to clouds. Furthermore, a commercially purchased sun/sky scanning solar radiometer (CIMEL 318) as part of the NASA run AERONET program is also being used to study aerosol loading and radiative transfer through the atmosphere. A brief description of these instruments will be presented as well as initial simultaneous results showing correlated data between lower tropospheric aerosols and boundary layer water vapor distributions over extended periods if time.
Seker, M; Buyuksari, E; Topcu, S; Babaoglu, D S; Celebi, D; Keskinler, B; Aydiner, C
2017-11-01
Usage of forward osmosis membrane in FO mode, in which active and support layers of the membrane were in contact with the feed and the draw solutions respectively, provided higher initial water flux (12L/m 2 h) than the usage of membrane in PRO mode (6L/m 2 h) having opposite orientation but fluxes approached to each other after 4h during concentration of whey with NH 3 /CO 2 as draw salt. High organic and inorganic foulants of whey was considered as reason for observed result in addition to lower solute resistivity. Initial water flux (8,5L/m 2 h) was lower when pre-treatment was applied before forward osmosis process but final flux (4L/m 2 h) was equal flux of non pre-treatment. Reduction of solute resistivity or absence of hydraulic pressure can be reasons for lower initial flux. Detection of organic carbon but absence of lactose in draw solution showed passage of molecules being different than lactose into draw solution. Copyright © 2017 Elsevier Ltd. All rights reserved.
Oblinger, Carolyn J.
2004-01-01
The Triangle Area Water Supply Monitoring Project was initiated in October 1988 to provide long-term water-quality data for six area water-supply reservoirs and their tributaries. In addition, the project provides data that can be used to determine the effectiveness of large-scale changes in water-resource management practices, document differences in water quality among water-supply types (large multiuse reservoir, small reservoir, run-of-river), and tributary-loading and in-lake data for water-quality modeling of Falls and Jordan Lakes. By September 2001, the project had progressed in four phases and included as many as 34 sites (in 1991). Most sites were sampled and analyzed by the U.S. Geological Survey. Some sites were already a part of the North Carolina Division of Water Quality statewide ambient water-quality monitoring network and were sampled by the Division of Water Quality. The network has provided data on streamflow, physical properties, and concentrations of nutrients, major ions, metals, trace elements, chlorophyll, total organic carbon, suspended sediment, and selected synthetic organic compounds. Project quality-assurance activities include written procedures for sample collection, record management and archive, collection of field quality-control samples (blank samples and replicate samples), and monitoring the quality of field supplies. In addition to project quality-assurance activities, the quality of laboratory analyses was assessed through laboratory quality-assurance practices and an independent laboratory quality-control assessment provided by the U.S. Geological Survey Branch of Quality Systems through the Blind Inorganic Sample Project and the Organic Blind Sample Project.
2013-01-01
Background The first objective of this study was to investigate the public perceptions of private water and alternative sources with respect to safety, quality, testing and treatment in Newfoundland and Labrador (NL), Canada. The second objective was to provide public health practitioners with recommendations for improving knowledge translation (KT) efforts in NL, based on assessments of respondents’ perceived information needs and preferred KT methods. Methods A cross-sectional telephone survey of 618 households with private water supplies was conducted in March-April, 2007. Questions pertained to respondents’ perceptions of their tap water, water concerns, alternative water use, well characteristics, and water testing behaviours. Results Approximately 94% of households were supplied by private wells (50% drilled and 50% dug wells), while 6% obtained water from roadside ponds, rivers or springs (RPRS). While 85% rated their water quality highly, 55% nevertheless had concerns about its overall safety. Approximately 11% of respondents never tested their water, and of the 89% that had, 80% tested at frequencies below provincial recommendations for bacterial testing. More than one-third of respondents reported treating their water in the home, and 78% employed active carbon filtration methods. Respondents wanted more information on testing options and advice on effective treatment methods. Targeted advertising through television, flyers/brochures and/or radio is recommended as a first step to increase awareness. More active KT methods involving key stakeholders may be most effective in improving testing and treatment behaviour. Conclusions The results presented here can assist public health practitioners in tailoring current KT initiatives to influence well owner stewardship behaviour. PMID:24365203
International Year of Planet Earth - Activities and Plans in Mexico
NASA Astrophysics Data System (ADS)
Alaniz-Alvarez, S.; Urrutia-Fucugauchi, J.
2007-12-01
IYPE started as a joint initiative by UNESCO and IUGS with participation of several geosciences organizations, and has developed into a major program in geosciences with inclusion of national committees. In this presentation we focus on current activities and plans in our country, and in the international activities. IYPE activities have concentrated in publications and organization of conferences and meetings. A book series on Earth Science Experiments for Children has been defined, with the first books published on "Atmospheric Pressure and Free Fall of Objects" and "Light and Colors". Following books are on "Standing on Archimedes" and "Foucault and the Climate". Books are distributed free to school children, with more than 10,000 copies given of first volume. Other publications include the special issues of El Faro science magazine edited by the National University, with last issue published and distributed electronically and in hard copies this August. Special events include Conference of IYPE Executive Director presented during the International Day of Science Museums in late May in Science Museum Universum. This was followed by a Planet Earth Week in the University. Current plans include an electronic open-access publication, additional publications of the Planet Earth series, articles and special issues in journals and magazines, and events on selected themes from the IYPE science program, particularly on Megacities, Hazards, Resources and Life. The metropolitan area of Mexico City, with around 20 million inhabitants presents special challenges, being at high altitude within an active tectonic and volcanic area requiring major efforts in water supply, water control, rains and waste disposal and management. Involvement in international activities includes translation into Spanish of IYPE publications and the participation in programs and activities. In addition to activities in the different countries, we consider that IYPE should result in initiatives for enhancing international cooperation and to ensure increased effective use by society of Earth sciences.
Savvidou, Maria G; Katsabea, Alexandra; Kotidis, Pavlos; Mamma, Diomi; Lymperopoulou, Theopisti V; Kekos, Dimitris; Kolisis, Fragiskos N
2018-09-01
The catalytic behavior of a membrane-bound lipolytic enzyme (MBL-Enzyme) from the microalgae Nannochloropsis oceanica CCMP1779 was investigated. The biocatalyst showed maximum activity at 50 °C and pH 7.0, and was stable at pH 7.0 and temperatures from 40 to 60 °C. Half-lives at 60 °C, 70 °C and 80 °C were found 866.38, 150.67 and 85.57 min respectively. Thermal deactivation energy was 68.87 kJ mol -1 . The enzyme's enthalpy (ΔΗ*), entropy (ΔS*) and Gibb's free energy (ΔG*) were in the range of 65.86-66.27 kJ mol -1 , 132.38-140.64 J mol -1 K -1 and 107.80-115.81 kJ mol -1 , respectively. Among p-nitrophenyl esters of fatty acids tested, MBL-Enzyme exhibited the highest hydrolytic activity against p-nitrophenyl palmitate (pNPP). The K m and V max values were found 0.051 mM and of 0.054 mmole pNP mg protein -1 min -1 , respectively with pNPP as substrate. The presence of Mn 2+ increased lipolytic activity by 68.25%, while Fe 3+ and Cu 2+ ions had the strongest inhibitory effect. MBL-Enzyme was stable in the presence of water miscible (66% of the initial activity in ethanol) and water immiscible (71% of the initial activity in n-octane) solvents. Myristic acid was found to be the most efficient acyl donor in esterification reactions with ethanol. Methanol was the best acyl acceptor among the primary alcohols tested. Copyright © 2018 Elsevier Inc. All rights reserved.
Case Report: Aquatic Therapy and End-Stage Dementia.
Becker, Bruce E; Lynch, Stacy
2018-04-01
A 54-year-old woman, retired due to progressive cognitive decline, was diagnosed with early-onset Alzheimer dementia. Conventional medication therapy for dementia had proven futile. Initial evaluation revealed a nonverbal female seated in a wheelchair, dependent on 2-person assist for all transfers and activities of daily living. She had been either nonresponsive or actively resistive for both activities of daily living and transfers in the 6 months before assessment. After a total of 17 1-hour therapy sessions over 19 weeks in a warm water therapy pool, she achieved the ability to tread water for 15 minutes, transfers improved to moderate-to-maximum assist from seated, and ambulation improved to 1000 feet with minimum-to-moderate assist of 2 persons. Communication increased to appropriate "yes," "no," and "okay" appropriate responses, and an occasional "thank you" and "very nice." The authors propose that her clinical progress may be related to her aquatic therapy intervention. IV. Copyright © 2018 American Academy of Physical Medicine and Rehabilitation. Published by Elsevier Inc. All rights reserved.
Undecompressed microbial populations from the deep sea.
Jannasch, H J; Wirsen, C O; Taylor, C D
1976-01-01
Metabolic transformations of glutamate and Casamino Acids by natural microbial populations collected from deep waters (1,600 to 3,100 m) were studied in decompressed and undecompressed samples. Pressure-retaining sampling/incubation vessels and appropriate subsampling/incubation vessels and appropriate subsampling techniques permitted time course experiments. In all cases the metabolic activity in undecompressed samples was lower than it was when incubated at 1 atm. Surface water controls showed a reduced activity upon compression. The processes involving substrate incorporation into cell material were more pressure sensitive than was respiration. The low utilization of substrates, previously found by in situ incubations for up to 12 months, was confirmed and demonstrated to consist of an initial phase of activity, in the range of 5 to 60 times lower than the controls, followed by a stationary phase of virtually no substrate utilization. No barophilic growth response (higher rates at elevated pressure than at 1 atm) was recorded; all populations observed exhibition various degrees of barotolerance. Images PMID:791117
Targeted Delivery and Sustained Antitumor Activity of Triptolide through Glucose Conjugation.
He, Qing-Li; Minn, Il; Wang, Qiaoling; Xu, Peng; Head, Sarah A; Datan, Emmanuel; Yu, Biao; Pomper, Martin G; Liu, Jun O
2016-09-19
Triptolide, a key ingredient from the traditional Chinese medicinal plant thunder god vine, which has been used to treat inflammation and autoimmune diseases for centuries, has been shown to be an irreversible inhibitor of the XPB subunit of the transcription factor TFIIH and initiation of RNA polymerase II mediated transcription. The clinical development of triptolide over the past two decades has been limited by its toxicity and low water solubility. Herein, we report the development of a glucose conjugate of triptolide, named glutriptolide, which was intended to target tumor cells overexpressing glucose transporters selectively. Glutriptolide did not inhibit XPB activity in vitro but demonstrated significantly higher cytotoxicity against tumor cells over normal cells with greater water solubility than triptolide. Furthermore, it exhibited remarkable tumor control in vivo, which is likely due to sustained stepwise release of active triptolide within cancer cells. These findings indicate that glutriptolide may serve as a promising lead for developing a new mechanistic class of anticancer drugs. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Jackson, Sue; Pollino, Carmel; Maclean, Kirsten; Bark, Rosalind; Moggridge, Bradley
2015-03-01
The multi-dimensional relationships that Indigenous peoples have with water are only recently gaining recognition in water policy and management activities. Although Australian water policy stipulates that the native title interests of Indigenous peoples and their social, cultural and spiritual objectives be included in water plans, improved rates of Indigenous access to water have been slow to eventuate, particularly in those regions where the water resource is fully developed or allocated. Experimentation in techniques and approaches to both identify and determine Indigenous water requirements will be needed if environmental assessment processes and water sharing plans are to explicitly account for Indigenous water values. Drawing on two multidisciplinary case studies conducted in Australia's Murray-Darling Basin, we engage Indigenous communities to (i) understand their values and explore the application of methods to derive water requirements to meet those values; (ii) assess the impact of alternative water planning scenarios designed to address over-allocation to irrigation; and (iii) define additional volumes of water and potential works needed to meet identified Indigenous requirements. We provide a framework where Indigenous values can be identified and certain water needs quantified and advance a methodology to integrate Indigenous social, cultural and environmental objectives into environmental flow assessments.
Measurement and modeling of moist processes
NASA Technical Reports Server (NTRS)
Cotton, William; Starr, David; Mitchell, Kenneth; Fleming, Rex; Koch, Steve; Smith, Steve; Mailhot, Jocelyn; Perkey, Don; Tripoli, Greg
1993-01-01
The keynote talk summarized five years of work simulating observed mesoscale convective systems with the RAMS (Regional Atmospheric Modeling System) model. Excellent results are obtained when simulating squall line or other convective systems that are strongly forced by fronts or other lifting mechanisms. Less highly forced systems are difficult to model. The next topic in this colloquium was measurement of water vapor and other constituents of the hydrologic cycle. Impressive accuracy was shown measuring water vapor with both the airborne DIAL (Differential Absorption Lidar) system and the the ground-based Raman Lidar. NMC's plans for initializing land water hydrology in mesoscale models was presented before water vapor measurement concepts for GCIP were discussed. The subject of using satellite data to provide mesoscale moisture and wind analyses was next. Recent activities in modeling of moist processes in mesoscale systems was reported on. These modeling activities at the Canadian Atmospheric Environment Service (AES) used a hydrostatic, variable-resolution grid model. Next the spatial resolution effects of moisture budgets was discussed; in particular, the effects of temporal resolution on heat and moisture budgets for cumulus parameterization. The conclusion of this colloquium was on modeling scale interaction processes.
Sprague, Lori A.
2002-01-01
In 1995, the U.S. Geological Survey conducted a study to characterize nutrient concentrations in five off-stream reservoirs in the lower South Platte River Basin?Riverside, Jackson, Prewitt, North Sterling, and Julesburg. These reservoirs are critical sources of irrigation water for agricultural areas, and several also are used for fishing, boating, swimming, hunting, and camping. Data collected for this study include depth profiles of water temperature, dissolved oxygen, pH, and specific conductance; nutrient species concentrations in the water column, bottom sediment, and inflow and outflow canals; and chlorophyll-a concentrations in the water column. Data were collected during the irrigation season from March through September 1995 at five sites each in Riverside, Jackson, Prewitt, and Julesburg Reservoirs and at six sites in North Sterling Reservoir. The five reservoirs studied are located in similar geographic, climatic, and land-use areas and, as a result, have a number of similarities in their internal nutrient dynamics. Nitrogen concentrations in the reservoirs were highest in March and decreased through September as a result of dilution from river inflows and biological activity. From March through June, decreases in nitrogen concentrations in the river and biological activity contributed to decreases in reservoir concentrations. From July through September, inflows from the river were cut off, and biological activity in the reservoirs led to further decreases in nitrate concentrations, which fell to near or below detectable levels. Phosphorus concentrations in the reservoirs did not show the same consistent decrease from March through September. Phosphorus likely was recycled continuously back to algae during the study period through processes such as excretion from fish, decay of aquatic plants and animals, and release of orthophosphate from bottom sediment during periods of low oxygen. With the exception of phosphorus in Jackson Reservoir, the reservoirs acted as a sink for both nitrogen and phosphorus; the percentage of the total mass (initial storage plus inflows) trapped in the reservoirs during the study period ranged from 49 to 88 percent for nitrogen and from 20 to 86 percent for phosphorus. The nutrient loading, morphology, and operation of the five reservoirs differed, however, leading to several important differences in nutrient dynamics among the reservoirs. Mean nutrient concentrations during the study period decreased in a downstream direction from Riverside Reservoir to Julesburg Reservoir because concentrations in the source water?the South Platte River?decreased downstream as a result of increased distance from wastewater loading upstream from Kersey, Colorado, and the replacement of diverted river water with more dilute ground-water return flow. North Sterling was an exception to this decrease; the strong stratification and resulting anoxia that developed in the reservoir led to nutrient release from the bottom sediments that offset the decrease in external nutrient loading. Variations in nutrient loading also contributed to differences in the nutrient limiting algal growth in the reservoirs, as indicated by mass nitrogen:phosphorus ratios. In Riverside and Jackson Reservoirs, nitrogen became the potential limiting nutrient by midsummer as biological activity depleted the available supply of nitrogen while the high initial phosphorus load was recycled. Prewitt, North Sterling, and Julesburg Reservoirs, with lower initial loadings of phosphorus, were phosphorus-limited throughout the study period, with additional colimitation of nitrogen as biological uptake reduced nitrogen concentrations to near or below laboratory detection limits. The percentage of the total nitrogen and phosphorus mass lost through outflow and trapped in the reservoir due to processes such as biological uptake and sedimentation varied between reservoirs.Generally, reservoirs with short residence times such as North Ste
The World Water Vision: From Developing a Vision to Action
NASA Astrophysics Data System (ADS)
Gangopadhyay, S.; Cosgrove, W.; Rijsberman, F.; Strzepek, K.; Strzepek, K.
2001-05-01
The World Water Vision exercise was initiated by the World Water Commission under the auspices of the World Water Council. The goal of the World Water Vision project was to develop a widely shared vision on the actions required to achieve a common set of water-related goals and the necessary commitment to carry out these actions. The Vision should be participatory in nature, including input from both developed and developing regions, with a special focus on the needs of the poor, women, youth, children and the environment. Three overall objectives were to: (i)raise awareness of water issues among both the general population and decision-makers so as to foster the necessary political will and leadership to tackle the problems seriously and systematically; (ii) develop a vision of water management for 2025 that is shared by water sector specialists as well as international, national and regional decision-makers in government, the private sector and civil society; and (iii) provide input to a Framework for Action to be elaborated by the Global Water Partnership, with steps to go from vision to action, including recommendations to funding agencies for investment priorities. This exercise was characterized by the principles of: (i) a participatory approach with extensive consultation; (ii) Innovative thinking; (iii) central analysis to assure integration and co-ordination; and (iv) emphasis on communication with groups outside the water sector. The primary activities included, developing global water scenarios that fed into regional consultations and sectoral consultations as water for food, water for people - water supply and sanitation, and water and environment. These consultations formulated the regional and sectoral visions that were synthesized to form the World Water Vision. The findings from this exercise were reported and debated at the Second World Water Forum and the Ministerial Conference held in The Hague, The Netherlands during April 2000. This paper reports on the process of producing a "global water vision" and the primary findings, recommendations, and follow-on activities.
Why a mosquito leg possesses superior load-bearing capacity on water: Experimentals
NASA Astrophysics Data System (ADS)
Kong, Xiang-Qing; Liu, Jian-Lin; Wu, Cheng-Wei
2016-04-01
Mosquitoes possess the striking ability to walk on water because each of their legs has a huge water supporting force (WSF) that is 23 times their body weight. Aiming at a full understanding of the origins of this extremely large force, in this study, we concentrate on two aspects of it: the intrinsic properties of the leg surface and the active control of the initial stepping angle of the whole leg. Using a measurement system that we developed ourselves, the WSFs for the original leg samples are compared with those whose surface wax and microstructures have been removed and with those of a different stiffness. The results show that leg flexibility plays a dominant role over surface wax and microstructures on the leg surface in creating the supporting force. Moreover, we discuss the dependence relationship between the maximum WSF and the initial stepping angle, which indicates that the mosquito can regulate this angle to increase or decrease the WSF during landing or takeoff. These findings are helpful for uncovering the locomotion mechanism of aquatic insects and for providing inspiration for the design of microfluids, miniature boats, biomimetic robots, and microsensors.
Hendricks, Charles W.
