Science.gov

Sample records for initio molecular-dynamics study

  1. Ab initio molecular dynamics.

    PubMed

    Laasonen, Kari

    2013-01-01

    In this chapter, an introduction to ab initio molecular dynamics (AIMD) has been given. Many of the basic concepts, like the Hellman-Feynman forces, the difference between the Car-Parrinello molecular dynamics and AIMD, have been explained. Also a very versatile AIMD code, the CP2K, has been introduced. On the application, the emphasis was on the aqueous systems and chemical reactions. The biochemical applications have not been discussed in depth.

  2. Vibrational and ab initio molecular dynamics studies of bradykinin

    NASA Astrophysics Data System (ADS)

    Święch, Dominika; Kubisiak, Piotr; Andrzejak, Marcin; Borowski, Piotr; Proniewicz, Edyta

    2016-07-01

    In this study, the comprehensive theoretical and experimental investigations of Raman (RS) and infrared absorption (IR) spectra of bradykinin (BK) are presented. The ab initio Born-Oppenheimer molecular dynamics (BOMD) calculations, in the presence of water molecules that form the first coordination sphere, were used for conformational analysis of the BK structure. Based on the Density Functional Theory (DFT) calculations at the B3LYP/6-311G(d) level the vibrational spectra were interpreted. The calculated frequencies were scaled by means of the effective scaling frequency factor (ESFF) method. The theoretical data, which confirm the compact structure of BK in the presence of the water molecules revealed the remarkable effect of the intermolecular hydrogen bonding on the BK structural properties.

  3. Protons in polar media: An ab initio molecular dynamics study

    NASA Astrophysics Data System (ADS)

    von Rosenvinge, Tycho

    1998-10-01

    The hydrates of hydrogen chloride are ionic crystals that contain hydronium (H3O+). The hydronium in the monohydrate has been reported to be statistically disordered between two possible sites related by inversion symmetry. Ab initio molecular dynamics calculations are presented for the monohydrate, as well as the di-, and tri-hydrates, of hydrogen chloride using the density functional based Car-Parrinello technique. The simulations were carried out with the goal of investigating proton disorder in these crystals. The possible role of nuclear quantum effects has been explored via path integral molecular dynamic simulations. The present results suggest that the proposed disordered sites in the monohydrate are dynamically unstable and therefore unlikely to be responsible for the reported disorder. No useful information was obtained for the dihydrate because the large unit cell leads to difficulties in carrying out the simulations. Nuclear quantum effects are shown to be important for characterizing the proton distributions in the trihydrate. The structure and dynamical behavior of liquid HF with dissolved KF have been investigated using the Car- Parrinello ab initio molecular dynamics scheme. Specifically, a system with stoichiometry KFċ2HF was studied at temperatures of 400K and 1000K. This system, which was started from a phase separated mixture, rapidly formed into solvated potassium ions and HnFn+1/sp- polyfluoride anions with n = 1, 2, 3, and 4. The resulting polyfluoride anions were classified, and their structures and dynamical behavior were compared with the known structures and spectra of crystalline compounds KF/cdot xHF and with theoretical predictions of isolated gas phase species. The present study reveals dramatic frequency shifts in the H atom vibrational modes with variation in the HF coordination number of the polyfluoride anion. In particular the FH wagging motion red shifts while the FH stretch blue shifts as n increases. The present calculations

  4. Ab initio molecular dynamics study of ferroelectric phase transitions

    NASA Astrophysics Data System (ADS)

    Srinivasan, Varadharajan

    We have undertaken the first ever fully first-principles simulations of ferroelectric crystals at finite temperature with an aim to understand the nature of their phase transitions. In particular, we have studied the different aspects of phase transitions in two protypical ferroelectrics - PbTiO3 and KH2PO4. In PbTiO3, we have successfully reproduced the temperature-driven transition from a tetragonal to a cubic phase by using constant-pressure Car-Parrinello molecular dynamics. By defining suitable order parameters in terms of atomic displacements, we are able to monitor the approach of the cubic phase. Using a quasi-harmonic analysis, with the inclusion of a temperature dependent volume and the average thermal atomic displacements as the most basic effects of anharmonicity, we are also able to recover the softening of ferroelectric modes as well as other features seen in experiments. These observations confirm the predominantly displacive nature of the transition, while our simulations also indicate a possible build-up of disorder near the transition temperature. We have also studied the isotope effects in the ferroelectric transition in KH2PO4 by quantifying the temperature and mass dependence of the extent of delocalization of the hydrogens. Using a recently developed ab initio Open Path-integral Molecular Dynamics scheme we have calculated both the real and momentum-space distribution of the hydrogens in both protonated and deuterated KDP above and below their respective transition temperatures. We find that the two crystals not only involve different transition mechanisms but also the fluctuations above the transition temperature are of a qualitatively different nature.

  5. Quasi-Ab initio molecular dynamic study of Fe melting

    PubMed

    Belonoshko; Ahuja; Johansson

    2000-04-17

    We have investigated the melting of hcp Fe at high pressure by employing molecular dynamics simulations in conjunction with the full potential linear muffin tin orbital method. Apart from being of fundamental value, the melting of iron at high pressure is also important for our understanding of the Earth. The subject of iron melting at high pressures is controversial. The experimental data for the iron melting temperature can be separated into two regions, "low" and "high." Here we present an ab initio simulated iron melting curve which is in agreement with the low temperatures at lower pressures, but is in excellent agreement with the high-mostly shockwave-temperatures at high pressures. A comparison with available data lends support to the presented iron melting curve.

  6. Liquid Be, Ca and Ba. An orbital-free ab-initio molecular dynamics study

    SciTech Connect

    Rio, B. G. del; González, L. E.

    2015-08-17

    Several static and dynamic properties of liquid beryllium (l-Be), liquid calcium (l-Ca) and liquid barium (l-Ba) near their triple point have been evaluated by the orbital-free ab initio molecular dynamics method (OF-AIMD), where the interaction between valence electrons and ions is described by means of local pseudopotentials. These local pseudopotentials used were constructed through a force-matching process with those obtained from a Kohn-Sham ab initio molecular dynamics study (KS-AIMD) of a reduced system with non-local pseudopotentials. The calculated static structures show good agreement with the available experimental data, including an asymmetric second peak in the structure factor which has been linked to the existence of a marked icosahedral short-range order in the liquid. As for the dynamic properties, we obtain collective density excitations whose associated dispersion relations exhibit a positive dispersion.

  7. Ethanol decomposition on transition metal nanoparticles during carbon nanotube growth: ab initio molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Shibuta, Yasushi; Shimamura, Kohei; Oguri, Tomoya; Arifin, Rizal; Shimojo, Fuyuki; Yamaguchi, Shu

    2015-03-01

    The growth mechanism of carbon nanotubes (CNT) has been widely discussed both from experimental and computational studies. Regarding the computational studies, most of the studies focuses on the aggregation of isolate carbon atoms on the catalytic metal nanoparticle, whereas the initial dissociation of carbon source molecules should affect the yield and quality of the products. On the other hand, we have studied the dissociation process of carbon source molecules on the metal surface by the ab initio molecular dynamics simulation. In the study, we investigate the ethanol dissociation on Pt and Ni clusters by ab initio MD simulations to discuss the initial stage of CNT growth by alcohol CVD technique. Part of this research is supported by the Grant-in-Aid for Young Scientists (a) (No. 24686026) from MEXT, Japan.

  8. Study of atomic structure of liquid Hg-In alloys using ab-initio molecular dynamics

    SciTech Connect

    Sharma, Nalini; Ahluwalia, P. K.; Thakur, Anil

    2015-05-15

    Ab-initio molecular dynamics simulations are performed to study the structural properties of liquid Hg-In alloys. The interatomic interactions are described by ab-initio pseudopotentials given by Troullier and Martins. Five liquid Hg-In mixtures (Hg{sub 10}In{sub 90}, Hg{sub 30}In{sub 70}, Hg{sub 50}In{sub 50}, Hg{sub 70}In{sub 30} and Hg{sub 90}In{sub 10}) at 299K are considered. The radial distribution function g(r) and structure factor S(q) of considered alloys are compared with respective experimental results for liquid Hg (l-Hg) and (l-In). The radial distribution function g(r) shows the presence of short range order in the systems considered. Smooth curves of Bhatia-Thornton partial structure factors factor shows the presence of liquid state in the considered alloys.

  9. Evolution of atomic structure in Al75Cu25 liquid from experimental and ab initio molecular dynamics simulation studies.

    PubMed

    Xiong, L H; Yoo, H; Lou, H B; Wang, X D; Cao, Q P; Zhang, D X; Jiang, J Z; Xie, H L; Xiao, T Q; Jeon, S; Lee, G W

    2015-01-28

    X-ray diffraction and electrostatic levitation measurements, together with the ab initio molecular dynamics simulation of liquid Al(75)Cu(25) alloy have been performed from 800 to 1600 K. Experimental and ab initio molecular dynamics simulation results match well with each other. No abnormal changes were experimentally detected in the specific heat capacity over total hemispheric emissivity and density curves in the studied temperature range for a bulk liquid Al(75)Cu(25) alloy measured by the electrostatic levitation technique. The structure factors gained by the ab initio molecular dynamics simulation precisely coincide with the experimental data. The atomic structure analyzed by the Honeycutt-Andersen index and Voronoi tessellation methods shows that icosahedral-like atomic clusters prevail in the liquid Al(75)Cu(25) alloy and the atomic clusters evolve continuously. All results obtained here suggest that no liquid-liquid transition appears in the bulk liquid Al(75)Cu(25) alloy in the studied temperature range. PMID:25524926

  10. Evolution of atomic structure in Al75Cu25 liquid from experimental and ab initio molecular dynamics simulation studies.

    PubMed

    Xiong, L H; Yoo, H; Lou, H B; Wang, X D; Cao, Q P; Zhang, D X; Jiang, J Z; Xie, H L; Xiao, T Q; Jeon, S; Lee, G W

    2015-01-28

    X-ray diffraction and electrostatic levitation measurements, together with the ab initio molecular dynamics simulation of liquid Al(75)Cu(25) alloy have been performed from 800 to 1600 K. Experimental and ab initio molecular dynamics simulation results match well with each other. No abnormal changes were experimentally detected in the specific heat capacity over total hemispheric emissivity and density curves in the studied temperature range for a bulk liquid Al(75)Cu(25) alloy measured by the electrostatic levitation technique. The structure factors gained by the ab initio molecular dynamics simulation precisely coincide with the experimental data. The atomic structure analyzed by the Honeycutt-Andersen index and Voronoi tessellation methods shows that icosahedral-like atomic clusters prevail in the liquid Al(75)Cu(25) alloy and the atomic clusters evolve continuously. All results obtained here suggest that no liquid-liquid transition appears in the bulk liquid Al(75)Cu(25) alloy in the studied temperature range.

  11. Conformational space of clindamycin studied by ab initio and full-atom molecular dynamics.

    PubMed

    Kulczycka-Mierzejewska, Katarzyna; Trylska, Joanna; Sadlej, Joanna

    2016-01-01

    Molecular dynamics (MD) simulations allow determining internal flexibility of molecules at atomic level. Using ab initio Born-Oppenheimer molecular dynamics (BOMD), one can simulate in a reasonable time frame small systems with hundreds of atoms, usually in vacuum. With quantum mechanics/molecular mechanics (QM/MM) or full-atom molecular dynamics (FAMD), the influence of the environment can also be simulated. Here, we compare three types of MD calculations: ab initio BOMD, hybrid QM/MM, and classical FAMD. As a model system, we use a small antibiotic molecule, clindamycin, which is one of the lincosamide antibiotics. Clindamycin acquires two energetically stable forms and we investigated the transition between these two experimentally known conformers. We performed 60-ps BOMD simulations in vacuum, 50-ps QM/MM, and 100-ns FAMD in explicit water. The transition between two antibiotic conformers was observed using both BOMD and FAMD methods but was not noted in the QM/MM simulations. PMID:26733483

  12. Electronic excitation induced amorphization in titanate pyrochlores: an ab initio molecular dynamics study

    DOE PAGES

    Xiao, Haiyan Y.; Weber, William J.; Zhang, Yanwen; Zu, X. T.; Li, Sean

    2015-02-09

    In this study, the response of titanate pyrochlores (A2Ti2O7, A = Y, Gd and Sm) to electronic excitation is investigated utilizing an ab initio molecular dynamics method. All the titanate pyrochlores are found to undergo a crystalline-to-amorphous structural transition under a low concentration of electronic excitations. The transition temperature at which structural amorphization starts to occur depends on the concentration of electronic excitations. During the structural transition, O2-like molecules are formed, and this anion disorder further drives cation disorder that leads to an amorphous state. This study provides new insights into the mechanisms of amorphization in titanate pyrochlores under laser,more » electron and ion irradiations.« less

  13. Polymerization transition in liquid AsS under pressure: An ab initio molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Ohmura, Satoshi; Shimojo, Fuyuki

    2011-12-01

    We study the pressure dependence of the structural and electronic properties of liquid AsS by ab initio molecular dynamics simulations. We confirm that liquid AsS consists of As4S4 molecules at ambient pressure, as in the crystalline state. With increasing pressure, a structural transition from molecular to polymeric liquid occurs near 2 GPa, which is eventually followed by metallization. The pressure dependence of the density and diffusion coefficients changes qualitatively with this transition. We find that, during metallization in the polymeric phase at higher pressures, the remnants of covalent interactions between atoms play an important role in the dynamics, i.e., the As-S bond length becomes longer with increasing pressure and the diffusion coefficients have a local maximum near 5 GPa. When the pressure approaches about 15 GPa, the covalent nature of the liquid becomes quite weak. These results explain recent experiments on the pressure dependence of the viscosity.

  14. Ab initio molecular dynamic study of solid-state transitions of ammonium nitrate

    PubMed Central

    Yu, Hongyu; Duan, Defang; Liu, Hanyu; Yang, Ting; Tian, Fubo; Bao, Kuo; Li, Da; Zhao, Zhonglong; Liu, Bingbing; Cui, Tian

    2016-01-01

    High-pressure polymorphism and phase transitions have wide ranging consequences on the basic properties of ammonium nitrate. However, the phase diagram of ammonium nitrate at high pressure and high temperature is still under debate. This study systematically investigates the phase transitions and structural properties of ammonium nitrate at a pressure range of 5–60 GPa and temperature range of 250–400 K by ab initio molecular dynamics simulations. Two new phases are identified: one corresponds to the experimentally observed phase IV’ and the other is named AN-X. Simultaneously, the lattice strains play a significant role in the formation and stabilization of phase IV’, providing a reasonable explanation for experimental observation of phase IV-IV’ transition which only appears under nonhydrostatic pressure. In addition, 12 O atoms neighboring the NH (N atom in ammonium cation) atom are selected as reference system to clearly display the tanglesome rotation of ammonium cation. PMID:26754622

  15. Ab Initio Molecular Dynamics Study on the Interactions between Carboxylate Ions and Metal Ions in Water.

    PubMed

    Mehandzhiyski, Aleksandar Y; Riccardi, Enrico; van Erp, Titus S; Trinh, Thuat T; Grimes, Brian A

    2015-08-20

    The interaction between a carboxylate anion (deprotonated propanoic acid) and the divalent Mg(2+), Ca(2+), Sr(2+), Ba(2+) metal ions is studied via ab initio molecular dynamics. The main focus of the study is the selectivity of the carboxylate-metal ion interaction in aqueous solution. The interaction is modeled by explicitly accounting for the solvent molecules on a DFT level. The hydration energies of the metal ions along with their diffusion and mobility coefficients are determined and a trend correlated with their ionic radius is found. Subsequently, a series of 16 constrained molecular dynamics simulations for every ion is performed, and the interaction free energy is obtained from thermodynamic integration of the forces between the metal ion and the carboxylate ion. The results indicate that the magnesium ion interacts most strongly with the carboxylate, followed by calcium, strontium, and barium. Because the interaction free energy is not enough to explain the selectivity of the reaction observed experimentally, more detailed analysis is performed on the simulation trajectories to understand the steric changes in the reaction complex during dissociation. The solvent dynamics appear to play an important role during the dissociation of the complex and also in the observed selectivity behavior of the divalent ions.

  16. Proton transport in triflic acid pentahydrate studied via ab initio path integral molecular dynamics.

    PubMed

    Hayes, Robin L; Paddison, Stephen J; Tuckerman, Mark E

    2011-06-16

    Trifluoromethanesulfonic acid hydrates provide a well-defined system to study proton dissociation and transport in perfluorosulfonic acid membranes, typically used as the electrolyte in hydrogen fuel cells, in the limit of minimal water. The triflic acid pentahydrate crystal (CF(3)SO(3)H·5H(2)O) is sufficiently aqueous that it contains an extended three-dimensional water network. Despite it being extended, however, long-range proton transport along the network is structurally unfavorable and would require considerable rearrangement. Nevertheless, the triflic acid pentahydrate crystal system can provide a clear picture of the preferred locations of local protonic defects in the water network, which provides insights about related structures in the disordered, low-hydration environment of perfluorosulfonic acid membranes. Ab initio molecular dynamics simulations reveal that the proton defect is most likely to transfer to the closest water that has the expected presolvation and only contains water in its first solvation shell. Unlike the tetrahydrate of triflic acid (CF(3)SO(3)H·4H(2)O), there is no evidence of the proton preferentially transferring to a water molecule bridging two of the sulfonate groups. However, this could be an artifact of the crystal structure since the only such water molecule is separated from the proton by long O-O distances. Hydrogen bonding criteria, using the two-dimensional potential of mean force, are extracted. Radial distribution functions, free energy profiles, radii of gyration, and the root-mean-square displacement computed from ab initio path integral molecular dynamics simulations reveal that quantum effects do significantly extend the size of the protonic defect and increase the frequency of proton transfer events by nearly 15%. The calculated IR spectra confirm that the dominant protonic defect mostly exists as an Eigen cation but contains some Zundel ion characteristics. Chain lengths and ring sizes determined from the

  17. Elastic properties of amorphous boron suboxide based solids studied using ab initio molecular dynamics

    NASA Astrophysics Data System (ADS)

    Music, Denis; Schneider, Jochen M.

    2008-05-01

    We have studied the correlation between chemical composition, structure, chemical bonding and elastic properties of amorphous B6O based solids using ab initio molecular dynamics. These solids are of different chemical compositions, but the elasticity data appear to be a function of density. This is in agreement with previous experimental observations. As the density increases from 1.64 to 2.38 g cm-3, the elastic modulus increases from 74 to 253 GPa. This may be understood by analyzing the cohesive energy and the chemical bonding of these compounds. The cohesive energy decreases from -7.051 to -7.584 eV/atom in the elastic modulus range studied. On the basis of the electron density distributions, Mulliken analysis and radial distribution functions, icosahedral bonding is the dominating bonding type. C and N promote cross-linking of icosahedra and thus increase the density, while H hinders the cross-linking by forming OH groups. The presence of icosahedral bonding is independent of the density.

  18. Ab initio molecular dynamics study of an aqueous NaCl solution under an electric field.

    PubMed

    Cassone, Giuseppe; Creazzo, Fabrizio; Giaquinta, Paolo V; Saija, Franz; Marco Saitta, A

    2016-08-17

    We report on an ab initio molecular dynamics study of an aqueous NaCl solution under the effect of static electric fields. We found that at low-to-moderate field intensity regimes chlorine ions have a greater mobility than sodium ions which, being a sort of "structure makers", are able to drag their own coordination shells. However, for field strengths exceeding 0.15 V Å(-1) the mobility of sodium ions overcomes that of chlorine ions as both types of ions do actually escape from their respective hydration cages. The presence of charged particles lowers the water dissociation threshold (i.e., the minimum field strength which induces a transfer of protons) from 0.35 V Å(-1) to 0.25 V Å(-1); moreover, a protonic current was also recorded at the estimated dissociation threshold of the solution. The behaviour of the current-voltage diagram of the protonic response to the external electric field is Ohmic as in pure water, with a resulting protonic conductivity of about 2.5 S cm(-1). This value is approximately one third of that estimated in pure water (7.8 S cm(-1)), which shows that the partial breaking of hydrogen bonds induced by the solvated ions hinders the migration of protonic defects. Finally, the conductivity of Na(+) and Cl(-) ions (0.2 S cm(-1)) is in fair agreement with the available experimental data for a solution molarity of 1.7 M. PMID:27494789

  19. HCO3(-) formation from CO2 at high pH: ab initio molecular dynamics study.

    PubMed

    Stirling, András

    2011-12-15

    Ab initio molecular dynamics simulations have been performed to study the dissolution of CO2 in water at high pH. The CO2 + OH(-) --> HCO3(-) forward and the HCO3(-) --> CO2 + OH(-) reverse paths have been simulated by employing the metadynamics technics. We have found that the free energy barrier along the forward direction is predominantly hydration related and significantly entropic in origin, whereas the backward barrier is primarily enthalpic. The main motifs in the forward mechanism are the structural diffusion of the hydroxyl ion to the first hydration sphere of CO2, its desolvation, and the C-O bond formation in concert with the CO2 bending within the hydrate cavity. In the reverse reaction, the origin of the barrier is the rupture of the strong C-O(H) bond. The present findings support the notion that the free energy barrier of the bicarbonate formation is strongly solvation related but provide also additional mechanistic details at the molecular level.

  20. Reactivity of a sodium atom in vibrationally excited water clusters: An ab initio molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Cwiklik, Lukasz; Kubisiak, Piotr; Kulig, Waldemar; Jungwirth, Pavel

    2008-07-01

    We investigated the reaction between a sodium atom and water molecules in both small and medium-size vibrationally excited water clusters using ab initio molecular dynamics simulations. Formation of NaOH was observed in small ( n = 4, 5) clusters, while water dissociation and subsequent geminate recombination accompanied by a transient formation of a Na +-OH - pair occurred in a 34 water cluster. Our results show that the initial step of the vibrationally excited reaction between a single sodium atom and water does not shut off in larger clusters and that it can also occur in the bulk water, however, more sodium atoms are likely required to stabilize the product.

  1. Diffusion within α-CuI studied using ab initio molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Mohn, Chris E.; Stølen, Svein; Hull, Stephen

    2009-08-01

    The structure and dynamics of superionic α-CuI are studied in detail by means of ab initio Born-Oppenheimer molecular dynamics simulations. The extreme cation disorder and a soft immobile face centred cubic sublattice are evident from the highly diffuse atomic density profiles. The Cu-Cu pair distribution function and distribution of Cu-I-Cu bond angles possess distinct peaks at 2.6 Å and 60° respectively, which are markedly lower than the values expected from the average cationic density, pointing to the presence of pronounced short-range copper-copper correlations. Comparison with lattice static calculations shows that these correlations and the marked shift in the cationic density profile in the lang111rang directions are associated with a locally distorted cation sublattice, and that the movements within the tetrahedral cavities involve rapid jumps into and out of shallow basins on the system potential energy surface. On average, the iodines are surrounded by three coppers within their first coordination shell, with the fourth copper being located in a transition zone between two neighbouring iodine cavities. However, time-resolved analysis reveals that the local structure actually involves a mixture of threefold-, fourfold- and fivefold-coordinated iodines. Examination of the ionic trajectories shows that the copper ions jump rapidly to nearest neighbouring tetrahedral cavities (aligned in the lang100rang directions) following a markedly curved trajectory and often involving short-lived (~1 ps) interstitial positions. The nature of the correlated diffusion underlying the unusually high fraction of coppers with short residence time can be attributed to the presence of a large number of 'unsuccessful' jumps and the likelihood of cooperative motion of pairs of coppers. The calculated diffusion coefficient at 750 K, DCu = 2.8 × 10-5 cm2 s-1, is in excellent agreement with that found experimentally.

  2. Ab initio molecular dynamics study of the interlayer and micropore structure of aqueous montmorillonite clays

    NASA Astrophysics Data System (ADS)

    Suter, James L.; Kabalan, Lara; Khader, Mahmoud; Coveney, Peter V.

    2015-11-01

    Ab initio molecular dynamics simulations have been performed to gain an understanding of the interfacial microscopic structure and reactivity of fully hydrated clay edges. The models studied include both micropore and interlayer water. We identify acidic sites through dissociation mechanisms; the resulting ions can be stabilized by both micropore and interlayer water. We find clay edges possess a complex amphoteric behavior, which depends on the face under consideration and the location of isomorphic substitution. For the neutral (1 1 0) surface, we do not observe any dissociation on the timescale accessible. The edge terminating hydroxyl groups participate in a hydrogen bonded network of water molecules that spans the interlayer between periodic images of the clay framework. With isomorphic substitutions in the tetrahedral layer of the (1 1 0) clay edge, we find the adjacent exposed apical oxygen behaves as a Brönsted base and abstracts a proton from a nearby water molecule, which in turn removes a proton from an AlOH2 group. With isomorphic substitutions in the octahedral layer of the (1 1 0) clay edge the adjacent exposed apical oxygen atom does not abstract a proton from the water molecules, but increases the number of hydrogen bonded water molecules (from one to two). Acid treated clays are likely to have both sites protonated. The (0 1 0) surface does not have the same interfacial hydrogen bonding structure; it is much less stable and we observe dissociation of half the terminal SiOH groups (tbnd Sisbnd Osbnd H → tbnd Sisbnd O- + H+) in our models. The resulting anions are stabilized by solvation from both micropore and interlayer water molecules. This suggests that, when fully hydrated, the (0 1 0) surface can act as a Brönsted acid, even at neutral pH.

  3. Adsorption-Induced Surface Stresses of the Water/Quartz Interface: Ab Initio Molecular Dynamics Study.

    PubMed

    Gor, Gennady Y; Bernstein, Noam

    2016-05-31

    Adsorption-induced deformation is expansion or contraction of a solid due to adsorption on its surface. This phenomenon is important for a wide range of applications, from chemomechanical sensors to methane recovery from geological formations. The strain of the solid is driven by the change of the surface stress due to adsorption. Using ab initio molecular dynamics, we calculate the surface stresses for the dry α-quartz surfaces, and investigate how these stresses change when the surfaces are exposed to water. We find that the nonhydroxylated surface shows small and approximately isotropic changes in stress, while the hydroxylated surface, which interacts more strongly with the polar water molecules, shows larger and qualitatively anisotropic (opposite sign in xx and yy) surface stress changes. All of these changes are several times larger than the surface tension of water itself. The anisotropy and possibility of positive surface stress change can explain experimentally observed surface area contraction due to adsorption.

  4. Ab initio molecular dynamics study of H2 formation inside POSS compounds.

    PubMed

    Kudo, Takako; Taketsugu, Tetsuya; Gordon, Mark S

    2011-04-01

    The mechanism and dynamics of the formation of a hydrogen molecule by incorporating two hydrogen atoms in a stepwise manner into the cavity of some POSS (polyhedral oligomeric silsesquioxanes) compounds has been investigated by ab initio molecular orbital and ab initio molecular dynamics (AIMD) methods. The host molecules in the present reactions are two types of POSS, T(8) ([HSiO(1.5)](8)) and T(12)(D(2d)) ([HSiO(1.5)](12)). AIMD simulations were performed at the CASSCF level of theory, in which two electrons and two orbitals of the colliding hydrogen atoms are included in the active space. The trajectories were started by inserting the second hydrogen atom into the hydrogen atom-encapsulated-POSS (H + H@T(n) → H(2)@T(n); n = 8 and 12). In many cases, the gradual formation of a hydrogen molecule has been observed after frequent collisions of two hydrogen atoms within the cages. The effect of the introduction of an argon atom in T(12) is discussed as well.

  5. An ab initio molecular dynamics study on hydrogen bonds between water molecules.

    PubMed

    Pan, Zhang; Chen, Jing; Lü, Gang; Geng, Yi-Zhao; Zhang, Hui; Ji, Qing

    2012-04-28

    The quantitative estimation of the total interaction energy of a molecular system containing hydrogen bonds (H bonds) depends largely on how to identify H bonding. The conventional geometric criteria of H bonding are simple and convenient in application, but a certain amount of non-H bonding cases are also identified as H bonding. In order to investigate the wrong identification, we carry out a systematic calculation on the interaction energy of two water molecules at various orientation angles and distances using ab initio molecular dynamics method with the dispersion correction for the Becke-Lee-Yang-Parr (BLYP) functionals. It is shown that, at many orientation angles and distances, the interaction energies of the two water molecules exceed the energy criterion of the H bond, but they are still identified as H-bonded by the conventional "distance-angle" criteria. It is found that in these non-H bonding cases the wrong identification is mainly caused by short-range interaction between the two neighbouring water molecules. We thus propose that, in addition to the conventional distance and angle criteria of H bonding, the distance d(H···H) between the two neighbouring hydrogen atoms of the two water molecules should also be taken as a criterion, and the distance r(O···H) between the hydrogen atom of the H-bond donor molecule and the oxygen atom of the acceptor molecule should be restricted by a lower limit. When d(H···H) and r(O···H) are small (e.g., d(H···H) < 2.0 Å and r(O···H) < 1.62 Å), the repulsion between the two neighbouring atoms increases the total energy of the two water molecules dramatically and apparently weakens the binding of the water dimer. A statistical analysis and comparison of the numbers of the H bonds identified by using different criteria have been conducted on a Car-Parrinello ab initio molecular dynamics simulation with dispersion correction for a system of 64 water molecules at near-ambient temperature. They show that

  6. An ab initio molecular dynamics study on hydrogen bonds between water molecules

    NASA Astrophysics Data System (ADS)

    Pan, Zhang; Chen, Jing; Lü, Gang; Geng, Yi-Zhao; Zhang, Hui; Ji, Qing

    2012-04-01

    The quantitative estimation of the total interaction energy of a molecular system containing hydrogen bonds (H bonds) depends largely on how to identify H bonding. The conventional geometric criteria of H bonding are simple and convenient in application, but a certain amount of non-H bonding cases are also identified as H bonding. In order to investigate the wrong identification, we carry out a systematic calculation on the interaction energy of two water molecules at various orientation angles and distances using ab initio molecular dynamics method with the dispersion correction for the Becke-Lee-Yang-Parr (BLYP) functionals. It is shown that, at many orientation angles and distances, the interaction energies of the two water molecules exceed the energy criterion of the H bond, but they are still identified as H-bonded by the conventional "distance-angle" criteria. It is found that in these non-H bonding cases the wrong identification is mainly caused by short-range interaction between the two neighbouring water molecules. We thus propose that, in addition to the conventional distance and angle criteria of H bonding, the distance dHṡṡṡH between the two neighbouring hydrogen atoms of the two water molecules should also be taken as a criterion, and the distance rOṡṡṡH between the hydrogen atom of the H-bond donor molecule and the oxygen atom of the acceptor molecule should be restricted by a lower limit. When dHṡṡṡH and rOṡṡṡH are small (e.g., dHṡṡṡH < 2.0 Å and rOṡṡṡH < 1.62 Å), the repulsion between the two neighbouring atoms increases the total energy of the two water molecules dramatically and apparently weakens the binding of the water dimer. A statistical analysis and comparison of the numbers of the H bonds identified by using different criteria have been conducted on a Car-Parrinello ab initio molecular dynamics simulation with dispersion correction for a system of 64 water molecules at near-ambient temperature. They

  7. Structure-function studies of DNA damage using AB INITIO quantum mechanics and molecular dynamics simulation

    SciTech Connect

    Miller, J.; Miaskiewicz, K.; Osman, R.

    1993-12-01

    Studies of ring-saturated pyrimidine base lesions are used to illustrate an integrated modeling approach that combines quantum-chemical calculations with molecular dynamics simulation. Electronic-structure calculations on the lesions in Isolation reveal strong conformational preferences due to interactions between equatorial substituents to the pyrimidine ring. Large distortions of DNA should result when these interactions force the methyl group of thymine to assume an axial orientation, as is the case for thymine glycol but not for dihydrothymine. Molecular dynamics simulations of the dodecamer d(CGCGAATTCGCG){sub 2} with and without a ring-saturated thymine lesion at position T7 support this conclusion. Implications of these studies for recognition of thymine lesions by endonuclease III are also discussed.

  8. Ab Initio ONIOM-Molecular Dynamics (MD) Study on the Deamination Reaction by Cytidine Deaminase

    SciTech Connect

    Matsubara, Toshiaki; Dupuis, Michel; Aida, Misako

    2007-08-23

    We applied the ONIOM-molecular dynamics (MD) method to the hydrolytic deamination of cytidine by cytidine deaminase, which is an essential step of the activation process of the anticancer drug inside the human body. The direct MD simulations were performed for the realistic model of cytidine deaminase calculating the energy and its gradient by the ab initio ONIOM method on the fly. The ONIOM-MD calculations including the thermal motion show that the neighboring amino acid residue is an important factor of the environmental effects and significantly affects not only the geometry and energy of the substrate trapped in the pocket of the active site but also the elementary step of the catalytic reaction. We successfully simulate the second half of the catalytic cycle, which has been considered to involve the rate-determining step, and reveal that the rate-determing step is the release of the NH3 molecule. TM and MA were supported in part by grants from the Ministry of Education, Culture, Sports, Science and Technology of Japan. MD was supported by the Division of Chemical Sciences, Office of Basic Energy Sciences, and by the Office of Biological and Environmental Research of the U.S. Department of Energy DOE. Battelle operates Pacific Northwest National Laboratory for DOE.

  9. How Is Acetylcholinesterase Phosphonylated by Soman? An Ab Initio QM/MM Molecular Dynamics Study

    PubMed Central

    2015-01-01

    Acetylcholinesterase (AChE) is a crucial enzyme in the cholinergic nerve system that hydrolyzes acetylcholine (ACh) and terminates synaptic signals by reducing the effective concentration of ACh in the synaptic clefts. Organophosphate compounds irreversibly inhibit AChEs, leading to irreparable damage to nerve cells. By employing Born–Oppenheimer ab initio QM/MM molecular dynamics simulations with umbrella sampling, a state-of-the-art approach to simulate enzyme reactions, we have characterized the covalent inhibition mechanism between AChE and the nerve toxin soman and determined its free energy profile for the first time. Our results indicate that phosphonylation of the catalytic serine by soman employs an addition–elimination mechanism, which is highly associative and stepwise: in the initial addition step, which is also rate-limiting, His440 acts as a general base to facilitate the nucleophilic attack of Ser200 on the soman’s phosphorus atom to form a trigonal bipyrimidal pentacovalent intermediate; in the subsequent elimination step, Try121 of the catalytic gorge stabilizes the leaving fluorine atom prior to its dissociation from the active site. Together with our previous characterization of the aging mechanism of soman inhibited AChE, our simulations have revealed detailed molecular mechanistic insights into the damaging function of the nerve agent soman. PMID:24786171

  10. Ab initio molecular dynamics study of 45S5 bioactive silicate glass.

    PubMed

    Tilocca, Antonio; de Leeuw, Nora H

    2006-12-28

    Bioglass 45S5, the prototype of bioactive melt-quenched silicate glasses, was modeled by means of Car-Parrinello molecular dynamics (CPMD) simulations. Although long-range structural properties cannot be modeled by using this ab initio approach, the accuracy of CPMD simulations is exploited here to provide insight into the short-range structure and to analyze vibrational and electronic properties of this biomaterial. Detailed structural analysis in the short-range scale provided insight into the local environment of modifier Na and Ca ions: a possible key role of these cations in organizing the glass network by connecting different chains and fragments into specific, rather flexible geometries was proposed. The individual contributions of different species to the vibrational density of states were separated and discussed, allowing the identification of specific features in the vibrational spectrum, such as those related to phosphate groups. The components of the electronic density of states were also analyzed, enabling us to identify correlations between the electronic structure and the structural properties, such as the different bonding character of Si-O bonds involving bridging or nonbridging oxygen atoms.

  11. HCl-doped conducting Emeraldine polymer studied by ab initio Car-Parrinello molecular dynamics

    NASA Astrophysics Data System (ADS)

    Cavazzoni, Carlo; Colle, Renato; Farchioni, Riccardo; Grosso, Giuseppe

    2006-07-01

    We present a Car-Parrinello molecular dynamics study of the highly conducting Emeraldine salt, which definitely settles the controversy between the polaronic and the bipolaronic lattice models present in the literature. Our treatment is fully microscopic and takes into account interchain interactions, individual chain conformation, and the dynamics of the HCl protonation. We have highlighted the peculiar role of the Cl- counterions both for the polymer structure and for the interpretation of its metallic character. Our study indicates that this metallic character is due to the π electrons along each chain with chlorine counterions in polaronic arrangement and that only the Pc2a lattice symmetry provides an x-ray spectrum in complete agreement with the experiments.

  12. An ab initio molecular dynamics study of hydronium complexation in Na-montmorillonite

    NASA Astrophysics Data System (ADS)

    Churakov, Sergey V.; Kosakowski, Georg

    2010-06-01

    The Car-Parrinello molecular dynamics simulation technique was used to predict the structure and dynamics of hydronium solvation in mono-, bi- and trihydrated Na-montmorillonite. In monohydrated montmorillonite, hydronium ions are located within the hexagonal rings of the basal clay plane. Oxygen sites of hydronium ions point towards the clay surface and hydrogen atoms towards the water layer. In bi- and trihydrated montmorillonite, hydronium ions form water-solvated, outer-sphere complexes. Similar to the solvation mechanism in bulk water, hydronium ions donate three hydrogen bonds to interlayer water molecules. In all studied hydration states, hydronium ions do not form hydrogen bonds with the basal oxygen sites. Similar to bulk water, the free energy barrier for a classical proton transfer between interlayer water molecules is of the order of kT and therefore not the limiting factor for the proton diffusion. The diffusivity of hydrogen in the interlayer is controlled by the structural rearrangements of the solvating water molecules.

  13. Hydration and translocation of an excess proton in water clusters: An ab initio molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Bankura, Arindam; Chandra, Amalendu

    2005-10-01

    The hydration structure and translocation of an excess proton in hydrogen bonded water clusters of two different sizes are investigated by means of finite temperature quantum simulations. The simulations are performed by employing the method of Car--Parrinello molecular dynamics where the forces on the nuclei are obtained directly from `on the fly' quantum electronic structure calculations. Since no predefined interaction potentials are used in this scheme, it is ideally suited to study proton translocation processes which proceed through breaking and formation of chemical bonds. The coordination number of the hydrated proton and the index of oxygen to which the excess proton is attached are calculated along the simulation trajectories for both the clusters.

  14. Electronic excitation induced amorphization in titanate pyrochlores: an ab initio molecular dynamics study

    SciTech Connect

    Xiao, Haiyan Y.; Weber, William J.; Zhang, Yanwen; Zu, X. T.; Li, Sean

    2015-02-09

    In this study, the response of titanate pyrochlores (A2Ti2O7, A = Y, Gd and Sm) to electronic excitation is investigated utilizing an ab initio molecular dynamics method. All the titanate pyrochlores are found to undergo a crystalline-to-amorphous structural transition under a low concentration of electronic excitations. The transition temperature at which structural amorphization starts to occur depends on the concentration of electronic excitations. During the structural transition, O2-like molecules are formed, and this anion disorder further drives cation disorder that leads to an amorphous state. This study provides new insights into the mechanisms of amorphization in titanate pyrochlores under laser, electron and ion irradiations.

  15. Ab initio molecular dynamics study of the properties of cerium in liquid sodium at 1000 K temperature

    SciTech Connect

    Samin, Adib; Li, Xiang; Zhang, Jinsuo; Mariani, R. D.; Unal, Cetin

    2015-12-21

    For liquid-sodium-cooled fast nuclear reactor systems, it is crucial to understand the behavior of lanthanides and other potential fission products in liquid sodium or other liquid metal solutions such as liquid cesium-sodium. In this study, we focus on lanthanide behavior in liquid sodium. Using ab initio molecular dynamics, we found that the solubility of cerium in liquid sodium at 1000 K was less than 0.78 at. %, and the diffusion coefficient of cerium in liquid sodium was calculated to be 5.57 × 10{sup −9} m{sup 2}/s. Furthermore, it was found that cerium in small amounts may significantly alter the heat capacity of the liquid sodium system. Our results are consistent with the experimental results for similar materials under similar conditions.

  16. Selective Tuning of a Particular Chemical Reaction on Surfaces through Electrical Resonance: An ab Initio Molecular Dynamics Study.

    PubMed

    Yousaf, Masood; Shin, Dongbin; Ruoff, Rodney; Park, Noejung

    2015-12-17

    We used ab initio molecular dynamics (AIMD) to investigate the effect of a monochromatic oscillating electric field in resonance with a particular molecular vibration on surfaces. As a case study, AIMD simulations were carried out for hydroxyl functional groups on graphene. When the frequency of the applied field matches with the C-OH vibration frequency, the amplitude is monotonically amplified, leading to a complete desorption from the surface, overcoming the substantial barrier. This suggests the possibility of activating a particular bond without damaging the remaining surface. We extended this work to the case of the amination of sp(2)-bonded carbon surfaces and discussed the general perspective that, in general, an unfavorable chemical process can be activated by applying an external electric field with an appropriate resonance frequency.

  17. Effects of boron-nitride substrates on Stone-Wales defect formation in graphene: An ab initio molecular dynamics study

    SciTech Connect

    Jin, K.; Xiao, H. Y.; Zhang, Y.; Weber, W. J.

