Sample records for initio calculations predict

  1. Towards Accurate Ab Initio Predictions of the Spectrum of Methane

    NASA Technical Reports Server (NTRS)

    Schwenke, David W.; Kwak, Dochan (Technical Monitor)

    2001-01-01

    We have carried out extensive ab initio calculations of the electronic structure of methane, and these results are used to compute vibrational energy levels. We include basis set extrapolations, core-valence correlation, relativistic effects, and Born- Oppenheimer breakdown terms in our calculations. Our ab initio predictions of the lowest lying levels are superb.

  2. Towards accurate ab initio predictions of the vibrational spectrum of methane

    NASA Technical Reports Server (NTRS)

    Schwenke, David W.

    2002-01-01

    We have carried out extensive ab initio calculations of the electronic structure of methane, and these results are used to compute vibrational energy levels. We include basis set extrapolations, core-valence correlation, relativistic effects, and Born-Oppenheimer breakdown terms in our calculations. Our ab initio predictions of the lowest lying levels are superb.

  3. Surface Segregation Energies of BCC Binaries from Ab Initio and Quantum Approximate Calculations

    NASA Technical Reports Server (NTRS)

    Good, Brian S.

    2003-01-01

    We compare dilute-limit segregation energies for selected BCC transition metal binaries computed using ab initio and quantum approximate energy method. Ab initio calculations are carried out using the CASTEP plane-wave pseudopotential computer code, while quantum approximate results are computed using the Bozzolo-Ferrante-Smith (BFS) method with the most recent parameterization. Quantum approximate segregation energies are computed with and without atomistic relaxation. The ab initio calculations are performed without relaxation for the most part, but predicted relaxations from quantum approximate calculations are used in selected cases to compute approximate relaxed ab initio segregation energies. Results are discussed within the context of segregation models driven by strain and bond-breaking effects. We compare our results with other quantum approximate and ab initio theoretical work, and available experimental results.

  4. Multiscale Quantum Mechanics/Molecular Mechanics Simulations with Neural Networks.

    PubMed

    Shen, Lin; Wu, Jingheng; Yang, Weitao

    2016-10-11

    Molecular dynamics simulation with multiscale quantum mechanics/molecular mechanics (QM/MM) methods is a very powerful tool for understanding the mechanism of chemical and biological processes in solution or enzymes. However, its computational cost can be too high for many biochemical systems because of the large number of ab initio QM calculations. Semiempirical QM/MM simulations have much higher efficiency. Its accuracy can be improved with a correction to reach the ab initio QM/MM level. The computational cost on the ab initio calculation for the correction determines the efficiency. In this paper we developed a neural network method for QM/MM calculation as an extension of the neural-network representation reported by Behler and Parrinello. With this approach, the potential energy of any configuration along the reaction path for a given QM/MM system can be predicted at the ab initio QM/MM level based on the semiempirical QM/MM simulations. We further applied this method to three reactions in water to calculate the free energy changes. The free-energy profile obtained from the semiempirical QM/MM simulation is corrected to the ab initio QM/MM level with the potential energies predicted with the constructed neural network. The results are in excellent accordance with the reference data that are obtained from the ab initio QM/MM molecular dynamics simulation or corrected with direct ab initio QM/MM potential energies. Compared with the correction using direct ab initio QM/MM potential energies, our method shows a speed-up of 1 or 2 orders of magnitude. It demonstrates that the neural network method combined with the semiempirical QM/MM calculation can be an efficient and reliable strategy for chemical reaction simulations.

  5. The accuracy of ab initio calculations without ab initio calculations for charged systems: Kriging predictions of atomistic properties for ions in aqueous solutions

    NASA Astrophysics Data System (ADS)

    Di Pasquale, Nicodemo; Davie, Stuart J.; Popelier, Paul L. A.

    2018-06-01

    Using the machine learning method kriging, we predict the energies of atoms in ion-water clusters, consisting of either Cl- or Na+ surrounded by a number of water molecules (i.e., without Na+Cl- interaction). These atomic energies are calculated following the topological energy partitioning method called Interacting Quantum Atoms (IQAs). Kriging predicts atomic properties (in this case IQA energies) by a model that has been trained over a small set of geometries with known property values. The results presented here are part of the development of an advanced type of force field, called FFLUX, which offers quantum mechanical information to molecular dynamics simulations without the limiting computational cost of ab initio calculations. The results reported for the prediction of the IQA components of the energy in the test set exhibit an accuracy of a few kJ/mol, corresponding to an average error of less than 5%, even when a large cluster of water molecules surrounding an ion is considered. Ions represent an important chemical system and this work shows that they can be correctly taken into account in the framework of the FFLUX force field.

  6. Density functional calculations on structural materials for nuclear energy applications and functional materials for photovoltaic energy applications (abstract only).

    PubMed

    Domain, C; Olsson, P; Becquart, C S; Legris, A; Guillemoles, J F

    2008-02-13

    Ab initio density functional theory calculations are carried out in order to predict the evolution of structural materials under aggressive working conditions such as cases with exposure to corrosion and irradiation, as well as to predict and investigate the properties of functional materials for photovoltaic energy applications. Structural metallic materials used in nuclear facilities are subjected to irradiation which induces the creation of large amounts of point defects. These defects interact with each other as well as with the different elements constituting the alloys, which leads to modifications of the microstructure and the mechanical properties. VASP (Vienna Ab initio Simulation Package) has been used to determine the properties of point defect clusters and also those of extended defects such as dislocations. The resulting quantities, such as interaction energies and migration energies, are used in larger scale simulation methods in order to build predictive tools. For photovoltaic energy applications, ab initio calculations are used in order to search for new semiconductors and possible element substitutions for existing ones in order to improve their efficiency.

  7. Ab initio R-matrix calculations of e+-molecule scattering

    NASA Technical Reports Server (NTRS)

    Danby, Grahame; Tennyson, Jonathan

    1990-01-01

    The adaptation of the molecular R-matrix method, originally developed for electron-molecule collision studies, to positron scattering is discussed. Ab initio R-matrix calculations are presented for collisions of low energy positrons with a number of diatomic systems including H2, HF and N2. Differential elastic cross sections for positron-H2 show a minimum at about 45 deg for collision energies between 0.3 and 0.5 Ryd. The calculations predict a bound state of positronHF. Calculations on inelastic processes in N2 and O2 are also discussed.

  8. Conformational stability, r(0) structural parameters, vibrational assignments and ab initio calculations of ethyldichlorophosphine.

    PubMed

    Darkhalil, Ikhlas D; Paquet, Charles; Waqas, Mohammad; Gounev, Todor K; Durig, James R

    2015-02-05

    Variable temperature (-60 to -100 °C) studies of ethyldichlorophosphine, CH3CH2PCl2, of the infrared spectra (4000-400 cm(-1)) dissolved in liquid xenon have been carried out. From these data, the two conformers have been identified and the enthalpy difference has been determined between the more stable trans conformer and the less stable gauche form to be 88±9 cm(-1) (1.04±0.11 kJ/mol). The percentage of abundance of the gauche conformer is estimated to be 57% at ambient temperature. The conformational stabilities have been predicted from ab initio calculations by utilizing many different basis sets up to aug-cc-pVTZ for both MP2(full) and density functional theory calculations by the B3LYP method. Vibrational assignments have been provided for both conformers which have been predicted by MP2(full)/6-31G(d) ab initio calculations to predict harmonic force fields, wavenumbers of the fundamentals, infrared intensities, Raman activities and depolarization ratios for both conformers. Estimated r0 structural parameters have been obtained from adjusted MP2(full)/6-311+G(d,p) calculations. The results are discussed and compared to the corresponding properties of some related molecules. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. The Opacity of TiO from a Coupled Electronic State Calculation Parameterized by ab initio and Experimental Data

    NASA Technical Reports Server (NTRS)

    Schwenke, David W.; Huo, Winifred (Technical Monitor)

    1998-01-01

    We have carried out ab initio electronic structure calculations of the spin-orbit and rotation-orbit couplings among the 14 lowest electronic states of TiO and used them to predict ro-vibrational energy levels. We report on the qualitative results as well as our progress in optimizing our Hamiltonian parameters in order to improve agreement with experimental line positions,

  10. The Opacity of TiO from a Coupled Electronic State Calculation Parameterized by ab initio and Experimental Data

    NASA Technical Reports Server (NTRS)

    Schwenke, David W.; Huo, Winifred (Technical Monitor)

    1998-01-01

    We have carried out ab initio electronic structure calculations of the spin-orbit and rotation-orbit couplings among the 14 lowest electronic states of TiO and used them to predict ro-vibrational energy levels. We report on the qualitative results as well as our progress in optimizing our Hamiltonian parameters in order to improve agreement with experimental line positions.

  11. Ab Initio Predictions of Hexagonal Zr(B,C,N) Polymorphs for Coherent Interface Design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, Chongze; Huang, Jingsong; Sumpter, Bobby G.

    2017-10-27

    Density functional theory calculations are used to explore hexagonal (HX) NiAs-like polymorphs of Zr(B,C,N) and compare with corresponding Zr(B,C,N) Hagg-like face-centered cubic rocksalt (B1) phases. While all predicted compounds are mechanically stable according to the Born-Huang criteria, only HX Zr(C,N) are found dynamically stable from ab initio molecular dynamics simulations and lattice dynamics calculations. HX ZrN emerges as a candidate structure with ground state energy, elastic constants, and extrinsic mechanical parameters comparable with those of B1 ZrN. Ab initio band structure and semi-classical Boltzmann transport calculations predict a metallic character and a monotonic increase in electrical conductivity with the numbermore » of valence electrons. Electronic structure calculations indicate that the HX phases gain their stability and mechanical attributes by Zr d- non-metal p hybridization and by broadening of Zr d bands. Furthermore, it is shown that the HX ZrN phase provides a low-energy coherent interface model for connecting B1 ZrN domains, with significant energetic advantage over an atomistic interface model derived from high resolution transmission electron microscopy images. The ab initio characterizations provided herein should aid the experimental identification of non-Hagg-like hard phases. Furthermore, the results can also enrich the variety of crystalline phases potentially available for designing coherent interfaces in superhard nanostructured materials and in materials with multilayer characteristics.« less

  12. On the vibrational spectra and structural parameters of methyl, silyl, and germyl azide from theoretical predictions and experimental data.

    PubMed

    Durig, Douglas T; Durig, M S; Durig, James R

    2005-05-01

    The infrared and Raman spectra of methyl, silyl, and germyl azide (XN3 where X=CH3, SiH3 and GeH3) have been predicted from ab initio calculations with full electron correlation by second order perturbation theory (MP2) and hybrid density function theory (DFT) by the B3LYP method with a variety of basis sets. These predicted data are compared to previously reported experimental data and complete vibrational assignments are provided for all three molecules. It is shown that several of the assignments recently proposed [J. Mol. Struct. (Theochem.) 434 (1998) 1] for methyl azide are not correct. Structural parameters for CH3N3 and GeH3N3 have been obtained by combining the previously reported microwave rotational constants with the ab initio MP2/6-311+G(d,p) predicted values. These "adjusted r0" parameters have very small uncertainties of +/-0.003 A for the XH distances and a maximum of +/-0.005 A for the heavy atom distances and +/-0.5 degrees for the angles. The predicted distance for the terminal NN bond which is nearly a triple bond is much better predicted by the B3LYP calculations, whereas the fundamental frequencies are better predicted by the scaled ab initio calculations. The results are discussed and compared to those obtained for some similar molecules.

  13. Predicting vapor-liquid phase equilibria with augmented ab initio interatomic potentials

    NASA Astrophysics Data System (ADS)

    Vlasiuk, Maryna; Sadus, Richard J.

    2017-06-01

    The ability of ab initio interatomic potentials to accurately predict vapor-liquid phase equilibria is investigated. Monte Carlo simulations are reported for the vapor-liquid equilibria of argon and krypton using recently developed accurate ab initio interatomic potentials. Seventeen interatomic potentials are studied, formulated from different combinations of two-body plus three-body terms. The simulation results are compared to either experimental or reference data for conditions ranging from the triple point to the critical point. It is demonstrated that the use of ab initio potentials enables systematic improvements to the accuracy of predictions via the addition of theoretically based terms. The contribution of three-body interactions is accounted for using the Axilrod-Teller-Muto plus other multipole contributions and the effective Marcelli-Wang-Sadus potentials. The results indicate that the predictive ability of recent interatomic potentials, obtained from quantum chemical calculations, is comparable to that of accurate empirical models. It is demonstrated that the Marcelli-Wang-Sadus potential can be used in combination with accurate two-body ab initio models for the computationally inexpensive and accurate estimation of vapor-liquid phase equilibria.

  14. Predicting vapor-liquid phase equilibria with augmented ab initio interatomic potentials.

    PubMed

    Vlasiuk, Maryna; Sadus, Richard J

    2017-06-28

    The ability of ab initio interatomic potentials to accurately predict vapor-liquid phase equilibria is investigated. Monte Carlo simulations are reported for the vapor-liquid equilibria of argon and krypton using recently developed accurate ab initio interatomic potentials. Seventeen interatomic potentials are studied, formulated from different combinations of two-body plus three-body terms. The simulation results are compared to either experimental or reference data for conditions ranging from the triple point to the critical point. It is demonstrated that the use of ab initio potentials enables systematic improvements to the accuracy of predictions via the addition of theoretically based terms. The contribution of three-body interactions is accounted for using the Axilrod-Teller-Muto plus other multipole contributions and the effective Marcelli-Wang-Sadus potentials. The results indicate that the predictive ability of recent interatomic potentials, obtained from quantum chemical calculations, is comparable to that of accurate empirical models. It is demonstrated that the Marcelli-Wang-Sadus potential can be used in combination with accurate two-body ab initio models for the computationally inexpensive and accurate estimation of vapor-liquid phase equilibria.

  15. Predicted phototoxicities of carbon nano-material by quantum mechanical calculations

    EPA Science Inventory

    The purpose of this research is to develop a predictive model for the phototoxicity potential of carbon nanomaterials (fullerenols and single-walled carbon nanotubes). This model is based on the quantum mechanical (ab initio) calculations on these carbon-based materials and compa...

  16. Lanthanide complex coordination polyhedron geometry prediction accuracies of ab initio effective core potential calculations.

    PubMed

    Freire, Ricardo O; Rocha, Gerd B; Simas, Alfredo M

    2006-03-01

    lanthanide coordination compounds efficiently and accurately is central for the design of new ligands capable of forming stable and highly luminescent complexes. Accordingly, we present in this paper a report on the capability of various ab initio effective core potential calculations in reproducing the coordination polyhedron geometries of lanthanide complexes. Starting with all combinations of HF, B3LYP and MP2(Full) with STO-3G, 3-21G, 6-31G, 6-31G* and 6-31+G basis sets for [Eu(H2O)9]3+ and closing with more manageable calculations for the larger complexes, we computed the fully predicted ab initio geometries for a total of 80 calculations on 52 complexes of Sm(III), Eu(III), Gd(III), Tb(III), Dy(III), Ho(III), Er(III) and Tm(III), the largest containing 164 atoms. Our results indicate that RHF/STO-3G/ECP appears to be the most efficient model chemistry in terms of coordination polyhedron crystallographic geometry predictions from isolated lanthanide complex ion calculations. Moreover, both augmenting the basis set and/or including electron correlation generally enlarged the deviations and aggravated the quality of the predicted coordination polyhedron crystallographic geometry. Our results further indicate that Cosentino et al.'s suggestion of using RHF/3-21G/ECP geometries appears to be indeed a more robust, but not necessarily, more accurate recommendation to be adopted for the general lanthanide complex case. [Figure: see text].

  17. Ab Initio Crystal Field for Lanthanides.

    PubMed

    Ungur, Liviu; Chibotaru, Liviu F

    2017-03-13

    An ab initio methodology for the first-principle derivation of crystal-field (CF) parameters for lanthanides is described. The methodology is applied to the analysis of CF parameters in [Tb(Pc) 2 ] - (Pc=phthalocyanine) and Dy 4 K 2 ([Dy 4 K 2 O(OtBu) 12 ]) complexes, and compared with often used approximate and model descriptions. It is found that the application of geometry symmetrization, and the use of electrostatic point-charge and phenomenological CF models, lead to unacceptably large deviations from predictions based on ab initio calculations for experimental geometry. It is shown how the predictions of standard CASSCF (Complete Active Space Self-Consistent Field) calculations (with 4f orbitals in the active space) can be systematically improved by including effects of dynamical electronic correlation (CASPT2 step) and by admixing electronic configurations of the 5d shell. This is exemplified for the well-studied Er-trensal complex (H 3 trensal=2,2',2"-tris(salicylideneimido)trimethylamine). The electrostatic contributions to CF parameters in this complex, calculated with true charge distributions in the ligands, yield less than half of the total CF splitting, thus pointing to the dominant role of covalent effects. This analysis allows the conclusion that ab initio crystal field is an essential tool for the decent description of lanthanides. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. A global ab initio potential for HCN/HNC, exact vibrational energies, and comparison to experiment

    NASA Technical Reports Server (NTRS)

    Bentley, Joseph A.; Bowman, Joel M.; Gazdy, Bela; Lee, Timothy J.; Dateo, Christopher E.

    1992-01-01

    An ab initio (i.e., from first principles) calculation of vibrational energies of HCN and HNC is reported. The vibrational calculations were done with a new potential derived from a fit to 1124 ab initio electronic energies which were calculated using the highly accurate CCSD(T) coupled-cluster method in conjunction with a large atomic natural orbital basis set. The properties of this potential are presented, and the vibrational calculations are compared to experiment for 54 vibrational transitions, 39 of which are for zero total angular momentum, J = 0, and 15 of which are for J = 1. The level of agreement with experiment is unprecedented for a triatomic with two nonhydrogen atoms, and demonstrates the capability of the latest computational methods to give reliable predictions on a strongly bound triatomic molecule at very high levels of vibrational excitation.

  19. Ab-initio study of pressure evolution of structural, mechanical and magnetic properties of cementite (Fe3C) phase

    NASA Astrophysics Data System (ADS)

    Gorai, S.; Ghosh, P. S.; Bhattacharya, C.; Arya, A.

    2018-04-01

    The pressure evolution of phase stability, structural and mechanical properties of Fe3C in ferro-magnetic (FM) and high pressure non magnetic (NM) phase is investigated from first principle calculations. The 2nd order FM to NM phase transition of Fe3C is identified around 60 GPa. Pressure (or density) variation of sound velocities from our ab-initio calculated single crystal elastic constants are determined to predict these parameters at Earth's outer core pressure.

  20. Modeling and Ab initio Calculations of Thermal Transport in Si-Based Clathrates and Solar Perovskites

    NASA Astrophysics Data System (ADS)

    He, Yuping

    2015-03-01

    We present calculations of the thermal transport coefficients of Si-based clathrates and solar perovskites, as obtained from ab initio calculations and models, where all input parameters derived from first principles. We elucidated the physical mechanisms responsible for the measured low thermal conductivity in Si-based clatherates and predicted their electronic properties and mobilities, which were later confirmed experimentally. We also predicted that by appropriately tuning the carrier concentration, the thermoelectric figure of merit of Sn and Pb based perovskites may reach values ranging between 1 and 2, which could possibly be further increased by optimizing the lattice thermal conductivity through engineering perovskite superlattices. Work done in collaboration with Prof. G. Galli, and supported by DOE/BES Grant No. DE-FG0206ER46262.

  1. Elastic properties of fcc Fe-Mn-X (X = Cr, Co, Ni, Cu) alloys studied by the combinatorial thin film approach and ab initio calculations.

    PubMed

    Reeh, S; Kasprzak, M; Klusmann, C D; Stalf, F; Music, D; Ekholm, M; Abrikosov, I A; Schneider, J M

    2013-06-19

    The elastic properties of fcc Fe-Mn-X (X = Cr, Co, Ni, Cu) alloys with additions of up to 8 at.% X were studied by combinatorial thin film growth and characterization and by ab initio calculations using the disordered local moments (DLM) approach. The lattice parameter and Young's modulus values change only marginally with X. The calculations and experiments are in good agreement. We demonstrate that the elastic properties of transition metal alloyed Fe-Mn can be predicted by the DLM model.

  2. Materials Screening for the Discovery of New Half-Heuslers: Machine Learning versus ab Initio Methods.

    PubMed

    Legrain, Fleur; Carrete, Jesús; van Roekeghem, Ambroise; Madsen, Georg K H; Mingo, Natalio

    2018-01-18

    Machine learning (ML) is increasingly becoming a helpful tool in the search for novel functional compounds. Here we use classification via random forests to predict the stability of half-Heusler (HH) compounds, using only experimentally reported compounds as a training set. Cross-validation yields an excellent agreement between the fraction of compounds classified as stable and the actual fraction of truly stable compounds in the ICSD. The ML model is then employed to screen 71 178 different 1:1:1 compositions, yielding 481 likely stable candidates. The predicted stability of HH compounds from three previous high-throughput ab initio studies is critically analyzed from the perspective of the alternative ML approach. The incomplete consistency among the three separate ab initio studies and between them and the ML predictions suggests that additional factors beyond those considered by ab initio phase stability calculations might be determinant to the stability of the compounds. Such factors can include configurational entropies and quasiharmonic contributions.

  3. Determination of NMR chemical shifts for cholesterol crystals from first-principles

    NASA Astrophysics Data System (ADS)

    Kucukbenli, Emine; de Gironcoli, Stefano

    2011-03-01

    Solid State Nuclear Magnetic Resonance (NMR) is a powerful tool in crystallography when combined with theoretical predictions. So far, empirical calculations of spectra have been employed for an unambiguous identification. However, many complex systems are outside the scope of these methods. Our implementation of ultrasoft and projector augmented wave pseudopotentials within ab initio gauge including projector augmented plane wave (GIPAW) method in Quantum Espresso simulation package allows affordable calculations of NMR spectra for systems of thousands of electrons. We report here the first ab initio determination of NMR spectra for several crystal structures of cholesterol. Cholesterol crystals, the main component of human gallstones, are of interest to medical research as their structural properties can shed light on the pathologies of gallbladder. With our application we show that ab initio calculations can be employed to aid NMR crystallography.

  4. Ab Initio Classical Dynamics Simulations of CO_2 Line-Mixing Effects in Infrared Bands

    NASA Astrophysics Data System (ADS)

    Lamouroux, Julien; Hartmann, Jean-Michel; Tran, Ha; Snels, Marcel; Stefani, Stefania; Piccioni, Giuseppe

    2013-06-01

    Ab initio calculations of line-mixing effects in CO_2 infrared bands are presented and compared with experiments. The predictions were carried using requantized Classical Dynamics Molecular Simulations (rCDMS) based on an approach previously developed and successfully tested for CO_2 isolated line shapes. Using classical dynamics equations, the force and torque applied to each molecule by the surrounding molecules (described by an ab initio intermolecular potential) are computed at each time step. This enables, using a requantization procedure, to predict dipole and isotropic polarizability auto-correlation functions whose Fourier-Laplace transforms yield the spectra. The quality of the rCDMS calculations is demonstrated by comparisons with measured spectra in the spectral regions of the 3ν_3 and 2ν_1+2ν_2+ν_3 Infrared bands. J.-M. Hartmann, H. Tran, N. H. Ngo, et al., Phys. Rev. Lett. A {87} (2013), 013403. H. Tran, C. Boulet, M. Snels, S. Stefani, J. Quant. Spectrosc. Radiat. Transfer {112} (2011), 925-936.

  5. Ab initio study of energy transfer rates and impact sensitivities of crystalline explosives.

    PubMed

    Bernstein, Jonathan

    2018-02-28

    Impact sensitivities of various crystalline explosives were predicted by means of plane wave-density functional theory calculations. Crystal structures and complete vibrational spectra of TATB, PETN, FOX7, TEX, 14DNI, and β-HMX molecular crystals were calculated. A correlation between the phonon-vibron coupling (which is proportionally related to the energy transfer rate between the phonon manifold and the intramolecular vibrational modes) and impact sensitivities of secondary explosives was found. We propose a method, based on ab initio calculations, for the evaluation of impact sensitivities, which consequently can assist in screening candidates for chemical synthesis of high energetic materials.

  6. Ab initio study of energy transfer rates and impact sensitivities of crystalline explosives

    NASA Astrophysics Data System (ADS)

    Bernstein, Jonathan

    2018-02-01

    Impact sensitivities of various crystalline explosives were predicted by means of plane wave-density functional theory calculations. Crystal structures and complete vibrational spectra of TATB, PETN, FOX7, TEX, 14DNI, and β-HMX molecular crystals were calculated. A correlation between the phonon-vibron coupling (which is proportionally related to the energy transfer rate between the phonon manifold and the intramolecular vibrational modes) and impact sensitivities of secondary explosives was found. We propose a method, based on ab initio calculations, for the evaluation of impact sensitivities, which consequently can assist in screening candidates for chemical synthesis of high energetic materials.

  7. Ab initio calculation of the rotational spectrum of methane vibrational ground state

    NASA Astrophysics Data System (ADS)

    Cassam-Chenaï, P.; Liévin, J.

    2012-05-01

    In a previous article we have introduced an alternative perturbation scheme to the traditional one starting from the harmonic oscillator, rigid rotator Hamiltonian, to find approximate solutions of the spectral problem for rotation-vibration molecular Hamiltonians. The convergence of our method for the methane vibrational ground state rotational energy levels was quicker than that of the traditional method, as expected, and our predictions were quantitative. In this second article, we study the convergence of the ab initio calculation of effective dipole moments for methane within the same theoretical frame. The first order of perturbation when applied to the electric dipole moment operator of a spherical top gives the expression used in previous spectroscopic studies. Higher orders of perturbation give corrections corresponding to higher centrifugal distortion contributions and are calculated accurately for the first time. Two potential energy surfaces of the literature have been used for solving the anharmonic vibrational problem by means of the vibrational mean field configuration interaction approach. Two corresponding dipole moment surfaces were calculated in this work at a high level of theory. The predicted intensities agree better with recent experimental values than their empirical fit. This suggests that our ab initio dipole moment surface and effective dipole moment operator are both highly accurate.

  8. Numerical Optimization of Density Functional Tight Binding Models: Application to Molecules Containing Carbon, Hydrogen, Nitrogen, and Oxygen

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krishnapriyan, A.; Yang, P.; Niklasson, A. M. N.

    New parametrizations for semiempirical density functional tight binding (DFTB) theory have been developed by the numerical optimization of adjustable parameters to minimize errors in the atomization energy and interatomic forces with respect to ab initio calculated data. Initial guesses for the radial dependences of the Slater- Koster bond integrals and overlap integrals were obtained from minimum basis density functional theory calculations. The radial dependences of the pair potentials and the bond and overlap integrals were represented by simple analytic functions. The adjustable parameters in these functions were optimized by simulated annealing and steepest descent algorithms to minimize the value ofmore » an objective function that quantifies the error between the DFTB model and ab initio calculated data. The accuracy and transferability of the resulting DFTB models for the C, H, N, and O system were assessed by comparing the predicted atomization energies and equilibrium molecular geometries of small molecules that were not included in the training data from DFTB to ab initio data. The DFTB models provide accurate predictions of the properties of hydrocarbons and more complex molecules containing C, H, N, and O.« less

  9. Numerical Optimization of Density Functional Tight Binding Models: Application to Molecules Containing Carbon, Hydrogen, Nitrogen, and Oxygen

    DOE PAGES

    Krishnapriyan, A.; Yang, P.; Niklasson, A. M. N.; ...

    2017-10-17

    New parametrizations for semiempirical density functional tight binding (DFTB) theory have been developed by the numerical optimization of adjustable parameters to minimize errors in the atomization energy and interatomic forces with respect to ab initio calculated data. Initial guesses for the radial dependences of the Slater- Koster bond integrals and overlap integrals were obtained from minimum basis density functional theory calculations. The radial dependences of the pair potentials and the bond and overlap integrals were represented by simple analytic functions. The adjustable parameters in these functions were optimized by simulated annealing and steepest descent algorithms to minimize the value ofmore » an objective function that quantifies the error between the DFTB model and ab initio calculated data. The accuracy and transferability of the resulting DFTB models for the C, H, N, and O system were assessed by comparing the predicted atomization energies and equilibrium molecular geometries of small molecules that were not included in the training data from DFTB to ab initio data. The DFTB models provide accurate predictions of the properties of hydrocarbons and more complex molecules containing C, H, N, and O.« less

  10. Computational prediction of muon stopping sites using ab initio random structure searching (AIRSS)

    NASA Astrophysics Data System (ADS)

    Liborio, Leandro; Sturniolo, Simone; Jochym, Dominik

    2018-04-01

    The stopping site of the muon in a muon-spin relaxation experiment is in general unknown. There are some techniques that can be used to guess the muon stopping site, but they often rely on approximations and are not generally applicable to all cases. In this work, we propose a purely theoretical method to predict muon stopping sites in crystalline materials from first principles. The method is based on a combination of ab initio calculations, random structure searching, and machine learning, and it has successfully predicted the MuT and MuBC stopping sites of muonium in Si, diamond, and Ge, as well as the muonium stopping site in LiF, without any recourse to experimental results. The method makes use of Soprano, a Python library developed to aid ab initio computational crystallography, that was publicly released and contains all the software tools necessary to reproduce our analysis.

  11. Ab initio predictions on the rotational spectra of carbon-chain carbene molecules.

    PubMed

    Maluendes, S A; McLean, A D

    1992-12-18

    We predict rotational constants for the carbon-chain molecules H2C=(C=)nC, n=3-8, using ab initio computations, observed values for the earlier members in the series, H2CCC and H2CCCC with n=1 and 2, and empirical geometry corrections derived from comparison of computation and experiment on related molecules. H2CCC and H2CCCC have already been observed by radioastronomy; higher members in the series, because of their large dipole moments, which we have calculated, are candidates for astronomical searches. Our predictions can guide searches and assist in both astronomical and laboratory detection.

  12. Ab initio predictions on the rotational spectra of carbon-chain carbene molecules

    NASA Technical Reports Server (NTRS)

    Maluendes, S. A.; McLean, A. D.; Loew, G. H. (Principal Investigator)

    1992-01-01

    We predict rotational constants for the carbon-chain molecules H2C=(C=)nC, n=3-8, using ab initio computations, observed values for the earlier members in the series, H2CCC and H2CCCC with n=1 and 2, and empirical geometry corrections derived from comparison of computation and experiment on related molecules. H2CCC and H2CCCC have already been observed by radioastronomy; higher members in the series, because of their large dipole moments, which we have calculated, are candidates for astronomical searches. Our predictions can guide searches and assist in both astronomical and laboratory detection.

  13. Ab initio interatomic potentials and the thermodynamic properties of fluids

    NASA Astrophysics Data System (ADS)

    Vlasiuk, Maryna; Sadus, Richard J.

    2017-07-01

    Monte Carlo simulations with accurate ab initio interatomic potentials are used to investigate the key thermodynamic properties of argon and krypton in both vapor and liquid phases. Data are reported for the isochoric and isobaric heat capacities, the Joule-Thomson coefficient, and the speed of sound calculated using various two-body interatomic potentials and different combinations of two-body plus three-body terms. The results are compared to either experimental or reference data at state points between the triple and critical points. Using accurate two-body ab initio potentials, combined with three-body interaction terms such as the Axilrod-Teller-Muto and Marcelli-Wang-Sadus potentials, yields systematic improvements to the accuracy of thermodynamic predictions. The effect of three-body interactions is to lower the isochoric and isobaric heat capacities and increase both the Joule-Thomson coefficient and speed of sound. The Marcelli-Wang-Sadus potential is a computationally inexpensive way to utilize accurate two-body ab initio potentials for the prediction of thermodynamic properties. In particular, it provides a very effective way of extending two-body ab initio potentials to liquid phase properties.

  14. Ab initio interatomic potentials and the thermodynamic properties of fluids.

    PubMed

    Vlasiuk, Maryna; Sadus, Richard J

    2017-07-14

    Monte Carlo simulations with accurate ab initio interatomic potentials are used to investigate the key thermodynamic properties of argon and krypton in both vapor and liquid phases. Data are reported for the isochoric and isobaric heat capacities, the Joule-Thomson coefficient, and the speed of sound calculated using various two-body interatomic potentials and different combinations of two-body plus three-body terms. The results are compared to either experimental or reference data at state points between the triple and critical points. Using accurate two-body ab initio potentials, combined with three-body interaction terms such as the Axilrod-Teller-Muto and Marcelli-Wang-Sadus potentials, yields systematic improvements to the accuracy of thermodynamic predictions. The effect of three-body interactions is to lower the isochoric and isobaric heat capacities and increase both the Joule-Thomson coefficient and speed of sound. The Marcelli-Wang-Sadus potential is a computationally inexpensive way to utilize accurate two-body ab initio potentials for the prediction of thermodynamic properties. In particular, it provides a very effective way of extending two-body ab initio potentials to liquid phase properties.

  15. Molybdenum-titanium phase diagram evaluated from ab initio calculations

    NASA Astrophysics Data System (ADS)

    Barzilai, Shmuel; Toher, Cormac; Curtarolo, Stefano; Levy, Ohad

    2017-07-01

    The design of next generation β -type titanium implants requires detailed knowledge of the relevant stable and metastable phases at temperatures where metallurgical heat treatments can be performed. Recently, a standard specification for surgical implant applications was established for Mo-Ti alloys. However, the thermodynamic properties of this binary system are not well known and two conflicting descriptions of the β -phase stability have been presented in the literature. In this study, we use ab initio calculations to investigate the Mo-Ti phase diagram. These calculations predict that the β phase is stable over a wide concentration range, in qualitative agreement with one of the reported phase diagrams. In addition, they predict stoichiometric compounds, stable at temperatures below 300 ∘C , which have not yet been detected by experiments. The resulting solvus, which defines the transition to the β -phase solid solution, therefore occurs at lower temperatures and is more complex than previously anticipated.

  16. Organic carbonates: experiment and ab initio calculations for prediction of thermochemical properties.

    PubMed

    Verevkin, Sergey P; Emel'yanenko, Vladimir N; Kozlova, Svetlana A

    2008-10-23

    This work has been undertaken in order to obtain data on thermodynamic properties of organic carbonates and to revise the group-additivity values necessary for predicting their standard enthalpies of formation and enthalpies of vaporization. The standard molar enthalpies of formation of dibenzyl carbonate, tert-butyl phenyl carbonate, and diphenyl carbonate were measured using combustion calorimetry. Molar enthalpies of vaporization of these compounds were obtained from the temperature dependence of the vapor pressure measured by the transpiration method. Molar enthalpy of sublimation of diphenyl carbonate was measured in the same way. Ab initio calculations of molar enthalpies of formation of organic carbonates have been performed using the G3MP2 method, and results are in excellent agreement with the available experiment. Then the group-contribution method has been developed to predict values of the enthalpies of formation and enthalpies of vaporization of organic carbonates.

  17. Stabilization of flat aromatic Si6 rings analogous to benzene: ab initio theoretical prediction.

    PubMed

    Zdetsis, Aristides D

    2007-12-07

    It is shown by ab initio calculations, based on density functional (DFT/B3LYP), and high level coupled-cluster [CCSD(T)] and quadratic CI [QCISD(T)] methods, that flat aromatic silicon structures analogous to benzene (C6H6) can be stabilized in the presence of lithium. The resulting planar Si6Li6 structure is both stable and aromatic, sharing many key characteristics with benzene. To facilitate possible synthesis and characterization of these species, routes of formation with high exothermicity are suggested and several spectral properties (including optical absorption, infrared, and Raman) are calculated.

  18. Conformational stability, structural parameters and vibrational assignment from variable temperature infrared spectra of krypton solutions and ab initio calculations of ethylisothiocyanate.

    PubMed

    Durig, James R; Zheng, Chao

    2007-11-01

    Variable temperature (-105 to -150 degrees C) studies of the infrared spectra (3500-400 cm(-1)) of ethylisothiocyanate, CH(3)CH(2)NCS, dissolved in liquid krypton have been recorded. Additionally the infrared spectra of the gas and solid have been re-investigated. These spectroscopic data indicate a single conformer in all physical states with a large number of molecules in the gas phase at ambient temperature in excited states of the CN torsional mode which has a very low barrier to conformational interchange. To aid in the analyses of the vibrational and rotational spectra, ab initio calculations have been carried out by the perturbation method to the second order (MP2) with valence and core electron correlation using a variety of basis sets up to 6-311+G(2df,2pd). With the smaller basis sets up to 6-311+G(d,p) and cc-PVDZ, the cis conformer is indicated as a transition state with all larger basis sets the cis conformer is the only stable form. The predicted energy difference from these calculations between the cis form and the higher energy trans conformer is about 125 cm(-1) which represents essentially the barrier to internal rotation of the NCS group (rotation around NC axis). Density functional theory calculation by the B3LYP method with the same basis sets predicts this barrier to be about 25 cm(-1). By utilizing the previously reported microwave rotational constants with the structural parameters predicted by the ab initio MP2(full)/6-311+G(d,p) calculations, adjusted r(0) structural parameters have been obtained for the cis form. The determined heavy atom parameters are: r(NC)=1.196(5), r(CS)=1.579(5), r(CN)=1.439(5), r(CC)=1.519(5)A for the distances and angles of angleCCN=112.1(5), angleCNC=146.2(5), angleNCS=174.0(5) degrees . The centrifugal distortion constants, dipole moments, conformational stability, vibrational frequencies, infrared intensities and Raman activities have been predicted from ab initio calculations and compared to experimental quantities when available. These results are compared to the corresponding quantities of some similar molecules.

  19. 7Be(p,gamma)8B S-factor from Ab Initio Wave Functions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Navratil, P; Bertulani, C A; Caurier, E

    2006-10-12

    There has been a significant progress in ab initio approaches to the structure of light nuclei. Starting from realistic two- and three-nucleon interactions the ab initio no-core shell model (NCSM) predicts low-lying levels in p-shell nuclei. It is a challenging task to extend ab initio methods to describe nuclear reactions. We present here a brief overview of the first steps taken toward nuclear reaction applications. In particular, we discuss our calculation of the {sup 7}Be(p,{gamma}){sup 8}B S-factor. We also present our first results of the {sup 3}He({alpha},{gamma}){sup 7}Be S-factor and of the S-factor of the mirror reaction {sup 3}H({alpha},{gamma}){sup 7}Li.more » The {sup 7}Be(p,{gamma}){sup 8}B and {sup 3}He({alpha},{gamma}){sup 7}Be reactions correspond to the most important uncertainties in solar model predictions of neutrino fluxes.« less

  20. Conformational and Structural Studies of Isopropylamine from Temperature Dependent Raman Spectra of Xenon Solutions and {AB INITIO} Calculations

    NASA Astrophysics Data System (ADS)

    Klaassen, Joshua J.; Darkhalil, Ikhlas D.; Durig, James R.

    2012-06-01

    The Raman and infrared spectra (4000 to 50 cm-1) of the gas, liquid or solution, and solid have been recorded of isopropylamine, (CH3)2CHNH2. Variable temperature (-50 to -100oC) studies of the Raman spectra (3500 to 100 cm-1) dissolved in liquid xenon have been carried out. From these data, both the {trans} and {gauche} conformers have been identified and their relative stability obtained. The enthalpy difference has been determined from 20 band pairs at 6 temperatures to be 113 +/- 11 cm-1 (1.35 +/- 0.13 kJ mol-1) with the {trans} conformer the more stable form. The percentage of the {gauche} conformer is estimated to be 54 +/- 1 percent at ambient temperature. The conformational stabilities have been predicted from {ab initio} calculations utilizing several different basis sets up to aug-cc-pVTZ from both MP2(full) and density functional theory calculations by the B3LYP method. By utilizing previously reported microwave rotational constants along with {ab initio} MP2(full)/6-311+G(d,p) predicted structural values, adjusted r0 parameters have been obtained for the {trans} conformer. The determined heavy atom and NH2 distances in angstroms are C-C = 1.530(3), C-N = 1.465(3), N-H = 1.019(3) and angles in degrees NCC = 108.9(5), CCC = 111.0(5), HNC = 110.3(5). The structural parameters for the {gauche} conformer were estimated by using the same adjustment differences to the {gauche} form as those obtained for the corresponding {trans} parameters. Vibrational assignments have been provided for the observed bands for both conformers which are supported by MP2(full)/6-31G(d) {ab initio} calculations to predict harmonic force constants, wavenumbers, infrared intensities, Raman activities and depolarization ratios for both conformers. The results are discussed and compared to the corresponding properties of some related molecules.

  1. Applicability of effective fragment potential version 2 - Molecular dynamics (EFP2-MD) simulations for predicting excess properties of mixed solvents

    NASA Astrophysics Data System (ADS)

    Kuroki, Nahoko; Mori, Hirotoshi

    2018-02-01

    Effective fragment potential version 2 - molecular dynamics (EFP2-MD) simulations, where the EFP2 is a polarizable force field based on ab initio electronic structure calculations were applied to water-methanol binary mixture. Comparing EFP2s defined with (aug-)cc-pVXZ (X = D,T) basis sets, it was found that large sets are necessary to generate sufficiently accurate EFP2 for predicting mixture properties. It was shown that EFP2-MD could predict the excess molar volume. Since the computational cost of EFP2-MD are far less than ab initio MD, the results presented herein demonstrate that EFP2-MD is promising for predicting physicochemical properties of novel mixed solvents.

  2. An ab initio chemical reaction model for the direct simulation Monte Carlo study of non-equilibrium nitrogen flows.

    PubMed

    Mankodi, T K; Bhandarkar, U V; Puranik, B P

    2017-08-28

    A new ab initio based chemical model for a Direct Simulation Monte Carlo (DSMC) study suitable for simulating rarefied flows with a high degree of non-equilibrium is presented. To this end, Collision Induced Dissociation (CID) cross sections for N 2 +N 2 →N 2 +2N are calculated and published using a global complete active space self-consistent field-complete active space second order perturbation theory N 4 potential energy surface and quasi-classical trajectory algorithm for high energy collisions (up to 30 eV). CID cross sections are calculated for only a selected set of ro-vibrational combinations of the two nitrogen molecules, and a fitting scheme based on spectroscopic weights is presented to interpolate the CID cross section for all possible ro-vibrational combinations. The new chemical model is validated by calculating equilibrium reaction rate coefficients that can be compared well with existing shock tube and computational results. High-enthalpy hypersonic nitrogen flows around a cylinder in the transition flow regime are simulated using DSMC to compare the predictions of the current ab initio based chemical model with the prevailing phenomenological model (the total collision energy model). The differences in the predictions are discussed.

  3. Ab Initio Molecular Dynamics and Lattice Dynamics-Based Force Field for Modeling Hexagonal Boron Nitride in Mechanical and Interfacial Applications.

    PubMed

    Govind Rajan, Ananth; Strano, Michael S; Blankschtein, Daniel

    2018-04-05

    Hexagonal boron nitride (hBN) is an up-and-coming two-dimensional material, with applications in electronic devices, tribology, and separation membranes. Herein, we utilize density-functional-theory-based ab initio molecular dynamics (MD) simulations and lattice dynamics calculations to develop a classical force field (FF) for modeling hBN. The FF predicts the crystal structure, elastic constants, and phonon dispersion relation of hBN with good accuracy and exhibits remarkable agreement with the interlayer binding energy predicted by random phase approximation calculations. We demonstrate the importance of including Coulombic interactions but excluding 1-4 intrasheet interactions to obtain the correct phonon dispersion relation. We find that improper dihedrals do not modify the bulk mechanical properties and the extent of thermal vibrations in hBN, although they impact its flexural rigidity. Combining the FF with the accurate TIP4P/Ice water model yields excellent agreement with interaction energies predicted by quantum Monte Carlo calculations. Our FF should enable an accurate description of hBN interfaces in classical MD simulations.

  4. Ab initio crystal structure prediction of magnesium (poly)sulfides and calculation of their NMR parameters.

    PubMed

    Mali, Gregor

    2017-03-01

    Ab initio prediction of sensible crystal structures can be regarded as a crucial task in the quickly-developing methodology of NMR crystallography. In this contribution, an evolutionary algorithm was used for the prediction of magnesium (poly)sulfide crystal structures with various compositions. The employed approach successfully identified all three experimentally detected forms of MgS, i.e. the stable rocksalt form and the metastable wurtzite and zincblende forms. Among magnesium polysulfides with a higher content of sulfur, the most probable structure with the lowest formation energy was found to be MgS 2 , exhibiting a modified rocksalt structure, in which S 2- anions were replaced by S 2 2- dianions. Magnesium polysulfides with even larger fractions of sulfur were not predicted to be stable. For the lowest-energy structures, 25 Mg quadrupolar coupling constants and chemical shift parameters were calculated using the density functional theory approach. The calculated NMR parameters could be well rationalized by the symmetries of the local magnesium environments, by the coordination of magnesium cations and by the nature of the surrounding anions. In the future, these parameters could serve as a reference for the experimentally determined 25 Mg NMR parameters of magnesium sulfide species.

  5. Quantum ring-polymer contraction method: Including nuclear quantum effects at no additional computational cost in comparison to ab initio molecular dynamics

    NASA Astrophysics Data System (ADS)

    John, Christopher; Spura, Thomas; Habershon, Scott; Kühne, Thomas D.

    2016-04-01

    We present a simple and accurate computational method which facilitates ab initio path-integral molecular dynamics simulations, where the quantum-mechanical nature of the nuclei is explicitly taken into account, at essentially no additional computational cost in comparison to the corresponding calculation using classical nuclei. The predictive power of the proposed quantum ring-polymer contraction method is demonstrated by computing various static and dynamic properties of liquid water at ambient conditions using density functional theory. This development will enable routine inclusion of nuclear quantum effects in ab initio molecular dynamics simulations of condensed-phase systems.

  6. High pressure behaviour of uranium dicarbide (UC{sub 2}): Ab-initio study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sahoo, B. D., E-mail: bdsahoo@barc.gov.in; Mukherjee, D.; Joshi, K. D.

    2016-08-28

    The structural stability of uranium dicarbide has been examined under hydrostatic compression employing evolutionary structure search algorithm implemented in the universal structure predictor: evolutionary Xtallography (USPEX) code in conjunction with ab-initio electronic band structure calculation method. The ab-initio total energy calculations involved for this purpose have been carried out within both generalized gradient approximations (GGA) and GGA + U approximations. Our calculations under GGA approximation predict the high pressure structural sequence of tetragonal → monoclinic → orthorhombic for this material with transition pressures of ∼8 GPa and 42 GPa, respectively. The same transition sequence is predicted by calculations within GGA + U also with transition pressuresmore » placed at ∼24 GPa and ∼50 GPa, respectively. Further, on the basis of comparison of zero pressure equilibrium volume and equation of state with available experimental data, we find that GGA + U approximation with U = 2.5 eV describes this material better than the simple GGA approximation. The theoretically predicted high pressure structural phase transitions are in disagreement with the only high experimental study by Dancausse et al. [J. Alloys. Compd. 191, 309 (1993)] on this compound which reports a tetragonal to hexagonal phase transition at a pressure of ∼17.6 GPa. Interestingly, during lowest enthalpy structure search using USPEX, we do not see any hexagonal phase to be closer to the predicted monoclinic phase even within 0.2 eV/f. unit. More experiments with varying carbon contents in UC{sub 2} sample are required to resolve this discrepancy. The existence of these high pressure phases predicted by static lattice calculations has been further substantiated by analyzing the elastic and lattice dynamic stability of these structures in the pressure regimes of their structural stability. Additionally, various thermo-physical quantities such as equilibrium volume, bulk modulus, Debye temperature, thermal expansion coefficient, Gruneisen parameter, and heat capacity at ambient conditions have been determined from these calculations and compared with the available experimental data.« less

  7. Ab Initio Modeling of Molecular Radiation

    NASA Technical Reports Server (NTRS)

    Jaffe, Richard; Schwenke, David

    2014-01-01

    Radiative emission from excited states of atoms and molecules can comprise a significant fraction of the total heat flux experienced by spacecraft during atmospheric entry at hypersonic speeds. For spacecraft with ablating heat shields, some of this radiative flux can be absorbed by molecular constituents in the boundary layer that are formed by the ablation process. Ab initio quantum mechanical calculations are carried out to predict the strengths of these emission and absorption processes. This talk will describe the methods used in these calculations using, as examples, the 4th positive emission bands of CO and the 1g+ 1u+ absorption in C3. The results of these calculations are being used as input to NASA radiation modeling codes like NeqAir, HARA and HyperRad.

  8. Efficient "on-the-fly" calculation of Raman spectra from ab-initio molecular dynamics: Application to hydrophobic/hydrophilic solutes in bulk water.

    PubMed

    Partovi-Azar, Pouya; Kühne, Thomas D

    2015-11-05

    We present a novel computational method to accurately calculate Raman spectra from first principles. Together with an extension of the second-generation Car-Parrinello method of Kühne et al. (Phys. Rev. Lett. 2007, 98, 066401) to propagate maximally localized Wannier functions together with the nuclei, a speed-up of one order of magnitude can be observed. This scheme thus allows to routinely calculate finite-temperature Raman spectra "on-the-fly" by means of ab-initio molecular dynamics simulations. To demonstrate the predictive power of this approach we investigate the effect of hydrophobic and hydrophilic solutes in water solution on the infrared and Raman spectra. © 2015 Wiley Periodicals, Inc.

  9. Ab Initio and Improved Empirical Potentials for the Calculation of the Anharmonic Vibrational States and Intramolecular Mode Coupling of N-Methylacetamide

    NASA Technical Reports Server (NTRS)

    Gregurick, Susan K.; Chaban, Galina M.; Gerber, R. Benny; Kwak, Dochou (Technical Monitor)

    2001-01-01

    The second-order Moller-Plesset ab initio electronic structure method is used to compute points for the anharmonic mode-coupled potential energy surface of N-methylacetamide (NMA) in the trans(sub ct) configuration, including all degrees of freedom. The vibrational states and the spectroscopy are directly computed from this potential surface using the Correlation Corrected Vibrational Self-Consistent Field (CC-VSCF) method. The results are compared with CC-VSCF calculations using both the standard and improved empirical Amber-like force fields and available low temperature experimental matrix data. Analysis of our calculated spectroscopic results show that: (1) The excellent agreement between the ab initio CC-VSCF calculated frequencies and the experimental data suggest that the computed anharmonic potentials for N-methylacetamide are of a very high quality; (2) For most transitions, the vibrational frequencies obtained from the ab initio CC-VSCF method are superior to those obtained using the empirical CC-VSCF methods, when compared with experimental data. However, the improved empirical force field yields better agreement with the experimental frequencies as compared with a standard AMBER-type force field; (3) The empirical force field in particular overestimates anharmonic couplings for the amide-2 mode, the methyl asymmetric bending modes, the out-of-plane methyl bending modes, and the methyl distortions; (4) Disagreement between the ab initio and empirical anharmonic couplings is greater than the disagreement between the frequencies, and thus the anharmonic part of the empirical potential seems to be less accurate than the harmonic contribution;and (5) Both the empirical and ab initio CC-VSCF calculations predict a negligible anharmonic coupling between the amide-1 and other internal modes. The implication of this is that the intramolecular energy flow between the amide-1 and the other internal modes may be smaller than anticipated. These results may have important implications for the anharmonic force fields of peptides, for which N-methylacetamide is a model.

  10. Atomic defects in monolayer WSe2 tunneling FETs studied by systematic ab initio calculations

    NASA Astrophysics Data System (ADS)

    Wu, Jixuan; Fan, Zhiqiang; Chen, Jiezhi; Jiang, Xiangwei

    2018-05-01

    Atomic defects in monolayer WSe2 tunneling FETs (TFETs) are studied through systematic ab initio calculations aiming at performance predictions and enhancements. The effects of various defect positions and different passivation atoms are characterized in WSe2 TFETs by rigorous ab initio quantum transport simulations. It is suggested that the Se vacancy (VSe) defect located in the gate-controlled channel region tends to increase the OFF current (I off), whereas it can be well suppressed by oxygen passivation. It is demonstrated that chlorine (Cl) passivation at the source-side tunneling region can largely suppress I off, leading to an impressively improved on–off ratio (I on/I off) compared with that without any defect. However, it is also observed that randomly positioned atomic defects tend to induce significant fluctuation of the TFET output. Further discussions are made with focus on the performance-variability trade-off for robust circuit design.

  11. Ab initio parameterization of a charge optimized many-body forcefield for Si-SiO2: Validation and thermal transport in nanostructures.

    PubMed

    France-Lanord, Arthur; Soukiassian, Patrick; Glattli, Christian; Wimmer, Erich

    2016-03-14

    In an effort to extend the reach of current ab initio calculations to simulations requiring millions of configurations for complex systems such as heterostructures, we have parameterized the third-generation Charge Optimized Many-Body (COMB3) potential using solely ab initio total energies, forces, and stress tensors as input. The quality and the predictive power of the new forcefield are assessed by computing properties including the cohesive energy and density of SiO2 polymorphs, surface energies of alpha-quartz, and phonon densities of states of crystalline and amorphous phases of SiO2. Comparison with data from experiments, ab initio calculations, and molecular dynamics simulations using published forcefields including BKS (van Beest, Kramer, and van Santen), ReaxFF, and COMB2 demonstrates an overall improvement of the new parameterization. The computed temperature dependence of the thermal conductivity of crystalline alpha-quartz and the Kapitza resistance of the interface between crystalline Si(001) and amorphous silica is in excellent agreement with experiment, setting the stage for simulations of complex nanoscale heterostructures.

  12. Exploration of phase transition in ThS under pressure: An ab-initio investigation

    NASA Astrophysics Data System (ADS)

    Sahoo, B. D.; Mukherjee, D.; Joshi, K. D.; Kaushik, T. C.

    2018-04-01

    The ab-initio total energy calculations have been performed in thorium sulphide (ThS) to explore its high pressure phase stability. Our calculations predict a phase transformation from ambient rocksalt type structure (B1 phase) to a rhombohedral structure (R-3m phase) at ˜ 15 GPa and subsequently R-3m phase transforms to CsCl type structure (B2 phase) at ˜ 45 GPa. The first phase transition has been identified as second order type; whereas, the second transition is of first order type with volume discontinuity of 6.5%. The predicted high pressure R-3m phase is analogous to the experimentally observed hexagonal (distorted fcc) phase (Benedict et al., J. Less-Common Met., 1984) above 20 GPa. Further, using these calculations we have derived the equation of state which has been utilized to determine various physical quantities such as zero pressure equilibrium volume, bulk modulus, and pressure derivative of bulk modulus at ambient conditions.

  13. Molecular Dynamics Simulations with Quantum Mechanics/Molecular Mechanics and Adaptive Neural Networks.

    PubMed

    Shen, Lin; Yang, Weitao

    2018-03-13

    Direct molecular dynamics (MD) simulation with ab initio quantum mechanical and molecular mechanical (QM/MM) methods is very powerful for studying the mechanism of chemical reactions in a complex environment but also very time-consuming. The computational cost of QM/MM calculations during MD simulations can be reduced significantly using semiempirical QM/MM methods with lower accuracy. To achieve higher accuracy at the ab initio QM/MM level, a correction on the existing semiempirical QM/MM model is an attractive idea. Recently, we reported a neural network (NN) method as QM/MM-NN to predict the potential energy difference between semiempirical and ab initio QM/MM approaches. The high-level results can be obtained using neural network based on semiempirical QM/MM MD simulations, but the lack of direct MD samplings at the ab initio QM/MM level is still a deficiency that limits the applications of QM/MM-NN. In the present paper, we developed a dynamic scheme of QM/MM-NN for direct MD simulations on the NN-predicted potential energy surface to approximate ab initio QM/MM MD. Since some configurations excluded from the database for NN training were encountered during simulations, which may cause some difficulties on MD samplings, an adaptive procedure inspired by the selection scheme reported by Behler [ Behler Int. J. Quantum Chem. 2015 , 115 , 1032 ; Behler Angew. Chem., Int. Ed. 2017 , 56 , 12828 ] was employed with some adaptions to update NN and carry out MD iteratively. We further applied the adaptive QM/MM-NN MD method to the free energy calculation and transition path optimization on chemical reactions in water. The results at the ab initio QM/MM level can be well reproduced using this method after 2-4 iteration cycles. The saving in computational cost is about 2 orders of magnitude. It demonstrates that the QM/MM-NN with direct MD simulations has great potentials not only for the calculation of thermodynamic properties but also for the characterization of reaction dynamics, which provides a useful tool to study chemical or biochemical systems in solution or enzymes.

  14. An ab initio study of the structure and atomic transport in bulk liquid Ag and its liquid-vapor interface

    NASA Astrophysics Data System (ADS)

    del Rio, Beatriz G.; González, David J.; González, Luis E.

    2016-10-01

    Several static and dynamic properties of bulk liquid Ag at a thermodynamic state near its triple point have been calculated by means of ab initio molecular dynamics simulations. The calculated static structure shows a very good agreement with the available experimental data. The dynamical structure reveals propagating excitations whose dispersion at long wavelengths is compatible with the experimental sound velocity. Results are also reported for other transport coefficients. Additional simulations have also been performed so as to study the structure of the free liquid surface. The calculated longitudinal ionic density profile shows an oscillatory behaviour, whose properties are analyzed through macroscopic and microscopic methods. The intrinsic X-ray reflectivity of the surface is predicted to show a layering peak associated to the interlayer distance.

  15. The Momentum Distribution of Liquid ⁴He

    DOE PAGES

    Prisk, T. R.; Bryan, M. S.; Sokol, P. E.; ...

    2017-07-24

    We report a high-resolution neutron Compton scattering study of liquid ⁴He under milli-Kelvin temperature control. To interpret the scattering data, we performed Quantum Monte Carlo calculations of the atomic momentum distribution and final state effects for the conditions of temperature and density considered in the experiment. There is excellent agreement between the observed scattering and ab initio calculations of its lineshape at all temperatures. We also used model fit functions to obtain from the scattering data empirical estimates of the average atomic kinetic energy and Bose condensate fraction. These quantities are also in excellent agreement with ab initio calculations. Wemore » conclude that contemporary Quantum Monte Carlo methods can furnish accurate predictions for the properties of Bose liquids, including the condensate fraction, close to the superfluid transition temperature.« less

  16. The CO 2 with dimethylamine reaction: ab initio predicted vibrational spectra

    NASA Astrophysics Data System (ADS)

    Jamróz, M. H.; Dobrowolski, J. Cz.; Borowiak, M. A.

    1999-05-01

    The IR spectra of CO 2, dimethylamine (DMA), (DMA) 2 dimers, DMA⋯CO 2 (2 : 1) complex, dimethylcarbamic acid (DMCA), DMCA⋯DMA (1 : 1) complex, DMCA -, and DMA(H) + were calculated at the B3PW91/6-31G** level. Potential energy distribution (PED) was calculated for predicted spectra to form basis for elucidation of experimental IR data. The stabilisation energy of the studied complexes was corrected by counterpoise method.

  17. Electron transport in extended carbon-nanotube/metal contacts: Ab initio based Green function method

    NASA Astrophysics Data System (ADS)

    Fediai, Artem; Ryndyk, Dmitry A.; Cuniberti, Gianaurelio

    2015-04-01

    We have developed a new method that is able to predict the electrical properties of the source and drain contacts in realistic carbon nanotube field effect transistors (CNTFETs). It is based on large-scale ab initio calculations combined with a Green function approach. For the first time, both internal and external parts of a realistic CNT-metal contact are taken into account at the ab initio level. We have developed the procedure allowing direct calculation of the self-energy for an extended contact. Within the method, it is possible to calculate the transmission coefficient through a contact of both finite and infinite length; the local density of states can be determined in both free and embedded CNT segments. We found perfect agreement with the experimental data for Pd and Al contacts. We have explained why CNTFETs with Pd electrodes are p -type FETs with ohmic contacts, which can carry current close to the ballistic limit (provided contact length is large enough), whereas in CNT-Al contacts transmission is suppressed to a significant extent, especially for holes.

  18. Equilibrium and Dynamics Properties of Poly(oxyethylene) Melts and Related Poly(alkylethers) from Simulations and Ab Initio Calculations

    NASA Technical Reports Server (NTRS)

    Smith, Grant D.; Jaffe, R. L.; Yoon, D. Y.; Arnold, James O. (Technical Monitor)

    1994-01-01

    Molecular dynamics simulations of POE melts have been performed utilizing a potential force field parameterized to reproduce conformer energies and rotational energy barriers in dimethoxyethane as determined from ab initio electronic structure calculations. Chain conformations and dimensions of POE from the simulations were found to be in good agreement with predictions of a rotational isomeric state (RIS) model based upon the ab initio conformational. energies. The melt chains were found to be somewhat extended relative to chains at theta conditions. This effect will be discussed in light of neutron scattering experiments which indicate that POE chains are extended in the melt relative to theta solutions. The conformational characteristics of POE chains will also be compared with those of other poly (alkylethers), namely poly(oxymethylene), poly(oxytrimethylene) and poly(oxytetramethylene). Local conformational dynamics were found to be more rapid than in polymethylene. Calculated C-H vector correlation times were found to be in reasonable agreement with experimental values from C-13 NMR spin-lattice relaxation times. The influence of ionic salts on local conformations and dynamics will also be discussed.

  19. Hugoniot equation of state of Si-doped glow discharge polymer and scaling to other plastic ablators

    NASA Astrophysics Data System (ADS)

    Huser, G.; Ozaki, N.; Colin-Lalu, P.; Recoules, V.; Sano, T.; Sakawa, Y.; Miyanishi, K.; Kodama, R.

    2018-05-01

    Pressure, density, and temperature were measured along the principal Hugoniot of the Si-doped Glow Discharge Polymer used in Inertial Confinement Fusion (ICF) capsules up to 5 Mbar, covering conditions beyond the first shock in a full-scale Inertial Confinement Fusion (ICF) capsule. The experiments were performed using the GEKKOXII laser at the Institute of Laser Engineering at Osaka University in Japan. Results are in good agreement with predictions obtained from ab initio Hugoniot calculations, but softer than the quotidian equation of state average atom model. Ab initio calculations show that dissociation of carbon bonds need to be taken into account in order to explain Hugoniot compressibility.

  20. Poster 2:Ab initio calculations of low temperature hydrocarbon spectra for astrophysics: application to the modeling of methane absorption in the Titan atmosphere in a wide IR range

    NASA Astrophysics Data System (ADS)

    Rey, Michael; Nikitin, Andrei; Bezard, Bruno; Rannou, Pascal; Coustenis, Athena; Tyuterev, Vladimir

    2016-06-01

    Knowledge of intensities of spectral transitions in various temperature ranges including very low-T conditions is essential for the modeling of optical properties of planetary atmospheres and for other astrophysical applications. The temperature dependence of spectral features is crucial, but quantified experimental information in a wide spectral range is generally missing. A significant progress has been recently achieved in first principles quantum mechanical predictions (ab initio electronic structure + variational nuclear motion calculations) of rotationally resolved spectra for hydrocarbon molecules such as methane , ethylene and their isotopic species [1,2] . We have recently reported the TheoReTS information system (theorets.univ-reims.fr, theorets.tsu.ru) for theoretical spectra based on variational predictions from molecular potential energy and dipole moment surfaces [3] that permits online simulation of radiative properties including low-T conditions of cold planets. In this work, we apply ab initio predictions of the spectra of methane isotopologues down to T=80 K for the modeling of the transmittance in the atmosphere of Titan, Saturn's largest satellite explored by the Cassini-Huygens space mission. A very good agreement over the whole infrared range from 6,000 to 11,000 cm-1 compared with observations obtained by the Descent Imager / Spectral Radiometer (DISR) on the Huygens probe [4,5] at various altitudes will be reported.

  1. Decohesion models informed by first-principles calculations: The ab initio tensile test

    NASA Astrophysics Data System (ADS)

    Enrique, Raúl A.; Van der Ven, Anton

    2017-10-01

    Extreme deformation and homogeneous fracture can be readily studied via ab initio methods by subjecting crystals to numerical "tensile tests", where the energy of locally stable crystal configurations corresponding to elongated and fractured states are evaluated by means of density functional method calculations. The information obtained can then be used to construct traction curves of cohesive zone models in order to address fracture at the macroscopic scale. In this work, we perform an in depth analysis of traction curves and how ab initio calculations must be interpreted to rigorously parameterize an atomic scale cohesive zone model, using crystalline Ag as an example. Our analysis of traction curves reveal the existence of two qualitatively distinct decohesion criteria: (i) an energy criterion whereby the released elastic energy equals the energy cost of creating two new surfaces and (ii) an instability criterion that occurs at a higher and size independent stress than that of the energy criterion. We find that increasing the size of the simulation cell renders parts of the traction curve inaccessible to ab initio calculations involving the uniform decohesion of the crystal. We also find that the separation distance below which a crack heals is not a material parameter as has been proposed in the past. Finally, we show that a large energy barrier separates the uniformly stressed crystal from the decohered crystal, resolving a paradox predicted by a scaling law based on the energy criterion that implies that large crystals will decohere under vanishingly small stresses. This work clarifies confusion in the literature as to how a cohesive zone model is to be parameterized with ab initio "tensile tests" in the presence of internal relaxations.

  2. Correlation of electronic structure and magnetic moment in Ga1-xMnxN : First-principles, mean field and high temperature series expansions calculations

    NASA Astrophysics Data System (ADS)

    Masrour, R.; Hlil, E. K.

    2016-08-01

    Self-consistent ab initio calculations based on density-functional theory and using both full potential linearized augmented plane wave and Korring-Kohn-Rostoker-coherent potential approximation methods, are performed to investigate both electronic and magnetic properties of the Ga1-xMnxN system. Magnetic moments considered to lie along (001) axes are computed. Obtained data from ab initio calculations are used as input for the high temperature series expansions (HTSEs) calculations to compute other magnetic parameters such as the magnetic phase diagram and the critical exponent. The increasing of the dilution x in this system has allowed to verify a series of HTSEs predictions on the possibility of ferromagnetism in dilute magnetic insulators and to demonstrate that the interaction changes from antiferromagnetic to ferromagnetic passing through the spins glace phase.

  3. Summary of Research/Publications

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Summary of research/publications include:(1) Comment on broadening of water microwave lines by collisions with helium atoms; (2) Calculations of ion-molecule deuterium fractionation reactions involving HD; (3) Ab initio predictions on the rotational spectra of carbon-chain carbene molecules; (4) Theoretical IR spectra of ionized naphthalene; (5) Improved collisional excitation rates for interstellar water; (6) Calculations on the competition between association and reaction for C3H+ + H2; (7) Theoretical infrared spectra of some model polycyclic aromatic hydrocarbons: effect of ionization; (8) Calculations concerning interstellar isomeric abundance ratios for C3H and C3H2; (9) New calculations on the ion-molecule processes C2H2+ + H2 C2H3+ + H and C2H2+ + H2 C2H4+; (10) Anisotropic rigid rotor potential energy function for H2O-H2; (11) A correlated ab initio study of linear carbon-chain radicals CnH (n=2-7); (12) Ab initio characterization of MgCCH, MgCCH+, and MgC2 and pathways to their formation in the interstellar medium; (13) Why HOC+ is detectable in interstellar clouds: The rate of the reaction between HOC+ and H2; (14) A correlated ab initio study of the X 2A 1 and A 2E states of MgCH3; (15) On the stability of interstellar carbon clusters: The rate of the reaction between C3 and O; and (16) The rate of the reaction between CN and C2H2 at interstellar temperatures.

  4. Acceleration of saddle-point searches with machine learning.

    PubMed

    Peterson, Andrew A

    2016-08-21

    In atomistic simulations, the location of the saddle point on the potential-energy surface (PES) gives important information on transitions between local minima, for example, via transition-state theory. However, the search for saddle points often involves hundreds or thousands of ab initio force calls, which are typically all done at full accuracy. This results in the vast majority of the computational effort being spent calculating the electronic structure of states not important to the researcher, and very little time performing the calculation of the saddle point state itself. In this work, we describe how machine learning (ML) can reduce the number of intermediate ab initio calculations needed to locate saddle points. Since machine-learning models can learn from, and thus mimic, atomistic simulations, the saddle-point search can be conducted rapidly in the machine-learning representation. The saddle-point prediction can then be verified by an ab initio calculation; if it is incorrect, this strategically has identified regions of the PES where the machine-learning representation has insufficient training data. When these training data are used to improve the machine-learning model, the estimates greatly improve. This approach can be systematized, and in two simple example problems we demonstrate a dramatic reduction in the number of ab initio force calls. We expect that this approach and future refinements will greatly accelerate searches for saddle points, as well as other searches on the potential energy surface, as machine-learning methods see greater adoption by the atomistics community.

  5. Acceleration of saddle-point searches with machine learning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peterson, Andrew A., E-mail: andrew-peterson@brown.edu

    In atomistic simulations, the location of the saddle point on the potential-energy surface (PES) gives important information on transitions between local minima, for example, via transition-state theory. However, the search for saddle points often involves hundreds or thousands of ab initio force calls, which are typically all done at full accuracy. This results in the vast majority of the computational effort being spent calculating the electronic structure of states not important to the researcher, and very little time performing the calculation of the saddle point state itself. In this work, we describe how machine learning (ML) can reduce the numbermore » of intermediate ab initio calculations needed to locate saddle points. Since machine-learning models can learn from, and thus mimic, atomistic simulations, the saddle-point search can be conducted rapidly in the machine-learning representation. The saddle-point prediction can then be verified by an ab initio calculation; if it is incorrect, this strategically has identified regions of the PES where the machine-learning representation has insufficient training data. When these training data are used to improve the machine-learning model, the estimates greatly improve. This approach can be systematized, and in two simple example problems we demonstrate a dramatic reduction in the number of ab initio force calls. We expect that this approach and future refinements will greatly accelerate searches for saddle points, as well as other searches on the potential energy surface, as machine-learning methods see greater adoption by the atomistics community.« less

  6. Ab Initio Prediction of Adsorption Isotherms for Small Molecules in Metal-Organic Frameworks.

    PubMed

    Kundu, Arpan; Piccini, GiovanniMaria; Sillar, Kaido; Sauer, Joachim

    2016-10-26

    For CO and N 2 on Mg 2+ sites of the metal-organic framework CPO-27-Mg (Mg-MOF-74), ab initio calculations of Gibbs free energies of adsorption have been performed. Combined with the Bragg-Williams/Langmuir model and taking into account the experimental site availability (76.5%), we obtained adsorption isotherms in close agreement with those in experiment. The remaining deviations in the Gibbs free energy (about 1 kJ/mol) are significantly smaller than the "chemical accuracy" limit of about 4 kJ/mol. The presented approach uses (i) a DFT dispersion method (PBE+D2) to optimize the structure and to calculate anharmonic frequencies for vibrational partition functions and (ii) a "hybrid MP2:(PBE+D2)+ΔCCSD(T)" method to determine electronic energies. With the achieved accuracy (estimated uncertainty ±1.4 kJ/mol), the ab initio energies become useful benchmarks for assessing different DFT + dispersion methods (PBE+D2, B3LYP+D*, and vdW-D2), whereas the ab initio heats, entropies, and Gibbs free energies of adsorption are used to assess the reliability of experimental values derived from fitting isotherms or from variable-temperature IR studies.

  7. Operator evolution for ab initio electric dipole transitions of 4He

    DOE PAGES

    Schuster, Micah D.; Quaglioni, Sofia; Johnson, Calvin W.; ...

    2015-07-24

    A goal of nuclear theory is to make quantitative predictions of low-energy nuclear observables starting from accurate microscopic internucleon forces. A major element of such an effort is applying unitary transformations to soften the nuclear Hamiltonian and hence accelerate the convergence of ab initio calculations as a function of the model space size. The consistent simultaneous transformation of external operators, however, has been overlooked in applications of the theory, particularly for nonscalar transitions. We study the evolution of the electric dipole operator in the framework of the similarity renormalization group method and apply the renormalized matrix elements to the calculationmore » of the 4He total photoabsorption cross section and electric dipole polarizability. All observables are calculated within the ab initio no-core shell model. Furthermore, we find that, although seemingly small, the effects of evolved operators on the photoabsorption cross section are comparable in magnitude to the correction produced by including the chiral three-nucleon force and cannot be neglected.« less

  8. Verification of Anderson Superexchange in MnO via Magnetic Pair Distribution Function Analysis and ab initio Theory

    NASA Astrophysics Data System (ADS)

    Frandsen, Benjamin A.; Brunelli, Michela; Page, Katharine; Uemura, Yasutomo J.; Staunton, Julie B.; Billinge, Simon J. L.

    2016-05-01

    We present a temperature-dependent atomic and magnetic pair distribution function (PDF) analysis of neutron total scattering measurements of antiferromagnetic MnO, an archetypal strongly correlated transition-metal oxide. The known antiferromagnetic ground-state structure fits the low-temperature data closely with refined parameters that agree with conventional techniques, confirming the reliability of the newly developed magnetic PDF method. The measurements performed in the paramagnetic phase reveal significant short-range magnetic correlations on a ˜1 nm length scale that differ substantially from the low-temperature long-range spin arrangement. Ab initio calculations using a self-interaction-corrected local spin density approximation of density functional theory predict magnetic interactions dominated by Anderson superexchange and reproduce the measured short-range magnetic correlations to a high degree of accuracy. Further calculations simulating an additional contribution from a direct exchange interaction show much worse agreement with the data. The Anderson superexchange model for MnO is thus verified by experimentation and confirmed by ab initio theory.