1974-01-01
A natural population of heterotrophic bacteria, including enterics, was observed to sorb to glass surfaces and multiply during the continuous culture of river water. An initial rate of attachment equivalent to a doubling time of about 2 h was observed with a corresponding increase in the suspended population. After 24 h both the sorbed and suspended populations stabilized with a mass doubling time approximating 100 h at a dilution rate of 0.012/h. On the basis of respiration and degradative enzymatic data, the sorbed microorganisms appeared to be somewhat more metabolically active than the organisms in suspension. PMID:4424694
Effects of Dehydration on Fish Muscles at Chilled Temperature
NASA Astrophysics Data System (ADS)
Miki, Hidemasa; Seto, Fuminori; Nishimoto, Motomi; Nishimoto, Junichi
Recently,new method of removing water from fish fillet at low temperature using dehydration sheet have been reported. The present study is concerned with the factors to affect the quality during dehydration of horse mackerel muscle at low temperature. The rate of dehydration at -3 °C was about two times faster than that at 0 °C. The rate of denaturation of fish muscle protein was kept less than about 10 % (ATPase activity) of the undenaturated initial values after removing free water content. Present results suggest the practical possibility of the dehydration at -3 °C for keeping quality of fish flesh.
Predicting Anthropogenic Noise Contributions to US Waters.
Gedamke, Jason; Ferguson, Megan; Harrison, Jolie; Hatch, Leila; Henderson, Laurel; Porter, Michael B; Southall, Brandon L; Van Parijs, Sofie
2016-01-01
To increase understanding of the potential effects of chronic underwater noise in US waters, the National Oceanic and Atmospheric Administration (NOAA) organized two working groups in 2011, collectively called "CetSound," to develop tools to map the density and distribution of cetaceans (CetMap) and predict the contribution of human activities to underwater noise (SoundMap). The SoundMap effort utilized data on density, distribution, acoustic signatures of dominant noise sources, and environmental descriptors to map estimated temporal, spatial, and spectral contributions to background noise. These predicted soundscapes are an initial step toward assessing chronic anthropogenic noise impacts on the ocean's varied acoustic habitats and the animals utilizing them.
Behera, M D; Gupta, A K; Barik, S K; Das, P; Panda, R M
2018-06-15
With the availability of satellite data from free data domain, remote sensing has increasingly become a fast-hand tool for monitoring of land and water resources development activities with minimal cost and time. Here, we verified construction of check dams and implementation of plantation activities in two districts of Tripura state using Landsat and Sentinel-2 images for the years 2008 and 2016-2017, respectively. We applied spectral reflectance curves and index-based proxies to quantify these activities for two time periods. A subset of the total check dams and plantation sites was chosen on the basis of site condition, nature of check dams, and planted species for identification on satellite images, and another subset was randomly chosen to validate identification procedure. The normalized difference water index (NDWI) derived from Landsat and Senitnel-2 were used to quantify water area evolved, qualify the water quality, and influence of associated tree shadows. Three types of check dams were observed, i.e., full, partial, and fully soil exposed on the basis of the presence of grass or scrub on the check dams. Based on the nature of check dam and site characteristics, we classified the water bodies under 11-categories using six interpretation keys (size, shape, water depth, quality, shadow of associated trees, catchment area). The check dams constructed on existing narrow gullies totally covered by branches or associated plants were not identified without field verification. Further, use of EVI enabled us to approve the plantation activities and adjudge the corresponding increase in vegetation vigor. The plantation activities were established based on the presence and absence of existing vegetation. Clearing on the plantation sites for plantation shows differential increase in EVI values during the initial years. The 403 plantation sites were categorized into 12 major groups on the basis of presence of dominant species and site conditions. The dominant species were Areca catechu, Musa paradisiaca, Ananas comosus, Bambusa sp., and mix plantation of A. catechu and M. paradisiaca. However, the highest maximum increase in average EVI was observed for the pine apple plantation sites (0.11), followed by Bambussa sp. (0.10). These sites were fully covered with plantation without any exposed soil. The present study successfully demonstrates a satellite-based survey supplemented with ground information evaluating the changes in vegetation profile due to plantation activities, locations of check dams, extent of water bodies, downstream irrigation, and catchment area of water bodies.
Inactivation of Bacteria in Oil Field Injected Water by a Pulsed Plasma Discharge Process
NASA Astrophysics Data System (ADS)
Xin, Qing; Li, Zhongjian; Lei, Lecheng; Yang, Bin
2016-09-01
Pulsed plasma discharge was employed to inactivate bacteria in the injection water for an oil field. The effects of water conductivity and initial concentration of bacteria on elimination efficiency were investigated in the batch and continuous flow modes. It was demonstrated that Fe2+ contained in injection water could enhance the elimination efficiency greatly. The addition of reducing agent glutathione (GSH) indicated that active radicals generated by pulsed plasma discharges played an important role in the inactivation of bacteria. Moreover, it was found that the microbial inactivation process for both batch and continuous flow mode well fitted the model based on the Weibull's survival function. supported by Zhejiang Province Welfare Technology Applied Research Project of China (No. 2014C31137), National Natural Science Foundation of China (Nos. 21436007 and U1462201), and the Fundamental Research Funds for the Central Universities of China (No. 2015QNA4032)
Simplified Method for Groundwater Treatment Using Dilution and Ceramic Filter
NASA Astrophysics Data System (ADS)
Musa, S.; Ariff, N. A.; Kadir, M. N. Abdul; Denan, F.
2016-07-01
Groundwater is one of the natural resources that is not susceptible to pollutants. However, increasing activities of municipal, industrial, agricultural or extreme land use activities have resulted in groundwater contamination as occured at the Research Centre for Soft Soil Malaysia (RECESS), Universiti Tun Hussein Onn Malaysia (UTHM). Thus, aims of this study is to treat groundwater by using rainwater and simple ceramic filter as a treatment agent. The treatment uses rain water dilution, ceramic filters and combined method of dilute and filtering as an alternate treatment which are simple and more practical compared to modern or chemical methods. The water went through dilution treatment processes able to get rid of 57% reduction compared to initial condition. Meanwhile, the water that passes through the filtering process successfully get rid of as much as 86% groundwater parameters where only chloride does not pass the standard. Favorable results for the combination methods of dilution and filtration methods that can succesfully eliminate 100% parameters that donot pass the standards of the Ministry of Health and the Interim National Drinking Water Quality Standard such as those found in groundwater in RECESS, UTHM especially sulfate and chloride. As a result, it allows the raw water that will use clean drinking water and safe. It also proves that the method used in this study is very effective in improving the quality of groundwater.
Using low-cost drones to map malaria vector habitats.
Hardy, Andy; Makame, Makame; Cross, Dónall; Majambere, Silas; Msellem, Mwinyi
2017-01-14
There is a growing awareness that if we are to achieve the ambitious goal of malaria elimination, we must compliment indoor-based vector control interventions (such as bednets and indoor spraying) with outdoor-based interventions such as larval source management (LSM). The effectiveness of LSM is limited by our capacity to identify and map mosquito aquatic habitats. This study provides a proof of concept for the use of a low-cost (< $1000) drone (DJI Phantom) for mapping water bodies in seven sites across Zanzibar including natural water bodies, irrigated and non-irrigated rice paddies, peri-urban and urban locations. With flying times of less than 30 min for each site, high-resolution (7 cm) georeferenced images were successfully generated for each of the seven sites, covering areas up to 30 ha. Water bodies were readily identifiable in the imagery, as well as ancillary information for planning LSM activities (access routes to water bodies by road and foot) and public health management (e.g. identification of drinking water sources, mapping individual households and the nature of their construction). The drone-based surveys carried out in this study provide a low-cost and flexible solution to mapping water bodies for operational dissemination of LSM initiatives in mosquito vector-borne disease elimination campaigns. Generated orthomosaics can also be used to provide vital information for other public health planning activities.
Toor, Ramn; Mohseni, Madjid
2007-02-01
The presence of disinfection byproducts (DBPs) such as trihalomethanes (THMs) and haloacetic acids (HAAs) in drinking water is of great concern due to their adverse effects on human health. Emerging regulation limiting the concentration of DBPs in drinking water has increased demands for technologies and processes which reduce the formation of DBPs in drinking water. In this study, UV-H2O2 based advance oxidation process (AOP) was used to treat raw surface water. Experiments were conducted using low pressure mercury vapor UV lamps in collimated beam and flow-through annular photoreactors. The effect of UV fluence (0-3500 mJ cm(-2)) and hydrogen peroxide concentration (0-23 mg l(-1)) in reducing the concentration of THMs and HAAs was examined. The UV-H2O2 AOP was then coupled with a downstream biological activated carbon (BAC) treatment to assess the synergetic benefits of combining the two treatments. It was observed that UV-H2O2 AOP was only effective at reducing DBPs at UV fluences of more than 1000 mJ cm(-2) and initial H2O2 concentrations of about or greater than 23 mg l(-1). However, the combined AOP-BAC treatment showed significant reductions of 43%, 52%, and 59% relative to untreated raw water for DBPs, TOC, and UV254, respectively.
Villegas-Guzman, Paola; Silva-Agredo, Javier; González-Gómez, Duván; Giraldo-Aguirre, Ana L; Flórez-Acosta, Oscar; Torres-Palma, Ricardo A
2015-01-01
The photocalytic degradation of dicloxacillin (DXC) using TiO2 was studied in synthetic and natural waters. The degradation route and the effect of different experimental variables such as pH, applied power, and the initial concentrations of DXC and the catalyst were investigated. The best performances were achieved at a natural pH 5.8 and using 2.0 g L(-1) of TiO2 with 150 W of applied power. The photodegradation process followed Langmuir-Hinshelwood kinetics. The water matrix effect was evaluated in terms of degradation efficiency in the presence of organic compounds (oxalic acid, glucose), Fe(2+) ion and natural water. An increase in degradation was observed when ferrous ion was part of the solution, but the process was inhibited with all evaluated organic compounds. Similarly, inhibition was observed when natural water was used instead of distilled water. The extent of degradation of the process was evaluated following the evolution of chemical oxygen demand (COD), antimicrobial activity (AA), total organic carbon (TOC) and biochemical oxygen demand (BOD5). Total removal of DXC was achieved after 120 min of treatment and 95% mineralization was observed after 480 min of treatment. Additionally, the total removal of antimicrobial activity and a high level of biodegradability were observed after the photocalytical system had been operating for 240 min.
NASA Astrophysics Data System (ADS)
Marquardt, Drew; Williams, Justin; Kucerka, Norbert; Atkinson, Jeffrey; Katsaras, John; Wassall, Stephen; Harroun, Thad
2013-03-01
There are no proven health benefits to supplementing with Vitamin E, so why do we require it for healthy living? The whole notion that vitamin E is an in-vivo antioxidant is now being seriously questioned. Using neutron diffraction and supporting techniques, we have correlated vitamin E's location in model membranes with its antioxidant activity. experiments were conducted using phosphatidylcholine (PC) bilayers whose fatty acid chains varied in their degree of unsaturation. We observe vitamin E up-right in all lipids examined, with its overall height in the bilayer lipid dependant. Interestingly we observe vitamin E's hydroxyl in the headgroup region of the bilayer for both the fully saturated and poly unsaturated lipids. Vitamin E was most effective at intercepting water borne oxidants than radical initiated within the bilayer core. However for lipids where vitamin E resides slightly lower (glycerol backbone) we observe comparable antioxidant activity against both water borne and hydrocarbon borne oxidants. Thus showing lipid species can modulate the location of vitamin E's activity.
The initial stages of NaCl dissolution: Ion or ion pair solvation?
NASA Astrophysics Data System (ADS)
Klimes, Jiri; Michaelides, Angelos
2009-03-01
The interaction of water with rock salt (NaCl) is important in a wide variety of natural processes and human activities. A lot is known about NaCl dissolution at the macroscopic level but we do not yet have a detailed atomic scale picture of how salt crystals dissolve. Here we report an extensive series of density functional theory, forcefield and molecular dynamics studies of water clusters at flat and defective NaCl surfaces and NaCl clusters. The focus is on answering seemingly elementary questions such as how many water molecules are needed before it becomes favorable to extract an ion or a pair of ions from the crystal or the cluster. It turns out, however, that the answers to these questions are not so straightforward: below a certain number of water molecules (˜ 12) solvation of individual ions is less costly and above this number solvation of ion pairs is favored. These results reveal a hitherto unknown complexity in the NaCl dissolution process born out of a subtle interplay between water-water and water-ion interactions.
Underwater probing with laser radar
NASA Technical Reports Server (NTRS)
Carswell, A. I.; Sizgoric, S.
1975-01-01
Recent advances in laser and electro optics technology have greatly enhanced the feasibility of active optical probing techniques aimed at the remote sensing of water parameters. This paper describes a LIDAR (laser radar) that has been designed and constructed for underwater probing. The influence of the optical properties of water on the general design parameters of a LIDAR system is considered. Discussion of the specific details in the choice of the constructed LIDAR is given. This system utilizes a cavity dumped argon ion laser transmitter capable of 50 watt peak powers, 10 nanosecond pulses and megahertz pulse repetition rates at 10 different wavelengths in the blue green region of the spectrum. The performance of the system, in proving various types of water, is demonstrated by summarizing the results of initial laboratory and field experiments.
Oxidation of white phosphorus by peroxides in water
NASA Astrophysics Data System (ADS)
Abdreimova, R. R.; Akbaeva, D. N.; Polimbetova, G. S.
2017-10-01
A mixture of hypophosphorous, phosphorous, and phosphoric acids is formed during the anaerobic oxidation of white phosphorus by peroxides [ROOH; R = H, 3-ClC6H4CO, (CH3)3C] in water. The rate of reactions grows considerably upon adding nonpolar organic solvents. The activity series of peroxides and solvents are determined experimentally. NMR spectroscopy shows that the main product of the reaction is phosphorous acid, regardless of the nature of the peroxide and solvent. A radical mechanism of oxidation of white phosphorus by peroxides in water is proposed. It is initiated by the homolysis of peroxide with the formation of HO• radicals that are responsible for the homolytic opening of phosphoric tetrahedrons. Further oxidation and stages of the hydrolysis of intermediate phosphorus-containing compounds yield products of the reaction.
NASA Technical Reports Server (NTRS)
Cohen, Y.
1985-01-01
Stratified water bodies allow the development of several microbial plates along the water column. The microbial plates develop in relation to nutrient availability, light penetration, and the distribution of oxygen and sulfide. Sulfide is initially produced in the sediment by sulfate-reducing bacteria. It diffuses along the water column creating a zone of hydrogen sulfide/oxygen interface. In the chemocline of Solar Lake oxygen and sulfide coexist in a 0 to 10 cm layer that moves up and down during a diurnal cycle. The microbial plate at the chemocline is exposed to oxygen and hydrogen sulfide, alternating on a diurnal basis. The cyanobacteria occupying the interface switch from anoxygenic photosynthesis in the morning to oxygenic photosynthesis during the rest of the day which results in a temporal build up of elemental sulfur during the day and disappears at night due to both oxidation to thiosulfate and sulfate by thiobacilli, and reduction to hydrogen sulfide by Desulfuromonas sp. and anaerobically respiring cyanobacteria. Sulfate reduction was enhanced in the light at the surface of the cyanobacterial mats. Microsulfate reduction measurements showed enhanced activity of sulfate reduction even under high oxygen concentrations of 300 to 800 micrometer. Apparent aerobic SO sub 4 reduction activity is explained by the co-occurrence of H sub 2. The physiology of this apparent sulfate reduction activity is studied.
Understanding structure-stability relationships of Candida antartica lipase B in ionic liquids.
De Diego, Teresa; Lozano, Pedro; Gmouh, Said; Vaultier, Michel; Iborra, José L
2005-01-01
Two different water-immiscible ionic liquids (ILs), 1-ethyl-3-methylimidizolium bis(trifluoromethylsulfonyl)imide and butyltrimethylammonium bis(trifluoromethylsulfonyl)imide, were used for butyl butyrate synthesis from vinyl butyrate catalyzed by Candida antarctica lipase B (CALB) at 2% (v/v) water content and 50 degrees C. Both the synthetic activity and stability of the enzyme in these ILs were enhanced as compared to those in hexane. Circular dichroism and intrinsic fluorescence spectroscopic techniques have been used over a period of 4 days to determine structural changes in the enzyme associated with differences in its stability for each assayed medium. CALB showed a loss in residual activity higher than 75% after 4 days of incubation in both water and hexane media at 50 degrees C, being related to great changes in both alpha-helix and beta-strand secondary structures. The stabilization of CALB, which was observed in the two ILs studied, was associated with both the maintenance of the 50% of initial alpha-helix content and the enhancement of beta-strands. Furthermore, intrinsic fluorescence studies clearly showed how a classical enzyme unfolding was occurring with time in both water and hexane media. However, the structural changes associated with the incubation of the enzyme in both ILs might be attributed to a compact and active enzyme conformation, resulting in an enhancement of the stability in these nonaqueous environments.
Debris-flow initiation from large, slow-moving landslides
Reid, M.E.; Brien, D.L.; LaHusen, R.G.; Roering, J.J.; de la Fuente, J.; Ellen, S.D.; ,
2003-01-01
In some mountainous terrain, debris flows preferentially initiate from the toes and margins of larger, deeper, slower-moving landslides. During the wet winter of 1997, we began real-time monitoring of the large, active Cleveland Corral landslide complex in California, USA. When the main slide is actively moving, small, shallow, first-time slides on the toe and margins mobilize into debris flows and travel down adjacent gullies. We monitored the acceleration of one such failure; changes in velocity provided precursory indications of rapid failure. Three factors appear to aid the initiation of debris flows at this site: 1) locally steepened ground created by dynamic landslide movement, 2) elevated pore-water pressures and abundant soil moisture, and 3) locally cracked and dilated materials. This association between debris flows and large landslides can be widespread in some terrain. Detailed photographic mapping in two watersheds of northwestern California illustrates that the areal density of debris-flow source landsliding is about 3 to 7 times greater in steep geomorphically fresher landslide deposits than in steep ground outside landslide deposits. ?? 2003 Millpress.
NASA Astrophysics Data System (ADS)
Munoz-Arriola, F.; Torres-Alavez, J.; Mohamad Abadi, A.; Walko, R. L.
2014-12-01
Our goal is to investigate possible sources of predictability of hydrometeorological extreme events in the Northern High Plains. Hydrometeorological extreme events are considered the most costly natural phenomena. Water deficits and surpluses highlight how the water-climate interdependence becomes crucial in areas where single activities drive economies such as Agriculture in the NHP. Nonetheless we recognize the Water-Climate interdependence and the regulatory role that human activities play, we still grapple to identify what sources of predictability could be added to flood and drought forecasts. To identify the benefit of multi-scale climate modeling and the role of initial conditions on flood and drought predictability on the NHP, we use the Ocean Land Atmospheric Model (OLAM). OLAM is characterized by a dynamic core with a global geodesic grid with hexagonal (and variably refined) mesh cells and a finite volume discretization of the full compressible Navier Stokes equations, a cut-grid cell method for topography (that reduces error in computational gradient computation and anomalous vertical dispersion). Our hypothesis is that wet conditions will drive OLAM's simulations of precipitation to wetter conditions affecting both flood forecast and drought forecast. To test this hypothesis we simulate precipitation during identified historical flood events followed by drought events in the NHP (i.e. 2011-2012 years). We initialized OLAM with CFS-data 1-10 days previous to a flooding event (as initial conditions) to explore (1) short-term and high-resolution and (2) long-term and coarse-resolution simulations of flood and drought events, respectively. While floods are assessed during a maximum of 15-days refined-mesh simulations, drought is evaluated during the following 15 months. Simulated precipitation will be compared with the Sub-continental Observation Dataset, a gridded 1/16th degree resolution data obtained from climatological stations in Canada, US, and Mexico. This in-progress research will ultimately contribute to integrate OLAM and VIC models and improve predictability of extreme hydrometeorological events.