    2014-05-19

    Ab initio molecular dynamics simulations are performed to investigate the effects of a boron nitride (BN) substrate on Stone-Wales (SW) defect formation and recovery in graphene. It is found that SW defects can be created by an off-plane recoil atom that interacts with the BN substrate. A mechanism with complete bond breakage for formation of SW defects in suspended graphene is also revealed for recoils at large displacement angles. In addition, further irradiation can result in recovery of the SW defects through a bond rotation mechanism in both graphene and graphene/BN, and the substrate has little effect on the recovery process. This study indicates that the BN substrate enhances the irradiation resistance of graphene.

  18. Ab initio molecular dynamics study of the properties of cerium in liquid sodium at 1000 K temperature

    NASA Astrophysics Data System (ADS)

    Samin, Adib; Li, Xiang; Zhang, Jinsuo; Mariani, R. D.; Unal, Cetin

    2015-12-01

    For liquid-sodium-cooled fast nuclear reactor systems, it is crucial to understand the behavior of lanthanides and other potential fission products in liquid sodium or other liquid metal solutions such as liquid cesium-sodium. In this study, we focus on lanthanide behavior in liquid sodium. Using ab initio molecular dynamics, we found that the solubility of cerium in liquid sodium at 1000 K was less than 0.78 at. %, and the diffusion coefficient of cerium in liquid sodium was calculated to be 5.57 × 10-9 m2/s. Furthermore, it was found that cerium in small amounts may significantly alter the heat capacity of the liquid sodium system. Our results are consistent with the experimental results for similar materials under similar conditions.

  19. Ab initio molecular dynamics study of the static, dynamic, and electronic properties of liquid mercury at room temperature.

    PubMed

    Calderín, L; González, L E; González, D J

    2009-05-21

    We report a study on several static, dynamic, and electronic properties of liquid Hg at room temperature. We have performed ab initio molecular dynamics simulations using Kohn-Sham density functional theory combined with a nonlocal ultrasoft pseudopotential. The calculated static structure shows good agreement with the available experimental data. We present results for the single-particle dynamics, and recent experimental data are analyzed. The calculated dynamic structure factors S(q,omega) fairly agree with their experimental counterparts as measured by inelastic x-ray (and neutron) scattering experiments. The dispersion relation exhibits a positive dispersion, which however is not so marked as suggested by the experiment; moreover, its slope at the long-wavelength limit provides a good estimate of the experimental sound velocity. We have also analyzed the dynamical processes behind the S(q,omega) in terms of a model including a relaxation mechanism with both fast and slow characteristic time scales. PMID:19466841

  20. Binding of TNT to amplifying fluorescent polymers: an ab initio and molecular dynamics study.

    PubMed

    Enlow, Mark A

    2012-03-01

    Molecular modeling techniques were employed to study the interaction of trinitrotoluene with an amplifying fluorescent polymer used in explosive sensor devices. The pentiptycene moiety present in these polymers appears to be the most energetically favorable binding site for trinitrotoluene. Surface features of the polymer suggest that the small cavity feature of the pentiptycene moiety may be more available for binding to analyte compounds due to steric crowding about the large cavity. Binding energies between model binding sites of the polymer and various analyte compounds were more rigorously estimated by semiempirical and ab initio techniques. Binding energies were found to be largest with trinitrotoluene and other nitroaromatic compounds. Electrostatic and π-stacking interactions between trinitrotoluene and the model host were investigated by studying a series of modified host compounds.

  1. Ab initio molecular dynamics study of the hydrolysis reaction of diborane.

    PubMed

    Di Pietro, Elisa; Cardini, Gianni; Schettino, Vincenzo

    2007-08-01

    The hydrolysis reaction of the diborane molecule in aqueous solution has been studied by a series of Car-Parrinello Molecular Dynamics simulations in the Blue Moon Ensemble. The total reaction has been divided into two parts: one dealing with the breaking of B(2)H(6) molecule and the formation of a BH(4)(-) ion, a H(2)BOH molecule and a H(+) ion; the second leads to the formation of two hydrogen molecules and another H(2)BOH molecule, starting from BH(4)(-), two water molecules and a H(+) ion. The total reaction studied in this work has been B(2)H(6) + 2H(2)O --> 2H(2)BOH + 2H(2). We have described both structurally and electronically the reagents and the products through the radial distribution functions and the Wannier Function Center positions calculations, with attention to the solvent effects on the compounds. The free energy barrier value for the first part of the reaction and a detailed mechanisms for both parts have been reported. An interesting behavior of BH(3) and H(2) molecules in solution has been observed. They form a quite stable three center bond between the electron pair of the hydrogen molecule and the empty orbital of the boron atom in BH(3), which has been described from both a structural and electronic point of view.

  2. Ab initio molecular dynamics study of high-pressure melting of beryllium oxide.

    PubMed

    Li, Dafang; Zhang, Ping; Yan, Jun

    2014-04-24

    We investigate, through first-principles molecular dynamics simulations, the high-pressure melting of BeO in the range 0 ≤ p ≤ 100 GPa. The wurtzite (WZ), zinc blend (ZB), and rocksalt (RS) phases of BeO are considered. It is shown that below 40 GPa, the melting temperature for the WZ phase is higher than that for the ZB and RS phases. When the pressure is beyond 66 GPa, the melting temperature for the RS phase is the highest one, in consistent with the previously reported phase diagram calculated within the quasiharmonic approximation. We find that in the medium pressure range between 40 to 66 GPa, the ZB melting data are very close to those of RS, which results from the fact that the ZB structure first transforms to RS phase before melting. The ZB-RS-liquid phase transitions have been observed directly during the molecular dynamics runs and confirmed using the pair correlation functions analysis. In addition, we propose the melting curve of BeO in the form Tm = 2696.05 (1 + P/24.67)(0.42), the zero-pressure value of 2696.05 K falling into the experimental data range of 2693 ~ 2853 K.

  3. Ab initio molecular dynamics study of liquid sodium and cesium up to critical point

    SciTech Connect

    Yuryev, Anatoly A.; Gelchinski, Boris R.

    2015-08-17

    Ab initio modeling of liquid metals Na and K is carried out using the program SIESTA. We have determined the parameters of the model (the optimal step, the number of particles, the initial state etc) and calculated a wide range of properties: the total energy, pair correlation function, coefficient of self-diffusion, heat capacity, statistics of Voronoi polyhedra, the density of electronic states up to the critical temperature.

  4. Ab initio molecular dynamics: Concepts, recent developments, and future trends

    PubMed Central

    Iftimie, Radu; Minary, Peter; Tuckerman, Mark E.

    2005-01-01

    The methodology of ab initio molecular dynamics, wherein finite-temperature dynamical trajectories are generated by using forces computed “on the fly” from electronic structure calculations, has had a profound influence in modern theoretical research. Ab initio molecular dynamics allows chemical processes in condensed phases to be studied in an accurate and unbiased manner, leading to new paradigms in the elucidation of microscopic mechanisms, rationalization of experimental data, and testable predictions of new phenomena. The purpose of this work is to give a brief introduction to the technique and to review several important recent developments in the field. Several illustrative examples showing the power of the technique have been chosen. Perspectives on future directions in the field also will be given. PMID:15870204

  5. Ab initio molecular dynamics study of water at constant pressure using converged basis sets and empirical dispersion corrections

    NASA Astrophysics Data System (ADS)

    Ma, Zhonghua; Zhang, Yanli; Tuckerman, Mark E.

    2012-07-01

    It is generally believed that studies of liquid water using the generalized gradient approximation to density functional theory require dispersion corrections in order to obtain reasonably accurate structural and dynamical properties. Here, we report on an ab initio molecular dynamics study of water in the isothermal-isobaric ensemble using a converged discrete variable representation basis set and an empirical dispersion correction due to Grimme [J. Comp. Chem. 27, 1787 (2006)], 10.1002/jcc.20495. At 300 K and an applied pressure of 1 bar, the density obtained without dispersion corrections is approximately 0.92 g/cm3 while that obtained with dispersion corrections is 1.07 g/cm3, indicating that the empirical dispersion correction overestimates the density by almost as much as it is underestimated without the correction for this converged basis. Radial distribution functions exhibit a loss of structure in the second solvation shell. Comparison of our results with other studies using the same empirical correction suggests the cause of the discrepancy: the Grimme dispersion correction is parameterized for use with a particular basis set; this parameterization is sensitive to this choice and, therefore, is not transferable to other basis sets.

  6. Oxidation of ligand-protected aluminum clusters: An ab initio molecular dynamics study

    SciTech Connect

    Alnemrat, Sufian; Hooper, Joseph P.

    2014-03-14

    We report Car-Parrinello molecular dynamics simulations of the oxidation of ligand-protected aluminum clusters that form a prototypical cluster-assembled material. These clusters contain a small aluminum core surrounded by a monolayer of organic ligand. The aromatic cyclopentadienyl ligands form a strong bond with surface Al atoms, giving rise to an organometallic cluster that crystallizes into a low-symmetry solid and is briefly stable in air before oxidizing. Our calculations of isolated aluminum/cyclopentadienyl clusters reacting with oxygen show minimal reaction between the ligand and O{sub 2} molecules at simulation temperatures of 500 and 1000 K. In all cases, the reaction pathway involves O{sub 2} diffusing through the ligand barrier, splitting into atomic oxygen upon contact with the aluminum, and forming an oxide cluster with aluminum/ligand bonds still largely intact. Loss of individual aluminum-ligand units, as expected from unimolecular decomposition calculations, is not observed except following significant oxidation. These calculations highlight the role of the ligand in providing a steric barrier against oxidizers and in maintaining the large aluminum surface area of the solid-state cluster material.

  7. Vibrational lifetimes of hydrogen on lead films: an ab initio molecular dynamics with electronic friction (AIMDEF) study.

    PubMed

    Saalfrank, Peter; Juaristi, J I; Alducin, M; Blanco-Rey, M; Muiño, R Díez

    2014-12-21

    Using density functional theory and Ab Initio Molecular Dynamics with Electronic Friction (AIMDEF), we study the adsorption and dissipative vibrational dynamics of hydrogen atoms chemisorbed on free-standing lead films of increasing thickness. Lead films are known for their oscillatory behaviour of certain properties with increasing thickness, e.g., energy and electron spillout change in discontinuous manner, due to quantum size effects [G. Materzanini, P. Saalfrank, and P. J. D. Lindan, Phys. Rev. B 63, 235405 (2001)]. Here, we demonstrate that oscillatory features arise also for hydrogen when chemisorbed on lead films. Besides stationary properties of the adsorbate, we concentrate on finite vibrational lifetimes of H-surface vibrations. As shown by AIMDEF, the damping via vibration-electron hole pair coupling dominates clearly over the vibration-phonon channel, in particular for high-frequency modes. Vibrational relaxation times are a characteristic function of layer thickness due to the oscillating behaviour of the embedding surface electronic density. Implications derived from AIMDEF for frictional many-atom dynamics, and physisorbed species will also be given. PMID:25527952

  8. Vibrational lifetimes of hydrogen on lead films: An ab initio molecular dynamics with electronic friction (AIMDEF) study

    SciTech Connect

    Saalfrank, Peter; Juaristi, J. I.

    2014-12-21

    Using density functional theory and Ab Initio Molecular Dynamics with Electronic Friction (AIMDEF), we study the adsorption and dissipative vibrational dynamics of hydrogen atoms chemisorbed on free-standing lead films of increasing thickness. Lead films are known for their oscillatory behaviour of certain properties with increasing thickness, e.g., energy and electron spillout change in discontinuous manner, due to quantum size effects [G. Materzanini, P. Saalfrank, and P. J. D. Lindan, Phys. Rev. B 63, 235405 (2001)]. Here, we demonstrate that oscillatory features arise also for hydrogen when chemisorbed on lead films. Besides stationary properties of the adsorbate, we concentrate on finite vibrational lifetimes of H-surface vibrations. As shown by AIMDEF, the damping via vibration-electron hole pair coupling dominates clearly over the vibration-phonon channel, in particular for high-frequency modes. Vibrational relaxation times are a characteristic function of layer thickness due to the oscillating behaviour of the embedding surface electronic density. Implications derived from AIMDEF for frictional many-atom dynamics, and physisorbed species will also be given.

  9. Structure and dynamics of high-pressure Na close to the melting line: An ab initio molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Marqués, M.; González, D. J.; González, L. E.

    2016-07-01

    The melting curve of sodium for a pressure range up to 100 GPa has been evaluated by the orbital free ab initio molecular dynamics method. This method uses the electronic density as the basic variable combined with an approximate electronic kinetic energy functional and a local ionic pseudopotential and makes it possible to perform simulations with a large number of particles and for long simulation times. The calculated melting curve shows a maximum melting temperature at a pressure around 30 GPa followed by a steep decrease up to 100 GPa. For various pressures and temperatures we have evaluated several static properties, including average and local structure, electronic properties, like the electron localization function (ELF), and dynamic properties, both single-particle and collective ones, from which some transport coefficients are deduced. Despite the accurate reproduction of the available experimental data, we do not observe any indication of an early transition from a bcc-like to an fcc-like liquid, as suggested previously by other authors, but rather pressure-induced change in the variation of icosahedral-like order and bcc-like order, with no sign of fcc-like structures in the whole liquid range studied. We also consider the evolution of the ELF within this type of local arrangement upon pressurization. In the dynamic realm, we find an enlarged wave-vector region where atomic collisions play an important role in the dynamic properties of the system as pressure is increased and temperature decreased along the melting line, leading to a peculiar behavior of the dynamic properties.

  10. On the room-temperature phase diagram of high pressure hydrogen: An ab initio molecular dynamics perspective and a diffusion Monte Carlo study

    SciTech Connect

    Chen, Ji; Ren, Xinguo; Li, Xin-Zheng; Alfè, Dario; Wang, Enge

    2014-07-14

    The finite-temperature phase diagram of hydrogen in the region of phase IV and its neighborhood was studied using the ab initio molecular dynamics (MD) and the ab initio path-integral molecular dynamics (PIMD). The electronic structures were analyzed using the density-functional theory (DFT), the random-phase approximation, and the diffusion Monte Carlo (DMC) methods. Taking the state-of-the-art DMC results as benchmark, comparisons of the energy differences between structures generated from the MD and PIMD simulations, with molecular and dissociated hydrogens, respectively, in the weak molecular layers of phase IV, indicate that standard functionals in DFT tend to underestimate the dissociation barrier of the weak molecular layers in this mixed phase. Because of this underestimation, inclusion of the quantum nuclear effects (QNEs) in PIMD using electronic structures generated with these functionals leads to artificially dissociated hydrogen layers in phase IV and an error compensation between the neglect of QNEs and the deficiencies of these functionals in standard ab initio MD simulations exists. This analysis partly rationalizes why earlier ab initio MD simulations complement so well the experimental observations. The temperature and pressure dependencies for the stability of phase IV were also studied in the end and compared with earlier results.

  11. Self-Assembly and Dynamics of Organic 2D Molecular Sieves: Ab Initio and Molecular Dynamics Studies

    NASA Astrophysics Data System (ADS)

    St. John, Alexander; Wexler, Carlos

    2015-03-01

    Spontaneous molecular self-assembly is a promising route for bottom-up manufacturing of two-dimensional (2D) nanostructures with specific topologies on atomically flat surfaces. Of particular interest is the possibility of selective lock-and-key interaction of guest molecules inside cavities formed by complex self-assembled host structures. Our host structure is a monolayer consisting of interdigitated 1,3,5-tristyrylbenzene substituted by alkoxy peripheral chains containing n = 6, 8, 10, 12, or 14 carbon atoms (TSB3,5-C n) deposited on a highly ordered pyrolytic graphite (HOPG) surface. Using ab initio methods from quantum chemistry and molecular dynamics simulations, we construct and analyze the structure and functionality of the TSB3,5-C n monolayer as a molecular sieve. Supported by ACS-PRF 52696-ND5.

  12. Communication: Energy transfer and reaction dynamics for DCl scattering on Au(111): An ab initio molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Kolb, Brian; Guo, Hua

    2016-07-01

    Scattering and dissociative chemisorption of DCl on Au(111) are investigated using ab initio molecular dynamics with a slab model, in which the top two layers of Au are mobile. Substantial kinetic energy loss in the scattered DCl is found, but the amount of energy transfer is notably smaller than that observed in the experiment. On the other hand, the dissociative chemisorption probability reproduces the experimental trend with respect to the initial kinetic energy, but is about one order of magnitude larger than the reported initial sticking probability. While the theory-experiment agreement is significantly improved from the previous rigid surface model, the remaining discrepancies are still substantial, calling for further scrutiny in both theory and experiment.

  13. Interplay between the structure and dynamics in liquid and undercooled boron: An ab initio molecular dynamics simulation study

    SciTech Connect

    Jakse, N.; Pasturel, A.

    2014-12-21

    In the present work, the structural and dynamic properties of liquid and undercooled boron are investigated by means of ab initio molecular dynamics simulation. Our results show that both liquid and undercooled states present a well pronounced short-range order (SRO) mainly due to the formation of inverted umbrella structural units. Moreover, we observe the development of a medium-range order (MRO) in the undercooling regime related to the increase of inverted umbrella structural units and of their interconnection as the temperature decreases. We also evidence that this MRO leads to a partial crystallization in the β-rhombohedral crystal below T = 1900 K. Finally, we discuss the role played by the SRO and MRO in the nearly Arrhenius evolution of the diffusion and the non-Arrhenius temperature dependence of the shear viscosity, in agreement with the experiment.

  14. Ultrafast transformation of graphite to diamond: An ab initio molecular dynamics study of graphite under shock compression

    SciTech Connect

    Mundy, Christopher J.; Curioni, Alessandro; Kuo, I-F W.; Goldman, Nir; Reed, Evan; Fried, Larry; Ianuzzi, Marcella

    2008-05-14

    This work was performed while I was LLNL. We present an extremely large scale ab initio calculation of the transformation of graphite to diamond under shock compression utilizing Car-Parrinello Molecular Dynamics (CPMD) in conjunction with the Multi-scale Shock Method (MSSM). Our results indicate that the transition from graphite to diamond is Martensitic, in agreement with experimental observations. We find that a shock of 12 km/s forms a short-lived layered diamond phase that eventually relaxes to a cubic diamond state. Moreover, access to the electronic structure allows the computation of the x-ray absorption spectra (XAS) to characterize the final states. The XAS spectra and wide angle x-ray scattering spectra (WAXS) confirm the presence of a cubic diamond final state.

  15. Characterization of amorphous In{sub 2}O{sub 3}: An ab initio molecular dynamics study

    SciTech Connect

    Aliano, Antonio; Catellani, Alessandra; Cicero, Giancarlo

    2011-11-21

    In this work, we report on the structural and electronic properties of amorphous In{sub 2}O{sub 3} obtained with ab initio molecular dynamics. Our results show crystal-like short range InO{sub 6} polyhedra having average In-O distance consistent with x-ray spectroscopy data. Structural disorder yields band tailing and localized states, which are responsible of a strong reduction of the electronic gap. Most importantly, the appearance of a peculiar O-O bond imparts n-type character to the amorphous compound and provides contribution for interpreting spectroscopic measurements on indium based oxidized systems. Our findings portray characteristic features to attribute transparent semiconductive properties to amorphous In{sub 2}O{sub 3}.

  16. Ab initio molecular dynamics studies on effect of Zr on oxidation resistance of TiAlN coatings

    NASA Astrophysics Data System (ADS)

    Pi, Jingwu; Kong, Yi; Chen, Li; Du, Yong

    2016-08-01

    It was demonstrated experimentally that doping Zr into TiAlN coatings at room temperature will detriment its oxidation resistance. On the other hand, there are evidences that doping Zr into TiAlN at high temperature will improve coating's oxidation resistance. In the present work, we address the effect of Zr on the oxidation resistance of TiAlN by means of ab initio molecular dynamics simulations. The TiAlN and TiAlZrN (1 Zr atom replacing 1 Ti atom) surfaces covered with 4 oxygen atoms at 300 K and 1123 K were simulated. Based on the analysis of the atomic motion, bond formation after relaxation, and the charge density difference maps we find that at 300 K, the addition of Zr induces escape of Ti atoms from the surface, resulting in formation of surface vacancies and subsequently TiO2. Comparison of metal-oxygen dimers in the vacuum and above the TiAlZrN surface further shows that the addition of Zr in the TiAlN surface will change the lowest bonding energy sequence from Zrsbnd O < Tisbnd O < Alsbnd O in the vacuum to Tisbnd O < Zrsbnd O < Alsbnd O above the TiAlZrN surface. From Molecular Dynamics simulations at 1123 K, it is find that no Ti vacancies were generated in the surface. Moreover, less charge is transferred from metal to N atoms and the bond lengths between Ti and O atoms become shorter at 1123 K as compared with 300 K, suggesting that the addition of Zr atom promotes the interaction of Ti and O at TiAlZrN surface at 1123 K, leading to a more stable surface. Our simulation explains why Zr-doping at 1123 K increases TiAlN coating's oxidation resistance while at 300 K reduces its oxidation resistance.

  17. Ab initio molecular dynamics studies on HIV-1 reverse transcriptase triphosphate binding site: implications for nucleoside-analog drug resistance.

    PubMed

    Alber, F; Carloni, P

    2000-12-01

    Quantum-chemical methods are used to shed light on the functional role of residues involved in the resistance of HIV-1 reverse transcriptase against nucleoside-analog drugs. Ab initio molecular dynamics simulations are carried out for models representing the adduct between the triphosphate substrate and the nucleoside binding site. The triphosphate is considered either deprotonated or protonated at the gamma-position. Although the protonated form already experiences large rearrangements in the ps time scale, the fully deprotonated state exhibits a previously unrecognized low-barrier hydrogen bond between Lys65 and gamma-phosphate. Absence of this interaction in Lys65-->Arg HIV-1 RT might play a prominent role in the resistance of this mutant for nucleoside analogs (Gu Z et al., 1994b, Antimicrob Agents Chemother 38:275-281; Zhang D et al., 1994, Antimicrob Agents Chemother 38:282-287). Water molecules present in the active site, not detected in the X-ray structure, form a complex H-bond network. Among these waters, one may be crucial for substrate recognition as it bridges Gln151 and Arg72 with the beta-phosphate. Absence of this stabilizing interaction in Gln151-->Met HIV-1 RT mutant may be a key factor for the known drug resistance of this mutant toward dideoxy-type drugs and AZT (Shirasaka T et al., 1995, Proc Natl Acad Sci USA 92:2398-2402: Iversen AK et al., 1996, J Virol 70:1086-1090).

  18. Ab initio molecular dynamics study of proton transfer in a polyglycine analog of the ion channel gramicidin A.

    PubMed Central

    Sagnella, D E; Laasonen, K; Klein, M L

    1996-01-01

    Proton transfer in biological systems is thought to often proceed through hydrogen-bonded chains of water molecules. The ion channel, gramicidin A (gA), houses within its helical structure just such a chain. Using the density functional theory based ab initio molecular dynamics Car-Parrinello method, the structure and dynamics of proton diffusion through a polyglycine analog of the gA ion channel has been investigated. In the channel, a proton, which is initially present as hydronium (H3O+), rapidly forms a strong hydrogen bond with a nearest neighbor water, yielding a transient H5O2+ complex. As in bulk water, strong hydrogen bonding of this complex to a second neighbor solvation shell is required for proton transfer to occur. Within gA, this second neighbor shell included not only a channel water molecule but also a carbonyl of the channel backbone. The present calculations suggest a transport mechanism in which a priori carbonyl solvation is a requirement for proton transfer. Images FIGURE 1 FIGURE 3 PMID:8873991

  19. Study on Exploration of Azeotropic Point of Pb-Sb Alloys by Vacuum Distillation and Ab Initio Molecular Dynamic Simulation

    NASA Astrophysics Data System (ADS)

    Song, Bingyi; Jiang, Wenlong; Yang, Bin; Chen, Xiumin; Xu, Baoqiang; Kong, Lingxin; Liu, Dachun; Dai, Yongnian

    2016-10-01

    The possibility of the separation of Pb-Sb alloys by vacuum distillation was investigated theoretically. The results show that Pb and Sb can be separated by vacuum distillation. However, the experimental results show that vacuum distillation technique does not provide clear separation. According to the literature, Pb-Sb alloys belong to azeotropic compounds under some certain temperature; the experiment and computer simulation were carried out based on the exceptional condition so as to analyze the reason from the experiment and microstructure of Pb-Sb alloys perspective. The separation of Pb-Sb alloys by vacuum distillation was experimentally carried out to probe the azeotropic point. Also, the functions, such as partial radial distributions functions, the structure factor, mean square displacement, and the density of state, were calculated by ab-initio molecular dynamics for the representation of the structure and properties of Pb-Sb alloys with different composition of Sb. The experimental results indicate that there exists common volatilization for Pb-Sb alloys when Sb content is 16.5 wt pct. On the other hand, the calculation results show that there is an intense interaction between Pb and Sb when Sb content is 22 wt pct, which supports the experimental results although Sb content is slightly deviation.

  20. Does Thermal Breathing Affect Collision Cross Sections of Gas-Phase Peptide Ions? An Ab Initio Molecular Dynamics Study.

    PubMed

    Pepin, Robert; Petrone, Alessio; Laszlo, Kenneth J; Bush, Matthew F; Li, Xiaosong; Tureček, František

    2016-07-21

    Ab initio molecular dynamics (AIMD) with density functional theory (DFT) was applied to explore conformational motions and collision cross sections (Ω) of folded (2) and extended (7) conformers of doubly charged peptide ions, (Ala-Ala-Leu-Arg + 2H)(2+), in the gas phase at 300 and 473 K. The experimental Ω of (Ala-Ala-Leu-Arg +2H)(2+) was measured as 149 ± 1.2 Å(2) at 298 K. Thermally distributed mean values of Ω for 2 and 7 at 300 and 473 K were only 0.8-1.1% larger than for the equilibrium 0 K structures. Long (>10 ps) trajectory calculations indicated entropy-driven conformational change of 2 to 7 that occurred at random within a ∼ 4 ps time window. The experimental Ω was found to fit the calculated population averaged values for 2 and 7, indicating a rapid conformer interconversion. Overall, thermal breathing had only a minor effect on the peptide ion collision cross sections.

  1. Study on Exploration of Azeotropic Point of Pb-Sb Alloys by Vacuum Distillation and Ab Initio Molecular Dynamic Simulation

    NASA Astrophysics Data System (ADS)

    Song, Bingyi; Jiang, Wenlong; Yang, Bin; Chen, Xiumin; Xu, Baoqiang; Kong, Lingxin; Liu, Dachun; Dai, Yongnian

    2016-07-01

    The possibility of the separation of Pb-Sb alloys by vacuum distillation was investigated theoretically. The results show that Pb and Sb can be separated by vacuum distillation. However, the experimental results show that vacuum distillation technique does not provide clear separation. According to the literature, Pb-Sb alloys belong to azeotropic compounds under some certain temperature; the experiment and computer simulation were carried out based on the exceptional condition so as to analyze the reason from the experiment and microstructure of Pb-Sb alloys perspective. The separation of Pb-Sb alloys by vacuum distillation was experimentally carried out to probe the azeotropic point. Also, the functions, such as partial radial distributions functions, the structure factor, mean square displacement, and the density of state, were calculated by ab-initio molecular dynamics for the representation of the structure and properties of Pb-Sb alloys with different composition of Sb. The experimental results indicate that there exists common volatilization for Pb-Sb alloys when Sb content is 16.5 wt pct. On the other hand, the calculation results show that there is an intense interaction between Pb and Sb when Sb content is 22 wt pct, which supports the experimental results although Sb content is slightly deviation.

  2. The Role of Anharmonicity and Nuclear Quantum Effects in the Pyridine Molecular Crystal: An ab initio Molecular Dynamics Study

    NASA Astrophysics Data System (ADS)

    Ko, Hsin-Yu; Distasio, Robert A., Jr.; Santra, Biswajit; Car, Roberto

    Molecular crystal structure prediction has posed a substantial challenge to first-principles methods and requires sophisticated electronic structure methods to determine the stabilities of nearly degenerate polymorphs. In this work, we demonstrate that the anharmonicity from van der Waals interactions is relevant to the finite-temperature structures of pyridine and pyridine-like molecular crystals. Using such an approach, we find that the equilibrium structures are well captured with classical ab initio molecular dynamics (AIMD), despite the presence of light atoms such as hydrogen. Employing path integral AIMD simulations, we demonstrate that the success of classical AIMD results from a separation of nuclear quantum effects between the intermolecular and intramolecular degrees of freedom. In this separation, the quasiclassical and anharmonic intermolecular degrees of freedom determine the equilibrium structure, while the quantum and harmonic intramolecular degrees of freedom are averaging to the correct intramolecular structure. This work has been supported by the Department of Energy under Grants No. DE-FG02-05ER46201 and DE-SC0008626.

  3. Multiple time step integrators in ab initio molecular dynamics

    SciTech Connect

    Luehr, Nathan; Martínez, Todd J.; Markland, Thomas E.

    2014-02-28

    Multiple time-scale algorithms exploit the natural separation of time-scales in chemical systems to greatly accelerate the efficiency of molecular dynamics simulations. Although the utility of these methods in systems where the interactions are described by empirical potentials is now well established, their application to ab initio molecular dynamics calculations has been limited by difficulties associated with splitting the ab initio potential into fast and slowly varying components. Here we present two schemes that enable efficient time-scale separation in ab initio calculations: one based on fragment decomposition and the other on range separation of the Coulomb operator in the electronic Hamiltonian. We demonstrate for both water clusters and a solvated hydroxide ion that multiple time-scale molecular dynamics allows for outer time steps of 2.5 fs, which are as large as those obtained when such schemes are applied to empirical potentials, while still allowing for bonds to be broken and reformed throughout the dynamics. This permits computational speedups of up to 4.4x, compared to standard Born-Oppenheimer ab initio molecular dynamics with a 0.5 fs time step, while maintaining the same energy conservation and accuracy.

  4. Ab initio molecular dynamics study on the initial chemical events in nitramines: thermal decomposition of CL-20.

    PubMed

    Isayev, Olexandr; Gorb, Leonid; Qasim, Mo; Leszczynski, Jerzy

    2008-09-01

    CL-20 (2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane or HNIW) is a high-energy nitramine explosive. To improve atomistic understanding of the thermal decomposition of CL-20 gas and solid phases, we performed a series of ab initio molecular dynamics simulations. We found that during unimolecular decomposition, unlike other nitramines (e.g., RDX, HMX), CL-20 has only one distinct initial reaction channelhomolysis of the N-NO2 bond. We did not observe any HONO elimination reaction during unimolecular decomposition, whereas the ring-breaking reaction was followed by NO 2 fission. Therefore, in spite of limited sampling, that provides a mostly qualitative picture, we proposed here a scheme of unimolecular decomposition of CL-20. The averaged product population over all trajectories was estimated at four HCN, two to four NO2, two to four NO, one CO, and one OH molecule per one CL-20 molecule. Our simulations provide a detailed description of the chemical processes in the initial stages of thermal decomposition of condensed CL-20, allowing elucidation of key features of such processes as composition of primary reaction products, reaction timing, and Arrhenius behavior of the system. The primary reactions leading to NO2, NO, N 2O, and N2 occur at very early stages. We also estimated potential activation barriers for the formation of NO2, which essentially determines overall decomposition kinetics and effective rate constants for NO2 and N2. The calculated solid-phase decomposition pathways correlate with available condensed-phase experimental data. PMID:18686996

  5. Orbital-free ab initio molecular dynamics study of the free liquid surface of Sn. From pseudopotential generation to structural and dynamic properties

    NASA Astrophysics Data System (ADS)

    Gonzalez Del Rio, Beatriz; Gonzalez Tesedo, Luis Enrique

    We report results of an orbital-free ab initio molecular dynamics (OF-AIMD) study of the free liquid surface of Sn at 1000 K. A key ingredient in the OF-AIMD method is the local ionic pseudopotential describing the ions-valence electrons interaction. We have developed a force-matching method to derive a local ionic pseudopotential suitable to account for a rapidly varying density system, such as in a free liquid surface. We obtain very good results for several structural properties. We have also studied the evolution of some dynamical properties when going from the central region (where the system behaves like the bulk liquid) towards the free liquid surface. We aknowledge the spanish MSI (Project FIS2012-33126) and the University of Valladolid for the provision of a PhD grant.

  6. Exploring the free energy surface using ab initio molecular dynamics.

    PubMed

    Samanta, Amit; Morales, Miguel A; Schwegler, Eric

    2016-04-28

    Efficient exploration of configuration space and identification of metastable structures in condensed phase systems are challenging from both computational and algorithmic perspectives. In this regard, schemes that utilize a set of pre-defined order parameters to sample the relevant parts of the configuration space [L. Maragliano and E. Vanden-Eijnden, Chem. Phys. Lett. 426, 168 (2006); J. B. Abrams and M. E. Tuckerman, J. Phys. Chem. B 112, 15742 (2008)] have proved useful. Here, we demonstrate how these order-parameter aided temperature accelerated sampling schemes can be used within the Born-Oppenheimer and the Car-Parrinello frameworks of ab initio molecular dynamics to efficiently and systematically explore free energy surfaces, and search for metastable states and reaction pathways. We have used these methods to identify the metastable structures and reaction pathways in SiO2 and Ti. In addition, we have used the string method [W. E, W. Ren, and E. Vanden-Eijnden, Phys. Rev. B 66, 052301 (2002); L. Maragliano et al., J. Chem. Phys. 125, 024106 (2006)] within the density functional theory to study the melting pathways in the high pressure cotunnite phase of SiO2 and the hexagonal closed packed to face centered cubic phase transition in Ti. PMID:27131525

  7. Diffusion in liquid Germanium using ab initio molecular dynamics

    NASA Astrophysics Data System (ADS)

    Kulkarni, R. V.; Aulbur, W. G.; Stroud, D.

    1996-03-01

    We describe the results of calculations of the self-diffusion constant of liquid Ge over a range of temperatures. The calculations are carried out using an ab initio molecular dynamics scheme which combines an LDA model for the electronic structure with the Bachelet-Hamann-Schlüter norm-conserving pseudopotentials^1. The energies associated with electronic degrees of freedom are minimized using the Williams-Soler algorithm, and ionic moves are carried out using the Verlet algorithm. We use an energy cutoff of 10 Ry, which is sufficient to give results for the lattice constant and bulk modulus of crystalline Ge to within 1% and 12% of experiment. The program output includes not only the self-diffusion constant but also the structure factor, electronic density of states, and low-frequency electrical conductivity. We will compare our results with other ab initio and semi-empirical calculations, and discuss extension to impurity diffusion. ^1 We use the ab initio molecular dynamics code fhi94md, developed at 1cm the Fritz-Haber Institute, Berlin. ^2 Work supported by NASA, Grant NAG3-1437.

  8. Accelerating ab initio molecular dynamics simulations by linear prediction methods

    NASA Astrophysics Data System (ADS)

    Herr, Jonathan D.; Steele, Ryan P.

    2016-09-01

    Acceleration of ab initio molecular dynamics (AIMD) simulations can be reliably achieved by extrapolation of electronic data from previous timesteps. Existing techniques utilize polynomial least-squares regression to fit previous steps' Fock or density matrix elements. In this work, the recursive Burg 'linear prediction' technique is shown to be a viable alternative to polynomial regression, and the extrapolation-predicted Fock matrix elements were three orders of magnitude closer to converged elements. Accelerations of 1.8-3.4× were observed in test systems, and in all cases, linear prediction outperformed polynomial extrapolation. Importantly, these accelerations were achieved without reducing the MD integration timestep.

  9. Accelerating chemical reactions: Exploring reactive free-energy surfaces using accelerated ab initio molecular dynamics

    PubMed Central

    Pierce, Levi C. T.; Markwick, Phineus R. L.; McCammon, J. Andrew; Doltsinis, Nikos L.

    2011-01-01

    A biased potential molecular dynamics simulation approach, accelerated molecular dynamics (AMD), has been implemented in the framework of ab initio molecular dynamics for the study of chemical reactions. Using two examples, the double proton transfer reaction in formic acid dimer and the hypothetical adiabatic ring opening and subsequent rearrangement reactions in methylenecyclopropane, it is demonstrated that ab initio AMD can be readily employed to efficiently explore the reactive potential energy surface, allowing the prediction of chemical reactions and the identification of metastable states. An adaptive variant of the AMD method is developed, which additionally affords an accurate representation of both the free-energy surface and the mechanism associated with the chemical reaction of interest and can also provide an estimate of the reaction rate. PMID:21548673

  10. Entropy of Liquid Water from Ab Initio Molecular Dynamics

    NASA Astrophysics Data System (ADS)

    Spanu, Leonardo; Zhang, Cui; Galli, Giulia

    2012-02-01

    The debate on the structural properties of water has been mostly based on the calculation of pair correlation functions. However, the simulation of thermodynamic and spectroscopic quantities may be of great relevance for the characterization of liquid water properties. We have computed the entropy of liquid water using a two-phase thermodynamic model and trajectories generated by ab initio molecular dynamics simulations [1]. In an attempt to better understand the performance of several density functionals in simulating liquid water, we have performed ab initio molecular dynamics using semilocal, hybrid [2] and van der Waals density functionals [3]. We show that in all cases, at the experimental equilibrium density and at temperatures in the vicinity of 300 K, the computed entropies are underestimated, with respect to experiment, and the liquid exhibits a degree of tetrahedral order higher than in experiments. We also discuss computational strategies to simulate spectroscopic properties of water, including infrared and Raman spectra.[4pt] [1] C.Zhang, L.Spanu and G.Galli, J.Phys.Chem. B 2011 (in press)[0pt] [2] C.Zhang, D.Donadio, F.Gygi and G.Galli, J. Chem. Theory Comput. 7, 1443 (2011)[0pt] [3] C.Zhang, J.Wu, G.Galli and F.Gygi, J. Chem. Theory Comput. 7, 3061 (2011)

  11. Structural and vibrational study of 2-MethoxyEthylAmmonium Nitrate (2-OMeEAN): Interpretation of experimental results with ab initio molecular dynamics

    NASA Astrophysics Data System (ADS)

    Campetella, M.; Bovi, D.; Caminiti, R.; Guidoni, L.; Bencivenni, L.; Gontrani, L.

    2016-07-01

    In this work we report an analysis of the bulk phase of 2-methoxyethylammonium nitrate based on ab initio molecular dynamics. The structural and dynamical features of the ionic liquid have been characterized and the computational findings have been compared with the experimental X-ray diffraction patterns, with infrared spectroscopy data, and with the results obtained from molecular dynamics simulations. The experimental infrared spectrum was interpreted with the support of calculated vibrational density of states as well as harmonic frequency calculations of selected gas phase clusters. Particular attention was addressed to the high frequency region of the cation (ω > 2000 cm-1), where the vibrational motions involve the NH3+ group responsible for hydrogen bond formation, and to the frequency range 1200-1400 cm-1 where the antisymmetric stretching mode (ν3) of nitrate is found. Its multiple absorption lines in the liquid arise from the removal of the degeneracy present in the D3h symmetry of the isolated ion. Our ab initio molecular dynamics leads to a rationalization of the frequency shifts and splittings, which are inextricably related to the structural modifications induced by a hydrogen bonding environment. The DFT calculations lead to an inhomogeneous environment.

  12. Hydrogen evolution from formic acid in an ionic liquid solvent: a mechanistic study by ab initio molecular dynamics.

    PubMed

    Bhargava, B L; Yasaka, Yoshiro; Klein, Michael L

    2011-12-01

    The reversible decomposition of formic acid (HCOOH ⇌ CO(2) + H(2)) has been attracting attention for its potential utility in hydrogen storage and production. It is therefore of interest to explore the influence of solvents on the decomposition reaction. To this end, Born-Oppenheimer (BO) molecular dynamics (MD) calculations have been performed to explore the mechanism involved in hydrogen (H(2)) evolution from formic acid decomposition in an ionic liquid solvent. Specifically, for a solvent consisting of 1,3-dimethylimidazolium cations and formate anions, evolution of hydrogen (H(2)) and carbon dioxide (CO(2)) was observed within a few picoseconds when BO-MD trajectories were carried out at an elevated temperature of 3000 K. The observed dehydrogenation involved a reaction between a formic acid solute and a nearby solvent formate anion. The observed mechanism contrasts with the unimolecular mechanism proposed in the gas phase. Specifically, in the ionic liquid, the reaction is initiated from a C-H bond dissociation of a formate anion to produce a short-lived hydride anion, which subsequently captures the acidic proton of a nearby formic acid molecule. The present BO-MD computations suggest that the high reducing ability of formic acid in the ionic liquid is due in part to its acid-dissociated form: the formate anion, which is encouraged to dissociate into a hydride anion and CO(2) by the strong electrostatic field of the ionic liquid solvent. PMID:21774513

  13. Ab initio multiple cloning algorithm for quantum nonadiabatic molecular dynamics

    NASA Astrophysics Data System (ADS)

    Makhov, Dmitry V.; Glover, William J.; Martinez, Todd J.; Shalashilin, Dmitrii V.