  9. Comparison between phenomenological and ab-initio reaction and relaxation models in DSMC

    NASA Astrophysics Data System (ADS)

    Sebastião, Israel B.; Kulakhmetov, Marat; Alexeenko, Alina

    2016-11-01

    New state-specific vibrational-translational energy exchange and dissociation models, based on ab-initio data, are implemented in direct simulation Monte Carlo (DSMC) method and compared to the established Larsen-Borgnakke (LB) and total collision energy (TCE) phenomenological models. For consistency, both the LB and TCE models are calibrated with QCT-calculated O2+O data. The model comparison test cases include 0-D thermochemical relaxation under adiabatic conditions and 1-D normal shockwave calculations. The results show that both the ME-QCT-VT and LB models can reproduce vibrational relaxation accurately but the TCE model is unable to reproduce nonequilibrium rates even when it is calibrated to accurate equilibrium rates. The new reaction model does capture QCT-calculated nonequilibrium rates. For all investigated cases, we discuss the prediction differences based on the new model features.

  10. Ab initio Potential Energy Surface for H-H2

    NASA Technical Reports Server (NTRS)

    Partridge, Harry; Bauschlicher, Charles W., Jr.; Stallcop, James R.; Levin, Eugene

    1993-01-01

    Ab initio calculations employing large basis sets are performed to determine an accurate potential energy surface for H-H2 interactions for a broad range of separation distances. At large distances, the spherically averaged potential determined from the calculated energies agrees well with the corresponding results determined from dispersion coefficients; the van der Waals well depth is predicted to be 75 +/- (mu)E(sub h). Large basis sets have also been applied to reexamine the accuracy of theoretical repulsive potential energy surfaces. Multipolar expansions of the computed H-H2 potential energy surface are reported for four internuclear separation distances (1.2, 1.401, 1.449, and 1.7a(sub 0) of the hydrogen molecule. The differential elastic scattering cross section calculated from the present results is compared with the measurements from a crossed beam experiment.

  11. Experimental and Ab Initio Studies of the HDO Absorption Spectrum in the 13165-13500 1/cm Spectral Region

    NASA Technical Reports Server (NTRS)

    Schwenke, David; Naumenko, Olga; Bertseva, Elena; Campargue, Alain; Arnold, James O. (Technical Monitor)

    2000-01-01

    The HDO absorption spectrum has been recorded in the 13165 - 13500 cm(exp-1) spectral region by Intracavity Laser Absorption Spectroscopy. The spectrum (615 lines), dominated by the 2n2 + 3n3 and n1+3n3 bands was assigned and modeled leading to the derivation of 196 accurate energy levels of the (103) and (023) vibrational states. Finally, 150 of these levels have been reproduced by an effective Hamiltonian involving two vibrational dark states interacting with the (023) and ( 103) bright states. The rms deviation achieved by variation of 28 parameters is 0.05-1 cm, compared to an averaged experimental uncertainty of 0.007-1 cm, indicating the limit of validity of the effective Hamiltonian approach for HDO at high vibrational excitation. The predictions of previous ab initio calculations of the HDO spectrum were extensively used in the assignment process. The particular spectral region under consideration has been used to test and discuss the improvements of new ab initio calculations recently performed on the basis of the same potential energy surface but with an improved dipole moment surface. The improvements concern both the energy levels and the line intensities. In particular, the strong hybrid character of the n1+3n3 band is very well accounted for by the the new ab initio calculations.

  12. Theoretical study of the changes in the vibrational characteristics arising from the hydrogen bonding between Vitamin C ( L-ascorbic acid) and H 2O

    NASA Astrophysics Data System (ADS)

    Dimitrova, Yordanka

    2006-02-01

    The vibrational characteristics (vibrational frequencies, infrared intensities and Raman activities) for the hydrogen-bonded system of Vitamin C ( L-ascorbic acid) with five water molecules have been predicted using ab initio SCF/6-31G(d, p) calculations and DFT (BLYP) calculations with 6-31G(d, p) and 6-31++G(d, p) basis sets. The changes in the vibrational characteristics from free monomers to a complex have been calculated. The ab initio and BLYP calculations show that the complexation between Vitamin C and five water molecules leads to large red shifts of the stretching vibrations for the monomer bonds involved in the hydrogen bonding and very strong increase in their IR intensity. The predicted frequency shifts for the stretching vibrations from Vitamin C taking part in the hydrogen bonding are up to -508 cm -1. The magnitude of the wavenumber shifts is indicative of relatively strong OH···H hydrogen-bonded interactions. In the same time the IR intensity and Raman activity of these vibrations increase upon complexation. The IR intensity increases dramatically (up to 12 times) and Raman activity increases up to three times. The ab initio and BLYP calculations show, that the symmetric OH vibrations of water molecules are more sensitive to the complexation. The hydrogen bonding leads to very large red shifts of these vibrations and very strong increase in their IR intensity. The asymmetric OH stretching vibrations of water, free from hydrogen bonding are less sensitive to the complexation than the hydrogen-bonded symmetric O sbnd H stretching vibrations. The increases of the IR intensities for these vibrations are lower and red shifts are negligible.

  13. Accurate thermoelastic tensor and acoustic velocities of NaCl

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marcondes, Michel L., E-mail: michel@if.usp.br; Chemical Engineering and Material Science, University of Minnesota, Minneapolis, 55455; Shukla, Gaurav, E-mail: shukla@physics.umn.edu

    Despite the importance of thermoelastic properties of minerals in geology and geophysics, their measurement at high pressures and temperatures are still challenging. Thus, ab initio calculations are an essential tool for predicting these properties at extreme conditions. Owing to the approximate description of the exchange-correlation energy, approximations used in calculations of vibrational effects, and numerical/methodological approximations, these methods produce systematic deviations. Hybrid schemes combining experimental data and theoretical results have emerged as a way to reconcile available information and offer more reliable predictions at experimentally inaccessible thermodynamics conditions. Here we introduce a method to improve the calculated thermoelastic tensor bymore » using highly accurate thermal equation of state (EoS). The corrective scheme is general, applicable to crystalline solids with any symmetry, and can produce accurate results at conditions where experimental data may not exist. We apply it to rock-salt-type NaCl, a material whose structural properties have been challenging to describe accurately by standard ab initio methods and whose acoustic/seismic properties are important for the gas and oil industry.« less

  14. Charge transport in organic molecular semiconductors from first principles: The bandlike hole mobility in a naphthalene crystal

    NASA Astrophysics Data System (ADS)

    Lee, Nien-En; Zhou, Jin-Jian; Agapito, Luis A.; Bernardi, Marco

    2018-03-01

    Predicting charge transport in organic molecular crystals is notoriously challenging. Carrier mobility calculations in organic semiconductors are dominated by quantum chemistry methods based on charge hopping, which are laborious and only moderately accurate. We compute from first principles the electron-phonon scattering and the phonon-limited hole mobility of naphthalene crystal in the framework of ab initio band theory. Our calculations combine GW electronic bandstructures, ab initio electron-phonon scattering, and the Boltzmann transport equation. The calculated hole mobility is in very good agreement with experiment between 100 -300 K , and we can predict its temperature dependence with high accuracy. We show that scattering between intermolecular phonons and holes regulates the mobility, though intramolecular phonons possess the strongest coupling with holes. We revisit the common belief that only rigid molecular motions affect carrier dynamics in organic molecular crystals. Our paper provides a quantitative and rigorous framework to compute charge transport in organic crystals and is a first step toward reconciling band theory and carrier hopping computational methods.

  15. Accurate classical short-range forces for the study of collision cascades in Fe–Ni–Cr

    DOE PAGES

    Béland, Laurent Karim; Tamm, Artur; Mu, Sai; ...

    2017-05-10

    The predictive power of a classical molecular dynamics simulation is largely determined by the physical validity of its underlying empirical potential. In the case of high-energy collision cascades, it was recently shown that correctly modeling interactions at short distances is necessary to accurately predict primary damage production. An ab initio based framework is introduced for modifying an existing embedded-atom method FeNiCr potential to handle these short-range interactions. Density functional theory is used to calculate the energetics of two atoms approaching each other, embedded in the alloy, and to calculate the equation of state of the alloy as it is compressed.more » The pairwise terms and the embedding terms of the potential are modi ed in accordance with the ab initio results. Using this reparametrized potential, collision cascades are performed in Ni 50Fe 50, Ni 80Cr 20 and Ni 33Fe 33Cr 33. The simulations reveal that alloying Ni and NiCr to Fe reduces primary damage production, in agreement with some previous calculations. Alloying Ni and NiFe to Cr does not reduce primary damage production, in contradiction with previous calculations.« less

  16. Diffusion Monte Carlo calculations of Xenon and Krypton at High Pressure

    NASA Astrophysics Data System (ADS)

    Shulenburger, Luke; Mattsson, Thomas R.

    2011-06-01

    Ab initio calculations based on density functional theory (DFT) have proven a valuable tool in understanding the properties of materials at extreme conditions. However, there are entire classes of materials where the current limitations of DFT cast doubt upon the predictive power of the method. These include so called strongly correlated systems and materials where van der Waals forces are important. Diffusion Monte Carlo (DMC) can treat materials with a different class of approximations that have generally proven to be more accurate. The use of DMC together with DFT may therefore improve the predictive capability of the ab initio calculation of materials at extreme conditions. We present two examples of this approach. In the first we use DMC total energies to address the discrepancy between DFT and diamond anvil cell melt curves of Xe. In the second, DMC is used to address the choice of density functional used in calculations of the Kr hugoniot. Sandia National Laboratories is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under Contract No. DE-AC04-94AL85000. Belonoshko et al. PRB 74, 054114 (2006).

  17. Towards predictive many-body calculations of phonon-limited carrier mobilities in semiconductors

    NASA Astrophysics Data System (ADS)

    Poncé, Samuel; Margine, Elena R.; Giustino, Feliciano

    2018-03-01

    We probe the accuracy limit of ab initio calculations of carrier mobilities in semiconductors, within the framework of the Boltzmann transport equation. By focusing on the paradigmatic case of silicon, we show that fully predictive calculations of electron and hole mobilities require many-body quasiparticle corrections to band structures and electron-phonon matrix elements, the inclusion of spin-orbit coupling, and an extremely fine sampling of inelastic scattering processes in momentum space. By considering all these factors we obtain excellent agreement with experiment, and we identify the band effective masses as the most critical parameters to achieve predictive accuracy. Our findings set a blueprint for future calculations of carrier mobilities, and pave the way to engineering transport properties in semiconductors by design.

  18. Topological Semimetals Studied by Ab Initio Calculations

    NASA Astrophysics Data System (ADS)

    Hirayama, Motoaki; Okugawa, Ryo; Murakami, Shuichi

    2018-04-01

    In topological semimetals such as Weyl, Dirac, and nodal-line semimetals, the band gap closes at points or along lines in k space which are not necessarily located at high-symmetry positions in the Brillouin zone. Therefore, it is not straightforward to find these topological semimetals by ab initio calculations because the band structure is usually calculated only along high-symmetry lines. In this paper, we review recent studies on topological semimetals by ab initio calculations. We explain theoretical frameworks which can be used for the search for topological semimetal materials, and some numerical methods used in the ab initio calculations.

  19. Ground and excited states of NH4: Electron propagator and quantum defect analysis

    NASA Astrophysics Data System (ADS)

    Ortiz, J. V.; Martín, I.; Velasco, A. M.; Lavín, C.

    2004-05-01

    Vertical excitation energies of the Rydberg radical NH4 are inferred from ab initio electron propagator calculations on the electron affinities of NH4+. The adiabatic ionization energy of NH4 is evaluated with coupled-cluster calculations. These predictions provide optimal parameters for the molecular-adapted quantum defect orbital method, which is used to determine Einstein emission coefficients and radiative lifetimes. Comparisons with spectroscopic data and previous calculations are discussed.

  20. Molecular simulation of the thermophysical properties and phase behaviour of impure CO2 relevant to CCS.

    PubMed

    Cresswell, Alexander J; Wheatley, Richard J; Wilkinson, Richard D; Graham, Richard S

    2016-10-20

    Impurities from the CCS chain can greatly influence the physical properties of CO 2 . This has important design, safety and cost implications for the compression, transport and storage of CO 2 . There is an urgent need to understand and predict the properties of impure CO 2 to assist with CCS implementation. However, CCS presents demanding modelling requirements. A suitable model must both accurately and robustly predict CO 2 phase behaviour over a wide range of temperatures and pressures, and maintain that predictive power for CO 2 mixtures with numerous, mutually interacting chemical species. A promising technique to address this task is molecular simulation. It offers a molecular approach, with foundations in firmly established physical principles, along with the potential to predict the wide range of physical properties required for CCS. The quality of predictions from molecular simulation depends on accurate force-fields to describe the interactions between CO 2 and other molecules. Unfortunately, there is currently no universally applicable method to obtain force-fields suitable for molecular simulation. In this paper we present two methods of obtaining force-fields: the first being semi-empirical and the second using ab initio quantum-chemical calculations. In the first approach we optimise the impurity force-field against measurements of the phase and pressure-volume behaviour of CO 2 binary mixtures with N 2 , O 2 , Ar and H 2 . A gradient-free optimiser allows us to use the simulation itself as the underlying model. This leads to accurate and robust predictions under conditions relevant to CCS. In the second approach we use quantum-chemical calculations to produce ab initio evaluations of the interactions between CO 2 and relevant impurities, taking N 2 as an exemplar. We use a modest number of these calculations to train a machine-learning algorithm, known as a Gaussian process, to describe these data. The resulting model is then able to accurately predict a much broader set of ab initio force-field calculations at comparatively low numerical cost. Although our method is not yet ready to be implemented in a molecular simulation, we outline the necessary steps here. Such simulations have the potential to deliver first-principles simulation of the thermodynamic properties of impure CO 2 , without fitting to experimental data.

  1. The Application of Some Hartree-Fock Model Calculation to the Analysis of Atomic and Free-Ion Optical Spectra

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hayhurst, Thomas Laine

    1980-08-06

    Techniques for applying ab-initio calculations to the is of atomic spectra are investigated, along with the relationship between the semi-empirical and ab-initio forms of Slater-Condon theory. Slater-Condon theory is reviewed with a focus on the essential features that lead to the effective Hamiltonians associated with the semi-empirical form of the theory. Ab-initio spectroscopic parameters are calculated from wavefunctions obtained via self-consistent field methods, while multi-configuration Hamiltonian matrices are constructed and diagonalized with computer codes written by Robert Cowan of Los Alamos Scientific Laboratory. Group theoretical analysis demonstrates that wavefunctions more general than Slater determinants (i.e. wavefunctions with radial correlations betweenmore » electrons) lead to essentially the same parameterization of effective Hamiltonians. In the spirit of this analysis, a strategy is developed for adjusting ab-initio values of the spectroscopic parameters, reproducing parameters obtained by fitting the corresponding effective Hamiltonian. Secondary parameters are used to "screen" the calculated (primary) spectroscopic parameters, their values determined by least squares. Extrapolations of the secondary parameters determined from analyzed spectra are attempted to correct calculations of atoms and ions without experimental levels. The adjustment strategy and extrapolations are tested on the K I sequence from K 0+ through Fe 7+, fitting to experimental levels for V 4+, and Cr 5+; unobserved levels and spectra are predicted for several members of the sequence. A related problem is also discussed: Energy levels of the Uranium hexahalide complexes, (UX 6) 2- for X= F, Cl, Br, and I, are fit to an effective Hamiltonian (the f 2 configuration in O h symmetry) with corrections proposed by Brian Judd.« less

  2. Ab initio simulations of molten Ni alloys

    NASA Astrophysics Data System (ADS)

    Woodward, Christopher; Asta, Mark; Trinkle, Dallas R.; Lill, James; Angioletti-Uberti, Stefano

    2010-06-01

    Convective instabilities responsible for misoriented grains in directionally solidified turbine airfoils are produced by variations in liquid-metal density with composition and temperature across the solidification zone. Here, fundamental properties of molten Ni-based alloys, required for modeling these instabilities, are calculated using ab initio molecular dynamics simulations. Equations of state are derived from constant number-volume-temperature ensembles at 1830 and 1750 K for elemental, binary (Ni-X, X=Al, W, Re, and Ta) and ternary (Ni-Al-X, X=W, Re, and Ta) Ni alloys. Calculated molar volumes agree to within 0.6%-1.8% of available measurements. Predictions are used to investigate the range of accuracy of a parameterization of molar volumes with composition and temperature based on measurements of binary alloys. Structural analysis reveals a pronounced tendency for icosahedral short-range order for Ni-W and Ni-Re alloys and the calculations provide estimates of diffusion rates and their dependence on compositions and temperature.

  3. THE AB INITIO CALCULATION OF THE DYNAMICAL AND THE THERMODYNAMIC PROPERTIES OF THE ZINC-BLENDE GaX (X=N, P, As AND Sb)

    NASA Astrophysics Data System (ADS)

    Bouhadda, Y.; Bentabet, A.; Fenineche, N. E.; Boudouma, Y.

    2012-12-01

    By this work, we aim to study the dynamical and the thermodynamic properties of the zinc-blende GaX (X = N, P, As and Sb) using the Ab initio simulation method. Indeed, we studied the lattice dynamics, the constant-volume specific heat (Cv), the internal energy (U), the entropy (S) and the free energy (F). The observed differences between the properties of GaX elements were discussed. Our results and the available literature data (theoretical and experimental) seems to be in good agreement. Moreover, Cv, U, F and S were calculated by using the harmonic approximation in the calculation of the dynamic lattice vibration. The good agreement between our results of both the phonon frequency, the constant-volume specific heat and the experimental data allows us to conclude that our results of S, U and F of GaX were well predicted.

  4. Ab-initio calculations of electronic, transport, and structural properties of boron phosphide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ejembi, J. I.; Nwigboji, I. H.; Franklin, L.

    2014-09-14

    We present results from ab-initio, self-consistent density functional theory calculations of electronic and related properties of zinc blende boron phosphide (zb-BP). We employed a local density approximation potential and implemented the linear combination of atomic orbitals formalism. This technique follows the Bagayoko, Zhao, and Williams method, as enhanced by the work of Ekuma and Franklin. The results include electronic energy bands, densities of states, and effective masses. The calculated band gap of 2.02 eV, for the room temperature lattice constant of a=4.5383 Å, is in excellent agreement with the experimental value of 2.02±0.05 eV. Our result for the bulk modulus,more » 155.7 GPa, agrees with experiment (152–155 GPa). Our predictions for the equilibrium lattice constant and the corresponding band gap, for very low temperatures, are 4.5269 Å and 2.01 eV, respectively.« less

  5. Covariant density functional theory: predictive power and first attempts of a microscopic derivation

    NASA Astrophysics Data System (ADS)

    Ring, Peter

    2018-05-01

    We discuss systematic global investigations with modern covariant density functionals. The number of their phenomenological parameters can be reduced considerable by using microscopic input from ab-initio calculations in nuclear matter. The size of the tensor force is still an open problem. Therefore we use the first full relativistic Brueckner-Hartree-Fock calculations in finite nuclear systems in order to study properties of such functionals, which cannot be obtained from nuclear matter calculations.

  6. Accurate ab initio dipole moment surfaces of ozone: First principle intensity predictions for rotationally resolved spectra in a large range of overtone and combination bands.

    PubMed

    Tyuterev, Vladimir G; Kochanov, Roman V; Tashkun, Sergey A

    2017-02-14

    Ab initio dipole moment surfaces (DMSs) of the ozone molecule are computed using the MRCI-SD method with AVQZ, AV5Z, and VQZ-F12 basis sets on a dense grid of about 1950 geometrical configurations. The analytical DMS representation used for the fit of ab initio points provides better behavior for large nuclear displacements than that of previous studies. Various DMS models were derived and tested. Vibration-rotation line intensities of 16 O 3 were calculated from these ab initio surfaces by the variational method using two different potential functions determined in our previous works. For the first time, a very good agreement of first principle calculations with the experiment was obtained for the line-by-line intensities in rotationally resolved ozone spectra in a large far- and mid-infrared range. This includes high overtone and combination bands up to ΔV = 6. A particular challenge was a correct description of the B-type bands (even ΔV 3 values) that represented major difficulties for the previous ab initio investigations and for the empirical spectroscopic models. The major patterns of various B-type bands were correctly described without empirically adjusted dipole moment parameters. For the 10 μm range, which is of key importance for the atmospheric ozone retrievals, our ab initio intensity results are within the experimental error margins. The theoretical values for the strongest lines of the ν 3 band lie in general between two successive versions of HITRAN (HIgh-resolution molecular TRANsmission) empirical database that corresponded to most extended available sets of observations. The overall qualitative agreement in a large wavenumber range for rotationally resolved cold and hot ozone bands up to about 6000 cm -1 is achieved here for the first time. These calculations reveal that several weak bands are yet missing from available spectroscopic databases.

  7. Quantum calculations of the IR spectrum of liquid water using ab initio and model potential and dipole moment surfaces and comparison with experiment.

    PubMed

    Liu, Hanchao; Wang, Yimin; Bowman, Joel M

    2015-05-21

    The calculation and characterization of the IR spectrum of liquid water have remained a challenge for theory. In this paper, we address this challenge using a combination of ab initio approaches, namely, a quantum treatment of IR spectrum using the ab initio WHBB water potential energy surface and a refined ab initio dipole moment surface. The quantum treatment is based on the embedded local monomer method, in which the three intramolecular modes of each embedded H2O monomer are fully coupled and also coupled singly to each of six intermolecular modes. The new dipole moment surface consists of a previous spectroscopically accurate 1-body dipole moment surface and a newly fitted ab initio intrinsic 2-body dipole moment. A detailed analysis of the new dipole moment surface in terms of the coordinate dependence of the effective atomic charges is done along with tests of it for the water dimer and prism hexamer double-harmonic spectra against direct ab initio calculations. The liquid configurations are taken from previous molecular dynamics calculations of Skinner and co-workers, using the TIP4P plus E3B rigid monomer water potential. The IR spectrum of water at 300 K in the range of 0-4000 cm(-1) is calculated and compared with experiment, using the ab initio WHBB potential and new ab initio dipole moment, the q-TIP4P/F potential, which has a fixed-charged description of the dipole moment, and the TTM3-F potential and dipole moment surfaces. The newly calculated ab initio spectrum is in very good agreement with experiment throughout the above spectral range, both in band positions and intensities. This contrasts to results with the other potentials and dipole moments, especially the fixed-charge q-TIP4P/F model, which gives unrealistic intensities. The calculated ab initio spectrum is analyzed by examining the contribution of various transitions to each band.

  8. Quantum calculations of the IR spectrum of liquid water using ab initio and model potential and dipole moment surfaces and comparison with experiment

    NASA Astrophysics Data System (ADS)

    Liu, Hanchao; Wang, Yimin; Bowman, Joel M.

    2015-05-01

    The calculation and characterization of the IR spectrum of liquid water have remained a challenge for theory. In this paper, we address this challenge using a combination of ab initio approaches, namely, a quantum treatment of IR spectrum using the ab initio WHBB water potential energy surface and a refined ab initio dipole moment surface. The quantum treatment is based on the embedded local monomer method, in which the three intramolecular modes of each embedded H2O monomer are fully coupled and also coupled singly to each of six intermolecular modes. The new dipole moment surface consists of a previous spectroscopically accurate 1-body dipole moment surface and a newly fitted ab initio intrinsic 2-body dipole moment. A detailed analysis of the new dipole moment surface in terms of the coordinate dependence of the effective atomic charges is done along with tests of it for the water dimer and prism hexamer double-harmonic spectra against direct ab initio calculations. The liquid configurations are taken from previous molecular dynamics calculations of Skinner and co-workers, using the TIP4P plus E3B rigid monomer water potential. The IR spectrum of water at 300 K in the range of 0-4000 cm-1 is calculated and compared with experiment, using the ab initio WHBB potential and new ab initio dipole moment, the q-TIP4P/F potential, which has a fixed-charged description of the dipole moment, and the TTM3-F potential and dipole moment surfaces. The newly calculated ab initio spectrum is in very good agreement with experiment throughout the above spectral range, both in band positions and intensities. This contrasts to results with the other potentials and dipole moments, especially the fixed-charge q-TIP4P/F model, which gives unrealistic intensities. The calculated ab initio spectrum is analyzed by examining the contribution of various transitions to each band.

  9. Fully Ab-Initio Determination of the Thermoelectric Properties of Half-Heusler NiTiSn: Crucial Role of Interstitial Ni Defects.

    PubMed

    Berche, Alexandre; Jund, Philippe

    2018-05-23

    For thermoelectric applications, ab initio methods generally fail to predict the transport properties of the materials because of their inability to predict properly the carrier concentrations that control the electronic properties. In this work, a methodology to fill in this gap is applied on the NiTiSn half Heusler phase. For that, we show that the main defects act as donor of electrons and are responsible of the electronic properties of the material. Indeed, the presence of Ni i interstitial defects explains the experimental valence band spectrum and its associated band gap reported in the literature. Moreover, combining the DOS of the solid solutions with the determination of the energy of formation of charged defects, we show that Ni i defects are also responsible of the measured carrier concentration in experimentally supposed "pure" NiTiSn compounds. Subsequently the thermoelectric properties of NiTiSn can be calculated using a fully ab initio description and an overall correct agreement with experiments is obtained. This methodology can be extended to predict the result of extrinsic doping and thus to select the most efficient dopant for specific thermoelectric applications.

  10. Ab initio, density functional theory, and continuum solvation model prediction of the product ratio in the S(N)2 reaction of NO2(-) with CH3CH2Cl and CH3CH2Br in DMSO solution.

    PubMed

    Westphal, Eduard; Pliego, Josefredo R

    2007-10-11

    The reaction pathways for the interaction of the nitrite ion with ethyl chloride and ethyl bromide in DMSO solution were investigated at the ab initio level of theory, and the solvent effect was included through the polarizable continuum model. The performance of BLYP, GLYP, XLYP, OLYP, PBE0, B3PW91, B3LYP, and X3LYP density functionals has been tested. For the ethyl bromide case, our best ab initio calculations at the CCSD(T)/aug-cc-pVTZ level predicts product ratio of 73% and 27% for nitroethane and ethyl nitrite, respectively, which can be compared with the experimental values of 67% and 33%. This translates to an error in the relative DeltaG* of only 0.17 kcal mol(-1). No functional is accurate (deviation <0.5 kcal mol(-1)) for predicting relative DeltaG*. The hybrid X3LYP functional presents the best performance with deviation 0.82 kcal mol(-1). The present problem should be included in the test set used for the evaluation of new functionals.

  11. State of the art for ab initio vs empirical potentials for HeH+ (2e-), BeH+ (4e-), BeH (5e-), Li2 (6e-) and BH (6e-)

    NASA Astrophysics Data System (ADS)

    Dattani, Nike

    For large internuclear distances, the potential energy between two atoms is known analytically, based on constants that are calculated from atomic ab initio rather than molecular ab initio. This analytic form can be built into models for molecular potentials that are fitted to spectroscopic data. Such empirical potentials constitute the most accurate molecular potentials known. For HeH+, and BeH+, the long-range form of the potential is based only on the polarizabilities for He and H respectively, for which we have included up to 4th order QED corrections. For BeH, the best ab initio potential matches all but one observed vibrational spacing to < 1 cm- accuracy, and for Li2 the discrepancy in the spacings is < 0.08 cm-1 for all vibrational levels. But experimental methods such as photoassociation require the absolute energies, not spacings, and these are still several in several cm-1 disagreement. So empirical potentials are still the only reliable way to predict energies for few-electron systems. We also give predictions for various unobserved ''halo nucleonic molecules'' containing the ''halo'' isotopes: 6,8He, 11Li, 11,14Be and 8 , 17 , 19B.

  12. Torsional anharmonicity in the conformational thermodynamics of flexible molecules

    NASA Astrophysics Data System (ADS)

    Miller, Thomas F., III; Clary, David C.

    We present an algorithm for calculating the conformational thermodynamics of large, flexible molecules that combines ab initio electronic structure theory calculations with a torsional path integral Monte Carlo (TPIMC) simulation. The new algorithm overcomes the previous limitations of the TPIMC method by including the thermodynamic contributions of non-torsional vibrational modes and by affordably incorporating the ab initio calculation of conformer electronic energies, and it improves the conventional ab initio treatment of conformational thermodynamics by accounting for the anharmonicity of the torsional modes. Using previously published ab initio results and new TPIMC calculations, we apply the algorithm to the conformers of the adrenaline molecule.

  13. Verification of Anderson Superexchange in MnO via Magnetic Pair Distribution Function Analysis and ab initio Theory.

    PubMed

    Frandsen, Benjamin A; Brunelli, Michela; Page, Katharine; Uemura, Yasutomo J; Staunton, Julie B; Billinge, Simon J L

    2016-05-13

    We present a temperature-dependent atomic and magnetic pair distribution function (PDF) analysis of neutron total scattering measurements of antiferromagnetic MnO, an archetypal strongly correlated transition-metal oxide. The known antiferromagnetic ground-state structure fits the low-temperature data closely with refined parameters that agree with conventional techniques, confirming the reliability of the newly developed magnetic PDF method. The measurements performed in the paramagnetic phase reveal significant short-range magnetic correlations on a ∼1  nm length scale that differ substantially from the low-temperature long-range spin arrangement. Ab initio calculations using a self-interaction-corrected local spin density approximation of density functional theory predict magnetic interactions dominated by Anderson superexchange and reproduce the measured short-range magnetic correlations to a high degree of accuracy. Further calculations simulating an additional contribution from a direct exchange interaction show much worse agreement with the data. The Anderson superexchange model for MnO is thus verified by experimentation and confirmed by ab initio theory.

  14. Verification of Anderson superexchange in MnO via magnetic pair distribution function analysis and ab initio theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Benjamin A. Frandsen; Brunelli, Michela; Page, Katharine

    Here, we present a temperature-dependent atomic and magnetic pair distribution function (PDF) analysis of neutron total scattering measurements of antiferromagnetic MnO, an archetypal strongly correlated transition-metal oxide. The known antiferromagnetic ground-state structure fits the low-temperature data closely with refined parameters that agree with conventional techniques, confirming the reliability of the newly developed magnetic PDF method. The measurements performed in the paramagnetic phase reveal significant short-range magnetic correlations on a ~1 nm length scale that differ substantially from the low-temperature long-range spin arrangement. Ab initio calculations using a self-interaction-corrected local spin density approximation of density functional theory predict magnetic interactions dominatedmore » by Anderson superexchange and reproduce the measured short-range magnetic correlations to a high degree of accuracy. Further calculations simulating an additional contribution from a direct exchange interaction show much worse agreement with the data. Furthermore, the Anderson superexchange model for MnO is thus verified by experimentation and confirmed by ab initio theory.« less

  15. Verification of Anderson superexchange in MnO via magnetic pair distribution function analysis and ab initio theory

    DOE PAGES

    Benjamin A. Frandsen; Brunelli, Michela; Page, Katharine; ...

    2016-05-11

    Here, we present a temperature-dependent atomic and magnetic pair distribution function (PDF) analysis of neutron total scattering measurements of antiferromagnetic MnO, an archetypal strongly correlated transition-metal oxide. The known antiferromagnetic ground-state structure fits the low-temperature data closely with refined parameters that agree with conventional techniques, confirming the reliability of the newly developed magnetic PDF method. The measurements performed in the paramagnetic phase reveal significant short-range magnetic correlations on a ~1 nm length scale that differ substantially from the low-temperature long-range spin arrangement. Ab initio calculations using a self-interaction-corrected local spin density approximation of density functional theory predict magnetic interactions dominatedmore » by Anderson superexchange and reproduce the measured short-range magnetic correlations to a high degree of accuracy. Further calculations simulating an additional contribution from a direct exchange interaction show much worse agreement with the data. Furthermore, the Anderson superexchange model for MnO is thus verified by experimentation and confirmed by ab initio theory.« less

  16. Prediction of probable mutations in influenza virus hemagglutinin protein based on large-scale ab initio fragment molecular orbital calculations.

    PubMed

    Yoshioka, Akio; Fukuzawa, Kaori; Mochizuki, Yuji; Yamashita, Katsumi; Nakano, Tatsuya; Okiyama, Yoshio; Nobusawa, Eri; Nakajima, Katsuhisa; Tanaka, Shigenori

    2011-09-01

    Ab initio electronic-state calculations for influenza virus hemagglutinin (HA) trimer complexed with Fab antibody were performed on the basis of the fragment molecular orbital (FMO) method at the second and third-order Møller-Plesset (MP2 and MP3) perturbation levels. For the protein complex containing 2351 residues and 36,160 atoms, the inter-fragment interaction energies (IFIEs) were evaluated to illustrate the effective interactions between all the pairs of amino acid residues. By analyzing the calculated data on the IFIEs, we first discussed the interactions and their fluctuations between multiple domains contained in the trimer complex. Next, by combining the IFIE data between the Fab antibody and each residue in the HA antigen with experimental data on the hemadsorption activity of HA mutants, we proposed a protocol to predict probable mutations in HA. The proposed protocol based on the FMO-MP2.5 calculation can explain the historical facts concerning the actual mutations after the emergence of A/Hong Kong/1/68 influenza virus with subtype H3N2, and thus provides a useful methodology to enumerate those residue sites likely to mutate in the future. Copyright © 2011 Elsevier Inc. All rights reserved.

  17. Ab Initio Prediction of the Structural, Electronic, Elastic, and Thermoelectric Properties of Half-Heusler Ternary Compounds TiIrX (X = As and Sb)

    NASA Astrophysics Data System (ADS)

    Chibani, S.; Arbouche, O.; Zemouli, M.; Amara, K.; Benallou, Y.; Azzaz, Y.; Belgoumène, B.; Bentayeb, A.; Ameri, M.

    2018-01-01

    The structural, electronic, elastic, and thermoelectric properties of TiIrX (X = As and Sb) half-Heusler compounds with 18 valence electrons were studied using density functional theory. The generalized gradient approximation of Perdew-Burke and Ernzerhof used for calculation of the structural parameters and elastic properties of TiIrAs and TiIrSb denotes that the computed lattice constants were in excellent agreement with the available experimental data and previous theoretical works. Furthermore, the calculated elastic constants for both compounds satisfy the Born criteria indicating their mechanical stabilities. The modified Becke-Johnson potential (TB-mBJ) was used to provide a better description of the electronic structures, which indicate that both compounds are narrow-gap semiconductors. Additionally, the investigations of thermoelectric performance were carried out using the results of ab initio band-structure calculations and the semi-classical Boltzmann theory within the constant relaxation time approximations. The predicted values of the figure of merit ZT e are close to unity at room temperature. This reveals that TiIrAs and TiIrSb compounds are excellent candidates for practical applications in the thermoelectric devices.

  18. An Ab Initio Study of CuCO

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles W., Jr.

    1994-01-01

    Modified coupled-pair functional (MCPF) calculations and coupled cluster singles and doubles calculations, which include a perturbational estimate of the connected triples [CCSD(T)], yield a bent structure for CuCO, thus, supporting the prediction of a nonlinear structure based on density functional (DF) calculations. Our best estimate for the binding energy is 4.9 +/- 1.4 kcal/mol; this is in better agreement with experiment (6.0 +/- 1.2 kcal/mol) than the DF approach which yields a value (19.6 kcal/mol) significantly larger than experiment.

  19. Perturbative and Ab-Initio Calculations of Electrical Susceptibilities of Atoms

    NASA Astrophysics Data System (ADS)

    Spott, Andrew

    Perturbative nonlinear optics consists of many powerful predictive theoretical methods, including the perturbative series of observables related to the interaction of light with matter. The light intensity limits of such series have been studied in the past for highly nonlinear processes such as above threshold ionization and high harmonic generation. A more recent debate focuses on the limits of applicability of perturbation theory for the nonlinear electrical susceptibility and the nonlinear index of refraction of atoms, which are important parameters to study, for example, for filamentation of laser pulses in nonlinear media. In this thesis we analyze theoretical predictions for the electrical susceptibility of atoms for the transition from the perturbative to the nonperturbative intensity regime. To this end, we apply a numerical basis state method that allows us to perform respective calculations in the framework of perturbation theory as well as using ab-initio methods. The results let us identify the intensity at which the application of perturbation theory breaks down. Furthermore, we provide an analysis of the nonlinear susceptibility as a function of time during the interaction with the laser pulse and find that theoretical predictions are in good agreement with recent experimental data.

  20. Communication: Prediction of the rate constant of bimolecular hydrogen exchange in the water dimer using an ab initio potential energy surface.

    PubMed

    Wang, Yimin; Bowman, Joel M; Huang, Xinchuan

    2010-09-21

    We report the properties of two novel transition states of the bimolecular hydrogen exchange reaction in the water dimer, based on an ab initio water dimer potential [A. Shank et al., J. Chem. Phys. 130, 144314 (2009)]. The realism of the two transition states is assessed by comparing structures, energies, and harmonic frequencies obtained from the potential energy surface and new high-level ab initio calculations. The rate constant for the exchange is obtained using conventional transition state theory with a tunneling correction. We employ a one-dimensional approach for the tunneling calculations using a relaxed potential from the full-dimensional potential in the imaginary-frequency normal mode of the saddle point, Q(im). The accuracy of this one-dimensional approach has been shown for the ground-state tunneling splittings for H and D-transfer in malonaldehyde and for the D+H(2) reaction [Y. Wang and J. M. Bowman, J. Chem. Phys. 129, 121103 (2008)]. This approach is applied to calculate the rate constant for the H(2)O+H(2)O exchange and also for H(2)O+D(2)O→2HOD. The local zero-point energy is also obtained using diffusion Monte Carlo calculations in the space of real-frequency-saddle-point normal modes, as a function of Q(im).

  1. New analytical model for the ozone electronic ground state potential surface and accurate ab initio vibrational predictions at high energy range.

    PubMed

    Tyuterev, Vladimir G; Kochanov, Roman V; Tashkun, Sergey A; Holka, Filip; Szalay, Péter G

    2013-10-07

    An accurate description of the complicated shape of the potential energy surface (PES) and that of the highly excited vibration states is of crucial importance for various unsolved issues in the spectroscopy and dynamics of ozone and remains a challenge for the theory. In this work a new analytical representation is proposed for the PES of the ground electronic state of the ozone molecule in the range covering the main potential well and the transition state towards the dissociation. This model accounts for particular features specific to the ozone PES for large variations of nuclear displacements along the minimum energy path. The impact of the shape of the PES near the transition state (existence of the "reef structure") on vibration energy levels was studied for the first time. The major purpose of this work was to provide accurate theoretical predictions for ozone vibrational band centres at the energy range near the dissociation threshold, which would be helpful for understanding the very complicated high-resolution spectra and its analyses currently in progress. Extended ab initio electronic structure calculations were carried out enabling the determination of the parameters of a minimum energy path PES model resulting in a new set of theoretical vibrational levels of ozone. A comparison with recent high-resolution spectroscopic data on the vibrational levels gives the root-mean-square deviations below 1 cm(-1) for ozone band centres up to 90% of the dissociation energy. New ab initio vibrational predictions represent a significant improvement with respect to all previously available calculations.

  2. Chiral self-recognition: direct spectroscopic detection of the homochiral and heterochiral dimers of propylene oxide in the gas phase.

    PubMed

    Su, Zheng; Borho, Nicole; Xu, Yunjie

    2006-12-27

    In this report, we describe rotational spectroscopic and high-level ab initio studies of the 1:1 chiral molecular adduct of propylene oxide dimer. The complexes are bound by weak secondary hydrogen bonds, that is, the O(epoxy)...H-C noncovalent interactions. Six homochiral and six heterochiral conformers were predicted to be the most stable configurations where each monomer acts as a proton acceptor and a donor simultaneously, forming two six- or five-membered intermolecular hydrogen-bonded rings. Rotational spectra of six, that is, three homochiral and heterochiral conformer pairs, out of the eight conformers that were predicted to have sufficiently large permanent electric dipole moments were measured and analyzed. The relative conformational stability order and the signs of the chiral recognition energies of the six conformers were determined experimentally and were compared to the ab initio computational results. The experimental observations and the ab initio calculations suggest that the concerted effort of these weak secondary hydrogen bonds can successfully lock the subunits in a particular orientation and that the overall binding strength is comparable to a classic hydrogen bond.

  3. Prediction of B1 to B10 phase transition in LuN under pressure: An ab-initio investigation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sahoo, B. D., E-mail: bdsahoo@barc.gov.in; Mukherjee, D.; Joshi, K. D.

    2016-05-23

    Ab-initio total energy calculations have been performed in lutetium nitride (LuN) as a function of hydrostatic compression to understand the high pressure behavior of this compound. Our calculations predict a phase transition from ambient rocksalt type structure (B1 phase) to a tetragonal structure (B10 phase) at ~ 240 GPa. The phase transition has been identified as first order in nature with volume discontinuity of ~ 6%. The predicted high pressure phase has been found to be stable up to at least 400 GPa, the maximum pressure up to which calculations have been performed.Further, to substantiate the results of static lattice calculations analysismore » of lattice dynamic stability of B1 and B10 phase has been carried out at different pressures. Apart from this, we have analyzed the lattice dynamic stability CsCl type (B2) phase around the 240 GPa, the pressure reported for B1 to B2 transition in previous all-electron calculations by Gupta et al. 2013. We find that the B2 structure is lattice dynamically unstable at this pressure and remains unstable up to ~ 400 GPa, ruling out the possibility of B1 to B2 phase transition at least up to ~ 400 GPa. Further, the theoretically determined equation of state has been utilized to derive various physical quantities such as zero pressure equilibrium volume, bulk modulus, and pressure derivative of bulk modulus of B1 phase at ambient conditions.« less

  4. The Band Structure of Polymers: Its Calculation and Interpretation. Part 2. Calculation.

    ERIC Educational Resources Information Center

    Duke, B. J.; O'Leary, Brian

    1988-01-01

    Details ab initio crystal orbital calculations using all-trans-polyethylene as a model. Describes calculations based on various forms of translational symmetry. Compares these calculations with ab initio molecular orbital calculations discussed in a preceding article. Discusses three major approximations made in the crystal case. (CW)

  5. Heats of Segregation of BCC Binaries from ab Initio and Quantum Approximate Calculations

    NASA Technical Reports Server (NTRS)

    Good, Brian S.

    2004-01-01

    We compare dilute-limit heats of segregation for selected BCC transition metal binaries computed using ab initio and quantum approximate energy methods. Ab initio calculations are carried out using the CASTEP plane-wave pseudopotential computer code, while quantum approximate results are computed using the Bozzolo-Ferrante-Smith (BFS) method with the most recent LMTO-based parameters. Quantum approximate segregation energies are computed with and without atomistic relaxation, while the ab initio calculations are performed without relaxation. Results are discussed within the context of a segregation model driven by strain and bond-breaking effects. We compare our results with full-potential quantum calculations and with available experimental results.

  6. Quantum calculations of the IR spectrum of liquid water using ab initio and model potential and dipole moment surfaces and comparison with experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Hanchao; Wang, Yimin; Bowman, Joel M.

    2015-05-21

    The calculation and characterization of the IR spectrum of liquid water have remained a challenge for theory. In this paper, we address this challenge using a combination of ab initio approaches, namely, a quantum treatment of IR spectrum using the ab initio WHBB water potential energy surface and a refined ab initio dipole moment surface. The quantum treatment is based on the embedded local monomer method, in which the three intramolecular modes of each embedded H{sub 2}O monomer are fully coupled and also coupled singly to each of six intermolecular modes. The new dipole moment surface consists of a previousmore » spectroscopically accurate 1-body dipole moment surface and a newly fitted ab initio intrinsic 2-body dipole moment. A detailed analysis of the new dipole moment surface in terms of the coordinate dependence of the effective atomic charges is done along with tests of it for the water dimer and prism hexamer double-harmonic spectra against direct ab initio calculations. The liquid configurations are taken from previous molecular dynamics calculations of Skinner and co-workers, using the TIP4P plus E3B rigid monomer water potential. The IR spectrum of water at 300 K in the range of 0–4000 cm{sup −1} is calculated and compared with experiment, using the ab initio WHBB potential and new ab initio dipole moment, the q-TIP4P/F potential, which has a fixed-charged description of the dipole moment, and the TTM3-F potential and dipole moment surfaces. The newly calculated ab initio spectrum is in very good agreement with experiment throughout the above spectral range, both in band positions and intensities. This contrasts to results with the other potentials and dipole moments, especially the fixed-charge q-TIP4P/F model, which gives unrealistic intensities. The calculated ab initio spectrum is analyzed by examining the contribution of various transitions to each band.« less

  7. Structures and vibrational spectra of pinacol.. 1. Infrared and matrix infrared spectra of monomeric pinacol. Ab initio calculations on conformers and vibrational frequencies

    NASA Astrophysics Data System (ADS)

    Dahlqvist, Martti; Hotokka, Matti; Räsänen, Markku

    1998-04-01

    The infrared spectra of monomeric pinacol molecules (2,3-dimethyl-2,3-butanediol; (CH 3) 2C(OH)C(OH)(CH 3) 2) have been recorded in the gas phase and dilute nonpolar solutions, and in an argon matrix. The vibrational data are consistent with the intramolecularly hydrogen-bonded G-type (gauche with respect to the central C-C bond) conformers and there is no evidence for the T-type (trans with respect to the central C-C bond) conformers, which have been observed in the condensed phases. This was confirmed by studying the infrared region 835-815 cm -1, which was found to be the most indicative to show spectral changes within the type of the conformers. In this region the band of the T-type conformers (assigned to the hybridized asymmetric vibration of the central CC and CO stretching modes) disappears when going from the condensed phases to phases, where pinacol molecules are monomeric. Ab initio HF/6-311G** (MP2/6-311G**) calculations support the experimental findings; the calculated relative energies for the tGg', gGg', g'Gg', tTt, and gTg' conformers are 0.0 (0.0), 3.4 (3.4), 5.1 (5.9), 7.9 (11.3), and 12.0 (14.0) kJ mol -1, respectively. Consequently, only the G-type conformers are sufficiently populated to give rise to observable spectral lines. Both experimental findings and theoretical calculations demonstrated that the bands in the argon matrix spectrum of pinacol are due to the most stable tGg' conformer. Although the ab initio calculations predict that also the gGg' and g'Gg' conformers are present in the gas phase and in dilute nonpolar solutions their existence could not be confirmed experimentally. Hence, we conclude that the conformation sensitive bands may coincide in the spectra. The HF/6-311G** ab initio calculations for vibrational frequencies of pinacol are consistent with this conclusion, suggesting only small differences between the wavenumbers of the G-type conformers. Pinacol does not show infrared-induced photorotamerization in the low-temperature argon matrix. This is due to the high energy barrier to internal rotation around the central C-C bond as demonstrated by ab initio calculations. Assignments of the vibrational bands were made with the aid of computer animations of the ab initio calculated harmonic vibrations, common group frequencies, and analogy conclusions from related compounds. The deuterium derivatives [(CD 3) 2C(OH)C(OH)(CD 3) 2 and (CH 3) 2C(OD)C(OD)(CH 3) 2] of pinacol were also utilized even though their spectra were recorded only in the condensed phases.

  8. Band structure and thermoelectric properties of half-Heusler semiconductors from many-body perturbation theory

    NASA Astrophysics Data System (ADS)

    Zahedifar, Maedeh; Kratzer, Peter

    2018-01-01

    Various ab initio approaches to the band structure of A NiSn and A CoSb half-Heusler compounds (A = Ti, Zr, Hf) are compared and their consequences for the prediction of thermoelectric properties are explored. Density functional theory with the generalized-gradient approximation (GGA), as well as the hybrid density functional HSE06 and ab initio many-body perturbation theory in the form of the G W0 approach, are employed. The G W0 calculations confirm the trend of a smaller band gap (0.75 to 1.05 eV) in A NiSn compared to the A CoSb compounds (1.13 to 1.44 eV) already expected from the GGA calculations. While in A NiSn materials the G W0 band gap is 20% to 50% larger than in HSE06, the fundamental gap of A CoSb materials is smaller in G W0 compared to HSE06. This is because G W0 , similar to PBE, locates the valence band maximum at the L point of the Brillouin zone, whereas it is at the Γ point in the HSE06 calculations. The differences are attributed to the observation that the relative positions of the d levels of the transition metal atoms vary among the different methods. Using the calculated band structures and scattering rates taking into account the band effective masses at the extrema, the Seebeck coefficients, thermoelectric power factors, and figures of merit Z T are predicted for all six half-Heusler compounds. Comparable performance is predicted for the n -type A NiSn materials, whereas clear differences are found for the p -type A CoSb materials. Using the most reliable G W0 electronic structure, ZrCoSb is predicted to be the most efficient material with a power factor of up to 0.07 W/(K2 m) at a temperature of 600 K. We find strong variations among the different ab initio methods not only in the prediction of the maximum power factor and Z T value of a given material, but also in comparing different materials to each other, in particular in the p -type thermoelectric materials. Thus we conclude that the most elaborate, but also most costly G W0 method is required to perform a reliable computational search for the optimum material.

  9. First principles calculation of the structural, electronic, and magnetic properties of Au-Pd atomic chains

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dave, Mudra R., E-mail: mdave-phy@yahoo.co.in; Sharma, A. C.

    2015-06-24

    The structural, electronic and magnetic properties of free standing Au-Pd bimetallic atomic chain is studied using ab-initio method. It is found that electronic and magnetic properties of chains depend on position of atoms and number of atoms. Spin polarization factor for different atomic configuration of atomic chain is calculated predicting a half metallic behavior. It suggests a total spin polarised transport in these chains.

  10. Ab initio quantum chemical study of electron transfer in carboranes

    NASA Astrophysics Data System (ADS)

    Pati, Ranjit; Pineda, Andrew C.; Pandey, Ravindra; Karna, Shashi P.

    2005-05-01

    The electron transfer (ET) properties of 10- and 12-vertex carboranes are investigated by the ab initio Hartree-Fock method within the Marcus-Hush (MH) two-state model and the Koopman theorem (KT) approach. The calculated value of the ET coupling matrix element, VAB, is consistently higher in the KT approach than in the MH two-state model. For the carborane molecules functionalized by -CH 2 groups at C-vertices, VAB strongly depends on the relative orientation of the planes containing the terminal -CH 2 groups. The predicted conformation dependence of VAB offers a molecular mechanism to control ET between two active centers in molecular systems.

  11. Jet-cooled laser-induced dispersed fluorescence spectroscopy of TaN: Observation of a3Δ and A1Δ states

    NASA Astrophysics Data System (ADS)

    Mukund, Sheo; Bhattacharyya, Soumen; Nakhate, S. G.

    2016-07-01

    Laser-induced dispersed fluorescence spectra of TaN molecules, produced in a free-jet apparatus, have been studied. Two spin components of the lowest-lying a3Δ state along with their vibrational structure have been observed. The A1Δ state, which was predicted earlier by ab initio calculation has also been observed. The X1Σ+ ground state vibrational progression up to v = 9 has been recorded. The experimentally determined term energies and vibrational constants at equilibrium for the ground and a3Δ states are in fairly good agreement with the ab initio values reported earlier.

  12. Plasmons in quasi-two-dimensional metals

    NASA Astrophysics Data System (ADS)

    da Jornada, Felipe H.; Xian, Lede; Sen, H. Sener; Rubio, Angel; Louie, Steven G.

    We employ ab initio density-functional theory (DFT) and GW calculations to understand and predict the plasmon dispersion in quasi-two-dimensional (quasi-2D) metals. We show that, unlike what is found in idealized 2D electron gases, plasmons are virtually dispersionless in real quasi-2D metals for a wide range of excitation wave vectors that are experimentally accessible. We further develop a simpler model that captures this plasmon dispersion in quasi-2D metals and which depends on a single parameter: the characteristic screening length due to interband transitions. Our ab initio calculations further predict that monolayer metallic transition metal dichalcogenides are excellent candidates to explore these dispersionless (flat) plasmons: having large excitation energy that is away from the Landau damping regions makes them ideal systems to support long-lived, spatially-localized 2D plasmons which are highly tunable with substrate. This work is supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division; the National Science Foundation; the European Research Council project (ERC-2015-AdG-694097), and the AFOSR Grant No. FA2386-15-1-0006 AOARD 144088.

  13. Impact of aluminum doping on the thermo-physical properties of refractory medium-entropy alloys

    NASA Astrophysics Data System (ADS)

    Tian, Fuyang; Wang, Yang; Vitos, Levente

    2017-01-01

    We investigate the elastic moduli, ideal tensile strength, and thermodynamic properties of TiVNb and AlTiVNb refractory medium-entropy alloys (HEAs) by using ab initio alloy theories: the coherent potential approximation (CPA), the special quasi-random supercell (SQS), and a 432-atom supercell (SC). We find that with increasing number of alloy components, the SQS elastic constants become sensitive to the supercell size. The predicted elastic moduli are consistent with the available experiments. Aluminum doping decreases the stability of the body centered cubic phase. The ideal tensile strength calculation indicates that adding equiatomic Al to TiVNb random solid solution increases the intrinsic strength (ideal strain increase from 9.6% to 11.8%) and decreases the intrinsic strength (from 9.6 to 5.7 GPa). Based on the equation of states calculated by the CPA and SC methods, the thermodynamic properties obtained by the two ab initio methods are assessed. The L21 AlTiVNb (Ti-Al-V-Nb) alloy is predicted to be thermodynamically and dynamically stable with respect to the solid solution.

  14. Discovering charge density functionals and structure-property relationships with PROPhet: A general framework for coupling machine learning and first-principles methods

    DOE PAGES

    Kolb, Brian; Lentz, Levi C.; Kolpak, Alexie M.

    2017-04-26

    Modern ab initio methods have rapidly increased our understanding of solid state materials properties, chemical reactions, and the quantum interactions between atoms. However, poor scaling often renders direct ab initio calculations intractable for large or complex systems. There are two obvious avenues through which to remedy this problem: (i) develop new, less expensive methods to calculate system properties, or (ii) make existing methods faster. This paper describes an open source framework designed to pursue both of these avenues. PROPhet (short for PROPerty Prophet) utilizes machine learning techniques to find complex, non-linear mappings between sets of material or system properties. Themore » result is a single code capable of learning analytical potentials, non-linear density functionals, and other structure-property or property-property relationships. These capabilities enable highly accurate mesoscopic simulations, facilitate computation of expensive properties, and enable the development of predictive models for systematic materials design and optimization. Here, this work explores the coupling of machine learning to ab initio methods through means both familiar (e.g., the creation of various potentials and energy functionals) and less familiar (e.g., the creation of density functionals for arbitrary properties), serving both to demonstrate PROPhet’s ability to create exciting post-processing analysis tools and to open the door to improving ab initio methods themselves with these powerful machine learning techniques.« less

  15. Discovering charge density functionals and structure-property relationships with PROPhet: A general framework for coupling machine learning and first-principles methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kolb, Brian; Lentz, Levi C.; Kolpak, Alexie M.

    Modern ab initio methods have rapidly increased our understanding of solid state materials properties, chemical reactions, and the quantum interactions between atoms. However, poor scaling often renders direct ab initio calculations intractable for large or complex systems. There are two obvious avenues through which to remedy this problem: (i) develop new, less expensive methods to calculate system properties, or (ii) make existing methods faster. This paper describes an open source framework designed to pursue both of these avenues. PROPhet (short for PROPerty Prophet) utilizes machine learning techniques to find complex, non-linear mappings between sets of material or system properties. Themore » result is a single code capable of learning analytical potentials, non-linear density functionals, and other structure-property or property-property relationships. These capabilities enable highly accurate mesoscopic simulations, facilitate computation of expensive properties, and enable the development of predictive models for systematic materials design and optimization. Here, this work explores the coupling of machine learning to ab initio methods through means both familiar (e.g., the creation of various potentials and energy functionals) and less familiar (e.g., the creation of density functionals for arbitrary properties), serving both to demonstrate PROPhet’s ability to create exciting post-processing analysis tools and to open the door to improving ab initio methods themselves with these powerful machine learning techniques.« less

  16. Single-ion 4f element magnetism: an ab-initio look at Ln(COT)2(-).

    PubMed

    Gendron, Frédéric; Pritchard, Benjamin; Bolvin, Hélène; Autschbach, Jochen

    2015-12-14

    The electron densities associated with the Ln 4f shell, and spin and orbital magnetizations ('magnetic moment densities'), are investigated for the Ln(COT)2(-) series. The densities are obtained from ab-initio calculations including spin-orbit coupling. For Ln = Ce, Pr the magnetizations are also derived from crystal field models and shown to agree with the ab-initio results. Analysis of magnetizations from ab-initio calculations may be useful in assisting research on single molecule magnets.

  17. Derivation of force field parameters for SnO2-H2O surface systems from plane-wave density functional theory calculations.

    PubMed

    Bandura, A V; Sofo, J O; Kubicki, J D

    2006-04-27

    Plane-wave density functional theory (DFT-PW) calculations were performed on bulk SnO2 (cassiterite) and the (100), (110), (001), and (101) surfaces with and without H2O present. A classical interatomic force field has been developed to describe bulk SnO2 and SnO2-H2O surface interactions. Periodic density functional theory calculations using the program VASP (Kresse et al., 1996) and molecular cluster calculations using Gaussian 03 (Frisch et al., 2003) were used to derive the parametrization of the force field. The program GULP (Gale, 1997) was used to optimize parameters to reproduce experimental and ab initio results. The experimental crystal structure and elastic constants of SnO2 are reproduced reasonably well with the force field. Furthermore, surface atom relaxations and structures of adsorbed H2O molecules agree well between the ab initio and force field predictions. H2O addition above that required to form a monolayer results in consistent structures between the DFT-PW and classical force field results as well.

  18. Ab Initio Potential Energy Surface for H-H2

    NASA Technical Reports Server (NTRS)

    Patridge, Harry; Bauschlicher, Charles W., Jr.; Stallcop, James R.; Levin, Eugene

    1993-01-01

    Ab initio calculations employing large basis sets are performed to determine an accurate potential energy surface for H-H2 interactions for a broad range of separation distances. At large distances, the spherically averaged potential determined from the calculated energies agrees well with the corresponding results determined from dispersion coefficients; the van der Waals well depth is predicted to be 75 +/- 3 micro E(h). Large basis sets have also been applied to reexamine the accuracy of theoretical repulsive potential energy surfaces (25-70 kcal/mol above the H-H2 asymptote) at small interatomic separations; the Boothroyd, Keogh, Martin, and Peterson (BKMP) potential energy surface is found to agree with results of the present calculations within the expected uncertainty (+/- 1 kcal/mol) of the fit. Multipolar expansions of the computed H-H2 potential energy surface are reported for four internuclear separation distances (1.2, 1.401, 1.449, and 1.7a(0)) of the hydrogen molecule. The differential elastic scattering cross section calculated from the present results is compared with the measurements from a crossed beam experiment.

  19. Anharmonic force field and vibrational dynamics of CH2F2 up to 5000 cm(-1) studied by Fourier transform infrared spectroscopy and state-of-the-art ab initio calculations.

    PubMed

    Tasinato, Nicola; Regini, Giorgia; Stoppa, Paolo; Pietropolli Charmet, Andrea; Gambi, Alberto

    2012-06-07

    Difluoromethane (CH(2)F(2), HFC-32) is a molecule used in refrigerant mixtures as a replacement of the more environmentally hazardous, ozone depleting, chlorofluorocarbons. On the other hand, presenting strong vibration-rotation bands in the 9 μm atmospheric window, it is a greenhouse gas which contributes to global warming. In the present work, the vibrational and ro-vibrational properties of CH(2)F(2), providing basic data for its atmospheric modeling, are studied in detail by coupling medium resolution Fourier transform infrared spectroscopy to high-level electronic structure ab initio calculations. Experimentally a full quantum assignment and accurate integrated absorption cross sections are obtained up to 5000 cm(-1). Ab initio calculations are carried out by using CCSD(T) theory and large basis sets of either the correlation consistent or atomic natural orbital hierarchies. By using vibrational perturbation theory to second order a complete set of vibrational and ro-vibrational parameters is derived from the ab initio quartic anharmonic force fields, which well compares with the spectroscopic constants retrieved experimentally. An excellent agreement between theory and experiment is achieved for vibrational energy levels and integrated absorption cross sections: transition frequencies up to four quanta of vibrational excitation are reproduced with a root mean square deviation (RMSD) of 7 cm(-1) while intensities are predicted within few km mol(-1) from the experiment. Basis set performances and core correlation effects are discussed throughout the paper. Particular attention is focused in the understanding of the anharmonic couplings which rule the vibrational dynamics of the |ν(1)>, |2ν(8)>, |2ν(2)> three levels interacting system. The reliability of the potential energy and dipole moment surfaces in reproducing the vibrational eigenvalues and intensities as well as in modeling the vibrational and ro-vibrational mixings over the whole 400-5000 cm(-1) region is also demonstrated by spectacular spectral simulations carried out by using the ro-vibrational Hamiltonian constants, and the relevant coupling terms, obtained from the perturbation treatment of the ab initio anharmonic force field. The present results suggest CH(2)F(2) as a prototype molecule to test ab initio calculations and theoretical models.

  20. Anharmonic force field and vibrational dynamics of CH2F2 up to 5000 cm-1 studied by Fourier transform infrared spectroscopy and state-of-the-art ab initio calculations

    NASA Astrophysics Data System (ADS)

    Tasinato, Nicola; Regini, Giorgia; Stoppa, Paolo; Charmet, Andrea Pietropolli; Gambi, Alberto

    2012-06-01

    Difluoromethane (CH2F2, HFC-32) is a molecule used in refrigerant mixtures as a replacement of the more environmentally hazardous, ozone depleting, chlorofluorocarbons. On the other hand, presenting strong vibration-rotation bands in the 9 μm atmospheric window, it is a greenhouse gas which contributes to global warming. In the present work, the vibrational and ro-vibrational properties of CH2F2, providing basic data for its atmospheric modeling, are studied in detail by coupling medium resolution Fourier transform infrared spectroscopy to high-level electronic structure ab initio calculations. Experimentally a full quantum assignment and accurate integrated absorption cross sections are obtained up to 5000 cm-1. Ab initio calculations are carried out by using CCSD(T) theory and large basis sets of either the correlation consistent or atomic natural orbital hierarchies. By using vibrational perturbation theory to second order a complete set of vibrational and ro-vibrational parameters is derived from the ab initio quartic anharmonic force fields, which well compares with the spectroscopic constants retrieved experimentally. An excellent agreement between theory and experiment is achieved for vibrational energy levels and integrated absorption cross sections: transition frequencies up to four quanta of vibrational excitation are reproduced with a root mean square deviation (RMSD) of 7 cm-1 while intensities are predicted within few km mol-1 from the experiment. Basis set performances and core correlation effects are discussed throughout the paper. Particular attention is focused in the understanding of the anharmonic couplings which rule the vibrational dynamics of the |ν1⟩, |2ν8⟩, |2ν2⟩ three levels interacting system. The reliability of the potential energy and dipole moment surfaces in reproducing the vibrational eigenvalues and intensities as well as in modeling the vibrational and ro-vibrational mixings over the whole 400-5000 cm-1 region is also demonstrated by spectacular spectral simulations carried out by using the ro-vibrational Hamiltonian constants, and the relevant coupling terms, obtained from the perturbation treatment of the ab initio anharmonic force field. The present results suggest CH2F2 as a prototype molecule to test ab initio calculations and theoretical models.

  1. Ab Initio-Based Predictions of Hydrocarbon Combustion Chemistry

    DTIC Science & Technology

    2015-07-15

    There are two prime objectives of the research. One is to develop and apply efficient methods for using ab initio potential energy surfaces (PESs...31-Mar-2015 Approved for Public Release; Distribution Unlimited Final Report: Ab Initio -Based Predictions of Hydrocarbon Combustion Chemistry The...Office P.O. Box 12211 Research Triangle Park, NC 27709-2211 hydrocarbon combustion, ab initio quantum chemistry, potential energy surfaces, chemical

  2. Formation of novel rare-gas-containing molecules by molecular photodissociation in clusters.

    PubMed

    Cohen, A; Niv, M Y; Gerber, R B

    2001-01-01

    Recent work by Räsänen and coworkers showed that photolysis of hydrides in rare-gas matrices results in part in formation of novel, rare-gas-containing molecules. Thus, photolysis of HCl in Xe and of H2O in Xe result respectively in formation of HXeCl and HXeOH in the Xe matrices. Ab initio calculations show that the compounds HRgY so formed are stable in isolation, and that by the strength and nature of the bonding these are molecules, very different from the corresponding weakly bound clusters Rg...HY. This paper presents a study of the formation mechanism of HRgY following the photolysis of HY in clusters Rgn(HY). Calculations are described for HXeCl, as a representative example. Potential energy surfaces that govern the formation of HXeCl in the photolysis of HCl in xenon clusters are obtained, and the dynamics on these surfaces is analyzed, partly with insight from trajectories of molecular dynamics simulations. The potential surfaces are obtained by a new variant of the DIM (diatomics in molecules) and DIIS (diatomics in ionic systems) models. Non-adiabatic couplings are also obtained. The main results are: (1) Properties of HXeCl predicted by the DIM-DIIS model are in reasonable accord with results of ab initio calculations. (2) The potential along the isomerization path HXeCl-->Xe...HCl predicted by DIM is in semiquantitative accord with the ab initio results. (3) Surface-hopping molecular dynamics simulations of the process in clusters, with "on the fly" calculations of the DIM-DIIS potentials and non-adiabatic couplings are computationally feasible. (4) Formation of HXeCl, following photolysis of HCl in Xe54(HCl), requires cage-exit of the H atom as a precondition. The H atom and the Cl can then attack the same Xe atom on opposite sides, leading to charge transfer and production of the ionic HXeCl. (5) Non-adiabatic processes play an important role, both in the reagent configurations, and at the charge-transfer stage. The results open the way to predictions of the formation of new HRgY species.

  3. Development of a machine learning potential for graphene

    NASA Astrophysics Data System (ADS)

    Rowe, Patrick; Csányi, Gábor; Alfè, Dario; Michaelides, Angelos

    2018-02-01

    We present an accurate interatomic potential for graphene, constructed using the Gaussian approximation potential (GAP) machine learning methodology. This GAP model obtains a faithful representation of a density functional theory (DFT) potential energy surface, facilitating highly accurate (approaching the accuracy of ab initio methods) molecular dynamics simulations. This is achieved at a computational cost which is orders of magnitude lower than that of comparable calculations which directly invoke electronic structure methods. We evaluate the accuracy of our machine learning model alongside that of a number of popular empirical and bond-order potentials, using both experimental and ab initio data as references. We find that whilst significant discrepancies exist between the empirical interatomic potentials and the reference data—and amongst the empirical potentials themselves—the machine learning model introduced here provides exemplary performance in all of the tested areas. The calculated properties include: graphene phonon dispersion curves at 0 K (which we predict with sub-meV accuracy), phonon spectra at finite temperature, in-plane thermal expansion up to 2500 K as compared to NPT ab initio molecular dynamics simulations and a comparison of the thermally induced dispersion of graphene Raman bands to experimental observations. We have made our potential freely available online at [http://www.libatoms.org].

  4. A full-dimensional ab initio potential energy surface and rovibrational energies of the Ar–HF complex

    NASA Astrophysics Data System (ADS)

    Huang, Jing; Zhou, Yanzi; Xie, Daiqian

    2018-04-01

    We report a new full-dimensional ab initio potential energy surface for the Ar-HF van der Waals complex at the level of coupled-cluster singles and doubles with noniterative inclusion of connected triples levels [CCSD(T)] using augmented correlation-consistent quintuple-zeta basis set (aV5Z) plus bond functions. Full counterpoise correction was employed to correct the basis-set superposition error. The hypersurface was fitted using artificial neural network method with a root mean square error of 0.1085 cm-1 for more than 8000 ab initio points. The complex was found to prefer a linear Ar-H-F equilibrium structure. The three-dimensional discrete variable representation method and the Lanczos propagation algorithm were then employed to calculate the rovibrational states without separating inter- and intra- molecular nuclear motions. The calculated vibrational energies of Ar-HF differ from the experiment values within about 1 cm-1 on the first four HF vibrational states, and the predicted pure rotational energies on (0000) and (1000) vibrational states are deviated from the observed value by about 1%, which shows the accuracy of our new PES.

  5. AB INITIO EQUATIONS OF STATE FOR HYDROGEN (H-REOS.3) AND HELIUM (He-REOS.3) AND THEIR IMPLICATIONS FOR THE INTERIOR OF BROWN DWARFS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Becker, Andreas; Lorenzen, Winfried; Schöttler, Manuel

    2015-01-01

    We present new equations of state (EOSs) for hydrogen and helium covering a wide range of temperatures from 60 K to 10{sup 7} K and densities from 10{sup –10} g cm{sup –3} to 10{sup 3} g cm{sup –3}. They include an extended set of ab initio EOS data for the strongly correlated quantum regime with an accurate connection to data derived from other approaches for the neighboring regions. We compare linear mixing isotherms based on our EOS tables with available real mixture data. A first important astrophysical application of this new EOS data is the calculation of interior models formore » Jupiter and comparison with recent results. Second, mass-radius relations are calculated for Brown Dwarfs (BDs) which we compare with predictions derived from the widely used EOS of Saumon, Chabrier, and van Horn. Furthermore, we calculate interior models for typical BDs with different masses, namely, Corot-3b, Gliese-229b, and Corot-15b, and the giant planet KOI-889b. The predictions for the central pressures and densities differ by up to 10% dependent on the EOS used. Our EOS tables are made available in the supplemental material of this paper.« less

  6. Renormalized coupled cluster approaches in the cluster-in-molecule framework: predicting vertical electron binding energies of the anionic water clusters (H2O)(n)(-).

    PubMed

    Xu, Peng; Gordon, Mark S

    2014-09-04

    Anionic water clusters are generally considered to be extremely challenging to model using fragmentation approaches due to the diffuse nature of the excess electron distribution. The local correlation coupled cluster (CC) framework cluster-in-molecule (CIM) approach combined with the completely renormalized CR-CC(2,3) method [abbreviated CIM/CR-CC(2,3)] is shown to be a viable alternative for computing the vertical electron binding energies (VEBE). CIM/CR-CC(2,3) with the threshold parameter ζ set to 0.001, as a trade-off between accuracy and computational cost, demonstrates the reliability of predicting the VEBE, with an average percentage error of ∼15% compared to the full ab initio calculation at the same level of theory. The errors are predominantly from the electron correlation energy. The CIM/CR-CC(2,3) approach provides the ease of a black-box type calculation with few threshold parameters to manipulate. The cluster sizes that can be studied by high-level ab initio methods are significantly increased in comparison with full CC calculations. Therefore, the VEBE computed by the CIM/CR-CC(2,3) method can be used as benchmarks for testing model potential approaches in small-to-intermediate-sized water clusters.

  7. Prediction of possible CaMnO3 modifications using an ab initio minimization data-mining approach.

    PubMed

    Zagorac, Jelena; Zagorac, Dejan; Zarubica, Aleksandra; Schön, J Christian; Djuris, Katarina; Matovic, Branko

    2014-10-01

    We have performed a crystal structure prediction study of CaMnO3 focusing on structures generated by octahedral tilting according to group-subgroup relations from the ideal perovskite type (Pm\\overline 3 m), which is the aristotype of the experimentally known CaMnO3 compound in the Pnma space group. Furthermore, additional structure candidates have been obtained using data mining. For each of the structure candidates, a local optimization on the ab initio level using density-functional theory (LDA, hybrid B3LYP) and the Hartree--Fock (HF) method was performed, and we find that several of the modifications may be experimentally accessible. In the high-pressure regime, we identify a post-perovskite phase in the CaIrO3 type, not previously observed in CaMnO3. Similarly, calculations at effective negative pressure predict a phase transition from the orthorhombic perovskite to an ilmenite-type (FeTiO3) modification of CaMnO3.

  8. Origins of Singlet Fission in Solid Pentacene from an ab initio Green's Function Approach

    NASA Astrophysics Data System (ADS)

    Refaely-Abramson, Sivan; da Jornada, Felipe H.; Louie, Steven G.; Neaton, Jeffrey B.

    2017-12-01

    We develop a new first-principles approach to predict and understand rates of singlet fission with an ab initio Green's-function formalism based on many-body perturbation theory. Starting with singlet and triplet excitons computed from a G W plus Bethe-Salpeter equation approach, we calculate the exciton-biexciton coupling to lowest order in the Coulomb interaction, assuming a final state consisting of two noninteracting spin-correlated triplets with finite center-of-mass momentum. For crystalline pentacene, symmetries dictate that the only purely Coulombic fission decay process from a bright singlet state requires a final state consisting of two inequivalent nearly degenerate triplets of nonzero, equal and opposite, center-of-mass momenta. For such a process, we predict a singlet lifetime of 30-70 fs, in very good agreement with experimental data, indicating that this process can dominate singlet fission in crystalline pentacene. Our approach is general and provides a framework for predicting and understanding multiexciton interactions in solids.

  9. Ab initio density functional theory investigation of Li-intercalated silicon carbide nanotube bundles

    NASA Astrophysics Data System (ADS)

    Moradian, Rostam; Behzad, Somayeh; Chegel, Raad

    2009-06-01

    We present the results of ab initio density functional theory calculations on the energetic, and geometric and electronic structure of Li-intercalated ( 6,6) silicon carbide nanotube (SiCNT) bundles. Our results show that intercalation of lithium leads to the significant changes in the geometrical structure. The most prominent effect of Li intercalation on the electronic band structure is a shift of the Fermi energy which occurs as a result of charge transfer from lithium to the SiCNTs. All the Li-intercalated ( 6,6) SiCNT bundles are predicted to be metallic representing a substantial change in electronic properties relative to the undoped bundle, which is a wide band gap semiconductor. Both inside of the nanotube and the interstitial space are susceptible for intercalation. The present calculations suggest that the SiCNT bundle is a promising candidate for the anode material in battery applications.