Tong, Juxiu; Hu, Bill X; Yang, Jinzhong; Zhu, Yan
2016-06-01
The mixing layer theory is not suitable for predicting solute transfer from initially saturated soil to surface runoff water under controlled drainage conditions. By coupling the mixing layer theory model with the numerical model Hydrus-1D, a hybrid solute transfer model has been proposed to predict soil solute transfer from an initially saturated soil into surface water, under controlled drainage water conditions. The model can also consider the increasing ponding water conditions on soil surface before surface runoff. The data of solute concentration in surface runoff and drainage water from a sand experiment is used as the reference experiment. The parameters for the water flow and solute transfer model and mixing layer depth under controlled drainage water condition are identified. Based on these identified parameters, the model is applied to another initially saturated sand experiment with constant and time-increasing mixing layer depth after surface runoff, under the controlled drainage water condition with lower drainage height at the bottom. The simulation results agree well with the observed data. Study results suggest that the hybrid model can accurately simulate the solute transfer from initially saturated soil into surface runoff under controlled drainage water condition. And it has been found that the prediction with increasing mixing layer depth is better than that with the constant one in the experiment with lower drainage condition. Since lower drainage condition and deeper ponded water depth result in later runoff start time, more solute sources in the mixing layer are needed for the surface water, and larger change rate results in the increasing mixing layer depth.
Removal of hexavalent chromium by using red mud activated with cetyltrimethylammonium bromide.
Li, Deliang; Ding, Ying; Li, Lingling; Chang, Zhixian; Rao, Zhengyong; Lu, Ling
2015-01-01
The removal of hexavalent chromium [Cr(VI)] from aqueous solution by using red mud activated with cetyltrimethylammonium bromide (CTAB) was studied. The optimum operation parameters, such as CTAB concentration, pH values, contact time, and initial Cr(VI) concentration, were investigated. The best concentration of CTAB for modifying red mud was found to be 0.50% (mCTAB/VHCl,0.6 mol/L). The lower pH (<2) was found to be much more favourable for the removal of Cr(VI). Red mud activated with CTAB can greatly improve the removal ratio of Cr(VI) as high as four times than that of original red mud. Adsorption equilibrium was reached within 30 min under the initial Cr(VI) concentration of 100 mg L(-1). The isotherm data were analysed using Langmuir and Freundlich models. The adsorption of Cr(VI) on activated red mud fitted well to the Langmuir isotherm model, and the maximum adsorption capacity was estimated as 22.20 mg g(-1) (Cr/red mud). The adsorption process could be well described using the pseudo-second-order model. The result shows that activated red mud is a promising agent for low-cost water treatment.
Cascadia Initiative Ocean Bottom Seismograph Performance
NASA Astrophysics Data System (ADS)
Evers, B.; Aderhold, K.
2017-12-01
The Ocean Bottom Seismograph Instrument Pool (OBSIP) provided instrumentation and operations support for the Cascadia Initiative community experiment. This experiment investigated geophysical processes across the Cascadia subduction zone through a combination of onshore and offshore seismic data. The recovery of Year 4 instruments in September 2015 marked the conclusion of a multi-year experiment that utilized 60 ocean-bottom seismographs (OBSs) specifically designed for the subduction zone boundary, including shallow/deep water deployments and active fisheries. The new instruments featured trawl-resistant enclosures designed by Lamont-Doherty Earth Observatory (LDEO) and Scripps Institution of Oceanography (SIO) for shallow deployment [water depth ≤ 500 m], as well as new deep-water instruments designed by Woods Hole Oceanographic Institute (WHOI). Existing OBSIP instruments were also deployed along the Blanco Transform Fault and on the Gorda Plate through complementary experiments. Station instrumentation included weak and strong motion seismometers, differential pressure gauges (DPG) and absolute pressure gauges (APG). All data collected from the Cascadia, Blanco, and Gorda deployments is available through the Incorporated Research Institutions for Seismology (IRIS) Data Management Center (DMC). The Cascadia Initiative is the largest amphibious seismic experiment undertaken to date, encompassing a diverse technical implementation and demonstrating an effective structure for community experiments. Thus, the results from Cascadia serve as both a technical and operational resource for the development of future community experiments, such as might be contemplated as part of the SZ4D Initiative. To guide future efforts, we investigate and summarize the quality of the Cascadia OBS data using basic metrics such as instrument recovery and more advanced metrics such as noise characteristics through power spectral density analysis. We also use this broad and diverse deployment to explore other environmental and configuration factors that can impact sensor and network performance and inform the design of future deployments.
Conformational Fluctuations in G-Protein-Coupled Receptors
NASA Astrophysics Data System (ADS)
Brown, Michael F.
2014-03-01
G-protein-coupled receptors (GPCRs) comprise almost 50% of pharmaceutical drug targets, where rhodopsin is an important prototype and occurs naturally in a lipid membrane. Rhodopsin photoactivation entails 11-cis to all-trans isomerization of the retinal cofactor, yielding an equilibrium between inactive Meta-I and active Meta-II states. Two important questions are: (1) Is rhodopsin is a simple two-state switch? Or (2) does isomerization of retinal unlock an activated conformational ensemble? For an ensemble-based activation mechanism (EAM) a role for conformational fluctuations is clearly indicated. Solid-state NMR data together with theoretical molecular dynamics (MD) simulations detect increased local mobility of retinal after light activation. Resultant changes in local dynamics of the cofactor initiate large-scale fluctuations of transmembrane helices that expose recognition sites for the signal-transducing G-protein. Time-resolved FTIR studies and electronic spectroscopy further show the conformational ensemble is strongly biased by the membrane lipid composition, as well as pH and osmotic pressure. A new flexible surface model (FSM) describes how the curvature stress field of the membrane governs the energetics of active rhodopsin, due to the spontaneous monolayer curvature of the lipids. Furthermore, influences of osmotic pressure dictate that a large number of bulk water molecules are implicated in rhodopsin activation. Around 60 bulk water molecules activate rhodopsin, which is much larger than the number of structural waters seen in X-ray crystallography, or inferred from studies of bulk hydrostatic pressure. Conformational selection and promoting vibrational motions of rhodopsin lead to activation of the G-protein (transducin). Our biophysical data give a paradigm shift in understanding GPCR activation. The new view is: dynamics and conformational fluctuations involve an ensemble of substates that activate the cognate G-protein in the amplified visual response.
Evaluation of Topramezone and Benzobicyclon for Activity on Giant Salvinia
2016-07-01
in water bodies throughout the southeastern U.S., Puerto Rico, and Hawaii (Mudge et al. 2013). Under optimal growth conditions, plants can double in... hairs (trichomes), topped with four branches united distally to form a structure resembling an “eggbeater” (McFarland et al. 2004), which can impede...herbicide deposition and penetration (Nelson et al. 2007). Giant salvinia initially expands throughout an aquatic system in the primary growth or
2007-02-28
these pulses was uniform. Dependence of the energy contribution on pressure is showed in the Figure 3.5. It is clearly seen that for the pressure of...note that water–ions kinetics is more important than kinetics of initial substances– ions because water has higher proton affinity energy than... pulsed discharge. 4.3.2 Kinetic model To calculate the densities of active particles, one has to determine electron energy dis- tribution function (EEDF
Ruiz-González, Clara; Archambault, Esther; Laforest-Lapointe, Isabelle; Del Giorgio, Paul A; Kembel, Steven W; Messier, Christian; Nock, Charles A; Beisner, Beatrix E
2018-06-14
Freshwater bacterioplankton communities are influenced by the inputs of material and bacteria from the surrounding landscape, yet few studies have investigated how different terrestrial inputs affect bacterioplankton. We examined whether the addition of soils collected under various tree species combinations differentially influences lake bacterial communities. Lake water was incubated for 6 days following addition of five different soils. We assessed the taxonomic composition (16S rRNA gene sequencing) and metabolic activity (Biolog Ecoplates) of lake bacteria with and without soil addition, and compared these to initial soil communities. Soil bacterial assemblages showed a strong influence of tree composition, but such community differences were not reflected in the structure of lake communities that developed during the experiment. Bacterial taxa showing the largest abundance increases during incubation were initially present in both lake water and across most soils, and were related to Cytophagales, Burkholderiales and Rhizobiales. No clear metabolic profiles based on inoculum source were found, yet soil-amended communities used 60% more substrate than non-inoculated communities. Overall, we show that terrestrial inputs influence aquatic communities by stimulating the growth and activity of certain ubiquitous taxa distributed across the terrestrial-aquatic continuum, yet different forest soils did not cause predictable changes in lake bacterioplankton assemblages.
A New NOAA Research Initiative on the Seasonal Prediction of U.S. Coastal High Water Levels
NASA Astrophysics Data System (ADS)
Mariotti, A.; Archambault, H. M.; Barrie, D.; Huang, J.
2017-12-01
A crucial part of NOAA's service mission is to make U.S. communities more resilient to rises in coastal sea level, which on a seasonal timescale may increase the threat for nuisance ("sunny day") flooding, as well as enhance the severity of storm surge events. Over a season, variability in climate or ocean dynamics, in combination with longer-term trends, can influence coastal sea level in a way that is potentially predictable. To leverage these emerging scientific findings, the Climate Program Office's Modeling, Analysis, Predictions, and Projections Program, in partnership with the National Marine Fisheries Service, has funded a set of three-year projects starting in FY 2017 to help develop NOAA's capability to produce skillful seasonal (i.e, 2-9 month) predictions of coastal high water levels as well as changing living marine resources. This presentation will describe the goals, scope and intended activities of this research initiative and its coordination via a new MAPP Ocean Prediction Task Force.
Tropic lightning: myth or menace?
McCarthy, John
2014-11-01
Lightning is one of the leading causes of death related to environmental disaster. Of all lightning fatalities documented between 2006 and 2012, leisure activities contributed the largest proportion of deaths, with water-associated, sports, and camping being the most common. Despite the prevalence of these activities throughout the islands, Hawai'i has had zero documented lightning fatalities since weather data tracking was initiated in 1959. There is a common misconception that lightning does not strike the ground in Hawai'i. This myth may contribute to a potentially dangerous false sense of security, and recognition of warning signs and risk factor modification remain the most important prevention strategies. Lightning damage occurs on a spectrum, from minor burns to multi-organ dysfunction. After injury, initial treatment should focus on "reverse triage" and immediate cardiopulmonary resuscitation when indicated, followed by transfer to a healthcare facility. Definitive treatment entails monitoring and management of potential sequelae, to include cardiovascular, neurologic, dermatologic, ophthalmologic, audiovestibular, and psychiatric complications.
Toxicity of insecticides to tsetse flies
Hadaway, A. B.
1972-01-01
New insecticides have been evaluated for toxicity to tsetse flies and compared with organochlorine compounds currently in use. The most toxic compounds and their estimated median lethal doses in nanograms per fly by topical application in solution to teneral Glossina austeni were: resmethrin 4, fenthion 8, dieldrin 10, propoxur 12, chlorfenvinphos 12, tetrachlorvinphos 20, and dichlorvos 20. There was little variation in the susceptibility of teneral male and female flies, young fed flies, and fed stud males with all the compounds tested (dieldrin, resmethrin, tetrachlorvinphos, bromophos, and propoxur) and increased tolerance in old fed pregnant flies occurred only with dieldrin and resmethrin. There was also little variation in the susceptibility of teneral flies of the two species G. austeni and G. morsitans. In contact toxicity tests with water dispersible powder deposits on plywood, propoxur was highly active initially but lost its effectiveness after only a few weeks, whereas tetrachlorvinphos was less active initially but more persistent. PMID:4537853
The Impact of Diesel Oil Pollution on the Hydrophobicity and CO2 Efflux of Forest Soils.
Hewelke, Edyta; Szatyłowicz, Jan; Hewelke, Piotr; Gnatowski, Tomasz; Aghalarov, Rufat
2018-01-01
The contamination of soil with petroleum products is a major environmental problem. Petroleum products are common soil contaminants as a result of human activities, and they are causing substantial changes in the biological (particularly microbiological) processes, chemical composition, structure and physical properties of soil. The main objective of this study was to assess the impact of soil moisture on CO 2 efflux from diesel-contaminated albic podzol soils. Two contamination treatments (3000 and 9000 mg of diesel oil per kg of soil) were prepared for four horizons from two forest study sites with different initial levels of soil water repellency. CO 2 emissions were measured using a portable infrared gas analyser (LCpro+, ADC BioScientific, UK) while the soil samples were drying under laboratory conditions (from saturation to air-dry). The assessment of soil water repellency was performed using the water drop penetration time test. An analysis of variance (ANVOA) was conducted for the CO 2 efflux data. The obtained results show that CO 2 efflux from diesel-contaminated soils is higher than efflux from uncontaminated soils. The initially water-repellent soils were found to have a bigger CO 2 efflux. The non-linear relationship between soil moisture content and CO 2 efflux only existed for the upper soil horizons, while for deeper soil horizons, the efflux is practically independent of soil moisture content. The contamination of soil by diesel leads to increased soil water repellency.
Ramachandran, Saranya; Sivasamy, A; Kumar, B Dinesh
2016-12-01
Water pollution is a cause for serious concern in today's world. A major contributor to water pollution is industrial effluents containing dyes and other organic molecules. Waste water treatment has become a priority area in today's applied scientific research as it seeks to minimize the toxicity of the effluents being discharged and increase the possibility of water recycling. An efficient and eco-friendly way of degrading toxic molecules is to use nano metal-oxide photocatalysts. The present study aims at enhancing the photocatalytic activity of a semiconductor metal oxide by doping it with nitrogen. A sol-gel cum combustion method was employed to synthesize the catalyst. The prepared catalyst was characterized by FT-IR, XRD, UV-DRS, FESEM and AFM techniques. UV-DRS result showed the catalyst to possess band gap energy of 2.97eV, thus making it active in the UV region of the spectrum. Its photocatalytic activity was evaluated by the degradation of a model pollutant-Orange G dye, under UV light irradiation. Preliminary experiments were carried out to study the effects of pH, catalyst dosage and initial dye concentration on the extent of dye degradation. Kinetic studies revealed that the reaction followed pseudo first order kinetics. The effect of electrolytes on catalyst efficiency was also studied. The progress of the reaction was monitored by absorption studies and measuring the reduction in COD. The catalyst thus prepared was seen to have a high photocatalytic efficiency. The use of this catalyst is a promising means of waste water treatment. Copyright © 2016 Elsevier Inc. All rights reserved.
Nilles, Mark A.; Penoyer, Pete E; Ludtke, Amy S.; Ellsworth, Alan C.
2016-07-13
The U.S. Geological Survey (USGS) and the National Park Service (NPS) work together through the USGS–NPS Water-Quality Partnership to support a broad range of policy and management needs related to high-priority water-quality issues in national parks. The program was initiated in 1998 as part of the Clean Water Action Plan, a Presidential initiative to commemorate the 25th anniversary of the Clean Water Act. Partnership projects are developed jointly by the USGS and the NPS. Studies are conducted by the USGS and findings are used by the NPS to guide policy and management actions aimed at protecting and improving water quality.The National Park Service manages many of our Nation’s most highly valued aquatic systems across the country, including portions of the Great Lakes, ocean and coastal zones, historic canals, reservoirs, large rivers, high-elevation lakes and streams, geysers, springs, and wetlands. So far, the Water-Quality Partnership has undertaken 217 projects in 119 national parks. In each project, USGS studies and assessments (http://water.usgs.gov/nps_partnership/pubs.php) have supported science-based management by the NPS to protect and improve water quality in parks. Some of the current projects are highlighted in the NPS Call to Action Centennial initiative, Crystal Clear, which celebrates national park water-resource efforts to ensure clean water for the next century of park management (http://www.nature.nps.gov/water/crystalclear/).New projects are proposed each year by USGS scientists working in collaboration with NPS staff in specific parks. Project selection is highly competitive, with an average of only eight new projects funded each year out of approximately 75 proposals that are submitted. Since the beginning of the Partnership in 1998, 189 publications detailing project findings have been completed. The 217 studies have been conducted in 119 NPS-administered lands, extending from Denali National Park and Preserve in Alaska to Everglades National Park in Florida, and from Acadia National Park in the Northeast to park lands in Hawaii and Pacific Island territories in the West. Project goals range from periodic stream monitoring, to determining the occurrence and concentrations of contaminants and the potential for them to exceed human health or aquatic life criteria, to conducting interpretive studies to evaluate the effect(s) on or vulnerability of national park resources to visitor usage and other natural and anthropogenic activities.
Chekli, Laura; Kim, Youngjin; Phuntsho, Sherub; Li, Sheng; Ghaffour, Noreddine; Leiknes, TorOve; Shon, Ho Kyong
2017-02-01
The present study focused on the performance of the FDFO process to achieve simultaneous water reuse from wastewater and production of nutrient solution for hydroponic application. Bio-methane potential (BMP) measurements were firstly carried out to determine the effect of osmotic concentration of wastewater achieved in the FDFO process on the anaerobic activity. Results showed that 95% water recovery from the FDFO process is the optimum value for further AnMBR treatment. Nine different fertilizers were then tested based on their FO performance (i.e. water flux, water recovery and reverse salt flux) and final nutrient concentration. From this initial screening, ammonium phosphate monobasic (MAP), ammonium sulfate (SOA) and mono-potassium phosphate were selected for long term experiments to investigate the maximum water recovery achievable. After the experiments, hydraulic membrane cleaning was performed to assess the water flux recovery. SOA showed the highest water recovery rate, up to 76% while KH 2 PO 4 showed the highest water flux recovery, up to 75% and finally MAP showed the lowest final nutrient concentration. However, substantial dilution was still necessary to comply with the standards for fertigation even if the recovery rate was increased. Copyright © 2016 Elsevier Ltd. All rights reserved.
Haque, Enamul; Bhandari, Bhesh R; Gidley, Michael J; Deeth, Hilton C; Møller, Sandie M; Whittaker, Andrew K
2010-07-14
Protein conformational modifications and water-protein interactions are two major factors believed to induce instability of protein and eventually affect the solubility of milk protein concentrate (MPC) powder. To test these hypotheses, MPC was stored at different water activities (a(w) 0.0-0.85) and temperatures (25 and 45 degrees C) for up to 12 weeks. Samples were examined periodically to determine solubility, change in protein conformation by Fourier transform infrared (FTIR) spectroscopy and principal component analysis (PCA), and water status (interaction of water with the protein molecule/surface) by measuring the transverse relaxation time (T(2)) with proton nuclear magnetic resonance ((1)H NMR). The solubility of MPC decreased significantly with aging, and this process was enhanced by increasing water activity (a(w)) and storage temperature. Minor changes in protein secondary structure were observed with FTIR, which indicated some degree of unfolding of protein molecules. PCA of the FTIR data was able to discriminate samples according to moisture content and storage period. Partial least-squares (PLS) analysis showed some correlation between FTIR spectral feature and solubility. The NMR T(2) results indicated the presence of three distinct populations of water molecules, and the proton signal intensity and T(2) values of proton fractions varied with storage conditions (humidity, temperature) and aging. Results suggest that protein/protein interactions may be initiated by unfolding of protein molecules that eventually affects solubility.
