Sample records for initially straight front

  1. Three-dimensional CTOA and constraint effects during stable tearing in a thin-sheet material

    NASA Technical Reports Server (NTRS)

    Dawicke, D. S.; Newman, J. C., Jr.; Bigelow, C. A.

    1995-01-01

    A small strain theory, three-dimensional elastic-plastic finite element analysis was used to simulate fracture in thin sheet 2024-T3 aluminum alloy in the T-L orientation. Both straight and tunneled cracks were modeled. The tunneled crack front shapes as a function of applied stress were obtained from the fracture surface of tested specimens. The stable crack growth behavior was measured at the specimen surface as a function of applied stress. The fracture simulation modeled the crack tunneling and extension as a function of applied stress. The results indicated that the global constraint factor, alpha(sub g), initially dropped during stable crack growth. After peak applied stress was achieved, alpha(sub g) began to increase slightly. The effect of crack front shape on alpha(sub g) was small, but the crack front shape did greatly influence the local constraint and through-thickness crack-tip opening angle (CTOA) behavior. The surface values of CTOA for the tunneled crack front model agreed well with experimental measurements, showing the same initial decrease from high values during the initial 3mm of crack growth at the specimen's surface. At the same time, the interior CTOA values increased from low angles. After the initial stable tearing region, the CTOA was constant through the thickness. The three-dimensional analysis appears to confirm the potential of CTOA as a two-dimensional fracture criterion.

  2. Design Models for Shaping of a Tooth Profile of External Fine-Module Ratchet Teeth

    NASA Astrophysics Data System (ADS)

    Sharkov, O. V.; Koryagin, S. I.; Velikanov, N. L.

    2016-04-01

    Simulation of the shaping for the fine-module external ratchet teeth at which the contacting surfaces are formed by the straight segments is considered in this paper. The design schemes for shaping of the proposed ratchet teeth by a shaper cutter and a rack are obtained. It is defined that the maximum length of the straight segment of the front edge ratchet teeth will be formed at shaping by a rack cutter. The effect of a module, a gradient angle and a radius of blank circles on the length of the straight segment of the front edge ratchet teeth is investigated.

  3. Beamline front end for in-vacuum short period undulator at the photon factory storage ring

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miyauchi, Hiroshi, E-mail: hiroshi.miyauchi@kek.jp; Department of Accelerator Science, School of High Energy Accelerator Science, SOKENDAI; Tahara, Toshihiro, E-mail: ttahara@post.kek.jp

    The straight-section upgrade project of the Photon Factory created four new short straight sections capable of housing in-vacuum short period undulators. The first to fourth short period undulators SGU#17, SGU#03, SGU#01 and SGU#15 were installed at the 2.5-GeV Photon Factory storage ring in 2005, 2006, 2009 and 2013, respectively. The beamline front end for SGU#15 is described in this paper.

  4. Quantitative characterization of the interfacial adhesion of Ni thin film on steel substrate: A compression-induced buckling delamination test

    NASA Astrophysics Data System (ADS)

    Zhu, W.; Zhou, Y. C.; Guo, J. W.; Yang, L.; Lu, C.

    2015-01-01

    A compression-induced buckling delamination test is employed to quantitatively characterize the interfacial adhesion of Ni thin film on steel substrate. It is shown that buckles initiate from edge flaws and surface morphologies exhibit symmetric, half-penny shapes. Taking the elastoplasticity of film and substrate into account, a three-dimensional finite element model for an edge flaw with the finite size is established to simulate the evolution of energy release rates and phase angles in the process of interfacial buckling-driven delamination. The results show that delamination propagates along both the straight side and curved front. The mode II delamination plays a dominant role in the process with a straight side whilst the curved front experiences almost the pure mode I. Based on the results of finite element analysis, a numerical model is developed to evaluate the interfacial energy release rate, which is in the range of 250-315 J/m2 with the corresponding phase angle from -41° to -66°. These results are in agreement with the available values determined by other testing methods, which confirms the effectiveness of the numerical model.

  5. An Approach for Assessing Delamination Propagation Capabilities in Commercial Finite Element Codes

    NASA Technical Reports Server (NTRS)

    Krueger, Ronald

    2007-01-01

    An approach for assessing the delamination propagation capabilities in commercial finite element codes is presented and demonstrated for one code. For this investigation, the Double Cantilever Beam (DCB) specimen and the Single Leg Bending (SLB) specimen were chosen for full three-dimensional finite element simulations. First, benchmark results were created for both specimens. Second, starting from an initially straight front, the delamination was allowed to propagate. Good agreement between the load-displacement relationship obtained from the propagation analysis results and the benchmark results could be achieved by selecting the appropriate input parameters. Selecting the appropriate input parameters, however, was not straightforward and often required an iterative procedure. Qualitatively, the delamination front computed for the DCB specimen did not take the shape of a curved front as expected. However, the analysis of the SLB specimen yielded a curved front as may be expected from the distribution of the energy release rate and the failure index across the width of the specimen. Overall, the results are encouraging but further assessment on a structural level is required.

  6. An Approach to Assess Delamination Propagation Simulation Capabilities in Commercial Finite Element Codes

    NASA Technical Reports Server (NTRS)

    Krueger, Ronald

    2008-01-01

    An approach for assessing the delamination propagation simulation capabilities in commercial finite element codes is presented and demonstrated. For this investigation, the Double Cantilever Beam (DCB) specimen and the Single Leg Bending (SLB) specimen were chosen for full three-dimensional finite element simulations. First, benchmark results were created for both specimens. Second, starting from an initially straight front, the delamination was allowed to propagate. The load-displacement relationship and the total strain energy obtained from the propagation analysis results and the benchmark results were compared and good agreements could be achieved by selecting the appropriate input parameters. Selecting the appropriate input parameters, however, was not straightforward and often required an iterative procedure. Qualitatively, the delamination front computed for the DCB specimen did not take the shape of a curved front as expected. However, the analysis of the SLB specimen yielded a curved front as was expected from the distribution of the energy release rate and the failure index across the width of the specimen. Overall, the results are encouraging but further assessment on a structural level is required.

  7. Bubble propagation in a pipe filled with sand.

    PubMed

    Gendron, D; Troadec, H; Måløy, K J; Flekkøy, E G

    2001-08-01

    Granular flow with strong hydrodynamic interactions has been studied experimentally. Experiments have been carried out to study the movement of a single bubble in an inclined tube filled with glass beads and air. A maximum bubble velocity was found at an inclined angle straight theta(m). The density variations in the sand were measured by capacitance measurements, and a decompactification zone was observed just above the bubble when the inclination angle straight theta was larger than straight theta(m). The length of the decompactification front increased with increasing inclination angle and disappeared for angles smaller than straight theta(m). Both pressure and visualization experiments were carried out and compared with the density measurements.

  8. Vehicle surge detection and pathway discrimination by pedestrians who are blind: Effect of adding an alert sound to hybrid electric vehicles on performance.

    PubMed

    Kim, Dae Shik; Emerson, Robert Wall; Naghshineh, Koorosh; Pliskow, Jay; Myers, Kyle

    2012-05-01

    This study examined the effect of adding an artificially generated alert sound to a quiet vehicle on its detectability and localizability with 15 visually impaired adults. When starting from a stationary position, the hybrid electric vehicle with an alert sound was significantly more quickly and reliably detected than either the identical vehicle without such added sound or the comparable internal combustion engine vehicle. However, no significant difference was found between the vehicles in respect to how accurately the participants could discriminate the path of a given vehicle (straight vs. right turn). These results suggest that adding an artificial sound to a hybrid electric vehicle may help reduce delay in street crossing initiation by a blind pedestrian, but the benefit of such alert sound may not be obvious in determining whether the vehicle in his near parallel lane proceeds straight through the intersection or turns right in front of him.

  9. Vehicle surge detection and pathway discrimination by pedestrians who are blind: Effect of adding an alert sound to hybrid electric vehicles on performance

    PubMed Central

    Kim, Dae Shik; Emerson, Robert Wall; Naghshineh, Koorosh; Pliskow, Jay; Myers, Kyle

    2012-01-01

    This study examined the effect of adding an artificially generated alert sound to a quiet vehicle on its detectability and localizability with 15 visually impaired adults. When starting from a stationary position, the hybrid electric vehicle with an alert sound was significantly more quickly and reliably detected than either the identical vehicle without such added sound or the comparable internal combustion engine vehicle. However, no significant difference was found between the vehicles in respect to how accurately the participants could discriminate the path of a given vehicle (straight vs. right turn). These results suggest that adding an artificial sound to a hybrid electric vehicle may help reduce delay in street crossing initiation by a blind pedestrian, but the benefit of such alert sound may not be obvious in determining whether the vehicle in his near parallel lane proceeds straight through the intersection or turns right in front of him. PMID:22707841

  10. A new wave front shape-based approach for acoustic source localization in an anisotropic plate without knowing its material properties.

    PubMed

    Sen, Novonil; Kundu, Tribikram

    2018-07-01

    Estimating the location of an acoustic source in a structure is an important step towards passive structural health monitoring. Techniques for localizing an acoustic source in isotropic structures are well developed in the literature. Development of similar techniques for anisotropic structures, however, has gained attention only in the recent years and has a scope of further improvement. Most of the existing techniques for anisotropic structures either assume a straight line wave propagation path between the source and an ultrasonic sensor or require the material properties to be known. This study considers different shapes of the wave front generated during an acoustic event and develops a methodology to localize the acoustic source in an anisotropic plate from those wave front shapes. An elliptical wave front shape-based technique was developed first, followed by the development of a parametric curve-based technique for non-elliptical wave front shapes. The source coordinates are obtained by minimizing an objective function. The proposed methodology does not assume a straight line wave propagation path and can predict the source location without any knowledge of the elastic properties of the material. A numerical study presented here illustrates how the proposed methodology can accurately estimate the source coordinates. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Main doorway to the display area, straight ahead. Double doors ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Main doorway to the display area, straight ahead. Double doors with "top secret" alert lights, coded doorbell, and one way mirror. Stairway to second floor and basement is at the left, as well as the secondary entrance at the east part of the north front. View to east - March Air Force Base, Strategic Air Command, Combat Operations Center, 5220 Riverside Drive, Moreno Valley, Riverside County, CA

  12. 4. James L. Dillon and Company, Inc., photographer January, 1967 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. James L. Dillon and Company, Inc., photographer January, 1967 INTERESTING OVAL STAIRWELL, LOOKING STRAIGHT UP FROM SECOND FLOOR - 626 South Front Street (House), Philadelphia, Philadelphia County, PA

  13. Indoor fitness routine

    MedlinePlus

    ... keep your back straight. Using your front leg, push back into the starting position. Repeat on the other ... your back sag. Press into your arms to push yourself back up. If it is too hard to do ...

  14. EXAMINATION - ASTRONAUT CARPENTER - SCHOOL OF AVIATION MEDICINE - PENSACOLA, FL

    NASA Image and Video Library

    1961-12-07

    S61-04571 (1961) --- Astronaut M. Scott Carpenter's balance mechanism performance is tested as he walks a straight line by putting one foot directly in front of the other. He is performing this test at the School of Aviation Medicine, Pensicola, Florida. Photo credit: NASA

  15. Spring Regimes

    DTIC Science & Technology

    2003-04-15

    of Albuquerque, New Mexico. . Since the system has “bottomed out” one could project a straight line northeastward (with little eastward movement of...in determining if forecast model guidance is “on track.” 14. 14. Subject Terms: CLOUDS, COMMA CLOUD, DRY LINE , GULF STRATUS, HEIGHT FALL CENTERS...4-40 Warm Fronts, Squall Lines and Mesocyclones

  16. Strategies for Selecting Routes through Real-World Environments: Relative Topography, Initial Route Straightness, and Cardinal Direction

    PubMed Central

    Brunyé, Tad T.; Collier, Zachary A.; Cantelon, Julie; Holmes, Amanda; Wood, Matthew D.; Linkov, Igor; Taylor, Holly A.

    2015-01-01

    Previous research has demonstrated that route planners use several reliable strategies for selecting between alternate routes. Strategies include selecting straight rather than winding routes leaving an origin, selecting generally south- rather than north-going routes, and selecting routes that avoid traversal of complex topography. The contribution of this paper is characterizing the relative influence and potential interactions of these strategies. We also examine whether individual differences would predict any strategy reliance. Results showed evidence for independent and additive influences of all three strategies, with a strong influence of topography and initial segment straightness, and relatively weak influence of cardinal direction. Additively, routes were also disproportionately selected when they traversed relatively flat regions, had relatively straight initial segments, and went generally south rather than north. Two individual differences, extraversion and sense of direction, predicted the extent of some effects. Under real-world conditions navigators indeed consider a route’s initial straightness, cardinal direction, and topography, but these cues differ in relative influence and vary in their application across individuals. PMID:25992685

  17. Effects of Structural Flexibility on Motorcycle Straight Running Stability by using Energy Flow Method

    NASA Astrophysics Data System (ADS)

    Marumo, Yoshitaka; Katayama, Tsuyoshi

    This study uses the energy flow method to analyze how structural flexibility affects the motorcycle wobble and weave modes. Lateral bending of the front fork and torsion of the main frame affect the wobble mode stability. These are based on the gyroscopic effect of the front wheel in the steering motion by considering structural flexibility. At high speeds, lateral bending of the front fork and torsion of the rear swing arm more significantly affect the weave mode stability. These are primarily due to the phase changes of the external force generated by the yaw rate in the lateral motion. The phase change of the yaw rate force in the lateral motion originates from the phase change of the tire side forces.

  18. The feedback control research on straight and curved road with car-following model

    NASA Astrophysics Data System (ADS)

    Zheng, Yi-Ming; Cheng, Rong-Jun; Ge, Hong-Xia

    2017-07-01

    Taking account of the road consisting of curved part and straight part, an extended car-following model is proposed in this paper. A control signal including the velocity difference between the considered vehicle and the vehicle in front is taken into account. The control theory method is applied into analysis of the stability condition for the model. Numerical simulations are implemented to prove that the stability of the traffic flow strengthens effectively with an increase of the radius of curved road, and the control signal can suppress the traffic congestion. The results are in good agree with the theoretical analysis.

  19. Observations of seating position of front seat occupants relative to the side of the vehicle.

    PubMed

    Dinas, Arthur; Fildes, Brian N

    2002-01-01

    This study was an on-road observational study of the seating position and limb position of front seat occupants relevant to the side of the car for a representative sample of occupants during straight road driving and turning manoeuvres. A video camera captured over 650 front-on images of passenger car occupants in Metropolitan Melbourne. Results showed a significant numbers of occupants were seated out-of-position while travelling on the road and that a number of these were seated in a manner that may possibly result in injury from the deployment of a side airbag. This was particularly so while turning, a situation common in many side impacts. A substantial number of front seat occupants' arms were exposed to severe injury in the event of a side impact crash. These findings highlight a number of aspects of seating behaviour of driver and front passengers that need to be taken into account when designing side impact airbags.

  20. Rupture propagation behavior and the largest possible earthquake induced by fluid injection into deep reservoirs

    NASA Astrophysics Data System (ADS)

    Gischig, Valentin S.

    2015-09-01

    Earthquakes caused by fluid injection into deep underground reservoirs constitute an increasingly recognized risk to populations and infrastructure. Quantitative assessment of induced seismic hazard, however, requires estimating the maximum possible magnitude earthquake that may be induced during fluid injection. Here I seek constraints on an upper limit for the largest possible earthquake using source-physics simulations that consider rate-and-state friction and hydromechanical interaction along a straight homogeneous fault. Depending on the orientation of the pressurized fault in the ambient stress field, different rupture behaviors can occur: (1) uncontrolled rupture-front propagation beyond the pressure front or (2) rupture-front propagation arresting at the pressure front. In the first case, fault properties determine the earthquake magnitude, and the upper magnitude limit may be similar to natural earthquakes. In the second case, the maximum magnitude can be controlled by carefully designing and monitoring injection and thus restricting the pressurized fault area.

  1. Hazardous materials emergency response mobile robot

    NASA Technical Reports Server (NTRS)

    Stone, Henry W. (Inventor); Lloyd, James (Inventor); Alahuzos, George (Inventor)

    1992-01-01

    A simple or unsophisticated robot incapable of effecting straight-line motion at the end of its arm inserts a key held in its end effector or hand into a door lock with nearly straight-line motion by gently thrusting its back heels downwardly so that it pivots forwardly on its front toes while holding its arm stationary. The relatively slight arc traveled by the robot's hand is compensated by a complaint tool with which the robot hand grips the door key. A visible beam is projected through the axis of the hand or gripper on the robot arm end at an angle to the general direction in which the robot thrusts the gripper forward. As the robot hand approaches a target surface, a video camera on the robot wrist watches the beam spot on the target surface fall from a height proportional to the distance between the robot hand and the target surface until the beam spot is nearly aligned with the top of the robot hand. Holes in the front face of the hand are connected through internal passages inside the arm to an on-board chemical sensor. Full rotation of the hand or gripper about the robot arm's wrist is made possible by slip rings in the wrist which permit passage of the gases taken in through the nose holes in the front of the hand through the wrist regardless of the rotational orientation of the wrist.

  2. Astronaut Scott Carpenter tests balance mechanism performance

    NASA Technical Reports Server (NTRS)

    1961-01-01

    Astronaut M. Scott Carpenter's balance mechanism performance is tested by his walking on a narrow board in his bare feet. He is performing this test at the School of Aviation Medicine, Pensicola, Florida (04570); Carpenter walks a straight line by putting one foot directly in front of the other to test his balance (04571).

  3. Modeling of efficient light extraction in light-pipes through specular surfaces with elliptical and lineal front shapes

    NASA Astrophysics Data System (ADS)

    Sánchez-Guerrero, Guillermo E.; Viera-González, Perla M.; Ceballos-Herrera, Daniel E.; Martínez-Guerra, Edgar

    2016-09-01

    Extraction light in light-pipes with different specular surfaces was analyzed. In the analysis, the impact of the surface shape in all properties of the extracted light in order to obtain an efficient extraction and a uniform illumination using a LED as light source. Also, several parameters of the specular surface to obtain spatial uniformity inside the light-pipe are considered. In this case, the simulation was made for a rectangular light­pipe. One objective of this work is to compare how the front face shape of the specular surface can affect the extraction of light in the lateral face of the light-pipe, only straight and elliptical front faces were used in this work and the comparison between them at different tilts and lengths were made. The main purpose of the front face was extract the light uniformly at the lateral face and this was done by studying simulations on OpticStudio Zemax. The results show how the extraction length is lower in the elliptical front but its total power performs better than the line front.

  4. Gas propagation following a sudden loss of vacuum in a pipe cooled by He I and He II.

    NASA Astrophysics Data System (ADS)

    Garceau, N.; Guo, W.; Dodamead, T.

    2017-12-01

    Many cryogenic systems around the world are concerned with the sudden catastrophic loss of vacuum for cost, preventative damage, safety or other reasons. The experiments in this paper were designed to simulate the sudden vacuum break in the beam-line pipe of a liquid helium cooled superconducting particle accelerator. This paper expands previous research conducted at the National High Magnetic Field Laboratory and evaluates the differences between normal helium (He I) and superfluid helium (He II). For the experiments, a straight pipe and was evacuated and immersed in liquid helium at 4.2 K and below 2.17 K. Vacuum loss was simulated by opening a solenoid valve on a buffer tank filled nitrogen gas. Gas front arrival was observed by a temperature rise of the tube. Preliminary results suggested that the speed of the gas front through the experiment decreased exponentially along the tube for both normal liquid helium and super-fluid helium. The system was modified to a helical pipe system to increase propagation length. Testing and analysis on these two systems revealed there was minor difference between He I and He II despite the difference between the two distinct helium phases heat transfer mechanisms: convection vs thermal counterflow. Furthermore, the results indicated that the temperature of the tube wall above the LHe bath also plays a significant role in the initial front propagation. More systematic measurements are planned in with the helical tube system to further verify the results.

  5. Development of a Benchmark Example for Delamination Fatigue Growth Prediction

    NASA Technical Reports Server (NTRS)

    Krueger, Ronald

    2010-01-01

    The development of a benchmark example for cyclic delamination growth prediction is presented and demonstrated for a commercial code. The example is based on a finite element model of a Double Cantilever Beam (DCB) specimen, which is independent of the analysis software used and allows the assessment of the delamination growth prediction capabilities in commercial finite element codes. First, the benchmark result was created for the specimen. Second, starting from an initially straight front, the delamination was allowed to grow under cyclic loading in a finite element model of a commercial code. The number of cycles to delamination onset and the number of cycles during stable delamination growth for each growth increment were obtained from the analysis. In general, good agreement between the results obtained from the growth analysis and the benchmark results could be achieved by selecting the appropriate input parameters. Overall, the results are encouraging but further assessment for mixed-mode delamination is required

  6. Hazardous materials emergency response mobile robot

    NASA Technical Reports Server (NTRS)

    Stone, Henry W. (Inventor); Lloyd, James W. (Inventor); Alahuzos, George A. (Inventor)

    1995-01-01

    A simple or unsophisticated robot incapable of effecting straight-line motion at the end of its arm is presented. This robot inserts a key held in its end effector or hand into a door lock with nearly straight-line motion by gently thrusting its back heels downwardly so that it pivots forwardly on its front toes while holding its arm stationary. The relatively slight arc traveled by the robot's hand is compensated by a complaint tool with which the robot hand grips the door key. A visible beam is projected through the axis of the hand or gripper on the robot arm end at an angle to the general direction in which the robot thrusts the gripper forward. As the robot hand approaches a target surface, a video camera on the robot wrist watches the beam spot on the target surface fall from a height proportional to the distance between the robot hand and the target surface until the beam spot is nearly aligned with the top of the robot hand. Holes in the front face of the hand are connected through internal passages inside the arm to an on-board chemical sensor. Full rotation of the hand or gripper about the robot arm's wrist is made possible by slip rings in the wrist which permit passage of the gases taken in through the nose holes in the front of the hand through the wrist regardless of the rotational orientation of the wrist.

  7. Strong shock implosion, approximate solution

    NASA Astrophysics Data System (ADS)

    Fujimoto, Y.; Mishkin, E. A.; Alejaldre, C.

    1983-01-01

    The self-similar, center-bound motion of a strong spherical, or cylindrical, shock wave moving through an ideal gas with a constant, γ= cp/ cv, is considered and a linearized, approximate solution is derived. An X, Y phase plane of the self-similar solution is defined and the representative curved of the system behind the shock front is replaced by a straight line connecting the mappings of the shock front with that of its tail. The reduced pressure P(ξ), density R(ξ) and velocity U1(ξ) are found in closed, quite accurate, form. Comparison with numerically obtained results, for γ= {5}/{3} and γ= {7}/{5}, is shown.

  8. Ultrasonic imaging for non-destructive evaluation of standing trees: effect of anisotropy on image reconstruction

    NASA Astrophysics Data System (ADS)

    Espinosa, Luis; Prieto, Flavio; Brancheriau, Loïc.

    2017-03-01

    Trees play a major ecological and sanitary role in modern cities. Nondestructive imaging methods allow to analyze the inner structures of trees, without altering their condition. In this study, we are interested on evaluating the influence of anisotropy condition in wood on the tomography image reconstruction using ultrasonic waves, by time-of-flight (TOF) estimation using the raytracing approach, a technique used particularly in the field of exploration seismography to simulate wave fronts in elastic media. Mechanical parameters from six wood species and one isotropic material were defined and their wave fronts and corresponding TOF values were obtained, using the proposed raytracing method. If the material presented anisotropy, the ray paths between the emitter and the receivers were not straight; therefore, curved rays were obtained for wood and the TOF measurements were affected. To obtain the tomographic image from the TOF measurements, the filtered back-projection algorithm was applied, a widely used technique in applications of straight ray tomography, but also commonly used in wood acoustic tomography. First, discs without inner defects for isotropic and wood materials (Spruce sample) were tested. Isotropic material resulted in a flat color image; for wood material, a gradient of velocities was obtained. After, centric and eccentric defects were tested, both for isotropic and orthotropic cases. From the results obtained for wood, when using a reconstruction algorithm intended for straight ray tomography, the images presented velocity variations from the border to the center that made difficult the discrimination of possible defects inside the samples, especially for eccentric cases.

  9. An Improved Neutron Transport Algorithm for Space Radiation

    NASA Technical Reports Server (NTRS)

    Heinbockel, John H.; Clowdsley, Martha S.; Wilson, John W.

    2000-01-01

    A low-energy neutron transport algorithm for use in space radiation protection is developed. The algorithm is based upon a multigroup analysis of the straight-ahead Boltzmann equation by using a mean value theorem for integrals. This analysis is accomplished by solving a realistic but simplified neutron transport test problem. The test problem is analyzed by using numerical and analytical procedures to obtain an accurate solution within specified error bounds. Results from the test problem are then used for determining mean values associated with rescattering terms that are associated with a multigroup solution of the straight-ahead Boltzmann equation. The algorithm is then coupled to the Langley HZETRN code through the evaporation source term. Evaluation of the neutron fluence generated by the solar particle event of February 23, 1956, for a water and an aluminum-water shield-target configuration is then compared with LAHET and MCNPX Monte Carlo code calculations for the same shield-target configuration. The algorithm developed showed a great improvement in results over the unmodified HZETRN solution. In addition, a two-directional solution of the evaporation source showed even further improvement of the fluence near the front of the water target where diffusion from the front surface is important.

  10. Development of Benchmark Examples for Delamination Onset and Fatigue Growth Prediction

    NASA Technical Reports Server (NTRS)

    Krueger, Ronald

    2011-01-01

    An approach for assessing the delamination propagation and growth capabilities in commercial finite element codes was developed and demonstrated for the Virtual Crack Closure Technique (VCCT) implementations in ABAQUS. The Double Cantilever Beam (DCB) specimen was chosen as an example. First, benchmark results to assess delamination propagation capabilities under static loading were created using models simulating specimens with different delamination lengths. For each delamination length modeled, the load and displacement at the load point were monitored. The mixed-mode strain energy release rate components were calculated along the delamination front across the width of the specimen. A failure index was calculated by correlating the results with the mixed-mode failure criterion of the graphite/epoxy material. The calculated critical loads and critical displacements for delamination onset for each delamination length modeled were used as a benchmark. The load/displacement relationship computed during automatic propagation should closely match the benchmark case. Second, starting from an initially straight front, the delamination was allowed to propagate based on the algorithms implemented in the commercial finite element software. The load-displacement relationship obtained from the propagation analysis results and the benchmark results were compared. Good agreements could be achieved by selecting the appropriate input parameters, which were determined in an iterative procedure.

  11. An Experimental Study of Ignition Effects and Flame Growth Over a Thin Solid Fuel in Low-Speed Concurrent Flow Using Drop-Tower Facilities

    NASA Technical Reports Server (NTRS)

    Pettegrew, Richard Dale

    1996-01-01

    An experimental study of ignition and flame growth over a thin solid fuel in oxidizer flow speeds from 0 to 10 cm/sec concurrent flow was performed. This study examined the differences between ignition using a resistively heated wire (woven in a sawtooth pattern over the leading edge of the fuel), and a straight resistively heated wire augmented by a chemical ignitor doped onto the leading edge of the fuel. Results showed that the chemical system yielded non-uniform ignition bursts, while the system using only the hotwire gave more uniform ignition. At speeds up to 2.5 cm/sec, the chemical system yielded non-uniform pyrolysis fronts, while the hotwire system gave more uniform pyrolysis fronts. At speeds of 5 cm/sec or greater, both systems gave uniform pyrolysis fronts. The chemically-ignited flames tended to become too dim to see faster than the hotwire-ignited flames, and the flame lengths were observed to be shorter (after the initial burst subsided) for the chemical system for all speeds. Flame and pyrolysis element velocities were measured. Temperature profiles for selected tests were measured using thermocouples at the fuel surface and in the gas phase. Comparisons between the flame element velocities and peak temperatures recorded in these tests with calculated spread rates and peak temperatures from a steady-state model are presented. Agreement was found to be within 20% for most flame elements for nominal velocities of 5 cm/sec and 7.5 cm/sec.

  12. Opportunity Egress Aid Contacts Soil

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This image from the navigation camera on the Mars Exploration Rover Opportunity shows the rover's egress aid touching the martian soil at Meridiani Planum, Mars. The image was taken after the rear lander petal hyperextended in a manuever to tilt the lander forward. The maneuver pushed the front edge lower, placing the tips of the egress aids in the soil. The rover will drive straight ahead to exit the lander.

  13. Reviewed approach to defining the Active Interlock Envelope for Front End ray tracing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seletskiy, S.; Shaftan, T.

    To protect the NSLS-II Storage Ring (SR) components from damage from synchrotron radiation produced by insertion devices (IDs) the Active Interlock (AI) keeps electron beam within some safe envelope (a.k.a Active Interlock Envelope or AIE) in the transverse phase space. The beamline Front Ends (FEs) are designed under assumption that above certain beam current (typically 2 mA) the ID synchrotron radiation (IDSR) fan is produced by the interlocked e-beam. These assumptions also define how the ray tracing for FE is done. To simplify the FE ray tracing for typical uncanted ID it was decided to provide the Mechanical Engineering groupmore » with a single set of numbers (x,x’,y,y’) for the AIE at the center of the long (or short) ID straight section. Such unified approach to the design of the beamline Front Ends will accelerate the design process and save valuable human resources. In this paper we describe our new approach to defining the AI envelope and provide the resulting numbers required for design of the typical Front End.« less

  14. 6. Workers laying up the graphite core of the 105B ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. Workers laying up the graphite core of the 105-B file. In the lower-left can be seen a portion of the rear face of the pile, the top of its shielding wall, and the gun barrels protruding through it. The inside of the front face of the pile and its gun barrels can be seen toward the upper-right side. The angled top of the front shielding wall can be seen in the picture. All four walls were "stepped" in this manner where they joined with another wall or the ceiling to form a "labyrinth" joint, so that radiation would not have a straight route through any gaps in the joints. D-3045 - B Reactor, Richland, Benton County, WA

  15. The Expressive Gaze Model: Using Gaze to Express Emotion

    DTIC Science & Technology

    2010-07-01

    World of Warcraft or Oblivion , have thou- sands of computer-controlled nonplayer characters with which users can interact. Producing hand- generated...increasing to the right and the vertical increasing upward. In both cases, 0 degrees is straight ahead. Although the mechani- cal limits of human eye...to gaze from a target directly in front of her to one 60 degrees to her right , while performing these behaviors in a manner that expressed the de

  16. Co-evolution of upstream waves and accelerated ions at parallel shocks

    NASA Astrophysics Data System (ADS)

    Fujimoto, M.; Sugiyama, T.

    2016-12-01

    Shock waves in space plasmas have been considered as the agents for various particle acceleration phenomena. The basic idea behind shock acceleration is that particles are accelerated as they move back-and-forth across a shock front. Detailed studies of ion acceleration at the terrestrial bow shock have been performed, however, the restricted maximum energies attained prevent a straight-forward application of obtained knowledge to more energetic astrophysical situations. Here we show by a large-scale self-consistent particle simulation that the co-evolution of magnetic turbulence and accelerated ion population is the foundation for continuous operation of shock acceleration to ever higher energies. Magnetic turbulence is created by ions reflected back upstream of a parallel shock front. The co-evolution arises because more energetic ions excite waves of longer wavelengths, and because longer wavelength modes are capable of scattering (in the upstream) and reflecting (at the shock front) more energetic ions. Via carefully designed numerical experiments, we show very clearly that this picture is true.

  17. Shaping Cutter Original Profile for Fine-module Ratchet Teeth Cutting

    NASA Astrophysics Data System (ADS)

    Sharkov, O. V.; Koryagin, S. I.; Velikanov, N. L.

    2018-03-01

    The methods for determining geometric characteristics of a theoretical original profile of the cutter for cutting ratchet teeth with a module of 0.3–1.0 mm are considered in the article. Design models describing the shaping process of cutting edges of cutter teeth are developed. Systems of expressions for determining coordinates of the points of front and back edges of cutter teeth; the workpiece angles of rotation during the cutting process; the minimum cutter radius are received. The basic data when using the proposed technique are: radii of circumferences passing through cavities of cutter teeth and external cut teeth; the gradient angle and length of straight section of the front edge of a cut tooth; angles of rotation of the cutter and the workpiece at the moment of shaping.

  18. Fracture Toughness Determination of Cracked Chevron Notched Brazilian Disc Rock Specimen via Griffith Energy Criterion Incorporating Realistic Fracture Profiles

    NASA Astrophysics Data System (ADS)

    Xu, Yuan; Dai, Feng; Zhao, Tao; Xu, Nu-wen; Liu, Yi

    2016-08-01

    The cracked chevron notched Brazilian disc (CCNBD) specimen has been suggested by the International Society for Rock Mechanics to measure the mode I fracture toughness of rocks, and has been widely adopted in laboratory tests. Nevertheless, a certain discrepancy has been observed in results when compared with those derived from methods using straight through cracked specimens, which might be due to the fact that the fracture profiles of rock specimens cannot match the straight through crack front as assumed in the measuring principle. In this study, the progressive fracturing of the CCNBD specimen is numerically investigated using the discrete element method (DEM), aiming to evaluate the impact of the realistic cracking profiles on the mode I fracture toughness measurements. The obtained results validate the curved fracture fronts throughout the fracture process, as reported in the literature. The fracture toughness is subsequently determined via the proposed G-method originated from Griffith's energy theory, in which the evolution of the realistic fracture profile as well as the accumulated fracture energy is quantified by DEM simulation. A comparison between the numerical tests and the experimental results derived from both the CCNBD and the semi-circular bend (SCB) specimens verifies that the G-method incorporating realistic fracture profiles can contribute to narrowing down the gap between the fracture toughness values measured via the CCNBD and the SCB method.

  19. Coherence of Mach fronts during heterogeneous supershear earthquake rupture propagation: Simulations and comparison with observations

    USGS Publications Warehouse

    Bizzarri, A.; Dunham, Eric M.; Spudich, P.

    2010-01-01

    We study how heterogeneous rupture propagation affects the coherence of shear and Rayleigh Mach wavefronts radiated by supershear earthquakes. We address this question using numerical simulations of ruptures on a planar, vertical strike-slip fault embedded in a three-dimensional, homogeneous, linear elastic half-space. Ruptures propagate spontaneously in accordance with a linear slip-weakening friction law through both homogeneous and heterogeneous initial shear stress fields. In the 3-D homogeneous case, rupture fronts are curved owing to interactions with the free surface and the finite fault width; however, this curvature does not greatly diminish the coherence of Mach fronts relative to cases in which the rupture front is constrained to be straight, as studied by Dunham and Bhat (2008a). Introducing heterogeneity in the initial shear stress distribution causes ruptures to propagate at speeds that locally fluctuate above and below the shear wave speed. Calculations of the Fourier amplitude spectra (FAS) of ground velocity time histories corroborate the kinematic results of Bizzarri and Spudich (2008a): (1) The ground motion of a supershear rupture is richer in high frequency with respect to a subshear one. (2) When a Mach pulse is present, its high frequency content overwhelms that arising from stress heterogeneity. Present numerical experiments indicate that a Mach pulse causes approximately an ω−1.7 high frequency falloff in the FAS of ground displacement. Moreover, within the context of the employed representation of heterogeneities and over the range of parameter space that is accessible with current computational resources, our simulations suggest that while heterogeneities reduce peak ground velocity and diminish the coherence of the Mach fronts, ground motion at stations experiencing Mach pulses should be richer in high frequencies compared to stations without Mach pulses. In contrast to the foregoing theoretical results, we find no average elevation of 5%-damped absolute response spectral accelerations (SA) in the period band 0.05–0.4 s observed at stations that presumably experienced Mach pulses during the 1979 Imperial Valley, 1999 Kocaeli, and 2002 Denali Fault earthquakes compared to SA observed at non-Mach pulse stations in the same earthquakes. A 20% amplification of short period SA is seen only at a few of the Imperial Valley stations closest to the fault. This lack of elevated SA suggests that either Mach pulses in real earthquakes are even more incoherent that in our simulations or that Mach pulses are vulnerable to attenuation through nonlinear soil response. In any case, this result might imply that current engineering models of high frequency earthquake ground motions do not need to be modified by more than 20% close to the fault to account for Mach pulses, provided that the existing data are adequately representative of ground motions from supershear earthquakes.

  20. The 'bookshelf illusion'--a real-world Zöllner-type illusion?

    PubMed

    MacLin, Otto H; Peterson, Dwight J

    2010-01-01

    We discovered an interesting perceptual distortion in our office where an upright lamp in front of a bookshelf was noticeably curved to form several subtle S-shaped bends. We realized that the books in the bookshelf fell in a particular manner, leaning in alternative directions, which caused the straight lamp to appear bent, creating what may be a real-world example of the Zöllner illusion. Evidence for the production of the illusion diagrammatically and an explanation for the effect are provided.

  1. Role of Ca++ in Shoot Gravitropism. [avena

    NASA Technical Reports Server (NTRS)

    Rayle, D. L.

    1985-01-01

    A cornerstone in the argument that Ca(2+) levels may regulate growth is the finding the EGTA promotes straight growth. The usual explanation for these results is that Ca(2+) chelation from cell walls results in wall loosening and thus accelerated straight growth. The ability of frozen-thawed Avena coleoptile tissue (subjected to 15g tension) to extend in response to EGTA and Quin II was examined. The EGTA when applied in weakly buffered (i.e., 0.1mM) neutral solutions initiates rapid extension. When the buffer strength is increased, similar concentrations of EGTA produce no growth response. This implies when EGTA liberated protons are released upon Ca(2+) chelation they can either initiate acid growth (low buffer conditions) or if consumed (high buffer conditions) have no effect. Thus Ca(2+) chelation in itself apparently does not result in straight growth.

  2. Three-dimensional finite-element analysis of chevron-notched fracture specimens

    NASA Technical Reports Server (NTRS)

    Raju, I. S.; Newman, J. C., Jr.

    1984-01-01

    Stress-intensity factors and load-line displacements were calculated for chevron-notched bar and rod fracture specimens using a three-dimensional finite-element analysis. Both specimens were subjected to simulated wedge loading (either uniform applied displacement or uniform applied load). The chevron-notch sides and crack front were assumed to be straight. Crack-length-to-specimen width ratios (a/w) ranged from 0.4 to 0.7. The width-to-thickness ratio (w/B) was 1.45 or 2. The bar specimens had a height-to-width ratio of 0.435 or 0.5. Finite-element models were composed of singularity elements around the crack front and 8-noded isoparametric elements elsewhere. The models had about 11,000 degrees of freedom. Stress-intensity factors were calculated by using a nodal-force method for distribution along the crack front and by using a compliance method for average values. The stress intensity factors and load-line displacements are presented and compared with experimental solutions from the literature. The stress intensity factors and load-line displacements were about 2.5 and 5 percent lower than the reported experimental values, respectively.

  3. Inelastic column behavior

    NASA Technical Reports Server (NTRS)

    Duberg, John E; Wilder, Thomas W , III

    1952-01-01

    The significant findings of a theoretical study of column behavior in the plastic stress range are presented. When the behavior of a straight column is regarded as the limiting behavior of an imperfect column as the initial imperfection (lack of straightness) approaches zero, the departure from the straight configuration occurs at the tangent-modulus load. Without such a concept of the behavior of a straight column, one is led to the unrealistic conclusion that lateral deflection of the column can begin at any load between the tangent-modulus value and the Euler load, based on the original elastic modulus. A family of curves showing load against lateral deflection is presented for idealized h-section columns of various lengths and of various materials that have a systematic variation of their stress-strain curves.

  4. Development and Application of Benchmark Examples for Mixed-Mode I/II Quasi-Static Delamination Propagation Predictions

    NASA Technical Reports Server (NTRS)

    Krueger, Ronald

    2012-01-01

    The development of benchmark examples for quasi-static delamination propagation prediction is presented. The example is based on a finite element model of the Mixed-Mode Bending (MMB) specimen for 50% mode II. The benchmarking is demonstrated for Abaqus/Standard, however, the example is independent of the analysis software used and allows the assessment of the automated delamination propagation prediction capability in commercial finite element codes based on the virtual crack closure technique (VCCT). First, a quasi-static benchmark example was created for the specimen. Second, starting from an initially straight front, the delamination was allowed to propagate under quasi-static loading. Third, the load-displacement as well as delamination length versus applied load/displacement relationships from a propagation analysis and the benchmark results were compared, and good agreement could be achieved by selecting the appropriate input parameters. The benchmarking procedure proved valuable by highlighting the issues associated with choosing the input parameters of the particular implementation. Overall, the results are encouraging, but further assessment for mixed-mode delamination fatigue onset and growth is required.

  5. Flow and performance of an air-curtain biological safety cabinet.

    PubMed

    Huang, Rong Fung; Chou, Chun I

    2009-06-01

    Using laser-assisted smoke flow visualization and tracer gas concentration detection techniques, this study examines aerodynamic flow properties and the characteristics of escape from containment, inward dispersion, and cross-cabinet contamination of a biological safety cabinet installed with an air curtain across the front aperture. The experimental method partially simulates the NSF/ANSI 49 standards with the difference that the biological tracer recommended by these standards is replaced by a mixture of 10% SF(6) in N(2). The air curtain is set up across the cabinet aperture plane by means of a narrow planar jet issued from the lower edge of the sash and a suction flow going through a suction slot installed at the front edge of the work surface. Varying the combination of jet velocity, suction flow velocity, and descending flow velocity reveals three types of characteristic flow modes: 'straight curtain', 'slightly concave curtain', and 'severely concave curtain'. Operating the cabinet in the straight curtain mode causes the air curtain to impinge on the doorsill and therefore induces serious escape from containment. In the severely concave curtain mode, drastically large inward dispersion and cross-cabinet contamination were observed because environmental air entered into the cabinet and a three-dimensional vortical flow structure formed in the cabinet. The slightly concave curtain mode presents a smooth and two-dimensional flow pattern with an air curtain separating the outside atmosphere from the inside space of the cabinet, and therefore exhibited negligibly small escape from containment, inward dispersion, and cross-cabinet contamination.

  6. Minimum-fuel turning climbout and descent guidance of transport jets

    NASA Technical Reports Server (NTRS)

    Neuman, F.; Kreindler, E.

    1983-01-01

    The complete flightpath optimization problem for minimum fuel consumption from takeoff to landing including the initial and final turns from and to the runway heading is solved. However, only the initial and final segments which contain the turns are treated, since the straight-line climbout, cruise, and descent problems have already been solved. The paths are derived by generating fields of extremals, using the necessary conditions of optimal control together with singular arcs and state constraints. Results show that the speed profiles for straight flight and turning flight are essentially identical except for the final horizontal accelerating or decelerating turns. The optimal turns require no abrupt maneuvers, and an approximation of the optimal turns could be easily integrated with present straight-line climb-cruise-descent fuel-optimization algorithms. Climbout at the optimal IAS rather than the 250-knot terminal-area speed limit would save 36 lb of fuel for the 727-100 aircraft.

  7. Geomorphological Evidence Bearing on the Paired Compressional-Extensional Fronts of the Northern Apennines

    NASA Astrophysics Data System (ADS)

    Alvarez, W.

    2001-12-01

    The close association of compressional folding and extensional normal faulting in the Northern Apennines has long attracted the attention of geologists. Elter et al.(1) showed that an extensional front has been following along, about 100 km behind a NE-migrating compressional front. This puzzling tectonic pattern has most commonly been explained by delamination and rollback, but the identity of the delaminating unit has been controversial. Little attention has been paid to the question whether the migration of the paired tectonic fronts and the generation of structures has been episodic or steady state. Since most or all of the Northern Apennines has emerged from the sea in Neogene time, the drainage pattern of the Peninsula may provide evidence bearing on this question. At the latitude of Gubbio, many short, straight, parallel rivers flow northeast from the main drainage divide to the Adriatic Sea, cutting through large anticlines between the extensional and compressional fronts. Alvarez (2) showed that this pattern arose from a process suggested by Mazzanti and Trevisan (3), in which incipient anticlines, additions to the coastal plain, and downstream increments of the rivers formed synchronously at the advancing shoreline. Deeper and deeper gorges cutting higher and higher anticlines southwest from the Adriatic coast show that the eastern third of the Northern Apennines formed in a roughly steady-state process. From the Tyrrhenian coast to the drainage divide, grabens that formed behind the extensional front have produced a trellis pattern in the three master streams (Arno, Ombrone, Tiber). In the steady-state hypothesis, many short, straight, parallel streams - the former headwaters of the Adriatic rivers - would have been disrupted by graben formation and progressively (from SW to NE) added to the trellis pattern. Close to the extensional front, this disruption would have occurred only in Quaternary time, and one would predict that the abandoned headwater tracts would be recognizable. A few candidates are currently under investigation, but the predicted patterns are difficult to detect, and there is little to suggest that the present drainage divide has migrated. This suggests that the steady-state migration of topographic features does not extend back beyond Late Miocene or Early Pliocene time. This is supported by the fact that the Monte Nerone-Monte Catria anticline, forming the main Umbria-Marche Ridge, about 15 km east of Gubbio, is far more structurally elevated than any feature for 100 km to the west. Departure from steady-state topographic evolution may have been driven at the surface by km-scale sea level drawdown during the Messinian salinity crisis or by 100-m-scale Quaternary sea-level oscillations. Or the driver may have been at depth, e.g., duplexing or out-of-sequence thrusting, or episodic delamination. On the other hand, the model of migrating paired fronts, which has guided Apennine research for 25 years, might be in need of major revision. (1) Boll. Geofis. Teor. Appl. 17, p. 3, 1975. (2) Basin Res. 11, p. 267, 1999. (3) Geog. Fis. Din. Quat. 1, p. 55, 1978.

  8. Ankle mechanics during sidestep cutting implicates need for 2-degrees of freedom powered ankle-foot prostheses.

    PubMed

    Ficanha, Evandro M; Rastgaar, Mohammad; Kaufman, Kenton R

    2015-01-01

    The ankle joint of currently available powered prostheses is capable of controlling one degree of freedom (DOF), focusing on improved mobility in the sagittal plane. To increase agility, the requirements of turning in prosthesis design need to be considered. Ankle kinematics and kinetics were studied during sidestep cutting and straight walking. There were no significant differences between the ankle sagittal plane mechanics when comparing sidestep cutting and straight walking; however, significant differences were observed in ankle frontal plane mechanics. During straight walking, the inversion-eversion (IE) angles were smaller than with sidestep cutting. The ankle that initiated the sidestep cutting showed progressively increasing inversion from 2 to 13 degrees while the following contralateral step showed progressively decreasing inversion from 8 to -4 degrees during normal walking speed. The changes in IE kinematics were the most significant during sidestep cutting compared with straight walking. The IE moments of the step that initiated the sidestep cutting were always in eversion, acting as a braking moment opposing the inverting motion. This suggests that an ankle-foot prosthesis with active DOFs in the sagittal and frontal planes will increase the agility of gait for patients with limb loss.

  9. Flight experiments using the front-side control technique during piloted approach and landing in a powered lift STOL aircraft

    NASA Technical Reports Server (NTRS)

    Hindson, W. S.; Hardy, G. H.; Innis, R. C.

    1982-01-01

    The essential features of using pitch attitude for glidepath control in conjunction with longitudinal thrust modulation for speed control are described, using a simple linearized model for a powered-lift STOL aircraft operating on the backside of the drag curve and at a fixed setting of propulsive lift. It is shown that an automatic speed-hold system incorporating heave-damping augmentation can allow use of the front-side control technique with satisfactory handling qualities, and the results of previous flight investigations are reviewed. Manual control considerations, as they might be involved following failure of the automatic system, are emphasized. The influence of alternative cockpit controller configurations and flight-director display features were assessed for their effect on the control task, which consisted of a straight-in steep approach flown at constant speed in simulated instrument conditions.

  10. Field Tests of Wind Turbine Unit with Tandem Wind Rotors and Double Rotational Armatures

    NASA Astrophysics Data System (ADS)

    Galal, Ahmed Mohamed; Kanemoto, Toshiaki

    This paper discusses the field tests of the wind turbine unit, in which the front and the rear wind rotors drive the inner and the outer armatures of the synchronous generator. The wind rotors were designed conveniently by the traditional procedure for the single wind rotor, where the diameters of the front and the rear wind rotors are 2 m and 1.33 m. The tests were done on a pick-up type truck driven straightly at constant speed. The rotational torque of the unit is directly proportional to the induced electric current irrespective of the rotational speeds of the wind rotors, while the induced voltage is proportional to the relative rotational speed. The performance of the unit is significantly affected not only by the wind velocity, but also by the blade setting angles of both wind rotors and the applied load especially at lower wind velocity.

  11. Experimental and numerical analysis of the influence of tyres' properties on the straight running stability of a sport-touring motorcycle

    NASA Astrophysics Data System (ADS)

    Cossalter, Vittore; Doria, Alberto; Formentini, Matteo; Peretto, Martino

    2012-03-01

    The behaviour of a motorcycle on the road is largely governed by tyre properties. This paper presents experimental and numerical analyses dealing with the influence of tyre properties on the stability of weave and wobble in straight running. The final goal is to find optimal sets of tyre properties that improve the stability of a motorcycle. The investigation is based on road tests carried out on a sport-touring motorcycle equipped with sensors. Three sets of tyres are tested at different speeds in the presence of weave and wobble. The analysis of telemetry data highlights significant differences in the trends of frequency and damping of weave and wobble against speed. The experimental analysis is integrated by a parametric numerical analysis. Tyre properties are varied according to the design of experiments method, in order to highlight the single effects on stability of lateral and cornering coefficient of front and rear tyres.

  12. XB-70A during take-off

    NASA Image and Video Library

    1965-08-17

    Viewed from the front the #1 XB-70A (62-0001) is shown climbing out during take-off. Most flights were scheduled during the morning hours to take advantage of the cooler ambient air temperatures for improved propulsion efficiencies. The wing tips are extended straight out to provide a maximum lifting wing surface. The XB-70A, capable of flying three times the speed of sound, was the world's largest experimental aircraft in the 1960s. Two XB-70A aircraft were built. Ship #1 was flown by NASA in a high speed flight research program.

  13. A multiphoton objective design with incorporated beam splitter for enhanced fluorescence collection

    PubMed Central

    McMullen, Jesse D.; Zipfel, Warren R.

    2010-01-01

    We present a de novo design of an objective for use in multi-photon (MPM) and second harmonic generation (SHG) microscopy. This objective was designed to have a large field of view (FOV), while maintaining a moderate numerical aperture (NA) and relative straight forward construction. A dichroic beam splitter was incorporated within the objective itself allowing for an increase in the front aperture of the objective and corresponding enhancement of the solid angle of collected emission by an order of magnitude over existing designs. PMID:20389554

  14. A multiphoton objective design with incorporated beam splitter for enhanced fluorescence collection.

    PubMed

    McMullen, Jesse D; Zipfel, Warren R

    2010-03-15

    We present a de novo design of an objective for use in multi-photon (MPM) and second harmonic generation (SHG) microscopy. This objective was designed to have a large field of view (FOV), while maintaining a moderate numerical aperture (NA) and relative straight forward construction. A dichroic beam splitter was incorporated within the objective itself allowing for an increase in the front aperture of the objective and corresponding enhancement of the solid angle of collected emission by an order of magnitude over existing designs.

  15. The Perfect Sturm: Innovation and the Origins of Blitzkrieg in World War I

    DTIC Science & Technology

    2006-12-01

    attempt similar offensives in 1918 on the Western Front in France. Initially successful, the offensives later stalled. However, the lessons of these...Italian defeat. This success encouraged the German leadership to attempt similar offensives in 1918 on the Western Front in France. Initially...77 2. Isonzo Front 1915 – 1918 : ..................................................... 78 3

  16. Sarcocystis sp. from white-fronted goose (Anser albifrons): cyst morphology and life cycle studies.

    PubMed

    Kutkiene, L; Sruoga, A; Butkauskas, D

    2006-10-01

    An experiment was carried out using three cubs of the arctic fox (Alopex lagopus). Twenty-five-day-old cubs were infected by feeding them with the leg muscles of the white-fronted goose (Anser albifrons) containing Sarcocystis sp. (cyst type III) cysts. Under the light microscope, the cysts were ribbon-shaped up to 4 mm long and up to 750 microm wide. On the surface of the wall (up to 2.4 microm), they had teat- or finger-like villar protrusions. Ultrastructurally, the cyst wall was a type-9 with villar protrusions (up to 2.3 microm long) different in size. The 11.4x1.7 (10.0-13.5x1.5-2.5)microm cystozoites were almost straight and shuttle-shaped. The fox cubs started shedding typical 12.0x8.0 (10.0-12.8x6.8-8.6)microm Sarcocystis sp. sporocysts on the 13th-14th days post-infection. The patent period lasted 19 days. The conclusion drawn was that the arctic fox (A. lagopus) can be one of the definitive hosts of Sarcocystis sp. (cyst type III) from the white-fronted goose.

  17. Warpage optimisation on the moulded part with straight-drilled and conformal cooling channels using response surface methodology (RSM) and glowworm swarm optimisation (GSO)

    NASA Astrophysics Data System (ADS)

    Hazwan, M. H. M.; Shayfull, Z.; Sharif, S.; Nasir, S. M.; Zainal, N.

    2017-09-01

    In injection moulding process, quality and productivity are notably important and must be controlled for each product type produced. Quality is measured as the extent of warpage of moulded parts while productivity is measured as a duration of moulding cycle time. To control the quality, many researchers have introduced various of optimisation approaches which have been proven enhanced the quality of the moulded part produced. In order to improve the productivity of injection moulding process, some of researches have proposed the application of conformal cooling channels which have been proven reduced the duration of moulding cycle time. Therefore, this paper presents an application of alternative optimisation approach which is Response Surface Methodology (RSM) with Glowworm Swarm Optimisation (GSO) on the moulded part with straight-drilled and conformal cooling channels mould. This study examined the warpage condition of the moulded parts before and after optimisation work applied for both cooling channels. A front panel housing have been selected as a specimen and the performance of proposed optimisation approach have been analysed on the conventional straight-drilled cooling channels compared to the Milled Groove Square Shape (MGSS) conformal cooling channels by simulation analysis using Autodesk Moldflow Insight (AMI) 2013. Based on the results, melt temperature is the most significant factor contribute to the warpage condition and warpage have optimised by 39.1% after optimisation for straight-drilled cooling channels and cooling time is the most significant factor contribute to the warpage condition and warpage have optimised by 38.7% after optimisation for MGSS conformal cooling channels. In addition, the finding shows that the application of optimisation work on the conformal cooling channels offers the better quality and productivity of the moulded part produced.

  18. A biomimetic vision-based hovercraft accounts for bees' complex behaviour in various corridors.

    PubMed

    Roubieu, Frédéric L; Serres, Julien R; Colonnier, Fabien; Franceschini, Nicolas; Viollet, Stéphane; Ruffier, Franck

    2014-09-01

    Here we present the first systematic comparison between the visual guidance behaviour of a biomimetic robot and those of honeybees flying in similar environments. We built a miniature hovercraft which can travel safely along corridors with various configurations. For the first time, we implemented on a real physical robot the 'lateral optic flow regulation autopilot', which we previously studied computer simulations. This autopilot inspired by the results of experiments on various species of hymenoptera consists of two intertwined feedback loops, the speed and lateral control loops, each of which has its own optic flow (OF) set-point. A heading-lock system makes the robot move straight ahead as fast as 69 cm s(-1) with a clearance from one wall as small as 31 cm, giving an unusually high translational OF value (125° s(-1)). Our biomimetic robot was found to navigate safely along straight, tapered and bent corridors, and to react appropriately to perturbations such as the lack of texture on one wall, the presence of a tapering or non-stationary section of the corridor and even a sloping terrain equivalent to a wind disturbance. The front end of the visual system consists of only two local motion sensors (LMS), one on each side. This minimalistic visual system measuring the lateral OF suffices to control both the robot's forward speed and its clearance from the walls without ever measuring any speeds or distances. We added two additional LMSs oriented at +/-45° to improve the robot's performances in stiffly tapered corridors. The simple control system accounts for worker bees' ability to navigate safely in six challenging environments: straight corridors, single walls, tapered corridors, straight corridors with part of one wall moving or missing, as well as in the presence of wind.

  19. Quadrupedal gaits in hexapod animals - inter-leg coordination in free-walking adult stick insects.

    PubMed

    Grabowska, Martyna; Godlewska, Elzbieta; Schmidt, Joachim; Daun-Gruhn, Silvia

    2012-12-15

    The analysis of inter-leg coordination in insect walking is generally a study of six-legged locomotion. For decades, the stick insect Carausius morosus has been instrumental for unravelling the rules and mechanisms that control leg coordination in hexapeds. We analysed inter-leg coordination in C. morosus that freely walked on straight paths on plane surfaces with different slopes. Consecutive 1.7 s sections were assigned inter-leg coordination patterns (which we call gaits) based on footfall patterns. Regular gaits, i.e. wave, tetrapod or tripod gaits, occurred in different proportions depending on surface slopes. Tetrapod gaits were observed most frequently, wave gaits only occurred on 90 deg inclining slopes and tripod gaits occurred most often on 15 deg declining slopes, i.e. in 40% of the sections. Depending on the slope, 36-66% of the sections were assigned irregular gaits. Irregular gaits were mostly due to multiple stepping by the front legs, which is perhaps probing behaviour, not phase coupled to the middle legs' cycles. In irregular gaits, middle leg and hindleg coordination was regular, related to quadrupedal walk and wave gaits. Apparently, front legs uncouple from and couple to the walking system without compromising middle leg and hindleg coordination. In front leg amputees, the remaining legs were strictly coordinated. In hindleg and middle leg amputees, the front legs continued multiple stepping. The coordination of middle leg amputees was maladapted, with front legs and hindlegs performing multiple steps or ipsilateral legs being in simultaneous swing. Thus, afferent information from middle legs might be necessary for a regular hindleg stepping pattern.

  20. TTI (Texas Transportation Institute) track/dynamometer study. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reineman, M.; Thompson, G.

    1983-01-01

    Seven passenger cars and one light truck were operated over the EPA urban and highway driving cycles to compare fuel economy measurements obtained on a test track with the fuel economy results obtained on a chassis dynamometer. The test program was designed to duplicate, as closely as possible, the track force loading (as determined by standard EPA road coastdown procedures) on the dynamometer. Experimental parameters which were investigated included loading differences between front- and rear-wheel drive vehicles, volumetric versus carbon balance fuel measurement techniques, coupled versus uncoupled roll dynamometer tests, and curved track versus straight track coastdowns.

  1. Figure-ground assignment to a translating contour: a preference for advancing vs. receding motion.

    PubMed

    Barenholtz, Elan; Tarr, Michael J

    2009-05-28

    Past research on figure-ground assignment to contours has largely considered static stimuli. Here we report a simple and extremely robust dynamic cue to figural assignment, based on whether the bounding region of a contour is growing larger within the field of view ("advancing") rather than smaller ("receding"). Subjects viewed a straight or jagged contour dividing two colored regions translating behind a virtual aperture and had to report which color they had seen "moving in front", effectively assigning figure to that side of the contour. Across three experiments, subjects showed a strong preference to assign figure such that the bounded contour was advancing. This was true regardless of the direction of motion of the contour and regardless of the initial/ending size of the bounded regions (i.e., the motion cue served to override the conventional cue to figure-ground of smaller area). In a fourth, control experiment, subjects showed no such bias when it was the aperture, rather than the contour, that moved, demonstrating that the effect depends on contour motion and not simply an increase in area. We discuss a possible explanation for this bias as well as the general implications regarding dynamic factors in form perception.

  2. Analytical solution of the problem of a shock wave in the collapsing gas in Lagrangian coordinates

    NASA Astrophysics Data System (ADS)

    Kuropatenko, V. F.; Shestakovskaya, E. S.

    2016-10-01

    It is proposed the exact solution of the problem of a convergent shock wave and gas dynamic compression in a spherical vessel with an impermeable wall in Lagrangian coordinates. At the initial time the speed of cold ideal gas is equal to zero, and a negative velocity is set on boundary of the sphere. When t > t0 the shock wave spreads from this point into the gas. The boundary of the sphere will move under the certain law correlated with the motion of the shock wave. The trajectories of the gas particles in Lagrangian coordinates are straight lines. The equations determining the structure of the gas flow between the shock front and gas border have been found as a function of time and Lagrangian coordinate. The dependence of the entropy on the velocity of the shock wave has been found too. For Lagrangian coordinates the problem is first solved. It is fundamentally different from previously known formulations of the problem of the self-convergence of the self-similar shock wave to the center of symmetry and its reflection from the center, which was built up for the infinite area in Euler coordinates.

  3. Aorta modeling with the element-based zero-stress state and isogeometric discretization

    NASA Astrophysics Data System (ADS)

    Takizawa, Kenji; Tezduyar, Tayfun E.; Sasaki, Takafumi

    2017-02-01

    Patient-specific arterial fluid-structure interaction computations, including aorta computations, require an estimation of the zero-stress state (ZSS), because the image-based arterial geometries do not come from a ZSS. We have earlier introduced a method for estimation of the element-based ZSS (EBZSS) in the context of finite element discretization of the arterial wall. The method has three main components. 1. An iterative method, which starts with a calculated initial guess, is used for computing the EBZSS such that when a given pressure load is applied, the image-based target shape is matched. 2. A method for straight-tube segments is used for computing the EBZSS so that we match the given diameter and longitudinal stretch in the target configuration and the "opening angle." 3. An element-based mapping between the artery and straight-tube is extracted from the mapping between the artery and straight-tube segments. This provides the mapping from the arterial configuration to the straight-tube configuration, and from the estimated EBZSS of the straight-tube configuration back to the arterial configuration, to be used as the initial guess for the iterative method that matches the image-based target shape. Here we present the version of the EBZSS estimation method with isogeometric wall discretization. With isogeometric discretization, we can obtain the element-based mapping directly, instead of extracting it from the mapping between the artery and straight-tube segments. That is because all we need for the element-based mapping, including the curvatures, can be obtained within an element. With NURBS basis functions, we may be able to achieve a similar level of accuracy as with the linear basis functions, but using larger-size and much fewer elements. Higher-order NURBS basis functions allow representation of more complex shapes within an element. To show how the new EBZSS estimation method performs, we first present 2D test computations with straight-tube configurations. Then we show how the method can be used in a 3D computation where the target geometry is coming from medical image of a human aorta.

  4. Some new evidence on bond initial public offerings in the Taiwan Stock Exchange: An industrial perspective

    NASA Astrophysics Data System (ADS)

    Ke, Mei-Chu; Liang Liao, Tung; Hsu, Hong-Ming

    2007-05-01

    This study examines the determinants of types of bonds at the initial public offerings (IPOs) for the Taiwan Stock Exchange (TWSE). From an industrial perspective, R&D expenditures are mainly positively related to issuing straight bonds and future growth opportunities to convertible bonds for electronic firms. In the non-electronic industry, firms with significant financing needs are more likely to issue convertible bonds, whereas those without such requirement are more likely to issue straight bonds. It is also found that electronic firms convey a significant negative signal to the stock market, while non-electronic firms experience an insignificant stock price response surrounding the announcements of the bond IPO.

  5. Experimental evaluation of rigor mortis. III. Comparative study of the evolution of rigor mortis in different sized muscle groups in rats.

    PubMed

    Krompecher, T; Fryc, O

    1978-01-01

    The use of new methods and an appropriate apparatus has allowed us to make successive measurements of rigor mortis and a study of its evolution in the rat. By a comparative examination on the front and hind limbs, we have determined the following: (1) The muscular mass of the hind limbs is 2.89 times greater than that of the front limbs. (2) In the initial phase rigor mortis is more pronounced in the front limbs. (3) The front and hind limbs reach maximum rigor mortis at the same time and this state is maintained for 2 hours. (4) Resolution of rigor mortis is accelerated in the front limbs during the initial phase, but both front and hind limbs reach complete resolution at the same time.

  6. Photon beam position monitor

    DOEpatents

    Kuzay, Tuncer M.; Shu, Deming

    1995-01-01

    A photon beam position monitor for use in the front end of a beamline of a high heat flux and high energy photon source such as a synchrotron radiation storage ring detects and measures the position and, when a pair of such monitors are used in tandem, the slope of a photon beam emanating from an insertion device such as a wiggler or an undulator inserted in the straight sections of the ring. The photon beam position monitor includes a plurality of spaced blades for precisely locating the photon beam, with each blade comprised of chemical vapor deposition (CVD) diamond with an outer metal coating of a photon sensitive metal such as tungsten, molybdenum, etc., which combination emits electrons when a high energy photon beam is incident upon the blade. Two such monitors are contemplated for use in the front end of the beamline, with the two monitors having vertically and horizontally offset detector blades to avoid blade "shadowing". Provision is made for aligning the detector blades with the photon beam and limiting detector blade temperature during operation.

  7. A buoyant plume adjacent to a headland-Observations of the Elwha River plume

    USGS Publications Warehouse

    Warrick, J.A.; Stevens, A.W.

    2011-01-01

    Small rivers commonly discharge into coastal settings with topographic complexities - such as headlands and islands - but these settings are underrepresented in river plume studies compared to more simplified, straight coasts. The Elwha River provides a unique opportunity to study the effects of coastal topography on a buoyant plume, because it discharges into the Strait of Juan de Fuca on the western side of its deltaic headland. Here we show that this headland induces flow separation and transient eddies in the tidally dominated currents (O(100. cm/s)), consistent with other headlands in oscillatory flow. These flow conditions are observed to strongly influence the buoyant river plume, as predicted by the "small-scale" or "narrow" dynamical classification using Garvine's (1995) system. Because of the transient eddies and the location of the river mouth on the headland, flow immediately offshore of the river mouth is directed eastward twice as frequently as it is westward. This results in a buoyant plume that is much more frequently "bent over" toward the east than the west. During bent over plume conditions, the plume was attached to the eastern shoreline while having a distinct, cuspate front along its westernmost boundary. The location of the front was found to be related to the magnitude and direction of local flow during the preceding O(1. h), and increases in alongshore flow resulted in deeper freshwater mixing, stronger baroclinic anomalies, and stronger hugging of the coast. During bent over plume conditions, we observed significant convergence of river plume water toward the frontal boundary within 1. km of the river mouth. These results show how coastal topography can strongly influence buoyant plume behavior, and they should assist with understanding of initial coastal sediment dispersal pathways from the Elwha River during a pending dam removal project. ?? 2010.

  8. Hydrodynamic and thermal mechanisms of filtration combustion inclinational instability based on non-uniform distribution of initial preheating temperature

    NASA Astrophysics Data System (ADS)

    Xia, Yongfang; Shi, Junrui; Xu, Youning; Ma, Rui

    2018-03-01

    Filtration combustion (FC) is one style of porous media combustion with inert matrix, in which the combustion wave front propagates, only downstream or reciprocally. In this paper, we investigate the FC flame front inclinational instability of lean methane/air mixtures flowing through a packed bed as a combustion wave front perturbation of the initial preheating temperature non-uniformity is assumed. The predicted results show that the growth rate of the flame front inclinational angle is proportional to the magnitude of the initial preheating temperature difference. Additionally, depending on gas inlet gas velocity and equivalence ratio, it is demonstrated that increase of gas inlet gas velocity accelerates the FC wave front deformation, and the inclinational instability evolves faster at lower equivalence ratio. The development of the flame front inclinational angle may be regarded as a two-staged evolution, which includes rapid increase, and approaching maximum value of inclinational angle due to the quasi-steady condition of the combustion system. The hydrodynamic and thermal mechanisms of the FC inclinational instability are analyzed. Consequently, the local propagation velocity of the FC wave front is non-uniform to result in the development of inclinational angle at the first stage of rapid increase.

  9. Stress Intensity Factors of Semi-Circular Bend Specimens with Straight-Through and Chevron Notches

    NASA Astrophysics Data System (ADS)

    Ayatollahi, M. R.; Mahdavi, E.; Alborzi, M. J.; Obara, Y.

    2016-04-01

    Semi-circular bend specimen is one of the useful test specimens for determining fracture toughness of rock and geo-materials. Generally, in rock test specimens, initial cracks are produced in two shapes: straight-edge cracks and chevron notches. In this study, the minimum dimensionless stress intensity factors of semi-circular bend specimen (SCB) with straight-through and chevron notches are calculated. First, using finite element analysis, a suitable relation for the dimensionless stress intensity factor of SCB with straight-through crack is presented based on the normalized crack length and half-distance between supports. For evaluating the validity and accuracy of this relation, the obtained results are then compared with numerical and experimental results reported in the literature. Subsequently, by performing some experiments and also finite element analysis of the SCB specimen with chevron notch, the minimum dimensionless stress intensity factor of this specimen is obtained. Using the new equation for the dimensionless stress intensity factor of SCB with straight-through crack and an analytical method, i.e., Bluhm's slice synthesis method, the minimum (critical) dimensionless stress intensity factor of chevron notched semi-circular bend specimens is calculated. Good agreement is observed between the results of two mentioned methods.