  10. Boron monosulfide: Equation of state and pressure-induced phase transition

    NASA Astrophysics Data System (ADS)

    Cherednichenko, K. A.; Kruglov, I. A.; Oganov, A. R.; Le Godec, Y.; Mezouar, M.; Solozhenko, V. L.

    2018-04-01

    Quasi-hydrostatic compression of rhombohedral boron monosulfide (r-BS) has been studied up to 50 GPa at room temperature using diamond-anvil cells and angle-dispersive synchrotron X-ray diffraction. A fit of the experimental P-V data to the Vinet equation of state yields the bulk modulus B0 of 42.2(1.4) GPa and its first pressure derivative B0' of 7.6(2) that are in excellent agreement with our ab initio calculations. Formation of a new high-pressure phase of boron monosulfide (hp-BS) has been observed above 35 GPa. According to ab initio evolutionary crystal structure predictions combined with Rietveld refinement of high-pressure X-ray diffraction data, the structure of hp-BS has trigonal symmetry and belongs to the space group P-3m1. As it follows from the electron density of state calculations, the phase transformation is accompanied by an insulator-metal transition.

  11. The large amplitude motions of methylamine from the perspective of the highly correlated ab initio methods

    NASA Astrophysics Data System (ADS)

    Senent, M. L.

    2018-01-01

    CCSD(T)-F12 theory in connection with extended basis sets is employed to determine the electronic ground state spectroscopic parameters of methylamine at low temperatures. The geometry, the rotational constants, all the fundamental frequencies, the dipole moment and its components, and the centrifugal distortion constants, are provided. The ground vibrational state rotational constants were found to be A0 = 103067.15 MHz, B0 = 22588.29 MHz, and C0 = 21710.50 MHz and the dipole moment to be 1.4071D. Fermi displacements of the vibrational bands are predicted. The low vibrational energy levels corresponding to the large amplitude motions are determine variationally using a flexible three-dimensional model depending on three variables: the HNH bending, the NH2 wagging and the CH3 torsional coordinates. The computed levels are compared with previous experimental and calculated energies. Methylamine parameters are very sensitive to the level of ab initio calculations.

  12. Ab initio correlated calculations of rare-gas dimer quadrupoles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Donchev, Alexander G.

    2007-10-15

    This paper reports ab initio calculations of rare gas (RG=Kr, Ar, Ne, and He) dimer quadrupoles at the second order of Moeller-Plesset perturbation theory (MP2). The study reveals the crucial role of the dispersion contribution to the RG{sub 2} quadrupole in the neighborhood of the equilibrium dimer separation. The magnitude of the dispersion quadrupole is found to be much larger than that predicted by the approximate model of Hunt. As a result, the total MP2 quadrupole moment is significantly smaller than was assumed in virtually all previous related studies. An analytical model for the distance dependence of the RG{sub 2}more » quadrupole is proposed. The model is based on the effective-electron approach of Jansen, but replaces the original Gaussian approximation to the electron density in an RG atom by an exponential one. The role of the nonadditive contribution in RG{sub 3} quadrupoles is discussed.« less

  13. New force field for molecular simulation of guanidinium-based ionic liquids.

    PubMed

    Liu, Xiaomin; Zhang, Suojiang; Zhou, Guohui; Wu, Guangwen; Yuan, Xiaoliang; Yao, Xiaoqian

    2006-06-22

    An all-atom force field was proposed for a new class of room temperature ionic liquids (RTILs), N,N,N',N'-tetramethylguanidinium (TMG) RTILs. The model is based on the AMBER force field with modifications on several parameters. The refinements include (1) fitting the vibration frequencies for obtaining force coefficients of bonds and angles against the data obtained by ab initio calculations and/or by experiments and (2) fitting the torsion energy profiles of dihedral angles for obtaining torsion parameters against the data obtained by ab initio calculations. To validate the force field, molecular dynamics (MD) simulations at different temperatures were performed for five kinds of RTILs, where TMG acts as a cation and formate, lactate, perchlorate, trifluoroacetate, and trifluoromethylsulfonate act as anions. The predicted densities were in good agreement with the experimental data. Radial distribution functions (RDFs) and spatial distribution functions (SDFs) were investigated to depict the microscopic structures of the RTILs.

  14. DFT and ab initio study of the unimolecular decomposition of the lowest singlet and triplet states of nitromethane

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Manaa, M.R.; Fried, L.E.

    1998-11-26

    The fully optimized potential energy curves for the unimolecular decomposition of the lowest singlet and triplet states of nitromethane through the C-NO{sub 2} bond dissociation pathway are calculated using various DFT and high-level ab initio electronic structure methods. The authors perform gradient corrected density functional theory (DFT) and multiconfiguration self-consistent field (MCSCF) to conclusively demonstrate that the triplet state of nitromethane is bound. The adiabatic curve of this state exhibits a 33 kcal/mol energy barrier as determined at the MCSCF level. DFT methods locate this barrier at a shorter C-N bond distance with 12--16 kcal/mol lower energy than does MCSCF.more » In addition to MCSCF and DFT, quadratic configuration interactions with single and double substitutions (QCISD) calculations are also performed for the singlet curve. The potential energy profiles of this state predicted by FT methods based on Becke`s 1988 exchange functional differ by as much as 17 kcal/mol from the predictions of MCSCF and QCISD in the vicinity of the equilibrium structure. The computational methods predict bond dissociation energies 5--9 kcal/mol lower than the experimental value. DFT techniques based on Becke`s 3-parameter exchange functional show the best overall agreement with the higher level methods.« less

  15. Chromospheric heating by acoustic shocks - A confrontation of GHRS observations of Alpha Tauri (K5 III) with ab initio calculations

    NASA Technical Reports Server (NTRS)

    Judge, P. G.; Cuntz, M.

    1993-01-01

    We compare ab initio calculations of semiforbidden C II line profiles near 2325 A with recently published observations of the inactive red giant Alpha Tau (K5 III) obtained using the GHRS on board the Hubble Space Telescope. Our one-dimensional, time-dependent calculations assume that the chromosphere is heated by stochastic acoustic shocks generated by photospheric convection. We calculate various models using results from traditional (mixing length) convection zone calculations as input to hydrodynamical models. The semiforbidden C II line profiles and ratios provide sensitive diagnostics of chromospheric velocity fields, electron densities, and temperatures. We identify major differences between observed and computed line profiles which are related to basic gas dynamics and which are probably not due to technical modeling restrictions. If the GHRS observations are representative of chromospheric conditions at all epochs, then one (or more) of our model assumptions must be incorrect. Several possibilities are examined. We predict time variability of semiforbidden C II lines for comparison with observations. Based upon data from the IUE archives, we argue that photospheric motions associated with supergranulation or global pulsation modes are unimportant in heating the chromosphere of Alpha Tau.

  16. Ab-Initio Description and Prediction of Properties of Carbon-Based and Other Non-Metallic Materials

    NASA Technical Reports Server (NTRS)

    Bagayoko, D.; Zhao, G. L.; Hasan, S.

    2001-01-01

    We have resolved the long-standing problem consisting of 30%-50% theoretical underestimates of the band gaps of non-metallic materials. We describe the Bagayoko, Zhao, and Williams (BZW) method that rigorously circumvents the basis-set and variational effect presumed to be a cause of these underestimates. We present ab-initio, computational results that are in agreement with experiment for diamond (C), silicon (Si), silicon carbides (3C-SiC and 4H-SiC), and other semiconductors (GaN, BaTiO3, AlN, ZnSe, ZnO). We illustrate the predictive capability of the BZW method in the case of the newly discovered cubic phase of silicon nitride (c-Si3N4) and of selected carbon nanotabes [(10,0), and (8,4)]. Our conclusion underscores the inescapable need for the BZW method in ab-initio calculations that employ a basis set in a variational approach. Current nanoscale trends amplify this need. We estimate that the potential impact of applications of the BZW method in advancing our understanding of nonmetallic materials, in informing experiment, and particularly in guiding device design and fabrication is simply priceless.

  17. Predictions of a Large Magnetocaloric Effect in Co- and Cr-Substituted Heusler Alloys Using First-Principles and Monte Carlo Approaches

    NASA Astrophysics Data System (ADS)

    Sokolovskiy, Vladimir V.; Buchelnikov, Vasiliy D.; Zagrebin, Mikhail A.; Grünebohm, Anna; Entel, Peter

    The effect of Co- and Cr-doping on magnetic and magnetocaloric poperties of Ni-Mn-(In, Ga, Sn, and Al) Heusler alloys has been theoretically studied by combining first principles with Monte Carlo approaches. The magnetic and magnetocaloric properties are obtained as a function of temperature and magnetic field using a mixed type of Potts and Blume-Emery-Griffiths model where the model parameters are obtained from ab initio calculations. The Monte Carlo calculations allowed to make predictions of a giant inverse magnetocaloric effect in partially new hypothetical magnetic Heusler alloys across the martensitic transformation.

  18. Theoretical prediction and direct observation of the 9R structure in Ag

    NASA Astrophysics Data System (ADS)

    Ernst, F.; Finnis, M. W.; Hofmann, D.; Muschik, T.; Schönberger, U.; Wolf, U.; Methfessel, M.

    1992-07-01

    Molecular-dynamics simulations of the Σ3<110>(211) twin boundary in Ag predict a thin (1 nm) boundary phase of the 9R (α-Sm) structure. High-resolution electron microscopy shows the presence of the predicted structure. We also calculate the energy ab initio for several hypothetical structures of Cu and Ag. Low energies of the 9R structure and other polytypes, low experimental stacking-fault energies, and the hcp-fcc energy difference are correlated and explained in terms of an effective nearest-neighbor Ising interaction.

  19. Conformational Characteristics of Poly(tetrafluoroethylene) (PTFE) Based Upon Ab Initio Electronic Structure Calculations on Model Molecules

    NASA Technical Reports Server (NTRS)

    Smith, Grant D.; Jaffe, R. L.; Yoon, D. Y.; Arnold, James O. (Technical Monitor)

    1994-01-01

    Conformational energy contours of perfluoroalkanes, determined from ab initio calculations, confirm the well-known spitting of trans states into two minima at plus or minus 17 degrees but also show that the gauche states split as well, with minima at plus or minus 124 degrees and plus or minus 84 in order to relieve steric crowding. The directions of such split distortions from the perfectly staggered states are strongly coupled for adjacent pairs of bonds in a manner identical to the intradyad pair for poly (isobutylene) chains. These conformational characteristics are fully represented by a six-state rotational isomeric state (RIS) model for PTFE comprised of t(+), t(-), g(sup +)+, g(sup +)-, g(sup -) + and g(sup -)-states, located at the split energy minima. The resultant 6 x 6 statistical weight matrix is described by first-order interaction parameters for the g+(+) (ca. 0.6 kcal/mol) and g+- (ca. 2.0 kcal/mol) states, and second order parameters for the g(sup +)+g(sup +)+ (ca 0.6 kcal/mol) and g(sup +)+g(sup -)+ (ca. 1.0 kcal/mol) states. This six-state RIS model, without adjustment of the geometric or energy parameters as determined from the ab initio calculations, predicts the unperturbed chain dimensions and the fraction of gauche bonds as a function of temperature for PTFE in good agreement with available experimental values.

  20. Assessment and Validation of Machine Learning Methods for Predicting Molecular Atomization Energies.

    PubMed

    Hansen, Katja; Montavon, Grégoire; Biegler, Franziska; Fazli, Siamac; Rupp, Matthias; Scheffler, Matthias; von Lilienfeld, O Anatole; Tkatchenko, Alexandre; Müller, Klaus-Robert

    2013-08-13

    The accurate and reliable prediction of properties of molecules typically requires computationally intensive quantum-chemical calculations. Recently, machine learning techniques applied to ab initio calculations have been proposed as an efficient approach for describing the energies of molecules in their given ground-state structure throughout chemical compound space (Rupp et al. Phys. Rev. Lett. 2012, 108, 058301). In this paper we outline a number of established machine learning techniques and investigate the influence of the molecular representation on the methods performance. The best methods achieve prediction errors of 3 kcal/mol for the atomization energies of a wide variety of molecules. Rationales for this performance improvement are given together with pitfalls and challenges when applying machine learning approaches to the prediction of quantum-mechanical observables.

  1. Ab Initio and Analytic Intermolecular Potentials for Ar–CH3OH

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tasic, Uros; Alexeev, Yuri; Vayner, Grigoriy

    2006-09-20

    Ab initio calculations at the CCSD(T)/aug-cc-pVTZ level of theory were used to characterize the Ar–CH₃y6tOH intermolecular potential energy surface (PES). Potential energy curves were calculated for four different Ar + CH₃OH orientations and used to derive an analytic function for the intermolecular PES. A sum of Ar–C, Ar–O, Ar–H(C), and Ar–H(O) two-body potentials gives an excellent fit to these potential energy curves up to 100 kcal mol¯¹, and adding an additional r¯¹n term to the Buckingham two-body potential results in only a minor improvement in the fit. Three Ar–CH₃OH van der Waals minima were found from the CCSD(T)/aug-cc-pVTZ//MP2/aug-cc-pVTZ calculations. Themore » structure of the global minimum is in overall good agreement with experiment (X.-C. Tan, L. Sun and R. L. Kuczkowski, J. Mol. Spectrosc., 1995, 171, 248). It is T-shaped with the hydroxyl H-atom syn with respect to Ar. Extrapolated to the complete basis set (CBS) limit, the global minimum has a well depth of 0.72 kcal mol¯¹ with basis set superposition error (BSSE) correction. The aug-cc-pVTZ basis set gives a well depth only 0.10 kcal mol¯¹ smaller than this value. The well depths of the other two minima are within 0.16 kcal mol¯¹ of the global minimum. The analytic Ar–CH₃OH intermolecular potential also identifies these three minima as the only van der Waals minima and the structures predicted by the analytic potential are similar to the ab initio structures. The analytic potential identifies the same global minimum and the predicted well depths for the minima are within 0.05 kcal mol¯1 of the ab initio values. Combining this Ar–CH₃OH intermolecular potential with a potential for a OH-terminated alkylthiolate self-assembled monolayer surface (i.e., HO-SAM) provides a potential to model Ar + HO-SAM collisions.« less

  2. Concentration dependence of electrical resistivity of binary liquid alloy HgZn: Ab-initio study

    NASA Astrophysics Data System (ADS)

    Sharma, Nalini; Thakur, Anil; Ahluwalia, P. K.

    2013-06-01

    The electrical resistivity of HgZn liquid alloy has been made calculated using Troullier and Martins ab-initio pseudopotential as a function of concentration. Hard sphere diameters of Hg and Zn are obtained through the inter-ionic pair potential have been used to calculate partial structure factors. Considering the liquid alloy to be a ternary mixture Ziman's formula for calculating the resistivity of binary liquid alloys, modified for complex formation, has been used. These results suggest that ab-initio approach for calculating electrical resistivity is quite successful in explaining the electronic transport properties of binary Liquid alloys.

  3. Fourfold Clusters of Rovibrational Energies in H2Te Studied With an Ab Initio Potential Energy Function

    NASA Technical Reports Server (NTRS)

    Jensen, Per; Li, Yan; Hirsch, Gerhard; Buenker, Robert J.; Lee, Timothy J.; Arnold, James O. (Technical Monitor)

    1994-01-01

    We report an ab initio investigation of the cluster effect (i.e., the formation of nearly degenerate, four member groups of rotation-vibration energy levels at higher J and K(sub a). values) in the H2Te molecule. The potential energy function has been calculated ab initio at a total of 334 molecular geometries by means of the CCSD(T) method where the (1s-4f) core electrons of Te were described by an effective core potential. The values of the potential energy function obtained cover the region up to around 10,000/cm above the equilibrium energy. On the basis of the ab initio potential, the rotation-vibration energy spectra of H2Te-130 and its deuterated isotopomers have been calculated with the MORBID (Morse Oscillator Rigid Bender Internal Dynamics) Hamiltonian and computer program. In particular, we have calculated the rotational energy manifolds for J less than or = 40 in the vibrational ground state, the upsilon(sub 2) state, the "first triad" (the upsilon(sub l)/upsilon(sub 3)/2upsilon(sub 2) interacting vibrational states), and the "second triad" (the upsilon(sub 1) + upsilon(sub 2/upsilon(sub 2) + upsilon(sub 3)/3upsilon(sub 2) states) of H2Te-130. We find that the cluster formation in H2Te is very similar to those of of H2Se and H2S, which we have studied previously. However, contrary to semiclassical predictions, we do not determine any significant displacement of the clusters towards lower J values relative to H2Se. Hence the experimental observation of the cluster states in H2Te will be at least as difficult as in H2Se.

  4. Ab initio study of II-(VI)2 dichalcogenides.

    PubMed

    Olsson, P; Vidal, J; Lincot, D

    2011-10-12

    The structural stabilities of the (Zn,Cd)(S,Se,Te)(2) dichalcogenides have been determined ab initio. These compounds are shown to be stable in the pyrite phase, in agreement with available experiments. Structural parameters for the ZnTe(2) pyrite semiconductor compound proposed here are presented. The opto-electronic properties of these dichalcogenide compounds have been calculated using quasiparticle GW theory. Bandgaps, band structures and effective masses are proposed as well as absorption coefficients and refraction indices. The compounds are all indirect semiconductors with very flat conduction band dispersion and high absorption coefficients. The work functions and surface properties are predicted. The Te and Se based compounds could be of interest as absorber materials in photovoltaic applications.

  5. Ab initio calculation of the potential bubble nucleus 34Si

    NASA Astrophysics Data System (ADS)

    Duguet, T.; Somà, V.; Lecluse, S.; Barbieri, C.; Navrátil, P.

    2017-03-01

    Background: The possibility that an unconventional depletion (referred to as a "bubble") occurs in the center of the charge density distribution of certain nuclei due to a purely quantum mechanical effect has attracted theoretical and experimental attention in recent years. Based on a mean-field rationale, a correlation between the occurrence of such a semibubble and an anomalously weak splitting between low angular-momentum spin-orbit partners has been further conjectured. Energy density functional and valence-space shell model calculations have been performed to identify and characterize the best candidates, among which 34Si appears as a particularly interesting case. While the experimental determination of the charge density distribution of the unstable 34Si is currently out of reach, (d ,p ) experiments on this nucleus have been performed recently to test the correlation between the presence of a bubble and an anomalously weak 1 /2--3 /2- splitting in the spectrum of 35Si as compared to 37S. Purpose: We study the potential bubble structure of 34Si on the basis of the state-of-the-art ab initio self-consistent Green's function many-body method. Methods: We perform the first ab initio calculations of 34Si and 36S. In addition to binding energies, the first observables of interest are the charge density distribution and the charge root-mean-square radius for which experimental data exist in 36S. The next observable of interest is the low-lying spectroscopy of 35Si and 37S obtained from (d ,p ) experiments along with the spectroscopy of 33Al and 35P obtained from knock-out experiments. The interpretation in terms of the evolution of the underlying shell structure is also provided. The study is repeated using several chiral effective field theory Hamiltonians as a way to test the robustness of the results with respect to input internucleon interactions. The convergence of the results with respect to the truncation of the many-body expansion, i.e., with respect to the many-body correlations included in the calculation, is studied in detail. We eventually compare our predictions to state-of-the-art multireference energy density functional and shell model calculations. Results: The prediction regarding the (non)existence of the bubble structure in 34Si varies significantly with the nuclear Hamiltonian used. However, demanding that the experimental charge density distribution and the root-mean-square radius of 36S be well reproduced, along with 34Si and 36S binding energies, only leaves the NNLOsat Hamiltonian as a serious candidate to perform this prediction. In this context, a bubble structure, whose fingerprint should be visible in an electron scattering experiment of 34Si, is predicted. Furthermore, a clear correlation is established between the occurrence of the bubble structure and the weakening of the 1 /2--3 /2- splitting in the spectrum of 35Si as compared to 37S. Conclusions: The occurrence of a bubble structure in the charge distribution of 34Si is convincingly established on the basis of state-of-the-art ab initio calculations. This prediction will have to be reexamined in the future when improved chiral nuclear Hamiltonians are constructed. On the experimental side, present results act as a strong motivation to measure the charge density distribution of 34Si in future electron scattering experiments on unstable nuclei. In the meantime, it is of interest to perform one-neutron removal on 34Si and 36S in order to further test our theoretical spectral strength distributions over a wide energy range.

  6. Ab initio vel ex eventu

    NASA Astrophysics Data System (ADS)

    Thiessen, P. A.; Treder, H.-J.

    Der gegenwärtige Stand der physikalischen Erkenntnis, in Sonderheit die Atomistik und die Quantentheorie, ermöglicht (in wohldefinierten Energie-Bereichen) eine ab initio-Berechnung aller physikalischen und chemischen Prozesse und Strukturen. Die Schrödinger-Gleichung erlaubt zusammen mit den Prinzipien der Quantenstatistik (Pauli-Prinzip) aus dem Planckschen Wirkungsquantum h und den atomischen Konstanten die Berechnung aller Energieumsätze, Zeitabläufe etc., die insbesondere die chemische Physik bestimmen. Die Rechenresultate gelten auch quantitativ bis auf die unvermeidliche Stochastik.Die ab initio-Berechnungen korrespondieren einerseits und sind andererseits komplementär zu den auf den Methoden der theoretischen Chemie und der klassischen Thermodynamik beruhenden Ergebnissen ex eventu. Die theoretische Behandlung ab initio führt zu mathematischen Experimenten, die die Laboratoriums-Experimente ergänzen oder auch substituieren.Translated AbstractAb initio vel ex eventuThe present state of physical knowledge, in peculiar atomistic and quantum theory, makes an ab initio calculation of all physical and chemical processes and structures possible (in well defined reaches of energy). The Schrödinger equation together with the principles of quantum statistics (Pauli principle) permits from the Planck and atomistic constants to calculate all exchanges of energy, courses of time, etc. which govern chemical physics. The calculated results are valid even quantitatively apart from the unavoidable stochastics.These ab initio calculations on the one hand correspond and are on the other complimentary to results ex eventu based on the methods of theoretical chemistry and classical thermodynamics. Theoretical treatment ab initio leads to mathematical experiments which add to or even substitute experiments in the laboratory.

  7. Multiobjective evolutionary algorithm with many tables for purely ab initio protein structure prediction.

    PubMed

    Brasil, Christiane Regina Soares; Delbem, Alexandre Claudio Botazzo; da Silva, Fernando Luís Barroso

    2013-07-30

    This article focuses on the development of an approach for ab initio protein structure prediction (PSP) without using any earlier knowledge from similar protein structures, as fragment-based statistics or inference of secondary structures. Such an approach is called purely ab initio prediction. The article shows that well-designed multiobjective evolutionary algorithms can predict relevant protein structures in a purely ab initio way. One challenge for purely ab initio PSP is the prediction of structures with β-sheets. To work with such proteins, this research has also developed procedures to efficiently estimate hydrogen bond and solvation contribution energies. Considering van der Waals, electrostatic, hydrogen bond, and solvation contribution energies, the PSP is a problem with four energetic terms to be minimized. Each interaction energy term can be considered an objective of an optimization method. Combinatorial problems with four objectives have been considered too complex for the available multiobjective optimization (MOO) methods. The proposed approach, called "Multiobjective evolutionary algorithms with many tables" (MEAMT), can efficiently deal with four objectives through the combination thereof, performing a more adequate sampling of the objective space. Therefore, this method can better map the promising regions in this space, predicting structures in a purely ab initio way. In other words, MEAMT is an efficient optimization method for MOO, which explores simultaneously the search space as well as the objective space. MEAMT can predict structures with one or two domains with RMSDs comparable to values obtained by recently developed ab initio methods (GAPFCG , I-PAES, and Quark) that use different levels of earlier knowledge. Copyright © 2013 Wiley Periodicals, Inc.

  8. Interface-induced localization in AlSb/InAs heterostructures

    NASA Astrophysics Data System (ADS)

    Shaw, M. J.; Briddon, P. R.; Jaros, M.

    1995-12-01

    The existence of localized states at perfect InSb-like interfaces in AlSb/InAs superlattices is predicted from ab initio pseudopotential calculations. Localized states are predicted in both the valence and conduction bands, the former being identifiable with the interface states proposed by Kroemer, Nguyen, and Brar [J. Vac. Sci. Technol. 10, 1769 (1990)]. The existence of these interface localized states is invoked to explain the reported experimental dependence of the band gap upon interface types in such superlattices.

  9. Introducing ab initio based neural networks for transition-rate prediction in kinetic Monte Carlo simulations

    NASA Astrophysics Data System (ADS)

    Messina, Luca; Castin, Nicolas; Domain, Christophe; Olsson, Pär

    2017-02-01

    The quality of kinetic Monte Carlo (KMC) simulations of microstructure evolution in alloys relies on the parametrization of point-defect migration rates, which are complex functions of the local chemical composition and can be calculated accurately with ab initio methods. However, constructing reliable models that ensure the best possible transfer of physical information from ab initio to KMC is a challenging task. This work presents an innovative approach, where the transition rates are predicted by artificial neural networks trained on a database of 2000 migration barriers, obtained with density functional theory (DFT) in place of interatomic potentials. The method is tested on copper precipitation in thermally aged iron alloys, by means of a hybrid atomistic-object KMC model. For the object part of the model, the stability and mobility properties of copper-vacancy clusters are analyzed by means of independent atomistic KMC simulations, driven by the same neural networks. The cluster diffusion coefficients and mean free paths are found to increase with size, confirming the dominant role of coarsening of medium- and large-sized clusters in the precipitation kinetics. The evolution under thermal aging is in better agreement with experiments with respect to a previous interatomic-potential model, especially concerning the experiment time scales. However, the model underestimates the solubility of copper in iron due to the excessively high solution energy predicted by the chosen DFT method. Nevertheless, this work proves the capability of neural networks to transfer complex ab initio physical properties to higher-scale models, and facilitates the extension to systems with increasing chemical complexity, setting the ground for reliable microstructure evolution simulations in a wide range of alloys and applications.

  10. A note on AB INITIO semiconductor band structures

    NASA Astrophysics Data System (ADS)

    Fiorentini, Vincenzo

    1992-09-01

    We point out that only the internal features of the DFT ab initio theoretical picture of a crystal should be used in a consistent ab initio calculation of the band structure. As a consequence, we show that ground-state band structure calculations should be performed for the system in equilibrium at zero pressure, i.e. at the computed equilibrium cell volume ω th. Examples of consequences of this attitude are considered.

  11. Ab-initio study of liquid systems: Concentration dependence of electrical resistivity of binary liquid alloy Rb1-xCsx

    NASA Astrophysics Data System (ADS)

    Thakur, Anil; Sharma, Nalini; Chandel, Surjeet; Ahluwalia, P. K.

    2013-02-01

    The electrical resistivity (ρL) of Rb1-XCsX binary alloys has been made calculated using Troullier Martins ab-initio pseudopotentials. The present results of the electrical resistivity (ρL) of Rb1-XCsX binary alloys have been found in good agreement with the experimental results. These results suggest that ab-initio approach for calculating electrical resistivity is quite successful in explaining the electronic transport properties of binary Liquid alloys. Hence ab-initio pseudopotentials can be used instead of model pseudopotentials having problem of transferability.

  12. Ab initio theoretical study of dipole-bound anions of molecular complexes: (HF)3- and (HF)4- anions

    NASA Astrophysics Data System (ADS)

    Ramaekers, Riet; Smith, Dayle M. A.; Smets, Johan; Adamowicz, Ludwik

    1997-12-01

    Ab initio calculations have been performed to determine structures and vertical electron detachment energy (VDE) of the hydrogen fluoride trimer and tetramer anions, (HF)3- and (HF)4-. In these systems the excess electron is bound by the dipole field of the complex. It was determined that, unlike the neutral complexes which prefer the cyclic structures, the equilibrium geometries of the anions have "zig-zag" shapes. For both complexes the predicted VDEs are positive [210 meV and 363 meV for (HF)3- and (HF)4-, respectively], indicating that the anions are stable systems with respect to the vertical electron detachment. These results were obtained at the coupled-cluster level of theory with single, double and triple excitations [CCSD(T) method; the triple-excitation contribution in this method is calculated approximately using the perturbation approach] with the anion geometries obtained using the second-order Møller-Plesset perturbation theory (MP2) method. The same approach was also used to determine the adiabatic electron affinities (AEA) of (HF)3 and (HF)4. In addition to the electronic contribution, we also calculated the contributions (using the harmonic approximation) resulting from different zero-point vibration energies of the neutral and anionic clusters. The calculations predicted that while the AEA of (HF)3 is positive (44 meV), the AEA for (HF)4 is marginally negative (-16 meV). This suggests that the (HF)3- anion should be a stable system, while the (HF)4- is probably metastable.

  13. Nonadiabatic couplings in the collisional removal of O(2)(b (1)Sigma(g) (+),v) by O(2).

    PubMed

    Dayou, F; Hernández, M I; Campos-Martínez, J; Hernández-Lamoneda, R

    2010-01-28

    The effect of nonadiabatic couplings on the collisional removal of O(2)(b (1)Sigma(g) (+),v) by O(2)(X (3)Sigma(g) (-), v=0) is investigated. Two-dimensional adiabatic and quasidiabatic potential energy surfaces for the excited dimer states and the corresponding nonadiabatic radial couplings have been computed by means of ab initio calculations. Alternately, a two-state theoretical model, based on the Landau-Zener and Rosen-Zener-Demkov assumptions, has been employed to derive analytical forms for the nonadiabatic couplings and an adiabatic-to-diabatic transformation only depending on a reduced set of adiabatic energy terms. Compared to the ab initio results, the predictions of the model are found to be highly accurate. Quantum dynamics calculations for the removal of the first ten vibrational states of O(2)(b (1)Sigma(g) (+),v) indicate a clear dominant contribution of the vibration-electronic relaxation mechanism relative to the vibration-translation energy transfer. Although the present reduced-dimensionality model precludes any quantitative comparison with experiments, it is found that the removal probabilities for v=1-3 are qualitatively consistent with the experimental observations, once the vibrational structure of the fragments is corrected with spectroscopical terms. Besides, the model served to show how the computation of the adiabatic PESs just at the crossing seam was sufficient to describe the nonadiabatic dynamics related to a given geometrical arrangement. This implies considerable savings in the calculations which will eventually allow for larger accuracy in the ab initio calculations as well as higher dimensional treatments.

  14. Ab initio prediction of superdense tetragonal and monoclinic polymorphs of carbon

    DOE PAGES

    Li, Zhen -Zhen; Wang, Jian -Tao; Xu, Li -Fang; ...

    2016-11-02

    The design and synthesis of three-dimensional denser carbons are one of the hot issues in condensed matter physics because of their fascinating properties. Here we identify by ab initio calculations several tetragonal and monoclinic polymorphs of carbon that adopt the t32, t32*, m32, and m32* structures in P4¯2 1c, P4 32 12, P2 1/c, and C2 symmetry, respectively. These carbon polymorphs have large 32-atom unit cells in all-sp 3 bonding networks comprising five- and six-membered rings that are dynamically stable, as verified by a phonon mode analysis. Electronic band structure calculations show that they are insulators with band gaps inmore » the range of 5.19–5.41 eV, close to the calculated band gap of 5.34 eV for diamond. Remarkably, these carbon phases possess an extremely high atom number density exceeding that of diamond. Lastly, the present results establish different types of carbon phases and offer insights into their outstanding structural and electronic properties.« less

  15. Ab initio calculation of harmonic force fields and vibrational spectra for the arsine oxides and sulfides R sub 3 AsY (R = H, F; Y = O, S) and related compounds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schneider, W.; Thiel, W.; Komornicki, A.

    1990-04-05

    Ab initio self-consistent-field calculations using effective core potentials and polarized double-zeta basis sets are reported for the arsenic compounds H{sub 3}As, H{sub 3}AsO, H{sub 3}AsS, F{sub 3}As, F{sub 3}AsO, F{sub 3}AsS, cis- and trans-H{sub 2}AsOH, and HAsO. The calculated geometries, rotational constants, vibrational frequencies, Coriolis coupling constants, centrifugal distortion constants, infrared band intensities, and force fields are compared with the available experimental data. Good agreement is found in the case of the known molecules, especially H{sub 3}As and F{sub 3}As, so that the predictions for the unknown molecules are expected to be realistic. The theoretical results confirm a recent spectroscopicmore » identification of H{sub 3}AsO, H{sub 2}AsOH, and HAsO and suggest reassignment of several observed frequencies.« less

  16. Antibacterial activity, thermal stability and ab initio study of copolymer containing sulfobetaine and carboxybetaine groups

    NASA Astrophysics Data System (ADS)

    Tarannum, Nazia; Singh, Meenakshi; Yadav, Anil K.

    2017-10-01

    Here, we have explored the antibacterial activity, thermal stability and theoretical study of two copolymers that contain sulfobetaine and carboetaine moiety. Copolymers were synthesized based on Schiff base chemistry with generation of zwitterionic centres by nucleophilic addition of sultone/lactone. To predict and confirm the molecular structure of zwitterionic polyelectrolyte molecule, the theoretical study of structural features and other thermodynamic characteristics of copolymer constituents was obtained by ab initio calculations. Various parameters such as geometry optimization, energy calculations, frequency calculations and intrinsic reaction coefficient (IRC) are simulated using Hartree Fock (HF) method. The geometry optimizations are analyzed at HF/3-21 G default level of theory. The vibrational frequency is calculated via density functional theory (DFT)/B3LYP 6-31G*(d) level whose values are in accord with the experimental observed frequency. Both copolymers have been successfully assessed for antibacterial activity against Staphylococcus aureus and Pseudomonas aeuroginosa bacterial strains by disc diffusion method. The antibacterial study helped in evaluating zone of inhibition, minimum inhibitory concentration and minimum bactericidal concentration. Sulfobetaine copolymer is found to be more effective in curtailing the infection caused by bacteria as compared to carbobetaine.

  17. Ab initio implementation of quantum trajectory mean-field approach and dynamical simulation of the N{sub 2}CO photodissociation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xie, Binbin; Liu, Lihong; Cui, Ganglong

    2015-11-21

    In this work, the recently introduced quantum trajectory mean-field (QTMF) approach is implemented and employed to explore photodissociation dynamics of diazirinone (N{sub 2}CO), which are based on the high-level ab initio calculation. For comparison, the photodissociation process has been simulated as well with the fewest-switches surface hopping (FSSH) and the ab initio multiple spawning (AIMS) methods. Overall, the dynamical behavior predicted by the three methods is consistent. The N{sub 2}CO photodissociation at λ > 335 nm is an ultrafast process and the two C—N bonds are broken in a stepwise way, giving birth to CO and N{sub 2} as themore » final products in the ground state. Meanwhile, some noticeable differences were found in the QTMF, FSSH, and AIMS simulated time constants for fission of the C—N bonds, excited-state lifetime, and nonadiabatic transition ratios in different intersection regions. These have been discussed in detail. The present study provides a clear evidence that direct ab initio QTMF approach is one of the reliable tools for simulating nonadiabatic dynamics processes.« less

  18. Ab initio state-specific N2 + O dissociation and exchange modeling for molecular simulations

    NASA Astrophysics Data System (ADS)

    Luo, Han; Kulakhmetov, Marat; Alexeenko, Alina

    2017-02-01

    Quasi-classical trajectory (QCT) calculations are used in this work to calculate state-specific N2(X1Σ ) +O(3P ) →2 N(4S ) +O(3P ) dissociation and N2(X1Σ ) +O(3P ) →NO(X2Π ) +N(4S ) exchange cross sections and rates based on the 13A″ and 13A' ab initio potential energy surface by Gamallo et al. [J. Chem. Phys. 119, 2545-2556 (2003)]. The calculations consider translational energies up to 23 eV and temperatures between 1000 K and 20 000 K. Vibrational favoring is observed for dissociation reaction at the whole range of collision energies and for exchange reaction around the dissociation limit. For the same collision energy, cross sections for v = 30 are 4 to 6 times larger than those for the ground state. The exchange reaction has an effective activation energy that is dependent on the initial rovibrational level, which is different from dissociation reaction. In addition, the exchange cross sections have a maximum when the total collision energy (TCE) approaches dissociation energy. The calculations are used to generate compact QCT-derived state-specific dissociation (QCT-SSD) and QCT-derived state-specific exchange (QCT-SSE) models, which describe over 1 × 106 cross sections with about 150 model parameters. The models can be used directly within direct simulation Monte Carlo and computational fluid dynamics simulations. Rate constants predicted by the new models are compared to the experimental measurements, direct QCT calculations and predictions by other models that include: TCE model, Bose-Candler QCT-based exchange model, Macheret-Fridman dissociation model, Macheret's exchange model, and Park's two-temperature model. The new models match QCT-calculated and experimental rates within 30% under nonequilibrium conditions while other models under predict by over an order of magnitude under vibrationally-cold conditions.

  19. First principles prediction of amorphous phases using evolutionary algorithms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nahas, Suhas, E-mail: shsnhs@iitk.ac.in; Gaur, Anshu, E-mail: agaur@iitk.ac.in; Bhowmick, Somnath, E-mail: bsomnath@iitk.ac.in

    2016-07-07

    We discuss the efficacy of evolutionary method for the purpose of structural analysis of amorphous solids. At present, ab initio molecular dynamics (MD) based melt-quench technique is used and this deterministic approach has proven to be successful to study amorphous materials. We show that a stochastic approach motivated by Darwinian evolution can also be used to simulate amorphous structures. Applying this method, in conjunction with density functional theory based electronic, ionic and cell relaxation, we re-investigate two well known amorphous semiconductors, namely silicon and indium gallium zinc oxide. We find that characteristic structural parameters like average bond length and bondmore » angle are within ∼2% of those reported by ab initio MD calculations and experimental studies.« less

  20. Heats of Segregation of BCC Binaries from Ab Initio and Quantum Approximate Calculations

    NASA Technical Reports Server (NTRS)

    Good, Brian S.

    2003-01-01

    We compare dilute-limit segregation energies for selected BCC transition metal binaries computed using ab initio and quantum approximate energy methods. Ab initio calculations are carried out using the CASTEP plane-wave pseudopotential computer code, while quantum approximate results are computed using the Bozzolo-Ferrante-Smith (BFS) method with the most recent parameters. Quantum approximate segregation energies are computed with and without atomistic relaxation. Results are discussed within the context of segregation models driven by strain and bond-breaking effects. We compare our results with full-potential quantum calculations and with available experimental results.

  1. Predicting the stability of nanodevices

    NASA Astrophysics Data System (ADS)

    Lin, Z. Z.; Yu, W. F.; Wang, Y.; Ning, X. J.

    2011-05-01

    A simple model based on the statistics of single atoms is developed to predict the stability or lifetime of nanodevices without empirical parameters. Under certain conditions, the model produces the Arrhenius law and the Meyer-Neldel compensation rule. Compared with the classical molecular-dynamics simulations for predicting the stability of monatomic carbon chain at high temperature, the model is proved to be much more accurate than the transition state theory. Based on the ab initio calculation of the static potential, the model can give out a corrected lifetime of monatomic carbon and gold chains at higher temperature, and predict that the monatomic chains are very stable at room temperature.

  2. Ab initio and DFT study of hydrogen bond interactions between ascorbic acid and dimethylsulfoxide based on FT-IR and FT-Raman spectra

    NASA Astrophysics Data System (ADS)

    Niazazari, Naser; Zatikyan, Ashkhen L.; Markarian, Shiraz A.

    2013-06-01

    The hydrogen bonding of 1:1 complexes formed between L-ascorbic acid (LAA) and dimethylsulfoxide (DMSO) has been studied by means of ab initio and density functional theory (DFT) calculations. Solutions of L-ascorbic acid (AA) in dimethylsulfoxide (DMSO) have been studied by means of both FT-IR (4000-220 cm-1) and FT-Raman spectroscopy. Ab initio Hartree-Fock (HF) and DFT methods have been used to determine the structure and energies of stable conformers of various types of L-AA/DMSO complexes in gas phase and solution. The basis sets 6-31++G∗∗ and 6-311+G∗ were used to describe the structure, energy, charges and vibrational frequencies of interacting complexes in the gas phase. The optimized geometric parameters and interaction energies for various complexes at different theories have been estimated. Binding energies have been corrected for basis set superposition error (BSSE) and harmonic vibrational frequencies of the structures have been calculated to obtain the stable forms of the complexes. The self-consistent reaction field (SCRF) has been used to calculate the effect of DMSO as the solvent on the geometry, energy and charges of complexes. The solvent effect has been studied using the Onsager models. It is shown that the polarity of the solvent plays an important role on the structures and relative stabilities of different complexes. The results obtained show that there is a satisfactory correlation between experimental and theoretical predictions.

  3. Ab initio calculation of the shear viscosity of neon in the liquid and hypercritical state over a wide pressure and temperature range

    NASA Astrophysics Data System (ADS)

    Eggenberger, Rolf; Gerber, Stefan; Huber, Hanspeter; Searles, Debra; Welker, Marc

    1992-08-01

    The shear viscosity is calculated ab initio for the liquid and hypercritical state, i.e. a previously published potential for Ne 2, obtained from ab initio calculations including electron correlation, is used in classical equilibrium molecular dynamics simulations to obtain the shear viscosity from a Green-Kubo integral. The quality of the results is quite uniform over a large pressure range up to 1000 MPa and a wide temperature range from 26 to 600 K. In most cases the calculated shear viscosity deviates by less than 10% from the experimental value, in general the error being only a few percent.

  4. Proportional Counter Calibration and Analysis for 12C + p Resonance Scattering

    NASA Astrophysics Data System (ADS)

    Nelson, Austin; Rogachev, Grigory; Uberseder, Ethan; Hooker, Josh; Koshchiy, Yevgen

    2014-09-01

    Light exotic nuclei provide a unique opportunity to test the predictions of modern ab initio theoretical calculations near the drip line. In ab initio approaches, nuclear structure is described starting from bare nucleon-nucleon and three-nucleon interactions. Calculations are very heavy and can only be performed for the lightest nuclei (A < 16). Experimental information on the structure of light exotic nuclei is crucial to determine the validity of these calculations and to fix the parameters for the three-nucleon forces. Resonance scattering with rare isotope beams is a very effective tool to study spectroscopy of nuclei near the drip line. A new setup was developed at the Cyclotron Institute for effective resonance scattering measurements. The setup includes ionization chamber, silicon array, and an array of proportional counters. The proportional counter array, consisting of 8 anode wires arranged in a parallel cellular grid, is used for particle identification and to track the positioning of light recoils. The main objective of this project was to test the performance and perform position calibration of this proportional counter array. The test was done using 12C beam. The excitation function for 12C + p elastic scattering was measured and calibration of the proportional counter was performed using known resonances in 13N. The method of calibration, including solid angle calculations, normalization corrections, and position calibration will be presented. Light exotic nuclei provide a unique opportunity to test the predictions of modern ab initio theoretical calculations near the drip line. In ab initio approaches, nuclear structure is described starting from bare nucleon-nucleon and three-nucleon interactions. Calculations are very heavy and can only be performed for the lightest nuclei (A < 16). Experimental information on the structure of light exotic nuclei is crucial to determine the validity of these calculations and to fix the parameters for the three-nucleon forces. Resonance scattering with rare isotope beams is a very effective tool to study spectroscopy of nuclei near the drip line. A new setup was developed at the Cyclotron Institute for effective resonance scattering measurements. The setup includes ionization chamber, silicon array, and an array of proportional counters. The proportional counter array, consisting of 8 anode wires arranged in a parallel cellular grid, is used for particle identification and to track the positioning of light recoils. The main objective of this project was to test the performance and perform position calibration of this proportional counter array. The test was done using 12C beam. The excitation function for 12C + p elastic scattering was measured and calibration of the proportional counter was performed using known resonances in 13N. The method of calibration, including solid angle calculations, normalization corrections, and position calibration will be presented. Funded by DOE and NSF-REU Program; Grant No. PHY-1263281.

  5. Bond-valence methods for pKa prediction. II. Bond-valence, electrostatic, molecular geometry, and solvation effects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bickmore, Barry R.; Rosso, Kevin M.; Tadanier, Christopher J.

    2006-08-15

    In a previous contribution, we outlined a method for predicting (hydr)oxy-acid and oxide surface acidity constants based on three main factors: bond valence, Me?O bond ionicity, and molecular shape. Here electrostatics calculations and ab initio molecular dynamics simulations are used to qualitatively show that Me?O bond ionicity controls the extent to which the electrostatic work of proton removal departs from ideality, bond valence controls the extent of solvation of individual functional groups, and bond valence and molecular shape controls local dielectric response. These results are consistent with our model of acidity, but completely at odds with other methods of predictingmore » acidity constants for use in multisite complexation models. In particular, our ab initio molecular dynamics simulations of solvated monomers clearly indicate that hydrogen bonding between (hydr)oxo-groups and water molecules adjusts to obey the valence sum rule, rather than maintaining a fixed valence based on the coordination of the oxygen atom as predicted by the standard MUSIC model.« less

  6. Molecular opacities for exoplanets.

    PubMed

    Bernath, Peter F

    2014-04-28

    Spectroscopic observations of exoplanets are now possible by transit methods and direct emission. Spectroscopic requirements for exoplanets are reviewed based on existing measurements and model predictions for hot Jupiters and super-Earths. Molecular opacities needed to simulate astronomical observations can be obtained from laboratory measurements, ab initio calculations or a combination of the two approaches. This discussion article focuses mainly on laboratory measurements of hot molecules as needed for exoplanet spectroscopy.

  7. The application of ab initio calculations to molecular spectroscopy

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles W., Jr.; Langhoff, Stephen R.

    1989-01-01

    The state of the art in ab initio molecular structure calculations is reviewed with an emphasis on recent developments, such as full configuration-interaction benchmark calculations and atomic natural orbital basis sets. It is found that new developments in methodology, combined with improvements in computer hardware, are leading to unprecedented accuracy in solving problems in spectroscopy.

  8. The application of ab initio calculations to molecular spectroscopy

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles W., Jr.; Langhoff, Stephen R.

    1989-01-01

    The state of the art in ab initio molecular structure calculations is reviewed, with an emphasis on recent developments such as full configuration-interaction benchmark calculations and atomic natural orbital basis sets. It is shown that new developments in methodology combined with improvements in computer hardware are leading to unprecedented accuracy in solving problems in spectroscopy.

  9. Multiple scattering calculations of relativistic electron energy loss spectra

    NASA Astrophysics Data System (ADS)

    Jorissen, K.; Rehr, J. J.; Verbeeck, J.

    2010-04-01

    A generalization of the real-space Green’s-function approach is presented for ab initio calculations of relativistic electron energy loss spectra (EELS) which are particularly important in anisotropic materials. The approach incorporates relativistic effects in terms of the transition tensor within the dipole-selection rule. In particular, the method accounts for relativistic corrections to the magic angle in orientation resolved EELS experiments. The approach is validated by a study of the graphite CK edge, for which we present an accurate magic angle measurement consistent with the predicted value.

  10. Fluorine substitution and nonconventional OH...pi intramolecular bond: high-resolution UV spectroscopy and ab initio calculations of 2-(p-fluorophenyl)ethanol.

    PubMed

    Karaminkov, Rosen; Chervenkov, Sotir; Neusser, Hans J

    2008-05-21

    The para-fluorinated flexible neurotransmitter analogue 2-phenylethanol has been investigated by highly resolved resonance-enhanced two-photon ionisation two-colour UV laser spectroscopy with mass resolution and ab initio structural optimisations and energy calculations. Two stable conformations, gauche and anti, separated by a high potential barrier have been identified in the cold molecular beam by rotational analysis of the vibronic band structures. The theoretically predicted higher-lying conformations most likely relax to these two structures during the adiabatic expansion. The lowest-energy gauche conformer is stabilised by an intramolecular nonconventional OH...pi-type hydrogen bond between the terminal OH group of the side chain and the pi electrons of the phenyl ring. The good agreement between the experimental and theoretical results demonstrates that even the substitution with a strongly electronegative atom of 2-phenylethanol at the para position has no noticeable effect on the strength and orientation of the OH...pi bond.

  11. Equation of State and Viscosity of Tantalum and Iron from First Principles

    NASA Astrophysics Data System (ADS)

    Miljacic, Ljubomir; Demers, Steven; van de Walle, Axel

    2011-03-01

    To understand and model at continuum level the high-energy-density dynamic response in transition metals like Tantalum and Iron, as it arises in hypervelocity impact experiments, an accurate prediction of the underlying thermodynamic and kinetic properties for a range of temperatures and pressures is of critical importance. The relevant time scale of atomic motion in a dense gas, liquid, and solid is accessible with ab-initio Molecular Dynamics (MD) simulations. We calculate EoS for Ta and Fe via Thermodynamical Integration in 2D (V,T) phase space throughout different single and two-component phases. To reduce the ab-initio demand in selected regions of the space, we fit available gas-liquid data to the Peng-Robinson model and treat the solid phase within the Boxed-quasi-harmonic approximation. In the fluid part of the 2D phase space, we calculate shear viscosity via Green-Kubo relations, as time integration of the stress autocorrelation function.

  12. Isoelectronic studies of the 5s/sup 2/ /sup 1/S/sub 0/-5s5p/sup 1,3/P/sub J/ intervals in the Cd sequence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Curtis, L.J.

    1986-02-01

    The 5s/sup 2/ /sup 1/S/sub 0/-5s5p/sup 1,3/P/sub J/ energy intervals in the Cd isoelectronic sequence have been investigated through a semiempirical systematization of recent measurements and through the performance of ab initio multiconfiguration Dirac-Fock calculations. Screening-parameter reductions of the spin-orbit and exchange energies both for the observed data and for the theoretically computed values establish the existence of empirical linearities similar to those exploited earlier for the Be, Mg, and Zn sequences. This permits extrapolative isoelectronic predictions of the relative energies of the 5s5p levels, which can be connected to 5s/sup 2/ using intersinglet intervals obtained from empirically corrected abmore » initio calculations. These linearities have also been examined homologously for the Zn, Cd, and Hg sequences, and common relationships have been found that accurately describe all three of these sequences.« less

  13. FAST TRACK COMMUNICATION Understanding adhesion at as-deposited interfaces from ab initio thermodynamics of deposition growth: thin-film alumina on titanium carbide

    NASA Astrophysics Data System (ADS)

    Rohrer, Jochen; Hyldgaard, Per

    2010-12-01

    We investigate the chemical composition and adhesion of chemical vapour deposited thin-film alumina on TiC using and extending a recently proposed nonequilibrium method of ab initio thermodynamics of deposition growth (AIT-DG) (Rohrer and Hyldgaard 2010 Phys. Rev. B 82 045415). A previous study of this system (Rohrer et al 2010 J. Phys.: Condens. Matter 22 015004) found that use of equilibrium thermodynamics leads to predictions of a non-binding TiC/alumina interface, despite its industrial use as a wear-resistant coating. This discrepancy between equilibrium theory and experiment is resolved by the AIT-DG method which predicts interfaces with strong adhesion. The AIT-DG method combines density functional theory calculations, rate-equation modelling of the pressure evolution of the deposition environment and thermochemical data. The AIT-DG method was previously used to predict prevalent terminations of growing or as-deposited surfaces of binary materials. Here we extend the method to predict surface and interface compositions of growing or as-deposited thin films on a substrate and find that inclusion of the nonequilibrium deposition environment has important implications for the nature of buried interfaces.

  14. Hybrid density-functional calculations of phonons in LaCoO3

    NASA Astrophysics Data System (ADS)

    Gryaznov, Denis; Evarestov, Robert A.; Maier, Joachim

    2010-12-01

    Phonon frequencies at Γ point in nonmagnetic rhombohedral phase of LaCoO3 were calculated using density-functional theory with hybrid exchange correlation functional PBE0. The calculations involved a comparison of results for two types of basis functions commonly used in ab initio calculations, namely, the plane-wave approach and linear combination of atomic orbitals, as implemented in VASP and CRYSTAL computer codes, respectively. A good qualitative, but also within an error margin of less than 30%, a quantitative agreement was observed not only between the two formalisms but also between theoretical and experimental phonon frequency predictions. Moreover, the correlation between the phonon symmetries in cubic and rhombohedral phases is discussed in detail on the basis of group-theoretical analysis. It is concluded that the hybrid PBE0 functional is able to predict correctly the phonon properties in LaCoO3 .

  15. Ab initio studies on the photodissociation dynamics of the 1,1-difluoroethyl radical

    NASA Astrophysics Data System (ADS)

    Fritsche, Lukas; Bach, Andreas; Chen, Peter

    2018-02-01

    Born-Oppenheimer molecular dynamics trajectory calculations at the HCTH147/6-31G** level of theory simulate the dissociation dynamics of photolytically excited 1,1-difluoroethyl radicals. EOMCCSD/AUG-cc-pVDZ calculations show that an excitation energy of 94.82 kcal/mol is necessary to initiate photodissociation reactions. In contrast to photodissociation dynamics of ethyl radicals where a large discrepancy between actual dissociation rates and rates that are predicted by statistical rate theories, we find reaction rates of 5.1 × 1011 s-1 for the dissociation of an H atom, which is in perfect accord with what is predicted by Rice-Ramsperger-Kassel-Marcus (RRKM) calculations and there is no indication of any nonstatistical effects. However, our trajectory calculations show a much larger fraction of C-C bond breakage reaction of 56% occurring than that expected by RRKM (only 16%).

  16. Ab initio studies on the photodissociation dynamics of the 1,1-difluoroethyl radical.

    PubMed

    Fritsche, Lukas; Bach, Andreas; Chen, Peter

    2018-02-28

    Born-Oppenheimer molecular dynamics trajectory calculations at the HCTH147/6-31G** level of theory simulate the dissociation dynamics of photolytically excited 1,1-difluoroethyl radicals. EOMCCSD/AUG-cc-pVDZ calculations show that an excitation energy of 94.82 kcal/mol is necessary to initiate photodissociation reactions. In contrast to photodissociation dynamics of ethyl radicals where a large discrepancy between actual dissociation rates and rates that are predicted by statistical rate theories, we find reaction rates of 5.1 × 10 11 s -1 for the dissociation of an H atom, which is in perfect accord with what is predicted by Rice-Ramsperger-Kassel-Marcus (RRKM) calculations and there is no indication of any nonstatistical effects. However, our trajectory calculations show a much larger fraction of C-C bond breakage reaction of 56% occurring than that expected by RRKM (only 16%).

  17. Recent advances in jointed quantum mechanics and molecular mechanics calculations of biological macromolecules: schemes and applications coupled to ab initio calculations.

    PubMed

    Hagiwara, Yohsuke; Tateno, Masaru

    2010-10-20

    We review the recent research on the functional mechanisms of biological macromolecules using theoretical methodologies coupled to ab initio quantum mechanical (QM) treatments of reaction centers in proteins and nucleic acids. Since in most cases such biological molecules are large, the computational costs of performing ab initio calculations for the entire structures are prohibitive. Instead, simulations that are jointed with molecular mechanics (MM) calculations are crucial to evaluate the long-range electrostatic interactions, which significantly affect the electronic structures of biological macromolecules. Thus, we focus our attention on the methodologies/schemes and applications of jointed QM/MM calculations, and discuss the critical issues to be elucidated in biological macromolecular systems. © 2010 IOP Publishing Ltd

  18. Quantal Study of the Exchange Reaction for N + N2 using an ab initio Potential Energy Surface

    NASA Technical Reports Server (NTRS)

    Wang, Dunyou; Stallcop, James R.; Huo, Winifred M.; Dateo, Christopher E.; Schwenke, David W.; Partridge, Harry; Kwak, Dochan (Technical Monitor)

    2002-01-01

    The N + N2 exchange rate is calculated using a time-dependent quantum dynamics method on a newly determined ab initio potential energy surface (PES) for the ground A" state. This ab initio PES shows a double barrier feature in the interaction region with the barrier height at 47.2 kcal/mol, and a shallow well between these two barriers, with the minimum at 43.7 kcal/mol. A quantum dynamics wave packet calculation has been carried out using the fitted PES to compute the cumulative reaction probability for the exchange reaction of N + N2(J=O). The J - K shift method is then employed to obtain the rate constant for this reaction. The calculated rate constant is compared with experimental data and a recent quasi-classical calculation using a LEPS PES. Significant differences are found between the present and quasiclassical results. The present rate calculation is the first accurate 3D quantal dynamics study for N + N2 reaction system and the ab initio PES reported here is the first such surface for N3.

  19. Lithium cluster anions: photoelectron spectroscopy and ab initio calculations.

    PubMed

    Alexandrova, Anastassia N; Boldyrev, Alexander I; Li, Xiang; Sarkas, Harry W; Hendricks, Jay H; Arnold, Susan T; Bowen, Kit H

    2011-01-28

    Structural and energetic properties of small, deceptively simple anionic clusters of lithium, Li(n)(-), n = 3-7, were determined using a combination of anion photoelectron spectroscopy and ab initio calculations. The most stable isomers of each of these anions, the ones most likely to contribute to the photoelectron spectra, were found using the gradient embedded genetic algorithm program. Subsequently, state-of-the-art ab initio techniques, including time-dependent density functional theory, coupled cluster, and multireference configurational interactions methods, were employed to interpret the experimental spectra.

  20. Vector optical activity in the Weyl semimetal TaAs

    DOE PAGES

    Norman, M. R.

    2015-12-15

    Here, it is shown that the Weyl semimetal TaAs can have a significant polar vector contribution to its optical activity. This is quantified by ab initio calculations of the resonant x-ray diffraction at the Ta L1 edge. For the Bragg vector (400), this polar vector contribution to the circular intensity differential between left and right polarized x-rays is predicted to be comparable to that arising from linear dichroism. Implications this result has in regards to optical effects predicted for topological Weyl semimetals are discussed.

  1. Machine learning of molecular electronic properties in chemical compound space

    NASA Astrophysics Data System (ADS)

    Montavon, Grégoire; Rupp, Matthias; Gobre, Vivekanand; Vazquez-Mayagoitia, Alvaro; Hansen, Katja; Tkatchenko, Alexandre; Müller, Klaus-Robert; Anatole von Lilienfeld, O.

    2013-09-01

    The combination of modern scientific computing with electronic structure theory can lead to an unprecedented amount of data amenable to intelligent data analysis for the identification of meaningful, novel and predictive structure-property relationships. Such relationships enable high-throughput screening for relevant properties in an exponentially growing pool of virtual compounds that are synthetically accessible. Here, we present a machine learning model, trained on a database of ab initio calculation results for thousands of organic molecules, that simultaneously predicts multiple electronic ground- and excited-state properties. The properties include atomization energy, polarizability, frontier orbital eigenvalues, ionization potential, electron affinity and excitation energies. The machine learning model is based on a deep multi-task artificial neural network, exploiting the underlying correlations between various molecular properties. The input is identical to ab initio methods, i.e. nuclear charges and Cartesian coordinates of all atoms. For small organic molecules, the accuracy of such a ‘quantum machine’ is similar, and sometimes superior, to modern quantum-chemical methods—at negligible computational cost.

  2. Ab initio prediction of the vibration-rotation-tunneling spectrum of HCl-(H2O)2

    NASA Astrophysics Data System (ADS)

    Wormer, P. E. S.; Groenenboom, G. C.; van der Avoird, A.

    2001-08-01

    Quantum calculations of the vibration-rotation-tunneling (VRT) levels of the trimer HCl-(H2O)2 are presented. Two internal degrees of freedom are considered—the rotation angles of the two nonhydrogen-bonded (flipping) hydrogens in the complex—together with the overall rotation of the trimer in space. The kinetic energy expression of van der Avoird et al. [J. Chem. Phys. 105, 8034 (1996)] is used in a slightly modified form. The experimental microwave geometry of Kisiel et al. [J. Chem. Phys. 112, 5767 (2000)] served as input in the generation of a planar reference structure. The two-dimensional potential energy surface is generated ab initio by the iterative coupled-cluster method based on singly and doubly excited states with triply excited states included noniteratively [CCSD(T)]. Frequencies of vibrations and tunnel splittings are predicted for two isotopomers. The effect of the nonadditive three-body forces is considered and found to be important.

  3. Ab initio study of collective excitations in a disparate mass molten salt.

    PubMed

    Bryk, Taras; Klevets, Ivan

    2012-12-14

    Ab initio molecular dynamics simulations and the approach of generalized collective modes are applied for calculations of spectra of longitudinal and transverse collective excitations in molten LiBr. Dispersion and damping of low- and high-frequency branches of collective excitations as well as wave-number dependent relaxing modes were calculated. The main mode contributions to partial, total, and concentration dynamic structure factors were estimated in a wide region of wave numbers. A role of polarization effects is discussed from comparison of mode contributions to concentration dynamic structure factors calculated for molten LiBr from ab initio and classical rigid ion simulations.

  4. Ab initio calculation of one-nucleon halo states

    NASA Astrophysics Data System (ADS)

    Rodkin, D. M.; Tchuvil'sky, Yu M.

    2018-02-01

    We develop an approach to microscopic and ab initio description of clustered systems, states with halo nucleon and one-nucleon resonances. For these purposes a basis combining ordinary shell-model components and cluster-channel terms is built up. The transformation of clustered wave functions to the uniform Slater-determinant type is performed using the concept of cluster coefficients. The resulting basis of orthonormalized wave functions is used for calculating the eigenvalues and the eigenvectors of Hamiltonians built in the framework of ab initio approaches. Calculations of resonance and halo states of 5He, 9Be and 9B nuclei demonstrate that the approach is workable and labor-saving.

  5. Einstein coefficients and oscillator strengths for low lying state of CO molecules

    NASA Astrophysics Data System (ADS)

    Swer, S.; Syiemiong, A.; Ram, M.; Jha, A. K.; Saxena, A.

    2018-04-01

    Einstein Coefficients and Oscillator Strengths for different state of CO molecule have been calculated using LEROY'S LEVEL program and MOLCAS ab initio code. Using the wave function derived from Morse potential and transition dipole moment obtained from ab initio calculation, The potential energy functions were computed for these states using the spectroscopic constants. The Morse potential of these states and electronic transition dipole moment of the transition calculated in a recent ab initio study have been used in LEVEL program to produce transition dipole matrix element for a large number of bands. Einstein Coefficients have also been used to compute the radiative lifetimes of several vibrational levels and the calculated values are compared with other theoretical results and experimental values.

  6. Ground and excited states of the Rydberg radical H3O: Electron propagator and quantum defect analysis

    NASA Astrophysics Data System (ADS)

    Melin, Junia; Ortiz, J. V.; Martín, I.; Velasco, A. M.; Lavín, C.

    2005-06-01

    Vertical excitation energies of the Rydberg radical H3O are inferred from ab initio electron propagator calculations on the electron affinities of H3O+. The adiabatic ionization energy of H3O is evaluated with coupled-cluster calculations. These predictions provide optimal parameters for the molecular-adapted quantum defect orbital method, which is used to determine oscillator strengths. Given that the experimental spectrum of H3O does not seem to be available, comparisons with previous calculations are discussed. A simple model Hamiltonian, suitable for the study of bound states with arbitrarily high energies is generated by these means.

  7. Interlayer interactions in graphites.

    PubMed

    Chen, Xiaobin; Tian, Fuyang; Persson, Clas; Duan, Wenhui; Chen, Nan-xian

    2013-11-06

    Based on ab initio calculations of both the ABC- and AB-stacked graphites, interlayer potentials (i.e., graphene-graphene interaction) are obtained as a function of the interlayer spacing using a modified Möbius inversion method, and are used to calculate basic physical properties of graphite. Excellent consistency is observed between the calculated and experimental phonon dispersions of AB-stacked graphite, showing the validity of the interlayer potentials. More importantly, layer-related properties for nonideal structures (e.g., the exfoliation energy, cleave energy, stacking fault energy, surface energy, etc.) can be easily predicted from the interlayer potentials, which promise to be extremely efficient and helpful in studying van der Waals structures.

  8. A new theoretical approach to adsorption desorption behavior of Ga on GaAs surfaces

    NASA Astrophysics Data System (ADS)

    Kangawa, Y.; Ito, T.; Taguchi, A.; Shiraishi, K.; Ohachi, T.

    2001-11-01

    We propose a new theoretical approach for studying adsorption-desorption behavior of atoms on semiconductor surfaces. The new theoretical approach based on the ab initio calculations incorporates the free energy of gas phase; therefore we can calculate how adsorption and desorption depends on growth temperature and beam equivalent pressure (BEP). The versatility of the new theoretical approach was confirmed by the calculation of Ga adsorption-desorption transition temperatures and transition BEPs on the GaAs(0 0 1)-(4×2)β2 Ga-rich surface. This new approach is feasible to predict how adsorption and desorption depend on the growth conditions.

  9. IR Spectra of (HCOOH)2 and (DCOOH)2: Experiment, VSCF/VCI, and Ab Initio Molecular Dynamics Calculations Using Full-Dimensional Potential and Dipole Moment Surfaces.

    PubMed

    Qu, Chen; Bowman, Joel M

    2018-05-17

    We report quantum VSCF/VCI and ab initio molecular dynamics (AIMD) calculations of the IR spectra of (HCOOH) 2 and (DCOOH) 2 , using full-dimensional, ab initio potential energy and dipole moment surfaces (PES and DMS). These surfaces are fits, using permutationally invariant polynomials, to 13 475 ab initio CCSD(T)-F12a electronic energies and MP2 dipole moments. Here "AIMD" means using these ab initio potential and dipole moment surfaces in the MD calculations. The VSCF/VCI calculations use all (24) normal modes for coupling, with a four-mode representation of the potential. The quantum spectra align well with jet-cooled and room-temperature experimental spectra over the spectral range 600-3600 cm -1 . Analyses of the complex O-H and C-H stretch bands are made based on the mixing of the VSCF/VCI basis functions. The comparisons of the AIMD IR spectra with both experimental and VSCF/VCI ones provide tests of the accuracy of the AIMD approach. These indicate good accuracy for simple bands but not for the complex O-H stretch band, which is upshifted from experimental and VSCF/VCI bands by roughly 300 cm -1 . In addition to testing the AIMD approach, the PES, DMS, and VSCF/VCI calculations for formic acid dimer provide opportunities for testing other methods to represent high-dimensional data and other methods that perform postharmonic vibrational calculations.

  10. Spectroscopic and computational studies of ionic clusters as models of solvation and atmospheric reactions

    NASA Astrophysics Data System (ADS)

    Kuwata, Keith T.

    Ionic clusters are useful as model systems for the study of fundamental processes in solution and in the atmosphere. Their structure and reactivity can be studied in detail using vibrational predissociation spectroscopy, in conjunction with high level ab initio calculations. This thesis presents the applications of infrared spectroscopy and computation to a variety of gas-phase cluster systems. A crucial component of the process of stratospheric ozone depletion is the action of polar stratospheric clouds (PSCs) to convert the reservoir species HCl and chlorine nitrate (ClONO2) to photochemically labile compounds. Quantum chemistry was used to explore one possible mechanism by which this activation is effected: Cl- + ClONO2 /to Cl2 + NO3- eqno(1)Correlated ab initio calculations predicted that the direct reaction of chloride ion with ClONO2 is facile, which was confirmed in an experimental kinetics study. In the reaction a weakly bound intermediate Cl2-NO3- is formed, with ~70% of the charge localized on the nitrate moiety. This enables the Cl2-NO3- cluster to be well solvated even in bulk solution, allowing (1) to be facile on PSCs. Quantum chemistry was also applied to the hydration of nitrosonium ion (NO+), an important process in the ionosphere. The calculations, in conjunction with an infrared spectroscopy experiment, revealed the structure of the gas-phase clusters NO+(H2O)n. The large degree of covalent interaction between NO+ and the lone pairs of the H2O ligands is contrasted with the weak electrostatic bonding between iodide ion and H2O. Finally, the competition between ion solvation and solvent self-association is explored for the gas-phase clusters Cl/-(H2O)n and Cl-(NH3)n. For the case of water, vibrational predissociation spectroscopy reveals less hydrogen bonding among H2O ligands than predicted by ab initio calculations. Nevertheless, for n /ge 5, cluster structure is dominated by water-water interactions, with Cl- only partially solvated by the water cluster. Preliminary infrared spectra and computations on Cl- (NH3)n indicate that NH3 preferentially binds to Cl- ion instead of forming inter-solvent networks.

  11. Molecular opacities for exoplanets

    PubMed Central

    Bernath, Peter F.

    2014-01-01

    Spectroscopic observations of exoplanets are now possible by transit methods and direct emission. Spectroscopic requirements for exoplanets are reviewed based on existing measurements and model predictions for hot Jupiters and super-Earths. Molecular opacities needed to simulate astronomical observations can be obtained from laboratory measurements, ab initio calculations or a combination of the two approaches. This discussion article focuses mainly on laboratory measurements of hot molecules as needed for exoplanet spectroscopy. PMID:24664921

  12. Electron-ion temperature equilibration in warm dense tantalum

    DOE PAGES

    Doppner, T; LePape, S.; Ma, T.; ...

    2014-11-05

    We present measurements of electron-ion temperature equilibration in proton-heated tantalum, under warm dense matter conditions. Our results agree with theoretical predictions for metals calculated using input data from ab initio simulations. Furthermore, the fast relaxation observed in the experiment contrasts with much longer equilibration times found in proton heated carbon, indicating that the energy flow pathways in warm dense matter are far from being fully understood.

  13. Use of Biodescriptors and Chemodescriptors in Predictive Toxicology: A Mathematical/Computational Approach

    DTIC Science & Technology

    2005-01-01

    proteomic gel analyses. The research group has explored the use of chemodescriptors calculated using high-level ab initio quantum chemical basis sets...descriptors that characterize the entire proteomics map, local descriptors that characterize a subset of the proteins present in the gel, and spectrum...techniques for analyzing the full set of proteins present in a proteomics map. 14. SUBJECT TERMS 1S. NUMBER OF PAGES Topological indices

  14. The reaction of C5N- with acetylene as a possible intermediate step to produce large anions in Titan's ionosphere.

    PubMed

    Lindén, Carl Fredrik; Žabka, Ján; Polášek, Miroslav; Zymak, Illia; Geppert, Wolf D

    2018-02-21

    A theoretical and experimental investigation of the reaction C 5 N - + C 2 H 2 has been carried out. This reaction is of astrophysical interest since the growth mechanism of large anions that have been detected in Titan's upper atmosphere by the Cassini plasma spectrometer are still largely unknown. The experimental studies have been performed using a tandem quadrupole mass spectrometer which allows identification of the different reaction channels and assessment of their reaction thresholds. Results of these investigations were compared with the predictions of ab initio calculations, which identified possible pathways leading to the observed products and their thermodynamical properties. These computations yielded that the majority of these products are only accessible via energy barriers situated more than 1 eV above the reactant energies. In many cases, the thresholds predicted by the ab initio calculations are in good agreement with the experimentally observed ones. For example, the chain elongation reaction leading to C 7 N - , although being slightly exoergic, possesses an energy barrier of 1.91 eV. Therefore, the title reaction can be regarded to be somewhat unlikely to be responsible for the formation of large anions in cold environments such as interstellar medium or planetary ionospheres.

  15. Mesoscale models for stacking faults, deformation twins and martensitic transformations: Linking atomistics to continuum

    NASA Astrophysics Data System (ADS)

    Kibey, Sandeep A.

    We present a hierarchical approach that spans multiple length scales to describe defect formation---in particular, formation of stacking faults (SFs) and deformation twins---in fcc crystals. We link the energy pathways (calculated here via ab initio density functional theory, DFT) associated with formation of stacking faults and twins to corresponding heterogeneous defect nucleation models (described through mesoscale dislocation mechanics). Through the generalized Peieirls-Nabarro model, we first correlate the width of intrinsic SFs in fcc alloy systems to their nucleation pathways called generalized stacking fault energies (GSFE). We then establish a qualitative dependence of twinning tendency in fee metals and alloys---specifically, in pure Cu and dilute Cu-xAl (x= 5.0 and 8.3 at.%)---on their twin-energy pathways called the generalized planar fault energies (GPFE). We also link the twinning behavior of Cu-Al alloys to their electronic structure by determining the effect of solute Al on the valence charge density redistribution at the SF through ab initio DFT. Further, while several efforts have been undertaken to incorporate twinning for predicting stress-strain response of fcc materials, a fundamental law for critical twinning stress has not yet emerged. We resolve this long-standing issue by linking quantitatively the twin-energy pathways (GPFE) obtained via ab initio DFT to heterogeneous, dislocation-based twin nucleation models. We establish an analytical expression that quantitatively predicts the critical twinning stress in fcc metals in agreement with experiments without requiring any empiricism at any length scale. Our theory connects twinning stress to twin-energy pathways and predicts a monotonic relation between stress and unstable twin stacking fault energy revealing the physics of twinning. We further demonstrate that the theory holds for fcc alloys as well. Our theory inherently accounts for directional nature of twinning which available qualitative models do not necessarily account for. Finally, we extend the present work to martensitic transformations and determine the energy pathway for B2→B19 transformation in NiTi. Based on our ab initio DFT calculations, we propose a combined distortion-shuffle pathway for B2→B19 transformation in NiTi. Our results indicate that in NiTi, a barrier of 0.48 mRyd/atom (relative to B2 phase) must be overcome to transform the parent B2 into orthorhombic B19 phase.

  16. Ab initio calculations of the lattice dynamics of silver halides

    NASA Astrophysics Data System (ADS)

    Gordienko, A. B.; Kravchenko, N. G.; Sedelnikov, A. N.