    2014-08-01

    We present a new algorithm for ab initio quantum nonadiabatic molecular dynamics that combines the best features of ab initio Multiple Spawning (AIMS) and Multiconfigurational Ehrenfest (MCE) methods. In this new method, ab initio multiple cloning (AIMC), the individual trajectory basis functions (TBFs) follow Ehrenfest equations of motion (as in MCE). However, the basis set is expanded (as in AIMS) when these TBFs become sufficiently mixed, preventing prolonged evolution on an averaged potential energy surface. We refer to the expansion of the basis set as "cloning," in analogy to the "spawning" procedure in AIMS. This synthesis of AIMS and MCE allows us to leverage the benefits of mean-field evolution during periods of strong nonadiabatic coupling while simultaneously avoiding mean-field artifacts in Ehrenfest dynamics. We explore the use of time-displaced basis sets, "trains," as a means of expanding the basis set for little cost. We also introduce a new bra-ket averaged Taylor expansion (BAT) to approximate the necessary potential energy and nonadiabatic coupling matrix elements. The BAT approximation avoids the necessity of computing electronic structure information at intermediate points between TBFs, as is usually done in saddle-point approximations used in AIMS. The efficiency of AIMC is demonstrated on the nonradiative decay of the first excited state of ethylene. The AIMC method has been implemented within the AIMS-MOLPRO package, which was extended to include Ehrenfest basis functions.

  14. Ab initio multiple cloning algorithm for quantum nonadiabatic molecular dynamics

    SciTech Connect

    Makhov, Dmitry V.; Shalashilin, Dmitrii V.; Glover, William J.; Martinez, Todd J.

    2014-08-07

    We present a new algorithm for ab initio quantum nonadiabatic molecular dynamics that combines the best features of ab initio Multiple Spawning (AIMS) and Multiconfigurational Ehrenfest (MCE) methods. In this new method, ab initio multiple cloning (AIMC), the individual trajectory basis functions (TBFs) follow Ehrenfest equations of motion (as in MCE). However, the basis set is expanded (as in AIMS) when these TBFs become sufficiently mixed, preventing prolonged evolution on an averaged potential energy surface. We refer to the expansion of the basis set as “cloning,” in analogy to the “spawning” procedure in AIMS. This synthesis of AIMS and MCE allows us to leverage the benefits of mean-field evolution during periods of strong nonadiabatic coupling while simultaneously avoiding mean-field artifacts in Ehrenfest dynamics. We explore the use of time-displaced basis sets, “trains,” as a means of expanding the basis set for little cost. We also introduce a new bra-ket averaged Taylor expansion (BAT) to approximate the necessary potential energy and nonadiabatic coupling matrix elements. The BAT approximation avoids the necessity of computing electronic structure information at intermediate points between TBFs, as is usually done in saddle-point approximations used in AIMS. The efficiency of AIMC is demonstrated on the nonradiative decay of the first excited state of ethylene. The AIMC method has been implemented within the AIMS-MOLPRO package, which was extended to include Ehrenfest basis functions.

  15. Ab initio multiple cloning algorithm for quantum nonadiabatic molecular dynamics.

    PubMed

    Makhov, Dmitry V; Glover, William J; Martinez, Todd J; Shalashilin, Dmitrii V

    2014-08-01

    We present a new algorithm for ab initio quantum nonadiabatic molecular dynamics that combines the best features of ab initio Multiple Spawning (AIMS) and Multiconfigurational Ehrenfest (MCE) methods. In this new method, ab initio multiple cloning (AIMC), the individual trajectory basis functions (TBFs) follow Ehrenfest equations of motion (as in MCE). However, the basis set is expanded (as in AIMS) when these TBFs become sufficiently mixed, preventing prolonged evolution on an averaged potential energy surface. We refer to the expansion of the basis set as "cloning," in analogy to the "spawning" procedure in AIMS. This synthesis of AIMS and MCE allows us to leverage the benefits of mean-field evolution during periods of strong nonadiabatic coupling while simultaneously avoiding mean-field artifacts in Ehrenfest dynamics. We explore the use of time-displaced basis sets, "trains," as a means of expanding the basis set for little cost. We also introduce a new bra-ket averaged Taylor expansion (BAT) to approximate the necessary potential energy and nonadiabatic coupling matrix elements. The BAT approximation avoids the necessity of computing electronic structure information at intermediate points between TBFs, as is usually done in saddle-point approximations used in AIMS. The efficiency of AIMC is demonstrated on the nonradiative decay of the first excited state of ethylene. The AIMC method has been implemented within the AIMS-MOLPRO package, which was extended to include Ehrenfest basis functions. PMID:25106573

  16. Structure of the glass-forming metallic liquids by ab-initio and classical molecular dynamics, a case study: Quenching the Cu60Ti20Zr20 alloy

    NASA Astrophysics Data System (ADS)

    Amokrane, S.; Ayadim, A.; Levrel, L.

    2015-11-01

    We consider the question of the amorphization of metallic alloys by melt quenching, as predicted by molecular dynamics simulations with semi-empirical potentials. The parametrization of the potentials is discussed on the example of the ternary Cu-Ti-Zr transition metals alloy, using the ab-initio simulation as a reference. The pair structure in the amorphous state is computed from a potential of the Stillinger-Weber form. The transferability of the parameters during the quench is investigated using two parametrizations: from solid state data, as usual and from a new parametrization on the liquid structure. When the adjustment is made on the pair structure of the liquid, a satisfactory transferability is found between the pure components and their alloys. The liquid structure predicted in this way agrees well with experiment, in contrast with the one obtained using the adjustment on the solid. The final structure, after quenches down to the amorphous state, determined with the new set of parameters is shown to be very close to the ab-initio one, the latter being in excellent agreement with recent X-rays diffraction experiments. The corresponding critical temperature of the glass transition is estimated from the behavior of the heat capacity. Discussion on the consistency between the structures predicted using semi-empirical potentials and ab-initio simulation, and comparison of different experimental data underlines the question of the dependence of the final structure on the thermodynamic path followed to reach the amorphous state.

  17. An Insight into the Environmental Effects of the Pocket of the Active Site of the Enzyme. Ab initio ONIOM-Molecular Dynamics (MD) Study on Cytosine Deaminase

    SciTech Connect

    Matsubara, Toshiaki; Dupuis, Michel; Aida, Misako

    2008-02-01

    We applied the ONIOM-molecular dynamics (MD) method to cytosine deaminase to examine the environmental effects of the amino acid residues in the pocket of the active site on the substrate taking account of their thermal motion. The ab initio ONIOM-MD simulations show that the substrate uracil is strongly perturbed by the amino acid residue Ile33, which sandwiches the uracil with His62, through the steric contact due to the thermal motion. As a result, the magnitude of the thermal oscillation of the potential energy and structure of the substrate uracil significantly increases. TM and MA were partly supported by grants from the Ministry of Education, Culture, Sports, Science and Technology of Japan.MD was supported by the Division of Chemical Sciences, Office of Basic Energy Sciences, and by the Office of Biological and Environmental Research of the U.S. Department of Energy DOE. Battelle operates Pacific Northwest National Laboratory for DOE.

  18. Ab initio molecular dynamics calculations of ion hydration free energies

    SciTech Connect

    Leung, Kevin; Rempe, Susan B.; Lilienfeld, O. Anatole von

    2009-05-28

    We apply ab initio molecular dynamics (AIMD) methods in conjunction with the thermodynamic integration or '{lambda}-path' technique to compute the intrinsic hydration free energies of Li{sup +}, Cl{sup -}, and Ag{sup +} ions. Using the Perdew-Burke-Ernzerhof functional, adapting methods developed for classical force field applications, and with consistent assumptions about surface potential ({phi}) contributions, we obtain absolute AIMD hydration free energies ({Delta}G{sub hyd}) within a few kcal/mol, or better than 4%, of Tissandier et al.'s [J. Phys. Chem. A 102, 7787 (1998)] experimental values augmented with the SPC/E water model {phi} predictions. The sums of Li{sup +}/Cl{sup -} and Ag{sup +}/Cl{sup -} AIMD {Delta}G{sub hyd}, which are not affected by surface potentials, are within 2.6% and 1.2 % of experimental values, respectively. We also report the free energy changes associated with the transition metal ion redox reaction Ag{sup +}+Ni{sup +}{yields}Ag+Ni{sup 2+} in water. The predictions for this reaction suggest that existing estimates of {Delta}G{sub hyd} for unstable radiolysis intermediates such as Ni{sup +} may need to be extensively revised.

  19. Ab initio molecular dynamics with enhanced sampling for surface reaction kinetics at finite temperatures: CH2⇌ CH + H on Ni(111) as a case study.

    PubMed

    Sun, Geng; Jiang, Hong

    2015-12-21

    A comprehensive understanding of surface thermodynamics and kinetics based on first-principles approaches is crucial for rational design of novel heterogeneous catalysts, and requires combining accurate electronic structure theory and statistical mechanics modeling. In this work, ab initio molecular dynamics (AIMD) combined with the integrated tempering sampling (ITS) method has been explored to study thermodynamic and kinetic properties of elementary processes on surfaces, using a simple reaction CH2⇌CH+H on the Ni(111) surface as an example. By a careful comparison between the results from ITS-AIMD simulation and those evaluated in terms of the harmonic oscillator (HO) approximation, it is found that the reaction free energy and entropy from the HO approximation are qualitatively consistent with the results from ITS-AIMD simulation, but there are also quantitatively significant discrepancies. In particular, the HO model misses the entropy effects related to the existence of multiple adsorption configurations arising from the frustrated translation and rotation motion of adsorbed species, which are different in the reactant and product states. The rate constants are evaluated from two ITS-enhanced approaches, one using the transition state theory (TST) formulated in terms of the potential of mean force (PMF) and the other one combining ITS with the transition path sampling (TPS) technique, and are further compared to those based on harmonic TST. It is found that the rate constants from the PMF-based TST are significantly smaller than those from the harmonic TST, and that the results from PMF-TST and ITS-TPS are in a surprisingly good agreement. These findings indicate that the basic assumptions of transition state theory are valid in such elementary surface reactions, but the consideration of statistical averaging of all important adsorption configurations and reaction pathways, which are missing in the harmonic TST, are critical for accurate description of

  20. Ab initio centroid molecular dynamics: a fully quantum method for condensed-phase dynamics simulations

    NASA Astrophysics Data System (ADS)

    Pavese, Marc; Berard, Daniel R.; Voth, Gregory A.

    1999-01-01

    A fully quantum molecular dynamics method is presented which combines ab initio Car-Parrinello molecular dynamics with centroid molecular dynamics. The first technique allows the forces on the atoms to be obtained from ab initio electronic structure. The second technique, given the forces on the atoms, allows one to calculate an approximate quantum time evolution for the nuclei. The combination of the two, therefore, represents the first feasible approach to simulating the fully quantum dynamics of a many-body system. An application to excess proton translocation along a model water wire will be presented.

  1. Constructing Periodic Phase Space Orbits from ab Initio Molecular Dynamics Trajectories to Analyze Vibrational Spectra: Case Study of the Zundel (H5O2(+)) Cation.

    PubMed

    Dietrick, Scott M; Iyengar, Srinivasan S

    2012-12-11

    A method of analysis is introduced to probe the spectral features obtained from ab initio molecular dynamics simulations. Here, the instantaneous mass-weighted velocities are projected onto irreducible representations constructed from discrete time translation groups comprising operations that invoke the time-domain symmetries (or periodic phase space orbits) reflected in the spectra. The projected velocities are decomposed using singular value decomposition (SVD) to construct a set of "modes" pertaining to a given frequency domain. These modes now include all anharmonicities, as sampled during the dynamics simulations. In this approach, the underlying motions are probed in a manner invariant with respect to coordinate transformations, operations being performed along the time axis rather than coordinate axes, making the analysis independent of choice of reference frame. The method is used to probe the underlying motions responsible for the doublet at ∼1000 cm(-1) in the vibrational spectrum of the H5O2(+), Zundel cation. The associated analysis results are confirmed by projecting the Fourier transformed velocities onto the harmonic normal mode coordinates and a set of mass-weighted, symmetrized Jacobi coordinates. It is found that the two peaks of the doublet are described and differentiated by their respective contributions from the proton transfer, water-water stretch, and water wag coordinates, as these are defined. Temperature dependent effects are also briefly noted.

  2. Whether proton transition to the triphosphate tail of ATP occurs at protein kinase environment: A Car-Parrinello ab initio molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Yang, Sheng-Yong; Zou, Jun; Xiang, Ming-Li; Xie, Guo-Bin; Shi, Bing; Wei, Yu-Quan

    Protonation state of the triphosphate tail of ATP (adenosine triphosphate) in protein environment is a fundamental issue, which has significant impact on the mechanism investigation of biochemical processes with ATP involved. Proton transition from surroundings (water molecule coordinating to magnesium, HW; amino group of Lys, HL) to the ATP tail in the catalytic core of protein kinase found recently disproved the commonly accepted deprotonation state of ATP tail. In this account, Car-Parrinello ab initio molecular dynamics (CP-AIMD) method has been employed to examine whether the proton transition occurs. To provide a comparison basis for the dynamics simulations, static quantum mechanics (QM), and combined quantum mechanics and molecular mechanics (QM/MM) calculations have also been carried out. Consistent results have been obtained that complete transition of hydrogen from the surroundings to the triphosphate tail of ATP is not allowed. The most dominant conformations correspond to the ones with HW bonding to O(W) and H-bonding to O(ATP), [O(W)-HW···O(ATP)], HL bonding to N(Lys) and H-bonding to O(ATP), [N(Lys)-HL···O(ATP)]. Metastable structures with one hydrogen atom bonding with two heavy atoms (hydrogen acceptors) were also located by our dynamic simulations. This bonding mode can satisfy the hungering for hydrogen of the two heavy atoms simultaneously.

  3. An Efficient Time-Stepping Scheme for Ab Initio Molecular Dynamics Simulations

    NASA Astrophysics Data System (ADS)

    Tsuchida, Eiji

    2016-08-01

    In ab initio molecular dynamics simulations of real-world problems, the simple Verlet method is still widely used for integrating the equations of motion, while more efficient algorithms are routinely used in classical molecular dynamics. We show that if the Verlet method is used in conjunction with pre- and postprocessing, the accuracy of the time integration is significantly improved with only a small computational overhead. We also propose several extensions of the algorithm required for use in ab initio molecular dynamics. The validity of the processed Verlet method is demonstrated in several examples including ab initio molecular dynamics simulations of liquid water. The structural properties obtained from the processed Verlet method are found to be sufficiently accurate even for large time steps close to the stability limit. This approach results in a 2× performance gain over the standard Verlet method for a given accuracy. We also show how to generate a canonical ensemble within this approach.

  4. Exploring the free energy surface using ab initio molecular dynamics

    DOE PAGES

    Samanta, Amit; Morales, Miguel A.; Schwegler, Eric

    2016-04-22

    Efficient exploration of the configuration space and identification of metastable structures are challenging from both computational as well as algorithmic perspectives. Here, we extend the recently proposed orderparameter aided temperature accelerated sampling schemes to efficiently and systematically explore free energy surfaces, and search for metastable states and reaction pathways within the framework of density functional theory based molecular dynamics. The sampling method is applied to explore the relevant parts of the configuration space in prototypical materials SiO2 and Ti to identify the different metastable structures corresponding to different phases in these materials. In addition, we use the string method inmore » collective variables to study the melting pathways in the high pressure cotunnite phase of SiO2 and the hcp to fcc phase transition in Ti.« less

  5. The hydrogen diffusion in liquid aluminum alloys from ab initio molecular dynamics.

    PubMed

    Jakse, N; Pasturel, A

    2014-09-01

    We study the hydrogen diffusion in liquid aluminum alloys through extensive ab initio molecular dynamics simulations. At the microscopic scale, we show that the hydrogen motion is characterized by a broad distribution of spatial jumps that does not correspond to a Brownian motion. To determine the self-diffusion coefficient of hydrogen in liquid aluminum alloys, we use a generalized continuous time random walk model recently developed to describe the hydrogen diffusion in pure aluminum. In particular, we show that the model successfully accounts the effects of alloying elements on the hydrogen diffusion in agreement with experimental features.

  6. Prediction of the material with highest known melting point from ab initio molecular dynamics calculations

    NASA Astrophysics Data System (ADS)

    Hong, Qi-Jun; van de Walle, Axel

    2015-07-01

    Using electronic structure calculations, we conduct an extensive investigation into the Hf-Ta-C system, which includes the compounds that have the highest melting points known to date. We identify three major chemical factors that contribute to the high melting temperatures. Based on these factors, we propose a class of materials that may possess even higher melting temperatures and explore it via efficient ab initio molecular dynamics calculations in order to identify the composition maximizing the melting point. This study demonstrates the feasibility of automated and high-throughput materials screening and discovery via ab initio calculations for the optimization of "higher-level" properties, such as melting points, whose determination requires extensive sampling of atomic configuration space.

  7. Mechanism of dissolution of a lithium salt in an electrolytic solvent in a lithium ion secondary battery: a direct ab initio molecular dynamics (AIMD) study.

    PubMed

    Tachikawa, Hiroto

    2014-06-01

    The mechanism of dissolution of the Li(+) ion in an electrolytic solvent is investigated by the direct ab initio molecular dynamics (AIMD) method. Lithium fluoroborate (Li(+)BF4(-)) and ethylene carbonate (EC) are examined as the origin of the Li(+) ion and the solvent molecule, respectively. This salt is widely utilized as the electrolyte in the lithium ion secondary battery. The binding of EC to the Li(+) moiety of the Li(+)BF4(-) salt is exothermic, and the binding energies at the CAM-B3LYP/6-311++G(d,p) level for n=1, 2, 3, and 4, where n is the number of EC molecules binding to the Li(+) ion, (EC)n(Li(+)BF4(-)), are calculated to be 91.5, 89.8, 87.2, and 84.0 kcal mol(-1) (per EC molecule), respectively. The intermolecular distances between Li(+) and the F atom of BF4(-) are elongated: 1.773 Å (n=0), 1.820 Å (n=1), 1.974 Å (n=2), 1.942 Å (n=3), and 4.156 Å (n=4). The atomic bond populations between Li(+) and the F atom for n=0, 1, 2, 3, and 4 are 0.202, 0.186, 0.150, 0.038, and 0.0, respectively. These results indicate that the interaction of Li(+) with BF4(-) becomes weaker as the number of EC molecules is increased. The direct AIMD calculation for n=4 shows that EC reacts spontaneously with (EC)3(Li(+)BF4(-)) and the Li(+) ion is stripped from the salt. The following substitution reaction takes place: EC+(EC)3(Li(+)BF4(-))→(EC)4Li(+)-(BF4(-)). The reaction mechanism is discussed on the basis of the theoretical results. PMID:24616076

  8. Hydrogen bonded structure, polarity, molecular motion and frequency fluctuations at liquid-vapor interface of a water-methanol mixture: an ab initio molecular dynamics study.

    PubMed

    Choudhuri, Jyoti Roy; Chandra, Amalendu

    2014-10-01

    We have performed ab initio molecular dynamics simulations of a liquid-vapor interfacial system consisting of a mixture of water and methanol molecules. Detailed results are obtained for the structural and dynamical properties of the bulk and interfacial regions of the mixture. Among structural properties, we have looked at the inhomogeneous density profiles of water and methanol molecules, hydrogen bond distributions and also the orientational profiles of bulk and interfacial molecules. The methanol molecules are found to have a higher propensity to be at the interface than water molecules. It is found that the interfacial molecules show preference for specific orientations so as to form water-methanol hydrogen bonds at the interface with the hydrophobic methyl group pointing towards the vapor side. It is also found that for both types of molecules, the dipole moment decreases at the interface. It is also found that the local electric field of water influences the dipole moment of methanol molecules. Among the dynamical properties, we have calculated the diffusion, orientational relaxation, hydrogen bond dynamics, and vibrational frequency fluctuations in bulk and interfacial regions. It is found that the diffusion and orientation relaxation of the interfacial molecules are faster than those of the bulk. However, the hydrogen bond lifetimes are longer at the interface which can be correlated with the time scales found from the decay of frequency time correlations. The slower hydrogen bond dynamics for the interfacial molecules with respect to bulk can be attributed to diminished cooperative effects at the interface due to reduced density and number of hydrogen bonds.

  9. Hydration structure of salt solutions from ab initio molecular dynamics

    SciTech Connect

    Bankura, Arindam; Carnevale, Vincenzo; Klein, Michael L.

    2013-01-07

    The solvation structures of Na{sup +}, K{sup +}, and Cl{sup -} ions in aqueous solution have been investigated using density functional theory (DFT) based Car-Parrinello (CP) molecular dynamics (MD) simulations. CPMD trajectories were collected for systems containing three NaCl or KCl ion pairs solvated by 122 water molecules using three different but commonly employed density functionals (BLYP, HCTH, and PBE) with electron correlation treated at the level of the generalized gradient approximation (GGA). The effect of including dispersion forces was analyzed through the use of an empirical correction to the DFT-GGA scheme. Special attention was paid to the hydration characteristics, especially the structural properties of the first solvation shell of the ions, which was investigated through ion-water radial distribution functions, coordination numbers, and angular distribution functions. There are significant differences between the present results obtained from CPMD simulations and those provided by classical MD based on either the CHARMM force field or a polarizable model. Overall, the computed structural properties are in fair agreement with the available experimental results. In particular, the observed coordination numbers 5.0-5.5, 6.0-6.4, and 6.0-6.5 for Na{sup +}, K{sup +}, and Cl{sup -}, respectively, are consistent with X-ray and neutron scattering studies but differ somewhat from some of the many other recent computational studies of these important systems. Possible reasons for the differences are discussed.

  10. Hydration structure of salt solutions from ab initio molecular dynamics

    NASA Astrophysics Data System (ADS)

    Bankura, Arindam; Carnevale, Vincenzo; Klein, Michael L.

    2013-01-01

    The solvation structures of Na^+, K^+, and Cl^- ions in aqueous solution have been investigated using density functional theory (DFT) based Car-Parrinello (CP) molecular dynamics (MD) simulations. CPMD trajectories were collected for systems containing three NaCl or KCl ion pairs solvated by 122 water molecules using three different but commonly employed density functionals (BLYP, HCTH, and PBE) with electron correlation treated at the level of the generalized gradient approximation (GGA). The effect of including dispersion forces was analyzed through the use of an empirical correction to the DFT-GGA scheme. Special attention was paid to the hydration characteristics, especially the structural properties of the first solvation shell of the ions, which was investigated through ion-water radial distribution functions, coordination numbers, and angular distribution functions. There are significant differences between the present results obtained from CPMD simulations and those provided by classical MD based on either the CHARMM force field or a polarizable model. Overall, the computed structural properties are in fair agreement with the available experimental results. In particular, the observed coordination numbers 5.0-5.5, 6.0-6.4, and 6.0-6.5 for Na^+, K^+, and Cl^-, respectively, are consistent with X-ray and neutron scattering studies but differ somewhat from some of the many other recent computational studies of these important systems. Possible reasons for the differences are discussed.

  11. Ab initio molecular dynamics simulations of ion-solid interactions in zirconate pyrochlores

    DOE PAGES

    Xiao, Haiyan Y.; Weber, William J.; Zhang, Yanwen; Zu, X. T.

    2015-01-31

    In this paper, an ab initio molecular dynamics method is employed to study low energy recoil events in zirconate pyrochlores (A2Zr2O7, A = La, Nd and Sm). It shows that both cations and anions in Nd2Zr2O7 and Sm2Zr2O7 are generally more likely to be displaced than those in La2Zr2O7. The damage end states mainly consist of Frenkel pair defects, and the Frenkel pair formation energies in Nd2Zr2O7 and Sm2Zr2O7 are lower than those in La2Zr2O7. These results suggest that the order–disorder structural transition more easily occurs in Nd2Zr2O7 and Sm2Zr2O7 resulting in a defect-fluorite structure, which agrees well with experimentalmore » observations. Our calculations indicate that oxygen migration from 48f and 8b to 8a sites is dominant under low energy irradiation. A number of new defects, including four types of cation Frenkel pairs and six types of anion Frenkel pairs, are revealed by ab initio molecular dynamics simulations. The present findings may help to advance the fundamental understanding of the irradiation response behavior of zirconate pyrochlores.« less

  12. Ab Initio Molecular Dynamics Study of the Very Short O-H···O Hydrogen Bonds in the Condensed Phases.

    PubMed

    Durlak, Piotr; Latajka, Zdzisław

    2013-01-01

    In this paper are presented the results of theoretical studies of the structure and proton motion in very short O···O intramolecular hydrogen bonds in two molecular crystals. A comparison was conducted between 3-cyano-2,4-pentanedione (I) and 4-cyano-2,2,6,6-tetramethyl-3,5-heptanedione (II) in the solid state. The dynamics of proton motion in the O-H···O hydrogen bond were investigated in he NVT ensemble at 298 and 50 K, respectively, for crystals I and II using Car-Parrinello and path integral molecular dynamics. Very large delocalization of the bridging proton was noted especially in the path integral simulation where quantum effects are taken into account. The infrared spectrum was calculated, and a comparative vibrational analysis was performed. CPMD vibrational results appear to be in qualitative agreement with the experimental ones. PMID:26589010

  13. Ab initio molecular dynamics simulation of pressure-induced phase transformation of BeO

    SciTech Connect

    Xiao, H. Y.; Duan, G.; Zu, X. T.; Weber, W. J.

    2011-05-05

    Ab initio molecular dynamics (MD) method has been used to study high pressure-induced phase transformation in BeO based on the local density approximation (LDA) and the generalized gradient approximation (GGA). Both methods show that the wurtzite (WZ) and zinc blende (ZB) BeO transforms to the rocksalt (RS) structure smoothly at high pressure. The transition pressures obtained from the LDA method are about 40 GPa larger than the GGA result for both WZ → RS and ZB → RS phase transformations, and the phase transformation mechanisms revealed by the LDA and GGA methods are different. For WZ → RS phase transformations both mechanisms obtained from the LDA and GGA methods are not comparable to the previous ab initio MD simulations of WZ BeO at 700 GPa based on the GGA method. It is suggested that the phase transformation mechanisms of BeO revealed by the ab initio MD simulations are affected remarkably by the exchange–correlation functional employed and the way of applying pressure.

  14. Quantum wavepacket ab initio molecular dynamics: an approach for computing dynamically averaged vibrational spectra including critical nuclear quantum effects.

    PubMed

    Sumner, Isaiah; Iyengar, Srinivasan S

    2007-10-18

    We have introduced a computational methodology to study vibrational spectroscopy in clusters inclusive of critical nuclear quantum effects. This approach is based on the recently developed quantum wavepacket ab initio molecular dynamics method that combines quantum wavepacket dynamics with ab initio molecular dynamics. The computational efficiency of the dynamical procedure is drastically improved (by several orders of magnitude) through the utilization of wavelet-based techniques combined with the previously introduced time-dependent deterministic sampling procedure measure to achieve stable, picosecond length, quantum-classical dynamics of electrons and nuclei in clusters. The dynamical information is employed to construct a novel cumulative flux/velocity correlation function, where the wavepacket flux from the quantized particle is combined with classical nuclear velocities to obtain the vibrational density of states. The approach is demonstrated by computing the vibrational density of states of [Cl-H-Cl]-, inclusive of critical quantum nuclear effects, and our results are in good agreement with experiment. A general hierarchical procedure is also provided, based on electronic structure harmonic frequencies, classical ab initio molecular dynamics, computation of nuclear quantum-mechanical eigenstates, and employing quantum wavepacket ab initio dynamics to understand vibrational spectroscopy in hydrogen-bonded clusters that display large degrees of anharmonicities.

  15. Raman and infrared spectra of minerals from ab initio molecular dynamics simulations: The spodumene crystal

    NASA Astrophysics Data System (ADS)

    Pagliai, Marco; Muniz-Miranda, Maurizio; Cardini, Gianni; Schettino, Vincenzo

    2011-05-01

    Ab initio molecular dynamics simulations with the Car-Parrinello method have been performed on the spodumene crystal at standard conditions and high pressure. Starting from the computed trajectories, accurate Raman and infrared spectra have been obtained and compared with available experimental measurements in the low and high pressure phases. The structural and spectroscopic changes due to the pressure effects are discussed.

  16. Like-charge guanidinium pairing from molecular dynamics and ab initio calculations.

    PubMed

    Vazdar, Mario; Vymětal, Jiři; Heyda, Jan; Vondrášek, Jiři; Jungwirth, Pavel

    2011-10-20

    Pairing of guanidinium moieties in water is explored by molecular dynamics simulations of short arginine-rich peptides and ab initio calculations of a pair of guanidinium ions in water clusters of increasing size. Molecular dynamics simulations show that, in an aqueous environment, the diarginine guanidinium like-charged ion pairing is sterically hindered, whereas in the Arg-Ala-Arg tripeptide, this pairing is significant. This result is supported by the survey of protein structure databases, where it is found that stacked arginine pairs in dipeptide fragments exist solely as being imposed by the protein structure. In contrast, when two arginines are separated by a single amino acid, their guanidinium groups can freely approach each other and they frequently form stacked pairs. Molecular dynamics simulations results are also supported by ab initio calculations, which show stabilization of stacked guanidinium pairs in sufficiently large water clusters.

  17. Phase transition study of confined water molecules inside carbon nanotubes: hierarchical multiscale method from molecular dynamics simulation to ab initio calculation.

    PubMed

    Javadian, Soheila; Taghavi, Fariba; Yari, Faramarz; Hashemianzadeh, Seyed Majid

    2012-09-01

    In this study, the mechanism of the temperature-dependent phase transition of confined water inside a (9,9) single-walled carbon nanotube (SWCNT) was studied using the hierarchical multi-scale modeling techniques of molecular dynamics (MD) and density functional theory (DFT). The MD calculations verify the formation of hexagonal ice nanotubes at the phase transition temperature T(c)=275K by a sharp change in the location of the oxygen atoms inside the SWCNT. Natural bond orbital (NBO) analysis provides evidence of considerable intermolecular charge transfer during the phase transition and verifies that the ice nanotube contains two different forms of hydrogen bonding due to confinement. Nuclear quadrupole resonance (NQR) and nuclear magnetic resonance (NMR) analyses were used to demonstrate the fundamental influence of intermolecular hydrogen bonding interactions on the formation and electronic structure of ice nanotubes. In addition, the NQR analysis revealed that the rearrangement of nano-confined water molecules during the phase transition could be detected directly by the orientation of ¹⁷O atom EFG tensor components related to the molecular frame axes. The effects of nanoscale confinements in ice nanotubes and water clusters were analyzed by experimentally observable NMR and NQR parameters. These findings showed a close relationship between the phase behavior and orientation of the electronic structure in nanoscale structures and demonstrate the usefulness of NBO and NQR parameters for detecting phase transition phenomena in nanoscale confining environments.

  18. Ab initio molecular dynamics: Relationship between structural phases and the sound velocity in dense hydrogen

    NASA Astrophysics Data System (ADS)

    Guerrero, Carlo L.; Cuesta-Lopez, Santiago; Perlado, Jose M.

    2014-10-01

    The phase diagram and the possible stable structures of molecular solid hydrogen are intriguing physical phenomena that still remain to be fully unveiled. Particularly, its transition to metallic hydrogen at high pressures is currently a hot topic of discussion. This letter reports a simulation method that links the ab initio, quantum molecular dynamic and mechanical properties calculations to study the relation between the structural phase transitions and sound velocity in solid molecular hydrogen. The pressure range studied is from 0.1 GPa to 180 GPa, at 15 K temperature, thereby our aim is to simulate the conditions of manufacture, handling and early stages of compression of the target fuel used in confinement inertial fusion. Phase I degeneration below 1 GPa is discussed.

  19. H2O and CO2 confined in cement based materials: an ab initio molecular dynamics study with van der Waals interactions

    NASA Astrophysics Data System (ADS)

    de Almeida, James; Miranda, Caetano; Fazzio, Adalberto

    2013-03-01

    Although the cement has been widely used for a long time, very little is known regarding the atomistic mechanism behind its functionality. Particularly, the dynamics of molecular systems at confined nanoporous and water hydration is largely unknown. Here, we study the dynamical and structural properties of H2O and CO2 confined between Tobermorite 9Å(T9) surfaces with Car-Parrinello molecular dynamics with and without van der Waals (vdW) interactions, at room temperature. For H2O confined, we have observed a broadening in the intra and intermolecular bond angle distribution. A shift from an ice-like to a liquid-like infrared spectrum with the inclusion of vdW interactions was observed. The bond distance for the confined CO2 was increased, followed with the appearance of shorter (larger) intramolecular (intermolecular) angles. These structural modifications result in variations on the CO2 symmetric stretching Raman active vibration modes. The diffusion coefficient obtained for both confined H2O and CO2 were found to be lower than their bulk counterparts. Interestingly, during the water dynamics, a proton exchange between H2O and the T9 surface was observed. However, for confined CO2, no chemical reactions or bond breaking were observed.

  20. Decarboxylation of furfural on Pd(111): Ab initio molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Xue, Wenhua; Dang, Hongli; Shields, Darwin; Liu, Yingdi; Jentoft, Friederike; Resasco, Daniel; Wang, Sanwu

    2013-03-01

    Furfural conversion over metal catalysts plays an important role in the studies of biomass-derived feedstocks. We report ab initio molecular dynamics simulations for the decarboxylation process of furfural on the palladium surface at finite temperatures. We observed and analyzed the atomic-scale dynamics of furfural on the Pd(111) surface and the fluctuations of the bondlengths between the atoms in furfural. We found that the dominant bonding structure is the parallel structure in which the furfural plane, while slightly distorted, is parallel to the Pd surface. Analysis of the bondlength fluctuations indicates that the C-H bond is the aldehyde group of a furfural molecule is likely to be broken first, while the C =O bond has a tendency to be isolated as CO. Our results show that the reaction of decarbonylation dominates, consistent with the experimental measurements. Supported by DOE (DE-SC0004600). Simulations and calculations were performed on XSEDE's and NERSC's supercomputers.

  1. Ab Initio Molecular-Dynamics Simulation of Neuromorphic Computing in Phase-Change Memory Materials.

    PubMed

    Skelton, Jonathan M; Loke, Desmond; Lee, Taehoon; Elliott, Stephen R

    2015-07-01

    We present an in silico study of the neuromorphic-computing behavior of the prototypical phase-change material, Ge2Sb2Te5, using ab initio molecular-dynamics simulations. Stepwise changes in structural order in response to temperature pulses of varying length and duration are observed, and a good reproduction of the spike-timing-dependent plasticity observed in nanoelectronic synapses is demonstrated. Short above-melting pulses lead to instantaneous loss of structural and chemical order, followed by delayed partial recovery upon structural relaxation. We also investigate the link between structural order and electrical and optical properties. These results pave the way toward a first-principles understanding of phase-change physics beyond binary switching. PMID:26040531

  2. TOPICAL REVIEW: Ab initio molecular dynamics: basic concepts, current trends and novel applications

    NASA Astrophysics Data System (ADS)

    Tuckerman, Mark E.

    2002-12-01

    The field of ab initio molecular dynamics (AIMD), in which finite temperature molecular dynamics (MD) trajectories are generated with forces obtained from accurate 'on the fly' electronic structure calculations, is a rapidly evolving and growing technology that allows chemical processes in condensed phases to be studied in an accurate and unbiased way. This article is intended to present the basics of the AIMD method as well as to provide a broad survey of the state of the art of the field and showcase some of its capabilities. Beginning with a derivation of the method from the Born-Oppenheimer approximation, issues including the density functional representation of electronic structure, basis sets, calculation of observables and the Car-Parrinello extended Lagrangian algorithm are discussed. A number of example applications, including liquid structure and dynamics and aqueous proton transport, are presented in order to highlight some of the current capabilities of the approach. Finally, advanced topics such as inclusion of nuclear quantum effects, excited states and scaling issues are addressed.

  3. Surface of a calcium aluminosilicate glass by classical and ab initio molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Ganster, Patrick; Benoit, Magali; Delaye, Jean-Marc; Kob, Walter

    We present the structural properties of thin films of a calcium aluminosilicate glass generated by classical molecular dynamics (MD). The films are generated by two methods: in the first, the films are created in the liquid state and quenched to 300 K; in the second, the films are generated at room temperature. Depending on the method, film thickness and surface roughness are different but the main structural characteristics of the films are similar. The atomic concentration appears to be inhomogeneous from the center of the films to the surface and new structural entities are present at the film surfaces. The surfaces are depleted in calcium atoms and are enriched in aluminum atoms. This atomic arrangement induces a de-polymerized area under the surface. At the surface, all structural properties are modified in comparison with those of the bulk: interatomic distances, angular distributions, ring size, coordinations. In order to confirm the surface properties, we relaxed a surface using ab initio molecular dynamics. Some modifications appear but they do not significantly change the results obtained by classical MD, validating the use of interatomic potentials for the study of such films.

  4. An ab initio Molecular Dynamics study of the solvated OHCl- complex. Implications for the atmospheric oxidation of (Cl-)aq to (Cl2)g

    SciTech Connect

    D'Auria, R; Kuo, I W; Tobias, D J

    2007-07-26

    We have studied the OHCl{sup -} complex in a six water cluster and in bulk liquid water by means of generalized gradient-corrected BLYP density functional theory based Born-Oppenheimer molecular dynamics. Self-interaction corrected results, that predict an H-bonded OH...Cl{sup -} complex, are compared to the uncorrected ones, that predict a bonded (HO-Cl){sup -}. A second order Moeller-Plesset potential energy landscape of the gas-phase complex in its ground state was computed to determine which of the two configurations represents the true nature of the bond. Since no evidence of a local minimum was found in the vicinity of the geometry corresponding to the (HO-Cl){sup -} we conclude that the complex is held together by a H-bond like interaction in both an asymmetric solvation environment, as represented by the cluster, and in a symmetric solvation environment, as represented by the bulk system. In the limits of the present results we postulate that the mechanism that governs the atmospheric oxidation of (Cl{sup -}){sub int} to (Cl{sub 2}){sub gas} on the surface of marine aerosols [Knipping et al. 2000] is initiated by the formation of an H-bonded OH...Cl{sup -} complex. Furthermore, since no evidence of charge transfer mechanism from Cl{sup -} to OH was found, in the liquid as well as in the cluster environments, a likely second step toward the oxidation of Cl{sup -} should consist in the reaction of the complex with a second Cl{sup -} that would result in the formation of the species Cl{sup -2} and OH{sup -}. (Cl{sub 2}){sub g} could then be formed upon charge exchange reaction with an impinging OH molecule.

  5. Ab initio based force field and molecular dynamics simulations of crystalline TATB.

    PubMed

    Gee, Richard H; Roszak, Szczepan; Balasubramanian, Krishnan; Fried, Laurence E

    2004-04-15

    An all-atom force field for 1,3,5-triamino-2,4,6-trinitrobenzene (TATB) is presented. The classical intermolecular interaction potential for TATB is based on single-point energies determined from high-level ab initio calculations of TATB dimers. The newly developed potential function is used to examine bulk crystalline TATB via molecular dynamics simulations. The isobaric thermal expansion and isothermal compression under hydrostatic pressures obtained from the molecular dynamics simulations are in good agreement with experiment. The calculated volume-temperature expansion is almost one dimensional along the c crystallographic axis, whereas under compression, all three unit cell axes participate, albeit unequally. PMID:15267608

  6. Diffusion Coefficients in Liquid and Grain Boundary Predicted by Ab Initio Molecular Dynamics

    SciTech Connect

    Jablonski, P.D.; Liu, Z.; Fang, H.; Wang, B.

    2011-04-01

    Molecular dynamics (MD) is a powerful tool to probe the thermodynamic and kinetic properties of solid, glass and liquid phases. In classical molecular dynamics (CMD), empirical models are used to describe the force by considering bond, bend and dihedral angle contributions with parameters fitted to experimental data or first-principles calculations of small clusters. In the ab initio molecular dynamics (AIMD), the forces are calculated on the fly using the first-principles density functional theory as discussed above. In the present work, we use AIMD simulations to follow the random walk of atoms in the liquid state. Based on the mean square displacements (MSD), the diffusion coefficients are calculated from the Einstein equation. Furthermore, we extend this approach to understand the diffusion in grain boundaries.

  7. Reactive wetting properties of TiO2 nanoparticles predicted by ab initio molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Brandt, Erik G.; Agosta, Lorenzo; Lyubartsev, Alexander P.

    2016-07-01

    Small-sized wet TiO2 nanoparticles have been investigated by ab initio molecular dynamics simulations. Chemical and physical adsorption of water on the TiO2-water interface was studied as a function of water content, ranging from dry nanoparticles to wet nanoparticles with monolayer coverage of water. The surface reactivity was shown to be a concave function of water content and driven by surface defects. The local coordination number at the defect was identified as the key factor to decide whether water adsorption proceeds through dissociation or physisorption on the surface. A consistent picture of TiO2 nanoparticle wetting at the microscopic level emerges, which corroborates existing experimental data and gives further insight into the molecular mechanisms behind nanoparticle wetting. These calculations will facilitate the engineering of metal oxide nanoparticles with a controlled catalytic water activity.Small-sized wet TiO2 nanoparticles have been investigated by ab initio molecular dynamics simulations. Chemical and physical adsorption of water on the TiO2-water interface was studied as a function of water content, ranging from dry nanoparticles to wet nanoparticles with monolayer coverage of water. The surface reactivity was shown to be a concave function of water content and driven by surface defects. The local coordination number at the defect was identified as the key factor to decide whether water adsorption proceeds through dissociation or physisorption on the surface. A consistent picture of TiO2 nanoparticle wetting at the microscopic level emerges, which corroborates existing experimental data and gives further insight into the molecular mechanisms behind nanoparticle wetting. These calculations will facilitate the engineering of metal oxide nanoparticles with a controlled catalytic water activity. Electronic supplementary information (ESI) available: Simulation data on equilibration of energies and structures (root-mean-square-deviations and

  8. An ab initio molecular dynamics study of the liquid-vapor interface of an aqueous NaCl solution: inhomogeneous density, polarity, hydrogen bonds, and frequency fluctuations of interfacial molecules.