  10. 75 FR 12968 - Airworthiness Directives; Pratt & Whitney JT8D-209, -217, -217C, and -219 Turbofan Engines

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-18

    ... with front compressor front hub (fan hub), part number (P/N) 5000501-01 installed. That AD currently requires cleaning the front compressor front hubs (fan hubs), initial and repetitive eddy current (ECI) and.... In addition, that AD currently requires reporting the findings of cracked fan hubs and monthly...

  11. Perception of straightness and parallelism with minimal distance information.

    PubMed

    Rogers, Brian; Naumenko, Olga

    2016-07-01

    The ability of human observers to judge the straightness and parallelism of extended lines has been a neglected topic of study since von Helmholtz's initial observations 150 years ago. He showed that there were significant misperceptions of the straightness of extended lines seen in the peripheral visual field. The present study focused on the perception of extended lines (spanning 90° visual angle) that were directly fixated in the visual environment of a planetarium where there was only minimal information about the distance to the lines. Observers were asked to vary the curvature of 1 or more lines until they appeared to be straight and/or parallel, ignoring any perceived curvature in depth. When the horizon between the ground and the sky was visible, the results showed that observers' judgements of the straightness of a single line were significantly biased away from the veridical, great circle locations, and towards equal elevation settings. Similar biases can be seen in the jet trails of aircraft flying across the sky and in Rogers and Anstis's new moon illusion (Perception, 42(Abstract supplement) 18, 2013, 2016). The biasing effect of the horizon was much smaller when observers were asked to judge the straightness and parallelism of 2 or more extended lines. We interpret the results as showing that, in the absence of adequate distance information, observers tend to perceive the projected lines as lying on an approximately equidistant, hemispherical surface and that their judgements of straightness and parallelism are based on the perceived separation of the lines superimposed on that surface.

  12. Using a smartphone as a tool to measure compensatory and anomalous head positions.

    PubMed

    Farah, Michelle de Lima; Santinello, Murillo; Carvalho, Luis Eduardo Morato Rebouças de; Uesugui, Carlos Fumiaki; Barcellos, Ronaldo Boaventura

    2018-01-01

    To describe a new method for measuring anomalous head positions by using a cell phone. The photo rotation feature of the iPhone® PHOTOS application was used. With the patient seated on a chair, a horizontal stripe was fixed on the wall in the background and a sagittal stripe was fixed on the seat. Photographs were obtained in the following views: front view (photographs A and B; with the head tilted over one shoulder) and upper axial view (photographs C and D; viewing the forehead and nose) (A and C are without camera rotation, and B and D are with camera rotation). A blank sheet of paper with two straight lines making a 32-degree angle was also photographed. Thirty examiners were instructed to measure the rotation required to align the reference points with the orthogonal axes. In order to set benchmarks to be compared with the measurements obtained by the examiners, blue lines were digitally added to the front and upper view photographs. In the photograph of the sheet of paper (p=0.380 and a=5%), the observed values did not differ statistically from the known value of 32 degrees. Mean measurements were as follows: front view photograph A, 22.8 ± 2.77; front view B, 21.4 ± 1.61; upper view C, 19.6 ± 2.36; and upper view D, 20.1 ± 2.33 degrees. The mean difference in measurements for the front view photograph A was -1.88 (95% CI -2.88 to -0.88), front view B was -0.37 (95% CI -0.97 to 0.17), upper view C was 1.43 (95% CI 0.55 to 2.24), and upper view D was 1.87 (95% CI 1.02 to 2.77). The method used in this study for measuring anomalous head position is reproducible, with maximum variations for AHPs of 2.88 degrees around the X-axis and 2.77 degrees around the Y-axis.

  13. On prediction of crack in different orientations in pipe using frequency based approach

    NASA Astrophysics Data System (ADS)

    Naniwadekar, M. R.; Naik, S. S.; Maiti, S. K.

    2008-04-01

    A technique based on measurement of change in natural frequencies and modeling of crack by rotational spring is employed to detect a crack with straight front in different orientations in a section of straight horizontal steel hollow pipe (outer diameter 0.0378 m and inner diameter 0.0278 m). Crack orientations in the range 0-60° with the vertical have been examined and sizes/depths in the range 1-4 mm through the wall of thickness 5 mm have been studied. Variation of rotational spring stiffness with crack size and orientation has been obtained experimentally by deflection and vibration methods. The spring stiffness reduces as expected, with an increase in crack size; it increases with an increase in the crack orientation angle. The crack location has been predicted with a maximum error of 7.29%. The sensitivity of the method for prediction of crack location on variations in experimental data has been examined by changing the difference between the frequencies of pipes with and without crack by ±10%. The method is found to be very robust; the maximum variation in location is 2.68%, which is much less than the change in frequency difference introduced.

  14. The sports science of curling: a practical review.

    PubMed

    Bradley, John L

    2009-01-01

    Curling is a sport played on ice in which two teams each deliver 8 granite stones towards a target, or 'house'. It is the only sport in which the trajectory of the projectile can be influenced after it has been released by the athlete. This is achieved by sweeping the ice in front of the stone to change the stone-ice friction and thereby enable to stone to travel further, curl more or stay straight. Hard sweeping is physically demanding. Different techniques of sweeping can also have different effects on the stone. This paper will review the current research behind sweeping a curling stone, outline the physiological demands of sweeping, the associated performance effects and suggest potential strategies of sweeping that can be used by both coaches and curling teams. Key pointsSweeping a curling stone can be highly physically demanding.Effective sweeping requires a combination of downward force and brush head speed, determined by the stone velocity.Sweeping on the left or right of a stone can help the stone to remain straight or curl more depending on the rotation of the stone.This can lead to the development of sweeping and playing tactics and contribute to team selection.

  15. The Sports Science of Curling: A Practical Review

    PubMed Central

    Bradley, John L.

    2009-01-01

    Curling is a sport played on ice in which two teams each deliver 8 granite stones towards a target, or ‘house’. It is the only sport in which the trajectory of the projectile can be influenced after it has been released by the athlete. This is achieved by sweeping the ice in front of the stone to change the stone-ice friction and thereby enable to stone to travel further, curl more or stay straight. Hard sweeping is physically demanding. Different techniques of sweeping can also have different effects on the stone. This paper will review the current research behind sweeping a curling stone, outline the physiological demands of sweeping, the associated performance effects and suggest potential strategies of sweeping that can be used by both coaches and curling teams. Key points Sweeping a curling stone can be highly physically demanding. Effective sweeping requires a combination of downward force and brush head speed, determined by the stone velocity. Sweeping on the left or right of a stone can help the stone to remain straight or curl more depending on the rotation of the stone. This can lead to the development of sweeping and playing tactics and contribute to team selection. PMID:24149588

  16. Development and Application of Benchmark Examples for Mixed-Mode I/II Quasi-Static Delamination Propagation Predictions

    NASA Technical Reports Server (NTRS)

    Krueger, Ronald

    2012-01-01

    The development of benchmark examples for quasi-static delamination propagation prediction is presented and demonstrated for a commercial code. The examples are based on finite element models of the Mixed-Mode Bending (MMB) specimen. The examples are independent of the analysis software used and allow the assessment of the automated delamination propagation prediction capability in commercial finite element codes based on the virtual crack closure technique (VCCT). First, quasi-static benchmark examples were created for the specimen. Second, starting from an initially straight front, the delamination was allowed to propagate under quasi-static loading. Third, the load-displacement relationship from a propagation analysis and the benchmark results were compared, and good agreement could be achieved by selecting the appropriate input parameters. Good agreement between the results obtained from the automated propagation analysis and the benchmark results could be achieved by selecting input parameters that had previously been determined during analyses of mode I Double Cantilever Beam and mode II End Notched Flexure specimens. The benchmarking procedure proved valuable by highlighting the issues associated with choosing the input parameters of the particular implementation. Overall the results are encouraging, but further assessment for mixed-mode delamination fatigue onset and growth is required.

  17. Oculomotor Apraxia

    MedlinePlus

    ... a defect in, the control of voluntary purposeful eye movement. Children with this condition have difficulty moving their ... to compensate for this inability to initiate horizontal eye movements away from the straight-ahead gaze position. Typically, ...

  18. Photon beam position monitor

    DOEpatents

    Kuzay, T.M.; Shu, D.

    1995-02-07

    A photon beam position monitor is disclosed for use in the front end of a beamline of a high heat flux and high energy photon source such as a synchrotron radiation storage ring detects and measures the position and, when a pair of such monitors are used in tandem, the slope of a photon beam emanating from an insertion device such as a wiggler or an undulator inserted in the straight sections of the ring. The photon beam position monitor includes a plurality of spaced blades for precisely locating the photon beam, with each blade comprised of chemical vapor deposition (CVD) diamond with an outer metal coating of a photon sensitive metal such as tungsten, molybdenum, etc., which combination emits electrons when a high energy photon beam is incident upon the blade. Two such monitors are contemplated for use in the front end of the beamline, with the two monitors having vertically and horizontally offset detector blades to avoid blade ''shadowing''. Provision is made for aligning the detector blades with the photon beam and limiting detector blade temperature during operation. 18 figs.

  19. An Improved Elastic and Nonelastic Neutron Transport Algorithm for Space Radiation

    NASA Technical Reports Server (NTRS)

    Clowdsley, Martha S.; Wilson, John W.; Heinbockel, John H.; Tripathi, R. K.; Singleterry, Robert C., Jr.; Shinn, Judy L.

    2000-01-01

    A neutron transport algorithm including both elastic and nonelastic particle interaction processes for use in space radiation protection for arbitrary shield material is developed. The algorithm is based upon a multiple energy grouping and analysis of the straight-ahead Boltzmann equation by using a mean value theorem for integrals. The algorithm is then coupled to the Langley HZETRN code through a bidirectional neutron evaporation source term. Evaluation of the neutron fluence generated by the solar particle event of February 23, 1956, for an aluminum water shield-target configuration is then compared with MCNPX and LAHET Monte Carlo calculations for the same shield-target configuration. With the Monte Carlo calculation as a benchmark, the algorithm developed in this paper showed a great improvement in results over the unmodified HZETRN solution. In addition, a high-energy bidirectional neutron source based on a formula by Ranft showed even further improvement of the fluence results over previous results near the front of the water target where diffusion out the front surface is important. Effects of improved interaction cross sections are modest compared with the addition of the high-energy bidirectional source terms.

  20. Three-dimensional elastic-plastic finite-element analyses of constraint variations in cracked bodies

    NASA Technical Reports Server (NTRS)

    Newman, J. C., Jr.; Bigelow, C. A.; Shivakumar, K. N.

    1993-01-01

    Three-dimensional elastic-plastic (small-strain) finite-element analyses were used to study the stresses, deformations, and constraint variations around a straight-through crack in finite-thickness plates for an elastic-perfectly plastic material under monotonic and cyclic loading. Middle-crack tension specimens were analyzed for thicknesses ranging from 1.25 to 20 mm with various crack lengths. Three local constraint parameters, related to the normal, tangential, and hydrostatic stresses, showed similar variations along the crack front for a given thickness and applied stress level. Numerical analyses indicated that cyclic stress history and crack growth reduced the local constraint parameters in the interior of a plate, especially at high applied stress levels. A global constraint factor alpha(sub g) was defined to simulate three-dimensional effects in two-dimensional crack analyses. The global constraint factor was calculated as an average through-the-thickness value over the crack-front plastic region. Values of alpha(sub g) were found to be nearly independent of crack length and were related to the stress-intensity factor for a given thickness.

  1. Determination of wave speed and wave separation in the arteries.

    PubMed

    Khir, A W; O'Brien, A; Gibbs, J S; Parker, K H

    2001-09-01

    Considering waves in the arteries as infinitesimal wave fronts rather than sinusoidal wavetrains, the change in pressure across the wave front, dP, is related to the change in velocity, dU, that it induces by the "water hammer" equation, dP=+/-rhocdU, where rho is the density of blood and c is the local wave speed. When only unidirectional waves are present, this relationship corresponds to a straight line when P is plotted against U with slope rhoc. When both forward and backward waves are present, the PU-loop is no longer linear. Measurements in latex tubes and systemic and pulmonary arteries exhibit a linear range during early systole and this provides a way of determining the local wave speed from the slope of the linear portion of the loop. Once the wave speed is known, it is also possible to separate the measured P and U into their forward and backward components. In cases where reflected waves are prominent, this separation of waves can help clarify the pattern of waves in the arteries throughout the cardiac cycle.

  2. Self-Propagating Frontal Polymerization in Water at Ambient Pressure

    NASA Technical Reports Server (NTRS)

    Olten, Nesrin; Kraigsley, Alison; Ronney, Paul D.

    2003-01-01

    Advances in polymer chemistry have led to the development of monomers and initiation agents that enable propagating free-radical polymerization fronts to exist. These fronts are driven by the exothermicity of the polymerization reaction and the transport of heat from the polymerized product to the reactant monomer/solvent/initiator solution. The thermal energy transported to the reactant solution causes the initiator to decompose, yielding free radicals, which start the free radical polymerization process as discussed in recent reviews. The use of polymerization processes based on propagating fronts has numerous applications. Perhaps the most important of these is that it enables rapid curing of polymers without external heating since the polymerization process itself provides the high temperatures necessary to initiate and sustain polymerization. This process also enables more uniform curing of arbitrarily thick samples since it does not rely on heat transfer from an external source, which will necessarily cause the temperature history of the sample to vary with distance from the surface according to a diffusion-like process. Frontal polymerization also enables filling and sealing of structures having cavities of arbitrary shape without having to externally heat the structure. Water at atmospheric pressure is most convenient solvent to employ and the most important for practical applications (because of the cost and environmental issues associated with DMSO and other solvents). Nevertheless, to our knowledge, steady, self-propagating polymerization fronts have not been reported in water at atmospheric pressure. Currently, polymerization fronts require a high boiling point solvent (either water at high pressures or an alternative solvent such as dimethyl sulfoxide (DMSO) (boiling point 189 C at atmospheric pressure.) Early work on frontal polymerization, employed pressures up to 5000 atm in order to avoid boiling of the monomer/solvent/initiator solution. High boiling point solutions are needed because in order to produce a propagating front, a high front temperature is needed to produce sufficiently rapid decomposition of the free radical initiator and subsequent free radical polymerization and heat release at a rate faster than heat losses remove thermal energy from the system. (While the conduction heat loss rate increases linearly with temperature, the free radical initiator decomposition is a high activation energy process whose rate increases much more rapidly than linearly with temperature, thus as the temperature decreases, the ratio of heat loss to heat generation increases, eventually leading to extinction of the front if the temperature is too low.) In order to obtain atmospheric pressure frontal polymerization in water, it is necessary to identify a monomer/initiator combination that is water soluble and will not extinguish even when the peak temperature (T*) is less than 100 C. In this work acrylic acid (AA) was chosen as the monomer because is it one of the most reactive monomers and can polymerize readily at low temperatures even without initiators. Ammonium persulfate (AP) was chosen as the initiator because it decomposes readily at low temperatures, produces relatively few bubbles and is commercially available. The propagation rates and extinction conditions of the fronts are studied for a range of AA and AP concentrations. Small amounts of fumed silica powder (Cab-o-sil, Cabot Corporation) were added to the solutions to inhibit buoyancy induced convection in the solutions; future studies will investigate the effects of buoyant convection within the solutions.

  3. Installation of a flow control device in an inclined air-curtain fume hood to control wake-induced exposure.

    PubMed

    Chen, Jia-Kun

    2016-08-01

    An inclined plate for flow control was installed at the lower edge of the sash of an inclined air-curtain fume hood to reduce the effects of the wake around a worker standing in front of the fume hood. Flow inside the fume hood is controlled by the inclined air-curtain and deflection plates, thereby forming a quad-vortex flow structure. Controlling the face velocity of the fume hood resulted in convex, straight, concave, and attachment flow profiles in the inclined air-curtain. We used the flow visualization and conducted a tracer gas test with a mannequin to determine the performance of two sash geometries, namely, the half-cylinder and inclined plate designs. When the half-cylinder design was used, the tracer gas test registered a high leakage concentration at Vf ≦ 57.1 fpm or less. This concentration occurred at the top of the sash opening, which was close to the breathing zone of the mannequin placed in front of the fume hood. When the inclined plate design was used, the containment was good, with concentrations of 0.002-0.004 ppm, at Vf ≦ 63.0 fpm. Results indicate that an inclined plate effectively reduces the leakage concentration induced by recirculation flow structures that form in the wake of a worker standing in front of an inclined air-curtain fume hood.

  4. Influence of Substrate Temperature on the Transformation Front Velocities That Determine Thermal Stability of Vapor-Deposited Glasses

    DOE PAGES

    Dalal, Shakeel S.; Ediger, M. D.

    2015-02-09

    Stable organic glasses prepared by physical vapor deposition transform into the supercooled liquid via propagating fronts of molecular mobility, a mechanism different from that exhibited by glasses prepared by cooling the liquid. In this paper, we show that spectroscopic ellipsometry can directly observe this front-based mechanism in real time and explore how the velocity of the front depends upon the substrate temperature during deposition. For the model glass former indomethacin, we detect surface-initiated mobility fronts in glasses formed at substrate temperatures between 0.68T g and 0.94T g. At each of two annealing temperatures, the substrate temperature during deposition can changemore » the transformation front velocity by a factor of 6, and these changes are imperfectly correlated with the density of the glass. We also observe substrate-initiated fronts at some substrate temperatures. By connecting with theoretical work, we are able to infer the relative mobilities of stable glasses prepared at different substrate temperatures. Finally, an understanding of the transformation behavior of vapor-deposited glasses may be relevant for extending the lifetime of organic semiconducting devices.« less

  5. 7. VIEW OF TIP TOP AND PHILLIPS MINES. PHOTO MADE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. VIEW OF TIP TOP AND PHILLIPS MINES. PHOTO MADE FROM THE 'NOTTINGHAM' SADDLE VISIBLE IN PHOTOGRAPHS ID-31-3 AND ID-31-6. CAMERA POINTED NORTHEAST TIP TOP IS CLEARLY VISIBLE IN UPPER RIGHT; RUNNING A STRAIGHT EDGE THROUGH THE TRUNK LINE OF SMALL TREE IN LOWER RIGHT THROUGH TRUNK LINE OF LARGER TREE WILL DIRECT ONE TO LIGHT AREA WHERE TIP TOP IS LOCATED; BLACK SQUARE IS THE RIGHT WINDOW ON WEST SIDE (FRONT) OF STRUCTURE. PHILLIPS IS VISIBLE BY FOLLOWING TREE LINE DIAGONALLY THROUGH IMAGE TO FAR LEFT SIDE. SULLIVAN IS HIDDEN IN THE TREE TO THE RIGHT OF PHILLIPS. - Florida Mountain Mining Sites, Silver City, Owyhee County, ID

  6. The Myth of Openness and Secrecy in Intimate Relationships: The Case of Spouses of Mixed-Orientation Marriage.

    PubMed

    Adler, Adir; Ben-Ari, Adital

    2017-01-01

    The phenomenon of mixed-orientation marriages, in which one of the partners is straight and the other is non-straight, is invisible, yet not insignificant. Focusing on gay and bisexual men who are married to straight women, this article was designed to explore one of the essential themes in their relationship: the dynamics between secrecy and openness regarding the men's sexual orientation and gay practices. Based on the phenomenological paradigm, 38 men and eight women of mixed-orientation marriages in Israel were interviewed and shared their subjective life reality. Six patterns of secrecy and openness were identified, including complete secrecy, conspiracy of silence, initiated concealment (of the husband and wife), disloyalty/violation of the agreement, selective sharing, and complete openness. The findings challenge the idea that secrecy is detrimental and openness is beneficial in the context of mixed-orientation marriages. Findings are discussed within the framework of the dialectical approach.

  7. On Convergent Probability of a Random Walk

    ERIC Educational Resources Information Center

    Lee, Y.-F.; Ching, W.-K.

    2006-01-01

    This note introduces an interesting random walk on a straight path with cards of random numbers. The method of recurrent relations is used to obtain the convergent probability of the random walk with different initial positions.

  8. Front End Software for Online Database Searching Part 1: Definitions, System Features, and Evaluation.

    ERIC Educational Resources Information Center

    Hawkins, Donald T.; Levy, Louise R.

    1985-01-01

    This initial article in series of three discusses barriers inhibiting use of current online retrieval systems by novice users and notes reasons for front end and gateway online retrieval systems. Definitions, front end features, user interface, location (personal computer, host mainframe), evaluation, and strengths and weaknesses are covered. (16…

  9. Multiple stable isotope fronts during non-isothermal fluid flow

    NASA Astrophysics Data System (ADS)

    Fekete, Szandra; Weis, Philipp; Scott, Samuel; Driesner, Thomas

    2018-02-01

    Stable isotope signatures of oxygen, hydrogen and other elements in minerals from hydrothermal veins and metasomatized host rocks are widely used to investigate fluid sources and paths. Previous theoretical studies mostly focused on analyzing stable isotope fronts developing during single-phase, isothermal fluid flow. In this study, numerical simulations were performed to assess how temperature changes, transport phenomena, kinetic vs. equilibrium isotope exchange, and isotopic source signals determine mineral oxygen isotopic compositions during fluid-rock interaction. The simulations focus on one-dimensional scenarios, with non-isothermal single- and two-phase fluid flow, and include the effects of quartz precipitation and dissolution. If isotope exchange between fluid and mineral is fast, a previously unrecognized, significant enrichment in heavy oxygen isotopes of fluids and minerals occurs at the thermal front. The maximum enrichment depends on the initial isotopic composition of fluid and mineral, the fluid-rock ratio and the maximum change in temperature, but is independent of the isotopic composition of the incoming fluid. This thermally induced isotope front propagates faster than the signal related to the initial isotopic composition of the incoming fluid, which forms a trailing front behind the zone of transient heavy oxygen isotope enrichment. Temperature-dependent kinetic rates of isotope exchange between fluid and rock strongly influence the degree of enrichment at the thermal front. In systems where initial isotope values of fluids and rocks are far from equilibrium and isotope fractionation is controlled by kinetics, the temperature increase accelerates the approach of the fluid to equilibrium conditions with the host rock. Consequently, the increase at the thermal front can be less dominant and can even generate fluid values below the initial isotopic composition of the input fluid. As kinetics limit the degree of isotope exchange, a third front may develop in kinetically limited systems, which propagates with the advection speed of the incoming fluid and is, therefore, traveling fastest. The results show that oxygen isotope signatures at thermal fronts recorded in rocks and veins that experienced isotope exchange with fluids can easily be misinterpreted, namely if bulk analytical techniques are applied. However, stable isotope microanalysis on precipitated minerals may - if later isotope exchange is kinetically limited - provide a valuable archive of the transient thermal and hydrological evolution of a system.

  10. Detonative propagation and accelerative expansion of the Crab Nebula shock front.

    PubMed

    Gao, Yang; Law, Chung K

    2011-10-21

    The accelerative expansion of the Crab Nebula's outer envelope is a mystery in dynamics, as a conventional expanding blast wave decelerates when bumping into the surrounding interstellar medium. Here we show that the strong relativistic pulsar wind bumping into its surrounding nebula induces energy-generating processes and initiates a detonation wave that propagates outward to form the current outer edge, namely, the shock front, of the nebula. The resulting detonation wave, with a reactive downstream, then provides the needed power to maintain propagation of the shock front. Furthermore, relaxation of the curvature-induced reduction of the propagation velocity from the initial state of formation to the asymptotic, planar state of Chapman-Jouguet propagation explains the observed accelerative expansion. Potential richness in incorporating reactive fronts in the description of various astronomical phenomena is expected. © 2011 American Physical Society

  11. Generation of straight-line shifting bright-dark soliton trains with a wide dip in the symmetric center or dark solitons in optical fibers

    NASA Astrophysics Data System (ADS)

    Zhong, Xianqiong; Yao, Na; Sheng, Jia'nan; Cheng, Ke

    2018-02-01

    Nonlinear evolutions of dark soliton pulses with initially constant frequency chirps are investigated numerically for different soliton orders and chirp parameters in different dispersion regimes of optical fibers. The results show interestingly that, in the normal dispersion regime, the evolution properties remain unchanged apart from their straight-line shifts of the temporal trajectories compared with the chirp-free case. While in the anomalous dispersion regime, the dark solitons can evolve to bright-dark soliton trains with a wide black soliton in the symmetric center. The longer the distance, the more the pulse number. The larger the soliton order, the more the pulse number at the same distance. Similarly, straight-line shift of the temporal trajectory of the bright-dark soliton trains will also appear. The shifting amount and direction depend on the absolute value and the sign of the chirp parameter, respectively. This result inspires people to generate bright-dark soliton trains by using ordinary passive optical fibers instead of fiber lasers. Besides, this work also provides us an alternative approach to guide the formed solitons or soliton trains to move their temporal trajectories along straight lines.

  12. Dynamics of A + B --> C reaction fronts in the presence of buoyancy-driven convection.

    PubMed

    Rongy, L; Trevelyan, P M J; De Wit, A

    2008-08-22

    The dynamics of A+B-->C fronts in horizontal solution layers can be influenced by buoyancy-driven convection as soon as the densities of A, B, and C are not all identical. Such convective motions can lead to front propagation even in the case of equal diffusion coefficients and initial concentration of reactants for which reaction-diffusion (RD) scalings predict a nonmoving front. We show theoretically that the dynamics in the presence of convection can in that case be predicted solely on the basis of the knowledge of the one-dimensional RD density profile across the front.

  13. Fronts in extended systems of bistable maps coupled via convolutions

    NASA Astrophysics Data System (ADS)

    Coutinho, Ricardo; Fernandez, Bastien

    2004-01-01

    An analysis of front dynamics in discrete time and spatially extended systems with general bistable nonlinearity is presented. The spatial coupling is given by the convolution with distribution functions. It allows us to treat in a unified way discrete, continuous or partly discrete and partly continuous diffusive interactions. We prove the existence of fronts and the uniqueness of their velocity. We also prove that the front velocity depends continuously on the parameters of the system. Finally, we show that every initial configuration that is an interface between the stable phases propagates asymptotically with the front velocity.

  14. Elucidating the role of vegetation in the initiation of rainfall-induced shallow landslides: Insights from an extreme rainfall event in the Colorado Front Range

    USGS Publications Warehouse

    McGuire, Luke; Rengers, Francis K.; Kean, Jason W.; Coe, Jeffrey A.; Mirus, Benjamin B.; Baum, Rex L.; Godt, Jonathan W.

    2016-01-01

    More than 1100 debris flows were mobilized from shallow landslides during a rainstorm from 9 to 13 September 2013 in the Colorado Front Range, with the vast majority initiating on sparsely vegetated, south facing terrain. To investigate the physical processes responsible for the observed aspect control, we made measurements of soil properties on a densely forested north facing hillslope and a grassland-dominated south facing hillslope in the Colorado Front Range and performed numerical modeling of transient changes in soil pore water pressure throughout the rainstorm. Using the numerical model, we quantitatively assessed interactions among vegetation, rainfall interception, subsurface hydrology, and slope stability. Results suggest that apparent cohesion supplied by roots was responsible for the observed connection between debris flow initiation and slope aspect. Results suggest that future climate-driven modifications to forest structure could substantially influence landslide hazards throughout the Front Range and similar water-limited environments where vegetation communities may be more susceptible to small variations in climate.

  15. NJDOT Transportation Data User Survey

    DOT National Transportation Integrated Search

    2010-02-01

    The New Jersey Straight Line Diagrams (SLD) is the main reference for the State's centerline roadway inventory. SLD was initially designed as a planning tool, but it has become a standard information platform for many other purposes within and outsid...

  16. Electrothermally actuated tunable clamped-guided resonant microbeams

    NASA Astrophysics Data System (ADS)

    Alcheikh, N.; Hajjaj, A. Z.; Jaber, N.; Younis, M. I.

    2018-01-01

    We present simulation and experimental investigation demonstrating active alteration of the resonant and frequency response behavior of resonators by controlling the electrothermal actuation method on their anchors. In-plane clamped-guided arch and straight microbeams resonators are designed and fabricated with V-shaped electrothermal actuators on their anchors. These anchors not only offer various electrothermal actuation options, but also serve as various mechanical stiffness elements that affect the operating resonance frequency of the structures. We have shown that for an arch, the first mode resonance frequency can be increased up to 50% of its initial value. For a straight beam, we have shown that before buckling, the resonance frequency decreases to very low values and after buckling, it increases up to twice of its initial value. These results can be promising for the realization of different wide-range tunable microresonator. The experimental results have been compared to multi-physics finite-element simulations showing good agreement among them.

  17. Pigeon Navigation: Different Routes Lead to Frankfurt

    PubMed Central

    Schiffner, Ingo; Wiltschko, Roswitha

    2014-01-01

    Background Tracks of pigeons homing to the Frankfurt loft revealed an odd phenomenon: whereas birds returning from the North approach their loft more or less directly in a broad front, pigeons returning from the South choose, from 25 km from home onward, either of two corridors, a direct one and one with a considerable detour to the West. This implies differences in the navigational process. Methodology/Principle Findings Pigeons released at sites at the beginning of the westerly corridor and in this corridor behave just like pigeons returning from farther south, deviating to the west before turning towards their loft. Birds released at sites within the straight corridors, in contrast, take more or less straight routes. The analysis of the short-term correlation dimension, a quantity reflecting the complexity of the system and with it, the number of factors involved in the navigational process, reveals that it is significantly larger in pigeons choosing the westerly corridor than in the birds flying straight - 3.03 vs. 2.85. The difference is small, however, suggesting a different interpretation of the same factors, with some birds apparently preferring particular factors over others. Conclusions The specific regional distribution of the factors which pigeons use to determine their home course seems to provide ambiguous information in the area 25 km south of the loft, resulting in the two corridors. Pigeons appear to navigate by deriving their routes directly from the locally available navigational factors which they interpret in an individual way. The fractal nature of the correlation dimensions indicates that the navigation process of pigeons is chaotic-deterministic; published tracks of migratory birds suggest that this may apply to avian navigation in general. PMID:25391144

  18. Driver braking behavior analysis to improve autonomous emergency braking systems in typical Chinese vehicle-bicycle conflicts.

    PubMed

    Duan, Jingliang; Li, Renjie; Hou, Lian; Wang, Wenjun; Li, Guofa; Li, Shengbo Eben; Cheng, Bo; Gao, Hongbo

    2017-11-01

    Bicycling is one of the fundamental modes of transportation especially in developing countries. Because of the lack of effective protection for bicyclists, vehicle-bicycle (V-B) accident has become a primary contributor to traffic fatalities. Although AEB (Autonomous Emergency Braking) systems have been developed to avoid or mitigate collisions, they need to be further adapted in various conflict situations. This paper analyzes the driver's braking behavior in typical V-B conflicts of China to improve the performance of Bicyclist-AEB systems. Naturalistic driving data were collected, from which the top three scenarios of V-B accidents in China were extracted, including SCR (a bicycle crossing the road from right while a car is driving straight), SCL (a bicycle crossing the road from left while a car is driving straight) and SSR (a bicycle swerving in front of the car from right while a car is driving straight). For safety and data reliability, a driving simulator was employed to reconstruct these three scenarios and some 25 licensed drivers were recruited for braking behavior analysis. Results revealed that driver's braking behavior was significantly influenced by V-B conflict types. Pre-decelerating behaviors were found in SCL and SSR conflicts, whereas in SCR the subjects were less vigilant. The brake reaction time and brake severity in lateral V-B conflicts (SCR and SCL) was shorter and higher than that in longitudinal conflicts (SSR). The findings improve their applications in the Bicyclist-AEB and test protocol enactment to enhance the performance of Bicyclist-AEB systems in mixed traffic situations especially for developing countries. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Development of an arcuate fold-thrust belt as a result of basement configuration: an example from the Rocky Mountain Front Range, Montana

    NASA Astrophysics Data System (ADS)

    Burberry, C. M.; Cannon, D. L.; Engelder, T.; Cosgrove, J. W.

    2010-12-01

    The Sawtooth Range forms part of the Montana Disturbed Belt in the Front Ranges of the Rocky Mountains, along strike from the Alberta Syncline in the Canadian Rockies. The belt developed in the footwall to the Lewis Thrust during the Sevier orogeny and is similar in deformation style to the Canadian Foothills, with a series of stacked thrust sheets carrying Palaeozoic carbonates. The Sawtooth Range can be divided into an inner and outer deformed belt, separated by exposed fold structures in the overlying clastic sequence. Structures in the deformed belts plunge into the culmination of the NE-trending Scapegoat-Bannatyne trend, part of the Great Falls Tectonic Zone (GFTZ). Other mapped faults, including the Pendroy fault zone to the north, parallel this trend. A number of mechanisms have been proposed for the development of primary arcs in fold-thrust belts, including linkage of two thrust belts with different strikes, differential transport of segments of the belt, the geometry of the indentor, local plate heterogeneity and pre-existing basement configuration. Arcuate belts may also develop as a result of later bending of an initially straight orogen. In the Swift Dam area, part of the outer belt of the Sawtooth Range, the strike of the belt changes from 165 to 150. This apparent change in strike is accommodated by a sinistral lateral ramp in the Swift Dam Thrust. In addition, this outer belt becomes broader to the north in the Swift Dam region. However, the outer belt becomes extremely narrow in the Teton Canyon region to the south, and the deformation front is characterised by an intercutaneous wedge structure, rather than the trailing-edge imbricate fan seen to the north. A similar imbricate fan structure is seen to the south, in the Sun River Canyon region, corresponding well to the classic model of a deformation belt governed by a dominant thrust sheet, after Boyer & Elliot. The Sawtooth Range can be described as an active-roof duplex in the footwall to the dominant Lewis thrust slab. Analysis of the transport directions of the thrust sheets in the Range implies that the inner arcuate belt is a secondary arc, but that the later, outer arcuate belt formed by divergent transport. This two-stage development model is strongly influenced by the basement configuration. The deformation front of the outer arc is governed by NNW-striking Proterozoic normal fault structures. The entire Sawtooth Range duplex is uplifted over an earlier, NE-trending basement structure (the GFTZ), forming a termination in the Lewis slab. The interaction of these two fault trends allows the development of a linear deformation front in the foreland Jurassic-Cretaceous sequence, but an arcuate belt in the Palaeozoic carbonate sheets. Thus, the width and style of the outer arcuate belt also varies along the strike of the belt.

  20. Kinematics of center of mass and center of pressure predict friction requirement at shoe-floor interface during walking.

    PubMed

    Yamaguchi, Takeshi; Yano, Masaru; Onodera, Hiroshi; Hokkirigawa, Kazuo

    2013-06-01

    We aimed to determine whether inclination angles of the line connecting the whole body center of mass (COM) to the center of pressure (COP) (COM-COP angle) help predict the required coefficient of friction (RCOF) in young adult males during the weight acceptance and push-off phases in transient movements such as turning, gait termination and initiation, and steady-state movements such as straight walking. Seventeen healthy young adult males were asked to (1) walk in a straight line, (2) turn 60° with either foot (step and spin turns), and (3) initiate and terminate walking on a dry level floor. Peak absolute values of the ratio between resultant horizontal and vertical ground reaction forces during the weight acceptance and push-off phases (RCOFh and RCOFt, respectively) were calculated. COM-COP angles θh and θt at the instant of RCOFh and RCOFt, respectively, were also calculated. Bivariate regression analysis demonstrated that the |θh| and |θt| tangents were significant predictors of RCOFh (R = 0.878; R(2) = 0.770; p<0.001) and RCOFt (R = 0.918; R(2) = 0.843; p<0.001), respectively. The results suggest that COM and COP kinematics (i.e., the COM-COP angle) serve as a predictor of friction requirement during the weight acceptance and push-off phases in steady-state movements such as straight walking and transient movements such as turning as well as gait termination and initiation. Copyright © 2012 Elsevier B.V. All rights reserved.

  1. Evaluation of Straight and Swept Ramp Obstacles on Enhancing Deflagration-to-Detonation Transition in Pulse Detonation Engines

    DTIC Science & Technology

    2006-12-01

    models attempted to bracket the extremes of the conditions of interest. These conditions were Mach 2 and Mach 3 shocks , with initial medium...later, but all traces have been expanded to the area of interest. Pressure readings were primarily used to measure shock speeds, and initially used...results for the clean tube configuration. The characteristics of the initial shock are similar, and are comparable for all configurations tested

  2. Initiation and structures of gaseous detonation

    NASA Astrophysics Data System (ADS)

    Vasil'ev, A. A.; Vasiliev, V. A.

    2018-03-01

    The analysis of the initiation of a detonation wave (DW) and the emergence of a multi-front structure of the DW-front are presented. It is shown that the structure of the DW arises spontaneously at the stage of a strong overdriven of the wave. The hypothesis of the gradual enhancement of small perturbations on an initially smooth initiating blast wave, traditionally used in the numerical simulation of multi-front detonation, does not agree with the experimental data. The instability of the DW is due to the chemical energy release of the combustible mixture Q. A technique for determining the Q-value of mixture was proposed, based on reconstruction of the trajectory of the expanding wave from the position of the strong explosion model. The wave trajectory at the critical initiation of a multifront detonation in a combustible mixture is compared with the trajectory of an explosive wave from the same initiator in an inert mixture whose gas-dynamic parameters are equivalent to the parameters of the combustible mixture. The energy release of a mixture is defined as the difference in the joint energy release of the initiator and the fuel mixture during the critical initiation and energy release of the initiator when the blast wave is excited in an inert mixture. Observable deviations of the experimental profile of Q from existing model representations were found.

  3. Differential diffusion effects on buoyancy-driven instabilities of acid-base fronts: the case of a color indicator.

    PubMed

    Kuster, S; Riolfo, L A; Zalts, A; El Hasi, C; Almarcha, C; Trevelyan, P M J; De Wit, A; D'Onofrio, A

    2011-10-14

    Buoyancy-driven hydrodynamic instabilities of acid-base fronts are studied both experimentally and theoretically in the case where an aqueous solution of a strong acid is put above a denser aqueous solution of a color indicator in the gravity field. The neutralization reaction between the acid and the color indicator as well as their differential diffusion modifies the initially stable density profile in the system and can trigger convective motions both above and below the initial contact line. The type of patterns observed as well as their wavelength and the speed of the reaction front are shown to depend on the value of the initial concentrations of the acid and of the color indicator and on their ratio. A reaction-diffusion model based on charge balances and ion pair mobility explains how the instability scenarios change when the concentration of the reactants are varied.

  4. Plasma ignition for laser propulsion

    NASA Technical Reports Server (NTRS)

    Askew, R. F.

    1982-01-01

    For a specific optical system a pulsed carbon dioxide laser having an energy output of up to 15 joules was used to initiate a plasma in air at one atmosphere pressure. The spatial and temporal development of the plasma were measured using a multiframe image converter camera. In addition the time dependent velocity of the laser supported plasma front which moves opposite to the direction of the laser pulse was measured in order to characterize the type of wavefront developed. Reliable and reproducible spark initiation was achieved. The lifetime of the highly dense plasma at the initial focal spot was determined to be less than 100 nanoseconds. The plasma front propagates toward the laser at a variable speed ranging from zero to 1.6 x 1,000,000 m/sec. The plasma front propagates for a total distance of approximately five centimeters for the energy and laser pulse shape employed.

  5. Multidimensional stability of traveling fronts in combustion and non-KPP monostable equations

    NASA Astrophysics Data System (ADS)

    Bu, Zhen-Hui; Wang, Zhi-Cheng

    2018-02-01

    This paper is concerned with the multidimensional stability of traveling fronts for the combustion and non-KPP monostable equations. Our study contains two parts: in the first part, we first show that the two-dimensional V-shaped traveling fronts are asymptotically stable in R^{n+2} with n≥1 under any (possibly large) initial perturbations that decay at space infinity, and then, we prove that there exists a solution that oscillates permanently between two V-shaped traveling fronts, which implies that even very small perturbations to the V-shaped traveling front can lead to permanent oscillation. In the second part, we establish the multidimensional stability of planar traveling front in R^{n+1} with n≥1.

  6. A Robust Mechanical Sensing System for Unmanned Sea Surface Vehicles

    NASA Technical Reports Server (NTRS)

    Kulczycki, Eric A.; Magnone, Lee J.; Huntsberger, Terrance; Aghazarian, Hrand; Padgett, Curtis W.; Trotz, David C.; Garrett, Michael S.

    2009-01-01

    The need for autonomous navigation and intelligent control of unmanned sea surface vehicles requires a mechanically robust sensing architecture that is watertight, durable, and insensitive to vibration and shock loading. The sensing system developed here comprises four black and white cameras and a single color camera. The cameras are rigidly mounted to a camera bar that can be reconfigured to mount multiple vehicles, and act as both navigational cameras and application cameras. The cameras are housed in watertight casings to protect them and their electronics from moisture and wave splashes. Two of the black and white cameras are positioned to provide lateral vision. They are angled away from the front of the vehicle at horizontal angles to provide ideal fields of view for mapping and autonomous navigation. The other two black and white cameras are positioned at an angle into the color camera's field of view to support vehicle applications. These two cameras provide an overlap, as well as a backup to the front camera. The color camera is positioned directly in the middle of the bar, aimed straight ahead. This system is applicable to any sea-going vehicle, both on Earth and in space.

  7. Front end for GPS receivers

    NASA Technical Reports Server (NTRS)

    Thomas, Jr., Jess Brooks (Inventor)

    1999-01-01

    The front end in GPS receivers has the functions of amplifying, down-converting, filtering and sampling the received signals. In the preferred embodiment, only two operations, A/D conversion and a sum, bring the signal from RF to filtered quadrature baseband samples. After amplification and filtering at RF, the L1 and L2 signals are each sampled at RF at a high selected subharmonic rate. The subharmonic sample rates are approximately 900 MHz for L1 and 982 MHz for L2. With the selected subharmonic sampling, the A/D conversion effectively down-converts the signal from RF to quadrature components at baseband. The resulting sample streams for L1 and L2 are each reduced to a lower rate with a digital filter, which becomes a straight sum in the simplest embodiment. The frequency subsystem can be very simple, only requiring the generation of a single reference frequency (e.g. 20.46 MHz minus a small offset) and the simple multiplication of this reference up to the subharmonic sample rates for L1 and L2. The small offset in the reference frequency serves the dual purpose of providing an advantageous offset in the down-converted carrier frequency and in the final baseband sample rate.

  8. A Comparative Analysis of Swimming Styles in Competitive Swimming

    NASA Astrophysics Data System (ADS)

    von Loebbecke, Alfred; Mittal, Rajat; Gupta, Varun; Mark, Russell

    2007-11-01

    High-fidelity numerical simulations are being used to conduct a critical evaluation of swimming strokes in competitive swimming. We combine computational fluid dynamics (CFD), laser body scans, animation software, and video footage to develop accurate models of Olympic level swimmers and use these to examine contrasting styles of the dolphin kick as well as the arm strokes in back and front crawl stroke. In the dolphin kick, the focus is on examining the effects of Strouhal number, kick amplitude, frequency, and technique on thrust production. In the back stroke, we examine the performance of the so called ``flat stroke'' versus the ``deep catch,'' The most important aspect that separates the two major types of back stroke is the alignment or angle of attack of the palm during the stroke. In one style of front crawl arm stroke, there is greater elbow joint flexion, shoulder abduction and sculling whereas the other style consists of a straight arm pull dominated by simple shoulder flexion. Underlying the use of these two styles is the larger and more fundamental issue of the role of lift versus drag in thrust production and we use the current simulations to examine this issue in detail.

  9. 77 FR 58255 - Takes of Marine Mammals Incidental to Specified Activities; Marine Geophysical Survey off the...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-19

    ... straight portions of the track lines as well as the initial portions of the run-out (offshore) sections and later portions of the run-in (inshore) sections. During turns and most of the initial portion of the run... propeller has four blades and the shaft typically rotates at 750 revolutions per minute. The vessel also has...

  10. Experimental investigation of spontaneous ignition and flame propagation at pressurized hydrogen release through tubes with varying cross-section.

    PubMed

    Duan, Qiangling; Xiao, Huahua; Gao, Wei; Gong, Liang; Sun, Jinhua

    2016-12-15

    An experimental investigation of spontaneous ignition and flame propagation at high-pressure hydrogen release via cylindrical tubes with varying cross-section is presented. Tubes with different transverse cross-sections are considered in the experiments: (1) local contraction, (2) local enlargement, (3) abrupt contraction, and (4) abrupt enlargement. The results show that the presence of the varying cross-section geometries can significantly promote the occurrence of spontaneous ignition. Compared to the tube with constant cross-section, the minimum pressure release needed for spontaneous ignition for the varying cross-sections tubes is considerably lower. Moreover, the initial ignition location is closer to the disk in the presence of varying cross-section geometries in comparison with straight channel. As the flame emerges from the outlet of the tube, the velocity of the flame front in the vicinity of the nozzle increases sharply. Then, a deflagration develops across the mixing zone of hydrogen/air mixture. The maximum deflagration overpressure increases linearly with the release pressure. Subsequently, a hydrogen jet flame is produced and evolves different shapes at different release stages. A fireball is formed after the jet flame spouts in the open air. Later, the fireball develops into a jet flame which shifts upward and continues to burn in the vertical direction. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Use of atmospheric backscattering for adaptive formation of the initial wave front of a laser beam by the method of aperture sensing

    NASA Astrophysics Data System (ADS)

    Gordeev, E. V.; Kuskov, V. V.; Razenkov, I. A.; Shesternin, A. N.

    2017-11-01

    The quality of adaptive suppression of initial aberrations of the wave front of a main laser beam with the use of the method of aperture sensing by the signal of atmospheric backscattering of the additional (sensing) laser radiation at a different wavelength has been studied experimentally. It is shown that wavefront distortions of the main laser beam were decreased significantly during the setup operation.

  12. Fisher waves and front roughening in a two-species invasion model with preemptive competition.

    PubMed

    O'Malley, L; Kozma, B; Korniss, G; Rácz, Z; Caraco, T

    2006-10-01

    We study front propagation when an invading species competes with a resident; we assume nearest-neighbor preemptive competition for resources in an individual-based, two-dimensional lattice model. The asymptotic front velocity exhibits an effective power-law dependence on the difference between the two species' clonal propagation rates (key ecological parameters). The mean-field approximation behaves similarly, but the power law's exponent slightly differs from the individual-based model's result. We also study roughening of the front, using the framework of nonequilibrium interface growth. Our analysis indicates that initially flat, linear invading fronts exhibit Kardar-Parisi-Zhang (KPZ) roughening in one transverse dimension. Further, this finding implies, and is also confirmed by simulations, that the temporal correction to the asymptotic front velocity is of O(t(-2/3)).

  13. Investigation of water seepage through porous media using X-ray imaging technique

    NASA Astrophysics Data System (ADS)

    Jung, Sung Yong; Lim, Seungmin; Lee, Sang Joon

    2012-07-01

    SummaryDynamic movement of wetting front and variation of water contents through three different porous media were investigated using X-ray radiography. Water and natural sand particles were used as liquid and porous media in this study. To minimize the effects of minor X-ray attenuation and uneven illumination, the flat field correction (FFC) was applied before determining the position of wetting front. In addition, the thickness-averaged (in the direction of the X-ray penetration) water content was obtained by employing the Beer-Lambert law. The initial inertia of water droplet influences more strongly on the vertical migration, compared to the horizontal migration. The effect of initial inertia on the horizontal migration is enhanced as sand size decreases. The pattern of water transport is observed to be significantly affected by the initial water contents. As the initial water contents increases, the bulb-type transport pattern is shifted to a trapezoidal shape. With increasing surface temperature, water droplets are easily broken on the sand surface. This consequently decreases the length of the initial inertia region. Different from the wetting front migration, the water contents at the initial stage clearly exhibit a preferential flow along the vertical direction. The water transport becomes nearly uniform in all directions beyond the saturation state.

  14. Influence and Modeling of Residual Stresses in Thick Walled Pressure Vessels with Through Holes

    DTIC Science & Technology

    2012-02-28

    9 FIGURE 4 ENVIRONMENTAL CRACKING OBSERVED IN EVACUATOR HOLE .......... 9 FIGURE 5 STRESSES PRESENT IN STRAIGHT EVACUATOR... ASSESMENT OF INITIAL DAMAGE Through investigation was undertaken on vessels similar in size and strength level to pressure vessels 85A and 85B...suggesting that the source of the residual stresses required to initiate and propagate these environmental cracks is not a resultant of the typical

  15. STS-66 Official pre-flight crew portrait

    NASA Technical Reports Server (NTRS)

    1994-01-01

    The STS-66 Official crew portrait includes the following: Donald R. McMonagle (front right) is mission commander, and Curtis L. Brown (front center) is pilot. Other crewmembers include Ellen S. Ochoa, payload commander; Scott E. Parazynski (rear left), and Joseph R. Tanner (rear center), mission specialists, along with ESA astronaut Jean-Francois Clevoy (front left), mission specialist. Clervoy, Parazynski and Tanner, members of the 1992 astronaut class, are making their initial flights in space.

  16. Characteristics of flash initiations in a supercell cluster with tornadoes

    NASA Astrophysics Data System (ADS)

    Zheng, Dong; MacGorman, Donald R.

    2016-01-01

    Flash initiations within a supercell cluster during 10-11 May 2010 in Oklahoma were investigated based on observations from the Oklahoma Lightning Mapping Array and the Norman, Oklahoma, polarimetric radar (KOUN). The flash initiations at positions dominated by graupel, dry snow, small hail and crystals accounted for 44.3%, 44.1%, 8.0% and 3.0% of the total flashes, respectively. During the tornadic stage of the southern supercell in the cluster, flash initiations associated with graupel occupied the main body, the right flank and the forward flank of the supercell, while those associated with dry snow dominated the outskirts of the adjacent forward anvil, right anvil and rear anvil. The flash initiations associated with small hail were concentrated around the main updraft, particularly toward its front side. Highly dense flash initiations were located in the regions overlying the differential reflectivity (ZDR) arc and right anvil. The average initial height of the flashes decreased gradually from the rear to the front and from the right to the left flanks, while the height range over which initiations occurred reached a maximum at the front of the updraft. The flashes that were initiated in the adjacent forward anvils were largest on average, followed by those in the regions ahead of the updraft and near the ZDR arc. This study supports the concept of charge pockets and further deduces that the pockets in the right anvil are the most abundant and compact due to the frequent flash initiations, small-sized flashes and thin layers including flash initiations.

  17. Does laser-driven heat front propagation depend on material microstructure?

    NASA Astrophysics Data System (ADS)

    Colvin, J. D.; Matsukuma, H.; Fournier, K. B.; Yoga, A.; Kemp, G. E.; Tanaka, N.; Zhang, Z.; Kota, K.; Tosaki, S.; Ikenouchi, T.; Nishimura, H.

    2016-10-01

    We showed earlier that the laser-driven heat front propagation velocity in low-density Ti-silica aerogel and TiO2 foam targets was slower than that simulated with a 2D radiation-hydrodynamics code incorporating an atomic kinetics model in non-LTE and assuming initially homogeneous material. Some theoretical models suggest that the heat front is slowed over what it would be in a homogeneous medium by the microstructure of the foam. In order to test this hypothesis we designed and conducted a comparison experiment on the GEKKO laser to measure heat front propagation velocity in two targets, one an Ar/CO2 gas mixture and the other a TiO2 foam, that had identical initial densities and average ionization states. We found that the heat front traveled about ten times faster in the gas than in the foam. We present the details of the experiment design and a comparison of the data with the simulations. This work was performed under the auspices of the U.S. Department of Energy by LLNL under Contract No. DE-AC52-07NA27344, and the joint research project of ILE Osaka U. (contract Nos. 2014A1-04 and 2015A1-02).

  18. High brightness angled cavity quantum cascade lasers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heydari, D.; Bai, Y.; Bandyopadhyay, N.

    2015-03-02

    A quantum cascade laser (QCL) with an output power of 203 W is demonstrated in pulsed mode at 283 K with an angled cavity. The device has a ridge width of 300 μm, a cavity length of 5.8 mm, and a tilt angle of 12°. The back facet is high reflection coated, and the front facet is anti-reflection coated. The emitting wavelength is around 4.8 μm. In distinct contrast to a straight cavity broad area QCL, the lateral far field is single lobed with a divergence angle of only 3°. An ultrahigh brightness value of 156 MW cm{sup −2 }sr{sup −1} is obtained, which marks the brightestmore » QCL to date.« less

  19. Approach and Landing Investigation at Lift-Drag Ratios of 2 to 4 Utilizing a Straight-Wing Fighter Airplane

    NASA Technical Reports Server (NTRS)

    Matranga, Gene J.; Armstrong, Neil A.

    1959-01-01

    A series of landings was performed with a straight-wing airplane to evaluate the effect of low lift-drag ratios on approach and landing characteristics. Landings with a peak lift-drag ratio as low as 3 were performed by altering the airplane configuration (extending speed brakes, flaps, and gear and reducing throttle setting). As lift-drag ratio was reduced, it was necessary either to make the landing pattern tighter or to increase initial altitude, or both. At the lowest lift-drag ratio the pilots believed a 270 deg overhead pattern was advisable because of the greater ease afforded in visually positioning the airplane. The values of the pertinent flare parameters increased with the reduction of lift-drag ratio. These parameters included time required for final flare; speed change during final flare; and altitude, glide slope, indicated airspeed, and vertical velocity at initiation of final flare. The pilots believed that the tolerable limit was reached with this airplane in the present configuration, and that if, because of a further reduction in lift-drag ratio, more severe approaches than those experienced in this program were attempted, additional aids would be required to determine the flare-initiation point.

  20. Wilson lines in the MHV action

    DOE PAGES

    Kotko, P.; Stasto, A. M.

    2017-09-12

    The MHV action is the Yang-Mills action quantized on the light-front, where the two explicit physical gluonic degrees of freedom have been canonically transformed to a new set of fields. This transformation leads to the action with vertices being off-shell continuations of the MHV amplitudes. We show that the solution to the field transformation expressing one of the new fields in terms of the Yang-Mills field is a certain type of the Wilson line. More precisely, it is a straight infinite gauge link with a slope extending to the light-cone minus and the transverse direction. One of the consequences ofmore » that fact is that certain MHV vertices reduced partially on-shell are gauge invariant — a fact discovered before using conventional light-front perturbation theory. We also analyze the diagrammatic content of the field transformations leading to the MHV action. We found that the diagrams for the solution to the transformation (given by the Wilson line) and its inverse differ only by light-front energy denominators. Further, we investigate the coordinate space version of the inverse solution to the one given by the Wilson line. We find an explicit expression given by a power series in fields. We also give a geometric interpretation to it by means of a specially defined vector field. Finally, we discuss the fact that the Wilson line solution to the transformation is directly related to the all-like helicity gluon wave function, while the inverse functional is a generating functional for solutions of self-dual Yang-Mills equations.« less

  1. Wilson lines in the MHV action

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kotko, P.; Stasto, A. M.

    The MHV action is the Yang-Mills action quantized on the light-front, where the two explicit physical gluonic degrees of freedom have been canonically transformed to a new set of fields. This transformation leads to the action with vertices being off-shell continuations of the MHV amplitudes. We show that the solution to the field transformation expressing one of the new fields in terms of the Yang-Mills field is a certain type of the Wilson line. More precisely, it is a straight infinite gauge link with a slope extending to the light-cone minus and the transverse direction. One of the consequences ofmore » that fact is that certain MHV vertices reduced partially on-shell are gauge invariant — a fact discovered before using conventional light-front perturbation theory. We also analyze the diagrammatic content of the field transformations leading to the MHV action. We found that the diagrams for the solution to the transformation (given by the Wilson line) and its inverse differ only by light-front energy denominators. Further, we investigate the coordinate space version of the inverse solution to the one given by the Wilson line. We find an explicit expression given by a power series in fields. We also give a geometric interpretation to it by means of a specially defined vector field. Finally, we discuss the fact that the Wilson line solution to the transformation is directly related to the all-like helicity gluon wave function, while the inverse functional is a generating functional for solutions of self-dual Yang-Mills equations.« less

  2. Front-end Electronics for Unattended Measurement (FEUM). Prototype Test Plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Conrad, Ryan C.; Morris, Scott J.; Smith, Leon E.

    2015-09-16

    The IAEA has requested that PNNL perform an initial set of tests on front-end electronics for unattended measurement (FEUM) prototypes. The FEUM prototype test plan details the tests to be performed, the criteria for evaluation, and the procedures used to execute the tests.

  3. Dynamic transition in the structure of an energetic crystal during chemical reactions at shock front prior to detonation.

    PubMed

    Nomura, Ken-Ichi; Kalia, Rajiv K; Nakano, Aiichiro; Vashishta, Priya; van Duin, Adri C T; Goddard, William A

    2007-10-05

    Mechanical stimuli in energetic materials initiate chemical reactions at shock fronts prior to detonation. Shock sensitivity measurements provide widely varying results, and quantum-mechanical calculations are unable to handle systems large enough to describe shock structure. Recent developments in reactive force-field molecular dynamics (ReaxFF-MD) combined with advances in parallel computing have paved the way to accurately simulate reaction pathways along with the structure of shock fronts. Our multimillion-atom ReaxFF-MD simulations of l,3,5-trinitro-l,3,5-triazine (RDX) reveal that detonation is preceded by a transition from a diffuse shock front with well-ordered molecular dipoles behind it to a disordered dipole distribution behind a sharp front.

  4. Exact solution and precise asymptotics of a Fisher-KPP type front

    NASA Astrophysics Data System (ADS)

    Berestycki, Julien; Brunet, Éric; Derrida, Bernard

    2018-01-01

    The present work concerns a version of the Fisher-KPP equation where the nonlinear term is replaced by a saturation mechanism, yielding a free boundary problem with mixed conditions. Following an idea proposed in Brunet and Derrida (2015 J. Stat. Phys. 161 801), we show that the Laplace transform of the initial condition is directly related to some functional of the front position μt . We then obtain precise asymptotics of the front position by means of singularity analysis. In particular, we recover the so-called Ebert and van Saarloos correction (Ebert and van Saarloos 2000 Physica D 146 1), we obtain an additional term of order log t /t in this expansion, and we give precise conditions on the initial condition for those terms to be present.

  5. Off-shell amplitudes as boundary integrals of analytically continued Wilson line slope

    NASA Astrophysics Data System (ADS)

    Kotko, P.; Serino, M.; Stasto, A. M.

    2016-08-01

    One of the methods to calculate tree-level multi-gluon scattering amplitudes is to use the Berends-Giele recursion relation involving off-shell currents or off-shell amplitudes, if working in the light cone gauge. As shown in recent works using the light-front perturbation theory, solutions to these recursions naturally collapse into gauge invariant and gauge-dependent components, at least for some helicity configurations. In this work, we show that such structure is helicity independent and emerges from analytic properties of matrix elements of Wilson line operators, where the slope of the straight gauge path is shifted in a certain complex direction. This is similar to the procedure leading to the Britto-Cachazo-Feng-Witten (BCFW) recursion, however we apply a complex shift to the Wilson line slope instead of the external momenta. While in the original BCFW procedure the boundary integrals over the complex shift vanish for certain deformations, here they are non-zero and are equal to the off-shell amplitudes. The main result can thus be summarized as follows: we derive a decomposition of a helicity-fixed off-shell current into gauge invariant component given by a matrix element of a straight Wilson line plus a reminder given by a sum of products of gauge invariant and gauge dependent quantities. We give several examples realizing this relation, including the five-point next-to-MHV helicity configuration.

  6. External front instabilities induced by a shocked particle ring.

    PubMed

    Rodriguez, V; Saurel, R; Jourdan, G; Houas, L

    2014-10-01

    The dispersion of a cylindrical particle ring by a blast or shock wave induces the formation of coherent structures which take the form of particle jets. A blast wave, issuing from the discharge of a planar shock wave at the exit of a conventional shock tube, is generated in the center of a granular medium ring initially confined inside a Hele-Shaw cell. With the present experimental setup, under impulsive acceleration, a solid particle-jet formation is observed in a quasi-two-dimensional configuration. The aim of the present investigation is to observe in detail the formation of very thin perturbations created around the external surface of the dispersed particle layer. By means of fast flow visualization with an appropriate recording window, we focus solely on the first instants during which the external particle ring becomes unstable. We find that the critical area of the destabilization of the external ring surface is constant regardless of the acceleration of the initial layer. Moreover, we observe in detail the external front perturbation wavelength, rendered dimensionless by the initial ring perimeter, and follow its evolution with the initial particle layer acceleration. We report this quantity to be constant regardless of the evolution of the initial particle layer acceleration. Finally, we can reasonably assert that external front perturbations depend solely on the material of the particles.

  7. Frontal Polymerization of Dicyclopentadiene: A Numerical Study.

    PubMed

    Goli, Elyas; Robertson, Ian D; Geubelle, Philippe H; Moore, Jeffrey S

    2018-04-26

    As frontal polymerization is being considered as a faster and more energy efficient manufacturing technique for polymer-matrix fiber-reinforced composites, we perform a finite-element-based numerical study of the initiation and propagation of a polymerization front in dicyclopentadiene (DCPD). The transient thermochemical simulations are complemented by an analytical study of the steady-state propagation of the polymerization front, allowing to draw a direct link between the cure kinetics model and the key characteristics of the front, i.e., front velocity and characteristic length scales. The second part of this study focuses on the prediction of the temperature spike associated with the merger of two polymerization fronts. The thermal peak, which might be detrimental to the properties of the polymerized material, is due to the inability of the heat associated with the highly exothermic reaction to be dissipated when the two fronts merge. The analysis investigates how the amplitude of the thermal spike is affected by the degree of cure at the time of the front merger.

  8. PIP-II Injector Test’s Low Energy Beam Transport: Commissioning and Selected Measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shemyakin, A.; Alvarez, M.; Andrews, R.

    2016-09-16

    The PIP2IT test accelerator is under construction at Fermilab. Its ion source and Low Energy Beam Transport (LEBT) in its initial (straight) configuration have been commissioned to full specification parameters. This paper introduces the LEBT design and summarizes the outcome of the commissioning activities.

  9. 40 CFR 89.320 - Carbon monoxide analyzer calibration.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... monoxide as described in this section. (b) Initial and periodic interference check. Prior to its... engineering practice. For each range calibrated, if the deviation from a least-squares best-fit straight line... range. If the deviation exceeds these limits, the best-fit non-linear equation which represents the data...

  10. 40 CFR 89.320 - Carbon monoxide analyzer calibration.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... monoxide as described in this section. (b) Initial and periodic interference check. Prior to its... engineering practice. For each range calibrated, if the deviation from a least-squares best-fit straight line... range. If the deviation exceeds these limits, the best-fit non-linear equation which represents the data...

  11. 40 CFR 89.320 - Carbon monoxide analyzer calibration.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... monoxide as described in this section. (b) Initial and periodic interference check. Prior to its... engineering practice. For each range calibrated, if the deviation from a least-squares best-fit straight line... range. If the deviation exceeds these limits, the best-fit non-linear equation which represents the data...

  12. 40 CFR 89.320 - Carbon monoxide analyzer calibration.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... monoxide as described in this section. (b) Initial and periodic interference check. Prior to its... engineering practice. For each range calibrated, if the deviation from a least-squares best-fit straight line... range. If the deviation exceeds these limits, the best-fit non-linear equation which represents the data...

  13. Parametric study on mixing process in an in-plane spiral micromixer utilizing chaotic advection.

    PubMed

    Vatankhah, Parham; Shamloo, Amir

    2018-08-31

    Recent advances in the field of microfabrication have made the application of high-throughput microfluidics feasible. Mixing which is an essential part of any miniaturized standalone system remains the key challenge. This paper proposes a geometrically simple micromixer for efficient mixing for high-throughput microfluidic devices. The proposed micromixer utilizes a curved microchannel (spiral microchannel) to induce chaotic advection and enhance the mixing process. It is shown that the spiral microchannel is more efficient in comparison to a straight microchannel, mixing wise. The pressure drop in the spiral microchannel is only slightly higher than that in the straight microchannel. It is found that the mixing process in the spiral microchannel enhances with increasing the inlet velocity, unlike what happens in the straight microchannel. It is also realized that the initial radius of the spiral microchannel plays a prominent role in enhancing the mixing process. Studying different cross sections, it is gathered that the square cross section yields a higher mixing quality. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. On the evolution of a retracting straight liquid sheet edge: experimental study

    NASA Astrophysics Data System (ADS)

    Krechetnikov, Rouslan; Mayer, Hans C.

    2011-11-01

    The evolution of the initially straight edge of a retracting liquid sheet is still a subject of debate. Theoretical and numerical studies have provided conflicting results, and experimental efforts have, to our knowledge, never been attempted owing to the difficulty in achieving a uniform edge. However, recent advances in experimental techniques, specifically those presented in detail in Poster #72 of APS-DFD 2010 (H.C. Mayer and R. Krechetnikov), have allowed us to uniformly detach a soap film from a straight edge using an impulsively heated wire frame. The detachment, retraction, and breakup of soap films (h ~ 10 μm) is analyzed using high speed photography. Owing to the Plateau border that connects the uniform film to the wire frames (wire diameter 25-250 μm) - a feature not present when rupturing films from a point - the early stages of retraction are dominated by a relatively large rim mass. We explore the phenomena at very early times (t < 100 μs) associated with the birth of these detached films which may add complexity to the problem of determining what instability mechanism(s) are responsible for their breakup.

  15. The applicability of using straight ureteral stents for the treatment of ureteral stones in presumably non-compliant patients.

    PubMed

    Mydlo, J H; Streater, S

    2001-01-01

    There have been many reports describing the complications of retained ureteral stents following stone treatment. We wanted to evaluate the practicality of definitive treatment of poorly compliant patients who present with ureteral stones using a straight stent connected to a urethral catheter alone and compared these to patients treated with double-J stents alone. We treated 23 patients (12 in group I and 11 patients in group II) who had a ureteral stone of 6 mm or less, with an indwelling straight stent and a double-J stent, respectively, while on oral antibiotics. We followed these patients 1 week later with an abdominal X-ray prior to removing the stent. Eleven patients in group I and 9 patients in group II passed their stones spontaneously. Three patients required surgical intervention with a ureterscope and laser lithotripsy. There were no cases of infection or pyelonephritis. Although each of the straight-stent-treated patients returned to our clinic for follow-up, only 5 of the 11 double-J stent patients returned for follow-up. The remaining 6 patients had to be contacted to remind them that they still had an internal stent. Although technologic advances now allow many urologists to definitively treat ureteral stones, some urologists may lack the proper equipment and/or assistance to treat the stone at the time of presentation, or may deal with non-compliant patients. Therefore, in these certain circumstances, treatment of small ureteral stones in non-compliant patients using a straight stent connected to a leg bag, as either definitive or initial treatment, may be of practical use and avoid the risk of retained double-J ureteral stents. Copyright 2001 S. Karger AG, Basel

  16. Theoretical modeling of CHF for near-saturated pool boiling and flow boiling from short heaters using the interfacial lift-off criterion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mudawar, I.; Galloway, J.E.; Gersey, C.O.

    Pool boiling and flow boiling were examined for near-saturated bulk conditions in order to determine the critical heat flux (CHF) trigger mechanism for each. Photographic studies of the wall region revealed features common to both situations. At fluxes below CHF, the vapor coalesces into a wavy layer which permits wetting only in wetting fronts, the portions of the liquid-vapor interface which contact the wall as a result of the interfacial waviness. Close examination of the interfacial features revealed the waves are generated from the lower edge of the heater in pool boiling and the heater`s upstream region in flow boiling.more » Wavelengths follow predictions based upon the Kelvin-Helmholtz instability criterion. Critical heat flux in both cases occurs when the pressure force exerted upon the interface due to interfacial curvature, which tends to preserve interfacial contact with the wall prior to CHF, is overcome by the momentum of vapor at the site of the first wetting front, causing the interface to lift away from the wall. It is shown this interfacial lift-off criterion facilitates accurate theoretical modeling of CHF in pool boiling and in flow boiling in both straight and curved channels.« less

  17. Pulsed discharges produced by high-power surface waves

    NASA Astrophysics Data System (ADS)

    Böhle, A.; Ivanov, O.; Kolisko, A.; Kortshagen, U.; Schlüter, H.; Vikharev, A.