    2010-12-01

    Based on ab initio pseudopotential calculations, the results of investigations of the lattice dynamics of silver halides AgHal (Hal = Cl, Br, I) are presented. Equilibrium lattice parameters, phonon spectra, frequency densities and effective atomic-charge values are obtained for all types of crystals under study.

  17. Deuteron-induced nucleon transfer reactions within an ab initio framework: First application to p -shell nuclei

    DOE PAGES

    Raimondi, Francesco; Hupin, Guillaume; Navratil, Petr; ...

    2016-05-10

    Low-energy transfer reactions in which a proton is stripped from a deuteron projectile and dropped into a target play a crucial role in the formation of nuclei in both primordial and stellar nucleosynthesis, as well as in the study of exotic nuclei using radioactive beam facilities and inverse kinematics. Here, ab initio approaches have been successfully applied to describe the 3H(d,n) 4He and 3He(d,p) 4He fusion processes. An ab initio treatment of transfer reactions would also be desirable for heavier targets. In this work, we extend the ab initio description of (d,p) reactions to processes with light p-shell nuclei. Asmore » a first application, we study the elastic scattering of deuterium on 7Li and the 7Li(d,p) 8Li transfer reaction based on a two-body Hamiltonian. We use the no-core shell model to compute the wave functions of the nuclei involved in the reaction, and describe the dynamics between targets and projectiles with the help of microscopic-cluster states in the spirit of the resonating group method. The shapes of the excitation functions for deuterons impinging on 7Li are qualitatively reproduced up to the deuteron breakup energy. The interplay between d– 7Li and p– 8Li particle-decay channels determines some features of the 9Be spectrum above the d+ 7Li threshold. Our prediction for the parity of the 17.298 MeV resonance is at odds with the experimental assignment. Deuteron stripping reactions with p-shell targets can now be computed ab initio, but calculations are very demanding. Finally, a quantitative description of the 7Li(d,p) 8Li reaction will require further work to include the effect of three-nucleon forces and additional decay channels and to improve the convergence rate of our calculations.« less

  18. Deuteron-induced nucleon transfer reactions within an ab initio framework: First application to p -shell nuclei

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Raimondi, Francesco; Hupin, Guillaume; Navratil, Petr

    Low-energy transfer reactions in which a proton is stripped from a deuteron projectile and dropped into a target play a crucial role in the formation of nuclei in both primordial and stellar nucleosynthesis, as well as in the study of exotic nuclei using radioactive beam facilities and inverse kinematics. Here, ab initio approaches have been successfully applied to describe the 3H(d,n) 4He and 3He(d,p) 4He fusion processes. An ab initio treatment of transfer reactions would also be desirable for heavier targets. In this work, we extend the ab initio description of (d,p) reactions to processes with light p-shell nuclei. Asmore » a first application, we study the elastic scattering of deuterium on 7Li and the 7Li(d,p) 8Li transfer reaction based on a two-body Hamiltonian. We use the no-core shell model to compute the wave functions of the nuclei involved in the reaction, and describe the dynamics between targets and projectiles with the help of microscopic-cluster states in the spirit of the resonating group method. The shapes of the excitation functions for deuterons impinging on 7Li are qualitatively reproduced up to the deuteron breakup energy. The interplay between d– 7Li and p– 8Li particle-decay channels determines some features of the 9Be spectrum above the d+ 7Li threshold. Our prediction for the parity of the 17.298 MeV resonance is at odds with the experimental assignment. Deuteron stripping reactions with p-shell targets can now be computed ab initio, but calculations are very demanding. Finally, a quantitative description of the 7Li(d,p) 8Li reaction will require further work to include the effect of three-nucleon forces and additional decay channels and to improve the convergence rate of our calculations.« less

  19. Well-characterized sequence features of eukaryote genomes and implications for ab initio gene prediction.

    PubMed

    Huang, Ying; Chen, Shi-Yi; Deng, Feilong

    2016-01-01

    In silico analysis of DNA sequences is an important area of computational biology in the post-genomic era. Over the past two decades, computational approaches for ab initio prediction of gene structure from genome sequence alone have largely facilitated our understanding on a variety of biological questions. Although the computational prediction of protein-coding genes has already been well-established, we are also facing challenges to robustly find the non-coding RNA genes, such as miRNA and lncRNA. Two main aspects of ab initio gene prediction include the computed values for describing sequence features and used algorithm for training the discriminant function, and by which different combinations are employed into various bioinformatic tools. Herein, we briefly review these well-characterized sequence features in eukaryote genomes and applications to ab initio gene prediction. The main purpose of this article is to provide an overview to beginners who aim to develop the related bioinformatic tools.

  20. Ab initio theory and modeling of water.

    PubMed

    Chen, Mohan; Ko, Hsin-Yu; Remsing, Richard C; Calegari Andrade, Marcos F; Santra, Biswajit; Sun, Zhaoru; Selloni, Annabella; Car, Roberto; Klein, Michael L; Perdew, John P; Wu, Xifan

    2017-10-10

    Water is of the utmost importance for life and technology. However, a genuinely predictive ab initio model of water has eluded scientists. We demonstrate that a fully ab initio approach, relying on the strongly constrained and appropriately normed (SCAN) density functional, provides such a description of water. SCAN accurately describes the balance among covalent bonds, hydrogen bonds, and van der Waals interactions that dictates the structure and dynamics of liquid water. Notably, SCAN captures the density difference between water and ice I h at ambient conditions, as well as many important structural, electronic, and dynamic properties of liquid water. These successful predictions of the versatile SCAN functional open the gates to study complex processes in aqueous phase chemistry and the interactions of water with other materials in an efficient, accurate, and predictive, ab initio manner.

  1. Ab initio theory and modeling of water

    PubMed Central

    Chen, Mohan; Ko, Hsin-Yu; Remsing, Richard C.; Calegari Andrade, Marcos F.; Santra, Biswajit; Sun, Zhaoru; Selloni, Annabella; Car, Roberto; Klein, Michael L.; Perdew, John P.; Wu, Xifan

    2017-01-01

    Water is of the utmost importance for life and technology. However, a genuinely predictive ab initio model of water has eluded scientists. We demonstrate that a fully ab initio approach, relying on the strongly constrained and appropriately normed (SCAN) density functional, provides such a description of water. SCAN accurately describes the balance among covalent bonds, hydrogen bonds, and van der Waals interactions that dictates the structure and dynamics of liquid water. Notably, SCAN captures the density difference between water and ice Ih at ambient conditions, as well as many important structural, electronic, and dynamic properties of liquid water. These successful predictions of the versatile SCAN functional open the gates to study complex processes in aqueous phase chemistry and the interactions of water with other materials in an efficient, accurate, and predictive, ab initio manner. PMID:28973868

  2. Stacking fault energy of face-centered cubic metals: thermodynamic and ab initio approaches

    NASA Astrophysics Data System (ADS)

    Li, Ruihuan; Lu, Song; Kim, Dongyoo; Schönecker, Stephan; Zhao, Jijun; Kwon, Se Kyun; Vitos, Levente

    2016-10-01

    The formation energy of the interface between face-centered cubic (fcc) and hexagonal close packed (hcp) structures is a key parameter in determining the stacking fault energy (SFE) of fcc metals and alloys using thermodynamic calculations. It is often assumed that the contribution of the planar fault energy to the SFE has the same order of magnitude as the bulk part, and thus the lack of precise information about it can become the limiting factor in thermodynamic predictions. Here, we differentiate between the interfacial energy for the coherent fcc(1 1 1)/hcp(0 0 0 1) interface and the ‘pseudo-interfacial energy’ that enters the thermodynamic expression for the SFE. Using first-principles calculations, we determine the coherent and pseudo-interfacial energies for six elemental metals (Al, Ni, Cu, Ag, Pt, and Au) and three paramagnetic Fe-Cr-Ni alloys. Our results show that the two interfacial energies significantly differ from each other. We observe a strong chemistry dependence for both interfacial energies. The calculated pseudo-interfacial energies for the Fe-Cr-Ni steels agree well with the available literature data. We discuss the effects of strain on the description of planar faults via thermodynamic and ab initio approaches.

  3. B-spline algebraic diagrammatic construction: Application to photoionization cross-sections and high-order harmonic generation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ruberti, M.; Averbukh, V.; Decleva, P.

    2014-10-28

    We present the first implementation of the ab initio many-body Green's function method, algebraic diagrammatic construction (ADC), in the B-spline single-electron basis. B-spline versions of the first order [ADC(1)] and second order [ADC(2)] schemes for the polarization propagator are developed and applied to the ab initio calculation of static (photoionization cross-sections) and dynamic (high-order harmonic generation spectra) quantities. We show that the cross-section features that pose a challenge for the Gaussian basis calculations, such as Cooper minima and high-energy tails, are found to be reproduced by the B-spline ADC in a very good agreement with the experiment. We also presentmore » the first dynamic B-spline ADC results, showing that the effect of the Cooper minimum on the high-order harmonic generation spectrum of Ar is correctly predicted by the time-dependent ADC calculation in the B-spline basis. The present development paves the way for the application of the B-spline ADC to both energy- and time-resolved theoretical studies of many-electron phenomena in atoms, molecules, and clusters.« less

  4. Stacking fault energy of face-centered cubic metals: thermodynamic and ab initio approaches.

    PubMed

    Li, Ruihuan; Lu, Song; Kim, Dongyoo; Schönecker, Stephan; Zhao, Jijun; Kwon, Se Kyun; Vitos, Levente

    2016-10-05

    The formation energy of the interface between face-centered cubic (fcc) and hexagonal close packed (hcp) structures is a key parameter in determining the stacking fault energy (SFE) of fcc metals and alloys using thermodynamic calculations. It is often assumed that the contribution of the planar fault energy to the SFE has the same order of magnitude as the bulk part, and thus the lack of precise information about it can become the limiting factor in thermodynamic predictions. Here, we differentiate between the interfacial energy for the coherent fcc(1 1 1)/hcp(0 0 0 1) interface and the 'pseudo-interfacial energy' that enters the thermodynamic expression for the SFE. Using first-principles calculations, we determine the coherent and pseudo-interfacial energies for six elemental metals (Al, Ni, Cu, Ag, Pt, and Au) and three paramagnetic Fe-Cr-Ni alloys. Our results show that the two interfacial energies significantly differ from each other. We observe a strong chemistry dependence for both interfacial energies. The calculated pseudo-interfacial energies for the Fe-Cr-Ni steels agree well with the available literature data. We discuss the effects of strain on the description of planar faults via thermodynamic and ab initio approaches.

  5. The shear instability energy: a new parameter for materials design?

    NASA Astrophysics Data System (ADS)

    Kanani, M.; Hartmaier, A.; Janisch, R.

    2017-10-01

    Reliable and predictive relationships between fundamental microstructural material properties and observable macroscopic mechanical behaviour are needed for the successful design of new materials. In this study we establish a link between physical properties that are defined on the atomic level and the deformation mechanisms of slip planes and interfaces that govern the mechanical behaviour of a metallic material. To accomplish this, the shear instability energy Γ is introduced, which can be determined via quantum mechanical ab initio calculations or other atomistic methods. The concept is based on a multilayer generalised stacking fault energy calculation and can be applied to distinguish the different shear deformation mechanisms occurring at TiAl interfaces during finite-temperature molecular dynamics simulations. We use the new parameter Γ to construct a deformation mechanism map for different interfaces occurring in this intermetallic. Furthermore, Γ can be used to convert the results of ab initio density functional theory calculations into those obtained with an embedded atom method type potential for TiAl. We propose to include this new physical parameter into material databases to apply it for the design of materials and microstructures, which so far mainly relies on single-crystal values for the unstable and stable stacking fault energy.

  6. The elastic stability, bifurcation and ideal strength of gold under hydrostatic stress: an ab initio calculation.

    PubMed

    Wang, Hao; Li, Mo

    2009-11-11

    In this paper, we employ an ab initio density functional theory calculation to investigate the elastic stability of face-centered cubic Au under hydrostatic deformation. We identify the elastic stiffness constant B(ijkl) as the coefficient in the stress-strain relation for an arbitrary deformed state, and use it to test the stability condition. We show that this criterion bears the same physics as that proposed earlier by Frenkel and Orowan and agrees with the Born-Hill criterion. The results from those two approaches agree well with each other. We show that the stability limit, or instability, of the perfect Au crystal under hydrostatic expansion is not associated with the bulk stiffness modulus as predicted in the previous work; rather it is caused by a shear instability associated with the vanishing rhombohedral shear stiffness modulus. The deviation of the deformation mode from the primary hydrostatic loading path signals a bifurcation or symmetry breaking in the ideal crystal. The corresponding ideal hydrostatic strength for Au is 19.2 GPa at the Lagrangian expansion strain of ∼0.06. In the case of compression, Au remains stable over the entire pressure range in our calculation.

  7. Structural characterization of tellurite glasses doped with transition metal oxides using Raman spectra and ab initio calculations.

    PubMed

    Mohamed, Tarek A; Shaltout, I; Al Yahyaei, K M

    2006-05-01

    Systems of iron tellurite glasses were prepared by melt quenching with compositions of [85%TeO2+5%Fe2O3+10%TMO], where transition metal oxides (TMO) are TiO2, V2O5, MnO, CoO, NiO and CuO. Furthermore, the main structural units of these samples have been characterized by means of Raman spectra (150-1200 cm(-1)) as well as wavenumber predictions by means of Gaussian 98 ab initio calculations for the proposed site symmetries of TeO4(4-) triagonal bipyramid (C2v) and Te2O7(6-) bridged tetrahedra (Cs and C1). Aided by normal coordinate analysis, calculated vibrational frequencies, Raman scattering activities, force constants in internal coordinates and potential energy distributions (PEDs), revised vibrational assignments for the fundamental modes have been proposed. The main structural features are correlated to the dominant units of triagonal bipyramid (tbp) or bridged tetrahedral (TeO3+1 binds to TeO3 through TeOTe bridge; corner sharing). Moreover, the Raman spectra of the investigated tellurites reflect a structural change from tbp (coordination number is four) to triagonal pyramidal (coordination number is three).

  8. Prediction of folding preference of 10 kDa silk-like proteins using a Lego approach and ab initio calculations.

    PubMed

    Pohl, Gábor; Beke, Tamás; Borbély, János; Perczel, András

    2006-11-15

    Because of their great flexibility and strength resistance, both spider silks and silkworm silks are of increasing scientific and commercial interest. Despite numerous spectroscopic and theoretical studies, several structural properties at the atomic level have yet to be identified. The present theoretical investigation focuses on these issues by studying three silk-like model peptides: (AG)(64), [(AG)(4)EG](16), and [(AG)(4)PEG](16), using a Lego-type approach to construct these polypeptides. On the basis of these examples it is shown that thermoneutral isodesmic reactions and ab initio calculations provide a capable method to investigate structural properties of repetitive polypeptides. The most probable overall fold schema of these molecules with respect to the type of embedded hairpin structures were determined at the ab initio level of theory (RHF/6-311++G(d,p)//RHF/3-21G). Further on, analysis is carried out on the possible hairpin and turn regions and on their effect on the global fold. In the case of the (AG)(64) model peptide, the optimal beta-sheet/turn ratio was also determined, which provided good support for experimental observations. In addition, lateral shearing of a hairpin "folding unit" was investigated at the quantum chemical level to explain the mechanical properties of spider silk. The unique mechanical characteristics of silk bio-compounds are now investigated at the atomic level.

  9. Ab initio calculations for the elastic properties of magnesium under pressure

    NASA Astrophysics Data System (ADS)

    Sin'Ko, G. V.; Smirnov, N. A.

    2009-09-01

    Results of ab initio calculations of the elastic constants for the hcp, bcc, double hcp (dhcp), and fcc magnesium in a wide range of pressures are presented. The calculated elastic constants are compared with available experimental and theoretical data. We discuss the effect of the electron topological transition that occurs when the hcp structure is compressed on results of calculations and consider possibility of observing the hcp→dhcp transition on the magnesium Hugoniot.

  10. An ab initio molecular orbital study of the mechanism for the gas-phase water-mediated decomposition and the formation of hydrates of peroxyacetyl nitrate (PAN).

    PubMed

    Li, Yumin; Francisco, Joseph S

    2005-08-31

    There is uncertainty in the mechanism for the hydrolysis of peroxyacetyl nitrate (PAN), and experimental attempts to detect products of the direct reaction have been unsuccessful. Ab initio calculations are used to examine the energetics of water-mediated decomposition of gas-phase PAN into acetic acid and peroxynitric acid. On the basis of ab initio calculations, an alternative reaction mechanism for the decomposition of PAN is proposed. The calculations indicate that the barrier for one water addition to PAN is large. However, including additional water molecules reveals a substantially lower energy route. The calculations suggest that the formation of PAN hydrate complexes are energetically favorable and stable. Additional waters are increasingly efficient at stabilizing hydrated PAN.

  11. Puzzle of magnetic moments of Ni clusters revisited using quantum Monte Carlo method.

    PubMed

    Lee, Hung-Wen; Chang, Chun-Ming; Hsing, Cheng-Rong

    2017-02-28

    The puzzle of the magnetic moments of small nickel clusters arises from the discrepancy between values predicted using density functional theory (DFT) and experimental measurements. Traditional DFT approaches underestimate the magnetic moments of nickel clusters. Two fundamental problems are associated with this puzzle, namely, calculating the exchange-correlation interaction accurately and determining the global minimum structures of the clusters. Theoretically, the two problems can be solved using quantum Monte Carlo (QMC) calculations and the ab initio random structure searching (AIRSS) method correspondingly. Therefore, we combined the fixed-moment AIRSS and QMC methods to investigate the magnetic properties of Ni n (n = 5-9) clusters. The spin moments of the diffusion Monte Carlo (DMC) ground states are higher than those of the Perdew-Burke-Ernzerhof ground states and, in the case of Ni 8-9 , two new ground-state structures have been discovered using the DMC calculations. The predicted results are closer to the experimental findings, unlike the results predicted in previous standard DFT studies.

  12. Ab Initio Calculations of Transport in Titanium and Aluminum Mixtures

    NASA Astrophysics Data System (ADS)

    Walker, Nicholas; Novak, Brian; Tam, Ka Ming; Moldovan, Dorel; Jarrell, Mark

    In classical molecular dynamics simulations, the self-diffusion and shear viscosity of titanium about the melting point have fallen within the ranges provided by experimental data. However, the experimental data is difficult to collect and has been rather scattered, making it of limited value for the validation of these calculations. By using ab initio molecular dynamics simulations within the density functional theory framework, the classical molecular dynamics data can be validated. The dynamical data from the ab initio molecular dynamics can also be used to calculate new potentials for use in classical molecular dynamics, allowing for more accurate classical dynamics simulations for the liquid phase. For metallic materials such as titanium and aluminum alloys, these calculations are very valuable due to an increasing demand for the knowledge of their thermophysical properties that drive the development of new materials. For example, alongside knowledge of the surface tension, viscosity is an important input for modeling the additive manufacturing process at the continuum level. We are developing calculations of the viscosity along with the self-diffusion for aluminum, titanium, and titanium-aluminum alloys with ab initio molecular dynamics. Supported by the National Science Foundation through cooperative agreement OIA-1541079 and the Louisiana Board of Regents.

  13. Ab initio study of the ground and excited electronic states of the methyl radical

    PubMed Central

    Zanchet, A.; Bañares, L.; Senent, M. L.; García-Vela, A.

    2016-01-01

    The ground and some excited electronic states of the methyl radical have been characterized by means of highly correlated ab intio techniques. The specific excited states investigated are those involved in the dissociation of the radical, namely the 3s and 3pz Rydberg states, and the A1 and B1 valence states crossing them, respectively. The C-H dissociative coordinate and the HCH bending angle were considered in order to generate the first two-dimensional ab initio representation of the potential surfaces of the above electronic states of CH3, along with the nonadiabatic couplings between them. Spectroscopic constants and frequencies calculated for the ground and bound excited states agree well with most of the available experimental data. Implications of the shape of the excited potential surfaces and couplings for the dissociation pathways of CH3 are discussed in the light of recent experimental results for dissociation from low-lying vibrational states of CH3. Based on the ab initio data some predictions are made regarding methyl photodissociation from higher initial vibrational states. PMID:27892569

  14. Vibrational modes in thymine molecule from an ab initio MO calculation

    NASA Astrophysics Data System (ADS)

    Aida, Misako; Kaneko, Motohisa; Dupuis, Michel; Ueda, Toyotoshi; Ushizawa, Koichi; Ito, Gen; Kumakura, Akiko; Tsuboi, Masamichi

    1997-03-01

    Ab initio self-consistent field molecular orbital (SCF MO) calculations have been made of the thymine molecule for the equilibrium geometry, harmonic force constants, vibrational frequencies, vibrational modes, infrared intensities, and Raman intensities. The results have been correlated with the observed Raman and infrared spectra of thymine crystalline powder.

  15. Clustering/anticlustering effects on the GeSi Raman spectra at moderate (Ge,Si) contents: Percolation scheme vs. ab initio calculations

    NASA Astrophysics Data System (ADS)

    Torres, V. J. B.; Hajj Hussein, R.; Pagès, O.; Rayson, M. J.

    2017-02-01

    We test a presumed ability behind the phenomenological percolation scheme used for the basic description of the multi-mode Raman spectra of mixed crystals at one dimension along the linear chain approximation, to determine, via the Raman intensities, the nature of the atom substitution, as to whether this is random or due to local clustering/anticlustering. For doing so, we focus on the model percolation-type GeySi1-y system characterized by six oscillators { 1 × ( G e - G e ) , 3 × ( G e - S i ) , 2 × ( S i - S i ) } and place the study around the critical compositions y ˜ (0.16, 0.71, and 0.84) corresponding to nearly matching of intensities between the like Raman modes from a given multiplet ( G e - S i triplet or S i - S i doublet). The interplay between the GeySi1-y Raman intensities predicted by the percolation scheme depending on a suitable order parameter κ of local clustering/anticlustering is found to be consistent with ab initio calculations of the GeySi1-y Raman spectra done with the Ab Initio Modeling PROgram code using large (64-, 216-, and 512-atoms) disordered cubic supercells matching the required ( y , κ ) values. The actual "percolation vs. ab initio" comparative insight at moderate/dilute-(Ge,Si) limits, with an emphasis on the κ -induced intra-bond transfer of oscillator strength, extends a pioneering one earlier achieved at an intermediate composition ( y ˜ 0.50) by using small (32-atom) supercells [O. Pagès et al., J. Appl. Phys. 114, 033513 (2013)], mainly concerned with the inter-bond transfer of oscillator strength, providing altogether a complete picture.

  16. Ab initio calculations for industrial materials engineering: successes and challenges.

    PubMed

    Wimmer, Erich; Najafabadi, Reza; Young, George A; Ballard, Jake D; Angeliu, Thomas M; Vollmer, James; Chambers, James J; Niimi, Hiroaki; Shaw, Judy B; Freeman, Clive; Christensen, Mikael; Wolf, Walter; Saxe, Paul

    2010-09-29

    Computational materials science based on ab initio calculations has become an important partner to experiment. This is demonstrated here for the effect of impurities and alloying elements on the strength of a Zr twist grain boundary, the dissociative adsorption and diffusion of iodine on a zirconium surface, the diffusion of oxygen atoms in a Ni twist grain boundary and in bulk Ni, and the dependence of the work function of a TiN-HfO(2) junction on the replacement of N by O atoms. In all of these cases, computations provide atomic-scale understanding as well as quantitative materials property data of value to industrial research and development. There are two key challenges in applying ab initio calculations, namely a higher accuracy in the electronic energy and the efficient exploration of large parts of the configurational space. While progress in these areas is fueled by advances in computer hardware, innovative theoretical concepts combined with systematic large-scale computations will be needed to realize the full potential of ab initio calculations for industrial applications.

  17. Sphinx: merging knowledge-based and ab initio approaches to improve protein loop prediction

    PubMed Central

    Marks, Claire; Nowak, Jaroslaw; Klostermann, Stefan; Georges, Guy; Dunbar, James; Shi, Jiye; Kelm, Sebastian

    2017-01-01

    Abstract Motivation: Loops are often vital for protein function, however, their irregular structures make them difficult to model accurately. Current loop modelling algorithms can mostly be divided into two categories: knowledge-based, where databases of fragments are searched to find suitable conformations and ab initio, where conformations are generated computationally. Existing knowledge-based methods only use fragments that are the same length as the target, even though loops of slightly different lengths may adopt similar conformations. Here, we present a novel method, Sphinx, which combines ab initio techniques with the potential extra structural information contained within loops of a different length to improve structure prediction. Results: We show that Sphinx is able to generate high-accuracy predictions and decoy sets enriched with near-native loop conformations, performing better than the ab initio algorithm on which it is based. In addition, it is able to provide predictions for every target, unlike some knowledge-based methods. Sphinx can be used successfully for the difficult problem of antibody H3 prediction, outperforming RosettaAntibody, one of the leading H3-specific ab initio methods, both in accuracy and speed. Availability and Implementation: Sphinx is available at http://opig.stats.ox.ac.uk/webapps/sphinx. Contact: deane@stats.ox.ac.uk Supplementary information: Supplementary data are available at Bioinformatics online. PMID:28453681

  18. Sphinx: merging knowledge-based and ab initio approaches to improve protein loop prediction.

    PubMed

    Marks, Claire; Nowak, Jaroslaw; Klostermann, Stefan; Georges, Guy; Dunbar, James; Shi, Jiye; Kelm, Sebastian; Deane, Charlotte M

    2017-05-01

    Loops are often vital for protein function, however, their irregular structures make them difficult to model accurately. Current loop modelling algorithms can mostly be divided into two categories: knowledge-based, where databases of fragments are searched to find suitable conformations and ab initio, where conformations are generated computationally. Existing knowledge-based methods only use fragments that are the same length as the target, even though loops of slightly different lengths may adopt similar conformations. Here, we present a novel method, Sphinx, which combines ab initio techniques with the potential extra structural information contained within loops of a different length to improve structure prediction. We show that Sphinx is able to generate high-accuracy predictions and decoy sets enriched with near-native loop conformations, performing better than the ab initio algorithm on which it is based. In addition, it is able to provide predictions for every target, unlike some knowledge-based methods. Sphinx can be used successfully for the difficult problem of antibody H3 prediction, outperforming RosettaAntibody, one of the leading H3-specific ab initio methods, both in accuracy and speed. Sphinx is available at http://opig.stats.ox.ac.uk/webapps/sphinx. deane@stats.ox.ac.uk. Supplementary data are available at Bioinformatics online. © The Author 2017. Published by Oxford University Press.

  19. Atomistic and Ab Initio Calculations or Ternary II-IV-V2 Semiconductors

    DTIC Science & Technology

    1999-12-07

    consisting of two- and three-body terms is developed reproducing crystal lattice constants, elastic and dielectric constants very well. The calculated...the lattice . This difference may well be due to defect-induced lattice distortion which plays a key role in stabilizing the hole states in the... lattice . 15. SUBJECT TERMS Chalcopyrites, Defects, Atomistic and AB Initio Calculations 16. SECURITY CLASSIFICATION OF: a. REPORT u b. ABSTRACT U

  20. General Rule of Negative Effective Ueff System & Materials Design of High-Tc Superconductors by ab initio Calculations

    NASA Astrophysics Data System (ADS)

    Katayama-Yoshida, Hiroshi; Nakanishi, Akitaka; Uede, Hiroki; Takawashi, Yuki; Fukushima, Tetsuya; Sato, Kazunori

    2014-03-01

    Based upon ab initio electronic structure calculation, I will discuss the general rule of negative effective U system by (1) exchange-correlation-induced negative effective U caused by the stability of the exchange-correlation energy in Hund's rule with high-spin ground states of d5 configuration, and (2) charge-excitation-induced negative effective U caused by the stability of chemical bond in the closed-shell of s2, p6, and d10 configurations. I will show the calculated results of negative effective U systems such as hole-doped CuAlO2 and CuFeS2. Based on the total energy calculations of antiferromagnetic and ferromagnetic states, I will discuss the magnetic phase diagram and superconductivity upon hole doping. I also discuss the computational materials design method of high-Tc superconductors by ab initio calculation to go beyond LDA and multi-scale simulations.

  1. First-principles modeling of hardness in transition-metal diborides

    NASA Astrophysics Data System (ADS)

    Lazar, Petr; Chen, Xing-Qiu; Podloucky, Raimund

    2009-07-01

    Based on recent experiments, the diborides OsB2 and ReB2 were proposed to be ultraincompressible and superhard materials. By application of an ab initio density-functional theory approach we investigate the elastic and cleavage fracture properties of the borides MB2 ( M=Hf , Ta, W, Re, Os, and Ir). We derive a direct correlation between the lowest calculated critical cleavage stress and the experimental (micro)hardness. By calculating the critical shear stress and estimating the possibility of dislocation emission we can justify the prediction that ReB2 is indeed a superhard material.

  2. Theoretical Study of the Electronic Spectra of a Polycyclic Aromatic Hydrocarbon, Naphthalene, and its Derivatives

    NASA Technical Reports Server (NTRS)

    Du, Ping; Salama, Farid; Loew, Gilda H.

    1993-01-01

    In order to preselect possible candidates for the origin of diffuse interstellar bands observed, semiempirical quantum mechanical method INDO/S was applied to the optical spectra of neutral, cationic, and anionic states of naphthalene and its hydrogen abstraction and addition derivatives. Comparison with experiment shows that the spectra of naphthalene and its ions were reliably predicted. The configuration interaction calculations with single-electron excitations provided reasonable excited state wavefunctions compared to ab initio calculations that included higher excitations. The degree of similarity of the predicted spectra of the hydrogen abstraction and derivatives to those of naphthalene and ions depends largely on the similarity of the it electron configurations. For the hydrogen addition derivatives, very little resemblance of the predicted spectra to naphthalene was found because of the disruption of the aromatic conjugation system. The relevance of these calculations to astrophysical issues is discussed within the context of these polycyclic aromatic hydrocarbon models. Comparing the calculated electronic energies to the Diffuse Interstellar Bands (DIBs), a list of possible candidates of naphthalene derivatives is established which provides selected candidates for a definitive test through laboratory studies.

  3. Protonation of benzimidazoles and 1,2,3-benzotriazoles Solid-state linear dichroic infrared (IR-LD) spectral analysis and ab initio calculations

    NASA Astrophysics Data System (ADS)

    Ivanova, Bojidarka B.; Pindeva, Liliya I.

    2006-09-01

    IR-LD spectroscopic data obtained by the orientated solid samples as a suspension in a nematic liquid crystal of 1-hydroxy-1,2,3-benzotriazole, 2-methyl-, 2-acetonitrilebenzimidazoles and their protonated salts have been presented. The stereo-structures have been predicted and compared with theoretical ones. The IR-characteristic bands assignments of all molecule systems have been achieved.

  4. Comment on Chem. Phys. Lett. 371 (2003) 568: Barrier height for dissociation of acetaldehyde, CH 3CHO → CH 3 + HCO, in the triplet state T 1

    NASA Astrophysics Data System (ADS)

    Robert Huber, J.

    2003-08-01

    Based on recently reported experimental results from various groups, the barrier height (or transition state energy) for the T 1 dissociation of acetaldehyde, CH 3CHO → CH 3 + HCO, is determined to lie between 12.3 and 12.9 kcal mol -1. This result is compared with predictions from recent ab initio calculations.

  5. Pseudopotential for ab initio calculations of uranium compounds

    NASA Astrophysics Data System (ADS)

    Smirnov, G. S.; Pisarev, V. V.; Stegailov, V. V.

    2018-01-01

    The density functional theory (DFT) is a research tool of the highest importance for electronic structure calculations. It is often the only affordable method for ab initio calculations of complex materials. The pseudopotential approach allows reducing the total number of electrons in the model that speeds up calculations. However, there is a lack of pseudopotentials for heavy elements suitable for condensed matter DFT models. In this work, we present a pseudopotential for uranium developed in the Goedecker-Teter-Hutter form. Its accuracy is illustrated using several molecular and solid-state calculations.

  6. An unscaled quantum mechanical harmonic force field for p-benzoquinone

    NASA Astrophysics Data System (ADS)

    Nonella, Marco; Tavan, Paul

    1995-10-01

    Structure and harmonic vibrational frequencies of p-benzoquinone have been calculated using quantum chemical ab initio and density functional methods. Our calculations show that a satisfactory description of fundamentals and normal mode compositions is achieved upon consideration of correlation effects by means of Møller-Plesset perturbation expansion (MP2) or by density functional theory (DFT). Furthermore, for correct prediction of CO bondlength and force constant, basis sets augmented by polarization functions are required. Applying such basis sets, MP2 and DFT calculations both give results which are generally in reasonable agreement with experimental data. The quantitatively better agreement, however, is achieved with the computationally less demanding DFT method. This method particularly allows very precise prediction of the experimentally important absorptions in the frequency region between 1500 and 1800 cm -1 and of the isotopic shifts of these vibrations due to 13C or 18O substitution.

  7. A PRELIMINARY JUPITER MODEL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hubbard, W. B.; Militzer, B.

    In anticipation of new observational results for Jupiter's axial moment of inertia and gravitational zonal harmonic coefficients from the forthcoming Juno orbiter, we present a number of preliminary Jupiter interior models. We combine results from ab initio computer simulations of hydrogen–helium mixtures, including immiscibility calculations, with a new nonperturbative calculation of Jupiter's zonal harmonic coefficients, to derive a self-consistent model for the planet's external gravity and moment of inertia. We assume helium rain modified the interior temperature and composition profiles. Our calculation predicts zonal harmonic values to which measurements can be compared. Although some models fit the observed (pre-Juno) second-more » and fourth-order zonal harmonics to within their error bars, our preferred reference model predicts a fourth-order zonal harmonic whose absolute value lies above the pre-Juno error bars. This model has a dense core of about 12 Earth masses and a hydrogen–helium-rich envelope with approximately three times solar metallicity.« less

  8. Ab initio calculations of torsionally mediated hyperfine splittings in E states of acetaldehyde

    NASA Astrophysics Data System (ADS)

    Xu, Li-Hong; Reid, E. M.; Guislain, B.; Hougen, J. T.; Alekseev, E. A.; Krapivin, I.

    2017-12-01

    Quantum chemistry packages can be used to predict with reasonable accuracy spin-rotation hyperfine interaction constants for methanol, which contains one methyl-top internal rotor. In this work we use one of these packages to calculate components of the spin-rotation interaction tensor for acetaldehyde. We then use torsion-rotation wavefunctions obtained from a fit to the acetaldehyde torsion-rotation spectrum to calculate the expected magnitude of hyperfine splittings analogous to those observed at relatively high J values in the E symmetry states of methanol. We find that theory does indeed predict doublet splittings at moderate J values in the acetaldehyde torsion-rotation spectrum, which closely resemble those seen in methanol, but that the factor of three decrease in hyperfine spin-rotation constants compared to methanol puts the largest of the acetaldehyde splittings a factor of two below presently available Lamb-dip resolution.

  9. Vibrational spectroscopic study of terbutaline hemisulphate

    NASA Astrophysics Data System (ADS)

    Ali, H. R. H.; Edwards, H. G. M.; Kendrick, J.; Scowen, I. J.

    2009-05-01

    The Raman spectrum of terbutaline hemisulphate is reported for the first time, and molecular assignments are proposed on the basis of ab initio BLYP DFT calculations with a 6-31G* basis set and vibrational frequencies predicted within the quasi-harmonic approximation; these predictions compare favourably with the observed vibrational spectra. Comparison with previously published infrared data explains several spectral features. The results from this study provide data that can be used for the preparative process monitoring of terbutaline hemisulphate, an important β 2 agonist drug in various dosage forms and its interaction with excipients and other components.

  10. Measurements and predictions of the 6s6p{sup 1,3}P{sub 1} lifetimes in the Hg isoelectronic sequence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Curtis, L. J.; Irving, R. E.; Henderson, M.

    2001-04-01

    Experimental and theoretical values for the lifetimes of the 6s6p{sup 1}P{sub 1} and {sup 3}P{sub 1} levels in the Hg isoelectronic sequence are examined in the context of a data-based isoelectronic systematization. New beam-foil measurements for lifetimes in Pb III and Bi IV are reported and included in a critical evaluation of the available database. These results are combined with ab initio theoretical calculations and linearizing parametrizations to make predictive extrapolations for ions with 84{<=}Z{le}92.

  11. An ab initio-based Er–He interatomic potential in hcp Er

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Li; ye, Yeting; Fan, K. M.

    2014-09-01

    We have developed an empirical erbium-helium (Er-He) potential by fitting to the results calculated from ab initio method. Based on the electronic hybridization between Er and He atoms, an s-band model, along with a repulsive pair potential, has been derived to describe the Er-He interaction. The atomic configurations and the formation energies of single He defects, small He interstitial clusters (Hen) and He-vacancy (HenV ) clusters obtained by ab initio calculations are used as the fitting database. The binding energies and relative stabilities of the HnVm clusters are studied by the present potential and compared with the ab initio calculations.more » The Er-He potential is also applied to study the migration of He in hcp-Er at different temperatures, and He clustering is found to occur at 600 K in hcp Er crystal, which may be due to the anisotropic migration behavior of He interstitials.« less

  12. A coupled channel study of HN2 unimolecular decay based on a global ab initio potential surface

    NASA Technical Reports Server (NTRS)

    Koizumi, Hiroyasu; Schatz, George C.; Walch, Stephen P.

    1991-01-01

    The unimolecular decay lifetimes of several vibrational states of HN2 are determined on the basis of an accurate coupled channel dynamics study using a global analytical potential surface. The surface reproduces the ab initio points with an rms error of 0.08 kcal/mol for energies below 20 kcal/mol. Modifications to the potential that describe the effect of improving the basis set in the ab initio calculations are provided. Converged coupled channel calculations are performed for the ground rotational state of HN2 to determine the lifetimes of the lowest ten vibrational states. Only the ground vibrational state (000) and first excited bend (001) are found to have lifetimes longer than 1 ps. The lifetimes of these states are estimated at 3 x 10 to the -9th and 2 x 10 to the -10th s, respectively. Variation of these results with quality of the ab initio calculations is not more than a factor of 5.

  13. Density-matrix based determination of low-energy model Hamiltonians from ab initio wavefunctions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Changlani, Hitesh J.; Zheng, Huihuo; Wagner, Lucas K.

    2015-09-14

    We propose a way of obtaining effective low energy Hubbard-like model Hamiltonians from ab initio quantum Monte Carlo calculations for molecular and extended systems. The Hamiltonian parameters are fit to best match the ab initio two-body density matrices and energies of the ground and excited states, and thus we refer to the method as ab initio density matrix based downfolding. For benzene (a finite system), we find good agreement with experimentally available energy gaps without using any experimental inputs. For graphene, a two dimensional solid (extended system) with periodic boundary conditions, we find the effective on-site Hubbard U{sup ∗}/t tomore » be 1.3 ± 0.2, comparable to a recent estimate based on the constrained random phase approximation. For molecules, such parameterizations enable calculation of excited states that are usually not accessible within ground state approaches. For solids, the effective Hamiltonian enables large-scale calculations using techniques designed for lattice models.« less

  14. An extensive ab initio study of the structures, vibrational spectra, quadratic force fields, and relative energetics of three isomers of Cl2O2

    NASA Technical Reports Server (NTRS)

    Lee, Timothy J.; Rohlfing, Celeste MCM.; Rice, Julia E.

    1992-01-01

    Quantum mechanical computational methods are employed for an ab initio investigation of: (1) the molecular properties of the lowest isomers of the ClO dimer; and (2) predicted molecular and thermochemical properties. Techniques employed include electron correlation and particularly singles and doubles coupled-cluster (CCSD) theory with or without perturbational estimates of the effects of connected triple excitations. The isomers ClOClO and ClClO2 are found to have higher energies than the ClOOCl isomer, and the theoretical vibrational frequencies of the isomers are well correlated with experimental data. Experimental values of the heat of formation for the isomers are also compared with calculations based on an isodesmic reaction with Cl2O, H2O, and HOOH.

  15. Ab initio calculations, structure, NBO and NCI analyses of Xsbnd H⋯π interactions

    NASA Astrophysics Data System (ADS)

    Wu, Qiyang; Su, He; Wang, Hongyan; Wang, Hui

    2018-02-01

    The performance of ab initio methods (MP2, DFT/B3LYP, random-phase approximation (RPA), CCSD(T) and QCISD(T)) in predicting interaction energy of Xsbnd H⋯π (Xsbnd H = HCCH, HCl, HF; π = C2H2, C2H4, C6H6) hydrogen complexes are assessed systematically. The CCSD(T)/CBS benchmarks of interaction energy are reported. It is found that RPA agrees well with CCSD(T)/CBS benchmarks and experimental results. CCSD(T) and QCISD(T) perform the best only when compared with CCSD(T)/CBS benchmarks, MP2 performs well only for experimental data. B3LYP provides the worst accuracy. Additionally, the equilibrium structure, interaction type of Xsbnd H⋯π hydrogen complexes are investigated by the natural bond orbital (NBO) and the non-covalent interaction index (NCI).

  16. Fast Mg2+ diffusion in Mo3(PO4)3O for Mg batteries.

    PubMed

    Rong, Ziqin; Xiao, Penghao; Liu, Miao; Huang, Wenxuan; Hannah, Daniel C; Scullin, William; Persson, Kristin A; Ceder, Gerbrand

    2017-07-13

    In this work, we identify a new potential Mg battery cathode structure Mo 3 (PO 4 ) 3 O, which is predicted to exhibit ultra-fast Mg 2+ diffusion and relatively high voltage based on first-principles density functional theory calculations. Nudged elastic band calculations reveal that the migration barrier of the percolation channel is only ∼80 meV, which is remarkably low, and comparable to the best Li-ion conductors. This low barrier is verified by ab initio molecular dynamics and kinetic Monte Carlo simulations. The voltage and specific energy are predicted to be ∼1.98 V and ∼173 W h kg -1 , respectively. If confirmed by experiments, this material would have the highest known Mg mobility among inorganic compounds.

  17. Ab initio prediction of half-metallic properties for the ferromagnetic Heusler alloys Co2MSi (M=Ti,V,Cr)

    NASA Astrophysics Data System (ADS)

    Chen, Xing-Qiu; Podloucky, R.; Rogl, P.

    2006-12-01

    By means of density functional calculations, the magnetic and electronic properties and phase stabilities of the Heusler compounds Co2MSi (with M =Ti,V,Cr,Mn,Fe,Co,Ni) were investigated. Based on the calculated results, we predict the ferromagnetic phases of the compounds Co2TiSi, Co2VSi, and Co2CrSi to be half metals. Of particular interest is Co2CrSi because of its high density of majority-spin states at Fermi energy in combination with a reasonably high estimated Curie temperature of 747K. The compounds Co2TiSi and Co2VSi are thermodynamically stable, whereas Co2CrSi is of a metastable phase which might be stabilized by suitable experimental techniques.

  18. Electronic Structure at Electrode/Electrolyte Interfaces in Magnesium based Batteries

    NASA Astrophysics Data System (ADS)

    Balachandran, Janakiraman; Siegel, Donald

    2015-03-01

    Magnesium is a promising multivalent element for use in next generation electrochemical energy storage systems. However, a wide range of challenges such as low coulombic efficiency, low/varying capacity and cyclability need to be resolved in order to realize Mg based batteries. Many of these issues can be related to interfacial phenomena between the Mg anode and common electrolytes. Ab-initio based computational models of these interfaces can provide insights on the interfacial interactions that can be difficult to probe experimentally. In this work we present ab-initio computations of common electrolyte solvents (THF, DME) in contact with two model electrode surfaces namely -- (i) an ``SEI-free'' electrode based on Mg metal and, (ii) a ``passivated'' electrode consisting of MgO. We perform GW calculations to predict the reorganization of the molecular orbitals (HOMO/LUMO) upon contact with the these surfaces and their alignment with respect to the Fermi energy of the electrodes. These computations are in turn compared with more efficient GGA (PBE) & Hybrid (HSE) functional calculations. The results obtained from these computations enable us to qualitatively describe the stability of these solvent molecules at electrode-electrolyte interfaces

  19. Spin-Orbit Effect on the Molecular Properties of TeXn (X = F, Cl, Br, and I; n = 1, 2, and 4): A Density Functional Theory and Ab Initio Study.

    PubMed

    Moon, Jiwon; Kim, Joonghan

    2016-09-29

    Density functional theory (DFT) and ab initio calculations, including spin-orbit coupling (SOC), were performed to investigate the spin-orbit (SO) effect on the molecular properties of tellurium halides, TeXn (X = F, Cl, Br, and I; n = 1, 2, and 4). SOC elongates the Te-X bond and slightly reduces the vibrational frequencies. Consideration of SOC leads to better agreement with experimental values. Møller-Plesset second-order perturbation theory (MP2) seriously underestimates the Te-X bond lengths. In contrast, B3LYP significantly overestimates them. SO-PBE0 and multireference configuration interactions with the Davidson correction (MRCI+Q), which include SOC via a state-interaction approach, give the Te-I bond length of TeI2 that matches the experimental value. On the basis of the calculated thermochemical energy and optimized molecular structure, TeI4 is unlikely to be stable. The use of PBE0 including SOC is strongly recommended for predicting the molecular properties of Te-containing compounds.

  20. Ab-initio conformational epitope structure prediction using genetic algorithm and SVM for vaccine design.

    PubMed

    Moghram, Basem Ameen; Nabil, Emad; Badr, Amr

    2018-01-01

    T-cell epitope structure identification is a significant challenging immunoinformatic problem within epitope-based vaccine design. Epitopes or antigenic peptides are a set of amino acids that bind with the Major Histocompatibility Complex (MHC) molecules. The aim of this process is presented by Antigen Presenting Cells to be inspected by T-cells. MHC-molecule-binding epitopes are responsible for triggering the immune response to antigens. The epitope's three-dimensional (3D) molecular structure (i.e., tertiary structure) reflects its proper function. Therefore, the identification of MHC class-II epitopes structure is a significant step towards epitope-based vaccine design and understanding of the immune system. In this paper, we propose a new technique using a Genetic Algorithm for Predicting the Epitope Structure (GAPES), to predict the structure of MHC class-II epitopes based on their sequence. The proposed Elitist-based genetic algorithm for predicting the epitope's tertiary structure is based on Ab-Initio Empirical Conformational Energy Program for Peptides (ECEPP) Force Field Model. The developed secondary structure prediction technique relies on Ramachandran Plot. We used two alignment algorithms: the ROSS alignment and TM-Score alignment. We applied four different alignment approaches to calculate the similarity scores of the dataset under test. We utilized the support vector machine (SVM) classifier as an evaluation of the prediction performance. The prediction accuracy and the Area Under Receiver Operating Characteristic (ROC) Curve (AUC) were calculated as measures of performance. The calculations are performed on twelve similarity-reduced datasets of the Immune Epitope Data Base (IEDB) and a large dataset of peptide-binding affinities to HLA-DRB1*0101. The results showed that GAPES was reliable and very accurate. We achieved an average prediction accuracy of 93.50% and an average AUC of 0.974 in the IEDB dataset. Also, we achieved an accuracy of 95.125% and an AUC of 0.987 on the HLA-DRB1*0101 allele of the Wang benchmark dataset. The results indicate that the proposed prediction technique "GAPES" is a promising technique that will help researchers and scientists to predict the protein structure and it will assist them in the intelligent design of new epitope-based vaccines. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Comparing ab initio density-functional and wave function theories: the impact of correlation on the electronic density and the role of the correlation potential.

    PubMed

    Grabowski, Ireneusz; Teale, Andrew M; Śmiga, Szymon; Bartlett, Rodney J

    2011-09-21

    The framework of ab initio density-functional theory (DFT) has been introduced as a way to provide a seamless connection between the Kohn-Sham (KS) formulation of DFT and wave-function based ab initio approaches [R. J. Bartlett, I. Grabowski, S. Hirata, and S. Ivanov, J. Chem. Phys. 122, 034104 (2005)]. Recently, an analysis of the impact of dynamical correlation effects on the density of the neon atom was presented [K. Jankowski, K. Nowakowski, I. Grabowski, and J. Wasilewski, J. Chem. Phys. 130, 164102 (2009)], contrasting the behaviour for a variety of standard density functionals with that of ab initio approaches based on second-order Møller-Plesset (MP2) and coupled cluster theories at the singles-doubles (CCSD) and singles-doubles perturbative triples [CCSD(T)] levels. In the present work, we consider ab initio density functionals based on second-order many-body perturbation theory and coupled cluster perturbation theory in a similar manner, for a range of small atomic and molecular systems. For comparison, we also consider results obtained from MP2, CCSD, and CCSD(T) calculations. In addition to this density based analysis, we determine the KS correlation potentials corresponding to these densities and compare them with those obtained for a range of ab initio density functionals via the optimized effective potential method. The correlation energies, densities, and potentials calculated using ab initio DFT display a similar systematic behaviour to those derived from electronic densities calculated using ab initio wave function theories. In contrast, typical explicit density functionals for the correlation energy, such as VWN5 and LYP, do not show behaviour consistent with this picture of dynamical correlation, although they may provide some degree of correction for already erroneous explicitly density-dependent exchange-only functionals. The results presented here using orbital dependent ab initio density functionals show that they provide a treatment of exchange and correlation contributions within the KS framework that is more consistent with traditional ab initio wave function based methods.

  2. The application of tailor-made force fields and molecular dynamics for NMR crystallography: a case study of free base cocaine

    PubMed Central

    Neumann, Marcus A.

    2017-01-01

    Motional averaging has been proven to be significant in predicting the chemical shifts in ab initio solid-state NMR calculations, and the applicability of motional averaging with molecular dynamics has been shown to depend on the accuracy of the molecular mechanical force field. The performance of a fully automatically generated tailor-made force field (TMFF) for the dynamic aspects of NMR crystallography is evaluated and compared with existing benchmarks, including static dispersion-corrected density functional theory calculations and the COMPASS force field. The crystal structure of free base cocaine is used as an example. The results reveal that, even though the TMFF outperforms the COMPASS force field for representing the energies and conformations of predicted structures, it does not give significant improvement in the accuracy of NMR calculations. Further studies should direct more attention to anisotropic chemical shifts and development of the method of solid-state NMR calculations. PMID:28250956

  3. Evaluating High-Throughput Ab Initio Gene Finders to Discover Proteins Encoded in Eukaryotic Pathogen Genomes Missed by Laboratory Techniques

    PubMed Central

    Goodswen, Stephen J.; Kennedy, Paul J.; Ellis, John T.

    2012-01-01

    Next generation sequencing technology is advancing genome sequencing at an unprecedented level. By unravelling the code within a pathogen’s genome, every possible protein (prior to post-translational modifications) can theoretically be discovered, irrespective of life cycle stages and environmental stimuli. Now more than ever there is a great need for high-throughput ab initio gene finding. Ab initio gene finders use statistical models to predict genes and their exon-intron structures from the genome sequence alone. This paper evaluates whether existing ab initio gene finders can effectively predict genes to deduce proteins that have presently missed capture by laboratory techniques. An aim here is to identify possible patterns of prediction inaccuracies for gene finders as a whole irrespective of the target pathogen. All currently available ab initio gene finders are considered in the evaluation but only four fulfil high-throughput capability: AUGUSTUS, GeneMark_hmm, GlimmerHMM, and SNAP. These gene finders require training data specific to a target pathogen and consequently the evaluation results are inextricably linked to the availability and quality of the data. The pathogen, Toxoplasma gondii, is used to illustrate the evaluation methods. The results support current opinion that predicted exons by ab initio gene finders are inaccurate in the absence of experimental evidence. However, the results reveal some patterns of inaccuracy that are common to all gene finders and these inaccuracies may provide a focus area for future gene finder developers. PMID:23226328

  4. Uncertainties in scaling factors for ab initio vibrational zero-point energies

    NASA Astrophysics Data System (ADS)

    Irikura, Karl K.; Johnson, Russell D.; Kacker, Raghu N.; Kessel, Rüdiger

    2009-03-01

    Vibrational zero-point energies (ZPEs) determined from ab initio calculations are often scaled by empirical factors. An empirical scaling factor partially compensates for the effects arising from vibrational anharmonicity and incomplete treatment of electron correlation. These effects are not random but are systematic. We report scaling factors for 32 combinations of theory and basis set, intended for predicting ZPEs from computed harmonic frequencies. An empirical scaling factor carries uncertainty. We quantify and report, for the first time, the uncertainties associated with scaling factors for ZPE. The uncertainties are larger than generally acknowledged; the scaling factors have only two significant digits. For example, the scaling factor for B3LYP/6-31G(d) is 0.9757±0.0224 (standard uncertainty). The uncertainties in the scaling factors lead to corresponding uncertainties in predicted ZPEs. The proposed method for quantifying the uncertainties associated with scaling factors is based upon the Guide to the Expression of Uncertainty in Measurement, published by the International Organization for Standardization. We also present a new reference set of 60 diatomic and 15 polyatomic "experimental" ZPEs that includes estimated uncertainties.

  5. Chirality recognition in the glycidol···propylene oxide complex: a rotational spectroscopic study.

    PubMed

    Thomas, Javix; Sunahori, Fumie X; Borho, Nicole; Xu, Yunjie

    2011-04-11

    Chirality recognition in the hydrogen-bonded glycidol···propylene oxide complex has been studied by using rotational spectroscopy and ab initio calculations. An extensive conformational search has been performed for this binary adduct at the MP2/6-311++G(d,p) level of theory and a total of 28 homo- and heterochiral conformers were identified. The eight binary conformers, built of the two dominant glycidol monomeric conformers, g-G+ and g+G-, were predicted to be the most stable ones. Jet-cooled rotational spectra of six out of the eight conformers were observed and unambiguously assigned for the first time. The experimental stability ordering has been obtained and compared with the ab initio predictions. The relative stability of the two dominant glycidol monomeric conformers is reversed in some cases when binding to propylene oxide. The contributions of monomeric energy, deformation energy, and binary intermolecular interaction energy to the relative stability of the binary conformers are discussed. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Ab Initio Study of Ultracold Polar Molecules in Optical Lattices

    DTIC Science & Technology

    2010-01-01

    collisions of Li and alkaline-earth or rare- earth atoms, such LiSr and LiYb. Finally, we calculated the isotropic and anisotropic interaction potentials... LiSr and LiYb molecules. To the best of our knowledge, only LiMg was experimentally investigated [3], which allowed us to compare our predictions...alkaline-earth or rare-earth atoms. Interest in the LiSr and LiYb molecules stems from prospects to achieve optical Feshbach tuning of scattering properties

  7. Aromatic dipeptides and their salts—Solid-state linear-dichroic infrared (IR-LD) spectral analysis and ab initio calculations

    NASA Astrophysics Data System (ADS)

    Ivanova, Bojidarka B.

    2008-07-01

    Stereo-structural analysis and IR-bands assignment of the aromatic dipeptides L-tryrosyl- L-phenylalanine ( Tyr-Phe), L-phenylalanyl- L-tyrosine ( Phe-Tyr) and their hydrochloride salts have been carried out by means of IR-LD spectroscopy of oriented as nematic liquid crystal suspension solid samples. The experimental data are compared with known crystallographic ones and theoretical predicted geometries at RHF/ and UHF/6-31G**.

  8. Efficacy of the SU(3) scheme for ab initio large-scale calculations beyond the lightest nuclei

    DOE PAGES

    Dytrych, T.; Maris, P.; Launey, K. D.; ...

    2016-06-22

    We report on the computational characteristics of ab initio nuclear structure calculations in a symmetry-adapted no-core shell model (SA-NCSM) framework. We examine the computational complexity of the current implementation of the SA-NCSM approach, dubbed LSU3shell, by analyzing ab initio results for 6Li and 12C in large harmonic oscillator model spaces and SU3-selected subspaces. We demonstrate LSU3shell’s strong-scaling properties achieved with highly-parallel methods for computing the many-body matrix elements. Results compare favorably with complete model space calculations and significant memory savings are achieved in physically important applications. In particular, a well-chosen symmetry-adapted basis affords memory savings in calculations of states withmore » a fixed total angular momentum in large model spaces while exactly preserving translational invariance.« less

  9. Nuclear shielding constants by density functional theory with gauge including atomic orbitals

    NASA Astrophysics Data System (ADS)

    Helgaker, Trygve; Wilson, Philip J.; Amos, Roger D.; Handy, Nicholas C.

    2000-08-01

    Recently, we introduced a new density-functional theory (DFT) approach for the calculation of NMR shielding constants. First, a hybrid DFT calculation (using 5% exact exchange) is performed on the molecule to determine Kohn-Sham orbitals and their energies; second, the constants are determined as in nonhybrid DFT theory, that is, the paramagnetic contribution to the constants is calculated from a noniterative, uncoupled sum-over-states expression. The initial results suggested that this semiempirical DFT approach gives shielding constants in good agreement with the best ab initio and experimental data; in this paper, we further validate this procedure, using London orbitals in the theory, having implemented DFT into the ab initio code DALTON. Calculations on a number of small and medium-sized molecules confirm that our approach produces shieldings in excellent agreement with experiment and the best ab initio results available, demonstrating its potential for the study of shielding constants of large systems.

  10. Efficacy of the SU(3) scheme for ab initio large-scale calculations beyond the lightest nuclei

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dytrych, T.; Maris, Pieter; Launey, K. D.

    2016-06-09

    We report on the computational characteristics of ab initio nuclear structure calculations in a symmetry-adapted no-core shell model (SA-NCSM) framework. We examine the computational complexity of the current implementation of the SA-NCSM approach, dubbed LSU3shell, by analyzing ab initio results for 6Li and 12C in large harmonic oscillator model spaces and SU(3)-selected subspaces. We demonstrate LSU3shell's strong-scaling properties achieved with highly-parallel methods for computing the many-body matrix elements. Results compare favorably with complete model space calculations and signi cant memory savings are achieved in physically important applications. In particular, a well-chosen symmetry-adapted basis a ords memory savings in calculations ofmore » states with a fixed total angular momentum in large model spaces while exactly preserving translational invariance.« less

  11. Cooperative effects in the structuring of fluoride water clusters: Ab initio hybrid quantum mechanical/molecular mechanical model incorporating polarizable fluctuating charge solvent

    NASA Astrophysics Data System (ADS)

    Bryce, Richard A.; Vincent, Mark A.; Malcolm, Nathaniel O. J.; Hillier, Ian H.; Burton, Neil A.

    1998-08-01

    A new hybrid quantum mechanical/molecular mechanical model of solvation is developed and used to describe the structure and dynamics of small fluoride/water clusters, using an ab initio wave function to model the ion and a fluctuating charge potential to model the waters. Appropriate parameters for the water-water and fluoride-water interactions are derived, with the fluoride anion being described by density functional theory and a large Gaussian basis. The role of solvent polarization in determining the structure and energetics of F(H2O)4- clusters is investigated, predicting a slightly greater stability of the interior compared to the surface structure, in agreement with ab initio studies. An extended Lagrangian treatment of the polarizable water, in which the water atomic charges fluctuate dynamically, is used to study the dynamics of F(H2O)4- cluster. A simulation using a fixed solvent charge distribution indicates principally interior, solvated states for the cluster. However, a preponderance of trisolvated configurations is observed using the polarizable model at 300 K, which involves only three direct fluoride-water hydrogen bonds. Ab initio calculations confirm this trisolvated species as a thermally accessible state at room temperature, in addition to the tetrasolvated interior and surface structures. Extension of this polarizable water model to fluoride clusters with five and six waters gave less satisfactory agreement with experimental energies and with ab initio geometries. However, our results do suggest that a quantitative model of solvent polarization is fundamental for an accurate understanding of the properties of anionic water clusters.

  12. Effect of Heteroatoms on Field-Induced Slow Magnetic Relaxation of Mononuclear FeIII ( S = 5/2) Ions within Polyoxometalates.

    PubMed

    Minato, Takuo; Aravena, Daniel; Ruiz, Eliseo; Yamaguchi, Kazuya; Mizuno, Noritaka; Suzuki, Kosuke

    2018-06-01

    In this paper, the synthesis and magnetic properties of mononuclear Fe III -containing polyoxometalates (POMs) with different types of heteroatoms, TBA 7 H 10 [(A-α-XW 9 O 34 ) 2 Fe] (II X , X = Ge, Si; TBA = tetra- n-butylammonium), are reported. In these POMs, mononuclear highly distorted six-coordinate octahedral [FeO 6 ] 9- units are sandwiched by two trivacant lacunary units [A-α-XW 9 O 34 ] 10- (X = Ge, Si). These POMs exhibit field-induced slow magnetic relaxation based on the single high-spin Fe III magnetic center ( S = 5/2). Combining experiment and ab initio calculations, we investigated the effect of heteroatoms of the lacunary units on the field-induced slow magnetic relaxation of these POMs. By changing the heteroatoms from Si (II Si ) to Ge (II Ge ), the coordination geometry around the Fe III ion is mildly changed. Concretely, the axial Fe-O bond length in II Ge is shortened compared with that in II Si , and consequently the distortion of the [FeO 6 ] 9- unit in II Ge from the ideal octahedral coordination geometry becomes larger than that in II Si . The effective demagnetization barrier of II Ge (11.4 K) is slightly larger than that of II Si (9.2 K). Multireference ab initio calculations predict zero-field splitting parameters in good agreement with experiment. Although the differences in the coordination geometries and magnetic properties of II Ge and II Si are quite small, ab initio calculations indicate subtle changes in the magnetic anisotropy which are in line with the observed magnetic relaxation properties.

  13. Torsion-wagging tunneling and vibrational states in hydrazine determined from its ab initio potential energy surface

    NASA Astrophysics Data System (ADS)

    Łodyga, Wiesław; Makarewicz, Jan

    2012-05-01

    Geometries, anharmonic vibrations, and torsion-wagging (TW) multiplets of hydrazine and its deuterated species are studied using high-level ab initio methods employing the second-order Møller-Plesset perturbation theory (MP2) as well as the coupled cluster singles and doubles model including connected triple corrections, CCSD(T), in conjunction with extended basis sets containing diffuse and core functions. To describe the splitting patterns caused by tunneling in TW states, the 3D potential energy surface (PES) for the large-amplitude TW modes is constructed. Stationary points in the 3D PES, including equivalent local minima and saddle points are characterized. Using this 3D PES, a flexible Hamiltonian is built numerically and then employed to solve the vibrational problem for TW coupled motion. The calculated ground state rav structure is expected to be more reliable than the experimental one that has been determined using a simplified structural model. The calculated fundamental frequencies allowed resolution of the assignment problems discussed earlier in the literature. The determined energy barriers, including the contributions from the small-amplitude vibrations, to the tunneling of the symmetric and antisymmetric wagging mode of 1997 cm-1 and 3454 cm-1, respectively, are in reasonable agreement with the empirical estimates of 2072 cm-1 and 3312 cm-1, respectively [W. Łodyga et al. J. Mol. Spectrosc. 183, 374 (1997), 10.1006/jmsp.1997.7271]. However, the empirical torsion barrier of 934 cm-1 appears to be overestimated. The ab initio calculations yield two torsion barriers: cis and trans of 744 cm-1 and 2706 cm-1, respectively. The multiplets of the excited torsion states are predicted from the refined 3D PES.

  14. HPAM: Hirshfeld Partitioned Atomic Multipoles

    PubMed Central

    Elking, Dennis M.; Perera, Lalith; Pedersen, Lee G.

    2011-01-01

    An implementation of the Hirshfeld (HD) and Hirshfeld-Iterated (HD-I) atomic charge density partitioning schemes is described. Atomic charges and atomic multipoles are calculated from the HD and HD-I atomic charge densities for arbitrary atomic multipole rank lmax on molecules of arbitrary shape and size. The HD and HD-I atomic charges/multipoles are tested by comparing molecular multipole moments and the electrostatic potential (ESP) surrounding a molecule with their reference ab initio values. In general, the HD-I atomic charges/multipoles are found to better reproduce ab initio electrostatic properties over HD atomic charges/multipoles. A systematic increase in precision for reproducing ab initio electrostatic properties is demonstrated by increasing the atomic multipole rank from lmax = 0 (atomic charges) to lmax = 4 (atomic hexadecapoles). Both HD and HD-I atomic multipoles up to rank lmax are shown to exactly reproduce ab initio molecular multipole moments of rank L for L ≤ lmax. In addition, molecular dipole moments calculated by HD, HD-I, and ChelpG atomic charges only (lmax = 0) are compared with reference ab initio values. Significant errors in reproducing ab initio molecular dipole moments are found if only HD or HD-I atomic charges used. PMID:22140274

  15. An ab-initio study of mechanical, dynamical and electronic properties of MgEu intermetallic

    NASA Astrophysics Data System (ADS)

    Kumar, S. Ramesh; Jaiganesh, G.; Jayalakshmi, V.

    2018-04-01

    The theoretical investigation on the mechanical, dynamical and electronic properties of MgEu in CsCl-type structure has been carried out through the ab-initio calculations within the framework of the density functional theory and the density functional perturbation theory. For the purpose, Vienna Ab initio Simulation Package and Phonopy packages were used. Our calculated ground-state properties of MgEu are in good agreement with other available results. Our computed elastic constants and phonon spectrum results suggest that MgEu is mechanically and dynamically stable up to 5 GPa. The thermodynamic quantities as a function of temperatures are also reported and discussed. The band structure, density of states and charge density also calculated to understand the electronic properties of MgEu.

  16. Ab initio calculation of the electronic absorption spectrum of liquid water

    NASA Astrophysics Data System (ADS)

    Martiniano, Hugo F. M. C.; Galamba, Nuno; Cabral, Benedito J. Costa

    2014-04-01

    The electronic absorption spectrum of liquid water was investigated by coupling a one-body energy decomposition scheme to configurations generated by classical and Born-Oppenheimer Molecular Dynamics (BOMD). A Frenkel exciton Hamiltonian formalism was adopted and the excitation energies in the liquid phase were calculated with the equation of motion coupled cluster with single and double excitations method. Molecular dynamics configurations were generated by different approaches. Classical MD were carried out with the TIP4P-Ew and AMOEBA force fields. The BLYP and BLYP-D3 exchange-correlation functionals were used in BOMD. Theoretical and experimental results for the electronic absorption spectrum of liquid water are in good agreement. Emphasis is placed on the relationship between the structure of liquid water predicted by the different models and the electronic absorption spectrum. The theoretical gas to liquid phase blue-shift of the peak positions of the electronic absorption spectrum is in good agreement with experiment. The overall shift is determined by a competition between the O-H stretching of the water monomer in liquid water that leads to a red-shift and polarization effects that induce a blue-shift. The results illustrate the importance of coupling many-body energy decomposition schemes to molecular dynamics configurations to carry out ab initio calculations of the electronic properties in liquid phase.

  17. Zero bias STS Kondo anomalies of Co impurities on Cu surfaces: do ab initio calculations work?

    NASA Astrophysics Data System (ADS)

    Baruselli, Pier Paolo; Smogunov, Alexander; Fabrizio, Michele; Requist, Ryan; Tosatti, Erio

    2012-02-01

    Transition metal atoms such as Co on Cu (111), (100), and (110) surfaces produce STS I-V spectra showing different zero bias Kondo anomalies [1] but these differences have been neither quantitatively predicted nor fully explained theoretically. We apply to this problem the DFT+NRG scheme of Lucignano et al [2], where one solves by NRG an Anderson model built from ab initio phase shifts provided by DFT. For Co/Cu(100) and Co/Cu(110) our calculations describe correctly the experimental trend of Kondo temperatures, and fairly the lineshapes too. By contrast, they fail to describe Co/Cu(111) where in particular the anti-lorentzian lineshape found in experiment remains unexplained. This failure underscores the role of surface states, probably relevant for Co/Cu(111) [3] but not correctly described by our thin slab calculations. Future efforts to quantitatively include Kondo screening by surface states are therefore called for. 1. N. Knorr et al PRL 88, 096804 (2002); M. Ternes et al 2009 J. Phys.: Cond. Matt. 21, 053001 (2009); A. Gumbsch et al PRB81, 165420 (2010). 2. P. Lucignano et al Nature Mat. 8, 563 (2009); P.P. Baruselli et al, Physica E, doi:10.1016/j.physe.2011.05.005. 3. C. Lin et al. PRB 71, 035417 (2005).

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peng, Hua; College of Physics and Optoelectronics, Taiyuan University of Technology, Taiyuan 030024; Kioussis, Nicholas, E-mail: nick.kioussis@csun.edu

    Using ab initio based calculations, we have calculated the intrinsic lattice thermal conductivity of chiral tellurium. We show that the interplay between the strong covalent intrachain and weak van der Waals interchain interactions gives rise to the phonon band gap between the lower and higher optical phonon branches. The underlying mechanism of the large anisotropy of the thermal conductivity is the anisotropy of the phonon group velocities and of the anharmonic interatomic force constants (IFCs), where large interchain anharmonic IFCs are associated with the lone electron pairs. We predict that tellurium has a large three-phonon scattering phase space that resultsmore » in low thermal conductivity. The thermal conductivity anisotropy decreases under applied hydrostatic pressure.« less

  19. Ab initio SCF calculations on the potential energy surface of potassium cyanide (KCN)

    NASA Astrophysics Data System (ADS)

    Wormer, Paul E. S.; Tennyson, Jonathan

    1981-08-01

    The potential energy surface of KCN has been generated by ab initio SCF calculations in the region of equilibrium bond distances. An analytic representation of the surface is presented. The calculations show that the bonding between K and CN is ionic, and that the structure of KCN is triangular, which confirms recent experimental findings. The computed geometry is &KCN = 62.4°, rCK = 5.492a0, and rCN = 2.186a0.

  20. Data files for ab initio calculations of the lattice parameter and elastic stiffness coefficients of bcc Fe with solutes

    DOE PAGES

    Fellinger, Michael R.; Hector, Jr., Louis G.; Trinkle, Dallas R.

    2016-11-29

    Here, we present computed datasets on changes in the lattice parameter and elastic stiffness coefficients of BCC Fe due to substitutional Al, B, Cu, Mn, and Si solutes, and octahedral interstitial C and N solutes. The data is calculated using the methodology based on density functional theory (DFT). All the DFT calculations were performed using the Vienna Ab initio Simulations Package (VASP). The data is stored in the NIST dSpace repository.

  1. The spectroscopic (FTIR, FT-IR gas phase and FT-Raman), first order hyperpolarizabilities, NMR analysis of 2,4-dichloroaniline by ab initio HF and density functional methods.

    PubMed

    Sundaraganesan, N; Karpagam, J; Sebastian, S; Cornard, J P

    2009-07-01

    In this work, the experimental and theoretical study on molecular structure and vibrational spectra of 2,4-dichloroaniline (2,4-DCA) were studied. The Fourier transform infrared (gas phase) and Fourier transform Raman spectra of 2,4-DCA were recorded. The molecular geometry and vibrational frequencies of 2,4-DCA in the ground state were calculated by using the Hartree-Fock (HF) and density functional (DF) methods (BLYP, B3LYP and SVWN) with 6-31G(d,p) as basis set. Comparison of the observed fundamental vibrational frequencies of 2,4-DCA with calculated results by HF and density functional methods indicates that BLYP is superior to other methods for molecular vibrational problems. The difference between the observed and scaled wave number values of most of the fundamentals is very small. The electric dipole moment (micro) and the first hyperpolarizability (beta) values of the investigated molecule were computed using ab initio quantum mechanical calculations. The calculated results also show that the 2,4-DCA molecule might have microscopic nonlinear optical (NLO) behavior with non-zero values. Natural atomic charges of 2,4-DCA and 4-chloroaniline was calculated and compared. The isotropic chemical shift computed by (13)C NMR analyses also shows good agreement with experimental observations. The theoretically predicted FTIR and FT-Raman spectra of the title molecule have been constructed.

  2. Ab initio molecular dynamics calculations on scattering of hyperthermal H atoms from Cu(111) and Au(111).

    PubMed

    Kroes, Geert-Jan; Pavanello, Michele; Blanco-Rey, María; Alducin, Maite; Auerbach, Daniel J

    2014-08-07

    Energy loss from the translational motion of an atom or molecule impinging on a metal surface to the surface may determine whether the incident particle can trap on the surface, and whether it has enough energy left to react with another molecule present at the surface. Although this is relevant to heterogeneous catalysis, the relative extent to which energy loss of hot atoms takes place to phonons or electron-hole pair (ehp) excitation, and its dependence on the system's parameters, remain largely unknown. We address these questions for two systems that present an extreme case of the mass ratio of the incident atom to the surface atom, i.e., H + Cu(111) and H + Au(111), by presenting adiabatic ab initio molecular dynamics (AIMD) predictions of the energy loss and angular distributions for an incidence energy of 5 eV. The results are compared to the results of AIMDEFp calculations modeling energy loss to ehp excitation using an electronic friction ("EF") model applied to the AIMD trajectories, so that the energy loss to the electrons is calculated "post" ("p") the computation of the AIMD trajectory. The AIMD calculations predict average energy losses of 0.38 eV for Cu(111) and 0.13-0.14 eV for Au(111) for H-atoms that scatter from these surfaces without penetrating the surface. These energies closely correspond with energy losses predicted with Baule models, which is suggestive of structure scattering. The predicted adiabatic integral energy loss spectra (integrated over all final scattering angles) all display a lowest energy peak at an energy corresponding to approximately 80% of the average adiabatic energy loss for non-penetrative scattering. In the adiabatic limit, this suggests a way of determining the approximate average energy loss of non-penetratively scattered H-atoms from the integral energy loss spectrum of all scattered H-atoms. The AIMDEFp calculations predict that in each case the lowest energy loss peak should show additional energy loss in the range 0.2-0.3 eV due to ehp excitation, which should be possible to observe. The average non-adiabatic energy losses for non-penetrative scattering exceed the adiabatic losses to phonons by 0.9-1.0 eV. This suggests that for scattering of hyperthermal H-atoms from coinage metals the dominant energy dissipation channel should be to ehp excitation. These predictions can be tested by experiments that combine techniques for generating H-atom beams that are well resolved in translational energy and for detecting the scattered atoms with high energy-resolution.