    PubMed

    Choudhuri, Jyoti Roy; Chandra, Amalendu

    2014-11-21

    We have presented a first principles simulation study of the structural and dynamical properties of a liquid-vapor interfacial system of a concentrated (5.3 M) aqueous NaCl solution. We have used ab initio molecular dynamics to examine the structural and dynamical properties of the bulk and interfacial regions. The structural aspects of the system that have been considered here include the inhomogeneous density profiles of ions and water molecules, hydrogen bond distributions, orientational profiles, and also vibrational frequency distributions in the bulk and interfacial regions. It is found that the sodium ions are mostly located in the interior, while the chloride anions occupy a significant portion of the interface of the slab. The water dipoles at the interface prefer to orient parallel to the surface. The dynamical aspects of the interfaces are investigated in terms of diffusion, orientational relaxation, hydrogen bond dynamics, and vibrational spectral diffusion. The results of the interfacial dynamics are compared with those of the corresponding bulk region. It is observed that the interfacial molecules exhibit faster diffusion and orientational relaxation with respect to the bulk. However, the interfacial molecules are found to have longer hydrogen bond lifetimes than those of the bulk. We have also investigated the correlations of hydrogen bond relaxation with the vibrational frequency fluctuations of interfacial water molecules.

  9. Ab initio path-integral molecular dynamics and the quantum nature of hydrogen bonds

    NASA Astrophysics Data System (ADS)

    Yexin, Feng; Ji, Chen; Xin-Zheng, Li; Enge, Wang

    2016-01-01

    The hydrogen bond (HB) is an important type of intermolecular interaction, which is generally weak, ubiquitous, and essential to life on earth. The small mass of hydrogen means that many properties of HBs are quantum mechanical in nature. In recent years, because of the development of computer simulation methods and computational power, the influence of nuclear quantum effects (NQEs) on the structural and energetic properties of some hydrogen bonded systems has been intensively studied. Here, we present a review of these studies by focussing on the explanation of the principles underlying the simulation methods, i.e., the ab initio path-integral molecular dynamics. Its extension in combination with the thermodynamic integration method for the calculation of free energies will also be introduced. We use two examples to show how this influence of NQEs in realistic systems is simulated in practice. Project supported by the National Natural Science Foundation of China (Grant Nos. 11275008, 91021007, and 10974012) and the China Postdoctoral Science Foundation (Grant No. 2014M550005).

  10. An ab initio molecular dynamics analysis of lignin as a potential antioxidant for hydrocarbons.

    PubMed

    Pan, Tongyan; Cheng, Cheng

    2015-11-01

    Lignins are complex phenolic polymers with limited industrial uses. To identify new applications of lignins, this study aims to evaluate the conifer alcohol lignin as a potential antioxidant for hydrocarbons, using the petroleum asphalt as an example. Using the ab initio molecular dynamics (AIMD) method, the evaluation is accomplished by tracking the generation of critical species in a lignin-asphalt mixture under a simulated oxidative condition. The generation of new species was detected using nuclear magnetic resonance and four analytical methods including density of states analysis, highest occupied molecular orbital and lowest unoccupied molecular orbital analyses, bonding and energy level analysis, and electrostatic potential energy analysis. Results of the analyses show that the chemical radicals of carbon, nitrogen and sulfur generated in the oxidation process could enhance the agglomeration and/or decomposition tendency of asphalt. The effectiveness of lignins as an antioxidant depends on their chemical compositions. Lignins with a HOMO-LUMO gap larger than the HOMO-LUMO gap of the hydrocarbon system to be protected, such as the conifer alcohol lignin to protect petroleum asphalt as was studied in this work, do not demonstrate beneficial anti-oxidation capacity. Lignins, however, may be effective oxidants for hydrocarbon systems with a larger HOMO-LUMO gap. In addition, lignins may contain more polar sites than the hydrocarbons to be protected; thus the lignins' hydrophobicity and compatibility with the host hydrocarbons need to be well evaluated. The developed AIMD model provides a useful tool for developing antioxidants for generic hydrocarbons. PMID:26562413

  11. Ab initio molecular dynamics of the reaction of quercetin with superoxide radical

    NASA Astrophysics Data System (ADS)

    Lespade, Laure

    2016-08-01

    Superoxide plays an important role in biology but in unregulated concentrations it is implicated in a lot of diseases such as cancer or atherosclerosis. Antioxidants like flavonoids are abundant in plant and are good scavengers of superoxide radical. The modeling of superoxide scavenging by flavonoids from the diet still remains a challenge. In this study, ab initio molecular dynamics of the reaction of the flavonoid quercetin toward superoxide radical has been carried out using Car-Parrinello density functional theory. The study has proven different reactant solvation by modifying the number of water molecules surrounding superoxide. The reaction consists in the gift of a hydrogen atom of one of the hydroxyl groups of quercetin to the radical. When it occurs, it is relatively fast, lower than 100 fs. Calculations show that it depends largely on the environment of the hydroxyl group giving its hydrogen atom, the geometry of the first water layer and the presence of a certain number of water molecules in the second layer, indicating a great influence of the solvent on the reactivity.

  12. Surface electron density models for accurate ab initio molecular dynamics with electronic friction

    NASA Astrophysics Data System (ADS)

    Novko, D.; Blanco-Rey, M.; Alducin, M.; Juaristi, J. I.

    2016-06-01

    Ab initio molecular dynamics with electronic friction (AIMDEF) is a valuable methodology to study the interaction of atomic particles with metal surfaces. This method, in which the effect of low-energy electron-hole (e-h) pair excitations is treated within the local density friction approximation (LDFA) [Juaristi et al., Phys. Rev. Lett. 100, 116102 (2008), 10.1103/PhysRevLett.100.116102], can provide an accurate description of both e-h pair and phonon excitations. In practice, its applicability becomes a complicated task in those situations of substantial surface atoms displacements because the LDFA requires the knowledge at each integration step of the bare surface electron density. In this work, we propose three different methods of calculating on-the-fly the electron density of the distorted surface and we discuss their suitability under typical surface distortions. The investigated methods are used in AIMDEF simulations for three illustrative adsorption cases, namely, dissociated H2 on Pd(100), N on Ag(111), and N2 on Fe(110). Our AIMDEF calculations performed with the three approaches highlight the importance of going beyond the frozen surface density to accurately describe the energy released into e-h pair excitations in case of large surface atom displacements.

  13. Ab Initio Molecular Dynamics Simulations and GIPAW NMR Calculations of a Lithium Borate Glass Melt.

    PubMed

    Ohkubo, Takahiro; Tsuchida, Eiji; Takahashi, Takafumi; Iwadate, Yasuhiko

    2016-04-14

    The atomic structure of a molten 0.3Li2O-0.7B2O3 glass at 1250 K was investigated using ab initio molecular dynamics (AIMD) simulations. The gauge including projector augmented wave (GIPAW) method was then employed for computing the chemical shift and quadrupolar coupling constant of (11)B, (17)O, and (7)Li from 764 AIMD derived structures. The chemical shift and quadrupolar coupling constant distributions were directly estimated from the dynamical structure of the molten glass. (11)B NMR parameters of well-known structural units such as the three-coordinated ring, nonring, and four-coordinated tetrahedron were found to be in good agreement with the experimental results. In this study, more detailed classification of B units was presented based on the number of O species bonded to the B atoms. This highlights the limitations of (11)B NMR sensitivity for resolving (11)B local environment using the experimentally obtained spectra only. The (17)O NMR parameter distributions can theoretically resolve the bridging and nonbridging O atoms with different structural units such as nonring, single boroxol ring, and double boroxol ring. Slight but clear differences in the number of bridging O atoms surrounding Li that have not been reported experimentally were observed in the theoretically obtained (7)Li NMR parameters. PMID:27010637

  14. Molecular dynamics modeling using ab initio interatomic potentials for thermal properties of Ni-rich alloys

    SciTech Connect

    Mei, J.; Cooper, B.R.; Hao, Y.G.; Scoy, F.L. Van

    1994-12-31

    Molecular dynamics simulations have been performed to study thermal expansions of Ni-rich (fcc structure) Ni/Cr alloys (which serve as the basis for practical superalloy systems). This has been done using ab initio interatomic potentials with no experimental input. The coefficient of thermal expansion (CTE) as a function of temperature has been calculated. By admixing Re and Me atoms into fee Ni and the fee alloy system Ni/Cr, additive effects on the thermal expansion have been predicted. While addition of Cr lowers the CTE of Ni, and moderate addition of Mo lowers the CTE of Ni over a wide temperature range, moderate addition of Re raises the CTE of both Ni and Ni/Cr alloys over a significant temperature range. An explanation for the contrasting effect of additive Re on the CTE, based on a one-dimensional atomic chain model, is that the trade-off, between atomic volume effects increasing the CTE over that of pure Ni and pair-potential effects (exemplified by the Grueneisen parameter) decreasing the CTE from that of pure nickel, changes for Re compared to Cr and Mo.

  15. Insights into photodissociation dynamics of acetaldehyde from ab initio calculations and molecular dynamics simulations

    SciTech Connect

    Chen Shilu; Fang Weihai

    2009-08-07

    In the present paper we report a theoretical study on mechanistic photodissociation of acetaldehyde (CH{sub 3}CHO). Stationary structures for H{sub 2} and CO eliminations in the ground state (S{sub 0}) have been optimized with density functional theory method, which is followed by the intrinsic reaction coordinate and ab initio molecular dynamics calculations to confirm the elimination mechanism. Equilibrium geometries, transition states, and intersection structures for the C-C and C-H dissociations in excited states were determined by the complete-active-space self-consistent field (CASSCF) method. Based on the CASSCF optimized structures, the potential energy profiles for the dissociations were refined by performing the single-point calculations using the multireference configuration interaction method. Upon the low-energy irradiation of CH{sub 3}CHO (265 nm<{lambda}<318 nm), the T{sub 1} C-C bond fission following intersystem crossing from the S{sub 1} state is the predominant channel and the minor channel, the ground-state elimination to CH{sub 4}+CO after internal conversion (IC) from S{sub 1} to S{sub 0}, could not be excluded. With the photon energy increasing, another pathway of IC, achieved via an S{sub 1}/S{sub 0} intersection point resulting from the S{sub 1} C-C bond fission, becomes accessible and increases the yield of CH{sub 4}+CO.

  16. Methodology for determining the electronic thermal conductivity of metals via direct nonequilibrium ab initio molecular dynamics

    NASA Astrophysics Data System (ADS)

    Yue, Sheng-Ying; Zhang, Xiaoliang; Stackhouse, Stephen; Qin, Guangzhao; Di Napoli, Edoardo; Hu, Ming

    2016-08-01

    Many physical properties of metals can be understood in terms of the free electron model, as proven by the Wiedemann-Franz law. According to this model, electronic thermal conductivity can be inferred from the Boltzmann transport equation (BTE). However, the BTE does not perform well for some complex metals, such as Cu. Moreover, the BTE cannot clearly describe the origin of the thermal energy carried by electrons or how this energy is transported in metals. The charge distribution of conduction electrons in metals is known to reflect the electrostatic potential of the ion cores. Based on this premise, we develop a methodology for evaluating electronic thermal conductivity of metals by combining the free electron model and nonequilibrium ab initio molecular dynamics simulations. We confirm that the kinetic energy of thermally excited electrons originates from the energy of the spatial electrostatic potential oscillation, which is induced by the thermal motion of ion cores. This method directly predicts the electronic thermal conductivity of pure metals with a high degree of accuracy, without explicitly addressing any complicated scattering processes of free electrons. Our methodology offers a route to understand the physics of heat transfer by electrons at the atomistic level. The methodology can be further extended to the study of similar electron-involved problems in materials, such as electron-phonon coupling, which is underway currently.

  17. Vibrational modes of methane in the structure H clathrate hydrate from ab initio molecular dynamics simulation.

    PubMed

    Hiratsuka, Masaki; Ohmura, Ryo; Sum, Amadeu K; Yasuoka, Kenji

    2012-10-14

    Vibrational spectra of guest molecules in clathrate hydrates are frequently measured to determine the characteristic signatures of the molecular environment and dynamical properties of guest-host interactions. Here, we present results of our study on the vibrational frequencies of methane molecules in structure H clathrate hydrates, namely, in the 5(12) and 4(3)5(6)6(3) cages, as the frequencies of stretching vibrational modes in these environments are still unclear. The vibrational spectra of methane molecules in structure H clathrate hydrate were obtained from ab initio molecular dynamics simulation and computed from Fourier transform of autocorrelation functions for each distinct vibrational mode. The calculated symmetric and asymmetric stretching vibrational frequencies of methane molecules were found to be lower in the 4(3)5(6)6(3) cages than in the 5(12) cages (3.8 cm(-1) for symmetric stretching and 6.0 cm(-1) for asymmetric stretching). The C-H bond length and average distance between methane molecules and host-water molecules in 4(3)5(6)6(3) cages were slightly longer than those in the 5(12) cages.

  18. Ab initio molecular dynamics simulations of threshold displacement energies in SrTiO3

    SciTech Connect

    Liu, Bin; Xiao, Haiyan; Zhang, Yanwen; Aidhy, Dilpuneet S; Weber, William J

    2013-01-01

    Ab initio molecular dynamics simulations have been carried out to study low-energy recoil events in SrTiO3. The threshold displacement energies are shown to be strongly dependent on both the orientation and the corresponding atomic arrangement. The minimum threshold displacement energies are 13 eV for an O recoil along the <100> O-O chain, 25 eV for a Sr recoil along the <100> Sr-Sr chain and 38 eV for a Ti recoil along the <110> Ti-Ti chain. The weighted average threshold displacement energies along the primary crystallographic directions are 35.7, 53.5 and > 64.9 eV for O, Sr and Ti, respectively. The interstitial configurations produced by the recoil events are <100> and <111> split-interstitials for O and Sr, respectively, together with a Ti interstitial occupying a distorted bridge position between two Sr sites. It is found that the recoil events in SrTiO3 are partial- charge transfer assisted processes, and the partial- charge transfer plays an important role in these recoil events.

  19. Born-Oppenheimer Ab Initio QM/MM Molecular Dynamics Simulations of Enzyme Reactions.

    PubMed

    Zhou, Y; Wang, S; Li, Y; Zhang, Y

    2016-01-01

    There are two key requirements for reliably simulating enzyme reactions: one is a reasonably accurate potential energy surface to describe the bond-forming/breaking process as well as to adequately model the heterogeneous enzyme environment; the other is to perform extensive sampling since an enzyme system consists of at least thousands of atoms and its energy landscape is very complex. One attractive approach to meet both daunting tasks is Born-Oppenheimer ab initio QM/MM molecular dynamics (aiQM/MM-MD) simulation with umbrella sampling. In this chapter, we describe our recently developed pseudobond Q-Chem-Amber interface, which employs a combined electrostatic-mechanical embedding scheme with periodic boundary condition and the particle mesh Ewald method for long-range electrostatics interactions. In our implementation, Q-Chem and the sander module of Amber are combined at the source code level without using system calls, and all necessary data communications between QM and MM calculations are achieved via computer memory. We demonstrate the applicability of this pseudobond Q-Chem-Amber interface by presenting two examples, one reaction in aqueous solution and one enzyme reaction. Finally, we describe our established aiQM/MM-MD enzyme simulation protocol, which has been successfully applied to study more than a dozen enzymes. PMID:27498636

  20. Classical Magnetic Dipole Moments for the Simulation of Vibrational Circular Dichroism by ab Initio Molecular Dynamics.

    PubMed

    Thomas, Martin; Kirchner, Barbara

    2016-02-01

    We present a new approach for calculating vibrational circular dichroism spectra by ab initio molecular dynamics. In the context of molecular dynamics, these spectra are given by the Fourier transform of the cross-correlation function of magnetic dipole moment and electric dipole moment. We obtain the magnetic dipole moment from the electric current density according to the classical definition. The electric current density is computed by solving a partial differential equation derived from the continuity equation and the condition that eddy currents should be absent. In combination with a radical Voronoi tessellation, this yields an individual magnetic dipole moment for each molecule in a bulk phase simulation. Using the chiral alcohol 2-butanol as an example, we show that experimental spectra are reproduced very well. Our approach requires knowing only the electron density in each simulation step, and it is not restricted to any particular electronic structure method. PMID:26771403

  1. Vibrational dynamics of zero-field-splitting hamiltonian in gadolinium-based MRI contrast agents from ab initio molecular dynamics

    SciTech Connect

    Lasoroski, Aurélie; Vuilleumier, Rodolphe; Pollet, Rodolphe

    2014-07-07

    The electronic relaxation of gadolinium complexes used as MRI contrast agents was studied theoretically by following the short time evolution of zero-field-splitting parameters. The statistical analysis of ab initio molecular dynamics trajectories provided a clear separation between static and transient contributions to the zero-field-splitting. For the latter, the correlation time was estimated at approximately 0.1 ps. The influence of the ligand was also probed by replacing one pendant arm of our reference macrocyclic complex by a bulkier phosphonate arm. In contrast to the transient contribution, the static zero-field-splitting was significantly influenced by this substitution.

  2. i-PI: A Python interface for ab initio path integral molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Ceriotti, Michele; More, Joshua; Manolopoulos, David E.

    2014-03-01

    Recent developments in path integral methodology have significantly reduced the computational expense of including quantum mechanical effects in the nuclear motion in ab initio molecular dynamics simulations. However, the implementation of these developments requires a considerable programming effort, which has hindered their adoption. Here we describe i-PI, an interface written in Python that has been designed to minimise the effort required to bring state-of-the-art path integral techniques to an electronic structure program. While it is best suited to first principles calculations and path integral molecular dynamics, i-PI can also be used to perform classical molecular dynamics simulations, and can just as easily be interfaced with an empirical forcefield code. To give just one example of the many potential applications of the interface, we use it in conjunction with the CP2K electronic structure package to showcase the importance of nuclear quantum effects in high-pressure water. Catalogue identifier: AERN_v1_0 Program summary URL: http://cpc.cs.qub.ac.uk/summaries/AERN_v1_0.html Program obtainable from: CPC Program Library, Queen’s University, Belfast, N. Ireland Licensing provisions: GNU General Public License, version 3 No. of lines in distributed program, including test data, etc.: 138626 No. of bytes in distributed program, including test data, etc.: 3128618 Distribution format: tar.gz Programming language: Python. Computer: Multiple architectures. Operating system: Linux, Mac OSX, Windows. RAM: Less than 256 Mb Classification: 7.7. External routines: NumPy Nature of problem: Bringing the latest developments in the modelling of nuclear quantum effects with path integral molecular dynamics to ab initio electronic structure programs with minimal implementational effort. Solution method: State-of-the-art path integral molecular dynamics techniques are implemented in a Python interface. Any electronic structure code can be patched to receive the atomic

  3. Structure, dynamics, and reactivity of hydrated electrons by ab initio molecular dynamics.

    PubMed

    Marsalek, Ondrej; Uhlig, Frank; VandeVondele, Joost; Jungwirth, Pavel

    2012-01-17

    Understanding the properties of hydrated electrons, which were first observed using pulse radiolysis of water in 1962, is crucial because they are key species in many radiation chemistry processes. Although time-resolved spectroscopic studies and molecular simulations have shown that an electron in water (prepared, for example, by water photoionization) relaxes quickly to a localized, cavity-like structure ∼2.5 Å in radius, this picture has recently been questioned. In another experimental approach, negatively charged water clusters of increasing size were studied with photoelectron and IR spectroscopies. Although small water clusters can bind an excess electron, their character is very different from bulk hydrated species. As data on electron binding in liquid water have become directly accessible experimentally, the cluster-to-bulk extrapolations have become a topic of lively debate. Quantum electronic structure calculations addressing experimental measurables have, until recently, been largely limited to small clusters; extended systems were approached mainly with pseudopotential calculations combining a classical description of water with a quantum mechanical treatment of the excess electron. In this Account, we discuss our investigations of electrons solvated in water by means of ab initio molecular dynamics simulations. This approach, applied to a model system of a negatively charged cluster of 32 water molecules, allows us to characterize structural, dynamical, and reactive aspects of the hydrated electron using all of the system's valence electrons. We show that under ambient conditions, the electron localizes into a cavity close to the surface of the liquid cluster. This cavity is, however, more flexible and accessible to water molecules than an analogous area around negatively charged ions. The dynamical process of electron attachment to a neutral water cluster is strongly temperature dependent. Under ambient conditions, the electron relaxes in the

  4. Ab initio molecular dynamics simulation of liquid water by quantum Monte Carlo

    SciTech Connect

    Zen, Andrea; Luo, Ye Mazzola, Guglielmo Sorella, Sandro; Guidoni, Leonardo

    2015-04-14

    Although liquid water is ubiquitous in chemical reactions at roots of life and climate on the earth, the prediction of its properties by high-level ab initio molecular dynamics simulations still represents a formidable task for quantum chemistry. In this article, we present a room temperature simulation of liquid water based on the potential energy surface obtained by a many-body wave function through quantum Monte Carlo (QMC) methods. The simulated properties are in good agreement with recent neutron scattering and X-ray experiments, particularly concerning the position of the oxygen-oxygen peak in the radial distribution function, at variance of previous density functional theory attempts. Given the excellent performances of QMC on large scale supercomputers, this work opens new perspectives for predictive and reliable ab initio simulations of complex chemical systems.

  5. Ab initio molecular dynamics simulation of liquid water by quantum Monte Carlo.

    PubMed

    Zen, Andrea; Luo, Ye; Mazzola, Guglielmo; Guidoni, Leonardo; Sorella, Sandro

    2015-04-14

    Although liquid water is ubiquitous in chemical reactions at roots of life and climate on the earth, the prediction of its properties by high-level ab initio molecular dynamics simulations still represents a formidable task for quantum chemistry. In this article, we present a room temperature simulation of liquid water based on the potential energy surface obtained by a many-body wave function through quantum Monte Carlo (QMC) methods. The simulated properties are in good agreement with recent neutron scattering and X-ray experiments, particularly concerning the position of the oxygen-oxygen peak in the radial distribution function, at variance of previous density functional theory attempts. Given the excellent performances of QMC on large scale supercomputers, this work opens new perspectives for predictive and reliable ab initio simulations of complex chemical systems. PMID:25877566

  6. Ab initio molecular dynamics simulation of liquid water by quantum Monte Carlo

    NASA Astrophysics Data System (ADS)

    Zen, Andrea; Luo, Ye; Mazzola, Guglielmo; Guidoni, Leonardo; Sorella, Sandro

    2015-04-01

    Although liquid water is ubiquitous in chemical reactions at roots of life and climate on the earth, the prediction of its properties by high-level ab initio molecular dynamics simulations still represents a formidable task for quantum chemistry. In this article, we present a room temperature simulation of liquid water based on the potential energy surface obtained by a many-body wave function through quantum Monte Carlo (QMC) methods. The simulated properties are in good agreement with recent neutron scattering and X-ray experiments, particularly concerning the position of the oxygen-oxygen peak in the radial distribution function, at variance of previous density functional theory attempts. Given the excellent performances of QMC on large scale supercomputers, this work opens new perspectives for predictive and reliable ab initio simulations of complex chemical systems.

  7. Ab initio molecular dynamics simulation of liquid water by quantum Monte Carlo.

    PubMed

    Zen, Andrea; Luo, Ye; Mazzola, Guglielmo; Guidoni, Leonardo; Sorella, Sandro

    2015-04-14

    Although liquid water is ubiquitous in chemical reactions at roots of life and climate on the earth, the prediction of its properties by high-level ab initio molecular dynamics simulations still represents a formidable task for quantum chemistry. In this article, we present a room temperature simulation of liquid water based on the potential energy surface obtained by a many-body wave function through quantum Monte Carlo (QMC) methods. The simulated properties are in good agreement with recent neutron scattering and X-ray experiments, particularly concerning the position of the oxygen-oxygen peak in the radial distribution function, at variance of previous density functional theory attempts. Given the excellent performances of QMC on large scale supercomputers, this work opens new perspectives for predictive and reliable ab initio simulations of complex chemical systems.

  8. Ab initio molecular dynamics of solvation effects on reactivity at electrified interfaces.

    PubMed

    Herron, Jeffrey A; Morikawa, Yoshitada; Mavrikakis, Manos

    2016-08-23

    Using ab initio molecular dynamics as implemented in periodic, self-consistent (generalized gradient approximation Perdew-Burke-Ernzerhof) density functional theory, we investigated the mechanism of methanol electrooxidation on Pt(111). We investigated the role of water solvation and electrode potential on the energetics of the first proton transfer step, methanol electrooxidation to methoxy (CH3O) or hydroxymethyl (CH2OH). The results show that solvation weakens the adsorption of methoxy to uncharged Pt(111), whereas the binding energies of methanol and hydroxymethyl are not significantly affected. The free energies of activation for breaking the C-H and O-H bonds in methanol were calculated through a Blue Moon Ensemble using constrained ab initio molecular dynamics. Calculated barriers for these elementary steps on unsolvated, uncharged Pt(111) are similar to results for climbing-image nudged elastic band calculations from the literature. Water solvation reduces the barriers for both C-H and O-H bond activation steps with respect to their vapor-phase values, although the effect is more pronounced for C-H bond activation, due to less disruption of the hydrogen bond network. The calculated activation energy barriers show that breaking the C-H bond of methanol is more facile than the O-H bond on solvated negatively biased or uncharged Pt(111). However, with positive bias, O-H bond activation is enhanced, becoming slightly more facile than C-H bond activation. PMID:27503889

  9. Ab initio molecular dynamics of solvation effects on reactivity at electrified interfaces

    NASA Astrophysics Data System (ADS)

    Herron, Jeffrey A.; Morikawa, Yoshitada; Mavrikakis, Manos

    2016-08-01

    Using ab initio molecular dynamics as implemented in periodic, self-consistent (generalized gradient approximation Perdew-Burke-Ernzerhof) density functional theory, we investigated the mechanism of methanol electrooxidation on Pt(111). We investigated the role of water solvation and electrode potential on the energetics of the first proton transfer step, methanol electrooxidation to methoxy (CH3O) or hydroxymethyl (CH2OH). The results show that solvation weakens the adsorption of methoxy to uncharged Pt(111), whereas the binding energies of methanol and hydroxymethyl are not significantly affected. The free energies of activation for breaking the C-H and O-H bonds in methanol were calculated through a Blue Moon Ensemble using constrained ab initio molecular dynamics. Calculated barriers for these elementary steps on unsolvated, uncharged Pt(111) are similar to results for climbing-image nudged elastic band calculations from the literature. Water solvation reduces the barriers for both C-H and O-H bond activation steps with respect to their vapor-phase values, although the effect is more pronounced for C-H bond activation, due to less disruption of the hydrogen bond network. The calculated activation energy barriers show that breaking the C-H bond of methanol is more facile than the O-H bond on solvated negatively biased or uncharged Pt(111). However, with positive bias, O-H bond activation is enhanced, becoming slightly more facile than C-H bond activation.

  10. Ab initio molecular dynamics with noisy forces: Validating the quantum Monte Carlo approach with benchmark calculations of molecular vibrational properties

    SciTech Connect

    Luo, Ye Sorella, Sandro; Zen, Andrea

    2014-11-21

    We present a systematic study of a recently developed ab initio simulation scheme based on molecular dynamics and quantum Monte Carlo. In this approach, a damped Langevin molecular dynamics is employed by using a statistical evaluation of the forces acting on each atom by means of quantum Monte Carlo. This allows the use of an highly correlated wave function parametrized by several variational parameters and describing quite accurately the Born-Oppenheimer energy surface, as long as these parameters are determined at the minimum energy condition. However, in a statistical method both the minimization method and the evaluation of the atomic forces are affected by the statistical noise. In this work, we study systematically the accuracy and reliability of this scheme by targeting the vibrational frequencies of simple molecules such as the water monomer, hydrogen sulfide, sulfur dioxide, ammonia, and phosphine. We show that all sources of systematic errors can be controlled and reliable frequencies can be obtained with a reasonable computational effort. This work provides convincing evidence that this molecular dynamics scheme can be safely applied also to realistic systems containing several atoms.

  11. Structure of the glass-forming metallic liquids by ab-initio and classical molecular dynamics, a case study: Quenching the Cu{sub 60}Ti{sub 20}Zr{sub 20} alloy

    SciTech Connect

    Amokrane, S.; Ayadim, A.; Levrel, L.

    2015-11-21

    We consider the question of the amorphization of metallic alloys by melt quenching, as predicted by molecular dynamics simulations with semi-empirical potentials. The parametrization of the potentials is discussed on the example of the ternary Cu-Ti-Zr transition metals alloy, using the ab-initio simulation as a reference. The pair structure in the amorphous state is computed from a potential of the Stillinger-Weber form. The transferability of the parameters during the quench is investigated using two parametrizations: from solid state data, as usual and from a new parametrization on the liquid structure. When the adjustment is made on the pair structure of the liquid, a satisfactory transferability is found between the pure components and their alloys. The liquid structure predicted in this way agrees well with experiment, in contrast with the one obtained using the adjustment on the solid. The final structure, after quenches down to the amorphous state, determined with the new set of parameters is shown to be very close to the ab-initio one, the latter being in excellent agreement with recent X-rays diffraction experiments. The corresponding critical temperature of the glass transition is estimated from the behavior of the heat capacity. Discussion on the consistency between the structures predicted using semi-empirical potentials and ab-initio simulation, and comparison of different experimental data underlines the question of the dependence of the final structure on the thermodynamic path followed to reach the amorphous state.

  12. Study of the effects of metalloid elements (P, C, B) on Fe-based amorphous alloys by ab initio molecular dynamics simulations

    SciTech Connect

    Zhang, Wenbiao; Li, Qiang E-mail: dhm@xju.edu.cn; Duan, Haiming E-mail: dhm@xju.edu.cn

    2015-03-14

    In order to understand the effects of the metalloid elements M (M: P, C, B) on the atomic structure, glass formation ability (GFA) and magnetic properties of Fe-based amorphous alloys, Fe{sub 80}P{sub 13}C{sub 7}, Fe{sub 80}P{sub 14}B{sub 6} and Fe{sub 80}B{sub 14}C{sub 6} amorphous alloys are chosen to study through first-principle simulations in the present work. The atomic structure characteristic of the three amorphous alloys is investigated through the pair distribution functions (PDFs) and Voronoi Polyhedra (VPs) analyses. The PDFs and VPs analyses suggest that the GFA of the three alloys dropped in the order of Fe{sub 80}P{sub 13}C{sub 7}, Fe{sub 80}P{sub 14}B{sub 6}, and Fe{sub 80}B{sub 14}C{sub 6}, which is well consistent with the experimental results. The density of state (DOS) of the three amorphous alloys is calculated to investigate their magnetic properties. Based on the DOS analysis, the average magnetic moment of Fe atom in Fe{sub 80}P{sub 13}C{sub 7} and Fe{sub 80}P{sub 14}B{sub 6} amorphous alloys can be estimated to be 1.71 μ{sub B} and 1.70 μ{sub B}, respectively, which are in acceptable agreement with the experimental results. However, the calculated average magnetic moment of Fe atom in Fe{sub 80}B{sub 14}C{sub 6} amorphous alloy is about 1.62 μ{sub B}, which is far less than the experimental result.

  13. Modeling the water-bioglass interface by ab initio molecular dynamics simulations.

    PubMed

    Tilocca, Antonio; Cormack, Alastair N

    2009-06-01

    The hydration of the surface of a highly bioactive silicate glass was modeled using ab initio (Car-Parrinello) molecular dynamics (CPMD) simulations, focusing on the structural and chemical modifications taking place at the glass-water interface immediately after contact and on the way in which they can affect the bioactivity of these materials. The adsorption of a water dimer and trimer on the dry surface was studied first, followed by the extended interface between the glass and liquid water. The CPMD trajectories provide atomistic insight into the initial stages relevant to the biological activity of these materials: following contact of the glass with an aqueous (physiological) medium, the initial enrichment of the surface region in Na+ cations establishes dominant Na+-water interactions at the surface, which allow water molecules to penetrate into the open glass network and start its partial dissolution. The model of a Na/H-exchanged interface shows that Ca2+-water interactions are mainly established after the dominant fraction of Na is leached into the solution. Another critical role of modifier cations was highlighted: they provide the Lewis acidity necessary to neutralize OH(-) produced by water dissociation and protonation of nonbridging oxygen (NBO) surface sites. The CPMD simulations also highlighted an alternative, proton-hopping mechanism by which the same process can take place in the liquid water film. The main features of the bioactive glass surface immediately after contact with an aqueous medium, as emerged from the simulations, are (a) silanol groups formed by either water dissociation at undercoordinated Si sites or direct protonation of NBOs, (b) OH(-) groups generally stabilized by modifier cations and coupled with the protonated NBOs, and (c) small rings, relatively stable and unopened even after exposure to liquid water. The possible role and effect of these sites in the bioactive process are discussed. PMID:20355929

  14. Hydrated Electron Transfer to Nucleobases in Aqueous Solutions Revealed by Ab Initio Molecular Dynamics Simulations.

    PubMed

    Zhao, Jing; Wang, Mei; Fu, Aiyun; Yang, Hongfang; Bu, Yuxiang

    2015-08-01

    We present an ab initio molecular dynamics (AIMD) simulation study into the transfer dynamics of an excess electron from its cavity-shaped hydrated electron state to a hydrated nucleobase (NB)-bound state. In contrast to the traditional view that electron localization at NBs (G/A/C/T), which is the first step for electron-induced DNA damage, is related only to dry or prehydrated electrons, and a fully hydrated electron no longer transfers to NBs, our AIMD simulations indicate that a fully hydrated electron can still transfer to NBs. We monitored the transfer dynamics of fully hydrated electrons towards hydrated NBs in aqueous solutions by using AIMD simulations and found that due to solution-structure fluctuation and attraction of NBs, a fully hydrated electron can transfer to a NB gradually over time. Concurrently, the hydrated electron cavity gradually reorganizes, distorts, and even breaks. The transfer could be completed in about 120-200 fs in four aqueous NB solutions, depending on the electron-binding ability of hydrated NBs and the structural fluctuation of the solution. The transferring electron resides in the π*-type lowest unoccupied molecular orbital of the NB, which leads to a hydrated NB anion. Clearly, the observed transfer of hydrated electrons can be attributed to the strong electron-binding ability of hydrated NBs over the hydrated electron cavity, which is the driving force, and the transfer dynamics is structure-fluctuation controlled. This work provides new insights into the evolution dynamics of hydrated electrons and provides some helpful information for understanding the DNA-damage mechanism in solution.

  15. Scalable fine-grained parallelization of plane-wave-based ab initio molecular dynamics for large supercomputers.

    PubMed

    Vadali, Ramkumar V; Shi, Yan; Kumar, Sameer; Kale, Laxmikant V; Tuckerman, Mark E; Martyna, Glenn J

    2004-12-01

    Many systems of great importance in material science, chemistry, solid-state physics, and biophysics require forces generated from an electronic structure calculation, as opposed to an empirically derived force law to describe their properties adequately. The use of such forces as input to Newton's equations of motion forms the basis of the ab initio molecular dynamics method, which is able to treat the dynamics of chemical bond-breaking and -forming events. However, a very large number of electronic structure calculations must be performed to compute an ab initio molecular dynamics trajectory, making the efficiency as well as the accuracy of the electronic structure representation critical issues. One efficient and accurate electronic structure method is the generalized gradient approximation to the Kohn-Sham density functional theory implemented using a plane-wave basis set and atomic pseudopotentials. The marriage of the gradient-corrected density functional approach with molecular dynamics, as pioneered by Car and Parrinello (R. Car and M. Parrinello, Phys Rev Lett 1985, 55, 2471), has been demonstrated to be capable of elucidating the atomic scale structure and dynamics underlying many complex systems at finite temperature. However, despite the relative efficiency of this approach, it has not been possible to obtain parallel scaling of the technique beyond several hundred processors on moderately sized systems using standard approaches. Consequently, the time scales that can be accessed and the degree of phase space sampling are severely limited. To take advantage of next generation computer platforms with thousands of processors such as IBM's BlueGene, a novel scalable parallelization strategy for Car-Parrinello molecular dynamics is developed using the concept of processor virtualization as embodied by the Charm++ parallel programming system. Charm++ allows the diverse elements of a Car-Parrinello molecular dynamics calculation to be interleaved with low

  16. Investigation of polarization effects in the gramicidin A channel from ab initio molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Timko, Jeff; Kuyucak, Serdar

    2012-11-01

    Polarization is an important component of molecular interactions and is expected to play a particularly significant role in inhomogeneous environments such as pores and interfaces. Here we investigate the effects of polarization in the gramicidin A ion channel by performing quantum mechanics/molecular mechanics molecular dynamics (MD) simulations and comparing the results with those obtained from classical MD simulations with non-polarizable force fields. We consider the dipole moments of backbone carbonyl groups and channel water molecules as well as a number of structural quantities of interest. The ab initio results show that the dipole moments of the carbonyl groups and water molecules are highly sensitive to the hydrogen bonds (H-bonds) they participate in. In the absence of a K+ ion, water molecules in the channel are quite mobile, making the H-bond network highly dynamic. A central K+ ion acts as an anchor for the channel waters, stabilizing the H-bond network and thereby increasing their average dipole moments. In contrast, the K+ ion has little effect on the dipole moments of the neighboring carbonyl groups. The weakness of the ion-peptide interactions helps to explain the near diffusion-rate conductance of K+ ions through the channel. We also address the sampling issue in relatively short ab initio MD simulations. Results obtained from a continuous 20 ps ab initio MD simulation are compared with those generated by sampling ten windows from a much longer classical MD simulation and running each window for 2 ps with ab initio MD. Both methods yield similar results for a number of quantities of interest, indicating that fluctuations are fast enough to justify the short ab initio MD simulations.

  17. Investigation of polarization effects in the gramicidin A channel from ab initio molecular dynamics simulations.

    PubMed

    Timko, Jeff; Kuyucak, Serdar

    2012-11-28

    Polarization is an important component of molecular interactions and is expected to play a particularly significant role in inhomogeneous environments such as pores and interfaces. Here we investigate the effects of polarization in the gramicidin A ion channel by performing quantum mechanics/molecular mechanics molecular dynamics (MD) simulations and comparing the results with those obtained from classical MD simulations with non-polarizable force fields. We consider the dipole moments of backbone carbonyl groups and channel water molecules as well as a number of structural quantities of interest. The ab initio results show that the dipole moments of the carbonyl groups and water molecules are highly sensitive to the hydrogen bonds (H-bonds) they participate in. In the absence of a K(+) ion, water molecules in the channel are quite mobile, making the H-bond network highly dynamic. A central K(+) ion acts as an anchor for the channel waters, stabilizing the H-bond network and thereby increasing their average dipole moments. In contrast, the K(+) ion has little effect on the dipole moments of the neighboring carbonyl groups. The weakness of the ion-peptide interactions helps to explain the near diffusion-rate conductance of K(+) ions through the channel. We also address the sampling issue in relatively short ab initio MD simulations. Results obtained from a continuous 20 ps ab initio MD simulation are compared with those generated by sampling ten windows from a much longer classical MD simulation and running each window for 2 ps with ab initio MD. Both methods yield similar results for a number of quantities of interest, indicating that fluctuations are fast enough to justify the short ab initio MD simulations.

  18. Accelerating ab initio path integral molecular dynamics with multilevel sampling of potential surface

    SciTech Connect

    Geng, Hua Y.

    2015-02-15

    A multilevel approach to sample the potential energy surface in a path integral formalism is proposed. The purpose is to reduce the required number of ab initio evaluations of energy and forces in ab initio path integral molecular dynamics (AI-PIMD) simulation, without compromising the overall accuracy. To validate the method, the internal energy and free energy of an Einstein crystal are calculated and compared with the analytical solutions. As a preliminary application, we assess the performance of the method in a realistic model—the FCC phase of dense atomic hydrogen, in which the calculated result shows that the acceleration rate is about 3 to 4-fold for a two-level implementation, and can be increased up to 10 times if extrapolation is used. With only 16 beads used for the ab initio potential sampling, this method gives a well converged internal energy. The residual error in pressure is just about 3 GPa, whereas it is about 20 GPa for a plain AI-PIMD calculation with the same number of beads. The vibrational free energy of the FCC phase of dense hydrogen at 300 K is also calculated with an AI-PIMD thermodynamic integration method, which gives a result of about 0.51 eV/proton at a density of r{sub s}=0.912.

  19. Investigations into the role of oxacarbenium ions in glycosylation reactions by ab initio molecular dynamics.

    PubMed

    Ionescu, Andrei R; Whitfield, Dennis M; Zgierski, Marek Z; Nukada, Tomoo

    2006-12-29

    We present a constrained ab initio molecular dynamics method that allows the modeling of the conformational interconversions of glycopyranosyl oxacarbenium ions. The model was successfully tested by estimating the barriers to ring inversion for two 4-substituted tetrahydropyranosyl oxacarbenium ions. The model was further extended to predict the pathways that connect the (4)H(3) half-chair conformation of 2,3,4,6-tetra-O-methyl-d-glucopyranosyl cation to its inverted (5)S(1) conformation and the (4)H(3) half-chair conformation of 2,3,4,6-tetra-O-methyl-d-mannopyranosyl cation to its inverted (3)E conformation. The modeled interconversion pathways reconcile a large body of experimental work on the acid-catalyzed hydrolysis of glycosides and the mechanisms of a number of glucosidases and mannosidases.