    1996-02-01

    The mechanisms of the ionization front advance in surface-wave-produced discharges are investigated using two experimental set-ups. The high-power surface waves are excited in a 3 cm wavelength band by a surfaguide and a novel type of launcher (an E-plane junction). The ionization front velocity of the surface wave is measured for a wide range of gas pressures, incident microwave power and initial pre-ionization. The experimental results are compared with theoretical ones based on three different models. The comparison between theory and experiment allows one to suggest a new interpretation of the ionization front's advance. The ionization front velocity is determined by a breakdown wave or an ionization wave in the electric field of a high-power surface wave in the zone near the ionization front.

  18. Real-time computer-based visual feedback improves visual acuity in downbeat nystagmus - a pilot study.

    PubMed

    Teufel, Julian; Bardins, S; Spiegel, Rainer; Kremmyda, O; Schneider, E; Strupp, M; Kalla, R

    2016-01-04

    Patients with downbeat nystagmus syndrome suffer from oscillopsia, which leads to an unstable visual perception and therefore impaired visual acuity. The aim of this study was to use real-time computer-based visual feedback to compensate for the destabilizing slow phase eye movements. The patients were sitting in front of a computer screen with the head fixed on a chin rest. The eye movements were recorded by an eye tracking system (EyeSeeCam®). We tested the visual acuity with a fixed Landolt C (static) and during real-time feedback driven condition (dynamic) in gaze straight ahead and (20°) sideward gaze. In the dynamic condition, the Landolt C moved according to the slow phase eye velocity of the downbeat nystagmus. The Shapiro-Wilk test was used to test for normal distribution and one-way ANOVA for comparison. Ten patients with downbeat nystagmus were included in the study. Median age was 76 years and the median duration of symptoms was 6.3 years (SD +/- 3.1y). The mean slow phase velocity was moderate during gaze straight ahead (1.44°/s, SD +/- 1.18°/s) and increased significantly in sideward gaze (mean left 3.36°/s; right 3.58°/s). In gaze straight ahead, we found no difference between the static and feedback driven condition. In sideward gaze, visual acuity improved in five out of ten subjects during the feedback-driven condition (p = 0.043). This study provides proof of concept that non-invasive real-time computer-based visual feedback compensates for the SPV in DBN. Therefore, real-time visual feedback may be a promising aid for patients suffering from oscillopsia and impaired text reading on screen. Recent technological advances in the area of virtual reality displays might soon render this approach feasible in fully mobile settings.

  19. Rethinking the laryngopharyngeal reflux treatment algorithm: Evaluating an alternate empiric dosing regimen and considering up-front, pH-impedance, and manometry testing to minimize cost in treating suspect laryngopharyngeal reflux disease.

    PubMed

    Carroll, Thomas L; Werner, Astrid; Nahikian, Kael; Dezube, Aaron; Roth, Douglas F

    2017-10-01

    Empiric proton pump inhibitor (PPI) trials for laryngopharyngeal reflux (LPR) are common. A majority of the patients respond to acid suppression. This work intends to evaluate once-daily, 40 mg omeprazole and once-nightly, 300 mg ranitidine (QD/QHS) dosing as an alternative regimen, and use this study's cohort to evaluate empiric regimens prescribed for LPR as compared to up-front testing with pH impedance multichannel intraluminal impedance (MII) with dual pH probes and high-resolution manometry (HRM) for potential cost minimization. Retrospective cohort review and cost minimization study. A chart review identified patients diagnosed with LPR. All subjects were treated sequentially and outcomes recorded. Initial QD/QHS dosing increased after 3 months to BID if no improvement and ultimately prescribed MII and HRM if they failed BID dosing. Decision tree diagrams were constructed to determine costs of two empiric regimens and up-front MII and HRM. Ninety-seven subjects met the criteria. Responders and nonresponders to empiric therapy were identified. Seventy-two subjects (74%) responded. Forty-eight (67% of responders and 49% of all) improved with QD/QHS dosing. Forty-nine (51%) subjects escalated to BID dosing. Twenty-four subjects (33% of responders and 25% of all) improved on BID therapy. Twenty-five subjects (26%) did not respond to acid suppression. Average weighted cost was $1,897.00 per patient for up-front testing, $3,033.00 for initial BID, and $3,366.00 for initial QD/QHS. An alternate QD/QHS regimen improved the majority who presented with presumed LPR. Cost estimates demonstrate that the QD/QHS regimen was more expensive than the initial BID high-dose PPI for 6 months. Overall per-patient cost appears less with up-front MII and HRM. 4. Laryngoscope, 127:S1-S13, 2017. © 2017 The American Laryngological, Rhinological and Otological Society, Inc.

  20. Development of Benchmark Examples for Quasi-Static Delamination Propagation and Fatigue Growth Predictions

    NASA Technical Reports Server (NTRS)

    Krueger, Ronald

    2012-01-01

    The development of benchmark examples for quasi-static delamination propagation and cyclic delamination onset and growth prediction is presented and demonstrated for Abaqus/Standard. The example is based on a finite element model of a Double-Cantilever Beam specimen. The example is independent of the analysis software used and allows the assessment of the automated delamination propagation, onset and growth prediction capabilities in commercial finite element codes based on the virtual crack closure technique (VCCT). First, a quasi-static benchmark example was created for the specimen. Second, based on the static results, benchmark examples for cyclic delamination growth were created. Third, the load-displacement relationship from a propagation analysis and the benchmark results were compared, and good agreement could be achieved by selecting the appropriate input parameters. Fourth, starting from an initially straight front, the delamination was allowed to grow under cyclic loading. The number of cycles to delamination onset and the number of cycles during delamination growth for each growth increment were obtained from the automated analysis and compared to the benchmark examples. Again, good agreement between the results obtained from the growth analysis and the benchmark results could be achieved by selecting the appropriate input parameters. The benchmarking procedure proved valuable by highlighting the issues associated with choosing the input parameters of the particular implementation. Selecting the appropriate input parameters, however, was not straightforward and often required an iterative procedure. Overall the results are encouraging, but further assessment for mixed-mode delamination is required.

  1. Development of Benchmark Examples for Static Delamination Propagation and Fatigue Growth Predictions

    NASA Technical Reports Server (NTRS)

    Kruger, Ronald

    2011-01-01

    The development of benchmark examples for static delamination propagation and cyclic delamination onset and growth prediction is presented and demonstrated for a commercial code. The example is based on a finite element model of an End-Notched Flexure (ENF) specimen. The example is independent of the analysis software used and allows the assessment of the automated delamination propagation, onset and growth prediction capabilities in commercial finite element codes based on the virtual crack closure technique (VCCT). First, static benchmark examples were created for the specimen. Second, based on the static results, benchmark examples for cyclic delamination growth were created. Third, the load-displacement relationship from a propagation analysis and the benchmark results were compared, and good agreement could be achieved by selecting the appropriate input parameters. Fourth, starting from an initially straight front, the delamination was allowed to grow under cyclic loading. The number of cycles to delamination onset and the number of cycles during stable delamination growth for each growth increment were obtained from the automated analysis and compared to the benchmark examples. Again, good agreement between the results obtained from the growth analysis and the benchmark results could be achieved by selecting the appropriate input parameters. The benchmarking procedure proved valuable by highlighting the issues associated with the input parameters of the particular implementation. Selecting the appropriate input parameters, however, was not straightforward and often required an iterative procedure. Overall, the results are encouraging but further assessment for mixed-mode delamination is required.

  2. Development and Application of Benchmark Examples for Mode II Static Delamination Propagation and Fatigue Growth Predictions

    NASA Technical Reports Server (NTRS)

    Krueger, Ronald

    2011-01-01

    The development of benchmark examples for static delamination propagation and cyclic delamination onset and growth prediction is presented and demonstrated for a commercial code. The example is based on a finite element model of an End-Notched Flexure (ENF) specimen. The example is independent of the analysis software used and allows the assessment of the automated delamination propagation, onset and growth prediction capabilities in commercial finite element codes based on the virtual crack closure technique (VCCT). First, static benchmark examples were created for the specimen. Second, based on the static results, benchmark examples for cyclic delamination growth were created. Third, the load-displacement relationship from a propagation analysis and the benchmark results were compared, and good agreement could be achieved by selecting the appropriate input parameters. Fourth, starting from an initially straight front, the delamination was allowed to grow under cyclic loading. The number of cycles to delamination onset and the number of cycles during delamination growth for each growth increment were obtained from the automated analysis and compared to the benchmark examples. Again, good agreement between the results obtained from the growth analysis and the benchmark results could be achieved by selecting the appropriate input parameters. The benchmarking procedure proved valuable by highlighting the issues associated with choosing the input parameters of the particular implementation. Selecting the appropriate input parameters, however, was not straightforward and often required an iterative procedure. Overall the results are encouraging, but further assessment for mixed-mode delamination is required.

  3. Hydrologically-induced slow-down as a mechanism for tidewater glacier retreat

    NASA Astrophysics Data System (ADS)

    Hewitt, Ian

    2017-04-01

    Outlet glaciers flowing into the ocean often terminate at a calving front, whose position is sensitively determined by the balance between ice discharge and calving/terminus-melting. Rapid retreat of tidewater glaciers can be initiated when the front is perturbed from a preferred pinning point, particularly when the glacier sits in an overdeepened trough. This is believed to make certain areas of ice sheets particularly vulnerable to ice loss. A number of factors may cause a previously stable front position to become unstable, including changes in buttressing provided by an ice shelf, and changes in ocean temperature. Another possibility is that initial retreat is induced by a reduction in the supply of ice from the interior of the ice sheet. Such a reduction can naturally arise from an increase in surface melting and runoff (in the absence of accumulation changes), and this may be amplified if more efficient meltwater routing reduces basal lubrication, as has been observed in some areas of the Greenland ice sheet. Since the initiation of rapid retreat often results in an increase of ice discharge at the front (due to increased ice thickness), such a process may not be easy to detect. In this study, I employ a simplified model of an outlet glacier and its frontal behaviour to examine the extent to which hydrologically induced slow-down of the feeding ice sheet may induce (or help to induce) calving front retreat. The model builds on earlier parameterisations of grounding line fluxes, and assumes that calving occurs according to a criterion that keeps the front close to the flotation thickness. The glacier bed is assumed to be plastic. This allows for a transparent identification of the different forcing terms affecting margin position. We conclude that hydrologically-induced slow-down of ice sheets is likely to have a more significant effect on mass loss than hydrologically-induced speed-up.

  4. Light reflecting apparatus including a multi-aberration light reflecting surface

    DOEpatents

    Sawicki, Richard H.; Sweatt, William

    1987-01-01

    A light reflecting apparatus including a multi-aberration bendable light reflecting surface is disclosed herein. This apparatus includes a structural assembly comprised of a rectangular plate which is resiliently bendable, to a limited extent, and which has a front side defining the multi-aberration light reflecting surface and an opposite back side, and a plurality of straight leg members rigidly connected with the back side of the plate and extending rearwardly therefrom. The apparatus also includes a number of different adjustment mechanisms, each of which is connected with specific ones of the leg members. These mechanisms are adjustably movable in different ways for applying corresponding forces to the leg members in order to bend the rectangular plate and light reflecting surface into different predetermined curvatures and which specifically include quadratic and cubic curvatures corresponding to different optical aberrations.

  5. A light reflecting apparatus including a multi-aberration light reflecting surface

    DOEpatents

    Sawicki, R.H.; Sweatt, W.

    1985-11-21

    A light reflecting apparatus including a multi-aberration bendable light reflecting surface is disclosed herein. This apparatus includes a structural assembly comprised of a rectangular plate which is resiliently bendable, to a limited extent, and which has a front side defining the multi-aberration light reflecting surface and an opposite back side, and a plurality of straight leg members rigidly connected with the back side of the plate and extending rearwardly therefrom. The apparatus also includes a number of different adjustment mechanisms, each of which is connected with specific ones of the leg members. These mechanisms are adjustably movable in different ways for applying corresponding forces to the leg members in order to bend the rectangular plate and light reflecting surface into different predetermined curvatures and which specifically include quadratic and cubic curvatures corresponding to different optical aberrations.

  6. Rover's Wheel Churns Up Bright Martian Soil (Vertical)

    NASA Technical Reports Server (NTRS)

    2009-01-01

    NASA's Mars Exploration Rover Spirit acquired this mosaic on the mission's 1,202nd Martian day, or sol (May 21, 2007), while investigating the area east of the elevated plateau known as 'Home Plate' in the 'Columbia Hills.' The mosaic shows an area of disturbed soil, nicknamed 'Gertrude Weise' by scientists, made by Spirit's stuck right front wheel.

    The trench exposed a patch of nearly pure silica, with the composition of opal. It could have come from either a hot-spring environment or an environment called a fumarole, in which acidic, volcanic steam rises through cracks. Either way, its formation involved water, and on Earth, both of these types of settings teem with microbial life.

    The image is presented here as a vertical projection, as if looking straight down, and in false color, which brings out subtle color differences.

  7. Insights into the Cell Shape Dynamics of Migrating Dictyostelium discoideum

    NASA Astrophysics Data System (ADS)

    Driscoll, Meghan; Homan, Tess; McCann, Colin; Parent, Carole; Fourkas, John; Losert, Wolfgang

    2010-03-01

    Dynamic cell shape is a highly visible manifestation of the interaction between the internal biochemical state of a cell and its external environment. We analyzed the dynamic cell shape of migrating cells using the model system Dictyostelium discoideum. Applying a snake algorithm to experimental movies, we extracted cell boundaries in each frame and followed local boundary motion over long time intervals. Using a local motion measure that corresponds to protrusive/retractive activity, we found that protrusions are intermittent and zig-zag, whereas retractions are more sustained and straight. Correlations of this local motion measure reveal that protrusions appear more localized than retractions. Using a local shape measure, curvature, we also found that small peaks in boundary curvature tend to originate at the front of cells and propagate backwards. We will review the possible cytoskeletal origin of these mechanical waves.

  8. BEAM TRANSPORT LINES FOR THE BSNS.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    WEI, J.

    2006-06-26

    This paper presents the design of two beam transport lines at the BSNS: one is the injection line from the Linac to the RCS and the other is the target line from the RCS to the target station. In the injection beam line, space charge effects, transverse halo collimation, momentum tail collimation and debunching are the main concerned topics. A new method of using triplet cells and stripping foils is used to collimate transverse halo. A long straight section is reserved for the future upgrading linac and debuncher. In the target beam line, large halo emittance, beam stability at themore » target due to kicker failures and beam jitters, shielding of back-scattering neutrons from the target are main concerned topics. Special bi-gap magnets will be used to reduce beam losses in the collimators in front of the target.« less

  9. Development of multi-element active aerodynamics for the formula sae car

    NASA Astrophysics Data System (ADS)

    Merkel, James Patrick

    This thesis focuses on the design, development, and implementation of an active aerodynamics system on 2013 Formula SAE car. The aerodynamics package itself consists of five element front and rear wings as well as an under body diffuser. Five element wings produce significant amounts of drag which is a compromise between the cornering ability of the car and the acceleration capability on straights. The active aerodynamics system allows for the wing angle of attack to dynamically change their configuration on track based on sensory data to optimize the wings for any given scenario. The wings are studied using computational fluid dynamics both in their maximum lift configuration as well as a minimum drag configuration. A control system is then developed using an electro mechanical actuation system to articulate the wings between these two states.

  10. Growth rates of the buoyancy-driven instability of an autocatalytic reaction front in a narrow cell

    PubMed

    Bockmann; Muller

    2000-09-18

    Experimental studies were performed on the buoyancy-driven instability of an autocatalytic reaction front in a quasi-2D cell. The unstable density stratification at an ascending front leads to convection that results in a fingerlike front deformation. The growth rates of the spatial modes of the instability are determined at the initial stage. A stabilization is found at higher wave numbers, while the system is unstable against low wave number perturbations. Whereas comparison with a reported model governed by Hele-Shaw flow fails, a two-dimensional Navier-Stokes model yields more satisfactory results. Still, present deviations suggest the presence of an additional mechanism that suppresses the growth.

  11. Large Eddy Simulations of a Bottom Boundary Layer Under a Shallow Geostrophic Front

    NASA Astrophysics Data System (ADS)

    Bateman, S. P.; Simeonov, J.; Calantoni, J.

    2017-12-01

    The unstratified surf zone and the stratified shelf waters are often separated by dynamic fronts that can strongly impact the character of the Ekman bottom boundary layer. Here, we use large eddy simulations to study the turbulent bottom boundary layer associated with a geostrophic current on a stratified shelf of uniform depth. The simulations are initialized with a spatially uniform vertical shear that is in geostrophic balance with a pressure gradient due to a linear horizontal temperature variation. Superposed on the temperature front is a stable vertical temperature gradient. As turbulence develops near the bottom, the turbulence-induced mixing gradually erodes the initial uniform temperature stratification and a well-mixed layer grows in height until the turbulence becomes fully developed. The simulations provide the spatial distribution of the turbulent dissipation and the Reynolds stresses in the fully developed boundary layer. We vary the initial linear stratification and investigate its effect on the height of the bottom boundary layer and the turbulence statistics. The results are compared to previous models and simulations of stratified bottom Ekman layers.

  12. Influence of wheelchair front caster wheel on reverse directional stability.

    PubMed

    Guo, Songfeng; Cooper, Rory A; Corfman, Tom; Ding, Dan; Grindle, Garrett

    2003-01-01

    The purpose of this research was to study directional stability during reversing of rear-wheel drive, electric powered wheelchairs (EPW) under different initial front caster orientations. Specifically, the weight distribution differences caused by certain initial caster orientations were examined as a possible mechanism for causing directional instability that could lead to accidents. Directional stability was quantified by measuring the drive direction error of the EPW by a motion analysis system. The ground reaction forces were collected to determine the load on the front casters, as well as back-emf data to attain the speed of the motors. The drive direction error was found to be different for various initial caster orientations. Drive direction error was greatest when both casters were oriented 90 degrees to the left or right, and least when both casters were oriented forward. The results show that drive direction error corresponds to the loading difference on the casters. The data indicates that loading differences may cause asymmetric drag on the casters, which in turn causes unbalanced torque load on the motors. This leads to a difference in motor speed and drive direction error.

  13. Subduction at upper ocean fronts by baroclinic instability

    NASA Astrophysics Data System (ADS)

    Verma, Vicky; Pham, Hieu T.; Radhakrishnan, Anand; Sarkar, Sutanu

    2017-11-01

    Large eddy simulations of upper ocean fronts that are initially in geostrophic balance show that the linear and subsequent nonlinear evolution of baroclinic intability are effective in restratifying the front. During the growth of baroclinic instability, the front develops thin regions with enhanced vertical vorticity, i.e., vorticity filaments. Moreover, the vorticity filaments organize into submesoscale eddies. The subsequent frontal dynamics is dominated by the vorticity filaments and the submesoscale eddies. Diagnosis of the horizontal force balance reveals that the regions occupied by these coherent structures have significantly large imbalance, and are characterized by large vertical velocity. High density fluid from the heavier side of the front is subducted by the vertical velocity to the bottom of the mixed layer. The process of subduction is illustrated by Lagrangian tracking of fluid particles released at a fixed depth.

  14. Controller Requirements for Uncoupled Aircraft Motion. Volume 1

    DTIC Science & Technology

    1984-09-01

    the nose down to the run-in line, followed by roll- out into a straight line dive. Well learned precognitive maneuvers do not nvolve much psychomotor...This is initially a precognitive transient track- ing maneuver, fo’llowed by maintaining a constant, safe g level until a desired ra e of climb- is

  15. 40 CFR 86.1324-84 - Carbon dioxide analyzer calibration.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... calibrated, if the deviation from a least-squares best-fit straight line is within ±2 percent or less of the... exceeds these limits, then the best-fit non-linear equation which represents the data within these limits shall be used to determine concentration values. (d) The initial and periodic interference, system check...

  16. 40 CFR 86.1324-84 - Carbon dioxide analyzer calibration.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... calibrated, if the deviation from a least-squares best-fit straight line is within ±2 percent or less of the... exceeds these limits, then the best-fit non-linear equation which represents the data within these limits shall be used to determine concentration values. (d) The initial and periodic interference, system check...

  17. 40 CFR 86.1324-84 - Carbon dioxide analyzer calibration.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... calibrated, if the deviation from a least-squares best-fit straight line is within ±2 percent or less of the... exceeds these limits, then the best-fit non-linear equation which represents the data within these limits shall be used to determine concentration values. (d) The initial and periodic interference, system check...

  18. 40 CFR 90.318 - Oxides of nitrogen analyzer calibration.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... chemiluminescent oxides of nitrogen analyzer as described in this section. (b) Initial and Periodic Interference...-squares best-fit straight line is two percent or less of the value at each data point, calculate... at any point, use the best-fit non-linear equation which represents the data to within two percent of...

  19. 40 CFR 91.318 - Oxides of nitrogen analyzer calibration.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... nitrogen analyzer as described in this section. (b) Initial and periodic interference. Prior to its...-squares best-fit straight line is two percent or less of the value at each data point, concentration... two percent at any point, use the best-fit non-linear equation which represents the data to within two...

  20. 40 CFR 90.318 - Oxides of nitrogen analyzer calibration.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... chemiluminescent oxides of nitrogen analyzer as described in this section. (b) Initial and Periodic Interference...-squares best-fit straight line is two percent or less of the value at each data point, calculate... at any point, use the best-fit non-linear equation which represents the data to within two percent of...

  1. 40 CFR 91.318 - Oxides of nitrogen analyzer calibration.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... nitrogen analyzer as described in this section. (b) Initial and periodic interference. Prior to its...-squares best-fit straight line is two percent or less of the value at each data point, concentration... two percent at any point, use the best-fit non-linear equation which represents the data to within two...

  2. 40 CFR 86.1323-84 - Oxides of nitrogen analyzer calibration.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... calibrated, if the deviation from a least-squares best-fit straight line is within ±2 percent of the value at... exceeds these limits, then the best-fit non-linear equation which represents the data within these limits shall be used to determine concentration values. (c) The initial and periodic interference, system check...

  3. 40 CFR 86.1323-84 - Oxides of nitrogen analyzer calibration.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... calibrated, if the deviation from a least-squares best-fit straight line is within ±2 percent of the value at... exceeds these limits, then the best-fit non-linear equation which represents the data within these limits shall be used to determine concentration values. (c) The initial and periodic interference, system check...

  4. The initial instability and finite-amplitude stability of alternate bars in straight channels

    USGS Publications Warehouse

    Nelson, J.M.

    1990-01-01

    The initial instability and fully developed stability of alternate bars in straight channels are investigated using linearized and nonlinear analyses. The fundamental instability leading to these features is identified through a linear stability analysis of the equations governing the flow and sediment transport fields. This instability is explained in terms of topographically induced steering of the flow and the associated pattern of erosion and deposition on the bed. While the linear theory is useful for examining the instability mechanism, this approach is shown to yield relatively little information about well-developed alternate bars and, specifically, the linear analysis is shown to yield poor predictions of the fully developed bar wavelength. A fully nonlinear approach is presented that permits computation of the evolution of these bed features from an initial perturbation to their fully developed morphology. This analysis indicates that there is typically substantial elongation of the bar wavelength during the evolution process, a result that is consistent with observations of bar development in flumes and natural channels. The nonlinear approach demonstrates that the eventual stability of these features is a result of the interplay between topographic steering effects, secondary flow production as a result of streamline curvature, and gravitationally induced modifications of sediment fluxes over a sloping bed. ?? 1990.

  5. Automated Reconstruction of Neural Trees Using Front Re-initialization

    PubMed Central

    Mukherjee, Amit; Stepanyants, Armen

    2013-01-01

    This paper proposes a greedy algorithm for automated reconstruction of neural arbors from light microscopy stacks of images. The algorithm is based on the minimum cost path method. While the minimum cost path, obtained using the Fast Marching Method, results in a trace with the least cumulative cost between the start and the end points, it is not sufficient for the reconstruction of neural trees. This is because sections of the minimum cost path can erroneously travel through the image background with undetectable detriment to the cumulative cost. To circumvent this problem we propose an algorithm that grows a neural tree from a specified root by iteratively re-initializing the Fast Marching fronts. The speed image used in the Fast Marching Method is generated by computing the average outward flux of the gradient vector flow field. Each iteration of the algorithm produces a candidate extension by allowing the front to travel a specified distance and then tracking from the farthest point of the front back to the tree. Robust likelihood ratio test is used to evaluate the quality of the candidate extension by comparing voxel intensities along the extension to those in the foreground and the background. The qualified extensions are appended to the current tree, the front is re-initialized, and Fast Marching is continued until the stopping criterion is met. To evaluate the performance of the algorithm we reconstructed 6 stacks of two-photon microscopy images and compared the results to the ground truth reconstructions by using the DIADEM metric. The average comparison score was 0.82 out of 1.0, which is on par with the performance achieved by expert manual tracers. PMID:24386539

  6. Kinematics of the Horsehead Nebula and IC 434 Ionization Front in CO and C+

    NASA Astrophysics Data System (ADS)

    Bally, John; Chambers, Ed; Guzman, Viviana; Keto, Eric; Mookerjea, Bhaswati; Sandell, Goran; Stanke, Thomas; Zinnecker, Hans

    2018-02-01

    Stratospheric Observatory for Infrared Astronomy [C II] 157 μm, APEX 860 μm J = 3‑2 CO, and archival James Clerk Maxwell Telescope J = 2‑1 CO and 13CO observations of the Horsehead Nebula are presented. The photon-dominated region (PDR) between the Orion B molecular cloud and the adjacent IC 434 H II region is used to study the radial velocity structure of the region and the feedback impacts of UV radiation. Multiple west-facing cloud edges are superimposed along the line of sight with radial velocities that differ by a few kilometers per second. The Horsehead lies in the foreground blueshifted portion of the Orion B molecular cloud and is predominantly illuminated from the rear. The mean H2 density of the Horsehead, ∼ 6× {10}3 {{cm}}-3, results in a spatially thin PDR where the photoablation flow has compressed the western cloud edge to an H2 density of (2{--}6)× {10}4 {{cm}}-3. The associated [C II] 157 μm layer has a width L < 0.05 pc. The background parts of the Orion B cloud in the imaged field consist of a clumpy medium surrounded by molecular gas with H2 densities lower by one to two orders of magnitude. Along the straight part of the IC 434 ionization front, the PDR layer probed by [C II] 157 μm emission is much thicker with L ∼ 0.5 pc. A possible model for the formation and evolution of this edge-on ionization front and PDR is presented. The [C II] data were independently analyzed and published by Pabst et al.

  7. 78 FR 21422 - TSC Distributors LLC and TSC UITS; Notice of Application

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-10

    ... purchase Units on the secondary market at the current public offering price plus a front-end sales charge... Units are offered to the public through the Depositor and dealers at a price which, during the initial... front'' (i.e., at the time an investor purchases the Units). The DSC would be collected subsequently in...

  8. Strength and viscosity effects on perturbed shock front stability in metals

    DOE PAGES

    Opie, Saul; Loomis, Eric Nicholas; Peralta, Pedro; ...

    2017-05-09

    Here, computational modeling and experimental measurements on metal samples subject to a laser-driven, ablative Richtmyer-Meshkov instability showed differences between viscosity and strength effects. In particular, numerical and analytical solutions, coupled with measurements of fed-through perturbations, generated by perturbed shock fronts onto initially flat surfaces, show promise as a validation method for models of deviatoric response in the post shocked material. Analysis shows that measurements of shock perturbation amplitudes at low sample thickness-to-wavelength ratios are not enough to differentiate between strength and viscosity effects, but that surface displacement data of the fed-through fed-thru perturbations appears to resolve the ambiguity. Additionally, analyticalmore » and numerical results show shock front perturbation evolution dependence on initial perturbation amplitude and wavelength is significantly different in viscous and materials with strength, suggesting simple experimental geometry changes should provide data supporting one model or the other.« less

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mériaux, C. A., E-mail: cameriaux@fc.ul.pt; Kurz-Besson, C. B.; Zemach, T.

    In this study, we investigate the motion of particulate gravity currents in a horizontal V-shaped channel. The particulate currents consisted of particles whose size varied between 0 and 100 μm but whose mean size increased. Particles were poorly sorted as the variance of the grain size distributions varied between 50 and 200. While the phases of propagation of homogeneous currents in such a geometry have been studied in the literature, this study considers the effects of the grain size on the propagation. The distance of propagation and front velocity of full-depth high-Reynolds-number lock-release experiments and shallow-water equation simulations were analyzedmore » as the mean grain size of the initial particle distributions, defined by mass, was increased from 19 to 58 μm. Similar to the homogeneous currents, three consecutive phases of the front velocity could be identified but their characteristics and extent depend on the particle size. The initial phase, in particular, depends on a dimensionless settling number β that is defined as the ratio of two characteristic time scales, the propagation time x{sub 0}/U, where U is the scale for the front speed and x{sub 0} the lock length, and the settling time h{sub 0}/v{sub s}, where v{sub s} is the scale for the settling velocity and h{sub 0} the initial height of the current. For dimensionless settling numbers less than 0.001, the initial phase is characterized by a constant velocity for over about 6-7 lock lengths that is alike the initial slumping phase of perfectly constant velocity of the homogeneous currents. For dimensionless settling numbers greater than 0.001 and less than 0.015, the initial phase is no longer characterized by a constant velocity but an almost constant velocity for over about a similar 6-7 lock lengths. For dimensionless settling numbers greater than 0.015, however, as such, this phase is no longer seen. This initial phase is followed by a continuous decrease of the front advance, which results from the sedimentation of the particles. Unlike the homogeneous currents, this phase is a non-self-similar propagation. This phase is ended by a viscosity-dominated phase appearing to vary as ∼t{sup 1/7}. The good agreement between the front advance of the experiments and shallow-water equation simulations demonstrates that the mean size by mass is a fairly good proxy of poorly sorted particles.« less

  10. Insights into gelation kinetics and gel front migration in cation-induced polysaccharide hydrogels by viscoelastic and turbidity measurements: Effect of the nature of divalent cations.

    PubMed

    Huynh, Uyen T D; Chambin, Odile; du Poset, Aline Maire; Assifaoui, Ali

    2018-06-15

    Polysaccharide-based hydrogels were prepared by the diffusion of various divalent cations (X 2+ ) into the polygalacturonate (polyGal) solution through a dialysis membrane. The diffusion of various divalent cations (Mg 2+ , Ca 2+ , Zn 2+ and Ba 2+ ) was investigated. The polyGal gel growth was studied as a function of the initial cation concentration by both viscoelastic and turbidity measurements. We have demonstrated for the first time that the determination of the spatiotemporal variation of turbidity during the gelation process allowed to study the gel front migration. For Ca-polyGal, Zn-polyGal and Ba-polyGal, the gel front migration was characterized by the presence of a peak at the sol/gel interface. This peak was not observed in the case of Mg-polyGal where the gel was not formed. The apparent diffusion coefficient of the gel front (D app ) which was calculated from the evolution of this peak increased when the initial cation concentration was increased. Moreover, we have suggested a gelation mechanism based on the presence of a threshold molar ratio R* (=[X 2+ ]/[Galacturonic unit]) in which some point-like crosslinks are precursors of the formation of dimers and multimers inducing the contraction of the gel and thus the formation of the gel front. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. The correlation between Prorocentrum donghaiense blooms and the Taiwan warm current in the East China Sea - evidence for the "Pelagic Seed Bank" hypothesis.

    PubMed

    Dai, Xinfeng; Lu, Douding; Guan, Weibing; Xia, Ping; Wang, Hongxia; He, Piaoxia; Zhang, Dongsheng

    2013-01-01

    During the last two decades, large-scale high biomass algal blooms of the dinoflagellate Prorocentrum donghaiense Lu have occurred frequently in the East China Sea (ECS). The role of increasing nutrient concentrations in driving those blooms is well-established, but the source population that initiates them is poorly understood. We hypothesized that the front of Taiwan Warm Current (TWC) may serve as a 'seed bank' that initiates P. donghaiense blooms in the ECS, as the physiochemical conditions in the TWC are suitable for the growth of P. donghaiense. In order to test this hypothesis, two surveys at different spatio-temporal scales were conducted in 2010 and 2011. We found a strong correlation in space and time between the abundance of P. donghaiense and the TWC. The spatial extent of the P. donghaiense bloom coincided with the TWC front in both 2010 and 2011. During the early development of the blooms, P. donghaiense concentration was highest at the TWC front, and then the bloom mass shifted inshore over the course of our 2011 survey. The TWC also moved inshore, albeit after the appearance of P. donghaiense. Overall, these results support our hypothesis that P. donghaiense blooms develop from the population at the TWC front in the ECS, suggesting the role of the ocean current front as a seed bank to dinoflagellate blooms.

  12. Ion Transport and Acceleration at Dipolarization Fronts: High-Resolution MHD/Test-Particle Simulations

    NASA Astrophysics Data System (ADS)

    Ukhorskiy, A. Y.; Sorathia, K.; Merkin, V. G.; Sitnov, M. I.; Mitchell, D. G.; Wiltberger, M. J.; Lyon, J.

    2017-12-01

    Much of plasma heating and transport from the magnetotail into the inner magnetosphere occurs in the form of mesoscale discrete injections associated with sharp dipolarizations of magnetic field (dipolarization fronts). In this study we investigate the mechanisms of ion acceleration at dipolarization fronts in a high-resolution global magnetospheric MHD model (LFM). We use large-scale three-dimensional test-particle simulations (CHIMP) to address the following science questions: 1) what are the characteristic scales of dipolarization regions that can stably trap ions? 2) what role does the trapping play in ion transport and acceleration? 3) how does it depend on particle energy and distance from Earth? 4) to what extent ion acceleration is adiabatic? High-resolution LFM was run using idealized solar wind conditions with fixed nominal values of density and velocity and a southward IMF component of -5 nT. To simulate ion interaction with dipolarization fronts, a large ensemble of test particles distributed in energy, pitch-angle, and gyrophase was initialized inside one of the LFM dipolarization channels in the magnetotail. Full Lorentz ion trajectories were then computed over the course of the front inward propagation from the distance of 17 to 6 Earth radii. A large fraction of ions with different initial energies stayed in phase with the front over the entire distance. The effect of magnetic trapping at different energies was elucidated with a correlation of the ion guiding center and the ExB drift velocities. The role of trapping in ion energization was quantified by comparing the partial pressure of ions that exhibit trapping to the pressure of all trapped ions.

  13. A computational study of syngas auto-ignition characteristics at high-pressure and low-temperature conditions with thermal inhomogeneities

    NASA Astrophysics Data System (ADS)

    Pal, Pinaki; Mansfield, Andrew B.; Arias, Paul G.; Wooldridge, Margaret S.; Im, Hong G.

    2015-09-01

    A computational study was conducted to investigate the characteristics of auto-ignition in a syngas mixture at high-pressure and low-temperature conditions in the presence of thermal inhomogeneities. Highly resolved one-dimensional numerical simulations incorporating detailed chemistry and transport were performed. The temperature inhomogeneities were represented by a global sinusoidal temperature profile and a local Gaussian temperature spike (hot spot). Reaction front speed and front Damköhler number analyses were employed to characterise the propagating ignition front. In the presence of a global temperature gradient, the ignition behaviour shifted from spontaneous propagation (strong) to deflagrative (weak), as the initial mean temperature of the reactant mixture was lowered. A predictive Zel'dovich-Sankaran criterion to determine the transition from strong to weak ignition was validated for different parametric sets. At sufficiently low temperatures, the strong ignition regime was recovered due to faster passive scalar dissipation of the imposed thermal fluctuations relative to the reaction timescale, which was quantified by the mixing Damköhler number. In the presence of local hot spots, only deflagrative fronts were observed. However, the fraction of the reactant mixture consumed by the propagating front was found to increase as the initial mean temperature was lowered, thereby leading to more enhanced compression-heating of the end-gas. Passive scalar mixing was not found to be important for the hot spot cases considered. The parametric study confirmed that the relative magnitude of the Sankaran number translates accurately to the quantitative strength of the deflagration front in the overall ignition advancement.

  14. Cold fronts in the Colombian Caribbean Sea and their relationship to extreme wave events

    NASA Astrophysics Data System (ADS)

    Ortiz-Royero, J. C.; Otero, L. J.; Restrepo, J. C.; Ruiz, J.; Cadena, M.

    2013-11-01

    Extreme ocean waves in the Caribbean Sea are commonly related to the effects of storms and hurricanes during the months of June through November. The collapse of 200 m of the Puerto Colombia pier in March 2009 revealed the effects of meteorological phenomena other than storms and hurricanes that may be influencing the extreme wave regime in the Colombian Caribbean. The marked seasonality of these atmospheric fronts was established by analyzing the meteorological-marine reports of the Instituto de Hidrología, Meteorología y Estudios Ambientales of Colombia (IDEAM, based on its initials in Spanish) and the Centro de Investigación en Oceanografía y Meteorología of Colombia (CIOH, based on its initials in Spanish) during the last 16 yr. The highest number of cold fronts was observed during the months of January, February, and March, with 6 fronts occurring per year. An annual trend was observed and the highest number of fronts occurred in 2010 (20 in total); moreover, an annual strong relationship between the maximum average wave values and the cold fronts in the central zone of the Colombian Caribbean during the first three months of the year was established. In addition, the maximum values of the significant height produced by the passage of cold fronts during the last 16 yr were identified. Although the Colombian Caribbean has been affected by storms and hurricanes in the past, this research allows us to conclude that there is a strong relationship between cold fronts and the largest waves in the Colombian Caribbean during the last 16 yr, which have caused damage to coastal infrastructure. We verified that the passage of a cold front corresponded to the most significant extreme wave event of the last two decades in the Colombian Caribbean, which caused the structural collapse of the Puerto Colombia pier, located near the city of Barranquilla, between 5 and 10 March 2009. This information is invaluable when evaluating average and extreme wave regimes for the purpose of informing the design of structures in this region of the Caribbean.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carranza, Arturo; Gewin, Mariah; Pojman, John A., E-mail: japojman@lsu.edu

    In this study, we present an inexpensive and practical method that allows the monitoring and visualization of front polymerization, propagation, and dynamics. Commercially available europium-doped aluminum oxide powders were combined with video imaging to visualize free-radical propagating polymer fronts. In order to demonstrate the applicability of this method, frontal copolymerization reactions of propoxylated glycerin triacrylate (EB53), pentaerythritol triacrylate (PETA), and pentaerythritol tetra-acrylate (PETEA) with 1,1-Bis(tert-butylperoxy)-3,3,5-trimethylcyclohexane (Luperox 231®) as an initiator were studied and compared to the results obtained by IR imaging. Systems exhibiting higher filler loading, higher EB53 content, and less acrylated monomers showed a marked decrease in front velocity,more » while those with more acrylated monomers and higher crosslinking density showed a marked increase in front velocity. Finally, in order to show the potential of the imaging technique, we studied fronts propagating in planar and spherical geometries.« less

  16. Effect of surface thickness on the wetting front velocity during jet impingement surface cooling

    NASA Astrophysics Data System (ADS)

    Agrawal, Chitranjan; Gotherwal, Deepesh; Singh, Chandradeep; Singh, Charan

    2017-02-01

    A hot stainless steel (SS-304) surface of 450 ± 10 °C initial temperature is cooled with a normally impinging round water jet. The experiments have been performed for the surface of different thickness e.g. 1, 2, 3 mm and jet Reynolds number in the range of Re = 26,500-48,000. The cooling performance of the hot test surface is evaluated on the basis of wetting front velocity. The wetting front velocity is determined for 10-40 mm downstream spatial locations away from the stagnation point. It has been observed that the wetting front velocity increase with the rise in jet flow rate, however, diminishes towards the downstream spatial location and with the rise in surface thickness. The proposed correlation for the dimensionless wetting front velocity predicts the experimental data well within the error band of ±30 %, whereas, 75 % of experimental data lies within the range of ±20 %.

  17. Carcinogenicity of multi-walled carbon nanotubes: challenging issue on hazard assessment.

    PubMed

    Fukushima, Shoji; Kasai, Tatsuya; Umeda, Yumi; Ohnishi, Makoto; Sasaki, Toshiaki; Matsumoto, Michiharu

    2018-01-25

    This report reviews the carcinogenicity of multi-walled carbon nanotubes (MWCNTs) in experimental animals, concentrating on MWNT-7, a straight fibrous MWCNT. MWCNTs were administered to mice and rats by intraperitoneal injection, intrascrotal injection, subcutaneous injection, intratracheal instillation and inhalation. Intraperitoneal injection of MWNT-7 induced peritoneal mesothelioma in mice and rats. Intrascrotal injection induced peritoneal mesothelioma in rats. Intratracheal instillation of MWCNT-N (another straight fibrous MWCNT) induced both lung carcinoma and pleural mesothelioma in rats. In the whole body inhalation studies, in mice MWNT-7 promoted methylcholanthrene-initiated lung carcinogenesis. In rats, inhalation of MWNT-7 induced lung carcinoma and lung burdens of MWNT-7 increased with increasing concentration of airborne MWNT-7 and increasing duration of exposure. Straight, fibrous MWCNTs exerted carcinogenicity in experimental animals. Phagocytosis of MWCNT fibers by macrophages was very likely to be a principle factor in MWCNT lung carcinogenesis. Using no-observed-adverse-effect level-based approach, we calculated that the occupational exposure limit (OEL) of MWNT-7 for cancer protection is 0.15 μg/m 3 for a human worker. Further studies on the effects of the shape and size of MWCNT fibers and mode of action on the carcinogenicity are required.

  18. Hadron Spectra, Decays and Scattering Properties Within Basis Light Front Quantization

    NASA Astrophysics Data System (ADS)

    Vary, James P.; Adhikari, Lekha; Chen, Guangyao; Jia, Shaoyang; Li, Meijian; Li, Yang; Maris, Pieter; Qian, Wenyang; Spence, John R.; Tang, Shuo; Tuchin, Kirill; Yu, Anji; Zhao, Xingbo

    2018-07-01

    We survey recent progress in calculating properties of the electron and hadrons within the basis light front quantization (BLFQ) approach. We include applications to electromagnetic and strong scattering processes in relativistic heavy ion collisions. We present an initial investigation into the glueball states by applying BLFQ with multigluon sectors, introducing future research possibilities on multi-quark and multi-gluon systems.

  19. Comparing historic and modern forests on the Bitterroot Front

    Treesearch

    Michael G. Hartwell; Paul Alaback; Stephen F. Arno

    2000-01-01

    A study was initiated in 1995 to measure landscape changes in forest structures between 1900 and 1995. A systematic sampling system was used to collect data on three forested faces on the Bitterroot Front. Over 1,200 tree cores were taken on 216 plots between the elevation range of 4,500 to 7,500 feet. Historic forests were reconstructed through quantitative techniques...

  20. Shock front distortion and Richtmyer-Meshkov-type growth caused by a small preshock nonuniformity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Velikovich, A. L.; Wouchuk, J. G.; Huete Ruiz de Lira, C.

    The response of a shock front to small preshock nonuniformities of density, pressure, and velocity is studied theoretically and numerically. These preshock nonuniformities emulate imperfections of a laser target, due either to its manufacturing, like joints or feeding tubes, or to preshock perturbation seeding/growth, as well as density fluctuations in foam targets, ''thermal layers'' near heated surfaces, etc. Similarly to the shock-wave interaction with a small nonuniformity localized at a material interface, which triggers a classical Richtmyer-Meshkov (RM) instability, interaction of a shock wave with periodic or localized preshock perturbations distributed in the volume distorts the shape of the shockmore » front and can cause a RM-type instability growth. Explicit asymptotic formulas describing distortion of the shock front and the rate of RM-type growth are presented. These formulas are favorably compared both to the exact solutions of the corresponding initial-boundary-value problem and to numerical simulations. It is demonstrated that a small density modulation localized sufficiently close to a flat target surface produces the same perturbation growth as an 'equivalent' ripple on the surface of a uniform target, characterized by the same initial areal mass modulation amplitude.« less

  1. Analysis of Class II patients, successfully treated with the straight-wire and Forsus appliances, based on cervical vertebral maturation status.

    PubMed

    Servello, David F; Fallis, Drew W; Alvetro, Lisa

    2015-01-01

    To assess skeletal and dental changes in patients successfully treated with the Forsus appliance based on cervical vertebral maturation status. Forty-seven Class II patients, successfully treated with the Forsus appliance, were divided into peak and postpeak growth groups determined immediately prior to Forsus placement. The mean (SD) ages of the peak and postpeak groups were 13.4 (1.0) and 14.1 (1.3) years, respectively. Superimpositions of initial, Forsus placement, Forsus removal, and final cephalometric radiographs were completed, allowing the measurement of changes during three treatment phases. There were no significant differences between groups during treatment phase 1 (alignment/leveling), with both groups demonstrating a worsening of the Class II molar relationship. However, during treatment phase 2 (Class II correction), patients within the peak group demonstrated significantly higher mean apical base, mandibular and molar changes, and an increased rate of change compared with those in the postpeak group. No significant differences were observed during treatment phase 3 (detail/finishing). Following an initial worsening of the Class II molar relationship as a result of straight-wire appliance effects, Forsus appliance treatment initiated during cervical vertebral maturation status (CS) 3-4 elicits more effective and efficient correction of Class II molar relationships than when initiated during CS 5-6. Data support that these effects are due mainly to maxillary skeletal and dentoalveolar restraint during a period of more rapid mandibular growth.

  2. The influence of vegetation cover on debris-flow density during an extreme rainfall in the northern Colorado Front Range

    USGS Publications Warehouse

    Rengers, Francis K.; McGuire, Luke; Coe, Jeffrey A.; Kean, Jason W.; Baum, Rex L.; Staley, Dennis M.; Godt, Jonathan W.

    2016-01-01

    We explored regional influences on debris-flow initiation throughout the Colorado Front Range (Colorado, USA) by exploiting a unique data set of more than 1100 debris flows that initiated during a 5 day rainstorm in 2013. Using geospatial data, we examined the influence of rain, hillslope angle, hillslope aspect, and vegetation density on debris-flow initiation. In particular we used a greenness index to differentiate areas of high tree density from grass and bare soil. The data demonstrated an overwhelming propensity for debris-flow initiation on south-facing hillslopes. However, when the debris-flow density was analyzed with respect to total rainfall and greenness we found that most debris flows occurred in areas of high rainfall and low tree density, regardless of hillslope aspect. These results indicate that present-day tree density exerts a stronger influence on debris-flow initiation locations than aspect-driven variations in soil and bedrock properties that developed over longer time scales.

  3. Taking charge: front-line nurse leadership development.

    PubMed

    Schwarzkopf, Ruth; Sherman, Rose O; Kiger, Anna J

    2012-04-01

    The recent Institute of Medicine (2010) report, The Future of Nursing: Leading Change, Advancing Health, included a recommendation that nurses at all levels should be prepared and enabled to lead change to advance health care in the United States. Historically, in most organizations, nursing leadership development programs have focused on nurses in management or executive roles rather than those working in front-line leadership roles. This article describes a front-line leadership development initiative developed by Tenet Healthcare Corporation and attended by 400 charge nurses. Program development, evaluation, and lessons learned that can be applied in other organizations are discussed. Copyright 2012, SLACK Incorporated.

  4. Dynamic modelling and experimental validation of three wheeled tilting vehicles

    NASA Astrophysics Data System (ADS)

    Amati, Nicola; Festini, Andrea; Pelizza, Luigi; Tonoli, Andrea

    2011-06-01

    The present paper describes the study of the stability in the straight running of a three-wheeled tilting vehicle for urban and sub-urban mobility. The analysis was carried out by developing a multibody model in the Matlab/SimulinkSimMechanics environment. An Adams-Motorcycle model and an equivalent analytical model were developed for the cross-validation and for highlighting the similarities with the lateral dynamics of motorcycles. Field tests were carried out to validate the model and identify some critical parameters, such as the damping on the steering system. The stability analysis demonstrates that the lateral dynamic motions are characterised by vibration modes that are similar to that of a motorcycle. Additionally, it shows that the wobble mode is significantly affected by the castor trail, whereas it is only slightly affected by the dynamics of the front suspension. For the present case study, the frame compliance also has no influence on the weave and wobble.

  5. Characterizing the Severe Turbulence Environments Associated with Commercial Aviation Accidents. Part 2; Hydrostatic Mesobeta Scale Numerical Simulations of Supergradient Wind Flow and Streamwise Ageostrophic Frontogenesis

    NASA Technical Reports Server (NTRS)

    Kaplan, Michael L.; Huffman, Allan W.; Lux, Kevin M.; Cetola, Jeffrey D.; Charney, Joseph J.; Riordan, Allen J.; Lin, Yuh-Lang; Waight, Kenneth T., III; Proctor, Fred (Technical Monitor)

    2003-01-01

    Simulation experiments reveal key processes that organize a hydrostatic environment conducive to severe turbulence. The paradigm requires juxtaposition of the entrance region of a curved jet stream, which is highly subgeostrophic, with the entrance region of a straight jet stream, which is highly supergeostrophic. The wind and mass fields become misphased as the entrance regions converge resulting in the significant spatial variation of inertial forcing, centripetal forcing, and along- and cross-stream pressure gradient forcing over a mesobeta scale region. This results in frontogenesis and the along-stream divergence of cyclonic and convergence of cyclonic ageostrophic vertical vorticity. The centripetally forced mesoscale front becomes the locus of large gradients of ageostrophic vertical vorticity along an overturning isentrope. This region becomes favorable for streamwise vorticity gradient formation enhancing the environment for organization of horizontal vortex tubes in the presence of buoyant forcing.

  6. Water movement in glass bead porous media: 1. Experiments of capillary rise and hysteresis

    NASA Astrophysics Data System (ADS)

    Lu, T. X.; Biggar, J. W.; Nielsen, D. R.

    1994-12-01

    Experimental observations of capillary rise and hysteresis of water or ethanol in glass beads are presented to improve our understanding of those physical processes in porous media. The results provide evidence that capillary rise into porous media cannot be fully explained by a model of cylinders. They further demonstrate that the "Ink bottle" model does not provide an adequate explanation of hysteresis. Glass beads serving as a model for ideal soil are enclosed in a rectangular glass chamber model. A TV camera associated with a microscope was used to record the processes of capillary rise and drainage. It is clearly shown during capillary rise that the fluid exhibits a "jump" behavior at the neck of the pores in an initially dry profile or at the bottom of the water film in an initially wet profile. Under an initially dry condition, the jump initiates at the particle with smallest diameter. The jump process continues to higher elevations until at equilibrium the surface tensile force is balanced by the hydrostatic force. The wetting front at that time is readily observed as flat and saturated. Under an initially wet condition, capillary rise occurs as a water film thickening process associated with the jump process. Trapped air behind the wetting front renders the wetting front irregular and unsaturated. The capillary rise into an initially wet porous medium can be higher than that into an initially dry profile. During the drying process, large surface areas associated with the gas-liquid interface develop, allowing the porous medium to retain more water than during the wetting process at the same pressure. That mechanism explains better the hysteresis phenomenon in porous media in contrast to other mechanisms that now prevail.

  7. Interfacial Granular Intrusions

    NASA Astrophysics Data System (ADS)

    Linden, Paul; Zheng, Zhong; Huppert, Herbert; Vriend, Nathalie; Neufeld, Jerome

    2017-11-01

    We study experimentally the intrusion of light granular material into an inviscid fluid of greater density. Despite a rich set of related geophysical and environmental phenomena, such as the spreading of calved ice and volcanic ash and debris flows, there are few previous studies on this topic. We conduct a series of lock-release experiments of light spherical beads into a rectangular tank initially filled with either fresh water or salt water, and record the time evolution of the interface shape and the front location of the current of beads. In particular, we find that the front location obeys a power-law behaviour during an intermediate time period following the release of the lock before the nose of beads reaches a maximum runout distance within a finite time. We investigate the dependence of the scaling exponent and runout distance on the total amount of beads, the initial lock length, and the properties of the liquid that fills the tank in the experiments. Appropriate scaling arguments are provided to collapse the raw experimental data into universal curves, which can be used to describe the front dynamics of light granular intrusions with different size and buoyancy effects and initial aspect ratios.

  8. Boron removal and its concentration in aqueous solution through progressive freeze concentration.

    PubMed

    Wang, Li Pang

    2017-09-01

    This study explored the feasibility of progressive freeze concentration in boron removal and its concentration in aqueous solution. The influence of three key parameters in progressive freeze concentration on boron removal and concentration, namely, the advance speed of the ice front, the circumferential velocity of the stirrer, and the initial boron concentration, are investigated by conducting batch experiments. The results show that the effectiveness of boron removal increases with a lower advance speed of the ice front, a higher circumferential velocity of the stirrer, and a lower initial boron concentration. For a model boron solution with an initial concentration of 100 mg/L, the boron concentration in the ice phase after progressive freeze concentration is below 1 mg/L when the advance speed of the ice front is lower than 1 cm/h and the circumferential velocity of the stirrer is higher than 0.12 m/s. In addition, the concentration of boron in the liquid phase occurs simultaneously with progressive freeze concentration. Furthermore, the results also suggest that this method can be applied to the purification and concentration of not only organic molecules but also inorganic ions.

  9. Wave Impact on a Wall: Comparison of Experiments with Similarity Solutions

    NASA Astrophysics Data System (ADS)

    Wang, A.; Duncan, J. H.; Lathrop, D. P.

    2014-11-01

    The impact of a steep water wave on a fixed partially submerged cube is studied with experiments and theory. The temporal evolution of the water surface profile upstream of the front face of the cube in its center plane is measured with a cinematic laser-induced fluorescence technique using frame rates up to 4,500 Hz. For a small range of cube positions, the surface profiles are found to form a nearly circular arc with upward curvature between the front face of the cube and a point just downstream of the wave crest. As the crest approaches the cube, the effective radius of this portion of the profile decreases rapidly. At the same time, the portion of the profile that is upstream of the crest approaches a straight line with a downward slope of about 15°. As the wave impact continues, the circular arc shrinks to zero radius with very high acceleration and a sudden transition to a high-speed vertical jet occurs. This flow singularity is modeled with a power-law scaling in time, which is used to create a time-independent system of equations of motion. The scaled governing equations are solved numerically and the similarly scaled measured free surface shapes, are favorably compared with the solutions. The support of the Office of Naval Research is gratefully acknowledged.

  10. Multibody dynamics simulation of an all-wheel-drive motorcycle for handling and energy efficiency investigations

    NASA Astrophysics Data System (ADS)

    Griffin, J. W.; Popov, A. A.

    2018-07-01

    It is now possible, through electrical, hydraulic or mechanical means, to power the front wheel of a motorcycle. The aim of this is often to improve performance in limit-handling scenarios including off-road low-traction conditions and on-road high-speed cornering. Following on from research into active torque distribution in 4-wheeled vehicles, the possibility exists for efficiency improvements to be realised by reducing the total amount of energy dissipated as slip at the wheel-road contact. This paper presents the results of an investigation into the effect that varying the torque distribution ratio has on the energy consumption of the two-wheeled vehicle. A 13-degree of freedom multibody model was created, which includes the effects of suspension, aerodynamics and gyroscopic bodies. SimMechanics, from the MathWorks?, is used for automatic generation of equations of motion and time-domain simulation, in conjunction with MATLAB and Simulink. A simple driver model is used to control the speed and yaw rate of the motorcycle. The handling characteristics of the motorcycle are quantitatively analysed, and the impact of torque distribution on energy consumption is considered during straight line and cornering situations. The investigation has shown that only a small improvement in efficiency can be made by transferring a portion of the drive torque to the front wheel. Tyre longevity could be improved by reduced slip energy dissipation.

  11. Fatigue Response of Pretensioned Concrete Beams

    DTIC Science & Technology

    2003-08-01

    Dedication To my beautiful wife and children, whose love and support motivate my life’s endeavors. Acknowledgements I first offer appreciation to the Texas...7,058,000 Straight PS3 27.6 2,069,000 Straight PS4 27.6 4,173,000 Straight VP2 36.3 1,510,000 Straight VP3 27.6 2,926,000 Straight VP4 27.6 2,890,000 Straight

  12. Wood wastes and residues generated along the Colorado Front Range as a potential fuel source

    Treesearch

    Julie E. Ward; Kurt H. Mackes; Dennis L. Lynch

    2004-01-01

    Throughout the United States there is interest in utilizing renewable fuel sources as an alternative to coal and nat-ural gas. This project was initiated to determine the availability of wood wastes and residues for use as fuel in ce-ment kilns and power plants located along the Colorado Front Range. Research was conducted through literature searches, phone surveys,...

  13. National Space Weather Program Advances on Several Fronts

    NASA Astrophysics Data System (ADS)

    Gunzelman, Mark; Babcock, Michael

    2008-10-01

    The National Space Weather Program (NSWP; http://www.nswp.gov) is a U.S. federal government interagency initiative through the Office of the Federal Coordinator for Meteorology that was created to speed the improvement of space weather services for the nation. The Committee for Space Weather (CSW) under the NSWP has continued to advance the program on a number of fronts over the past 12 months.

  14. Geometrical shock dynamics, formation of singularities and topological bifurcations of converging shock fronts

    NASA Astrophysics Data System (ADS)

    Suramlishvili, Nugzar; Eggers, Jens; Fontelos, Marco

    2014-11-01

    We are concerned with singularities of the shock fronts of converging perturbed shock waves. Our considerations are based on Whitham's theory of geometrical shock dynamics. The recently developed method of local analysis is applied in order to determine generic singularities. In this case the solutions of partial differential equations describing the geometry of the shock fronts are presented as families of smooth maps with state variables and the set of control parameters dependent on Mach number, time and initial conditions. The space of control parameters of the singularities is analysed, the unfoldings describing the deformations of the canonical germs of shock front singularities are found and corresponding bifurcation diagrams are constructed. Research is supported by the Leverhulme Trust, Grant Number RPG-2012-568.

  15. Pre-patterned ZnO nanoribbons on soft substrates for stretchable energy harvesting applications

    NASA Astrophysics Data System (ADS)

    Ma, Teng; Wang, Yong; Tang, Rui; Yu, Hongyu; Jiang, Hanqing

    2013-05-01

    Three pre-patterned ZnO nanoribbons in different configurations were studied in this paper, including (a) straight ZnO nanoribbons uniformly bonded on soft substrates that form sinusoidal buckles, (b) straight ZnO nanoribbons selectively bonded on soft substrates that form pop-up buckles, and (c) serpentine ZnO nanoribbons bonded on soft substrates via anchors. The nonlinear dynamics and random analysis were conducted to obtain the fundamental frequencies and to evaluate their performance in energy harvesting applications. We found that pop-up buckles and overhanging serpentine structures are suitable for audio frequency energy harvesting applications. Remarkably, almost unchanged fundamental natural frequency upon strain is achieved by properly patterning ZnO nanoribbons, which initiates a new and exciting direction of stretchable energy harvesting using nano-scale materials in audio frequency range.

  16. Comparison of the initial orthodontic force systems produced by a new lingual bracket system and a straight-wire appliance.

    PubMed

    Fuck, Lars-Michael; Wiechmann, Dirk; Drescher, Dieter

    2005-09-01

    Over the last few years, lingual appliances have become an established orthodontic treatment technique. Many studies have concentrated on various esthetic aspects, on laboratory and clinical procedures, and on patient comfort and compliance. The orthodontic force systems of these appliances, however, have not yet been investigated. The aim of this study was thus to determine the forces and moments produced by a new lingual bracket system during the leveling phase of orthodontic treatment and to compare those with the corresponding force system of a labial straight-wire appliance. The intra-oral situation of ten patients undergoing orthodontic treatment was replicated in measurement casts fitted with lingual and labial brackets. Special care was taken to precisely reproduce each patient's interbracket geometry. We measured each tooth's force systems as generated by a leveling arch inserted into the lingual and labial brackets. The resulting force systems of both appliances were found to be quite similar with regard to the magnitude of most force and moment components. Only the first molars were subjected to considerably greater single forces with the lingual appliance. Tipping moments were found to be significantly smaller with the lingual technique, whereas the rotational moments were significantly smaller with the labial appliance. All in all we noted significant differences between the two techniques only in certain areas which upon closer examination were distributed over only a few tooth types. The initial force systems produced by the new lingual bracket system proved to be comparable with those delivered by a conventional straight-wire appliance. The actual levels of forces and moments, however, were found in certain cases to be too heavy with both techniques. We therefore recommend the development of leveling wires producing considerably lighter forces and moments.

  17. Observations of a tidal intrusion front in a tidal channel

    NASA Astrophysics Data System (ADS)

    Lu, Shasha; Xia, Xiaoming; Thompson, Charlie E. L.; Cao, Zhenyi; Liu, Yifei

    2017-11-01

    A visible front indicated by a surface colour change, and sometimes associated with foam or debris lines, was observed in a tidal channel during neap tide. This is an example of a tidal intrusion front occurring in the absence of sudden topographical changes or reversing flows, typically reported to be associated with such fronts. Detailed Acoustic Doppler Current Profiler and conductivity/temperature/depth measurements were taken on repeated transects both with fronts apparent and with fronts absent. The results indicated that the front occurred as a result of stratification, which was sustained by the buoyancy flux and the weak tide-induced mixing during neap ebb tide. The stronger tide-induced mixing during spring tide restrained stratification, leading to the absence of a front. The mechanism of the frontogenesis was the density gradient between the stratified water formed during neap ebb tide, and the more mixed seawater during neap flood tide; thus, the water on the landward (southwestern) side of the front was stratified, and that on the seaward side (northeastern) of the front was vertically well mixed. Gradient Richardson number estimates suggest that the flow between the stratified and mixed water was near the threshold 0.25 for shear instability. Meanwhile, the density gradient would provide an initial baroclinic contribution to velocity convergence, which is indicated by the accumulation of buoyant matter such as foam, grass, and debris into a sharply defined line along the surface. The front migrates with the flood current, with a local maximum towards the eastern side of the channel, leading to an asymmetrical shape with the eastern side of the front driven further into the Tiaozhoumen tidal channel.

  18. Shock wave viscosity measurements

    NASA Astrophysics Data System (ADS)

    Celliers, Peter

    2013-06-01

    Several decades ago a method was proposed and demonstrated to measure the viscosity of fluids at high pressure by observing the oscillatory damping of sinusoidal perturbations on a shock front. A detailed mathematical analysis of the technique carried out subsequently by Miller and Ahrens revealed its potential, as well as a deep level of complexity in the analysis. We revisit the ideas behind this technique in the context of a recent experimental development: two-dimensional imaging velocimetry. The new technique allows one to capture a broad spectrum of perturbations down to few micron scale-lengths imposed on a shock front from an initial perturbation. The detailed evolution of the perturbation spectrum is sensitive to the viscosity in the fluid behind the shock front. Initial experiments are aimed at examining the viscosity of shock compressed SiO2 just above the shock melting transition. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ihara, Hidetoshi; Miwa, Megumi; Deya, Keizo

    The purpose of this study was to evaluate using MRI the natural healing of the anterior cruciate ligament (ACL) when treated conservatively by early protective motion. Consecutive acute complete intraligamentous ruptures of the ACL in 50 cases that were allowed to heal without surgery were evaluated before and after 3 month treatment by MRI, arthroscopy, and stress radiographs. Twenty-nine of the 50 patients were also reevaluated 11 months from the initial injury, of which 7 were reevaluated again 24 months from the initial injury by MRI. The MR appearance of the treated ACL was categorized into four grades depending onmore » homogeneity, straight band, and size. MR assessment of the ACL after 3 month treatment demonstrated a well defined normal-sized straight band in 37 cases (74%). There was a significant relationship between the 3 and 11 month MR evaluations (r. = 0.801, p < 0.0001). There were also significant relationships between the MR and arthroscopic evaluations (r, = 0.455, p < 0.005) and between the MR and stress radiographic evaluations (r, = 0.348, p < 0.025) after the 3 month treatment. MRI can demonstrate ACL healing when treated conservatively with early protective mobilization. 40 refs., 3 figs., 2 tabs.« less

  20. Characterization and effects of cold fronts in the Colombian Caribbean Coast and their relationship to extreme wave events

    NASA Astrophysics Data System (ADS)

    Ortiz-Royero, J. C.; Otero, L. J.; Restrepo, J. C.; Ruiz, J.; Cadena, M.

    2013-07-01

    Extreme ocean waves in the Caribbean Sea are commonly related to the effects of storms and hurricanes during the months of June through November. The collapse of 200 m of the Puerto Colombia pier in March 2009 revealed the effects of meteorological phenomena other than storms and hurricanes that may be influencing the extreme wave regime in the Colombian Caribbean. The marked seasonality of these atmospheric fronts was established by analyzing the meteorological-marine reports of Instituto de Hidrología, Meteorología y Estudios Ambientales of Colombia (IDEAM, based on its initials in Spanish) and Centro de Investigación en Oceanografía y Meteorología of Colombia (CIOH, based on its initials in Spanish). The highest occurrences were observed during the months of January, February, and March, with 6 fronts occurring per year. An annual trend was not observed, although the highest number of fronts occurred in 2010 (20 in total). An annual strong relationship between the maximum average wave values and the cold fronts, in the central zone of the Colombian Caribbean during the first three months of the year was established. In addition, the maximum values of the significant height produced by the passage of cold fronts during the last 16 yr were identified. Although the Colombian Caribbean has been affected by storms and hurricanes in the past, this research allows us to conclude that, there is a strong relationship between cold fronts and the largest waves in the Colombian Caribbean during the last 16 yr, which have caused damage to coastal infrastructure. We verified that the passage of a cold front corresponded to the most significant extreme wave event of the last two decades in the Colombian Caribbean, which caused the structural collapse of the Puerto Colombia pier, located near the city of Barranquilla, between 5 and 10 March 2009. This information is invaluable when evaluating average and extreme wave regimes for the purpose of informing the design of structures in this region of the Caribbean.

  1. Defibrillation depends on conductivity fluctuations and the degree of disorganization in reentry patterns.

    PubMed

    Plank, Gernot; Leon, L Joshua; Kimber, Shane; Vigmond, Edward J

    2005-02-01

    Defibrillation depends on conductivity and disorganization. Cardiac fibrillation is the deterioration of the heart's normally well-organized activity into one or more meandering spiral waves, which subsequently break up into many meandering wave fronts. Delivery of an electric shock (defibrillation) is the only effective way of restoring the normal rhythm. This study focuses on examining whether higher degrees of disorganization requires higher shock strengths to defibrillate and whether microscopic conductivity fluctuations favor shock success. We developed a three-dimensional computer bidomain model of a block of cardiac tissue with straight fibers immersed in a conductive bath. The membrane behavior was described by the Courtemanche human atrial action potential model incorporating electroporation and an acetylcholine- (ACh) dependent potassium current. Intracellular conductivities were varied stochastically around nominal values with variations of up to 50%. A single rotor reentry was initiated and, by adjusting the spatial ACh variation, the level of organization could be controlled. The single rotor could be stabilized or spiral wave breakup could be provoked leading to fibrillatory-like activity. For each level of organization, multiple shock timings and strengths were applied to compute the probability of shock success as a function of shock strength. Our results suggest that the level of the small-scale conductivity fluctuations is a very important factor in defibrillation. A higher variation significantly lowers the required shock strength. Further, we demonstrated that success also heavily depends on the level of organization of the fibrillatory episode. In general, higher levels of disorganization require higher shock strengths to defibrillate.

  2. Photographic laboratory studies of explosions.

    NASA Technical Reports Server (NTRS)

    Kamel, M. M.; Oppenheim, A. K.

    1973-01-01

    Description of a series of cinematographic studies of explosions made with a high-speed rotating-mirror streak camera which uses a high-frequency stroboscopic ruby laser as the light source. The results obtained mainly concern explosions initiated by focused laser irradiation from a pulsed neodymium laser in a detonating gas consisting essentially of an equimolar mixture of acetylene and oxygen at an initial pressure of 100 torr at room temperature. Among the most significant observations were observations of a spherical blast wave preceded by a Chapman-Jouguet detonation which is stabilized immediately after initiation, the merging of a spherical flame with a shock front of the blast wave in which the flame is propagating, the division of a spherical detonation front into a shock wave and flame, and the generation of shock waves by a network of spherical flames.

  3. The formation and evolution of reconnection-driven, slow-mode shocks in a partially ionised plasma

    NASA Astrophysics Data System (ADS)

    Hillier, A.; Takasao, S.; Nakamura, N.