  3. Comparative study of ab initio nonradiative recombination rate calculations under different formalisms

    NASA Astrophysics Data System (ADS)

    Shi, Lin; Xu, Ke; Wang, Lin-Wang

    2015-05-01

    Nonradiative carrier recombination is of both great applied and fundamental importance, but the correct ab initio approaches to calculate it remain to be inconclusive. Here we used five different approximations to calculate the nonradiative carrier recombinations of two complex defect structures GaP :Z nGa-OP and GaN :Z nGa-VN , and compared the results with experiments. In order to apply different multiphonon assisted electron transition formalisms, we have calculated the electron-phonon coupling constants by ab initio density functional theory for all phonon modes. Compared with different methods, the capture coefficients calculated by the static coupling theory are 4.30 ×10-8 and 1.46 ×10-7c m3/s for GaP :Z nGa-OP and GaN :Z nGa-VN , which are in good agreement with the experiment results, (4-1+2) ×10-8 and 3.0 ×10-7c m3/s , respectively. We also provided arguments for why the static coupling theory should be used to calculate the nonradiative decays of semiconductors.

  4. Ab Initio structure prediction for Escherichia coli: towards genome-wide protein structure modeling and fold assignment

    PubMed Central

    Xu, Dong; Zhang, Yang

    2013-01-01

    Genome-wide protein structure prediction and structure-based function annotation have been a long-term goal in molecular biology but not yet become possible due to difficulties in modeling distant-homology targets. We developed a hybrid pipeline combining ab initio folding and template-based modeling for genome-wide structure prediction applied to the Escherichia coli genome. The pipeline was tested on 43 known sequences, where QUARK-based ab initio folding simulation generated models with TM-score 17% higher than that by traditional comparative modeling methods. For 495 unknown hard sequences, 72 are predicted to have a correct fold (TM-score > 0.5) and 321 have a substantial portion of structure correctly modeled (TM-score > 0.35). 317 sequences can be reliably assigned to a SCOP fold family based on structural analogy to existing proteins in PDB. The presented results, as a case study of E. coli, represent promising progress towards genome-wide structure modeling and fold family assignment using state-of-the-art ab initio folding algorithms. PMID:23719418

  5. Diffusion in liquid Germanium using ab initio molecular dynamics

    NASA Astrophysics Data System (ADS)

    Kulkarni, R. V.; Aulbur, W. G.; Stroud, D.

    1996-03-01

    We describe the results of calculations of the self-diffusion constant of liquid Ge over a range of temperatures. The calculations are carried out using an ab initio molecular dynamics scheme which combines an LDA model for the electronic structure with the Bachelet-Hamann-Schlüter norm-conserving pseudopotentials^1. The energies associated with electronic degrees of freedom are minimized using the Williams-Soler algorithm, and ionic moves are carried out using the Verlet algorithm. We use an energy cutoff of 10 Ry, which is sufficient to give results for the lattice constant and bulk modulus of crystalline Ge to within 1% and 12% of experiment. The program output includes not only the self-diffusion constant but also the structure factor, electronic density of states, and low-frequency electrical conductivity. We will compare our results with other ab initio and semi-empirical calculations, and discuss extension to impurity diffusion. ^1 We use the ab initio molecular dynamics code fhi94md, developed at 1cm the Fritz-Haber Institute, Berlin. ^2 Work supported by NASA, Grant NAG3-1437.

  6. Collaborative Physical Chemistry Projects Involving Computational Chemistry

    NASA Astrophysics Data System (ADS)

    Whisnant, David M.; Howe, Jerry J.; Lever, Lisa S.

    2000-02-01

    The physical chemistry classes from three colleges have collaborated on two computational chemistry projects using Quantum CAChe 3.0 and Gaussian 94W running on Pentium II PCs. Online communication by email and the World Wide Web was an important part of the collaboration. In the first project, students used molecular modeling to predict benzene derivatives that might be possible hair dyes. They used PM3 and ZINDO calculations to predict the electronic spectra of the molecules and tested the predicted spectra by comparing some with experimental measurements. They also did literature searches for real hair dyes and possible health effects. In the final phase of the project they proposed a synthetic pathway for one compound. In the second project the students were asked to predict which isomer of a small carbon cluster (C3, C4, or C5) was responsible for a series of IR lines observed in the spectrum of a carbon star. After preliminary PM3 calculations, they used ab initio calculations at the HF/6-31G(d) and MP2/6-31G(d) level to model the molecules and predict their vibrational frequencies and rotational constants. A comparison of the predictions with the experimental spectra suggested that the linear isomer of the C5 molecule was responsible for the lines.

  7. A Group Increment Scheme for Infrared Absorption Intensities of Greenhouse Gases

    NASA Technical Reports Server (NTRS)

    Kokkila, Sara I.; Bera, Partha P.; Francisco, Joseph S.; Lee, Timothy J.

    2012-01-01

    A molecule's absorption in the atmospheric infrared (IR) window (IRW) is an indicator of its efficiency as a greenhouse gas. A model for estimating the absorption of a fluorinated molecule within the IRW was developed to assess its radiative impact. This model will be useful in comparing different hydrofluorocarbons and hydrofluoroethers contribution to global warming. The absorption of radiation by greenhouse gases, in particular hydrofluoroethers and hydrofluorocarbons, was investigated using ab initio quantum mechanical methods. Least squares regression techniques were used to create a model based on this data. The placement and number of fluorines in the molecule were found to affect the absorption in the IR window and were incorporated into the model. Several group increment models are discussed. An additive model based on one-carbon groups is found to work satisfactorily in predicting the ab initio calculated vibrational intensities.

  8. A fitting empirical potential for NiTi alloy and its application

    NASA Astrophysics Data System (ADS)

    Ren, Guowu; Tang, Tiegang; Sehitoglu, Huseyin

    Due to its superelastic behavior, NiTi shape memory alloy receives considerable attentions over a wide range of industrial and commercial applications. Limited to its complex structural transformation and multiple variants, semiempirical potentials for performing large-scale molecular dynamics simulations to investigate the atomistic mechanical process, are very few. In this work, we construct a new interatomic potential for the NiTi alloy by fitting to experimental or ab initio data. The fitting potential correctly predicts the lattice parameter, structural stability, equation of state for cubic B2(austenite) and monoclinic B19'(martensite) phases. In particular the elastic properties(three elastic constants for B2 and thirteen ones for B19') are in satisfactory agreement with the experiments or ab initio calculations. Furthermore, we apply this potential to conduct the molecular dynamics simulations of the mechanical behavior for NiTi alloy and the results capture its reversible transformation.

  9. Ab Initio Study of Polarizabilities of Oligothiophene, Oligocyclopentadiene and Oligofulvene and their Cyano Substituted Oligomers

    NASA Astrophysics Data System (ADS)

    Lagowski, Jolanta; Ferdous, Sultana

    2005-03-01

    Ab Initio polarizabilities of thiophene, fulvene and cyclopentadiene based conducting oligomers and polymers and their cyano derivatives have been calculated using the Hartree-Fock (HF), configuration interaction (singles) (CIS ) and density functional (DF) theories with 3-21G* basis using Gaussian software. The main motivation of this investigation is to determine the correlation between the excitation energies and polarizabilities for the conjugated systems studied. It has been found that HF and DF approaches give similar magnitudes for polarizabilities whereas CIS theory provides results that are considerably different. All three methods predict similar trends in polarizabilities as a function of oligomer length and bond alternation along the backbone of the oligomers. It has also been observed that the end groups and the number of `double' bonds have a significant effect on the magnitude of polarizability per C-C bond. Comparison with experimental results will be made where possible.

  10. Realization of a mixed-symmetry superconducting gap in correlated organic metals

    NASA Astrophysics Data System (ADS)

    Altmeyer, Michaela; Guterding, Daniel; Jeschke, Harald O.; Diehl, Sandra; Methfessel, Torsten; Tutsch, Ulrich; Schubert, Harald; Lang, Michael; Müller, Jens; Huth, Michael; Jourdan, Martin; Elmers, Hans-Joachim; Valenti, Roser

    Recent scanning tunneling spectroscopy measurements on the organic charge tranfer salt κ-(BEDT-TTF)2Cu[N(CN)2]Br show clear evidence of a highly anisotropic gap structure. Based on an ab initio derived model Hamiltonian we employ random phase approximation spin fluctuation theory yielding a composite order parameter of (extended) s+dx2-y2 symmetry. Taking explicitly also the shape of the Fermi surface into account we calculate STS spectra that are in excellent agreement to the experimental observations [1]. Moreover we determine the minimal tight binding model to describe the general lattice structure of these compounds accurately and generate a phase diagram for the gap symmetry by varying the hopping parameters. Based on ab initio derived parameter sets we predict the gap symmetry of other superconducting κ charge transfer salts. This work was supported by Deutsche Forschungsgemeinschaft under Grant No. SFB/TR 49.

  11. Internal force corrections with machine learning for quantum mechanics/molecular mechanics simulations.

    PubMed

    Wu, Jingheng; Shen, Lin; Yang, Weitao

    2017-10-28

    Ab initio quantum mechanics/molecular mechanics (QM/MM) molecular dynamics simulation is a useful tool to calculate thermodynamic properties such as potential of mean force for chemical reactions but intensely time consuming. In this paper, we developed a new method using the internal force correction for low-level semiempirical QM/MM molecular dynamics samplings with a predefined reaction coordinate. As a correction term, the internal force was predicted with a machine learning scheme, which provides a sophisticated force field, and added to the atomic forces on the reaction coordinate related atoms at each integration step. We applied this method to two reactions in aqueous solution and reproduced potentials of mean force at the ab initio QM/MM level. The saving in computational cost is about 2 orders of magnitude. The present work reveals great potentials for machine learning in QM/MM simulations to study complex chemical processes.

  12. Quantifying Ab Initio Equation of State Errors for Hydrogen-Helium Mixtures

    NASA Astrophysics Data System (ADS)

    Clay, Raymond; Morales, Miguel

    2017-06-01

    In order to produce predictive models of Jovian planets, an accurate equation of state for hydrogen-helium mixtures is needed over pressure and temperature ranges spanning multiple orders of magnitude. While extensive theoretical work has been done in this area, previous controversies regarding the equation of state of pure hydrogen have demonstrated exceptional sensitivity to approximations commonly employed in ab initio calculations. To this end, we present the results of our quantum Monte Carlo based benchmarking studies for several major classes of density functionals. Additionally, we expand upon our published results by considering the impact that ionic finite size effects and density functional errors translate to errors in the equation of state. Sandia National Laboratories is a multi-mission laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  13. Ab initio study of thermoelectric properties of doped SnO{sub 2} superlattices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Borges, P.D., E-mail: pdborges@gmail.com; Silva, D.E.S.; Castro, N.S.

    2015-11-15

    Transparent conductive oxides, such as tin dioxide (SnO{sub 2}), have recently shown to be promising materials for thermoelectric applications. In this work we studied the thermoelectric properties of Fe-, Sb- and Zn-uniformly doping and co-doping SnO{sub 2}, as well as of Sb and Zn planar (or delta)-doped layers in SnO{sub 2} forming oxide superlattices (SLs). Based on the semiclassical Boltzmann transport equations (BTE) in conjunction with ab initio electronic structure calculations, the Seebeck coefficient (S) and figure of merit (ZT) are obtained for these systems, and are compared with available experimental data. The delta doping approach introduces a remarkable modificationmore » in the electronic structure of tin dioxide, when compared with the uniform doping, and colossal values for ZT are predicted for the delta-doped oxide SLs. This result is a consequence of the two-dimensional electronic confinement and the strong anisotropy introduced by the doped planes. In comparison with the uniformly doped systems, our predictions reveal a promising use of delta-doped SnO{sub 2} SLs for enhanced S and ZT, which emerge as potential candidates for thermoelectric applications. - Graphical abstract: Band structure and Figure of merit for SnO2:Sb superlattice along Z direction, P. D. Borges, D. E. S. Silva, N. S. Castro, C. R. Ferreira, F. G. Pinto, J. Tronto and L. Scolfaro, Ab initio study of thermoelectric properties of doped SnO2 superlattices. - Highlights: • Thermoelectric properties of SnO{sub 2}-based alloys and superlattices. • High figure of merit is predicted for planar-doped SnO{sub 2} superlattices. • Nanotechnology has an important role for the development of thermoelectric devices.« less

  14. Toward ab initio molecular dynamics modeling for sum-frequency generation spectra; an efficient algorithm based on surface-specific velocity-velocity correlation function.

    PubMed

    Ohto, Tatsuhiko; Usui, Kota; Hasegawa, Taisuke; Bonn, Mischa; Nagata, Yuki

    2015-09-28

    Interfacial water structures have been studied intensively by probing the O-H stretch mode of water molecules using sum-frequency generation (SFG) spectroscopy. This surface-specific technique is finding increasingly widespread use, and accordingly, computational approaches to calculate SFG spectra using molecular dynamics (MD) trajectories of interfacial water molecules have been developed and employed to correlate specific spectral signatures with distinct interfacial water structures. Such simulations typically require relatively long (several nanoseconds) MD trajectories to allow reliable calculation of the SFG response functions through the dipole moment-polarizability time correlation function. These long trajectories limit the use of computationally expensive MD techniques such as ab initio MD and centroid MD simulations. Here, we present an efficient algorithm determining the SFG response from the surface-specific velocity-velocity correlation function (ssVVCF). This ssVVCF formalism allows us to calculate SFG spectra using a MD trajectory of only ∼100 ps, resulting in the substantial reduction of the computational costs, by almost an order of magnitude. We demonstrate that the O-H stretch SFG spectra at the water-air interface calculated by using the ssVVCF formalism well reproduce those calculated by using the dipole moment-polarizability time correlation function. Furthermore, we applied this ssVVCF technique for computing the SFG spectra from the ab initio MD trajectories with various density functionals. We report that the SFG responses computed from both ab initio MD simulations and MD simulations with an ab initio based force field model do not show a positive feature in its imaginary component at 3100 cm(-1).

  15. Ab initio NMR Confirmed Evolutionary Structure Prediction for Organic Molecular Crystals

    NASA Astrophysics Data System (ADS)

    Pham, Cong-Huy; Kucukbenli, Emine; de Gironcoli, Stefano

    2015-03-01

    Ab initio crystal structure prediction of even small organic compounds is extremely challenging due to polymorphism, molecular flexibility and difficulties in addressing the dispersion interaction from first principles. We recently implemented vdW-aware density functionals and demonstrated their success in energy ordering of aminoacid crystals. In this work we combine this development with the evolutionary structure prediction method to study cholesterol polymorphs. Cholesterol crystals have paramount importance in various diseases, from cancer to atherosclerosis. The structure of some polymorphs (e.g. ChM, ChAl, ChAh) have already been resolved while some others, which display distinct NMR spectra and are involved in disease formation, are yet to be determined. Here we thoroughly assess the applicability of evolutionary structure prediction to address such real world problems. We validate the newly predicted structures with ab initio NMR chemical shift data using secondary referencing for an improved comparison with experiments.

  16. Cross-Linked Nanotube Materials with Variable Stiffness Tethers

    NASA Technical Reports Server (NTRS)

    Frankland, Sarah-Jane V.; Odegard, Gregory M.; Herzog, Matthew N.; Gates, Thomas S.; Fay, Catherine C.

    2004-01-01

    The constitutive properties of a cross-linked single-walled carbon nanotube material are predicted with a multi-scale model. The material is modeled as a transversely isotropic solid using concepts from equivalent-continuum modeling. The elastic constants are determined using molecular dynamics simulation. Some parameters of the molecular force field are determined specifically for the cross-linker from ab initio calculations. A demonstration of how the cross-linked nanotubes may affect the properties of a nanotube/polyimide composite is included using a micromechanical analysis.

  17. Ab-initio atomic level stress and role of d-orbitals in CuZr, CuZn and CuY

    NASA Astrophysics Data System (ADS)

    Ojha, Madhusudan; Nicholson, Don M.; Egami, Takeshi

    2015-03-01

    Atomic level stress offers a new tool to characterize materials within the local approximation to density functional theory (DFT). Ab-initio atomic level stresses in B2 structures of CuZr, CuZn and CuY are calculated and results are explained on the basis of d-orbital contributions to Density of States (DOS). The overlap of d-orbital DOS plays an important role in the relative magnitude of atomic level stresses in these structures. The trends in atomic level stresses that we observed in these simple B2 structures are also seen in complex structures such as liquids, glasses and solid solutions. The stresses are however modified by the different coordination and relaxed separation distances in these complex structures. We used the Locally Self-Consistent Multiple Scattering (LSMS) code and Vienna Ab-initio Simulation Package (VASP) for ab-initio calculations.

  18. Experimental and ab initio studies on sub-lattice ordering and magnetism in Co{sub 2}Fe(Ge{sub 1−x}Si{sub x}) alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deka, Bhargab; Kundu, Ashis; Ghosh, Subhradip

    2015-10-07

    Crystallographic and magnetic properties of bulk Co{sub 2}Fe(Ge{sub 1−x}Si{sub x}) alloys with 0 ≤ x ≤ 1, synthesized by arc melting method, have been studied. Co{sub 2}FeSi alloy has been found to crystallize with L2{sub 1} structure, but the super-lattice peaks are absent in the X-ray diffraction patterns of alloys containing high Ge concentration. Unit cell volume of this series of alloys decreased from 185.2 to 178.5 Å{sup 3} as Si content was increased from 0 to 1.00. All alloy compositions exhibit ferromagnetic behavior with a high Curie temperature (T{sub C}). T{sub C} showed a systematic variation with x. A comparison between the valuesmore » of saturation magnetization (M{sub s}) and effective moment per magnetic atom p{sub c} estimated from the temperature dependent susceptibility data above T{sub C}, shows that the alloys have half-metallic character. The alloy with x = 0 follows Slater-Pauling (S-P) rule with M{sub s} of 5.99μ{sub B}. However, M{sub s} for the alloy with x = 1.00 was found to be 5.42μ{sub B}, which is lower than the value of 6.0μ{sub B} predicted by S-P rule. Since atomic disorder is known to affect the M{sub s} and electronic structure of these alloys, ab initio calculations were carried out to explain the deviation in observed M{sub s} from S-P rule prediction and the half-metallic character of the alloys. Ab initio calculations reveal that alloys with L2{sub 1} structure have M{sub s} value as predicted by S-P rule. However, introduction of 12.5% DO{sub 3} disorder, which occurs due to swapping of Co and Fe atoms in the unit cell, decreases M{sub s} of alloys with x > 0 from the S-P prediction to values obtained experimentally. The results analyzed from the view point of electronic structure of the alloys in different ordered states bring out the influence of disorder on the observed magnetic properties of these technologically important alloys.« less

  19. Ab-initio study of high temperature lattice dynamics of BCC zirconium (β-Zr) and uranium (γ-U)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghosh, Partha S., E-mail: parthasarathi13@gmail.com; Arya, A., E-mail: parthasarathi13@gmail.com; Dey, G. K., E-mail: parthasarathi13@gmail.com

    2014-04-24

    Using self consistent ab-initio lattice dynamics calculations, we show that bcc structures of Zr and U phases become stable at high temperature by phonon-phonon interactions. The calculated temperature dependent phonon dispersion curve (PDC) of β-Zr match excellently with experimental PDC. But the calculated PDC for γ-U shows negative phonon frequencies even at solid to liquid transition temperature. We show that this discrepancy is due to an overestimation of instability depth of bcc U phase which is removed by incorporation of spin-orbit coupling in the electronic structure calculations.

  20. Towards ab initio Calculations with the Dynamical Vertex Approximation

    NASA Astrophysics Data System (ADS)

    Galler, Anna; Kaufmann, Josef; Gunacker, Patrik; Pickem, Matthias; Thunström, Patrik; Tomczak, Jan M.; Held, Karsten

    2018-04-01

    While key effects of the many-body problem — such as Kondo and Mott physics — can be understood in terms of on-site correlations, non-local fluctuations of charge, spin, and pairing amplitudes are at the heart of the most fascinating and unresolved phenomena in condensed matter physics. Here, we review recent progress in diagrammatic extensions to dynamical mean-field theory for ab initio materials calculations. We first recapitulate the quantum field theoretical background behind the two-particle vertex. Next we discuss latest algorithmic advances in quantum Monte Carlo simulations for calculating such two-particle quantities using worm sampling and vertex asymptotics, before giving an introduction to the ab initio dynamical vertex approximation (AbinitioDΓA). Finally, we highlight the potential of AbinitioDΓA by detailing results for the prototypical correlated metal SrVO3.

  1. Ab initio structures and polarizabilities of sodium clusters

    NASA Astrophysics Data System (ADS)

    Kronik, Leeor; Vasiliev, Igor; Jain, Manish; Chelikowsky, James R.

    2001-09-01

    We present quantitative ab initio calculations for Na cluster structures and polarizabilities, for all cluster sizes up to 20 atoms. Our calculations are performed by combining an ab initio core-corrected pseudopotential and a gradient-corrected density functional within a real space approach. We find the cluster bonding to be very floppy and catalog a host of low-energy quasi-degenerate isomers for all second-decade clusters. The existence of these isomers results in a band of polarizability values for each cluster size even at zero temperature. This eliminates any finer structure in the polarizability curve. We further show that the experimental polarizability values are consistently underestimated by calculations at zero temperature. By computing the effects of structure expansion and distortion due to a finite temperature we arrive at a quantitative agreement between theory and experiment.

  2. Predicting the chemical stability of monatomic chains

    NASA Astrophysics Data System (ADS)

    Lin, Zheng-Zhe; Chen, Xi

    2013-02-01

    A simple model for evaluating the thermal atomic transfer rates in nanosystems (Lin Z.-Z. et al., EPL, 94 (2011) 40002) was developed to predict the chemical reaction rates of nanosystems with small gas molecules. The accuracy of the model was verified by MD simulations for molecular adsorption and desorption on a monatomic chain. By the prediction, a monatomic carbon chain should survive for 1.2 × 102 years in the ambient of 1 atm O2 at room temperature, and it is very invulnerable to N2, H2O, NO2, CO and CO2, while a monatomic gold chain quickly ruptures in vacuum. It is worth noting that since the model can be easily applied via common ab initio calculations, it could be widely used in the prediction of chemical stability of nanosystems.

  3. Ab initio calculation of Ti NMR shieldings for titanium oxides and halides

    NASA Astrophysics Data System (ADS)

    Tossell, J. A.

    Titanium NMR shielding constants have been calculated using ab initio coupled Hartree-Fock perturbation theory and polarized double-zeta basis sets for TiF 4, TiF 62-, TiCI 4, Ti(OH) 4, Ti(OH 2) 64+, Ti(OH) 4O, and Ti(OH) 3O -. In all cases the calculations were performed at Hartree-Fuck energy-optimized geometries. For Ti(OH) 4 a S4-symmetry geometry with nonlinear ∠ TiOH was employed. Relative shieldings are in reasonable agreement with experiment for TiF 62-, TiCI 4, and Ti(OR) 4, where R = H or alkyl. Ti(OH 2) 64+ is predicted to be more highly shielded than Ti(OH) 4 by about 340 ppm. The five-coordinate complex Ti(OH) 4O, whose calculated structure matches well that measured by extended X-ray absorption fine structure in K 2O · TiO 2 · SiO 2 glass, is actually deshielded compared to Ti(OH) 4 by about 40 ppm. X-ray absorption-near-edge spectral energies have also been calculated for TiF 4, TiCI 4, Ti(OH) 4, and Ti(OH) 4O using an equivalent ionic core virtual-orbital method and the observed reduction in term energy for the five-coordinate species compared to Ti(OH) 4 has been reproduced. Replacement of the H atoms in Ti(OH) 4 by point charges has only a slight effect upon σTi, suggesting a possible means of incorporating second-neighbor effects in NMR calculations for condensed phases.

  4. Sensitivity of ab Initio vs Empirical Methods in Computing Structural Effects on NMR Chemical Shifts for the Example of Peptides.

    PubMed

    Sumowski, Chris Vanessa; Hanni, Matti; Schweizer, Sabine; Ochsenfeld, Christian

    2014-01-14

    The structural sensitivity of NMR chemical shifts as computed by quantum chemical methods is compared to a variety of empirical approaches for the example of a prototypical peptide, the 38-residue kaliotoxin KTX comprising 573 atoms. Despite the simplicity of empirical chemical shift prediction programs, the agreement with experimental results is rather good, underlining their usefulness. However, we show in our present work that they are highly insensitive to structural changes, which renders their use for validating predicted structures questionable. In contrast, quantum chemical methods show the expected high sensitivity to structural and electronic changes. This appears to be independent of the quantum chemical approach or the inclusion of solvent effects. For the latter, explicit solvent simulations with increasing number of snapshots were performed for two conformers of an eight amino acid sequence. In conclusion, the empirical approaches neither provide the expected magnitude nor the patterns of NMR chemical shifts determined by the clearly more costly ab initio methods upon structural changes. This restricts the use of empirical prediction programs in studies where peptide and protein structures are utilized for the NMR chemical shift evaluation such as in NMR refinement processes, structural model verifications, or calculations of NMR nuclear spin relaxation rates.

  5. Predicting lattice thermal conductivity with help from ab initio methods

    NASA Astrophysics Data System (ADS)

    Broido, David

    2015-03-01

    The lattice thermal conductivity is a fundamental transport parameter that determines the utility a material for specific thermal management applications. Materials with low thermal conductivity find applicability in thermoelectric cooling and energy harvesting. High thermal conductivity materials are urgently needed to help address the ever-growing heat dissipation problem in microelectronic devices. Predictive computational approaches can provide critical guidance in the search and development of new materials for such applications. Ab initio methods for calculating lattice thermal conductivity have demonstrated predictive capability, but while they are becoming increasingly efficient, they are still computationally expensive particularly for complex crystals with large unit cells . In this talk, I will review our work on first principles phonon transport for which the intrinsic lattice thermal conductivity is limited only by phonon-phonon scattering arising from anharmonicity. I will examine use of the phase space for anharmonic phonon scattering and the Grüneisen parameters as measures of the thermal conductivities for a range of materials and compare these to the widely used guidelines stemming from the theory of Liebfried and Schölmann. This research was supported primarily by the NSF under Grant CBET-1402949, and by the S3TEC, an Energy Frontier Research Center funded by the US DOE, office of Basic Energy Sciences under Award No. DE-SC0001299.

  6. Kinetic modeling of α-hydrogen abstractions from unsaturated and saturated oxygenate compounds by hydrogen atoms.

    PubMed

    Paraskevas, Paschalis D; Sabbe, Maarten K; Reyniers, Marie-Françoise; Papayannakos, Nikos G; Marin, Guy B

    2014-10-09

    Hydrogen-abstraction reactions play a significant role in thermal biomass conversion processes, as well as regular gasification, pyrolysis, or combustion. In this work, a group additivity model is constructed that allows prediction of reaction rates and Arrhenius parameters of hydrogen abstractions by hydrogen atoms from alcohols, ethers, esters, peroxides, ketones, aldehydes, acids, and diketones in a broad temperature range (300-2000 K). A training set of 60 reactions was developed with rate coefficients and Arrhenius parameters calculated by the CBS-QB3 method in the high-pressure limit with tunneling corrections using Eckart tunneling coefficients. From this set of reactions, 15 group additive values were derived for the forward and the reverse reaction, 4 referring to primary and 11 to secondary contributions. The accuracy of the model is validated upon an ab initio and an experimental validation set of 19 and 21 reaction rates, respectively, showing that reaction rates can be predicted with a mean factor of deviation of 2 for the ab initio and 3 for the experimental values. Hence, this work illustrates that the developed group additive model can be reliably applied for the accurate prediction of kinetics of α-hydrogen abstractions by hydrogen atoms from a broad range of oxygenates.

  7. Modeling Fission Product Sorption in Graphite Structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Szlufarska, Izabela; Morgan, Dane; Allen, Todd

    2013-04-08

    The goal of this project is to determine changes in adsorption and desorption of fission products to/from nuclear-grade graphite in response to a changing chemical environment. First, the project team will employ principle calculations and thermodynamic analysis to predict stability of fission products on graphite in the presence of structural defects commonly observed in very high- temperature reactor (VHTR) graphites. Desorption rates will be determined as a function of partial pressure of oxygen and iodine, relative humidity, and temperature. They will then carry out experimental characterization to determine the statistical distribution of structural features. This structural information will yield distributionsmore » of binding sites to be used as an input for a sorption model. Sorption isotherms calculated under this project will contribute to understanding of the physical bases of the source terms that are used in higher-level codes that model fission product transport and retention in graphite. The project will include the following tasks: Perform structural characterization of the VHTR graphite to determine crystallographic phases, defect structures and their distribution, volume fraction of coke, and amount of sp2 versus sp3 bonding. This information will be used as guidance for ab initio modeling and as input for sorptivity models; Perform ab initio calculations of binding energies to determine stability of fission products on the different sorption sites present in nuclear graphite microstructures. The project will use density functional theory (DFT) methods to calculate binding energies in vacuum and in oxidizing environments. The team will also calculate stability of iodine complexes with fission products on graphite sorption sites; Model graphite sorption isotherms to quantify concentration of fission products in graphite. The binding energies will be combined with a Langmuir isotherm statistical model to predict the sorbed concentration of fission products on each type of graphite site. The model will include multiple simultaneous adsorbing species, which will allow for competitive adsorption effects between different fission product species and O and OH (for modeling accident conditions).« less

  8. Specific interactions between mycobacterial FtsZ protein and curcumin derivatives: Molecular docking and ab initio molecular simulations

    NASA Astrophysics Data System (ADS)

    Fujimori, Mitsuki; Sogawa, Haruki; Ota, Shintaro; Karpov, Pavel; Shulga, Sergey; Blume, Yaroslav; Kurita, Noriyuki

    2018-01-01

    Filamentous temperature-sensitive Z (FtsZ) protein plays essential role in bacteria cell division, and its inhibition prevents Mycobacteria reproduction. Here we adopted curcumin derivatives as candidates of novel inhibitors and investigated their specific interactions with FtsZ, using ab initio molecular simulations based on protein-ligand docking, classical molecular mechanics and ab initio fragment molecular orbital (FMO) calculations. Based on FMO calculations, we specified the most preferable site of curcumin binding to FtsZ and highlighted the key amino acid residues for curcumin binding at an electronic level. The result will be useful for proposing novel inhibitors against FtsZ based on curcumin derivatives.

  9. JDFTx: Software for joint density-functional theory

    DOE PAGES

    Sundararaman, Ravishankar; Letchworth-Weaver, Kendra; Schwarz, Kathleen A.; ...

    2017-11-14

    Density-functional theory (DFT) has revolutionized computational prediction of atomic-scale properties from first principles in physics, chemistry and materials science. Continuing development of new methods is necessary for accurate predictions of new classes of materials and properties, and for connecting to nano- and mesoscale properties using coarse-grained theories. JDFTx is a fully-featured open-source electronic DFT software designed specifically to facilitate rapid development of new theories, models and algorithms. Using an algebraic formulation as an abstraction layer, compact C++11 code automatically performs well on diverse hardware including GPUs (Graphics Processing Units). This code hosts the development of joint density-functional theory (JDFT) thatmore » combines electronic DFT with classical DFT and continuum models of liquids for first-principles calculations of solvated and electrochemical systems. In addition, the modular nature of the code makes it easy to extend and interface with, facilitating the development of multi-scale toolkits that connect to ab initio calculations, e.g. photo-excited carrier dynamics combining electron and phonon calculations with electromagnetic simulations.« less

  10. JDFTx: Software for joint density-functional theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sundararaman, Ravishankar; Letchworth-Weaver, Kendra; Schwarz, Kathleen A.

    Density-functional theory (DFT) has revolutionized computational prediction of atomic-scale properties from first principles in physics, chemistry and materials science. Continuing development of new methods is necessary for accurate predictions of new classes of materials and properties, and for connecting to nano- and mesoscale properties using coarse-grained theories. JDFTx is a fully-featured open-source electronic DFT software designed specifically to facilitate rapid development of new theories, models and algorithms. Using an algebraic formulation as an abstraction layer, compact C++11 code automatically performs well on diverse hardware including GPUs (Graphics Processing Units). This code hosts the development of joint density-functional theory (JDFT) thatmore » combines electronic DFT with classical DFT and continuum models of liquids for first-principles calculations of solvated and electrochemical systems. In addition, the modular nature of the code makes it easy to extend and interface with, facilitating the development of multi-scale toolkits that connect to ab initio calculations, e.g. photo-excited carrier dynamics combining electron and phonon calculations with electromagnetic simulations.« less

  11. Continuum Lowering and Fermi-Surface Rising in Strongly Coupled and Degenerate Plasmas

    NASA Astrophysics Data System (ADS)

    Hu, S. X.

    2017-08-01

    Continuum lowering is a well known and important physics concept that describes the ionization potential depression (IPD) in plasmas caused by thermal- or pressure-induced ionization of outer-shell electrons. The existing IPD models are often used to characterize plasma conditions and to gauge opacity calculations. Recent precision measurements have revealed deficits in our understanding of continuum lowering in dense hot plasmas. However, these investigations have so far been limited to IPD in strongly coupled but nondegenerate plasmas. Here, we report a first-principles study of the K -edge shifting in both strongly coupled and fully degenerate carbon plasmas, with quantum molecular dynamics calculations based on the all-electron density-functional theory. The resulting K -edge shifting versus plasma density, as a probe to the continuum lowering and the Fermi-surface rising, is found to be significantly different from predictions of existing IPD models. In contrast, a simple model of "single-atom-in-box," developed in this work, accurately predicts K -edge locations as ab initio calculations provide.

  12. BAC-MP4 predictions of thermochemistry for the gas-phase tin compounds in the Sn-H-C-Cl system.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allendorf, Mark D.; Melius, Carl F.

    2004-09-01

    In this work, the BAC-MP4 method is extended for the first time to compounds in the fourth row of the periodic table, resulting in a self-consistent set of thermochemical data for 56 tin-containing molecules in the Sn-H-C-Cl system. The BAC-MP4 method combines ab initio electronic structure calculations with empirical corrections to obtain accurate heats of formation. To obtain electronic energies for tin-containing species, the standard 6-31G(d,p) basis set used in BAC-MP4 calculations is augmented with a relativistic effective core potential to describe the electronic structure of the tin atom. Both stable compounds and radical species are included in this study.more » Trends within homologous series and calculated bond dissociation energies are consistent with previous BAC-MP4 predictions for group 14 compounds and the limited data available from the literature, indicating that the method is performing well for these compounds.« less

  13. Electronic states of Zn2 - Ab initio calculations of a prototype for Hg2

    NASA Technical Reports Server (NTRS)

    Hay, P. J.; Dunning, T. H., Jr.; Raffenetti, R. C.

    1976-01-01

    The electronic states of Zn2 are investigated by ab initio polarization configuration-interaction calculations. Molecular states dissociating to Zn(1S) + Zn(1S, 3P, 1P) and Zn(3P) + Zn(3P) are treated. Important effects from states arising from Zn(+)(25) + Zn(-)(2P) are found in the potential-energy curves and electronic-transition moments. A model calculation for Hg2 based on the Zn2 curves and including spin-orbit coupling leads to a new interpretation of the emission bands in Hg vapor.

  14. Hybrid classical/quantum simulation for infrared spectroscopy of water

    NASA Astrophysics Data System (ADS)

    Maekawa, Yuki; Sasaoka, Kenji; Ube, Takuji; Ishiguro, Takashi; Yamamoto, Takahiro

    2018-05-01

    We have developed a hybrid classical/quantum simulation method to calculate the infrared (IR) spectrum of water. The proposed method achieves much higher accuracy than conventional classical molecular dynamics (MD) simulations at a much lower computational cost than ab initio MD simulations. The IR spectrum of water is obtained as an ensemble average of the eigenvalues of the dynamical matrix constructed by ab initio calculations, using the positions of oxygen atoms that constitute water molecules obtained from the classical MD simulation. The calculated IR spectrum is in excellent agreement with the experimental IR spectrum.

  15. Line Lists for LiF and LiCl in the X 1Σ+ Ground State

    NASA Astrophysics Data System (ADS)

    Bittner, Dror M.; Bernath, Peter F.

    2018-03-01

    Vibration–rotation line lists for 6LiF, 7LiF, 6Li35Cl, 6Li37Cl, 7Li35Cl, and 7Li37Cl in the X 1Σ+ ground states have been prepared. The rovibrational energy levels have been calculated using potential energy surfaces determined by direct potential-fitting employing the rotational and rovibrational transition frequencies of all isotopologues, and required the inclusion of Born–Oppenheimer breakdown terms. Dipole moment functions calculated ab initio at the MRCI/aug-cc-pwCV5Z level have been used for line strength calculations. Partition functions for temperatures up to 5000 K have been calculated. LiF and LiCl are predicted to be present in the atmospheres of hot rocky exoplanets, brown dwarfs, and cool stars.

  16. Raman and infrared spectra and theoretical calculations of dipicolinic acid, dinicotinic acid, and their dianions

    NASA Astrophysics Data System (ADS)

    McCann, Kathleen; Laane, Jaan

    2008-11-01

    The Raman and infrared spectra of dipicolinic acid (DPA) and dinicotinic acid (DNic) and their salts (CaDPA, Na 2DPA, and CaDNic) have been recorded and the spectra have been assigned. Ab initio and DFT calculations were carried out to predict the structures and vibrational spectra and were compared to the experimental results. Because of extensive intermolecular hydrogen bonding in the crystals of these molecules, the calculated structures and spectra for the individual molecules agree only moderately well with the experimental values. Theoretical calculations were also carried out for DPA dimers and DPA·2H 2O to better understand the intermolecular interactions. The spectra do show that DPA and its calcium salt, which are present in anthrax spores, can be distinguished from the very similar DNic and CaDNic.

  17. Thermodynamic properties by equation of state and from Ab initio molecular dynamics of liquid potassium under pressure

    NASA Astrophysics Data System (ADS)

    Li, Huaming; Tian, Yanting; Sun, Yongli; Li, Mo; Nonequilibrium materials; physics Team; Computational materials science Team

    In this work, we apply a general equation of state of liquid and Ab initio molecular-dynamics method to study thermodynamic properties in liquid potassium under high pressure. Isothermal bulk modulus and molar volume of molten sodium are calculated within good precision as compared with the experimental data. The calculated internal energy data and the calculated values of isobaric heat capacity of molten potassium show the minimum along the isothermal lines as the previous result obtained in liquid sodium. The expressions for acoustical parameter and nonlinearity parameter are obtained based on thermodynamic relations from the equation of state. Both parameters for liquid potassium are calculated under high pressure along the isothermal lines by using the available thermodynamic data and numeric derivations. Furthermore, Ab initio molecular-dynamics simulations are used to calculate some thermodynamic properties of liquid potassium along the isothermal lines. Scientific Research Starting Foundation from Taiyuan university of Technology, Shanxi Provincial government (``100-talents program''), China Scholarship Council and National Natural Science Foundation of China (NSFC) under Grant No. 51602213.

  18. Semiconducting cubic titanium nitride in the Th 3 P 4 structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhadram, Venkata S.; Liu, Hanyu; Xu, Enshi

    We report the discovery of a long-sought-after phase of titanium nitride with stoichiometry Ti 3 N 4 using diamond anvil cell experiments combined with in situ high-resolution x-ray diffraction and Raman spectroscopy techniques, supported by ab initio calculations. Ti 3 N 4 crystallizes in the cubic Th 3 P 4 structure [space group I ¯ 4 3 d (220)] from a mixture of TiN and N 2 above ≈ 75 GPa and ≈ 2400 K. The density ( ≈ 5.22 g/cc) and bulk modulus ( K 0 = 290 GPa) of cubic- Ti 3 N 4 ( c - Timore » 3 N 4 ) at 1 atm, estimated from the pressure-volume equation of state, are comparable to rocksalt TiN. Ab initio calculations based on the GW approximation and using hybrid functionals indicate that c - Ti 3 N 4 is a semiconductor with a direct band gap between 0.8 and 0.9 eV, which is larger than the previously predicted values. The c - Ti 3 N 4 phase is not recoverable to ambient pressure due to dynamic instabilities, but recovery of Ti 3 N 4 in the defect rocksalt (or related) structure may be feasible.« less

  19. Relative stability of major types of beta-turns as a function of amino acid composition: a study based on Ab initio energetic and natural abundance data.

    PubMed

    Perczel, András; Jákli, Imre; McAllister, Michael A; Csizmadia, Imre G

    2003-06-06

    Folding properties of small globular proteins are determined by their amino acid sequence (primary structure). This holds both for local (secondary structure) and for global conformational features of linear polypeptides and proteins composed from natural amino acid derivatives. It thus provides the rational basis of structure prediction algorithms. The shortest secondary structure element, the beta-turn, most typically adopts either a type I or a type II form, depending on the amino acid composition. Herein we investigate the sequence-dependent folding stability of both major types of beta-turns using simple dipeptide models (-Xxx-Yyy-). Gas-phase ab initio properties of 16 carefully selected and suitably protected dipeptide models (for example Val-Ser, Ala-Gly, Ser-Ser) were studied. For each backbone fold most probable side-chain conformers were considered. Fully optimized 321G RHF molecular structures were employed in medium level [B3LYP/6-311++G(d,p)//RHF/3-21G] energy calculations to estimate relative populations of the different backbone conformers. Our results show that the preference for beta-turn forms as calculated by quantum mechanics and observed in Xray determined proteins correlates significantly.

  20. Potential-Energy and Free-Energy Surfaces of Glycyl-Phenylalanyl-Alanine (GFA) Tripeptide. Experiment and Theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Valdes, Haydee; Spiwok, Vojtech; Rezac, Jan

    2008-04-17

    The free-energy surface (FES) of glycyl-phenylalanyl-alanine (GFA) tripeptide was explored by molecular dynamics (MD) simulations in combination with high-level correlated ab initio quantum chemical calculations and metadynamics. Both the MD and metadynamics employed the tightbinding DFT-D method instead of the AMBER force field, which yielded inaccurate results. We classified the minima localised in the FESs as follows: a) the backbone-conformational arrangement; and b) the existence of a COOH---OC intramolecular H-bond (families CO₂Hfree and CO₂Hbonded). Comparison with experimental results showed that the most stable minima in the FES correspond to the experimentally observed structures. Remarkably, however, we did not observe experimentallymore » the CO₂Hbonded family (also predicted by metadynamics), although its stability is comparable to that of the CO₂Hfree structures. This fact was explained by the former’s short excited state lifetime. We also carried out ab initio calculations using DFT-D and the M06-2X functional. The importance of the dispersion energy in stabilizing peptide conformers is well reflected by our pioneer analysis using the DFT-SAPT method to explore the nature of the backbone/side-chain interactions.« less

  1. Excited electronic states of the methyl radical. Ab initio molecular orbital study of geometries, excitation energies and vibronic spectra

    NASA Astrophysics Data System (ADS)

    Mebel, Alexander M.; Lin, Sheng-Hsien

    1997-03-01

    The geometries, vibrational frequencies and vertical and adiabatic excitation energies of the excited valence and Rydberg 3s, 3p, 3d, and 4s electronic states of CH 3 have been studied using ab initio molecular orbital multiconfigurational SCF (CASSCF), internally contracted multireference configuration interaction (MRCI) and equation-of-motion coupled cluster (EOM-CCSD) methods. The vibronic spectra are determined through the calculation of Franck-Condon factors. Close agreement between theory and experiment has been found for the excitation energies, vibrational frequencies and vibronic spectra. The adiabatic excitation energies of the Rydberg 3s B˜ 2A' 1 and 3p 2 2A″ 2 states are calculated to be 46435 and 60065 cm -1 compared to the experimental values of 46300 and 59972 cm -1, respectively. The valence 2A″ excited state of CH 3 has been found to have a pyramidal geometry within C s symmetry and to be adiabatically by 97 kcal/mol higher in energy than the ground state. The 2A″ state is predicted to be stable by 9 and 13 kcal/mol with respect to H 2 and H elimination.

  2. Accuracy and Transferability of Ab Initio Electronic Band Structure Calculations for Doped BiFeO3

    NASA Astrophysics Data System (ADS)

    Gebhardt, Julian; Rappe, Andrew M.

    2017-11-01

    BiFeO3 is a multiferroic material and, therefore, highly interesting with respect to future oxide electronics. In order to realize such devices, pn junctions need to be fabricated, which are currently impeded by the lack of successful p-type doping in this material. In order to guide the numerous research efforts in this field, we recently finished a comprehensive computational study, investigating the influence of many dopants onto the electronic structure of BiFeO3. In order to allow for this large scale ab initio study, the computational setup had to be accurate and efficient. Here we discuss the details of this assessment, showing that standard density-functional theory (DFT) yields good structural properties. The obtained electronic structure, however, suffers from well-known shortcomings. By comparing the conventional DFT results for alkali and alkaline-earth metal doping with more accurate hybrid-DFT calculations, we show that, in this case, the problems of standard DFT go beyond a simple systematic error. Conventional DFT shows bad transferability and the more reliable hybrid-DFT has to be chosen for a qualitatively correct prediction of doping induced changes in the electronic structure of BiFeO3.

  3. Spectroscopic determination of the water pair potential

    NASA Astrophysics Data System (ADS)

    Fellers, Raymond Scott, II

    This thesis details the first experimental determination of a water pair potential via nonlinear least squares fit of high precision microwave and far-IR vibration- rotation-tunneling (VRT) data. Provided is a review of the theory of intermolecular forces, methods of determining these forces by ab initio theory, and a survey of analytical forms that are parameterized to model such forces. Also reviewed are important features of water dimer VRT spectra, in particular the characteristic tunneling splittings due to hydrogen bond rearrangements, and how these features are related to the anisotropy of the water dimer potential energy surface (PES). Comparisons are made between high level ab initio calculations of the water dimer PES and a number of well known water pair potentials. The importance of the intramolecular degrees of freedom in the parameterization of a new PES is studied through a systematic series of ab initio calculations. These results suggest that a reasonably accurate pair potential can be constructed with the constraint of rigid monomers. ÅThe computation of the VRT states of the water dimer in a fully-coupled six-dimensional Hamiltonian by the split Wigner pseudospectral (SWPS) method is presented. Discussed in detail is the performance of the code and recent improvements of the algorithm which significantly decrease the execution time over an earlier implementation. The VRT states of several potentials are calculated and compared to experiment. It is shown that none of these potentials can reproduce the water dimer tunneling splittings with quantitative accuracy. The SWPS code is embedded in a non-linear least squares fitting routine and is used to fit a potential to 22 microwave and far-IR transitions. The resulting PES, VRT- 1(R,P), is derived from the ab initio/semiempirical ASPW (Anisotropic Site Potential for Water) potential which includes multipole expansions for the electrostatic, dispersion, exchange- repulsion, and induction terms. Induction is iterated to first-order. VRT-1(R,P) reproduces VRT spectra and temperature dependent second virial coefficients to high accuracy. The dimer equilibrium and zero-point binding energies (De and D0) are 4.91 kcal mol and 3.46 kcal/mol, respectively, which are in agreement with the best theoretical estimates. The dimer equilibrium structure [ROO = 2.924 Å, θ a = 48.5°, and θd = 50.2°] agrees with large basis set MP2 calculations. Additionally, the trimer equilibrium structure [ROO = 2.756 Å and D e=15.6 kcal/mol] and tetramer equilibrium structure [R OO = 2.783 Å and De = 25.9 kcal/mol] are also very close to second-order Möller-Plesset (MP2) calculations. The hydrogen bond rearrangement pathways of the dimer PES are determined by the eigenvector following method. The two lowest energy rearrangement barriers, corresponding to the acceptor switching and interchange motions, are 157 cm-1 and 207 cm-1, respectively, which is in excellent agreement with ab initio predictions of 158 cm -1 and 199 cm-1, respectively

  4. Symplectic no-core configuration interaction framework for ab initio nuclear structure. II. Structure of rotational states

    NASA Astrophysics Data System (ADS)

    Caprio, Mark A.; McCoy, Anna E.; Dytrych, Tomas

    2017-09-01

    Rotational band structure is readily apparent as an emergent phenomenon in ab initio nuclear many-body calculations of light nuclei, despite the incompletely converged nature of most such calculations at present. Nuclear rotation in light nuclei can be analyzed in terms of approximate dynamical symmetries of the nuclear many-body problem: in particular, Elliott's SU (3) symmetry of the three-dimensional harmonic oscillator and the symplectic Sp (3 , R) symmetry of three-dimensional phase space. Calculations for rotational band members in the ab initio symplectic no-core configuration interaction (SpNCCI) framework allow us to directly examine the SU (3) and Sp (3 , R) nature of rotational states. We present results for rotational bands in p-shell nuclei. Supported by the US DOE under Award No. DE-FG02-95ER-40934 and the Czech Science Foundation under Grant No. 16-16772S.

  5. Spectroscopic and Ab Initio Determination of the Ring-Twisting Potential Energy Function for 1,3-Cyclohexadiene

    NASA Astrophysics Data System (ADS)

    Autrey, Daniel; Choo, Jaebum; Laane, Jaan

    2000-10-01

    The ring-twisting vibration of 1,3-cyclohexadiene has been studied using Raman and infrared spectroscopy of the molecule in the vapor phase. The Raman spectrum shows five ring-twisting transitions in the 150 - 200 cm-1 region. The far-infrared spectrum shows only two transitions for this vibration, which is infrared forbidden in the C_2v (planar) approximation. Three ring-twisting combination bands were also observed off a fundamental vibration at 926.1 cm-1. A coordinate dependent kinetic energy expansion for the ring-twisting motion was calculated, and this was used to determine the ring-twisting potential function. Ab initio calculations were performed using Moller-Plesset perturbation theory (MP2) using different basis sets. The barrier to planarity of 1150 cm-1 was determined from the spectroscopic data. The various ab initio calculations gave barriers to planarity in the 1197 - 1593 cm-1 range.

  6. Ab-initio calculations on melting of thorium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mukherjee, D., E-mail: debojyoti@barc.gov.in; Sahoo, B. D.; Joshi, K. D.

    2016-05-23

    Ab-initio molecular dynamics study has been performed on face centered cubic structured thorium to determine its melting temperature at room pressure. The ion-electron interaction potential energy calculated as a function of temperature for three volumes (a{sub 0}){sup 3} and (1.02a{sub 0}){sup 3} and (1.04a{sub 0}){sup 3} increases gradually with temperature and undergoes a sharp jump at ~2200 K, ~2100 K and ~1800 K, respectively. Here, a{sub 0} = 5.043 Å is the equilibrium lattice parameter at 0 K obtained from ab-initio calculations. These jumps in interaction energy are treated as due to the onset of melting and corresponding temperatures asmore » melting point. The melting point of 2100 K is close to the experimental value of 2023 K. Further, the same has been verified by plotting the atomic arrangement evolved at various temperatures and corresponding pair correlation functions.« less

  7. Postaragonite phases of CaCO3 at lower mantle pressures

    NASA Astrophysics Data System (ADS)

    Smith, Dean; Lawler, Keith V.; Martinez-Canales, Miguel; Daykin, Austin W.; Fussell, Zachary; Smith, G. Alexander; Childs, Christian; Smith, Jesse S.; Pickard, Chris J.; Salamat, Ashkan

    2018-01-01

    The stability, structure, and properties of carbonate minerals at lower mantle conditions have significant impact on our understanding of the global carbon cycle and the composition of the interior of the Earth. In recent years there has been significant interest in the behavior of carbonates at lower mantle conditions, specifically in their carbon hybridization, which has relevance for the storage of carbon within the deep mantle. Using high-pressure synchrotron x-ray diffraction in a diamond anvil cell coupled with direct laser heating of CaCO3 using a CO2 laser, we identify a crystalline phase of the material above 40 GPa—corresponding to a lower mantle depth of around 1000 km—which has first been predicted by ab initio structure predictions. The observed s p2 carbon hybridized species at 40 GPa is monoclinic with P 21/c symmetry and is stable up to 50 GPa, above which it transforms into a structure which cannot be indexed by existing known phases. A combination of ab initio random structure search (AIRSS) and quasiharmonic approximation (QHA) calculations are used to re-explore the relative phase stabilities of the rich phase diagram of CaCO3. Nudged elastic band (NEB) calculations are used to investigate the reaction mechanisms between relevant crystal phases of CaCO3 and we postulate that the mineral is capable of undergoing s p2-s p3 hybridization change purely in the P 21/c structure—forgoing the accepted postaragonite P m m n structure.

  8. Exploring Partonic Structure of Hadrons Using ab initio Lattice QCD Calculations.

    PubMed

    Ma, Yan-Qing; Qiu, Jian-Wei

    2018-01-12

    Following our previous proposal, we construct a class of good "lattice cross sections" (LCSs), from which we can study the partonic structure of hadrons from ab initio lattice QCD calculations. These good LCSs, on the one hand, can be calculated directly in lattice QCD, and on the other hand, can be factorized into parton distribution functions (PDFs) with calculable coefficients, in the same way as QCD factorization for factorizable hadronic cross sections. PDFs could be extracted from QCD global analysis of the lattice QCD generated data of LCSs. We also show that the proposed functions for lattice QCD calculation of PDFs in the literature are special cases of these good LCSs.

  9. Dispersion Corrected Structural Properties and Quasiparticle Band Gaps of Several Organic Energetic Solids.

    PubMed

    Appalakondaiah, S; Vaitheeswaran, G; Lebègue, S

    2015-06-18

    We have performed ab initio calculations for a series of energetic solids to explore their structural and electronic properties. To evaluate the ground state volume of these molecular solids, different dispersion correction methods were accounted in DFT, namely the Tkatchenko-Scheffler method (with and without self-consistent screening), Grimme's methods (D2, D3(BJ)), and the vdW-DF method. Our results reveal that dispersion correction methods are essential in understanding these complex structures with van der Waals interactions and hydrogen bonding. The calculated ground state volumes and bulk moduli show that the performance of each method is not unique, and therefore a careful examination is mandatory for interpreting theoretical predictions. This work also emphasizes the importance of quasiparticle calculations in predicting the band gap, which is obtained here with the GW approximation. We find that the obtained band gaps are ranging from 4 to 7 eV for the different compounds, indicating their insulating nature. In addition, we show the essential role of quasiparticle band structure calculations to correlate the gap with the energetic properties.

  10. Ab initio anharmonic vibrational frequency predictions for linear proton-bound complexes OC-H(+)-CO and N(2)-H(+)-N(2).

    PubMed

    Terrill, Kasia; Nesbitt, David J

    2010-08-01

    Ab initio anharmonic transition frequencies are calculated for strongly coupled (i) asymmetric and (ii) symmetric proton stretching modes in the X-H(+)-X linear ionic hydrogen bonded complexes for OCHCO(+) and N(2)HN(2)(+). The optimized potential surface is calculated in these two coordinates for each molecular ion at CCSD(T)/aug-cc-pVnZ (n = 2-4) levels and extrapolated to the complete-basis-set limit (CBS). Slices through both 2D surfaces reveal a relatively soft potential in the asymmetric proton stretching coordinate at near equilibrium geometries, which rapidly becomes a double minimum potential with increasing symmetric proton acceptor center of mass separation. Eigenvalues are obtained by solution of the 2D Schrödinger equation with potential/kinetic energy coupling explicity taken into account, converged in a distributed Gaussian basis set as a function of grid density. The asymmetric proton stretch fundamental frequency for N(2)HN(2)(+) is predicted at 848 cm(-1), with strong negative anharmonicity in the progression characteristic of a shallow "particle in a box" potential. The corresponding proton stretch fundamental for OCHCO(+) is anomalously low at 386 cm(-1), but with a strong alternation in the vibrational spacing due to the presence of a shallow D(infinityh) transition state barrier (Delta = 398 cm(-1)) between the two equivalent minimum geometries. Calculation of a 2D dipole moment surface and transition matrix elements reveals surprisingly strong combination and difference bands with appreciable intensity throughout the 300-1500 cm(-1) region. Corrected for zero point (DeltaZPE) and thermal vibrational excitation (DeltaE(vib)) at 300 K, the single and double dissociation energies in these complexes are in excellent agreement with thermochemical gas phase ion data.

  11. Polymorphism in Strontium Tungstate SrWO4 under Quasi-Hydrostatic Compression.

    PubMed

    Santamaria-Perez, David; Errandonea, Daniel; Rodriguez-Hernandez, Placida; Muñoz, Alfonso; Lacomba-Perales, Raul; Polian, Alain; Meng, Yue

    2016-10-03

    The structural and vibrational properties of SrWO 4 have been studied experimentally up to 27 and 46 GPa, respectively, by angle-dispersive synchrotron X-ray diffraction and Raman spectroscopy measurements as well as using ab initio calculations. The existence of four polymorphs upon quasi-hydrostatic compression is reported. The three phase transitions were found at 11.5, 19.0, and 39.5 GPa. The ambient-pressure SrWO 4 tetragonal scheelite-type structure (S.G. I4 1 /a) undergoes a transition to a monoclinic fergusonite-type structure (S.G. I2/a) at 11.5 GPa with a 1.5% volume decrease. Subsequently, at 19.0 GPa, another structural transformation takes place. Our calculations indicate two possible post-fergusonite phases, one monoclinic and the other orthorhombic. In the diffraction experiments, we observed the theoretically predicted monoclinic LaTaO 4 -type phase coexisting with the fergusonite-type phase up to 27 GPa. The coexistence of the two phases and the large volume collapse at the transition confirm a kinetic hindrance typical of first-order phase transitions. Significant changes in Raman spectra suggest a third pressure-induced transition at 39.5 GPa. The conclusions extracted from the experiments are complemented and supported by ab initio calculations. Our data provides insight into the structural mechanism of the first transition, with the formation of two additional W-O contacts. The fergusonite-type phase can be therefore considered as a structural bridge between the scheelite structure, composed of [WO 4 ] tetrahedra, and the new higher pressure phases, which contain [WO 6 ] octahedra. All the observed phases are compatible with the high-pressure structural systematics predicted for ABO 4 compounds using crystal-chemistry arguments such as the diagram proposed by Bastide.

  12. Potential Energy Curves and Transport Properties for the Interaction of He with Other Ground-state Atoms

    NASA Technical Reports Server (NTRS)

    Partridge, Harry; Stallcop, James R.; Levin, Eugene; Arnold, Jim (Technical Monitor)

    2001-01-01

    The interactions of a He atom with a heavier atom are examined for 26 different elements, which are consecutive members selected from three rows (Li - Ne, Na - Ar, and K,Ca, Ga - Kr) and column 12 (Zn,Cd) of the periodic table. Interaction energies are determined wing high-quality ab initio calculations for the states of the molecule that would be formed from each pair of atoms in their ground states. Potential energies are tabulated for a broad range of Interatomic separation distances. The results show, for example, that the energy of an alkali interaction at small separations is nearly the same as that of a rare-gas interaction with the same electron configuration for the dosed shells. Furthermore, the repulsive-range parameter for this region is very short compared to its length for the repulsion dominated by the alkali-valence electron at large separations (beyond about 3-4 a(sub 0)). The potential energies in the region of the van der Waals minimum agree well with the most accurate results available. The ab initio energies are applied to calculate scattering cross sections and obtain the collision integrals that are needed to determine transport properties to second order. The theoretical values of Li-He total scattering cross sections and the rare-gas atom-He transport properties agree well (to within about 1%) with the corresponding measured data. Effective potential energies are constructed from the ab initio energies; the results have been shown to reproduce known transport data and can be readily applied to predict unknown transport properties for like-atom interactions.

  13. Ab Initio Calculations Applied to Problems in Metal Ion Chemistry

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles W., Jr.; Langhoff, Stephen R.; Partridge, Harry; Arnold, James O. (Technical Monitor)

    1994-01-01

    Electronic structure calculations can provide accurate spectroscopic data (such as molecular structures) vibrational frequencies, binding energies, etc.) that have been very useful in explaining trends in experimental data and in identifying incorrect experimental measurements. In addition, ab initio calculations. have given considerable insight into the many interactions that make the chemistry of transition metal systems so diverse. In this review we focus on cases where calculations and experiment have been used to solve interesting chemical problems involving metal ions. The examples include cases where theory was used to differentiate between disparate experimental values and cases where theory was used to explain unexpected experimental results.

  14. Interplay of I-TASSER and QUARK for template-based and ab initio protein structure prediction in CASP10

    PubMed Central

    Zhang, Yang

    2014-01-01

    We develop and test a new pipeline in CASP10 to predict protein structures based on an interplay of I-TASSER and QUARK for both free-modeling (FM) and template-based modeling (TBM) targets. The most noteworthy observation is that sorting through the threading template pool using the QUARK-based ab initio models as probes allows the detection of distant-homology templates which might be ignored by the traditional sequence profile-based threading alignment algorithms. Further template assembly refinement by I-TASSER resulted in successful folding of two medium-sized FM targets with >150 residues. For TBM, the multiple threading alignments from LOMETS are, for the first time, incorporated into the ab initio QUARK simulations, which were further refined by I-TASSER assembly refinement. Compared with the traditional threading assembly refinement procedures, the inclusion of the threading-constrained ab initio folding models can consistently improve the quality of the full-length models as assessed by the GDT-HA and hydrogen-bonding scores. Despite the success, significant challenges still exist in domain boundary prediction and consistent folding of medium-size proteins (especially beta-proteins) for nonhomologous targets. Further developments of sensitive fold-recognition and ab initio folding methods are critical for solving these problems. PMID:23760925

  15. Interplay of I-TASSER and QUARK for template-based and ab initio protein structure prediction in CASP10.

    PubMed

    Zhang, Yang

    2014-02-01

    We develop and test a new pipeline in CASP10 to predict protein structures based on an interplay of I-TASSER and QUARK for both free-modeling (FM) and template-based modeling (TBM) targets. The most noteworthy observation is that sorting through the threading template pool using the QUARK-based ab initio models as probes allows the detection of distant-homology templates which might be ignored by the traditional sequence profile-based threading alignment algorithms. Further template assembly refinement by I-TASSER resulted in successful folding of two medium-sized FM targets with >150 residues. For TBM, the multiple threading alignments from LOMETS are, for the first time, incorporated into the ab initio QUARK simulations, which were further refined by I-TASSER assembly refinement. Compared with the traditional threading assembly refinement procedures, the inclusion of the threading-constrained ab initio folding models can consistently improve the quality of the full-length models as assessed by the GDT-HA and hydrogen-bonding scores. Despite the success, significant challenges still exist in domain boundary prediction and consistent folding of medium-size proteins (especially beta-proteins) for nonhomologous targets. Further developments of sensitive fold-recognition and ab initio folding methods are critical for solving these problems. Copyright © 2013 Wiley Periodicals, Inc.

  16. Potential energy surface, dipole moment surface and the intensity calculations for the 10 μm, 5 μm and 3 μm bands of ozone

    NASA Astrophysics Data System (ADS)

    Polyansky, Oleg L.; Zobov, Nikolai F.; Mizus, Irina I.; Kyuberis, Aleksandra A.; Lodi, Lorenzo; Tennyson, Jonathan

    2018-05-01

    Monitoring ozone concentrations in the Earth's atmosphere using spectroscopic methods is a major activity which undertaken both from the ground and from space. However there are long-running issues of consistency between measurements made at infrared (IR) and ultraviolet (UV) wavelengths. In addition, key O3 IR bands at 10 μm, 5 μm and 3 μm also yield results which differ by a few percent when used for retrievals. These problems stem from the underlying laboratory measurements of the line intensities. Here we use quantum chemical techniques, first principles electronic structure and variational nuclear-motion calculations, to address this problem. A new high-accuracy ab initio dipole moment surface (DMS) is computed. Several spectroscopically-determined potential energy surfaces (PESs) are constructed by fitting to empirical energy levels in the region below 7000 cm-1 starting from an ab initio PES. Nuclear motion calculations using these new surfaces allow the unambiguous determination of the intensities of 10 μm band transitions, and the computation of the intensities of 10 μm and 5 μm bands within their experimental error. A decrease in intensities within the 3 μm is predicted which appears consistent with atmospheric retrievals. The PES and DMS form a suitable starting point both for the computation of comprehensive ozone line lists and for future calculations of electronic transition intensities.

  17. Ab-initio calculation of EuO doped with 5% of (Ti, V, Cr and Fe): GGA and SIC approximation

    NASA Astrophysics Data System (ADS)

    Rouchdi, M.; Salmani, E.; Bekkioui, N.; Ez-Zahraouy, H.; Hassanain, N.; Benyoussef, A.; Mzerd, A.

    2017-12-01

    In this research, a simple theoretical method is proposed to investigate the electronic, magnetic and optical properties of Europium oxide (EuO) doped with 5% of (Ti, V, Cr and Fe). For a basic understanding of these properties, we employed Density-Functional Theory (DFT) based calculations with the Korringa-Kohn-Rostoker code (KKR) combined with the Coherent Potential Approximation (CPA). Also we investigated the half-metallic ferromagnetic behavior of EuO doped with 5% of (Ti, V, Cr and Fe) within the self-interaction-corrected Generalized Gradient Approximation (GGA-SIC). Our calculated results revealed that the Eu0.95TM0.05O is ferromagnetic with a high transition temperature. Moreover, the optical absorption spectra revealed that the half metallicity has been also predicted.

  18. A reactive, scalable, and transferable model for molecular energies from a neural network approach based on local information

    NASA Astrophysics Data System (ADS)

    Unke, Oliver T.; Meuwly, Markus

    2018-06-01

    Despite the ever-increasing computer power, accurate ab initio calculations for large systems (thousands to millions of atoms) remain infeasible. Instead, approximate empirical energy functions are used. Most current approaches are either transferable between different chemical systems, but not particularly accurate, or they are fine-tuned to a specific application. In this work, a data-driven method to construct a potential energy surface based on neural networks is presented. Since the total energy is decomposed into local atomic contributions, the evaluation is easily parallelizable and scales linearly with system size. With prediction errors below 0.5 kcal mol-1 for both unknown molecules and configurations, the method is accurate across chemical and configurational space, which is demonstrated by applying it to datasets from nonreactive and reactive molecular dynamics simulations and a diverse database of equilibrium structures. The possibility to use small molecules as reference data to predict larger structures is also explored. Since the descriptor only uses local information, high-level ab initio methods, which are computationally too expensive for large molecules, become feasible for generating the necessary reference data used to train the neural network.

  19. Modeling the melting of multicomponent systems: the case of MgSiO3 perovskite under lower mantle conditions

    PubMed Central

    Di Paola, Cono; P. Brodholt, John

    2016-01-01

    Knowledge of the melting properties of materials, especially at extreme pressure conditions, represents a long-standing scientific challenge. For instance, there is currently considerable uncertainty over the melting temperatures of the high-pressure mantle mineral, bridgmanite (MgSiO3-perovskite), with current estimates of the melting T at the base of the mantle ranging from 4800 K to 8000 K. The difficulty with experimentally measuring high pressure melting temperatures has motivated the use of ab initio methods, however, melting is a complex multi-scale phenomenon and the timescale for melting can be prohibitively long. Here we show that a combination of empirical and ab-initio molecular dynamics calculations can be used to successfully predict the melting point of multicomponent systems, such as MgSiO3 perovskite. We predict the correct low-pressure melting T, and at high-pressure we show that the melting temperature is only 5000 K at 120 GPa, a value lower than nearly all previous estimates. In addition, we believe that this strategy is of general applicability and therefore suitable for any system under physical conditions where simpler models fail. PMID:27444854

  20. G3//BMK and Its Application to Calculation of Bond Dissociation Enthalpies.

    PubMed

    Zheng, Wen-Rui; Fu, Yao; Guo, Qing-Xiang

    2008-08-01

    On the basis of systematic examinations it was found that the BMK functional significantly outperformed the other popular density functional theory methods including B3LYP, B3P86, KMLYP, MPW1P86, O3LYP, and X3LYP for the calculation of bond dissociation enthalpies (BDEs). However, it was also found that even the BMK functional might dramatically fail in predicting the BDEs of some chemical bonds. To solve this problem, a new composite ab initio method named G3//BMK was developed by combining the strengths of both the G3 theory and BMK. G3//BMK was found to outperform the G3 and G3//B3LYP methods. It could accurately predict the BDEs of diverse types of chemical bonds in various organic molecules within a precision of ca. 1.2 kcal/mol.

  1. Comparison of the bonding between ML(+) and ML2(+) (M = metal, L = noble gas)

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles W., Jr.; Partridge, Harry; Langhoff, Stephen R.

    1990-01-01

    Ab initio calculations are reported of the spectroscopic constants for the low-lying states of the molecular ions ML2(+), where M = Li, Na, Mg, V, Fe, Co, Ni and Cu, and where L is usually Ar. Comparison with existing analogous calculations on the ML(+) ions shows how the bonding and binding energy change with the addition of a second noble gas atom. The second binding energy is predicted to be essentially the same as the first for the Li, Na, Mg, and V ions, but larger for the Fe, Co, Ni and Cu ions. The binding energies of the transition metal noble gas ions are not accurately predicted at the SCF level, because correlation is required to describe their M(0)Ln(+) character. All trends can be explained in terms of promotion and hybridization on the metal ion.

  2. Spectra and structure of silicon containing compounds. XXXII. Raman and infrared spectra, conformational stability, vibrational assignment and ab initio calculations of n-propylsilane-d0 and Si-d3.

    PubMed

    Durig, James R; Pan, Chunhua; Guirgis, Gamil A

    2003-03-15

    The infrared (3100-40 cm(-1)) and Raman (3100-20 cm(-1)) spectra of gaseous and solid n-propylsilane, CH(3)CH(2)CH(2)SiH(3) and the Si-d(3) isotopomer, CH(3)CH(2)CH(2)SiD(3), have been recorded. Additionally, the Raman spectra of the liquids have been recorded and qualitative depolarization values obtained. Both the anti and gauche conformers have been identified in the fluid phases but only the anti conformer remains in the solid. Variable temperature (-105 to -150 degrees C) studies of the infrared spectra of n-propylsilane dissolved in liquid krypton have been recorded and the enthalpy difference has been determined to be 220+/-22 cm(-1) (2.63+/-0.26 kJ mol(-1)) with the anti conformer the more stable form. A similar value of 234+/-23 cm(-1) (2.80+/-0.28 kJ mol(-1)) was obtained for deltaH for the Si-d(3) isotopomer. At ambient temperature it is estimated that there is 30+/-2% of the gauche conformer present. The potential function governing the conformation interchange has been estimated from the far infrared spectral data, the enthalpy difference, and the dihedral angle of the gauche conformer, which is compared to the one predicted from ab initio MP2/6-31G(d) calculations. The barriers to conformational interchange are: 942, 970 and 716 cm(-1) for the anti to gauche, gauche to gauche, and gauche to anti conformers, respectively. Relatively complete vibrational assignments are proposed for both the n-propylsilane-d(0) and Si-d(3) molecules based on the relative infrared and Raman spectral intensities, infrared band contours, depolarization ratios, and normal coordinate calculations. The geometrical parameters, harmonic force constants, vibrational frequencies, infrared intensities, Raman activities and depolarization ratios, and energy differences have been obtained for the anti and gauche conformers from ab initio MP2/6-31G(d) calculations. Structural parameters and energy differences have also been obtained utilizing the larger 6-311 + G(d,p) and 6-311 + G(2d,2p) basis sets. From the isolated Si-H stretching frequency from the Si-d(2) isotopomer the r(0) distances of 1.484 and 1.485 A have been determined for the SiH(s) and SiH(a) bonds, respectively, for the anti conformer, and 1.486 A for the SiH bond for the gauche conformer. Utilizing previously reported microwave rotational constants for the anti conformer and the determined SiH distances along with ab initio predicted parameters 'adjusted r(0)' parameters have been obtained for the anti conformer. The results are discussed and compared to those obtained for some similar molecules. Copyright 2002 Elsevier Science B.V.

  3. Spectra and structure of silicon containing compounds. XXXII. Raman and infrared spectra, conformational stability, vibrational assignment and ab initio calculations of n-propylsilane-d 0 and Si-d 3

    NASA Astrophysics Data System (ADS)

    Durig, James R.; Pan, Chunhua; Guirgis, Gamil A.

    2003-03-01

    The infrared (3100-40 cm -1) and Raman (3100-20 cm -1) spectra of gaseous and solid n-propylsilane, CH 3CH 2CH 2SiH 3 and the Si-d 3 isotopomer, CH 3CH 2CH 2SiD 3, have been recorded. Additionally, the Raman spectra of the liquids have been recorded and qualitative depolarization values obtained. Both the anti and gauche conformers have been identified in the fluid phases but only the anti conformer remains in the solid. Variable temperature (-105 to -150 °C) studies of the infrared spectra of n-propylsilane dissolved in liquid krypton have been recorded and the enthalpy difference has been determined to be 220±22 cm -1 (2.63±0.26 kJ mol -1) with the anti conformer the more stable form. A similar value of 234±23 cm -1 (2.80±0.28 kJ mol -1) was obtained for Δ H for the Si-d 3 isotopomer. At ambient temperature it is estimated that there is 30±2% of the gauche conformer present. The potential function governing the conformation interchange has been estimated from the far infrared spectral data, the enthalpy difference, and the dihedral angle of the gauche conformer, which is compared to the one predicted from ab initio MP2/6-31G(d) calculations. The barriers to conformational interchange are: 942, 970 and 716 cm -1 for the anti to gauche, gauche to gauche, and gauche to anti conformers, respectively. Relatively complete vibrational assignments are proposed for both the n-propylsilane-d 0 and Si-d 3 molecules based on the relative infrared and Raman spectral intensities, infrared band contours, depolarization ratios, and normal coordinate calculations. The geometrical parameters, harmonic force constants, vibrational frequencies, infrared intensities, Raman activities and depolarization ratios, and energy differences have been obtained for the anti and gauche conformers from ab initio MP2/6-31G(d) calculations. Structural parameters and energy differences have also been obtained utilizing the larger 6-311+G(d,p) and 6-311+G(2d,2p) basis sets. From the isolated SiH stretching frequency from the Si-d 2 isotopomer the r0 distances of 1.484 and 1.485 Å have been determined for the SiH s and SiH a bonds, respectively, for the anti conformer, and 1.486 Å for the SiH bond for the gauche conformer. Utilizing previously reported microwave rotational constants for the anti conformer and the determined SiH distances along with ab initio predicted parameters 'adjusted r0' parameters have been obtained for the anti conformer. The results are discussed and compared to those obtained for some similar molecules.