Solvability of the Initial Value Problem to the Isobe-Kakinuma Model for Water Waves
NASA Astrophysics Data System (ADS)
Nemoto, Ryo; Iguchi, Tatsuo
2017-09-01
We consider the initial value problem to the Isobe-Kakinuma model for water waves and the structure of the model. The Isobe-Kakinuma model is the Euler-Lagrange equations for an approximate Lagrangian which is derived from Luke's Lagrangian for water waves by approximating the velocity potential in the Lagrangian. The Isobe-Kakinuma model is a system of second order partial differential equations and is classified into a system of nonlinear dispersive equations. Since the hypersurface t=0 is characteristic for the Isobe-Kakinuma model, the initial data have to be restricted in an infinite dimensional manifold for the existence of the solution. Under this necessary condition and a sign condition, which corresponds to a generalized Rayleigh-Taylor sign condition for water waves, on the initial data, we show that the initial value problem is solvable locally in time in Sobolev spaces. We also discuss the linear dispersion relation to the model.
Development of a common priority list of pharmaceuticals relevant for the water cycle.
de Voogt, P; Janex-Habibi, M-L; Sacher, F; Puijker, L; Mons, M
2009-01-01
Pharmaceutically active compounds (PhACs), including prescription drugs, over-the-counter medications, drugs used in hospitals and veterinary drugs, have been found throughout the water cycle. A desk study was initiated by the Global Water Research Coalition to consolidate a uniform selection of such compounds in order to judge risks of PhACs for the water cycle. By identifying major existing prioritization efforts and evaluating the criteria they use, this study yields a representative and qualitative profile ('umbrella view') of priority pharmaceuticals based on an extensive set of criteria. This can then be used for further studies on analytical methods, occurrence, treatability and potential risks associated with exposure to PhACs in water supply, identifying compounds most likely to be encountered and that may have significant impact on human health. For practical reasons, the present study excludes veterinary drugs. The pragmatic approach adopted provides an efficient tool to manage risks related to pharmaceuticals and provides assistance for selecting compounds for future studies.
Geophysical and atmospheric evolution of habitable planets.
Lammer, Helmut; Selsis, Frank; Chassefière, Eric; Breuer, Doris; Griessmeier, Jean-Mathias; Kulikov, Yuri N; Erkaev, Nikolai V; Khodachenko, Maxim L; Biernat, Helfried K; Leblanc, Francois; Kallio, Esa; Lundin, Richard; Westall, Frances; Bauer, Siegfried J; Beichman, Charles; Danchi, William; Eiroa, Carlos; Fridlund, Malcolm; Gröller, Hannes; Hanslmeier, Arnold; Hausleitner, Walter; Henning, Thomas; Herbst, Tom; Kaltenegger, Lisa; Léger, Alain; Leitzinger, Martin; Lichtenegger, Herbert I M; Liseau, René; Lunine, Jonathan; Motschmann, Uwe; Odert, Petra; Paresce, Francesco; Parnell, John; Penny, Alan; Quirrenbach, Andreas; Rauer, Heike; Röttgering, Huub; Schneider, Jean; Spohn, Tilman; Stadelmann, Anja; Stangl, Günter; Stam, Daphne; Tinetti, Giovanna; White, Glenn J
2010-01-01
The evolution of Earth-like habitable planets is a complex process that depends on the geodynamical and geophysical environments. In particular, it is necessary that plate tectonics remain active over billions of years. These geophysically active environments are strongly coupled to a planet's host star parameters, such as mass, luminosity and activity, orbit location of the habitable zone, and the planet's initial water inventory. Depending on the host star's radiation and particle flux evolution, the composition in the thermosphere, and the availability of an active magnetic dynamo, the atmospheres of Earth-like planets within their habitable zones are differently affected due to thermal and nonthermal escape processes. For some planets, strong atmospheric escape could even effect the stability of the atmosphere.
Franke, O. Lehn; Reilly, Thomas E.; Bennett, Gordon D.
1987-01-01
Accurate definition of boundary and initial conditions is an essential part of conceptualizing and modeling ground-water flow systems. This report describes the properties of the seven most common boundary conditions encountered in ground-water systems and discusses major aspects of their application. It also discusses the significance and specification of initial conditions and evaluates some common errors in applying this concept to ground-water-system models. An appendix is included that discusses what the solution of a differential equation represents and how the solution relates to the boundary conditions defining the specific problem. This report considers only boundary conditions that apply to saturated ground-water systems.
Biological Ice Nuclei: They are Everywhere, What are Their Roles? (Invited)
NASA Astrophysics Data System (ADS)
Schnell, R. C.
2009-12-01
Biological ice nuclei active at temperatures warmer than -2C were first observed in the late 1960s associated with decaying grass and tree leaves; discovered more by accident than in a planned experiment. The active component of the decaying leaves was subsequently found to be produced by a few living bacteria, the two most ubiquitous being strains of P. syringae and E. herbicola. The active bacterial ice nuclei are easily deactivated by anaerobic, chemical and heat stresses. The same grass and tree leaves, when well decayed, generally contain less active ice nuclei (threshold temperatures of -5C to - 6C) in the 0.1 micron diameter range compared to the larger (1 micron) bacteria associated ice nuclei. The well decayed leaf litter ice nuclei are stable over a wide range of stresses and time; some samples of leaf derived nuclei stored at room temperature have exhibited the same ice nucleus concentration for over 30 years. Fungi also have active ice nuclei that are stable over many decades. Active ice nuclei are found in marine waters associated with plankton, and are produced by at least one marine dinoflagellate (Heterocapsa niei) that expresses ice nucleus activity almost as warm as terrestrial bacteria ice nuclei. Living ice nucleus bacteria have been found in marine fogs far at sea, in precipitation in Antarctica as well as over many continental areas, in air in the high Arctic, on vegetation around the world, on remote ice bound islands, and growing on and inside water storing vegetation on isolated tropical mountain peaks. But why? What is the evolutionary advantage for the ice nucleus gene to be expressed in such a wide range of environments, by greatly different species? There is an energy cost for bacteria and fungi to support the ice gene, so it probably is not a genetic anomaly. Possibly the ice nuclei play many roles? These could include damaging plants to acquire a food source, an aid in survival and dispersal in clouds, initiation of precipitation to help plant growth, initiating ice formation and subsequent scavenging of water vapor in cold climates (e.g. Arctic and high elevation lichen), living in symbiosis with high elevation vegetation that freezes nightly, and probably a range of others we have not observed or yet hypothesized. Bacterial ice nucleation is truly an intriguing and fantastic phenomenon for which we have just begun to understand.
Stuckey, Marla H.
2008-01-01
The Water Resources Planning Act, Act 220 of 2002, requires the Pennsylvania Department of Environmental Protection (PaDEP) to update the State Water Plan by 2008. As part of this update, a water-analysis screening tool (WAST) was developed by the U.S. Geological Survey, in cooperation with the PaDEP, to provide assistance to the state in the identification of critical water-planning areas. The WAST has two primary inputs: net withdrawals and the initial screening criteria. A comprehensive water-use database that includes data from registration, estimation, discharge monitoring reports, mining data, and other sources was developed as input into the WAST. Water use in the following categories was estimated using water-use factors: residential, industrial, commercial, agriculture, and golf courses. A percentage of the 7-day, 10-year low flow is used for the initial screenings using the WAST to identify potential critical water-planning areas. This quantity, or initial screening criteria, is 50 percent of the 7-day, 10-year low flow for most streams. Using a basic water-balance equation, a screening indicator is calculated that indicates the potential influences of net withdrawals on aquatic-resource uses for watersheds generally larger than 15 square miles. Points representing outlets of these watersheds are colored-coded within the WAST to show the screening criteria for each watershed.
Using naturally occurring radionuclides to determine drinking water age in a community water system
Waples, James T.; Bordewyk, Jason K.; Knesting, Kristina M.; ...
2015-07-22
Drinking water quality in a community water system is closely linked to the age of water from initial treatment to time of delivery. However, water age is difficult to measure with conventional chemical tracers; particularly in stagnant water, where the relationship between disinfectant decay, microbial growth, and water age is poorly understood. Using radionuclides that were naturally present in source water, we found that measured activity ratios of 90Y/ 90Sr and 234Th/ 238U in discrete drinking water samples of known age accurately estimated water age up to 9 days old (σ est: ± 3.8 h, P < 0.0001, r 2more » = 0.998, n = 11) and 25 days old (σ est: ± 13.3 h, P < 0.0001, r 2 = 0.996, n = 12), respectively. Moreover, 90Y-derived water ages in a community water system (6.8 × 10 4 m 3 d –1 capacity) were generally consistent with water ages derived from an extended period simulation model. Radionuclides differ from conventional chemical tracers in that they are ubiquitous in distribution mains and connected premise plumbing. The ability to measure both water age and an analyte (e.g., chemical or microbe) in any water sample at any time allows for new insight into factors that control drinking water quality.« less
Using naturally occurring radionuclides to determine drinking water age in a community water system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Waples, James T.; Bordewyk, Jason K.; Knesting, Kristina M.
Drinking water quality in a community water system is closely linked to the age of water from initial treatment to time of delivery. However, water age is difficult to measure with conventional chemical tracers; particularly in stagnant water, where the relationship between disinfectant decay, microbial growth, and water age is poorly understood. Using radionuclides that were naturally present in source water, we found that measured activity ratios of 90Y/ 90Sr and 234Th/ 238U in discrete drinking water samples of known age accurately estimated water age up to 9 days old (σ est: ± 3.8 h, P < 0.0001, r 2more » = 0.998, n = 11) and 25 days old (σ est: ± 13.3 h, P < 0.0001, r 2 = 0.996, n = 12), respectively. Moreover, 90Y-derived water ages in a community water system (6.8 × 10 4 m 3 d –1 capacity) were generally consistent with water ages derived from an extended period simulation model. Radionuclides differ from conventional chemical tracers in that they are ubiquitous in distribution mains and connected premise plumbing. The ability to measure both water age and an analyte (e.g., chemical or microbe) in any water sample at any time allows for new insight into factors that control drinking water quality.« less
Cysteine-containing peptides having antioxidant properties
Bielicki, John K [Castro Valley, CA
2009-10-13
Cysteine containing amphipathic alpha helices of the exchangeable apolipoproteins, as exemplified by apolipoprotein (apo) A-I.sub.Milano (R173C) and apoA-I.sub.Paris, (R151C) were found to exhibit potent antioxidant activity on phospholipid surfaces. The addition of a free thiol, at the hydrophobic/hydrophilic interface of an amphipathic alpha helix of synthetic peptides that mimic HDL-related proteins, imparts a unique antioxidant activity to these peptides which inhibits lipid peroxidation and protects phospholipids from water-soluble free radical initiators. These peptides can be used as therapeutic agents to combat cardiovascular disease, ischemia, bone disease and other inflammatory related diseases.
Cysteine-containing peptides having antioxidant properties
Bielicki, John K [Castro Valley, CA
2008-10-21
Cysteine containing amphipathic alpha helices of the exchangeable apolipoproteins, as exemplified by apolipoprotein (apo) A-I.sub.Milano (R173C) and apoA-I.sub.Paris, (R151C) were found to exhibit potent antioxidant activity on phospholipid surfaces. The addition of a free thiol, at the hydrophobic/hydrophilic interface of an amphipathic alpha helix of synthetic peptides that mimic HDL-related proteins, imparts a unique antioxidant activity to these peptides which inhibits lipid peroxidation and protects phospholipids from water-soluble free radical initiators. These peptides can be used as therapeutic agents to combat cardiovascular disease, ischemia, bone disease and other inflammatory related diseases.
[Recreational boating accidents--Part 1: Catamnestic study].
Lignitz, Eberhard; Lustig, Martina; Scheibe, Ernst
2014-01-01
Deaths on the water are common in the autopsy material of medicolegal institutes situated on the coast or big rivers and lakes (illustrated by the example of the Institute of Legal Medicine of Greifswald University). They mostly occur during recreational boating activities. Apart from hydro-meteorological influences, human error is the main cause of accidents. Often it is not sufficiently kept in mind whether the boat crew is fit for sailing and proper seamanship is ensured. Drowning (following initial hypothermia) is the most frequent cause of death. Medicolegal aspects are not decisive for ordering a forensic autopsy. As statistics are not compiled in a uniform way, a comparison of the data of different institutions engaged in investigating deaths at sea and during water sports activities is hardly possible, neither on a national nor an international basis--and the reconstruction of aquatic accidents is generally difficult. Fatal accidents can only be prevented by completely clarifying their causes.
NASA Technical Reports Server (NTRS)
Werdel, P. Jeremy
2012-01-01
Calibrating ocean color satellite instruments and validating their data products requires temporal and spatial abundances of high quality in situ oceanographic data. The Consortium for Ocean Leadership Ocean Observing Initiative (OOl) is currently implementing a distributed array of in-water sensors that could provide a significant contribution to future ocean color activities. This workshop will scope the optimal way to use and possibly supplement the planned OOl infrastructure to maximize its utility and relevance for calibration and validation activities that support existing and planned NASA ocean color missions. Here, I present the current state of the art of NASA validation of ocean color data products, with attention to autonomous time-series (e.g., the AERONET -OC network of above-water radiometers), and outline NASA needs for data quality assurance metrics and adherence to community-vetted data collection protocols
NASA Astrophysics Data System (ADS)
Eldardiry, H. A.; Unruh, H. G., Sr.; Habib, E. H.; Tidwell, V. C.
2016-12-01
Recent community initiatives have identified key foundational knowledge gaps that need to be addressed before transformative solutions can be made in the area of Food, Energy and Water (FEW) nexus. In addition, knowledge gaps also exist in the area of FEW education and needs to be addressed before we can make an impact on building the next generation FEW workforces. This study reports on the development of a pilot learning-module that focuses on two elements of the FEW nexus, Energy and Water. The module follows an active-learning approach to develop a set of student-centered learning activities using FEW datasets situated in real-world settings in the contiguous US. The module is based on data-driven learning exercises that incorporate different geospatial layers and manipulate datasets at a watershed scale representing the eight-digit Hydrologic Unit Code (HUC8). Examples of such datasets include water usage by different demand sectors (available from the US Geological Survey, USGS), and power plants stratified by energy source, cooling technology, and plant capacity (available from the US Energy Information Administration, EIA). The module is structured in three sections: (1) introduction to the water and energy systems, (2) quantifying stresses on water system at a catchment scale, and (3) scenario-based analysis on the interdependencies in the water-energy systems. Following a data-analytic framework, the module guides students to make different assumptions about water use growth rates and see how these new water demands will impinge on freshwater supplies. The module engages students in analysis that examines how thermoelectric water use would depend on assumptions about future demand for electricity, power plant fuel source, cooling type, and carbon sequestration. Students vary the input parameters, observe and assess the effect on water use, and address gaps via non-potable water resources (e.g., municipal wastewater). The module is implemented using a web-based platform where datasets, lesson contents, and student learning activities are presented within a geo-spatial context. The presentation will share insight on how the dynamics of FEW systems can be taught using meaningful educational experiences that promote students' understanding of FEW systems and their complex inter-connections.
Reaction Kinetics of Water Molecules with Oxygen Vacancies on Rutile TiO 2(110)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Petrik, Nikolay G.; Kimmel, Gregory A.
2015-09-16
The formation of bridging hydroxyls (OHb) via reactions of water molecules with oxygen vacancies (VO) on reduced TiO 2(110) surfaces is studied using infrared reflection-absorption spectroscopy (IRAS), electron-stimulated desorption (ESD), and photon-stimulated desorption (PSD). Narrow IRAS peaks at 2737 cm-1 and 3711 cm -1 are observed for stretching vibrations of OD b and OH b on TiO 2(110), respectively. IRAS measurements with s- and p-polarized light demonstrate that the bridging hydroxyls are oriented normal to the (110) surface. The IR peaks disappear after the sample is exposed to O 2 or annealed in the temperature range of 400 – 600more » K (correlating with the temperature at which pairs of OHb’s reform water and then desorb), which is consistent with their identification as bridging hydroxyls. We have studied the kinetics of water reacting with the vacancies by monitoring the formation of bridging hydroxyls (using IRAS) as a function of the annealing temperature for a small amount of water initially dosed on the TiO 2(110) at low temperature. Separate experiments have also monitored the loss of water molecules (using water ESD) and vacancies (using the CO photooxidation reaction) due to the reactions of water molecules with the vacancies. All three techniques show that the reaction rate becomes appreciable for T > 150 K and that the reactions largely complete for T > 250 K. The temperature-dependent water-VO reaction kinetics are consistent with a Gaussian distribution of activation energies with E a = 0.545 eV, ΔE a(FWHM) = 0.125 eV, and a “normal” prefactor, v = 10 12 s -1. In contrast, a single activation energy with a physically reasonable prefactor does not fit the data well. Our experimental activation energy is close to theoretical estimates for the diffusion of water molecules along the Ti 5c rows on the reduced TiO 2(110) surface, which suggests that the diffusion of water controls the water – V O reaction rate.« less
Myers, Michelle A; Johnson, Nicholas W; Marin, Erick Zerecero; Pornwongthong, Peerapong; Liu, Yun; Gedalanga, Phillip B; Mahendra, Shaily
2018-06-04
1,4-Dioxane is a probable human carcinogen and an emerging contaminant that has been detected in surface water and groundwater resources. Many conventional water treatment technologies are not effective for the removal of 1,4-dioxane due to its high water solubility and chemical stability. Biological degradation is a potentially low-cost, energy-efficient approach to treat 1,4-dioxane-contaminated waters. Two bacterial strains, Pseudonocardia dioxanivorans CB1190 (CB1190) and Mycobacterium austroafricanum JOB5 (JOB5), have been previously demonstrated to break down 1,4-dioxane through metabolic and co-metabolic pathways, respectively. However, both CB1190 and JOB5 have been primarily studied in laboratory planktonic cultures, while most environmental microbes grow in biofilms on surfaces. Another treatment technology, adsorption, has not historically been considered an effective means of removing 1,4-dioxane due to the contaminant's low K oc and K ow values. We report that the granular activated carbon (GAC), Norit 1240, is an adsorbent with high affinity for 1,4-dioxane as well as physical dimensions conducive to attached bacterial growth. In abiotic batch reactor studies, 1,4-dioxane adsorption was reversible to a large extent. By bioaugmenting GAC with 1,4-dioxane-degrading microbes, the adsorption reversibility was minimized while achieving greater 1,4-dioxane removal when compared with abiotic GAC (95-98% reduction of initial 1,4-dioxane as compared to an 85-89% reduction of initial 1,4-dioxane, respectively). Bacterial attachment and viability was visualized using fluorescence microscopy and confirmed by amplification of taxonomic genes by quantitative polymerase chain reaction (qPCR) and an ATP assay. Filtered samples of industrial wastewater and contaminated groundwater were also tested in the bioaugmented GAC reactors. Both CB1190 and JOB5 demonstrated 1,4-dioxane removal greater than that of the abiotic adsorbent controls. This study suggests that bioaugmented adsorbents could be an effective technology for 1,4-dioxane removal from contaminated water resources. Copyright © 2018 Elsevier Ltd. All rights reserved.
Ab initio molecular dynamics of H2O adsorbed on solid MgO
NASA Astrophysics Data System (ADS)
Langel, Walter; Parrinello, Michele
1995-08-01
The Car-Parrinello method has been applied to study the adsorption of water on solid magnesium oxide with surface defects. A step consisting of an (100) and an (010) surface on an (011) base plane allows us to model the experimentally observed microfaceting. In and on this step dissociation of water into a hydroxyl group and a H-atom took place following a complicated pathway only accessible by the simulation of thermal motion. Under comparable conditions physisorption only was observed on a regular (001) plane. This solves an experimental controversy and it is in agreement with the observation, that disordered surfaces are more active in initiating the dissociation of the water molecules. Our work allows us to identify an important active center. We can also account for the experimentally observed broadening and shifting to the red of the stretching mode of hydrogen bonded hydroxyl groups, and we provide a detailed explanation of the origin of this effect. This allows us to verify earlier theories of hydrogen bonding such as that of the adiabatic separation of the proton dynamics.