    2016-06-01

    The role of slow-mode magnetohydrodynamic (MHD) shocks in magnetic reconnection is of great importance for energy conversion and transport, but in many astrophysical plasmas the plasma is not fully ionised. In this paper, we use numerical simulations to investigate the role of collisional coupling between a proton-electron, charge-neutral fluid and a neutral hydrogen fluid for the one-dimensional (1D) Riemann problem initiated in a constant pressure and density background state by a discontinuity in the magnetic field. This system, in the MHD limit, is characterised by two waves. The first is a fast-mode rarefaction wave that drives a flow towards a slow-mode MHD shock wave. The system evolves through four stages: initiation, weak coupling, intermediate coupling, and a quasi-steady state. The initial stages are characterised by an over-pressured neutral region that expands with characteristics of a blast wave. In the later stages, the system tends towards a self-similar solution where the main drift velocity is concentrated in the thin region of the shock front. Because of the nature of the system, the neutral fluid is overpressured by the shock when compared to a purely hydrodynamic shock, which results in the neutral fluid expanding to form the shock precursor. Once it has formed, the thickness of the shock front is proportional to ξ I-1.2 , which is a smaller exponent than would be naively expected from simple scaling arguments. One interesting result is that the shock front is a continuous transition of the physical variables of subsonic velocity upstream of the shock front (a c-shock) to a sharp jump in the physical variables followed by a relaxation to the downstream values for supersonic upstream velocity (a j-shock). The frictional heating that results from the velocity drift across the shock front can amount to ~2 per cent of the reference magnetic energy.

  4. Automatic low-order aberrations compensator for a conduction-cooled end-pumped solid-state zigzag slab laser

    NASA Astrophysics Data System (ADS)

    Yu, Xin; Dong, Lizhi; Lai, Boheng; Yang, Ping; Wang, Shuai; Wang, Xun; Liu, Yong; Tang, Guomao; Xu, Bing

    2017-11-01

    In order to solve the problem of large low-order aberrations with solid-state zigzag slab lasers, an automatic compensator has been developed in this paper. In this compensator, three lenses are mounted on a motorized rail, whose positions can be obtained using ray tracing method based on the beam parameters detected by a wave-front sensor. The initial peak to valley (PV) values of the wave-front range up to several tens of microns. Both simulated and experimental results show that the PV values of the wave-front can be reduced to around 1 . 6 μm with the proposed automatic compensator.

  5. The Role of Moderate Muslims in Combating Violent Jihad

    DTIC Science & Technology

    2007-12-01

    military removed Benjedid Chadli and canceled parliamentary elections in 1992, which the Front Islamique du Salut (FIS), with its platform of governing by...capitulation to the violence that preceded these restrictions (Willis, 1996, p. 78). Chadli also initiated state- financed mosque construction and...party called Front Islamique du Salut (FIS) was formed in February 1989 with Madani as its president and Belhadj, a preacher from Algiers, as his

  6. Effect of saline waste solution infiltration rates on uranium retention and spatial distribution in Hanford sediments.

    PubMed

    Wan, Jiamin; Tokunaga, Tetsu K; Kim, Yongman; Wang, Zheming; Lanzirotti, Antonio; Saiz, Eduardo; Serne, R Jeffrey

    2008-03-15

    The accidental overfilling of waste liquid from tank BX-102 at the Hanford Site in 1951 put about 10 t of U(VI) into the vadose zone. In order to understand the dominant geochemical reactions and transport processes that occurred during the initial infiltration and to help understand current spatial distribution, we simulated the waste liquid spilling event in laboratory sediment columns using synthesized metal waste solution. We found that, as the plume propagated through sediments, pH decreased greatly (as much as 4 units) at the moving plume front. Infiltration flow rates strongly affect U behavior. Slower flow rates resulted in higher sediment-associated U concentrations, and higher flow rates (> or =5 cm/day) permitted practically unretarded U transport. Therefore, given the very high Ksat of most of Hanford formation, the low permeability zones within the sediment could have been most important in retaining high concentrations of U during initial release into the vadose zone. Massive amount of colloids, including U-colloids, formed at the plume fronts. Total U concentrations (aqueous and colloid) within plume fronts exceeded the source concentration by up to 5-fold. Uranium colloid formation and accumulation at the neutralized plume front could be one mechanism responsible for highly heterogeneous U distribution observed in the contaminated Hanford vadose zone.

  7. Europium-doped aluminum oxide phosphors as indicators for frontal polymerization dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carranza, Arturo; Gewin, Mariah; Pojman, John A., E-mail: japojman@lsu.edu

    2014-06-15

    In this study, we present an inexpensive and practical method that allows the monitoring and visualization of front polymerization, propagation, and dynamics. Commercially available europium-doped aluminum oxide powders were combined with video imaging to visualize free-radical propagating polymer fronts. In order to demonstrate the applicability of this method, frontal copolymerization reactions of propoxylated glycerin triacrylate (EB53), pentaerythritol triacrylate (PETA), and pentaerythritol tetra-acrylate (PETEA) with 1,1-Bis(tert-butylperoxy)-3,3,5-trimethylcyclohexane (Luperox 231®) as an initiator were studied and compared to the results obtained by IR imaging. Systems exhibiting higher filler loading, higher EB53 content, and less acrylated monomers showed a marked decrease in front velocity,more » while those with more acrylated monomers and higher crosslinking density showed a marked increase in front velocity. Finally, in order to show the potential of the imaging technique, we studied fronts propagating in planar and spherical geometries.« less

  8. Rapid acceleration of protons upstream of earthward propagating dipolarization fronts

    PubMed Central

    Ukhorskiy, AY; Sitnov, MI; Merkin, VG; Artemyev, AV

    2013-01-01

    [1] Transport and acceleration of ions in the magnetotail largely occurs in the form of discrete impulsive events associated with a steep increase of the tail magnetic field normal to the neutral plane (Bz), which are referred to as dipolarization fronts. The goal of this paper is to investigate how protons initially located upstream of earthward moving fronts are accelerated at their encounter. According to our analytical analysis and simplified two-dimensional test-particle simulations of equatorially mirroring particles, there are two regimes of proton acceleration: trapping and quasi-trapping, which are realized depending on whether the front is preceded by a negative depletion in Bz. We then use three-dimensional test-particle simulations to investigate how these acceleration processes operate in a realistic magnetotail geometry. For this purpose we construct an analytical model of the front which is superimposed onto the ambient field of the magnetotail. According to our numerical simulations, both trapping and quasi-trapping can produce rapid acceleration of protons by more than an order of magnitude. In the case of trapping, the acceleration levels depend on the amount of time particles stay in phase with the front which is controlled by the magnetic field curvature ahead of the front and the front width. Quasi-trapping does not cause particle scattering out of the equatorial plane. Energization levels in this case are limited by the number of encounters particles have with the front before they get magnetized behind it. PMID:26167430

  9. 26 CFR 1.167(b)-1 - Straight line method.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 26 Internal Revenue 2 2014-04-01 2014-04-01 false Straight line method. 1.167(b)-1 Section 1.167(b... Straight line method. (a) In general. Under the straight line method the cost or other basis of the... may be reduced to a percentage or fraction. The straight line method may be used in determining a...

  10. Concepts for a Muon Accelerator Front-End

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stratakis, Diktys; Berg, Scott; Neuffer, David

    2017-03-16

    We present a muon capture front-end scheme for muon based applications. In this Front-End design, a proton bunch strikes a target and creates secondary pions that drift into a capture channel, decaying into muons. A series of rf cavities forms the resulting muon beams into a series of bunches of differerent energies, aligns the bunches to equal central energies, and initiates ionization cooling. We also discuss the design of a chicane system for the removal of unwanted secondary particles from the muon capture region and thus reduce activation of the machine. With the aid of numerical simulations we evaluate themore » performance of this Front-End scheme as well as study its sensitivity against key parameters such as the type of target, the number of rf cavities and the gas pressure of the channel.« less

  11. Spatiotemporal complexity of 2-D rupture nucleation process observed by direct monitoring during large-scale biaxial rock friction experiments

    NASA Astrophysics Data System (ADS)

    Fukuyama, Eiichi; Tsuchida, Kotoyo; Kawakata, Hironori; Yamashita, Futoshi; Mizoguchi, Kazuo; Xu, Shiqing

    2018-05-01

    We were able to successfully capture rupture nucleation processes on a 2-D fault surface during large-scale biaxial friction experiments using metagabbro rock specimens. Several rupture nucleation patterns have been detected by a strain gauge array embedded inside the rock specimens as well as by that installed along the edge walls of the fault. In most cases, the unstable rupture started just after the rupture front touched both ends of the rock specimen (i.e., when rupture front extended to the entire width of the fault). In some cases, rupture initiated at multiple locations and the rupture fronts coalesced to generate unstable ruptures, which could only be detected from the observation inside the rock specimen. Therefore, we need to carefully examine the 2-D nucleation process of the rupture especially when analyzing the data measured only outside the rock specimen. At least the measurements should be done at both sides of the fault to identify the asymmetric rupture propagation on the fault surface, although this is not perfect yet. In the present experiment, we observed three typical types of the 2-D rupture propagation patterns, two of which were initiated at a single location either close to the fault edge or inside the fault. This initiation could be accelerated by the free surface effect at the fault edge. The third one was initiated at multiple locations and had a rupture coalescence at the middle of the fault. These geometrically complicated rupture initiation patterns are important for understanding the earthquake nucleation process in nature.

  12. Evolution of treatment mechanics and contemporary appliance design in orthodontics: A 40-year perspective.

    PubMed

    McLaughlin, Richard P; Bennett, John C

    2015-06-01

    Until the early 1970s, successful treatment with the Begg technique and the Tweed edgewise technique required tedious wire bending. The introduction of Andrews' straight wire appliance changed that, and it was one of the most significant contributions in the history of orthodontics. The straight wire appliance significantly reduced the amount of wire bending and also brought along other options in treatment mechanics. Retraction of the canines with elastic chains and ligature wires became more common. Sliding mechanics in place of closing loops became the method of space closure for a significant number of clinicians. Edgewise force levels were initially used to close spaces; however, it was soon observed that lighter forces were more effective with sliding mechanics. Along with these changes, it became apparent that compensation in the appliance was needed, depending on the type of malocclusion and particularly with varying extraction sequences. Various appliance designs were developed to accommodate changes in mechanics and force levels. These modifications improved tooth positions at the end of treatment as long as the brackets were properly placed. These major changes in appliances, force levels, and treatment mechanics can be traced back to the work of Dr Lawrence Andrews and the straight wire appliances. Copyright © 2015 American Association of Orthodontists. Published by Elsevier Inc. All rights reserved.

  13. Neural attention and evaluative responses to gay and lesbian couples.

    PubMed

    Dickter, Cheryl L; Forestell, Catherine A; Mulder, Blakely E

    2015-01-01

    The goal of the current study was to examine whether differential neural attentional capture and evaluative responses for out-group homosexual relative to in-group heterosexual targets occur during social categorization. To this end, 36 heterosexual participants were presented with pictures of heterosexual and homosexual couples in a picture-viewing task that was designed to assess implicit levels of discomfort toward homosexuality and explicit evaluations of pleasantness toward the images. Neural activity in the form of electroencephalogram was recorded during the presentation of the pictures, and event-related potentials resulting from these stimuli were examined. Participants also completed questionnaires that assessed the degree to which they socialized with gays and lesbians. Results demonstrated that relative to straight couples, larger P2 amplitude was observed in response to gay but not to lesbian couples. However, both gay and lesbian couples yielded a larger late positive potential than straight couples. Moreover, the degree to which participants differentially directed early neural attention to out-group lesbian versus in-group straight couples was related to their familiarity with homosexual individuals. This work, which provides an initial understanding of the neural underpinnings of attention toward homosexual couples, suggests that differences in the processing of sexual orientation can occur as early as 200 ms and may be moderated by familiarity.

  14. Polarization and wavelength diversities of Gulf Stream fronts imaged by AIRSAR

    NASA Technical Reports Server (NTRS)

    Lee, J. S.; Jansen, R. W.; Marmorino, G. O.; Chubb, S. R.

    1995-01-01

    During the 1990 Gulf Stream Experiment, NASA/JPL AIRSAR imaged the north edge of the Gulf Stream near the coast of Virginia. Simultaneous in-situ measurements of currents, temperatures, salinities, etc. were made for several crossings of the north edge by the R/V Cape Henlopen. Measurements identified two fronts with shearing and converging flows. The polarimetric SAR images from the fronts showed two bright linear features. One of them corresponds to the temperature front, which separated the warm Gulf Stream water to the south from a cool, freshwater filament to the north. The other line, located about 8 km north of the temperature front, is believed to correspond to the velocity front between the filament and the slope water. At these fronts, wave-current interactions produced narrow bands of steep and breaking waves manifesting higher radar returns in polarimetric SAR images. In general, our AIRSAR imagery shows that the signal-to-clutter ratio of radar cross sections for the temperature front is higher than that of the velocity front. In this paper, we study the polarization and wavelength diversities of radar response of these two fronts using the P-, L-, and C-Band Polarimetric SAR data. The north-south flight path of the AIRSAR crossed the temperature front several times and provided valuable data for analysis. Three individual passes are investigated. We found that for the temperature front, the cross-pol (HV) responses are much higher than co-pol responses (VV and HH), and that P-Band HV has the highest signal to clutter ratio. For the velocity front, the ratio is the strongest in P-Band VV, and it is indistinguishable for all polarizations in C-Band. The radar cross sections for all three polarization (HH, HV, and VV) and for all three bands are modelled using an ocean wave model and a composite Bragg scattering model. In our initial investigations, the theoretical model agrees qualitatively with the AIRSAR observations.

  15. Non-scaling fixed field alternating gradient permanent magnet cancer therapy accelerator

    DOEpatents

    Trbojevic, Dejan

    2017-05-23

    A non-scaling fixed field alternating gradient accelerator includes a racetrack shape including a first straight section connected to a first arc section, the first arc section connected to a second straight section, the second straight section connected to a second arc section, and the second arc section connected to the first straight section; an matching cells configured to match particle orbits between the first straight section, the first arc section, the second straight section, and the second arc section. The accelerator includes the matching cells and an associated matching procedure enabling the particle orbits at varying energies between an arc section and a straight section in the racetrack shape.

  16. Method of fabricating vertically aligned group III-V nanowires

    DOEpatents

    Wang, George T; Li, Qiming

    2014-11-25

    A top-down method of fabricating vertically aligned Group III-V micro- and nanowires uses a two-step etch process that adds a selective anisotropic wet etch after an initial plasma etch to remove the dry etch damage while enabling micro/nanowires with straight and smooth faceted sidewalls and controllable diameters independent of pitch. The method enables the fabrication of nanowire lasers, LEDs, and solar cells.

  17. An Investigation of Synthetic Aperture Radar Autofocus,

    DTIC Science & Technology

    1985-04-01

    uniform straight line motion of the aircraft. Unknown aircraft motions alter the matched filter required for processing . Autofocussing involves determi...REFERENCES APPENDIX 1 RESOLUTION OF SAR APPENDIX 2 AIRCRAFT MOTION TOLERANCE APPENDIX 3 INITIAL RESOLUTION FOR FOLLOW-DOWN PROCESSING APPENDIX 4 DEPENDENCE OF...Range resolution is achieved using on-board pulse-compression techniques, while azimuth processing is currently done at RSRE on a Marconi hardware

  18. MHD Modelling of Coronal Loops: Injection of High-Speed Chromospheric Flows

    NASA Technical Reports Server (NTRS)

    Petralia, A.; Reale, F.; Orlando, S.; Klimchuk, J. A.

    2014-01-01

    Context. Observations reveal a correspondence between chromospheric type II spicules and bright upward-moving fronts in the corona observed in the extreme-ultraviolet (EUV) band. However, theoretical considerations suggest that these flows are probably not the main source of heating in coronal magnetic loops. Aims. We investigate the propagation of high-speed chromospheric flows into coronal magnetic flux tubes and the possible production of emission in the EUV band. Methods. We simulated the propagation of a dense 104 K chromospheric jet upward along a coronal loop by means of a 2D cylindrical MHD model that includes gravity, radiative losses, thermal conduction, and magnetic induction. The jet propagates in a complete atmosphere including the chromosphere and a tenuous cool (approximately 0.8 MK) corona, linked through a steep transition region. In our reference model, the jet initial speed is 70 km per second, its initial density is 10(exp 11) per cubic centimeter, and the ambient uniform magnetic field is 10 G. We also explored other values of jet speed and density in 1D and different magnetic field values in 2D, as well as the jet propagation in a hotter (approximately 1.5 MK) background loop. Results. While the initial speed of the jet does not allow it to reach the loop apex, a hot shock-front develops ahead of it and travels to the other extreme of the loop. The shock front compresses the coronal plasma and heats it to about 10(exp 6) K. As a result, a bright moving front becomes visible in the 171 Angstrom channel of the SDO/AIA mission. This result generally applies to all the other explored cases, except for the propagation in the hotter loop. Conclusions. For a cool, low-density initial coronal loop, the post-shock plasma ahead of upward chromospheric flows might explain at least part of the observed correspondence between type II spicules and EUV emission excess.

  19. Liquid Fuels: Pyrolytic Degradation and Fire Spread Behavior as Influenced by Buoyancy

    NASA Technical Reports Server (NTRS)

    Ross, Howard D. (Technical Monitor); Yeboah, Yaw D.

    2003-01-01

    This project was conducted by the Combustion and Emission Control Lab in the Engineering Department at Clark Atlanta University under NASA Grant No. NCC3-707. The work aimed at providing data to supplement the ongoing NASA research activities on flame spread across liquid pools by providing flow visualization and velocity measurements especially in the gas phase and gas-liquid interface. During this investigation, the detailed physics of flame spread across liquid pools was revealed using particle image velocimetry (PIV), 3-dimensional Laser Doppler velocimetry (LDV) and high-speed video imaging system (HSVS). Flow fields (front and side views) of both the liquid and gas phases were visually investigated for the three subflash regimes of flame spread behavior. Some interesting findings obtained from the front and side views on flame spread across butanol pools are presented. PIV results showed the size of the transient vortex in the liquid phase near the flame front varied with the initial pool temperature. The transient vortex ahead of the flame front in the gas phase was, for the first time, clearly observed located just within 0-3 mm above the liquid surface and its size was dependent on the initial pool temperature. We calculated the flow velocity at 1 mm below the liquid surface near the flame front and inferred the generation mechanism of the vortex in the gas phase. Finally, after comparison of the flow velocity of the liquid surface and the flame spread rate, a reasonable explanation to the formation mechanism of the pulsating characteristic was proposed. This explanation is compatible with the previous numerical calculations and deductions.

  20. Radiation-MHD Simulations of Pillars and Globules in HII Regions

    NASA Astrophysics Data System (ADS)

    Mackey, J.

    2012-07-01

    Implicit and explicit raytracing-photoionisation algorithms have been implemented in the author's radiation-magnetohydrodynamics code. The algorithms are described briefly and their efficiency and parallel scaling are investigated. The implicit algorithm is more efficient for calculations where ionisation fronts have very supersonic velocities, and the explicit algorithm is favoured in the opposite limit because of its better parallel scaling. The implicit method is used to investigate the effects of initially uniform magnetic fields on the formation and evolution of dense pillars and cometary globules at the boundaries of HII regions. It is shown that for weak and medium field strengths an initially perpendicular field is swept into alignment with the pillar during its dynamical evolution, matching magnetic field observations of the ‘Pillars of Creation’ in M16. A strong perpendicular magnetic field remains in its initial configuration and also confines the photoevaporation flow into a bar-shaped, dense, ionised ribbon which partially shields the ionisation front.

  1. Reaction Buildup of PBX Explosives JOB-9003 under Different Initiation Pressures

    NASA Astrophysics Data System (ADS)

    Zhang, Xu; Wang, Yan-fei; Hung, Wen-bin; Gu, Yan; Zhao, Feng; Wu, Qiang; Yu, Xin; Yu, Heng

    2017-04-01

    Aluminum-based embedded multiple electromagnetic particle velocity gauge technique has been developed in order to measure the shock initiation behavior of JOB-9003 explosives. In addition, another gauge element called a shock tracker has been used to monitor the progress of the shock front as a function of time, thus providing a position-time trajectory of the wave front as it moves through the explosive sample. The data are used to determine the position and time for shock to detonation transition. All the experimental results show that: the rising-up time of Al-based electromagnetic particle velocity gauge was very fast and less than 20 ns; the reaction buildup velocity profiles and the position-time for shock to detonation transition of HMX-based PBX explosive JOB-9003 with 1-8 mm depth from the origin of impact plane under different initiation pressures are obtained with high accuracy.

  2. Exploring the complexity of quantum control optimization trajectories.

    PubMed

    Nanduri, Arun; Shir, Ofer M; Donovan, Ashley; Ho, Tak-San; Rabitz, Herschel

    2015-01-07

    The control of quantum system dynamics is generally performed by seeking a suitable applied field. The physical objective as a functional of the field forms the quantum control landscape, whose topology, under certain conditions, has been shown to contain no critical point suboptimal traps, thereby enabling effective searches for fields that give the global maximum of the objective. This paper addresses the structure of the landscape as a complement to topological critical point features. Recent work showed that landscape structure is highly favorable for optimization of state-to-state transition probabilities, in that gradient-based control trajectories to the global maximum value are nearly straight paths. The landscape structure is codified in the metric R ≥ 1.0, defined as the ratio of the length of the control trajectory to the Euclidean distance between the initial and optimal controls. A value of R = 1 would indicate an exactly straight trajectory to the optimal observable value. This paper extends the state-to-state transition probability results to the quantum ensemble and unitary transformation control landscapes. Again, nearly straight trajectories predominate, and we demonstrate that R can take values approaching 1.0 with high precision. However, the interplay of optimization trajectories with critical saddle submanifolds is found to influence landscape structure. A fundamental relationship necessary for perfectly straight gradient-based control trajectories is derived, wherein the gradient on the quantum control landscape must be an eigenfunction of the Hessian. This relation is an indicator of landscape structure and may provide a means to identify physical conditions when control trajectories can achieve perfect linearity. The collective favorable landscape topology and structure provide a foundation to understand why optimal quantum control can be readily achieved.

  3. The influence of abutment angulation on screw loosening of implants in the anterior maxilla.

    PubMed

    Ha, Chun-Yeo; Lim, Yung-Jun; Kim, Myung-Joo; Choi, Jung-Han

    2011-01-01

    This study compared the removal torque values (RTVs) of different abutments (straight, angled, and gold premachined UCLA-type) in external- and internal-hex implants after dynamic cyclic loading with the clinical situation of the anterior maxilla simulated. An ideal cast of a maxilla with a missing right central incisor was fabricated in dental stone, and an implant analog was embedded in this model at a 15-degree angle labial to the long axis of the left central incisor. Thirty external-hex and 30 internal-hex implants were used. A total of 10 straight abutments, 10 angled abutments, and 10 gold premachined UCLA-type abutments of each system and 60 abutment screws were tested. Initial RTVs were measured after each assembly was tightened to 30 Ncm. Straight abutments and angled abutments were prepared and gold-premachined UCLA-type abutments were waxed and cast with low-fusing gold alloy for the central incisor. RTVs were then measured again. After each assembly was tightened, a metal crown was temporarily cemented. After cyclic loading of 20 to 200 N was applied 1 million times, RTVs were measured for a third time. Statistical analysis (alpha = .05) was performed to evaluate the results. The angled abutment group showed significantly higher RTVs than the straight abutment and gold premachined UCLA-type abutment groups in external-hex implants. However, no significant difference in RTVs was found among abutments in internal-hex implants. The time of analysis of RTV was found to significantly influence mean RTVs. Mean RTVs of external- and internal-hex implants showed significant differences. Within the limitations of this study, there were significant differences in RTVs among different abutment groups in external-hex implants. There were no significant differences in RTVs among different abutment groups in internal-hex implants.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peralta, Pedro; Fortin, Elizabeth; Opie, Saul

    Activities for this grant included: 1) Development of dynamic impact experiments to probe strength and phase transition influence on dynamic deformation, 2) development of modern strength and phase aware simulation capabilities, 3) and post-processing of experimental data with simulation and closed form analytical techniques. Two different dynamic experiments were developed to probe material strengths in solid metals (largely copper and iron in this effort). In the first experiment a flyer plate impacts a flat target with an opposite rippled surface that is partially supported by a weaker window material. Post mortem analysis of the target sample showed a strong andmore » repeatable residual plastic deformation dependence on grain orientation. Yield strengths for strain rates near 10 5 s -1 and plastic strains near ~50% were estimated to be around 180 to 240 MPa, varying in this range with grain orientation. Unfortunately dynamic real-time measurements were difficult with this setup due to diagnostic laser scattering; hence, an additional experimental setup was developed to complement these results. In the second set of experiments a rippled surface was ablated by a controlled laser pulsed, which launched a rippled shock front to an opposite initially flat diagnostic surface that was monitored in real-time with spatially resolved velocimetry techniques, e.g., line VISAR in addition to Transient Imaging Displacement Interferometry (TIDI) displacement measurements. This setup limited the displacements at the diagnostic surface to a reasonable level for TIDI measurements (~ less than one micrometer). These experiments coupled with analytical and numerical solutions provided evidence that viscous and elastic deviatoric strength affect shock front perturbation evolution in clearly different ways. Particularly, normalized shock front perturbation amplitudes evolve with viscosity (η) and perturbation wavelength (λ) as η/λ, such that increasing viscosity (or decreasing the initial wavelength) delays the perturbation decay. Conversely our experimental data, analysis and simulations show that for materials with elastic yield strength Y the normalized shock perturbation amplitude evolves with Yλ/A 0, which shows wavelength increases have the opposite effect as in viscous materials and perturbation decay is also dependent on initial amplitude A 0 (viscous materials are independent of this parameter). Materials where strength had clear strain rate dependence, e.g., such as a PTW material law, behaved similarly to materials with only an effective yield stress (elastic-perfectly plastic) in the shock front perturbation studies obeying a Y effλA 0 relationship where Y eff was a constant (near ~400 MPa for Cu for strain rates around 10 6 s -1). Magnitude changes in strain rate would increase Y eff as would be expected from the PTW behavior, but small perturbations (typical of regions behind the shock front) near a mean had little effect. Additional work based on simulations showed that phase transformation kinetics can affect the behavior of the perturbed shock front as well as the evolution of the RM-like instability that develops due to the imprint of the perturbed shock front on the initially flat surface as the shock breaks out.« less

  5. Tracking fronts in solutions of the shallow-water equations

    NASA Astrophysics Data System (ADS)

    Bennett, Andrew F.; Cummins, Patrick F.

    1988-02-01

    A front-tracking algorithm of Chern et al. (1986) is tested on the shallow-water equations, using the Parrett and Cullen (1984) and Williams and Hori (1970) initial state, consisting of smooth finite amplitude waves depending on one space dimension alone. At high resolution the solution is almost indistinguishable from that obtained with the Glimm algorithm. The latter is known to converge to the true frontal solution, but is 20 times less efficient at the same resolution. The solutions obtained using the front-tracking algorithm at 8 times coarser resolution are quite acceptable, indicating a very substantial gain in efficiency, which encourages application in realistic ocean models possessing two or three space dimensions.

  6. Can we observe the fronts of the Antarctic Circumpolar Current using GRACE OBP?

    NASA Astrophysics Data System (ADS)

    Makowski, J.; Chambers, D. P.; Bonin, J. A.

    2014-12-01

    The Antarctic Circumpolar Current (ACC) and the Southern Ocean remains one of the most undersampled regions of the world's oceans. The ACC is comprised of four major fronts: the Sub-Tropical Front (STF), the Polar Front (PF), the Sub-Antarctic Front (SAF), and the Southern ACC Front (SACCF). These were initially observed individually from repeat hydrographic sections and their approximate locations globally have been quantified using all available temperature data from the World Ocean and Climate Experiment (WOCE). More recent studies based on satellite altimetry have found that the front positions are more dynamic and have shifted south by up to 1° on average since 1993. Using ocean bottom pressure (OBP) data from the current Gravity Recovery and Climate Experiment (GRACE) we have measured integrated transport variability of the ACC south of Australia. However, differentiation of variability of specific fronts has been impossible due to the necessary smoothing required to reduce noise and correlated errors in the measurements. The future GRACE Follow-on (GFO) mission and the post 2020 GRACE-II mission are expected to produce higher resolution gravity fields with a monthly temporal resolution. Here, we study the resolution and error characteristics of GRACE gravity data that would be required to resolve variations in the front locations and transport. To do this, we utilize output from a high-resolution model of the Southern Ocean, hydrology models, and ice sheet surface mass balance models; add various amounts of random and correlated errors that may be expected from GFO and GRACE-II; and quantify requirements needed for future satellite gravity missions to resolve variations along the ACC fronts.

  7. Numerical investigation of spontaneous flame propagation under RCCI conditions

    DOE PAGES

    Bhagatwala, Ankit V; Sankaran, Ramanan; Kokjohn, Sage; ...

    2015-06-30

    This paper presents results from one and two-dimensional direct numerical simulations under Reactivity Controlled Compression Ignition (RCCI) conditions of a primary reference fuel (PRF) mixture consisting of n-heptane and iso-octane. RCCI uses in-cylinder blending of two fuels with different autoignition characteristics to control combustion phasing and the rate of heat release. These simulations employ an improved model of compression heating through mass source/sink terms developed in a previous work by Bhagatwala et al. (2014), which incorporates feedback from the flow to follow a predetermined experimental pressure trace. Two-dimensional simulations explored parametric variations with respect to temperature stratification, pressure profiles andmore » n-heptane concentration. Furthermore, statistics derived from analysis of diffusion/reaction balances locally normal to the flame surface were used to elucidate combustion characteristics for the different cases. Both deflagration and spontaneous ignition fronts were observed to co-exist, however it was found that higher n-heptane concentration provided a greater degree of flame propagation, whereas lower n-heptane concentration (higher fraction of iso-octane) resulted in more spontaneous ignition fronts. A significant finding was that simulations initialized with a uniform initial temperature and a stratified n-heptane concentration field, resulted in a large fraction of combustion occurring through flame propagation. The proportion of spontaneous ignition fronts increased at higher pressures due to shorter ignition delay when other factors were held constant. For the same pressure and fuel concentration, the contribution of flame propagation to the overall combustion was found to depend on the level of thermal stratification, with higher initial temperature gradients resulting in more deflagration and lower gradients generating more ignition fronts. Statistics of ignition delay are computed to assess the Zel’dovich (1980) theory for the mode of combustion propagation based on ignition delay gradients.« less

  8. Precursory, Nucleation and Propagation of Ruptures Along Heterogeneously Loaded, Circular Experimental Faults

    NASA Astrophysics Data System (ADS)

    Reches, Z.; Zu, X.; Jeffers, J.

    2017-12-01

    We explored the evolution of dynamic rupture along a circular experimental fault composed of clear acrylic blocks. The ring-shaped fault surface has inner and outer diameters of 7.72 and 10.16 cm, respectively. An array of ten rossette strain-gauges is attached to the outer rim of one block that provide the 2D strain tensor in a plane normal to the fault. The 30 components of the gauges are monitored at 10^6 samples/second. One 3D miniature accelerometer is attached to the fault block. The initial asperities of the fault surface generated a non-uniform strain (=stress) distribution that was recorded, and indicated local deviations of ±30% from the mean stress. The mean normal stress was up to 3.5 MPa, the remotely applied velocity was up to .002 m/s, and the slip velocities during rupture were not measured. The rupture characteristics, namely propagation velocity and rupture front strain-field, were determined from strain-gauge outputs. The analysis of tens of stick-slip events revealed the following preliminary results: (1) The ruptures consistently nucleated at sites of high local strains (=stresses) that were formed by the pre-shear, normal stress loading. (2) The pre-rupture nucleation process was recognized a by temporal (< 0.1 s), local (<20 mm) reduction of the shear strain. (3) Commonly, the initiation of nucleation was associated with micro acoustic emissions, whereas the initiation of rupture was associated with intense acoustic activity. (4) Nucleation could occur quasi-simultaneously at two, highly stressed sites. (5) From the nucleation site, the ruptures propagated in two directions along the ring-shaped fault, and the collision between the two fronts led to rupture `shut-off'. (5) The strain-field of rupture fronts was well-recognized for ruptures propagating faster than 50 m/s, and the fastest fronts propagated at 1000 m/s. (7) It appears that the rupture front strain-field close to the nucleation site differs from the front strain-field far from nucleation site. (8) Post-shear examination of the fault surfaces revealed evidence of brittle wear of the acrylic including gouge formation, ploughing, and powder smearing. (9) Work in progress includes attempts to achieve faster dynamic ruptures, and the utilization of the existing monitoring system to rupture granite faults.

  9. Weakly and strongly coupled Belousov-Zhabotinsky patterns.

    PubMed

    Weiss, Stephan; Deegan, Robert D

    2017-02-01

    We investigate experimentally and numerically the synchronization of two-dimensional spiral wave patterns in the Belousov-Zhabotinsky reaction due to point-to-point coupling of two separate domains. Different synchronization modalities appear depending on the coupling strength and the initial patterns in each domain. The behavior as a function of the coupling strength falls into two qualitatively different regimes. The weakly coupled regime is characterized by inter-domain interactions that distorted but do not break wave fronts. Under weak coupling, spiral cores are pushed around by wave fronts in the other domain, resulting in an effective interaction between cores in opposite domains. In the case where each domain initially contains a single spiral, the cores form a bound pair and orbit each other at quantized distances. When the starting patterns consist of multiple randomly positioned spiral cores, the number of cores decreases with time until all that remains are a few cores that are synchronized with a partner in the other domain. The strongly coupled regime is characterized by interdomain interactions that break wave fronts. As a result, the wave patterns in both domains become identical.

  10. Weakly and strongly coupled Belousov-Zhabotinsky patterns

    NASA Astrophysics Data System (ADS)

    Weiss, Stephan; Deegan, Robert D.

    2017-02-01

    We investigate experimentally and numerically the synchronization of two-dimensional spiral wave patterns in the Belousov-Zhabotinsky reaction due to point-to-point coupling of two separate domains. Different synchronization modalities appear depending on the coupling strength and the initial patterns in each domain. The behavior as a function of the coupling strength falls into two qualitatively different regimes. The weakly coupled regime is characterized by inter-domain interactions that distorted but do not break wave fronts. Under weak coupling, spiral cores are pushed around by wave fronts in the other domain, resulting in an effective interaction between cores in opposite domains. In the case where each domain initially contains a single spiral, the cores form a bound pair and orbit each other at quantized distances. When the starting patterns consist of multiple randomly positioned spiral cores, the number of cores decreases with time until all that remains are a few cores that are synchronized with a partner in the other domain. The strongly coupled regime is characterized by interdomain interactions that break wave fronts. As a result, the wave patterns in both domains become identical.

  11. The influence of Kr, CO2, and iso-C4H8 admixtures on the time of the formation of a stable flame front in mixtures of natural gas and isobutylene with oxygen and hydrogen with air under initiation with a spark discharge

    NASA Astrophysics Data System (ADS)

    Rubtsov, N. M.; Seplyarskii, B. S.; Chernysh, V. I.; Tsvetkov, G. I.

    2010-05-01

    High-speed color filming was used to study laminar spherical flame propagation at the initial stage in preliminarily mixed stoichiometric mixtures of natural gas and isobutylene with oxygen containing krypton and carbon dioxide and in hydrogen-air mixtures at atmospheric pressure in a bomb with a constant volume. Under experimental conditions ( T 0 = 298 K, p 0 = 100 torr, spark discharge energy E 0 = 0.91 J), the dilution of mixtures with Kr and CO2 increased the time of formation of a stable flame front by more than 10 times. The introduction of a small chemically active admixture (1.2% isobutylene) into a stoichiometric mixture of hydrogen and air sharply increased the time of formation of a stable flame front, which was evidence of an important role played by the chemical mechanism of the reaction in the formation of the combustion field.

  12. Monitoring the fracture behavior of SiCp/Al alloy composites using infrared lock-in thermography

    NASA Astrophysics Data System (ADS)

    Kordatos, E. Z.; Myriounis, D., P.; Hasan, S., T.; Matikas, T. E.

    2009-03-01

    his work deals with the study of fracture behavior of silicon carbide particle-reinforced (SiCp) A359 aluminum alloy matrix composites using an innovative nondestructive method based on lock-in thermography. The heat wave, generated by the thermo-mechanical coupling and the intrinsic energy dissipated during mechanical cyclic loading of the sample, was detected by an infrared camera. The coefficient of thermo-elasticity allows for the transformation of the temperature profiles into stresses. A new procedure was developed to determine the crack growth rate using thermographic mapping of the material undergoing fatigue: (a) The distribution of temperature and stresses at the surface of the specimen was monitored during the test. To this end, thermal images were obtained as a function of time and saved in the form of a movie. (b) The stresses were evaluated in a post-processing mode, along a series of equally spaced reference lines of the same length, set in front of the crack-starting notch. The idea was that the stress monitored at the location of a line versus time (or fatigue cycles) would exhibit an increase while the crack approaches the line, then attain a maximum when the crack tip was on the line. Due to the fact that the crack growth path could not be predicted and was not expected to follow a straight line in front of the notch, the stresses were monitored along a series of lines of a certain length, instead of a series of equally spaced points in front of the notch. The exact path of the crack could be easily determined by looking at the stress maxima along each of these reference lines. The thermographic results on the crack growth rate of the metal matrix composite (MMC) samples with three different heat treatments were correlated with measurements obtained by the conventional compliance method, and found to be in agreement.

  13. Opportunity Rolls Free Again (Left Front Wheel)

    NASA Technical Reports Server (NTRS)

    2006-01-01

    This animated piece illustrates the recent escape of NASA's Mars Exploration Rover Opportunity from dangerous, loose material on the vast plains leading to the rover's next long-term target, 'Victoria Crater.'

    A series of images of the rover's left front wheel, taken by the front hazard-avoidance camera, make up this brief movie. It chronicles the challenge Opportunity faced to free itself from a ripple dubbed 'Jammerbugt.' The rover's wheels became partially embedded in the ripple at the end of a drive on Opportunity's 833rd Martian day, or sol (May 28, 2006). The images in this clip were taken on sols 836 through 841 (May 31 through June 5, 2006).

    Scientists and engineers who had been elated at the meters of progress the rover had been making in earlier drives were happy for even centimeters of advance per sol as they maneuvered their explorer through the slippery material of Jammerbugt. The wheels reached solid footing on a rock outcrop on the final sol of this sequence.

    The science and engineering teams appropriately chose the ripple's informal from name the name of a bay on the north coast of Denmark. Jammerbugt, or Jammerbugten, loosely translated, means Bay of Lamentation or Bay of Wailing. The shipping route from the North Sea to the Baltic passes Jammerbugt on its way around the northern tip of Jutland. This has always been an important trade route and many ships still pass by the bay. The prevailing wind directions are typically northwest to southwest with the strongest winds and storms tending to blow from the northwest. A northwesterly wind will blow straight into the Jammerbugt, towards shore. Therefore, in the age of sail, many ships sank there during storms. The shore is sandy, but can have strong waves, so running aground was very dangerous even though there are no rocks.

    Fortunately, Opportunity weathered its 'Jammerbugt' and is again on its way toward Victoria Crater.

  14. Opportunity Rolls Free Again (Right Front Wheel)

    NASA Technical Reports Server (NTRS)

    2006-01-01

    This animated piece illustrates the recent escape of NASA's Mars Exploration Rover Opportunity from dangerous, loose material on the vast plains leading to the rover's next long-term target, 'Victoria Crater.'

    A series of images of the rover's right front wheel, taken by the front hazard-avoidance camera, make up this brief movie. It chronicles the challenge Opportunity faced to free itself from a ripple dubbed 'Jammerbugt.' The rover's wheels became partially embedded in the ripple at the end of a drive on Opportunity's 833rd Martian day, or sol (May 28, 2006). The images in this clip were taken on sols 836 through 841 (May 31 through June 5, 2006).

    Scientists and engineers who had been elated at the meters of progress the rover had been making in earlier drives were happy for even centimeters of advance per sol as they maneuvered their explorer through the slippery material of Jammerbugt. The wheels reached solid footing on a rock outcrop on the final sol of this sequence.

    The science and engineering teams appropriately chose the ripple's informal from name the name of a bay on the north coast of Denmark. Jammerbugt, or Jammerbugten, loosely translated, means Bay of Lamentation or Bay of Wailing. The shipping route from the North Sea to the Baltic passes Jammerbugt on its way around the northern tip of Jutland. This has always been an important trade route and many ships still pass by the bay. The prevailing wind directions are typically northwest to southwest with the strongest winds and storms tending to blow from the northwest. A northwesterly wind will blow straight into the Jammerbugt, towards shore. Therefore, in the age of sail, many ships sank there during storms. The shore is sandy, but can have strong waves, so running aground was very dangerous even though there are no rocks.

    Fortunately, Opportunity weathered its 'Jammerbugt' and is again on its way toward Victoria Crater.

  15. Propagation and deposition of non-circular finite release particle-laden currents

    NASA Astrophysics Data System (ADS)

    Zgheib, Nadim; Bonometti, Thomas; Balachandar, S.

    2015-08-01

    The dynamics of non-axisymmetric turbidity currents is considered here for a range of Reynolds numbers of O (104) when based on the initial height of the release. The study comprises a series of experiments and highly resolved simulations for which a finite volume of particle-laden solution is released into fresh water. A mixture of water and polystyrene particles of mean diameter d ˜ p = 300 μ m and mixture density ρ ˜ c = 1012 kg / m 3 is initially confined in a hollow cylinder at the centre of a large tank filled with fresh water. Cylinders with two different cross-sectional shapes, but equal cross-sectional areas, are examined: a circle and a rounded rectangle in which the sharp corners are smoothened. The time evolution of the front is recorded as well as the spatial distribution of the thickness of the final deposit via the use of a laser triangulation technique. The dynamics of the front and final deposits are significantly influenced by the initial geometry, displaying substantial azimuthal variation especially for the rectangular case where the current extends farther and deposits more particles along the initial minor axis of the rectangular cross section. Several parameters are varied to assess the dependence on the settling velocity, initial height aspect ratio, and volume fraction. Even though resuspension is not taken into account in our simulations, good agreement with experiments indicates that it does not play an important role in the front dynamics, in terms of velocity and extent of the current. However, wall shear stress measurements show that incipient motion of particles and particle transport along the bed are likely to occur in the body of the current and should be accounted to properly capture the final deposition profile of particles.

  16. Three-dimensional hybrid grid generation using advancing front techniques

    NASA Technical Reports Server (NTRS)

    Steinbrenner, John P.; Noack, Ralph W.

    1995-01-01

    A new 3-dimensional hybrid grid generation technique has been developed, based on ideas of advancing fronts for both structured and unstructured grids. In this approach, structured grids are first generate independently around individual components of the geometry. Fronts are initialized on these structure grids, and advanced outward so that new cells are extracted directly from the structured grids. Employing typical advancing front techniques, cells are rejected if they intersect the existing front or fail other criteria When no more viable structured cells exist further cells are advanced in an unstructured manner to close off the overall domain, resulting in a grid of 'hybrid' form. There are two primary advantages to the hybrid formulation. First, generating blocks with limited regard to topology eliminates the bottleneck encountered when a multiple block system is used to fully encapsulate a domain. Individual blocks may be generated free of external constraints, which will significantly reduce the generation time. Secondly, grid points near the body (presumably with high aspect ratio) will still maintain a structured (non-triangular or tetrahedral) character, thereby maximizing grid quality and solution accuracy near the surface.

  17. Differential effects of neural inactivation of the dorsolateral striatum on response and latent extinction.

    PubMed

    Goodman, Jarid; Gabriele, Amanda; Packard, Mark G

    2017-04-01

    The present study examined the role of the dorsolateral striatum (DLS) in extinction behavior. Male Long-Evans rats were initially trained on the straight alley maze, in which they were reinforced to traverse a straight runway and retrieve food reward at the opposite end of the maze. After initial acquisition, animals were given extinction training using 1 of 2 distinct protocols: response extinction or latent extinction. For response extinction, the animal was released from the same starting position and had the opportunity to perform the originally reinforced approach response to the goal end of the maze, which no longer contained food. For latent extinction, the animal was confined to the original goal location without food, allowing the animal to form a new cognitive expectation (i.e., that the goal location is no longer reinforced). Immediately before response or latent extinction training, animals received bilateral intra-DLS administration of the sodium channel blocker bupivacaine or control injections of physiological saline. Results indicated that neural inactivation of the DLS with bupivacaine impaired response extinction, but did not influence latent extinction. The dissociation observed indicates that the DLS selectively mediates extinction mechanisms involving suppression of the original response, as opposed to cognitive mechanisms involving a change in expectation. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  18. Redeposition of a straight-sided buckle under pressure.

    PubMed

    Colin, Jérôme; Coupeau, Christophe; Durinck, Julien; Cimetière, Alain; Grilhé, Jean

    2014-03-01

    The unilateral buckling of a stressed thin film on a substrate has been investigated theoretically in the framework of the Föppl-von Kármán theory of thin plates when an increasing overpressure is considered onto the upper free surface of the film. It is found that, depending on the initial stress in the film and overpressure, two scenarios of evolution may occur. The snap-through of the one-dimensional buckle leading to the full redeposition should take place for low values of the initial stress. When the initial stress exceeds a critical value, a partial redeposition of the buckle should proceed as the overpressure increases. A snap-through while the redeposition mechanism has taken place should also occur for higher values of the overpressure.

  19. Optimal approaches for inline sampling of organisms in ballast water: L-shaped vs. Straight sample probes

    NASA Astrophysics Data System (ADS)

    Wier, Timothy P.; Moser, Cameron S.; Grant, Jonathan F.; Riley, Scott C.; Robbins-Wamsley, Stephanie H.; First, Matthew R.; Drake, Lisa A.

    2017-10-01

    Both L-shaped ("L") and straight ("Straight") sample probes have been used to collect water samples from a main ballast line in land-based or shipboard verification testing of ballast water management systems (BWMS). A series of experiments was conducted to quantify and compare the sampling efficiencies of L and Straight sample probes. The findings from this research-that both L and Straight probes sample organisms with similar efficiencies-permit increased flexibility for positioning sample probes aboard ships.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang Meijuan; Jiang Yu; State Key Laboratory of Biotherapy, West China Hospital, Medical School, Sichuan University, Chengdu

    Purpose: To investigate the role of early or up-front radiotherapy (RT), the optimal RT dose required to achieve appropriate treatment outcome and prognostic factors for patients with localized extranodal NK/T-cell lymphoma, nasal-type, in the upper aerodigestive tract. Methods and Materials: Eighty-two patients were reviewed. Eight patients were treated with chemotherapy (CT) alone, 9 patients received RT alone, and 65 patients were given combined modality treatment of CT and RT (CMT). Of those 74 patients receiving RT, 31 patients were given up-front RT, whereas CT was the initial therapy for 43 patients and 41 of those 43 patients received early RT.more » Results: Five-year overall survival (OS) and disease-free survival (DFS) were 52.3% and 39.2%, respectively. RT was the only independent prognostic factor for both OS and DFS at both the univariate and multivariate level. The 5-year OS and DFS were better in patients receiving {>=}54 Gy of RT as compared with that of <54 Gy (5-year OS 75.5% vs. 46.1%, p = 0.019; 5-year DFS 60.3% vs. 33.4%, p = 0.004). Up-front RT presented better survival in Stage I patients when compared with that of initial CT followed by early RT (5-year OS 90.0% vs. 48.9%, p = 0.012; 5-year DFS 78.7% vs. 39.9%, p = 0.021). Conclusion: Early or up-front RT had an essential role in improved OS and DFS in patients with localized extranodal NK/T-cell lymphoma, nasal-type, in the upper aerodigestive tract. The recommended tumor dose was at least 54 Gy. Up-front RT may yield more benefits on survival in patients with Stage I disease.« less

  1. Clinical heterogeneity of diffuse large B cell lymphoma following failure of front-line immunochemotherapy.

    PubMed

    Farooq, Umar; Maurer, Matthew J; Thompson, Carrie A; Thanarajasingam, Gita; Inwards, David J; Micallef, Ivana; Macon, William; Syrbu, Sergei; Lin, Tasha; Lin, Yi; Ansell, Stephen M; Nowakowski, Grzegorz S; Habermann, Thomas M; Cerhan, James R; Link, Brian K

    2017-10-01

    This study aimed to describe the patterns of care and outcomes of diffuse large B cell lymphoma (DLBCL) after failure of front line anthracycline-based immunochemotherapy (IC). Patients with newly diagnosed lymphoma were prospectively enrolled in Molecular Epidemiology Resource (MER) of the University of Iowa/Mayo Clinic Lymphoma Specialized Program of Research Excellzence. All DLBCL and primary mediastinal B-cell lymphoma (PMBL) patients treated with front-line anthracycline-based IC were followed for relapse. Patients with relapse on follow-up and subsequently retreated were included in this analysis. 1039 patients received anthracycline-based IC between 2002 and 2012, of which 244 relapsed and were subsequently retreated. Across all therapies, overall survival at 4 years (OS4) from relapse was 28% and 103 patients ultimately underwent autologous haematopoietic cell transplant (autoHCT) with OS4 from autoHCT of 51%. Patients relapsing after 12 months from initial diagnosis had OS4 of 47% but those with a transient or no response to initial therapy had OS4 of only 13%. Outcomes of relapsed or refractory DLBCL differ substantially when categorized by response to initial therapy, timing of relapse and opportunity to undergo autoHCT. The design and interpretation of uncontrolled trials should account for this heterogeneity in patients with relapsed DLBCL. © 2017 John Wiley & Sons Ltd.

  2. Reconstruction of the geometry of volcanic vents by trajectory tracking of fast ejecta - the case of the Eyjafjallajökull 2010 eruption (Iceland)

    NASA Astrophysics Data System (ADS)

    Dürig, Tobias; Gudmundsson, Magnus T.; Dellino, Pierfrancesco

    2015-05-01

    Two methods are introduced to estimate the depth of origin of ejecta trajectories (depth to magma level in conduit) and the diameter of a conduit in an erupting crater, using analysis of videos from the Eyjafjallajökull 2010 eruption to evaluate their applicability. Both methods rely on the identification of straight, initial trajectories of fast ejecta, observed near the crater rims before they are appreciably bent by air drag and gravity. In the first method, through tracking these straight trajectories and identifying a cut-off angle, the inner diameter and the depth level of the vent can be constrained. In the second method, the intersection point of straight trajectories from individual pulses is used to determine the maximum possible depth from which the tracked ejecta originated and the width of the region from which the pulses emanated. The two methods give nearly identical results on the depth to magma level in the crater of Eyjafjallajökull on 8 to 10 May of 51 ± 7 m. The inner vent diameter, at the level of origin of the pulses and ejecta, is found to have been 8 to 15 m. These methods open up the possibility to feed (near) real-time monitoring systems with otherwise inaccessible information about vent geometry during an ongoing eruption and help defining important eruption source parameters.

  3. Kinking and Torsion Can Significantly Improve the Efficiency of Valveless Pumping in Periodically Compressed Tubular Conduits. Implications for Understanding of the Form-Function Relationship of Embryonic Heart Tubes.

    PubMed

    Hiermeier, Florian; Männer, Jörg

    2017-11-19

    Valveless pumping phenomena (peristalsis, Liebau-effect) can generate unidirectional fluid flow in periodically compressed tubular conduits. Early embryonic hearts are tubular conduits acting as valveless pumps. It is unclear whether such hearts work as peristaltic or Liebau-effect pumps. During the initial phase of its pumping activity, the originally straight embryonic heart is subjected to deforming forces that produce bending, twisting, kinking, and coiling. This deformation process is called cardiac looping. Its function is traditionally seen as generating a configuration needed for establishment of correct alignments of pulmonary and systemic flow pathways in the mature heart of lung-breathing vertebrates. This idea conflicts with the fact that cardiac looping occurs in all vertebrates, including gill-breathing fishes. We speculate that looping morphogenesis may improve the efficiency of valveless pumping. To test the physical plausibility of this hypothesis, we analyzed the pumping performance of a Liebau-effect pump in straight and looped (kinked) configurations. Compared to the straight configuration, the looped configuration significantly improved the pumping performance of our pump. This shows that looping can improve the efficiency of valveless pumping driven by the Liebau-effect. Further studies are needed to clarify whether this finding may have implications for understanding of the form-function relationship of embryonic hearts.

  4. Kinking and Torsion Can Significantly Improve the Efficiency of Valveless Pumping in Periodically Compressed Tubular Conduits. Implications for Understanding of the Form-Function Relationship of Embryonic Heart Tubes

    PubMed Central

    Hiermeier, Florian; Männer, Jörg

    2017-01-01

    Valveless pumping phenomena (peristalsis, Liebau-effect) can generate unidirectional fluid flow in periodically compressed tubular conduits. Early embryonic hearts are tubular conduits acting as valveless pumps. It is unclear whether such hearts work as peristaltic or Liebau-effect pumps. During the initial phase of its pumping activity, the originally straight embryonic heart is subjected to deforming forces that produce bending, twisting, kinking, and coiling. This deformation process is called cardiac looping. Its function is traditionally seen as generating a configuration needed for establishment of correct alignments of pulmonary and systemic flow pathways in the mature heart of lung-breathing vertebrates. This idea conflicts with the fact that cardiac looping occurs in all vertebrates, including gill-breathing fishes. We speculate that looping morphogenesis may improve the efficiency of valveless pumping. To test the physical plausibility of this hypothesis, we analyzed the pumping performance of a Liebau-effect pump in straight and looped (kinked) configurations. Compared to the straight configuration, the looped configuration significantly improved the pumping performance of our pump. This shows that looping can improve the efficiency of valveless pumping driven by the Liebau-effect. Further studies are needed to clarify whether this finding may have implications for understanding of the form-function relationship of embryonic hearts. PMID:29367548

  5. Microstructure of wave propagation during combustion synthesis of advanced materials: Experiments and theory

    NASA Astrophysics Data System (ADS)

    Hwang, Stephen

    Combustion synthesis (CS) is an attractive method for producing advanced materials, including ceramics, intermetallics, and composites. In this process, after initiation by an external heat source, a highly exothermic reaction propagates through the sample in a self-sustained combustion wave. The process offers the possibility of producing materials with novel structures and properties. At conventional magnifications and imaging rates, the combustion wave appears to propagate in a planar, steady manner. However, using higher magnifications (>400X) and imaging rates (1000 frames/sec), fluctuations in the shape and propagation of the combustion front were observed. These variations in local conditions (i.e., the microstructure of the combustion wave) can influence the microstructure and properties of materials produced by combustion synthesis. In this work, the microstructure of wave propagation during combustion synthesis is investigated experimentally and theoretically. Using microscopic high-speed imaging, the spatial and temporal fluctuations of the combustion front shape and propagation were investigated. New image analysis methods were developed to characterize the heterogeneity of the combustion front quantitatively. The initial organization of the reaction medium was found to affect the heterogeneity of the combustion wave. Moreover, at the microscopic level, two different regimes of combustion propagation were observed. In the quasihomogeneous mechanism, the microstructure of the combustion wave resembles what is viewed macroscopically, and steady, planar propagation is observed. In the relay-race mechanism, while planar at the macroscopic level, the combustion front profiles are irregularly shaped, with arc-shaped convexities and concavities at the microscopic level. Also, the reaction front propagates as a series of rapid jumps and hesitations. Based on the combustion wave microstructure, new criteria were developed to determine the boundaries between quasihomogeneous and relay-race mechanisms, as functions of the initial organization of the reaction medium (i.e. particle size and porosity). In conjunction with the experiments, a microheterogeneous cell model was developed that simulates the local propagation of the combustion wave. Accounting for the stochastically organized medium with non-uniform properties, calculated results for the microstructural parameters of the combustion wave, and their dependence on density and reactant particle size, were in good qualitative agreement with experimental data.

  6. Context Improves Comprehension of Fronted Objects

    ERIC Educational Resources Information Center

    Kristensen, Line Burholt; Engberg-Pedersen, Elisabeth; Poulsen, Mads

    2014-01-01

    Object-initial clauses (OCs) are associated with more processing difficulties than subject-initial clauses (SCs) in a number of languages (e.g. English, German and Finnish), but a supportive context can reduce or neutralize the difference between SCs and OCs with respect to reading times. Still, it is unresolved how context can affect the…

  7. 7 CFR 11.32 - Initial requests for records.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... the Public § 11.32 Initial requests for records. (a) Requests for NAD records should be in writing and addressed to the NAD official having custody of the records desired as indicated in § 11.22(d). Addresses... on the front of the envelope. (b) A request must reasonably describe records to enable NAD personnel...

  8. Gaining Perspective on Paintings and Photographs: A Study in the Optics of Seeing

    NASA Astrophysics Data System (ADS)

    Carroll, Bradley W.

    2017-10-01

    Everyone who has visited an art museum and stood before a masterful painting has admired the artist's clever use of accurate perspective to bring a third dimension to the flat canvas. The mathematical theory of perspective is almost 600 years old, having been pioneered by Leon Battista Alberti (1404-1472) in his treatise De Pictura (1435). Standing in front of a painting, you usually give little thought about precisely where to stand, relative to the canvas, in order to appreciate the three-dimensionality of the scene. Yet Alberti writes, on p. 57, "Know that a painted thing can never appear truthful when there is not a definite distance for seeing it." You, the viewer, must assume the responsibility for accurately viewing the perspective intended by the artist. This article is intended to help viewers of art determine where to stand before a painting or a photograph. It is based on the idea from ray optics that light travels in straight lines from its source to the viewer's eye.

  9. Constrained multi-objective optimization of storage ring lattices

    NASA Astrophysics Data System (ADS)

    Husain, Riyasat; Ghodke, A. D.

    2018-03-01

    The storage ring lattice optimization is a class of constrained multi-objective optimization problem, where in addition to low beam emittance, a large dynamic aperture for good injection efficiency and improved beam lifetime are also desirable. The convergence and computation times are of great concern for the optimization algorithms, as various objectives are to be optimized and a number of accelerator parameters to be varied over a large span with several constraints. In this paper, a study of storage ring lattice optimization using differential evolution is presented. The optimization results are compared with two most widely used optimization techniques in accelerators-genetic algorithm and particle swarm optimization. It is found that the differential evolution produces a better Pareto optimal front in reasonable computation time between two conflicting objectives-beam emittance and dispersion function in the straight section. The differential evolution was used, extensively, for the optimization of linear and nonlinear lattices of Indus-2 for exploring various operational modes within the magnet power supply capabilities.

  10. Structure of Profiled Crystals Based on Solid Solutions of Bi2Te3 and Their X-Ray Diagnostics

    NASA Astrophysics Data System (ADS)

    Voronin, A. I.; Bublik, V. T.; Tabachkova, N. Yu.; Belov, Yu. M.

    2011-05-01

    In this work, we used x-ray structural diagnostic data to reveal the formation of structural regularities in profiled polycrystalline ingots based on Bi and Sb chalcogenide solid solutions. In Bi2Te3 lattice crystals, the solid phase grows such that the cleavage surfaces are perpendicular to the crystallization front. The crystallization singularity determines the nature of the growth texture. Because texture is an important factor determining the anisotropy of properties, which in turn determines the suitability of an ingot for production of modules and the possibility of figure of merit improvement, its diagnostics is an important issue for technology testing. Examples of texture analysis using the method of straight pole figure (SPF) construction for profiled crystals are provided. The structure of the surface layers in the profiled ingots was studied after electroerosion cutting. In addition, the method of estimation of the disturbed layer depth based on the nature of texture changes was used.

  11. Crack-tip-opening angle measurements and crack tunneling under stable tearing in thin sheet 2024-T3 aluminum alloy

    NASA Technical Reports Server (NTRS)

    Dawicke, D. S.; Sutton, M. A.

    1993-01-01

    The stable tearing behavior of thin sheets 2024-T3 aluminum alloy was studied for middle crack tension specimens having initial cracks that were: flat cracks (low fatigue stress) and 45 degrees through-thickness slant cracks (high fatigue stress). The critical crack-tip-opening angle (CTOA) values during stable tearing were measured by two independent methods, optical microscopy and digital image correlation. Results from the two methods agreed well. The CTOA measurements and observations of the fracture surfaces showed that the initial stable tearing behavior of low and high fatigue stress tests is significantly different. The cracks in the low fatigue stress tests underwent a transition from flat-to-slant crack growth, during which the CTOA values were high and significant crack tunneling occurred. After crack growth equal to about the thickness, CTOA reached a constant value of 6 deg and after crack growth equal to about twice the thickness, crack tunneling stabilized. The initial high CTOA values, in the low fatigue crack tests, coincided with large three-dimensional crack front shape changes due to a variation in the through-thickness crack tip constraint. The cracks in the high fatigue stress tests reach the same constant CTOA value after crack growth equal to about the thickness, but produced only a slightly higher CTOA value during initial crack growth. For crack growth on the 45 degree slant, the crack front and local field variables are still highly three-dimensional. However, the constant CTOA values and stable crack front shape may allow the process to be approximated with two-dimensional models.

  12. Expansion of a cold non-neutral plasma slab

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karimov, A. R.; Department of Electrophysical Facilities, National Research Nuclear University MEPhI, Kashirskoye shosse 31, Moscow 115409; Yu, M. Y., E-mail: myyu@zju.edu.cn

    2014-12-15

    Expansion of the ion and electron fronts of a cold non-neutral plasma slab with a quasi-neutral core bounded by layers containing only ions is investigated analytically and exact solutions are obtained. It is found that on average, the plasma expansion time scales linearly with the initial inverse ion plasma frequency as well as the degree of charge imbalance, and no expansion occurs if the cold plasma slab is stationary and overall neutral. However, in both cases, there can exist prominent oscillations on the electron front.

  13. Density fingering in spatially modulated Hele-Shaw cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Toth, Tamara; Horvath, Dezso; Toth, Agota

    Density fingering of the chlorite-tetrathionate reaction has been studied experimentally in a periodically heterogeneous Hele-Shaw cell where the heterogeneity is introduced in the form of spatial modulation of gap width along the front. Depending on the spatial wavelength, gap width, and chemical composition, three types of cellular structures have been observed. The initial evolution is characterized by dispersion curves, while the long time behavior is described by the change in the autocorrelation function of the front profile and in the mixing length of the patterns.

  14. Mycobacterium marinum infection in a blue-fronted Amazon parrot (Amazona aestiva).

    PubMed

    Hannon, David E; Bemis, David A; Garner, Michael M

    2012-12-01

    A blue-fronted Amazon parrot (Amazona aestiva) was presented with a granuloma involving the proximal rhinotheca and extending into the rostral sinuses. Mycobacterium marinum was diagnosed based on results of biopsy and culture. Treatment was initiated with clarithromycin, rifampin, and ethambutol, but the bird died 4 months after the onset of antimicrobial therapy. Additional granulomas were found in the left lung and liver on postmortem examination. Mycobacterial isolation on postmortem samples was unsuccessful. This is the first report of Mycobacterium marinum in a bird.

  15. Standing "Straight" up to Homophobia: Straight Allies' Involvement in GSAs

    ERIC Educational Resources Information Center

    Lapointe, Alicia Anne

    2015-01-01

    This qualitative study captures the experiences of four straight allies' and one gay youth involvement in gay--straight alliances (GSAs) at their Ontario, Canada, high schools. Participants' motivations for becoming GSA members and their roles as allies are examined. Queer theoretical perspectives, as espoused by Britzman (1995, 1998) and Linville…

  16. Process for recovering products from oil shale

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jacobs, H.R.; Udell, K.S.

    A process is claimed for recovering hydrocarbon products from a body of fragmented or rubblized oil shale. The process includes initiating a combustion zone adjacent the lower end of a body of oil shale and using the thermal energy therefrom for volatilizing the shale oil from the oil shale above the combustion front. Improved recovery of hydrocarbon products is realized by refluxing the heavier fractions in the volatilized shale oil. The heavier fractions are refluxed by condensing the heavier fractions and allowing the resulting condensate to flow downwardly toward the combustion front. Thermal energy from the combustion zone cracks themore » condensate producing additional lower molecular weight fractions and a carbonaceous residue. The carbonaceous residue is burned in the combustion front to supply the thermal energy. The temperature of the combustion front is maintained by regulating input of oxygen to the combustion zone. The process also includes sweeping the volatilized products from the rubblized oil shale with a noncombustible gas. The flow rate of sweep gas is also controlled to regulate the temperature of the combustion front. The recovered products can be enriched with hydrogen by using water vapor as part of the noncombustible sweep gas and cracking the water vapor with the hot carbon in the combustion front to produce hydrogen and an oxide of carbon.« less

  17. Numerical simulation of the interaction of biological cells with an ice front during freezing

    NASA Astrophysics Data System (ADS)

    Carin, M.; Jaeger, M.

    2001-12-01

    The goal of this study is a better understanding of the interaction between cells and a solidification front during a cryopreservation process. This technique of freezing is commonly used to conserve biological material for long periods at low temperatures. However the biophysical mechanisms of cell injuries during freezing are difficult to understand because a cell is a very sophisticated microstructure interacting with its environment. We have developed a finite element model to simulate the response of cells to an advancing solidification front. A special front-tracking technique is used to compute the motion of the cell membrane and the ice front during freezing. The model solves the conductive heat transfer equation and the diffusion equation of a solute on a domain containing three phases: one or more cells, the extra-cellular solution and the growing ice. This solid phase growing from a binary salt solution rejects the solute in the liquid phase and increases the solute gradient around the cell. This induces the shrinkage of the cell. The model is used to simulate the engulfment of one cell modelling a red blood cell by an advancing solidification front initially planar or not is computed. We compare the incorporation of a cell with that of a solid particle.

  18. Front of the Werenskiold Glacier (Svalbard) - changes in years 1957-2013

    NASA Astrophysics Data System (ADS)

    Ciężkowski, Wojciech; Głowacki, Tadeusz; Grudzińska, Katarzyna K.; Kasza, Damian; Zagożdżon, Paweł P.

    2018-01-01

    Werenskiold Glacier in the Isle of Spitsbergen is one of the polygons on which evaluation of the rate of glacier recession is performed. Location of the glacier front is precisely presented in the specialist literature since the mid. 30. of 20th century. Article presents results of studies about changes in the position of Werenskiold Glacier based on selected archival data and own research conducted in 2012-2013. The initial location of the glacier front was described by the topographical map in the scale 1:5000 elaborated in the year 1961 on the basis of data from the years 1957-1959 by the Polish Army Topographic Service. Moreover, as comparative data on location of glacier front in the later years there were applied results of photogrammetrical images from the year 1973 and a orthophotomap from 1990. These data together with the author's GPS measurements were transformed into the uniform coordinate system. Thus, prepared data made it possible to evaluate the rate of recession of Werenskiold Glacier front in the three epochs from the years 1957-2013. It was found that during the 56 years the glacier front was moved by ca. 1200 m, which gives the mean recession value of 25 m/year as well as the mean yearly loss of the glacier surface of the order of 5 ha.

  19. Biomineralization in Newly Settled Recruits of the Scleractinian Coral Pocillopora damicornis

    NASA Astrophysics Data System (ADS)

    Meibom, A.; Gilis, M.; Domart-Coulon, I.; Grauby, O.; Stolarski, J.; Baronnet, A.

    2014-12-01

    Calcium carbonate biomineralization of scleractinian coral recruits is fundamental to the construction of reefs and their survival under stress from global and local environmental change. Establishing a baseline for how normal, healthy coral recruits initiate skeletal formation is therefore warranted. We present a multiscale, microscopic and spectroscopic investigation of skeletal elements deposited by Pocillopora damicornis recruits, from 12 h to 22 days after settlement in aquarium on a flat substrate. Six growth stages are defined, primarily based on appearance and morphology of successively deposited skeletal structures, with the following average formation timescales: A (<24 h), B (24-36 h), C (36-48 h), D (48- 72 h), E (72-96 h), and F (>10 days). Raman and energy dispersive X-ray spectroscopy indicate the presence of calcite among the earliest components of the basal plate, which consist of micrometer-sized, rod-shaped crystals with rhom- boidal habit. All later CaCO3 skeletal structures are composed exclusively of aragonite. High-resolution scanning electron microscopy reveals that, externally, all CaCO3 deposits consist of <100 nm granular units. Fusiform, dumbbell-like, and semispherulitic structures, 25-35 mm in longest dimension, occur only during the earliest stages (Stages A-C), with morphologies similar to structures formed abiotically or induced by organics in in vitro carbonate crystallization experiments. All other skeletal structures of the basal plate are composed of vertically extending lamellar bundles of granules. From Stage D, straight fibrils, 40-45 nm in width and presumably of organic composition, form bridges between these aragonitic bundles emerging from the growing front of fusing skeletal structures. Our results show a clear evolution in the coral polyp biomineralization process as the carbonate structures develop toward those characterizing the adult skeleton.