  4. Multiple time step integrators in ab initio molecular dynamics.

    PubMed

    Luehr, Nathan; Markland, Thomas E; Martínez, Todd J

    2014-02-28

    Multiple time-scale algorithms exploit the natural separation of time-scales in chemical systems to greatly accelerate the efficiency of molecular dynamics simulations. Although the utility of these methods in systems where the interactions are described by empirical potentials is now well established, their application to ab initio molecular dynamics calculations has been limited by difficulties associated with splitting the ab initio potential into fast and slowly varying components. Here we present two schemes that enable efficient time-scale separation in ab initio calculations: one based on fragment decomposition and the other on range separation of the Coulomb operator in the electronic Hamiltonian. We demonstrate for both water clusters and a solvated hydroxide ion that multiple time-scale molecular dynamics allows for outer time steps of 2.5 fs, which are as large as those obtained when such schemes are applied to empirical potentials, while still allowing for bonds to be broken and reformed throughout the dynamics. This permits computational speedups of up to 4.4x, compared to standard Born-Oppenheimer ab initio molecular dynamics with a 0.5 fs time step, while maintaining the same energy conservation and accuracy.

  5. Ab initio calculation of the electronic absorption spectrum of liquid water

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martiniano, Hugo F. M. C.; Galamba, Nuno; Cabral, Benedito J. Costa, E-mail: ben@cii.fc.ul.pt

    2014-04-28

    The electronic absorption spectrum of liquid water was investigated by coupling a one-body energy decomposition scheme to configurations generated by classical and Born-Oppenheimer Molecular Dynamics (BOMD). A Frenkel exciton Hamiltonian formalism was adopted and the excitation energies in the liquid phase were calculated with the equation of motion coupled cluster with single and double excitations method. Molecular dynamics configurations were generated by different approaches. Classical MD were carried out with the TIP4P-Ew and AMOEBA force fields. The BLYP and BLYP-D3 exchange-correlation functionals were used in BOMD. Theoretical and experimental results for the electronic absorption spectrum of liquid water are inmore » good agreement. Emphasis is placed on the relationship between the structure of liquid water predicted by the different models and the electronic absorption spectrum. The theoretical gas to liquid phase blue-shift of the peak positions of the electronic absorption spectrum is in good agreement with experiment. The overall shift is determined by a competition between the O–H stretching of the water monomer in liquid water that leads to a red-shift and polarization effects that induce a blue-shift. The results illustrate the importance of coupling many-body energy decomposition schemes to molecular dynamics configurations to carry out ab initio calculations of the electronic properties in liquid phase.« less

  6. Atomic and electronic structure of exfoliated black phosphorus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Ryan J.; Topsakal, Mehmet; Jeong, Jong Seok

    2015-11-15

    Black phosphorus, a layered two-dimensional crystal with tunable electronic properties and high hole mobility, is quickly emerging as a promising candidate for future electronic and photonic devices. Although theoretical studies using ab initio calculations have tried to predict its atomic and electronic structure, uncertainty in its fundamental properties due to a lack of clear experimental evidence continues to stymie our full understanding and application of this novel material. In this work, aberration-corrected scanning transmission electron microscopy and ab initio calculations are used to study the crystal structure of few-layer black phosphorus. Directly interpretable annular dark-field images provide a three-dimensional atomic-resolutionmore » view of this layered material in which its stacking order and all three lattice parameters can be unambiguously identified. In addition, electron energy-loss spectroscopy (EELS) is used to measure the conduction band density of states of black phosphorus, which agrees well with the results of density functional theory calculations performed for the experimentally determined crystal. Furthermore, experimental EELS measurements of interband transitions and surface plasmon excitations are also consistent with simulated results. Finally, the effects of oxidation on both the atomic and electronic structure of black phosphorus are analyzed to explain observed device degradation. The transformation of black phosphorus into amorphous PO{sub 3} or H{sub 3}PO{sub 3} during oxidation may ultimately be responsible for the degradation of devices exposed to atmosphere over time.« less

  7. Experimental and theoretical characterization of the 2(2)A'-1(2)A' transition of BeOH/D.

    PubMed

    Mascaritolo, Kyle J; Merritt, Jeremy M; Heaven, Michael C; Jensen, Per

    2013-12-19

    The hydroxides of Ca, Sr, and Ba are known to be linear molecules, while MgOH is quasilinear. High-level ab initio calculations for BeOH predict a bent equilibrium structure with a bond angle of 140.9°, indicating a significant contribution of covalency to the bonding. However, experimental confirmation of the bent structure is lacking. In the present study, we have used laser excitation techniques to observe the 2(2)A'-1(2)A' transition of BeOH/D in the energy range of 30300-32800 cm(-1). Rotationally resolved spectra were obtained, with sufficient resolution to reveal spin splittings for the electronically excited state. Two-color photoionization was used to determine an ionization energy of 66425(10) cm(-1). Ab initio calculations were used to guide the analysis of the spectroscopic data. Multireference configuration interaction calculations were used to construct potential energy surfaces for the 1(2)A', 2(2)A', and 1(2)A" states. The rovibronic eigenstates supported by these surfaces were determined using the Morse oscillator rigid bender internal dynamics Hamiltonian. The theoretical results were in sufficiently good agreement with the experimental data to permit unambiguous assignment. It was confirmed that the equilibrium geometry of the ground state is bent and that the barrier to linearity lies below the zero-point energies for both BeOH and BeOD.

  8. Prediction of a new class of half-metallic ferromagnets from first principles [A new class of half-metallic ferromagnets from first principles

    DOE PAGES

    Griffin, Sinead M.; Neaton, Jeffrey B.

    2017-09-12

    Half-metallic ferromagnetism (HMFM) occurs rarely in materials and yet offers great potential for spintronic devices. Recent experiments suggest a class of compounds with the `ThCrmore » $$_{2}$$Si$$_{2}$$' (122) structure -- isostructural and containing elements common with Fe pnictide-based superconductors -- can exhibit HMFM. Here we use $ab$ $initio$ density-functional theory calculations to understand the onset of half-metallicity in this family of materials and explain the appearance of ferromagnetism at a quantum critical point. We also predict new candidate materials with HMFM and high Curie temperatures through A-site alloying.« less

  9. Investigations of Reactive Processes at Temperatures Relevant to the Hypersonic Flight Regime

    DTIC Science & Technology

    2014-10-31

    molecule is constructed based on high- level ab-initio calculations and interpolated using the reproducible kernel Hilbert space (RKHS) method and...a potential energy surface (PES) for the ground state of the NO2 molecule is constructed based on high- level ab initio calculations and interpolated...between O(3P) and NO(2Π) at higher temperatures relevant to the hypersonic flight regime of reentering space- crafts. At a more fundamental level , we

  10. Accelerating ab initio path integral molecular dynamics with multilevel sampling of potential surface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Geng, Hua Y., E-mail: huay.geng@gmail.com; Department of Chemistry and Chemical Biology, Cornell University, Baker Laboratory, Ithaca, NY 14853

    A multilevel approach to sample the potential energy surface in a path integral formalism is proposed. The purpose is to reduce the required number of ab initio evaluations of energy and forces in ab initio path integral molecular dynamics (AI-PIMD) simulation, without compromising the overall accuracy. To validate the method, the internal energy and free energy of an Einstein crystal are calculated and compared with the analytical solutions. As a preliminary application, we assess the performance of the method in a realistic model—the FCC phase of dense atomic hydrogen, in which the calculated result shows that the acceleration rate ismore » about 3 to 4-fold for a two-level implementation, and can be increased up to 10 times if extrapolation is used. With only 16 beads used for the ab initio potential sampling, this method gives a well converged internal energy. The residual error in pressure is just about 3 GPa, whereas it is about 20 GPa for a plain AI-PIMD calculation with the same number of beads. The vibrational free energy of the FCC phase of dense hydrogen at 300 K is also calculated with an AI-PIMD thermodynamic integration method, which gives a result of about 0.51 eV/proton at a density of r{sub s}=0.912.« less

  11. Breit–Pauli atomic structure calculations for Fe XI

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aggarwal, Sunny, E-mail: sunny.du87@gmail.com; Singh, Jagjit; Mohan, Man

    Energy levels, oscillator strengths, and transition probabilities are calculated for the lowest-lying 165 energy levels of Fe XI using configuration-interaction wavefunctions. The calculations include all the major correlation effects. Relativistic effects are included in the Breit–Pauli approximation by adding mass-correction, Darwin, and spin–orbit interaction terms to the non-relativistic Hamiltonian. For comparison with the calculated ab initio energy levels, we have also calculated the energy levels by using the fully relativistic multiconfiguration Dirac–Fock method. The calculated results are in close agreement with the National Institute of Standards and Technology compilation and other available results. New results are predicted for many ofmore » the levels belonging to the 3s3p{sup 4}3d and 3s3p{sup 3}3d{sup 2} configurations, which are very important in astrophysics, relevant, for example, to the recent observations by the Hinode spacecraft. We expect that our extensive calculations will be useful to experimentalists in identifying the fine structure levels in their future work.« less

  12. Electron transport in all-Heusler Co2CrSi/Cu2CrAl/Co2CrSi device, based on ab-initio NEGF calculations

    NASA Astrophysics Data System (ADS)

    Mikaeilzadeh, L.; Pirgholi, M.; Tavana, A.

    2018-05-01

    Based on the ab-initio non-equilibrium Green's function (NEGF) formalism based on the density functional theory (DFT), we have studied the electron transport in the all-Heusler device Co2CrSi/Cu2CrAl/Co2CrSi. Results show that the calculated transmission spectra is very sensitive to the structural parameters and the interface. Also, we obtain a range for the thickness of the spacer layer for which the MR effect is optimum. Calculations also show a perfect GMR effect in this device.

  13. Universal fragment descriptors for predicting properties of inorganic crystals

    NASA Astrophysics Data System (ADS)

    Isayev, Olexandr; Oses, Corey; Toher, Cormac; Gossett, Eric; Curtarolo, Stefano; Tropsha, Alexander

    2017-06-01

    Although historically materials discovery has been driven by a laborious trial-and-error process, knowledge-driven materials design can now be enabled by the rational combination of Machine Learning methods and materials databases. Here, data from the AFLOW repository for ab initio calculations is combined with Quantitative Materials Structure-Property Relationship models to predict important properties: metal/insulator classification, band gap energy, bulk/shear moduli, Debye temperature and heat capacities. The prediction's accuracy compares well with the quality of the training data for virtually any stoichiometric inorganic crystalline material, reciprocating the available thermomechanical experimental data. The universality of the approach is attributed to the construction of the descriptors: Property-Labelled Materials Fragments. The representations require only minimal structural input allowing straightforward implementations of simple heuristic design rules.

  14. Exclusive quasi-free proton knockout from oxygen isotopes at intermediate energies

    NASA Astrophysics Data System (ADS)

    Kawase, Shoichiro; Uesaka, Tomohiro; Tang, Tsz Leung; Beaumel, Didier; Dozono, Masanori; Fukunaga, Taku; Fujii, Toshihiko; Fukuda, Naoki; Galindo-Uribarri, Alfredo; Hwang, Sanghoon; Inabe, Naoto; Kawabata, Takahiro; Kawahara, Tomomi; Kim, Wooyoung; Kisamori, Keiichi; Kobayashi, Motoki; Kubo, Toshiyuki; Kubota, Yuki; Kusaka, Kensuke; Lee, Cheongsoo; Maeda, Yukie; Matsubara, Hiroaki; Michimasa, Shin'ichiro; Miya, Hiroyuki; Noro, Tetsuo; Nozawa, Yuki; Obertelli, Alexandre; Ogata, Kazuyuki; Ota, Shinsuke; Padilla-Rodal, Elizabeth; Sakaguchi, Satoshi; Sakai, Hideyuki; Sasano, Masaki; Shimoura, Susumu; Stepanyan, Samvel; Suzuki, Hiroshi; Suzuki, Tomokazu; Takaki, Motonobu; Takeda, Hiroyuki; Tamii, Atsushi; Tokieda, Hiroshi; Wakasa, Tomotsugu; Wakui, Takashi; Yako, Kentaro; Yasuda, Jumpei; Yanagisawa, Yoshiyuki; Yokoyama, Rin; Yoshida, Kazuki; Yoshida, Koichi; Zenihiro, Juzo

    2018-02-01

    The dependence of the single-particle strength on the difference between proton and neutron separation energies is studied for oxygen isotopes in a wide range of isospins. The cross sections of the quasi-free (p,2p) reaction on ^{14,16,18,22,24}O were measured at intermediate energies. The measured cross sections are compared to predictions based on the distorted wave impulse approximation and shell-model psd valence-space spectroscopic factors. The reduction factors, which are the ratio of the experimental cross sections to the theoretical predictions, show no apparent dependence on the proton-neutron separation energy difference. The result is compatible with the result of the (e,e^'p) reaction on stable targets and with the predictions of recent ab initio calculations.

  15. Universal fragment descriptors for predicting properties of inorganic crystals.

    PubMed

    Isayev, Olexandr; Oses, Corey; Toher, Cormac; Gossett, Eric; Curtarolo, Stefano; Tropsha, Alexander

    2017-06-05

    Although historically materials discovery has been driven by a laborious trial-and-error process, knowledge-driven materials design can now be enabled by the rational combination of Machine Learning methods and materials databases. Here, data from the AFLOW repository for ab initio calculations is combined with Quantitative Materials Structure-Property Relationship models to predict important properties: metal/insulator classification, band gap energy, bulk/shear moduli, Debye temperature and heat capacities. The prediction's accuracy compares well with the quality of the training data for virtually any stoichiometric inorganic crystalline material, reciprocating the available thermomechanical experimental data. The universality of the approach is attributed to the construction of the descriptors: Property-Labelled Materials Fragments. The representations require only minimal structural input allowing straightforward implementations of simple heuristic design rules.

  16. Vibrational spectroscopic study of fluticasone propionate

    NASA Astrophysics Data System (ADS)

    Ali, H. R. H.; Edwards, H. G. M.; Kendrick, J.; Scowen, I. J.

    2009-03-01

    Fluticasone propionate is a synthetic glucocorticoid with potent anti-inflammatory activity that has been used effectively in the treatment of chronic asthma. The present work reports a vibrational spectroscopic study of fluticasone propionate and gives proposed molecular assignments on the basis of ab initio calculations using BLYP density functional theory with a 6-31G* basis set and vibrational frequencies predicted within the quasi-harmonic approximation. Several spectral features and band intensities are explained. This study generated a library of information that can be employed to aid the process monitoring of fluticasone propionate.

  17. Excited state of protonated benzene and toluene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Esteves-López, Natalia; Dedonder-Lardeux, Claude; Jouvet, Christophe, E-mail: Christophe.jouvet@univ-amu.fr

    We present photo-fragmentation electronic spectra of the simplest protonated aromatic molecules, protonated benzene and toluene, recorded under medium resolution conditions and compared with the photo-fragmentation spectrum of protonated pyridine. Despite the resolution and cold temperature achieved in the experiment, the electronic spectra of protonated benzene and toluene are structure-less, thus intrinsically broadened. This is in agreement with the large geometrical changes and the fast dynamic toward internal conversion predicted by ab initio calculations for protonated benzene [Rode et al., J. Phys. Chem. A 113, 5865–5873 (2009)].

  18. Low-energy elastic differential scattering of He/++/ by He.

    NASA Technical Reports Server (NTRS)

    Lam, S. K.; Doverspike, L. D.; Champion, R. L.

    1973-01-01

    Experimental results are developed for the relative elastic differential scattering of He(++) by He for collision energies in the range 4 equal to or less than E equal to or less than 75 eV. In the analysis of the data, semiclassical considerations are utilized, assuming that the dynamics of the scattering is governed solely by the B and E states of He2(++). It is shown that existing ab initio calculations for the intermolecular potentials predict differential cross sections which are not in particularly good agreement with the experimental data.

  19. Solid state linear dichroic infrared spectral analysis of benzimidazoles and their N 1-protonated salts

    NASA Astrophysics Data System (ADS)

    Ivanova, B. B.

    2005-11-01

    A stereo structural characterization of 2,5,6-thrimethylbenzimidazole (MBIZ) and 2-amino-benzimidaziole (2-NH 2-BI) and their N 1 protonation salts was carried out using a polarized solid state linear dichroic infrared spectral (IR-LD) analysis in nematic liquid crystal suspension. All experimental predicted structures were compared with the theoretical ones, obtained by ab initio calculations. The Cs to C2v* symmetry transformation as a result of protonation processes, with a view of its reflection on the infrared spectral characteristics was described.

  20. Ab initio calculations of deep-level carrier nonradiative recombination rates in bulk semiconductors.

    PubMed

    Shi, Lin; Wang, Lin-Wang

    2012-12-14

    Nonradiative carrier recombination is of both applied and fundamental interest. Here a novel algorithm is introduced to calculate such a deep level nonradiative recombination rate using the ab initio density functional theory. This algorithm can calculate the electron-phonon coupling constants all at once. An approximation is presented to calculate the phonon modes for one impurity in a large supercell. The neutral Zn impurity site together with a N vacancy is considered as the carrier-capturing deep impurity level in bulk GaN. Its capture coefficient is calculated as 5.57 × 10(-10)cm(3)/s at 300 K. We found that there is no apparent onset of such a nonradiative process as a function of temperature.

  1. Exploring Partonic Structure of Hadrons Using ab initio Lattice QCD Calculations

    DOE PAGES

    Ma, Yan-Qing; Qiu, Jian-Wei

    2018-01-10

    Following our previous proposal, we construct a class of good "lattice cross sections" (LCSs), from which we can study the partonic structure of hadrons from ab initio lattice QCD calculations. These good LCSs, on the one hand, can be calculated directly in lattice QCD, and on the other hand, can be factorized into parton distribution functions (PDFs) with calculable coefficients, in the same way as QCD factorization for factorizable hadronic cross sections. PDFs could be extracted from QCD global analysis of the lattice QCD generated data of LCSs. In conclusion, we also show that the proposed functions for lattice QCDmore » calculation of PDFs in the literature are special cases of these good LCSs.« less

  2. Residue contacts predicted by evolutionary covariance extend the application of ab initio molecular replacement to larger and more challenging protein folds.

    PubMed

    Simkovic, Felix; Thomas, Jens M H; Keegan, Ronan M; Winn, Martyn D; Mayans, Olga; Rigden, Daniel J

    2016-07-01

    For many protein families, the deluge of new sequence information together with new statistical protocols now allow the accurate prediction of contacting residues from sequence information alone. This offers the possibility of more accurate ab initio (non-homology-based) structure prediction. Such models can be used in structure solution by molecular replacement (MR) where the target fold is novel or is only distantly related to known structures. Here, AMPLE, an MR pipeline that assembles search-model ensembles from ab initio structure predictions ('decoys'), is employed to assess the value of contact-assisted ab initio models to the crystallographer. It is demonstrated that evolutionary covariance-derived residue-residue contact predictions improve the quality of ab initio models and, consequently, the success rate of MR using search models derived from them. For targets containing β-structure, decoy quality and MR performance were further improved by the use of a β-strand contact-filtering protocol. Such contact-guided decoys achieved 14 structure solutions from 21 attempted protein targets, compared with nine for simple Rosetta decoys. Previously encountered limitations were superseded in two key respects. Firstly, much larger targets of up to 221 residues in length were solved, which is far larger than the previously benchmarked threshold of 120 residues. Secondly, contact-guided decoys significantly improved success with β-sheet-rich proteins. Overall, the improved performance of contact-guided decoys suggests that MR is now applicable to a significantly wider range of protein targets than were previously tractable, and points to a direct benefit to structural biology from the recent remarkable advances in sequencing.

  3. Residue contacts predicted by evolutionary covariance extend the application of ab initio molecular replacement to larger and more challenging protein folds

    PubMed Central

    Simkovic, Felix; Thomas, Jens M. H.; Keegan, Ronan M.; Winn, Martyn D.; Mayans, Olga; Rigden, Daniel J.

    2016-01-01

    For many protein families, the deluge of new sequence information together with new statistical protocols now allow the accurate prediction of contacting residues from sequence information alone. This offers the possibility of more accurate ab initio (non-homology-based) structure prediction. Such models can be used in structure solution by molecular replacement (MR) where the target fold is novel or is only distantly related to known structures. Here, AMPLE, an MR pipeline that assembles search-model ensembles from ab initio structure predictions (‘decoys’), is employed to assess the value of contact-assisted ab initio models to the crystallographer. It is demonstrated that evolutionary covariance-derived residue–residue contact predictions improve the quality of ab initio models and, consequently, the success rate of MR using search models derived from them. For targets containing β-structure, decoy quality and MR performance were further improved by the use of a β-strand contact-filtering protocol. Such contact-guided decoys achieved 14 structure solutions from 21 attempted protein targets, compared with nine for simple Rosetta decoys. Previously encountered limitations were superseded in two key respects. Firstly, much larger targets of up to 221 residues in length were solved, which is far larger than the previously benchmarked threshold of 120 residues. Secondly, contact-guided decoys significantly improved success with β-sheet-rich proteins. Overall, the improved performance of contact-guided decoys suggests that MR is now applicable to a significantly wider range of protein targets than were previously tractable, and points to a direct benefit to structural biology from the recent remarkable advances in sequencing. PMID:27437113

  4. Ab initio molecular dynamics calculations on scattering of hyperthermal H atoms from Cu(111) and Au(111)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kroes, Geert-Jan, E-mail: g.j.kroes@chem.leidenuniv.nl; Pavanello, Michele; Blanco-Rey, María

    2014-08-07

    Energy loss from the translational motion of an atom or molecule impinging on a metal surface to the surface may determine whether the incident particle can trap on the surface, and whether it has enough energy left to react with another molecule present at the surface. Although this is relevant to heterogeneous catalysis, the relative extent to which energy loss of hot atoms takes place to phonons or electron-hole pair (ehp) excitation, and its dependence on the system's parameters, remain largely unknown. We address these questions for two systems that present an extreme case of the mass ratio of themore » incident atom to the surface atom, i.e., H + Cu(111) and H + Au(111), by presenting adiabatic ab initio molecular dynamics (AIMD) predictions of the energy loss and angular distributions for an incidence energy of 5 eV. The results are compared to the results of AIMDEFp calculations modeling energy loss to ehp excitation using an electronic friction (“EF”) model applied to the AIMD trajectories, so that the energy loss to the electrons is calculated “post” (“p”) the computation of the AIMD trajectory. The AIMD calculations predict average energy losses of 0.38 eV for Cu(111) and 0.13-0.14 eV for Au(111) for H-atoms that scatter from these surfaces without penetrating the surface. These energies closely correspond with energy losses predicted with Baule models, which is suggestive of structure scattering. The predicted adiabatic integral energy loss spectra (integrated over all final scattering angles) all display a lowest energy peak at an energy corresponding to approximately 80% of the average adiabatic energy loss for non-penetrative scattering. In the adiabatic limit, this suggests a way of determining the approximate average energy loss of non-penetratively scattered H-atoms from the integral energy loss spectrum of all scattered H-atoms. The AIMDEFp calculations predict that in each case the lowest energy loss peak should show additional energy loss in the range 0.2-0.3 eV due to ehp excitation, which should be possible to observe. The average non-adiabatic energy losses for non-penetrative scattering exceed the adiabatic losses to phonons by 0.9-1.0 eV. This suggests that for scattering of hyperthermal H-atoms from coinage metals the dominant energy dissipation channel should be to ehp excitation. These predictions can be tested by experiments that combine techniques for generating H-atom beams that are well resolved in translational energy and for detecting the scattered atoms with high energy-resolution.« less

  5. Ab-initio calculations of the Ruddlesden Popper phases CaMnO3, CaO(CaMnO3) and CaO(CaMnO3)2

    NASA Astrophysics Data System (ADS)

    Cardoso, C.; Borges, R. P.; Gasche, T.; Godinho, M.

    2008-01-01

    The present work reports ab-initio density functional theory calculations for the Ruddlesden-Popper phase CaO(CaMnO3)n compounds. In order to study the evolution of the properties with the number of perovskite layers, a detailed analysis of the densities of states calculated for each compound and for several magnetic configurations was performed. The effect of distortions of the crystal structure on the magnetic ground state is also analysed and the exchange constants and transition temperatures are calculated for the three compounds using a mean field model. The calculated magnetic ground state structures and magnetic moments are in good agreement with experimental results and previous calculations.

  6. Computational Chemistry Comparison and Benchmark Database

    National Institute of Standards and Technology Data Gateway

    SRD 101 NIST Computational Chemistry Comparison and Benchmark Database (Web, free access)   The NIST Computational Chemistry Comparison and Benchmark Database is a collection of experimental and ab initio thermochemical properties for a selected set of molecules. The goals are to provide a benchmark set of molecules for the evaluation of ab initio computational methods and allow the comparison between different ab initio computational methods for the prediction of thermochemical properties.

  7. Calculations of rate constants for the three-body recombination of H2 in the presence of H2

    NASA Technical Reports Server (NTRS)

    Schwenke, David W.

    1988-01-01

    A new global potential energy hypersurface for H2 + H2 is constructed and quasiclassical trajectory calculations performed using the resonance complex theory and energy transfer mechanism to estimate the rate of three body recombination over the temperature range 100 to 5000 K. The new potential is a faithful representation of ab initio electron structure calculations, is unchanged under the operation of exchanging H atoms, and reproduces the accurate H3 potential as one H atom is pulled away. Included in the fitting procedure are geometries expected to be important when one H2 is near or above the dissociation limit. The dynamics calculations explicitly include the motion of all four atoms and are performed efficiently using a vectorized variable-stepsize integrator. The predicted rate constants are approximately a factor of two smaller than experimental estimates over a broad temperature range.

  8. Structure of alcohol cluster ions in the gas phase, according to spectrometry and ab initio calculations

    NASA Astrophysics Data System (ADS)

    Krisilov, A. V.; Lantsuzskaya, E. V.; Levina, A. M.

    2017-01-01

    Reduced ion mobility and scattering cross sections are calculated from experimentally obtained spectra of the ion mobility of linear aliphatic alcohols with carbon atom numbers from 2 to 9. A linear increase in the scattering cross sections as the molecular weight grows is found. According to the results from experiments and quantum chemical calculations, alcohol cluster ions do not form a compact structure. Neither are dipole moments compensated for during dimerization, in contrast to the aldehydes and ketones described earlier. It was concluded from ab initio calculations that charge delocalization in monomeric and dimeric ions of alcohols increases the dipole moment many times over.

  9. Tight-binding analysis of Si and GaAs ultrathin bodies with subatomic wave-function resolution

    NASA Astrophysics Data System (ADS)

    Tan, Yaohua P.; Povolotskyi, Michael; Kubis, Tillmann; Boykin, Timothy B.; Klimeck, Gerhard

    2015-08-01

    Empirical tight-binding (ETB) methods are widely used in atomistic device simulations. Traditional ways of generating the ETB parameters rely on direct fitting to bulk experiments or theoretical electronic bands. However, ETB calculations based on existing parameters lead to unphysical results in ultrasmall structures like the As-terminated GaAs ultrathin bodies (UTBs). In this work, it is shown that more transferable ETB parameters with a short interaction range can be obtained by a process of mapping ab initio bands and wave functions to ETB models. This process enables the calibration of not only the ETB energy bands but also the ETB wave functions with corresponding ab initio calculations. Based on the mapping process, ETB models of Si and GaAs are parameterized with respect to hybrid functional calculations. Highly localized ETB basis functions are obtained. Both the ETB energy bands and wave functions with subatomic resolution of UTBs show good agreement with the corresponding hybrid functional calculations. The ETB methods can then be used to explain realistically extended devices in nonequilibrium that cannot be tackled with ab initio methods.

  10. Ab Initio Values of the Thermophysical Properties of Helium as Standards

    PubMed Central

    Hurly, John J.; Moldover, Michael R.

    2000-01-01

    Recent quantum mechanical calculations of the interaction energy of pairs of helium atoms are accurate and some include reliable estimates of their uncertainty. We combined these ab initio results with earlier published results to obtain a helium-helium interatomic potential that includes relativistic retardation effects over all ranges of interaction. From this potential, we calculated the thermophysical properties of helium, i.e., the second virial coefficients, the dilute-gas viscosities, and the dilute-gas thermal conductivities of 3He, 4He, and their equimolar mixture from 1 K to 104 K. We also calculated the diffusion and thermal diffusion coefficients of mixtures of 3He and 4He. For the pure fluids, the uncertainties of the calculated values are dominated by the uncertainties of the potential; for the mixtures, the uncertainties of the transport properties also include contributions from approximations in the transport theory. In all cases, the uncertainties are smaller than the corresponding experimental uncertainties; therefore, we recommend the ab initio results be used as standards for calibrating instruments relying on these thermophysical properties. We present the calculated thermophysical properties in easy-to-use tabular form. PMID:27551630

  11. Ab Initio and Analytic Intermolecular Potentials for Ar-CF₄

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vayner, Grigoriy; Alexeev, Yuri; Wang, Jiangping

    2006-03-09

    Ab initio calculations at the CCSD(T) level of theory are performed to characterize the Ar + CF ₄ intermolecular potential. Extensive calculations, with and without a correction for basis set superposition error (BSSE), are performed with the cc-pVTZ basis set. Additional calculations are performed with other correlation consistent (cc) basis sets to extrapolate the Ar---CF₄potential energy minimum to the complete basis set (CBS) limit. Both the size of the basis set and BSSE have substantial effects on the Ar + CF₄ potential. Calculations with the cc-pVTZ basis set and without a BSSE correction, appear to give a good representation ofmore » the potential at the CBS limit and with a BSSE correction. In addition, MP2 theory is found to give potential energies in very good agreement with those determined by the much higher level CCSD(T) theory. Two analytic potential energy functions were determined for Ar + CF₄by fitting the cc-pVTZ calculations both with and without a BSSE correction. These analytic functions were written as a sum of two body potentials and excellent fits to the ab initio potentials were obtained by representing each two body interaction as a Buckingham potential.« less

  12. Kinetic study on the H + SiH4 abstraction reaction using an ab initio potential energy surface.

    PubMed

    Cao, Jianwei; Zhang, Zhijun; Zhang, Chunfang; Bian, Wensheng; Guo, Yin

    2011-01-14

    Variational transition state theory calculations with the correction of multidimensional tunneling are performed on a 12-dimensional ab initio potential energy surface for the H + SiH(4) abstraction reaction. The surface is constructed using a dual-level strategy. For the temperature range 200-1600 K, thermal rate constants are calculated and kinetic isotope effects for various isotopic species of the title reaction are investigated. The results are in very good agreement with available experimental data.

  13. The study of molecular spectroscopy by ab initio methods

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles W., Jr.; Langhoff, Stephen R.

    1991-01-01

    This review illustrates the potential of theory for solving spectroscopic problems. The accuracy of approximate techniques for including electron correlation have been calibrated by comparison with full configuration-interaction calculations. Examples of the application of ab initio calculations to vibrational, rotational, and electronic spectroscopy are given. It is shown that the state-averaged, complete active space self-consistent field, multireference configuration-interaction procedure provides a good approach for treating several electronic states accurately in a common molecular orbital basis.

  14. Developing hybrid approaches to predict pKa values of ionizable groups

    PubMed Central

    Witham, Shawn; Talley, Kemper; Wang, Lin; Zhang, Zhe; Sarkar, Subhra; Gao, Daquan; Yang, Wei

    2011-01-01

    Accurate predictions of pKa values of titratable groups require taking into account all relevant processes associated with the ionization/deionization. Frequently, however, the ionization does not involve significant structural changes and the dominating effects are purely electrostatic in origin allowing accurate predictions to be made based on the electrostatic energy difference between ionized and neutral forms alone using a static structure. On another hand, if the change of the charge state is accompanied by a structural reorganization of the target protein, then the relevant conformational changes have to be taken into account in the pKa calculations. Here we report a hybrid approach that first predicts the titratable groups, which ionization is expected to cause conformational changes, termed “problematic” residues, then applies a special protocol on them, while the rest of the pKa’s are predicted with rigid backbone approach as implemented in multi-conformation continuum electrostatics (MCCE) method. The backbone representative conformations for “problematic” groups are generated with either molecular dynamics simulations with charged and uncharged amino acid or with ab-initio local segment modeling. The corresponding ensembles are then used to calculate the pKa of the “problematic” residues and then the results are averaged. PMID:21744395

  15. Is HO3 minimum cis or trans? An analytic full-dimensional ab initio isomerization path.

    PubMed

    Varandas, A J C

    2011-05-28

    The minimum energy path for isomerization of HO(3) has been explored in detail using accurate high-level ab initio methods and techniques for extrapolation to the complete basis set limit. In agreement with other reports, the best estimates from both valence-only and all-electron single-reference methods here utilized predict the minimum of the cis-HO(3) isomer to be deeper than the trans-HO(3) one. They also show that the energy varies by less than 1 kcal mol(-1) or so over the full isomerization path. A similar result is found from valence-only multireference configuration interaction calculations with the size-extensive Davidson correction and a correlation consistent triple-zeta basis, which predict the energy difference between the two isomers to be of only Δ = -0.1 kcal mol(-1). However, single-point multireference calculations carried out at the optimum triple-zeta geometry with basis sets of the correlation consistent family but cardinal numbers up to X = 6 lead upon a dual-level extrapolation to the complete basis set limit of Δ = (0.12 ± 0.05) kcal mol(-1). In turn, extrapolations with the all-electron single-reference coupled-cluster method including the perturbative triples correction yield values of Δ = -0.19 and -0.03 kcal mol(-1) when done from triple-quadruple and quadruple-quintuple zeta pairs with two basis sets of increasing quality, namely cc-cpVXZ and aug-cc-pVXZ. Yet, if added a value of 0.25 kcal mol(-1) that accounts for the effect of triple and perturbative quadruple excitations with the VTZ basis set, one obtains a coupled cluster estimate of Δ = (0.14 ± 0.08) kcal mol(-1). It is then shown for the first time from systematic ab initio calculations that the trans-HO(3) isomer is more stable than the cis one, in agreement with the available experimental evidence. Inclusion of the best reported zero-point energy difference (0.382 kcal mol(-1)) from multireference configuration interaction calculations enhances further the relative stability to ΔE(ZPE) = (0.51 ± 0.08) kcal mol(-1). A scheme is also suggested to model the full-dimensional isomerization potential-energy surface using a quadratic expansion that is parametrically represented by a Fourier analysis in the torsion angle. The method illustrated at the raw and complete basis-set limit coupled-cluster levels can provide a valuable tool for a future analysis of the available (incomplete thus far) experimental rovibrational data. This journal is © the Owner Societies 2011

  16. Ion adsorption at the rutile-water interface: linking molecular and macroscopic properties.

    PubMed

    Zhang, Z; Fenter, P; Cheng, L; Sturchio, N C; Bedzyk, M J; Predota, M; Bandura, A; Kubicki, J D; Lvov, S N; Cummings, P T; Chialvo, A A; Ridley, M K; Bénézeth, P; Anovitz, L; Palmer, D A; Machesky, M L; Wesolowski, D J

    2004-06-08

    A comprehensive picture of the interface between aqueous solutions and the (110) surface of rutile (alpha-TiO2) is being developed by combining molecular-scale and macroscopic approaches, including experimental measurements, quantum calculations, molecular simulations, and Gouy-Chapman-Stern models. In situ X-ray reflectivity and X-ray standing-wave measurements are used to define the atomic arrangement of adsorbed ions, the coordination of interfacial water molecules, and substrate surface termination and structure. Ab initio calculations and molecular dynamics simulations, validated through direct comparison with the X-ray results, are used to predict ion distributions not measured experimentally. Potentiometric titration and ion adsorption results for rutile powders having predominant (110) surface expression provide macroscopic constraints of electrical double layer (EDL) properties (e.g., proton release) which are evaluated by comparison with a three-layer EDL model including surface oxygen proton affinities calculated using ab initio bond lengths and partial charges. These results allow a direct correlation of the three-dimensional, crystallographically controlled arrangements of various species (H2O, Na+, Rb+, Ca2+, Sr2+, Zn2+, Y3+, Nd3+) with macroscopic observables (H+ release, metal uptake, zeta potential) and thermodynamic/electrostatic constraints. All cations are found to be adsorbed as "inner sphere" species bonded directly to surface oxygen atoms, while the specific binding geometries and reaction stoichiometries are dependent on ionic radius. Ternary surface complexes of sorbed cations with electrolyte anions are not observed. Finally, surface oxygen proton affinities computed using the MUSIC model are improved by incorporation of ab initio bond lengths and hydrogen bonding information derived from MD simulations. This multitechnique and multiscale approach demonstrates the compatibility of bond-valence models of surface oxygen proton affinities and Stern-based models of the EDL structure, with the actual molecular interfacial distributions observed experimentally, revealing new insight into EDL properties including specific binding sites and hydration states of sorbed ions, interfacial solvent properties (structure, diffusivity, dielectric constant), surface protonation and hydrolysis, and the effect of solution ionic strength.

  17. TOPICAL REVIEW: First principles studies of multiferroic materials

    NASA Astrophysics Data System (ADS)

    Picozzi, Silvia; Ederer, Claude

    2009-07-01

    Multiferroics, materials where spontaneous long-range magnetic and dipolar orders coexist, represent an attractive class of compounds, which combine rich and fascinating fundamental physics with a technologically appealing potential for applications in the general area of spintronics. Ab initio calculations have significantly contributed to recent progress in this area, by elucidating different mechanisms for multiferroicity and providing essential information on various compounds where these effects are manifestly at play. In particular, here we present examples of density-functional theory investigations for two main classes of materials: (a) multiferroics where ferroelectricity is driven by hybridization or purely structural effects, with BiFeO3 as the prototype material, and (b) multiferroics where ferroelectricity is driven by correlation effects and is strongly linked to electronic degrees of freedom such as spin-, charge-, or orbital-ordering, with rare-earth manganites as prototypes. As for the first class of multiferroics, first principles calculations are shown to provide an accurate qualitative and quantitative description of the physics in BiFeO3, ranging from the prediction of large ferroelectric polarization and weak ferromagnetism, over the effect of epitaxial strain, to the identification of possible scenarios for coupling between ferroelectric and magnetic order. For the second class of multiferroics, ab initio calculations have shown that, in those cases where spin-ordering breaks inversion symmetry (e.g. in antiferromagnetic E-type HoMnO3), the magnetically induced ferroelectric polarization can be as large as a few µC cm-2. The examples presented point the way to several possible avenues for future research: on the technological side, first principles simulations can contribute to a rational materials design, aimed at identifying spintronic materials that exhibit ferromagnetism and ferroelectricity at or above room temperature. On the fundamental side, ab initio approaches can be used to explore new mechanisms for ferroelectricity by exploiting electronic correlations that are at play in transition metal oxides, and by suggesting ways to maximize the strength of these effects as well as the corresponding ordering temperatures.

  18. GalaxyGPCRloop: Template-Based and Ab Initio Structure Sampling of the Extracellular Loops of G-Protein-Coupled Receptors.

    PubMed

    Won, Jonghun; Lee, Gyu Rie; Park, Hahnbeom; Seok, Chaok

    2018-06-07

    The second extracellular loops (ECL2s) of G-protein-coupled receptors (GPCRs) are often involved in GPCR functions, and their structures have important implications in drug discovery. However, structure prediction of ECL2 is difficult because of its long length and the structural diversity among different GPCRs. In this study, a new ECL2 conformational sampling method involving both template-based and ab initio sampling was developed. Inspired by the observation of similar ECL2 structures of closely related GPCRs, a template-based sampling method employing loop structure templates selected from the structure database was developed. A new metric for evaluating similarity of the target loop to templates was introduced for template selection. An ab initio loop sampling method was also developed to treat cases without highly similar templates. The ab initio method is based on the previously developed fragment assembly and loop closure method. A new sampling component that takes advantage of secondary structure prediction was added. In addition, a conserved disulfide bridge restraining ECL2 conformation was predicted and analytically incorporated into sampling, reducing the effective dimension of the conformational search space. The sampling method was combined with an existing energy function for comparison with previously reported loop structure prediction methods, and the benchmark test demonstrated outstanding performance.

  19. Electronic properties of liquid Hg-In alloys : Ab-initio molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Sharma, Nalini; Thakur, Anil; Ahluwalia, P. K.

    2016-05-01

    Ab-initio molecular dynamics simulations are performed to study the structural properties of liquid Hg-In alloys. The interatomic interactions are described by ab-initio pseudopotentials given by Troullier and Martins. Three liquid Hg-In alloys (Hg10In90, Hg30In70,. Hg50In50, Hg70In30, and Hg90Pb10) at 299 K are considered. The calculated results for liquid Hg (l-Hg) and lead (l-In) are also drawn. Along with the calculated results of considered five liquid alloys of Hg-In alloy. The results obtained from electronic properties namely total density of state and partial density of states help to find the local arrangement of Hg and In atoms and the presence of liquid state in the considered five alloys.

  20. Ab initio NMR parameters of BrCH3 and ICH3 with relativistic and vibrational corrections

    NASA Astrophysics Data System (ADS)

    Uhlíková, Tereza; Urban, Štěpán

    2018-05-01

    This study is focused on two effects identified when NMR parameters are calculated based on first principles. These effects are 1. vibrational correction of properties when using ab initio optimized equilibrium geometry; 2. relativistic effects and limits of using the Flygare equation. These effects have been investigated and determined for nuclear spin-rotation constants and nuclear magnetic shieldings for the CH3Br and CH3I molecules. The most significant result is the difference between chemical shieldings determined based on the ab initio relativistic four-component Dirac-Coulomb Hamiltonian and chemical shieldings calculated using experimental values and the Flygare equation. This difference is approximately 320 ppm and 1290 ppm for 79Br and 127I in the CH3X molecule, respectively.

  1. Neutron and weak-charge distributions of the 48Ca nucleus

    DOE PAGES

    Hagen, Gaute; Forssen, Christian; Nazarewicz, Witold; ...

    2015-11-02

    What is the size of the atomic nucleus? This deceivably simple question is difficult to answer. Although the electric charge distributions in atomic nuclei were measured accurately already half a century ago, our knowledge of the distribution of neutrons is still deficient. In addition to constraining the size of atomic nuclei, the neutron distribution also impacts the number of nuclei that can exist and the size of neutron stars. We present an ab initio calculation of the neutron distribution of the neutron-rich nucleus 48Ca. We show that the neutron skin (difference between the radii of the neutron and proton distributions)more » is significantly smaller than previously thought. We also make predictions for the electric dipole polarizability and the weak form factor; both quantities that are at present targeted by precision measurements. Here, based on ab initio results for 48Ca, we provide a constraint on the size of a neutron star.« less

  2. An ab initio molecular dynamics study of S0 ketene fragmentation

    NASA Astrophysics Data System (ADS)

    Forsythe, Kelsey M.; Gray, Stephen K.; Klippenstein, Stephen J.; Hall, Gregory E.

    2001-08-01

    The dynamical origins of product state distributions in the unimolecular dissociation of S0 ketene, CH2CO (X˜ 1A1)→CH2(ã1A1)+CO, are studied with ab initio molecular dynamics. We focus on rotational distributions associated with ground vibrational state fragments. Trajectories are integrated between an inner, variational transition state (TS) and separated fragments in both the dissociative and associative directions. The average rotational energy in both CO and CH2 fragments decreases during the motion from the TS to separated fragments. However, the CO distribution remains slightly hotter than phase space theory (PST) predictions, whereas that for CH2 ends up significantly colder than PST, in good agreement with experiment. Our calculations do not, however, reproduce the experimentally observed correlations between CH2 and CO rotational states, in which the simultaneous formation of low rotational levels of each fragment is suppressed relative to PST. A limited search for nonstatistical behavior in the strong interaction region also fails to explain this discrepancy.

  3. Ab initio prediction of stable nanotwin double layers and 4O structure in Ni2MnGa

    NASA Astrophysics Data System (ADS)

    Zelený, Martin; Straka, Ladislav; Sozinov, Alexei; Heczko, Oleg

    2016-12-01

    The ab initio electronic structure calculations of the Ni2MnGa alloy indicate that the orthorhombic 4O structure exhibits the lowest energy compared to all known martensitic structures. The 4O structure is formed by nanotwin double layers, i.e., oppositely oriented nanotwins consisting of two (101) lattice planes of nonmodulated martensitic structure. It exhibits the lowest occupation of density of states at the Fermi level. The total energy 1.98 meV/atom below the energy of nonmodulated martensite is achieved within structural relaxation by shifting Mn and Ga atoms at the nanotwin boundaries. The same atomic shift can also be found in other martensitic nanotwinned or modulated structures such as 10M and 14M, which indicates the importance of the nanotwin double layer for the stability of these structures. Our discovery shows that the nanotwinning or modulation is a natural property of low-temperature martensitic phases in Ni-Mn-Ga alloys.

  4. Transferable atomistic model to describe the energetics of zirconia

    NASA Astrophysics Data System (ADS)

    Wilson, Mark; Schönberger, Uwe; Finnis, Michael W.

    1996-10-01

    We have investigated the energies of a number of phases of ZrO2 using models of an increasing degree of sophistication: the simple ionic model, the polarizable ion model, the compressible ion model, and finally a model including quadrupole polarizability of the oxygen ions. The three structures which are observed with increasing temperatures are monoclinic, tetragonal, and cubic (fluorite). Besides these we have studied some hypothetical structures which certain potentials erroneously predict or which occur in other oxides with this stoichiometry, e.g., the α-PbO2 structure and rutile. We have also performed ab initio density functional calculations with the full-potential linear combination of muffin-tin orbitals method to investigate the cubic-tetragonal distortion. A detailed comparison is made between the results using classical potentials, the experimental data, and our own and other ab initio results. The factors which stabilize the various structure are analyzed. We find the only genuinely transferable model is the one including compressible ions and anion polarizability to the quadrupole level.

  5. Ab initio and DFT studies of the structure and vibrational spectra of anhydrous caffeine

    NASA Astrophysics Data System (ADS)

    Srivastava, Santosh K.; Singh, Vipin B.

    2013-11-01

    Vibrational spectra and molecular structure of anhydrous caffeine have been systematically investigated by second order Moller-Plesset (MP2) perturbation theory and density functional theory (DFT) calculations. Vibrational assignments have been made and many previous ambiguous assignments in IR and Raman spectra are amended. The calculated DFT frequencies and intensities at B3LYP/6-311++G(2d,2p) level, were found to be in better agreement with the experimental values. It was found that DFT with B3LYP functional predicts harmonic vibrational wave numbers more close to experimentally observed value when it was performed on MP2 optimized geometry rather than DFT geometry. The calculated TD-DFT vertical excitation electronic energies of the valence excited states of anhydrous caffeine are found to be in consonance to the experimental absorption peaks.

  6. Prediction of electronic and optical properties of ZnAl2Te4 defect chalcopyrite semiconductor: an ab-initio study

    NASA Astrophysics Data System (ADS)

    Mayengbam, Rishikanta; Tripathy, S. K.; Pandey, B. P.

    2018-03-01

    In this paper, we have investigated the structural, electronic and optical properties of ZnAl2Te4 defect chalcopyrite semiconductor using generalized gradient approximation (GGA) within density functional theory (DFT). We have calculated the optimized lattice constants (a and c) and compared with the available experimental values. The optimized lattice constants have been used to calculate the energy band gap and found to be 1.57 eV. The partial density of states and total density of states have been discussed in detail. The frequency dependent dielectric constant and refractive index have been calculated and plotted in the energy range 0-13 eV. All the above parameters have been compared with the available experimental and theoretical values and found good agreement between them.

  7. Equation of state of solid, liquid and gaseous tantalum from first principles

    DOE PAGES

    Miljacic, Ljubomir; Demers, Steven; Hong, Qi-Jun; ...

    2015-09-18

    Here, we present ab initio calculations of the phase diagram and the equation of state of Ta in a wide range of volumes and temperatures, with volumes from 9 to 180 Å 3/atom, temperature as high as 20000 K, and pressure up to 7 Mbars. The calculations are based on first principles, in combination with techniques of molecular dynamics, thermodynamic integration, and statistical modeling. Multiple phases are studied, including the solid, fluid, and gas single phases, as well as two-phase coexistences. We calculate the critical point by direct molecular dynamics sampling, and extend the equation of state to very lowmore » density through virial series fitting. The accuracy of the equation of state is assessed by comparing both the predicted melting curve and the critical point with previous experimental and theoretical investigations.« less

  8. Multiple emissions of benzil at room temperature and 77 K and their assignments from ab initio quantum chemical calculations

    NASA Astrophysics Data System (ADS)

    Bhattacharya, Bhaswati; Jana, Barnali; Bose, Debosreeta; Chattopadhyay, Nitin

    2011-01-01

    Multiple emissions have been observed from benzil under different conditions in solutions at room temperature as well as in low temperature glass matrices at 77 K. Low temperature emission has been monitored in rigid matrices frozen under different conditions of illumination. Steady state and time-resolved results together with the ab initio quantum chemical calculations provide, for the first time, the assignments of the different fluorescence bands to the different geometries and/or electronic states of the fluorophore molecule. It is revealed that the skew form of benzil emits from the first (S1) as well as the second excited singlet (S2) states depending on the excitation wavelength, while the relaxed transplanar conformer fluoresces only from the S1 state. The yet unexplored emission band peaking at around 360 nm has been assigned to originate from the S2 state. Ab initio calculations using the density functional theory at B3LYP/6-31G** level corroborate well with the experimental observations.

  9. Multiple emissions of benzil at room temperature and 77 K and their assignments from ab initio quantum chemical calculations.

    PubMed

    Bhattacharya, Bhaswati; Jana, Barnali; Bose, Debosreeta; Chattopadhyay, Nitin

    2011-01-28

    Multiple emissions have been observed from benzil under different conditions in solutions at room temperature as well as in low temperature glass matrices at 77 K. Low temperature emission has been monitored in rigid matrices frozen under different conditions of illumination. Steady state and time-resolved results together with the ab initio quantum chemical calculations provide, for the first time, the assignments of the different fluorescence bands to the different geometries and∕or electronic states of the fluorophore molecule. It is revealed that the skew form of benzil emits from the first (S(1)) as well as the second excited singlet (S(2)) states depending on the excitation wavelength, while the relaxed transplanar conformer fluoresces only from the S(1) state. The yet unexplored emission band peaking at around 360 nm has been assigned to originate from the S(2) state. Ab initio calculations using the density functional theory at B3LYP∕6-31G∗∗ level corroborate well with the experimental observations.

  10. Nonconventional screening of the Coulomb interaction in FexOy clusters: An ab initio study

    NASA Astrophysics Data System (ADS)

    Peters, L.; Şaşıoǧlu, E.; Rossen, S.; Friedrich, C.; Blügel, S.; Katsnelson, M. I.

    2017-04-01

    From microscopic point-dipole model calculations of the screening of the Coulomb interaction in nonpolar systems by polarizable atoms, it is known that screening strongly depends on dimensionality. For example, in one-dimensional systems, the short-range interaction is screened, while the long-range interaction is antiscreened. This antiscreening is also observed in some zero-dimensional structures, i.e., molecular systems. By means of ab initio calculations in conjunction with the random-phase approximation (RPA) within the FLAPW method, we study screening of the Coulomb interaction in FexOy clusters. For completeness, these results are compared with their bulk counterpart magnetite. It appears that the on-site Coulomb interaction is very well screened both in the clusters and bulk. On the other hand, for the intersite Coulomb interaction, the important observation is made that it is almost constant throughout the clusters, while for the bulk it is almost completely screened. More precisely and interestingly, in the clusters antiscreening is observed by means of ab initio calculations.

  11. A permutationally invariant full-dimensional ab initio potential energy surface for the abstraction and exchange channels of the H + CH{sub 4} system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Jun, E-mail: jli15@cqu.edu.cn, E-mail: zhangdh@dicp.ac.cn; Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131; Chen, Jun

    2015-05-28

    We report a permutationally invariant global potential energy surface (PES) for the H + CH{sub 4} system based on ∼63 000 data points calculated at a high ab initio level (UCCSD(T)-F12a/AVTZ) using the recently proposed permutation invariant polynomial-neural network method. The small fitting error (5.1 meV) indicates a faithful representation of the ab initio points over a large configuration space. The rate coefficients calculated on the PES using tunneling corrected transition-state theory and quasi-classical trajectory are found to agree well with the available experimental and previous quantum dynamical results. The calculated total reaction probabilities (J{sub tot} = 0) including themore » abstraction and exchange channels using the new potential by a reduced dimensional quantum dynamic method are essentially the same as those on the Xu-Chen-Zhang PES [Chin. J. Chem. Phys. 27, 373 (2014)].« less

  12. Superconductivity in Doped sp3 Semiconductors: The Case of the Clathrates

    NASA Astrophysics Data System (ADS)

    Connétable, D.; Timoshevskii, V.; Masenelli, B.; Beille, J.; Marcus, J.; Barbara, B.; Saitta, A. M.; Rignanese, G.-M.; Mélinon, P.; Yamanaka, S.; Blase, X.

    2003-12-01

    We present a joint experimental and theoretical study of the superconductivity in doped silicon clathrates. The critical temperature in Ba8@Si-46 is shown to strongly decrease with applied pressure. These results are corroborated by ab initio calculations using MacMillan's formulation of the BCS theory with the electron-phonon coupling constant λ calculated from perturbative density functional theory. Further, the study of I8@Si-46 and of gedanken pure silicon diamond and clathrate phases doped within a rigid-band approach show that the superconductivity is an intrinsic property of the sp3 silicon network. As a consequence, carbon clathrates are predicted to yield large critical temperatures with an effective electron-phonon interaction much larger than in C60.

  13. Spin-polarized two-dimensional t2 g electron gas: Ab initio study of EuO interface with oxygen-deficient SrTi O3

    NASA Astrophysics Data System (ADS)

    Gao, Lingyuan; Demkov, Alexander A.

    2018-03-01

    Using first-principles calculations we predict the existence of a spin-polarized two-dimensional electron gas (2DEG) at the interface of a ferromagnetic insulator EuO and oxygen-deficient SrTi O3 . The carriers are generated by oxygen vacancies in SrTi O3 near the interface and have predominantly Ti-t2 g orbital character. At the interface, the split-off dx y-derived conduction band of SrTi O3 is fully spin-polarized and the in-gap vacancy-induced state, found below the conduction-band edge, is aligned ferromagnetically with EuO. The calculations suggest a possible mechanism for generating spin-polarized 2DEG for spintronic applications.

  14. The excited J = 01 Σu+ levels of D2: Measurements and ab initio quantum defect study

    NASA Astrophysics Data System (ADS)

    Glass-Maujean, M.; Jungen, Ch.; Dickenson, G. D.; de Oliveira, N.; Ubachs, W.

    2016-02-01

    The DESIRS beamline of the SOLEIL synchrotron facility, equipped with a vacuum ultraviolet Fourier-transform spectrometer has been used to measure P (N″ = 1) (N -N″ = - 1) absorption transitions of the D2 molecule. Some 44 P-lines were assigned and their transition frequencies determined up to excitation energies of 134,000 cm-1 above the ground state, thereby extending the earlier work by various authors, and considerably improving the spectral accuracy (<0.1 cm-1). The assignments have been aided by first principles multichannel quantum defect theory (MQDT) calculations. These calculations also provide predictions of the autoionization widths of the upper levels which agree well with the observed resonance widths.

  15. Calibration-quality adiabatic potential energy surfaces for H3(+) and its isotopologues.

    PubMed

    Pavanello, Michele; Adamowicz, Ludwik; Alijah, Alexander; Zobov, Nikolai F; Mizus, Irina I; Polyansky, Oleg L; Tennyson, Jonathan; Szidarovszky, Tamás; Császár, Attila G

    2012-05-14

    Calibration-quality ab initio adiabatic potential energy surfaces (PES) have been determined for all isotopologues of the molecular ion H(3)(+). The underlying Born-Oppenheimer electronic structure computations used optimized explicitly correlated shifted Gaussian functions. The surfaces include diagonal Born-Oppenheimer corrections computed from the accurate electronic wave functions. A fit to the 41,655 ab initio points is presented which gives a standard deviation better than 0.1 cm(-1) when restricted to the points up to 6000 cm(-1) above the first dissociation asymptote. Nuclear motion calculations utilizing this PES, called GLH3P, and an exact kinetic energy operator given in orthogonal internal coordinates are presented. The ro-vibrational transition frequencies for H(3)(+), H(2)D(+), and HD(2)(+) are compared with high resolution measurements. The most sophisticated and complete procedure employed to compute ro-vibrational energy levels, which makes explicit allowance for the inclusion of non-adiabatic effects, reproduces all the known ro-vibrational levels of the H(3)(+) isotopologues considered to better than 0.2 cm(-1). This represents a significant (order-of-magnitude) improvement compared to previous studies of transitions in the visible. Careful treatment of linear geometries is important for high frequency transitions and leads to new assignments for some of the previously observed lines. Prospects for further investigations of non-adiabatic effects in the H(3)(+) isotopologues are discussed. In short, the paper presents (a) an extremely accurate global potential energy surface of H(3)(+) resulting from high accuracy ab initio computations and global fit, (b) very accurate nuclear motion calculations of all available experimental line data up to 16,000 cm(-1), and (c) results suggest that we can predict accurately the lines of H(3)(+) towards dissociation and thus facilitate their experimental observation.

  16. Interaction of Al with O2 exposed Mo2BC

    NASA Astrophysics Data System (ADS)

    Bolvardi, Hamid; Music, Denis; Schneider, Jochen M.

    2015-03-01

    A Mo2BC(0 4 0) surface was exposed to O2. The gas interaction was investigated using ab initio molecular dynamics and X-ray photoelectron spectroscopy (XPS) of air exposed surfaces. The calculations suggest that the most dominating physical mechanism is dissociative O2 adsorption whereby Mosbnd O, Osbnd Mosbnd O and Mo2sbnd Csbnd O bond formation is observed. To validate these results, Mo2BC thin films were synthesized utilizing high power pulsed magnetron sputtering and air exposed surfaces were probed by XPS. MoO2 and MoO3 bond formation is observed and is consistent with here obtained ab initio data. Additionally, the interfacial interactions of O2 exposed Mo2BC(0 4 0) surface with an Al nonamer is studied with ab initio molecular dynamics to describe on the atomic scale the interaction between this surface and Al to mimic the interface present during cold forming processes of Al based alloys. The Al nonamer was disrupted and Al forms chemical bonds with oxygen contained in the O2 exposed Mo2BC(0 4 0) surface. Based on the comparison of here calculated adsorption energy with literature data, Alsbnd Al bonds are shown to be significantly weaker than the Alsbnd O bonds formed across the interface. Hence, Alsbnd Al bond rupture is expected for a mechanically loaded interface. Therefore the adhesion of a residual Al on the native oxide layer is predicted. This is consistent with experimental observations. The data presented here may also be relevant for other oxygen containing surfaces in a contact with Al or Al based alloys for example during forming operations.

  17. Calibration-quality adiabatic potential energy surfaces for H3+ and its isotopologues

    NASA Astrophysics Data System (ADS)

    Pavanello, Michele; Adamowicz, Ludwik; Alijah, Alexander; Zobov, Nikolai F.; Mizus, Irina I.; Polyansky, Oleg L.; Tennyson, Jonathan; Szidarovszky, Tamás; Császár, Attila G.

    2012-05-01

    Calibration-quality ab initio adiabatic potential energy surfaces (PES) have been determined for all isotopologues of the molecular ion H_3^+. The underlying Born-Oppenheimer electronic structure computations used optimized explicitly correlated shifted Gaussian functions. The surfaces include diagonal Born-Oppenheimer corrections computed from the accurate electronic wave functions. A fit to the 41 655 ab initio points is presented which gives a standard deviation better than 0.1 cm-1 when restricted to the points up to 6000 cm-1 above the first dissociation asymptote. Nuclear motion calculations utilizing this PES, called GLH3P, and an exact kinetic energy operator given in orthogonal internal coordinates are presented. The ro-vibrational transition frequencies for H_3^+, H2D+, and HD_2^+ are compared with high resolution measurements. The most sophisticated and complete procedure employed to compute ro-vibrational energy levels, which makes explicit allowance for the inclusion of non-adiabatic effects, reproduces all the known ro-vibrational levels of the H_3^+ isotopologues considered to better than 0.2 cm-1. This represents a significant (order-of-magnitude) improvement compared to previous studies of transitions in the visible. Careful treatment of linear geometries is important for high frequency transitions and leads to new assignments for some of the previously observed lines. Prospects for further investigations of non-adiabatic effects in the H_3^+ isotopologues are discussed. In short, the paper presents (a) an extremely accurate global potential energy surface of H_3^+ resulting from high accuracy ab initio computations and global fit, (b) very accurate nuclear motion calculations of all available experimental line data up to 16 000 cm-1, and (c) results suggest that we can predict accurately the lines of H_3^+ towards dissociation and thus facilitate their experimental observation.

  18. The molecular structure and conformation of tetrabromoformaldazine: ab initio and DFT calculations

    NASA Astrophysics Data System (ADS)

    Jeong, Myongho; Kwon, Younghi

    2000-06-01

    Ab initio and density functional theory methods are applied to investigate the molecular structure and conformational nature of tetrabromoformaldazine. The calculations including the effects of the electron correlation at the B3LYP and MP2 levels with the basis set 6-311+G(d) can reproduce the experimental geometrical parameters at the skew conformation. The N-N bond torsional angle φ calculated at the MP2/6-311+G(d) level is found to be closest to the observed angle. The scanning of the potential energy surface suggests that the anti-conformation is at a saddle point corresponding to the transition state.

  19. New ab initio potential surfaces and three-dimensional quantum dynamics for transition state spectroscopy in ozone photodissociation

    NASA Astrophysics Data System (ADS)

    Yamashita, Koichi; Morokuma, Keiji; Le Quéré, Frederic; Leforestier, Claude

    1992-04-01

    New ab initio potential energy surfaces (PESs) of the ground and B ( 1B 2) states of ozone have been calculated with the CASSCF-SECI/DZP method to describe the three-dimensional photodissociation process. The dissociation energy of the ground state and the vertical barrier height of the B PES are obtained to be 0.88 and 1.34 eV, respectively, in better agreement with the experimental values than the previous calculation. The photodissociation autocorrelation function, calculated on the new B PES, based on exact three-dimensional quantum dynamics, reproduces well the main recurrence feature extracted from the experimental spectra.

  20. Folding processes of the B domain of protein A to the native state observed in all-atom ab initio folding simulations

    NASA Astrophysics Data System (ADS)

    Lei, Hongxing; Wu, Chun; Wang, Zhi-Xiang; Zhou, Yaoqi; Duan, Yong

    2008-06-01

    Reaching the native states of small proteins, a necessary step towards a comprehensive understanding of the folding mechanisms, has remained a tremendous challenge to ab initio protein folding simulations despite the extensive effort. In this work, the folding process of the B domain of protein A (BdpA) has been simulated by both conventional and replica exchange molecular dynamics using AMBER FF03 all-atom force field. Started from an extended chain, a total of 40 conventional (each to 1.0 μs) and two sets of replica exchange (each to 200.0 ns per replica) molecular dynamics simulations were performed with different generalized-Born solvation models and temperature control schemes. The improvements in both the force field and solvent model allowed successful simulations of the folding process to the native state as demonstrated by the 0.80 A˚ Cα root mean square deviation (RMSD) of the best folded structure. The most populated conformation was the native folded structure with a high population. This was a significant improvement over the 2.8 A˚ Cα RMSD of the best nativelike structures from previous ab initio folding studies on BdpA. To the best of our knowledge, our results demonstrate, for the first time, that ab initio simulations can reach the native state of BdpA. Consistent with experimental observations, including Φ-value analyses, formation of helix II/III hairpin was a crucial step that provides a template upon which helix I could form and the folding process could complete. Early formation of helix III was observed which is consistent with the experimental results of higher residual helical content of isolated helix III among the three helices. The calculated temperature-dependent profile and the melting temperature were in close agreement with the experimental results. The simulations further revealed that phenylalanine 31 may play critical to achieve the correct packing of the three helices which is consistent with the experimental observation. In addition to the mechanistic studies, an ab initio structure prediction was also conducted based on both the physical energy and a statistical potential. Based on the lowest physical energy, the predicted structure was 2.0 A˚ Cα RMSD away from the experimentally determined structure.

  1. Ab initio quantum chemical calculation of electron transfer matrix elements for large molecules

    NASA Astrophysics Data System (ADS)

    Zhang, Linda Yu; Friesner, Richard A.; Murphy, Robert B.

    1997-07-01

    Using a diabatic state formalism and pseudospectral numerical methods, we have developed an efficient ab initio quantum chemical approach to the calculation of electron transfer matrix elements for large molecules. The theory is developed at the Hartree-Fock level and validated by comparison with results in the literature for small systems. As an example of the power of the method, we calculate the electronic coupling between two bacteriochlorophyll molecules in various intermolecular geometries. Only a single self-consistent field (SCF) calculation on each of the monomers is needed to generate coupling matrix elements for all of the molecular pairs. The largest calculations performed, utilizing 1778 basis functions, required ˜14 h on an IBM 390 workstation. This is considerably less cpu time than would be necessitated with a supermolecule adiabatic state calculation and a conventional electronic structure code.

  2. Improved assignments of the vibrational fundamental modes of ortho -, meta -, and para -xylene using gas- and liquid-phase infrared and Raman spectra combined with ab initio calculations: Quantitative gas-phase infrared spectra for detection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lindenmaier, Rodica; Scharko, Nicole K.; Tonkyn, Russell G.

    Xylenes contain a blend of the ortho-, meta-, and para- isomers, and all are abundant contaminants in the ground, surface waters, and air. To better characterize xylene and to better enable its detection, we report high quality quantitative vapor-phase infrared spectra of all three isomers over the 540-6500 cm -1 range. All fundamental vibrational modes are assigned based on these vapor-phase infrared spectra, liquid-phase infrared and Raman spectra, along with density functional theory (DFT), ab initio MP2 and high energy-accuracy compound theoretical model (W1BD) calculations. Both MP2 and DFT predict a single conformer with C 2v symmetry for ortho-xylene, andmore » two conformers each for meta- and para-xylene, depending on the preferred orientations of the methyl groups. For meta-xylene the two conformers have C s and C 2 symmetry, and for para-xylene these conformers have C 2v or C 2h symmetry. Since the relative population of the two conformers is approximately 50% for both isomers and predicted frequencies and intensities are very similar for each conformer, we made an arbitrary choice to discuss the C s conformer for meta-xylene and the C 2v conformer for para-xylene. We report integrated band intensities for all isomers. Using the quantitative infrared data, we determine the global warming potential values of each isomer and discuss potential bands for atmospheric monitoring.« less

  3. Improved assignments of the vibrational fundamental modes of ortho-, meta-, and para-xylene using gas- and liquid-phase infrared and Raman spectra combined with ab initio calculations: Quantitative gas-phase infrared spectra for detection

    NASA Astrophysics Data System (ADS)

    Lindenmaier, Rodica; Scharko, Nicole K.; Tonkyn, Russell G.; Nguyen, Kiet T.; Williams, Stephen D.; Johnson, Timothy J.

    2017-12-01

    Xylenes contain a blend of the ortho-, meta-, and para- isomers, and all are abundant contaminants in the ground, surface waters, and air. To better characterize xylene and to better enable its detection, high quality quantitative vapor-phase infrared spectra of all three isomers over the 6500 - 540 cm-1 range are reported. All fundamental vibrational modes are assigned based on these vapor-phase infrared spectra, liquid-phase infrared and Raman spectra, along with density functional theory (DFT), ab initio MP2 and high energy-accuracy compound theoretical model (W1BD) calculations. Both MP2 and DFT predict a single conformer with C2v symmetry for ortho-xylene, and two conformers each for meta- and para-xylene, depending on the preferred orientations of the methyl groups. For meta-xylene the two conformers have Cs and C2 symmetry, and for para-xylene these conformers have C2v or C2h symmetry. Since the relative population of the two conformers is approximately 50% for both isomers and predicted frequencies and intensities are very similar for each conformer, an arbitrary choice to discuss the Cs conformer for meta-xylene and the C2v conformer for para-xylene is made. Integrated band intensities for all isomers are reported. Using the quantitative infrared data, the global warming potential values of each isomer are determined. Potential bands for atmospheric monitoring are also discussed.

  4. Ab initio chemical kinetics for the ClOO + NO reaction: Effects of temperature and pressure on product branching formation

    NASA Astrophysics Data System (ADS)

    Raghunath, P.; Lin, M. C.

    2012-07-01

    The kinetics and mechanism for the reaction of ClOO with NO have been investigated by ab initio molecular orbital theory calculations based on the CCSD(T)/6-311+G(3df)//PW91PW91/6-311+G(3df) method, employed to evaluate the energetics for the construction of potential energy surfaces and prediction of reaction rate constants. The results show that the reaction can produce two key low energy products ClNO + 3O2 via the direct triplet abstraction path and ClO + NO2 via the association and decomposition mechanism through long-lived singlet pc-ClOONO and ClONO2 intermediates. The yield of ClNO + O2 (1△) from any of the singlet intermediates was found to be negligible because of their high barriers and tight transition states. As both key reactions initially occur barrierlessly, their rate constants were evaluated with a canonical variational approach in our transition state theory and Rice-Ramspergen-Kassel-Marcus/master equation calculations. The rate constants for ClNO + 3O2 and ClO + NO2 production from ClOO + NO can be given by 2.66 × 10-16 T1.91 exp(341/T) (200-700 K) and 1.48 × 10-24 T3.99 exp(1711/T) (200-600 K), respectively, independent of pressure below atmospheric pressure. The predicted total rate constant and the yields of ClNO and NO2 in the temperature range of 200-700 K at 10-760 Torr pressure are in close agreement with available experimental results.

  5. Molecular Building Block-Based Electronic Charges for High-Throughput Screening of Metal-Organic Frameworks for Adsorption Applications.

    PubMed

    Argueta, Edwin; Shaji, Jeena; Gopalan, Arun; Liao, Peilin; Snurr, Randall Q; Gómez-Gualdrón, Diego A

    2018-01-09

    Metal-organic frameworks (MOFs) are porous crystalline materials with attractive properties for gas separation and storage. Their remarkable tunability makes it possible to create millions of MOF variations but creates the need for fast material screening to identify promising structures. Computational high-throughput screening (HTS) is a possible solution, but its usefulness is tied to accurate predictions of MOF adsorption properties. Accurate adsorption simulations often require an accurate description of electrostatic interactions, which depend on the electronic charges of the MOF atoms. HTS-compatible methods to assign charges to MOF atoms need to accurately reproduce electrostatic potentials (ESPs) and be computationally affordable, but current methods present an unsatisfactory trade-off between computational cost and accuracy. We illustrate a method to assign charges to MOF atoms based on ab initio calculations on MOF molecular building blocks. A library of building blocks with built-in charges is thus created and used by an automated MOF construction code to create hundreds of MOFs with charges "inherited" from the constituent building blocks. The molecular building block-based (MBBB) charges are similar to REPEAT charges-which are charges that reproduce ESPs obtained from ab initio calculations on crystallographic unit cells of nanoporous crystals-and thus similar predictions of adsorption loadings, heats of adsorption, and Henry's constants are obtained with either method. The presented results indicate that the MBBB method to assign charges to MOF atoms is suitable for use in computational high-throughput screening of MOFs for applications that involve adsorption of molecules such as carbon dioxide.

  6. Ab initio electronic structure calculations for metallic intermediate band formation in photovoltaic materials

    NASA Astrophysics Data System (ADS)

    Wahnón, P.; Tablero, C.

    2002-04-01

    A metallic isolated band in the middle of the band gap of several III-V semiconductors has been predicted as photovoltaic materials with the possibility of providing substantially enhanced efficiencies. We have investigated the electronic band structures and lattice constants of GanAsmM and GanPmM with M=Sc, Ti, V, and Cr, to identify whether this isolated band is likely to exist by means of accurate calculations. For this task, we use the SIESTA program, an ab initio periodic density-functional method, fully self consistent in the local-density approximation. Norm-conserving, nonlocal pseudopotentials and confined linear combination of atomic orbitals have been used. We have carried out a case study of GanAsmTi and GanPmTi energy-band structure including analyses of the effect of the basis set, fine k-point mesh to ensure numerical convergence, structural parameters, and generalized gradient approximation for exchange and correlation corrections. We find the isolated intermediate band when one Ti atom replaces the position of one As (or P) atom in the crystal structure. For this kind of compound we show that the intermediate band relative position inside the band gap and width are sensitive to the dynamic relaxation of the crystal and the size of the basis set.