NASA Astrophysics Data System (ADS)
Amalraj, Augustine; Pius, Anitha
2017-10-01
The aim of this study is to design and develop a novel cost effective method for fluoride removal, applicable to rural areas of developing countries. Adsorption is widely considered as one of the appropriate technologies for water defluoridation. This study investigates the feasibility of using low-cost biomass based activated carbon from the bark of Morinda tinctoria coated with aluminum hydroxide (AHAC) for water defluoridation, at neutral pH range. Characterization of AHAC was done through IR, SEM with EDAX studies before and after fluoride treatment. The fluoride adsorption capacity of AHAC as a function of contact time, pH and initial fluoride concentration was investigated. The role of co-existing interfering ions also was studied. The isotherm and kinetic models were used to understand the nature of the fluoride adsorption onto AHAC. Freundlich isotherm and intra-particle diffusion were the best-fitting models for the adsorption of fluoride on AHAC. Fluoride adsorption kinetics well fitted with pseudo-second order model. The results showed excellent fluoride adsorption capacity was found to be 26.03 mg g-1 at neutral pH.
Senthil Kumar, Ponnusamy; Saravanan, Anbalagan; Anish Kumar, Kodyingil; Yashwanth, Ramesh; Visvesh, Sridharan
2016-08-01
In the present study, a novel activated carbon was prepared from low-cost eucalyptus seeds, which was utilised for the effectively removal of toxic zinc from the water/wastewater. The prepared adsorbent was studied by Fourier transform infrared spectroscopy and scanning electron microscopic characterisation studies. Adsorption process was experimentally performed for optimising the influencing factors such as adsorbent dosage, solution pH, contact time, initial zinc concentration, and temperature for the maximum removal of zinc from aqueous solution. Adsorption isotherm of zinc removal was ensued Freundlich model, and the kinetic model ensued pseudo-second order model. Langmuir monolayer adsorption capacity of the adsorbent for zinc removal was evaluated as 80.37 mg/g. The results of the thermodynamic studies suggested that the adsorption process was exothermic, thermodynamically feasible and impulsive process. Finally, a batch adsorber was planned to remove zinc from known volume and known concentration of wastewater using best obeyed model such as Freundlich. The experimental details showed the newly prepared material can be effectively utilised as a cheap material for the adsorption of toxic metal ions from the contaminated water.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choi, Jae -Soon; Schwartz, Viviane; Santillan-Jimenez, Eduardo
In this paper, we investigated the structural evolution of molybdenum carbides subjected to hot aqueous environments and their catalytic performance in low-temperature hydroprocessing of acetic acid. While bulk structures of Mo carbides were maintained after aging in hot liquid water, a portion of carbidic Mo sites were converted to oxidic sites. Water aging also induced changes to the non-carbidic carbon deposited during carbide synthesis and increased surface roughness, which in turn affected carbide pore volume and surface area. The extent of these structural changes was sensitive to the initial carbide structure and was lower under actual hydroprocessing conditions indicating themore » possibility of further improving the hydrothermal stability of Mo carbides by optimizing catalyst structure and operating conditions. Mo carbides were active in acetic acid conversion in the presence of liquid water, their activity being comparable to that of Ru/C. Finally, the results suggest that effective and inexpensive bio-oil hydroprocessing catalysts could be designed based on Mo carbides, although a more detailed understanding of the structure-performance relationships is needed, especially in upgrading of more complex reaction mixtures or real bio-oils.« less
The latest on hydrothermal activity on Enceladus from Cassini and Laboratory work
NASA Astrophysics Data System (ADS)
Postberg, F.; Hsu, H. W.; Sekine, Y.; Shibuya, T.
2015-10-01
Various observations from the Cassini spacecraft [1,2,3], suggest the existence of subsurface water beneath the south polar region of Saturn's geologically active icy moon Enceladus. They provide information on the composition and physical conditions of water reservoirs occurring at shallow depth from which the plumes emerge [1,2,4], and about the dimensions of the south polar ocean beneath the ice crust at a depth of about 50km [3]. However, constraints on the physical and chemical conditions at the interface of the rocky core and the deep ocean are sparse. We report in situ measurements of tiny grains, so called stream particles, by Cassini's Cosmic Dust Analyser (CDA) in the Saturnian system. CDA data shows that these nano-particles are composed of silica that were initially embedded in larger μm-sized icy grains emitted from Enceladus subsurface waters and released by sputter erosion in Saturn's E ring. Comprehensive long- term laboratory experiments and model calculations were carried out to investigate the reaction conditions at the bottom of Enceladus' ocean.
Xiao, Jun; Wu, Xu; Yu, Wenbo; Liang, Sha; Yu, Jiangwei; Gu, Yueyuan; Deng, Huali; Hu, Jiukun; Xiao, Keke; Yang, Jiakuan
2017-12-01
In this study, the influence of Na 2 SO 4 on electro-dewatering (EDW) of waste activated sludge (WAS) was investigated. The highest water removal efficiency of 42.5% was achieved at the optimum Na 2 SO 4 dosage of 12.5 g kg -1 DS during EDW process at a constant voltage of 20 V. The migration and distribution of water, organic matters and Na + at different Na 2 SO 4 dosages were investigated through layered experiments. The results indicated the entire EDW process followed the S curve model, and it can be divided into three stages: (1) initial desalination stage: at the initial few min of EDW process, the rate of electroosmosis was extremely slow while electromigration of ions like Na + was intense, and the electromigration was more obvious with increased Na 2 SO 4 dosage; (2) dewatering stage: the dewatering efficiency increased dramatically via electroosmosis; (3) the dewaterability limit stage: the maximum value of dewatering efficiency has been achieved, while the water removal efficiency and dry solids content remained constant. During the EDW process, the possible electrolysis resulted in a pH gradient in the sludge cake. With the addition of Na 2 SO 4 in the EDW, the pH gradient was intensified, and the migration rate of organic matters moving from cathode to anode increased while compared with the raw WAS. This study provided insights into the mechanism of EDW process at different dosages of Na 2 SO 4 . Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Montgomery, J.; O'sullivan, F.
2016-12-01
An important metric for comparing the environmental impact of hydraulically fractured oil and gas wells to other energy technologies is the water intensity, or water usage normalized to energy production. Due to varying hydraulic fracturing practices, immense variability in short-term well performance, and uncertainty about lifetime production from wells, the water intensity of wells is difficult to predict and should be modeled statistically using field data. We analyzed public production and hydraulic fracturing data for 3497 wells drilled in the North Dakota Williston Basin between 2012 and 2015 to identify technology and sweet-spotting trends and identify their impact on well productivity and water intensity. We found that the water used per well increased by an average of 43% per year over this period while the water intensity of wells increased by 32% per year. The difference in these rates was due to a trend of increasing production rates, which we found to be associated equally with changes in technology and sweet-spotting. The prevalent role of sweet spotting means that as future drilling activity shifts into less productive areas than are presently being exploited, this will predictably increase the water intensity of new wells. Although some of the variability in well productivity and water intensity is resolvable to the influence of spatial heterogeneity and technology practices, a substantial amount of uncertainty is irreducible due to unobservable factors. This uncertainty can best be represented and updated with new information, such as initial rates of production, using a Bayesian decline curve model. We demonstrate how this approach can be used to forecast uncertainty of water intensity at different locations and points in time, making it a useful tool for a range of stakeholders, including regulatory agencies assessing the environmental impact of drilling activity within particular watersheds.
Effect of water content on stability of landslides triggered by earthquakes
NASA Astrophysics Data System (ADS)
Beyabanaki, S.; Bagtzoglou, A. C.; Anagnostou, E. N.
2013-12-01
Earthquake- triggered landslides are one of the most important natural hazards that often result in serious structural damage and loss of life. They are widely studied by several researchers. However, less attention has been focused on soil water content. Although the effect of water content has been widely studied for rainfall- triggered landslides [1], much less attention has been given to it for stability analysis of earthquake- triggered landslides. We developed a combined hydrology and stability model to investigate effect of soil water content on earthquake-triggered landslides. For this purpose, Bishop's method is used to do the slope stability analysis and Richard's equation is employed to model infiltration. Bishop's method is one the most widely methods used for analyzing stability of slopes [2]. Earthquake acceleration coefficient (EAC) is also considered in the model to analyze the effect of earthquake on slope stability. Also, this model is able to automatically determine geometry of the potential landslide. In this study, slopes with different initial water contents are simulated. First, the simulation is performed in the case of earthquake only with different EACs and water contents. As shown in Fig. 1, initial water content has a significant effect on factor of safety (FS). Greater initial water contents lead to less FS. This impact is more significant when EAC is small. Also, when initial water content is high, landslides can happen even with small earthquake accelerations. Moreover, in this study, effect of water content on geometry of landslides is investigated. For this purpose, different cases of landslides triggered by earthquakes only and both rainfall and earthquake for different initial water contents are simulated. The results show that water content has more significant effect on geometry of landslides triggered by rainfall than those triggered by an earthquake. Finally, effect of water content on landslides triggered by earthquakes during rainfall is investigated. In this study, after different durations of rainfall, an earthquake is applied to the model and the elapsed time in which the FS gets less than one obtains by trial and error. The results for different initial water contents and earthquake acceleration coefficients show that landslides can happen after shorter rainfall duration when water content is greater. If water content is high enough, the landslide occurs even without rainfall. References [1] Ray RL, Jacobs JM, de Alba P. Impact of unsaturated zone soil moisture and groundwater table on slope instability. J. Geotech. Geoenviron. Eng., 2010, 136(10):1448-1458. [2] Das B. Principles of Foundation Engineering. Stanford, Cengage Learning, 2011. Fig. 1. Effect of initial water content on FS for different EACs
Mechanism and active variety of allelochemicals
Peng, S.-L.; Wen, J.; Guo, Q.-F.
2004-01-01
This article summarizes allelochemicals' active variety, its potential causes and function mechanisms. Allelochemicals' activity varies with temperature, photoperiod, water and soils during natural processes, with its initial concentration, compound structure and mixed degree during functional processes, with plant accessions, tissues and maturity within-species, and with research techniques and operation processes. The prospective developmental aspects of allelopathy studies in the future are discussed. Future research should focus on: (1) to identify and purify allelochemicals more effectively, especially for agriculture, (2) the functions of allelopathy at the molecular structure level, (3) using allelopathy to explain plant species interactions, (4) allelopathy as a driving force of succession, and (5) the significance of allelopathy in the evolutionary processes.
In support of the Agency's Sustainable Water Infrastructure Initiative, EPA's Office of Research and Develpment initiated the Aging Water Infrastructure Research Program in 2007. The program, with its core focus on the support of strategic asset management, is designed to facili...
Natural oil slicks fuel surface water microbial activities in the northern Gulf of Mexico
Ziervogel, Kai; D'souza, Nigel; Sweet, Julia; Yan, Beizhan; Passow, Uta
2014-01-01
We conducted a series of roller tank incubations with surface seawater from the Green Canyon oil reservoir, northern Gulf of Mexico, amended with either a natural oil slick (GCS-oil) or pristine oil. The goal was to test whether bacterial activities of natural surface water communities facilitate the formation of oil-rich marine snow (oil snow). Although oil snow did not form during any of our experiments, we found specific bacterial metabolic responses to the addition of GCS-oil that profoundly affected carbon cycling within our 4-days incubations. Peptidase and β-glucosidase activities indicative of bacterial enzymatic hydrolysis of peptides and carbohydrates, respectively, were suppressed upon the addition of GCS-oil relative to the non-oil treatment, suggesting that ascending oil and gas initially inhibits bacterial metabolism in surface water. Biodegradation of physically dispersed GCS-oil components, indicated by the degradation of lower molecular weight n-alkanes as well as the rapid transformation of particulate oil-carbon (C: N >40) into the DOC pool, led to the production of carbohydrate- and peptide-rich degradation byproducts and bacterial metabolites such as transparent exopolymer particles (TEP). TEP formation was highest at day 4 in the presence of GCS-oil; in contrast, TEP levels in the non-oil treatment already peaked at day 2. Cell-specific enzymatic activities closely followed TEP concentrations in the presence and absence of GCS-oil. These results demonstrate that the formation of oil slicks and activities of oil-degrading bacteria result in a temporal offset of microbial cycling of organic matter, affecting food web interactions and carbon cycling in surface waters over cold seeps. PMID:24847314
Natural oil slicks fuel surface water microbial activities in the northern Gulf of Mexico.
Ziervogel, Kai; D'Souza, Nigel; Sweet, Julia; Yan, Beizhan; Passow, Uta
2014-01-01
We conducted a series of roller tank incubations with surface seawater from the Green Canyon oil reservoir, northern Gulf of Mexico, amended with either a natural oil slick (GCS-oil) or pristine oil. The goal was to test whether bacterial activities of natural surface water communities facilitate the formation of oil-rich marine snow (oil snow). Although oil snow did not form during any of our experiments, we found specific bacterial metabolic responses to the addition of GCS-oil that profoundly affected carbon cycling within our 4-days incubations. Peptidase and β-glucosidase activities indicative of bacterial enzymatic hydrolysis of peptides and carbohydrates, respectively, were suppressed upon the addition of GCS-oil relative to the non-oil treatment, suggesting that ascending oil and gas initially inhibits bacterial metabolism in surface water. Biodegradation of physically dispersed GCS-oil components, indicated by the degradation of lower molecular weight n-alkanes as well as the rapid transformation of particulate oil-carbon (C: N >40) into the DOC pool, led to the production of carbohydrate- and peptide-rich degradation byproducts and bacterial metabolites such as transparent exopolymer particles (TEP). TEP formation was highest at day 4 in the presence of GCS-oil; in contrast, TEP levels in the non-oil treatment already peaked at day 2. Cell-specific enzymatic activities closely followed TEP concentrations in the presence and absence of GCS-oil. These results demonstrate that the formation of oil slicks and activities of oil-degrading bacteria result in a temporal offset of microbial cycling of organic matter, affecting food web interactions and carbon cycling in surface waters over cold seeps.
A scientifically based nationwide assessment of groundwater quality in the United States
Alley, W.M.; Cohen, P.
1991-01-01
Beginning in 1986, the U.S. Geological Survey began an effort to develop a National Water-Quality Assessment Program. The basic premise underlying this initiative is that a better understanding of the quality of water resources across the country, both surface- and groundwater, is needed to develop effective programs and policies to meet the nation's water-quality concerns. The program will focus on water-quality conditions that are prevalent or large in scale, such as occur from nonpoint sources of pollution or from a high density of point sources. The design of the program is substantially different from the traditional approach of a diffuse national monitoring network. The major activities of the assessment program will be clustered within a set of hydrologic systems (river basins and aquifer systems), referred to as study units. In aggregate, the study units will account for a large part of the nation's water use and represent a wide range of settings across the country. Unique attributes of the program include: (1) the use of consistent study approaches, field and laboratory methods, water-quality measurements, and ancillary data measurements for all study units; (2) the development of a progressive understanding of water-quality conditions and trends in each study unit through long-term studies that rotate periods of intensive data collection and analysis with periods during which the assessment activities are less intensive; and (3) the focus of considerable effort on synthesizing results from among the study units to provide information on regional and national water-quality issues. ?? 1991 Springer-Verlag New York Inc.
Hu, Yaxi; Lu, Xiaonan
2016-05-01
An innovative "one-step" sensor conjugating molecularly imprinted polymers and surface enhanced Raman spectroscopic-active substrate (MIPs-SERS) was investigated for simultaneous extraction and determination of melamine in tap water and milk. This sensor was fabricated by integrating silver nanoparticles (AgNPs) with MIPs synthesized by bulk polymerization of melamine (template), methacrylic acid (functional monomer), ethylene glycol dimethacrylate (cross-linking agent), and 2,2'-azobisisobutyronitrile (initiator). Static and kinetic adsorption tests validated the specific affinity of MIPs-AgNPs to melamine and the rapid adsorption equilibration rate. Principal component analysis segregated SERS spectral features of tap water and milk samples with different melamine concentrations. Partial least squares regression models correlated melamine concentrations in tap water and skim milk with SERS spectral features. The limit of detection (LOD) and limit of quantification (LOQ) of melamine in tap water were determined as 0.0019 and 0.0064 mmol/L, while the LOD and LOQ were 0.0165 and 0.055 mmol/L for the determination of melamine in skim milk. However, this sensor is not ideal to quantify melamine in tap water and skim milk. By conjugating MIPs with SERS-active substrate (that is, AgNPs), reproducibility of SERS spectral features was increased, resulting in more accurate detection. The time required to determine melamine in tap water and milk were 6 and 25 min, respectively. The low LOD, LOQ, and rapid detection confirm the potential of applying this sensor for accurate and high-throughput detection of melamine in tap water and milk. © 2016 Institute of Food Technologists®
Removal of phenol by activated alumina bed in pulsed high-voltage electric field.
Zhu, Li-nan; Ma, Jun; Yang, Shi-dong
2007-01-01
A new process for removing the pollutants in aqueous solution-activated alumina bed in pulsed high-voltage electric field was investigated for the removal of phenol under different conditions. The experimental results indicated the increase in removal rate with increasing applied voltage, increasing pH value of the solution, aeration, and adding Fe2+. The removal rate of phenol could reach 72.1% when air aeration flow rate was 1200 ml/min, and 88.2% when 0.05 mmol/L Fe2+ was added into the solution under the conditions of applied voltage 25 kV, initial phenol concentration of 5 mg/L, and initial pH value 5.5. The addition of sodium carbonate reduced the phenol removal rate. In the pulsed high-voltage electric field, local discharge occurred at the surface of activated alumina, which promoted phenol degradation in the thin water film. At the same time, the space-time distribution of gas-liquid phases was more uniform and the contact areas of the activated species generated from the discharge and the pollutant molecules were much wider due to the effect of the activated alumina bed. The synthetical effects of the pulsed high-voltage electric field and the activated alumina particles accelerated phenol degradation.
Biochars made from agro-industrial by-products remove chlorine from water and wastewater
NASA Astrophysics Data System (ADS)
Tzachristas, Andreas; Manariotis, Ioannis D.; Karapanagioti, Hrissi K.
2017-04-01
Chlorination is the most common disinfection process for water and wastewater. For the industrial use of water in food production, chlorine can add undesired taste and odor to the final product. For this reason, dechlorination is desired for food industries that use municipal tap water. For treated wastewater discharge or reuse, chlorine can be toxic to the receiving aqueous systems and to the irrigated plants. In both the above cases, dechlorination is also required. Traditionally activated carbon has been used as the ideal material for the removal of chlorine. The main mechanisms that describe the interaction between activated carbon and HOCl or OCl- are described by the following equations (AWWA, 1990): HOCl + C* → C*O + H+ + Cl- (1), OCl- + C* → C*O + Cl- (2) Where C* and C*O represent the activated carbon surface and a surface oxide, respectively. The present study proposes the use of agro-industrial by-products for the production of biochars that will be used for dechlorination of tap-water used for food-industry production. Different raw materials such as malt spent rootlets, coffee residue, olive and grape seeds, etc. are used for the production of biochar. Various temperatures and air-to-solid ratios are tested for optimizing biochar production. Batch tests as well as a column test are employed to study the dechlorination kinetics of the different raw and biochar materials as well as those of commercial activated carbons. The removal kinetics are faster during the first hour; then, removal continues but with a slower rate. Most of the biochars tested (with 3 mg of solid in 20 mL of chlorine solution at initial concentration Co=1.5 mg/L) demonstrated removal efficiencies with an average of 9.4 ± 0.5 mg/g. For the two commercial activated carbons, removal efficiencies were 11.4 ± 0.2 mg/g. The first-order constant k1 ranged between 0.001 and 0.014 (min-1) for the biosorbents and the biochars and it was equal to 0.017 (min-1) for the commercial activated carbons. Consequently, the half-life time ranged between 50 and 700 (min) for the biosorbents and the biochars and it was equal to 41 (min) for the commercial activated carbons. The column experiment also showed positive results; A breakthrough for concentrations higher than 10(AWWA) 1990 Water quality and treatment, a handbook of community water supplies, Fourth edition, American Water Works Association Fourth edition.