  20. D-558-1 on the ramp

    NASA Technical Reports Server (NTRS)

    1949-01-01

    This 1949 NACA Muroc Flight Test Unit photograph of the Douglas D-558-1 #3 Skystreak was taken in front of the NACA hangar at South Base, Edwards Air Force. NACA had the color of the Skystreaks changed from red to white for better optical tracking and photograpy. It was found that the dark red aircraft was hard to see against the dark blue sky over Edwards Air Force Base. The NACA Muroc Flight Test Unit went through several names before the organization became the NASA Dryden Flight Research Center in 1976. Conceived in 1945, the D558-1 Skystreak was designed by the Douglas Aircraft Company for the U.S. Navy Bureau of Aeronautics, in conjunction with the National Advisory Committee for Aeronautics (NACA). The Skystreaks were turojet powered aircraft that took off from the ground under their own power and had straight wings and tails. All three D-558-1 Skystreaks were powered by Allison J35-A-11 turbojet engines producing 5,000 pounds of thrust. All the Skystreaks were initially painted scarlet, which lead to the nickname 'crimson test tube.' NACA later had the color of the Skystreaks changed to white to improve optical tracking and photography. The Skystreaks carried 634 pounds of instrumentation and were ideal first-generation, simple, transonic research airplanes. Much of the research performed by the D-558-1 Skystreaks, was quickly overshadowed in the public mind by Chuck Yeager and the X-1 rocketplane. However, the Skystreak performed an important role in aeronautical research by flying for extended periods of time at transonic speeds, which freed the X-1 to fly for limited periods at supersonic speeds.

  1. Biomineralization in newly settled recruits of the scleractinian coral Pocillopora damicornis.

    PubMed

    Gilis, Melany; Meibom, Anders; Domart-Coulon, Isabelle; Grauby, Olivier; Stolarski, Jarosław; Baronnet, Alain

    2014-12-01

    Calcium carbonate biomineralization of scleractinian coral recruits is fundamental to the construction of reefs and their survival under stress from global and local environmental change. Establishing a baseline for how normal, healthy coral recruits initiate skeletal formation is, therefore, warranted. Here, we present a thorough, multiscale, microscopic and spectroscopic investigation of skeletal elements deposited by Pocillopora damicornis recruits, from 12 h to 22 days after settlement in aquarium on a flat substrate. Six growth stages are defined, primarily based on appearance and morphology of successively deposited skeletal structures, with the following average formation time-scales: A (<24 h), B (24-36 h), C (36-48 h), D (48-72 h), E (72-96 h), and F (>10 days). Raman and energy dispersive X-ray spectroscopy indicate the presence of calcite among the earliest components of the basal plate, which consist of micrometer-sized, rod-shaped crystals with rhomboidal habit. All later CaCO3 skeletal structures are composed exclusively of aragonite. High-resolution scanning electron microscopy reveals that, externally, all CaCO3 deposits consist of <100 nm granular units. Fusiform, dumbbell-like, and semispherulitic structures, 25-35 µm in longest dimension, occur only during the earliest stages (Stages A-C), with morphologies similar to structures formed abiotically or induced by organics in in vitro carbonate crystallization experiments. All other skeletal structures of the basal plate are composed of vertically extending lamellar bundles of granules. From Stage D, straight fibrils, 40-45 nm in width and presumably of organic composition, form bridges between these aragonitic bundles emerging from the growing front of fusing skeletal structures. Our results show a clear evolution in the coral polyp biomineralization process as the carbonate structures develop toward those characterizing the adult skeleton. © 2014 Wiley Periodicals, Inc.

  2. Insights from field observations into controls on flow front speed in submarine sediment flows

    NASA Astrophysics Data System (ADS)

    Heerema, C.; Talling, P.; Cartigny, M.; Paull, C. K.; Gwiazda, R.; Clare, M. A.; Parsons, D. R.; Xu, J.; Simmons, S.; Maier, K. L.; Chapplow, N.; Gales, J. A.; McGann, M.; Barry, J.; Lundsten, E. M.; Anderson, K.; O'Reilly, T. C.; Rosenberger, K. J.; Sumner, E. J.; Stacey, C.

    2017-12-01

    Seafloor avalanches of sediment called turbidity currents are one of the most important processes for moving sediment across our planet. Only rivers carry comparable amounts of sediment across such large areas. Here we present some of the first detailed monitoring of these underwater flows that is being undertaken at a series of test sites. We seek to understand the factors that determine flow front speed, and how that speed varies with distance. This frontal speed is particularly important for predicting flow runout, and how the power of these hazardous flows varies with distance. First, we consider unusually detailed measurements of flow front speed defined by transit times between moorings and other tracked objects placed on the floor of Monterey Canyon offshore California in 2016-17. These measurements are then compared to flow front speeds measured using multiple moorings in Bute Inlet, British Columbia in 2016; and by cable breaks in Gaoping Canyon offshore Taiwan in 2006 and 2009. We seek to understand how flow front velocity is related to seafloor gradient, flow front thickness and density. It appears that the spatial evolution of frontal speed is similar in multiple flows, although their peak frontal velocities vary. Flow front velocity tends to increase rapidly initially before declining rather gradually over tens or even hundreds of kilometres. It has been proposed that submarine flows will exist in one of two states; either eroding and accelerating, or depositing sediment and dissipating. We conclude by discussing the implications of this global compilation of flow front velocities for understanding submarine flow behaviour.

  3. Frontal dynamics at the edge of the Columbia River plume

    NASA Astrophysics Data System (ADS)

    Akan, Çiğdem; McWilliams, James C.; Moghimi, Saeed; Özkan-Haller, H. Tuba

    2018-02-01

    In the tidal ebb-cycle at the Mouth of the Columbia River, strong density and velocity fronts sometimes form perpendicular to the coast at the edges of the freshwater plume. They are distinct from previously analyzed fronts at the offshore western edge of the plume that evolve as a gravity-wave bore. We present simulation results to demonstrate their occurrence and investigate the mechanisms behind their frontogenesis and evolution. Tidal velocities on average ranged between 1.5 m s-1 in flood and 2.5 m s-1 in ebb during the brief hindcast period. The tidal fronts exhibit strong horizontal velocity and buoyancy gradients on a scale ∼ 100 m in width with normalized relative vorticity (ζz/f) values reaching up to 50. We specifically focus on the front on the northern edge of the plume and examine the evolution in plume characteristics such as its water mass gradients, horizontal and vertical velocity structure, vertical velocity, turbulent vertical mixing, horizontal propagation, cross-front momentum balance, and Lagrangian frontogenetic tendencies in both buoyancy and velocity gradients. Advective frontogenesis leads to a very sharp front where lateral mixing near the grid-resolution limit arrests its further contraction. The negative vorticity within the front is initiated by the positive bottom drag curl on the north side of the Columbia estuary and against the north jetty. Because of the large negative vorticity and horizontal vorticity gradient, centrifugal and lateral shear instability begins to develop along the front, but frontal fragmentation and decay set in only after the turn of the tide because of the briefness of the ebb interval.

  4. Evaluation of Bole Straightness in Cottonwood Using Visual Scores

    Treesearch

    D.T. Cooper; R.B. Ferguson

    1981-01-01

    Selection for straightness in natural stands of cottonwood can be effective in improving straightness of open-pollinated progeny. Straightness appears to be highly heritable, but it is subject to imprecise evaluation. This can be largely overcome by repeated application of an imprecise scoring system using a minimum of two views per tree separated by 90 degrees.

  5. 21 CFR 70.20 - Packaging requirements for straight colors (other than hair dyes).

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 1 2013-04-01 2013-04-01 false Packaging requirements for straight colors (other than hair dyes). 70.20 Section 70.20 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH... straight colors (other than hair dyes). Straight colors shall be packaged in containers which prevent...

  6. 21 CFR 70.20 - Packaging requirements for straight colors (other than hair dyes).

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 1 2011-04-01 2011-04-01 false Packaging requirements for straight colors (other than hair dyes). 70.20 Section 70.20 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH... straight colors (other than hair dyes). Straight colors shall be packaged in containers which prevent...

  7. 21 CFR 70.20 - Packaging requirements for straight colors (other than hair dyes).

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 1 2014-04-01 2014-04-01 false Packaging requirements for straight colors (other than hair dyes). 70.20 Section 70.20 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH... straight colors (other than hair dyes). Straight colors shall be packaged in containers which prevent...

  8. 21 CFR 70.20 - Packaging requirements for straight colors (other than hair dyes).

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 1 2012-04-01 2012-04-01 false Packaging requirements for straight colors (other than hair dyes). 70.20 Section 70.20 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH... straight colors (other than hair dyes). Straight colors shall be packaged in containers which prevent...

  9. Geologic map of the Skykomish River 30- by 60-minute quadrangle, Washington

    USGS Publications Warehouse

    Tabor, R.W.; Frizzell, D.A.; Booth, D.B.; Waitt, R.B.; Whetten, J.T.; Zartman, R.E.

    1993-01-01

    From the eastern-most edges of suburban Seattle, the Skykomish River quadrangle stretches east across the low rolling hills and broad river valleys of the Puget Lowland, across the forested foothills of the North Cascades, and across high meadowlands to the bare rock peaks of the Cascade crest. The Straight Creek Fault, a major Pacific Northwest structure which almost bisects the quadrangle, mostly separates unmetamorphosed and low-grade metamorphic Paleozoic and Mesozoic oceanic rocks on the west from medium- to high-grade metamorphic rocks on the east. Within the quadrangle the lower grade rocks are mostly Mesozoic melange units. To the east, the higher-grade terrane is mostly the Chiwaukum Schist and related gneisses of the Nason terrane and invading mid-Cretaceous stitching plutons. The Early Cretaceous Easton Metamorphic Suite crops out on both sides of the Straight Creek fault and records it's dextral displacement. On the south margin of the quadrangle, the fault separates the lower Eocene Swauk Formation on the east from the upper Eocene and Oligocene(?) Naches Formation and, farther north, it's correlative Barlow Pass Volcanics the west. Stratigraphically equivalent rocks ot the Puget Group crop out farther to the west. Rocks of the Cascade magmatic arc are mostly represented by Miocene and Oligocene plutons, including the Grotto, Snoqualmie, and Index batholiths. Alpine river valleys in the quadrangle record multiple advances and retreats of alpine glaciers. Multiple advances of the Cordilleran ice sheet, originating in the mountains of British Columbia, Canada, have left an even more complex sequence of outwash and till along the western mountain front, up these same alpine river valleys, and over the Puget Lowland.

  10. Multiscale Analysis in the Compressible Rotating and Heat Conducting Fluids

    NASA Astrophysics Data System (ADS)

    Kwon, Young-Sam; Maltese, David; Novotný, Antonín

    2017-06-01

    We consider the full Navier-Stokes-Fourier system under rotation in the singular regime of small Mach and Rossby, and large Reynolds and Péclet numbers, with ill prepared initial data on an infinite straight 3-D layer rotating with respect to the axis orthogonal to the layer. We perform the singular limit in the framework of weak solutions and identify the 2-D Euler-Boussinesq system as the target problem.

  11. First results from the spectral DCT trigger implemented in the Cyclone V Front-End Board used for a detection of very inclined showers in the Pierre Auger surface detector Engineering Array

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Szadkowski, Zbigniew

    2015-07-01

    The paper presents the first results from the trigger based on the Discrete Cosine Transform (DCT) operating in the new Front-End Boards with Cyclone V FPGA deployed in 8 test surface detectors in the Pierre Auger Engineering Array. The patterns of the ADC traces generated by very inclined showers were obtained from the Auger database and from the CORSIKA simulation package supported next by Offline reconstruction Auger platform which gives a predicted digitized signal profiles. Simulations for many variants of the initial angle of shower, initialization depth in the atmosphere, type of particle and its initial energy gave a boundarymore » of the DCT coefficients used next for the on-line pattern recognition in the FPGA. Preliminary results have proven a right approach. We registered several showers triggered by the DCT for 120 MSps and 160 MSps. (authors)« less

  12. Temporal Control of Gelation and Polymerization Fronts Driven by an Autocatalytic Enzyme Reaction.

    PubMed

    Jee, Elizabeth; Bánsági, Tamás; Taylor, Annette F; Pojman, John A

    2016-02-05

    Chemical systems that remain kinetically dormant until activated have numerous applications in materials science. Herein we present a method for the control of gelation that exploits an inbuilt switch: the increase in pH after an induction period in the urease-catalyzed hydrolysis of urea was used to trigger the base-catalyzed Michael addition of a water-soluble trithiol to a polyethylene glycol diacrylate. The time to gelation (minutes to hours) was either preset through the initial concentrations or the reaction was initiated locally by a base, thus resulting in polymerization fronts that converted the mixture from a liquid into a gel (ca. 0.1 mm min -1 ). The rate of hydrolytic degradation of the hydrogel depended on the initial concentrations, thus resulting in a gel lifetime of hours to months. In this way, temporal programming of gelation was possible under mild conditions by using the output of an autocatalytic enzyme reaction to drive both the polymerization and subsequent degradation of a hydrogel.

  13. Intubation of prehospital patients with curved laryngoscope blade is more successful than with straight blade.

    PubMed

    Alter, Scott M; Haim, Eithan D; Sullivan, Alex H; Clayton, Lisa M

    2018-02-17

    Direct laryngoscopy can be performed using curved or straight blades, and providers usually choose the blade they are most comfortable with. However, curved blades are anecdotally thought of as easier to use than straight blades. We seek to compare intubation success rates of paramedics using curved versus straight blades. Design: retrospective chart review. hospital-based suburban ALS service with 20,000 annual calls. prehospital patients with any direct laryngoscopy intubation attempt over almost 9years. First attempt and overall success rates were calculated for attempts with curved and straight blades. Differences between the groups were calculated. 2299 patients were intubated by direct laryngoscopy. 1865 had attempts with a curved blade, 367 had attempts with a straight blade, and 67 had attempts with both. Baseline characteristics were similar between groups. First attempt success was 86% with a curved blade and 73% with a straight blade: a difference of 13% (95% CI: 9-17). Overall success was 96% with a curved blade and 81% with a straight blade: a difference of 15% (95% CI: 12-18). There was an average of 1.11 intubation attempts per patient with a curved blade and 1.13 attempts per patient with a straight blade (2% difference, 95% CI: -3-7). Our study found a significant difference in intubation success rates between laryngoscope blade types. Curved blades had higher first attempt and overall success rates when compared to straight blades. Paramedics should consider selecting a curved blade as their tool of choice to potentially improve intubation success. Copyright © 2018 Elsevier Inc. All rights reserved.

  14. A heterodyne straightness and displacement measuring interferometer with laser beam drift compensation for long-travel linear stage metrology.

    PubMed

    Chen, Benyong; Cheng, Liang; Yan, Liping; Zhang, Enzheng; Lou, Yingtian

    2017-03-01

    The laser beam drift seriously influences the accuracy of straightness or displacement measurement in laser interferometers, especially for the long travel measurement. To solve this problem, a heterodyne straightness and displacement measuring interferometer with laser beam drift compensation is proposed. In this interferometer, the simultaneous measurement of straightness error and displacement is realized by using heterodyne interferometry, and the laser beam drift is determined to compensate the measurement results of straightness error and displacement in real time. The optical configuration of the interferometer is designed. The principle of the simultaneous measurement of straightness, displacement, and laser beam drift is depicted and analyzed in detail. And the compensation of the laser beam drift for the straightness error and displacement is presented. Several experiments were performed to verify the feasibility of the interferometer and the effectiveness of the laser beam drift compensation. The experiments of laser beam stability show that the position stability of the laser beam spot can be improved by more than 50% after compensation. The measurement and compensation experiments of straightness error and displacement by testing a linear stage at different distances show that the straightness and displacement obtained from the interferometer are in agreement with those obtained from a compared interferometer and the measured stage. These demonstrate that the merits of this interferometer are not only eliminating the influence of laser beam drift on the measurement accuracy but also having the abilities of simultaneous measurement of straightness error and displacement as well as being suitable for long-travel linear stage metrology.

  15. Laser-initiated channels for ion transport: breakdown and channel evolution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Olsen, J.N.; Baker, L.

    1981-05-01

    The electrical breakdown and discharge evolution in CO/sub 2/ laser-heated molecular gases has been studied. With the laser tuned to a vibrational mode of NH/sub 3/, C/sub 2/H/sub 4/, CH/sub 2/CHCN, or CH/sub 3/OH the breakdown potential decreases as much as 10-fold for laser pulse energies up to 35 J/cm/sup 2/. The subsequent 50--142-cm discharges are straight, stable, and reproducible. Analogous tests in D/sub 2/ and air yield only a small alteration of breakdown potential and do not cause a straight discharge. The expansion of the initial laser-heated gas has been modeled by the CHARTB hydrocode with the addition ofmore » the NH/sub 3/ equation of state in tabular and analytic form to that code. The breakdown characteristics and initial expansion stage confirm the earlier calculation of laser heating to 1900--2100 /sup 0/K. Experimental observations of the discharge evolution in NH/sub 3/ have measured (1) the radial expansion velocity by streak-camera photography of the H/sub ..beta../ emission zone, (2) the plasma temperature by the Niv/Niii line-ratio method, and (3) the electron-density profile by holographic interferometry. The central zone of the channel is heated to 5.5 eV and expands with a radial velocity of 1.0--1.2 mm/..mu..s for the case of a 27-kA discharge in 20 Torr of NH/sub 3/. Preliminary hydrocode simulations of the discharge show qualitative agreement with observations.« less

  16. On the cost of approximating and recognizing a noise perturbed straight line or a quadratic curve segment in the plane. [central processing units

    NASA Technical Reports Server (NTRS)

    Cooper, D. B.; Yalabik, N.

    1975-01-01

    Approximation of noisy data in the plane by straight lines or elliptic or single-branch hyperbolic curve segments arises in pattern recognition, data compaction, and other problems. The efficient search for and approximation of data by such curves were examined. Recursive least-squares linear curve-fitting was used, and ellipses and hyperbolas are parameterized as quadratic functions in x and y. The error minimized by the algorithm is interpreted, and central processing unit (CPU) times for estimating parameters for fitting straight lines and quadratic curves were determined and compared. CPU time for data search was also determined for the case of straight line fitting. Quadratic curve fitting is shown to require about six times as much CPU time as does straight line fitting, and curves relating CPU time and fitting error were determined for straight line fitting. Results are derived on early sequential determination of whether or not the underlying curve is a straight line.

  17. Transition from one revolving cluster to two revolving clusters in the ground-state rotational bands of nuclei in the lanthanon region.

    PubMed

    Pauling, L

    1991-02-01

    Whereas 234(92)U142 and other actinon nuclei have ground-state bands that indicate that each nucleus consists of a sphere and a single revolving cluster with constant composition and with only a steady increase in the moment of inertia with increase in J, the angular-momentum quantum number, many of the lanthanon ground-state bands show discontinuities, usually with an initial slightly or strongly curved segment followed by one or two nearly straight segments. The transition to nearly straight segments is interpreted as a change in structure from one revolving cluster to two revolving clusters. The proton-neutron compositions of the clusters and the central sphere are assigned, leading to values of the radius of revolution. The approximation of the two-cluster sequences to linearity is attributed to the very small values of the quadrupole polarizability of the central sphere. Values of the nucleon numbers of clusters and spheres, of the radius of revolution, and of promotion energy are discussed.

  18. Space shuttle phase B wind tunnel model and test information. Volume 2: Orbiter configuration

    NASA Technical Reports Server (NTRS)

    Glynn, J. L.; Poucher, D. E.

    1988-01-01

    Archived wind tunnel test data are available for flyback booster or other alternative recoverable configurations as well as reusable orbiters studied during initial development (Phase B) of the Space Shuttle. Considerable wind tunnel data was acquired by the competing contractors and the NASA centers for an extensive variety of configurations with an array of wing and body planforms. All contractor and NASA wind tunnel test data acquired in the Phase B development have been compiled into a data base and are available for applying to current winged flyback or recoverable booster aerodynamic studies. The Space Shuttle Phase B Wind Tunnel Data Base is structured by vehicle component and configuration type. Basic components include the booster, the orbiter, and the launch vehicle. Booster configuration types include straight and delta wings, canard, cylindrical, retro-glide and twin body. Orbiter configuration types include straight and delta wings, lifting body, drop tanks, and double delta wings. Launch configuration types include booster and orbiter components in various stacked and tandem combinations.

  19. Space shuttle phase B wind tunnel model and test information. Volume 3: Launch configuration

    NASA Technical Reports Server (NTRS)

    Glynn, J. L.; Poucher, D. E.

    1988-01-01

    Archived wind tunnel data are available for flyback booster or other alternative recoverable configurations as well as reusable orbiters studied during initial development (Phase B) of the Space Shuttle. Considerable wind tunnel data was acquired by the competing contractors and the NASA Centers for an extensive variety of configurations with an array of wing and body planforms. All contractor and NASA wind tunnel data acquired in the Phase B development have been compiled into a data base and are available for application to current winged flyback or recoverable booster aerodynamic studies. The Space Shuttle Phase B Wind Tunnel Database is structured by vehicle component and configuration type. Basic components include booster, orbiter and launch vehicle. Booster configuration types include straight and delta wings, canard, cylindrical, retroglide and twin body. Orbital configuration types include straight and delta wings, lifting body, drop tanks and double delta wings. This is Volume 3 (Part 2) of the report -- Launch Configuration -- which includes booster and orbiter components in various stacked and tandem combinations.

  20. Stabilization of Inviscid Vortex Sheets

    NASA Astrophysics Data System (ADS)

    Protas, Bartosz; Sakajo, Takashi

    2017-11-01

    In this study we investigate the problem of stabilizing inviscid vortex sheets via feedback control. Such models, expressed in terms of the Birkhoff-Rott equation, are often used to describe the Kevin-Helmholtz instability of shear layers and are known to be strongly unstable to small-scale perturbations. First, we consider the linear stability of a straight vortex sheet in the periodic setting with actuation in the form of an array of point vortices or sources located a certain distance away from the sheet. We establish conditions under which this system is controllable and observable. Next, using methods of the linear control theory, we synthesize a feedback control strategy which stabilizes a straight vortex sheet in the linear regime. Given the poor conditioning of the discretized problem, reliable solution of the resulting algebraic Riccati equation requires the use of high-precision arithmetic. Finally, we demonstrate that this control approach also succeeds in the nonlinear regime, provided the magnitude of the initial perturbation is sufficiently small.

  1. Weighted straight skeletons in the plane☆

    PubMed Central

    Biedl, Therese; Held, Martin; Huber, Stefan; Kaaser, Dominik; Palfrader, Peter

    2015-01-01

    We investigate weighted straight skeletons from a geometric, graph-theoretical, and combinatorial point of view. We start with a thorough definition and shed light on some ambiguity issues in the procedural definition. We investigate the geometry, combinatorics, and topology of faces and the roof model, and we discuss in which cases a weighted straight skeleton is connected. Finally, we show that the weighted straight skeleton of even a simple polygon may be non-planar and may contain cycles, and we discuss under which restrictions on the weights and/or the input polygon the weighted straight skeleton still behaves similar to its unweighted counterpart. In particular, we obtain a non-procedural description and a linear-time construction algorithm for the straight skeleton of strictly convex polygons with arbitrary weights. PMID:25648398

  2. Shock wave and flame front induced detonation in a rapid compression machine

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Qi, Y.; Xiang, S.; Mével, R.; Wang, Z.

    2018-05-01

    The present study focuses on one mode of detonation initiation observed in a rapid compression machine (RCM). This mode is referred to as shock wave and flame front-induced detonation (SWFID). Experimental high-speed imaging and two-dimensional numerical simulations with skeletal chemistry are combined to unravel the dominant steps of detonation initiation under SWFID conditions. It is shown that the interaction between the shock wave generated by the end-gas auto-ignition and the spherical flame creates a region of high pressure and temperature which enables the acceleration of the flame front and the detonation onset. The experimental observation lacks adequate spatial and temporal resolution despite good reproducibility of the detonation onset. Based on the numerical results, phenomenological interpretation of the event within the framework of shock wave refraction indicates that the formation of a free-precursor shock wave at the transition between regular and irregular refraction may be responsible for detonation onset. The present results along with previous findings on shock wave reflection-induced detonation in the RCM indicate that super-knock occurs after the interaction of the shock wave generated by end-gas auto-ignition with the RCM walls, preignition flame, or another shock wave.

  3. Analytical framework for modeling of long-range transport of fungal plant epidemics

    NASA Astrophysics Data System (ADS)

    Kogan, Oleg; O'Keeffe, Kevin; Schneider, David; Myers, Christopher; Analytical FrameworksInfectious Disease Dynamics Team

    2015-03-01

    A new framework for the study of long-range transport of fungal plant epidemics is proposed. The null nonlinear model includes advective transport through the free atmosphere, spore production on the ground, and transfer of spores between the ground and the advective atmospheric layer. The competition between the growth wave on the ground and the effect of the wind is most strongly reflected in upwind fronts, which can propagate into the wind for exponential initial conditions. If the rate of spore transfer into the advective layer is below critical, this happens for initital conditions with arbitrary steepness. Upwind fronts from localized initial conditions will propagate in the direction of the wind above this critical parameter, and will not propagate below it. On the other hand, the speed of the downwind front does not have a strong dependence on the rate of spore transfer between the advective layer and the ground. Thus, even vanishingly small, but finite transfer rates result in a substantial epidemic wave in the direction of the wind. We also consider the effect of an additional, random-walk like mechanism of transport through the near-ground atmospheric boundary layer, and attempt to understand which route dominates the transport over long distances.

  4. Design on wireless auto-measurement system for lead rail straightness measurement based on PSD

    NASA Astrophysics Data System (ADS)

    Yan, Xiugang; Zhang, Shuqin; Dong, Dengfeng; Cheng, Zhi; Wu, Guanghua; Wang, Jie; Zhou, Weihu

    2016-10-01

    Straightness detection is not only one of the key technologies for the product quality and installation accuracy of all types of lead rail, but also an important dimensional measurement technology. The straightness measuring devices now available have disadvantages of low automation level, limiting by measuring environment, and low measurement efficiency. In this paper, a wireless measurement system for straightness detection based on position sensitive detector (PSD) is proposed. The system has some advantage of high automation-level, convenient, high measurement efficiency, easy to transplanting and expanding, and can detect straightness of lead rail in real-time.

  5. Straight scaling FFAG beam line

    NASA Astrophysics Data System (ADS)

    Lagrange, J.-B.; Planche, T.; Yamakawa, E.; Uesugi, T.; Ishi, Y.; Kuriyama, Y.; Qin, B.; Okabe, K.; Mori, Y.

    2012-11-01

    Fixed field alternating gradient (FFAG) accelerators are recently subject to a strong revival. They are usually designed in a circular shape; however, it would be an asset to guide particles with no overall bend in this type of accelerator. An analytical development of a straight FFAG cell which keeps zero-chromaticity is presented here. A magnetic field law is thus obtained, called "straight scaling law", and an experiment has been conducted to confirm this zero-chromatic law. A straight scaling FFAG prototype has been designed and manufactured, and horizontal phase advances of two different energies are measured. Results are analyzed to clarify the straight scaling law.

  6. Revealing the timing of ocean stratification using remotely-sensed ocean fronts: links with marine predators

    NASA Astrophysics Data System (ADS)

    Miller, P. I.; Loveday, B. R.

    2016-02-01

    Stratification is of critical importance to the mixing and productivity of the ocean, though currently it can only be measured using in situ sampling, profiling buoys or underwater autonomous vehicles. Stratification is understood to affect the surface aggregation of pelagic fish and hence the foraging behaviour and distribution of their predators such as seabirds and cetaceans. Satellite Earth observation sensors cannot directly detect stratification, but can observe surface features related to the presence of stratification, for example shelf-sea fronts that separate tidally-mixed water from seasonally stratified water. This presentation describes a novel algorithm that accumulates evidence for stratification from a sequence of oceanic front maps, and in certain regions can reveal the timing of the seasonal onset and breakdown of stratification. Initial comparisons will be made with seabird locations acquired through GPS tagging. If successful, a remotely-sensed stratification timing index would augment the ocean front metrics already developed at PML, that have been applied in over 20 journal articles relating marine predators to ocean fronts. The figure below shows a preliminary remotely-sensed 'stratification' index, for 25-31 Jul. 2010, where red indicates water with stronger evidence for stratification.

  7. Experimental and computational investigation of microwave interferometry (MI) for detonation front characterization

    NASA Astrophysics Data System (ADS)

    Mays, Owen; Tringe, Joe; Souers, Clark; Lauderbach, Lisa; Baluyot, Emer; Converse, Mark; Kane, Ron

    2017-06-01

    Microwave interferometry (MI) presents several advantages over more traditional existing shock and deflagration front diagnostics. Most importantly, it directly interrogates these fronts, instead of measuring the evolution of containment surfaces or explosive edges. Here we present the results of MI measurements on detonator-initiated cylinder tests, as well as on deflagration-to-detonation transition experiments, with emphasis on optimization of signal strength through coupling devices and through microwave-transparent windows. Full-wave electromagnetic field finite element simulations were employed to better understand microwave coupling into porous and near full theoretical maximum density (TMD) explosives. HMX and TATB-based explosives were investigated. Data was collected simultaneously at 26.5 GHz and 39 GHz, allowing for direct comparison of the front characteristics and providing insight into the dielectric properties of explosives at these high frequencies. MI measurements are compared against detonation velocity results from photonic Doppler velocimetry probes and high speed cameras, demonstrating the accuracy of the MI technique. Our results illustrate features of front propagation behavior that are difficult to observe with other techniques. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  8. Evolution of a double-front Rayleigh-Taylor system using a graphics-processing-unit-based high-resolution thermal lattice-Boltzmann model.

    PubMed

    Ripesi, P; Biferale, L; Schifano, S F; Tripiccione, R

    2014-04-01

    We study the turbulent evolution originated from a system subjected to a Rayleigh-Taylor instability with a double density at high resolution in a two-dimensional geometry using a highly optimized thermal lattice-Boltzmann code for GPUs. Our investigation's initial condition, given by the superposition of three layers with three different densities, leads to the development of two Rayleigh-Taylor fronts that expand upward and downward and collide in the middle of the cell. By using high-resolution numerical data we highlight the effects induced by the collision of the two turbulent fronts in the long-time asymptotic regime. We also provide details on the optimized lattice-Boltzmann code that we have run on a cluster of GPUs.

  9. Shaping Microwave Fields Using Nonlinear Unsolicited Feedback: Application to Enhance Energy Harvesting

    NASA Astrophysics Data System (ADS)

    del Hougne, Philipp; Fink, Mathias; Lerosey, Geoffroy

    2017-12-01

    Wave-front shaping has emerged over the past decade as a powerful tool to control wave propagation through complex media, initially in optics and more recently also in the microwave domain with important applications in telecommunication, imaging, and energy transfer. The crux of implementing wave-front shaping concepts in real life is often its need for (direct) feedback, requiring access to the target to focus on. Here, we present the shaping of a microwave field based on indirect, unsolicited, and blind feedback which may be the pivotal step towards practical implementations. With the example of a radio-frequency harvester in a metallic cavity, we demonstrate tenfold enhancement of the harvested power by wave-front shaping based on nonlinear signals detected at an arbitrary position away from the harvesting device.

  10. School Climate, Individual Support, or Both? Gay-Straight Alliances and the Mental Health of Sexual Minority Youth

    ERIC Educational Resources Information Center

    Walls, N. Eugene; Wisneski, Hope; Kane, Sarah

    2013-01-01

    Using a sample of 284 sexual minority youth and young adults, this paper examines the relationships between mental health variables, the absence or presence of a gay-straight alliance, and membership status in a gay-straight alliance. The results suggest that the presence of a gay-straight alliance in a school or college, rather than actual…

  11. The destabilization of an initially thick liquid sheet edge

    NASA Astrophysics Data System (ADS)

    Lhuissier, Henri; Villermaux, Emmanuel

    2011-09-01

    By forcing the sudden dewetting of a free soap film attached on one edge to a straight solid wire, we study the recession and subsequent destabilization of its free edge. The newly formed rim bordering the sheet is initially thicker than the film to which it is attached, because of the Plateau border preexisting on the wire. The initial condition is thus that of an immobile massive toroidal rim connected to a thin liquid film of thickness h. The terminal Taylor-Culick receding velocity V =√2σ/ρh , where σ and ρ are the liquid surface tension and density, respectively, is only reached after a transient acceleration period which promotes the rim destabilization. The selected wavelength and associated growth time coincide with those of an inertial instability driven by surface tension.

  12. Slope stability in the critical zone: The relative influence of long vs. short-time scale soil and vegetation properties on debris-flow initiation during a catastrophic rainfall.

    NASA Astrophysics Data System (ADS)

    Rengers, F. K.; McGuire, L.; Coe, J. A.; Kean, J. W.; Baum, R. L.; Staley, D. M.; Godt, J.

    2016-12-01

    Within the critical zone there is a feedback between the state of soil and vegetation development, boundary conditions (e.g. topography, climate, hillslope aspect), and biogeochemical and geophysical process fluxes. Here we explore how one process—debris flows initiated by shallow landslides—is influenced by the critical zone development state and the imposed boundary conditions. In this study, we examine a rainstorm in September 2013 in the Colorado Front Range wherein 78% of 1138 debris flows were triggered on south-facing slopes. One hypothesis is that debris-flow initiation sites are controlled by long-term soil formation and bedrock weathering, which are aspect-dependent in the Front Range. A competing hypothesis is that debris flow initiation locations are controlled by present-day vegetation patterns within the critical zone. We tested these hypotheses with a regional investigation of the Green-Red Vegetation Index (GRVI), a metric used to identify the degree of vegetation cover. Although the majority of debris flows were observed on south-facing hillslopes, the GRVI analysis revealed that most debris-flow initiation locations had low tree density and high rainfall, regardless of hillslope aspect. We next numerically simulated soil pore pressure and slope stability using the September 2013 rainfall data at one site. Results suggest that spatial variations in soil depth and the relative extent of bedrock weathering on north- versus south-facing slopes are insufficient to explain the observed spatial variations in debris flow initiation. However, decreased debris flow initiation on north-facing slopes likely resulted from increased root reinforcement provided by trees on north-facing slopes. While the current vegetation regimes in the Colorado Front Range, and throughout much of the semi-arid southwestern U.S., are superimposed on a landscape where soil development and bedrock weathering (both of which affect slope stability) are responding to longer timescale processes, our analysis suggests landslide susceptibility was primarily governed by the local, geo-mechanical effects of vegetation during this extreme rainfall event.

  13. Structure and Dynamics of Decadal Anomalies in the Wintertime Midlatitude North Pacific Ocean-Atmosphere System

    NASA Astrophysics Data System (ADS)

    Fang, J.

    2017-12-01

    The structure and dynamics of decadal anomalies in the wintertime midlatitude North Pacific ocean- atmosphere system are examined in this study, using the NCEP/NCAR atmospheric reanalysis, HadISST SST and Simple Ocean Data Assimilation data for 1960-2010. The midlatitude decadal anomalies associated with the Pacific Decadal Oscillation are identified, being characterized by an equivalent barotropic atmospheric low (high) pressure over a cold (warm) oceanic surface. Such a unique configuration of decadal anomalies can be maintained by an unstable ocean-atmosphere interaction mechanism in the midlatitudes, which is hypothesized as follows. Associated with a warm PDO phase, an initial midlatitude surface westerly anomaly accompanied with intensified Aleutian low tends to force a negative SST anomaly by increasing upward surface heat fluxes and driving southward Ekman current anomaly. The SST cooling tends to increase the meridional SST gradient, thus enhancing the subtropical oceanic front. As an adjustment of the atmospheric boundary layer to the enhanced oceanic front, the low-level atmospheric meridional temperature gradient and thus the low-level atmospheric baroclinicity tend to be strengthened, inducing more active transient eddy activities that increase transient eddy vorticity forcing. The vorticity forcing that dominates the total atmospheric forcing tends to produce an equivalent barotropic atmospheric low pressure north of the initial westerly anomaly, intensifying the initial anomalies of the midlatitude surface westerly and Aleutian low. Therefore, it is suggested that the midlatitude ocean-atmosphere interaction can provide a positive feedback mechanism for the development of initial anomaly, in which the oceanic front and the atmospheric transient eddy are the indispensable ingredients. Such a positive ocean-atmosphere feedback mechanism is fundamentally responsible for the observed decadal anomalies in the midlatitude North Pacific ocean-atmosphere system.

  14. Sidewall crystallization and saturation front formation in silicic magma chambers

    NASA Astrophysics Data System (ADS)

    Lake, E. T.

    2012-12-01

    The cooling and crystallization style of silicic magma bodies in the upper crust falls on a continuum between whole-chamber processes of convection, crystal settling, and cumulate formation and interface driven processes of conduction and crystallization front migration. In the former case, volatile saturation occurs uniformly chamber wide, in the latter volatile saturation occurs along an inward propagating front. Ambient thermal gradient primarily controls the propagation rate; warm (> 30 °C / km) geothermal gradients promote 1000m+ thick crystal mush zones but slow crystallization front propagation. Cold geothermal gradients support the opposite. Magma chamber geometry plays a second order role in controlling propagation rates; bodies with high surface to magma ratio and large Earth's surface parallel faces exhibit more rapid propagation and smaller mush zones. Crystallization front propagation occurs at speeds of up to 6 cm/year (rhyolitic magma, thin sill geometry, 10 °C / km geotherm), far faster than diffusion of volatiles in magma and faster than bubbles can nucleate and ascend under certain conditions. Saturation front propagation is fixed by pressure and magma crystal content; above certain modest initial water contents (4.4 wt% in a dacite) mobile magma above 10 km depth always contains a saturation front. Saturation fronts propagate down from the magma chamber roof at lower water contents (3.3 wt% in a dacite at 5 km depth), creating an upper saturated interface for most common (4 - 6 wt%) magma water contents. This upper interface promotes the production of a fluid pocket underneath the apex of the magma chamber. Magma de-densification by bubble nucleation promotes convection and homogenization in dacitic systems. If the fluid pocket grew rapidly without draining, hydro-fracturing and eruption would result. The combination of fluid escape pathways and metal scavenging would generate economic vein or porphyry deposits.

  15. Isolated core training improves sprint performance in national-level junior swimmers.

    PubMed

    Weston, Matthew; Hibbs, Angela E; Thompson, Kevin G; Spears, Iain R

    2015-03-01

    To quantify the effects of a 12-wk isolated core-training program on 50-m front-crawl swim time and measures of core musculature functionally relevant to swimming. Twenty national-level junior swimmers (10 male and 10 female, 16±1 y, 171±5 cm, 63±4 kg) participated in the study. Group allocation (intervention [n=10], control [n=10]) was based on 2 preexisting swim-training groups who were part of the same swimming club but trained in different groups. The intervention group completed the core training, incorporating exercises targeting the lumbopelvic complex and upper region extending to the scapula, 3 times/wk for 12 wk. While the training was performed in addition to the normal pool-based swimming program, the control group maintained their usual pool-based swimming program. The authors made probabilistic magnitude-based inferences about the effect of the core training on 50-m swim time and functionally relevant measures of core function. Compared with the control group, the core-training intervention group had a possibly large beneficial effect on 50-m swim time (-2.0%; 90% confidence interval -3.8 to -0.2%). Moreover, it showed small to moderate improvements on a timed prone-bridge test (9.0%; 2.1-16.4%) and asymmetric straight-arm pull-down test (23.1%; 13.7-33.4%), and there were moderate to large increases in peak EMG activity of core musculature during isolated tests of maximal voluntary contraction. This is the first study to demonstrate a clear beneficial effect of isolated core training on 50-m front-crawl swim performance.

  16. The front end test stand high performance H- ion source at Rutherford Appleton Laboratory.

    PubMed

    Faircloth, D C; Lawrie, S; Letchford, A P; Gabor, C; Wise, P; Whitehead, M; Wood, T; Westall, M; Findlay, D; Perkins, M; Savage, P J; Lee, D A; Pozimski, J K

    2010-02-01

    The aim of the front end test stand (FETS) project is to demonstrate that chopped low energy beams of high quality can be produced. FETS consists of a 60 mA Penning Surface Plasma Ion Source, a three solenoid low energy beam transport, a 3 MeV radio frequency quadrupole, a chopper, and a comprehensive suite of diagnostics. This paper details the design and initial performance of the ion source and the laser profile measurement system. Beam current, profile, and emittance measurements are shown for different operating conditions.

  17. Understanding the Manager of the Project Front-End

    NASA Technical Reports Server (NTRS)

    Mulenburg, Gerald M.; Imprescia, Cliff (Technical Monitor)

    2000-01-01

    Historical data and new findings from interviews with managers of major National Aeronautics and Space Administration (NASA) projects confirm literature reports about the criticality of the front-end phase of project development, where systems engineering plays such a key role. Recent research into the management of ten contemporary NASA projects, combined with personal experience of the author in NASA, provide some insight into the relevance and importance of the project manager in this initial part of the project life cycle. The research findings provide evidence of similar approaches taken by the NASA project manager.

  18. FY 2002 Economic Outlook, Highlights from FY 1994 to FY 2001, FY 2002 Baseline Projections

    DTIC Science & Technology

    2001-01-01

    have experienced four straight years of surplus, a stretch of prosperity last seen following World War I. For three years in a row, we have actually... safer . My Administration’s initiatives to reduce crime contributed to the lowest annual serious crime count since 1985. • Giving Americans confidence...Medicare trust funds and offered the hope of paying down the debt with prudent budget policies. The past eight years have also seen remarkable

  19. A Numerical Model for Predicting Shoreline Changes.

    DTIC Science & Technology

    1980-07-01

    minimal shorelines for finite - difference scheme of time lAt (B) . . . 27 11 Transport function Q(ao) = cos ao sin za o for selected values of z . 28 12...generate the preceding examples was based on the use of implicit finite differences . Such schemes, whether implicit or ex- plicit (or both), are...10(A) shows an initially straight shoreline. In any finite - difference scheme, after one time increment At, the shoreline is bounded below by the solid

  20. Hydrodynamic shrinkage of liquid CO2 Taylor drops in a straight microchannel

    NASA Astrophysics Data System (ADS)

    Qin, Ning; Wen, John Z.; Ren, Carolyn L.

    2018-03-01

    Hydrodynamic shrinkage of liquid CO2 drops in water under a Taylor flow regime is studied using a straight microchannel (length/width ~100). A general form of a mathematical model of the solvent-side mass transfer coefficient (k s) is developed first. Based on formulations of the surface area (A) and the volume (V) of a general Taylor drop in a rectangular microchannel, a specific form of k s is derived. Drop length and speed are experimentally measured at three specified positions of the straight channel, namely, immediately after drop generation (position 1), the midpoint of the channel (position 2) and the end of the channel (position 3). The reductions of drop length (L x , x  =  1, 2, 3) from position 1 to 2 and down to 3 are used to quantify the drop shrinkage. Using the specific model, k s is calculated mainly based on L x and drop flowing time (t). Results show that smaller CO2 drops produced by lower flow rate ratios ({{Q}LC{{O2}}}/{{Q}{{H2}O}} ) are generally characterized by higher (nearly three times) k s and Sherwood numbers than those produced by higher {{Q}LC{{O2}}}/{{Q}{{H2}O}} , which is essentially attributed to the larger effective portion of the smaller drop contributing in the mass transfer under same levels of the flowing time and the surface-to-volume ratio (~104 m-1) of all drops. Based on calculated pressure drops of the segmented flow in microchannel, the Peng-Robinson equation of state and initial pressures of drops at the T-junction in experiments, overall pressure drop (ΔP t) in the straight channel as well as the resulted drop volume change are quantified. ΔP t from position 1-3 is by average 3.175 kPa with a ~1.6% standard error, which only leads to relative drop volume changes of 0.3‰ to 0.52‰.

  1. Liquid redistribution behind a drainage front in porous media imaged by neutron radiography

    NASA Astrophysics Data System (ADS)

    Hoogland, Frouke; Lehmann, Peter; Moebius, Franziska; Vontobel, Peter; Or, Dani

    2013-04-01

    Drainage from porous media is a highly dynamic process involving the motion of a displacement front with rapid pore scale interfacial jumps and phase entrapment, but also a more gradual host of liquid redistribution processes in the unsaturated region behind the front. Depending on the velocity of the drainage process, liquid properties and the permeability of the porous medium, redistribution lingers long after the main drainage process is stopped, until gravity and capillary forces regain equilibrium. The rapid and often highly inertial Haines jumps at the drainage front challenge the validity of Buckingham-Darcy law and thus representation of the process based on the foundation of Richards equation. To quantify front displacement and liquid reconfiguration and to test validity of Richards equation with respect to fast drainage dynamics, we carried out drainage experiments by withdrawing water from the bottom of initially saturated sand-filled Hele-Shaw cells at constant water flux (2.6 or 13.1 mm/minute). Water content distribution and evolution of drainage front were measured with neutron radiography at spatial and temporal resolutions of 0.1 mm and 3 seconds, respectively. Water pressure was measured above and below the front using pressure transducers and a tensiometer. After the pump was stopped (at a front depth around 100 mm), capillary pressure values in the unsaturated region (above the front) gradually converged to a new equilibrium. The pressure signal in the saturated region below the front reflected viscous losses during flow that were relaxed when the pump stopped. During pressure relaxation water was redistributed primarily downward in the unsaturated region. Pressure signals and dynamics of water content profiles for fast process (13.6 mm/minute) could not be reproduced with Richards equation based on hydraulic functions determined in preceding laboratory experiments. To explore if the deviations stem from inappropriate hydraulic functions we redefined them based on fitting the slow experiment (2.6 mm/min) and apply the optimized functions for the fast experiment. Finally we will discuss application of alternative formulation based on foam drainage equation to represent liquid redistribution dynamics behind the front.

  2. Liquid Fuels: Pyrolytic Degradation and Fire Spread Behavior as Influenced by Buoyancy

    NASA Technical Reports Server (NTRS)

    Yeboah, Yaw D.; Malbrue, Courtney; Savage, Melane; Liao, Bo; Ross, Howard D. (Technical Monitor)

    2001-01-01

    This work is being conducted by the Combustion and Emission Control Lab in the Engineering Department at Clark Atlanta University under NASA Grant No. NCC3-707. The work aims at providing data to supplement the ongoing NASA research activities on fire spread across liquid pools by providing flow visualization and velocity measurements especially in the gas phase and gas-liquid interface. The fabrication, installation, and testing were completed during this reporting period. The system shakedown and detailed quantitative measurements with High Speed Video and Particle Image Velocimetry (PIV) systems using butanol as fuel were performed. New and interesting results, not previously reported in the literature, were obtained from the experiments using a modified NASA tray and butanol as fuel. Three distinct flame spread regimes, as previously reported, were observed. These were the pseudo-uniform regime below 20 C, the pulsating regime between 22 and 30 C and the uniform regime above about 31 C. In the pulsating regime the jump velocity appeared to be independent of the pool temperature. However, the retreat velocity between jumps appeared to depend on the initial pool temperature. The flame retreated before surging forwards with increasing brightness. Previous literature reported this phenomenon only under microgravity conditions. However, we observed such behavior in our normal gravity experiments. Mini-pulsations behind the flame front were also observed. Two or three of these pulsations were observed within a single flame front pulsating time period. The velocity vector maps of the gas and liquid phases ahead, during, and behind the flame front were characterized. At least one recirculation cell was observed right below the flame front.The size of the liquid phase vortex (recirculation cell) below the flame front appeared to decrease with increasing initial pool temperature. The experiments also showed how multiple vortices developed in the liquid phase. A large recirculation cell, which generally spins counterclockwise as the flame spread from right to left, was observed ahead of and near the flame front in the gas phase. Detailed quantitative measurements will be undertaken with the LDV and PIV systems using the modified NASA tray and propanol.

  3. A Kinematic Analysis of the Jumping Front-Leg Axe-Kick in Taekwondo

    PubMed Central

    Preuschl, Emanuel; Hassmann, Michaela; Baca, Arnold

    2016-01-01

    The jumping front-leg axe-kick is a valid attacking and counterattacking technique in Taekwondo competition (Streif, 1993). Yet, the existing literature on this technique is sparse (Kloiber et al., 2009). Therefore, the goal of this study was to determine parameters contributing significantly to maximum linear speed of the foot at impact. Parameters are timing of segment and joint angular velocity characteristics and segment lengths of the kicking leg. Moreover, we were interested in the prevalence of proximal-to-distal-sequencing. Three-dimensional kinematics of the kicks of 22 male Taekwondo-athletes (age: 23.3 ± 5.3 years) were recorded via a motion capturing system (Vicon Motion Systems Limited, Oxford, UK). The participants performed maximum effort kicks onto a rack-held kicking pad. Only the kick with the highest impact velocity was analysed, as it was assumed to represent the individual’s best performance. Significant Pearson correlations to impact velocity were found for pelvis tilt angular displacement (r = 0.468, p < 0.05) and for hip extension angular velocity (r = -0.446, p < 0.05) and for the timing of the minima of pelvis tilt velocity (r = -0.426, p < 0.05) and knee flexion velocity (r = -0.480, p < 0.05). Backward step linear regression analysis suggests a model consisting of three predictor variables: pelvis tilt angular displacement, hip flexion velocity at target contact and timing of pelvic tilt angular velocity minimum (adjusted R2 = 0.524). Results of Chi-Squared tests show that neither for the leg-raising period (χ2 = 2.909) of the technique, nor for the leg-lowering period a pattern of proximal-to-distal sequencing is prevalent (χ2 = 0.727). From the results we conclude that the jumping front-leg axe-kick does not follow a proximal-to-distal pattern. Raising the leg early in the technique and apprehending the upper body to be leant back during the leg-lowering period seems to be beneficial for high impact velocity. Furthermore, striking by extending the hip rather than by flexing the knee could raise impact velocity. Key points Angular velocity characteristics of the pelvis segment and the kicking leg’s hip and knee joint show no proximal-to-distal sequencing, neither for the leg-raising or leg-lowering period in a jumping front-leg axe-kick. Anthropometric parameters of taekwondo athlete’s do not influence their impact velocities. In order to raise the impact velocity in the jumping front-leg axe-kick an athlete should avoid tilting back with the torso. Instead, an upright position should be maintained. In the leg-lowering period, we suggest hitting the target by using hip extension with a rather straight knee, instead of flexing the knee. PMID:26957931

  4. The Drama Is Always Right in Front of You: Sociodrama for the Development of Social Insight and Action

    ERIC Educational Resources Information Center

    Carter, Philip D.

    2009-01-01

    This article is a story in three acts. Act I is the initial article submitted to "Qualitative Inquiry" describing an unscripted sociodrama that occurred in a weekly psychodrama group two days after September 11, 2001 (initial submission titled, "9/11 in New Zealand: A point of leverage"). Act II presents the reviewer's response…

  5. Effect of Shockwave Curvature on Run Distance Observed with a Modified Wedge Test

    NASA Astrophysics Data System (ADS)

    Lee, Richard; Dorgan, Robert; Sutherland, Gerrit; Benedetta, Ashley; Milby, Christopher

    2011-06-01

    The effect of wave curvature on shock initiation in PBXN-110 was investigated using a modified wedge test configuration. Various thicknesses of PBXN-110 donor slabs were used to define the shockwave curvature introduced to wedge samples of the same explosive. The donor slabs were initiated with line-wave generators so that the introduced shock would be the same shape, magnitude and duration across the entire input surface of the wedge. The shock parameters were varied for a given donor thickness via different widths of PMMA spacers placed between the donor and the wedge. A framing camera was used to observe where initiation occurred along the face of the wedge. Initiation always occurred at the center of the shock front instead of the sides like that reported by others using a much smaller test format. Results were compared to CTH calculations to indicate if there were effects associated with highly curved shock fronts that could not be adequately predicted. The run distance predicted in CTH for a 50.8 mm thick donor slab (low curvature) compared favorably with experimental results. However, results from thinner donor slabs (higher curvature) indicate a more sensitive behavior than the simulations predicted.

  6. Effect of shockwave curvature on run distance observed with a modified wedge test

    NASA Astrophysics Data System (ADS)

    Lee, Richard; Dorgan, Robert J.; Sutherland, Gerrit; Benedetta, Ashley; Milby, Christopher

    2012-03-01

    The effect of wave curvature on shock initiation in PBXN-110 was investigated using a modified wedge test configuration. Various widths of PBXN-110 donor slabs were used to define the shockwave curvature introduced to wedge samples of the same explosive. The donor slabs were initiated with line-wave generators so that the shock from the donor would be the same shape, magnitude and duration across the entire input surface of the wedge. The shock parameters were varied for a given donor with PMMA spacers placed between the donor and the wedge sample. A high-speed electronic framing camera was used to observe where initiation occurred along the face of the wedge. Initiation always occurred at the center of the shock front instead of along the sides like that reported by others using a much smaller test format. Results were compared to CTH calculations to indicate if there were effects associated with highly curved shock fronts that could not be adequately predicted. The run distance predicted in CTH for a 50.8 mm wide donor slab (low curvature) compared favorably with experimental results. However, results from thinner donor slabs (higher curvature) indicate a more sensitive behavior than the simulations predicted.

  7. Straight Talk For Good Health | NIH MedlinePlus the Magazine

    MedlinePlus

    ... Communication Straight Talk For Good Health Past Issues / Summer 2015 Table of Contents Straight talk with your ... with your Doctor nihseniorhealth.gov/talkingwithyourdoctor/toc.html Summer 2015 Issue: Volume 10 Number 2 Page 14- ...

  8. New dosing strategies for an old antibiotic: pharmacodynamics of front-loaded regimens of colistin at simulated pharmacokinetics in patients with kidney or liver disease.

    PubMed

    Rao, Gauri G; Ly, Neang S; Haas, Curtis E; Garonzik, Samira; Forrest, Alan; Bulitta, Jurgen B; Kelchlin, Pamela A; Holden, Patricia N; Nation, Roger L; Li, Jian; Tsuji, Brian T

    2014-01-01

    Increasing evidence suggests that colistin monotherapy is suboptimal at currently recommended doses. We hypothesized that front-loading provides an improved dosing strategy for polymyxin antibiotics to maximize killing and minimize total exposure. Here, we utilized an in vitro pharmacodynamic model to examine the impact of front-loaded colistin regimens against a high bacterial density (10(8) CFU/ml) of Pseudomonas aeruginosa. The pharmacokinetics were simulated for patients with hepatic (half-life [t1/2] of 3.2 h) or renal (t1/2 of 14.8 h) disease. Front-loaded regimens (n=5) demonstrated improvement in bacterial killing, with reduced overall free drug areas under the concentration-time curve (fAUC) compared to those with traditional dosing regimens (n=14) with various dosing frequencies (every 12 h [q12h] and q24h). In the renal failure simulations, front-loaded regimens at lower exposures (fAUC of 143 mg · h/liter) obtained killing activity similar to that of traditional regimens (fAUC of 268 mg · h/liter), with an ∼97% reduction in the area under the viable count curve over 48 h. In hepatic failure simulations, front-loaded regimens yielded rapid initial killing by up to 7 log10 within 2 h, but considerable regrowth occurred for both front-loaded and traditional regimens. No regimen eradicated the high bacterial inoculum of P. aeruginosa. The current study, which utilizes an in vitro pharmacodynamic infection model, demonstrates the potential benefits of front-loading strategies for polymyxins simulating differential pharmacokinetics in patients with hepatic and renal failure at a range of doses. Our findings may have important clinical implications, as front-loading polymyxins as a part of a combination regimen may be a viable strategy for aggressive treatment of high-bacterial-burden infections.

  9. Vision-based vehicle detection and tracking algorithm design

    NASA Astrophysics Data System (ADS)

    Hwang, Junyeon; Huh, Kunsoo; Lee, Donghwi

    2009-12-01

    The vision-based vehicle detection in front of an ego-vehicle is regarded as promising for driver assistance as well as for autonomous vehicle guidance. The feasibility of vehicle detection in a passenger car requires accurate and robust sensing performance. A multivehicle detection system based on stereo vision has been developed for better accuracy and robustness. This system utilizes morphological filter, feature detector, template matching, and epipolar constraint techniques in order to detect the corresponding pairs of vehicles. After the initial detection, the system executes the tracking algorithm for the vehicles. The proposed system can detect front vehicles such as the leading vehicle and side-lane vehicles. The position parameters of the vehicles located in front are obtained based on the detection information. The proposed vehicle detection system is implemented on a passenger car, and its performance is verified experimentally.

  10. The art and science of straight lines in radiology.

    PubMed

    Day, Cynthia M; Sodickson, Aaron

    2011-02-01

    The purpose of this article is to review the physical basis for straight radiographic lines, identify the possible components that may form a straight line interface in the body, provide illustrative examples across multiple organ systems and modalities, and explore how the detection of these interfaces can support specific diagnoses. Detection of a straight line interface can help the radiologist recognize otherwise difficult or subtle pathologic processes, and identification of its components can provide valuable clues to diagnosis.

  11. U redox fronts and kaolinisation in basement-hosted unconformity-related U ores of the Athabasca Basin (Canada): late U remobilisation by meteoric fluids

    NASA Astrophysics Data System (ADS)

    Mercadier, Julien; Cuney, Michel; Cathelineau, Michel; Lacorde, Mathieu

    2011-02-01

    Proterozoic basement-hosted unconformity-related uranium deposits of the Athabasca Basin (Saskatchewan, Canada) were affected by significant uranium redistribution along oxidation-reduction redox fronts related to cold and late meteoric fluid infiltration. These redox fronts exhibit the same mineralogical and geochemical features as the well-studied uranium roll-front deposits in siliclastic rocks. The primary hydrothermal uranium mineralisation (1.6-1.3 Ga) of basement-hosted deposits is strongly reworked to new disseminated ores comprising three distinctly coloured zones: a white-green zone corresponding to the previous clay-rich alteration halo contemporaneous with hydrothermal ores, a uranium front corresponding to the uranium deposition zone of the redox front (brownish zone, rich in goethite) and a hematite-rich red zone marking the front progression. The three zones directly reflect the mineralogical zonation related to uranium oxides (pitchblende), sulphides, iron minerals (hematite and goethite) and alumino-phosphate-sulphate (APS) minerals. The zoning can be explained by processes of dissolution-precipitation along a redox interface and was produced by the infiltration of cold (<50°C) meteoric fluids to the hydrothermally altered areas. U, Fe, Ca, Pb, S, REE, V, Y, W, Mo and Se were the main mobile elements in this process, and their distribution within the three zones was, for most of them, directly dependent on their redox potential. The elements concentrated in the redox fronts were sourced by the alteration of previously crystallised hydrothermal minerals, such as uranium oxides and light rare earth element (LREE)-rich APS. The uranium oxides from the redox front are characterised by LREE-enriched patterns, which differ from those of unconformity-related ores and clearly demonstrate their distinct conditions of formation. Uranium redox front formation is thought to be linked to fluid circulation episodes initiated during the 400-300 Ma period during uplift and erosion of the Athabasca Basin when it was near the Equator and to have been still active during the last million years. A major kaolinisation event was caused by changes in the fluid circulation regime, reworking the primary uranium redox fronts and causing the redistribution of elements originally concentrated in the uranium-enriched meteoric-related redox fronts.

  12. Neck Muscle Moment Arms Obtained In-Vivo from MRI: Effect of Curved and Straight Modeled Paths.

    PubMed

    Suderman, Bethany L; Vasavada, Anita N

    2017-08-01

    Musculoskeletal models of the cervical spine commonly represent neck muscles with straight paths. However, straight lines do not best represent the natural curvature of muscle paths in the neck, because the paths are constrained by bone and soft tissue. The purpose of this study was to estimate moment arms of curved and straight neck muscle paths using different moment arm calculation methods: tendon excursion, geometric, and effective torque. Curved and straight muscle paths were defined for two subject-specific cervical spine models derived from in vivo magnetic resonance images (MRI). Modeling neck muscle paths with curvature provides significantly different moment arm estimates than straight paths for 10 of 15 neck muscles (p < 0.05, repeated measures two-way ANOVA). Moment arm estimates were also found to be significantly different among moment arm calculation methods for 11 of 15 neck muscles (p < 0.05, repeated measures two-way ANOVA). In particular, using straight lines to model muscle paths can lead to overestimating neck extension moment. However, moment arm methods for curved paths should be investigated further, as different methods of calculating moment arm can provide different estimates.

  13. [Effects of rainfall intensity on rainfall infiltration and redistribution in soil on Loess slope land].

    PubMed

    Li, Yi; Shao, Ming'an

    2006-12-01

    With simulation test, this paper studied the patterns of rainfall infiltration and redistribution in soil on typical Loess slope land, and analyzed the quantitative relations between the infiltration and redistribution and the movement of soil water and mass, with rainfall intensity as the main affecting factor. The results showed that rainfall intensity had significant effects on the rainfall infiltration and water redistribution in soil, and the microcosmic movement of soil water. The larger the rainfall intensity, the deeper the wetting front of rainfall infiltration and redistribution was, and the wetting front of soil water redistribution had a slower increase velocity than that of rainfall infiltration. The power function of the wetting front with time, and also with rainfall intensity, was fitted well. There was also a quantitative relation between the wetting front of rainfall redistribution and the duration of rainfall. The larger the rainfall intensity, the higher the initial and steady infiltration rates were, and the cumulative infiltration increased faster with time. Moreover, the larger the rainfall intensity, the smaller the wetting front difference was at the top and the end of the slope. With the larger rainfall intensity, both the difference of soil water content and its descending trend between soil layers became more obvious during the redistribution process on slope land.

  14. Subnanosecond measurements of detonation fronts in solid high explosives

    NASA Astrophysics Data System (ADS)

    Sheffield, S. A.; Bloomquist, D. D.; Tarver, C. M.

    1984-04-01

    Detonation fronts in solid high explosives have been examined through measurements of particle velocity histories resulting from the interaction of a detonation wave with a thin metal foil backed by a water window. Using a high time resolution velocity-interferometer system, experiments were conducted on three explosives—a TATB (1,3,5-triamino-trinitrobenzene)-based explosive called PBX-9502, TNT (2,4,6-Trinitrotoluene), and CP (2-{5-cyanotetrazolato} pentaamminecobalt {III} perchlorate). In all cases, detonation-front rise times were found to be less than the 300 ps resolution of the interferometer system. The thermodynamic state in the front of the detonation wave was estimated to be near the unreacted state determined from an extrapolation of low-pressure unreacted Hugoniot data for both TNT and PBX-9502 explosives. Computer calculations based on an ignition and growth model of a Zeldovich-von Neumann-Doering (ZND) detonation wave show good agreement with the measurements. By using the unreacted Hugoniot and a JWL equation of state for the reaction products, we estimated the initial reaction rate in the high explosive after the detonation wave front interacted with the foil to be 40 μs-1 for CP, 60 μs-1 for TNT, and 80 μs-1 for PBX-9502. The shape of the profiles indicates the reaction rate decreases as reaction proceeds.

  15. Autonomous Unmanned Aerial Vehicle Rendezvous for Automated Aerial Refueling

    DTIC Science & Technology

    2007-03-01

    represents a straight line segment. It can be seen that there are ten possible combinations of arcs and line segments (RSR, RSL, LSR, LSL, LRL, RLR , SLR...SRL, RLS, and LRS). However, L. E. Dubins proved that only these six sequences are possibly optimal: RSR, RSL, LSR, LSL, LRL, and RLR [Dubins 1957...From Figure 2-5 and Figure 2-6, it can be seen that the last two cases, RLR and LRL can only be optimal when the initial point and the terminal

  16. The Molecular Anatomy of PFDA Hepatotoxicity as Studied by Two-Dimensional Electrophoresis

    DTIC Science & Technology

    1993-02-26

    indicators of cell injury and dysfunction. The compound chosen initially, perfluoro -n-decanoic acid ( PFDA ), is a ten carbon straight-chain perfluorinated ...following: 2mg, 20mg or 50mg PFDA /kg body weight; single injection; animals sacrificed on day 8 of exposure 150mg PFOA /kg ( perfluorooctanoate , PFDA’s...from the following treatments: (I) control; (II) 50mg/kg PFDA ; (III) 100mg/kg PFOA ; and (IV) 400mg/kg clofibrate. Panels V and VI are nitrocellulose

  17. Spatially Localized Chemical Patterns around an A + B → Oscillator Front.

    PubMed

    Budroni, M A; Lemaigre, L; Escala, D M; Muñuzuri, A P; De Wit, A

    2016-02-18

    When two gels, each loaded with a different set of reactants A and B of an oscillatory reaction, are brought into contact, reaction-diffusion patterns such as waves or Turing patterns can develop in the reactive contact zone. The initial condition which separates the reactants at the beginning leads to a localization in space of the different dynamical regimes accessible to the chemical oscillator. We study here both numerically and experimentally the composite traveling structures resulting from the interaction between chemical fronts and localized waves in the case in which the reactants of such an A + B → oscillator system are those of the canonical Belousov-Zhabotinsky (BZ) oscillating reaction. A transition between different dynamics is obtained by varying the initial concentration of the organic substrate of the BZ reactants, which is one of the parameters controlling the local excitability. We show that the dynamical regime (excitable or oscillatory) characterizing the BZ oscillator in the initial contact area is the key feature which determines the spatiotemporal evolution of the system. The experimental results are in qualitative agreement with the theoretical predictions.

  18. Setting initial conditions for inflation with reaction-diffusion equation

    NASA Astrophysics Data System (ADS)

    Bagchi, Partha; Das, Arpan; Dave, Shreyansh S.; Sengupta, Srikumar; Srivastava, Ajit M.

    2018-03-01

    We discuss the issue of setting appropriate initial conditions for inflation. Specifically, we consider natural inflation model and discuss the fine tuning required for setting almost homogeneous initial conditions over a region of order several times the Hubble size which is orders of magnitude larger than any relevant correlation length for field fluctuations. We then propose to use the special propagating front solutions of reaction-diffusion equations for localized field domains of smaller sizes. Due to very small velocities of these propagating fronts we find that the inflaton field in such a field domain changes very slowly, contrary to naive expectation of rapid roll down to the true vacuum. Continued expansion leads to the energy density in the Hubble region being dominated by the vacuum energy, thereby beginning the inflationary phase. Our results show that inflation can occur even with a single localized field domain of size smaller than the Hubble size. We discuss possible extensions of our results for different inflationary models, as well as various limitations of our analysis (e.g. neglecting self gravity of the localized field domain).

  19. Temporal Control of Gelation and Polymerization Fronts Driven by an Autocatalytic Enzyme Reaction.

    PubMed

    Jee, Elizabeth; Bánsági, Tamás; Taylor, Annette F; Pojman, John A

    2016-02-05

    Chemical systems that remain kinetically dormant until activated have numerous applications in materials science. Herein we present a method for the control of gelation that exploits an inbuilt switch: the increase in pH after an induction period in the urease-catalyzed hydrolysis of urea was used to trigger the base-catalyzed Michael addition of a water-soluble trithiol to a polyethylene glycol diacrylate. The time to gelation (minutes to hours) was either preset through the initial concentrations or the reaction was initiated locally by a base, thus resulting in polymerization fronts that converted the mixture from a liquid into a gel (ca. 0.1 mm min(-1)). The rate of hydrolytic degradation of the hydrogel depended on the initial concentrations, thus resulting in a gel lifetime of hours to months. In this way, temporal programming of gelation was possible under mild conditions by using the output of an autocatalytic enzyme reaction to drive both the polymerization and subsequent degradation of a hydrogel. © 2015 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  20. Selections from JEN-MIN JIH-PAO, Peiping, on Geology, Exploration, Weather Forecasting, and Cartography.

    DTIC Science & Technology

    1961-03-06

    and area of cultivation land. Otherwise, we cannot keep an accurate account of land and Water, and in the straight - line planning there will be...of production. If we let the masses possess a production direction map and the straight - line planning method, and at the same time formulate them...supplies needed, we not only can use these as the basis for straight - line planning, but we also can list the results attained by straight - line planning

  1. Effect of Domain Initial Strengthening on Vowel Height and Backness Contrasts in French: Acoustic and Ultrasound Data

    ERIC Educational Resources Information Center

    Georgeton, Laurianne; Antolík, Tanja Kocjancic; Fougeron, Cécile

    2016-01-01

    Purpose: Phonetic variation due to domain initial strengthening was investigated with respect to the acoustic and articulatory distinctiveness of vowels within a subset of the French oral vowel system /i, e, ?, a, o, u/, organized along 4 degrees of height for the front vowels and 2 degrees of backness at the close and midclose height levels.…

  2. Genome-wide scans reveal variants at EDAR predominantly affecting hair straightness in Han Chinese and Uyghur populations.