  20. Enhanced thermal decomposition of nitromethane on functionalized graphene sheets: ab initio molecular dynamics simulations.

    PubMed

    Liu, Li-Min; Car, Roberto; Selloni, Annabella; Dabbs, Daniel M; Aksay, Ilhan A; Yetter, Richard A

    2012-11-21

    The burning rate of the monopropellant nitromethane (NM) has been observed to increase by adding and dispersing small amounts of functionalized graphene sheets (FGSs) in liquid NM. Until now, no plausible mechanisms for FGSs acting as combustion catalysts have been presented. Here, we report ab initio molecular dynamics simulations showing that carbon vacancy defects within the plane of the FGSs, functionalized with oxygen-containing groups, greatly accelerate the thermal decomposition of NM and its derivatives. This occurs through reaction pathways involving the exchange of protons or oxygens between the oxygen-containing functional groups and NM and its derivatives. FGS initiates and promotes the decomposition of the monopropellant and its derivatives, ultimately forming H(2)O, CO(2), and N(2). Concomitantly, oxygen-containing functional groups on the FGSs are consumed and regenerated without significantly changing the FGSs in accordance with experiments indicating that the FGSs are not consumed during combustion. PMID:23101732

  1. Dissociation dynamics of ethylene molecules on a Ni cluster using ab initio molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Shimamura, K.; Shibuta, Y.; Ohmura, S.; Arifin, R.; Shimojo, F.

    2016-04-01

    The atomistic mechanism of dissociative adsorption of ethylene molecules on a Ni cluster is investigated by ab initio molecular-dynamics simulations. The activation free energy to dehydrogenate an ethylene molecule on the Ni cluster and the corresponding reaction rate is estimated. A remarkable finding is that the adsorption energy of ethylene molecules on the Ni cluster is considerably larger than the activation free energy, which explains why the actual reaction rate is faster than the value estimated based on only the activation free energy. It is also found from the dynamic simulations that hydrogen molecules and an ethane molecule are formed from the dissociated hydrogen atoms, whereas some exist as single atoms on the surface or in the interior of the Ni cluster. On the other hand, the dissociation of the C-C bonds of ethylene molecules is not observed. On the basis of these simulation results, the nature of the initial stage of carbon nanotube growth is discussed.

  2. Aqueous Cation-Amide Binding: Free Energies and IR Spectral Signatures by Ab Initio Molecular Dynamics.

    PubMed

    Pluhařová, Eva; Baer, Marcel D; Mundy, Christopher J; Schmidt, Burkhard; Jungwirth, Pavel

    2014-07-01

    Understanding specific ion effects on proteins remains a considerable challenge. N-methylacetamide serves as a useful proxy for the protein backbone that can be well characterized both experimentally and theoretically. The spectroscopic signatures in the amide I band reflecting the strength of the interaction of alkali cations and alkaline earth dications with the carbonyl group remain difficult to assign and controversial to interpret. Herein, we directly compute the infrared (IR) shifts corresponding to the binding of either sodium or calcium to aqueous N-methylacetamide using ab initio molecular dynamics simulations. We show that the two cations interact with aqueous N-methylacetamide with different affinities and in different geometries. Because sodium exhibits a weak interaction with the carbonyl group, the resulting amide I band is similar to an unperturbed carbonyl group undergoing aqueous solvation. In contrast, the stronger calcium binding results in a clear IR shift with respect to N-methylacetamide in pure water.

  3. Haber Process Made Efficient by Hydroxylated Graphene: Ab Initio Thermochemistry and Reactive Molecular Dynamics.

    PubMed

    Chaban, Vitaly V; Prezhdo, Oleg V

    2016-07-01

    The Haber-Bosch process is the main industrial method for producing ammonia from diatomic nitrogen and hydrogen. We use a combination of ab initio thermochemical analysis and reactive molecular dynamics to demonstrate that a significant increase in the ammonia production yield can be achieved using hydroxylated graphene and related species. Exploiting the polarity difference between N2/H2 and NH3, as well as the universal proton acceptor behavior of NH3, we demonstrate a strong shift of the equilibrium of the Haber-Bosch process toward ammonia (ca. 50 kJ mol(-1) enthalpy gain and ca. 60-70 kJ mol(-1) free energy gain). The modified process is of significant importance to the chemical industry.

  4. Insights into H2 formation in space from ab initio molecular dynamics.

    PubMed

    Casolo, Simone; Tantardini, Gian Franco; Martinazzo, Rocco

    2013-04-23

    Hydrogen formation is a key process for the physics and the chemistry of interstellar clouds. Molecular hydrogen is believed to form on the carbonaceous surface of dust grains, and several mechanisms have been invoked to explain its abundance in different regions of space, from cold interstellar clouds to warm photon-dominated regions. Here, we investigate direct (Eley-Rideal) recombination including lattice dynamics, surface corrugation, and competing H-dimers formation by means of ab initio molecular dynamics. We find that Eley-Rideal reaction dominates at energies relevant for the interstellar medium and alone may explain observations if the possibility of facile sticking at special sites (edges, point defects, etc.) on the surface of the dust grains is taken into account.

  5. Haber Process Made Efficient by Hydroxylated Graphene: Ab Initio Thermochemistry and Reactive Molecular Dynamics.

    PubMed

    Chaban, Vitaly V; Prezhdo, Oleg V

    2016-07-01

    The Haber-Bosch process is the main industrial method for producing ammonia from diatomic nitrogen and hydrogen. We use a combination of ab initio thermochemical analysis and reactive molecular dynamics to demonstrate that a significant increase in the ammonia production yield can be achieved using hydroxylated graphene and related species. Exploiting the polarity difference between N2/H2 and NH3, as well as the universal proton acceptor behavior of NH3, we demonstrate a strong shift of the equilibrium of the Haber-Bosch process toward ammonia (ca. 50 kJ mol(-1) enthalpy gain and ca. 60-70 kJ mol(-1) free energy gain). The modified process is of significant importance to the chemical industry. PMID:27340901

  6. Ab initio molecular dynamics simulation of photoisomerization in azobenzene in the n{pi}* state

    SciTech Connect

    Ootani, Yusuke; Satoh, Kiminori; Nakayama, Akira; Noro, Takeshi; Taketsugu, Tetsuya

    2009-11-21

    Photoisomerization mechanism of azobenzene in the lowest excited state S{sub 1}(n{pi}*) is investigated by ab initio molecular dynamics (AIMD) simulation with the RATTLE algorithm, based on the state-averaged complete active space self-consistent field method. AIMD simulations show that cis to trans isomerization occurs via two-step rotation mechanism, accompanying rotations of the central NN part and two phenyl rings, and this process can be classified into two types, namely, clockwise and counterclockwise rotation pathways. On the other hand, trans to cis isomerization occurs via conventional rotation pathway where two phenyl rings rotate around the NN bond. The quantum yields are calculated to be 0.45 and 0.28{+-}0.14 for cis to trans and trans to cis photoisomerizations, respectively, which are in very good agreement with the corresponding experimental results.

  7. Aqueous solutions: state of the art in ab initio molecular dynamics.

    PubMed

    Hassanali, Ali A; Cuny, Jérôme; Verdolino, Vincenzo; Parrinello, Michele

    2014-03-13

    The simulation of liquids by ab initio molecular dynamics (AIMD) has been a subject of intense activity over the last two decades. The significant increase in computational resources as well as the development of new and efficient algorithms has elevated this method to the status of a standard quantum mechanical tool that is used by both experimentalists and theoreticians. As AIMD computes the electronic structure from first principles, it is free of ad hoc parametrizations and has thus been applied to a large variety of physical and chemical problems. In particular, AIMD has provided microscopic insight into the structural and dynamical properties of aqueous solutions which are often challenging to probe experimentally. In this review, after a brief theoretical description of the Born-Oppenheimer and Car-Parrinello molecular dynamics formalisms, we show how AIMD has enhanced our understanding of the properties of liquid water and its constituent ions: the proton and the hydroxide ion. Thereafter, a broad overview of the application of AIMD to other aqueous systems, such as solvated organic molecules and inorganic ions, is presented. We also briefly describe the latest theoretical developments made in AIMD, such as methods for enhanced sampling and the inclusion of nuclear quantum effects. PMID:24516179

  8. An analysis of hydrated proton diffusion in ab initio molecular dynamics

    SciTech Connect

    Tse, Ying-Lung Steve; Voth, Gregory A.; Knight, Chris

    2015-01-07

    A detailed understanding of the inherently multiscale proton transport process raises a number of scientifically challenging questions. For example, there remain many (partially addressed) questions on the molecular mechanism for long-range proton migration and the potential for the formation of long-lived traps giving rise to burst-and-rest proton dynamics. Using results from a sizeable collection of ab initio molecular dynamics (AIMD) simulations (totaling ∼2.7 ns) with various density functional approximations (Becke-Lee-Yang-Parr (BLYP), BLYP–D3, Hamprecht-Cohen-Tozer-Handy, B3LYP) and temperatures (300–330 K), equilibrium and dynamical properties of one excess proton and 128 water molecules are studied. Two features in particular (concerted hops and weak hydrogen-bond donors) are investigated to identify modes in the system that are strongly correlated with the onset of periods of burst-and-rest dynamics. The question of concerted hops seeks to identify those time scales over which long-range proton transport can be classified as a series of sequential water hopping events or as a near-simultaneous concerted process along compressed water wires. The coupling of the observed burst-and-rest dynamics with motions of a fourth neighboring water molecule (a weak hydrogen-bond donor) solvating the protonated water molecule is also investigated. The presence (absence) of hydrogen bonds involving this fourth water molecule before and after successful proton hopping events is found to be strongly correlated with periods of burst (rest) dynamics (and consistent with pre-solvation concepts). By analyzing several realizations of the AIMD trajectories on the 100-ps time scale, convergence of statistics can be assessed. For instance, it was observed that the probability for a fourth water molecule to approach the hydronium, if not already proximal at the beginning of the lifetime of the hydronium, is very low, indicative of the formation of stable void regions

  9. Structure and dynamics of bioactive phosphosilicate glasses and melts from ab initio molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Tilocca, Antonio

    2007-12-01

    Ab initio (Car-Parrinello) molecular dynamics simulations were carried out to investigate the melt precursor of a modified phosphosilicate glass with bioactive properties, and to quench the melt to the vitreous state. The properties of the 3000K liquid were extensively compared with those of the final glass structure. The melt is characterized by a significant fraction of structural defects (small rings, undercoordinated and overcoordinated ions), often combined together. The creation or removal of these coordinative defects in the liquid (through Si-O bond formation or dissociation) reflects frequent exchanges within the silicate first coordination shell, which in turn dynamically modify the intertetrahedral connectivity of silicate groups. The observed dynamical variation in both the identity and the number of silicate groups linked to a tagged Si ( Qn speciation) are considered key processes in the viscous flow of silicate melts [I. Farnan and J. F. Stebbins, Science 265, 1206 (1994)]. On the other hand, phosphate groups do not show an equally marked exchange activity in the coordination shell, but can still form links with Si. Once formed, these Si-O-P bridges are rather stable, and in fact they are retained in the glass phase obtained after cooling; their formation within the present full ab initio melt-and-quench approach strongly supports their presence in melt-derived phosphosilicate glasses with bioactive applications. On the other hand, the simulations show that the fraction of structural defects rapidly decreases during the cooling, and the glass is essentially free of miscoordinated ions and small rings.

  10. π-Hydrogen Bonding of Aromatics on the Surface of Aerosols: Insights from Ab Initio and Molecular Dynamics Simulation.

    PubMed

    Feng, Ya-Juan; Huang, Teng; Wang, Chao; Liu, Yi-Rong; Jiang, Shuai; Miao, Shou-Kui; Chen, Jiao; Huang, Wei

    2016-07-14

    Molecular level insight into the interaction between volatile organic compounds (VOCs) and aerosols is crucial for improvement of atmospheric chemistry models. In this paper, the interaction between adsorbed toluene, one of the most significant VOCs in the urban atmosphere, and the aqueous surface of aerosols was studied by means of combined molecular dynamics simulations and ab initio quantum chemistry calculations. It is revealed that toluene can be stably adsorbed on the surface of aqueous droplets via hydroxyl-π hydrogen bonding between the H atoms of the water molecules and the C atoms in the aromatic ring. Further, significant modifications on the electrostatic potential map and frontier molecular orbital are induced by the solvation effect of surface water molecules, which would affect the reactivity and pathway of the atmospheric photooxidation of toluene. This study demonstrates that the surface interactions should be taken into consideration in the atmospheric chemical models on oxidation of aromatics.

  11. Challenges in modelling homogeneous catalysis: new answers from ab initio molecular dynamics to the controversy over the Wacker process.

    PubMed

    Stirling, András; Nair, Nisanth N; Lledós, Agustí; Ujaque, Gregori

    2014-07-21

    We present here a review of the mechanistic studies of the Wacker process stressing the long controversy about the key reaction steps. We give an overview of the previous experimental and theoretical studies on the topic. Then we describe the importance of the most recent Ab Initio Molecular Dynamics (AIMD) calculations in modelling organometallic reactivity in water. As a prototypical example of homogeneous catalytic reactions, the Wacker process poses serious challenges to modelling. The adequate description of the multiple role of the water solvent is very difficult by using static quantum chemical approaches including cluster and continuum solvent models. In contrast, such reaction systems are suitable for AIMD, and by combining with rare event sampling techniques, the method provides reaction mechanisms and the corresponding free energy profiles. The review also highlights how AIMD has helped to obtain a novel understanding of the mechanism and kinetics of the Wacker process.

  12. π-Hydrogen Bonding of Aromatics on the Surface of Aerosols: Insights from Ab Initio and Molecular Dynamics Simulation.

    PubMed

    Feng, Ya-Juan; Huang, Teng; Wang, Chao; Liu, Yi-Rong; Jiang, Shuai; Miao, Shou-Kui; Chen, Jiao; Huang, Wei

    2016-07-14

    Molecular level insight into the interaction between volatile organic compounds (VOCs) and aerosols is crucial for improvement of atmospheric chemistry models. In this paper, the interaction between adsorbed toluene, one of the most significant VOCs in the urban atmosphere, and the aqueous surface of aerosols was studied by means of combined molecular dynamics simulations and ab initio quantum chemistry calculations. It is revealed that toluene can be stably adsorbed on the surface of aqueous droplets via hydroxyl-π hydrogen bonding between the H atoms of the water molecules and the C atoms in the aromatic ring. Further, significant modifications on the electrostatic potential map and frontier molecular orbital are induced by the solvation effect of surface water molecules, which would affect the reactivity and pathway of the atmospheric photooxidation of toluene. This study demonstrates that the surface interactions should be taken into consideration in the atmospheric chemical models on oxidation of aromatics. PMID:27280740

  13. Ab initio molecular dynamics determination of competitive O₂ vs. N₂ adsorption at open metal sites of M₂(dobdc).

    PubMed

    Parkes, Marie V; Greathouse, Jeffery A; Hart, David B; Gallis, Dorina F Sava; Nenoff, Tina M

    2016-04-28

    The separation of oxygen from nitrogen using metal-organic frameworks (MOFs) is of great interest for potential pressure-swing adsorption processes for the generation of purified O2 on industrial scales. This study uses ab initio molecular dynamics (AIMD) simulations to examine for the first time the pure-gas and competitive gas adsorption of O2 and N2 in the M2(dobdc) (M = Cr, Mn, Fe) MOF series with coordinatively unsaturated metal centers. Effects of metal, temperature, and gas composition are explored. This unique application of AIMD allows us to study in detail the adsorption/desorption processes and to visualize the process of multiple guests competitively binding to coordinatively unsaturated metal sites of a MOF. PMID:27063148

  14. Ab initio molecular dynamics of Al irradiation-induced processes during Al{sub 2}O{sub 3} growth

    SciTech Connect

    Music, Denis; Nahif, Farwah; Friederichsen, Niklas; Schneider, Jochen M.; Sarakinos, Kostas

    2011-03-14

    Al bombardment induced structural changes in {alpha}-Al{sub 2}O{sub 3} (R-3c) and {gamma}-Al{sub 2}O{sub 3} (Fd-3m) were studied using ab initio molecular dynamics. Diffusion and irradiation damage occur for both polymorphs in the kinetic energy range from 3.5 to 40 eV. However, for {gamma}-Al{sub 2}O{sub 3}(001) subplantation of impinging Al causes significantly larger irradiation damage and hence larger mobility as compared to {alpha}-Al{sub 2}O{sub 3}. Consequently, fast diffusion along {gamma}-Al{sub 2}O{sub 3}(001) gives rise to preferential {alpha}-Al{sub 2}O{sub 3}(0001) growth, which is consistent with published structure evolution experiments.

  15. Structural and electronic properties of aqueous NaCl solutions from ab initio molecular dynamics simulations with hybrid density functionals

    NASA Astrophysics Data System (ADS)

    Gaiduk, Alex P.; Zhang, Cui; Gygi, François; Galli, Giulia

    2014-06-01

    We present a study of a dilute solution (1 M) of NaCl in water, carried out using ab initio molecular dynamics with semilocal and hybrid functionals. We showed that the structural and electronic properties of the solute and the solvent are the same as those obtained in the infinite dilution limit, i.e. for aqueous ions in the presence of a uniform compensating background. Compared to semilocal functionals, simulations with hybrid functionals yield a less structured solution with a smaller number of hydrogen bonds and a larger coordination number for the Cl- anion. In addition, hybrid functionals predict qualitatively correct positions of the energy levels of the ions with respect to the valence band of water.

  16. Ab initio molecular dynamics simulations for the role of hydrogen in catalytic reactions of furfural on Pd(111)

    NASA Astrophysics Data System (ADS)

    Xue, Wenhua; Dang, Hongli; Liu, Yingdi; Jentoft, Friederike; Resasco, Daniel; Wang, Sanwu

    2014-03-01

    In the study of catalytic reactions of biomass, furfural conversion over metal catalysts with the presence of hydrogen has attracted wide attention. We report ab initio molecular dynamics simulations for furfural and hydrogen on the Pd(111) surface at finite temperatures. The simulations demonstrate that the presence of hydrogen is important in promoting furfural conversion. In particular, hydrogen molecules dissociate rapidly on the Pd(111) surface. As a result of such dissociation, atomic hydrogen participates in the reactions with furfural. The simulations also provide detailed information about the possible reactions of hydrogen with furfural. Supported by DOE (DE-SC0004600). This research used the supercomputer resources of the XSEDE, the NERSC Center, and the Tandy Supercomputing Center.

  17. Catalytic hydrogenation of cresol: first-principles density-functional calculations and ab initio molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Li, Yaping; Liu, Zhimin; Jentoft, Friederike; Wang, Sanwu

    2015-03-01

    Biomass is an important renewable energy resource. Cresol is one of components in crude bio-oil generated from biomass, and hydrogenation of cresol is often involved in the upgrading process. We studied catalytic hydrogenation of cresol on the Pt(111) surface with and without the presence of water. In particular, we used first-principles density-functional theory and ab initio molecular dynamics simulations to obtain adsorption geometries, binding energies, reaction energies, activation energies, and reaction pathways for hydrogenation of cresol with possible products of 2-methylcyclohexanone and 2-methylcyclohexanol. Our theoretical results are used to explain the available experimental measurements, which show a strong influence of water. Supported by DOE (DE-SC0004600). This research used the supercomputer resources at NERSC, of XSEDE, at TACC and at the Tandy Supercomputing Center.

  18. Ab initio molecular dynamics simulations of ion-solid interactions in zirconate pyrochlores

    SciTech Connect

    Xiao, Haiyan Y.; Weber, William J.; Zhang, Yanwen; Zu, X. T.

    2015-01-31

    In this paper, an ab initio molecular dynamics method is employed to study low energy recoil events in zirconate pyrochlores (A2Zr2O7, A = La, Nd and Sm). It shows that both cations and anions in Nd2Zr2O7 and Sm2Zr2O7 are generally more likely to be displaced than those in La2Zr2O7. The damage end states mainly consist of Frenkel pair defects, and the Frenkel pair formation energies in Nd2Zr2O7 and Sm2Zr2O7 are lower than those in La2Zr2O7. These results suggest that the order–disorder structural transition more easily occurs in Nd2Zr2O7 and Sm2Zr2O7 resulting in a defect-fluorite structure, which agrees well with experimental observations. Our calculations indicate that oxygen migration from 48f and 8b to 8a sites is dominant under low energy irradiation. A number of new defects, including four types of cation Frenkel pairs and six types of anion Frenkel pairs, are revealed by ab initio molecular dynamics simulations. The present findings may help to advance the fundamental understanding of the irradiation response behavior of zirconate pyrochlores.

  19. Molecular dynamics simulation study of methanesulfonic acid.

    PubMed

    Canales, Manel; Alemán, Carlos

    2014-03-27

    A molecular dynamics simulation study of methanesulfonic acid has been carried out using a reliable force field in a large range of temperatures. Several thermodynamic, structural, and dynamical properties have been calculated and compared with the available experimental data. The density, the shear viscosity, the heat of vaporization, and the melting temperature results, calculated from this force field, are in a good agreement with the experimental data. Analysis of the influence of the hydrogen bonds in structural and dynamical properties has also been performed. The continuous and interrupted methodologies to compute hydrogen bonding lifetimes have been applied. The interrupted hydrogen bond lifetimes values are consistent with the diffusion and viscosity coefficients. The activation energies of the self-diffusion, the reorientational motions, and the hydrogen bonding lifetimes are coincident.

  20. Molecular Dynamics Studies of Gold Surfaces

    NASA Astrophysics Data System (ADS)

    Ercolessi, F.; Bartolini, A.; Garofalo, M.; Parrinello, M.; Tosatti, E.

    1987-01-01

    In the glue model the total cohesion of a metal is determined by a pairwise atom-atom effective interaction plus a many-body force (the "glue") which is introduced to ensure optimal coordination. Using parameters optimized for gold, we have studied the structural behaviour of the low index surfaces Au(100), Au(110) and Au(111). We have used a simulated annealing strategy based on molecular dynamics to search the lowest surface energy configuration. In all cases the optimal structures are found to be reconstructed, and remarkably similar to some experimentally suggested reconstruction models. The main driving mechanism is the formation of close-packed triangular surface layers favoured by the glue term.

  1. Molecular dynamics studies of metallic glasses

    NASA Astrophysics Data System (ADS)

    Lee, Hyon-Jee

    The thermodynamic, structural, and mechanical properties of metallic glasses are studied using molecular dynamics simulations. Molecular dynamics provides a computational framework to simulate the movement of interacting atoms in response to external perturbations, such as changes in temperature or pressure. In this thesis, a Sutton-Chen potential was chosen to describe the many-body interactions in metals and alloys. Our first application for this approach is to develop a simple model to derive the thermodynamic properties of metallic alloys (Chapter 2). Based on this model, we demonstrate that the glass transition is thermodynamically sensitive to differences between atomic radii and that there is an optimal difference for glass formation. Next, we extend these simulations to elucidate the details of structural organization in the glass (Chapter 3). We find that the liquid phase is characterized by a local five-fold symmetry, which becomes more prominent as the glass phase forms. This five-fold symmetry is related to the formation of icosahedral structures. The mechanical properties of glasses are also investigated and it is found that shear localization, which accompanies a sharp drop in the stress-strain curve, occurs at 45 degree with respect to the loading axis (Chapter 4). The generation of free volume is found to be the dominant mechanism that leads to shear localization, rather than adiabatic heating. Finally, generic first principle potentials are constructed to guide the experimental development of AlTiNi based metallic glasses (Chapter 5). Together, the results from these simulations improve our understanding of the thermodynamic, structural, and mechanical properties of metallic glasses and will aid computer-driven materials design.

  2. Proton distribution in KHCO3 from ab initio molecular dynamics simulation

    NASA Astrophysics Data System (ADS)

    Dopieralski, Przemyslaw D.; Latajka, Zdzislaw; Olovsson, Ivar

    2009-07-01

    The proton distribution in the (HCO)22- dimer of KHCO 3 at 298 K has been studied with the Car-Parrinello molecular dynamics (CPMD) and path integrals molecular dynamics (PIMD) simulations. According to earlier neutron studies hydrogen is disordered and occupies two positions with an occupancy ratio of 0.804/0.196. CPMD results with four cells reproduce experimental data with high accuracy. The occupancy ratio from the CPMD simulation after 35 ps run is 0.783/0.217. Present results support a mechanism for the disorder which involves proton transfer from donor to acceptor and not orientational disordering of the entire dimer. The question of simultaneous or successive proton transfer in the two hydrogen bonds in the dimer is ambiguous. In present CPMD simulations the observed time lag between proton transfers within one dimer was in the range of 1-20 fs.

  3. Defining Condensed Phase Reactive Force Fields from ab Initio Molecular Dynamics Simulations: The Case of the Hydrated Excess Proton.

    PubMed

    Knight, Chris; Maupin, C Mark; Izvekov, Sergei; Voth, Gregory A

    2010-10-12

    In this report, a general methodology is presented for the parametrization of a reactive force field using data from a condensed phase ab initio molecular dynamics (AIMD) simulation. This algorithm allows for the creation of an empirical reactive force field that accurately reproduces the underlying ab initio reactive surface while providing the ability to achieve long-time statistical sampling for large systems not possible with AIMD alone. In this work, a model for the hydrated excess proton is constructed where the hydronium cation and proton hopping portions of the model are statistically force-matched to the results of Car-Parrinello Molecular Dynamics (CPMD) simulations. The flexible nature of the algorithm also allows for the use of the more accurate classical simple point-charge flexible water (SPC/Fw) model to describe the water-water interactions while utilizing the ab initio data to create an overall multistate molecular dynamics (MS-MD) reactive model of the hydrated excess proton in water. The resulting empirical model for the system qualitatively reproduces thermodynamic and dynamic properties calculated from the ab initio simulation while being in good agreement with experimental results and previously developed multistate empirical valence bond (MS-EVB) models. The present methodology, therefore, bridges the AIMD technique with the MS-MD modeling of reactive events, while incorporating key strengths of both. PMID:26616784

  4. Ab initio molecular dynamics with nuclear quantum effects at classical cost: Ring polymer contraction for density functional theory.

    PubMed

    Marsalek, Ondrej; Markland, Thomas E

    2016-02-01

    Path integral molecular dynamics simulations, combined with an ab initio evaluation of interactions using electronic structure theory, incorporate the quantum mechanical nature of both the electrons and nuclei, which are essential to accurately describe systems containing light nuclei. However, path integral simulations have traditionally required a computational cost around two orders of magnitude greater than treating the nuclei classically, making them prohibitively costly for most applications. Here we show that the cost of path integral simulations can be dramatically reduced by extending our ring polymer contraction approach to ab initio molecular dynamics simulations. By using density functional tight binding as a reference system, we show that our ring polymer contraction scheme gives rapid and systematic convergence to the full path integral density functional theory result. We demonstrate the efficiency of this approach in ab initio simulations of liquid water and the reactive protonated and deprotonated water dimer systems. We find that the vast majority of the nuclear quantum effects are accurately captured using contraction to just the ring polymer centroid, which requires the same number of density functional theory calculations as a classical simulation. Combined with a multiple time step scheme using the same reference system, which allows the time step to be increased, this approach is as fast as a typical classical ab initio molecular dynamics simulation and 35× faster than a full path integral calculation, while still exactly including the quantum sampling of nuclei. This development thus offers a route to routinely include nuclear quantum effects in ab initio molecular dynamics simulations at negligible computational cost.

  5. Ab initio molecular dynamics with nuclear quantum effects at classical cost: Ring polymer contraction for density functional theory.

    PubMed

    Marsalek, Ondrej; Markland, Thomas E

    2016-02-01

    Path integral molecular dynamics simulations, combined with an ab initio evaluation of interactions using electronic structure theory, incorporate the quantum mechanical nature of both the electrons and nuclei, which are essential to accurately describe systems containing light nuclei. However, path integral simulations have traditionally required a computational cost around two orders of magnitude greater than treating the nuclei classically, making them prohibitively costly for most applications. Here we show that the cost of path integral simulations can be dramatically reduced by extending our ring polymer contraction approach to ab initio molecular dynamics simulations. By using density functional tight binding as a reference system, we show that our ring polymer contraction scheme gives rapid and systematic convergence to the full path integral density functional theory result. We demonstrate the efficiency of this approach in ab initio simulations of liquid water and the reactive protonated and deprotonated water dimer systems. We find that the vast majority of the nuclear quantum effects are accurately captured using contraction to just the ring polymer centroid, which requires the same number of density functional theory calculations as a classical simulation. Combined with a multiple time step scheme using the same reference system, which allows the time step to be increased, this approach is as fast as a typical classical ab initio molecular dynamics simulation and 35× faster than a full path integral calculation, while still exactly including the quantum sampling of nuclei. This development thus offers a route to routinely include nuclear quantum effects in ab initio molecular dynamics simulations at negligible computational cost. PMID:26851913

  6. Joint Density Functional Theory for the electrode/electrolyte interface: Benchmarking liquid structure with experiment and ab initio molecular dynamics

    NASA Astrophysics Data System (ADS)

    Letchworth-Weaver, Kendra; Umbright, Christine; Chan, Maria; Fenter, Paul; Arias, T. A.

    Understanding the physics of the interface between a charged electrode surface and a fluid electrolyte would inform design of electrochemical energy storage and conversion devices. However, such studies require a simultaneously accurate yet inherently multi-scale theory. Joint density-functional theory (JDFT) bridges the relevant length-scales by joining a fully ab initio description of the electrode with a low computational cost, yet atomically detailed classical DFT description of the liquid electrolyte structure. Leveraging JDFT within our framework to treat charged systems in periodic boundary conditions, we can predict the voltage-dependent structure and energetics of solvated ions at the interface between graphitic and single-crystalline metallic electrodes and technologically relevant liquid electrolytes. First, we elucidate the physical origin of the experimentally measured voltage-dependent differential capacitance of an Ag(111) electrode in aqueous NaF electrolyte, examining the crucial role of ion de-solvation and physisorption onto the electrode surface. We go on to compare the JDFT-predicted interfacial liquid structure next to a graphitic electrode with results obtained from X-ray reflectivity measurements and ab initio molecular dynamics simulations.

  7. New Developments in Ab Initio Multiple Spawning for Efficient Nonadiabatic Molecular Dynamics

    NASA Astrophysics Data System (ADS)

    Curchod, Basile F. E.; Sisto, Aaron; Glowacki, David R.; Martínez, Todd J.

    Ab initio multiple spawning (AIMS) describes the nonadiabatic dynamics of nuclear wavepackets by means of a linear combination of frozen Gaussians. While the Gaussian centers follow classical trajectories, the expansion coefficients are propagated according to the time-dependent Schrödinger equation. As a result of the coupling between Gaussian functions, AIMS accurately describes coherence and decoherence effects close to nonadiabatic regions. This accuracy has further been validated by the excellent agreement reported between AIMS dynamics and experimental observations. In this Contribution, we will discuss new techniques used to extend the applicability of AIMS to (i) larger molecules, (ii) long-time simulations, and (iii) dynamics involving an important number of electronic states. We will present different examples of nonadiabatic molecular dynamics in organic and atmospheric photochemistry, resulting from the interface between AIMS and the GPU-accelerated electronic structure code TeraChem. New methods improving the AIMS efficiency for larger systems will be discussed, such as the stochastic-selection AIMS. Finally, we will highlight early results on the extension of AIMS to the combined description of both internal conversion and intersystem crossing phenomena. B.F.E.C. acknowledges the Swiss National Science Foundation (fellowship P2ELP2_151927) for financial support.

  8. Resolving the HONO formation mechanism in the ionosphere via ab initio molecular dynamic simulations.

    PubMed

    He, Rongxing; Li, Lei; Zhong, Jie; Zhu, Chongqin; Francisco, Joseph S; Zeng, Xiao Cheng

    2016-04-26

    Solar emission produces copious nitrosonium ions (NO(+)) in the D layer of the ionosphere, 60 to 90 km above the Earth's surface. NO(+) is believed to transfer its charge to water clusters in that region, leading to the formation of gaseous nitrous acid (HONO) and protonated water cluster. The dynamics of this reaction at the ionospheric temperature (200-220 K) and the associated mechanistic details are largely unknown. Using ab initio molecular dynamics (AIMD) simulations and transition-state search, key structures of the water hydrates-tetrahydrate NO(+)(H2O)4 and pentahydrate NO(+)(H2O)5-are identified and shown to be responsible for HONO formation in the ionosphere. The critical tetrahydrate NO(+)(H2O)4 exhibits a chain-like structure through which all of the lowest-energy isomers must go. However, most lowest-energy isomers of pentahydrate NO(+)(H2O)5 can be converted to the HONO-containing product, encountering very low barriers, via a chain-like or a three-armed, star-like structure. Although these structures are not the global minima, at 220 K, most lowest-energy NO(+)(H2O)4 and NO(+)(H2O)5 isomers tend to channel through these highly populated isomers toward HONO formation.

  9. Resolving the HONO formation mechanism in the ionosphere via ab initio molecular dynamic simulations.

    PubMed

    He, Rongxing; Li, Lei; Zhong, Jie; Zhu, Chongqin; Francisco, Joseph S; Zeng, Xiao Cheng

    2016-04-26

    Solar emission produces copious nitrosonium ions (NO(+)) in the D layer of the ionosphere, 60 to 90 km above the Earth's surface. NO(+) is believed to transfer its charge to water clusters in that region, leading to the formation of gaseous nitrous acid (HONO) and protonated water cluster. The dynamics of this reaction at the ionospheric temperature (200-220 K) and the associated mechanistic details are largely unknown. Using ab initio molecular dynamics (AIMD) simulations and transition-state search, key structures of the water hydrates-tetrahydrate NO(+)(H2O)4 and pentahydrate NO(+)(H2O)5-are identified and shown to be responsible for HONO formation in the ionosphere. The critical tetrahydrate NO(+)(H2O)4 exhibits a chain-like structure through which all of the lowest-energy isomers must go. However, most lowest-energy isomers of pentahydrate NO(+)(H2O)5 can be converted to the HONO-containing product, encountering very low barriers, via a chain-like or a three-armed, star-like structure. Although these structures are not the global minima, at 220 K, most lowest-energy NO(+)(H2O)4 and NO(+)(H2O)5 isomers tend to channel through these highly populated isomers toward HONO formation. PMID:27071120

  10. Simulating ionic thermal trasport by equilibrium ab-initio molecular dynamics

    NASA Astrophysics Data System (ADS)

    Marcolongo, Aris; Umari, Paolo; Baroni, Stefano

    2014-03-01

    The Green-Kubo approach to thermal transport is often considered to be incompatible with ab-initio molecular dynamics (AIMD) because a suitable quantum-mechanical definition of the heat current is not readily available, due to the ill-definedness of the microscopic energy density to which it is related by the continuity equation. We argue that a similar difficulty actually exists in classical mechanics as well, and we address the conditions that have to be fulfilled in order for the physically well defined transport coefficients to be independent of the ill defined microscopic energy density from which they derive. We then provide two alternative approaches to calculating thermal conductivites from equilibrium AIMD. The first is based on the Green-Kubo formula, supplemented with an expression for the energy current, which is a generalization of Thouless' expression for the adiabatic charge current. The second approach, which avoids the recourse to an energy current altogether, rests on an efficient and accurate extrapolation to infinite wavelengths of the energy-density time correlation functions. The two methods are compared on a simple classical test bed, and their implementation in AIMD is demonstrated with the calculation of the thermal conductivity of simple fluids.

  11. Multiple-Timestep ab Initio Molecular Dynamics Using an Atomic Basis Set Partitioning.

    PubMed

    Steele, Ryan P

    2015-12-17

    This work describes an approach to accelerate ab initio Born-Oppenheimer molecular dynamics (MD) simulations by exploiting the inherent timescale separation between contributions from different atom-centered Gaussian basis sets. Several MD steps are propagated with a cost-efficient, low-level basis set, after which a dynamical correction accounts for large basis set relaxation effects in a time-reversible fashion. This multiple-timestep scheme is shown to generate valid MD trajectories, on the basis of rigorous testing for water clusters, the methanol dimer, an alanine polypeptide, protonated hydrazine, and the oxidized water dimer. This new approach generates observables that are consistent with those of target basis set trajectories, including MD-based vibrational spectra. This protocol is shown to be valid for Hartree-Fock, density functional theory, and second-order Møller-Plesset perturbation theory approaches. Recommended pairings include 6-31G as a low-level basis set for 6-31G** or 6-311G**, as well as cc-pVDZ as the subset for accurate dynamics with aug-cc-pVTZ. Demonstrated cost savings include factors of 2.6-7.3 on the systems tested and are expected to remain valid across system sizes.

  12. Self-Healing of Stone—Wales Defects in Boron Nitride Monolayer by Irradiation: Ab Initio Molecular Dynamics Simulations

    NASA Astrophysics Data System (ADS)

    Xue, Shu-Wen; Chen, Jian; Zhang, Jun

    2013-10-01

    We show an effective method of healing the Stone—Wales (SW) defects through low energy electron irradiation using ab initio molecular dynamics simulation. The SW defects can be healed by irradiation through bond rotation. Although the healing energy shows an anisotropic behavior, it is lower than the displacement threshold energy. The healing of the SW defect through electron irradiation can be effectively used in other sp2-bonded materials.

  13. Molecular dynamics studies of lanthanum chloride solutions

    SciTech Connect

    Meier, W.; Bopp, Ph. ); Probst, M.M. ); Spohr, E. ); Lin, J.L. )

    1990-05-31

    Molecular dynamics studies are reported for LaCl{sub 3} solutions at two different concentrations and temperatures, and for isolated aqueous La{sup 3+} ions. Ion-water clusters La(H{sub 2}O){sub n}{sup 3+} with n = 61 and n = 100 and systems consisting of one ion and 100 or 200 water molecules in the usual periodic box, as well as solutions of 7 (4) cations and 21 (12) anions in 190 (200) water molecules, corresponding to 2 and 1.1 m solutions, respectively, were investigated. The 2 m solution was investigated at two different temperatures. The results for the static structure, with special emphasis on the hydration structure of the La{sup 3+} ion, are discussed in terms of radial distribution functions and resulting hydration numbers, and various other correlations. These results are compared with X-ray data and discussed in light of the hydration numbers observed for aqueous ions in general.

  14. Osmosis : a molecular dynamics computer simulation study

    NASA Astrophysics Data System (ADS)

    Lion, Thomas

    Osmosis is a phenomenon of critical importance in a variety of processes ranging from the transport of ions across cell membranes and the regulation of blood salt levels by the kidneys to the desalination of water and the production of clean energy using potential osmotic power plants. However, despite its importance and over one hundred years of study, there is an ongoing confusion concerning the nature of the microscopic dynamics of the solvent particles in their transfer across the membrane. In this thesis the microscopic dynamical processes underlying osmotic pressure and concentration gradients are investigated using molecular dynamics (MD) simulations. I first present a new derivation for the local pressure that can be used for determining osmotic pressure gradients. Using this result, the steady-state osmotic pressure is studied in a minimal model for an osmotic system and the steady-state density gradients are explained using a simple mechanistic hopping model for the solvent particles. The simulation setup is then modified, allowing us to explore the timescales involved in the relaxation dynamics of the system in the period preceding the steady state. Further consideration is also given to the relative roles of diffusive and non-diffusive solvent transport in this period. Finally, in a novel modification to the classic osmosis experiment, the solute particles are driven out-of-equilibrium by the input of energy. The effect of this modification on the osmotic pressure and the osmotic ow is studied and we find that active solute particles can cause reverse osmosis to occur. The possibility of defining a new "osmotic effective temperature" is also considered and compared to the results of diffusive and kinetic temperatures..

  15. Thermal transpiration: A molecular dynamics study

    NASA Astrophysics Data System (ADS)

    T, Joe Francis; Sathian, Sarith P.

    2014-12-01

    Thermal transpiration is a phenomenon where fluid molecules move from the cold end towards the hot end of a channel under the influence of longitudinal temperature gradient alone. Although the phenomenon of thermal transpiration is observed at rarefied gas conditions in macro systems, the phenomenon can occur at atmospheric pressure if the characteristic dimensions of the channel is less than 100 nm. The flow through these nanosized channels is characterized by the free molecular flow regimes and continuum theory is inadequate to describe the flow. Thus a non-continuum method like molecular dynamics (MD) is necessary to study such phenomenon. In the present work, MD simulations were carried out to investigate the occurance of thermal transpiration in copper and platinum nanochannels at atmospheric pressure conditions. The mean pressure of argon gas confined inside the nano channels was maintained around 1 bar. The channel height is maintained at 2nm. The argon atoms interact with each other and with the wall atoms through the Lennard-Jones potential. The wall atoms are modelled using an EAM potential. Further, separate simulations were carried out where a Harmonic potential is used for the atom-atom interaction in the platinum channel. A thermally insulating wall was introduced between the low and high temperature regions and those wall atoms interact with fluid atoms through a repulsive potential. A reduced cut off radius were used to achieve this. Thermal creep is induced by applying a temperature gradient along the channel wall. It was found that flow developed in the direction of the increasing temperature gradient of the wall. An increase in the volumetric flux was observed as the length of the cold and the hot regions of the wall were increased. The effect of temperature gradient and the wall-fluid interaction strength on the flow parameters have been studied to understand the phenomenon better.