Stress corrosion crack initiation of alloy 600 in PWR primary water
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhai, Ziqing; Toloczko, Mychailo B.; Olszta, Matthew J.
Stress corrosion crack (SCC) initiation of three mill-annealed (MA) alloy 600 heats in simulated pressurized water reactor primary water has been investigated using constant load tests equipped with in-situ direct current potential drop (DCPD) measurement capabilities. SCC initiation times were greatly reduced by a small amount of cold work. Shallow intergranular (IG) attack and/or cracks were found on most high-energy grain boundaries intersecting the surface with only a small fraction evolving into larger cracks and IGSCC growth. Crack depth profiles were measured and related to DCPD-detected initiation response. Processes controlling the SCC initiation in MA alloy 600 are discussed. INmore » PRESS, CORRECTED PROOF, 05/02/2017 - mfl« less
Nonpoint Source: National Water Quality Initiative
National Water Quality Initiative (NWQI) is a collaborative between EPA and Natural Resource Conservation Service ( NRCS) that began in 2012. NWQI provides a means to accelerate voluntary, private lands conservation practices
Mikelonis, Anne M; Lawler, Desmond F; Passalacqua, Paola
2016-10-01
This research examined how variations in synthesis methods of silver nanoparticles affect both the release of silver from ceramic water filters (CWFs) and disinfection efficacy. The silver nanoparticles used were stabilized by four different molecules: citrate, polyvinylpyrrolidone, branched polyethylenimine, and casein. A multilevel statistical model was built to quantify if there was a significant difference in: a) extent of silver lost, b) initial amount of silver lost, c) silver lost for water of different quality, and d) total coliform removal. Experiments were performed on location at Pure Home Water, a CWF factory in Tamale, Ghana using stored rainwater and dugout water (a local surface water). The results indicated that using dugout vs. rainwater significantly affects the initial (p-value 0.0015) and sustained (p-value 0.0124) loss of silver, but that silver type does not have a significant effect. On average, dugout water removed 37.5μg/L more initial silver and had 1.1μg/L more silver in the filtrate than rainwater. Initially, filters achieved 1.9 log reduction values (LRVs) on average, but among different silver and water types this varied by as much as 2.5 LRV units. Overall, bacterial removal effectiveness was more challenging to evaluate, but some data suggest that the branched polyethylenimine silver nanoparticles provided improved initial bacterial removal over filters which were not painted with silver nanoparticles (p-value 0.038). Copyright © 2016 Elsevier B.V. All rights reserved.
Seasonality of Red Sea Mixed-Layer Depth and Density Budget
NASA Astrophysics Data System (ADS)
Kartadikaria, A. R.; Cerovecki, I.; Krokos, G.; Hoteit, I.
2016-02-01
The Red Sea is an active area of water mass formation. Dense water initially formed in the northern Red Sea, in the Gulf of Aqaba and the Gulf of Suez, spreads southward and finally flows to the open ocean through the Gulf of Aden via the narrow strait of Bab Al Mandeb. The signature of this outflow can be traced until the southern Indian Ocean, and is characterized by potential density of σθ ≈ 27.4. This water mass is important because it represents a significant source of heat and salt for the Indian Ocean. Using a high-resolution 1km regional MITgcm ocean model for the period 1992-2001 configured for the Red Sea, we examine the spatio-temporal characteristics of water mass formation inside the basin by analyzing closed and complete temperature and salinity budgets. The deepest mixed-layers (MLD) always develop in the northern part of the basin where surface ocean buoyancy loss leads to the Red Sea Intermediate and Deep Water formation. As this water is advected south, it is strongly modified by diapycnal mixing of heat and salt.
Kusin, Faradiella Mohd; Rahman, Muhammad Syazwan Abd; Madzin, Zafira; Jusop, Shamshuddin; Mohamat-Yusuff, Ferdaus; Ariffin, Mariani; Z, Mohd Syakirin Md
2017-01-01
Recent bauxite mining activities in the vicinity of Kuantan, Pahang, have been associated with apparent environmental quality degradation and have raised environmental concerns among the public. This study was carried out to evaluate the overall ecological impacts on water and sediment quality from the bauxite mining activities. Water and sediment samples were collected at seven sampling locations within the bauxite mining areas between June and December 2015. The water samples were analyzed for water quality index (WQI) and distribution of major and trace element geochemistry. Sediment samples were evaluated based on geochemical indices, i.e., the enrichment factor (EF) and geoaccumulation index (I geo ). Potential ecological risk index was estimated to assess the degree to which sediments of the mine-impacted areas have been contaminated with heavy metals. The results showed that WQIs of some locations were classified as slightly polluted and contained metal contents exceeding the recommended guideline values. The EFs indicated minimal to moderate enrichment of metals (Pb, Cu, Zn, Mn, As, Cd, Cr, Ni, Co, and Sr) in the sediments. I geo showed slightly to partially polluted sediments with respect to As at some locations. The potential ecological risk index (RI) showed that As posed the highest potential ecological risk with RI of 52.35-60.92 at two locations, while other locations indicated low risk. The findings from this study have demonstrated the impact of recent bauxite mining activities, which might be of importance to the local communities and relevant authorities to initiate immediate rehabilitation phase of the impacted area.
Enceladus and Europa: How Does Hydrothermal Activity Begin at the Surface?
NASA Technical Reports Server (NTRS)
Matson, D. L.; Castillo-Rogez, J. C.; Johnson, T. V.; Lunine, J. I.; Davies, A. G.
2011-01-01
The question of how the surface hydrothermal activity (e.g., eruptive plumes and heat flow) is initiated can be addressed within the frame-work of our "Perrier Ocean" model. This model delivers the necessary heat and chemicals to support the heat flow and plumes observed by Cassini in Enceladus' South Polar Region. The model employs closed-loop circulation of water from a sub-surface ocean. The ocean is the main reservoir of heat and chemicals, including dissolved gases. As ocean water moves up toward the surface, pressure is re-duced and gases exsolve forming bubbles. This bub-bly mixture is less dense than the icy crust and the buoyant ocean-water mixture rises toward the surface. Near the surface, heat and chemicals, including some volatiles, are delivered to the chambers in which plumes form and also to shallow reservoirs that keep the surface ice "warm". (Plume operations, per se, are as described by Schmidt et al. and Postberg et al. and are adopted by us.) After transferring heat, the water cools, bubbles contract and dissolve, and the mixture is now relatively dense. It descends through cracks in the crust and returns to the ocean. Once the closed-loop circulation has started it is self-sustaining. Loss of water via the erupting plumes is relatively negligible compared to the amount needed to maintain the heat flow.We note that the activity described herein for the the "Perrier-Ocean" model could, a priori, apply to all small icy bodies that sheltered an interior ocean at some point in their history.
Initiation of migration and movement rates of Atlantic salmon smolts in fresh water
Stich, Daniel S.; Kinnison, Michael T.; Kocik, John F.; Zydlewski, Joseph D.
2015-01-01
Timing of ocean entry is critical for marine survival of both hatchery and wild Atlantic salmon (Salmo salar) smolts. Management practices and barriers to migration such as dams may constrain timing of smolt migrations resulting in suboptimal performance at saltwater entry. We modeled influences of stocking location, smolt development, and environmental conditions on (i) initiation of migration by hatchery-reared smolts and (ii) movement rate of hatchery- and wild-reared Atlantic salmon smolts in the Penobscot River, Maine, USA, from 2005 through 2014 using acoustic telemetry data. We also compared movement rates in free-flowing reaches with rates in reaches with hydropower dams and head ponds. We compared movement rates before and after (1) removal of two mainstem dams and (2) construction of new powerhouses. Initiation of movement by hatchery fish was influenced by smolt development, stocking location, and environmental conditions. Smolts with the greatest gill Na+, K+-ATPase (NKA) activity initiated migration 24 h sooner than fish with the lowest gill NKA activity. Fish with the greatest cumulative thermal experience initiated migration 5 days earlier than those with lowest cumulative thermal experience. Smolts released furthest from the ocean initiated migration earlier than those released downstream, but movement rate increased by fivefold closer to the ocean, indicating behavioral trade-offs between initiation and movement rate. Dams had a strong effect on movement rate. Movement rate increased from 2.8 to 5.4 km·h−1 in reaches where dams were removed, but decreased from 2.1 to 0.1 km·h−1 in reaches where new powerhouses were constructed. Movement rate varied throughout the migratory period and was inversely related to temperature. Fish moved slower at extreme high or low discharge. Responses in fish movement rates to dam removal indicate the potential scope of recovery for these activities.
NASA Astrophysics Data System (ADS)
Mwendera, E. J.
An assessment of rural water supply and sanitation (RWSS) coverage in Swaziland was conducted in 2004/2005 as part of the Rural Water Supply and Sanitation Initiative (RWSSI). The initiative was developed by the African Development Bank with the aim of implementing it in the Regional Member Countries (RMCs), including Swaziland. Information on the RWSS sector programmes, costs, financial requirements and other related activities was obtained from a wide range of national documents, including sector papers and project files and progress reports. Interviews were held with staff from the central offices and field stations of Government of Swaziland (GOS) ministries and departments, non-governmental organizations (NGOs), bilateral and multilateral external support agencies, and private sector individuals and firms with some connection to the sector and/or its programmes. The assessment also involved field visits to various regions in order to obtain first hand information about the various technologies and institutional structures used in the provision of water supplies and sanitation services in the rural areas of the country. The results showed that the RWSS sector has made significant progress towards meeting the national targets of providing water and sanitation to the entire rural population by the year 2022. The assessment indicated that rural water supply coverage was 56% in 2004 while sanitation coverage was 63% in the same year. The results showed that there is some decline in the incidence of water-related diseases, such as diarrhoeal diseases, probably due to improved water supply and sanitation coverage. The study also showed that, with adequate financial resources, Swaziland is likely to achieve 100% coverage of both water supply and sanitation by the year 2022. It was concluded that in achieving its own national goals Swaziland will exceed the Millennium Development Goals (MDGs). However, such achievement is subject to adequate financial resources being made available for the RWSS sector.
NASA Technical Reports Server (NTRS)
Martin, Seelye; Polyakov, Igor; Markus, Thorsten; Drucker, Robert
2003-01-01
Open water areas within the sea ice (polynyas) are sources of intense heat exchange between the ocean and the atmosphere. In this paper, we used microwave and visible/infrared satellite data together with a sea ice model to investigate the polynya opening mechanisms. The satellite data and the model show significant agreement and prove that tides play an active role in the polynya dynamics.
Imaging of high-amylose starch tablets. 3. Initial diffusion and temperature effects.
Thérien-Aubin, Héloïse; Baille, Wilms E; Zhu, Xiao Xia; Marchessault, Robert H
2005-01-01
The penetration of water into cross-linked high amylose starch tablets was studied at different temperatures by nuclear magnetic resonance (NMR) imaging, which follows the changes occurring at the surface and inside the starch tablets during swelling. It was found that the swelling was anisotropic, whereas water diffusion was almost isotropic. The water proton image profiles at the initial stage of water penetration were used to calculate the initial diffusion coefficient. The swelling and water concentration gradients in this controlled release system show significant temperature dependence. Diffusion behavior changed from Fickian to Case II diffusion with increasing temperature. The observed phenomena are attributed to the gelatinization of starch and the pseudo-cross-linking effect of double helix formation.
Water-resources activities of the U.S. Geological Survey
Appel, D. H.
1990-01-01
The U.S. Geological Survey (USGS) has been active in West Virginia since the early 1900's. During recent years, the District completed several investigations as well as initiated others. An intense effort has been made to publish interpretive reports and data on a near-current basis. As a result of this effort, a significant number of water resources reports were completed and/or published during the 1989 fiscal year. This report contains a complete list of USGS reports addressing West Virginia hydrology as of December 1989. The mission of the Water Resources Division is to provide the hydrologic information and understanding needed for the optimum utilization and management of the Nation 's water resources for the overall benefit of the people in the United States. This is accomplished, in large part , through cooperation with other Federal and non-Federal agencies, by: (1) Collecting, on a systematic basis, data needed for the continuing determination and evaluation of the quantity, quality, and use of the Nation 's water resources; (2) Conducting analytical and interpretive water resource appraisals describing the occurrence, availability, and the physical, chemical, and biological characteristics of surface and groundwater; (3) conducting supportive basic and problem-oriented research in hydraulics, hydrology, and related fields of science to improve the scientific basis for investigations and measurement techniques and to understand hydrologic systems sufficiently well to quantitatively predict their response to stress, either natural or manmade; (4) disseminating the water data and the results of these investigations and research through reports, maps, computerized information services, and other forms of public releases; (5) Coordinating the activities of Federal agencies in the acquisition of water data for streams, lakes, reservoirs, estuaries, and groundwaters; and (6) Providing scientific and technical assistance in hydrologic fields to other Federal, State and local agencies, to licensees of the Federal Power Commission, and to international agencies on behalf of the Department of State. (Lantz-PTT)
NASA Astrophysics Data System (ADS)
Izumi, N.; Parker, G.
2012-12-01
Plitvice Lakes in Croatia are characterized by a step-like train of lakes and waterfalls. The waterfalls are located at the crests of naturally-emplaced dams. The top of each dam grows upward at the rate of a few millimeters per year. It is thought that the upward growth of these dams is caused by the interaction of water flow and biological activity, resulting in the precipitation of dissolved limestone. Dam evolution is initiated by the growth of mosses that favor swift, shallow water. Bacteria that inhabit the roots of the moss excrete solid limestone (travertine) from the water. The limestone fossilizes the moss, and then more moss grows on top of the travertine deposit. In this way, the natural dam can grow over to 10 m high, impounding the water behind it to form a lake. We propose a simple model to explain the formation of natural limestone dams by the interaction between water flow and biologically-mediated travertine deposition. We assume for simplicity that light is the only factor determining the growth of moss, which is then colonized by travertine-emplacing bacteria. We also assume that the water is saturated with dissolved limestone, so that the process is not limited by limestone availability. Photosynthesis, and thus the growth rate of moss are crudely approximated as decreasing linearly with depth. We employ the shallow water equations to describe water flow over the dam. In order to obtain a profile of permanent form for a dam migrating upward and downstream at constant speed, we solve the problem in a moving coordinate system. When water flows over the dam, it is accelerated in the streamwise direction, and the water surface forms a backwater curve. The flow regime changes from Froude-subcritical to Froude-supercritical at a point slightly downstream of the crest of the dam. Farther downstream, the flow attains a threshold velocity beyond which moss is detached. This threshold point defines the downstream end of the active part of the dam. The analysis provides a first-order morphodynamic model of natural dam/waterfall evolution.
Keely, Simon; Kelly, Caleb J.; Weissmueller, Thomas; Burgess, Adrianne; Wagner, Brandie D.; Robertson, Charles E.; Harris, J. Kirk; Colgan, Sean P.
2012-01-01
Within the intestinal mucosa, epithelial cells serve multiple functions to partition the lumen from the lamina propria. As part of their natural function, intestinal epithelial cells actively transport electrolytes with passive water movement as a mechanism for mucosal hydration. Here, we hypothesized that electrogenic Cl- secretion, and associated mucosal hydration, influences bacterial-epithelial interactions and significantly influences the composition of the intestinal microbiota. An initial screen of different epithelial secretagogues identified lubiprostone as the most potent agonist for which to define these principles. In in vitro studies using cultured T84 cells, lubiprostone decreased E. coli translocation in a concentration-dependent manner (p < 0.001) and decreased S. typhimurium internalization and translocation by as much as 71 ± 6% (p < 0.01). Such decreases in bacterial translocation were abolished by inhibition of electrogenic Cl- secretion and water transport using the Na-K-Cl- antagonist bumetanide (p < 0.01). Extensions of these findings to microbiome analysis in vivo revealed that lubiprostone delivered orally to mice fundamentally shifted the intestinal microbiota, with notable changes within the Firmicutes and Bacteroidetes phyla of resident colonic bacteria. Such findings document a previously unappreciated role for epithelial Cl- secretion and water transport in influencing bacterial-epithelial interactions and suggest that active mucosal hydration functions as a primitive innate epithelial defense mechanism. PMID:22614705
NASA Astrophysics Data System (ADS)
Deuerling, Kelly M.; Martin, Jonathan B.; Martin, Ellen E.; Scribner, Cecilia A.
2018-01-01
The exchange of proglacial river water with active layer pore water could alter water chemical compositions in glacial outwash plains and oceanic solute fluxes. To evaluate effects of this exchange, we sampled Watson River and adjacent pore water during the 2013 melt season at two sandurs in western Greenland; one in Sandflugtdalen and the other near the confluence with Søndre Strømfjord. We measured temperature, specific conductivity, and head gradients between the river and bank over a week-long period at Sandflugtdalen, as well as sediment hydraulic conductivity and chemical compositions of waters from both sites. Specific conductivity of pore water is four to ten times greater than river water as solutes are concentrated from weathering reactions, cryoconcentration, and evaporation. Pore water compositions are predominantly altered by carbonate dissolution and sulfide mineral oxidation. High concentrations of HCO3 and SO4 result from solute recycling and dissolution of secondary Ca-Mg carbonate/sulfate salts initially formed by near-surface evaporation in the summer and at depth by freeze-in of the active layer and cryoconcentration in the winter. High hydraulic conductivity (10-5 to 10-4 m/s) and diurnal fluctuations of river stage during our study caused exchange of river and pore water immediately adjacent to the river channel, with a net loss of river water to the bank. Pore water >6 m from the river continuously flowed away from the river. Approximately 1-8% of the river discharge through the Sandflugtdalen was lost to the river bank during our 6.75 day study based on calculations using Darcy's Law. Although not sampled, some of this water should discharge to the river during low river stage early and late in the melt season. Elevated pore water solute concentrations in sandurs and water exchange at diurnal and seasonal frequency should impact fluxes of solutes to the ocean, although understanding the magnitude of this effect will require long-term evaluation throughout the melt season.
Women, water supply and sanitation: INSTRAW's training initiatives.