    PubMed

    Wu, Sijie; Tan, Jingze; Yang, Yajun; Peng, Qianqian; Zhang, Manfei; Li, Jinxi; Lu, Dongsheng; Liu, Yu; Lou, Haiyi; Feng, Qidi; Lu, Yan; Guan, Yaqun; Zhang, Zhaoxia; Jiao, Yi; Sabeti, Pardis; Krutmann, Jean; Tang, Kun; Jin, Li; Xu, Shuhua; Wang, Sijia

    2016-11-01

    Hair straightness/curliness is one of the most conspicuous features of human variation and is particularly diverse among populations. A recent genome-wide scan found common variants in the Trichohyalin (TCHH) gene that are associated with hair straightness in Europeans, but different genes might affect this phenotype in other populations. By sampling 2899 Han Chinese, we performed the first genome-wide scan of hair straightness in East Asians, and found EDAR (rs3827760) as the predominant gene (P = 4.67 × 10 -16 ), accounting for 3.66 % of the total variance. The candidate gene approach did not find further significant associations, suggesting that hair straightness may be affected by a large number of genes with subtle effects. Notably, genetic variants associated with hair straightness in Europeans are generally low in frequency in Han Chinese, and vice versa. To evaluate the relative contribution of these variants, we performed a second genome-wide scan in 709 samples from the Uyghur, an admixed population with both eastern and western Eurasian ancestries. In Uyghurs, both EDAR (rs3827760: P = 1.92 × 10 -12 ) and TCHH (rs11803731: P = 1.46 × 10 -3 ) are associated with hair straightness, but EDAR (OR 0.415) has a greater effect than TCHH (OR 0.575). We found no significant interaction between EDAR and TCHH (P = 0.645), suggesting that these two genes affect hair straightness through different mechanisms. Furthermore, haplotype analysis indicates that TCHH is not subject to selection. While EDAR is under strong selection in East Asia, it does not appear to be subject to selection after the admixture in Uyghurs. These suggest that hair straightness is unlikely a trait under selection.

  3. Physical simulation and theoretical evolution for ground fissures triggered by underground coal mining

    PubMed Central

    Yu, Xiang; Yang, Yi; Yang, Zeng-Qiang

    2018-01-01

    Underground coal mining activities are prone to cause movement and breakage in geological strata and also lead to mining subsidence and even ground fissures. Along the direction working panel advancing, ground fissures may occur in roof in front and/or behind working panel. However, the investigations of previous similarity tests in lab only emphasize on the region behind working panel. By improving strata material property in construction and mounting artificial pressure devices, two physical simulation tests were conducted and successfully investigated the simulated results. Then, the mechanical model of “cantilever beam and elastic foundation beam” was proposed to calculate the stress distribution and the crack initiation angle in overlying strata and it well explains the mechanisms of ground fissures generation and propagation. Results show that, the maximum internal force in roof always occurred in front of working panel. However, because the void space in gob due to excavation is large enough to cause the bend and rotation of roof strata, compare to the triaxially compressed region in front of working panel, the roof always broke off at some positions above gob since the stress concentration resulting from such bend and rotation of strata could easily reach the limit strength of strata rocks. Also, the length of cantilever beam changed dynamically as respect to the panel advancing and the breakage intervals. Thus, the breakage position where the internal force first reached the limit tensile strength is not fixed and there will be two different kinds of relative positions between the crack initiation point and the working panel. The crack initiation direction is always perpendicular to the internal force, and the crack propagation direction is affected by the initiation angle, overburden-separation degree and the position of the hydraulic shields. If there is no overburden-separation or less, the roofs will break off as a composite beam and the propagation direction will be roughly along the central line between the initial broken point and the support position. Otherwise, the roof strata will bend with the support shields moving forward, then the fracture angle will be close to the initiation angle and the fault surface will be stepped. PMID:29513703

  4. Physical simulation and theoretical evolution for ground fissures triggered by underground coal mining.

    PubMed

    Yang, Jing-Hu; Yu, Xiang; Yang, Yi; Yang, Zeng-Qiang

    2018-01-01

    Underground coal mining activities are prone to cause movement and breakage in geological strata and also lead to mining subsidence and even ground fissures. Along the direction working panel advancing, ground fissures may occur in roof in front and/or behind working panel. However, the investigations of previous similarity tests in lab only emphasize on the region behind working panel. By improving strata material property in construction and mounting artificial pressure devices, two physical simulation tests were conducted and successfully investigated the simulated results. Then, the mechanical model of "cantilever beam and elastic foundation beam" was proposed to calculate the stress distribution and the crack initiation angle in overlying strata and it well explains the mechanisms of ground fissures generation and propagation. Results show that, the maximum internal force in roof always occurred in front of working panel. However, because the void space in gob due to excavation is large enough to cause the bend and rotation of roof strata, compare to the triaxially compressed region in front of working panel, the roof always broke off at some positions above gob since the stress concentration resulting from such bend and rotation of strata could easily reach the limit strength of strata rocks. Also, the length of cantilever beam changed dynamically as respect to the panel advancing and the breakage intervals. Thus, the breakage position where the internal force first reached the limit tensile strength is not fixed and there will be two different kinds of relative positions between the crack initiation point and the working panel. The crack initiation direction is always perpendicular to the internal force, and the crack propagation direction is affected by the initiation angle, overburden-separation degree and the position of the hydraulic shields. If there is no overburden-separation or less, the roofs will break off as a composite beam and the propagation direction will be roughly along the central line between the initial broken point and the support position. Otherwise, the roof strata will bend with the support shields moving forward, then the fracture angle will be close to the initiation angle and the fault surface will be stepped.

  5. Episodic Growth of Fold-Thrust Belts: Insights from Finite Element Modelling

    NASA Astrophysics Data System (ADS)

    Yang, X.; Peel, F.; Sanderson, D. J.; McNeill, L. C.

    2016-12-01

    The sequential development of an imbricate thrust system was investigated using a set of 2D FEM models. This study provides new insights on how the style and location of thrust activity changes through cycles of thrust accretion by making refined measurements of the thrust system parameters through time and tracking these parameters through each cycle. In addition to conventional wedge parameters (i.e. surface slope, wedge width and height), the overall taper angle is used to determine how the critical taper angle is reached; a particular focus is on the region of outboard minor horizontal displacement provides insights into the forward propagation of material within, and in front of, the thrust wedge; tracking the position of the failure front (where the frontal thrust roots into the basal detachment) reveals the sequence and advancement of the imbricate thrusts. The model results show that a thrust system is generally composed of three deformation components: thrust wedge, pre-wedge and wedge front. A thrust belt involves growth that repeats episodically and cyclically. When a wedge reaches critical taper ( 10°), thrust movement within the wedge slows while the taper angle and wedge width gradually increase. In contrast, the displacement front (tracked here by the location of 0 m displacement) rapidly propagates forward along whilst the wedge height is fast growing. During this period, the wedge experiences a significant shortening after a new thrust initiates at the failure front, leading to an obvious decrease in wedge width. As soon as the critical taper is achieved, wedge interior (tracked here by the location of 50 m displacement) accelerates forward reducing the taper angle below critical. This is accompanied by a sudden increase in wedge width, slow advancement of displacement front, and slow uplift of the fold-thrust belt. The rapid movements within and in front of the wedge occur alternately. The model results also show that there is clear, although minor, activity (5-10 m displacement) in front of the thrust wedge, which distinguishes the failure front from the displacement front throughout the fold-thrust belt development. This spatial and temporal relationship may not have been previously recognized in natural systems.

  6. Effect of soil disturbance on recharging fluxes: Case study on the Snake River Plain, Idaho National Laboratory, USA

    USGS Publications Warehouse

    Nimmo, J.R.; Perkins, K.S.

    2008-01-01

    Soil structural disturbance influences the downward flow of water that percolates deep enough to become aquifer recharge. Data from identical experiments in an undisturbed silt-loam soil and in an adjacent simulated waste trench composed of the same soil material, but disturbed, included (1) laboratory- and field-measured unsaturated hydraulic properties and (2) field-measured transient water content profiles through 24 h of ponded infiltration and 75 d of redistribution. In undisturbed soil, wetting fronts were highly diffuse above 2 m depth, and did not go much deeper than 2 m. Darcian analysis suggests an average recharge rate less than 2 mm/year. In disturbed soil, wetting fronts were sharp and initial infiltration slower; water moved slowly below 2 m without obvious impediment. Richards' equation simulations with realistic conditions predicted sharp wetting fronts, as observed for disturbed soil. Such simulations were adequate for undisturbed soil only if started from a post-initial moisture distribution that included about 3 h of infiltration. These late-started simulations remained good, however, through the 76 d of data. Overall results suggest the net effect of soil disturbance, although it reduces preferential flow, may be to increase recharge by disrupting layer contrasts. ?? Springer-Verlag 2007.

  7. BIBLIOMETRIC ANALYSIS OF ACUPUNCTURE RESEARCH FRONTS AND THEIR WORLDWIDE DISTRIBUTION OVER THREE DECADES

    PubMed Central

    Fu, Jun-Ying; Zhang, Xu; Zhao, Yun-Hua; Tong, He-Feng; Chen, Dar-Zen; Huang, Mu-Hsuan

    2017-01-01

    Background: Considerable research has been conducted on acupuncture worldwide. This study chronologically examined the changing features and research fronts of acupuncture and elucidated the differences among the six most productive countries. Methods: Bibliographic coupling is a powerful tool for identifying the research fronts of a field. Acupuncture-related publications worldwide and from the six most productive countries during 1983-2012 were retrieved from the Science Citation Index Expanded and Social Science Citation Index. To form the research fronts, the 100 most highly cited papers (HCPs) were clustered in terms of references shared. Results: The United States had the highest proportion of HCPs. The effectiveness of acupuncture in areas such as relieving neck and back pain, migraines and headaches, and knee osteoarthritis symptoms was a predominant topic. Initially, the endogenous opioid peptide system was the primary research focus in the acupuncture mechanism research; however, during 1993-2012, researchers focused more on the functional magnetic resonance imaging of brain activity. In addition, acupuncture use and prevalence, the attitudes of health practitioners, and the effects of expectancy and belief were also major topics. Researches from Western countries, including the United States, England, and Germany, showed more interest in clinical trials and economic- and ethics-related studies, whereas those from East Asian countries including China, Japan, and South Korea focused more on mechanism research. Conclusion: Western countries dominated the research fronts of acupuncture. The patterns of the research fronts varied worldwide, indicating continuity and innovation in research in each country. PMID:28480437

  8. BIBLIOMETRIC ANALYSIS OF ACUPUNCTURE RESEARCH FRONTS AND THEIR WORLDWIDE DISTRIBUTION OVER THREE DECADES.

    PubMed

    Fu, Jun-Ying; Zhang, Xu; Zhao, Yun-Hua; Tong, He-Feng; Chen, Dar-Zen; Huang, Mu-Hsuan

    2017-01-01

    Considerable research has been conducted on acupuncture worldwide. This study chronologically examined the changing features and research fronts of acupuncture and elucidated the differences among the six most productive countries. Bibliographic coupling is a powerful tool for identifying the research fronts of a field. Acupuncture-related publications worldwide and from the six most productive countries during 1983-2012 were retrieved from the Science Citation Index Expanded and Social Science Citation Index. To form the research fronts, the 100 most highly cited papers (HCPs) were clustered in terms of references shared. The United States had the highest proportion of HCPs. The effectiveness of acupuncture in areas such as relieving neck and back pain, migraines and headaches, and knee osteoarthritis symptoms was a predominant topic. Initially, the endogenous opioid peptide system was the primary research focus in the acupuncture mechanism research; however, during 1993-2012, researchers focused more on the functional magnetic resonance imaging of brain activity. In addition, acupuncture use and prevalence, the attitudes of health practitioners, and the effects of expectancy and belief were also major topics. Researches from Western countries, including the United States, England, and Germany, showed more interest in clinical trials and economic- and ethics-related studies, whereas those from East Asian countries including China, Japan, and South Korea focused more on mechanism research. Western countries dominated the research fronts of acupuncture. The patterns of the research fronts varied worldwide, indicating continuity and innovation in research in each country.

  9. Opportunity Rolls Free Again (Four Wheels)

    NASA Technical Reports Server (NTRS)

    2006-01-01

    This animated piece illustrates the recent escape of NASA's Mars Exploration Rover Opportunity from dangerous, loose material on the vast plains leading to the rover's next long-term target, 'Victoria Crater.'

    A series of images from the front and rear hazard-avoidance cameras make up this brief movie chronicling the challenge Opportunity faced to free itself from the ripple dubbed 'Jammerbugt.' Each quadrant shows one of the rover's four corner wheels: left front wheel in upper left, right front wheel in upper right, rear wheels in the lower quadrants. The wheels became partially embedded in the ripple at the end of a drive on Opportunity's 833rd Martian day, or sol (May 28, 2006). The images in this clip were taken on sols 836 through 841 (May 31 through June 5, 2006).

    Scientists and engineers who had been elated at the meters of progress the rover had been making in earlier drives were happy for even centimeters of advance per sol as they maneuvered their explorer through the slippery material of Jammerbugt. The wheels reached solid footing on a rock outcrop on the final sol of this sequence.

    The science and engineering teams appropriately chose the ripple's informal from name the name of a bay on the north coast of Denmark. Jammerbugt, or Jammerbugten, loosely translated, means Bay of Lamentation or Bay of Wailing. The shipping route from the North Sea to the Baltic passes Jammerbugt on its way around the northern tip of Jutland. This has always been an important trade route and many ships still pass by the bay. The prevailing wind directions are typically northwest to southwest with the strongest winds and storms tending to blow from the northwest. A northwesterly wind will blow straight into the Jammerbugt, towards shore. Therefore, in the age of sail, many ships sank there during storms. The shore is sandy, but can have strong waves, so running aground was very dangerous even though there are no rocks.

    Fortunately, Opportunity weathered its 'Jammerbugt' and is again on its way toward Victoria Crater.

  10. Potential Application of BIOMASS Technology at National Space Technology Laboratories and Mississippi Army Ammunition Plant.

    DTIC Science & Technology

    1980-02-01

    fuel. Based on the survey data, wood chips in the NSTL area are sold for $13 to $16 per wet ton ($14 to $18 Der l03 kg wet), bark for $6 to $7 per wet...truck 3 Chip vans (initially) 1 Pickup (3/4 ton) 1 Front-end loader (for handling at chip pile) This equipment combination assumes all material ]-inch...ing sites in chip vans , preferably with live-beds to aid in unloading. At the processing site the chips would be stored in large piles. A Front-end

  11. Optimization of the RF cavity heat load and trip rates for CEBAF at 12 GeV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, He; Roblin, Yves R.; Freyberger, Arne P.

    2017-05-01

    The Continuous Electron Beam Accelerator Facility at JLab has 200 RF cavities in the north linac and the south linac respectively after the 12 GeV upgrade. The purpose of this work is to simultaneously optimize the heat load and the trip rate for the cavities and to reconstruct the pareto-optimal front in a timely manner when some of the cavities are turned down. By choosing an efficient optimizer and strategically creating the initial gradients, the pareto-optimal front for no more than 15 cavities down can be re-established within 20 seconds.

  12. Numerical study of the small scale structures in Boussinesq convection

    NASA Technical Reports Server (NTRS)

    Weinan, E.; Shu, Chi-Wang

    1992-01-01

    Two-dimensional Boussinesq convection is studied numerically using two different methods: a filtered pseudospectral method and a high order accurate Essentially Nonoscillatory (ENO) scheme. The issue whether finite time singularity occurs for initially smooth flows is investigated. The numerical results suggest that the collapse of the bubble cap is unlikely to occur in resolved calculations. The strain rate corresponding to the intensification of the density gradient across the front saturates at the bubble cap. We also found that the cascade of energy to small scales is dominated by the formulation of thin and sharp fronts across which density jumps.

  13. Experimental particle acceleration by water evaporation induced by shock waves

    NASA Astrophysics Data System (ADS)

    Scolamacchia, T.; Alatorre Ibarguengoitia, M.; Scheu, B.; Dingwell, D. B.; Cimarelli, C.

    2010-12-01

    Shock waves are commonly generated during volcanic eruptions. They induce sudden changes in pressure and temperature causing phase changes. Nevertheless, their effects on flowfield properties are not well understood. Here we investigate the role of gas expansion generated by shock wave propagation in the acceleration of ash particles. We used a shock tube facility consisting of a high-pressure (HP) steel autoclave (450 mm long, 28 mm in internal diameter), pressurized with Ar gas, and a low-pressure tank at atmospheric conditions (LP). A copper diaphragm separated the HP autoclave from a 180 mm tube (PVC or acrylic glass) at ambient P, with the same internal diameter of the HP reservoir. Around the tube, a 30 cm-high acrylic glass cylinder, with the same section of the LP tank (40 cm), allowed the observation of the processes occurring downstream from the nozzle throat, and was large enough to act as an unconfined volume in which the initial diffracting shock and gas jet expand. All experiments were performed at Pres/Pamb ratios of 150:1. Two ambient conditions were used: dry air and air saturated with steam. Carbon fibers and glass spheres in a size range between 150 and 210 μm, were placed on a metal wire at the exit of the PVC tube. The sudden decompression of the Ar gas, due to the failure of the diaphragm, generated an initial air shock wave. A high-speed camera recorded the processes between the first 100 μsec and several ms after the diaphragm failure at frame rates ranging between 30,000 and 50,000 fps. In the experiments with ambient air saturated with steam, the high-speed camera allowed to visualize the condensation front associated with the initial air shock; a maximum velocity of 788 m/s was recorded, which decreases to 524 m/s at distance of 0.5 ±0.2 cm, 1.1 ms after the diaphragm rupture. The condensation front preceded the Ar jet front exhausting from the reservoir, by 0.2-0.5 ms. In all experiments particles velocities following the initial condensation front exhibited large accelerations, with velocity varying from few tens of m/s up to 479 (±0.5) m/s, at distances of 1.5 (±0.3) cm and in times of 0.1 ms. This process preceded the appearance of the Ar front. Our first results suggest that the evaporation of moisture induced by compression waves associated with the air shock is able to accelerate particles (ca.100s microns in size) efficiently, at short distances. This process could have broader implications in active volcanic areas where shock waves are generated, for the damage that may follow.

  14. 7 CFR 29.6128 - Straight Stripped (X Group).

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Straight Stripped (X Group). 29.6128 Section 29.6128 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards... REGULATIONS TOBACCO INSPECTION Standards Grades § 29.6128 Straight Stripped (X Group). This group consists of...

  15. 7 CFR 29.6128 - Straight Stripped (X Group).

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 2 2012-01-01 2012-01-01 false Straight Stripped (X Group). 29.6128 Section 29.6128 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards... REGULATIONS TOBACCO INSPECTION Standards Grades § 29.6128 Straight Stripped (X Group). This group consists of...

  16. 7 CFR 29.6128 - Straight Stripped (X Group).

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 2 2011-01-01 2011-01-01 false Straight Stripped (X Group). 29.6128 Section 29.6128 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards... REGULATIONS TOBACCO INSPECTION Standards Grades § 29.6128 Straight Stripped (X Group). This group consists of...

  17. 7 CFR 29.6128 - Straight Stripped (X Group).

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 2 2014-01-01 2014-01-01 false Straight Stripped (X Group). 29.6128 Section 29.6128 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards... REGULATIONS TOBACCO INSPECTION Standards Grades § 29.6128 Straight Stripped (X Group). This group consists of...

  18. 7 CFR 29.6128 - Straight Stripped (X Group).

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 2 2013-01-01 2013-01-01 false Straight Stripped (X Group). 29.6128 Section 29.6128 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards... REGULATIONS TOBACCO INSPECTION Standards Grades § 29.6128 Straight Stripped (X Group). This group consists of...

  19. The dynamics of oceanic fronts. Part 1: The Gulf Stream

    NASA Technical Reports Server (NTRS)

    Kao, T. W.

    1970-01-01

    The establishment and maintenance of the mean hydrographic properties of large scale density fronts in the upper ocean is considered. The dynamics is studied by posing an initial value problem starting with a near surface discharge of buoyant water with a prescribed density deficit into an ambient stationary fluid of uniform density. The full time dependent diffusion and Navier-Stokes equations for a constant Coriolis parameter are used in this study. Scaling analysis reveals three independent length scales of the problem, namely a radius of deformation or inertial length scale, Lo, a buoyance length scale, ho, and a diffusive length scale, hv. Two basic dimensionless parameters are then formed from these length scales, the thermal (or more precisely, the densimetric) Rossby number, Ro = Lo/ho and the Ekman number, E = hv/ho. The governing equations are then suitably scaled and the resulting normalized equations are shown to depend on E alone for problems of oceanic interest. Under this scaling, the solutions are similar for all Ro. It is also shown that 1/Ro is a measure of the frontal slope. The governing equations are solved numerically and the scaling analysis is confirmed. The solution indicates that an equilibrium state is established. The front can then be rendered stationary by a barotropic current from a larger scale along-front pressure gradient. In that quasisteady state, and for small values of E, the main thermocline and the inclined isopycnics forming the front have evolved, together with the along-front jet. Conservation of potential vorticity is also obtained in the light water pool. The surface jet exhibits anticyclonic shear in the light water pool and cyclonic shear across the front.

  20. CORONAL AND CHROMOSPHERIC SIGNATURES OF LARGE-SCALE DISTURBANCES ASSOCIATED WITH A MAJOR SOLAR ERUPTION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zong, Weiguo; Dai, Yu, E-mail: ydai@nju.edu.cn

    We present both coronal and chromospheric observations of large-scale disturbances associated with a major solar eruption on 2005 September 7. In the Geostationary Operational Environmental Satellites/Solar X-ray Imager (SXI), arclike coronal brightenings are recorded propagating in the southern hemisphere. The SXI front shows an initially constant speed of 730 km s{sup −1} and decelerates later on, and its center is near the central position angle of the associated coronal mass ejection (CME) but away from the flare site. Chromospheric signatures of the disturbances are observed in both Mauna Loa Solar Observatory (MLSO)/Polarimeter for Inner Coronal Studies Hα and MLSO/Chromospheric Helium Imore » Imaging Photometer He i λ10830 and can be divided into two parts. The southern signatures occur in regions where the SXI front sweeps over, with the Hα bright front coincident with the SXI front, while the He i dark front lags the SXI front but shows a similar kinematics. Ahead of the path of the southern signatures, oscillations of a filament are observed. The northern signatures occur near the equator, with the Hα and He i fronts coincident with each other. They first propagate westward and then deflect to the north at the boundary of an equatorial coronal hole. Based on these observational facts, we suggest that the global disturbances are associated with the CME lift-off and show a hybrid nature: a mainly non-wave CME flank nature for the SXI signatures and the corresponding southern chromospheric signatures, and a shocked fast-mode coronal MHD wave nature for the northern chromospheric signatures.« less

  1. A highly compliant serpentine shaped polyimide interconnect for front-end strain relief in chronic neural implants.

    PubMed

    Sankar, Viswanath; Sanchez, Justin C; McCumiskey, Edward; Brown, Nagid; Taylor, Curtis R; Ehlert, Gregory J; Sodano, Henry A; Nishida, Toshikazu

    2013-01-01

    While the signal quality of recording neural electrodes is observed to degrade over time, the degradation mechanisms are complex and less easily observable. Recording microelectrodes failures are attributed to different biological factors such as tissue encapsulation, immune response, and disruption of blood-brain barrier (BBB) and non-biological factors such as strain due to micromotion, insulation delamination, corrosion, and surface roughness on the recording site (1-4). Strain due to brain micromotion is considered to be one of the important abiotic factors contributing to the failure of the neural implants. To reduce the forces exerted by the electrode on the brain, a high compliance 2D serpentine shaped electrode cable was designed, simulated, and measured using polyimide as the substrate material. Serpentine electrode cables were fabricated using MEMS microfabrication techniques, and the prototypes were subjected to load tests to experimentally measure the compliance. The compliance of the serpentine cable was numerically modeled and quantitatively measured to be up to 10 times higher than the compliance of a straight cable of same dimensions and material.

  2. Autonomous vehicle navigation utilizing fuzzy controls concepts for a next generation wheelchair.

    PubMed

    Hansen, J D; Barrett, S F; Wright, C H G; Wilcox, M

    2008-01-01

    Three different positioning techniques were investigated to create an autonomous vehicle that could accurately navigate towards a goal: Global Positioning System (GPS), compass dead reckoning, and Ackerman steering. Each technique utilized a fuzzy logic controller that maneuvered a four-wheel car towards a target. The reliability and the accuracy of the navigation methods were investigated by modeling the algorithms in software and implementing them in hardware. To implement the techniques in hardware, positioning sensors were interfaced to a remote control car and a microprocessor. The microprocessor utilized the sensor measurements to orient the car with respect to the target. Next, a fuzzy logic control algorithm adjusted the front wheel steering angle to minimize the difference between the heading and bearing. After minimizing the heading error, the car maintained a straight steering angle along its path to the final destination. The results of this research can be used to develop applications that require precise navigation. The design techniques can also be implemented on alternate platforms such as a wheelchair to assist with autonomous navigation.

  3. A Highly Compliant Serpentine Shaped Polyimide Interconnect for Front-End Strain Relief in Chronic Neural Implants

    PubMed Central

    Sankar, Viswanath; Sanchez, Justin C.; McCumiskey, Edward; Brown, Nagid; Taylor, Curtis R.; Ehlert, Gregory J.; Sodano, Henry A.; Nishida, Toshikazu

    2013-01-01

    While the signal quality of recording neural electrodes is observed to degrade over time, the degradation mechanisms are complex and less easily observable. Recording microelectrodes failures are attributed to different biological factors such as tissue encapsulation, immune response, and disruption of blood-brain barrier (BBB) and non-biological factors such as strain due to micromotion, insulation delamination, corrosion, and surface roughness on the recording site (1–4). Strain due to brain micromotion is considered to be one of the important abiotic factors contributing to the failure of the neural implants. To reduce the forces exerted by the electrode on the brain, a high compliance 2D serpentine shaped electrode cable was designed, simulated, and measured using polyimide as the substrate material. Serpentine electrode cables were fabricated using MEMS microfabrication techniques, and the prototypes were subjected to load tests to experimentally measure the compliance. The compliance of the serpentine cable was numerically modeled and quantitatively measured to be up to 10 times higher than the compliance of a straight cable of same dimensions and material. PMID:24062716

  4. Analysis of explicit model predictive control for path-following control

    PubMed Central

    2018-01-01

    In this paper, explicit Model Predictive Control(MPC) is employed for automated lane-keeping systems. MPC has been regarded as the key to handle such constrained systems. However, the massive computational complexity of MPC, which employs online optimization, has been a major drawback that limits the range of its target application to relatively small and/or slow problems. Explicit MPC can reduce this computational burden using a multi-parametric quadratic programming technique(mp-QP). The control objective is to derive an optimal front steering wheel angle at each sampling time so that autonomous vehicles travel along desired paths, including straight, circular, and clothoid parts, at high entry speeds. In terms of the design of the proposed controller, a method of choosing weighting matrices in an optimization problem and the range of horizons for path-following control are described through simulations. For the verification of the proposed controller, simulation results obtained using other control methods such as MPC, Linear-Quadratic Regulator(LQR), and driver model are employed, and CarSim, which reflects the features of a vehicle more realistically than MATLAB/Simulink, is used for reliable demonstration. PMID:29534080

  5. Analysis of explicit model predictive control for path-following control.

    PubMed

    Lee, Junho; Chang, Hyuk-Jun

    2018-01-01

    In this paper, explicit Model Predictive Control(MPC) is employed for automated lane-keeping systems. MPC has been regarded as the key to handle such constrained systems. However, the massive computational complexity of MPC, which employs online optimization, has been a major drawback that limits the range of its target application to relatively small and/or slow problems. Explicit MPC can reduce this computational burden using a multi-parametric quadratic programming technique(mp-QP). The control objective is to derive an optimal front steering wheel angle at each sampling time so that autonomous vehicles travel along desired paths, including straight, circular, and clothoid parts, at high entry speeds. In terms of the design of the proposed controller, a method of choosing weighting matrices in an optimization problem and the range of horizons for path-following control are described through simulations. For the verification of the proposed controller, simulation results obtained using other control methods such as MPC, Linear-Quadratic Regulator(LQR), and driver model are employed, and CarSim, which reflects the features of a vehicle more realistically than MATLAB/Simulink, is used for reliable demonstration.

  6. Specific features of two diffraction schemes for a widely divergent X-ray beam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Avetyan, K. T.; Levonyan, L. V.; Semerjian, H. S.

    2015-03-15

    We investigated the specific features of two diffraction schemes for a widely divergent X-ray beam that use a circular diaphragm 30–50 μm in diameter as a point source of characteristic radiation. In one of the schemes, the diaphragm was set in front of the crystal (the diaphragm-crystal (d-c) scheme); in the other, it was installed behind the crystal (the crystal-diaphragm (c-d) scheme). It was established that the diffraction image in the c-d scheme is a topographic map of the investigated crystal area. In the d-c scheme at L = 2l (l and L are the distances between the crystal andmore » the diaphragm and between the photographic plate and the diaphragm, respectively), the branches of hyperbolas formed in this family of planes (hkl) by the characteristic K{sub α} and K{sub β} radiations, including higher order reflections, converge into one straight line. It is experimentally demonstrated that this convergence is very sensitive to structural inhomogeneities in the crystal under study.« less

  7. Conflicts between sensory performance and locomotion in weakly electric fish

    NASA Astrophysics Data System (ADS)

    Maciver, Malcolm; Shirgaonkar, Anup; Patankar, Neelesh

    2008-11-01

    The knifefish Apteronotus albifrons hunts for small water insects at night using a self-generated electric field to perceive its world. Using this unique sensory adaptation, the fish senses prey that are near its body with a detection volume that approximates a cylinder that has a length ten times its radius, similar to the fish's elongated body plan. If the fish swims straight, then the back portion of the actively generated detection volume is scanning fluid already scanned by the front portion, but the energy expended to overcome drag is minimized. If it swims with the body pitched, then the rate of volume scanned for prey is increased, but the energy needed to overcome body drag is also increased. In this work we examine the compromise the fish makes between minimizing energy in overcoming drag and maximizing scan rate. We use computational fluid dynamics simulations to assess the impact of changes in body pitch angle on drag, and computational neuroscience simulations to assess the shape and size of the prey detection volume and how body angle changes the scan volume rate.

  8. Two-phase strategy of neural control for planar reaching movements: II--relation to spatiotemporal characteristics of movement trajectory.

    PubMed

    Rand, Miya K; Shimansky, Yury P

    2013-09-01

    In the companion paper utilizing a quantitative model of optimal motor coordination (Part I, Rand and Shimansky, in Exp Brain Res 225:55-73, 2013), we examined coordination between X and Y movement directions (XYC) during reaching movements performed under three prescribed speeds, two movement amplitudes, and two target sizes. The obtained results indicated that the central nervous system (CNS) utilizes a two-phase strategy, where the initial and the final phases correspond to lower and higher precision of information processing, respectively, for controlling goal-directed reach-type movements to optimize the total cost of task performance including the cost of neural computations. The present study investigates how two different well-known concepts used for describing movement performance relate to the concepts of optimal XYC and two-phase control strategy. First, it is examined to what extent XYC is equivalent to movement trajectory straightness. The data analysis results show that the variability, the movement trajectory's deviation from the straight line, increases with an increase in prescribed movement speed. In contrast, the dependence of XYC strength on movement speed is opposite (in total agreement with an assumption of task performance optimality), suggesting that XYC is a feature of much higher level of generality than trajectory straightness. Second, it is tested how well the ballistic and the corrective components described in the traditional concept of two-component model of movement performance match with the initial and the final phase of the two-phase control strategy, respectively. In fast reaching movements, the percentage of trials with secondary corrective submovement was smaller under larger-target shorter-distance conditions. In slower reaching movements, meaningful parsing was impossible due to massive fluctuations in the kinematic profile throughout the movement. Thus, the parsing points determined by the conventional submovement analysis did not consistently reflect separation between the ballistic and error-corrective components. In contrast to the traditional concept of two-component movement performance, the concept of two-phase control strategy is applicable to a wide variety of experimental conditions.

  9. Simulation and scaling analysis of a spherical particle-laden blast wave

    NASA Astrophysics Data System (ADS)

    Ling, Y.; Balachandar, S.

    2018-02-01

    A spherical particle-laden blast wave, generated by a sudden release of a sphere of compressed gas-particle mixture, is investigated by numerical simulation. The present problem is a multiphase extension of the classic finite-source spherical blast-wave problem. The gas-particle flow can be fully determined by the initial radius of the spherical mixture and the properties of gas and particles. In many applications, the key dimensionless parameters, such as the initial pressure and density ratios between the compressed gas and the ambient air, can vary over a wide range. Parametric studies are thus performed to investigate the effects of these parameters on the characteristic time and spatial scales of the particle-laden blast wave, such as the maximum radius the contact discontinuity can reach and the time when the particle front crosses the contact discontinuity. A scaling analysis is conducted to establish a scaling relation between the characteristic scales and the controlling parameters. A length scale that incorporates the initial pressure ratio is proposed, which is able to approximately collapse the simulation results for the gas flow for a wide range of initial pressure ratios. This indicates that an approximate similarity solution for a spherical blast wave exists, which is independent of the initial pressure ratio. The approximate scaling is also valid for the particle front if the particles are small and closely follow the surrounding gas.

  10. Simulation and scaling analysis of a spherical particle-laden blast wave

    NASA Astrophysics Data System (ADS)

    Ling, Y.; Balachandar, S.

    2018-05-01

    A spherical particle-laden blast wave, generated by a sudden release of a sphere of compressed gas-particle mixture, is investigated by numerical simulation. The present problem is a multiphase extension of the classic finite-source spherical blast-wave problem. The gas-particle flow can be fully determined by the initial radius of the spherical mixture and the properties of gas and particles. In many applications, the key dimensionless parameters, such as the initial pressure and density ratios between the compressed gas and the ambient air, can vary over a wide range. Parametric studies are thus performed to investigate the effects of these parameters on the characteristic time and spatial scales of the particle-laden blast wave, such as the maximum radius the contact discontinuity can reach and the time when the particle front crosses the contact discontinuity. A scaling analysis is conducted to establish a scaling relation between the characteristic scales and the controlling parameters. A length scale that incorporates the initial pressure ratio is proposed, which is able to approximately collapse the simulation results for the gas flow for a wide range of initial pressure ratios. This indicates that an approximate similarity solution for a spherical blast wave exists, which is independent of the initial pressure ratio. The approximate scaling is also valid for the particle front if the particles are small and closely follow the surrounding gas.

  11. Space shuttle phase B wind tunnel model and test information. Volume 1: Booster configuration

    NASA Technical Reports Server (NTRS)

    Glynn, J. L.; Poucher, D. E.

    1988-01-01

    Archived wind tunnel test data are available for flyback booster or other alternative recoverable configurations as well as reusable orbiters studied during initial development (Phase B) of the Space Shuttle. Considerable wind tunnel data was acquired by the competing contractors and the NASA Centers for an extensive variety of configurations with an array of wing and body planforms. All contractor and NASA wind tunnel test data acquired in the Phase B development have been compiled into a database and are available for application to current winged flyback or recoverable booster aerodynamic studies. The Space Shuttle Phase B Wind Tunnel Database is structured by vehicle component and configuration type. Basic components include the booster, the orbiter, and the launch vehicle. Booster configuration types include straight and delta wings, canard, cylindrical, retroglide and twin body. Orbiter configuration types include straight and delta wings, lifting body, drop tanks and double delta wings. Launch configurations include booster and orbiter components in various stacked and tandem combinations. This is Volume 1 (Part 2) of the report -- Booster Configuration.

  12. Space shuttle phase B wind tunnel model and test information. Volume 1: Booster configuration

    NASA Technical Reports Server (NTRS)

    Glynn, J. L.; Poucher, D. E.

    1988-01-01

    Archived wind tunnel test data are available for flyback booster or other alternative recoverable configurations as well as reusable orbiters studied during initial development (Phase B) of the Space Shuttle. Considerable wind tunnel data was acquired by the competing contractors and the NASA Centers for an extensive variety of configurations with an array of wing and body planforms. All contractor and NASA wind tunnel test data acquired in the Phase B development have been compiled into a database and are available for application to current winged flyback or recoverable booster aerodynamic studies. The Space Shuttle Phase B Wind Tunnel Database is structured by vehicle component and configuration type. Basic components include the booster, the orbiter and the launch vehicle. Booster configuration types include straight and delta wings, canard, cylindrical, retroglide and twin body. Orbiter configuration types include straight and delta wings, lifting body, drop tanks, and double delta wings. Launch configurations include booster and orbiter components in various stacked and tandem combinations. This is Volume 1 (Part 1) of the report -- Booster Configuration.

  13. Political science. When contact changes minds: an experiment on transmission of support for gay equality.

    PubMed

    LaCour, Michael J; Green, Donald P

    2014-12-12

    Can a single conversation change minds on divisive social issues, such as same-sex marriage? A randomized placebo-controlled trial assessed whether gay (n = 22) or straight (n = 19) messengers were effective at encouraging voters (n = 972) to support same-sex marriage and whether attitude change persisted and spread to others in voters' social networks. The results, measured by an unrelated panel survey, show that both gay and straight canvassers produced large effects initially, but only gay canvassers' effects persisted in 3-week, 6-week, and 9-month follow-ups. We also find strong evidence of within-household transmission of opinion change, but only in the wake of conversations with gay canvassers. Contact with gay canvassers further caused substantial change in the ratings of gay men and lesbians more generally. These large, persistent, and contagious effects were confirmed by a follow-up experiment. Contact with minorities coupled with discussion of issues pertinent to them is capable of producing a cascade of opinion change. Copyright © 2014, American Association for the Advancement of Science.

  14. Space shuttle phase B wind tunnel model and test information. Volume 3: Launch configuration

    NASA Technical Reports Server (NTRS)

    Glynn, J. L.; Poucher, D. E.

    1988-01-01

    Archived wind tunnel test data are available for flyback booster or other alternate recoverable configuration as well as reusable orbiters studied during initial development (Phase B) of the Space Shuttle, including contractor data for an extensive variety of configurations with an array of wing and body planforms. The test data have been compiled into a database and are available for application to current winged flyback or recoverable booster aerodynamic studies. The Space Shuttle Phase B Wind Tunnel Database is structured by vehicle component and configuration. Basic components include booster, orbiter, and launch vehicle. Booster configuration types include straight and delta wings, canard, cylindrical, retroglide and twin body. Orbiter configurations include straight and delta wings, lifting body, drop tanks and double delta wings. Launch configurations include booster and orbiter components in various stacked and tandem combinations. The digital database consists of 220 files containing basic tunnel data. Database structure is documented in a series of reports which include configuration sketches for the various planforms tested. This is Volume 3 -- launch configurations.

  15. Stigma and Stigma by Association in Perceptions of Straight Allies

    ERIC Educational Resources Information Center

    Goldstein, Susan B.

    2017-01-01

    As evidence builds for straight allies' contributions to battling sexual prejudice, barriers to assuming this role must be identified and dismantled. This study investigated stigma and stigma by association in perceptions of straight allies in a college population. Adjective rating items were completed by 505 participants who identified as…

  16. Gay-Straight Alliances in High Schools: Social Predictors of Early Adoption

    ERIC Educational Resources Information Center

    Fetner, Tina; Kush, Kristin

    2008-01-01

    This article examines the patterns of emergence of gay-straight alliances (GSAs) in public high schools in the United States. These extracurricular student groups offer safe spaces, social support, and opportunities for activism to lesbian, gay, bisexual, transgender, queer, and straight students. Combining data on various characteristics of…

  17. Passenger flow rates between compartments : straight-segmented stairways, spiral stairways, and passageways with restricted vision and changes of attitude.

    DOT National Transportation Integrated Search

    1978-01-01

    Data are presented from 210 trials to compare movement up and down spiral and straight-segmented stairways simulating the stairs in multideck transport aircraft, up and down spiral and straight-segmented industrial-type stairways, fore and aft throug...

  18. Straight and chopped DC performance data for a reliance EV-250AT motor with a General Electric EV-1 controller

    NASA Technical Reports Server (NTRS)

    Edie, P. C.

    1981-01-01

    Straight and chopped DC motor performances for a Reliance EV-250AT motor with an EV-1 controller were examined. Effects of motor temperature and operating voltage are shown. It is found that the maximum motor efficiency is approximately 85% at low operating temperatures in the straight DC mode. Chopper efficiency is 95% under all operating conditions. For equal speeds, the motor operated in the chopped mode develops slightly more torque and draws more current than it does in the straight DC mode.

  19. Langevin approach to a chemical wave front: Selection of the propagation velocity in the presence of internal noise

    NASA Astrophysics Data System (ADS)

    Lemarchand, A.; Lesne, A.; Mareschal, M.

    1995-05-01

    The reaction-diffusion equation associated with the Fisher chemical model A+B-->2A admits wave-front solutions by replacing an unstable stationary state with a stable one. The deterministic analysis concludes that their propagation velocity is not prescribed by the dynamics. For a large class of initial conditions the velocity which is spontaneously selected is equal to the minimum allowed velocity vmin, as predicted by the marginal stability criterion. In order to test the relevance of this deterministic description we investigate the macroscopic consequences, on the velocity and the width of the front, of the intrinsic stochasticity due to the underlying microscopic dynamics. We solve numerically the Langevin equations, deduced analytically from the master equation within a system size expansion procedure. We show that the mean profile associated with the stochastic solution propagates faster than the deterministic solution at a velocity up to 25% greater than vmin.

  20. Two-stage Raman compression of laser pulses with controllable phase fronts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balakin, A. A.; Fraiman, G. M.; State University of Nizhny Novgorod, Nizhny Novgorod

    2015-05-15

    The phase front of an ultrashort laser pulse undergoing Raman amplification and compression in inhomogeneous plasma can be controlled such that it is unaffected by density gradients and thus remains focusable. This is achieved by performing the Raman backscattering in two stages. At the first stage, the standard nonlinear Raman compression of a seed wave takes place and produces a short ultraintense pulse, which yet may be poorly focusable. At the second stage, this amplified pulse is scattered again, now serving as a pump, off a second copy of the initial seed. This stage, which utilizes a denser and shortermore » plasma, is intended not for compression but rather for passing a significant fraction of the energy to the second seed quickly. Then, the output pulse that is produced is not just short and ultraintense, but also has the smooth phase front of the original seed.« less

  1. Variation of Extreme and Fatigue Design Loads on the Main Bearing of a Front Mounted Direct Drive System

    NASA Astrophysics Data System (ADS)

    Abrahamsen, Asger Bech; Natarajan, Anand

    2016-09-01

    The drivetrain of a 10 MW wind turbine has been designed as a direct drive transmission with a superconducting generator mounted in front of the hub and connected to the main frame through a King-pin stiff assembly by DNV-GL. The aeroelastic design loads of such an arrangement are evaluated based on the thrust and bending moments at the main bearing, both for ultimate design and in fatigue. It is found that the initial superconductor generator weight of 363 tons must be reduced by 25% in order not to result in higher extreme loads on main and yaw bearing than the reference10 MW geared reference drive train. A weight reduction of 50% is needed in order to maintain main bearing fatigue damage equivalent to the reference drive train. Thus a target mass of front mounted superconducting direct drive generators is found to be between 183-272 tons.

  2. Ultrafast semi-metallic layer formation in detonating nitromethane

    NASA Astrophysics Data System (ADS)

    Reed, Evan; Manaa, M. Riad; Fried, Laurence; Glaesemann, Kurt; Joannopoulos, John

    2008-03-01

    We present the first quantum molecular dynamics simulations behind a detonation front (up to 0.2 ns) of the explosive nitromethane (CH3NO2) represented by the density-functional-based tight-binding method (DFTB). This simulation is enabled by our recently developed multi-scale shock wave molecular dynamics technique (MSST) that opens the door to longer duration simulations by several orders of magnitude. The electronic density of states around the Fermi energy initially increases as metastable material states are produced but then later decreases, perhaps unexpectedly. These changes indicate that the shock front is characterized by an increase in optical thickness and conductivity followed by a reduction around 100 picoseconds behind the front. We find that a significant population of intermediate metastable molecules are charged and charged species play an important role in the density of states evolution. The transient transformation to a semi-metallic state can be understood within the Anderson picture of metallization.

  3. A semi-metallic layer in detonating nitromethane

    NASA Astrophysics Data System (ADS)

    Reed, Evan; Manaa, Riad; Fried, Laurence; Glaesemann, Kurt; Joannopoulos, John

    2007-06-01

    We present the first ever glimpse behind a detonation front in a chemically reactive quantum molecular dynamics simulation (up to 0.2 ns) of the explosive nitromethane (CH3NO2) represented by the density-functional-based tight-binding method (DFTB). This simulation is enabled by our recently developed multi-scale shock wave molecular dynamics technique (MSST) that opens the door to longer duration simulations by several orders of magnitude. The electronic DOS around the Fermi energy initially increases as metastable material states are produced but then later decreases, perhaps unexpectedly. These changes indicate that the shock front is characterized by an increase in optical thickness followed by a reduction in optical thickness hundreds of picoseconds behind the front, explaining recent experimental observations. We find that a significant population of intermediate metastable molecules are charged and charged species play an important role in the density of states evolution and a possible Mott metal-insulator transition.

  4. PECULIAR STATIONARY EUV WAVE FRONTS IN THE ERUPTION ON 2011 MAY 11

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chandra, R.; Fulara, A.; Chen, P. F.

    We present and interpret the observations of extreme ultraviolet (EUV) waves associated with a filament eruption on 2011 May 11. The filament eruption also produces a small B-class two ribbon flare and a coronal mass ejection. The event is observed by the Solar Dynamic Observatory with high spatio-temporal resolution data recorded by the Atmospheric Imaging Assembly. As the filament erupts, we observe two types of EUV waves (slow and fast) propagating outwards. The faster EUV wave has a propagation velocity of ∼500 km s{sup −1} and the slower EUV wave has an initial velocity of ∼120 km s{sup −1}. Wemore » report, for the first time, that not only does the slower EUV wave stop at a magnetic separatrix to form bright stationary fronts, but also the faster EUV wave transits a magnetic separatrix, leaving another stationary EUV front behind.« less

  5. Special report: Occlusive cuff controller

    NASA Technical Reports Server (NTRS)

    Baker, J. T.

    1975-01-01

    A mechanical occlusive cuff controller suitable for blood flow experiments in space shuttle flights is described. The device requires 115 volt ac power and a pressurized gas source. Two occluding cuff pressures (30 and 50 mmHg) are selectable by a switch on the front panel. A screw driver adjustment allows accurate cuff pressurization levels for under or oversized limbs. Two pressurization cycles (20 second and 2 minutes) can be selected by a front panel switch. Adjustment of the timing cycles is also available through the front panel. A pushbutton hand switch allows remote start of the cuff inflation cycle. A stop/reset switch permits early termination of the cycle and disabling of the controller to prevent inadvertent reactivation. Pressure in the cuff is monitored by a differential aneroid barometer. In addition, an electrocardiogram trigger circuit permits the initiation of the pressurization cycle by an externally supplied ECG cycle.

  6. The establishment of the Croatian Dental Crops: the front-line experience of a dentist volunteer.

    PubMed

    Jelaca-Bagić, S; Sipina, J; Visković, R; Cakarun, Z; Vlatković, I; Biloglav, D

    1997-01-01

    The establishment of the first dental office of the Croatian Dental Corps (CDC) in the city of Zadar represented at the same time the beginning of the CDC. This article describes the front-line experience of a dentist who volunteered to provide basic medical help, which eventually laid the groundwork for providing general dental care and establishing the first CDC dental office. The office was opened on December 16, 1991, and provided general dental care except prosthetics. Although faced with numerous problems and extremely difficult conditions, the office staff completed 1,913 initial and 1,157 control checkups and performed 4,002 services by treating 12 to 16 patients per day. The main causes for emergencies were caries (59%) and endodontic complications (28%). This variety of services in the proximity of the front line is considered extensive even for advanced medical corps of modern armies.

  7. Imbibition with swelling: Capillary rise in thin deformable porous media

    NASA Astrophysics Data System (ADS)

    Kvick, Mathias; Martinez, D. Mark; Hewitt, Duncan R.; Balmforth, Neil J.

    2017-07-01

    The imbibition of a liquid into a thin deformable porous substrate driven by capillary suction is considered. The substrate is initially dry and has uniform porosity and thickness. Two-phase flow theory is used to describe how the liquid flows through the pore space behind the wetting front when out-of-plane deformation of the solid matrix is considered. Neglecting gravity and evaporation, standard shallow-layer scalings are used to construct a reduced model of the dynamics. The model predicts convergence to a self-similar behavior in all regions except near the wetting front, where a boundary layer arises whose structure narrows with the advance of the front. Over time, the rise height approaches the similarity scaling of t1 /2, as in the classical Washburn or BCLW law. The results are compared with a series of laboratory experiments using cellulose paper sheets, which provide qualitative agreement.

  8. An adaptive front tracking technique for three-dimensional transient flows

    NASA Astrophysics Data System (ADS)

    Galaktionov, O. S.; Anderson, P. D.; Peters, G. W. M.; van de Vosse, F. N.

    2000-01-01

    An adaptive technique, based on both surface stretching and surface curvature analysis for tracking strongly deforming fluid volumes in three-dimensional flows is presented. The efficiency and accuracy of the technique are demonstrated for two- and three-dimensional flow simulations. For the two-dimensional test example, the results are compared with results obtained using a different tracking approach based on the advection of a passive scalar. Although for both techniques roughly the same structures are found, the resolution for the front tracking technique is much higher. In the three-dimensional test example, a spherical blob is tracked in a chaotic mixing flow. For this problem, the accuracy of the adaptive tracking is demonstrated by the volume conservation for the advected blob. Adaptive front tracking is suitable for simulation of the initial stages of fluid mixing, where the interfacial area can grow exponentially with time. The efficiency of the algorithm significantly benefits from parallelization of the code. Copyright

  9. Scaling Laws of Nonlinear Rayleigh-Taylor and Richtmyer-Meshkov Instabilities in Two and Three Dimensions (IFSA 1999)

    NASA Astrophysics Data System (ADS)

    Shvarts, D.; Oron, D.; Kartoon, D.; Rikanati, A.; Sadot, O.; Srebro, Y.; Yedvab, Y.; Ofer, D.; Levin, A.; Sarid, E.; Ben-Dor, G.; Erez, L.; Erez, G.; Yosef-Hai, A.; Alon, U.; Arazi, L.

    2016-10-01

    The late-time nonlinear evolution of the Rayleigh-Taylor (RT) and Richtmyer-Meshkov (RM) instabilities for random initial perturbations is investigated using a statistical mechanics model based on single-mode and bubble-competition physics at all Atwood numbers (A) and full numerical simulations in two and three dimensions. It is shown that the RT mixing zone bubble and spike fronts evolve as h ~ α · A · gt2 with different values of a for the bubble and spike fronts. The RM mixing zone fronts evolve as h ~ tθ with different values of θ for bubbles and spikes. Similar analysis yields a linear growth with time of the Kelvin-Helmholtz mixing zone. The dependence of the RT and RM scaling parameters on A and the dimensionality will be discussed. The 3D predictions are found to be in good agreement with recent Linear Electric Motor (LEM) experiments.

  10. Disturbed Laminar Blood Flow Vastly Augments Lipoprotein Retention in the Artery Wall: A Key Mechanism Distinguishing Susceptible From Resistant Sites.

    PubMed

    Steffensen, Lasse Bach; Mortensen, Martin Bødtker; Kjolby, Mads; Hagensen, Mette Kallestrup; Oxvig, Claus; Bentzon, Jacob Fog

    2015-09-01

    Atherosclerosis develops initially at branch points and in areas of high vessel curvature. Moreover, experiments in hypercholesterolemic mice have shown that the introduction of disturbed flow in straight, atherosclerosis-resistant arterial segments turns them highly atherosclerosis susceptible. Several biomechanical mechanisms have been proposed, but none has been demonstrated. In the present study, we examined whether a causal link exists between disturbed laminar flow and the ability of the arterial wall to retain lipoproteins. Lipoprotein retention was detected at natural predilection sites of the murine thoracic aorta 18 hours after infusion of fluorescently labeled low-density lipoprotein. To test for causality between blood flow and the ability of these areas to retain lipoproteins, we manipulated blood flow in the straight segment of the common carotid artery using a constrictive collar. Disturbed laminar flow did not affect low-density lipoprotein influx, but increased the ability of the artery wall to bind low-density lipoprotein. Concordantly, disturbed laminar flow led to differential expression of genes associated with phenotypic modulation of vascular smooth muscle cells, increased expression of proteoglycan core proteins associated with lipoprotein retention, and of enzymes responsible for chondroitin sulfate glycosaminoglycan synthesis and sulfation. Blood flow regulates genes associated with vascular smooth muscle cell phenotypic modulation, as well as the expression and post-translational modification of lipoprotein-binding proteoglycan core proteins, and the introduction of disturbed laminar flow vastly augments the ability of a previously resistant, straight arterial segment to retain lipoproteins. © 2015 American Heart Association, Inc.

  11. Chemical consequences of compaction within the freezing front of a crystallizing magma ocean

    NASA Astrophysics Data System (ADS)

    Hier-Majumder, S.; Hirschmann, M. M.

    2013-12-01

    The thermal and compositional evolution of planetary magma oceans have profound influences on the early development and differentiation of terrestrial planets. During crystallization, rejection of elements incompatible in precipitating solids leads to petrologic and geochemical planetary differentiation, including potentially development of a compositionally stratified early mantle and evolution of thick overlying atmospheres. In cases of extremely efficient segregation of melt and crystals, solidified early mantles can be nearly devoid of key incompatible species including heat-producing (U, Th, K) and volatile (H,C,N,& noble gas) elements. A key structural component of a crystallizing magma ocean is the partially molten freezing front. The dynamics of this region influences the distribution of incompatible elements between the earliest mantle and the initial surficial reservoirs. It also can be the locus of heating owing to the dissipation of large amounts of tidal energy potentially available from the early Moon. The dynamics are influenced by the solidification rate, which is coupled to the liberation of volatiles owing to the modulating greenhouse effects in the overlying thick atmosphere. Compaction and melt retention in the freezing front of a magma ocean has received little previous attention. While the front advances during the course of crystallization, coupled conservation of mass, momentum, and energy within the front controls distribution and retention of melt within this layer. Due to compaction within this layer, melt distribution is far from uniform, and the fraction of melt trapped within this front depends on the rate of freezing of the magma ocean. During phases of rapid freezing, high amount of trapped melt within the freezing front retains a larger quantity of dissolved volatiles and the reverse is true during slow periods of crystallization. Similar effects are known from inferred trapped liquid fractions in layered mafic intrusions. Here we develop a simple 1-D model of melt retention in the freezing front of a crystallizing magma ocean, and apply it to the thermal and chemical evolution of the early Earth.

  12. Spreading of non-planar non-axisymmetric gravity and turbidity currents

    NASA Astrophysics Data System (ADS)

    Zgheib, Nadim; Bonometti, Thomas; Balachandar, S.

    2014-11-01

    The dynamics of non-axisymmetric turbidity currents is considered here. The study comprises a series of experiments for which a finite volume of particle-laden solution is released into fresh water. A mixture of water and polystyrene particles of diameter 280

  13. Study of foldable elastic tubes for large space structure applications, phase 3

    NASA Technical Reports Server (NTRS)

    Jones, I. W.; Mitchell, S. O.

    1981-01-01

    A bi-convex foldable elastic tube, suitable for use in self deploying space structures, was subjected to a series of buckling tests to deterine initial buckling loads, collapse loads, and the buckling mode. The tube is cylindrical with a cross-section that is lenticular-like with flared edges. It is capable of being flattened in the center and folded compactly, storing up strain energy in the process. Upon removal of constraint, it springs back to its original straight configuration, releasing the stored strain energy. The tests showed that this type of tube has good resistance to buckling, with the initial buckling loads all falling within or above the range of those for comparable circular cylindrical tubes.

  14. Analysis for Material Behavior of Sabot/Rods During Launch by Finite Element Method

    NASA Astrophysics Data System (ADS)

    Kim, Jin Bong; Kim, Man Geun

    This study has been investigated to predict the deformation and states of stress and strain by axial and lateral acceleration during launch. Because a gun tube is not perfectly straight at its initial state while under gravity loading, the projectile deforms due to the change of contacts points with the flexible gun tube. Numerical simulations were used for gravity loading and the other type is initial shape and gravity loading. The ANSYS engineering analysis code was used to generate a parametric model of the projectile and conduct finite element analyses. Four types of nonlinear material and contact elements were incorporated into the model to account for the plastic deformation and contact between the penetrator, sabot, and tube.

  15. Alpine debris flows triggered by a 28 July 1999 thunderstorm in the central Front Range, Colorado

    NASA Astrophysics Data System (ADS)

    Godt, Jonathan W.; Coe, Jeffrey A.

    2007-02-01

    On 28 July 1999, about 480 alpine debris flows were triggered by an afternoon thunderstorm along the Continental Divide in Clear Creek and Summit counties in the central Front Range of Colorado. The thunderstorm produced about 43 mm of rain in 4 h, 35 mm of which fell in the first 2 h. Several debris flows triggered by the storm impacted Interstate Highway 70, U.S. Highway 6, and the Arapahoe Basin ski area. We mapped the debris flows from color aerial photography and inspected many of them in the field. Three processes initiated debris flows. The first process initiated 11% of the debris flows and involved the mobilization of shallow landslides in thick, often well vegetated, colluvium. The second process, which was responsible for 79% of the flows, was the transport of material eroded from steep unvegetated hillslopes via a system of coalescing rills. The third, which has been termed the "firehose effect," initiated 10% of the debris flows and occurred where overland flow became concentrated in steep bedrock channels and scoured debris from talus deposits and the heads of debris fans. These three processes initiated high on steep hillsides (> 30°) in catchments with small contributing areas (< 8000 m 2), however, shallow landslides occurred on slopes that were significantly less steep than either overland flow process. Based on field observations and examination of soils mapping of the northern part of the study area, we identified a relation between the degree of soil development and the process type that generated debris flows. In general, areas with greater soil development were less likely to generate runoff and therefore less likely to generate debris flows by the firehose effect or by rilling. The character of the surficial cover and the spatially variable hydrologic response to intense rainfall, rather than a threshold of contributing area and topographic slope, appears to control the initiation process in the high alpine of the Front Range. Because debris flows initiated by rilling and the firehose effect tend to increase in volume as they travel downslope, these debris flows are potentially more hazardous than those initiated by shallow landslides, which tend to deposit material along their paths.

  16. Alpine debris flows triggered by a 28 July 1999 thunderstorm in the central Front Range, Colorado

    USGS Publications Warehouse

    Godt, J.W.; Coe, J.A.

    2007-01-01

    On 28 July 1999, about 480 alpine debris flows were triggered by an afternoon thunderstorm along the Continental Divide in Clear Creek and Summit counties in the central Front Range of Colorado. The thunderstorm produced about 43??mm of rain in 4??h, 35??mm of which fell in the first 2??h. Several debris flows triggered by the storm impacted Interstate Highway 70, U.S. Highway 6, and the Arapahoe Basin ski area. We mapped the debris flows from color aerial photography and inspected many of them in the field. Three processes initiated debris flows. The first process initiated 11% of the debris flows and involved the mobilization of shallow landslides in thick, often well vegetated, colluvium. The second process, which was responsible for 79% of the flows, was the transport of material eroded from steep unvegetated hillslopes via a system of coalescing rills. The third, which has been termed the "firehose effect," initiated 10% of the debris flows and occurred where overland flow became concentrated in steep bedrock channels and scoured debris from talus deposits and the heads of debris fans. These three processes initiated high on steep hillsides (> 30??) in catchments with small contributing areas (< 8000??m2), however, shallow landslides occurred on slopes that were significantly less steep than either overland flow process. Based on field observations and examination of soils mapping of the northern part of the study area, we identified a relation between the degree of soil development and the process type that generated debris flows. In general, areas with greater soil development were less likely to generate runoff and therefore less likely to generate debris flows by the firehose effect or by rilling. The character of the surficial cover and the spatially variable hydrologic response to intense rainfall, rather than a threshold of contributing area and topographic slope, appears to control the initiation process in the high alpine of the Front Range. Because debris flows initiated by rilling and the firehose effect tend to increase in volume as they travel downslope, these debris flows are potentially more hazardous than those initiated by shallow landslides, which tend to deposit material along their paths. ?? 2006 Elsevier B.V. All rights reserved.

  17. Alternative Packaging for Back-Illuminated Imagers

    NASA Technical Reports Server (NTRS)

    Pain, Bedabrata

    2009-01-01

    An alternative scheme has been conceived for packaging of silicon-based back-illuminated, back-side-thinned complementary metal oxide/semiconductor (CMOS) and charge-coupled-device image-detector integrated circuits, including an associated fabrication process. This scheme and process are complementary to those described in "Making a Back-Illuminated Imager With Back-Side Connections" (NPO-42839), NASA Tech Briefs, Vol. 32, No. 7 (July 2008), page 38. To avoid misunderstanding, it should be noted that in the terminology of imaging integrated circuits, "front side" or "back side" does not necessarily refer to the side that, during operation, faces toward or away from a source of light or other object to be imaged. Instead, "front side" signifies that side of a semiconductor substrate upon which the pixel pattern and the associated semiconductor devices and metal conductor lines are initially formed during fabrication, and "back side" signifies the opposite side. If the imager is of the type called "back-illuminated," then the back side is the one that faces an object to be imaged. Initially, a back-illuminated, back-side-thinned image-detector is fabricated with its back side bonded to a silicon handle wafer. At a subsequent stage of fabrication, the front side is bonded to a glass wafer (for mechanical support) and the silicon handle wafer is etched away to expose the back side. The frontside integrated circuitry includes metal input/output contact pads, which are rendered inaccessible by the bonding of the front side to the glass wafer. Hence, one of the main problems is to make the input/output contact pads accessible from the back side, which is ultimately to be the side accessible to the external world. The present combination of an alternative packaging scheme and associated fabrication process constitute a solution of the problem.

  18. The influence of subway station design on noise levels.

    PubMed

    Shah, Ravi R; Suen, Jonathan J; Cellum, Ilana P; Spitzer, Jaclyn B; Lalwani, Anil K

    2017-05-01

    To investigate the impact of subway station design on platform noise levels. Observational. Continuous A-weighted decibel (dBA) sound levels were recorded in 20 New York City subway stations, where trains entered on either a straight track or curved track in 10 stations each. Equivalent continuous noise levels (L eq ) at various locations on the boarding platform (inbound end, midplatform, and outbound end) during train entry and exit were compared between the straight and curved stations in broadband as well as narrow one-third octave bands. Overall, curved stations trended louder than straight stations, although the difference in broadband L eq did not reach statistical significance (curve, 83.4 dBA; straight, 82.6 dBA; P = .054). Noise levels were significantly louder at the inbound end of the platform during train entry (inbound, 89.7 dBA; mid, 85.5 dBA; outbound, 78.7 dBA; P < .001) and at the outbound end during train exit (inbound, 79.7 dBA; mid, 85.3 dBA; outbound, 89.1 dBA; P < .001). Narrow band analysis showed that curved stations were significantly louder than straight stations at 100 Hz and high frequencies from 8 to 20 kHz. Peak impact levels ranged from 104 to 121 dBA. Curved stations have a different noise profile compared to straight stations and are significantly louder than straight stations at high frequencies. Designing stations with straight tracks within the platform can help reduce commuter noise exposure. NA Laryngoscope, 127:1169-1174, 2017. © 2016 The American Laryngological, Rhinological and Otological Society, Inc.

  19. Folk Culture History of the Blue Ridge Mountains

    ERIC Educational Resources Information Center

    Wilhelm, Gene, Jr.

    1975-01-01

    The article covers the historic period between 1730 (the earliest proof of initial European settlement in the district) and 1800 (the closing of the pioneer stage of mountain development) of the Blue Ridge Mountains from Front Royal to Waynesboro, Virginia. (NQ)

  20. Uranium in the Wyoming Landscape Conservation Initiative study area, southwestern Wyoming

    USGS Publications Warehouse

    Wilson, Anna B.

    2015-10-20

    In the WLCI study area, all uranium areas except Poison Basin and Ketchum Buttes contain roll-front deposits in Eocene (56–34 Ma) sedimentary rocks. Tabular sandstone-hosted uranium deposits are also recognized within the study area.

  1. Strength and toughness of structural fibres for composite material reinforcement.

    PubMed

    Herráez, M; Fernández, A; Lopes, C S; González, C

    2016-07-13

    The characterization of the strength and fracture toughness of three common structural fibres, E-glass, AS4 carbon and Kevlar KM2, is presented in this work. The notched specimens were prepared by means of selective carving of individual fibres by means of the focused ion beam. A straight-fronted edge notch was introduced in a plane perpendicular to the fibre axis, with the relative notch depth being a0/D≈0.1 and the notch radius at the tip approximately 50 nm. The selection of the appropriate beam current during milling operations was performed to avoid to as much as possible any microstructural changes owing to ion impingement. Both notched and un-notched fibres were submitted to uniaxial tensile tests up to failure. The strength of the un-notched fibres was characterized in terms of the Weibull statistics, whereas the residual strength of the notched fibres was used to determine their apparent toughness. To this end, the stress intensity factor of a fronted edge crack was computed by means of the finite-element method for different crack lengths. The experimental results agreed with those reported in the literature for polyacrylonitrile-based carbon fibres obtained by using similar techniques. After mechanical testing, the fracture surface of the fibres was analysed to ascertain the failure mechanisms. It was found that AS4 carbon and E-glass fibres presented the lower toughness with fracture surfaces perpendicular to the fibre axis, emanating from the notch tip. The fractured region of Kevlar KM2 fibres extended along the fibre and showed large permanent deformation, which explains their higher degree of toughness when compared with carbon and glass fibres. This article is part of the themed issue 'Multiscale modelling of the structural integrity of composite materials'. © 2016 The Author(s).

  2. Strength and toughness of structural fibres for composite material reinforcement

    PubMed Central

    Herráez, M.; Fernández, A.; Lopes, C. S.

    2016-01-01

    The characterization of the strength and fracture toughness of three common structural fibres, E-glass, AS4 carbon and Kevlar KM2, is presented in this work. The notched specimens were prepared by means of selective carving of individual fibres by means of the focused ion beam. A straight-fronted edge notch was introduced in a plane perpendicular to the fibre axis, with the relative notch depth being a0/D≈0.1 and the notch radius at the tip approximately 50 nm. The selection of the appropriate beam current during milling operations was performed to avoid to as much as possible any microstructural changes owing to ion impingement. Both notched and un-notched fibres were submitted to uniaxial tensile tests up to failure. The strength of the un-notched fibres was characterized in terms of the Weibull statistics, whereas the residual strength of the notched fibres was used to determine their apparent toughness. To this end, the stress intensity factor of a fronted edge crack was computed by means of the finite-element method for different crack lengths. The experimental results agreed with those reported in the literature for polyacrylonitrile-based carbon fibres obtained by using similar techniques. After mechanical testing, the fracture surface of the fibres was analysed to ascertain the failure mechanisms. It was found that AS4 carbon and E-glass fibres presented the lower toughness with fracture surfaces perpendicular to the fibre axis, emanating from the notch tip. The fractured region of Kevlar KM2 fibres extended along the fibre and showed large permanent deformation, which explains their higher degree of toughness when compared with carbon and glass fibres. This article is part of the themed issue ‘Multiscale modelling of the structural integrity of composite materials’. PMID:27242306

  3. Switch-on Shock and Nonlinear Kink Alfvén Waves in Solar Polar Jets

    NASA Astrophysics Data System (ADS)

    DeVore, C. Richard; Karpen, Judith T.; Antiochos, Spiro K.; Uritsky, Vadim

    2016-05-01

    It is widely accepted that solar polar jets are produced by fast magnetic reconnection in the low corona, whether driven directly by flux emergence from below or indirectly by instability onset above the photosphere. In either scenario, twisted flux on closed magnetic field lines reconnects with untwisted flux on nearby open field lines. Part of the twist is inherited by the newly reconnected open flux, which rapidly relaxes due to magnetic tension forces that transmit the twist impulsively into the outer corona and heliosphere. We propose that this transfer of twist launches switch-on MHD shock waves, which propagate parallel to the ambient coronal magnetic field ahead of the shock and convect a perpendicular component of magnetic field behind the shock. In the frame moving with the shock front, the post-shock flow is precisely Alfvénic in all three directions, whereas the pre-shock flow is super-Alfvénic along the ambient magnetic field, yielding a density enhancement at the shock front. Nonlinear kink Alfvén waves are exact solutions of the time-dependent MHD equations in the post-shock region when the ambient corona is uniform and the magnetic field is straight. We have performed and analyzed 3D Cartesian and spherical simulations of polar jets driven by instability onset in the corona. The results of both simulations are consistent with the generation of MHD switch-on shocks trailed predominantly by incompressible kink Alfvén waves. It is noteworthy that the kink waves are irrotational, in sharp contrast to the vorticity-bearing torsional waves reported from previous numerical studies. We will discuss the implications of the results for understanding solar polar jets and predicting their heliospheric signatures. Our research was supported by NASA’s LWS TR&T and H-SR programs.