  16. Thermal transpiration: A molecular dynamics study

    SciTech Connect

    T, Joe Francis; Sathian, Sarith P.

    2014-12-09

    Thermal transpiration is a phenomenon where fluid molecules move from the cold end towards the hot end of a channel under the influence of longitudinal temperature gradient alone. Although the phenomenon of thermal transpiration is observed at rarefied gas conditions in macro systems, the phenomenon can occur at atmospheric pressure if the characteristic dimensions of the channel is less than 100 nm. The flow through these nanosized channels is characterized by the free molecular flow regimes and continuum theory is inadequate to describe the flow. Thus a non-continuum method like molecular dynamics (MD) is necessary to study such phenomenon. In the present work, MD simulations were carried out to investigate the occurance of thermal transpiration in copper and platinum nanochannels at atmospheric pressure conditions. The mean pressure of argon gas confined inside the nano channels was maintained around 1 bar. The channel height is maintained at 2nm. The argon atoms interact with each other and with the wall atoms through the Lennard-Jones potential. The wall atoms are modelled using an EAM potential. Further, separate simulations were carried out where a Harmonic potential is used for the atom-atom interaction in the platinum channel. A thermally insulating wall was introduced between the low and high temperature regions and those wall atoms interact with fluid atoms through a repulsive potential. A reduced cut off radius were used to achieve this. Thermal creep is induced by applying a temperature gradient along the channel wall. It was found that flow developed in the direction of the increasing temperature gradient of the wall. An increase in the volumetric flux was observed as the length of the cold and the hot regions of the wall were increased. The effect of temperature gradient and the wall-fluid interaction strength on the flow parameters have been studied to understand the phenomenon better.

  17. Fiber lubrication: A molecular dynamics simulation study

    NASA Astrophysics Data System (ADS)

    Liu, Hongyi

    Molecular and mesoscopic level description of friction and lubrication remains a challenge because of difficulties in the phenomenological understanding of to the behaviors of solid-liquid interfaces during sliding. Fortunately, there is the computational simulation approach opens an opportunity to predict and analyze interfacial phenomena, which were studied with molecular dynamics (MD) and mesoscopic dynamics (MesoDyn) simulations. Polypropylene (PP) and cellulose are two of most common polymers in textile fibers. Confined amorphous surface layers of PP and cellulose were built successfully with xenon crystals which were used to compact the polymers. The physical and surface properties of the PP and cellulose surface layers were investigated by MD simulations, including the density, cohesive energy, volumetric thermal expansion, and contact angle with water. The topology method was employed to predict the properties of poly(alkylene glycol) (PAG) diblock copolymers and Pluronic triblock copolymers used as lubricants on surfaces. Density, zero shear viscosity, shear module, cohesive energy and solubility parameter were predicted with each block copolymer. Molecular dynamics simulations were used to study the interaction energy per unit contact area of block copolymer melts with PP and cellulose surfaces. The interaction energy is defined as the ratio of interfacial interaction energy to the contact area. Both poly(proplene oxide) (PPO) and poly(ethylene oxide) (PEO) segments provided a lipophilic character to both PP and cellulose surfaces. The PPO/PEO ratio and the molecular weight were found to impact the interaction energy on both PP and cellulose surfaces. In aqueous solutions, the interaction energy is complicated due to the presence of water and the cross interactions between the multiple molecular components. The polymer-water-surface (PWS) calculation method was proposed to calculate such complex systems. In a contrast with a vacuum condition, the presence

  18. Molecular dynamics studies on nanoscale gas transport

    NASA Astrophysics Data System (ADS)

    Barisik, Murat

    Three-dimensional molecular dynamics (MD) simulations of nanoscale gas flows are studied to reveal surface effects. A smart wall model that drastically reduces the memory requirements of MD simulations for gas flows is introduced. The smart wall molecular dynamics (SWMD) represents three-dimensional FCC walls using only 74 wall Molecules. This structure is kept in the memory and utilized for each gas molecule surface collision. Using SWMD, fluid behavior within nano-scale confinements is studied for argon in dilute gas, dense gas, and liquid states. Equilibrium MD method is employed to resolve the density and stress variations within the static fluid. Normal stress calculations are based on the Irving-Kirkwood method, which divides the stress tensor into its kinetic and virial parts. The kinetic component recovers pressure based on the ideal gas law. The particle-particle virial increases with increased density, while the surface-particle virial develops due to the surface force field effects. Normal stresses within nano-scale confinements show anisotropy induced primarily by the surface force-field and local variations in the fluid density near the surfaces. For dilute and dense gas cases, surface-force field that extends typically 1nm from each wall induces anisotropic normal stress. For liquid case, this effect is further amplified by the density fluctuations that extend beyond the three field penetration region. Outside the wall force-field penetration and density fluctuation regions the normal stress becomes isotropic and recovers the thermodynamic pressure, provided that sufficiently large force cut-off distances are utilized in the computations. Next, non-equilibrium SWMD is utilized to investigate the surface-gas interaction effects on nanoscale shear-driven gas flows in the transition and free molecular flow regimes. For the specified surface properties and gas-surface pair interactions, density and stress profiles exhibit a universal behavior inside the

  19. Investigating the quartz (1010)/water interface using classical and ab initio molecular dynamics.

    PubMed

    Skelton, A A; Wesolowski, D J; Cummings, P T

    2011-07-19

    Two different terminations of the (1010) surface of quartz (α and β) interacting with water are simulated by classical (CMD) (using two different force fields) and ab initio molecular dynamics (AIMD) and compared with previously published X-ray reflectivity (XR) experiments. Radial distribution functions between hydroxyl and water show good agreement between AIMD and CMD using the ClayFF force field for both terminations. The Lopes et al. (Lopes, P. E. M.; Murashov, V.; Tazi, M.; Demchuk, E.; MacKerell, A. D. J. Phys. Chem. B2006, 110, 2782-2792) force field (LFF), however, underestimates the extent of hydroxyl-water hydrogen bonding. The β termination is found to contain hydroxyl-hydroxyl hydrogen bonds; the quartz surface hydroxyl hydrogens and oxygens that hydrogen bond with each other exhibit greatly reduced hydrogen bonding to water. Conversely, the hydroxyl hydrogen and oxygens that are not hydrogen bonded to other surface hydroxyls but are connected to those that are show a considerable amount of hydrogen bonding to water. The electron density distribution of an annealed surface of quartz (1010) obtained by XR is in qualitative agreement with electron densities calculated by CMD and AIMD. In all simulation methods, the interfacial water peak appears farther from the surface than observed by XR. Agreement among AIMD, LFF, and XR is observed for the relaxation of the near-surface atoms; however, ClayFF shows a larger discrepancy. Overall, results show that for both terminations of (1010), LFF treats the near-surface structure more accurately whereas ClayFF treats the interfacial water structure more accurately. It is shown that the number of hydroxyl and water hydrogen bonds to the bridging Si-O-Si oxygens connecting the surface silica groups to the rest of the crystal is much greater for the α than the β termination. It is suggested that this may play a role in the greater resistance to dissolution of the β termination than that of the α termination.

  20. Aqueous Cation-Amide Binding: Free Energies and IR Spectral Signatures by Ab Initio Molecular Dynamics

    SciTech Connect

    Pluharova, Eva; Baer, Marcel D.; Mundy, Christopher J.; Schmidt, Burkhard; Jungwirth, Pavel

    2014-07-03

    Understanding specific ion effects on proteins remains a considerable challenge. N-methylacetamide serves as a useful proxy for the protein backbone that can be well characterized both experimentally and theoretically. The spectroscopic signatures in the amide I band reflecting the strength of the interaction of alkali cations and alkali earth dications with the carbonyl group remain difficult to assign and controversial to interpret. Herein, we directly compute the IR shifts corresponding to the binding of either sodium or calcium to aqueous N-methylacetamide using ab initio molecular dynamics simulations. We show that the two cations interact with aqueous N-methylacetamide with different affinities and in different geometries. Since sodium exhibits a weak interaction with the carbonyl group, the resulting amide I band is similar to an unperturbed carbonyl group undergoing aqueous solvation. In contrast, the stronger calcium binding results in a clear IR shift with respect to N-methylacetamide in pure water. Support from the Czech Ministry of Education (grant LH12001) is gratefully acknowledged. EP thanks the International Max-Planck Research School for support and the Alternative Sponsored Fellowship program at Pacific Northwest National Laboratory (PNNL). PJ acknowledges the Praemium Academie award from the Academy of Sciences. Calculations of the free energy profiles were made possible through generous allocation of computer time from the North-German Supercomputing Alliance (HLRN). Calculations of vibrational spectra were performed in part using the computational resources in the National Energy Research Supercomputing Center (NERSC) at Lawrence Berkeley National Laboratory. This work was supported by National Science Foundation grant CHE-0431312. CJM is supported by the U.S. Department of Energy`s (DOE) Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences. PNNL is operated for the Department of Energy by Battelle. MDB is

  1. Molecular Dynamics and Electron Density Studies of Siderophores and Peptides.

    NASA Astrophysics Data System (ADS)

    Fidelis, Krzysztof Andrzej

    1990-08-01

    The dissertation comprises three separate studies of siderophores and peptides. In the first of these studies the relative potential energies for a series of diastereomers of a siderophore neocoprogen I are evaluated with molecular mechanics force field methods. Charges on the hydroxamate moiety are determined with a synthetic model siderophore compound using valence population refinements, and alternatively, with the theoretical ab initio/ESP calculations. The single diastereomer found in the crystal structure is among four characterized by the low potential energy, while prevalence of Delta vs. Lambda configuration about the iron is found to be a property of the entire series. In the second study the crystal structure of a ferrichrome siderophore ferrirhodin is reported. The crystal structure conformation of the molecular backbone as well as the iron coordination geometry compare well with other ferrichrome structures. The differences between the acyl groups of ferrirubin and ferrirhodin are explored using the methods of molecular mechanics. The third study a 300 ps, 300 K, in vacuo molecular dynamics simulation of didemnin A and B yields distinct molecular conformers, which are different from the one found in the crystal structure or modeled in solution, using the Nuclear Overhauser Effect data. Evaluations of the relative potential energy are performed with short 10 ps simulations in solution. Didemnins are natural depsipeptides isolated from a Caribbean tunicate and characterized by particularly potent antiproliferative and immunomodulatory activity. Conformationally rigid and flexible regions of the molecule are described. A short review of the molecular mechanics methodology is given in the introduction.

  2. Dissociative chemisorption of methane on metal surfaces: Tests of dynamical assumptions using quantum models and ab initio molecular dynamics

    NASA Astrophysics Data System (ADS)

    Jackson, Bret; Nattino, Francesco; Kroes, Geert-Jan

    2014-08-01

    The dissociative chemisorption of methane on metal surfaces is of great practical and fundamental importance. Not only is it the rate-limiting step in the steam reforming of natural gas, the reaction exhibits interesting mode-selective behavior and a strong dependence on the temperature of the metal. We present a quantum model for this reaction on Ni(100) and Ni(111) surfaces based on the reaction path Hamiltonian. The dissociative sticking probabilities computed using this model agree well with available experimental data with regard to variation with incident energy, substrate temperature, and the vibrational state of the incident molecule. We significantly expand the vibrational basis set relative to earlier studies, which allows reaction probabilities to be calculated for doubly excited initial vibrational states, though it does not lead to appreciable changes in the reaction probabilities for singly excited initial states. Sudden models used to treat the center of mass motion parallel to the surface are compared with results from ab initio molecular dynamics and found to be reasonable. Similar comparisons for molecular rotation suggest that our rotationally adiabatic model is incorrect, and that sudden behavior is closer to reality. Such a model is proposed and tested. A model for predicting mode-selective behavior is tested, with mixed results, though we find it is consistent with experimental studies of normal vs. total (kinetic) energy scaling. Models for energy transfer into lattice vibrations are also examined.

  3. Dissociative chemisorption of methane on metal surfaces: Tests of dynamical assumptions using quantum models and ab initio molecular dynamics

    SciTech Connect

    Jackson, Bret; Nattino, Francesco; Kroes, Geert-Jan

    2014-08-07

    The dissociative chemisorption of methane on metal surfaces is of great practical and fundamental importance. Not only is it the rate-limiting step in the steam reforming of natural gas, the reaction exhibits interesting mode-selective behavior and a strong dependence on the temperature of the metal. We present a quantum model for this reaction on Ni(100) and Ni(111) surfaces based on the reaction path Hamiltonian. The dissociative sticking probabilities computed using this model agree well with available experimental data with regard to variation with incident energy, substrate temperature, and the vibrational state of the incident molecule. We significantly expand the vibrational basis set relative to earlier studies, which allows reaction probabilities to be calculated for doubly excited initial vibrational states, though it does not lead to appreciable changes in the reaction probabilities for singly excited initial states. Sudden models used to treat the center of mass motion parallel to the surface are compared with results from ab initio molecular dynamics and found to be reasonable. Similar comparisons for molecular rotation suggest that our rotationally adiabatic model is incorrect, and that sudden behavior is closer to reality. Such a model is proposed and tested. A model for predicting mode-selective behavior is tested, with mixed results, though we find it is consistent with experimental studies of normal vs. total (kinetic) energy scaling. Models for energy transfer into lattice vibrations are also examined.

  4. Finite-temperature elastic constants of paramagnetic materials within the disordered local moment picture from ab initio molecular dynamics calculations

    NASA Astrophysics Data System (ADS)

    Mozafari, E.; Shulumba, N.; Steneteg, P.; Alling, B.; Abrikosov, Igor A.

    2016-08-01

    We present a theoretical scheme to calculate the elastic constants of magnetic materials in the high-temperature paramagnetic state. Our approach is based on a combination of disordered local moments picture and ab initio molecular dynamics (DLM-MD). Moreover, we investigate a possibility to enhance the efficiency of the simulations of elastic properties using the recently introduced method: symmetry imposed force constant temperature-dependent effective potential (SIFC-TDEP). We have chosen cubic paramagnetic CrN as a model system. This is done due to its technological importance and its demonstrated strong coupling between magnetic and lattice degrees of freedom. We have studied the temperature-dependent single-crystal and polycrystalline elastic constants of paramagentic CrN up to 1200 K. The obtained results at T = 300 K agree well with the experimental values of polycrystalline elastic constants as well as the Poisson ratio at room temperature. We observe that the Young's modulus is strongly dependent on temperature, decreasing by ˜14 % from T = 300 K to 1200 K. In addition we have studied the elastic anisotropy of CrN as a function of temperature and we observe that CrN becomes substantially more isotropic as the temperature increases. We demonstrate that the use of Birch law may lead to substantial errors for calculations of temperature induced changes of elastic moduli. The proposed methodology can be used for accurate predictions of mechanical properties of magnetic materials at temperatures above their magnetic order-disorder phase transition.

  5. Ab initio molecular dynamics simulations of organic electrolytes, electrodes, and lithium ion transport for Li-ion batteries

    NASA Astrophysics Data System (ADS)

    Kent, P. R. C.; Ganesh, P.; Jiang, De-En; Borodin, O.

    2012-02-01

    Optimizing the choice of electrolyte in lithium ion batteries and an understanding of the solid-electrolyte interphase (SEI) is required to optimize the balance between high-energy storage, high rate capability, and lifetime. We perform accurate ab initio molecular-dynamics simulations of common cyclic carbonates and LiPF6 to build solvation models which explain available Neutron and NMR spectroscopies. Our results corroborate why ethylene carbonate is a preferred choice for battery applications over propylene carbonate and how mixtures with dimethyl carbonate improve Li-ion diffusion. We study the role of functionalization of graphite-anode edges on the reducibility of the electrolyte and the ease of Li-ion intercalation at the initial stages of SEI formation. We find that oxygen terminated edges readily act as strong reductive sites, while hydrogen terminated edges are less reactive and allow faster Li diffusion. Orientational ordering of the solvent molecules precedes reduction at the interphase. Inorganic reductive components are seen to readily migrate to the anode edges, leading to increased surface passivation of the anode. We are currently quantifying Li-intercalation barriers across realistic SEI models, and progress along these lines will be presented.

  6. Structural transformation between long and short-chain form of liquid sulfur from ab initio molecular dynamics

    SciTech Connect

    Plašienka, Dušan Martoňák, Roman; Cifra, Peter

    2015-04-21

    We present results of ab initio molecular dynamics study of the structural transformation occurring in hot liquid sulfur under high pressure, which corresponds to the recently observed chain-breakage phenomenon and to the electronic transition reported earlier. The transformation is temperature-induced and separates two distinct polymeric forms of liquid sulfur: high-temperature form composed of short chain-like fragments with open endings and low-temperature form with very long chains. We offer a structural description of the two liquid forms in terms of chain lengths, cross-linking, and chain geometry and investigate several physical properties. We conclude that the transformation is accompanied by changes in energy (but not density) as well as in diffusion coefficient and electronic properties—semiconductor-metal transition. We also describe the analogy of the investigated process to similar phenomena that take place in two other chalcogens selenium and tellurium. Finally, we remark that the behavior of heated liquid sulfur at ambient pressure might indicate a possible existence of a critical point in the low-pressure region of sulfur phase diagram.

  7. Hydration structures of U(III) and U(IV) ions from ab initio molecular dynamics simulations

    SciTech Connect

    Leung, Kevin; Nenoff, Tina M.

    2012-08-21

    We apply DFT+U-based ab initio molecular dynamics simulations to study the hydration structures of U(III) and U(IV) ions, pertinent to redox reactions associated with uranium salts in aqueous media. U(III) is predicted to be coordinated to 8 water molecules, while U(IV) has a hydration number between 7 and 8. At least one of the innershell water molecules of the hydrated U(IV) complex becomes spontaneously deprotonated. As a result, the U(IV)-O pair correlation function exhibits a satellite peak at 2.15 A associated with the shorter U(IV)-(OH{sup -}) bond. This feature is not accounted for in analysis of extended x-ray absorption fine structure and x-ray adsorption near edge structure measurements, which yield higher estimates of U(IV) hydration numbers. This suggests that it may be useful to include the effect of possible hydrolysis in future interpretation of experiments, especially when the experimental pH is close to the reported hydrolysis equilibrium constant value.

  8. Ab initio molecular dynamics investigations of low-energy recoil events in Ni and NiCo

    DOE PAGES

    Liu, Bin; Yuan, Fenglin; Jin, Ke; Zhang, Yanwen; Weber, William J.

    2015-10-06

    Low-energy recoil events in pure Ni and the equiatomic NiCo alloy are studied using ab initio molecular dynamics simulations. We found that the threshold displacement energies are strongly dependent on orientation and weakly dependent on composition. The minimum threshold displacement energies are along the [1 1 0] direction in both pure Ni and the NiCo alloy. Compared to pure Ni, the threshold displacement energies increase slightly in the NiCo alloy due to stronger bonds in the alloy, irrespective of the element type of the PKA. A single Ni interstitial occupying the center of a tetrahedron formed by four Ni atomsmore » and a <1 0 0> split interstitial is produced in pure Ni by the recoils, while only the <1 0 0> split interstitial is formed in the NiCo alloy. Compared to the replacement sequences in pure Ni, anti-site defect sequences are observed in the alloy, which have high efficiency for both producing defects and transporting energy outside of the cascade core. These results provide insights into energy transfer processes occurring in equiatomic alloys under irradiation.« less

  9. Ab initio molecular dynamics investigations of low-energy recoil events in Ni and NiCo

    SciTech Connect

    Liu, Bin; Yuan, Fenglin; Jin, Ke; Zhang, Yanwen; Weber, William J.

    2015-10-06

    Low-energy recoil events in pure Ni and the equiatomic NiCo alloy are studied using ab initio molecular dynamics simulations. We found that the threshold displacement energies are strongly dependent on orientation and weakly dependent on composition. The minimum threshold displacement energies are along the [1 1 0] direction in both pure Ni and the NiCo alloy. Compared to pure Ni, the threshold displacement energies increase slightly in the NiCo alloy due to stronger bonds in the alloy, irrespective of the element type of the PKA. A single Ni interstitial occupying the center of a tetrahedron formed by four Ni atoms and a <1 0 0> split interstitial is produced in pure Ni by the recoils, while only the <1 0 0> split interstitial is formed in the NiCo alloy. Compared to the replacement sequences in pure Ni, anti-site defect sequences are observed in the alloy, which have high efficiency for both producing defects and transporting energy outside of the cascade core. These results provide insights into energy transfer processes occurring in equiatomic alloys under irradiation.

  10. On the structure of crystalline and molten cryolite: Insights from the ab initio molecular dynamics in NpT ensemble

    NASA Astrophysics Data System (ADS)

    Bučko, Tomáš; Šimko, František

    2016-02-01

    Ab initio molecular dynamics simulations in isobaric-isothermal ensemble have been performed to study the low- and the high-temperature crystalline and liquid phases of cryolite. The temperature induced transitions from the low-temperature solid (α) to the high-temperature solid phase (β) and from the phase β to the liquid phase have been simulated using a series of MD runs performed at gradually increasing temperature. The structure of crystalline and liquid phases is analysed in detail and our computational approach is shown to reliably reproduce the available experimental data for a wide range of temperatures. Relatively frequent reorientations of the AlF6 octahedra observed in our simulation of the phase β explain the thermal disorder in positions of the F- ions observed in X-ray diffraction experiments. The isolated AlF63-, AlF52-, AlF4-, as well as the bridged Al 2 Fm 6 - m ionic entities have been identified as the main constituents of cryolite melt. In accord with the previous high-temperature NMR and Raman spectroscopic experiments, the compound AlF5 2 - has been shown to be the most abundant Al-containing species formed in the melt. The characteristic vibrational frequencies for the AlFn 3 - n species in realistic environment have been determined and the computed values have been found to be in a good agreement with experiment.

  11. On the structure of crystalline and molten cryolite: Insights from the ab initio molecular dynamics in NpT ensemble.

    PubMed

    Bučko, Tomáš; Šimko, František

    2016-02-14

    Ab initio molecular dynamics simulations in isobaric-isothermal ensemble have been performed to study the low- and the high-temperature crystalline and liquid phases of cryolite. The temperature induced transitions from the low-temperature solid (α) to the high-temperature solid phase (β) and from the phase β to the liquid phase have been simulated using a series of MD runs performed at gradually increasing temperature. The structure of crystalline and liquid phases is analysed in detail and our computational approach is shown to reliably reproduce the available experimental data for a wide range of temperatures. Relatively frequent reorientations of the AlF6 octahedra observed in our simulation of the phase β explain the thermal disorder in positions of the F(-) ions observed in X-ray diffraction experiments. The isolated AlF6(3-), AlF5(2-), AlF4(-), as well as the bridged Al2Fm(6-m) ionic entities have been identified as the main constituents of cryolite melt. In accord with the previous high-temperature NMR and Raman spectroscopic experiments, the compound AlF5(2-) has been shown to be the most abundant Al-containing species formed in the melt. The characteristic vibrational frequencies for the AlFn(3-n) species in realistic environment have been determined and the computed values have been found to be in a good agreement with experiment. PMID:26874492

  12. Structure and Dynamics of the Instantaneous Water/Vapor Interface Revisited by Path-Integral and Ab Initio Molecular Dynamics Simulations.

    PubMed

    Kessler, Jan; Elgabarty, Hossam; Spura, Thomas; Karhan, Kristof; Partovi-Azar, Pouya; Hassanali, Ali A; Kühne, Thomas D

    2015-08-01

    The structure and dynamics of the water/vapor interface is revisited by means of path-integral and second-generation Car-Parrinello ab initio molecular dynamics simulations in conjunction with an instantaneous surface definition [Willard, A. P.; Chandler, D. J. Phys. Chem. B 2010, 114, 1954]. In agreement with previous studies, we find that one of the OH bonds of the water molecules in the topmost layer is pointing out of the water into the vapor phase, while the orientation of the underlying layer is reversed. Therebetween, an additional water layer is detected, where the molecules are aligned parallel to the instantaneous water surface.

  13. Hard scaling challenges for ab initio molecular dynamics capabilities in NWChem: Using 100,000 CPUs per second

    SciTech Connect

    Bylaska, Eric J.; Glass, Kevin A.; Baxter, Douglas J.; Baden, Scott B.; Weare, John H.

    2010-09-16

    An overview of the parallel algorithms for ab initio molecular dynamics (AIMD) used in the NWChem program package is presented, including recent developments for computing exact exchange. These algorithms make use of a two-dimensional processor geometry proposed by Gygi et al for use in AIMD algorithms. Using this strategy, a highly scalable algorithm for exact exchange has been developed and incorporated it into AIMD. This new algorithm for exact exchange employs an incomplete butterfly to overcome the bottleneck associated with exact exchange term, and it makes judicious use of data replication. Initial testing has shown that this algorithm can scale to over 20,000 CPUs even for modest size simulation.

  14. Theoretical design of a novel copper doped gold cluster supported on graphene utilizing ab initio molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Koizumi, Kenichi; Nobusada, Katsuyuki; Boero, Mauro

    2015-12-01

    Ab initio molecular dynamics simulations have been used to inspect the adsorption of O2 to a small gold-copper alloy cluster supported on graphene. The exposed Cu atom in this cluster acts as a crucial attractive site for the approaching of O2 and consequently widens the reaction channel for the adsorption process. Conversely, a pure Au cluster on the same graphene support is inactive for the O2 adsorption because the corresponding reaction channel for the adsorption is very narrow. These results clearly indicate that doping a different metal to the Au cluster is a way to enhance the oxygen adsorption and to promote catalytic reactions.

  15. Simulations of the dissociation of small helium clusters with ab initio molecular dynamics in electronically excited states

    SciTech Connect

    Closser, Kristina D.; Head-Gordon, Martin; Gessner, Oliver

    2014-04-07

    The dynamics resulting from electronic excitations of helium clusters were explored using ab initio molecular dynamics. The simulations were performed with configuration interaction singles and adiabatic classical dynamics coupled to a state-following algorithm. 100 different configurations of He{sub 7} were excited into the 2s and 2p manifold for a total of 2800 trajectories. While the most common outcome (90%) was complete fragmentation to 6 ground state atoms and 1 excited state atom, 3% of trajectories yielded bound, He {sub 2}{sup *}, and <0.5% yielded an excited helium trimer. The nature of the dynamics, kinetic energy release, and connections to experiments are discussed.

  16. Molecular-dynamic study of liquid ethylenediamine

    NASA Astrophysics Data System (ADS)

    Balabaev, N. K.; Kraevskii, S. V.; Rodnikova, M. N.; Solonina, I. A.

    2016-10-01

    Models of liquid ethylenediamine (ED) are built using the molecular dynamics approach at temperatures of 293-363 K and a size of 1000 molecules in a basic cell as a cuboid. The structural and dynamic characteristics of liquid ED versus temperature are derived. The gauche conformation of the ED molecule that is characteristic of the gas phase is shown to transition easily into the trans conformation of the molecules in the liquid. NH···N hydrogen bonds are analyzed in liquid ED. The number of H-bonds per ED molecule is found to vary from 5.02 at 293 K to 3.86 at 363 K. The lifetimes in the range of the temperatures and dissociation activation energy for several H-bonds in liquid ED are found to range from 0.574 to 4.524 ps at 293 K; the activation energies are 8.8 kJ/mol for 50% of the H-bonds and 16.3 kJ/mol for 6.25% of them. A weaker and more mobile spatial grid of H-bonds in liquid ED is observed, compared to data calculated earlier for monoethanolamine.

  17. Strong electric fields at a prototypical oxide/water interface probed by ab initio molecular dynamics: MgO(001).

    PubMed

    Laporte, Sara; Finocchi, Fabio; Paulatto, Lorenzo; Blanchard, Marc; Balan, Etienne; Guyot, François; Saitta, Antonino Marco

    2015-08-21

    We report a density-functional theory (DFT)-based study of the interface of bulk water with a prototypical oxide surface, MgO(001), and focus our study on the often-overlooked surface electric field. In particular, we observe that the bare MgO(001) surface, although charge-neutral and defectless, has an intense electric field on the Å scale. The MgO(001) surface covered with 1 water monolayer (1 ML) is investigated via a supercell accounting for the experimentally-observed (2 × 3) reconstruction, stable at ambient temperature, and in which two out of six water molecules are dissociated. This 1 ML-hydrated surface is also found to have a high, albeit short-ranged, normal component of the field. Finally, the oxide/water interface is studied via room-temperature ab initio molecular dynamics (AIMD) using 34 H2O molecules between two MgO(001) surfaces. To our best knowledge this is the first AIMD study of the MgO(001)/liquid water interface in which all atoms are treated using DFT and including several layers above the first adsorbed layer. We observe that the surface electric field, averaged over the AIMD trajectories, is still very strong on the fully-wet surface, peaking at about 3 V Å(-1). Even in the presence of bulk-like water, the structure of the first layer in contact with the surface remains similar to the (2 × 3)-reconstructed ice ad-layer on MgO(001). Moreover, we observe proton exchange within the first layer, and between the first and second layers - indeed, the O-O distances close to the surface are found to be distributed towards shorter distances, a property which has been shown to directly promote proton transfer.

  18. Ab initio molecular-dynamics simulation of aqueous proton solvation and transport revisited

    NASA Astrophysics Data System (ADS)

    Izvekov, Sergei; Voth, Gregory A.

    2005-07-01

    The solvation and transport of the hydrated excess proton is studied using the Car-Parrinello molecular-dynamics (CPMD) simulation method. The simulations were performed using BLYP and HCTH gradient-corrected exchange-correlation energy functionals. The fictitious electronic mass was chosen to be small enough so that the underlying water structural and dynamical properties were converged with respect to this important CPMD simulation parameter. An unphysical overstructuring of liquid water in the CPMD simulations using the BLYP functional resulted in the formation of long-lived hydrogen-bonding structures involving the excess proton and a particular (special) water oxygen. The excess proton was observed to be attracted to the special oxygen through the entire length of the BLYP CPMD simulations. Consequently, the excess proton diffusion was limited by the mobility of the special oxygen in the slowly diffusing water network and, in turn, the excess proton self-diffusion coefficient was found to be significantly below the experimental value. On the other hand, the structural properties of liquid water in the HCTH CPMD simulation were seen to be in better agreement with experiment, although the water and excess proton diffusions were still well below the experimental value.

  19. Infrared Spectroscopy of N-Methylacetamide Revisited by ab Initio Molecular Dynamics Simulations.

    PubMed

    Gaigeot, M P; Vuilleumier, R; Sprik, M; Borgis, D

    2005-09-01

    The density functional theory based molecular dynamics simulation method ("Car-Parrinello") was applied in a numerical study of the electronic properties, hydrogen bonding, and infrared spectroscopy of the trans and cis isomer of N-methylacetamide in aqueous solution. A detailed analysis of the electronic structure of the solvated molecules, in terms of localized Wannier functions and Born atomic charges, is presented. Two schemes for the computation of the solute infrared absorption spectrum are investigated:  In the first method the spectrum is determined by Fourier transforming the time correlation function of the solute dipole as determined from the Wannier function analysis. The second method uses instead the molecular current-current correlation function computed from the Born charges and atomic velocities. The resulting spectral properties of trans- and cis-NMA are carefully compared to each other and to experimental results. We find that the two solvated isomers can be clearly distinguished by their infrared spectral profile in the 1000-2000 cm(-)(1) range. PMID:26641894

  20. Non-equilibrium dynamics in disordered materials: Ab initio molecular dynamics simulations

    SciTech Connect

    Ohmura, Satoshi; Nagaya, Kiyonobu; Yao, Makoto; Shimojo, Fuyuki

    2015-08-17

    The dynamic properties of liquid B{sub 2}O{sub 3} under pressure and highly-charged bromophenol molecule are studied by using molecular dynamics (MD) simulations based on density functional theory (DFT). Diffusion properties of covalent liquids under high pressure are very interesting in the sense that they show unexpected pressure dependence. It is found from our simulation that the magnitude relation of diffusion coefficients for boron and oxygen in liquid B{sub 2}O{sub 3} shows the anomalous pressure dependence. The simulation clarified the microscopic origin of the anomalous diffusion properties. Our simulation also reveals the dissociation mechanism in the coulomb explosion of the highly-charged bromophenol molecule. When the charge state n is 6, hydrogen atom in the hydroxyl group dissociates at times shorter than 20 fs while all hydrogen atoms dissociate when n is 8. After the hydrogen dissociation, the carbon ring breaks at about 100 fs. There is also a difference on the mechanism of the ring breaking depending on charge states, in which the ring breaks with expanding (n = 6) or shrink (n = 8)

  1. Quantum ring-polymer contraction method: Including nuclear quantum effects at no additional computational cost in comparison to ab initio molecular dynamics.

    PubMed

    John, Christopher; Spura, Thomas; Habershon, Scott; Kühne, Thomas D

    2016-04-01

    We present a simple and accurate computational method which facilitates ab initio path-integral molecular dynamics simulations, where the quantum-mechanical nature of the nuclei is explicitly taken into account, at essentially no additional computational cost in comparison to the corresponding calculation using classical nuclei. The predictive power of the proposed quantum ring-polymer contraction method is demonstrated by computing various static and dynamic properties of liquid water at ambient conditions using density functional theory. This development will enable routine inclusion of nuclear quantum effects in ab initio molecular dynamics simulations of condensed-phase systems. PMID:27176426

  2. Quantum ring-polymer contraction method: Including nuclear quantum effects at no additional computational cost in comparison to ab initio molecular dynamics

    NASA Astrophysics Data System (ADS)

    John, Christopher; Spura, Thomas; Habershon, Scott; Kühne, Thomas D.

    2016-04-01

    We present a simple and accurate computational method which facilitates ab initio path-integral molecular dynamics simulations, where the quantum-mechanical nature of the nuclei is explicitly taken into account, at essentially no additional computational cost in comparison to the corresponding calculation using classical nuclei. The predictive power of the proposed quantum ring-polymer contraction method is demonstrated by computing various static and dynamic properties of liquid water at ambient conditions using density functional theory. This development will enable routine inclusion of nuclear quantum effects in ab initio molecular dynamics simulations of condensed-phase systems.

  3. Conformational Sampling by Ab Initio Molecular Dynamics Simulations Improves NMR Chemical Shift Predictions.

    PubMed

    Dračínský, Martin; Möller, Heiko M; Exner, Thomas E

    2013-08-13

    Car-Parrinello molecular dynamics simulations were performed for N-methyl acetamide as a small test system for amide groups in protein backbones, and NMR chemical shifts were calculated based on the generated ensemble. If conformational sampling and explicit solvent molecules are taken into account, excellent agreement between the calculated and experimental chemical shifts is obtained. These results represent a landmark improvement over calculations based on classical molecular dynamics (MD) simulations especially for amide protons, which are predicted too high-field shifted based on the latter ensembles. We were able to show that the better results are caused by the solute-solvents interactions forming shorter hydrogen bonds as well as by the internal degrees of freedom of the solute. Inspired by these results, we propose our approach as a new tool for the validation of force fields due to its power of identifying the structural reasons for discrepancies between the experimental and calculated data. PMID:26584127

  4. Water at a hydrophilic solid surface probed by ab-initio molecular dynamics: inhomogeneous thin layers of dense fluid

    SciTech Connect

    Cicero, G; Grossman, J; Galli, G; Catellani, A

    2005-01-28

    We present a microscopic model of the interface between liquid water and a hydrophilic, solid surface, as obtained from ab-initio molecular dynamics simulations. In particular, we focused on the (100)surface of cubic SiC, a leading candidate semiconductor for bio-compatible devices. Our results show that, in the liquid in contact with the clean substrate, molecular dissociation occurs in a manner unexpectedly similar to that observed in the gas phase. After full hydroxylation takes place, the formation of a thin ({approx}3 {angstrom})interfacial layer is observed, which has higher density than bulk water and forms stable hydrogen bonds with the substrate. The liquid does not uniformly wet the surface, rather molecules preferably bind along directions parallel to the Si dimer rows. Our calculations also predict that one dimensional confinement between two hydrophilic surfaces at about 1.3 nm distance does not affect the structural and electronic properties of the whole water sample.

  5. Theoretical design of a novel copper doped gold cluster supported on graphene utilizing ab initio molecular dynamics simulations

    SciTech Connect

    Koizumi, Kenichi; Nobusada, Katsuyuki; Boero, Mauro

    2015-12-31

    Ab initio molecular dynamics simulations have been used to inspect the adsorption of O{sub 2} to a small gold-copper alloy cluster supported on graphene. The exposed Cu atom in this cluster acts as a crucial attractive site for the approaching of O{sub 2} and consequently widens the reaction channel for the adsorption process. Conversely, a pure Au cluster on the same graphene support is inactive for the O{sub 2} adsorption because the corresponding reaction channel for the adsorption is very narrow. These results clearly indicate that doping a different metal to the Au cluster is a way to enhance the oxygen adsorption and to promote catalytic reactions.

  6. Accurate static and dynamic properties of liquid electrolytes for Li-ion batteries from ab initio molecular dynamics.

    PubMed

    Ganesh, P; Jiang, De-en; Kent, P R C

    2011-03-31

    Lithium-ion batteries have the potential to revolutionize the transportation industry, as they did for wireless communication. A judicious choice of the liquid electrolytes used in these systems is required to achieve a good balance among high-energy storage, long cycle life and stability, and fast charging. Ethylene-carbonate (EC) and propylene-carbonate (PC) are popular electrolytes. However, to date, almost all molecular-dynamics simulations of these fluids rely on classical force fields, while a complete description of the functionality of Li-ion batteries will eventually require quantum mechanics. We perform accurate ab initio molecular-dynamics simulations of ethylene- and propylene-carbonate with LiPF(6) at experimental concentrations to build solvation models which explain available neutron scattering and nuclear magnetic resonance (NMR) results and to compute Li-ion solvation energies and diffusion constants. Our results suggest some similarities between the two liquids as well as some important differences. Simulations also provide useful insights into formation of solid-electrolyte interphases in the presence of electrodes in conventional Li-ion batteries.

  7. Thermal Decomposition of the Solid Phase of Nitromethane: Ab Initio Molecular Dynamics Simulations

    NASA Astrophysics Data System (ADS)

    Chang, Jing; Lian, Peng; Wei, Dong-Qing; Chen, Xiang-Rong; Zhang, Qing-Ming; Gong, Zi-Zheng

    2010-10-01

    The Car-Parrinello molecular dynamics simulations were employed to investigate thermal decomposition of the solid nitromethane. It is found that it undergoes chemical decomposition at about 2200 K under ambient pressure. The initiation of reactions involves both proton transfer and commonly known C-N bond cleavage. About 75 species and 100 elementary reactions were observed with the final products being H2O, CO2, N2, and CNCNC. It represents the first complete simulation of solid-phase explosive reactions reported to date, which is of far-reaching implication for design and development of new energetic materials.

  8. Thermal decomposition of the solid phase of nitromethane: ab initio molecular dynamics simulations.

    PubMed

    Chang, Jing; Lian, Peng; Wei, Dong-Qing; Chen, Xiang-Rong; Zhang, Qing-Ming; Gong, Zi-Zheng

    2010-10-29

    The Car-Parrinello molecular dynamics simulations were employed to investigate thermal decomposition of the solid nitromethane. It is found that it undergoes chemical decomposition at about 2200 K under ambient pressure. The initiation of reactions involves both proton transfer and commonly known C-N bond cleavage. About 75 species and 100 elementary reactions were observed with the final products being H2O, CO2, N2, and CNCNC. It represents the first complete simulation of solid-phase explosive reactions reported to date, which is of far-reaching implication for design and development of new energetic materials. PMID:21231142

  9. Bond dissociation mechanism of ethanol during carbon nanotube synthesis via alcohol catalytic CVD technique: Ab initio molecular dynamics simulation

    NASA Astrophysics Data System (ADS)

    Oguri, Tomoya; Shimamura, Kohei; Shibuta, Yasushi; Shimojo, Fuyuki; Yamaguchi, Shu

    2014-03-01

    Dissociation of ethanol on a nickel cluster is investigated by ab initio molecular dynamics simulation to reveal the bond dissociation mechanism of carbon source molecules during carbon nanotube synthesis. C-C bonds in only CHxCO fragments are dissociated on the nickel cluster, whereas there is no preferential structure among the fragments for C-O bond dissociation. The dissociation preference is uncorrelated with the bond dissociation energy of corresponding bonds in freestanding molecules but is correlated with the energy difference between fragment molecules before and after dissociation on the nickel surface. Moreover, carbon-chain formation occurs after C-C bond dissociation in a continuous simulation. What determines the chirality of CNTs? What happens at the dissociation stage of carbon source molecules? Regarding the former question, many researchers have pointed out the good epitaxial relationship between a graphite network and a close-packed facet (i.e., fcc(1 1 1) or hcp(0 0 0 1)) of transition metals [17-19]. Therefore, the correlation between the chirality of CNTs and the angle of the step edge on metal (or metal carbide) surfaces has been closely investigated [20-22]. In association with this geometric matching, the epitaxial growth of graphene on Cu(1 1 1) and Ni(1 1 1) surfaces has recently been achieved via CCVD technique [23-25], which is a promising technique for the synthesis of large-area and monolayer graphene.Regarding the latter question, it is empirically known that the yield and quality of CNT products strongly depend on the choice of carbon source molecules and additives. For example, it is well known that the use of ethanol as carbon source molecules yields a large amount of SWNTs without amorphous carbons (called the alcohol CCVD (ACCVD) technique) compared with the CCVD process using hydrocarbons [4]. Moreover, the addition of a small amount of water dramatically enhances the activity and lifetime of the catalytic metal (called the

  10. Efficient preconditioning of the electronic structure problem in large scale ab initio molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Schiffmann, Florian; VandeVondele, Joost

    2015-06-01

    We present an improved preconditioning scheme for electronic structure calculations based on the orbital transformation method. First, a preconditioner is developed which includes information from the full Kohn-Sham matrix but avoids computationally demanding diagonalisation steps in its construction. This reduces the computational cost of its construction, eliminating a bottleneck in large scale simulations, while maintaining rapid convergence. In addition, a modified form of Hotelling's iterative inversion is introduced to replace the exact inversion of the preconditioner matrix. This method is highly effective during molecular dynamics (MD), as the solution obtained in earlier MD steps is a suitable initial guess. Filtering small elements during sparse matrix multiplication leads to linear scaling inversion, while retaining robustness, already for relatively small systems. For system sizes ranging from a few hundred to a few thousand atoms, which are typical for many practical applications, the improvements to the algorithm lead to a 2-5 fold speedup per MD step.