Tavares, J
1997-01-01
The International Research and Training Institute for the Advancement of Women (INSTRAW) has worked on women, water supply and sanitation since 1986. The program aims to establish the relationship between women, water supply and sanitation and the promotion of the needs of women and their participation in Water Supply and Sanitation projects. Using a multimedia and modular approach, the training package on Women, Water Supply and Sanitation aims to provide an overview for the different government agencies, engineers, trainers and managers involved in water supply and sanitation projects. The six modules contained in this package include: 1) The International Drinking Water Supply and Sanitation Decade and beyond; 2) The Participation of Women in planning, Choice of Technology and Implementation of Sustainable Water Supply and Sanitation Projects; 3) Role of Women in Hygiene Education and Training Activities for Water Supply and Sanitation Projects; 4) Involvement of Women in Management of Water resources, Water Supply and Waste Disposal; 5) Women and Waste Management; and 6) Evaluation and Monitoring of Water Supply and Sanitation Programs, Projects and the Role of Women. In addition, each module comprises five components including objective description, detailed bibliography, feedback tools for each modular unit, lesson plan and guides for trainers and users, and audiovisual aids. In the face of water scarcity, INSTRAW highlights the importance of women¿s participation in the sustainable use of water supply.
Effect of magnetic field on seed germination and seedling growth of sunflower
NASA Astrophysics Data System (ADS)
Matwijczuk, A.; Kornarzyński, K.; Pietruszewski, S.
2012-07-01
The impact of a variable magnetic field, magnetically treated water and a combination of both these factors on the germination of seeds and the final mass at the initial stage of growth sunflower plants was presented. Investigations were carried out in pots filled with sand, tin an air-conditioned plant house with no access to daylight using fluorescent light as illumination. A statistical significance positive impact was achieved for the samples subjected to the interaction of both stimulating factors simultaneously, the magnetic field and the impact of treated water several times on the speed of seed germination and final plant mass. Negative impacts were obtained for the majority of the test cases, for the magnetically treated water, the short duration of activity of the magnetic field and for the connection of the magnetic field and low-flow times.
Comparative study on the removal technologies of 2-methylisoborneol (MIB) in drinking water.
Liang, Cun-Zhen; Wang, Dong-Sheng; Ge, Xiao-Peng; Yang, Min; Sun, Wei
2006-01-01
Removal of 2-methylisoborneol (MIB) in drinking water by ozone, powdered activated carbon (PAC), potassium permanganate and potassium ferrate was investigated. The adsorption kinetics of MIB by both wood-based and coat-based PACs show that main removal of MIB occurs within contact time of 1 h. Compared with the wood-based PAC, the coat-based PAC evidently improved the removal efficiency of MIB. The removal percentage of trace MIB at any given time for a particular carbon dosage was irrelative to the initial concentration of MIB. A series of experiments were performed to determine the effect of pH on the ozonation of MIB. The results show that pH has a significant effect on the ozonation of MIB. It is conclusive that potassium permanganate and potassium ferrate are ineffective in removing the MIB in drinking water.
40 CFR 227.27 - Limiting permissible con-cen-tra-tion (LPC).
Code of Federal Regulations, 2011 CFR
2011-07-01
... for initial mixing as provided in § 227.29, does not exceed applicable marine water quality criteria; or, when there are no applicable marine water quality criteria, (2) That concentration of waste or dredged material in the receiving water which, after allowance for initial mixing, as specified in § 227...
40 CFR 227.27 - Limiting permissible con-cen-tra-tion (LPC).
Code of Federal Regulations, 2010 CFR
2010-07-01
... for initial mixing as provided in § 227.29, does not exceed applicable marine water quality criteria; or, when there are no applicable marine water quality criteria, (2) That concentration of waste or dredged material in the receiving water which, after allowance for initial mixing, as specified in § 227...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-10-15
... proceeding of Flat Water Wind Farm, LLC's application for market-based rate authority, with an accompanying... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. ER11-39-000] Flat Water Wind Farm, LLC; Supplemental Notice That Initial Market-Based Rate Filing Includes Request for Blanket...
18 CFR 701.207 - Extension of time limits for WRC initial and final determinations.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 18 Conservation of Power and Water Resources 2 2012-04-01 2012-04-01 false Extension of time limits for WRC initial and final determinations. 701.207 Section 701.207 Conservation of Power and Water Resources WATER RESOURCES COUNCIL COUNCIL ORGANIZATION Availability of Information § 701.207 Extension of...
18 CFR 701.205 - Time limit for requester to appeal an initial adverse determination.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 18 Conservation of Power and Water Resources 2 2010-04-01 2010-04-01 false Time limit for requester to appeal an initial adverse determination. 701.205 Section 701.205 Conservation of Power and Water Resources WATER RESOURCES COUNCIL COUNCIL ORGANIZATION Availability of Information § 701.205 Time...
18 CFR 701.204 - Time limits for WRC initial determinations regarding requests for information.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 18 Conservation of Power and Water Resources 2 2010-04-01 2010-04-01 false Time limits for WRC initial determinations regarding requests for information. 701.204 Section 701.204 Conservation of Power and Water Resources WATER RESOURCES COUNCIL COUNCIL ORGANIZATION Availability of Information § 701.204...
18 CFR 701.207 - Extension of time limits for WRC initial and final determinations.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 18 Conservation of Power and Water Resources 2 2011-04-01 2011-04-01 false Extension of time limits for WRC initial and final determinations. 701.207 Section 701.207 Conservation of Power and Water Resources WATER RESOURCES COUNCIL COUNCIL ORGANIZATION Availability of Information § 701.207 Extension of...
18 CFR 701.207 - Extension of time limits for WRC initial and final determinations.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 18 Conservation of Power and Water Resources 2 2013-04-01 2012-04-01 true Extension of time limits for WRC initial and final determinations. 701.207 Section 701.207 Conservation of Power and Water Resources WATER RESOURCES COUNCIL COUNCIL ORGANIZATION Availability of Information § 701.207 Extension of...
18 CFR 701.207 - Extension of time limits for WRC initial and final determinations.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 18 Conservation of Power and Water Resources 2 2010-04-01 2010-04-01 false Extension of time limits for WRC initial and final determinations. 701.207 Section 701.207 Conservation of Power and Water Resources WATER RESOURCES COUNCIL COUNCIL ORGANIZATION Availability of Information § 701.207 Extension of...
18 CFR 701.204 - Time limits for WRC initial determinations regarding requests for information.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 18 Conservation of Power and Water Resources 2 2012-04-01 2012-04-01 false Time limits for WRC initial determinations regarding requests for information. 701.204 Section 701.204 Conservation of Power and Water Resources WATER RESOURCES COUNCIL COUNCIL ORGANIZATION Availability of Information § 701.204...
18 CFR 701.205 - Time limit for requester to appeal an initial adverse determination.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 18 Conservation of Power and Water Resources 2 2014-04-01 2014-04-01 false Time limit for requester to appeal an initial adverse determination. 701.205 Section 701.205 Conservation of Power and Water Resources WATER RESOURCES COUNCIL COUNCIL ORGANIZATION Availability of Information § 701.205 Time...
18 CFR 701.204 - Time limits for WRC initial determinations regarding requests for information.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 18 Conservation of Power and Water Resources 2 2014-04-01 2014-04-01 false Time limits for WRC initial determinations regarding requests for information. 701.204 Section 701.204 Conservation of Power and Water Resources WATER RESOURCES COUNCIL COUNCIL ORGANIZATION Availability of Information § 701.204...
18 CFR 701.204 - Time limits for WRC initial determinations regarding requests for information.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 18 Conservation of Power and Water Resources 2 2011-04-01 2011-04-01 false Time limits for WRC initial determinations regarding requests for information. 701.204 Section 701.204 Conservation of Power and Water Resources WATER RESOURCES COUNCIL COUNCIL ORGANIZATION Availability of Information § 701.204...
18 CFR 701.204 - Time limits for WRC initial determinations regarding requests for information.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 18 Conservation of Power and Water Resources 2 2013-04-01 2012-04-01 true Time limits for WRC initial determinations regarding requests for information. 701.204 Section 701.204 Conservation of Power and Water Resources WATER RESOURCES COUNCIL COUNCIL ORGANIZATION Availability of Information § 701.204...
18 CFR 701.207 - Extension of time limits for WRC initial and final determinations.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 18 Conservation of Power and Water Resources 2 2014-04-01 2014-04-01 false Extension of time limits for WRC initial and final determinations. 701.207 Section 701.207 Conservation of Power and Water Resources WATER RESOURCES COUNCIL COUNCIL ORGANIZATION Availability of Information § 701.207 Extension of...
18 CFR 701.205 - Time limit for requester to appeal an initial adverse determination.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 18 Conservation of Power and Water Resources 2 2012-04-01 2012-04-01 false Time limit for requester to appeal an initial adverse determination. 701.205 Section 701.205 Conservation of Power and Water Resources WATER RESOURCES COUNCIL COUNCIL ORGANIZATION Availability of Information § 701.205 Time...
18 CFR 701.205 - Time limit for requester to appeal an initial adverse determination.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 18 Conservation of Power and Water Resources 2 2011-04-01 2011-04-01 false Time limit for requester to appeal an initial adverse determination. 701.205 Section 701.205 Conservation of Power and Water Resources WATER RESOURCES COUNCIL COUNCIL ORGANIZATION Availability of Information § 701.205 Time...
Small-scale experimental study of vaporization flux of liquid nitrogen released on water.
Gopalaswami, Nirupama; Olewski, Tomasz; Véchot, Luc N; Mannan, M Sam
2015-10-30
A small-scale experimental study was conducted using liquid nitrogen to investigate the convective heat transfer behavior of cryogenic liquids released on water. The experiment was performed by spilling five different amounts of liquid nitrogen at different release rates and initial water temperatures. The vaporization mass fluxes of liquid nitrogen were determined directly from the mass loss measured during the experiment. A variation of initial vaporization fluxes and a subsequent shift in heat transfer mechanism were observed with changes in initial water temperature. The initial vaporization fluxes were directly dependent on the liquid nitrogen spill rate. The heat flux from water to liquid nitrogen determined from experimental data was validated with two theoretical correlations for convective boiling. It was also observed from validation with correlations that liquid nitrogen was found to be predominantly in the film boiling regime. The substantial results provide a suitable procedure for predicting the heat flux from water to cryogenic liquids that is required for source term modeling. Copyright © 2015 Elsevier B.V. All rights reserved.
Cleaning Genesis Solar Wind Collectors with Ultrapure Water: Residual Contaminant Particle Analysis
NASA Technical Reports Server (NTRS)
Allton, J. H.; Wentworth, S. J.; Rodriquez, M. C.; Calaway, M. J.
2008-01-01
Additional experience has been gained in removing contaminant particles from the surface of Genesis solar wind collectors fragments by using megasonically activated ultrapure water (UPW)[1]. The curatorial facility has cleaned six of the eight array collector material types to date: silicon (Si), sapphire (SAP), silicon-on-sapphire (SOS), diamond-like carbon-on-silicon (DOS), gold-on-sapphire (AuOS), and germanium (Ge). Here we make estimates of cleaning effectiveness using image analysis of particle size distributions and an SEM/EDS reconnaissance of particle chemistry on the surface of UPW-cleaned silicon fragments (Fig. 1). Other particle removal techniques are reported by [2] and initial assessment of molecular film removal is reported by [3].
[170 years of struggle of the Viennese physicians for hygienically safe drinking water].
Flamm, Heinz
2010-04-01
Discussions in the Society of Physicians in Vienna about the connection between water contamination and typhoid outbreaks began in 1838. The basis of the water supply at that time was house wells partly drawing contaminated ground water and for a limited area the Kaiser-Ferdinand-Pipeline was useful. After many investigations on quantities and qualities of possible water sources and controversial discussions between Viennese politicians and the Society of Physicians, the latter strictly turned down the usage of surface water. In October 1865 the Society demanded that the source Kaiserbrunn in the Höllental and two other sources nearby in the Limestone Alps should be used for the Viennese water supply. After initial opposition in the municipal council and an outbreak of cholera in Vienna, the erection of the 1st Viennese Mountain-source Water Pipeline was started and the Pipeline was opened in 1873. Because of its insufficient quantity of water for the growing town the Society of Physicians became active again, supported by the Institute of hygiene founded in 1875. This resulted in the erection of the 2nd Viennese Mountain-source Water Pipeline, which was opened in 1910. A threat which had to be met were repeated plans for tourist developments.
NASA Astrophysics Data System (ADS)
Korologos, Christos A.; Philippopoulos, Constantine J.; Poulopoulos, Stavros G.
2011-12-01
In the present work, the gas-solid heterogeneous photocatalytic oxidation of benzene, toluene, ethylbenzene and m-xylene (BTEX) over UV-irradiated titanium dioxide was studied in an annular reactor operated in the CSTR (continuous stirred-tank reactor) mode. GC-FID and GC-MS were used for analysing reactor inlet and outlet streams. Initial BTEX concentrations were in the low parts per million (ppmv) range, whereas the water concentration was in the range of 0-35,230 ppmv and the residence time varied from 50 to 210 s. The effect of water addition on the photocatalytic process showed strong dependence on the type of the BTEX and the water vapour concentration. The increase in residence time resulted in a considerable increase in the conversion achieved for all compounds and experimental conditions. There was a clear interaction between residence time and water presence regarding the effect on conversions achieved. It was established that conversions over 95% could be achieved by adjusting appropriately the experimental conditions and especially the water concentration in the reactor. In all cases, no by-products were detected above the detection limit and carbon dioxide was the only compound detected. Finally, various Langmuir-Hinshelwood kinetic models have been tested in the analysis of the experimental data obtained. The kinetic data obtained confirmed that water had an active participation in the photocatalytic reactions of benzene, toluene, ethylbenzene and m-xylene since the model involving reaction of BTEX and water adsorbed on different active sites yielded the most successful fitting to the experimental results for the first three compounds, whereas the kinetic model based on the assumption that reaction between VOC and water dissociatively adsorbed on the photocatalyst takes place was the most appropriate in the case of m-xylene.
Community Analysis and Recovery of Phenol-degrading Bacteria from Drinking Water Biofilters
Gu, Qihui; Wu, Qingping; Zhang, Jumei; Guo, Weipeng; Wu, Huiqing; Sun, Ming
2016-01-01
Phenol is a ubiquitous organic contaminant in drinking water. Biodegradation plays an important role in the elimination of phenol pollution in the environment, but the information about phenol removal by drinking water biofilters is still lacking. Herein, we study an acclimated bacterial community that can degrade over 80% of 300 mg/L phenol within 3 days. PCR detection of genotypes involved in bacterial phenol degradation revealed that the degradation pathways contained the initial oxidative attack by phenol hydroxylase, and subsequent ring fission by catechol 1,2-dioxygenase. Based on the PCR denatured gradient gel electrophoresis (PCR-DGGE) profiles of bacteria from biological activated carbon (BAC), the predominant bacteria in drinking water biofilters including Delftia sp., Achromobacter sp., and Agrobacterium sp., which together comprised up to 50% of the total microorganisms. In addition, a shift in bacterial community structure was observed during phenol biodegradation. Furthermore, the most effective phenol-degrading strain DW-1 that correspond to the main band in denaturing gradient gel electrophoresis (DGGE) profile was isolated and identified as Acinetobacter sp., according to phylogenetic analyses of the 16S ribosomal ribonucleic acid (rRNA) gene sequences. The strain DW-1 also produced the most important enzyme, phenol hydroxylase, and it also exhibited a good ability to degrade phenol when immobilized on granular active carbon (GAC). This study indicates that the enrichment culture has great potential application for treatment of phenol-polluted drinking water sources, and the indigenous phenol-degrading microorganism could recover from drinking water biofilters as an efficient resource for phenol removal. Therefore, the aim of this study is to draw attention to recover native phenol-degrading bacteria from drinking water biofilters, and use these native microorganisms as phenolic water remediation in drinking water sources. PMID:27148185
Community Analysis and Recovery of Phenol-degrading Bacteria from Drinking Water Biofilters.
Gu, Qihui; Wu, Qingping; Zhang, Jumei; Guo, Weipeng; Wu, Huiqing; Sun, Ming
2016-01-01
Phenol is a ubiquitous organic contaminant in drinking water. Biodegradation plays an important role in the elimination of phenol pollution in the environment, but the information about phenol removal by drinking water biofilters is still lacking. Herein, we study an acclimated bacterial community that can degrade over 80% of 300 mg/L phenol within 3 days. PCR detection of genotypes involved in bacterial phenol degradation revealed that the degradation pathways contained the initial oxidative attack by phenol hydroxylase, and subsequent ring fission by catechol 1,2-dioxygenase. Based on the PCR denatured gradient gel electrophoresis (PCR-DGGE) profiles of bacteria from biological activated carbon (BAC), the predominant bacteria in drinking water biofilters including Delftia sp., Achromobacter sp., and Agrobacterium sp., which together comprised up to 50% of the total microorganisms. In addition, a shift in bacterial community structure was observed during phenol biodegradation. Furthermore, the most effective phenol-degrading strain DW-1 that correspond to the main band in denaturing gradient gel electrophoresis (DGGE) profile was isolated and identified as Acinetobacter sp., according to phylogenetic analyses of the 16S ribosomal ribonucleic acid (rRNA) gene sequences. The strain DW-1 also produced the most important enzyme, phenol hydroxylase, and it also exhibited a good ability to degrade phenol when immobilized on granular active carbon (GAC). This study indicates that the enrichment culture has great potential application for treatment of phenol-polluted drinking water sources, and the indigenous phenol-degrading microorganism could recover from drinking water biofilters as an efficient resource for phenol removal. Therefore, the aim of this study is to draw attention to recover native phenol-degrading bacteria from drinking water biofilters, and use these native microorganisms as phenolic water remediation in drinking water sources.
Cherry, Gregory S.
2007-01-01
Since 1959, the U.S. Geological Survey has conducted a cooperative water resources program (CWP) with the City of Brunswick and Glynn County in the Brunswick, Georgia, area. Since the late 1950s, the salinity of ground water in the Upper Floridan aquifer near downtown Brunswick, Georgia, has been increasing, and its occurrence has been detected across an area of increasing size. Pumping of the Upper Floridan aquifer near downtown Brunswick has lowered water levels in the aquifer and resulted in an upward hydraulic gradient between the highly saline parts of the Lower Floridan aquifer and the normally fresh Upper Floridan aquifer. Saltwater likely enters the Upper Floridan aquifer through localized, vertically oriented conduits of relatively high permeability and moves laterally in response to the distribution of stresses within the aquifer. The Brunswick-Glynn County CWP for fiscal year 2006 includes the operation and maintenance of 12 continuous water-level recorders. In addition, water-level data were collected from 52 wells and water from 70 wells was analyzed for chloride concentration during June 2005. Geophysical logs were obtained from one well to assess whether the cause of elevated chloride concentration could be due to leaky well casing. A summary of the Georgia Department of Natural Resources, Environmental Protection Division (GaEPD) Georgia Coastal Sound Science Initiative (CSSI) activities that directly benefit the CWP-Brunswick-Glynn County is included in this report. The GaEPD CSSI is a program of scientific and feasibility studies to support development of a final strategy to protect the Upper Floridan aquifer from saltwater contamination. These data presented in this report are needed by State and local authorities to manage water resources effectively in the coastal area of Georgia.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhattacharyya, M.H.; Larsen, R.P.; Oldham, R.D.