  4. Active versus Passive Proprioceptive Straight-Ahead Pointing in Normal Subjects

    ERIC Educational Resources Information Center

    Chokron, Sylvie; Colliot, Pascale; Atzeni, Thierry; Bartolomeo, Paolo; Ohlmann, Theophile

    2004-01-01

    Eighty blindfolded healthy female subjects participated in an active and a passive straight-ahead pointing task to study the estimation of the subjective sagittal middle in the presence or absence of an active haptic exploration. Subjects were to point straight-ahead with their left or right index finger starting from different right- or…

  5. A simple algorithm for computing positively weighted straight skeletons of monotone polygons☆

    PubMed Central

    Biedl, Therese; Held, Martin; Huber, Stefan; Kaaser, Dominik; Palfrader, Peter

    2015-01-01

    We study the characteristics of straight skeletons of monotone polygonal chains and use them to devise an algorithm for computing positively weighted straight skeletons of monotone polygons. Our algorithm runs in O(nlog⁡n) time and O(n) space, where n denotes the number of vertices of the polygon. PMID:25648376

  6. A simple algorithm for computing positively weighted straight skeletons of monotone polygons.

    PubMed

    Biedl, Therese; Held, Martin; Huber, Stefan; Kaaser, Dominik; Palfrader, Peter

    2015-02-01

    We study the characteristics of straight skeletons of monotone polygonal chains and use them to devise an algorithm for computing positively weighted straight skeletons of monotone polygons. Our algorithm runs in [Formula: see text] time and [Formula: see text] space, where n denotes the number of vertices of the polygon.

  7. 27 CFR 9.194 - San Antonio Valley.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... southeast in a straight line for approximately 5 miles across sections 24 and 25, T23S, R9E, and sections 30... Tierra Redonda Mountain map; then (3) Continue southeast in a straight line for approximately 3.25 miles... the Bradley map; then (4) Proceed straight south for approximately 2.5 miles along the eastern...

  8. 26 CFR 1.9001-1 - Change from retirement to straight-line method of computing depreciation.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ..., DEPARTMENT OF THE TREASURY (CONTINUED) INCOME TAX (CONTINUED) INCOME TAXES General Actuarial Valuations § 1.9001-1 Change from retirement to straight-line method of computing depreciation. (a) In general. The... irrevocable election to have the provisions of the Retirement-Straight Line Adjustment Act of 1958 apply. This...

  9. 29 CFR 1910.211 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... having a diameter, thickness and wall—wheel is mounted on the diameter. (3) Type 6 straight cup wheels...—Type 6 Straight Cup Wheels EC27OC91.054 Type 6—Straight-cup Wheel Side grinding wheel having a diameter... describe this shape type. (4) Type 11 flaring cup wheels mean wheels having double diameter dimensions D...

  10. 27 CFR 19.518 - Name and address of bottler.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... address (or addresses) of the distiller; (b) Where “straight whiskies” of the same type produced in the... whisky”, that “straight whisky” must be labeled as provided in the introductory paragraph of this section. However, where that combined “straight whisky” is bottled by or for the distillers of the whiskies, the...

  11. 27 CFR 5.23 - Alteration of class and type.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ..., flavoring, or blending materials such as caramel, straight malt or straight rye malt whiskies, fruit juices... whiskey, except that vodka may be treated with sugar in an amount not to exceed 2 grams per liter and a... shall be appropriately redesignated. In addition, in the case of straight whisky the removal of more...

  12. 27 CFR 5.23 - Alteration of class and type.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ..., flavoring, or blending materials such as caramel, straight malt or straight rye malt whiskies, fruit juices... whiskey, except that vodka may be treated with sugar in an amount not to exceed 2 grams per liter and a... shall be appropriately redesignated. In addition, in the case of straight whisky the removal of more...

  13. 27 CFR 19.645 - Name and address of bottler.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... addresses) of the distiller; (b) Where “straight whiskies” of the same type which have been produced in the... warehouseman's bonded premises for further storage) and subsequently bottled and labeled as “straight whisky,” such “straight whisky” shall be labeled in accordance with the requirements of the first paragraph of...

  14. Setting the Record Straight. The Truth About Fad Diets.

    ERIC Educational Resources Information Center

    Wheat Foods Council, Parker, CO.

    The Setting the Record Straight information packet presents facts to set the record straight about nutrition and debunk fad diets. The kit features materials designed to communicate the importance of balanced eating. Materials include: a time line of fad diets; four reproducible fad diet book review handouts that show the misleading claims rampant…

  15. Remote sensing and ichthyoplankton ecology of coastal upwelling fronts off central California

    NASA Astrophysics Data System (ADS)

    Bjorkstedt, Eric Peter

    1998-11-01

    Recruitment to many marine populations is determined by processes affecting survival and transport of planktonic larvae. Coastal upwelling poses a trade-off between larval access to high productivity supported by upwelled nutrients and increased risk of offshore transport and failure to return to coastal habitats. I used plankton surveys, remote sensing, and a simple model to investigate the role of coastal upwelling fronts and behavior in pelagic ecology and recruitment success, focussing on rockfish (Sebastes spp.) off central California. Distributions of early stage larvae suggest that coastal upwelling fronts reduce offshore transport of rockfish larvae, in contrast to distributions of taxa with life histories that minimize larval exposure to strong upwelling. Coincident distributions of larval fish, prey (i.e., small copepods and invertebrate eggs) and phytoplankton patches indicate that coastal upwelling fronts provide enhanced foraging conditions for larvae. Thus, coastal upwelling fronts may allow coastal taxa to successfully exploit high productivity during the upwelling season while reducing the risk of offshore transport. I developed a novel method for utilizing a single HF radar to resolve currents and detect fronts that matched sea surface temperature fronts generated by coastal upwelling. Fronts and currents detected with NF radar affect distributions and transport of planktonic larval fish and intertidal barnacle larvae, demonstrating that remote sensing with HF radar can support field and modelling research on ecological dynamics in coastal marine systems. I used an empirically-based model that incorporated the advection-foraging trade-off and long-distance swimming as an active settlement behavior to investigate optimal settlement strategies as a function of pelagic transport and growth. For parameters loosely describing pelagic stages of rockfish, the model predicts optimal settling strategies (ages and sizes) for pelagic juveniles that roughly match observed values for settling rockfish and suggests optimal spawning locations for adults. The model suggests that offshore transport is more important than growth in determining recruitment success. Thus, coastal upwelling fronts may favor recruitment more by reducing offshore transport than by providing rich food resources. Results of this model represent an initial step towards determining the role of active settlement behaviors in population dynamics and life history evolution.

  16. A universal approach to determine footfall timings from kinematics of a single foot marker in hoofed animals

    PubMed Central

    Clayton, Hilary M.

    2015-01-01

    The study of animal movement commonly requires the segmentation of continuous data streams into individual strides. The use of forceplates and foot-mounted accelerometers readily allows the detection of the foot-on and foot-off events that define a stride. However, when relying on optical methods such as motion capture, there is lack of validated robust, universally applicable stride event detection methods. To date, no method has been validated for movement on a circle, while algorithms are commonly specific to front/hind limbs or gait. In this study, we aimed to develop and validate kinematic stride segmentation methods applicable to movement on straight line and circle at walk and trot, which exclusively rely on a single, dorsal hoof marker. The advantage of such marker placement is the robustness to marker loss and occlusion. Eight horses walked and trotted on a straight line and in a circle over an array of multiple forceplates. Kinetic events were detected based on the vertical force profile and used as the reference values. Kinematic events were detected based on displacement, velocity or acceleration signals of the dorsal hoof marker depending on the algorithm using (i) defined thresholds associated with derived movement signals and (ii) specific events in the derived movement signals. Method comparison was performed by calculating limits of agreement, accuracy, between-horse precision and within-horse precision based on differences between kinetic and kinematic event. In addition, we examined the effect of force thresholds ranging from 50 to 150 N on the timings of kinetic events. The two approaches resulted in very good and comparable performance: of the 3,074 processed footfall events, 95% of individual foot on and foot off events differed by no more than 26 ms from the kinetic event, with average accuracy between −11 and 10 ms and average within- and between horse precision ≤8 ms. While the event-based method may be less likely to suffer from scaling effects, on soft ground the threshold-based method may prove more valuable. While we found that use of velocity thresholds for foot on detection results in biased event estimates for the foot on the inside of the circle at trot, adjusting thresholds for this condition negated the effect. For the final four algorithms, we found no noteworthy bias between conditions or between front- and hind-foot timings. Different force thresholds in the range of 50 to 150 N had the greatest systematic effect on foot-off estimates in the hind limbs (up to on average 16 ms per condition), being greater than the effect on foot-on estimates or foot-off estimates in the forelimbs (up to on average ±7 ms per condition). PMID:26157641

  17. The lisse effect revisited

    USGS Publications Warehouse

    Weeks, E.P.

    2002-01-01

    The Lisse effect is a rarely noted phenomenon occurring when infiltration caused by intense rain seals the surface soil layer to airflow, trapping air in the unsaturated zone. Compression of air by the advancing front results in a pressure increase that produces a water-level rise in an observation well screened below the water table that is several times as large as the distance penetrated by the wetting front. The effect is triggered by intense rains and results in a very rapid water-level rise, followed by a recession lasting a few days. The Lisse effect was first noted and explained by Thal Larsen in 1932 from water-level observations obtained in a shallow well in the village of Lisse, Holland. The original explanation does not account for the increased air pressure pushing up on the bottom of the wetting front. Analysis of the effect of this upward pressure indicates that a negative pressure head at the base of the wetting front, ??f, analogous to that postulated by Green and Ampt (1911) to explain initially rapid infiltration rates into unsaturated soils, is involved in producing the Lisse effect. Analysis of recorded observations of the Lisse effect by Larsen and others indicates that the water-level rise, which typically ranges from 0.10 to 0.55 m, should be only slightly larger than |??f| and that the depth of penetration of the wetting front is no more than several millimeters.

  18. Time-Dependent Photoionization of Gaseous Nebulae: The Pure Hydrogen Case

    NASA Technical Reports Server (NTRS)

    Garcia, J.; Elhoussieny, E. E.; Bautista, M. A.; Kallman, Timothy R.

    2013-01-01

    We study the problem of time-dependent photoionization of low density gaseous nebulae subjected to sudden changes in the intensity of ionizing radiation. To this end, we write a computer code that solves the full timedependent energy balance, ionization balance, and radiation transfer equations in a self-consistent fashion for a simplified pure hydrogen case. It is shown that changes in the ionizing radiation yield ionizationthermal fronts that propagate through the cloud, but the propagation times and response times to such fronts vary widely and nonlinearly from the illuminated face of the cloud to the ionization front (IF). IFthermal fronts are often supersonic, and in slabs initially in pressure equilibrium such fronts yield large pressure imbalances that are likely to produce important dynamical effects in the cloud. Further, we studied the case of periodic variations in the ionizing flux. It is found that the physical conditions of the plasma have complex behaviors that differ from any steady-state solution. Moreover, even the time average of ionization and temperature is different from any steady-state case. This time average is characterized by overionization and a broader IF with respect to the steady-state solution for a mean value of the radiation flux. Around the time average of physical conditions there is a large dispersion in instantaneous conditions, particularly across the IF, which increases with the period of radiation flux variations. Moreover, the variations in physical conditions are asynchronous along the slab due to the combination of nonlinear propagation times for thermal frontsIFs and equilibration times.

  19. THE EFFECT OF ANISOTROPIC VISCOSITY ON COLD FRONTS IN GALAXY CLUSTERS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    ZuHone, J. A.; Markevitch, M.; Kunz, M. W.

    2015-01-10

    Cold fronts—contact discontinuities in the intracluster medium (ICM) of galaxy clusters—should be disrupted by Kelvin-Helmholtz (K-H) instabilities due to the associated shear velocity. However, many observed cold fronts appear stable. This opens the possibility of placing constraints on microphysical mechanisms that stabilize them, such as the ICM viscosity and/or magnetic fields. We performed exploratory high-resolution simulations of cold fronts arising from subsonic gas sloshing in cluster cores using the grid-based Athena MHD code, comparing the effects of isotropic Spitzer and anisotropic Braginskii viscosity (expected in a magnetized plasma). Magnetized simulations with full Braginskii viscosity or isotropic Spitzer viscosity reduced bymore » a factor f ∼ 0.1 are both in qualitative agreement with observations in terms of suppressing K-H instabilities. The rms velocity of turbulence within the sloshing region is only modestly reduced by Braginskii viscosity. We also performed unmagnetized simulations with and without viscosity and find that magnetic fields have a substantial effect on the appearance of the cold fronts, even if the initial field is weak and the viscosity is the same. This suggests that determining the dominant suppression mechanism of a given cold front from X-ray observations (e.g., viscosity or magnetic fields) by comparison with simulations is not straightforward. Finally, we performed simulations including anisotropic thermal conduction, and find that including Braginskii viscosity in these simulations does not significantly affect the evolution of cold fronts; they are rapidly smeared out by thermal conduction, as in the inviscid case.« less

  20. The propagation of premixed flames in closed tubes

    NASA Astrophysics Data System (ADS)

    Matalon, Moshe; Metzener, Philippe

    1997-04-01

    A nonlinear evolution equation that describes the propagation of a premixed flame in a closed tube has been derived from the general conservation equations. What distinguishes it from other similar equations is a memory term whose origin is in the vorticity production at the flame front. The two important parameters in this equation are the tube's aspect ratio and the Markstein parameter. A linear stability analysis indicates that when the Markstein parameter [alpha] is above a critical value [alpha]c the planar flame is the stable equilibrium solution. For [alpha] below [alpha]c the planar flame is no longer stable and there is a band of growing modes. Numerical solutions of the full nonlinear equation confirm this conclusion. Starting with random initial conditions the results indicate that, after a short transient, a at flame develops when [alpha]>[alpha]c and it remains flat until it reaches the end of the tube. When [alpha]<[alpha]c, on the other hand, stable curved flames may develop down the tube. Depending on the initial conditions the flame assumes either a cellular structure, characterized by a finite number of cells convex towards the unburned gas, or a tulip shape characterized by a sharp indentation at the centre of the tube pointing toward the burned gases. In particular, if the initial conditions are chosen so as to simulate the elongated finger-like flame that evolves from an ignition source, a tulip flame evolves downstream. In accord with experimental observations the tulip shape forms only after the flame has travelled a certain distance down the tube, it does not form in short tubes and its formation depends on the mixture composition. While the initial deformation of the flame front is a direct result of the hydrodynamic instability, the actual formation of the tulip flame results from the vortical motion created in the burned gas which is a consequence of the vorticity produced at the flame front.

  1. 29 CFR 778.219 - Pay for foregoing holidays and vacations.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... entitled, under his employment contract, to a week's paid vacation in the amount of his usual straight-time... total straight-time earnings for the week, and $240 in addition as his vacation pay. Under the statute... vacation pay will be measured by straight-time earnings for any agreed number of hours or days, or by total...

  2. 29 CFR 778.219 - Pay for foregoing holidays and vacations.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... entitled, under his employment contract, to a week's paid vacation in the amount of his usual straight-time... total straight-time earnings for the week, and $240 in addition as his vacation pay. Under the statute... vacation pay will be measured by straight-time earnings for any agreed number of hours or days, or by total...

  3. Gay-Straight Alliance (GSA) Members' Engagement with Sex Education in Canadian High Schools

    ERIC Educational Resources Information Center

    Lapointe, Alicia

    2014-01-01

    This paper offers an examination of gay-straight alliance (GSA) members' engagement with sex education, sexual health, and prejudice and discrimination in Canadian public high schools. It explores how five students' (four straight and one gay-identifying) participation in GSAs served as a springboard for learning about and challenging stereotypes;…

  4. 26 CFR 7.57(d)-1 - Election with respect to straight line recovery of intangibles.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... Tax Reform Act of 1976. Under this election taxpayers may use cost depletion to compute straight line... wells to which the election applies, cost depletion to compute straight line recovery of intangibles for... whether or not the taxpayer uses cost depletion in computing taxable income. (5) The election is made by a...

  5. Questa Baseline and Pre-Mining Ground-Water-Quality Investigation. 16. Quality Assurance and Quality Control for Water Analyses

    DTIC Science & Technology

    2004-01-01

    Bobita, and Capulin Canyon drainages, and from Questa Ranger Station, and surface-water analyses from Straight Creek and the Red River (fig. 1). The...Straight Creek, Hansen, Hottentot, La Bobita, Capulin Canyon, and Questa Ranger Station, and surface water analyses from Straight Creek and the Red

  6. Windstorm Impact Reduction Implementation Plan

    DTIC Science & Technology

    2007-01-01

    wind events, including hurricanes, tornadoes and straight line winds from thunderstorms. This information is repeated in brief during severe weather...event documentation and damage analyses. Better understanding of atmospheric dynamics of straight - line winds Wind observing systems and...Developed techniques for improved extreme wind speed maps Investigation of straight - line winds Wind speed and direction analysis for input to

  7. 27 CFR 5.36 - Name and address.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... “straight whiskies” of the same type which have been produced in the same State by two or more different... storage) and subsequently bottled and labeled as “straight whisky,” such “straight whisky” shall be... whisky” is bottled by or for the distillers thereof, there may be stated on the label, in lieu of the...

  8. 27 CFR 5.36 - Name and address.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... “straight whiskies” of the same type which have been produced in the same State by two or more different... storage) and subsequently bottled and labeled as “straight whisky,” such “straight whisky” shall be... whisky” is bottled by or for the distillers thereof, there may be stated on the label, in lieu of the...

  9. Effects of season, truck type, and location within truck on gastrointestinal tract temperature of market-weight pigs during transport.

    PubMed

    Conte, S; Faucitano, L; Bergeron, R; Torrey, S; Gonyou, H W; Crowe, T; Tamminga, E Toth; Widowski, T M

    2015-12-01

    Two experiments were done to assess the effects of season, truck type, and location in the truck on the gastrointestinal tract temperature (GTT) of market-weight pigs during transport. In Exp. 1, a total of 504 sentinel pigs were selected from a total load of 3,756 pigs over 12 wk in summer or winter and transported in either a double-decked (DD) hydraulic truck or a pot-belly (PB) trailer for 2 h. In Exp. 2, a total of 330 sentinel pigs were selected from a total load of 2,145 pigs over 11 wk in summer or winter and transported in a PB trailer for 8 h. In both experiments, sentinel pigs were equipped with a temperature data logger for the real-time GTT recording from the farm to slaughter. Transport was divided into 8 periods in Exp. 1 (rest, pretravel, initial travel, prearrival 1, prearrival 2, unloading, lairage 1, and lairage 2) and in Exp. 2 (rest, pretravel 1, pretravel 2, travel, prearrival 1, prearrival 2, lairage 1, and lairage 2). A delta GTT (ΔGTT) was calculated as the difference between the measured GTT at any determined event and the GTT measured at rest. In Exp. 1, the ΔGTT of pigs was greater ( < 0.001) in summer than in winter and only during the pretravel and initial travel periods. No difference was observed in the ΔGTT between the 2 truck types ( > 0.10). In summer, pigs located in the front top and rear top compartments of the PB trailer presented greater ( < 0.05) ΔGTT values than those transported in the middle top and front belly compartments during initial travel. In summer, during prearrival 1 and 2, a greater ( < 0.05) loss of GTT was found in pigs located in the rear top compartment of the DD truck compared with the rear lower compartment and in the front middle compartment compared with the rear middle compartment of the PB trailer. In Exp. 2, the ΔGTT of pigs was greater ( = 0.03) in summer than in winter during pretravel 2. Pigs in the front top compartment had a greater ( < 0.05) ΔGTT compared with pigs in the middle top, lower deck, and front belly compartments during the pretravel periods. Based on the results of the 2 experiments, modifications of the PB trailer model are recommended to limit body temperature increase due to physical stress at loading and unloading, and during transport due to inconsistent ventilation rate across vehicle locations.

  10. Design and Test of a 65nm CMOS Front-End with Zero Dead Time for Next Generation Pixel Detectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gaioni, L.; Braga, D.; Christian, D.

    This work is concerned with the experimental characterization of a synchronous analog processor with zero dead time developed in a 65 nm CMOS technology, conceived for pixel detectors at the HL-LHC experiment upgrades. It includes a low noise, fast charge sensitive amplifier with detector leakage compensation circuit, and a compact, single ended comparator able to correctly process hits belonging to two consecutive bunch crossing periods. A 2-bit Flash ADC is exploited for digital conversion immediately after the preamplifier. A description of the circuits integrated in the front-end processor and the initial characterization results are provided

  11. An advancing front Delaunay triangulation algorithm designed for robustness

    NASA Technical Reports Server (NTRS)

    Mavriplis, D. J.

    1992-01-01

    A new algorithm is described for generating an unstructured mesh about an arbitrary two-dimensional configuration. Mesh points are generated automatically by the algorithm in a manner which ensures a smooth variation of elements, and the resulting triangulation constitutes the Delaunay triangulation of these points. The algorithm combines the mathematical elegance and efficiency of Delaunay triangulation algorithms with the desirable point placement features, boundary integrity, and robustness traditionally associated with advancing-front-type mesh generation strategies. The method offers increased robustness over previous algorithms in that it cannot fail regardless of the initial boundary point distribution and the prescribed cell size distribution throughout the flow-field.

  12. Shot H3837: Darht's first dual-axis explosive experiment

    NASA Astrophysics Data System (ADS)

    Harsh, James F.; Hull, Lawrence; Mendez, Jacob; McNeil, Wendy Vogan

    2012-03-01

    Test H3837 was the first explosive shot performed in front of both flash x-ray axes at the Los Alamos Dual Axis Radiographic Hydrodynamic Test (DARHT) facility. Executed in November 2009, the shot was an explosively-driven metal flyer plate in a series of experiments designed to explore equation-of-state properties of shocked materials. Imaging the initial shock wave traveling through the flyer plate, DARHT Axis II captured the range of motion from the shock front emergence in the flyer to breakout at the free surface; the Axis I pulse provided a perpendicular perspective of the shot at a time coinciding with the third pulse of Axis II.

  13. Cis-oriented solvent-front EGFR G796S mutation in tissue and ctDNA in a patient progressing on osimertinib: a case report and review of the literature.

    PubMed

    Klempner, Samuel J; Mehta, Pareen; Schrock, Alexa B; Ali, Siraj M; Ou, Sai-Hong Ignatius

    2017-01-01

    Acquired resistance to epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKI) is a universal event and limits clinical efficacy. The third-generation EGFR inhibitor osimertinib is active in EGFR-mutant/T790M positive non-small-cell lung cancer. Mechanisms of acquired resistance are emerging, and here we describe a cis -oriented solvent-front EGFR G796S mutation as the resistance mechanism observed in a progression biopsy and circulating tumor DNA (ctDNA) from a patient with initial response followed by progression on osimertinib. This is one of the earliest reports of a sole solvent-front tertiary EGFR mutation as a resistance mechanism to osimertinib. Our case suggests a monoclonal resistance mechanism. We review the importance of the solvent-front residues across TKIs and describe known osimertinib resistance mechanisms. We observe that nearly all clinical osimertinib-resistant tertiary EGFR mutations are oriented in cis with EGFR T790M. This case highlights the importance of mutations affecting EGFR kinase domains and supports the feasibility of broad panel ctDNA assays for detection of novel acquired resistance and tumor heterogeneity in routine clinical care.

  14. Myosin IIA/IIB restrict adhesive and protrusive signaling to generate front-back polarity in migrating cells.

    PubMed

    Vicente-Manzanares, Miguel; Newell-Litwa, Karen; Bachir, Alexia I; Whitmore, Leanna A; Horwitz, Alan Rick

    2011-04-18

    Migratory front-back polarity emerges from the cooperative effect of myosin IIA (MIIA) and IIB (MIIB) on adhesive signaling. We demonstrate here that, during polarization, MIIA and MIIB coordinately promote localized actomyosin bundling, which generates large, stable adhesions that do not signal to Rac and thereby form the cell rear. MIIA formed dynamic actomyosin proto-bundles that mark the cell rear during spreading; it also bound to actin filament bundles associated with initial adhesion maturation in protrusions. Subsequent incorporation of MIIB stabilized the adhesions and actomyosin filaments with which it associated and formed a stable, extended rear. These adhesions did not turn over and no longer signal to Rac. Microtubules fine-tuned the polarity by positioning the front opposite the MIIA/MIIB-specified rear. Decreased Rac signaling in the vicinity of the MIIA/MIIB-stabilized proto-bundles and adhesions was accompanied by the loss of Rac guanine nucleotide exchange factor (GEFs), like βPIX and DOCK180, and by inhibited phosphorylation of key residues on adhesion proteins that recruit and activate Rac GEFs. These observations lead to a model for front-back polarity through local GEF depletion.

  15. Calving relation for tidewater glaciers based on detailed stress field analysis

    NASA Astrophysics Data System (ADS)

    Mercenier, Rémy; Lüthi, Martin P.; Vieli, Andreas

    2018-02-01

    Ocean-terminating glaciers in Arctic regions have undergone rapid dynamic changes in recent years, which have been related to a dramatic increase in calving rates. Iceberg calving is a dynamical process strongly influenced by the geometry at the terminus of tidewater glaciers. We investigate the effect of varying water level, calving front slope and basal sliding on the state of stress and flow regime for an idealized grounded ocean-terminating glacier and scale these results with ice thickness and velocity. Results show that water depth and calving front slope strongly affect the stress state while the effect from spatially uniform variations in basal sliding is much smaller. An increased relative water level or a reclining calving front slope strongly decrease the stresses and velocities in the vicinity of the terminus and hence have a stabilizing effect on the calving front. We find that surface stress magnitude and distribution for simple geometries are determined solely by the water depth relative to ice thickness. Based on this scaled relationship for the stress peak at the surface, and assuming a critical stress for damage initiation, we propose a simple and new parametrization for calving rates for grounded tidewater glaciers that is calibrated with observations.

  16. In situ investigation of explosive crystallization in a-Ge: Experimental determination of the interface response function using dynamic transmission electron microscopy

    NASA Astrophysics Data System (ADS)

    Nikolova, Liliya; Stern, Mark J.; MacLeod, Jennifer M.; Reed, Bryan W.; Ibrahim, Heide; Campbell, Geoffrey H.; Rosei, Federico; LaGrange, Thomas; Siwick, Bradley J.

    2014-09-01

    The crystallization of amorphous semiconductors is a strongly exothermic process. Once initiated the release of latent heat can be sufficient to drive a self-sustaining crystallization front through the material in a manner that has been described as explosive. Here, we perform a quantitative in situ study of explosive crystallization in amorphous germanium using dynamic transmission electron microscopy. Direct observations of the speed of the explosive crystallization front as it evolves along a laser-imprinted temperature gradient are used to experimentally determine the complete interface response function (i.e., the temperature-dependent front propagation speed) for this process, which reaches a peak of 16 m/s. Fitting to the Frenkel-Wilson kinetic law demonstrates that the diffusivity of the material locally/immediately in advance of the explosive crystallization front is inconsistent with those of a liquid phase. This result suggests a modification to the liquid-mediated mechanism commonly used to describe this process that replaces the phase change at the leading amorphous-liquid interface with a change in bonding character (from covalent to metallic) occurring in the hot amorphous material.

  17. Realistic modeling of deep brain stimulation implants for electromagnetic MRI safety studies.

    PubMed

    Guerin, Bastien; Serano, Peter; Iacono, Maria Ida; Herrington, Todd M; Widge, Alik S; Dougherty, Darin D; Bonmassar, Giorgio; Angelone, Leonardo M; Wald, Lawrence L

    2018-05-04

    We propose a framework for electromagnetic (EM) simulation of deep brain stimulation (DBS) patients in radiofrequency (RF) coils. We generated a model of a DBS patient using post-operative head and neck computed tomography (CT) images stitched together into a 'virtual CT' image covering the entire length of the implant. The body was modeled as homogeneous. The implant path extracted from the CT data contained self-intersections, which we corrected automatically using an optimization procedure. Using the CT-derived DBS path, we built a model of the implant including electrodes, helicoidal internal conductor wires, loops, extension cables, and the implanted pulse generator. We also built four simplified models with straight wires, no extension cables and no loops to assess the impact of these simplifications on safety predictions. We simulated EM fields induced by the RF birdcage body coil in the body model, including at the DBS lead tip at both 1.5 Tesla (64 MHz) and 3 Tesla (123 MHz). We also assessed the robustness of our simulation results by systematically varying the EM properties of the body model and the position and length of the DBS implant (sensitivity analysis). The topology correction algorithm corrected all self-intersection and curvature violations of the initial path while introducing minimal deformations (open-source code available at http://ptx.martinos.org/index.php/Main_Page). The unaveraged lead-tip peak SAR predicted by the five DBS models (0.1 mm resolution grid) ranged from 12.8 kW kg -1 (full model, helicoidal conductors) to 43.6 kW kg -1 (no loops, straight conductors) at 1.5 T (3.4-fold variation) and 18.6 kW kg -1 (full model, straight conductors) to 73.8 kW kg -1 (no loops, straight conductors) at 3 T (4.0-fold variation). At 1.5 T and 3 T, the variability of lead-tip peak SAR with respect to the conductivity ranged between 18% and 30%. Variability with respect to the position and length of the DBS implant ranged between 9.5% and 27.6%.

  18. Realistic modeling of deep brain stimulation implants for electromagnetic MRI safety studies

    NASA Astrophysics Data System (ADS)

    Guerin, Bastien; Serano, Peter; Iacono, Maria Ida; Herrington, Todd M.; Widge, Alik S.; Dougherty, Darin D.; Bonmassar, Giorgio; Angelone, Leonardo M.; Wald, Lawrence L.

    2018-05-01

    We propose a framework for electromagnetic (EM) simulation of deep brain stimulation (DBS) patients in radiofrequency (RF) coils. We generated a model of a DBS patient using post-operative head and neck computed tomography (CT) images stitched together into a ‘virtual CT’ image covering the entire length of the implant. The body was modeled as homogeneous. The implant path extracted from the CT data contained self-intersections, which we corrected automatically using an optimization procedure. Using the CT-derived DBS path, we built a model of the implant including electrodes, helicoidal internal conductor wires, loops, extension cables, and the implanted pulse generator. We also built four simplified models with straight wires, no extension cables and no loops to assess the impact of these simplifications on safety predictions. We simulated EM fields induced by the RF birdcage body coil in the body model, including at the DBS lead tip at both 1.5 Tesla (64 MHz) and 3 Tesla (123 MHz). We also assessed the robustness of our simulation results by systematically varying the EM properties of the body model and the position and length of the DBS implant (sensitivity analysis). The topology correction algorithm corrected all self-intersection and curvature violations of the initial path while introducing minimal deformations (open-source code available at http://ptx.martinos.org/index.php/Main_Page). The unaveraged lead-tip peak SAR predicted by the five DBS models (0.1 mm resolution grid) ranged from 12.8 kW kg‑1 (full model, helicoidal conductors) to 43.6 kW kg‑1 (no loops, straight conductors) at 1.5 T (3.4-fold variation) and 18.6 kW kg‑1 (full model, straight conductors) to 73.8 kW kg‑1 (no loops, straight conductors) at 3 T (4.0-fold variation). At 1.5 T and 3 T, the variability of lead-tip peak SAR with respect to the conductivity ranged between 18% and 30%. Variability with respect to the position and length of the DBS implant ranged between 9.5% and 27.6%.

  19. Biomechanical differences in the stem straightening process among Pinus pinaster provenances. A new approach for early selection of stem straightness.

    PubMed

    Sierra-de-Grado, Rosario; Pando, Valentín; Martínez-Zurimendi, Pablo; Peñalvo, Alejandro; Báscones, Esther; Moulia, Bruno

    2008-06-01

    Stem straightness is an important selection trait in Pinus pinaster Ait. breeding programs. Despite the stability of stem straightness rankings in provenance trials, the efficiency of breeding programs based on a quantitative index of stem straightness remains low. An alternative approach is to analyze biomechanical processes that underlie stem form. The rationale for this selection method is that genetic differences in the biomechanical processes that maintain stem straightness in young plants will continue to control stem form throughout the life of the tree. We analyzed the components contributing most to genetic differences among provenances in stem straightening processes by kinetic analysis and with a biomechanical model defining the interactions between the variables involved (Fournier's model). This framework was tested on three P. pinaster provenances differing in adult stem straightness and growth. One-year-old plants were tilted at 45 degrees, and individual stem positions and sizes were recorded weekly for 5 months. We measured the radial extension of reaction wood and the anatomical features of wood cells in serial stem cross sections. The integral effect of reaction wood on stem leaning was computed with Fournier's model. Responses driven by both primary and secondary growth were involved in the stem straightening process, but secondary-growth-driven responses accounted for most differences among provenances. Plants from the straight-stemmed provenance showed a greater capacity for stem straightening than plants from the sinuous provenances mainly because of (1) more efficient reaction wood (higher maturation strains) and (2) more pronounced secondary-growth-driven autotropic decurving. These two process-based traits are thus good candidates for early selection of stem straightness, but additional tests on a greater number of genotypes over a longer period are required.

  20. Effects of Sparring Load on Reaction Speed and Punch Force During the Precompetition and Competition Periods in Boxing.

    PubMed

    Hukkanen, Esa; Häkkinen, Keijo

    2017-06-01

    Seven, male, national-level boxers (age, 20.3 ± 2.7 years; height, 1.80 ± 0.06 m; mass, 73.8 ± 11.1 kg) participated in this study to investigate the effects of sparring on reaction time and punch force of straight punches measured during the precompetition and competition periods. Heart rate and blood lactate concentrations were also monitored. Sparring load was chosen in accordance with the current rules: 3 × 3-minute bouts with 1-minute break in between. Reaction time of rear straight lengthened (p < 0.01) during the sparring load of the precompetition period after the third round (to 390 milliseconds) in comparison to the competition period (to 310 milliseconds). Reaction time of lead straight lengthened (p ≤ 0.05) between the first and third round during the precompetition with no differences during the competition period. Both rear and lead straight punch forces were greater at all measurement points during the precompetition compared with the competition period. Punch forces increased for both rear and lead straight between the first and third rounds with the highest forces after third round during the precompetition (rear straight, 209 kg) and competition (rear straight, 176 kg) periods. Blood lactate levels increased after every round during both periods being at its greatest after the third round (17 mmol·L during the precompetition and 13 mmol·L during the competition period). The present sparring-induced differences in reaction time and punch forces of straight punches during the precompetition compared with the competition period may be the result of different volume and intensity of training with different goals in boxing-specific and explosive strength training.

  1. Surface coverage with single vs. multiple gaze surface topography to fit scleral lenses.

    PubMed

    DeNaeyer, Gregory; Sanders, Donald R; Farajian, Timothy S

    2017-06-01

    To determine surface coverage of measurements using the sMap3D ® corneo-scleral topographer in patients presenting for scleral lens fitting. Twenty-five eyes of 23 scleral lens patients were examined. Up-gaze, straight-gaze, and down-gaze positions of each eye were "stitched" into a single map. The percentage surface coverage between 10mm and 20mm diameter circles from corneal center was compared between the straight-gaze and stitched images. Scleral toricity magnitude was calculated at 100% coverage and at the same diameter after 50% of the data was removed. At a 10mm diameter from corneal center, the straight-gaze and stitched images both had 100% coverage. At the 14, 15, 16, 18 and 20mm diameters, the straight-gaze image only covered 68%, 53%, 39%, 18%, and 6% of the ocular surface diameters while the stitched image covered 98%, 96%, 93%, 75%, and 32% respectively. In the case showing the most scleral coverage at 16mm (straight-gaze), there was only 75% coverage (straight-gaze) compared to 100% (stitched image); the case with the least coverage had 7% (straight gaze) and 92% (stitched image). The 95% limits of agreement between the 50% and 100% coverage scleral toricity was between -1.4D (50% coverage value larger) and 1.2D (100% coverage larger), a 2.6D spread. The absolute difference between 50% to 100% coverage scleral toricity was ≥0.50D in 28% and ≥1.0D in 16% of cases. It appears that a single straight-gaze image would introduce significant measurement inaccuracy in fitting scleral lenses using the sMap3D while a 3-gaze stitched image would not. Copyright © 2017 British Contact Lens Association. Published by Elsevier Ltd. All rights reserved.

  2. Interaction between turbulent flow and sea breeze front over urban-like coast in large-eddy simulation

    NASA Astrophysics Data System (ADS)

    Jiang, Ping; Wen, Zhiping; Sha, Weiming; Chen, Guixing

    2017-05-01

    Turbulent flow and its interaction with a sea breeze front (SBF) over an urban-like coast with a regular block array were investigated using a building-resolving computational fluid dynamics model. It was found that during daytime with an offshore ambient flow, streaky turbulent structures tended to grow within the convective boundary layer (CBL) over a warm urban surface ahead of the SBF. The structures were organized as streamwise streaks at an interval of a few hundred meters, which initiated at the rooftop level with strong wind shear and strengthens in the CBL with moderate buoyancy. The streaks then interacted with the onshore-propagating SBF as it made landfall. The SBF, which was initially characterized as a shallow and quasi-linear feature over the sea, developed three-dimensional structures with intensified updrafts at an elevated frontal head after landfall. Frontal updrafts were locally enhanced at intersections where the streaks merged with the SBF, which greatly increased turbulent fluxes at the front. The frontal line was irregular because of merging, tilting, and transformation effects of vorticity associated with streaky structures. Inland penetration of the SBF was slowed by the frictional effect of urban-like surfaces and turbulent flow on land. The overall SBF intensity weakened after the interaction with turbulent flow. These findings aid understanding of local weather over coastal cities during typical sea breeze conditions.

  3. Automated Detection of Fronts using a Deep Learning Convolutional Neural Network

    NASA Astrophysics Data System (ADS)

    Biard, J. C.; Kunkel, K.; Racah, E.

    2017-12-01

    A deeper understanding of climate model simulations and the future effects of global warming on extreme weather can be attained through direct analyses of the phenomena that produce weather. Such analyses require these phenomena to be identified in automatic, unbiased, and comprehensive ways. Atmospheric fronts are centrally important weather phenomena because of the variety of significant weather events, such as thunderstorms, directly associated with them. In current operational meteorology, fronts are identified and drawn visually based on the approximate spatial coincidence of a number of quasi-linear localized features - a trough (relative minimum) in air pressure in combination with gradients in air temperature and/or humidity and a shift in wind, and are categorized as cold, warm, stationary, or occluded, with each type exhibiting somewhat different characteristics. Fronts are extended in space with one dimension much larger than the other (often represented by complex curved lines), which poses a significant challenge for automated approaches. We addressed this challenge by using a Deep Learning Convolutional Neural Network (CNN) to automatically identify and classify fronts. The CNN was trained using a "truth" dataset of front locations identified by National Weather Service meteorologists as part of operational 3-hourly surface analyses. The input to the CNN is a set of 5 gridded fields of surface atmospheric variables, including 2m temperature, 2m specific humidity, surface pressure, and the two components of the 10m horizontal wind velocity vector at 3-hr resolution. The output is a set of feature maps containing the per - grid cell probabilities for the presence of the 4 front types. The CNN was trained on a subset of the data and then used to produce front probabilities for each 3-hr time snapshot over a 14-year period covering the continental United States and some adjacent areas. The total frequencies of fronts derived from the CNN outputs matches very well with the truth dataset. There is a slight underestimate in total numbers in the CNN results but the spatial pattern is a close match. The categorization of front types by CNN is best for cold and occluded and worst for warm. These initial results from our ongoing development highlight the great promise of this technology.

  4. Rupture Dynamics along Thrust Dipping Fault: Inertia Effects due to Free Surface Wave Interactions

    NASA Astrophysics Data System (ADS)

    Vilotte, J. P.; Scala, A.; Festa, G.

    2017-12-01

    We numerically investigate the dynamic interaction between free surface and up-dip, in-plane rupture propagation along thrust faults, under linear slip-weakening friction. With reference to shallow along-dip rupture propagation during large subduction earthquakes, we consider here low dip-angle fault configurations with fixed strength excess and depth-increasing initial stress. In this configuration, the rupture undergoes a break of symmetry with slip-induced normal stress perturbations triggered by the interaction with reflected waves from the free surface. We found that both body-waves - behind the crack front - and surface waves - at the crack front - can trigger inertial effects. When waves interact with the rupture before this latter reaches its asymptotic speed, the rupture can accelerate toward the asymptotic speed faster than in the unbounded symmetric case, as a result of these inertial effects. Moreover, wave interaction at the crack front also affects the slip rate generating large ground motion on the hanging wall. Imposing the same initial normal stress, frictional strength and stress drop while varying the static friction coefficient we found that the break of symmetry makes the rupture dynamics dependent on the absolute value of friction. The higher the friction the stronger the inertial effect both in terms of rupture acceleration and slip amount. When the contact condition allows the fault interface to open close to the free surface, the length of the opening zone is shown to depend on the propagation length, the initial normal stress and the static friction coefficient. These new results are shown to agree with analytical results of rupture propagation in bounded media, and open new perspectives for understanding the shallow rupture of large subduction earthquakes and tsunami sources.

  5. Quasi-One-Dimensional Modeling of Pulse Detonation Rocket Engines

    NASA Technical Reports Server (NTRS)

    Morris, Christopher I.

    2002-01-01

    Pulsed detonation rocket engines (PDREs) have generated considerable research interest in recent years as a chemical propulsion system potentially offering improved performance and reduced complexity compared to conventional rocket engines. The detonative mode of combustion employed by these devices offers a thermodynamic advantage over the constant-pressure deflagrative combustion mode used in conventional rocket engines and gas turbines. However, while this theoretical advantage has spurred a great deal of interest in building PDRE devices, the unsteady blowdown process intrinsic to the PDRE has made realistic estimates of the actual propulsive performance problematic. The recent review article by Kailasanath highlights some of the difficulties in comparing the available experimental measurements with numerical models. In a previous paper by the author, parametric studies of the performance of a single, straight-tube PDRE were reported. A 1-D, unsteady method of characteristics code, employing a constant-gamma assumption behind the detonation front, was developed for that study. Models of this type are computationally inexpensive, and are particularly useful for parametric performance comparisons. For example, a plot showing the specific impulse of various PDRE and steady-state rocket engine (SSRE) configurations as a function of blowdown pressure ratio. The performance curves clearly indicate that a straight-tube PDRE is superior in specific impulse to a SSRE with a sonic nozzle over the entire range of pressure ratios. Note, however, that a straight-tube PDRE in general does not compare favorably to a SSRE fitted with an optimized de Laval supersonic nozzle, particularly at the high pressure ratios typical for boost or in-space rocket applications. However, the calculations also show that if a dynamically optimized, supersonic de Laval nozzle could be could be fitted to a PDRE, then the specific impulse of the device would exceed that of a comparable SSRE. While such a nozzle is a considerable idealization, it is clear that nozzle design and optimization will play a critical role in whether the performance potential of PDREs can be effectively realized in practice. In order to study PDRE nozzle issues with greater accuracy, a quasi-one-dimensional, finite-rate chemistry CFD code has been developed by the author. Comparisons of the code with both the previous MOC model and experimental data from Stanford University are reported. The effect of constant-gamma and finite-rate chemistry assumptions on the flowfield and performance is examined. Parametric studies of the effect of nozzle throat size and expansion ratio, at various blowdown pressure ratios, are reported.

  6. Cochlear's unique electrode portfolio now and in the future.

    PubMed

    von Wallenberg, E; Briggs, R

    2014-05-01

    To review Cochlear's electrode portfolio and discuss the merits of current and future straight and perimodiolar electrode arrays. To present an update on implant reliability. Performance and hearing preservation data from studies involving the Slim Straight (CI422), Hybrid L24 and Contour Advance electrode array were reviewed. While several studies in past found little difference in performance outcomes between subjects implanted with perimodiolar and straight arrays, recent studies demonstrated that proximity to the modiolus is correlated with better performance. Hearing threshold increase was lowest with the Hybrid L24, closely followed by the slim straight array and was largest with the Contour Advance array. The CI24RE receiver-stimulator used for the three arrays had a cumulative survival of 99% at eight years post implantation. Combining the hearing preservation benefits of slim straight arrays with perimodiolar proximity is the design objective of Cochlear's next generation electrodes.

  7. Implicit and explicit measures of sexual orientation attitudes: in group preferences and related behaviors and beliefs among gay and straight men.

    PubMed

    Jellison, William A; McConnell, Allen R; Gabriel, Shira

    2004-05-01

    The relations among implicit and explicit measures of sexual orientation attitudes and sexual-orientation-related behavior and beliefs among gay men (Study 1) and straight men (Studies 1 and 2) were explored. Study 1 found relations between implicit and explicit measures of sexual orientation attitudes, large differences between gay and straight men on both implicit and explicit measures, and that these measures predicted sexual-orientation-related behaviors among gay men. Also, only straight men exhibited a negative relation between their attitudes toward homosexuality and heterosexuality. Study 2 found that as straight men held more negative attitudes toward homosexuality, they more strongly endorsed the importance of heterosexual identity and of traditional masculine gender roles. These endorsements mediated the negative relation between their attitudes toward heterosexuality and homosexuality. Implications for assessing attitudes toward sexual orientation and their relations for sexual orientation identity are discussed.

  8. Noniterative implicit method for tracking particles in mixed Lagrangian-Eulerian formulations

    NASA Technical Reports Server (NTRS)

    Shih, T. I.-P.; Dasgupta, A.

    1993-01-01

    The existing implicit methods for the current initial value problems (IVPs) concerning particle-laden flows are complicated and iterative in nature. This paper presents a noniterative implicit method which can be used with pressure-based as well as with density-based algorithms. The method is illustrated by analyzing a dilute dispersion of noninteracting solid particles in an isothermal flow in a passage bounded by one straight wall and one wavy wall, in which all particles are spherical and have a finite velociy relative to the continuum phase at the inflow boundary.

  9. The influence of tortuosity on the spectrum of radiation from lightning return strokes

    NASA Technical Reports Server (NTRS)

    Levine, D. M.

    1978-01-01

    An investigation was made of the influence of tortuosity on the spectrum of radiation from lightning return strokes. The shape of the spectrum obtained by including effects of tortuosity was in keeping with data: The spectrum had a peak in the correct frequency regime followed by an initial decrease as the inverse of frequency. This spectrum was in better agreement with data than the spectrum predicted by the same model without tortuosity (i.e. the long straight channel), which decays at a rate proportional to 1/v squared.

  10. The therapeutic value of targeting inflammation in gastrointestinal cancers

    PubMed Central

    Sun, Beicheng; Karin, Michael

    2014-01-01

    Inflammation has been implicated in the initiation and progression of gastrointestinal (GI) cancers. Inflammation also plays important roles in subverting immune tolerance, escape from immune surveillance, and conferring resistance to chemotherapeutic agents. Targeting key regulators and mediators of inflammation represents an attractive strategy for GI cancer prevention and treatment. However, the targeting of inflammation in GI cancer is not straight-forward and sometimes inflammation may contribute to tumor regression. We discuss the origins and effects of inflammation in GI cancer and how to target it successfully. PMID:24881011

  11. Possible oriented transition of multiple-emulsion globules with asymmetric internal structures in a microfluidic constriction

    NASA Astrophysics Data System (ADS)

    Wang, Jingtao; Li, Xiaoduan; Wang, Xiaoyong; Guan, Jing

    2014-05-01

    When a globule with a complete symmetry (such as simple spherical droplets and concentric double emulsions) is transiting in a constriction tube, there is only one pattern of the transition. However, for a multiple-emulsion globule with asymmetric internal structures, there are many possible patterns with different pressure drops Δp due to various initial orientations of the inner droplets. In this paper, a boundary integral method developed recently is employed to investigate numerically the possible oriented transition of a globule with two unequal inner droplets in an axisymmetric microfluidic constriction. The transition is driven by an axisymmetric Poiseuille flow with a fixed volume flow rate, and the rheological behaviors of the globule are observed carefully. When the big inner droplet is initially located in the front of the globule, the maximum pressure drop during the transition is always lower than that when it is initially placed in the rear. Thus, a tropism—whereby a globule more easily gets through the constriction when its bigger inner droplet locates in its front initially—might exist, in which the orientating stimulus is the required pressure drops. The physical explanation of this phenomenon has also been analyzed in this paper.

  12. Initiation structure of oblique detonation waves behind conical shocks

    NASA Astrophysics Data System (ADS)

    Yang, Pengfei; Ng, Hoi Dick; Teng, Honghui; Jiang, Zonglin

    2017-08-01

    The understanding of oblique detonation dynamics has both inherent basic research value for high-speed compressible reacting flow and propulsion application in hypersonic aerospace systems. In this study, the oblique detonation structures formed by semi-infinite cones are investigated numerically by solving the unsteady, two-dimensional axisymmetric Euler equations with a one-step irreversible Arrhenius reaction model. The present simulation results show that a novel wave structure, featured by two distinct points where there is close-coupling between the shock and combustion front, is depicted when either the cone angle or incident Mach number is reduced. This structure is analyzed by examining the variation of the reaction length scale and comparing the flow field with that of planar, wedge-induced oblique detonations. Further simulations are performed to study the effects of chemical length scale and activation energy, which are both found to influence the formation of this novel structure. The initiation mechanism behind the conical shock is discussed to investigate the interplay between the effect of the Taylor-Maccoll flow, front curvature, and energy releases from the chemical reaction in conical oblique detonations. The observed flow fields are interpreted by means of the energetic limit as in the critical regime for initiation of detonation.

  13. 21 CFR 70.20 - Packaging requirements for straight colors (other than hair dyes).

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Packaging requirements for straight colors (other than hair dyes). 70.20 Section 70.20 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL COLOR ADDITIVES Packaging and Labeling § 70.20 Packaging requirements for straight colors (other than hair dyes)....

  14. 27 CFR 9.46 - Livermore Valley.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... straight line approximately 4.2 miles, passing onto the Cedar Mtn. map, to BM 1878, 40 feet north of Mines..., R1E; then (18) Continue northwest in a straight line approximately 1.1 miles to an unnamed, 1,291-foot..., 840-foot peak, T3S, R2W; then (24) Proceed north-northeast in a straight line approximately 3.4 miles...

  15. 27 CFR 9.46 - Livermore Valley.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... straight line approximately 4.2 miles, passing onto the Cedar Mtn. map, to BM 1878, 40 feet north of Mines..., R1E; then (18) Continue northwest in a straight line approximately 1.1 miles to an unnamed, 1,291-foot..., 840-foot peak, T3S, R2W; then (24) Proceed north-northeast in a straight line approximately 3.4 miles...

  16. 27 CFR 9.46 - Livermore Valley.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... straight line approximately 4.2 miles, passing onto the Cedar Mtn. map, to BM 1878, 40 feet north of Mines..., R1E; then (18) Continue northwest in a straight line approximately 1.1 miles to an unnamed, 1,291-foot..., 840-foot peak, T3S, R2W; then (24) Proceed north-northeast in a straight line approximately 3.4 miles...

  17. "Not Going Away": Approaches Used by Students, Faculty, and Staff Members to Create Gay-Straight Alliances at Three Religiously Affiliated Universities

    ERIC Educational Resources Information Center

    McEntarfer, Heather Killelea

    2011-01-01

    This qualitative study examines the processes of forming gay-straight alliances at three religiously affiliated institutions of higher education. Using the lens of Social Movement Theory (SMT), this paper presents the methods and approaches used when advocates of gay-straight alliances at these institutions encountered resistance from…

  18. Improving the Lives of Students, Gay and Straight Alike: Gay-Straight Alliances and the Role of School Psychologists

    ERIC Educational Resources Information Center

    Murphy, Heather Elise

    2012-01-01

    Lesbian, gay, bisexual, and transgender (LGBT) students face many risk factors every day when they enter their school's door. These students often fear for their safety at school, are victimized, have academic difficulties, suffer from issues with their identity development, and are at risk for suicide. School-based Gay-Straight Alliances (GSAs)…

  19. Evolution of turbulence characteristics from straight to curved pipes

    NASA Astrophysics Data System (ADS)

    El Khoury, George K.; Noorani, Azad; Schlatter, Philipp; Fischer, Paul F.

    2012-11-01

    Large-scale direct numerical simulations are performed to study turbulent flow in straight and bent pipes at four different Reynolds numbers: Reb = 5300 , 11700 (bent and straight) and 19000 and 37700 (only straight). We consider a pipe of radius R and axial length 25 R with curvature parameter κ taken to be 0 , 0 . 01 and 0 . 1 for zero, mild and strong curvatures, respectively. The code used is Nek5000 based on the spectral element method. In the straight configuration, the obtained DNS data is carefully checked against other recent simulations, highlighting minute differences between the available data. Owing to a centrifugal instability mechanism, the flow in bent pipe (κ ≠ 0) develops counter-rotating vortices, so-called Dean vortices. The presence of the secondary motion thus induces substantial asymmetries both in the mean flow and turbulence characteristics for the bent pipe. These asymmetries tend to damp turbulence along the inner side and correspondingly enhance it along the upper side. The results are validated with recent experiments, and we could confirm the peculiar behaviour of the friction factor for specific curvatures and Re , leading to a lower friction in curved pipes than in straight pipes for the same mass flux.

  20. Preferences of AP position of the straight Caucasian facial profile.

    PubMed

    Mees, Steven; Jiménez Bellinga, Raúl; Mommaerts, Maurice Y; De Pauw, Guy A M

    2013-12-01

    Several investigators have compared the perception of profile attractiveness between professional and non-professional people, different groups of clinicians, and different ethnic groups. Our aim was to study preferences for facial protrusion in the lateral view for a straight Class I profile and to study the influence of gender, age, sex preference, and profession. Portrait images of one male and one female model with a Class I occlusal relationship were warped into nine different antero-posterior positions. An internet site was established to reach as many people as possible, and a request was sent by email to participate in a scientific experiment. Finally, 1707 Caucasion assessors could be grouped. The preferred male profile is the straight full ante profile. For a feminine facial profile, the straight average and the straight 2/3 ante profiles were perceived as the most attractive. Surgeons tended to give significantly higher scores to attractive (ante) profiles, which correlated strongly with scores of the orthodontists. Whenever possible with combined orthodontic/surgery treatment, straight ante profiles should be aimed for. Copyright © 2013 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.

  1. Straightness measurement using laser beam straight datum

    NASA Astrophysics Data System (ADS)

    Uchikoshi, Junichi; Shimada, Shoichi; Ikawa, Naoya; Komura, Akio

    1995-08-01

    Using the direction stabilized laser beam as a physical straight datum, instead of the tangible reference surface, a method is proposed for the measurement of an error motion of a slide table and/or surface profile of mechanical components. A specially designed 2D position sensor/compensator for laser beam center is developed combining a quadrant photo-diode (QPD) position sensor for beam center and the piezo-compensator which compensates the beam shift from the center of QPD. By the use the sensor/compensator proposed, the positional and angular fluctuations of laser beam path is evaluated with nanometric resolution. Combining the sensor with the piezo-driven mirror compensator, the directional stabilizer for the laser beam is also designed in the same manner as the sensor/compensator. The stabilized He-Ne laser beam can be used as the metrological datum of straightness within the accuracy of 2 X 10 -8 rad. By mounting the position sensor/compensator on a slide table, the carriage with working distance of 1 m is so designed and built as to move straight along the stabilized laser beam. The carriage can be used as a mechanical straight datum with the accuracy equivalent to the laser beam stability.

  2. Straight-run vs. sex separate rearing for 2 broiler genetic lines Part 1: Live production parameters, carcass yield, and feeding behavior.

    PubMed

    Da Costa, M J; Zaragoza-Santacruz, S; Frost, T J; Halley, J; Pesti, G M

    2017-08-01

    The objective of this experiment was to evaluate the effects of raising broilers under sex separate and straight-run conditions for 2 broiler strains. Day-old Ross 308 and Ross 708 chicks (n = 1,344) were separated by sex and placed in 48 pens according to the rearing type: sex separate (28 males or 28 females) or straight-run (14 males + 14 females). There were 3 dietary phases: starter (zero to 17 d), grower (17 to 32 d), and finisher (32 to 48 d). Birds' individual BW and feed intakes were measured at 12, 17, 25, 32, 42, and 48 d to evaluate performance. At 33, 43, and 49 d, 4 birds per pen were sampled for carcass yield evaluation. Additionally, from 06:00 to 06:30, 13:00 to 13:30, and 22:00 to 22:30, video records were taken to assess behavior at 45 days. Data were analyzed as CRD with a 2 × 3 factorial arrangement of treatments over time. Throughout the experiment Ross 308 were heavier than the 708, and after 17 d, male pens had the heavier birds, followed by straight-run and then females. Straight-run pens had higher BW CV in comparison with sex separate pens. Sex separate male BW was negatively impacted from 17 to 32 days. On the other hand, females raised sex separate were heavier than females raised straight-run with lower CV from 25 to 41 days. Post 25 d, FCR was the lowest in male pens whereas feed intake was the highest for these pens after 17 days. Overall, males had total carcass cut-up weights higher than straight-run and females at the 3 processing times. The Ross 708 had higher white meat yields, whereas 308 had higher yields for dark meat. Feeding behavior results were not consistent over time. However, from 13:00 to 13:30, birds in female pens spent more time eating, followed by straight-run and then males. In conclusion, raising females in a straight-run system negatively impacted performance and CV, whereas males benefited from straight-run rearing, with the differences being possibly related to feeder space competition. © 2017 Poultry Science Association Inc.

  3. The Effect of Gravity on the Combustion Synthesis of Porous Ceramics and Metal Matrix Composites

    NASA Technical Reports Server (NTRS)

    Moore, J. J.; Woodger, T. C.; Wolanski, T.; Yi, H. C.; Guigne, J. Y.

    1997-01-01

    Combustion synthesis (self propagating, high temperature synthesis-SHS) is a novel technique that is capable of producing many advanced materials. The ignition temperature (Tig) of such combustion synthesis reactions is often coincident with that of the lowest melting point reactant. The resultant liquid metal wets and spreads around the other solid reactant particles of higher melting points, thereby improving the reactant contact and kinetics, followed by formation of the required compounds. This ignition initiates a combustion propagating wave whose narrow reaction front rapidly travels through the reactants. Since this process is highly exothermic, the heat released by combustion often melts the reactant particles ahead of the combustion front and ignites the adjacent reactant layer, resulting in a self-sustaining reaction. Whenever a fluid phase (liquid or gas) is generated by the reaction system, gravity-driven phenomena can occur. Such phenomena include convective flows of fluid by conventional or unstable convection and settling of the higher density phases. A combustion process is often associated with various kinds of fluid flow. For instance, if the SHS reaction is carried out under inert or reactive gas atmospheres, or a volatile, e.g., B2O3, is deliberately introduced as a reactant, convective flows of the gas will occur due to a temperature gradient existing in the atmosphere when a combustion wave is initiated. The increased gas flow will produce a porous (or expanded) SHS product. Owing to the highly exothermic nature of many SHS reactions, liquid phase(s) can also form before, at, or after the combustion front. The huge temperature gradient at the combustion front can induce convective flows (conventional or unstable) of the liquid phase. Each of these types of convective fluid flow can change the combustion behavior of the synthesizing reaction, and, therefore, the resultant product microstructure. In addition, when two or more phases of different density are produced at or ahead of the propagating combustion front settling of the higher density phase will occur resulting in a non-uniform product microstructure and properties.

  4. Morphodynamics of growing bacterial colony

    NASA Astrophysics Data System (ADS)

    Ghosh, Pushpita; Perlekar, Prasad; Rana, Navdeep

    Self-organization into multicellular communities is a natural trend of most of the bacteria. Mutual interactions and competition among the bacterial cells in such multicellular organization play essential role in governing the spatiotemporal dynamics. We here present the spatiotemporal dynamics of growing bacterial colony using theory and a particle-based or individual-based simulation model of nonmotile cells growing utilizing a diffusing nutrient/food on a semi-solid surface by their growth and division forces and by pushing each-other through sliding motility. We show how the resource competition over a fixed amount of food, the diffusion coefficient of the nutrient and the random genetic noise govern the morphodynamics of a single species and a well-mixed two-species bacterial colonies. Our results show that for a very low initial food concentrations, colony develops fingering pattern at the front, while for intermediate values of initial food sources, the colony undergoes transitions to branched structures at the periphery and for very high values of food colony develops smoother fronts.

  5. The conductive propagation of nuclear flames. I - Degenerate C + O and O + Ne + Mg white dwarfs

    NASA Technical Reports Server (NTRS)

    Timmes, F. X.; Woosley, S. E.

    1992-01-01

    The paper determines the physical properties - speed, width, and density structure - of conductive burning fronts in degenerate carbon-oxygen (C + O) and oxygen-neon-magnesium (O + Ne + Mg) compositions for a grid of initial densities and compositions. The dependence of the physical properties of the flame on the assumed values of nuclear reaction rates, the nuclear reaction network employed, the thermal conductivity, and the choice of coordinate system are investigated. The occurrence of accretion-induced collapse of a white dwarf is found to be critically dependent on the velocity of the nuclear conductive burning front and the growth rate of hydrodynamic instabilities. Treating the expanding area of the turbulent burning region as a fractal whose tile size is identical to the minimum unstable Rayleigh-Taylor wavelength, it is found, for all reasonable values of the fractal dimension, that for initial C + O or O + Ne + Mg densities above about 9 x 10 exp 9 g/cu cm the white dwarf should collapse to a neutron star.

  6. Areal Mass Oscillations in Planar Targets Due to Feedout: Theory and Simulations.

    NASA Astrophysics Data System (ADS)

    Velikovich, A. L.; Schmitt, A. J.; Karasik, M.; Obenschain, S. P.; Serlin, V.; Pawley, C. J.; Gardner, J. H.; Aglitskiy, Y.; Metzler, N.

    2001-10-01

    When a planar shock wave breaks out at a rippled rear surface of a laser-driven target, the lateral pressure gradient in a rippled rarefaction wave propagating back to the front surface causes a lateral mass redistribution that reverses the phase of mass variation. If the driving laser pulse has no foot, then the RT growth, starting when the rarefaction wave reaches the front surface, causes the second phase reversal of mass variation, and continues at the initial phase, as consistently observed in feedout experiments on Nike. A foot of the laser pulse can cause an early phase reversal of mass variation, making the strong shock wave driven by the main pulse interact with a density variation in a rippled rarefaction wave rather than with static rear surface ripples. Theory and simulations predict that this interaction can make the phase of mass variation reverse one or three times. Then the phase of the RT growing mode would be opposite to that of the initial mass variation.

  7. On the formation and expansion of H II regions

    NASA Technical Reports Server (NTRS)

    Franco, Jose; Tenorio-Tagle, Guillermo; Bodenheimer, Peter

    1990-01-01

    The evolution of H II regions in spherical clouds with small, constant-density cores and power-law density distributions r exp -w outside the core is described analytically. It is found that there is a critical exponent above which the cloud becomes completely ionized. Its value in the formation phase depends on the initial conditions, but it has a well-defined value w(crit) = 3/2 during the expansion phase. For w less than w(crit), the radius of the H II region grows at a given rate, while neutral mass accumulates in the interphase between the ionization and shock fronts. For w = w(crit), the fronts move together without mass accumulation. Cases with w greater than w(crit) lead to the champagne phase: once the cloud is fully ionized, the expansion becomes supersonic. For self-gravitating disks without magnetic fields, the main features include a new 'variable-size' stage. The initial shape of the H II region has a critical point beyond which the disk becomes completely ionized.

  8. A stereo vision-based obstacle detection system in vehicles

    NASA Astrophysics Data System (ADS)

    Huh, Kunsoo; Park, Jaehak; Hwang, Junyeon; Hong, Daegun

    2008-02-01

    Obstacle detection is a crucial issue for driver assistance systems as well as for autonomous vehicle guidance function and it has to be performed with high reliability to avoid any potential collision with the front vehicle. The vision-based obstacle detection systems are regarded promising for this purpose because they require little infrastructure on a highway. However, the feasibility of these systems in passenger car requires accurate and robust sensing performance. In this paper, an obstacle detection system using stereo vision sensors is developed. This system utilizes feature matching, epipoplar constraint and feature aggregation in order to robustly detect the initial corresponding pairs. After the initial detection, the system executes the tracking algorithm for the obstacles. The proposed system can detect a front obstacle, a leading vehicle and a vehicle cutting into the lane. Then, the position parameters of the obstacles and leading vehicles can be obtained. The proposed obstacle detection system is implemented on a passenger car and its performance is verified experimentally.

  9. Questa baseline and pre-mining ground-water quality investigation. 14. Interpretation of ground-water geochemistry in catchments other than the Straight Creek catchment, Red River Valley, Taos County, New Mexico, 2002-2003

    USGS Publications Warehouse

    Nordstrom, D. Kirk; McCleskey, R. Blaine; Hunt, Andrew G.; Naus, Cheryl A.

    2005-01-01

    The U.S. Geological Survey, in cooperation with the New Mexico Environment Department, is investigating the pre-mining ground-water chemistry at the Molycorp molybdenum mine in the Red River Valley, New Mexico. The primary approach is to determine the processes controlling ground-water chemistry at an unmined, off-site but proximal analog. The Straight Creek catchment, chosen for this purpose, consists of the same Tertiary-age quartz-sericite-pyrite altered andesite and rhyolitic volcanics as the mine site. Straight Creek is about 5 kilometers east of the eastern boundary of the mine site. Both Straight Creek and the mine site are at approximately the same altitude, face south, and have the same climatic conditions. Thirteen wells in the proximal analog drainage catchment were sampled for ground-water chemistry. Eleven wells were installed for this study and two existing wells at the Advanced Waste-Water Treatment (AWWT) facility were included in this study. Eight wells were sampled outside the Straight Creek catchment: one each in the Hansen, Hottentot, and La Bobita debris fans, four in a well cluster in upper Capulin Canyon (three in alluvial deposits and one in bedrock), and an existing well at the U.S. Forest Service Questa Ranger Station in Red River alluvial deposits. Two surface waters from the Hansen Creek catchment and two from the Hottentot drainage catchment also were sampled for comparison to ground-water compositions. In this report, these samples are evaluated to determine if the geochemical interpretations from the Straight Creek ground-water geochemistry could be extended to other ground waters in the Red River Valley , including the mine site. Total-recoverable major cations and trace metals and dissolved major cations, selected trace metals, anions, alkalinity; and iron-redox species were determined for all surface- and ground-water samples. Rare-earth elements and low-level As, Bi, Mo, Rb, Re, Sb, Se, Te, Th, U, Tl, V, W, Y, and Zr were determined on selected samples. Dissolved organic carbon (DOC), mercury, sulfate stable isotope composition (d34S and d18O of sulfate), stable isotope composition of water (d2H and d18O of water) were measured for selected samples. Chlorofluorocarbons (CFC) and 3He and 3H were measured for age dating on selected samples. Linear regressions from the Straight Creek ground-water data were used to compare ground-water chemistry trends in non-Straight Creek ground waters with Straight Creek alluvial ground-water chemistry dilution trends. Most of the solute trends for the ground waters are similar to those for Straight Creek but there are some notable exceptions. In lithologies that contain substantial pyrite mineralization, acid waters form with similar chemistries to those in Straight Creek and all the waters tend to be calcium-sulfate type. Hottentot ground waters contain substantially lower calcium concentrations relative to those in Straight Creek. This anomaly results from the exposure of rhyolite porphyry in the Hottentot scar and weathering zone. The rhyolite contains less calcium than the altered andesites and tuffs in the Straight Creek catchment and probably does not have the abundant gypsum and calcite. The Hansen ground waters have reached gypsum saturation and have similar calcium, magnesium, and beryllium concentrations as Straight Creek ground waters but have lower concentrations of fluoride, manganese, zinc, cobalt, nickel, copper, and lithium. Lower concentrations of elements related to mineralization at Hansen likely reflect the more distal location of Hansen with respect to intrusive centers that provided the heat source for hydrothermal alteration. The other ground water with water chemistry trends that are outside the Straight Creek trends was from an alluvial well from Capulin Canyon (CC2A). Although it had pH values near 6.0 and most major ions similar to the other Capulin Canyon ground waters, it contained high concentrations

  10. Development of an extended straightness measurement reference

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schenz, R.F.; Griffith, L.V.; Sommargren, G.E.