  11. Efficient preconditioning of the electronic structure problem in large scale ab initio molecular dynamics simulations

    SciTech Connect

    Schiffmann, Florian; VandeVondele, Joost

    2015-06-28

    We present an improved preconditioning scheme for electronic structure calculations based on the orbital transformation method. First, a preconditioner is developed which includes information from the full Kohn-Sham matrix but avoids computationally demanding diagonalisation steps in its construction. This reduces the computational cost of its construction, eliminating a bottleneck in large scale simulations, while maintaining rapid convergence. In addition, a modified form of Hotelling’s iterative inversion is introduced to replace the exact inversion of the preconditioner matrix. This method is highly effective during molecular dynamics (MD), as the solution obtained in earlier MD steps is a suitable initial guess. Filtering small elements during sparse matrix multiplication leads to linear scaling inversion, while retaining robustness, already for relatively small systems. For system sizes ranging from a few hundred to a few thousand atoms, which are typical for many practical applications, the improvements to the algorithm lead to a 2-5 fold speedup per MD step.

  12. Sound velocity in shock compressed molybdenum obtained by ab initio molecular dynamics

    NASA Astrophysics Data System (ADS)

    Lukinov, T.; Simak, S. I.; Belonoshko, A. B.

    2015-08-01

    The sound velocity of Mo along the Hugoniot adiabat is calculated from first principles using density-functional theory based molecular dynamics. These data are compared to the sound velocity as measured in recent experiments. The theoretical and experimental Hugoniot and sound velocities are in very good agreement up to pressures of 210 GPa and temperatures of 3700 K on the Hugoniot. However, above that point the experiment and theory diverge. This implies that Mo undergoes a phase transition at about the same point. Considering that the melting point of Mo is likely much higher at that pressure, the related change in the sound velocity in experiment can be ascribed to a solid-solid transition.

  13. Sound velocity in shock compressed molybdenum obtained by ab initio molecular dynamics

    NASA Astrophysics Data System (ADS)

    Lukinov, Tymofiy; Belonoshko, Anatoly; Simak, Sergey

    The sound velocity of Mo along the Hugoniot adiabat is calculated from first principles using density-functional theory based molecular dynamics. These data are compared to the sound velocity as measured in recent experiments. The theoretical and experimental Hugoniot and sound velocities are in very good agreement up to pressures of 210 GPa and temperatures of 3700 K on the Hugoniot. However, above that point the experiment and theory diverge. This implies that Mo undergoes a phase transition at about the same point. Considering that the melting point of Mo is likely much higher at that pressure, the related change in the sound velocity in experiment can be ascribed to a solid-solid transition.

  14. Graph Theory Meets Ab Initio Molecular Dynamics: Atomic Structures and Transformations at the Nanoscale

    NASA Astrophysics Data System (ADS)

    Pietrucci, Fabio; Andreoni, Wanda

    2011-08-01

    Social permutation invariant coordinates are introduced describing the bond network around a given atom. They originate from the largest eigenvalue and the corresponding eigenvector of the contact matrix, are invariant under permutation of identical atoms, and bear a clear signature of an order-disorder transition. Once combined with ab initio metadynamics, these coordinates are shown to be a powerful tool for the discovery of low-energy isomers of molecules and nanoclusters as well as for a blind exploration of isomerization, association, and dissociation reactions.

  15. Ab initio molecular dynamics simulations of ion–solid interactions in Gd2Zr2O7 and Gd2Ti2O7

    SciTech Connect

    Wang, X. J.; Xiao, Haiyan Y.; Zu, Xiaotao; Zhang, Yanwen; Weber, William J.

    2012-12-21

    The development of the ab initio molecular dynamics (AIMD) method has made it a powerful tool in describing ion–solid interactions in materials, with the determination of threshold displacement energies with ab initio accuracy, and prediction of a new mechanism for defect generation and new defective states that are different from classical molecular dynamics (MD) simulations. In the present work, this method is employed to study the low energy recoil events in Gd2Zr2O7 and Gd2Ti2O7. The weighted average threshold displacement energies in Gd2Zr2O7 are determined to be 38.8 eV for Gd, 41.4 eV for Zr, 18.6 eV for O48f, and 15.6 eV for O8b, which are smaller than the respective values of 41.8, >53.8, 22.6 and 16.2 eV in Gd2Ti2O7. It reveals that all the ions in Gd2Zr2O7 are more easily displaced than those in Gd2Ti2O7, and anion order–disorder is more likely to be involved in the displacement events than cation disordering. The average charge transfer from the primary knock-on atom to its neighbors is estimated to be [similar]0.15, [similar]0.11 to 0.27 and [similar]0.1 to 0.13 |e| for Gd, Zr (or Ti), and O, respectively. Neglecting the charge transfer in the interatomic potentials may result in the larger threshold displacement energies in classical MD.

  16. Ab initio molecular dynamics simulations of ion–solid interactions in Gd2Zr2O7 and Gd2Ti2O7

    SciTech Connect

    Wang, X. J.; Xiao, H. Y.; Zu, X. T.; Zhang, Y.; Weber, W. J.

    2013-01-01

    The development of ab initio molecular dynamics (AIMD) method has made it a powerful tool in describing ion-solid interactions in materials, with identification determination of threshold displacement energies with ab initio accuracy, and prediction of new mechanism for defect generation and new defective states that are different from classical molecular dynamics (MD) simulations. In the present work, this method is employed to study the low energy recoil events in Gd2Zr2O7 and Gd2Ti2O7. The weighted average threshold displacement energies in Gd2Zr2O7 are determined to be 38.8 eV for Gd, 41.4 eV for Zr, 18.6 eV for O48f, and 15.6 eV for O8b, which are smaller than the respective values of 41.8, >53.8, 22.6 and 16.2 eV in Gd2Ti2O7. It reveals that all the ions in Gd2Zr2O7 are more easily displaced than those in Gd2Ti2O7, and anion order-disorder are more likely to be involved in the displacement events than cation disordering. The average charge transfer from the primary knock-on atom to its neighbors is estimated to be ~0.15, ~0.11-0.27 and ~0.1-0.13 |e| for Gd, Zr (or Ti), and O, respectively. Negligence of the charge transfer in the interatomic potentials may result in the larger threshold displacement energies in classical MD.

  17. Influence of water on anharmonicity, stability, and vibrational energy distribution of hydrogen-bonded adducts in atmospheric reactions: case study of the OH + isoprene reaction intermediate using ab initio molecular dynamics.

    PubMed

    Dietrick, Scott M; Pacheco, Alexander B; Phatak, Prasad; Stevens, Philip S; Iyengar, Srinivasan S

    2012-01-12

    The effect of water on the stability and vibrational states of a hydroxy-isoprene adduct is probed through the introduction of 1-15 water molecules. It is found that when a static nuclear harmonic approximation is invoked there is a substantial red-shift of the alcohol O-H stretch (of the order of 800 cm(-1)) as a result of introduction of water. When potential energy surface sampling and associated anharmonicities are introduced through finite temperature ab initio dynamics, this hydroxy-isoprene OH stretch strongly couples with all the water vibrational modes as well as the hydroxy-isoprene OH bend modes. A new computational technique is introduced to probe the coupling between these modes. The method involves a two-dimensional, time-frequency analysis of the finite temperature vibrational properties. Such an analysis not only provides information about the modes that are coupled as a result of finite-temperature analysis, but also the temporal evolution of such coupling.

  18. Modification of Defect Structures in Graphene by Electron Irradiation: Ab Initio Molecular Dynamics Simulations

    SciTech Connect

    Wang, Zhiguo; Zhou, Yungang; Bang, Junhyeok; Prange, Micah P.; Zhang, Shengbai; Gao, Fei

    2012-08-02

    Defects play an important role on the unique properties of the sp2-bonded materials, such as graphene. The creation and evolution of mono-vacancy, di-vacancy, Stone-Wales (SW) and grain boundaries (GBs) under irradiation in graphene are investigated using density functional theory and time-dependent density functional theory molecular dynamics simulations. It is of great interest to note that the patterns of these defects can be controlled through electron irradiation. The SW defects can be created by electron irradiation with energy of above the displacement threshold energy (Td, {approx}19 eV) and can be healed with an energy (14-18 eV) lower than Td. The transformation between four types of divacancies, V2(5-8-5), V2(555-777), V2(5555-6-7777), and V2(55-77) can be realized through bond rotation induced by electron irradiation. The migrations of divancancies, SW defects, and GBs can also be controlled by electron irradiation. Thus, electron irradiation can serve as an important tool to modify morphology in a controllable manner, and to tailor the physical properties of graphene.

  19. Studying Interactions by Molecular Dynamics Simulations at High Concentration

    PubMed Central

    Fogolari, Federico; Corazza, Alessandra; Toppo, Stefano; Tosatto, Silvio C. E.; Viglino, Paolo; Ursini, Fulvio; Esposito, Gennaro

    2012-01-01

    Molecular dynamics simulations have been used to study molecular encounters and recognition. In recent works, simulations using high concentration of interacting molecules have been performed. In this paper, we consider the practical problems for setting up the simulation and to analyse the results of the simulation. The simulation of beta 2-microglobulin association and the simulation of the binding of hydrogen peroxide by glutathione peroxidase are provided as examples. PMID:22500085

  20. Adiabatic molecular-dynamics-simulation-method studies of kinetic friction

    NASA Astrophysics Data System (ADS)

    Zhang, J.; Sokoloff, J. B.

    2005-06-01

    An adiabatic molecular-dynamics method is developed and used to study the Muser-Robbins model for dry friction (i.e., nonzero kinetic friction in the slow sliding speed limit). In this model, dry friction between two crystalline surfaces rotated with respect to each other is due to mobile molecules (i.e., dirt particles) adsorbed at the interface. Our adiabatic method allows us to quickly locate interface potential-well minima, which become unstable during sliding of the surfaces. Since dissipation due to friction in the slow sliding speed limit results from mobile molecules dropping out of such unstable wells, our method provides a way to calculate dry friction, which agrees extremely well with results found by conventional molecular dynamics for the same system, but our method is more than a factor of 10 faster.

  1. Structural, dynamic, and vibrational properties during heat transfer in Si/Ge superlattices: A Car-Parrinello molecular dynamics study

    SciTech Connect

    Ji, Pengfei; Zhang, Yuwen; Yang, Mo

    2013-12-21

    The structural, dynamic, and vibrational properties during heat transfer process in Si/Ge superlattices are studied by analyzing the trajectories generated by the ab initio Car-Parrinello molecular dynamics simulation. The radial distribution functions and mean square displacements are calculated and further discussions are made to explain and probe the structural changes relating to the heat transfer phenomenon. Furthermore, the vibrational density of states of the two layers (Si/Ge) are computed and plotted to analyze the contributions of phonons with different frequencies to the heat conduction. Coherent heat conduction of the low frequency phonons is found and their contributions to facilitate heat transfer are confirmed. The Car-Parrinello molecular dynamics simulation outputs in the work show reasonable thermophysical results of the thermal energy transport process and shed light on the potential applications of treating the heat transfer in the superlattices of semiconductor materials from a quantum mechanical molecular dynamics simulation perspective.

  2. Fine-grained parallelization of the Car-Parrinello ab initio molecular dynamics method on the IBM Blue Gene/L supercomputer

    SciTech Connect

    E. Bohm A. Bhatele L. V. Kale M. E. Tuckerman S. Kumar J. A. Gunnels G. J. Martyna; Bohm, E.; Bhatele, A.; Kale, L. V.; Tuckerman, M. E.; Kumar, S.; Gunnels, J. A.; Martyna, G. J.

    2008-01-01

    Important scientific problems can be treated via ab initio-based molecular modeling approaches, wherein atomic forces are derived from an energy Junction that explicitly considers the electrons. The Car-Parrinello ab initio molecular dynamics (CPAIMD) method is widely used to study small systems containing on the order of 10 to 103 atoms. However, the impact of CPAIMD has been limited until recently because of difficulties inherent to scaling the technique beyond processor numbers about equal to the number of electronic states. CPAIMD computations involve a large number of interdependent phases with high interprocessor communication overhead. These phases require the evaluation of various transforms and non-square matrix multiplications that require large interprocessor data movement when efficiently parallelized. Using the Charm++ parallel programming language and runtime system, the phases are discretized into a large number of virtual processors, which are, in turn, mapped flexibly onto physical processors, thereby allowing interleaving of work. Algorithmic and IBM Blue Gene/L(tm) system-specific optimizations are employed to scale the CPAIMD method to at least 30 times the number of electronic states in small systems consisting of 24 to 768 atoms (32 to 1,024 electronic states) in order to demonstrate fine-grained parallelism. The largest systems studied scaled well across the entire machine (20,480 nodes).

  3. Molecular Dynamics Study of the Photodesorption of CO Ice.

    PubMed

    van Hemert, Marc C; Takahashi, Junko; van Dishoeck, Ewine F

    2015-06-18

    Photodesorption of CO ice is suggested to be the main process that maintains a measurable amount of gaseous CO in cold interstellar clouds. A classical molecular dynamics simulation is used to gain insight into the underlying mechanism. Site-site pair potentials were developed on the basis of ab initio calculations for the ground and excited nonrigid CO dimer. Both amorphous and crystalline CO clusters were created and characterized by their densities, expansion coefficients, binding energies, specific heats, and radial distribution functions. Selected CO molecules were electronically excited with 8.7-9.5 eV photons. CO returns to the ground state after a finite lifetime on the excited potential surface. Two desorption mechanisms are found: (1) direct desorption where excited CO itself is released from the cluster after landing on the ground state in an unfavorable orientation; (2) "kick-out" desorption where excited CO kicks out a neighboring CO molecule. These findings are in accord with laboratory experiments. Little dependence on size of the cluster, excitation energy and temperature in the 6-18 K range was found. The predicted photodesorption probability is 4.0 × 10(-3) molecules photon(-1), smaller by a factor of 3-11 than that given by experiments.

  4. Structure, dynamics and stability of water/scCO2/mineral interfaces from ab initio molecular dynamics simulations

    PubMed Central

    Lee, Mal-Soon; Peter McGrail, B.; Rousseau, Roger; Glezakou, Vassiliki-Alexandra

    2015-01-01

    The boundary layer at solid-liquid interfaces is a unique reaction environment that poses significant scientific challenges to characterize and understand by experimentation alone. Using ab initio molecular dynamics (AIMD) methods, we report on the structure and dynamics of boundary layer formation, cation mobilization and carbonation under geologic carbon sequestration scenarios (T = 323 K and P = 90 bar) on a prototypical anorthite (001) surface. At low coverage, water film formation is enthalpically favored, but entropically hindered. Simulated adsorption isotherms show that a water monolayer will form even at the low water concentrations of water-saturated scCO2. Carbonation reactions readily occur at electron-rich terminal Oxygen sites adjacent to cation vacancies that readily form in the presence of a water monolayer. These results point to a carbonation mechanism that does not require prior carbonic acid formation in the bulk liquid. This work also highlights the modern capabilities of theoretical methods to address structure and reactivity at interfaces of high chemical complexity. PMID:26456362

  5. Isomers of small Pbn clusters (n=2-15) : Geometric and electronic structures based on ab initio molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Rajesh, C.; Majumder, C.; Rajan, M. G. R.; Kulshreshtha, S. K.

    2005-12-01

    The geometric and electronic structure of the Pbn clusters (n=2-15) has been calculated to elucidate its structural evolution and compared with other group-IV elemental clusters. The search for several low-lying isomers was carried out using the ab initio molecular dynamics simulations under the framework of the density functional theory formalism. The results suggest that unlike Si, Ge, and Sn clusters, which favor less compact prolate shape in the small size range, Pb clusters favor compact spherical structures consisting of fivefold or sixfold symmetries. The difference in the growth motif can be attributed to their bulk crystal structure, which is diamond-like for Si, Ge, and Sn but fcc for Pb. The relative stability of Pbn clusters is analyzed based on the calculated binding energies and second difference in energy. The results suggest that n=4 , 7, 10, and 13 clusters are more stable than their respective neighbors, reflecting good agreement with experimental observation. Based on the fragmentation pattern it is seen that small clusters up to n=12 favor monomer evaporation, larger ones fragment into two stable daughter products. The experimental observation of large abundance for n=7 and lowest abundance of n=14 have been demonstrated from their fragmentation pattern. Finally a good agreement of our theoretical results with that of the experimental findings reported earlier implies accurate predictions of the ground state geometries of these clusters.

  6. Ab Initio Molecular Dynamics Simulations of Amino Acids in Aqueous Solutions: Estimating pKa Values from Metadynamics Sampling.

    PubMed

    Tummanapelli, Anil Kumar; Vasudevan, Sukumaran

    2015-09-17

    Changes in the protonation and deprotonation of amino acid residues in proteins play a key role in many biological processes and pathways. Here, we report calculations of the free-energy profile for the protonation-deprotonation reaction of the 20 canonical α amino acids in aqueous solutions using ab initio Car-Parrinello molecular dynamics simulations coupled with metadynamics sampling. We show here that the calculated change in free energy of the dissociation reaction provides estimates of the multiple pKa values of the amino acids that are in good agreement with experiment. We use the bond-length-dependent number of the protons coordinated to the hydroxyl oxygen of the carboxylic and the amine groups as the collective variables to explore the free-energy profiles of the Bronsted acid-base chemistry of amino acids in aqueous solutions. We ensure that the amino acid undergoing dissociation is solvated by at least three hydrations shells with all water molecules included in the simulations. The method works equally well for amino acids with neutral, acidic and basic side chains and provides estimates of the multiple pKa values with a mean relative error, with respect to experimental results, of 0.2 pKa units. PMID:26331783

  7. Ab Initio Molecular Dynamics Simulations of Amino Acids in Aqueous Solutions: Estimating pKa Values from Metadynamics Sampling.

    PubMed

    Tummanapelli, Anil Kumar; Vasudevan, Sukumaran

    2015-09-17

    Changes in the protonation and deprotonation of amino acid residues in proteins play a key role in many biological processes and pathways. Here, we report calculations of the free-energy profile for the protonation-deprotonation reaction of the 20 canonical α amino acids in aqueous solutions using ab initio Car-Parrinello molecular dynamics simulations coupled with metadynamics sampling. We show here that the calculated change in free energy of the dissociation reaction provides estimates of the multiple pKa values of the amino acids that are in good agreement with experiment. We use the bond-length-dependent number of the protons coordinated to the hydroxyl oxygen of the carboxylic and the amine groups as the collective variables to explore the free-energy profiles of the Bronsted acid-base chemistry of amino acids in aqueous solutions. We ensure that the amino acid undergoing dissociation is solvated by at least three hydrations shells with all water molecules included in the simulations. The method works equally well for amino acids with neutral, acidic and basic side chains and provides estimates of the multiple pKa values with a mean relative error, with respect to experimental results, of 0.2 pKa units.

  8. Raman Spectra of Liquid Water from Ab Initio Molecular Dynamics: Vibrational Signatures of Charge Fluctuations in the Hydrogen Bond Network.

    PubMed

    Wan, Quan; Spanu, Leonardo; Galli, Giulia A; Gygi, François

    2013-09-10

    We report the first ab initio simulations of the Raman spectra of liquid water, obtained by combining first principles molecular dynamics and density functional perturbation theory. Our computed spectra are in good agreement with experiments, especially in the low frequency region. We also describe a systematic strategy to analyze the Raman intensities, which is of general applicability to molecular solids and liquids, and it is based on maximally localized Wannier functions and effective molecular polarizabilities. Our analysis revealed the presence of intermolecular charge fluctuations accompanying the hydrogen bond (HB) stretching modes at 270 cm(-1), in spite of the absence of any Raman activity in the isotropic spectrum. We also found that charge fluctuations partly contribute to the 200 cm(-1) peak in the anisotropic spectrum, thus providing insight into the controversial origin of such peak. Our results highlighted the importance of taking into account electronic effects in interpreting the Raman spectra of liquid water and the key role of charge fluctuations within the HB network; they also pointed at the inaccuracies of models using constant molecular polarizabilities to describe the Raman response of liquid water. PMID:26592405

  9. Ab initio nonadiabatic molecular dynamics of the ultrafast excitation energy transfer in small semiconducting carbon nanotube aggregates

    NASA Astrophysics Data System (ADS)

    Postupna, Olena; Long, Run; Prezhdo, Oleg

    2012-02-01

    Outstanding physical properties of carbon nanotubes (CNTs), such as well-defined optical resonance and ultrafast nonlinear response, result in CNTs gaining popularity in academic and industrial endeavors as potential effective energy generating devices. Following recent experiments on ultrafast excitation energy transfer in small semiconducting carbon nanotube aggregates [1], we report results of ab initio nonadiabatic molecular dynamics simulation of the energy transfer taking place in two carbon nanotube systems. We investigate the energy transfer between (8,4) and (10,0) CNTs, as well as (8,4) and (13,0) CNTs. In both cases, the CNTs are orthogonal to each other. Luer et al. in [1] elucidate the second excitonic transitions followed by fast intratube relaxation and energy transfer from the (8,4) CNT toward other acceptor tubes. Our project aims to provide a better understanding of the energy transfer mechanism in the given systems, which should foster development of a theory for the electronic structure and dynamics of CNT networks, hence enhancing their tailoring and application in the future. References 1.Larry Luer, Jared Crochet, Tobias Hertel, Giulio Cerullo, Gugliermo Lanzani. ACSNano. Vol.4, No. 7, 4265-4273

  10. Structure, dynamics and stability of water/scCO2/mineral interfaces from ab initio molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Lee, Mal-Soon; Peter McGrail, B.; Rousseau, Roger; Glezakou, Vassiliki-Alexandra

    2015-10-01

    The boundary layer at solid-liquid interfaces is a unique reaction environment that poses significant scientific challenges to characterize and understand by experimentation alone. Using ab initio molecular dynamics (AIMD) methods, we report on the structure and dynamics of boundary layer formation, cation mobilization and carbonation under geologic carbon sequestration scenarios (T = 323 K and P = 90 bar) on a prototypical anorthite (001) surface. At low coverage, water film formation is enthalpically favored, but entropically hindered. Simulated adsorption isotherms show that a water monolayer will form even at the low water concentrations of water-saturated scCO2. Carbonation reactions readily occur at electron-rich terminal Oxygen sites adjacent to cation vacancies that readily form in the presence of a water monolayer. These results point to a carbonation mechanism that does not require prior carbonic acid formation in the bulk liquid. This work also highlights the modern capabilities of theoretical methods to address structure and reactivity at interfaces of high chemical complexity.

  11. The reaction mechanisms of heme catalases: an atomistic view by ab initio molecular dynamics.

    PubMed

    Alfonso-Prieto, Mercedes; Vidossich, Pietro; Rovira, Carme

    2012-09-15

    Catalases are ubiquitous enzymes that prevent cell oxidative damage by degrading hydrogen peroxide to water and oxygen (2H(2)O(2) → 2H(2)O+O(2)) with high efficiency. The enzyme is first oxidized to a high-valent iron intermediate, known as Compound I (Cpd I, Por(·+)-Fe(IV)=O) which, at difference from other hydroperoxidases, is reduced back to the resting state by further reacting with H(2)O(2). The normal catalase activity is reduced if Cpd I is consumed in a competing side reaction, forming a species named Cpd I*. In recent years, Density Functional Theory (DFT) methods have unraveled the electronic configuration of these high-valent iron species, helping to assign the intermediates trapped in the crystal structures of oxidized catalases. It has been demonstrated that the a priori assumption that the H(+)/H(-) type of mechanism for Cpd I reduction leads to the generation of singlet oxygen is not justified. Moreover, it has been shown by ab initio metadynamics simulations that two pathways are operative for Cpd I reduction: a His-mediated mechanism (described as H·/H(+) + e(-)) in which the distal His acts as an acid-base catalyst and a direct mechanism (described as H·/H·) in which the distal His does not play a direct role. Independently of the mechanism, the reaction proceeds by two one-electron transfers rather than one two-electron transfer, as previously assumed. Electron transfer to Cpd I, regardless of whether the electron is exogenous or endogenous, facilitates protonation of the oxoferryl group, to the point that formation of Cpd I* may be controlled by the easiness of protonation of reduced Cpd I.

  12. Polar solvation dynamics of lysozyme from molecular dynamics studies

    NASA Astrophysics Data System (ADS)

    Sinha, Sudipta Kumar; Bandyopadhyay, Sanjoy

    2012-05-01

    The solvation dynamics of a protein are believed to be sensitive to its secondary structures. We have explored such sensitivity in this article by performing room temperature molecular dynamics simulation of an aqueous solution of lysozyme. Nonuniform long-time relaxation patterns of the solvation time correlation function for different segments of the protein have been observed. It is found that relatively slower long-time solvation components of the α-helices and β-sheets of the protein are correlated with lower exposure of their polar probe residues to bulk solvent and hence stronger interactions with the dynamically restricted surface water molecules. These findings can be verified by appropriate experimental studies.

  13. Molecular dynamic study of pressure fluctuations spectrum in plasma

    NASA Astrophysics Data System (ADS)

    Bystryi, R. G.

    2015-11-01

    Pressure of plasma is calculated by using classical molecular dynamics method. The formula based on virial theorem was used. Spectrum pressure's fluctuations of singly ionized non-ideal plasma are studied. 1/f-like spectrum behavior is observed. In other words, flicker noise is observed in fluctuations of pressure equilibrium non-ideal plasma. Relations between the obtained result and pressure fluctuations within the Gibbs and Einstein approaches are discussed. Special attention is paid to features of calculating the pressure in strongly coupled systems.

  14. A molecular dynamics study of polymer/graphene interfacial systems

    SciTech Connect

    Rissanou, Anastassia N.; Harmandaris, Vagelis

    2014-05-15

    Graphene based polymer nanocomposites are hybrid materials with a very broad range of technological applications. In this work, we study three hybrid polymer/graphene interfacial systems (polystyrene/graphene, poly(methyl methacrylate)/graphene and polyethylene/graphene) through detailed atomistic molecular dynamics (MD) simulations. Density profiles, structural characteristics and mobility aspects are being examined at the molecular level for all model systems. In addition, we compare the properties of the hybrid systems to the properties of the corresponding bulk ones, as well as to theoretical predictions.

  15. Molecular dynamics studies of protein folding and aggregation

    NASA Astrophysics Data System (ADS)

    Ding, Feng

    This thesis applies molecular dynamics simulations and statistical mechanics to study: (i) protein folding; and (ii) protein aggregation. Most small proteins fold into their native states via a first-order-like phase transition with a major free energy barrier between the folded and unfolded states. A set of protein conformations corresponding to the free energy barrier, Delta G >> kBT, are the folding transition state ensemble (TSE). Due to their evasive nature, TSE conformations are hard to capture (probability ∝ exp(-DeltaG/k BT)) and characterize. A coarse-grained discrete molecular dynamics model with realistic steric constraints is constructed to reproduce the experimentally observed two-state folding thermodynamics. A kinetic approach is proposed to identify the folding TSE. A specific set of contacts, common to the TSE conformations, is identified as the folding nuclei which are necessary to be formed in order for the protein to fold. Interestingly, the amino acids at the site of the identified folding nuclei are highly conserved for homologous proteins sharing the same structures. Such conservation suggests that amino acids that are important for folding kinetics are under selective pressure to be preserved during the course of molecular evolution. In addition, studies of the conformations close to the transition states uncover the importance of topology in the construction of order parameter for protein folding transition. Misfolded proteins often form insoluble aggregates, amyloid fibrils, that deposit in the extracellular space and lead to a type of disease known as amyloidosis. Due to its insoluble and non-crystalline nature, the aggregation structure and, thus the aggregation mechanism, has yet to be uncovered. Discrete molecular dynamics studies reveal an aggregate structure with the same structural signatures as in experimental observations and show a nucleation aggregation scenario. The simulations also suggest a generic aggregation mechanism

  16. Speciation and thermodynamic properties of zinc in sulfur-rich hydrothermal fluids: Insights from ab initio molecular dynamics simulations and X-ray absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Mei, Yuan; Etschmann, Barbara; Liu, Weihua; Sherman, David M.; Testemale, Denis; Brugger, Joël

    2016-04-01

    Chlorine and sulfur are the main elements involved in the complexing of metals in ore-forming fluids. The nature and thermodynamic properties of the Zn(II)-Cl complexes have been investigated by previous experimental and theoretical studies and are now well established up to high temperatures (600 °C). In contrast, the role of bisulfide complexes for zinc speciation in sulfur-bearing fluids remains poorly known, and a better understanding of Zn(II)-HS complexation is required for modeling zinc transport in magmatic and metamorphic fluids and for optimizing the hydrometallurgical processing of sulfide ores. We have conducted ab initio molecular dynamics (MD) simulations to calculate the speciation of Zn(II)-HS complexes from ambient to hydrothermal-magmatic conditions (25-600 °C, up to 2000 bar). These theoretical calculations were complemented by X-ray absorption spectroscopy (XAS) measurements of Zn(II) in HS--rich solutions at 200-500 °C and 600-1000 bar. The speciation and geometrical properties predicted by the ab initio MD simulations and the in situ XAS data are in excellent agreement. Upon heating from room temperature to 250 °C, Zn(II) speciation in HS--rich solutions shows a transition from the sixfold octahedral hexaaquo complex [Zn(H2O)6]2+ to fourfold tetrahedral [Zn(HS)n(H2O)4-n]2-n complexes (n = 1-4). Ab initio MD simulations also show that at temperatures > 250 °C, the threefold trigonal-planar [Zn(HS)3]- complex becomes increasingly stable, and predominates in S-rich solutions; in contrast, chloro-complexes display a tetrahedral geometry at 25-500 °C, while trigonal planar ZnCl3- predominates at temperatures > 500 °C. The stability constants of Zn(II)-HS complexes were calculated by thermodynamic integration of constrained ab initio MD simulations at 200, 350 and 600 °C. The stability constants generated from this study predict that zinc can be transported by HS- at high temperature in reduced, neutral to alkaline solutions, while Zn

  17. Using force-matching to reveal essential differences between density functionals in ab initio molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Izvekov, Sergei; Swanson, Jessica M. J.

    2011-05-01

    The exchange-correlation (XC) functional and value of the electronic fictitious mass μ can be two major sources of systematic errors in ab initio Car-Parrinello Molecular Dynamics (CPMD) simulations, and have a significant impact on the structural and dynamic properties of condensed-phase systems. In this work, an attempt is made to identify the origin of differences in liquid water properties generated from CPMD simulations run with the BLYP and HCTH/120 XC functionals and two different values of μ (representative of "small" and "large" limits) by analyzing the effective pairwise atom-atom interactions. The force-matching (FM) algorithm is used to map CPMD interactions into non-polarizable, empirical potentials defined by bonded interactions, pairwise short-ranged interactions in numerical form, and Coulombic interactions via atomic partial charges. The effective interaction models are derived for the BLYP XC functional with μ = 340 a.u. and μ = 1100 a.u. (BLYP-340 and BLYP-1100 simulations) and the HCTH/120 XC functional with μ = 340 a.u. (HCTH-340 simulation). The BLYP-340 simulation results in overstructured water with slow dynamics. In contrast, the BLYP-1100 and HCTH-340 simulations both produce radial distribution functions (indicative of structure) that are in reasonably good agreement with experiment. It is shown that the main difference between the BLYP-340 and HCTH-340 effective potentials arises in the short-ranged nonbonded interactions (in hydrogen bonding regions), while the difference between the BLYP-340 and BLYP-1100 interactions is mainly in the long-ranged electrostatic components. Collectively, these results demonstrate how the FM method can be used to further characterize various simulation ensembles (e.g., density-functional theory via CPMD). An analytical representation of each effective interaction water model, which is easy to implement, is presented.

  18. Zinc complexation in chloride-rich hydrothermal fluids (25-600 °C): A thermodynamic model derived from ab initio molecular dynamics

    NASA Astrophysics Data System (ADS)

    Mei, Yuan; Sherman, David M.; Liu, Weihua; Etschmann, Barbara; Testemale, Denis; Brugger, Joël

    2015-02-01

    The solubility of zinc minerals in hydrothermal fluids is enhanced by chloride complexation of Zn2+. Thermodynamic models of these complexation reactions are central to models of Zn transport and ore formation. However, existing thermodynamic models, derived from solubility measurements, are inconsistent with spectroscopic measurements of Zn speciation. Here, we used ab initio molecular dynamics simulations (with the PBE exchange-correlation functional) to predict the speciation of Zn-Cl complexes from 25 to 600 °C. We also obtained in situ XAS measurements of Zn-Cl solutions at 30-600 °C. Qualitatively, the simulations reproduced the main features derived from in situ XANES and EXAFS measurements: octahedral to tetrahedral transition with increasing temperature and salinity, stability of ZnCl42- at high chloride concentration up to ⩾500 °C, and increasing stability of the trigonal planar [ZnCl3]- complex at high temperature. Having confirmed the dominant species, we directly determined the stability constants for the Zn-Cl complexes using thermodynamic integration along constrained Zn-Cl distances in a series of MD simulations. We corrected our stability constants to infinite dilution using the b-dot model for the activity coefficients of the solute species. In order to compare the ab initio results with experiments, we need to re-model the existing solubility data using the species we identified in our MD simulations. The stability constants derived from refitting published experimental data are in reasonable agreement with those we obtained using ab initio MD simulations. Our new thermodynamic model accurately predicts the experimentally observed changes in ZnO(s) and ZnCO3(s) solubility as a function of chloride concentration from 200 (Psat) to 600 °C (2000 bar). This study demonstrates that metal speciation and geologically useful stability constants can be derived for species in hydrothermal fluids from ab initio MD simulations even at the generalized

  19. Stability of helium bubbles in alpha-iron: A molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Lucas, G.; Schäublin, R.

    2009-04-01

    Molecular dynamics simulations were performed to estimate the dissociation energies of helium interstitials, vacancies and self-interstitial atoms from small helium-vacancy clusters. Several sets of empirical potentials have been tested and compared with available ab initio calculations in order to provide the best combination of potentials to study the stability of small helium bubbles. The behavior of the cluster seems to be better described using Ackland potential for the Fe-Fe interactions and Juslin potential for the Fe-He interactions. From the calculations, it appears that the dissociation energies mainly depend on the helium-to-vacancy ratio rather than the cluster size. The helium/vacancy crossover slightly varies with increasing number of vacancies, but the crossover defining the loop-punching regime decreases strongly with increasing cluster sizes.

  20. Liquid Aluminum: Atomic diffusion and viscosity from ab initio molecular dynamics

    PubMed Central

    Jakse, Noel; Pasturel, Alain

    2013-01-01

    We present a study of dynamic properties of liquid aluminum using density-functional theory within the local-density (LDA) and generalized gradient (GGA) approximations. We determine the temperature dependence of the self-diffusion coefficient as well the viscosity using direct methods. Comparisons with experimental data favor the LDA approximation to compute dynamic properties of liquid aluminum. We show that the GGA approximation induce more important backscattering effects due to an enhancement of the icosahedral short range order (ISRO) that impact directly dynamic properties like the self-diffusion coefficient. All these results are then used to test the Stokes-Einstein relation and the universal scaling law relating the diffusion coefficient and the excess entropy of a liquid. PMID:24190311

  1. An energy dispersive x-ray scattering and molecular dynamics study of liquid dimethyl carbonate

    NASA Astrophysics Data System (ADS)

    Gontrani, Lorenzo; Russina, Olga; Marincola, Flaminia Cesare; Caminiti, Ruggero

    2009-12-01

    In this work, we report on the first x-ray diffraction study on liquid dimethyl carbonate. Diffraction spectra were collected with an energy-dispersive instrument, whose wide Q-range allows the structure determination of weakly ordered systems (such as liquids). The structural correlation in this liquid ranges up to about 20 Å. The observed patterns are interpreted with a structural model derived from classical molecular dynamics simulations. The simulations were run using OPLS force field, only slightly modified to restrain bond distances to the experimental values. The model structure function and radial distribution functions, averaged among the productive trajectory frames, are in very good agreement with the corresponding experimental ones. Molecular dynamics results show that the deviations from C2v cis-cis structure, predicted by ab initio calculations and observed by electron diffraction in the gas phase, are small. By analyzing the intra- and intermolecular pair distribution functions, it was possible to assign the peaks of the experimental radial distribution function to specific structural correlations, and to compute the different average intermolecular coordination numbers. The intermolecular methyl-carbonyl oxygen distance is thoroughly discussed to assess the presence of weak C-H⋯ṡO hydrogen bonds.

  2. Ab initio molecular dynamics of H2O adsorbed on solid MgO

    NASA Astrophysics Data System (ADS)

    Langel, Walter; Parrinello, Michele

    1995-08-01

    The Car-Parrinello method has been applied to study the adsorption of water on solid magnesium oxide with surface defects. A step consisting of an (100) and an (010) surface on an (011) base plane allows us to model the experimentally observed microfaceting. In and on this step dissociation of water into a hydroxyl group and a H-atom took place following a complicated pathway only accessible by the simulation of thermal motion. Under comparable conditions physisorption only was observed on a regular (001) plane. This solves an experimental controversy and it is in agreement with the observation, that disordered surfaces are more active in initiating the dissociation of the water molecules. Our work allows us to identify an important active center. We can also account for the experimentally observed broadening and shifting to the red of the stretching mode of hydrogen bonded hydroxyl groups, and we provide a detailed explanation of the origin of this effect. This allows us to verify earlier theories of hydrogen bonding such as that of the adiabatic separation of the proton dynamics.

  3. Slide fastener reduction of graphene-oxide edges by calcium: insight from ab initio molecular dynamics.

    PubMed

    Xie, Sheng-Yi; Li, Xian-Bin; Tian, Wei Quan; Wang, Dan; Chen, Nian-Ke; Han, Dong; Sun, Hong-Bo

    2014-09-15

    The reduction of graphene oxide can be used as a simple way to produce graphene on a large scale. However, the numerous edges produced by the oxidation of graphite seriously degrade the quality of the graphene and its carrier transport property. In this work, the reduction of oxygen-passivated graphene edges and the subsequent linking of separated graphene sheets by calcium are investigated by using first-principles calculations. The calculations show that calcium can effectively remove the oxygen groups from two adjacent edges. The joining point of the edges serves as the starting point of the reduction and facilitates the reaction. Once the oxygen groups are removed, the crack is sutured. If the joining point is lacking, it becomes difficult to zip the separated fragments. A general electron-reduction model and a random atom-reduction model are suggested for these two situations. The present study sheds light on the reduction of graphene-oxide edges by using reactive metals to give large-sized graphene through a simple chemical reaction.

  4. Packaging stiff polymers in small containers: A molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Rapaport, D. C.

    2016-09-01

    The question of how stiff polymers are able to pack into small containers is particularly relevant to the study of DNA packaging in viruses. A reduced version of the problem based on coarse-grained representations of the main components of the system—the DNA polymer and the spherical viral capsid—has been studied by molecular dynamics simulation. The results, involving longer polymers than in earlier work, show that as polymers become more rigid there is an increasing tendency to self-organize as spools that wrap from the inside out, rather than the inverse direction seen previously. In the final state, a substantial part of the polymer is packed into one or more coaxial spools, concentrically layered with different orientations, a form of packaging achievable without twisting the polymer.

  5. Thermal conductivity of penta-graphene from molecular dynamics study.

    PubMed

    Xu, Wen; Zhang, Gang; Li, Baowen

    2015-10-21

    Using classical equilibrium molecular dynamics simulations and applying the original Tersoff interatomic potential, we study the thermal transport property of the latest two dimensional carbon allotrope, penta-graphene. It is predicted that its room-temperature thermal conductivity is about 167 W/mK, which is much lower than that of graphene. With normal mode decomposition, the accumulated thermal conductivity with respect to phonon frequency and mean free path is analyzed. It is found that the acoustic phonons make a contribution of about 90% to the thermal conductivity, and phonons with mean free paths larger than 100 nm make a contribution over 50%. We demonstrate that the remarkably lower thermal conductivity of penta-graphene compared with graphene results from the lower phonon group velocities and fewer collective phonon excitations. Our study highlights the importance of structure-property relationship and provides better understanding of thermal transport property and valuable insight into thermal management of penta-graphene.

  6. Excess electron reactivity in amino acid aqueous solution revealed by ab initio molecular dynamics simulation: anion-centered localization and anion-relayed electron transfer dissociation.