  7. Size-induced chemical and magnetic ordering in individual Fe-Au nanoparticles.

    PubMed

    Mukherjee, Pinaki; Manchanda, Priyanka; Kumar, Pankaj; Zhou, Lin; Kramer, Matthew J; Kashyap, Arti; Skomski, Ralph; Sellmyer, David; Shield, Jeffrey E

    2014-08-26

    Formation of chemically ordered compounds of Fe and Au is inhibited in bulk materials due to their limited mutual solubility. However, here we report the formation of chemically ordered L12-type Fe3Au and FeAu3 compounds in Fe-Au sub-10 nm nanoparticles, suggesting that they are equilibrium structures in size-constrained systems. The stability of these L12-ordered Fe3Au and FeAu3 compounds along with a previously discovered L10-ordered FeAu has been explained by a size-dependent equilibrium thermodynamic model. Furthermore, the spin ordering of these three compounds has been computed using ab initio first-principle calculations. All ordered compounds exhibit a substantial magnetization at room temperature. The Fe3Au had a high saturation magnetization of about 143.6 emu/g with a ferromagnetic spin structure. The FeAu3 nanoparticles displayed a low saturation magnetization of about 11 emu/g. This suggests a antiferromagnetic spin structure, with the net magnetization arising from uncompensated surface spins. First-principle calculations using the Vienna ab initio simulation package (VASP) indicate that ferromagnetic ordering is energetically most stable in Fe3Au, while antiferromagnetic order is predicted in FeAu and FeAu3, consistent with the experimental results.

  8. First-Principles Modeling of Hydrogen Storage in Metal Hydride Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    J. Karl Johnson

    The objective of this project is to complement experimental efforts of MHoCE partners by using state-of-the-art theory and modeling to study the structure, thermodynamics, and kinetics of hydrogen storage materials. Specific goals include prediction of the heats of formation and other thermodynamic properties of alloys from first principles methods, identification of new alloys that can be tested experimentally, calculation of surface and energetic properties of nanoparticles, and calculation of kinetics involved with hydrogenation and dehydrogenation processes. Discovery of new metal hydrides with enhanced properties compared with existing materials is a critical need for the Metal Hydride Center of Excellence. Newmore » materials discovery can be aided by the use of first principles (ab initio) computational modeling in two ways: (1) The properties, including mechanisms, of existing materials can be better elucidated through a combined modeling/experimental approach. (2) The thermodynamic properties of novel materials that have not been made can, in many cases, be quickly screened with ab initio methods. We have used state-of-the-art computational techniques to explore millions of possible reaction conditions consisting of different element spaces, compositions, and temperatures. We have identified potentially promising single- and multi-step reactions that can be explored experimentally.« less

  9. Ab-initio Density Functional Theory (DFT) Studies of Electronic, Transport, and Bulk Properties of Sodium Oxide (Na2O)

    NASA Astrophysics Data System (ADS)

    Polin, Daniel; Ziegler, Joshua; Malozovsky, Yuriy; Bagayoko, Diola

    We present the findings of ab-initio calculations of electronic, transport, and structural properties of cubic sodium oxide (Na2O). These results were obtained using density functional theory (DFT), specifically a local density approximation (LDA) potential, and the linear combination of Gaussian orbitals (LCGO). Our implementation of LCGO followed the Bagayoko, Zhao, and Williams method as enhanced by the work of Ekuma and Franklin (BZW-EF). We describe the electronic band structure of Na2O with a direct band gap of 2.22 eV. Our results include predicted values for the electronic band structure and associated energy eigenvalues, the total and partial density of states (DOS and pDOS), the equilibrium lattice constant of Na2O, and the bulk modulus. We have also calculated the electron and holes effective masses in the Γ to L, Γ to X, and Γ to K directions. Acknowledgments: This work was funded in part by the National Science Foundation (NSF) and the Louisiana Board of Regents, through LASiGMA [Award Nos. EPS- 1003897, NSF (2010-15)-RII-SUBR] and NSF HRD-1002541, the US Department of Energy - National, Nuclear Security Administration (NNSA) (Award No. DE- NA0002630), LaSPACE, and LONI-SUBR.

  10. Ab initio and classical molecular dynamics studies of the structural and dynamical behavior of water near a hydrophobic graphene sheet.

    PubMed

    Rana, Malay Kumar; Chandra, Amalendu

    2013-05-28

    The behavior of water near a graphene sheet is investigated by means of ab initio and classical molecular dynamics simulations. The wetting of the graphene sheet by ab initio water and the relation of such behavior to the strength of classical dispersion interaction between surface atoms and water are explored. The first principles simulations reveal a layered solvation structure around the graphene sheet with a significant water density in the interfacial region implying no drying or cavitation effect. It is found that the ab initio results of water density at interfaces can be reproduced reasonably well by classical simulations with a tuned dispersion potential between the surface and water molecules. Calculations of vibrational power spectrum from ab initio simulations reveal a shift of the intramolecular stretch modes to higher frequencies for interfacial water molecules when compared with those of the second solvation later or bulk-like water due to the presence of free OH modes near the graphene sheet. Also, a weakening of the water-water hydrogen bonds in the vicinity of the graphene surface is found in our ab initio simulations as reflected in the shift of intermolecular vibrational modes to lower frequencies for interfacial water molecules. The first principles calculations also reveal that the residence and orientational dynamics of interfacial water are somewhat slower than those of the second layer or bulk-like molecules. However, the lateral diffusion and hydrogen bond relaxation of interfacial water molecules are found to occur at a somewhat faster rate than that of the bulk-like water molecules. The classical molecular dynamics simulations with tuned Lennard-Jones surface-water interaction are found to produce dynamical results that are qualitatively similar to those of ab initio molecular dynamics simulations.

  11. Continuum Lowering and Fermi-Surface Rising in Strongly Coupled and Degenerate Plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, S. X.

    Here, continuum lowering is a well-known and important physics concept that describes the ionization potential depression (IPD) in plasmas caused by thermal-/pressure-induced ionization of outer-shell electrons. The existing IPD models are often used to characterize plasma conditions and to gauge opacity calculations. Recent precision measurements have revealed deficits in our understanding of continuum lowering in dense hot plasmas. However, these investigations have so far been limited to IPD in strongly coupled but nondegenerate plasmas. Here, we report a first-principles study of the K-edge shifting in both strongly coupled and fully degenerate carbon plasmas, with quantum molecular dynamics (QMD) calculations basedmore » on the all-electron density-functional theory (DFT). The resulted K-edge shifting versus plasma density, as a probe to the continuum lowering and the Fermi-surface rising, is found to be significantly different from predictions of existing IPD models. In contrast, a simple model of “single atom in box” (SAIB), developed in this work, accurately predicts K-edge locations as what ab-initio calculations provide.« less

  12. Continuum Lowering and Fermi-Surface Rising in Strongly Coupled and Degenerate Plasmas

    DOE PAGES

    Hu, S. X.

    2017-08-10

    Here, continuum lowering is a well-known and important physics concept that describes the ionization potential depression (IPD) in plasmas caused by thermal-/pressure-induced ionization of outer-shell electrons. The existing IPD models are often used to characterize plasma conditions and to gauge opacity calculations. Recent precision measurements have revealed deficits in our understanding of continuum lowering in dense hot plasmas. However, these investigations have so far been limited to IPD in strongly coupled but nondegenerate plasmas. Here, we report a first-principles study of the K-edge shifting in both strongly coupled and fully degenerate carbon plasmas, with quantum molecular dynamics (QMD) calculations basedmore » on the all-electron density-functional theory (DFT). The resulted K-edge shifting versus plasma density, as a probe to the continuum lowering and the Fermi-surface rising, is found to be significantly different from predictions of existing IPD models. In contrast, a simple model of “single atom in box” (SAIB), developed in this work, accurately predicts K-edge locations as what ab-initio calculations provide.« less

  13. Highly Accurate Calculations of the Phase Diagram of Cold Lithium

    NASA Astrophysics Data System (ADS)

    Shulenburger, Luke; Baczewski, Andrew

    The phase diagram of lithium is particularly complicated, exhibiting many different solid phases under the modest application of pressure. Experimental efforts to identify these phases using diamond anvil cells have been complemented by ab initio theory, primarily using density functional theory (DFT). Due to the multiplicity of crystal structures whose enthalpy is nearly degenerate and the uncertainty introduced by density functional approximations, we apply the highly accurate many-body diffusion Monte Carlo (DMC) method to the study of the solid phases at low temperature. These calculations span many different phases, including several with low symmetry, demonstrating the viability of DMC as a method for calculating phase diagrams for complex solids. Our results can be used as a benchmark to test the accuracy of various density functionals. This can strengthen confidence in DFT based predictions of more complex phenomena such as the anomalous melting behavior predicted for lithium at high pressures. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. DOE's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  14. A Initio Theoretical Studies of Surfaces of Semiconductors

    NASA Astrophysics Data System (ADS)

    Wang, Jing

    1993-01-01

    The first semiconductor which we study with these techniques is the archetypal elemental semiconductor, silicon. We present the first extensive study of point defects on Si(100). We identify the principal defects and two primary mechanisms responsible for their dominance: the need to eliminate dangling bonds on the surface and the need to compensate the strain induced by topological effects. Furthermore, we present evidence that the presence of point defects on the Si(100) surface is not intrinsic to the ground state of the surface as a stress relieving mechanism but rather is due merely to thermal fluctuations. We address materials issues associated with the identification of the lowest energy surfaces of GaAs and the determination of the geometric structure of a GaAs crystallite growing freely in three dimensions. The fracture energies associated with (110), (100) and (111) interface planes are calculated and a Wulff construction indicates that an ideal stoichiometric GaAs crystal should be terminated with (110) surfaces. We investigate the more complex issues that arise on surfaces when aspects of these two semiconductors are mixed. We investigate the problem of growing GaAs on the Si(100) surface and demonstrate how and why the most fundamental properties of the resulting bulk GaAs material, such as its crystalline orientation, may depend sensitively on the interplay between growth conditions such as temperature and the properties of the Si surface. For stepped Si(100) -As, we show that the growth of As directly on top of the Si surface produces a metastable state, while the replacement of the original top Si layer leads to a lower energy configuration, with the rearrangement of the surface driven by the relaxation of stress by surface steps. Finally, we study delta -doping, where one attempts to grow a single layer of Si on a GaAs surface before continuing with the growth of bulk GaAs. We shall employ a slightly different modality of the ab initio approach. We shall use the predictive power of the ab initio approach to help guide experimental interpreation of otherwise enigmatic STM measurements. In particular, we will demonstrate by example that the predictive power of ab initio calculation allows one to harness the native chemical selectivity of the scanning tunneling electron microscope (STM) and produce an unambiguous and fully interpretable non-destructive chemical probe at the atomic level. (Copies available exclusively from MIT Libraries, Rm. 14-0551, Cambridge, MA 02139-4307. Ph. 617-253-5668; Fax 617-253 -1690.) (Abstract shortened by UMI.).

  15. Ab initio theory of noble gas atoms in bcc transition metals

    DOE PAGES

    Jiang, Chao; Zhang, Yongfeng; Gao, Yipeng; ...

    2018-01-01

    Systematic ab initio calculations based on density functional theory have been performed to gain fundamental understanding of the interactions between noble gas atoms (He, Ne, Ar and Kr) and bcc transition metals in groups 5B (V, Nb and Ta), 6B (Cr, Mo and W) and 8B (Fe).

  16. Dispersion Interactions between Rare Gas Atoms: Testing the London Equation Using ab Initio Methods

    ERIC Educational Resources Information Center

    Halpern, Arthur M.

    2011-01-01

    A computational chemistry experiment is described in which students can use advanced ab initio quantum mechanical methods to test the ability of the London equation to account quantitatively for the attractive (dispersion) interactions between rare gas atoms. Using readily available electronic structure applications, students can calculate the…

  17. Infrared Emission Spectrum of the Hydroxyl Radical: A Novel Experiment in Molecular Spectroscopy.

    ERIC Educational Resources Information Center

    Henderson, Giles; And Others

    1982-01-01

    Describes an experiment in which parameters from an "ab-initio" potential are used to calculate vibrational-rotational energy levels and construct a "stick spectrum" for the overtone emission of the hydroxyl radical. Provides background information on ab-initio spectrum, experimental procedures, and analysis of data. (Author/JN)

  18. Spectroscopic study of uracil, 1-methyluracil and 1-methyl-4-thiouracil: Hydrogen bond interactions in crystals and ab-initio molecular dynamics

    NASA Astrophysics Data System (ADS)

    Brela, Mateusz Z.; Boczar, Marek; Malec, Leszek M.; Wójcik, Marek J.; Nakajima, Takahito

    2018-05-01

    Hydrogen bond networks in uracil, 1-methyluracil and 1-methyl-4-thiouracil were studied by ab initio molecular dynamics as well as analysis of the orbital interactions. The power spectra calculated by ab initio molecular dynamics for atoms involved in hydrogen bonds were analyzed. We calculated spectra by using anharmonic approximation based on the autocorrelation function of the atom positions obtained from the Born-Oppenheimer simulations. Our results show the differences between hydrogen bond networks in uracil and its methylated derivatives. The studied methylated derivatives, 1-methyluracil as well as 1-methyl-4-thiouracil, form dimeric structures in the crystal phase, while uracil does not form that kind of structures. The presence of sulfur atom instead oxygen atom reflects weakness of the hydrogen bonds that build dimers.

  19. Fit Point-Wise AB Initio Calculation Potential Energies to a Multi-Dimension Long-Range Model

    NASA Astrophysics Data System (ADS)

    Zhai, Yu; Li, Hui; Le Roy, Robert J.

    2016-06-01

    A potential energy surface (PES) is a fundamental tool and source of understanding for theoretical spectroscopy and for dynamical simulations. Making correct assignments for high-resolution rovibrational spectra of floppy polyatomic and van der Waals molecules often relies heavily on predictions generated from a high quality ab initio potential energy surface. Moreover, having an effective analytic model to represent such surfaces can be as important as the ab initio results themselves. For the one-dimensional potentials of diatomic molecules, the most successful such model to date is arguably the ``Morse/Long-Range'' (MLR) function developed by R. J. Le Roy and coworkers. It is very flexible, is everywhere differentiable to all orders. It incorporates correct predicted long-range behaviour, extrapolates sensibly at both large and small distances, and two of its defining parameters are always the physically meaningful well depth {D}_e and equilibrium distance r_e. Extensions of this model, called the Multi-Dimension Morse/Long-Range (MD-MLR) function, linear molecule-linear molecule systems and atom-non-linear molecule system. have been applied successfully to atom-plus-linear molecule, linear molecule-linear molecule and atom-non-linear molecule systems. However, there are several technical challenges faced in modelling the interactions of general molecule-molecule systems, such as the absence of radial minima for some relative alignments, difficulties in fitting short-range potential energies, and challenges in determining relative-orientation dependent long-range coefficients. This talk will illustrate some of these challenges and describe our ongoing work in addressing them. Mol. Phys. 105, 663 (2007); J. Chem. Phys. 131, 204309 (2009); Mol. Phys. 109, 435 (2011). Phys. Chem. Chem. Phys. 10, 4128 (2008); J. Chem. Phys. 130, 144305 (2009) J. Chem. Phys. 132, 214309 (2010) J. Chem. Phys. 140, 214309 (2010)

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allendorf, M.D.; Arsenlis, A.; Bastasz, R.

    Titanium nitride (TiN) films deposited by chemical vapor deposition (CVD) techniques are of interest for a wide range of commercial applications. In this report, the authors describe a mechanism that predicts Tin film growth rates from TiCl{sub 4}/NH{sub 3} mixtures as a function of process parameters, including inlet reactant concentrations, substrate temperatures, reactor pressures, and total gas flow rates. Model predictions were verified by comparison with the results of TiN deposition experiments in the literature and with measurements made in a new stagnation-flow reactor developed for the purpose of testing deposition mechanisms such as this. In addition, they describe abmore » initio calculations that predict thermodynamic properties for titanium-containing compounds. The results of calculations using Moeller-Plesset perturbation theory, density functional theory, and coupled cluster theory are encouraging and suggest that these methods can be used to estimate thermodynamic data that are essential for the development of CVD models involving transition-metal compounds. Finally, measurements of the adsorption and desorption kinetics of NH{sub 3} on TiN films using temperature-programmed desorption are described and their relevance to TiN CVD and mechanism development are discussed.« less

  1. Bayesian Estimation of Thermonuclear Reaction Rates for Deuterium+Deuterium Reactions

    NASA Astrophysics Data System (ADS)

    Gómez Iñesta, Á.; Iliadis, C.; Coc, A.

    2017-11-01

    The study of d+d reactions is of major interest since their reaction rates affect the predicted abundances of D, 3He, and 7Li. In particular, recent measurements of primordial D/H ratios call for reduced uncertainties in the theoretical abundances predicted by Big Bang nucleosynthesis (BBN). Different authors have studied reactions involved in BBN by incorporating new experimental data and a careful treatment of systematic and probabilistic uncertainties. To analyze the experimental data, Coc et al. used results of ab initio models for the theoretical calculation of the energy dependence of S-factors in conjunction with traditional statistical methods based on χ 2 minimization. Bayesian methods have now spread to many scientific fields and provide numerous advantages in data analysis. Astrophysical S-factors and reaction rates using Bayesian statistics were calculated by Iliadis et al. Here we present a similar analysis for two d+d reactions, d(d, n)3He and d(d, p)3H, that has been translated into a total decrease of the predicted D/H value by 0.16%.

  2. Pressure-induced structural transformations and polymerization in ThC2

    PubMed Central

    Guo, Yongliang; Yu, Cun; Lin, Jun; Wang, Changying; Ren, Cuilan; Sun, Baoxing; Huai, Ping; Xie, Ruobing; Ke, Xuezhi; Zhu, Zhiyuan; Xu, Hongjie

    2017-01-01

    Thorium-carbon systems have been thought as promising nuclear fuel for Generation IV reactors which require high-burnup and safe nuclear fuel. Existing knowledge on thorium carbides under extreme condition remains insufficient and some is controversial due to limited studies. Here we systematically predict all stable structures of thorium dicarbide (ThC2) under the pressure ranging from ambient to 300 GPa by merging ab initio total energy calculations and unbiased structure searching method, which are in sequence of C2/c, C2/m, Cmmm, Immm and P6/mmm phases. Among these phases, the C2/m is successfully observed for the first time via in situ synchrotron XRD measurements, which exhibits an excellent structural correspondence to our theoretical predictions. The transition sequence and the critical pressures are predicted. The calculated results also reveal the polymerization behaviors of the carbon atoms and the corresponding characteristic C-C bonding under various pressures. Our work provides key information on the fundamental material behavior and insights into the underlying mechanisms that lay the foundation for further exploration and application of ThC2. PMID:28383571

  3. Pressure-induced structural transformations and polymerization in ThC2

    NASA Astrophysics Data System (ADS)

    Guo, Yongliang; Yu, Cun; Lin, Jun; Wang, Changying; Ren, Cuilan; Sun, Baoxing; Huai, Ping; Xie, Ruobing; Ke, Xuezhi; Zhu, Zhiyuan; Xu, Hongjie

    2017-04-01

    Thorium-carbon systems have been thought as promising nuclear fuel for Generation IV reactors which require high-burnup and safe nuclear fuel. Existing knowledge on thorium carbides under extreme condition remains insufficient and some is controversial due to limited studies. Here we systematically predict all stable structures of thorium dicarbide (ThC2) under the pressure ranging from ambient to 300 GPa by merging ab initio total energy calculations and unbiased structure searching method, which are in sequence of C2/c, C2/m, Cmmm, Immm and P6/mmm phases. Among these phases, the C2/m is successfully observed for the first time via in situ synchrotron XRD measurements, which exhibits an excellent structural correspondence to our theoretical predictions. The transition sequence and the critical pressures are predicted. The calculated results also reveal the polymerization behaviors of the carbon atoms and the corresponding characteristic C-C bonding under various pressures. Our work provides key information on the fundamental material behavior and insights into the underlying mechanisms that lay the foundation for further exploration and application of ThC2.

  4. Pressure-induced structural transformations and polymerization in ThC2.

    PubMed

    Guo, Yongliang; Yu, Cun; Lin, Jun; Wang, Changying; Ren, Cuilan; Sun, Baoxing; Huai, Ping; Xie, Ruobing; Ke, Xuezhi; Zhu, Zhiyuan; Xu, Hongjie

    2017-04-06

    Thorium-carbon systems have been thought as promising nuclear fuel for Generation IV reactors which require high-burnup and safe nuclear fuel. Existing knowledge on thorium carbides under extreme condition remains insufficient and some is controversial due to limited studies. Here we systematically predict all stable structures of thorium dicarbide (ThC 2 ) under the pressure ranging from ambient to 300 GPa by merging ab initio total energy calculations and unbiased structure searching method, which are in sequence of C2/c, C2/m, Cmmm, Immm and P6/mmm phases. Among these phases, the C2/m is successfully observed for the first time via in situ synchrotron XRD measurements, which exhibits an excellent structural correspondence to our theoretical predictions. The transition sequence and the critical pressures are predicted. The calculated results also reveal the polymerization behaviors of the carbon atoms and the corresponding characteristic C-C bonding under various pressures. Our work provides key information on the fundamental material behavior and insights into the underlying mechanisms that lay the foundation for further exploration and application of ThC 2 .

  5. Three-dimensional (3D) structure prediction of the American and African oil-palms β-ketoacyl-[ACP] synthase-II protein by comparative modelling

    PubMed Central

    Wang, Edina; Chinni, Suresh; Bhore, Subhash Janardhan

    2014-01-01

    Background: The fatty-acid profile of the vegetable oils determines its properties and nutritional value. Palm-oil obtained from the African oil-palm [Elaeis guineensis Jacq. (Tenera)] contains 44% palmitic acid (C16:0), but, palm-oil obtained from the American oilpalm [Elaeis oleifera] contains only 25% C16:0. In part, the b-ketoacyl-[ACP] synthase II (KASII) [EC: 2.3.1.179] protein is responsible for the high level of C16:0 in palm-oil derived from the African oil-palm. To understand more about E. guineensis KASII (EgKASII) and E. oleifera KASII (EoKASII) proteins, it is essential to know its structures. Hence, this study was undertaken. Objective: The objective of this study was to predict three-dimensional (3D) structure of EgKASII and EoKASII proteins using molecular modelling tools. Materials and Methods: The amino-acid sequences for KASII proteins were retrieved from the protein database of National Center for Biotechnology Information (NCBI), USA. The 3D structures were predicted for both proteins using homology modelling and ab-initio technique approach of protein structure prediction. The molecular dynamics (MD) simulation was performed to refine the predicted structures. The predicted structure models were evaluated and root mean square deviation (RMSD) and root mean square fluctuation (RMSF) values were calculated. Results: The homology modelling showed that EgKASII and EoKASII proteins are 78% and 74% similar with Streptococcus pneumonia KASII and Brucella melitensis KASII, respectively. The EgKASII and EoKASII structures predicted by using ab-initio technique approach shows 6% and 9% deviation to its structures predicted by homology modelling, respectively. The structure refinement and validation confirmed that the predicted structures are accurate. Conclusion: The 3D structures for EgKASII and EoKASII proteins were predicted. However, further research is essential to understand the interaction of EgKASII and EoKASII proteins with its substrates. PMID:24748752

  6. Three-dimensional (3D) structure prediction of the American and African oil-palms β-ketoacyl-[ACP] synthase-II protein by comparative modelling.

    PubMed

    Wang, Edina; Chinni, Suresh; Bhore, Subhash Janardhan

    2014-01-01

    The fatty-acid profile of the vegetable oils determines its properties and nutritional value. Palm-oil obtained from the African oil-palm [Elaeis guineensis Jacq. (Tenera)] contains 44% palmitic acid (C16:0), but, palm-oil obtained from the American oilpalm [Elaeis oleifera] contains only 25% C16:0. In part, the b-ketoacyl-[ACP] synthase II (KASII) [EC: 2.3.1.179] protein is responsible for the high level of C16:0 in palm-oil derived from the African oil-palm. To understand more about E. guineensis KASII (EgKASII) and E. oleifera KASII (EoKASII) proteins, it is essential to know its structures. Hence, this study was undertaken. The objective of this study was to predict three-dimensional (3D) structure of EgKASII and EoKASII proteins using molecular modelling tools. The amino-acid sequences for KASII proteins were retrieved from the protein database of National Center for Biotechnology Information (NCBI), USA. The 3D structures were predicted for both proteins using homology modelling and ab-initio technique approach of protein structure prediction. The molecular dynamics (MD) simulation was performed to refine the predicted structures. The predicted structure models were evaluated and root mean square deviation (RMSD) and root mean square fluctuation (RMSF) values were calculated. The homology modelling showed that EgKASII and EoKASII proteins are 78% and 74% similar with Streptococcus pneumonia KASII and Brucella melitensis KASII, respectively. The EgKASII and EoKASII structures predicted by using ab-initio technique approach shows 6% and 9% deviation to its structures predicted by homology modelling, respectively. The structure refinement and validation confirmed that the predicted structures are accurate. The 3D structures for EgKASII and EoKASII proteins were predicted. However, further research is essential to understand the interaction of EgKASII and EoKASII proteins with its substrates.

  7. Ab Initio Path Integral Molecular Dynamics Study of the Nuclear Quantum Effect on Out-of-Plane Ring Deformation of Hydrogen Maleate Anion.

    PubMed

    Kawashima, Yukio; Tachikawa, Masanori

    2014-01-14

    Ab initio path integral molecular dynamics (PIMD) simulation was performed to understand the nuclear quantum effect on the out-of-plane ring deformation of hydrogen maleate anion and investigate the existence of a stable structure with ring deformation, which was suggested in experimental observation (Fillaux et al., Chem. Phys. 1999, 120, 387-403). The isotope effect and the temperature effect are studied as well. We first investigated the nuclear quantum effect on the proton transfer. In static calculation and classical ab initio molecular dynamics simulations, the proton in the hydrogen bond is localized to either oxygen atom. On the other hand, the proton is located at the center of two oxygen atoms in quantum ab initio PIMD simulations. The nuclear quantum effect washes out the barrier of proton transfer. We next examined the nuclear quantum effect on the motion of hydrogen maleate anion. Principal component analysis revealed that the out-of-plane ring bending modes have dominant contribution to the entire molecular motion. In quantum ab initio PIMD simulations, structures with ring deformation were the global minimum for the deuterated isotope at 300 K. We analyzed the out-of-plane ring bending mode further and found that there are three minima along a ring distortion mode. We successfully found a stable structure with ring deformation of hydrogen maleate for the first time, to our knowledge, using theoretical calculation. The structures with ring deformation found in quantum simulation of the deuterated isotope allowed the proton transfer to occur more frequently than the planar structure. Static ab initio electronic structure calculation found that the structures with ring deformation have very small proton transfer barrier compared to the planar structure. We suggest that the "proton transfer driven" mechanism is the origin of stabilization for the structure with out-of-plane ring deformation.

  8. Accurate virial coefficients of gaseous krypton from state-of-the-art ab initio potential and polarizability of the krypton dimer

    NASA Astrophysics Data System (ADS)

    Song, Bo; Waldrop, Jonathan M.; Wang, Xiaopo; Patkowski, Konrad

    2018-01-01

    We have developed a new krypton-krypton interaction-induced isotropic dipole polarizability curve based on high-level ab initio methods. The determination was carried out using the coupled-cluster singles and doubles plus perturbative triples method with very large basis sets up to augmented correlation-consistent sextuple zeta as well as the corrections for core-core and core-valence correlation and relativistic effects. The analytical function of polarizability and our recently constructed reference interatomic potential [J. M. Waldrop et al., J. Chem. Phys. 142, 204307 (2015)] were used to predict the thermophysical and electromagnetic properties of krypton gas. The second pressure, acoustic, and dielectric virial coefficients were computed for the temperature range of 116 K-5000 K using classical statistical mechanics supplemented with high-order quantum corrections. The virial coefficients calculated were compared with the generally less precise available experimental data as well as with values computed from other potentials in the literature {in particular, the recent highly accurate potential of Jäger et al. [J. Chem. Phys. 144, 114304 (2016)]}. The detailed examination in this work suggests that the present theoretical prediction can be applied as reference values in disciplines involving thermophysical and electromagnetic properties of krypton gas.

  9. Counting vacancies and nitrogen-vacancy centers in detonation nanodiamond† †Electronic supplementary information (ESI) available: (1) DND synthesis; (2) HRTEM and EELS characterization methods; (3) EELS simulation method; (4) supporting figures of EELS simulations; (5) soft-X-ray K-edge spectra of the DND; and (6) ab initio N-V center modeling method. See DOI: 10.1039/C6NR01888B Click here for additional data file.

    PubMed Central

    Barnard, Amanda S.; Dwyer, Christian; Boothroyd, Chris B.; Hocking, Rosalie K.; Ōsawa, Eiji

    2016-01-01

    Detonation nanodiamond particles (DND) contain highly-stable nitrogen-vacancy (N-V) centers, making it important for quantum-optical and biotechnology applications. However, due to the small particle size, the N-V concentrations are believed to be intrinsically very low, spawning efforts to understand the formation of N-V centers and vacancies, and increase their concentration. Here we show that vacancies in DND can be detected and quantified using simulation-aided electron energy loss spectroscopy. Despite the small particle size, we find that vacancies exist at concentrations of about 1 at%. Based on this experimental finding, we use ab initio calculations to predict that about one fifth of vacancies in DND form N-V centers. The ability to directly detect and quantify vacancies in DND, and predict the corresponding N-V formation probability, has a significant impact to those emerging technologies where higher concentrations and better dispersion of N-V centres are critically required. PMID:27147128

  10. Engineering Room-temperature Superconductors Via ab-initio Calculations

    NASA Astrophysics Data System (ADS)

    Gulian, Mamikon; Melkonyan, Gurgen; Gulian, Armen

    The BCS, or bosonic model of superconductivity, as Little and Ginzburg have first argued, can bring in superconductivity at room temperatures in the case of high-enough frequency of bosonic mode. It was further elucidated by Kirzhnitset al., that the condition for existence of high-temperature superconductivity is closely related to negative values of the real part of the dielectric function at finite values of the reciprocal lattice vectors. In view of these findings, the task is to calculate the dielectric function for real materials. Then the poles of this function will indicate the existence of bosonic excitations which can serve as a "glue" for Cooper pairing, and if the frequency is high enough, and the dielectric matrix is simultaneously negative, this material is a good candidate for very high-Tc superconductivity. Thus, our approach is to elaborate a methodology of ab-initio calculation of the dielectric function of various materials, and then point out appropriate candidates. We used the powerful codes (TDDF with the DP package in conjunction with ABINIT) for computing dielectric responses at finite values of the wave vectors in the reciprocal lattice space. Though our report is concerned with the particular problem of superconductivity, the application range of the data processing methodology is much wider. The ability to compute the dielectric function of existing and still non-existing (though being predicted!) materials will have many more repercussions not only in fundamental sciences but also in technology and industry.

  11. Increasing the efficiency and accuracy of time-resolved electronic spectra calculations with on-the-fly ab initio quantum dynamics methods

    NASA Astrophysics Data System (ADS)

    Vanicek, Jiri

    2014-03-01

    Rigorous quantum-mechanical calculations of coherent ultrafast electronic spectra remain difficult. I will present several approaches developed in our group that increase the efficiency and accuracy of such calculations: First, we justified the feasibility of evaluating time-resolved spectra of large systems by proving that the number of trajectories needed for convergence of the semiclassical dephasing representation/phase averaging is independent of dimensionality. Recently, we further accelerated this approximation with a cellular scheme employing inverse Weierstrass transform and optimal scaling of the cell size. The accuracy of potential energy surfaces was increased by combining the dephasing representation with accurate on-the-fly ab initio electronic structure calculations, including nonadiabatic and spin-orbit couplings. Finally, the inherent semiclassical approximation was removed in the exact quantum Gaussian dephasing representation, in which semiclassical trajectories are replaced by communicating frozen Gaussian basis functions evolving classically with an average Hamiltonian. Among other examples I will present an on-the-fly ab initio semiclassical dynamics calculation of the dispersed time-resolved stimulated emission spectrum of the 54-dimensional azulene. This research was supported by EPFL and by the Swiss National Science Foundation NCCR MUST (Molecular Ultrafast Science and Technology) and Grant No. 200021124936/1.

  12. Fragment-based 13C nuclear magnetic resonance chemical shift predictions in molecular crystals: An alternative to planewave methods

    NASA Astrophysics Data System (ADS)

    Hartman, Joshua D.; Monaco, Stephen; Schatschneider, Bohdan; Beran, Gregory J. O.

    2015-09-01

    We assess the quality of fragment-based ab initio isotropic 13C chemical shift predictions for a collection of 25 molecular crystals with eight different density functionals. We explore the relative performance of cluster, two-body fragment, combined cluster/fragment, and the planewave gauge-including projector augmented wave (GIPAW) models relative to experiment. When electrostatic embedding is employed to capture many-body polarization effects, the simple and computationally inexpensive two-body fragment model predicts both isotropic 13C chemical shifts and the chemical shielding tensors as well as both cluster models and the GIPAW approach. Unlike the GIPAW approach, hybrid density functionals can be used readily in a fragment model, and all four hybrid functionals tested here (PBE0, B3LYP, B3PW91, and B97-2) predict chemical shifts in noticeably better agreement with experiment than the four generalized gradient approximation (GGA) functionals considered (PBE, OPBE, BLYP, and BP86). A set of recommended linear regression parameters for mapping between calculated chemical shieldings and observed chemical shifts are provided based on these benchmark calculations. Statistical cross-validation procedures are used to demonstrate the robustness of these fits.

  13. Fragment-based (13)C nuclear magnetic resonance chemical shift predictions in molecular crystals: An alternative to planewave methods.

    PubMed

    Hartman, Joshua D; Monaco, Stephen; Schatschneider, Bohdan; Beran, Gregory J O

    2015-09-14

    We assess the quality of fragment-based ab initio isotropic (13)C chemical shift predictions for a collection of 25 molecular crystals with eight different density functionals. We explore the relative performance of cluster, two-body fragment, combined cluster/fragment, and the planewave gauge-including projector augmented wave (GIPAW) models relative to experiment. When electrostatic embedding is employed to capture many-body polarization effects, the simple and computationally inexpensive two-body fragment model predicts both isotropic (13)C chemical shifts and the chemical shielding tensors as well as both cluster models and the GIPAW approach. Unlike the GIPAW approach, hybrid density functionals can be used readily in a fragment model, and all four hybrid functionals tested here (PBE0, B3LYP, B3PW91, and B97-2) predict chemical shifts in noticeably better agreement with experiment than the four generalized gradient approximation (GGA) functionals considered (PBE, OPBE, BLYP, and BP86). A set of recommended linear regression parameters for mapping between calculated chemical shieldings and observed chemical shifts are provided based on these benchmark calculations. Statistical cross-validation procedures are used to demonstrate the robustness of these fits.

  14. Unexpected Competition between Antiferromagnetic and Ferromagnetic States in Hf2MnRu5B2: Predicted and Realized.

    PubMed

    Shankhari, Pritam; Zhang, Yuemei; Stekovic, Dejan; Itkis, Mikhail E; Fokwa, Boniface P T

    2017-11-06

    Materials "design" is increasingly gaining importance in the solid-state materials community in general and in the field of magnetic materials in particular. Density functional theory (DFT) predicted the competition between ferromagnetic (FM) and antiferromagnetic (AFM) ground states in a ruthenium-rich Ti 3 Co 5 B 2 -type boride (Hf 2 MnRu 5 B 2 ) for the first time. Vienna ab initio simulation package (VASP) total energy calculations indicated that the FM model was marginally more stable than one of the AFM models (AFM1), indicating very weak interactions between magnetic 1D Mn chains that can be easily perturbated by external means (magnetic field or composition). The predicted phase was then synthesized by arc-melting and characterized as Hf 2 Mn 1-x Ru 5+x B 2 (x = 0.27). Vibrating-scanning magnetometry shows an AFM ground state with T N ≈ 20 K under low magnetic field (0.005 T). At moderate-to-higher fields, AFM ordering vanishes while FM ordering emerges with a Curie temperature of 115 K. These experimental outcomes confirm the weak nature of the interchain interactions, as predicted by DFT calculations.

  15. Rate Constants for Fine-Structure Excitations in O - H Collisions with Error Bars Obtained by Machine Learning

    NASA Astrophysics Data System (ADS)

    Vieira, Daniel; Krems, Roman

    2017-04-01

    Fine-structure transitions in collisions of O(3Pj) with atomic hydrogen are an important cooling mechanism in the interstellar medium; knowledge of the rate coefficients for these transitions has a wide range of astrophysical applications. The accuracy of the theoretical calculation is limited by inaccuracy in the ab initio interaction potentials used in the coupled-channel quantum scattering calculations from which the rate coefficients can be obtained. In this work we use the latest ab initio results for the O(3Pj) + H interaction potentials to improve on previous calculations of the rate coefficients. We further present a machine-learning technique based on Gaussian Process regression to determine the sensitivity of the rate coefficients to variations of the underlying adiabatic interaction potentials. To account for the inaccuracy inherent in the ab initio calculations we compute error bars for the rate coefficients corresponding to 20% variation in each of the interaction potentials. We obtain these error bars by fitting a Gaussian Process model to a data set of potential curves and rate constants. We use the fitted model to do sensitivity analysis, determining the relative importance of individual adiabatic potential curves to a given fine-structure transition. NSERC.

  16. Microwave spectra and molecular structures of (Z)-pent-2-en-4-ynenitrile and maleonitrile.

    PubMed

    Halter, R J; Fimmen, R L; McMahon, R J; Peebles, S A; Kuczkowski, R L; Stanton, J F

    2001-12-12

    Accurate equilibrium structures have been determined for (Z)-pent-2-en-4-ynenitrile (8) and maleonitrile (9) by combining microwave spectroscopy data and ab initio quantum chemistry calculations. The microwave spectra of 10 isotopomers of 8 and 5 isotopomers of 9 were obtained using a pulsed nozzle Fourier transform microwave spectrometer. The ground-state rotational constants were adjusted for vibration-rotation interaction effects calculated from force fields obtained from ab initio calculations. The resultant equilibrium rotational constants were used to determine structures that are in very good agreement with those obtained from high-level ab initio calculations (CCSD(T)/cc-pVTZ). The geometric parameters in 8 and 9 are very similar; they also do not differ significantly from the all-carbon analogue, (Z)-hex-3-ene-1,5-diyne (7), the parent molecule for the Bergman cyclization. A small deviation from linearity about the alkyne and cyano linkages is observed for 7-9 and several related species where accurate equilibrium parameters are available. The data on 7-9 should be of interest to radioastronomy and may provide insights on the formation and interstellar chemistry of unsaturated species such as the cyanopolyynes.

  17. Complete 13C NMR chemical shifts assignment for cholesterol crystals by combined CP-MAS spectral editing and ab initio GIPAW calculations with dispersion forces.

    PubMed

    Küçükbenli, Emine; Sonkar, Kanchan; Sinha, Neeraj; de Gironcoli, Stefano

    2012-04-12

    We report here the first fully ab initio determination of (13)C NMR spectra for several crystal structures of cholesterol, observed in various biomaterials. We combine Gauge-Including Projector Augmented Waves (GIPAW) calculations at relaxed structures, fully including dispersion forces, with Magic Angle Spinning Solid State NMR experiments and spectral editing to achieve a detailed interpretation of the complex NMR spectra of cholesterol crystals. By introducing an environment-dependent secondary referencing scheme in our calculations, not only do we reproduce the characteristic spectral features of the different crystalline polymorphs, thus clearly discriminating among them, but also closely represent the spectrum in the region of several highly overlapping peaks. This, in combination with spectral editing, allows us to provide a complete peak assignment for monohydrate (ChM) and low-temperature anhydrous (ChAl) crystal polymorphs. Our results show that the synergy between ab initio calculations and refined experimental techniques can be exploited for an accurate and efficient NMR crystallography of complex systems of great interest for biomaterial studies. The method is general in nature and can be applied for studies of various complex biomaterials.

  18. Distinguishing between relaxation pathways by combining dissociative ionization pump probe spectroscopy and ab initio calculations: a case study of cytosine.

    PubMed

    Kotur, Marija; Weinacht, Thomas C; Zhou, Congyi; Kistler, Kurt A; Matsika, Spiridoula

    2011-05-14

    We present a general method for tracking molecular relaxation along different pathways from an excited state down to the ground state. We follow the excited state dynamics of cytosine pumped near the S(0)-S(1) resonance using ultrafast laser pulses in the deep ultraviolet and probed with strong field near infrared pulses which ionize and dissociate the molecules. The fragment ions are detected via time of flight mass spectroscopy as a function of pump probe delay and probe pulse intensity. Our measurements reveal that different molecular fragments show different timescales, indicating that there are multiple relaxation pathways down to the ground state. We interpret our measurements with the help of ab initio electronic structure calculations of both the neutral molecule and the molecular cation for different conformations en route to relaxation back down to the ground state. Our measurements and calculations show passage through two seams of conical intersections between ground and excited states and demonstrate the ability of dissociative ionization pump probe measurements in conjunction with ab initio electronic structure calculations to track molecular relaxation through multiple pathways.

  19. Ab initio study of perovskite type oxide materials for solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Lee, Yueh-Lin

    2011-12-01

    Perovskite type oxides form a family of materials of significant interest for cathodes and electrolytes of solid oxide fuel cells (SOFCs). These perovskites not only are active catalysts for surface oxygen reduction (OR) reactions but also allow incorporating the spilt oxygen monomers into their bulk, an unusual and poorly understood catalytic mechanism that couples surface and bulk properties. The OR mechanisms can be influenced strongly by defects in perovskite oxides, composition, and surface defect structures. This thesis work initiates a first step in developing a general strategy based on first-principles calculations for detailed control of oxygen vacancy content, transport rates of surface and bulk oxygen species, and surface/interfacial reaction kinetics. Ab initio density functional theory methods are used to model properties relevant for the OR reactions on SOFC cathodes. Three main research thrusts, which focus on bulk defect chemistry, surface defect structures and surface energetics, and surface catalytic properties, are carried to investigate different level of material chemistry for improved understanding of key physics/factors that govern SOFC cathode OR activity. In the study of bulk defect chemistry, an ab initio based defect model is developed for modeling defect chemistry of LaMnO 3 under SOFC conditions. The model suggests an important role for defect interactions, which are typically excluded in previous defect models. In the study of surface defect structures and surface energetics, it is shown that defect energies change dramatically (1˜2 eV lower) from bulk values near surfaces. Based on the existing bulk defect model with the calculated ab initio surface defect energetics, we predict the (001) MnO 2 surface oxygen vacancy concentration of (La0.9Sr0.1 )MnO3 is about 5˜6 order magnitude higher than that of the bulk under typical SOFC conditions. Finally, for surface catalytic properties, we show that area specific resistance, oxygen exchange rates, and key OR energetics of the SOFC cathode perovskites, can be described by a single descriptor, either the bulk O p-band or the bulk oxygen vacancy formation energy. These simple descriptors will further enable first-principles optimization/design of new SOFC cathodes.

  20. Reductive half-reaction of aldehyde oxidoreductase toward acetaldehyde: Ab initio and free energy quantum mechanical/molecular mechanical calculations.

    PubMed

    Dieterich, Johannes M; Werner, Hans-Joachim; Mata, Ricardo A; Metz, Sebastian; Thiel, Walter

    2010-01-21

    Energy and free energy barriers for acetaldehyde conversion in aldehyde oxidoreductase are determined for three reaction pathways using quantum mechanical/molecular mechanical (QM/MM) calculations on the solvated enzyme. Ab initio single-point QM/MM energies are obtained at the stationary points optimized at the DFT(B3LYP)/MM level. These ab initio calculations employ local correlation treatments [LMP2 and LCCSD(T0)] in combination with augmented triple- and quadruple-zeta basis sets, and the final coupled cluster results include MP2-based corrections for basis set incompleteness and for the domain approximation. Free energy perturbation (FEP) theory is used to generate free energy profiles at the DFT(B3LYP)/MM level for the most important reaction steps by sampling along the corresponding reaction paths using molecular dynamics. The ab initio and FEP QM/MM results are combined to derive improved estimates of the free energy barriers, which differ from the corresponding DFT(B3LYP)/MM energy barriers by about 3 kcal mol(-1). The present results confirm the qualitative mechanistic conclusions from a previous DFT(B3LYP)/MM study. Most favorable is a three-step Lewis base catalyzed mechanism with an initial proton transfer from the cofactor to the Glu869 residue, a subsequent nucleophilic attack that yields a tetrahedral intermediate (IM2), and a final rate-limiting hydride transfer. The competing metal center activated pathway has the same final step but needs to overcome a higher barrier in the initial step on the route to IM2. The concerted mechanism has the highest free energy barrier and can be ruled out. While confirming the qualitative mechanistic scenario proposed previously on the basis of DFT(B3LYP)/MM energy profiles, the present ab initio and FEP QM/MM calculations provide corrections to the barriers that are important when aiming at high accuracy.

  1. Recent advances in electronic structure theory and their influence on the accuracy of ab initio potential energy surfaces

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles W., Jr.; Langhoff, Stephen R.; Taylor, Peter R.

    1989-01-01

    Recent advances in electronic structure theory and the availability of high speed vector processors have substantially increased the accuracy of ab initio potential energy surfaces. The recently developed atomic natural orbital approach for basis set contraction has reduced both the basis set incompleteness and superposition errors in molecular calculations. Furthermore, full CI calculations can often be used to calibrate a CASSCF/MRCI approach that quantitatively accounts for the valence correlation energy. These computational advances also provide a vehicle for systematically improving the calculations and for estimating the residual error in the calculations. Calculations on selected diatomic and triatomic systems will be used to illustrate the accuracy that currently can be achieved for molecular systems. In particular, the F + H2 yields HF + H potential energy hypersurface is used to illustrate the impact of these computational advances on the calculation of potential energy surfaces.

  2. Recent advances in electronic structure theory and their influence on the accuracy of ab initio potential energy surfaces

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles W., Jr.; Langhoff, Stephen R.; Taylor, Peter R.

    1988-01-01

    Recent advances in electronic structure theory and the availability of high speed vector processors have substantially increased the accuracy of ab initio potential energy surfaces. The recently developed atomic natural orbital approach for basis set contraction has reduced both the basis set incompleteness and superposition errors in molecular calculations. Furthermore, full CI calculations can often be used to calibrate a CASSCF/MRCI approach that quantitatively accounts for the valence correlation energy. These computational advances also provide a vehicle for systematically improving the calculations and for estimating the residual error in the calculations. Calculations on selected diatomic and triatomic systems will be used to illustrate the accuracy that currently can be achieved for molecular systems. In particular, the F+H2 yields HF+H potential energy hypersurface is used to illustrate the impact of these computational advances on the calculation of potential energy surfaces.

  3. Quantum calculations of the rate constant for the O(3P)+HCl reaction on new ab initio 3A″ and 3A' surfaces

    NASA Astrophysics Data System (ADS)

    Xie, Tiao; Bowman, Joel M.; Peterson, K. A.; Ramachandran, B.

    2003-11-01

    We report the thermal rate constant of the O(3P)+HCl→OH+Cl reaction calculated from 200 to 3200 K, using new fits to extensive ab initio calculations [B. Ramachandran and K. A. Peterson, J. Chem. Phys. 119, 9590 (2003), preceding paper]. The rate constants are obtained for both the 3A″ and 3A' surfaces using exact quantum reactive scattering calculations for selected values of the total angular momentum and the J-shifting approximation for both the 3A″ and 3A' surfaces. The results are compared with the ICVT/μOMT rate constants calculated by the POLYRATE program and all available experimental data. Other related high-energy reaction channels are also studied qualitatively for their contribution to the total thermal rate constant at high temperature.

  4. Electric dipole moments and chemical bonding of diatomic alkali-alkaline earth molecules.

    PubMed

    Pototschnig, Johann V; Hauser, Andreas W; Ernst, Wolfgang E

    2016-02-17

    We investigate the properties of alkali-alkaline earth diatomic molecules in the lowest Σ(+) states of the doublet and quartet multiplicity by ab initio calculations. In all sixteen cases studied, the permanent electric dipole moment points in opposite directions for the two spin states. This peculiarity can be explained by molecular orbital theory. We further discuss dissociation energies and bond distances. We analyze trends and provide an empirically motivated model for the prediction of the permanent electric dipole moment for combinations of alkali and alkaline earth atoms not studied in this work.

  5. O-shell emission of heavy atoms in an optically thin tokamak plasma

    NASA Astrophysics Data System (ADS)

    Finkenthal, M.; Lippmann, S.; Huang, L. K.; Zwicker, A.; Moos, H. W.; Goldstein, W. H.; Osterheld, A. L.

    1992-04-01

    Heavy atoms Au (Z=79), Pb (Z=82), Bi (Z=83), and U (Z=92) have been introduced in the low-density (ne~1013 cm-3) high-temperature (Te>=1 keV) TEXT tokamak (Fusion Research Center, University of Texas at Austin) plasma. The emission has been measured in the 50-200-Å range using a photometrically calibrated, time-resolving grazing-incidence spectrometer. The O-shell ion emission has been identified by comparison with ab initio energy-level calculations and line-intensity predictions of collisional radiative models for various charge states with 5p65dk ground-state configurations.

  6. Effects of nitrogenous substituent groups on the benzene dication

    NASA Astrophysics Data System (ADS)

    Forgy, C. C.; Schlimgen, A. W.; Mazziotti, D. A.

    2018-05-01

    The benzene dication possesses a pentagonal-pyramidal structure with a hexacoordinated carbon. In contrast, halogenated benzene dications retain a similar structure to their parent molecules. In this work, we report on theoretical studies of the structures of the dications of benzene with nitrogenous substituents. We find that the nitrobenzene dication favours a near ideal pentagonal-pyramidal structure, while the aniline dication favours a flat, hexagonal structure. Reduced-density-matrices methods give predictions in agreement with available ab initio calculations and experiment. These results are also compared with those from the Hartree-Fock method and density functional theory.

  7. Quasiparticle semiconductor band structures including spin-orbit interactions.

    PubMed

    Malone, Brad D; Cohen, Marvin L

    2013-03-13

    We present first-principles calculations of the quasiparticle band structure of the group IV materials Si and Ge and the group III-V compound semiconductors AlP, AlAs, AlSb, InP, InAs, InSb, GaP, GaAs and GaSb. Calculations are performed using the plane wave pseudopotential method and the 'one-shot' GW method, i.e. G(0)W(0). Quasiparticle band structures, augmented with the effects of spin-orbit, are obtained via a Wannier interpolation of the obtained quasiparticle energies and calculated spin-orbit matrix. Our calculations explicitly treat the shallow semicore states of In and Ga, which are known to be important in the description of the electronic properties, as valence states in the quasiparticle calculation. Our calculated quasiparticle energies, combining both the ab initio evaluation of the electron self-energy and the vector part of the pseudopotential representing the spin-orbit effects, are in generally very good agreement with experimental values. These calculations illustrate the predictive power of the methodology as applied to group IV and III-V semiconductors.

  8. Accurate disulfide-bonding network predictions improve ab initio structure prediction of cysteine-rich proteins

    PubMed Central

    Yang, Jing; He, Bao-Ji; Jang, Richard; Zhang, Yang; Shen, Hong-Bin

    2015-01-01

    Abstract Motivation: Cysteine-rich proteins cover many important families in nature but there are currently no methods specifically designed for modeling the structure of these proteins. The accuracy of disulfide connectivity pattern prediction, particularly for the proteins of higher-order connections, e.g. >3 bonds, is too low to effectively assist structure assembly simulations. Results: We propose a new hierarchical order reduction protocol called Cyscon for disulfide-bonding prediction. The most confident disulfide bonds are first identified and bonding prediction is then focused on the remaining cysteine residues based on SVR training. Compared with purely machine learning-based approaches, Cyscon improved the average accuracy of connectivity pattern prediction by 21.9%. For proteins with more than 5 disulfide bonds, Cyscon improved the accuracy by 585% on the benchmark set of PDBCYS. When applied to 158 non-redundant cysteine-rich proteins, Cyscon predictions helped increase (or decrease) the TM-score (or RMSD) of the ab initio QUARK modeling by 12.1% (or 14.4%). This result demonstrates a new avenue to improve the ab initio structure modeling for cysteine-rich proteins. Availability and implementation: http://www.csbio.sjtu.edu.cn/bioinf/Cyscon/ Contact: zhng@umich.edu or hbshen@sjtu.edu.cn Supplementary information: Supplementary data are available at Bioinformatics online. PMID:26254435

  9. Ab initio calculation of the G peak intensity of graphene: Laser-energy and Fermi-energy dependence and importance of quantum interference effects

    NASA Astrophysics Data System (ADS)

    Reichardt, Sven; Wirtz, Ludger

    2017-05-01

    We present the results of a diagrammatic, fully ab initio calculation of the G peak intensity of graphene. The flexibility and generality of our approach enables us to go beyond the previous analytical calculations in the low-energy regime. We study the laser and Fermi energy dependence of the G peak intensity and analyze the contributions from resonant and nonresonant electronic transitions. In particular, we explicitly demonstrate the importance of quantum interference and nonresonant states for the G peak process. Our method of analysis and computational concept is completely general and can easily be applied to study other materials as well.

  10. Ab initio calculations of the electron spectrum and density of states of TlFeS{sub 2} and TlFeSe{sub 2} crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ismayilova, N. A., E-mail: ismayilova-narmin-84@mail.ru; Orudjev, H. S.; Jabarov, S. H.

    2017-04-15

    The results of ab initio calculations of the electron spectrum of TlFeS{sub 2} and TlFeSe{sub 2} crystals in the antiferromagnetic phase are reported. Calculations are carried out in the context of the density functional theory. The origin of the bands of s, p, and d electron states of Tl, Fe, S, and Se atoms is studied. It is established that, in the antiferromagnetic phase, the crystals possess semiconductor properties. The band gaps are found to be 0.05 and 0.34 eV for TlFeS{sub 2} and TlFeSe{sub 2} crystals, respectively.

  11. Ab initio calculation of the ion feature in x-ray Thomson scattering.

    PubMed

    Plagemann, Kai-Uwe; Rüter, Hannes R; Bornath, Thomas; Shihab, Mohammed; Desjarlais, Michael P; Fortmann, Carsten; Glenzer, Siegfried H; Redmer, Ronald

    2015-07-01

    The spectrum of x-ray Thomson scattering is proportional to the dynamic structure factor. An important contribution is the ion feature which describes elastic scattering of x rays off electrons. We apply an ab initio method for the calculation of the form factor of bound electrons, the slope of the screening cloud of free electrons, and the ion-ion structure factor in warm dense beryllium. With the presented method we can calculate the ion feature from first principles. These results will facilitate a better understanding of x-ray scattering in warm dense matter and an accurate measurement of ion temperatures which would allow determining nonequilibrium conditions, e.g., along shock propagation.

  12. Ionic liquids. Combination of combustion calorimetry with high-level quantum chemical calculations for deriving vaporization enthalpies.

    PubMed

    Emel'yanenko, Vladimir N; Verevkin, Sergey P; Heintz, Andreas; Schick, Christoph

    2008-07-10

    In this work, the molar enthalpies of formation of the ionic liquids [C2MIM][NO3] and [C4MIM][NO3] were measured by means of combustion calorimetry. The molar enthalpy of fusion of [C2MIM][NO3] was measured using differential scanning calorimetry. Ab initio calculations of the enthalpy of formation in the gaseous phase have been performed for the ionic species using the G3MP2 theory. We have used a combination of traditional combustion calorimetry with modern high-level ab initio calculations in order to obtain the molar enthalpies of vaporization of a series of the ionic liquids under study.

  13. Electronic structure of PPP@ZnO from all-electron quasiarticle calculations

    NASA Astrophysics Data System (ADS)

    Höffling, Benjamin; Nabok, Dimitri; Draxl, Claudia; Condensed Matter Theory Group, Humboldt University Berlin Team

    We investigate the electronic properties of poly(para-phenylene) (PPP) adsorbed on the non-polar (001) surface of rocksalt (rs) ZnO using all-electron density functional theory (DFT) as well as quasiparticle (QP) calculations within the GW approach. A particular focus is put on the electronic band discontinuities at the interface, where we investigate the impact of quantum confinement, molecular polarization, and charge rearrangement. For our prototypical system, PPP@ZnO, we find a type-I heterostructure. Comparison of the band offsets derived from a QP-treatment of the hybrid system with predictions based on mesoscopic methods, like the Shockley-Anderson model or alignment via the electrostatic potential, reveals the inadequacy of these simple approaches for the prediction of the electronic structure of such inorganic/organic heterosystems. Finally, we explore the optical excitations of the interface compared to the features of the pristine components and discuss the methodological implications for the ab-initio treatment of interface electronics.

  14. Ab initio molecular dynamics with nuclear quantum effects at classical cost: Ring polymer contraction for density functional theory.

    PubMed

    Marsalek, Ondrej; Markland, Thomas E

    2016-02-07

    Path integral molecular dynamics simulations, combined with an ab initio evaluation of interactions using electronic structure theory, incorporate the quantum mechanical nature of both the electrons and nuclei, which are essential to accurately describe systems containing light nuclei. However, path integral simulations have traditionally required a computational cost around two orders of magnitude greater than treating the nuclei classically, making them prohibitively costly for most applications. Here we show that the cost of path integral simulations can be dramatically reduced by extending our ring polymer contraction approach to ab initio molecular dynamics simulations. By using density functional tight binding as a reference system, we show that our ring polymer contraction scheme gives rapid and systematic convergence to the full path integral density functional theory result. We demonstrate the efficiency of this approach in ab initio simulations of liquid water and the reactive protonated and deprotonated water dimer systems. We find that the vast majority of the nuclear quantum effects are accurately captured using contraction to just the ring polymer centroid, which requires the same number of density functional theory calculations as a classical simulation. Combined with a multiple time step scheme using the same reference system, which allows the time step to be increased, this approach is as fast as a typical classical ab initio molecular dynamics simulation and 35× faster than a full path integral calculation, while still exactly including the quantum sampling of nuclei. This development thus offers a route to routinely include nuclear quantum effects in ab initio molecular dynamics simulations at negligible computational cost.

  15. Prediction of cyclin-dependent kinase 2 inhibitor potency using the fragment molecular orbital method

    PubMed Central

    2011-01-01

    Background The reliable and robust estimation of ligand binding affinity continues to be a challenge in drug design. Many current methods rely on molecular mechanics (MM) calculations which do not fully explain complex molecular interactions. Full quantum mechanical (QM) computation of the electronic state of protein-ligand complexes has recently become possible by the latest advances in the development of linear-scaling QM methods such as the ab initio fragment molecular orbital (FMO) method. This approximate molecular orbital method is sufficiently fast that it can be incorporated into the development cycle during structure-based drug design for the reliable estimation of ligand binding affinity. Additionally, the FMO method can be combined with approximations for entropy and solvation to make it applicable for binding affinity prediction for a broad range of target and chemotypes. Results We applied this method to examine the binding affinity for a series of published cyclin-dependent kinase 2 (CDK2) inhibitors. We calculated the binding affinity for 28 CDK2 inhibitors using the ab initio FMO method based on a number of X-ray crystal structures. The sum of the pair interaction energies (PIE) was calculated and used to explain the gas-phase enthalpic contribution to binding. The correlation of the ligand potencies to the protein-ligand interaction energies gained from FMO was examined and was seen to give a good correlation which outperformed three MM force field based scoring functions used to appoximate the free energy of binding. Although the FMO calculation allows for the enthalpic component of binding interactions to be understood at the quantum level, as it is an in vacuo single point calculation, the entropic component and solvation terms are neglected. For this reason a more accurate and predictive estimate for binding free energy was desired. Therefore, additional terms used to describe the protein-ligand interactions were then calculated to improve the correlation of the FMO derived values to experimental free energies of binding. These terms were used to account for the polar and non-polar solvation of the molecule estimated by the Poisson-Boltzmann equation and the solvent accessible surface area (SASA), respectively, as well as a correction term for ligand entropy. A quantitative structure-activity relationship (QSAR) model obtained by Partial Least Squares projection to latent structures (PLS) analysis of the ligand potencies and the calculated terms showed a strong correlation (r2 = 0.939, q2 = 0.896) for the 14 molecule test set which had a Pearson rank order correlation of 0.97. A training set of a further 14 molecules was well predicted (r2 = 0.842), and could be used to obtain meaningful estimations of the binding free energy. Conclusions Our results show that binding energies calculated with the FMO method correlate well with published data. Analysis of the terms used to derive the FMO energies adds greater understanding to the binding interactions than can be gained by MM methods. Combining this information with additional terms and creating a scaled model to describe the data results in more accurate predictions of ligand potencies than the absolute values obtained by FMO alone. PMID:21219630

  16. Linear free energy relationships between aqueous phase hydroxyl radical reaction rate constants and free energy of activation.

    PubMed

    Minakata, Daisuke; Crittenden, John

    2011-04-15

    The hydroxyl radical (HO(•)) is a strong oxidant that reacts with electron-rich sites on organic compounds and initiates complex radical chain reactions in aqueous phase advanced oxidation processes (AOPs). Computer based kinetic modeling requires a reaction pathway generator and predictions of associated reaction rate constants. Previously, we reported a reaction pathway generator that can enumerate the most important elementary reactions for aliphatic compounds. For the reaction rate constant predictor, we develop linear free energy relationships (LFERs) between aqueous phase literature-reported HO(•) reaction rate constants and theoretically calculated free energies of activation for H-atom abstraction from a C-H bond and HO(•) addition to alkenes. The theoretical method uses ab initio quantum mechanical calculations, Gaussian 1-3, for gas phase reactions and a solvation method, COSMO-RS theory, to estimate the impact of water. Theoretically calculated free energies of activation are found to be within approximately ±3 kcal/mol of experimental values. Considering errors that arise from quantum mechanical calculations and experiments, this should be within the acceptable errors. The established LFERs are used to predict the HO(•) reaction rate constants within a factor of 5 from the experimental values. This approach may be applied to other reaction mechanisms to establish a library of rate constant predictions for kinetic modeling of AOPs.

  17. Theoretical investigation of the structural, elastic, electronic and optical properties of the ternary indium sulfide layered structures AInS2 (A = K, Rb and Cs)

    NASA Astrophysics Data System (ADS)

    Bouchenafa, M.; Sidoumou, M.; Halit, M.; Benmakhlouf, A.; Bouhemadou, A.; Maabed, S.; Bentabet, A.; Bin-Omran, S.

    2018-02-01

    Ab initio calculations were performed to investigate the structural, elastic, electronic and optical properties of the ternary layered systems AInS2 (A = K, Rb and Cs). The calculated structural parameters are in good agreement with the existing experimental data. Analysis of the electronic band structure shows that the three studied materials are direct band-gap semiconductors. Density of states, charge transfers and charge density distribution maps were computed and analyzed. Numerical estimations of the elastic moduli and their related properties for single-crystal and polycrystalline aggregates were predicted. The optical properties were calculated for incident radiation polarized along the [100], [010] and [001] crystallographic directions. The studied materials exhibit a noticeable anisotropic behaviour in the elastic and optical properties, which is expected due to the symmetry and the layered nature of these compounds.

  18. Measurement of the first ionization potential of astatine by laser ionization spectroscopy

    PubMed Central

    Rothe, S.; Andreyev, A. N.; Antalic, S.; Borschevsky, A.; Capponi, L.; Cocolios, T. E.; De Witte, H.; Eliav, E.; Fedorov, D. V.; Fedosseev, V. N.; Fink, D. A.; Fritzsche, S.; Ghys, L.; Huyse, M.; Imai, N.; Kaldor, U.; Kudryavtsev, Yuri; Köster, U.; Lane, J. F. W.; Lassen, J.; Liberati, V.; Lynch, K. M.; Marsh, B. A.; Nishio, K.; Pauwels, D.; Pershina, V.; Popescu, L.; Procter, T. J.; Radulov, D.; Raeder, S.; Rajabali, M. M.; Rapisarda, E.; Rossel, R. E.; Sandhu, K.; Seliverstov, M. D.; Sjödin, A. M.; Van den Bergh, P.; Van Duppen, P.; Venhart, M.; Wakabayashi, Y.; Wendt, K. D. A.

    2013-01-01

    The radioactive element astatine exists only in trace amounts in nature. Its properties can therefore only be explored by study of the minute quantities of artificially produced isotopes or by performing theoretical calculations. One of the most important properties influencing the chemical behaviour is the energy required to remove one electron from the valence shell, referred to as the ionization potential. Here we use laser spectroscopy to probe the optical spectrum of astatine near the ionization threshold. The observed series of Rydberg states enabled the first determination of the ionization potential of the astatine atom, 9.31751(8) eV. New ab initio calculations are performed to support the experimental result. The measured value serves as a benchmark for quantum chemistry calculations of the properties of astatine as well as for the theoretical prediction of the ionization potential of superheavy element 117, the heaviest homologue of astatine. PMID:23673620

  19. Ab initio predictions of structural and elastic properties of struvite: contribution to urinary stone research.

    PubMed

    Piechota, Jacek; Prywer, Jolanta; Torzewska, Agnieszka

    2012-01-01

    In the present work, we carried out density functional calculations of struvite--the main component of the so-called infectious urinary stones--to study its structural and elastic properties. Using a local density approximation and a generalised gradient approximation, we calculated the equilibrium structural parameters and elastic constants C(ijkl). At present, there is no experimental data for these elastic constants C (ijkl) for comparison. Besides the elastic constants, we also present the calculated macroscopic mechanical parameters, namely the bulk modulus (K), the shear modulus (G) and Young's modulus (E). The values of these moduli are found to be in good agreement with available experimental data. Our results imply that the mechanical stability of struvite is limited by the shear modulus, G. The study also explores the energy-band structure to understand the obtained values of the elastic constants.

  20. Full Wave Function Optimization with Quantum Monte Carlo and Its Effect on the Dissociation Energy of FeS.

    PubMed

    Haghighi Mood, Kaveh; Lüchow, Arne

    2017-08-17

    Diffusion quantum Monte Carlo calculations with partial and full optimization of the guide function are carried out for the dissociation of the FeS molecule. For the first time, quantum Monte Carlo orbital optimization for transition metal compounds is performed. It is demonstrated that energy optimization of the orbitals of a complete active space wave function in the presence of a Jastrow correlation function is required to obtain agreement with the experimental dissociation energy. Furthermore, it is shown that orbital optimization leads to a 5 Δ ground state, in agreement with experiments but in disagreement with other high-level ab initio wave function calculations which all predict a 5 Σ + ground state. The role of the Jastrow factor in DMC calculations with pseudopotentials is investigated. The results suggest that a large Jastrow factor may improve the DMC accuracy substantially at small additional cost.

  1. Molecular dynamics simulations of fluid methane properties using ab initio intermolecular interaction potentials.

    PubMed

    Chao, Shih-Wei; Li, Arvin Huang-Te; Chao, Sheng D

    2009-09-01

    Intermolecular interaction energy data for the methane dimer have been calculated at a spectroscopic accuracy and employed to construct an ab initio potential energy surface (PES) for molecular dynamics (MD) simulations of fluid methane properties. The full potential curves of the methane dimer at 12 symmetric conformations were calculated by the supermolecule counterpoise-corrected second-order Møller-Plesset (MP2) perturbation theory. Single-point coupled cluster with single and double and perturbative triple excitations [CCSD(T)] calculations were also carried out to calibrate the MP2 potentials. We employed Pople's medium size basis sets [up to 6-311++G(3df, 3pd)] and Dunning's correlation consistent basis sets (cc-pVXZ and aug-cc-pVXZ, X = D, T, Q). For each conformer, the intermolecular carbon-carbon separation was sampled in a step 0.1 A for a range of 3-9 A, resulting in a total of 732 configuration points calculated. The MP2 binding curves display significant anisotropy with respect to the relative orientations of the dimer. The potential curves at the complete basis set (CBS) limit were estimated using well-established analytical extrapolation schemes. A 4-site potential model with sites located at the hydrogen atoms was used to fit the ab initio potential data. This model stems from a hydrogen-hydrogen repulsion mechanism to explain the stability of the dimer structure. MD simulations using the ab initio PES show quantitative agreements on both the atom-wise radial distribution functions and the self-diffusion coefficients over a wide range of experimental conditions. Copyright 2008 Wiley Periodicals, Inc.

  2. Assessing the accuracy of improved force-matched water models derived from Ab initio molecular dynamics simulations.

    PubMed

    Köster, Andreas; Spura, Thomas; Rutkai, Gábor; Kessler, Jan; Wiebeler, Hendrik; Vrabec, Jadran; Kühne, Thomas D

    2016-07-15

    The accuracy of water models derived from ab initio molecular dynamics simulations by means on an improved force-matching scheme is assessed for various thermodynamic, transport, and structural properties. It is found that although the resulting force-matched water models are typically less accurate than fully empirical force fields in predicting thermodynamic properties, they are nevertheless much more accurate than generally appreciated in reproducing the structure of liquid water and in fact superseding most of the commonly used empirical water models. This development demonstrates the feasibility to routinely parametrize computationally efficient yet predictive potential energy functions based on accurate ab initio molecular dynamics simulations for a large variety of different systems. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  3. Kubo–Greenwood approach to conductivity in dense plasmas with average atom models

    DOE PAGES

    Starrett, C. E.

    2016-04-13

    In this study, a new formulation of the Kubo–Greenwood conductivity for average atom models is given. The new formulation improves upon previous treatments by explicitly including the ionic-structure factor. Calculations based on this new expression lead to much improved agreement with ab initio results for DC conductivity of warm dense hydrogen and beryllium, and for thermal conductivity of hydrogen. We also give and test a slightly modified Ziman–Evans formula for the resistivity that includes a non-free electron density of states, thus removing an ambiguity in the original Ziman–Evans formula. Again, results based on this expression are in good agreement withmore » ab initio simulations for warm dense beryllium and hydrogen. However, for both these expressions, calculations of the electrical conductivity of warm dense aluminum lead to poor agreement at low temperatures compared to ab initio simulations.« less

  4. Electronic properties of liquid Hg-In alloys : Ab-initio molecular dynamics study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharma, Nalini, E-mail: nalini-2808@yahoo.co.in; Ahluwalia, P. K.; Thakur, Anil

    2016-05-23

    Ab-initio molecular dynamics simulations are performed to study the structural properties of liquid Hg-In alloys. The interatomic interactions are described by ab-initio pseudopotentials given by Troullier and Martins. Three liquid Hg-In alloys (Hg{sub 10}In{sub 90}, Hg{sub 30}In{sub 70,.} Hg{sub 50}In{sub 50}, Hg{sub 70}In{sub 30}, and Hg{sub 90}Pb{sub 10}) at 299 K are considered. The calculated results for liquid Hg (l-Hg) and lead (l-In) are also drawn. Along with the calculated results of considered five liquid alloys of Hg-In alloy. The results obtained from electronic properties namely total density of state and partial density of states help to find the localmore » arrangement of Hg and In atoms and the presence of liquid state in the considered five alloys.« less

  5. Spectroscopic study of uracil, 1-methyluracil and 1-methyl-4-thiouracil: Hydrogen bond interactions in crystals and ab-initio molecular dynamics.

    PubMed

    Brela, Mateusz Z; Boczar, Marek; Malec, Leszek M; Wójcik, Marek J; Nakajima, Takahito

    2018-05-15

    Hydrogen bond networks in uracil, 1-methyluracil and 1-methyl-4-thiouracil were studied by ab initio molecular dynamics as well as analysis of the orbital interactions. The power spectra calculated by ab initio molecular dynamics for atoms involved in hydrogen bonds were analyzed. We calculated spectra by using anharmonic approximation based on the autocorrelation function of the atom positions obtained from the Born-Oppenheimer simulations. Our results show the differences between hydrogen bond networks in uracil and its methylated derivatives. The studied methylated derivatives, 1-methyluracil as well as 1-methyl-4-thiouracil, form dimeric structures in the crystal phase, while uracil does not form that kind of structures. The presence of sulfur atom instead oxygen atom reflects weakness of the hydrogen bonds that build dimers. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Ab initio results for intermediate-mass, open-shell nuclei

    NASA Astrophysics Data System (ADS)

    Baker, Robert B.; Dytrych, Tomas; Launey, Kristina D.; Draayer, Jerry P.

    2017-01-01

    A theoretical understanding of nuclei in the intermediate-mass region is vital to astrophysical models, especially for nucleosynthesis. Here, we employ the ab initio symmetry-adapted no-core shell model (SA-NCSM) in an effort to push first-principle calculations across the sd-shell region. The ab initio SA-NCSM's advantages come from its ability to control the growth of model spaces by including only physically relevant subspaces, which allows us to explore ultra-large model spaces beyond the reach of other methods. We report on calculations for 19Ne and 20Ne up through 13 harmonic oscillator shells using realistic interactions and discuss the underlying structure as well as implications for various astrophysical reactions. This work was supported by the U.S. NSF (OCI-0904874 and ACI -1516338) and the U.S. DOE (DE-SC0005248), and also benefitted from the Blue Waters sustained-petascale computing project and high performance computing resources provided by LSU.