    1988-09-06

    The most accurate diamond turning machines have used physical straightness references. These references commonly are made of optical materials, such as Zerodur, and are flat enough to permit straightness measurements with an accuracy of 100--150 nm (4--6 microinches) p-v. In most cases, the flatness error is stable and can be accommodated by using a calibration table. The straightedges for the Large Optics Diamond Turning Machine (LODTM) at Lawrence Livermore National Laboratory (LLNL) are 1.1 meters in length and allow a straightness reference accuracy of 25--50 nm (1--2 microinches) p-v after calibration. Fabrication problems become insurmountable when a straightness reference formore » a length of up to 4 meters is desired. Moreover, the method of calibration by straightedge reversal does not account for gravitational sag when the sensing direction is vertical. Vertical sensing would be required in a four meter system and sag would become unacceptably large. Recent developments published in the literature suggest that the use of a laser beam for a reference may be feasible. Workers at Osaka University have reported a laser beam straightness reference that has a resolution of 3.5 nm, although tests were done only over a 200 mm length. LLNL has begun an investigation on the use of a directionally stabilized laser beam as a straightness measurement reference. The goal of the investigation is to provide a reference that is accurate to 25 nm (1 microinch) over a four meter distance. 3 refs., 2 figs.« less

  11. Rainfall Morphology in Semi-Tropical Convergence Zones

    NASA Technical Reports Server (NTRS)

    Shepherd, J. Marshall; Ferrier, Brad S.; Ray, Peter S.

    2000-01-01

    Central Florida is the ideal test laboratory for studying convergence zone-induced convection. The region regularly experiences sea breeze fronts and rainfall-induced outflow boundaries. The focus of this study is the common yet poorly-studied convergence zone established by the interaction of the sea breeze front and an outflow boundary. Previous studies have investigated mechanisms primarily affecting storm initiation by such convergence zones. Few have focused on rainfall morphology yet these storms contribute a significant amount precipitation to the annual rainfall budget. Low-level convergence and mid-tropospheric moisture have both been shown to correlate with rainfall amounts in Florida. Using 2D and 3D numerical simulations, the roles of low-level convergence and mid-tropospheric moisture in rainfall evolution are examined. The results indicate that time-averaged, vertical moisture flux (VMF) at the sea breeze front/outflow convergence zone is directly and linearly proportional to initial condensation rates. This proportionality establishes a similar relationship between VMF and initial rainfall. Vertical moisture flux, which encompasses depth and magnitude of convergence, is better correlated to initial rainfall production than surface moisture convergence. This extends early observational studies which linked rainfall in Florida to surface moisture convergence. The amount and distribution of mid-tropospheric moisture determines how rainfall associated with secondary cells develop. Rainfall amount and efficiency varied significantly over an observable range of relative humidities in the 850- 500 mb layer even though rainfall evolution was similar during the initial or "first-cell" period. Rainfall variability was attributed to drier mid-tropospheric environments inhibiting secondary cell development through entrainment effects. Observationally, 850-500 mb moisture structure exhibits wider variability than lower level moisture, which is virtually always present in Florida. A likely consequence of the variability in 850-500 moisture is a stronger statistical correlation to rainfall, which observational studies have noted. The study indicates that vertical moisture flux forcing at convergence zones is critical in determining rainfall in the initial stage of development but plays a decreasing role in rainfall evolution as the system matures. The mid-tropospheric moisture (e.g. environment) plays an increasing role in rainfall evolution as the system matures. This suggests the need to improve measurements of magnitude/depth of convergence and mid-tropospheric moisture distribution. It also highlights the need for better parameterization of entrainment and vertical moisture distribution in larger-scale models.

  12. High School Gay-Straight Alliances (GSAs) and Young Adult Well-Being: An Examination of GSA Presence, Participation, and Perceived Effectiveness

    ERIC Educational Resources Information Center

    Toomey, Russell B.; Ryan, Caitlin; Diaz, Rafael M.; Russell, Stephen T.

    2011-01-01

    Gay-Straight Alliances (GSAs) are student-led, school-based clubs that aim to provide a safe environment in the school context for lesbian, gay, bisexual, and transgender (LGBT) students, as well as their straight allies. The present study examines the potential for GSAs to support positive youth development and to reduce associations among…

  13. Manufacturing the Horns of Dilemma: A Theory of Operational Initiative

    DTIC Science & Technology

    2015-05-21

    Tsung offers insight, and offers the second compelling component to a theory of initiative. According to Mao, “Freedom of action is the very life of...unphased advances that might lead to entrapment by a numerically superior foe.”81 By conducting coordinated operations across the width of its front...doubtful whether firepower-based operations alone can in all cases unsettle an enemy and cause it to experience distress and defeat to the extent that it

  14. Young adult smokers' perceptions of plain packs, numbered packs and pack inserts in Turkey: a focus group study.

    PubMed

    Mucan, Burcu; Moodie, Crawford

    2017-11-09

    The Turkish Government's 'National Tobacco Control Program 2015-2018' included plans to introduce plain packaging and also a ban on brand names on cigarette packs, allowing only assigned numbers on packs. We explored perceptions of these proposed measures, and also pack inserts with cessation messages, another novel way of using the packaging to communicate with consumers. Eight focus groups were conducted with 47 young adult smokers in Manisa and Kutahya (Turkey) in December 2016. Participants were shown three straight-edged plain cigarette packs, as required in Australia, and then three bevelled-edged plain packs, as permitted in the UK. They were then shown plain packs with numbers rather than brand names, and finally three pack inserts with messages encouraging quitting or offering tips on how to do so. Participants were asked about their perceptions of each. Plain packs were considered unappealing and off-putting, although the bevelled-edged packs were viewed more favourably than the straight-edged packs. Numbered packs were thought by some to diminish the appeal created by the brand name and potentially decrease interest among never smokers and newer smokers. Pack inserts were thought to have less of an impact than the on-pack warnings, but could potentially help discourage initiation and encourage cessation. That bevelled-edged plain packs were perceived more positively than straight-edged plain packs is relevant to countries planning to introduce plain packaging. The study provides a first insight into smokers' perceptions of a ban on brand names, which was perceived to reduce appeal among young people. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  15. Mexico attempts to tackle obesity: the process, results, push backs and future challenges.

    PubMed

    Barquera, S; Campos, I; Rivera, J A

    2013-11-01

    Mexico's obesity prevalence is one of the world's highest. In 2006, academics, and federal and state government agencies initiated efforts to design a national policy for obesity prevention. The Ministry of Health (MOH) established an expert panel to develop recommendations on beverage intake for a healthy life in 2008. Subsequently, the MOH, with support from academia, initiated the development of the National Agreement for Healthy Nutrition (ANSA). ANSA was signed by all relevant sectoral actors in 2010 and led to initiatives banning sodas and regulating unhealthy food in schools and the design of other yet to be implemented initiatives, such as a front-of-package labeling system. A main challenge of the ANSA has been the lack of harmonization between industry interests and public health objectives and effective accountability and monitoring mechanisms to assess implementation across government sectors. Bold strategies currently under consideration include taxation of sugar-sweetened beverages, improvement of norms for healthy food in schools, regulation of food and beverage marketing to children and implementation of a national front-of-pack labeling system. Strong civil society organizations have embraced the prevention of obesity as their goal and have used evidence from academia to position obesity prevention in the public debate and in the government agenda. © 2013 The Authors. Obesity Reviews published by John Wiley & Sons Ltd on behalf of the International Association for the Study of Obesity.

  16. Experimental observations and finite element analysis of the initiation of fiber microbuckling in notched composite laminates

    NASA Technical Reports Server (NTRS)

    Guynn, E. Gail; Bradley, Walter L.; Ochoa, Ozden O.

    1990-01-01

    A better understanding of the factors that affect the semi-circular edge-notched compressive strength is developed, and the associated failure mode(s) of thermoplastic composite laminates with multidirectional stacking sequences are identified. The primary variables in this investigation are the resin nonlinear shear constitutive behavior, stacking sequence (orientation of plies adjacent to the 0 degree plies), resin-rich regions between the 0 degree plies and the off-axis supporting plies, fiber/matrix interfacial bond strength, and initial fiber waviness. Two thermoplastic composite material systems are used in this investigation. The materials are the commercial APC-2 (AS4/PEEK) and a poor interface experimental material, AU4U/PEEK, designed for this investigation. Notched compression specimens are studied at 21, 77, and 132 C. Geometric and material nonlinear two-dimensional finite element analysis is used to model the initiation of fiber microbuckling of both the ideal straight fiber and the more realistic initially wavy fiber. The effects of free surface, fiber constitutive properties, matrix constitutive behavior, initial fiber curvature, and fiber/matrix interfacial bond strength on fiber microbuckling initiation strain levels are considered.

  17. Diagnosing Warm Frontal Cloud Formation in a GCM: A Novel Approach Using Conditional Subsetting

    NASA Technical Reports Server (NTRS)

    Booth, James F.; Naud, Catherine M.; DelGenio, Anthony D.

    2013-01-01

    This study analyzes characteristics of clouds and vertical motion across extratropical cyclone warm fronts in the NASA Goddard Institute for Space Studies general circulation model. The validity of the modeled clouds is assessed using a combination of satellite observations from CloudSat, Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO), Advanced Microwave Scanning Radiometer for Earth Observing System (AMSR-E), and the NASA Modern-Era Retrospective Analysis for Research and Applications (MERRA) reanalysis. The analysis focuses on developing cyclones, to test the model's ability to generate their initial structure. To begin, the extratropical cyclones and their warm fronts are objectively identified and cyclone-local fields are mapped into a vertical transect centered on the surface warm front. To further isolate specific physics, the cyclones are separated using conditional subsetting based on additional cyclone-local variables, and the differences between the subset means are analyzed. Conditional subsets are created based on 1) the transect clouds and 2) vertical motion; 3) the strength of the temperature gradient along the warm front, as well as the storm-local 4) wind speed and 5) precipitable water (PW). The analysis shows that the model does not generate enough frontal cloud, especially at low altitude. The subsetting results reveal that, compared to the observations, the model exhibits a decoupling between cloud formation at high and low altitudes across warm fronts and a weak sensitivity to moisture. These issues are caused in part by the parameterized convection and assumptions in the stratiform cloud scheme that are valid in the subtropics. On the other hand, the model generates proper covariability of low-altitude vertical motion and cloud at the warm front and a joint dependence of cloudiness on wind and PW.

  18. Is side-viewing endoscope assisted balloon dilatation better for corrosive gastric outlet obstruction?

    PubMed

    Katiyar, Prashant; Nijhawan, Sandeep; Saradava, Vimal; Nagaich, Neeraj; Gupta, Gaurav; Mathur, Amit; Nepalia, Subhash

    2013-11-01

    Endoscopic balloon dilatation (EBD) is an effective therapy for caustic-induced gastric outlet obstruction (GOO). Gaining access to the stricture site is the most important step. It is sometimes difficult to negotiate a balloon through the stricture with a front-viewing endoscope due to deformed anatomy of stomach. To overcome this technical difficulty, a side-viewing endoscope can be used. There is limited data regarding the use of side-viewing endoscopes in EBD. We here report on the short-term efficacy and safety of EBD in caustic-induced GOO. In technically difficult cases, a side-viewing endoscope was used for EBD and its efficacy and safety were assessed. The study included 25 patients with caustic-induced GOO. Patients underwent EBD using a through-the-scope balloon. Initial balloon dilatation was performed with a front-viewing endoscope. A side-viewing endoscope was used where negotiation across the stricture failed with a front-viewing endoscope. Dilatation was started at 8 mm diameter and was performed at 1-week intervals. The end point of dilatation was 15 mm diameter. In 18 patients successful balloon dilatation was possible with a front-viewing endoscope. A side-viewing endoscope was used in six patients as negotiation across the stricture was not possible with a front-viewing endoscope. In all six patients negotiation across the stricture followed by successful dilatation was successful with a side-viewing endoscope. Of the 25 patients included in this study, 24 (96%) achieved procedural success (18 with a front-viewing endoscope and 6 with a side-viewing endoscope) in 3-9 sessions. Our results show that EBD is a safe and effective option for caustic-induced GOO and in difficult cases a side-viewing endoscope can be used to achieve technical success.

  19. Short-lived U and Th isotope distribution in a tropical laterite derived from granite (Pitinga river basin, Amazonia, Brazil): Application to assessment of weathering rate

    NASA Astrophysics Data System (ADS)

    Mathieu, D.; Bernat, M.; Nahon, D.

    1995-12-01

    We have analyzed samples of a 15 m thick profile weathered from the Madeira granite, located in the Pitinga basin river, north of Manaus, in the state of Amazonia, Brazil. This profile consists essentially of a yellow-red saprolite covered by a soil. U and Th concentrations are particularly high in the granite (20 and 80 μg/g respectively). Normalized element to Th concentrations indicate that Th is most resistant to chemical weathering, except to some extent in the top soil. Higher concentrations in the saprolite compared to the granite comprise a relative enrichment, resulting from a loss of mass. The saprolites are initially generated by a descending weathering front which alters the granite to a yellow-red saprolite, a second front, close to the top, turns the saprolite into a soil. Weathering has led to leaching of U. The 234U/ 238U and 230Th/ 238U isotopic ratios are in radioactive disequilibrium. Numerous nodules are present and apparently started to form at the base of the saprolite. These nodules achieve more developed form during their relative ascent until they are reached by the descending top front where they undergo dissolution. The Th and Pb are concentrated in the nodules close to the top front. The U, being more mobile, is strongly leached by the first front, and most of the remainder, freed by the second, engages in a descending flux which supplies the underlying saprolite. Using the data an attempt is made to model the isotopic distribution in the profile. We conclude that the first front has descended at a rate of 5 cm/1000 yt, and that the time needed to create the saprolite must have been around 300,000 yr.

  20. Computerized mapping of fibrillation in normal ventricular myocardium

    NASA Astrophysics Data System (ADS)

    Chen, Peng-Sheng; Garfinkel, Alan; Weiss, James N.; Karagueuzian, Hrayr S.

    1998-03-01

    It is well known that the ability to fibrillate is intrinsic to a normal ventricle that exceeds a critical mass. The questions we address are how is ventricular fibrillation (VF) initiated and perpetuated in normal myocardium, and why is VF not seen more often in the general population if all ventricles have the ability to fibrillate. To study the mechanisms of VF, we used computerized mapping techniques with up to 512 channels of simultaneous multisite recordings for data acquisition. The data were then processed for dynamic display of the activation patterns and for mathematical analyses of the activation intervals. The results show that in normal ventricles, VF can be initiated by a single strong premature stimulus given during the vulnerable period of the cardiac cycle. The initial activations form a figure-eight pattern. Afterward, VF will perpetuate itself without any outside help. The self-perpetuation itself is due to at least two factors. One is that single wave fronts spontaneously break up into two or more wavelets. The second is that when two wavelets intersect perpendicular to each other, the second wavelet is broken by the residual refractoriness left over from the first wavelet. Mathematical analyses of the patterns of activation during VF revealed that VF is a form of chaos, and that transition from ventricular tachycardia (VT) to VF occurs via the quasiperiodic route. In separate experiments, we found that we can convert VF to VT by tissue size reduction. The physiological mechanism associated with the latter transition appears to be the reduction of the number of reentrant wave fronts and wandering wavelets. Based on these findings, we propose that the reentrant wave fronts and the wandering wavelets serve as the physiological equivalent of coupled oscillators. A minimal number of oscillators is needed for VF to perpetuate itself, and to generate chaotic dynamics; hence a critical mass is required to perpetuate VF. We conclude that VF in normal myocardium is a form of reentrant cardiac arrhythmia. A strong electrical stimulus initiates single or dual reentrant wave fronts that break up into multiple wavelets. Sometimes short-lived reentry is also generated during the course of VF. These organized reentrant and broken wavelets serve as coupled oscillators that perpetuate VF and maintain chaos. Although the ability to support these oscillators exists in a normal ventricle, the triggers required to generate them are nonexistent in the normal heart. Therefore, VF and sudden death do not happen to most people with normal ventricular myocardium.

  1. Traveling wave solutions in a chain of periodically forced coupled nonlinear oscillators

    NASA Astrophysics Data System (ADS)

    Duanmu, M.; Whitaker, N.; Kevrekidis, P. G.; Vainchtein, A.; Rubin, J. E.

    2016-06-01

    Motivated by earlier studies of artificial perceptions of light called phosphenes, we analyze traveling wave solutions in a chain of periodically forced coupled nonlinear oscillators modeling this phenomenon. We examine the discrete model problem in its co-traveling frame and systematically obtain the corresponding traveling waves in one spatial dimension. Direct numerical simulations as well as linear stability analysis are employed to reveal the parameter regions where the traveling waves are stable, and these waves are, in turn, connected to the standing waves analyzed in earlier work. We also consider a two-dimensional extension of the model and demonstrate the robust evolution and stability of planar fronts. Our simulations also suggest the radial fronts tend to either annihilate or expand and flatten out, depending on the phase value inside and the parameter regime. Finally, we observe that solutions that initially feature two symmetric fronts with bulged centers evolve in qualitative agreement with experimental observations of phosphenes.

  2. Frequency-dependent selection at rough expanding fronts

    NASA Astrophysics Data System (ADS)

    Kuhr, Jan-Timm; Stark, Holger

    2015-10-01

    Microbial colonies are experimental model systems for studying the colonization of new territory by biological species through range expansion. We study a generalization of the two-species Eden model, which incorporates local frequency-dependent selection, in order to analyze how social interactions between two species influence surface roughness of growing microbial colonies. The model includes several classical scenarios from game theory. We then concentrate on an expanding public goods game, where either cooperators or defectors take over the front depending on the system parameters. We analyze in detail the critical behavior of the nonequilibrium phase transition between global cooperation and defection and thereby identify a new universality class of phase transitions dealing with absorbing states. At the transition, the number of boundaries separating sectors decays with a novel power law in time and their superdiffusive motion crosses over from Eden scaling to a nearly ballistic regime. In parallel, the width of the front initially obeys Eden roughening and, at later times, passes over to selective roughening.

  3. Status of the Warm Front End of PIP-II Injector Test

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shemyakin, Alexander; Alvarez, Matthew; Andrews, Richard

    The Proton Improvement Plan II (PIP-II) at Fermilab is a program of upgrades to the injection complex. At its core is the design and construction of a CW-compatible, pulsed H⁻ SRF linac. To validate the concept of the front-end of such machine, a test accelerator known as PIP-II Injector Test is under construction. It includes a 10 mA DC, 30 keV H⁻ ion source, a 2 m-long Low Energy Beam Transport (LEBT), a 2.1 MeV CW RFQ, followed by a Medium Energy Beam Transport (MEBT) that feeds the first of 2 cryomodules increasing the beam energy to about 25 MeV,more » and a High Energy Beam Transport section (HEBT) that takes the beam to a dump. The ion source, LEBT, RFQ, and initial version of the MEBT have been built, installed, and commissioned. This report presents the overall status of the warm front end.« less

  4. The dynamics of oceanic fronts. I - The Gulf Stream

    NASA Technical Reports Server (NTRS)

    Kao, T. W.

    1980-01-01

    The establishment and maintenance of the mean hydrographic properties of large-scale density fronts in the upper ocean is considered. The dynamics is studied by posing an initial value problem starting with a near-surface discharge of buoyant water with a prescribed density deficit into an ambient stationary fluid of uniform density; full time dependent diffusion and Navier-Stokes equations are then used with constant eddy diffusion and viscosity coefficients, together with a constant Coriolis parameter. Scaling analysis reveals three independent scales of the problem including the radius of deformation of the inertial length, buoyancy length, and diffusive length scales. The governing equations are then suitably scaled and the resulting normalized equations are shown to depend on the Ekman number alone for problems of oceanic interest. It is concluded that the mean Gulf Stream dynamics can be interpreted in terms of a solution of the Navier-Stokes and diffusion equations, with the cross-stream circulation responsible for the maintenance of the front; this mechanism is suggested for the maintenance of the Gulf Stream dynamics.

  5. Frontal Polymerization in Microgravity: Bubble Behavior and Convection on the KC-135 Aircraft

    NASA Technical Reports Server (NTRS)

    Pojman, John A.; Ainsworth, William; Chekanov, Yuri; Masere, Jonathan; Volpert, Vitaly; Dumont, Thierry; Wilke, Hermann

    2001-01-01

    Frontal polymerization is a mode of converting monomer into polymer via a localized exothermic reaction zone that propagates through the coupling of thermal diffusion and Arrhenius reaction kinetics. Frontal polymerization was discovered in Russia by Chechilo and Enikolopyan in 1972. The macrokinetics and dynamics of frontal polymerization have been examined in detail and applications for materials synthesis considered. Large temperature and concentration gradients that occur in the front lead to large density gradients. A schematic is presented for a liquid monomer, usually a monoacrylate, being converted to a liquid (thermoplastic) polymer. The velocity can be controlled by the initiator concentration but is on the order of a cm/min. If the liquid monomer is multifunctional, then a solid (thermoset) polymer is formed. Convection can occur with all types of monomers if the front propagates up a tube. Bowden et al. studied liquid/solid systems. McCaughey et al. studied liquid polymer systems. Descending fronts in thermoplastic systems are also susceptible to the Rayleigh-Taylor instability.

  6. Front-end circuit for position sensitive silicon and vacuum tube photomultipliers with gain control and depth of interaction measurement

    NASA Astrophysics Data System (ADS)

    Herrero, Vicente; Colom, Ricardo; Gadea, Rafael; Lerche, Christoph W.; Cerdá, Joaquín; Sebastiá, Ángel; Benlloch, José M.

    2007-06-01

    Silicon Photomultipliers, though still under development for mass production, may be an alternative to traditional Vacuum Photomultipliers Tubes (VPMT). As a consequence, electronic front-ends initially designed for VPMT will need to be modified. In this simulation, an improved architecture is presented which is able to obtain impact position and depth of interaction of a gamma ray within a continuous scintillation crystal, using either kind of PM. A current sensitive preamplifier stage with individual gain adjustment interfaces the multi-anode PM outputs with a current division resistor network. The preamplifier stage allows to improve front-end processing delay and temporal resolution behavior as well as to increase impact position calculation resolution. Depth of interaction (DOI) is calculated from the width of the scintillation light distribution, which is related to the sum of voltages in resistor network input nodes. This operation is done by means of a high-speed current mode scheme.

  7. Traveling wave solutions in a chain of periodically forced coupled nonlinear oscillators

    DOE PAGES

    Duanmu, M.; Whitaker, N.; Kevrekidis, P. G.; ...

    2016-02-27

    Artificial perceptions of light called phosphenes were motivated by earlier studies. We analyze traveling wave solutions in a chain of periodically forced coupled nonlinear oscillators modeling this phenomenon. We examine the discrete model problem in its co-traveling frame and systematically obtain the corresponding traveling waves in one spatial dimension. Direct numerical simulations as well as linear stability analysis are employed to reveal the parameter regions where the traveling waves are stable, and these waves are, in turn, connected to the standing waves analyzed in earlier work. We also consider a two-dimensional extension of the model and demonstrate the robust evolutionmore » and stability of planar fronts. Moreover, our simulations also suggest the radial fronts tend to either annihilate or expand and flatten out, depending on the phase value inside and the parameter regime. Finally, we observe that solutions that initially feature two symmetric fronts with bulged centers evolve in qualitative agreement with experimental observations of phosphenes.« less

  8. Instruction manual, optical effects module electronic controller and processor, model OEMCP

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The OEM-1 electronic module is discussed; it is comprised of four subsystems: the signal processing and display; the stepper motor controls; the chopper controls; and the dc-dc invertor. The OEM-1 module controls the sample wheel so that the relative transmittance of the samples can be compared to the clear aperture position. The 3-1/2 digit digital voltmeter displays the clear aperture signal level as well as the ratio of the remaining sample positions relative to the clear aperture position. The sample wheel position is decoded so that the signals and ratios can be correlated to the data. The OEM is automatically reset to the I sub o on initial turn-on and can be reset to the '0' position by actuating a front panel switch. The sample wheel can be interrupted to change samples or induce a longer integration time if desired by a front panel command. Integration times from 1 - 50 seconds are provided at the front panel, and BCD data for external interfacing is provided.

  9. Arcing in LEO: Does the Whole Array Discharge?

    NASA Technical Reports Server (NTRS)

    Ferguson, Dale C.; Vayner, Boris V.; Galofaro, Joel T.; Hillard, G. Barry

    2005-01-01

    The conventional wisdom about solar array arcing in LEO is that only the parts of the solar array that are swept over by the arc-generated plasma front are discharged in the initial arc. This limits the amount of energy that can be discharged. Recent work done at the NASA Glenn Research Center has shown that this idea is mistaken. In fact, the capacitance of the entire solar array may be discharged, which for large arrays leads to very large and possibly debilitating arcs, even if no sustained arc occurs. We present the laboratory work that conclusively demonstrates this fact by using a grounded plate that prevents the arc-plasma front from reaching certain array strings. Finally, we discuss the dependence of arc strength and arc pulse width on the capacitance that is discharged, and provide a physical mechanism for discharge of the entire array, even when parts of the array are not accessible to the arc-plasma front. Mitigation techniques are also presented.

  10. Traveling wave solutions in a chain of periodically forced coupled nonlinear oscillators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duanmu, M.; Whitaker, N.; Kevrekidis, P. G.

    Artificial perceptions of light called phosphenes were motivated by earlier studies. We analyze traveling wave solutions in a chain of periodically forced coupled nonlinear oscillators modeling this phenomenon. We examine the discrete model problem in its co-traveling frame and systematically obtain the corresponding traveling waves in one spatial dimension. Direct numerical simulations as well as linear stability analysis are employed to reveal the parameter regions where the traveling waves are stable, and these waves are, in turn, connected to the standing waves analyzed in earlier work. We also consider a two-dimensional extension of the model and demonstrate the robust evolutionmore » and stability of planar fronts. Moreover, our simulations also suggest the radial fronts tend to either annihilate or expand and flatten out, depending on the phase value inside and the parameter regime. Finally, we observe that solutions that initially feature two symmetric fronts with bulged centers evolve in qualitative agreement with experimental observations of phosphenes.« less

  11. Straight and chopped DC performance data for a General Electric 5BY436A1 DC shunt motor with a General Electric EV-1 controller

    NASA Technical Reports Server (NTRS)

    Edie, P. C.

    1981-01-01

    Both straight and chopped dc motor performance data for a General Electric 5BY436A1 motor with a General Electric EV-1 controller is presented in tabular and graphical formats. Effects of motor temperature and operating voltage are also shown. The maximum motor efficiency is approximately 85% at low operating temperatures in the straight dc mode. Chopper efficiency can be assumed to be 95% under all operating conditions. For equal speeds, the motor operated in the chopped mode develops slightly more torque and draws more current than it does in the straight mode.

  12. Inhibition of Bacterial Rna Polymerase by Streptolydigin: Stabilization of A Straight-Bridge-Helix Active-Center Conformation

    PubMed Central

    Tuske, Steven; Sarafianos, Stefan G.; Wang, Xinyue; Hudson, Brian; Sineva, Elena; Mukhopadhyay, Jayanta; Birktoft, Jens J.; Leroy, Olivier; Ismail, Sajida; Clark, Arthur D.; Dharia, Chhaya; Napoli, Andrew; Laptenko, Oleg; Lee, Jookyung; Borukhov, Sergei; Ebright, Richard H.; Arnold, Eddy

    2009-01-01

    We define the target, mechanism, and structural basis of inhibition of bacterial RNA polymerase (RNAP) by the tetramic-acid antibiotic streptolydigin (Stl). Stl binds to a site adjacent to, but not overlapping, the RNAP active center and stabilizes an RNAP-active-center conformational state with a straight bridge helix. The results provide direct support for the proposals that alternative straight-bridge-helix and bent-bridge-helix RNAP-active-center conformations exist, and that cycling between straight-bridge-helix and bent-bridge-helix RNAP-active-center conformations is required for RNAP function. The results set bounds on models for RNAP function and suggest strategies for design of novel antibacterial agents. PMID:16122422

  13. Gas Sloshing Regulates and Records the Evolution of the Fornax Cluster

    NASA Astrophysics Data System (ADS)

    Su, Yuanyuan; Nulsen, Paul E. J.; Kraft, Ralph P.; Roediger, Elke; ZuHone, John A.; Jones, Christine; Forman, William R.; Sheardown, Alex; Irwin, Jimmy A.; Randall, Scott W.

    2017-12-01

    We present results of a joint Chandra and XMM-Newton analysis of the Fornax Cluster, the nearest galaxy cluster in the southern sky. Signatures of merger-induced gas sloshing can be seen in the X-ray image. We identify four sloshing cold fronts in the intracluster medium, residing at radii of 3 kpc (west), 10 kpc (northeast), 30 kpc (southwest), and 200 kpc (east). Despite spanning over two orders of magnitude in radius, all four cold fronts fall onto the same spiral pattern that wraps around the BCG NGC 1399, likely all initiated by the infall of NGC 1404. The most evident front is to the northeast, 10 kpc from the cluster center, which separates low-entropy high-metallicity gas and high-entropy low-metallicity gas. The metallicity map suggests that gas sloshing, rather than an AGN outburst, is the driving force behind the redistribution of the enriched gas in this cluster. The innermost cold front resides within the radius of the strong cool core. The sloshing timescale within the cooling radius, calculated from the Brunt–Väsälä frequency, is an order of magnitude shorter than the cooling time. It is plausible that gas sloshing is contributing to the heating of the cool core, provided that gas of different entropies can be mixed effectively via Kelvin–Helmholtz instability. The estimated age of the outermost front suggests that this is not the first infall of NGC 1404.

  14. An efficient hybrid approach for multiobjective optimization of water distribution systems

    NASA Astrophysics Data System (ADS)

    Zheng, Feifei; Simpson, Angus R.; Zecchin, Aaron C.

    2014-05-01

    An efficient hybrid approach for the design of water distribution systems (WDSs) with multiple objectives is described in this paper. The objectives are the minimization of the network cost and maximization of the network resilience. A self-adaptive multiobjective differential evolution (SAMODE) algorithm has been developed, in which control parameters are automatically adapted by means of evolution instead of the presetting of fine-tuned parameter values. In the proposed method, a graph algorithm is first used to decompose a looped WDS into a shortest-distance tree (T) or forest, and chords (Ω). The original two-objective optimization problem is then approximated by a series of single-objective optimization problems of the T to be solved by nonlinear programming (NLP), thereby providing an approximate Pareto optimal front for the original whole network. Finally, the solutions at the approximate front are used to seed the SAMODE algorithm to find an improved front for the original entire network. The proposed approach is compared with two other conventional full-search optimization methods (the SAMODE algorithm and the NSGA-II) that seed the initial population with purely random solutions based on three case studies: a benchmark network and two real-world networks with multiple demand loading cases. Results show that (i) the proposed NLP-SAMODE method consistently generates better-quality Pareto fronts than the full-search methods with significantly improved efficiency; and (ii) the proposed SAMODE algorithm (no parameter tuning) exhibits better performance than the NSGA-II with calibrated parameter values in efficiently offering optimal fronts.

  15. Temporal changes in the tensile strength of ultra-high-molecular-weight polyethylene cable embedded in muscle tissue.

    PubMed

    Matsumori, Hiroaki; Ueda, Yurito; Koizumi, Munehisa; Miyazaki, Kiyoshi; Shigematsu, Hideki; Satoh, Nobuhisa; Oshima, Takuya; Tanaka, Masato; Tanaka, Yasuhito; Takakura, Yoshinori

    2010-02-01

    Wires and cables have been used extensively for spinal sublaminar wiring, but damages to the spinal cord due to compression by metal wires have been reported. We have used more flexible ultra-high-molecular-weight polyethylene cable (Tekmilon tape) instead of metal wires since 1999 and have obtained good clinical outcomes. Although the initial strength of Tekmilon tape is equivalent to metal wires, the temporal changes in the strength of Tekmilon tape in the body should be investigated to show that sufficient strength is maintained over time until bone union is complete. Tekmilon tape was embedded into the paravertebral muscle of 10-week-old male Japanese white rabbits. Samples were embedded for 0, 1, 3, 6 or 12 months. At the end of each period, sequential straight tensile strength and sequential knot-pull tensile strength were measured. The initial strength of Tekmilon tape in muscle tissue was maintained over time, with 92% straight tensile strength and 104% knot-pull tensile strength at 6months, and values of 77% and 100% at 12 months, respectively. Since single knot is clinically relevant, it is very important that the knot-pull tensile strength did not decrease over a 12-month period. This suggests that temporal changes in the tensile strength of Tekmilon tape are negligible at 1 year. Tekmilon tape maintains sufficient strength in vivo until bone union has occurred. It is useful for sublaminar wiring instead of metal materials due to its flexibility and strength and may reduce the risk of neurological damage. Copyright (c) 2009 Elsevier Ltd. All rights reserved.

  16. Measurement of Two-Phase Flow Characteristics Under Microgravity Conditions

    NASA Technical Reports Server (NTRS)

    Keshock, E. G.; Lin, C. S.; Edwards, L. G.; Knapp, J.; Harrison, M. E.; Xhang, X.

    1999-01-01

    This paper describes the technical approach and initial results of a test program for studying two-phase annular flow under the simulated microgravity conditions of KC-135 aircraft flights. A helical coil flow channel orientation was utilized in order to circumvent the restrictions normally associated with drop tower or aircraft flight tests with respect to two-phase flow, namely spatial restrictions preventing channel lengths of sufficient size to accurately measure pressure drops. Additionally, the helical coil geometry is of interest in itself, considering that operating in a microgravity environment vastly simplifies the two-phase flows occurring in coiled flow channels under 1-g conditions for virtually any orientation. Pressure drop measurements were made across four stainless steel coil test sections, having a range of inside tube diameters (0.95 to 1.9 cm), coil diameters (25 - 50 cm), and length-to-diameter ratios (380 - 720). High-speed video photographic flow observations were made in the transparent straight sections immediately preceding and following the coil test sections. A transparent coil of tygon tubing of 1.9 cm inside diameter was also used to obtain flow visualization information within the coil itself. Initial test data has been obtained from one set of KC-135 flight tests, along with benchmark ground tests. Preliminary results appear to indicate that accurate pressure drop data is obtainable using a helical coil geometry that may be related to straight channel flow behavior. Also, video photographic results appear to indicate that the observed slug-annular flow regime transitions agree quite reasonably with the Dukler microgravity map.

  17. An image overall complexity evaluation method based on LSD line detection

    NASA Astrophysics Data System (ADS)

    Li, Jianan; Duan, Jin; Yang, Xu; Xiao, Bo

    2017-04-01

    In the artificial world, whether it is the city's traffic roads or engineering buildings contain a lot of linear features. Therefore, the research on the image complexity of linear information has become an important research direction in digital image processing field. This paper, by detecting the straight line information in the image and using the straight line as the parameter index, establishing the quantitative and accurate mathematics relationship. In this paper, we use LSD line detection algorithm which has good straight-line detection effect to detect the straight line, and divide the detected line by the expert consultation strategy. Then we use the neural network to carry on the weight training and get the weight coefficient of the index. The image complexity is calculated by the complexity calculation model. The experimental results show that the proposed method is effective. The number of straight lines in the image, the degree of dispersion, uniformity and so on will affect the complexity of the image.

  18. Balanced Flow Metering and Conditioning: Technology for Fluid Systems

    NASA Technical Reports Server (NTRS)

    Kelley, Anthony R.

    2006-01-01

    Revolutionary new technology that creates balanced conditions across the face of a multi-hole orifice plate has been developed, patented and exclusively licensed for commercialization. This balanced flow technology simultaneously measures mass flow rate, volumetric flow rate, and fluid density with little or no straight pipe run requirements. Initially, the balanced plate was a drop in replacement for a traditional orifice plate, but testing revealed substantially better performance as compared to the orifice plate such as, 10 times better accuracy, 2 times faster (shorter distance) pressure recovery, 15 times less acoustic noise energy generation, and 2.5 times less permanent pressure loss. During 2004 testing at MSFC, testing revealed several configurations of the balanced flow meter that match the accuracy of Venturi meters while having only slightly more permanent pressure loss. However, the balanced meter only requires a 0.25 inch plate and has no upstream or downstream straight pipe requirements. As a fluid conditioning device, the fluid usually reaches fully developed flow within 1 pipe diameter of the balanced conditioning plate. This paper will describe the basic balanced flow metering technology, provide performance details generated by testing to date and provide implementation details along with calculations required for differing degrees of flow metering accuracy.

  19. VOLTAGE CLAMP BEHAVIOR OF IRON-NITRIC ACID SYSTEM AS COMPARED WITH THAT OF NERVE MEMBRANE

    PubMed Central

    Tasaki, I.; Bak, A. F.

    1959-01-01

    The current-voltage relation for the surface layer of an iron wire immersed in nitric acid was investigated by the voltage clamp technique. Comparing the phase of nitric acid to the axoplasm and the metallic phase to the external fluid medium for the nerve fiber, a striking analogy was found between the voltage clamp behavior of the iron-nitric acid system and that of the nerve membrane. The current voltage curve was found to consist of three parts: (a) a straight line representing the behavior of the resting (passive) membrane, (b) a straight line representing the fully excited (active) state, and (c) an intermediate zone connecting (a) and (b). It was shown that in the intermediate zone, the surface of iron consisted of a fully active patch (or patches) surrounded by a remaining resting area. The phenomenon corresponding to "repetitive firing of responses under voltage clamp" in the nerve membrane was demonstrated in the intermediate zone. The behavior of the cobalt electrode system was also investigated by the same technique. An attempt was made to interpret the phenomenon of initiation and abolition of an active potential on the basis of the thermodynamics of irreversible processes. PMID:13654740

  20. Optimal Area Profiles for Ideal Single Nozzle Air-Breathing Pulse Detonation Engines

    NASA Technical Reports Server (NTRS)

    Paxson, Daniel E.

    2003-01-01

    The effects of cross-sectional area variation on idealized Pulse Detonation Engine performance are examined numerically. A quasi-one-dimensional, reacting, numerical code is used as the kernel of an algorithm that iteratively determines the correct sequencing of inlet air, inlet fuel, detonation initiation, and cycle time to achieve a limit cycle with specified fuel fraction, and volumetric purge fraction. The algorithm is exercised on a tube with a cross sectional area profile containing two degrees of freedom: overall exit-to-inlet area ratio, and the distance along the tube at which continuous transition from inlet to exit area begins. These two parameters are varied over three flight conditions (defined by inlet total temperature, inlet total pressure and ambient static pressure) and the performance is compared to a straight tube. It is shown that compared to straight tubes, increases of 20 to 35 percent in specific impulse and specific thrust are obtained with tubes of relatively modest area change. The iterative algorithm is described, and its limitations are noted and discussed. Optimized results are presented showing performance measurements, wave diagrams, and area profiles. Suggestions for future investigation are also discussed.

  1. Geometrical effects on western intensification of wind-driven ocean currents: The rotated-channel Stommel model, coastal orientation, and curvature

    NASA Astrophysics Data System (ADS)

    Boyd, John P.; Sanjaya, Edwin

    2014-03-01

    We revisit early models of steady western boundary currents [Gulf Stream, Kuroshio, etc.] to explore the role of irregular coastlines on jets, both to advance the research frontier and to illuminate for education. In the framework of a steady-state, quasigeostrophic model with viscosity, bottom friction and nonlinearity, we prove that rotating a straight coastline, initially parallel to the meridians, significantly thickens the western boundary layer. We analyze an infinitely long, straight channel with arbitrary orientation and bottom friction using an exact solution and singular perturbation theory, and show that the model, though simpler than Stommel's, nevertheless captures both the western boundary jet (“Gulf Stream”) and the “orientation effect”. In the rest of the article, we restrict attention to the Stommel flow (that is, linear and inviscid except for bottom friction) and apply matched asymptotic expansions, radial basis function, Fourier-Chebyshev and Chebyshev-Chebyshev pseudospectral methods to explore the effects of coastal geometry in a variety of non-rectangular domains bounded by a circle, parabolas and squircles. Although our oceans are unabashedly idealized, the narrow spikes, broad jets and stationary points vividly illustrate the power and complexity of coastal control of western boundary layers.

  2. Laminar and turbulent surgical plume characteristics generated from curved- and straight-blade laparoscopic ultrasonic dissectors.

    PubMed

    Kim, Fernando J; Sehrt, David; Pompeo, Alexandre; Molina, Wilson R

    2014-05-01

    To characterize laparoscopic ultrasonic dissector surgical plume emission (laminar or turbulent) and investigate plume settlement time between curved and straight blades. A straight and a curved blade laparoscopic ultrasonic dissector were activated on tissue and in a liquid environment to evaluate plume emission. Plume emission was characterized as either laminar or turbulent and the plume settlement times were compared. Devices were then placed in liquid to observed consistency in the fluid disruption. Two types of plume emission were identified generating different directions of plume: laminar flow causes minimal visual obstruction by directing the aerosol downwards, while turbulent flow directs plume erratically across the cavity. Laminar plume dissipates immediately while turbulent plume reaches a second maximum obstruction approximately 0.3 s after activation and clears after 2 s. Turbulent plume was observed with the straight blade in 10 % of activations, and from the curved blade in 47 % of activations. The straight blade emitted less obstructive plume. Turbulent flow is disruptive to laparoscopic visibility with greater field obstruction and requires longer settling than laminar plume. Ultrasonic dissectors with straight blades have more consistent oscillations and generate more laminar flow compared with curved blades. Surgeons may avoid laparoscope smearing from maximum plume generation depending on blade geometry.

  3. Straight eye for the gay guy: composing queerness.

    PubMed

    Alexander, Jonathan

    2010-01-01

    Drawing on the work of Didier Eribon and his theorization of the construction of gay male subjectivity, this article examines different "texts," broadly defined, that grapple specifically with straight men attempting to represent male homosexuality: Norman Mailer's essay, "The Homosexual Villain"; the Bravo reality television series Boy Meets Boy, and Michael Griffith's short story, "Hooper Gets a Perm." These texts represent attempts by straight authors to grapple with queer experience in ways that move the imagination of queers beyond simple stereotypes or uncritical explorations of the sexual "other." In the process of examining these texts, the following questions are addressed: What happens when a straight man attempts to represent a gay man? Does he "get it right," and is such a question even useful? More specifically, what is the value in having straights imagine queerness? Is such an imagining possible? Is such desirable? And, if so, what are the contours of such an imagining-as well as its possibilities and limitations, pedagogically, personally, and politically? Ultimately, I contend that the straight imagining of queerness offers rich potential for mutual understanding; furthermore, attempting to understand what goes into the making of those representations tells us much about how queerness circulates in our culture as a subject, a figure of discussion, contention, and representation.

  4. Instability of an infiltration-driven dissolution-precipitation front with a nonmonotonic porosity profile

    NASA Astrophysics Data System (ADS)

    Kondratiuk, Paweł; Dutka, Filip; Szymczak, Piotr

    2016-04-01

    Infiltration of a rock by an external fluid very often drives it out of chemical equilibrium. As a result, alteration of the rock mineral composition occurs. It does not however proceed uniformly in the entire rock volume. Instead, one or more reaction fronts are formed, which are zones of increased chemical activity, separating the altered (product) rock from the yet unaltered (primary) one. The reaction fronts propagate with velocities which are usually much smaller than those of the infiltrating fluid. One of the simplest examples of such alteration is the dissolution of some of the minerals building the primary rock. For instance, calcium carbonate minerals in the rock matrix can be dissolved by infiltrating acidic fluids. In such a case the product rock has higher porosity and permeability than the primary one. Due to positive feedbacks between the reactant transport, fluid flow, and porosity generation, the reaction fronts in porosity-generating replacement systems are inherently unstable. An arbitrarily small protrusion of the front gets magnified and develops into a highly porous finger-like or funnel-like structure. This feature of dissolution fronts, dubbed the "reactive-infiltration instability" [1], is responsible for the formation of a number of geological patterns, such as solution pipes or various karst forms. It is also of practical importance, since spontaneous front breakup and development of localized highly porous flow paths (a.k.a. "wormholes") is favourable by petroleum engineers, who apply acidization to oil-bearing reservoirs in order to increase their permeability. However, more complex chemical reactions might occur during infiltration of a rock by a fluid. In principle, the products of dissolution might react with other species present either in the fluid or in the rock and reprecipitate [2]. The dissolution and precipitation fronts develop and and begin to propagate with equal velocities, forming a single dissolution-precipitation front. The porosity profile is not monotonic as in the case of pure dissolution, but it typically has a minimum in the vicinity of the front. Additionally, the porosity difference between the initial rock far-downstream and the well-developed secondary rock far-upstream can be either negative or positive, which either destabilizes of stabilized the front. We propose a theoretical model of a simple infiltration-driven dissolution-precipitation system and find the morphology of the resulting planar reaction front. By performing linear stability analysis of the stationary planar solutions we show that the front can be unstable for a wide range of control parameters, even if the porosity of the secondary rock is lower than the porosity of the primary rock. Next, by numerical simulations of the full nonlinear model we present the long-term evolution of the system. [1] D. Chadam et al., IMA J. Appl. Math. 36, 207-221, 1986. [2] A. Putnis, Rev. Mineral. Geochemistry, 70(1), 87-124, 2009.

  5. Carboxamide Spleen Tyrosine Kinase (Syk) Inhibitors: Leveraging Ground State Interactions To Accelerate Optimization.

    PubMed

    Ellis, J Michael; Altman, Michael D; Cash, Brandon; Haidle, Andrew M; Kubiak, Rachel L; Maddess, Matthew L; Yan, Youwei; Northrup, Alan B

    2016-12-08

    Optimization of a series of highly potent and kinome selective carbon-linked carboxamide spleen tyrosine kinase (Syk) inhibitors with favorable drug-like properties is described. A pervasive Ames liability in an analogous nitrogen-linked carboxamide series was obviated by replacement with a carbon-linked moiety. Initial efforts lacked on-target potency, likely due to strain induced between the hinge binding amide and solvent front heterocycle. Consideration of ground state and bound state energetics allowed rapid realization of improved solvent front substituents affording subnanomolar Syk potency and high kinome selectivity. These molecules were also devoid of mutagenicity risk as assessed via the Ames test using the TA97a Salmonella strain.

  6. Carboxamide Spleen Tyrosine Kinase (Syk) Inhibitors: Leveraging Ground State Interactions To Accelerate Optimization

    PubMed Central

    2016-01-01

    Optimization of a series of highly potent and kinome selective carbon-linked carboxamide spleen tyrosine kinase (Syk) inhibitors with favorable drug-like properties is described. A pervasive Ames liability in an analogous nitrogen-linked carboxamide series was obviated by replacement with a carbon-linked moiety. Initial efforts lacked on-target potency, likely due to strain induced between the hinge binding amide and solvent front heterocycle. Consideration of ground state and bound state energetics allowed rapid realization of improved solvent front substituents affording subnanomolar Syk potency and high kinome selectivity. These molecules were also devoid of mutagenicity risk as assessed via the Ames test using the TA97a Salmonella strain. PMID:27994755

  7. Quality and productivity drive innovation and improvement at United Technologies Aerospace Operations, Inc.

    NASA Technical Reports Server (NTRS)

    Jamar, L. G.

    1986-01-01

    Quality and innovation are the hallmarks of the national space program. In programs that preceded the Shuttle Program the emphasis was on meeting the risks and technical challenges of space with safety, quality, reliability, and success. At United Technologies Aerospace Operations, Inc. (UTAO), the battle has developed along four primary fronts. These fronts include programs to motivate and reward people, development and construction of optimized processes and facilities, implementation of specifically tailored management systems, and the application of appropriate measurement and control systems. Each of these initiatives is described. However, to put this quality and productivity program in perspective, UTAO and its role in the Shuttle Program are described first.

  8. Movement of the sacroiliac joint during the Active Straight Leg Raise test in patients with long-lasting severe sacroiliac joint pain.

    PubMed

    Kibsgård, Thomas J; Röhrl, Stephan M; Røise, Olav; Sturesson, Bengt; Stuge, Britt

    2017-08-01

    The Active Straight Leg Raise is a functional test used in the assessment of pelvic girdle pain, and has shown to have good validity, reliability and responsiveness. The Active Straight Leg Raise is considered to examine the patients' ability to transfer load through the pelvis. It has been hypothesized that patients with pelvic girdle pain lack the ability to stabilize the pelvic girdle, probably due to instability or increased movement of the sacroiliac joint. This study examines the movement of the sacroiliac joints during the Active Straight Leg Raise in patients with pelvic girdle pain. Tantalum markers were inserted in the dorsal sacrum and ilium of 12 patients with long-lasting pelvic girdle pain scheduled for sacroiliac joint fusion surgery. Two to three weeks later movement of the sacroiliac joints during the Active Straight Leg Raise was measured with radiostereometric analysis. Small movements were detected. There was larger movement of the sacroiliac joint of the rested leg's sacroiliac joint compared to the lifted leg's side. A mean backward rotation of 0.8° and inward tilt of 0.3° were seen in the rested leg's sacroiliac joint. The movements of the sacroiliac joints during the Active Straight Leg Raise are small. There was a small backward rotation of the innominate bone relative to sacrum on the rested leg's side. Our findings contradict an earlier understanding that a forward rotation of the lifted leg's innominate occur while performing the Active Straight Leg Raise. Copyright © 2017. Published by Elsevier Ltd.

  9. The adaptive variant EDARV370A is associated with straight hair in East Asians.

    PubMed

    Tan, Jingze; Yang, Yajun; Tang, Kun; Sabeti, Pardis C; Jin, Li; Wang, Sijia

    2013-10-01

    Hair straightness/curliness is a highly heritable trait amongst human populations. Previous studies have reported European specific genetic variants influencing hair straightness, but those in East Asians remain unknown. One promising candidate is a derived coding variant of the ectodysplasin A receptor (EDAR), EDARV370A (370A), associated with several phenotypic changes of epidermal appendages. One of the strongest signals of natural selection in human genomes, 370A, has risen to high prevalence in East Asian and Native American populations, whilst being almost absent in Europeans and Africans. This striking frequency distribution and the pleiotropic nature of 370A led us to pursue if hair straightness, another epidermal appendage-related phenotype, is affected by this variant. By studying 1,718 individuals from four distinctive East Asian populations (Han, Tibetan, Mongolian, and Li), we found a significant association between 370A and the straight hair type in the Han (p = 2.90 × 10(-6)), Tibetan (p = 3.07 × 10(-2)), and Mongolian (p = 1.03 × 10(-5)) populations. Combining all the samples, the association is even stronger (p = 5.18 × 10(-10)). The effect of 370A on hair straightness is additive, with an odds ratio of 2.05. The results indicate very different biological mechanisms of straight hair in Europe and Asia, and also present a more comprehensive picture of the phenotypic consequences of 370A, providing important clues into the potential adaptive forces shaping the evolution of this extraordinary genetic variant.

  10. Radiographic comparison of apical root resorption after orthodontic treatment between bidimensional and Roth straight-wire techniques

    PubMed Central

    Zawawi, Khalid H; Malki, Ghadah A

    2014-01-01

    Objective: The aim of this study was to compare the amount of root resorption after orthodontic treatment between the bidimensional and the Roth straight-wire techniques. Another objective was to compare the amount of root resorption in the whole sample studied and record the prevalence of root resorption. Materials and Methods: The sample consisted of 40 patients (age ranged between 11 and 18 years) with Angle Class II division 1 malocclusions, treated nonextraction. Twenty patients were treated with bidimensional technique and 20 with a 0.018-inch Roth straight-wire technique. Root lengths of the maxillary incisors were measured on pre- and post-treatment periapical radiographs. Results: The results demonstrated that the bidimensional and Roth straight-wire groups showed significant root resorption after treatment, 1.11 (0.17) and 0.86 (0.05), respectively, P < 0.001. When comparing the amount of root shortening between the bidimensional and Roth straight-wire groups, there was no significant difference between the mean change from pre- to post-treatment between bidimensional group (mean = 1.00 ± 1.34) and Roth straight-wire group (mean = 0.88 ± 0.86), P = 0.63. Considering the whole sample, there was no root resoprtion in 32.5% of the analysed teeth. There was only mild resorption in 56.2%, moderate in 8.8% and severe in only 2.5% of the teeth. Conclusions: Treatment with the bidimensional technique did not produce an increase in the amount of root resorption. The prevalence and amount of root resorption was similar between bidimensional and Roth straight-wire techniques. PMID:25426453

  11. Radiographic comparison of apical root resorption after orthodontic treatment between bidimensional and Roth straight-wire techniques.

    PubMed

    Zawawi, Khalid H; Malki, Ghadah A

    2014-10-01

    The aim of this study was to compare the amount of root resorption after orthodontic treatment between the bidimensional and the Roth straight-wire techniques. Another objective was to compare the amount of root resorption in the whole sample studied and record the prevalence of root resorption. The sample consisted of 40 patients (age ranged between 11 and 18 years) with Angle Class II division 1 malocclusions, treated nonextraction. Twenty patients were treated with bidimensional technique and 20 with a 0.018-inch Roth straight-wire technique. Root lengths of the maxillary incisors were measured on pre- and post-treatment periapical radiographs. The results demonstrated that the bidimensional and Roth straight-wire groups showed significant root resorption after treatment, 1.11 (0.17) and 0.86 (0.05), respectively, P < 0.001. When comparing the amount of root shortening between the bidimensional and Roth straight-wire groups, there was no significant difference between the mean change from pre- to post-treatment between bidimensional group (mean = 1.00 ± 1.34) and Roth straight-wire group (mean = 0.88 ± 0.86), P = 0.63. Considering the whole sample, there was no root resoprtion in 32.5% of the analysed teeth. There was only mild resorption in 56.2%, moderate in 8.8% and severe in only 2.5% of the teeth. Treatment with the bidimensional technique did not produce an increase in the amount of root resorption. The prevalence and amount of root resorption was similar between bidimensional and Roth straight-wire techniques.

  12. Comparative spring-staging ecology of sympatric arctic-nesting geese in south-central Nebraska

    USGS Publications Warehouse

    Pearse, Aaron T.; Krapu, Gary L.; Cox, Robert R.

    2013-01-01

    The Rainwater Basin in Nebraska has been a historic staging area for midcontinent greater white-fronted geese (Anser albifrons frontalis) since the 1950s and, in the mid-1990s, millions of midcontinent lesser snow geese (Chen caerulescens caerulescens) expanded their spring migration route to include this region. In response to speculation that snow geese may be in direct competition with white-fronted geese, we compared staging ecology by quantifying diet, habitat use, movement patterns, and time budgets during springs 1998–1999. Collected white-fronted geese (n  =  190) and snow geese (n  =  203) consumed primarily corn (Zea mays; 97–98% aggregate dry mass) while staging in Nebraska; thus, diet overlap was nearly complete. Both species used cornfields most frequently during the morning (54–55%) and wetlands more during the afternoon (51–65%). When found grouped together, snow goose abundance was greater than white-fronted goose abundance by an average of 57 times (se  =  11, n  =  131 groups) in crop fields and 28 times (se  =  9, n  =  84 groups) in wetlands. Snow geese and white-fronted geese flew similar distances between roosting and feeding sites, leaving and returning to wetland roost sties at similar times in mornings and afternoons. Overlap in habitat-specific time budgets was high; resting was the most common behavior on wetlands, and foraging was a common behavior in fields. We observed 111 interspecific agonistic interactions while observing white-fronted and snow geese. White-fronted geese initiated and dominated more interactions with other waterfowl species than did snow geese (32 vs. 14%). Certain aspects of spring-staging niches (i.e., diet, habitat use, movement patterns, and habitat-specific behavior) of white-fronted and snow geese overlapped greatly at this mid-latitude staging site, creating opportunity for potential food- and habitat-based competition between species. Snow geese did not consistently dominate interactions with white-fronted geese; yet large differences in their numbers coupled with high degrees of spatial, temporal, and ecological overlap support potential for exploitative competition during years when waste corn may be in short supply and dry years when few wetlands are available for staging waterfowl.

  13. Phase behavior and reactive transport of partial melt in heterogeneous mantle model

    NASA Astrophysics Data System (ADS)

    Jordan, J.; Hesse, M. A.

    2013-12-01

    The reactive transport of partial melt is the key process that leads to the chemical and physical differentiation of terrestrial planets and smaller celestial bodies. The essential role of the lithological heterogeneities during partial melting of the mantle is increasingly recognized. How far can enriched melts propagate while interacting with the ambient mantle? Can the melt flow emanating from a fertile heterogeneity be localized through a reactive infiltration feedback in a model without exogenous factors or contrived initial conditions? A full understanding of the role of heterogeneities requires reactive melt transport models that account for the phase behavior of major elements. Previous work on reactive transport in the mantle focuses on trace element partitioning; we present the first nonlinear chromatographic analysis of reactive melt transport in systems with binary solid solution. Our analysis shows that reactive melt transport in systems with binary solid solution leads to the formation of two separate reaction fronts: a slow melting/freezing front along which enthalpy change is dominant and a fast dissolution/precipitation front along which compositional changes are dominated by an ion-exchange process over enthalpy change. An intermediate state forms between these two fronts with a bulk-rock composition and enthalpy that are not necessarily bounded by the bulk-rock composition and enthalpy of either the enriched heterogeneity or the depleted ambient mantle. The formation of this intermediate state makes it difficult to anticipate the porosity changes and hence the stability of reaction fronts. Therefore, we develop a graphical representation for the solution that allows identification of the intermediate state by inspection, for all possible bulk-rock compositions and enthalpies of the heterogeneity and the ambient mantle. We apply the analysis to the partial melting of an enriched heterogeneity. This leads to the formation of moving precipitation front that followes a stationary melting front which creates low porosity intermediate states. Therefore, localization of the melt flow is not observed because the precipitation front is stable and the melting front is always stationary under these conditions. This analysis illustrates the counterintuitive behavior that can arise when the phase behavior is taken into account and is a first step to understanding reactive melt transport and the reactive constraints on channelization in partial melts. ¬¬

  14. SDO AIA Observations of Large-Scale Coronal Disturbances in the Form of Propagating Fronts

    NASA Astrophysics Data System (ADS)

    Nitta, Nariaki V.; Schrijver, Carolus J.; Title, Alan M.; Liu, Wei

    2013-03-01

    One of the most spectacular phenomena detected by SOHO EIT was the large-scale propagating fronts associated with solar eruptions. Initially these 'EIT' waves were thought to be coronal counterparts of chromospheric Moreton waves. However, different spatial and kinematic properties of the fronts seen in H-alpha and EUV images, and far more frequent occurrences of the latter have led to various interpretations that are still actively debated by a number of researchers. A major factor for the lack of closure was the various limitation in EIT data, including the cadence that was typically every 12 minutes. Now we have significantly improved data from SDO AIA, which have revealed some very interesting phenomena associated with EIT waves. However, the studies so far conducted using AIA data have primarily dealt with single or a small number of events, where selection bias and particular observational conditions may prevent us from discovering the general and true nature of EIT waves. Although automated detection of EIT waves was promised for AIA images some time ago, it is still not actually implemented in the data pipeline. Therefore we have manually found nearly 200 examples of large-scale propagating fronts, going through movies of difference images from the AIA 193 A channel up to January 2013. We present our study of the kinematic properties of the fronts in a subset of about 150 well-observed events in relation with other phenomena that can accompany EIT waves. Our emphasis is on the relation of the fronts with the associated coronal eruptions often but not always taking the form of full-blown CMEs, utilizing STEREO data for a subset of more than 80 events that have occurred near the limb as viewed from one of the STEREO spacecraft. In these events, the availability of data from the STEREO inner coronagraph (COR1) as well as from the EUVI allows us to trace eruptions off the solar disk during the times of our propagating fronts. The representative relations between the fronts and CMEs will be discussed in terms of the evolution of EIT waves observed in different channels of AIA, which provide information of the thermal properties of the fronts. Our study will further clarify the variety of solar eruptions and their associated manifestations in the corona.

  15. Experimental shock deformation in zircon: a transmission electron microscopic study

    NASA Astrophysics Data System (ADS)

    Leroux, H.; Reimold, W. U.; Koeberl, C.; Hornemann, U.; Doukhan, J.-C.

    1999-06-01

    In recent years, apparently shock-induced and, thus, impact-characteristic microdeformations, in the form of planar microdeformation features and so-called strawberry (granular) texture, have been observed in zircons in rocks from confirmed impact structures and from the K/ T boundary. The nature of the planar microdeformations in this mineral is, however, still unknown, and critical information is needed regarding the shock pressure range in which these deformation effects are produced. We experimentally shock deformed two series of thin zircon (ZrSiO 4) target plates, cut perpendicular to the c-axis, at shock pressures of 20, 40, and 60 GPa. The recovered samples were characterized by optical and scanning electron microscopy. In addition, one sample series was studied by transmission electron microscopy (TEM). Microdeformation effects observed at 20 GPa include pervasive micro-cleavage and dislocation patterns. Plastic deformation is indicated by a high density of straight dislocations in glide configuration. The dominant glide systems are <100>{010}. Micro-cleavages, induced by shear stresses during the compression stage, occur mostly in the {100} planes. The large density of dislocations at crack tips shows that plastic deformation was initiated by the micro-cracking processs. At 40 GPa, the sample was partly transformed from the zircon (z) to a scheelite (CaWO 4)-type (s) structure. Planar deformation features (PDFs) containing an amorphous phase of zircon composition are present in the not yet transformed zircon relics. The phase with scheelite structure, initiated in the {100} planes of zircon, consists of thin (0.1 to several μm) bands that crosscut the zircon matrix. The phase transformation is displacive (martensitic) and can be related by {100} z // {112} s and [001] z // <110> s. The scheelite structure phase is densely twinned, with twins in the (112) plane. The 60-GPa sample consists completely of the scheelite structure phase. Crosscutting and displacing relationships between twins and PDFs demonstrate that PDFs are formed in the zircon structure, i.e., before the phase transformation to the scheelite structure occurred, most likely at the shock front. Crystallographic orientations of optically visible planar features in zircon, in comparison with orientations of planar defects at the TEM scale, suggest that the optically visible features are more likely planar microfractures than PDFs.

  16. Multiphase Oscillator Using Traveling Pulses Developed in a System of Transmission Lines with Regularly Spaced Resonant-tunneling Diodes

    NASA Astrophysics Data System (ADS)

    Narahara, Koichi

    2017-06-01

    A scheme is proposed for generating multiphase oscillatory signals in millimeter-wave frequencies based on the dynamics of a traveling pulse developed in a closed transmission line periodically loaded with resonant-tunneling diodes (RTDs) that is coupled with several straight RTD lines. When supplied with an appropriate voltage at the end of an RTD line, a pulse edge is shown to exhibit a spatially extended limit-cycle oscillation on the line. We consider the case where several RTD lines are connected halfway to a closed one at even intervals. In this case, the oscillatory edge developed in each straight RTD line is mutually synchronized such that a pulse-shaped rotary traveling wave develops on the closed RTD line. The oscillating edge on each straight line is also synchronized with the traveling pulse on the closed line, such that the leading edge of the traveling pulse on the closed line and the forward edge on the straight line pass the cross point simultaneously. As a result, when N L straight lines are connected to the closed line, the phase difference between two adjacent oscillatory edges becomes 2 π/ N L . On the other hand, the trailing edge of the traveling pulse at the cross point breaks the voltage wave on the straight line into two pieces, one of which travels forward to form a solitary wave and the other of which travels backward to reach the input end, where it is reflected and starts to travel forward and this forward moving edge is supposed to be synchronized with the leading edge of the traveling pulse. It means that a back-and-forth edge and a forward-moving solitary wave develop periodically on each straight line. Because the time required for the traveling pulse to go around the closed line must be coincident with the period of the edge oscillation on each straight line, a unique traveling pulse cannot synchronize with each oscillating edge when the cell size of the closed line becomes large, resulting in the development of multiple traveling pulses on the closed line. In this paper, the design criteria are discussed concerning the connecting point between the straight and closed lines, the number of straight lines, and the size of the closed line. In addition, we describe several measurement results that validate the essential properties of the traveling pulse and then show several results of full-wave analysis of a monolithically integrated RTD line.

  17. Knowledge Collisions: Perspectives from CED Practitioners Working with Women. NALL Working Paper.

    ERIC Educational Resources Information Center

    Stratton, Mary; Jackson, Ted

    A study explored the ways that front-line community development workers across Canada gained information needed to work with women participants in community economic development initiatives. Data were gathered through focus groups, a preliminary study with 15 key informants employed in community development organizations, and structured telephone…

  18. Bank accretion and the development of vegetated depositional surfaces along modified alluvial channels

    USGS Publications Warehouse

    Hupp, C.R.; Simon, A.

    1991-01-01

    This paper describes the recovery of stable bank form and development of vegetated depositional surfaces along the banks of channelized West Tennessee streams. Most perennial streams in West Tennessee were straightened and dredged since the turn of the century. Patterns of fluvial ecological responses to channelization have previously been described by a six-stage model. Dendrogeomorphic (tree-ring) techniques allowed the determination of location, timing, amount, and rate of bank-sediment deposition. Channel cross sections and ecological analyses made at 101 locations along 12 streams, encompassing bends and straight reaches, show that channel and bank processes initially react vertically to channelization through downcutting. A depositional surface forms on banks once bed-degradation and heightened bank mass wasting processes have eased or slowed. The formation of this depositional surface marks the beginning of bank recovery from channelization. Dominating lateral processes, characteristic of stable or natural channels, return during the formation and expansion of the depositional surface, suggesting a relation with thalweg deflection, point-bar development, and meanderloop extension. Characteristic woody riparian vegetation begins to grow as this depositional surface develops and becomes part of the process and form of restabilizing banks. The depositional surface initially forms low on the bank and tends to maintain a slope of about 24??. Mean accretion rates ranges from 5.9 cm/yr on inside bends to 0 cm/yr on most outside bends; straight reaches have a mean-accretion rate of 4.2 cm/yr. The relatively stable, convex upward, depositional surface expands and ultimately attaches to the flood plain. The time required for the recovery process to reach equilibrium averaged about 50 years. Indicative pioneer speccies of woody riparian vegetation include black willow, river birch, silver maple, and boxelder. Stem densities generally decrease with time after and initial flush of about 160 stems per 100 m2. Together bank accretion and vegetative regrowth appear to be the most important environmental processes involved in channel bank recovery from channelization or rejuvenation. ?? 1991.

  19. Experimental investigation of detonation waves instabilities in liquid high explosives

    NASA Astrophysics Data System (ADS)

    Sosikov, V. A.; Torunov, S. I.; Utkin, A. V.; Mochalova, V. M.; Rapota, D. Yu

    2018-01-01

    Experimental investigation of unstable detonation front structure in mixtures of liquid high explosives (nitromethane and FEFO—bis-(2-fluor-2.2-dinitroethyl)-formal) with inert diluents (acetone, methanol, DETA—diethylene triamine) has been carried out. Inhomogeneities have been registered by electro-optical camera NANOGATE 4BP allowing to make 4 frames with the exposure time 10 ns. According to experimental results the detonation front in nitromethane-acetone mixture is unstable. It is evident that pulsations on detonation front do not form spatial periodic structure and their dimensions differ several times. But mean longitudinal size of pulsation is about 500 μm at 20 wt% of acetone concentration. This means that the typical size of cell equals to reaction zone width. The same structure of cellular front have been registered in 70/30 FEFO-methanol mixture. Second kind of instability, failure waves, was observed in neat nitromethane at the free surface. In this case the stability loss result in turbulent flow which is clearly detected in the shots obtained. Adding small amount of DETA (0.5 wt%) results in disappearance of the failure waves and flow stabilization. The effect is caused by the fact that DETA sharply accelerates initial rate of chemical reaction because it is sensitizer for nitromethane.

  20. Light-front representation of chiral dynamics in peripheral transverse densities

    DOE PAGES

    Granados, Carlos G.; Weiss, Christian

    2015-07-31

    The nucleon's electromagnetic form factors are expressed in terms of the transverse densities of charge and magnetization at fixed light-front time. At peripheral transverse distances b = O(M_pi^{-1}) the densities are governed by chiral dynamics and can be calculated model-independently using chiral effective field theory (EFT). We represent the leading-order chiral EFT results for the peripheral transverse densities as overlap integrals of chiral light-front wave functions, describing the transition of the initial nucleon to soft pion-nucleon intermediate states and back. The new representation (a) explains the parametric order of the peripheral transverse densities; (b) establishes an inequality between the spin-independentmore » and -dependent densities; (c) exposes the role of pion orbital angular momentum in chiral dynamics; (d) reveals a large left-right asymmetry of the current in a transversely polarized nucleon and suggests a simple interpretation. The light-front representation enables a first-quantized, quantum-mechanical view of chiral dynamics that is fully relativistic and exactly equivalent to the second-quantized, field-theoretical formulation. It relates the charge and magnetization densities measured in low-energy elastic scattering to the generalized parton distributions probed in peripheral high-energy scattering processes. The method can be applied to nucleon form factors of other operators, e.g. the energy-momentum tensor.« less

Top