The fraction of plutonium absorbed after oral administration of Pu(VI) to 24-h-fasted mice was 19 X 10(-4), 13-fold higher than in fed mice, 1.4 X 10(-4). We have investigated the relevance of the high gastrointestinal (GI) absorption value for the 24-h-fasted animals in setting drinking water standards for humans. When fasting was initiated at the beginning of the active phase of the mouse's daily activity cycle (when they would normally eat), plutonium GI absorption rose from 2.8 X 10(-4) at zero-time to a level typical of the 24-h-fasted mouse after only 2 h of fasting. In contrast, in mice allowedmore » to eat for 4 h into their active phase prior to initiation of the fast (meal-fed mice), 8 h of fasting were required before GI absorption rose to a level similar to that of the 24-h-fasted mouse. The fraction of plutonium retained after gavage administration of Pu(VI) to 1-day-old rats was 74 X 10(-4), 70-fold higher than the value for fed adults. Retention after GI absorption in neonates remained 30- to 70-fold higher than in adults until weaning. One week after weaning, the fraction absorbed and retained by fed weanling rats was the same as that for fed adults, 1 X 10(-4). Drinking water standards for plutonium have been set based on GI absorption values for fed adult animals. The 10- to 100-fold increases in plutonium absorption in young and fasted animals reported by ourselves and others, and the rapid rise to fasted levels of absorption at the start of the animal's active phase, indicate that consideration should be given to elevated levels of plutonium absorption in young and fasted individuals.« less
Schroeder, Jenna N.
2013-08-31
This report is the third in a series of reports sponsored by the U.S. Department of Energy Geothermal Technologies Program in which a range of water-related issues surrounding geothermal power production are evaluated. The first report made an initial attempt at quantifying the life cycle fresh water requirements of geothermal power-generating systems and explored operational and environmental concerns related to the geochemical composition of geothermal fluids. The initial analysis of life cycle fresh water consumption of geothermal power-generating systems identified that operational water requirements consumed the vast majority of water across the life cycle. However, it relied upon limited operational water consumption data and did not account for belowground operational losses for enhanced geothermal systems (EGSs). A second report presented an initial assessment of fresh water demand for future growth in utility-scale geothermal power generation. The current analysis builds upon this work to improve life cycle fresh water consumption estimates and incorporates regional water availability into the resource assessment to improve the identification of areas where future growth in geothermal electricity generation may encounter water challenges.
Impact of Water Resorts Development along Laguna de Bay on Groundwater Resources
NASA Astrophysics Data System (ADS)
Jago-on, K. A. B.; Reyes, Y. K.; Siringan, F. P.; Lloren, R. B.; Balangue, M. I. R. D.; Pena, M. A. Z.; Taniguchi, M.
2014-12-01
Rapid urbanization and land use changes in areas along Laguna de Bay, one of the largest freshwater lake in Southeast Asia, have resulted in increased economic activities and demand for groundwater resources from households, commerce and industries. One significant activity that can affect groundwater is the development of the water resorts industry, which includes hot springs spas. This study aims to determine the impact of the proliferation of these water resorts in Calamba and Los Banos, urban areas located at the southern coast of the lake on the groundwater as a resource. Calamba, being the "Hot Spring Capital of the Philippines", presently has more than 300 resorts, while Los Banos has at least 38 resorts. Results from an initial survey of resorts show that the swimming pools are drained/ changed on an average of 2-3 times a week or even daily during peak periods of tourist arrivals. This indicates a large demand on the groundwater. Monitoring of actual groundwater extraction is a challenge however, as most of these resorts operate without water use permits. The unrestrained exploitation of groundwater has resulted to drying up of older wells and decrease in hot spring water temperature. It is necessary to strengthen implementation of laws and policies, and enhance partnerships among government, private sector groups, civil society and communities to promote groundwater sustainability.
Multi-Layered TiO2 Films towards Enhancement of Escherichia coli Inactivation
Yoriya, Sorachon; Chumphu, Angkana; Pookmanee, Pusit; Laithong, Wreerat; Thepa, Sirichai; Songprakorp, Roongrojana
2016-01-01
Crystalline TiO2 has shown its great photocatalytic properties in bacterial inactivation. This work presents a design fabrication of low-cost, layered TiO2 films assembled reactors and a study of their performance for a better understanding to elucidate the photocatalytic effect on inactivation of E. coli in water. The ability to reduce the number of bacteria in water samples for the layered TiO2 composing reactors has been investigated as a function of time, while varying the parameters of light sources, initial concentration of bacteria, and ratios of TiO2 film area and volume of water. Herein, the layered TiO2 films have been fabricated on the glass plates by thermal spray coating prior to screen printing, allowing a good adhesion of the films. Surface topology and crystallographic phase of TiO2 for the screen-printed active layer have been characterized, resulting in the ratio of anatase:rutile being 80:20. Under exposure to sunlight and a given condition employed in this study, the optimized film area:water volume of 1:2.62 has shown a significant ability to reduce the E. coli cells in water samples. The ratio of surface area of photocatalytic active base to volume of water medium is believed to play a predominant role facilitating the cells inactivation. The kinetic rate of inactivation and its behavior are also described in terms of adsorption of reaction species at different contact times. PMID:28773930
NASA Technical Reports Server (NTRS)
Malla, Ramesh B.; Anandakumar, Ganesh
2005-01-01
Long-term human mission to space, such as living in International Space Station (ISS), Lunar, and Martian bases, and travel to Mars, must m ake use of Advanced Life Support Systems (ALSS) to generate and recycle critical life supporting elements like oxygen and water. Oxygen Gen eration Assembly (OGA) and Water Processor Assembly (WPA), critical c omponents of ALSS, make use of series of granular material packed beds for generation and recycling of oxygen and water. Several granular m aterials can be used for generation, recycling, processing and recovery of oxygen and water. For example, they may include soft bed media, e.g. ion exchange resins for oxygen generation assembly and hard bed media such as, activated alumina, magchem (Magnesium oxide) and activa ted carbon to remove organic species like ethanol, methanol, and urea from wastewater in Water recovery/processing assembly. These beds are generally packed using a plate-spring mechanism to provide sufficien t compaction to the bed media throughout the course of operation. This paper presents results from an experimental study of a full-scale, 3 8.1 cm (15 inches) long and 3.7 cm (1.44 inches) diameter. activated alumina bed enclosed in a cylinder determining its force-displacement behavior, friction mobilizing force, and axial normal stress distribu tion under various axially applied loads and at different levels of packing. It is observed that force-displacement behavior is non-linear for low compaction level and becomes linear with increase in compaction of the bed media. Axial normal stress distribution along the length of the bed media decreased non-linearly with increase in depth from the loading end of the granular media. This paper also presents experimental results on the amount of particulates generated corresponding to various compaction levels. Particulates generated from each of the tests were measured using standard US sieves. It was found that the p articulates and the overall displacement of the bed media increased with decrease in initial compaction of the bed media. This effect could be attributed to the greater tendency for inter-particle sliding/rub bing due to smaller internal friction angles, as seen from the shear tests, at lesser initial compacted levels. Upon unloading, it was obse rved that there was no change in displacement (especially rebounding) in the bed media. This effect could be attributed to the fact that th e porous activated alumina particles fracture/break upon increase in applied load (during loading phase) and occupy void spaces in between the material grains; thereby leading to settling of the media. The lo ad-displacement curve becomes more linear with increase in initial compaction of the bed media. It is concluded that compaction considerabl y affects the load-displacement behavior of the bed media. A series of tests were also conducted on the packed bed media to determine the f orce required to mobilize the friction between the bed media and the housing cylinder. The results from these tests showed the existence of significant friction between the bed media and the encasing stainles s steel cylinder. Further, it was found that friction effects were more pronounced for media with higher initial compaction. Internal frict ion of the granular media was measured using direct shear apparatus. It was observed that the internal friction increased with increase in initial compaction of the bed media. In this study, a computational m odel (CM) is also developed using finite element software ANSYS to verify experimental results obtained for the distribution of the axial n ormal stress and axial displacement along the length of the full-scal e activated alumina bed media. In the computational model, the granular material is considered to have appropriate failure and frictional c ontact exists between the wall and the granular media. It is observed that the model predicts results closely with the experimental method. The compational results show that the axial normal stress distribution along the length of the activated alumina media decreases non-linea rly from the loading end and is negligible beyond a certain depth. Th is can be attributed to the existence of friction between the walls and the media and that the friction takes up most of the applied load.
Pictorial account and landscape evolution of the crevasses near Fort St. Philip, Louisiana
Suir, Glenn M.; Jones, William R.; Garber, Adrienne L.; Barras, John A.
2014-01-01
Quantifying the effects of active natural and constructed crevasses is critical to the planning and success of future ecosystem restoration activities. This document provides a historical overview of landscape changes within the vicinity of the natural crevasses near Fort St. Philip, Louisiana. A significant event influencing landscape change within the Fort St. Philip study area was the breaching of the eastern levee of the Mississippi River. Initially, the river water that was diverted through these crevasse channels physically removed significant marsh areas within the study area. These initial direct impacts were succeeded by several decades of larger regional loss patterns driven by subsidence and other episodic events (e.g, hurricanes and floods), and recent localized land gains. These increases in land area are potentially the long-term results of the Fort St. Philip crevasses, and the short-term impacts of delta management activities. However, for the majority of the 1956-2008 period of analysis, the crevassing of the eastern bank of the Mississippi River levee was a loss accelerant in the Fort St. Philip area.
U.S. Geological Survey science for the Wyoming Landscape Conservation Initiative: 2011 annual report
Bowen, Zachary H.; Aldridge, Cameron L.; Anderson, Patrick J.; Assal, Timothy J.; Biewick, Laura; Blecker, Steven W.; Boughton, Gregory K.; Carr, Natasha B.; Chalfoun, Anna D.; Chong, Geneva W.; Clark, Melanie L.; Diffendorfer, Jay E.; Fedy, Bradley C.; Foster, Katharine; Garman, Steven L.; Germaine, Stephanie; Hethcoat, Matthew G.; Holloway, JoAnn; Homer, Collin G.; Kauffman, Matthew J.; Keinath, Douglas; Latysh, Natalie; Manier, Daniel J.; McDougal, Robert R.; Melcher, Cynthia P.; Miller, Kirk A.; Montag, Jessica; Olexa, Edward M.; Potter, Christopher J.; Schell, Spencer; Shafer, Sarah L.; Smith, David B.; Stillings, Lisa L.; Sweat, Michael J.; Tuttle, Michele L.W.; Wilson, Anna B.
2013-01-01
This is the fourth report produced by the U.S. Geological Survey (USGS) for the Wyoming Landscape Conservation Initiative (WLCI) to detail annual work activities. In FY2011, there were 37 ongoing, completed, or new projects conducted under the five major multi-disciplinary science and technical-assistance activities: (1) Baseline Synthesis, (2) Targeted Monitoring and Research, (3) Data and Information Management, (4) Integration and Coordination, and (5) Decisionmaking and Evaluation. The four new work activities were (1) development of the Western Energy Citation Clearinghouse, a Web-based energy-resource database of references for literature and on-line resources focused on energy development and its effects on natural resources; (2) a study to support the Sublette County Conservation District in ascertaining potential water-quality impacts to the New Fork River from energy development in the Pinedale Anticline Project Area; (3) a study to test the efficacy of blending high-frequency temporal data provided by Moderate Resolution Imaging Spectroradiometer (MODIS) sensors and high-resolution Landsat data for providing the fine-resolution data required to evaluate habitat responses to management activities at the landscape level; and (4) a study to examine the seasonal water chemistry of Muddy Creek, including documenting salinity patterns and providing a baseline for assessing potential effects of energy and other development on water quality in the Muddy Creek watershed. Two work activities were completed in FY2011: (1) the assessment of rancher perceptions of energy development in Southwest Wyoming and (2) mapping aspen stands and conifer encroachment using classification and regression tree (CART) analysis for effectiveness monitoring. The USGS continued to compile data, develop geospatial products, and upgrade Web-based products in support of both individual and overall WLCI efforts, including (1) ranking and prioritizing proposed conservation projects, (2) developing the WLCI integrated assessment, (3) developing the WLCI 5-year Conservation Action Plan, and (4) continuing to upgrade the content and improve the functionality of the WLCI Web site. For the WLCI FY2012 annual report, a decision was made to greatly reduce the overall length of the annual report, which will be accomplished by simplifying the report format and focusing on the take-home messages of each work activity for WLCI partners.
NASA Technical Reports Server (NTRS)
Kalb, M. W.; Perkey, D. J.
1985-01-01
The influence of synoptic scale initial conditions on the accuracy of mesoscale precipitation modeling is investigated. Attention is focused on the relative importance of the water vapor, cloud water, rain water, and vertical motion, with the analysis carried out using the Limited Area Mesoscale Prediction System (LAMPS). The fully moist primitive equation model has 15 levels and a terrain-following sigma coordinate system. A K-theory approach was implemented to model the planetary boundary layer. A total of 15 sensitivity simulations were run to investigate the effects of the synoptic initial conditions of the four atmospheric variables. The absence of synoptic cloud and rain water amounts in the initialization caused a 2 hr delay in the onset of precipitation. The delay was increased if synoptic-scale vertical motion was used instead of mesoscale values. Both the delays and a choice of a smoothed moisture field resulted in underestimations of the total rainfall.
Ng, I-Son; Tsai, Shau-Wei
2005-01-05
For the first time, the Carica papaya lipase (CPL) stored in crude papain is explored as a potential enantioselective biocatalyst for obtaining chiral acids from their racemic thioesters. Hydrolytic resolution of (R,S)-naproxen 2,2,2-trifluoroethyl thioester in water-saturated organic solvents is employed as a model system for studying the effects of temperature and solvents on lipase activity and enantioselectivity. An optimal temperature of 60 degrees C, based on the initial rate of (S)-thioester and a high enantiomeric ratio (i.e., E-value defined as the ratio of initial rates for both substrates) of >100 at 45 degrees C in isooctane, is obtained. Kinetic analysis, considering product inhibition and enzyme deactivation, is also performed, showing agreement between the experimental and best-fit conversions for (S)-thioester. A comparison of the kinetic and thermodynamic behaviors of CPL and Candida rugosa lipase (CRL) in isooctane and cyclohexane indicates that both lipases are very similar in terms of thermodynamic parameters DeltaDeltaH and DeltaDeltaS, initial rate of (S)-substrate, and E-value when (R,S)-naproxen 2,2,2-trifluoroethyl thioester or ester is employed as substrate. (c) 2004 Wiley Periodicals, Inc.
Dufour, Boris; Morin, Hubert
2010-07-01
Research on cambium phenology in trees and its limiting factors in natural conditions is still at an early stage of development, restricting our capacity to precisely evaluate the effect of growing season length and climate fluctuations on tracheid production. The first objective of this paper was to describe cambial tracheid production phenology of black spruce (Picea mariana (Mills.) BSP). Repeated tree ring sampling was performed from 2002 to 2006 on four sites (48 degrees 13.78' N, 71 degrees 15.18' W; 48 degrees 51.92' N, 70 degrees 20.57' W; 49 degrees 43.92' N, 71 degrees 56.88' W; and 50 degrees 41.78' N, 72 degrees 11.03' W) representative of closed black spruce forest in Quebec, Canada. The timing of cambial initiation and cambial cessation in black spruce differs from year to year, the first occurring on 4 June on average, whereas the second occurs on 15 August. During a single year, these events do not vary significantly in space within the study area. The duration of cambial tracheid production does not vary significantly in either time or space. The second objective of this study was to identify the climatic factors that explain variations in initiation and cessation. Air temperature and humidity, soil temperature and water content, rain precipitations, snow cover as well as photosynthetically active radiation were monitored at each studied site. These were then used to create sets of candidate regressors to explain timing of phenological events. Timing of cambial initiation is primarily dependent on mean temperature between mid-March and initiation itself. Vapor pressure during this period is also important but in a negative way. A significant effect of the previous year's August soil and air temperature conditions suggests a link with spring bud activity resumption, an interpretation that is supported by an analysis significantly linking measured timing of bud break to cambial initiation. Cessation of cambial tracheid production is influenced by factors linked to photosynthesis during the period from mid-July to cessation. Those related to water status, namely saturation vapor pressure, soil water content and vapor pressure are particularly influential, but light intensity and soil temperature also have an effect. Also, because mid-July corresponds to the timing of bud set and because the previous late summer's soil temperature has a significant effect, a clear link is established with apical cessation.
A Brownfields strategy for the Toronto Port Area
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ibbotson, B.G.; Benson, B.A.
The Port Area of Toronto consists of several hundred acres, much of it created by filling near-shore sections of the Inner Harbour. The quality of the fill materials and the industrial activities that have taken place in the Port Area have resulted in soil and/or ground water quality conditions at many locations that do not meet current regulatory criteria and guidelines. As the administrator of properties representing more than 400 acres in the Port Area, the City of Toronto Economic Development Corporation (TEDCO) has a leadership role in the redevelopment of the Port Area. To date, a few TEDCO sitesmore » have always been restored and redeveloped on an individual basis, with little attention paid to ground water issues. To move forward on other redevelopment initiatives and to attract capital, it is necessary to increase the certainty with respect to regulatory requirements, the distribution of liabilities, and those parts of decision-making processes that consider soil and ground water issues. To address these needs, TEDCO has designed an overall soil and ground water management strategy that can be applied to its properties in the Port Area. The resulting strategy consists of four interrelated parts: an area-wide initiative to monitor ground water characteristics and assess ecological conditions; a collection of three protocols for managing individual sites; an information management system; and direction on the administration of the strategy. Together, the four parts provide a comprehensive and pragmatic approach to managing soil and ground water on TEDCO properties. The use of a multi-party agreement to formalize the strategy and specify roles and responsibilities of TEDCO, the municipality, and the Ontario Ministry of Environment and Energy is recommended.« less
Innovations in bonding to zirconia-based materials. Part II: Focusing on chemical interactions.
Aboushelib, Moustafa N; Mirmohamadi, Hesam; Matinlinna, Jukka P; Kukk, Edwin; Ounsi, Hani F; Salameh, Ziad
2009-08-01
The zirconia-resin bond strength was enhanced using novel engineered zirconia primers in combination with selective infiltration etching as a surface pre-treatment. The aim of this study was to evaluate the effect of artificial aging on the chemical stability of the established bond and to understand the activation mechanism of the used primers. Selective infiltration etched zirconia discs (Procera; NobelBiocare) were coated with one of four novel engineered zirconia primers containing reactive monomers and were bonded to resin-composite discs (Panavia F2.0). Fourier transform infrared spectroscopy (FT-IR) was carried out to examine the chemical activation of zirconia primers from mixing time and up to 60min. The bilayered specimens were cut into microbars (1mm(2) in cross-section area) and zirconia-resin microtensile bond strength (MTBS) was evaluated immediately and after 90 days of water storage at 37 degrees C. Scanning electron microscopy (SEM) was used to analyze the fracture surface. There was a significant drop in MTBS values after 90 days of water storage for all tested zirconia primers from ca. 28-41MPa to ca. 15-18MPa after completion of artificial aging. SEM revealed increase in percentage of interfacial failure after water storage. FTIR spectra suggested adequate activation of the experimental zirconia primers within 1h of mixing time. The novel engineered zirconia primers produced initially high bond strength values which were significantly reduced after water storage. Long-term bond stability requires developing more stable primers.
18 CFR 154.202 - Filings to initiate a new rate schedule.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 18 Conservation of Power and Water Resources 1 2010-04-01 2010-04-01 false Filings to initiate a new rate schedule. 154.202 Section 154.202 Conservation of Power and Water Resources FEDERAL ENERGY... Procedures for Changing Tariffs § 154.202 Filings to initiate a new rate schedule. (a) When the filing is to...
18 CFR 154.202 - Filings to initiate a new rate schedule.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 18 Conservation of Power and Water Resources 1 2013-04-01 2013-04-01 false Filings to initiate a new rate schedule. 154.202 Section 154.202 Conservation of Power and Water Resources FEDERAL ENERGY... Procedures for Changing Tariffs § 154.202 Filings to initiate a new rate schedule. (a) When the filing is to...