  7. Ab initio theoretical calculations of the electronic excitation energies of small water clusters.

    PubMed

    Tachikawa, Hiroto; Yabushita, Akihiro; Kawasaki, Masahiro

    2011-12-14

    A direct ab initio molecular dynamics method has been applied to a water monomer and water clusters (H(2)O)(n) (n = 1-3) to elucidate the effects of zero-point energy (ZPE) vibration on the absorption spectra of water clusters. Static ab initio calculations without ZPE showed that the first electronic transitions of (H(2)O)(n), (1)B(1)←(1)A(1), are blue-shifted as a function of cluster size (n): 7.38 eV (n = 1), 7.58 eV (n = 2) and 8.01 eV (n = 3). The inclusion of the ZPE vibration strongly affects the excitation energies of a water dimer, and a long red-tail appears in the range of 6.42-6.90 eV due to the structural flexibility of a water dimer. The ultraviolet photodissociation of water clusters and water ice surfaces is relevant to these results.

  8. Ab initio study of MF2 (M=Mn, Fe, Co, Ni) rutile-type compounds using the periodic unrestricted Hartree-Fock approach

    NASA Astrophysics Data System (ADS)

    de P. R. Moreira, Ibério; Dovesi, Roberto; Roetti, Carla; Saunders, Victor R.; Orlando, Roberto

    2000-09-01

    The ab initio periodic unrestricted Hartree-Fock method has been applied in the investigation of the ground-state structural, electronic, and magnetic properties of the rutile-type compounds MF2 (M=Mn, Fe, Co, and Ni). All electron Gaussian basis sets have been used. The systems turn out to be large band-gap antiferromagnetic insulators; the optimized geometrical parameters are in good agreement with experiment. The calculated most stable electronic state shows an antiferromagnetic order in agreement with that resulting from neutron scattering experiments. The magnetic coupling constants between nearest-neighbor magnetic ions along the [001], [111], and [100] (or [010]) directions have been calculated using several supercells. The resulting ab initio magnetic coupling constants are reasonably satisfactory when compared with available experimental data. The importance of the Jahn-Teller effect in FeF2 and CoF2 is also discussed.

  9. Vacuum Ultraviolet Laser Probe of Chemical Dynamics of Aerospace Relevance

    DTIC Science & Technology

    2012-09-12

    carbide cation”, J. Phys. Chem. A (invited), 113, 4242 (2009). 5. Kai-Chung Lau , Yih-Chung Chang, Chow-Sheng Lam , and C. Y. Ng, “High-level ab...Chem. A (invited), 113, 14321 (2009). 6. Kai-Chung Lau , Yih-Chung Chang, Chow-Sheng Lam , and C. Y. Ng, “High-level ab initio predictions of the...VI. Selected scientific findings 1. Kai-Chung Lau , Yih-Chung Chang, Xiaoyu Shi, and C. Y. Ng, “High-level ab initio predictions of the ionization

  10. Thermal Conductivity of Metallic Uranium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hin, Celine

    This project has developed a modeling and simulation approaches to predict the thermal conductivity of metallic fuels and their alloys. We focus on two methods. The first method has been developed by the team at the University of Wisconsin Madison. They developed a practical and general modeling approach for thermal conductivity of metals and metal alloys that integrates ab-initio and semi-empirical physics-based models to maximize the strengths of both techniques. The second method has been developed by the team at Virginia Tech. This approach consists of a determining the thermal conductivity using only ab-initio methods without any fitting parameters. Bothmore » methods were complementary. The models incorporated both phonon and electron contributions. Good agreement with experimental data over a wide temperature range were found. The models also provided insight into the different physical factors that govern the thermal conductivity under different temperatures. The models were general enough to incorporate more complex effects like additional alloying species, defects, transmutation products and noble gas bubbles to predict the behavior of complex metallic alloys like U-alloy fuel systems under burnup. 3 Introduction Thermal conductivity is an important thermal physical property affecting the performance and efficiency of metallic fuels [1]. Some experimental measurement of thermal conductivity and its correlation with composition and temperature from empirical fitting are available for U, Zr and their alloys with Pu and other minor actinides. However, as reviewed in by Kim, Cho and Sohn [2], due to the difficulty in doing experiments on actinide materials, thermal conductivities of metallic fuels have only been measured at limited alloy compositions and temperatures, some of them even being negative and unphysical. Furthermore, the correlations developed so far are empirical in nature and may not be accurate when used for prediction at conditions far from those used in the original fitting. Moreover, as fuels burn up in the reactor and fission products are built up, thermal conductivity is also significantly changed [3]. Unfortunately, fundamental understanding of the effect of fission products is also currently lacking. In this project, we probe thermal conductivity of metallic fuels with ab initio calculations, a theoretical tool with the potential to yield better accuracy and predictive power than empirical fitting. This work will both complement experimental data by determining thermal conductivity in wider composition and temperature ranges than is available experimentally, and also develop mechanistic understanding to guide better design of metallic fuels in the future. So far, we focused on α-U perfect crystal, the ground-state phase of U metal. We focus on two methods. The first method has been developed by the team at the University of Wisconsin Madison. They developed a practical and general modeling approach for thermal conductivity of metals and metal alloys that integrates ab-initio and semi-empirical physics-based models to maximize the strengths of both techniques. The second method has been developed by the team at Virginia Tech. This approach consists of a determining the thermal conductivity using only ab-initio methods without any fitting parameters. Both methods were complementary and very helpful to understand the physics behind the thermal conductivity in metallic uranium and other materials with similar characteristics. In Section I, the combined model developed at UWM is explained. In Section II, the ab-initio method developed at VT is described along with the uranium pseudo-potential and its validation. Section III is devoted to the work done by Jianguo Yu at INL. Finally, we will present the performance of the project in terms of milestones, publications, and presentations.« less

  11. Macromolecular ab initio phasing enforcing secondary and tertiary structure.

    PubMed

    Millán, Claudia; Sammito, Massimo; Usón, Isabel

    2015-01-01

    Ab initio phasing of macromolecular structures, from the native intensities alone with no experimental phase information or previous particular structural knowledge, has been the object of a long quest, limited by two main barriers: structure size and resolution of the data. Current approaches to extend the scope of ab initio phasing include use of the Patterson function, density modification and data extrapolation. The authors' approach relies on the combination of locating model fragments such as polyalanine α-helices with the program PHASER and density modification with the program SHELXE. Given the difficulties in discriminating correct small substructures, many putative groups of fragments have to be tested in parallel; thus calculations are performed in a grid or supercomputer. The method has been named after the Italian painter Arcimboldo, who used to compose portraits out of fruit and vegetables. With ARCIMBOLDO, most collections of fragments remain a 'still-life', but some are correct enough for density modification and main-chain tracing to reveal the protein's true portrait. Beyond α-helices, other fragments can be exploited in an analogous way: libraries of helices with modelled side chains, β-strands, predictable fragments such as DNA-binding folds or fragments selected from distant homologues up to libraries of small local folds that are used to enforce nonspecific tertiary structure; thus restoring the ab initio nature of the method. Using these methods, a number of unknown macromolecules with a few thousand atoms and resolutions around 2 Å have been solved. In the 2014 release, use of the program has been simplified. The software mediates the use of massive computing to automate the grid access required in difficult cases but may also run on a single multicore workstation (http://chango.ibmb.csic.es/ARCIMBOLDO_LITE) to solve straightforward cases.

  12. Ab initio quantum direct dynamics simulations of ultrafast photochemistry with Multiconfigurational Ehrenfest approach

    NASA Astrophysics Data System (ADS)

    Makhov, Dmitry V.; Symonds, Christopher; Fernandez-Alberti, Sebastian; Shalashilin, Dmitrii V.

    2017-08-01

    The Multiconfigurational Ehrenfest (MCE) method is a quantum dynamics technique which allows treatment of a large number of quantum nuclear degrees of freedom. This paper presents a review of MCE and its recent applications, providing a summary of the formalisms, including its ab initio direct dynamics versions and also giving a summary of recent results. Firstly, we describe the Multiconfigurational Ehrenfest version 2 (MCEv2) method and its applicability to direct dynamics and report new calculations which show that the approach converges to the exact result in model systems with tens of degrees of freedom. Secondly, we review previous ;on the fly; ab initio Multiple Cloning (AIMC-MCE) MCE dynamics results obtained for systems of a similar size, in which the calculations treat every electron and every nucleus of a polyatomic molecule on a fully quantum basis. We also review the Time Dependent Diabatic Basis (TDDB) version of the technique and give an example of its application. We summarise the details of the sampling techniques and interpolations used for calculation of the matrix elements, which make our approach efficient. Future directions of work are outlined.

  13. A new ab initio potential energy surface for the Ne-H 2 interaction

    NASA Astrophysics Data System (ADS)

    Lique, François

    2009-03-01

    A new accurate three-dimensional potential energy surface for the Ne-H 2 system, which explicitly takes into account the r-dependence of the H 2 vibration, was determined from ab initio calculations. It was obtained with the single and double excitation coupled-cluster method with noniterative perturbational treatment of triple excitation [CCSD(T)]. Calculations was been performed using the augmented correlation-consistent polarized quintuple zeta basis set (aug-cc-pV5Z) for the three atoms. We checked the accuracy of the present ab initio calculations. We have determined, using the new Ne-H 2 potential energy surface, differential cross-sections for the rotational excitation of the H 2 and D 2 molecules in collision with Ne and we have compared them with experimental results of Faubel et al. [M. Faubel, F.A. Gianturco, F. Ragnetti, L.Y. Rusin, F. Sondermann, U. Tappe, J.P. Toennies, J. Chem. Phys. 101 (1994) 8800]. The overall agreement confirms that the new potential energy surface can be used for the simulation of molecular collisions and/or molecular spectroscopy of the van der Waals complex Ne-H 2.

  14. Exchange coupling and magnetic anisotropy in a family of bipyrimidyl radical-bridged dilanthanide complexes: density functional theory and ab initio calculations.

    PubMed

    Zhang, Yi-Quan; Luo, Cheng-Lin; Zhang, Qiang

    2014-05-05

    The origin of the magnetic anisotropy energy barriers in a series of bpym(-) (bpym = 2,2'-bipyrimidine) radical-bridged dilanthanide complexes [(Cp*2Ln)2(μ-bpym)](+) [Cp* = pentamethylcyclopentadienyl; Ln = Gd(III) (1), Tb(III) (2), Dy(III) (3), Ho(III) (4), Er(III) (5)] has been explored using density functional theory (DFT) and ab initio methods. DFT calculations show that the exchange coupling between the two lanthanide ions for each complex is very weak, but the antiferromagnetic Ln-bpym(-) couplings are strong. Ab initio calculations show that the effective energy barrier of 2 or 3 mainly comes from the contribution of a single Tb(III) or Dy(III) fragment, which is only about one third of a single Ln energy barrier. For 4 or 5, however, both of the two Ho(III) or Er(III) fragments contribute to the total energy barrier. Thus, it is insufficient to only increase the magnetic anisotropy energy barrier of a single Ln ion, while enhancing the Ln-bpym(-) couplings is also very important. Copyright © 2014 Wiley Periodicals, Inc.

  15. Substituent Inductive Effects on the Electrochemical Oxidation of Flavonoids Studied by Square Wave Voltammetry and Ab Initio Calculations.

    PubMed

    Arroyo-Currás, Netzahualcóyotl; Rosas-García, Víctor M; Videa, Marcelo

    2016-10-27

    Flavonoids are natural products commonly found in the human diet that show antioxidant, anti-inflammatory and anti-hepatotoxic activities. These nutraceutical properties may relate to the electrochemical activity of flavonoids. To increase the understanding of structure-electrochemical activity relations and the inductive effects that OH substituents have on the redox potential of flavonoids, we carried out square-wave voltammetry experiments and ab initio calculations of eight flavonoids selected following a systematic variation in the number of hydroxyl substituents and their location on the flavan backbone: three flavonols, three anthocyanidins, one anthocyanin and the flavonoid backbone flavone. We compared the effect that the number of -OH groups in the ring B of flavan has on the oxidation potential of the flavonoids considered, finding linear correlations for both flavonols and anthocyanidins ( R 2 = 0.98 ). We analyzed the effects that position and number of -OH substituents have on electron density distributions via ab initio quantum chemical calculations. We present direct correlations between structural features and oxidation potentials that provide a deeper insight into the redox chemistry of these molecules.

  16. Conformational properties and electronic structure of tetrahydrotetrazines studied by photoelectron spectroscopy and quantum chemical calculations

    NASA Astrophysics Data System (ADS)

    Muchall, Heidi M.; Rademacher, Paul

    1997-11-01

    The photoelectron (PE) spectra of tetrahydro-1,2,3,4-tetrazines 1 and 2 and tetrahydro-1,2,4,5-tetrazines 3-5 have been recorded and their conformations have been investigated by ab initio SCF calculations. While v-tetrazine 2 is planar, tetrazines 1 and 3-5 each possess two low-energy conformations, according to ab initio HF and Becke3LYP methods. Attempts to assign ionization potentials to molecular orbitals obtained by semiempirical PM3 calculations indicate that this method is not suited for the compounds studied. Best results were obtained when the ab initio hybrid method Becke3LYP of the density functional theory was employed. Two conformers of 1 and 3-5 are present in the gas phase and their PE spectra are superimposed one upon the other. For v-tetrazine 1, ionizations arising from half-chair and unsymmetrical boat conformers have similar energies and cannot be separated in the PE spectrum. For s-tetrazine 3, on the other hand, the spectrum clearly shows different ionizations of both half-chairs, 3ee and 3ae.

  17. Molecular modeling studies of interactions between sodium polyacrylate polymer and calcite surface

    NASA Astrophysics Data System (ADS)

    Ylikantola, A.; Linnanto, J.; Knuutinen, J.; Oravilahti, A.; Toivakka, M.

    2013-07-01

    The interactions between calcite pigment and sodium polyacrylate dispersing agent, widely used in papermaking as paper coating components, were investigated using classical force field and quantum chemical approaches. The objective was to understand interactions between the calcite surface and sodium polyacrylate polymer at 300 K using molecular dynamics simulations. A quantum mechanical ab initio Hartree-Fock method was also used to obtain detailed information about the sodium polyacrylate polymer structure. The effect of water molecules (moisture) on the interactions was also examined. Calculations showed that molecular weight, branching and the orientation of sodium polyacrylate polymers influence the interactions between the calcite surface and the polymer. The force field applied, and also water molecules, were found to have an impact on all systems studied. Ab initio Hartree-Fock calculations indicated that there are two types of coordination between sodium atoms and carboxylate groups of the sodium polyacrylate polymer, inter- and intra-carboxylate group coordination. In addition, ab initio Hartree-Fock calculations of the structure of the sodium polyacrylate polymer produced important information regarding interactions between the polymers and carboxylated styrene-butadiene latex particles.

  18. Discriminating the structure of exo-2-aminonorbornane using nuclear quadrupole coupling interactions.

    PubMed

    Écija, Patricia; Cocinero, Emilio J; Lesarri, Alberto; Millán, Judith; Basterretxea, Francisco; Fernández, José A; Castaño, Fernando

    2011-04-28

    The intrinsic conformational and structural properties of the bicycle exo-2-aminonorbornane have been probed in a supersonic jet expansion using Fourier-transform microwave (FT-MW) spectroscopy and quantum chemical calculations. The rotational spectrum revealed two different conformers arising from the internal rotation of the amino group, exhibiting small (MHz) hyperfine patterns originated by the (14)N nuclear quadrupole coupling interaction. Complementary ab initio (MP2) and DFT (B3LYP and M05-2X) calculations provided comparative predictions for the structural properties, rotational and centrifugal distortion data, hyperfine parameters, and isomerization barriers. Due to the similarity of the rotational constants, the structural assignment of the observed rotamers and the calculation of the torsion angles of the amino group were based on the conformational dependence of the (14)N nuclear quadrupole coupling hyperfine tensor. In the most stable conformation (ss), the two amino N-H bonds are staggered with respect to the adjacent C-H bond. In the second conformer (st), only one of the N-H bonds is staggered and the other is trans. A third predicted conformer (ts) was not detected, consistent with a predicted conformational relaxation to conformer ss through a low barrier of 5.2 kJ mol(-1).

  19. Prediction of the thermophysical properties of molten salt fast reactor fuel from first-principles

    NASA Astrophysics Data System (ADS)

    Gheribi, A. E.; Corradini, D.; Dewan, L.; Chartrand, P.; Simon, C.; Madden, P. A.; Salanne, M.

    2014-05-01

    Molten fluorides are known to show favourable thermophysical properties which make them good candidate coolants for nuclear fission reactors. Here we investigate the special case of mixtures of lithium fluoride and thorium fluoride, which act both as coolant and as fuel in the molten salt fast reactor concept. By using ab initio parameterised polarisable force fields, we show that it is possible to calculate the whole set of properties (density, thermal expansion, heat capacity, viscosity and thermal conductivity) which are necessary for assessing the heat transfer performance of the melt over the whole range of compositions and temperatures. We then deduce from our calculations several figures of merit which are important in helping the optimisation of the design of molten salt fast reactors.

  20. Lattice QCD and nucleon resonances

    NASA Astrophysics Data System (ADS)

    Edwards, R. G.; Fiebig, H. R.; Fleming, G.; Richards, D. G.; LHP Collaboration

    2004-06-01

    Lattice calculations provide an ab initio means for the study of QCD. Recent progress at understanding the spectrum and structure of nucleons from lattice QCD studies is reviewed. Measurements of the masses of the lightest particles for the lowest spin values are described and related to predictions of the quark model. Measurements of the mass of the first radial excitation of the nucleon, the so-called Roper resonance, obtained using Bayesian statistical analyses, are detailed. The need to perform calculations at realistically light values of the pion mass is emphasised, and the exciting progress at attaining such masses is outlined. The talk concludes with future prospects, emphasising the importance of constructing a basis of interpolating operators that is sensitive to three-quark states, to multi-quark states, and to excited glue.

  1. Doping-induced spin-orbit splitting in Bi-doped ZnO nanowires

    NASA Astrophysics Data System (ADS)

    Aras, Mehmet; Güler-Kılıç, Sümeyra; Kılıç, ćetin

    2017-04-01

    Our predictions, based on density-functional calculations, reveal that surface doping of ZnO nanowires with Bi leads to a linear-in-k splitting of the conduction-band states, through spin-orbit interaction, due to the lowering of the symmetry in the presence of the dopant. This finding implies that spin polarization of the conduction electrons in Bi-doped ZnO nanowires could be controlled with applied electric (as opposed to magnetic) fields, making them candidate materials for spin-orbitronic applications. Our findings also show that the degree of spin splitting could be tuned by adjusting the dopant concentration. Defect calculations and ab initio molecular dynamics simulations indicate that stable doping configurations exhibiting the foregoing linear-in-k splitting could be realized under reasonable thermodynamic conditions.

  2. First Principles Study of Nanodiamond Optical and Electronic Properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Raty, J; Galli, G

    2004-10-21

    Nanometer sized diamond has been found in meteorites, proto-planetary nebulae and interstellar dusts, as well as in residues of detonation and in diamond films. Remarkably, the size distribution of diamond nanoparticles appears to be peaked around 2-5 nm, and to be largely independent of preparation conditions. Using ab-initio calculations, we have shown that in this size range nanodiamond has a fullerene-like surface and, unlike silicon and germanium, exhibits very weak quantum confinement effects. We called these carbon nanoparticles bucky-diamonds: their atomic structure, predicted by simulations, is consistent with many experimental findings. In addition, we carried out calculations of the stabilitymore » of nanodiamond which provided a unifying explanation of its size distribution in extra-terrestrial samples, and in ultra-crystalline diamond films.« less

  3. Optical absorption spectra and g factor of MgO: Mn2+explored by ab initio and semi empirical methods

    NASA Astrophysics Data System (ADS)

    Andreici Eftimie, E.-L.; Avram, C. N.; Brik, M. G.; Avram, N. M.

    2018-02-01

    In this paper we present a methodology for calculations of the optical absorption spectra, ligand field parameters and g factor for the Mn2+ (3d5) ions doped in MgO host crystal. The proposed technique combines two methods: the ab initio multireference (MR) and the semi empirical ligand field (LF) in the framework of the exchange charge model (ECM) respectively. Both methods of calculations are applied to the [MnO6]10-cluster embedded in an extended point charge field of host matrix ligands based on Gellé-Lepetit procedure. The first step of such investigations was the full optimization of the cubic structure of perfect MgO crystal, followed by the structural optimization of the doped of MgO:Mn2+ system, using periodic density functional theory (DFT). The ab initio MR wave functions approaches, such as complete active space self-consistent field (CASSCF), N-electron valence second order perturbation theory (NEVPT2) and spectroscopy oriented configuration interaction (SORCI), are used for the calculations. The scalar relativistic effects have also been taken into account through the second order Douglas-Kroll-Hess (DKH2) procedure. Ab initio ligand field theory (AILFT) allows to extract all LF parameters and spin-orbit coupling constant from such calculations. In addition, the ECM of ligand field theory (LFT) has been used for modelling theoptical absorption spectra. The perturbation theory (PT) was employed for the g factor calculation in the semi empirical LFT. The results of each of the aforementioned types of calculations are discussed and the comparisons between the results obtained and the experimental results show a reasonable agreement, which justifies this new methodology based on the simultaneous use of both methods. This study establishes fundamental principles for the further modelling of larger embedded cluster models of doped metal oxides.

  4. Graphitic nanofilms of zinc-blende materials: ab initio calculations

    NASA Astrophysics Data System (ADS)

    Hu, San-Lue; Zhao, Li; Li, Yan-Li

    2017-12-01

    Ab initio calculations on ultra-thin nanofilms of 25 kinds of zinc-blende semiconductors demonstrate their stable geometry structures growth along (1 1 1) surface. Our results show that the (1 1 1) surfaces of 9 kinds of zinc-blende semiconductors can transform into a stable graphitelike structure within a certain thickness. The tensile strain effect on the thickness of graphitic films is not obvious. The band gaps of stable graphitic films can be tuned over a wide range by epitaxial tensile strain, which is important for applications in microelectronic devices, solar cells and light-emitting diodes.

  5. HeI photoelectron spectroscopic studies on the electronic structure of alkyl nitrosamines

    NASA Astrophysics Data System (ADS)

    Jiang, Peng; Qian, Ximei; Li, Chunhui; Qiao, Chunhua; Wang, Dianxun

    1997-10-01

    HeI photoelectron spectroscopic (PES) studies on the electronic structure of alkyl nitrosamines R 2N 2O (R = CH 3-, CH 3CH 2-, and CH 3CH 2CH 2-) are reported. The assignment of the PES bands for this series of compounds has been made with the aid of the band shapes, the band intensity and ab initio SCF MO calculations based on the 631 ∗ G basis sets. Both PES experiment and the ab initio SCF MO calculations show that the detoxification ability of nitrosamine with longer alkyl chain is stronger.

  6. Thermal transport in nanocrystalline Si and SiGe by ab initio based Monte Carlo simulation.

    PubMed

    Yang, Lina; Minnich, Austin J

    2017-03-14

    Nanocrystalline thermoelectric materials based on Si have long been of interest because Si is earth-abundant, inexpensive, and non-toxic. However, a poor understanding of phonon grain boundary scattering and its effect on thermal conductivity has impeded efforts to improve the thermoelectric figure of merit. Here, we report an ab-initio based computational study of thermal transport in nanocrystalline Si-based materials using a variance-reduced Monte Carlo method with the full phonon dispersion and intrinsic lifetimes from first-principles as input. By fitting the transmission profile of grain boundaries, we obtain excellent agreement with experimental thermal conductivity of nanocrystalline Si [Wang et al. Nano Letters 11, 2206 (2011)]. Based on these calculations, we examine phonon transport in nanocrystalline SiGe alloys with ab-initio electron-phonon scattering rates. Our calculations show that low energy phonons still transport substantial amounts of heat in these materials, despite scattering by electron-phonon interactions, due to the high transmission of phonons at grain boundaries, and thus improvements in ZT are still possible by disrupting these modes. This work demonstrates the important insights into phonon transport that can be obtained using ab-initio based Monte Carlo simulations in complex nanostructured materials.

  7. Thermal transport in nanocrystalline Si and SiGe by ab initio based Monte Carlo simulation

    PubMed Central

    Yang, Lina; Minnich, Austin J.

    2017-01-01

    Nanocrystalline thermoelectric materials based on Si have long been of interest because Si is earth-abundant, inexpensive, and non-toxic. However, a poor understanding of phonon grain boundary scattering and its effect on thermal conductivity has impeded efforts to improve the thermoelectric figure of merit. Here, we report an ab-initio based computational study of thermal transport in nanocrystalline Si-based materials using a variance-reduced Monte Carlo method with the full phonon dispersion and intrinsic lifetimes from first-principles as input. By fitting the transmission profile of grain boundaries, we obtain excellent agreement with experimental thermal conductivity of nanocrystalline Si [Wang et al. Nano Letters 11, 2206 (2011)]. Based on these calculations, we examine phonon transport in nanocrystalline SiGe alloys with ab-initio electron-phonon scattering rates. Our calculations show that low energy phonons still transport substantial amounts of heat in these materials, despite scattering by electron-phonon interactions, due to the high transmission of phonons at grain boundaries, and thus improvements in ZT are still possible by disrupting these modes. This work demonstrates the important insights into phonon transport that can be obtained using ab-initio based Monte Carlo simulations in complex nanostructured materials. PMID:28290484

  8. Thermal, electronic and ductile properties of lead-chalcogenides under pressure.

    PubMed

    Gupta, Dinesh C; Bhat, Idris Hamid

    2013-09-01

    Fully relativistic pseudo-potential ab-initio calculations have been performed to investigate the high pressure phase transition, elastic and electronic properties of lead-chalcogenides including the less known lead polonium. The calculated ground state parameters, for the rock-salt structure show good agreement with the experimental data. PbS, PbSe, PbTe and PbPo undergo a first-order phase transition from rock-salt to CsCl structure at 19.4, 15.5, 11.5 and 7.3 GPa, respectively. The elastic properties have also been calculated. The calculations successfully predicted the location of the band gap at L-point of Brillouin zone and the band gap for each material at ambient pressure. It is observed that unlike other lead-chalcogenides, PbPo is semi-metal at ambient pressure. The pressure variation of the energy gap indicates that these materials metalize under pressure. The electronic structures of these materials have been computed in parent as well as in high pressure B2 phase.

  9. Ab Initio Computations and Active Thermochemical Tables Hand in Hand: Heats of Formation of Core Combustion Species.

    PubMed

    Klippenstein, Stephen J; Harding, Lawrence B; Ruscic, Branko

    2017-09-07

    The fidelity of combustion simulations is strongly dependent on the accuracy of the underlying thermochemical properties for the core combustion species that arise as intermediates and products in the chemical conversion of most fuels. High level theoretical evaluations are coupled with a wide-ranging implementation of the Active Thermochemical Tables (ATcT) approach to obtain well-validated high fidelity predictions for the 0 K heat of formation for a large set of core combustion species. In particular, high level ab initio electronic structure based predictions are obtained for a set of 348 C, N, O, and H containing species, which corresponds to essentially all core combustion species with 34 or fewer electrons. The theoretical analyses incorporate various high level corrections to base CCSD(T)/cc-pVnZ analyses (n = T or Q) using H 2 , CH 4 , H 2 O, and NH 3 as references. Corrections for the complete-basis-set limit, higher-order excitations, anharmonic zero-point energy, core-valence, relativistic, and diagonal Born-Oppenheimer effects are ordered in decreasing importance. Independent ATcT values are presented for a subset of 150 species. The accuracy of the theoretical predictions is explored through (i) examination of the magnitude of the various corrections, (ii) comparisons with other high level calculations, and (iii) through comparison with the ATcT values. The estimated 2σ uncertainties of the three methods devised here, ANL0, ANL0-F12, and ANL1, are in the range of ±1.0-1.5 kJ/mol for single-reference and moderately multireference species, for which the calculated higher order excitations are 5 kJ/mol or less. In addition to providing valuable references for combustion simulations, the subsequent inclusion of the current theoretical results into the ATcT thermochemical network is expected to significantly improve the thermochemical knowledge base for less-well studied species.

  10. Ab Initio Computations and Active Thermochemical Tables Hand in Hand: Heats of Formation of Core Combustion Species

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klippenstein, Stephen J.; Harding, Lawrence B.; Ruscic, Branko

    Here, the fidelity of combustion simulations is strongly dependent on the accuracy of the underlying thermochemical properties for the core combustion species that arise as intermediates and products in the chemical conversion of most fuels. High level theoretical evaluations are coupled with a wide-ranging implementation of the Active Thermochemical Tables (ATcT) approach to obtain well-validated high fidelity predictions for the 0 K heat of formation for a large set of core combustion species. In particular, high level ab initio electronic structure based predictions are obtained for a set of 348 C, N, O, and H containing species, which corresponds tomore » essentially all core combustion species with 34 or fewer electrons. The theoretical analyses incorporate various high level corrections to base CCSD(T)/cc-pVnZ analyses (n = T or Q) using H 2, CH 4, H 2O, and NH 3 as references. Corrections for the complete-basis-set limit, higher-order excitations, anharmonic zeropoint energy, core–valence, relativistic, and diagonal Born–Oppenheimer effects are ordered in decreasing importance. Independent ATcT values are presented for a subset of 150 species. The accuracy of the theoretical predictions is explored through (i) examination of the magnitude of the various corrections, (ii) comparisons with other high level calculations, and (iii) through comparison with the ATcT values. The estimated 2σ uncertainties of the three methods devised here, ANL0, ANL0-F12, and ANL1, are in the range of ±1.0–1.5 kJ/mol for single-reference and moderately multireference species, for which the calculated higher order excitations are 5 kJ/mol or less. In addition to providing valuable references for combustion simulations, the subsequent inclusion of the current theoretical results into the ATcT thermochemical network is expected to significantly improve the thermochemical knowledge base for less-well studied species.« less

  11. Ab Initio Computations and Active Thermochemical Tables Hand in Hand: Heats of Formation of Core Combustion Species

    DOE PAGES

    Klippenstein, Stephen J.; Harding, Lawrence B.; Ruscic, Branko

    2017-07-31

    Here, the fidelity of combustion simulations is strongly dependent on the accuracy of the underlying thermochemical properties for the core combustion species that arise as intermediates and products in the chemical conversion of most fuels. High level theoretical evaluations are coupled with a wide-ranging implementation of the Active Thermochemical Tables (ATcT) approach to obtain well-validated high fidelity predictions for the 0 K heat of formation for a large set of core combustion species. In particular, high level ab initio electronic structure based predictions are obtained for a set of 348 C, N, O, and H containing species, which corresponds tomore » essentially all core combustion species with 34 or fewer electrons. The theoretical analyses incorporate various high level corrections to base CCSD(T)/cc-pVnZ analyses (n = T or Q) using H 2, CH 4, H 2O, and NH 3 as references. Corrections for the complete-basis-set limit, higher-order excitations, anharmonic zeropoint energy, core–valence, relativistic, and diagonal Born–Oppenheimer effects are ordered in decreasing importance. Independent ATcT values are presented for a subset of 150 species. The accuracy of the theoretical predictions is explored through (i) examination of the magnitude of the various corrections, (ii) comparisons with other high level calculations, and (iii) through comparison with the ATcT values. The estimated 2σ uncertainties of the three methods devised here, ANL0, ANL0-F12, and ANL1, are in the range of ±1.0–1.5 kJ/mol for single-reference and moderately multireference species, for which the calculated higher order excitations are 5 kJ/mol or less. In addition to providing valuable references for combustion simulations, the subsequent inclusion of the current theoretical results into the ATcT thermochemical network is expected to significantly improve the thermochemical knowledge base for less-well studied species.« less

  12. Calculations on the rate of the ion-molecule reaction between NH3(+) and H2

    NASA Technical Reports Server (NTRS)

    Herbst, Eric; Defrees, D. J.; Talbi, D.; Pauzat, F.; Koch, W.

    1991-01-01

    The rate coefficient for the ion-molecule reaction NH3(+) + H2 yields NH4(+) + H has been calculated as a function of temperature with the use of the statistical phase space approach. The potential surface and reaction complex and transition state parameters used in the calculation have been taken from ab initio quantum chemical calculations. The calculated rate coefficient has been found to mimic the unusual temperature dependence measured in the laboratory, in which the rate coefficient decreases with decreasing temperature until 50-100 K and then increases at still lower temperatures. Quantitative agreement between experimental and theoretical rate coefficients is satisfactory given the uncertainties in the ab initio results and in the dynamics calculations. The rate coefficient for the unusual three-body process NH3(+) + H2 + He yields NH4(+) + H + He has also been calculated as a function of temperature and the result found to agree well with a previous laboratory determination.

  13. Discovery of the Electronic Spectra of Hps and Dps

    NASA Astrophysics Data System (ADS)

    Grimminger, Robert A.; Wei, Jie; Ellis, Blaine; Clouthier, Dennis J.; Wang, Zhong; Sears, Trevor

    2009-06-01

    The hitherto unknown electronic spectrum of the closed shell transient molecule HPS has been observed in the 685 - 846 nm region by laser-induced fluorescence and single vibronic level emission techniques. HPS (and DPS) were produced in a pulsed electric discharge jet using a precursor mixture of 3% PH_3 and 1% H_2S (or PD_3 and D_2S) in high pressure argon. The weak set of observed bands are assigned to the à ^1A^''-X˜ ^1A^' electronic transition on the basis of chemical evidence, isotope shifts and the correspondence of the vibrational frequencies, excitation energy, and band contours with predictions based on our own high level ab initio calculations. Theory predicts that the HPS bond angle decreases on electronic excitation, contrary to expectations based on Walsh diagrams.

  14. Growth, structure, and properties of epitaxial thin films of first-principles predicted multiferroic Bi2FeCrO6

    NASA Astrophysics Data System (ADS)

    Nechache, Riad; Harnagea, Catalin; Pignolet, Alain; Normandin, François; Veres, Teodor; Carignan, Louis-Philippe; Ménard, David

    2006-09-01

    The authors report the structural and physical properties of epitaxial Bi2FeCrO6 thin films on epitaxial SrRuO3 grown on (100)-oriented SrTiO3 substrates by pulsed laser ablation. The 300nm thick films exhibit both ferroelectricity and magnetism at room temperature with a maximum dielectric polarization of 2.8μC /cm2 at Emax=82kV/cm and a saturated magnetization of 20emu/cm3 (corresponding to ˜0.26μB per rhombohedral unit cell), with coercive fields below 100Oe. The results confirm the predictions made using ab initio calculations about the existence of multiferroic properties in Bi2FeCrO6.

  15. Potential energy function for CH3+CH3 ⇆ C2H6: Attributes of the minimum energy path

    NASA Astrophysics Data System (ADS)

    Robertson, S. H.; Wardlaw, D. M.; Hirst, D. M.

    1993-11-01

    The region of the potential energy surface for the title reaction in the vicinity of its minimum energy path has been predicted from the analysis of ab initio electronic energy calculations. The ab initio procedure employs a 6-31G** basis set and a configuration interaction calculation which uses the orbitals obtained in a generalized valence bond calculation. Calculated equilibrium properties of ethane and of isolated methyl radical are compared to existing theoretical and experimental results. The reaction coordinate is represented by the carbon-carbon interatomic distance. The following attributes are reported as a function of this distance and fit to functional forms which smoothly interpolate between reactant and product values of each attribute: the minimum energy path potential, the minimum energy path geometry, normal mode frequencies for vibrational motion orthogonal to the reaction coordinate, a torsional potential, and a fundamental anharmonic frequency for local mode, out-of-plane CH3 bending (umbrella motion). The best representation is provided by a three-parameter modified Morse function for the minimum energy path potential and a two-parameter hyperbolic tangent switching function for all other attributes. A poorer but simpler representation, which may be satisfactory for selected applications, is provided by a standard Morse function and a one-parameter exponential switching function. Previous applications of the exponential switching function to estimate the reaction coordinate dependence of the frequencies and geometry of this system have assumed the same value of the range parameter α for each property and have taken α to be less than or equal to the ``standard'' value of 1.0 Å-1. Based on the present analysis this is incorrect: The α values depend on the property and range from ˜1.2 to ˜1.8 Å-1.

  16. Electronic structure and metallization of cubic GdH{sub 3} under pressure: Ab initio many-body GW calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kong, Bo, E-mail: kong79@yeah.net, E-mail: yachao.zhang@pku.edu.cn; Guizhou Provincial Key Laboratory of Computational Nano-Material Science, Guizhou Education University, Guiyang 550018; Zhang, Yachao, E-mail: kong79@yeah.net, E-mail: yachao.zhang@pku.edu.cn

    The electronic structures of the cubic GdH{sub 3} are extensively investigated using the ab initio many-body GW calculations treating the Gd 4f electrons either in the core (4f-core) or in the valence states (4f-val). Different degrees of quasiparticle (QP) self-consistent calculations with the different starting points are used to correct the failures of the GGA/GGA + U/HSE03 calculations. In the 4f-core case, GGA + G{sub 0}W{sub 0} calculations give a fundamental band gap of 1.72 eV, while GGA+ GW{sub 0} or GGA + GW calculations present a larger band gap. In the 4f-val case, the nonlocal exchange-correlation (xc) functional HSE03 can account much better for the strong localizationmore » of the 4f states than the semilocal or Hubbard U corrected xc functional in the Kohn–Sham equation. We show that the fundamental gap of the antiferromagnetic (AFM) or ferromagnetic (FM) GdH{sub 3} can be opened up by solving the QP equation with improved starting point of eigenvalues and wave functions given by HSE03. The HSE03 + G{sub 0}W{sub 0} calculations present a fundamental band gap of 2.73 eV in the AFM configuration, and the results of the corresponding GW{sub 0} and GW calculations are 2.89 and 3.03 eV, respectively. In general, for the cubic structure, the fundamental gap from G{sub 0}W{sub 0} calculations in the 4f-core case is the closest to the real result. By G{sub 0}W{sub 0} calculations in the 4f-core case, we find that H or Gd defects can strongly affect the band structure, especially the H defects. We explain the mechanism in terms of the possible electron correlation on the hydrogen site. Under compression, the insulator-to-metal transition in the cubic GdH{sub 3} occurs around 40 GPa, which might be a satisfied prediction.« less

  17. Interpolating moving least-squares methods for fitting potential energy surfaces: using classical trajectories to explore configuration space.

    PubMed

    Dawes, Richard; Passalacqua, Alessio; Wagner, Albert F; Sewell, Thomas D; Minkoff, Michael; Thompson, Donald L

    2009-04-14

    We develop two approaches for growing a fitted potential energy surface (PES) by the interpolating moving least-squares (IMLS) technique using classical trajectories. We illustrate both approaches by calculating nitrous acid (HONO) cis-->trans isomerization trajectories under the control of ab initio forces from low-level HF/cc-pVDZ electronic structure calculations. In this illustrative example, as few as 300 ab initio energy/gradient calculations are required to converge the isomerization rate constant at a fixed energy to approximately 10%. Neither approach requires any preliminary electronic structure calculations or initial approximate representation of the PES (beyond information required for trajectory initial conditions). Hessians are not required. Both approaches rely on the fitting error estimation properties of IMLS fits. The first approach, called IMLS-accelerated direct dynamics, propagates individual trajectories directly with no preliminary exploratory trajectories. The PES is grown "on the fly" with the computation of new ab initio data only when a fitting error estimate exceeds a prescribed tight tolerance. The second approach, called dynamics-driven IMLS fitting, uses relatively inexpensive exploratory trajectories to both determine and fit the dynamically accessible configuration space. Once exploratory trajectories no longer find configurations with fitting error estimates higher than the designated accuracy, the IMLS fit is considered to be complete and usable in classical trajectory calculations or other applications.

  18. Pseudoracemic amino acid complexes: blind predictions for flexible two-component crystals.

    PubMed

    Görbitz, Carl Henrik; Dalhus, Bjørn; Day, Graeme M

    2010-08-14

    Ab initio prediction of the crystal packing in complexes between two flexible molecules is a particularly challenging computational chemistry problem. In this work we present results of single crystal structure determinations as well as theoretical predictions for three 1 ratio 1 complexes between hydrophobic l- and d-amino acids (pseudoracemates), known from previous crystallographic work to form structures with one of two alternative hydrogen bonding arrangements. These are accurately reproduced in the theoretical predictions together with a series of patterns that have never been observed experimentally. In this bewildering forest of potential polymorphs, hydrogen bonding arrangements and molecular conformations, the theoretical predictions succeeded, for all three complexes, in finding the correct hydrogen bonding pattern. For two of the complexes, the calculations also reproduce the exact space group and side chain orientations in the best ranked predicted structure. This includes one complex for which the observed crystal packing clearly contradicted previous experience based on experimental data for a substantial number of related amino acid complexes. The results highlight the significant recent advances that have been made in computational methods for crystal structure prediction.

  19. Magnetic properties of vanadium doped CdTe: Ab initio calculations

    NASA Astrophysics Data System (ADS)

    Goumrhar, F.; Bahmad, L.; Mounkachi, O.; Benyoussef, A.

    2017-04-01

    In this paper, we are applying the ab initio calculations to study the magnetic properties of vanadium doped CdTe. This study is based on the Korringa-Kohn-Rostoker method (KKR) combined with the coherent potential approximation (CPA), within the local density approximation (LDA). This method is called KKR-CPA-LDA. We have calculated and plotted the density of states (DOS) in the energy diagram for different concentrations of dopants. We have also investigated the magnetic and half-metallic properties of this compound and shown the mechanism of exchange interaction. Moreover, we have estimated the Curie temperature Tc for different concentrations. Finally, we have shown how the crystal field and the exchange splittings vary as a function of the concentrations.

  20. Ab initio modeling of steady-state and time-dependent charge transport in hole-only α-NPD devices

    NASA Astrophysics Data System (ADS)

    Liu, Feilong; Massé, Andrea; Friederich, Pascal; Symalla, Franz; Nitsche, Robert; Wenzel, Wolfgang; Coehoorn, Reinder; Bobbert, Peter A.

    2016-12-01

    We present an ab initio modeling study of steady-state and time-dependent charge transport in hole-only devices of the amorphous molecular semiconductor α-NPD [N ,N'-Di(1 -naphthyl)-N ,N'-diphenyl-(1 ,1'-biphenyl)-4 ,4'-diamine] . The study is based on the microscopic information obtained from atomistic simulations of the morphology and density functional theory calculations of the molecular hole energies, reorganization energies, and transfer integrals. Using stochastic approaches, the microscopic information obtained in simulation boxes at a length scale of ˜10 nm is expanded and employed in one-dimensional (1D) and three-dimensional (3D) master-equation modeling of the charge transport at the device scale of ˜100 nm. Without any fit parameter, predicted current density-voltage and impedance spectroscopy data obtained with the 3D modeling are in very good agreement with measured data on devices with different α-NPD layer thicknesses in a wide range of temperatures, bias voltages, and frequencies. Similarly good results are obtained with the computationally much more efficient 1D modeling after optimizing a hopping prefactor.

  1. Ab initio molecular dynamics simulation of LiBr association in water

    NASA Astrophysics Data System (ADS)

    Izvekov, Sergei; Philpott, Michael R.

    2000-12-01

    A computationally economical scheme which unifies the density functional description of an ionic solute and the classical description of a solvent was developed. The density functional part of the scheme comprises Car-Parrinello and related formalisms. The substantial saving in the computer time is achieved by performing the ab initio molecular dynamics of the solute electronic structure in a relatively small basis set constructed from lowest energy Kohn-Sham orbitals calculated for a single anion in vacuum, instead of using plane wave basis. The methodology permits simulation of an ionic solution for longer time scales while keeping accuracy in the prediction of the solute electronic structure. As an example the association of the Li+-Br- ion-pair system in water is studied. The results of the combined molecular dynamics simulation are compared with that obtained from the classical simulation with ion-ion interaction described by the pair potential of Born-Huggins-Mayer type. The comparison reveals an important role played by the polarization of the Br- ion in the dynamics of ion pair association.

  2. Ab initio Study of Ag-Based Fluoroperovskite AgMF3 (M = Co and Ni) Compounds

    NASA Astrophysics Data System (ADS)

    Mubarak, A. A.

    2018-01-01

    Ab initio calculations of Ag-based fluoroperovskite AgMF3 (M = Co and Ni) compounds are investigated using the full-potential linearized augmented plane wave method. Wien2k and BoltzTrap codes are used to calculate the different physical properties. The structural parameters of the present compounds are within reasonable agreement with previous calculations. This study shows that AgCoF3 and AgNiF3 are anisotropic, ductile, mechanically and thermodynamically stable compounds, where AgCoF3 is found to be stiffer and less compressible than AgNiF3. The spin-polarized electronic band structure illustrates that AgCoF3 is metallic, while AgNiF3 is a semiconductor with indirect (M-D) band gap energy of 0.43 eV. The bonding force between atoms is found to be mainly ionic with some covalent nature. The total magnetic moment of AgCoF3 (3.04 μ B) is found to be higher than that calculated for AgNiF3 (2.00 μ B). Using the magnetic susceptibility calculations, AgCoF3 is classified as antiferromagnetic, whereas AgNiF3 is a ferromagnetic compound. The calculated static refractive index of AgCoF3 (3.85) and AgNiF3 (3.60) is inversely proportional with the energy band gap. Suitable applications are predicted for AgCoF3 and AgNiF3 based on their absorption and reflection properties. Furthermore, beneficial thermoelectric applications are expected for the present compounds due to their large Seebeck coefficient ( S_{{{{AgCoF}}_{ 3} }} = 2.92 × 103 μ {V/K} {and} S_{{{{AgNiF}}3 }} = 2.84 × 103 μ {V/K} ) and their thermoelectric power factor with respect to relaxation time ( S2 σ /t_{{AgNiF3 }} = 1.11 × 109 {W/K}^{ 2} {and} S2 σ /t_{{AgNiF3 }} = 1.28 × 10^{11} {W/K}^{ 2} ).

  3. A potential energy surface for the process H2 + H2O yielding H + H + H2O - Ab initio calculations and analytical representation

    NASA Technical Reports Server (NTRS)

    Schwenke, David W.; Walch, Stephen P.; Taylor, Peter R.

    1991-01-01

    Extensive ab initio calculations on the ground state potential energy surface of H2 + H2O were performed using a large contracted Gaussian basis set and a high level of correlation treatment. An analytical representation of the potential energy surface was then obtained which reproduces the calculated energies with an overall root-mean-square error of only 0.64 mEh. The analytic representation explicitly includes all nine internal degrees of freedom and is also well behaved as the H2 dissociates; it thus can be used to study collision-induced dissociation or recombination of H2. The strategy used to minimize the number of energy calculations is discussed, as well as other advantages of the present method for determining the analytical representation.

  4. Ab initio calculations on the initial stages of GaN and ZnO growth on lattice-matched ScAlMgO4 (0001) substrates

    NASA Astrophysics Data System (ADS)

    Guo, Yao; Wang, Yanfei; Li, Chengbo; Li, Xianchang; Niu, Yongsheng; Hou, Shaogang

    2016-12-01

    The initial stages of GaN and ZnO epitaxial growth on lattice-matched ScAlMgO4 substrates have been investigated by ab initio calculation. The geometrical parameters and electronic structure of ScAlMgO4 bulk and (0001) surface have been investigated by density-functional first-principles study. The effects of different surface terminations have been examined through surface energy and relaxation calculations. The O-Mg-O termination is more favorable than other terminations by comparing the calculated surface energies. It should be accepted as the appropriate surface structure in subsequent calculation. The initial stages of GaN and ZnO epitaxial growths are discussed based on the adsorption and diffusion of the adatoms on reconstructed ScAlMgO4 (0001) surface. According to theoretical characterizations, N adatom on the surface is more stable than Ga. O adatom is more favorable than Zn. These observations lead to the formation of GaN and ZnO epilayer and explain experimentally-confirmed in-plane alignment mechanisms of GaN and ZnO on ScAlMgO4 substrates. Furthermore, the polarity of GaN and ZnO surfaces on ScAlMgO4 (0001) at the initial growth stage have been explored by ab initio calculation. Theoretical studies indicate that the predominant growths of Ga-polar GaN and Zn-polar ZnO are determined by the initial growth stage.

  5. Ab initio molecular dynamics with nuclear quantum effects at classical cost: Ring polymer contraction for density functional theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marsalek, Ondrej; Markland, Thomas E., E-mail: tmarkland@stanford.edu

    Path integral molecular dynamics simulations, combined with an ab initio evaluation of interactions using electronic structure theory, incorporate the quantum mechanical nature of both the electrons and nuclei, which are essential to accurately describe systems containing light nuclei. However, path integral simulations have traditionally required a computational cost around two orders of magnitude greater than treating the nuclei classically, making them prohibitively costly for most applications. Here we show that the cost of path integral simulations can be dramatically reduced by extending our ring polymer contraction approach to ab initio molecular dynamics simulations. By using density functional tight binding asmore » a reference system, we show that our ring polymer contraction scheme gives rapid and systematic convergence to the full path integral density functional theory result. We demonstrate the efficiency of this approach in ab initio simulations of liquid water and the reactive protonated and deprotonated water dimer systems. We find that the vast majority of the nuclear quantum effects are accurately captured using contraction to just the ring polymer centroid, which requires the same number of density functional theory calculations as a classical simulation. Combined with a multiple time step scheme using the same reference system, which allows the time step to be increased, this approach is as fast as a typical classical ab initio molecular dynamics simulation and 35× faster than a full path integral calculation, while still exactly including the quantum sampling of nuclei. This development thus offers a route to routinely include nuclear quantum effects in ab initio molecular dynamics simulations at negligible computational cost.« less

  6. Thermodynamic integration based on classical atomistic simulations to determine the Gibbs energy of condensed phases: Calculation of the aluminum-zirconium system

    NASA Astrophysics Data System (ADS)

    Harvey, J.-P.; Gheribi, A. E.; Chartrand, P.

    2012-12-01

    In this work, an in silico procedure to generate a fully coherent set of thermodynamic properties obtained from classical molecular dynamics (MD) and Monte Carlo (MC) simulations is proposed. The procedure is applied to the Al-Zr system because of its importance in the development of high strength Al-Li alloys and of bulk metallic glasses. Cohesive energies of the studied condensed phases of the Al-Zr system (the liquid phase, the fcc solid solution, and various orthorhombic stoichiometric compounds) are calculated using the modified embedded atom model (MEAM) in the second-nearest-neighbor formalism (2NN). The Al-Zr MEAM-2NN potential is parameterized in this work using ab initio and experimental data found in the literature for the AlZr3-L12 structure, while its predictive ability is confirmed for several other solid structures and for the liquid phase. The thermodynamic integration (TI) method is implemented in a general MC algorithm in order to evaluate the absolute Gibbs energy of the liquid and the fcc solutions. The entropy of mixing calculated from the TI method, combined to the enthalpy of mixing and the heat capacity data generated from MD/MC simulations performed in the isobaric-isothermal/canonical (NPT/NVT) ensembles are used to parameterize the Gibbs energy function of all the condensed phases in the Al-rich side of the Al-Zr system in a CALculation of PHAse Diagrams (CALPHAD) approach. The modified quasichemical model in the pair approximation (MQMPA) and the cluster variation method (CVM) in the tetrahedron approximation are used to define the Gibbs energy of the liquid and the fcc solid solution respectively for their entire range of composition. Thermodynamic and structural data generated from our MD/MC simulations are used as input data to parameterize these thermodynamic models. A detailed analysis of the validity and transferability of the Al-Zr MEAM-2NN potential is presented throughout our work by comparing the predicted properties obtained from this formalism with available ab initio and experimental data for both liquid and solid phases.

  7. DFT-based ab initio MD simulation of the ionic conduction in doped ZrO₂ systems under epitaxial strain.

    PubMed

    Oka, M; Kamisaka, H; Fukumura, T; Hasegawa, T

    2015-11-21

    The oxygen ionic conduction in ZrO2 systems under tensile epitaxial strain was investigated by performing ab initio molecular dynamics (MD) calculations based on density functional theory (DFT) to elucidate the essential factors in the colossal ionic conductivity observed in the yttria stabilized ZrO2 (YSZ)/SrTiO3 heterostructure. Three factors were evaluated: lattice strain, oxygen vacancies, and dopants. Phonon calculations based on density functional perturbation theory (DFPT) were used to obtain the most stable structure for nondoped ZrO2 under 7% tensile strain along the a- and b-axes. This structure has the space group Pbcn, which is entirely different from that of cubic ZrO2, suggesting that previous ab initio MD calculations assuming cubic ZrO2 may have overestimated the ionic conductivity due to relaxation from the initial structure to the stable structure (Pbcn). Our MD calculations revealed that the ionic conductivity is enhanced only when tensile strain and oxygen vacancies are incorporated, although the presently obtained diffusion constant is far below the range for the colossal ionic conduction experimentally observed. The enhanced ionic conductivity is due to the combined effects of oxygen sublattice formation induced by strain and deformation of this sublattice by oxygen vacancies.

  8. Magnetic Transitions in Iron Porphyrin Halides by Inelastic Neutron Scattering and Ab-initio Studies of Zero-Field Splittings

    DOE PAGES

    Stavretis, Shelby E.; Atanasov, Mihail; Podlesnyak, Andrey A.; ...

    2015-10-02

    Zero-field splitting (ZFS) parameters of nondeuterated metalloporphyrins [Fe(TPP)X] (X = F, Br, I; H 2TPP = tetraphenylporphyrin) are determined by inelastic neutron scattering (INS). The ZFS values are D = 4.49(9) cm –1 for tetragonal polycrystalline [Fe(TPP)F], and D = 8.8(2) cm –1, E = 0.1(2) cm –1 and D = 13.4(6) cm –1, E = 0.3(6) cm –1 for monoclinic polycrystalline [Fe(TPP)Br] and [Fe(TPP)I], respectively. Along with our recent report of the ZFS value of D = 6.33(8) cm –1 for tetragonal polycrystalline [Fe(TPP)Cl], these data provide a rare, complete determination of ZFS parameters in a metalloporphyrin halide series.more » The electronic structure of [Fe(TPP)X] (X = F, Cl, Br, I) has been studied by multireference ab initio methods: the complete active space self-consistent field (CASSCF) and the N-electron valence perturbation theory (NEVPT2) with the aim of exploring the origin of the large and positive zero-field splitting D of the 6A 1 ground state. D was calculated from wave functions of the electronic multiplets spanned by the d 5 configuration of Fe(III) along with spin–orbit coupling accounted for by quasi degenerate perturbation theory. Results reproduce trends of D from inelastic neutron scattering data increasing in the order from F, Cl, Br, to I. A mapping of energy eigenvalues and eigenfunctions of the S = 3/2 excited states on ligand field theory was used to characterize the σ- and π-antibonding effects decreasing from F to I. This is in agreement with similar results deduced from ab initio calculations on CrX 6 3- complexes and also with the spectrochemical series showing a decrease of the ligand field in the same directions. A correlation is found between the increase of D and decrease of the π- and σ-antibonding energies e λ X (λ = σ, π) in the series from X = F to I. Analysis of this correlation using second-order perturbation theory expressions in terms of angular overlap parameters rationalizes the experimentally deduced trend. Furthermore, D parameters from CASSCF and NEVPT2 results have been calibrated against those from the INS data, yielding a predictive power of these approaches. Methods to improve the quantitative agreement between ab initio calculated and experimental D and spectroscopic transitions for high-spin Fe(III) complexes are proposed.« less

  9. Magnetic Transitions in Iron Porphyrin Halides by Inelastic Neutron Scattering and Ab Initio Studies of Zero-Field Splittings.

    PubMed

    Stavretis, Shelby E; Atanasov, Mihail; Podlesnyak, Andrey A; Hunter, Seth C; Neese, Frank; Xue, Zi-Ling

    2015-10-19

    Zero-field splitting (ZFS) parameters of nondeuterated metalloporphyrins [Fe(TPP)X] (X = F, Br, I; H₂TPP = tetraphenylporphyrin) have been directly determined by inelastic neutron scattering (INS). The ZFS values are D = 4.49(9) cm⁻¹ for tetragonal polycrystalline [Fe(TPP)F], and D = 8.8(2) cm⁻¹, E = 0.1(2) cm⁻¹ and D = 13.4(6) cm⁻¹, E = 0.3(6) cm⁻¹ for monoclinic polycrystalline [Fe(TPP)Br] and [Fe(TPP)I], respectively. Along with our recent report of the ZFS value of D = 6.33(8) cm⁻¹ for tetragonal polycrystalline [Fe(TPP)Cl], these data provide a rare, complete determination of ZFS parameters in a metalloporphyrin halide series. The electronic structure of [Fe(TPP)X] (X = F, Cl, Br, I) has been studied by multireference ab initio methods: the complete active space self-consistent field (CASSCF) and the N-electron valence perturbation theory (NEVPT2) with the aim of exploring the origin of the large and positive zero-field splitting D of the ⁶A₁ ground state. D was calculated from wave functions of the electronic multiplets spanned by the d⁵ configuration of Fe(III) along with spin–orbit coupling accounted for by quasi degenerate perturbation theory. Results reproduce trends of D from inelastic neutron scattering data increasing in the order from F, Cl, Br, to I. A mapping of energy eigenvalues and eigenfunctions of the S = 3/2 excited states on ligand field theory was used to characterize the σ- and π-antibonding effects decreasing from F to I. This is in agreement with similar results deduced from ab initio calculations on CrX₆³⁻ complexes and also with the spectrochemical series showing a decrease of the ligand field in the same directions. A correlation is found between the increase of D and decrease of the π- and σ-antibonding energies e(λ)(X) (λ = σ, π) in the series from X = F to I. Analysis of this correlation using second-order perturbation theory expressions in terms of angular overlap parameters rationalizes the experimentally deduced trend. D parameters from CASSCF and NEVPT2 results have been calibrated against those from the INS data, yielding a predictive power of these approaches. Methods to improve the quantitative agreement between ab initio calculated and experimental D and spectroscopic transitions for high-spin Fe(III) complexes are proposed.

  10. SGO: A fast engine for ab initio atomic structure global optimization by differential evolution

    NASA Astrophysics Data System (ADS)

    Chen, Zhanghui; Jia, Weile; Jiang, Xiangwei; Li, Shu-Shen; Wang, Lin-Wang

    2017-10-01

    As the high throughout calculations and material genome approaches become more and more popular in material science, the search for optimal ways to predict atomic global minimum structure is a high research priority. This paper presents a fast method for global search of atomic structures at ab initio level. The structures global optimization (SGO) engine consists of a high-efficiency differential evolution algorithm, accelerated local relaxation methods and a plane-wave density functional theory code running on GPU machines. The purpose is to show what can be achieved by combining the superior algorithms at the different levels of the searching scheme. SGO can search the global-minimum configurations of crystals, two-dimensional materials and quantum clusters without prior symmetry restriction in a relatively short time (half or several hours for systems with less than 25 atoms), thus making such a task a routine calculation. Comparisons with other existing methods such as minima hopping and genetic algorithm are provided. One motivation of our study is to investigate the properties of magnetic systems in different phases. The SGO engine is capable of surveying the local minima surrounding the global minimum, which provides the information for the overall energy landscape of a given system. Using this capability we have found several new configurations for testing systems, explored their energy landscape, and demonstrated that the magnetic moment of metal clusters fluctuates strongly in different local minima.

  11. Weak interactions in Graphane/BN systems under static electric fields—A periodic ab-initio study.

    PubMed

    Steinkasserer, Lukas Eugen Marsoner; Gaston, Nicola; Paulus, Beate

    2015-04-21

    Ab-initio calculations via periodic Hartree-Fock (HF) and local second-order Møller-Plesset perturbation theory (LMP2) are used to investigate the adsorption properties of combined Graphane/boron nitride systems and their response to static electric fields. It is shown how the latter can be used to alter both structural as well as electronic properties of these systems.

  12. Inner Core Anisotropy: Can Seismic Observations be Reconciled with Ab Initio Calculations of Elasticity?

    NASA Astrophysics Data System (ADS)

    Song, X.; Jordan, T. H.

    2016-12-01

    Body-wave and normal-mode observations have revealed an inner-core structure that is radially layered, axially anisotropic, and hemispherically asymmetric. Previous theoretical studies have examined the consistency of these features with the elasticity of iron crystals thought to dominate inner-core composition, but a fully consistent model has been elusive. Here we compare the seismic observation with effective-medium models derived from ab initio calculations of the elasticity tensors for hcp-Fe and bcc-Fe. Our estimates are based on Jordan's (GJI, 2015) effective medium theory, which is derived from a self-consistent, second-order Born approximation. The theory provides closed-form expressions for the effective elastic parameters of 3D anisotropic, heterogeneous media in which the local anisotropy is a constant hexagonal stiffness tensor C stochastically oriented about a constant symmetry axis \\hat{s} and the statistics of the small-scale heterogeneities are transversely isotropic in the plane perpendicular to \\hat{s}. The stochastic model is then described by a dimensionless "aspect ratio of the heterogeneity", 0 ≤ η < ∞, and a dimensionless "orientation ratio of the anisotropy", 0 ≤ ξ < ∞. The latter determines the degree to which the axis of C is aligned with \\hat{s}. We compute the loci of models with \\hat{s} oriented along the Earth's rotational axis ( \\hat{s} = north) by varying ξ and η for various ab initio estimates of C. We show that a lot of widely used estimates of C are inconsistent with most published normal-mode models of inner-core anisotropy. In particular, if the P-wave fast axis aligns with the rotational axis, which is required to satisfy the body-wave observations, then these hcp-Fe models predict that the fast polarization of the S waves is in the plane perpendicular to \\hat{s}, which disagrees with most normal-mode models. We have attempted to resolve this discrepancy by examining alternative hcp-Fe models, including radially anisotropic distributions of stochastic anisotropy and heterogeneity (i.e., where \\hat{s} = \\hat{r}), as well as bcc-Fe models. Our calculations constrain the form of C needed to satisfy the seismological inferences.

  13. Machine Learning Force Field Parameters from Ab Initio Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Ying; Li, Hui; Pickard, Frank C.

    Machine learning (ML) techniques with the genetic algorithm (GA) have been applied to determine a polarizable force field parameters using only ab initio data from quantum mechanics (QM) calculations of molecular clusters at the MP2/6-31G(d,p), DFMP2(fc)/jul-cc-pVDZ, and DFMP2(fc)/jul-cc-pVTZ levels to predict experimental condensed phase properties (i.e., density and heat of vaporization). The performance of this ML/GA approach is demonstrated on 4943 dimer electrostatic potentials and 1250 cluster interaction energies for methanol. Excellent agreement between the training data set from QM calculations and the optimized force field model was achieved. The results were further improved by introducing an offset factor duringmore » the machine learning process to compensate for the discrepancy between the QM calculated energy and the energy reproduced by optimized force field, while maintaining the local “shape” of the QM energy surface. Throughout the machine learning process, experimental observables were not involved in the objective function, but were only used for model validation. The best model, optimized from the QM data at the DFMP2(fc)/jul-cc-pVTZ level, appears to perform even better than the original AMOEBA force field (amoeba09.prm), which was optimized empirically to match liquid properties. The present effort shows the possibility of using machine learning techniques to develop descriptive polarizable force field using only QM data. The ML/GA strategy to optimize force fields parameters described here could easily be extended to other molecular systems.« less

  14. Thermophysical properties of krypton-helium gas mixtures from ab initio pair potentials

    PubMed Central

    2017-01-01

    A new potential energy curve for the krypton-helium atom pair was developed using supermolecular ab initio computations for 34 interatomic distances. Values for the interaction energies at the complete basis set limit were obtained from calculations with the coupled-cluster method with single, double, and perturbative triple excitations and correlation consistent basis sets up to sextuple-zeta quality augmented with mid-bond functions. Higher-order coupled-cluster excitations up to the full quadruple level were accounted for in a scheme of successive correction terms. Core-core and core-valence correlation effects were included. Relativistic corrections were considered not only at the scalar relativistic level but also using full four-component Dirac–Coulomb and Dirac–Coulomb–Gaunt calculations. The fitted analytical pair potential function is characterized by a well depth of 31.42 K with an estimated standard uncertainty of 0.08 K. Statistical thermodynamics was applied to compute the krypton-helium cross second virial coefficients. The results show a very good agreement with the best experimental data. Kinetic theory calculations based on classical and quantum-mechanical approaches for the underlying collision dynamics were utilized to compute the transport properties of krypton-helium mixtures in the dilute-gas limit for a large temperature range. The results were analyzed with respect to the orders of approximation of kinetic theory and compared with experimental data. Especially the data for the binary diffusion coefficient confirm the predictive quality of the new potential. Furthermore, inconsistencies between two empirical pair potential functions for the krypton-helium system from the literature could be resolved. PMID:28595411

  15. Thermophysical properties of krypton-helium gas mixtures from ab initio pair potentials

    NASA Astrophysics Data System (ADS)

    Jäger, Benjamin; Bich, Eckard

    2017-06-01

    A new potential energy curve for the krypton-helium atom pair was developed using supermolecular ab initio computations for 34 interatomic distances. Values for the interaction energies at the complete basis set limit were obtained from calculations with the coupled-cluster method with single, double, and perturbative triple excitations and correlation consistent basis sets up to sextuple-zeta quality augmented with mid-bond functions. Higher-order coupled-cluster excitations up to the full quadruple level were accounted for in a scheme of successive correction terms. Core-core and core-valence correlation effects were included. Relativistic corrections were considered not only at the scalar relativistic level but also using full four-component Dirac-Coulomb and Dirac-Coulomb-Gaunt calculations. The fitted analytical pair potential function is characterized by a well depth of 31.42 K with an estimated standard uncertainty of 0.08 K. Statistical thermodynamics was applied to compute the krypton-helium cross second virial coefficients. The results show a very good agreement with the best experimental data. Kinetic theory calculations based on classical and quantum-mechanical approaches for the underlying collision dynamics were utilized to compute the transport properties of krypton-helium mixtures in the dilute-gas limit for a large temperature range. The results were analyzed with respect to the orders of approximation of kinetic theory and compared with experimental data. Especially the data for the binary diffusion coefficient confirm the predictive quality of the new potential. Furthermore, inconsistencies between two empirical pair potential functions for the krypton-helium system from the literature could be resolved.

  16. Polarizabilities and van der Waals C{sub 6} coefficients of fullerenes from an atomistic electrodynamics model: Anomalous scaling with number of carbon atoms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saidi, Wissam A., E-mail: alsaidi@pitt.edu; Norman, Patrick

    2016-07-14

    The van der Waals C{sub 6} coefficients of fullerenes are shown to exhibit an anomalous dependence on the number of carbon atoms N such that C{sub 6} ∝ N{sup 2.2} as predicted using state-of-the-art quantum mechanical calculations based on fullerenes with small sizes, and N{sup 2.75} as predicted using a classical-metallic spherical-shell approximation of the fullerenes. We use an atomistic electrodynamics model where each carbon atom is described by a polarizable object to extend the quantum mechanical calculations to larger fullerenes. The parameters of this model are optimized to describe accurately the static and complex polarizabilities of the fullerenes bymore » fitting against accurate ab initio calculations. This model shows that C{sub 6} ∝ N{sup 2.8}, which is supportive of the classical-metallic spherical-shell approximation. Additionally, we show that the anomalous dependence of the polarizability on N is attributed to the electric charge term, while the dipole–dipole term scales almost linearly with the number of carbon atoms.« less

  17. Refined method for predicting electrochemical windows of ionic liquids and experimental validation studies.

    PubMed

    Zhang, Yong; Shi, Chaojun; Brennecke, Joan F; Maginn, Edward J

    2014-06-12

    A combined classical molecular dynamics (MD) and ab initio MD (AIMD) method was developed for the calculation of electrochemical windows (ECWs) of ionic liquids. In the method, the liquid phase of ionic liquid is explicitly sampled using classical MD. The electrochemical window, estimated by the energy difference between the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO), is calculated at the density functional theory (DFT) level based on snapshots obtained from classical MD trajectories. The snapshots were relaxed using AIMD and quenched to their local energy minima, which assures that the HOMO/LUMO calculations are based on stable configurations on the same potential energy surface. The new procedure was applied to a group of ionic liquids for which the ECWs were also experimentally measured in a self-consistent manner. It was found that the predicted ECWs not only agree with the experimental trend very well but also the values are quantitatively accurate. The proposed method provides an efficient way to compare ECWs of ionic liquids in the same context, which has been difficult in experiments or simulation due to the fact that ECW values sensitively depend on experimental setup and conditions.

  18. Ab initio ground and excited state potential energy surfaces for NO-Kr complex and dynamics of Kr solids with NO impurity

    NASA Astrophysics Data System (ADS)

    Castro-Palacios, Juan Carlos; Rubayo-Soneira, Jesús; Ishii, Keisaku; Yamashita, Koichi

    2007-04-01

    The intermolecular potentials for the NO(XΠ2)-Kr and NO(AΣ+2)-Kr systems have been calculated using highly accurate ab initio calculations. The spin-restricted coupled cluster method for the ground 1A'2 state [NO(XΠ2)-Kr ] and the multireference singles and doubles configuration interaction method for the excited 2A'2 state [NO(AΣ+2)-Kr], respectively, were used. The potential energy surfaces (PESs) show two linear wells and one that is almost in the perpendicular position. An analytical representation of the PESs has been constructed for the triatomic systems and used to carry out molecular dynamics (MD) simulations of the NO-doped krypton matrix response after excitation of NO. MD results are shown comparatively for three sets of potentials: (1) anisotropic ab initio potentials [NO molecule direction fixed during the dynamics and considered as a point (its center of mass)], (2) isotropic ab initio potentials (isotropic part in a Legendre polynomial expansion of the PESs), and (3) fitted Kr-NO potentials to the spectroscopic data. An important finding of this work is that the anisotropic and isotropic ab initio potentials calculated for the Kr-NO triatomic system are not suitable for describing the dynamics of structural relaxation upon Rydberg excitation of a NO impurity in the crystal. However, the isotropic ab initio potential in the ground state almost overlaps the published experimental potential, being almost independent of the angle asymmetry. This fact is also manifested in the radial distribution function around NO. However, in the case of the excited state the isotropic ab initio potential differs from the fitted potentials, which indicates that the Kr-NO interaction in the matrix is quite different because of the presence of the surrounding Kr atoms acting on the NO molecule. MD simulations for isotropic potentials reasonably reproduce the experimental observables for the femtosecond response and the bubble size but do not match spectroscopic results. A general overall view of the results suggests that, when the Kr-NO interaction takes place inside the matrix, potentials are rather symmetric and less repulsive than those for the triatomic system. pectroscopy, yields a mean absolute deviation of about 5cm-1 over the 22 levels. The dissociation energy with respect to the lowest vibrational energy is calculated within 30cm-1 of the experimental value of 12953±8cm-1. The reported agreement of the theoretical spectrum and dissociation energy with experiment is contingent upon the inclusion of the effects of core-generated electron correlation, spin-orbit coupling, and scalar relativity. The Dunham analysis [Phys. Rev. 41, 721 (1932)] of the spectrum is found to be very accurate. New values are given for the spectroscopic constants.

  19. Main reinforcement effects of precipitation phase Mg2Cu3Si, Mg2Si and MgCu2 on Mg-Cu-Si alloys by ab initio investigation

    NASA Astrophysics Data System (ADS)

    Shi, Xue-Feng; Wang, Hai-Chen; Tang, Ping-Ying; Tang, Bi-Yu

    2017-09-01

    To predict and compare the main reinforcement effects of the key precipitation phases Mg2Cu3Si, Mg2Si and MgCu2 in Mg-Cu-Si alloy, the structural, mechanical and electronic properties of these phases have been studied by ab initio calculations. The lowest formation enthalpy and cohesive energy indicate that Mg2Cu3Si has the strongest alloying ability and structural stability. The mechanical modulus indicates that Mg2Cu3Si has the strongest resistance to reversible shear/volume distortion and has maximum hardness. The characterization of brittle (ductile) behavior manifests that MgCu2 has favorable ductility. Meanwhile the evaluation of elastic anisotropy indicates that Mg2Si possesses elastic isotropy. Debye temperature prediction shows that Mg2Si and Mg2Cu3Si have better thermal stability. To achieve an unbiased interpretation on the phase stability and mechanical behavior of these precipitation phases, the density of states and differential charge densities are also analyzed. The current study deepens the comprehensive understanding of main reinforcement effects of these precipitation phases on Mg-Cu-Si alloys, and also benefits to optimize the overall performances of Mg-Cu-Si alloy from the hardness, ductility and thermal stability by controlling these second precipitation phases during the heat treatment process.

  20. Ab initio investigation of the first hydration shell of protonated glycine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wei, Zhichao; Chen, Dong, E-mail: dongchen@henu.edu.cn, E-mail: boliu@henu.edu.cn; Zhao, Huiling

    2014-02-28

    The first hydration shell of the protonated glycine is built up using Monte Carlo multiple minimum conformational search analysis with the MMFFs force field. The potential energy surfaces of the protonated glycine and its hydration complexes with up to eight water molecules have been scanned and the energy-minimized structures are predicted using the ab initio calculations. First, three favorable structures of protonated glycine were determined, and the micro-hydration processes showed that water can significantly stabilize the unstable conformers, and then their first hydration shells were established. Finally, we found that seven water molecules are required to fully hydrate the firstmore » hydration shell for the most stable conformer of protonated glycine. In order to analyse the hydration process, the dominant hydration sites located around the ammonium and carboxyl groups are studied carefully and systemically. The results indicate that, water molecules hydrate the protonated glycine in an alternative dynamic hydration process which is driven by the competition between different hydration sites. The first three water molecules are strongly attached by the ammonium group, while only the fourth water molecule is attached by the carboxyl group in the ultimate first hydration shell of the protonated glycine. In addition, the first hydration shell model has predicted most identical structures and a reasonable accord in hydration energy and vibrational frequencies of the most stable conformer with the conductor-like polarizable continuum model.« less

Top