    PubMed

    Wu, Xiuxiu; Gao, Liang; Liu, Jinxiang; Yang, Hongfang; Wang, Shoushan; Bu, Yuxiang

    2015-10-28

    Studies on the structure, states, and reactivity of excess electrons (EEs) in biological media are of great significance. Although there is information about EE interaction with desolvated biological molecules, solution effects are hardly explored. In this work, we present an ab initio molecular dynamics simulation study on the interaction and reactivity of an EE with glycine in solution. Our simulations reveal two striking results. Firstly, a pre-solvated EE partially localizes on the negatively charged -COO(-) group of the zwitterionic glycine and the remaining part delocalizes over solvent water molecules, forming an anion-centered quasi-localized structure, due to relative alignment of the lowest unoccupied molecular orbital energy levels of potential sites for EE residence in the aqueous solution. Secondly, after a period of anion-centered localization of an EE, the zwitterionic glycine is induced to spontaneously fragment through the cleavage of the N-Cα bond, losing ammonia (deamination), and leaving a ˙CH2-COO(-) anion radical, in good agreement with experimental observations. Introduction of the same groups (-COO(-) or -NH3(+)) in the side chain (taking lysine and aspartic acid as examples) can affect EE localization, with the fragmentation of the backbone part of these amino acids dependent on the properties of the side chain groups. These findings provide insights into EE interaction mechanisms with the backbone parts of amino acids and low energy EE induced fragmentation of amino acids and even peptides and proteins.

  7. Femtosecond molecular dynamics studied with vacuum ultraviolet pulse pairs

    NASA Astrophysics Data System (ADS)

    Allison, Thomas K., III

    Atoms and molecules have most of their oscillator strength in the vacuum ultraviolet (VUV) and extreme ultraviolet (XUV), between the wavelengths of 200 nm and 30 nm. However, most femtosecond spectroscopy has been restricted to the visible and infrared due to a lack of sufficiently intense VUV and XUV femtosecond light sources. This thesis discusses extensions of pump/probe spectroscopy to the VUV and XUV, and its application to the dynamics of ethylene and oxygen molecules excited at 161 nm. I begin with a detailed discussion of the short wavelength light source used in this work. The source is based on the high order harmonics of a near infrared laser and can deliver > 1010 photons per shot in femtosecond pulses, corresponding to nearly 10 MW peak power in the XUV. Measurements of the harmonic yields as a function of the generation conditions reveal the roles of phase matching and ionization gating in the high order harmonic generation process. Pump/probe measurements are conducted using a unique VUV interferometer, capable of combining two different harmonics at a focus with variable delay. Measurements of VUV multiphoton ionization allows for characterization of the source and the interferometer. In molecules, time resolved measurements of fragment ion yields reveal the femtosecond dynamics of the system. The range of wavelengths available for pump and probe allows the dynamics to be followed from photo-excitation all the way to dissociation without detection window effects. The dynamics in ethylene upon pi → pi* excitation are protypical of larger molecules and have thus served as an important test case for advanced ab initio molecular dynamics theories. Femtosecond measurements to date, however, have been extremely lacking. In the present work, through a series of pump probe experiments using VUV and XUV pulses, time scales for the non-adiabatic relaxation of the electronic excitation, hydrogen migration across the double bond, and H2 molecule elimination

  8. Microstructure of neat alcohols: A molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Zoranić, Larisa; Sokolić, Franjo; Perera, Aurélien

    2007-07-01

    Neat methanol and tert-butanol are studied by molecular dynamics with the focus on the microstructure of these two alcohols. The site-site radial distribution functions, the corresponding structure factors, and an effective local one-body density function are shown to be the appropriate statistical quantities that point in a complementary manner towards the same microstructure for any given liquid. Methanol is found to be a weakly associated liquid forming various chainlike patterns (open and closed) while tert-butanol is almost entirely associated and forms micellelike primary pattern. The presence of stable local microheterogeneity within homogeneous disordered phase appears as a striking feature of these liquids. The absence of any such apparent clustering in water—a stronger hydrogen bonding liquid—through the same two statistical quantities is analyzed.

  9. Anisotropic mechanical properties of graphene: a molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Yu, Ming; Zeng, Anna; Zeng, Kevin

    2014-03-01

    The anisotropic mechanical properties of monolayer graphene with different shapes have been studied using an efficient quantum mechanics molecular dynamics scheme based on a semi-empirical Hamiltonian (refereed as SCED-LCAO) [PRB 74, 15540; PHYSE 42, 1]. We have found the anisotropic nature of the membrane stress. The stresses along the armchair direction are slightly stronger than that along the zigzag direction, showing strong direction selectivity. The graphene with the rectangular shape could sustain strong load (i . e ., 20%) in both armchair and zigzag directions. The graphene with the rhombus shape show large difference in the strain direction: it will quickly crack after 18 % of strain in armchair the direction, but slowly destroyed after 20% in the zigzag direction. The obtained 2D Young's modulus at infinitesimal strain and the third-order (effective nonlinear) elastic modulus are in good consistent with the experimental observation.

  10. Molecular dynamics studies of U1A-RNA complexes.

    PubMed Central

    Reyes, C M; Kollman, P A

    1999-01-01

    The U1A protein binds to a hairpin RNA and an internal-loop RNA with picomolar affinities. To probe the molecular basis of U1A binding, we performed state-of-the-art nanosecond molecular dynamics simulations on both complexes. The good agreement with experimental structures supports the protocols used in the simulations. We compare the dynamics, hydrogen-bonding occupancies, and interfacial flexibility of both complexes and also describe a rigid-body motion in the U1A-internal loop complex that is not observed in the U1A-hairpin simulation. We relate these observations to experimental mutational studies and highlight their significance in U1A binding affinity and specificity. PMID:10024175

  11. Molecular Dynamical Study on Ion Channeling through Peptide Nanotube

    NASA Astrophysics Data System (ADS)

    Sumiya, Norihito; Igami, Daiki; Takeda, Kyozaburo

    2011-12-01

    We theoretically study the possibility of ion channeling through peptide nanotubes (PNTs). After designing the minimal peptide nanorings (PNRs) and their aggregated form (peptide nanotubes, PNT) computationally, we carry out molecular dynamics (MD) calculations for cation channeling. The present MD calculations show that cation channeling through PNTs occurs. Furthermore, inter-ring hydrogen bonds (HBs) survive and maintain the tubular form of PNTs during cation channeling. We introduce mobility such that cation channeling can be evaluated quantitatively. As the ionic radius of the cation becomes smaller, the effective relaxation time τ becomes larger. Accordingly, mobilities of 10-2˜10-3[cm2/volt/sec] are calculated. In contrast, when an anion (F-) passes through the PNT, the inter-ring HBs are broken, thus inducing breakdown of the peptide backbone. Consequently, H atoms from the broken HBs surround the channeling anion (F-) and halt its motion.

  12. Study on nanometric cutting of germanium by molecular dynamics simulation

    PubMed Central

    2013-01-01

    Three-dimensional molecular dynamics simulations are conducted to study the nanometric cutting of germanium. The phenomena of extrusion, ploughing, and stagnation region are observed from the material flow. The uncut thickness which is defined as the depth from bottom of the tool to the stagnation region is in proportion to the undeformed chip thickness on the scale of our simulation and is almost independent of the machined crystal plane. The cutting resistance on (111) face is greater than that on (010) face due to anisotropy of germanium. During nanometric cutting, both phase transformation from diamond cubic structure to β-Sn phase and direct amorphization of germanium occur. The machined surface presents amorphous structure. PMID:23289482

  13. Modeling surface motion effects in N2 dissociation on W(110): Ab initio molecular dynamics calculations and generalized Langevin oscillator model

    NASA Astrophysics Data System (ADS)

    Nattino, Francesco; Galparsoro, Oihana; Costanzo, Francesca; Díez Muiño, Ricardo; Alducin, Maite; Kroes, Geert-Jan

    2016-06-01

    Accurately modeling surface temperature and surface motion effects is necessary to study molecule-surface reactions in which the energy dissipation to surface phonons can largely affect the observables of interest. We present here a critical comparison of two methods that allow to model such effects, namely, the ab initio molecular dynamics (AIMD) method and the generalized Langevin oscillator (GLO) model, using the dissociation of N2 on W(110) as a benchmark. AIMD is highly accurate as the surface atoms are explicitly part of the dynamics, but this advantage comes with a large computational cost. The GLO model is much more computationally convenient, but accounts for lattice motion effects in a very approximate way. Results show that, despite its simplicity, the GLO model is able to capture the physics of the system to a large extent, returning dissociation probabilities which are in better agreement with AIMD than static-surface results. Furthermore, the GLO model and the AIMD method predict very similar energy transfer to the lattice degrees of freedom in the non-reactive events, and similar dissociation dynamics.

  14. Ab initio molecular dynamics simulation of the effects of stacking faults on the radiation response of 3C-SiC

    PubMed Central

    Jiang, M.; Peng, S. M.; Zhang, H. B.; Xu, C. H.; Xiao, H. Y.; Zhao, F. A.; Liu, Z. J.; Zu, X. T.

    2016-01-01

    In this study, an ab initio molecular dynamics method is employed to investigate how the existence of stacking faults (SFs) influences the response of SiC to low energy irradiation. It reveals that the C and Si atoms around the SFs are generally more difficult to be displaced than those in unfaulted SiC, and the corresponding threshold displacement energies for them are generally larger, indicative of enhanced radiation tolerance caused by the introduction of SFs, which agrees well with the recent experiment. As compared with the unfaulted state, more localized point defects are generated in faulted SiC. Also, the efficiency of damage production for Si recoils is generally higher than that of C recoils. The calculated potential energy increases for defect generation in SiC with intrinsic and extrinsic SFs are found to be higher than those in unfaulted SiC, due to the stronger screen-Coulomb interaction between the PKA and its neighbors. The presented results provide a fundamental insight into the underlying mechanism of displacement events in faulted SiC and will help to advance the understanding of the radiation response of SiC with and without SFs. PMID:26880027

  15. Modeling surface motion effects in N2 dissociation on W(110): Ab initio molecular dynamics calculations and generalized Langevin oscillator model.

    PubMed

    Nattino, Francesco; Galparsoro, Oihana; Costanzo, Francesca; Díez Muiño, Ricardo; Alducin, Maite; Kroes, Geert-Jan

    2016-06-28

    Accurately modeling surface temperature and surface motion effects is necessary to study molecule-surface reactions in which the energy dissipation to surface phonons can largely affect the observables of interest. We present here a critical comparison of two methods that allow to model such effects, namely, the ab initio molecular dynamics (AIMD) method and the generalized Langevin oscillator (GLO) model, using the dissociation of N2 on W(110) as a benchmark. AIMD is highly accurate as the surface atoms are explicitly part of the dynamics, but this advantage comes with a large computational cost. The GLO model is much more computationally convenient, but accounts for lattice motion effects in a very approximate way. Results show that, despite its simplicity, the GLO model is able to capture the physics of the system to a large extent, returning dissociation probabilities which are in better agreement with AIMD than static-surface results. Furthermore, the GLO model and the AIMD method predict very similar energy transfer to the lattice degrees of freedom in the non-reactive events, and similar dissociation dynamics.

  16. Ab initio molecular dynamics calculations on scattering of hyperthermal H atoms from Cu(111) and Au(111).

    PubMed

    Kroes, Geert-Jan; Pavanello, Michele; Blanco-Rey, María; Alducin, Maite; Auerbach, Daniel J

    2014-08-01

    Energy loss from the translational motion of an atom or molecule impinging on a metal surface to the surface may determine whether the incident particle can trap on the surface, and whether it has enough energy left to react with another molecule present at the surface. Although this is relevant to heterogeneous catalysis, the relative extent to which energy loss of hot atoms takes place to phonons or electron-hole pair (ehp) excitation, and its dependence on the system's parameters, remain largely unknown. We address these questions for two systems that present an extreme case of the mass ratio of the incident atom to the surface atom, i.e., H + Cu(111) and H + Au(111), by presenting adiabatic ab initio molecular dynamics (AIMD) predictions of the energy loss and angular distributions for an incidence energy of 5 eV. The results are compared to the results of AIMDEFp calculations modeling energy loss to ehp excitation using an electronic friction ("EF") model applied to the AIMD trajectories, so that the energy loss to the electrons is calculated "post" ("p") the computation of the AIMD trajectory. The AIMD calculations predict average energy losses of 0.38 eV for Cu(111) and 0.13-0.14 eV for Au(111) for H-atoms that scatter from these surfaces without penetrating the surface. These energies closely correspond with energy losses predicted with Baule models, which is suggestive of structure scattering. The predicted adiabatic integral energy loss spectra (integrated over all final scattering angles) all display a lowest energy peak at an energy corresponding to approximately 80% of the average adiabatic energy loss for non-penetrative scattering. In the adiabatic limit, this suggests a way of determining the approximate average energy loss of non-penetratively scattered H-atoms from the integral energy loss spectrum of all scattered H-atoms. The AIMDEFp calculations predict that in each case the lowest energy loss peak should show additional energy loss in the

  17. Ab initio molecular dynamics calculations on scattering of hyperthermal H atoms from Cu(111) and Au(111)

    SciTech Connect

    Kroes, Geert-Jan Pavanello, Michele; Blanco-Rey, María; Alducin, Maite

    2014-08-07

    Energy loss from the translational motion of an atom or molecule impinging on a metal surface to the surface may determine whether the incident particle can trap on the surface, and whether it has enough energy left to react with another molecule present at the surface. Although this is relevant to heterogeneous catalysis, the relative extent to which energy loss of hot atoms takes place to phonons or electron-hole pair (ehp) excitation, and its dependence on the system's parameters, remain largely unknown. We address these questions for two systems that present an extreme case of the mass ratio of the incident atom to the surface atom, i.e., H + Cu(111) and H + Au(111), by presenting adiabatic ab initio molecular dynamics (AIMD) predictions of the energy loss and angular distributions for an incidence energy of 5 eV. The results are compared to the results of AIMDEFp calculations modeling energy loss to ehp excitation using an electronic friction (“EF”) model applied to the AIMD trajectories, so that the energy loss to the electrons is calculated “post” (“p”) the computation of the AIMD trajectory. The AIMD calculations predict average energy losses of 0.38 eV for Cu(111) and 0.13-0.14 eV for Au(111) for H-atoms that scatter from these surfaces without penetrating the surface. These energies closely correspond with energy losses predicted with Baule models, which is suggestive of structure scattering. The predicted adiabatic integral energy loss spectra (integrated over all final scattering angles) all display a lowest energy peak at an energy corresponding to approximately 80% of the average adiabatic energy loss for non-penetrative scattering. In the adiabatic limit, this suggests a way of determining the approximate average energy loss of non-penetratively scattered H-atoms from the integral energy loss spectrum of all scattered H-atoms. The AIMDEFp calculations predict that in each case the lowest energy loss peak should show additional energy loss

  18. Ab initio molecular dynamics calculations on scattering of hyperthermal H atoms from Cu(111) and Au(111)

    NASA Astrophysics Data System (ADS)

    Kroes, Geert-Jan; Pavanello, Michele; Blanco-Rey, María; Alducin, Maite; Auerbach, Daniel J.

    2014-08-01

    Energy loss from the translational motion of an atom or molecule impinging on a metal surface to the surface may determine whether the incident particle can trap on the surface, and whether it has enough energy left to react with another molecule present at the surface. Although this is relevant to heterogeneous catalysis, the relative extent to which energy loss of hot atoms takes place to phonons or electron-hole pair (ehp) excitation, and its dependence on the system's parameters, remain largely unknown. We address these questions for two systems that present an extreme case of the mass ratio of the incident atom to the surface atom, i.e., H + Cu(111) and H + Au(111), by presenting adiabatic ab initio molecular dynamics (AIMD) predictions of the energy loss and angular distributions for an incidence energy of 5 eV. The results are compared to the results of AIMDEFp calculations modeling energy loss to ehp excitation using an electronic friction ("EF") model applied to the AIMD trajectories, so that the energy loss to the electrons is calculated "post" ("p") the computation of the AIMD trajectory. The AIMD calculations predict average energy losses of 0.38 eV for Cu(111) and 0.13-0.14 eV for Au(111) for H-atoms that scatter from these surfaces without penetrating the surface. These energies closely correspond with energy losses predicted with Baule models, which is suggestive of structure scattering. The predicted adiabatic integral energy loss spectra (integrated over all final scattering angles) all display a lowest energy peak at an energy corresponding to approximately 80% of the average adiabatic energy loss for non-penetrative scattering. In the adiabatic limit, this suggests a way of determining the approximate average energy loss of non-penetratively scattered H-atoms from the integral energy loss spectrum of all scattered H-atoms. The AIMDEFp calculations predict that in each case the lowest energy loss peak should show additional energy loss in the

  19. Stable conformation of full-length amyloid-β (1-42) monomer in water: Replica exchange molecular dynamics and ab initio molecular orbital simulations

    NASA Astrophysics Data System (ADS)

    Okamoto, Akisumi; Yano, Atsushi; Nomura, Kazuya; Higai, Shin'ichi; Kurita, Noriyuki

    2013-07-01

    Aggregation of amyloid β-proteins (Aβ) plays a key role in the mechanism of molecular pathogenesis of Alzheimer’s disease (AD). It is known that full-length Aβ(1-42) is more prone to aggregation than Aβ(1-40). We here search stable conformations of solvated Aβ(1-42) monomer by replica exchange molecular dynamics simulations based on classical force fields, and the most stable conformation is determined from the total energies evaluated by the ab initio fragment molecular orbital (FMO) calculations. In addition, based on the FMO results, the amino acid residues of Aβ(1-42) contributing to the stabilization of the monomer are highlighted.

  20. Theoretical studies of lipid bilayer electroporation using molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Levine, Zachary Alan

    Computer simulations of physical, chemical, and biological systems have improved tremendously over the past five decades. From simple studies of liquid argon in the 1960s to fully atomistic simulations of entire viruses in the past few years, recent advances in high-performance computing have continuously enabled simulations to bridge the gap between scientific theory and experiment. Molecular dynamics simulations in particular have allowed for the direct observation of spatial and temporal events which are at present inaccessible to experiments. For this dissertation I employ all-atom molecular dynamics simulations to study the transient, electric field-induced poration (or electroporation) of phospholipid bilayers at MV/m electric fields. Phospholipid bilayers are the dominant constituents of cell membranes and act as both a barrier and gatekeeper to the cell interior. This makes their structural integrity and susceptibility to external perturbations an important topic for study, especially as the density of electromagnetic radiation in our environment is increasing steadily. The primary goal of this dissertation is to understand the specific physical and biological mechanisms which facilitate electroporation, and to connect our simulated observations to experiments with live cells and to continuum models which seek to describe the underlying biological processes of electroporation. In Chapter 1 I begin with a brief introduction to phospholipids and phospholipid bilayers, followed by an extensive overview of electroporation and atomistic molecular dynamics simulations. The following chapters will then focus on peer-reviewed and published work we performed, or on existing projects which are currently being prepared for submission. Chapter 2 looks at how external electric fields affect both oxidized and unoxidized lipid bilayers as a function of oxidation concentration and oxidized lipid type. Oxidative damage to cell membranes represents a physiologically relevant

  1. Molecular Dynamics Study of Polymer Separation Using a Nanofluidic Staircase

    NASA Astrophysics Data System (ADS)

    Phelan, Frederick, Jr.; Forrey, Christopher

    2013-03-01

    The diffusive behavior of isolated polymer chains in a nanofluidic staircase has recently been studied experimentally [Strychalski et al., Macromolecules, 45(3), 1602, (2012); Stavis et al., Lab Chip, 12(19), 1174, (2012)] and by simulation [Phelan et al., in preparation, (2012)]. Chains are observed to exhibit spontaneous 1-D biased diffusion from regions of high to low confinement, without the use of external forces, under conditions where the local confinement lies in either the Odijk or de Gennes regimes. The transport mechanism is that of a Brownian motor, where the polymer free energy is used to generate directed transport using thermal fluctuations and the biased structural features of the device. The nanostaircase has potential for a number of applications in polymer measurement science and transport, an important one of which could be separations. To study this, we examine polymer separation in the nanofluidic staircase using the molecular dynamics simulation software LAMMPS. Length based separations of linear polymers as applicable to DNA separations are the main topic of the study, but the effect of more complex architectures such as branching are also examined.

  2. Conformational properties of cyclooctane: a molecular dynamics simulation study

    NASA Astrophysics Data System (ADS)

    Bharadwaj, Rishikesh K.

    Atomistic molecular dynamics simulations have been used to elucidate the conformational properties of cyclooctane in the gas and bulk liquid phases. Accurate reproduction of the gas phase structure, and of the liquid phase densities and solubility parameters have been used as prerequisites to the prediction of conformational properties. The gas phase results clearly indicate the presence of a conformational mixture consisting of the crown, boat-chair, twist-boat-chair and boat-boat conformers at all temperatures (161, 313 and 400K) studied. The fraction of the crown family of conformers was found to be relatively insensitive to temperature. However, the relative concentrations of the twist-boat-chair and boat-chair conformations was found to be highly temperature dependent with the boat-chair being favoured at low temperatures. Bulk packing was found to have a profound effect on the conformational properties in the liquid phase. At the temperatures studied(313 and 400K) the boat-chair family was predominant, with the crown and boat families being essentially absent. The twist-boatchair conformation was detected in the liquid phase at both temperatures. The pseudorotation pathway for the twist-boat-chair to boat-chair interconversion was prevalent in both gas and liquid phases establishing the conformational flexibility and the relative importance of the twist-boat-chair conformer in comparison to the crown family. The study successfully explains the separate experimental findings in both the gas and liquid phases of cyclooctane.

  3. Pressure denaturation of apomyoglobin: a molecular dynamics simulation study.

    PubMed

    McCarthy, Andrés N; Grigera, J Raúl

    2006-03-01

    The effect of pressure on the structure and mobility of Sperm Wale Apomyoglobin was studied by Molecular Dynamics computer simulation at 1 bar and 3 kbar (1 atm=1.01325 bar=101.325 kPa). The results are in good agreement with the available experimental data, allowing further analysis of other features of the effect of pressure on the protein solution. From the analysis of Secondary Structures (SS) along the trajectories it is observed that alpha-helixes are favoured under pressure at the expense of bends, turns and 3-helixes. The studies of mobility show that although the general mobility is restricted under pressure this is not true for some particular residues. The studies of tertiary structure show important conformational changes. The evolution of the Solvent Accessed Surface (SAS) with pressure shows a notorious increase due almost completely to a biased raise in the hydrophobic area exposed, which consequently shows that the hydrophobic interaction is considerably weaker under high hydrostatic pressure conditions.

  4. An Inside Look at Traube's Rule: A Molecular Dynamics Study

    NASA Astrophysics Data System (ADS)

    Dickey, Allison; Faller, Roland

    2006-03-01

    According to Traube's Rule [1], the alcohol concentration required to maintain the interfacial tension (γ) of a bilayer is reduced by a factor of three for each additional CH2 group that is added to the alkyl chain of the alcohol. Recent experimental work confirmed that Traube’s Rule applies to 1-stearoyl, 2-oleoyl phosphatidylcholine (SOPC) lipid bilayers that are exposed to alcohol solutions of methanol, ethanol, propanol, and butanol [2]. To examine the molecular mechanisms leading to Traube’s Rule, we use molecular dynamics simulations to study the interactions between a dipalmitoylphsphatidylcholine (DPPC) bilayer and ethanol, propanol, and butanol solutions. We first examine how the bilayer structure variation depends on alcohol chain length via the area per lipid headgroup, lipid chain disorder, and electron distribution functions. We also study the alcohol dynamics within the bilayer by monitoring the time length, number, and location of hydrogen bonds. Lipid mean squared displacements are also calculated to determine the extent to which lipid mobility is affected by alcohols. [1] I. Traube Liebigs Annalen (1891)[2] H. Ly, M. Longo Biophys J (2004)

  5. Molecular dynamics study of naturally existing cavity couplings in proteins.

    PubMed

    Barbany, Montserrat; Meyer, Tim; Hospital, Adam; Faustino, Ignacio; D'Abramo, Marco; Morata, Jordi; Orozco, Modesto; de la Cruz, Xavier

    2015-01-01

    Couplings between protein sub-structures are a common property of protein dynamics. Some of these couplings are especially interesting since they relate to function and its regulation. In this article we have studied the case of cavity couplings because cavities can host functional sites, allosteric sites, and are the locus of interactions with the cell milieu. We have divided this problem into two parts. In the first part, we have explored the presence of cavity couplings in the natural dynamics of 75 proteins, using 20 ns molecular dynamics simulations. For each of these proteins, we have obtained two trajectories around their native state. After applying a stringent filtering procedure, we found significant cavity correlations in 60% of the proteins. We analyze and discuss the structure origins of these correlations, including neighbourhood, cavity distance, etc. In the second part of our study, we have used longer simulations (≥100 ns) from the MoDEL project, to obtain a broader view of cavity couplings, particularly about their dependence on time. Using moving window computations we explored the fluctuations of cavity couplings along time, finding that these couplings could fluctuate substantially during the trajectory, reaching in several cases correlations above 0.25/0.5. In summary, we describe the structural origin and the variations with time of cavity couplings. We complete our work with a brief discussion of the biological implications of these results.

  6. Molecular dynamics study of the vaporization of an ionic drop

    NASA Astrophysics Data System (ADS)

    Galamba, N.

    2010-09-01

    The melting of a microcrystal in vacuum and subsequent vaporization of a drop of NaCl were studied through molecular dynamics simulations with the Born-Mayer-Huggins-Tosi-Fumi rigid-ion effective potential. The vaporization was studied for a single isochor at increasing temperatures until the drop completely vaporized, and gaseous NaCl formed. Examination of the vapor composition shows that the vapor of the ionic drop and gaseous NaCl are composed of neutral species, the most abundant of which, ranging from simple NaCl monomers (ion pairs) to nonlinear polymers, (NanCln)n=2-4. The enthalpies of sublimation, vaporization, and dissociation of the different vapor species are found to be in reasonable agreement with available experimental data. The decrease of the enthalpy of vaporization of the vapor species, with the radius of the drop decrease, accounts for a larger fraction of trimers and tetramers than that inferred from experiments. Further, the rhombic dimer is significantly more abundant than its linear isomer although the latter increases with the temperature. The present results suggest that both trimers and linear dimers may be important to explain the vapor pressure of molten NaCl at temperatures above 1500 K.

  7. Mechanical properties of irradiated nanowires - A molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Figueroa, Emilio; Tramontina, Diego; Gutiérrez, Gonzalo; Bringa, Eduardo

    2015-12-01

    In this work we study, by means of molecular dynamics simulation, the change in the mechanical properties of a gold nanowire with pre-existing radiation damage. The gold nanowire is used as a simple model for a nanofoam, made of connected nanowires. Radiation damage by keV ions leads to the formation of a stacking fault tetrahedron (SFT), and this defect leads to a reduced plastic threshold, as expected, when the nanowire is subjected to tension. We quantify dislocation and twin density during the deformation, and find that the early activation of the SFT as a dislocation source leads to reduced dislocation densities compared to the case without radiation damage. In addition, we observed a total destruction of the SFT, as opposed to a recent simulation study where it was postulated that SFTs might act as self-generating dislocation sources. The flow stress at large deformation is also found to be slightly larger for the irradiated case, in agreement with recent experiments.

  8. Neutron-rich B isotopes studied with antisymmetrized molecular dynamics

    SciTech Connect

    Kanada-En`yo, Y.; Horiuchi, H.

    1995-08-01

    Structure of odd-even B isotopes up to the neutron dripline is studied systematically with the antisymmetrized molecular dynamics (AMD). The AMD method has already proved to be a powerful theoretical approach for the systematic study of nuclear structure in extensive region including exotic neutron-rich nuclei as well as ordinary nuclei. It is owing to its flexible nature free from any model assumptions such as the existence of clusters. The energies and other observed data of B isotopes are reproduced well. Especially very good reproduction of electromagnetic properties is obtained. The systematic behavior of the electromagnetic properties is explained in relation to the drastic change between clustering structure and shell-model-like structure. This explanation gives us an important indication that clustering structure in neutron-rich B nuclei is strongly suggested by the experimental data. It is shown that the structure change with increase of the neutron number is largely governed by the shell effect of neutron orbits. Exotic structure with new type of clustering is suggested to evolve in neutron-rich nuclei near the dripline.

  9. Molecular Dynamics Study of Polyethylene under Extreme Confinement

    NASA Astrophysics Data System (ADS)

    Kritikos, G.; Sgouros, A.; Vogiatzis, G. G.; Theodorou, D. N.

    2016-08-01

    We present results concerning the dynamics and the structure of adsorbed layers of molten polyethylene (PE) between two graphite surfaces. The molecular weight of the monodisperse PE chains reaches the entanglement regime. We study three cases of interwall distances, equal to two, three and four times the unperturbed radius of gyration (Rg ) of PE chains. The confined system is equilibrated by use of efficient Monte Carlo (MC) algorithms. Conducting molecular dynamics (MD) simulations, we reveal the distribution of relaxation times as a function of distance from the graphite walls at the temperature of 450 K. From the atomic-level stresses we calculate a realistic estimate of the adhesion tension, which is not affected significantly by the width of the pore. Although the distance between the two walls is comparable to the width of the adsorbed layer, we do not record the formation of ‘glassy bridges’ under the studied conditions. The diffusion of polymer chains in the middle layer is not inhibited by the existence of the two adsorbed layers. Extreme confinement conditions imposed by the long range wall potentials bring about an increase in both the adsorption and desorption rates of chains. The presented results seem to cohere with a reduction in the calorimetric (heat capacity step) glass transition temperature (Tg ).

  10. Ripening kinetics of bubbles: A molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Watanabe, Hiroshi; Inaoka, Hajime; Ito, Nobuyasu

    2016-09-01

    The ripening kinetics of bubbles is studied by performing molecular dynamics simulations. From the time evolution of a system, the growth rates of individual bubbles are determined. At low temperatures, the system exhibits a t1/2 law and the growth rate is well described by classical Lifshitz-Slyozov-Wagner (LSW) theory for the reaction-limited case. This is direct evidence that the bubble coarsening at low temperatures is reaction-limited. At high temperatures, although the system exhibits a t1/3 law, which suggests that it is diffusion-limited, the accuracy of the growth rate is insufficient to determine whether the form is consistent with the prediction of LSW theory for the diffusion-limited case. The gas volume fraction dependence of the coarsening behavior is also studied. Although the behavior of the system at low temperatures has little sensitivity to the gas volume fraction up to 10%, at high temperatures it deviates from the prediction of LSW theory for the diffusion-limited case as the gas volume fraction increases. These results show that the mean-field-like treatment is valid for a reaction-limited system even with a finite volume fraction, while it becomes inappropriate for a diffusion-limited system since classical LSW theory for the diffusion-limited case is valid at the dilute limit.

  11. Molecular dynamics study of helium bubble pressure in titanium

    NASA Astrophysics Data System (ADS)

    Zhang, Bao-Ling; Wang, Jun; Hou, Qing

    2011-03-01

    In this paper, the pressure state of the helium bubble in titanium is simulated by a molecular dynamics (MD) method. First, the possible helium/vacancy ratio is determined according to therelation between the bubble pressure and helium/vacancy ratio; then the dependences of the helium bubble pressure on the bubble radius at different temperatures are studied. It is shown that the product of the bubble pressure and the radius is approximately a constant, a result justifying the pressure-radius relation predicted by thermodynamics-based theory for gas bubble. Furthermore, a state equation of the helium bubble is established based on the MD calculations. Comparison between the results obtained by the state equation and corresponding experimental data shows that the state equation can describe reasonably the state of helium bubble and thus could be used for Monte Carlo simulations of the evolution of helium bubble in metals. Project supported by the National Natural Science Foundation of China (Grant No. 10775101) and National Magnetic Confinement Fusion Program of China (Grant No. 2009GB106004).

  12. The interstitialcy diffusion in FCC copper: A molecular dynamics study

    SciTech Connect

    Bukkuru, S. Rao, A. D. P.; Warrier, M.

    2015-06-24

    Damage of materials due to neutron irradiation occurs via energetic cascades caused by energetic primary knock-on atoms (PKA) created by the energetic neutron as it passes through the material. These cascades result in creation of Frenkel Pairs (interstitials and vacancies). The interstitials and vacancies diffuse and recombine to (I) nullify the damage when an interstitial recombines with a vacancy, (II) form interstitial clusters when two or more interstitials recombine, and (III) form vacancy clusters when several vacancies come together. The latter two processes result in change of material properties. Interstitial diffusion has reported time-scales of microseconds and vacancy diffusion has diffusion time-scales of the order of seconds. We have carried out molecular dynamics (MD) simulations of interstitial diffusion in crystal Cu to study the mechanism of diffusion. It is found that interstitialcy diffusion – wherein an interstitial displaces a lattice atom thereby making the lattice atom an interstitial – has time-scales of a few tens of pico-seconds. Therefore we propose that the “interstitialcy diffusion” mechanism could play a major part in the diffusive-recombinations of the Frenkel Pairs created during the cascade.

  13. Molecular dynamics study of phonon screening in graphene

    NASA Astrophysics Data System (ADS)

    Javvaji, Brahmanandam; Roy Mahapatra, D.; Raha, S.

    2014-04-01

    Phonon interaction with electrons or phonons or with structural defects result in a phonon mode conversion. The mode conversion is governed by the frequency wave-vector dispersion relation. The control over phonon mode or the screening of phonon in graphene is studied using the propagation of amplitude modulated phonon wave-packet. Control over phonon properties like frequency and velocity opens up several wave guiding, energy transport and thermo-electric applications of graphene. One way to achieve this control is with the introduction of nano-structured scattering in the phonon path. Atomistic model of thermal energy transport is developed which is applicable to devices consisting of source, channel and drain parts. Longitudinal acoustic phononmode is excited fromone end of the device. Molecular dynamics based time integration is adopted for the propagation of excited phonon to the other end of the device. The amount of energy transfer is estimated from the relative change of kinetic energy. Increase in the phonon frequency decreases the kinetic energy transmission linearly in the frequency band of interest. Further reduction in transmission is observed with the tuning of channel height of the device by increasing the boundary scattering. Phonon mode selective transmission control have potential application in thermal insulation or thermo-electric application or photo-thermal amplification.

  14. Steered molecular dynamics studies of titin I1 domain unfolding.

    PubMed Central

    Gao, Mu; Wilmanns, Matthias; Schulten, Klaus

    2002-01-01

    The cardiac muscle protein titin, responsible for developing passive elasticity and extensibility of muscle, possesses about 40 immunoglobulin-like (Ig) domains in its I-band region. Atomic force microscopy (AFM) and steered molecular dynamics (SMD) have been successfully combined to investigate the reversible unfolding of individual Ig domains. However, previous SMD studies of titin I-band modules have been restricted to I27, the only structurally known Ig domain from the distal region of the titin I-band. In this paper we report SMD simulations unfolding I1, the first structurally available Ig domain from the proximal region of the titin I-band. The simulations are carried out with a view toward upcoming atomic force microscopy experiments. Both constant velocity and constant force stretching have been employed to model mechanical unfolding of oxidized I1, which has a disulfide bond bridging beta-strands C and E, as well as reduced I1, in which the disulfide bridge is absent. The simulations reveal that I1 is protected against external stress mainly through six interstrand hydrogen bonds between its A and B beta-strands. The disulfide bond enhances the mechanical stability of oxidized I1 domains by restricting the rupture of backbone hydrogen bonds between the A'- and G-strands. The disulfide bond also limits the maximum extension of I1 to approximately 220 A. Comparison of the unfolding pathways of I1 and I27 are provided and implications to AFM experiments are discussed. PMID:12496110

  15. Aggregation of model asphaltenes: a molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Costa, J. L. L. F. S.; Simionesie, D.; Zhang, Z. J.; Mulheran, P. A.

    2016-10-01

    Natural asphaltenes are defined as polyaromatic compounds whose chemical composition and structure are dependent on their geological origin and production history, hence are regarded as complex molecules with aromatic cores and aliphatic tails that occur in the heaviest fraction of crude oil. The aggregation of asphaltenes presents a range of technical challenges to the production and processing of oil. In this work we study the behaviour of the model asphaltene-like molecule hexa-tert-butylhexa-peri-hexabenzocoronene (HTBHBC) using molecular dynamics simulation. It was found that the regular arrangement of the tert-butyl side chains prevents the formation of strongly-bound dimers by severely restricting the configurational space of the aggregation pathway. In contrast, a modified molecule with only 3 side chains is readily able to form dimers. This work therefore confirms the influence of the molecular structure of polyaromatic compounds on their aggregation mechanism, and reveals the unexpected design rules required for model systems that can mimic the behavior of asphaltenes.

  16. MOLECULAR DYNAMICS STUDY OF DIFFUSIONAL CREEP IN NANOCRYSTALLINE UO2

    SciTech Connect

    Tapan G. Desai; Paul C. Millett; Dieter Wolf

    2008-09-01

    We present the results of molecular dynamics (MD) simulations to study hightemperature deformation of nanocrystalline UO2. In qualitative agreement with experimental observations, the oxygen sub-lattice undergoes a structural transition at a temperature of about 2200 K (i.e., well below the melting point of 3450 K of our model system), whereas the uranium sub-lattice remains unchanged all the way up to melting. At temperatures well above this structural transition, columnar nanocrystalline model microstructures with a uniform grain size and grain shape were subjected to constantstress loading at levels low enough to avoid microcracking and dislocation nucleation from the GBs. Our simulations reveal that in the absence of grain growth, the material deforms via GB diffusion creep (also known as Coble creep). Analysis of the underlying self-diffusion behavior in undeformed nanocrystalline UO2 reveals that, on our MD time scale, the uranium ions diffuse only via the grain boundaries (GBs) whereas the much faster moving oxygen ions diffuse through both the lattice and the GBs. As expected for the Coble-creep mechanism, the creep activation energy agrees well with that for GB diffusion of the slowest moving species, i.e., of the uranium ions.

  17. First principles molecular dynamics study of filled ice hydrogen hydrate.

    PubMed

    Zhang, Jingyun; Kuo, Jer-Lai; Iitaka, Toshiaki

    2012-08-28

    We investigated structural changes, phase diagram, and vibrational properties of hydrogen hydrate in filled-ice phase C(2) by using first principles molecular dynamics simulation. It was found that the experimentally reported "cubic" structure is unstable at low temperature and/or high pressure: The "cubic" structure reflects the symmetry at high (room) temperature where the hydrogen bond network is disordered and the hydrogen molecules are orientationally disordered due to thermal rotation. In this sense, the "cubic" symmetry would definitely be lowered at low temperature where the hydrogen bond network and the hydrogen molecules are expected to be ordered. At room temperature and below 30 GPa, it is the thermal effects that play an essential role in stabilizing the structure in "cubic" symmetry. Above 60 GPa, the hydrogen bonds in the framework would be symmetrized and the hydrogen bond order-disorder transition would disappear. These results also suggest the phase behavior of other filled-ice hydrates. In the case of rare gas hydrate, there would be no guest molecules' rotation-nonrotation transition since the guest molecules keep their spherical symmetry at any temperature. On the contrary methane hydrate MH-III would show complex transitions due to the lower symmetry of the guest molecule. These results would encourage further experimental studies, especially nuclear magnetic resonance spectroscopy and neutron scattering, on the phases of filled-ice hydrates at high pressures and/or low temperatures.

  18. First principles molecular dynamics study of filled ice hydrogen hydrate

    NASA Astrophysics Data System (ADS)

    Zhang, Jingyun; Kuo, Jer-Lai; Iitaka, Toshiaki

    2012-08-01

    We investigated structural changes, phase diagram, and vibrational properties of hydrogen hydrate in filled-ice phase C2 by using first principles molecular dynamics simulation. It was found that the experimentally reported "cubic" structure is unstable at low temperature and/or high pressure: The "cubic" structure reflects the symmetry at high (room) temperature where the hydrogen bond network is disordered and the hydrogen molecules are orientationally disordered due to thermal rotation. In this sense, the "cubic" symmetry would definitely be lowered at low temperature where the hydrogen bond network and the hydrogen molecules are expected to be ordered. At room temperature and below 30 GPa, it is the thermal effects that play an essential role in stabilizing the structure in "cubic" symmetry. Above 60 GPa, the hydrogen bonds in the framework would be symmetrized and the hydrogen bond order-disorder transition would disappear. These results also suggest the phase behavior of other filled-ice hydrates. In the case of rare gas hydrate, there would be no guest molecules' rotation-nonrotation transition since the guest molecules keep their spherical symmetry at any temperature. On the contrary methane hydrate MH-III would show complex transitions due to the lower symmetry of the guest molecule. These results would encourage further experimental studies, especially nuclear magnetic resonance spectroscopy and neutron scattering, on the phases of filled-ice hydrates at high pressures and/or low temperatures.

  19. Molecular Dynamics study on the Micellization of Rhamnolipids.

    NASA Astrophysics Data System (ADS)

    Munusamy, Elango; Schwartz, Steven D.

    2015-03-01

    Oil spills have become one of the most serious environmental and ecological problems owing to the growth of oil exploration, production and transportation. Millions of gallons of crude oil and refined products are spilled into marine waters worldwide each year. Large volumes of surfactants are applied to the ocean as a remediation strategy. Environmental and toxicity issues arise when such a voluminous amounts of chemical surfactants are applied. One prospective solution to this problem is to use greener surfactants that possess excellent biodegradation and toxicity characteristics relative to existing classes of commonly used surfactants. In this context, we are interested in designing and developing greener surfactants that are patterned after naturally occurring glycolipids. In the present work, we concentrate on one of the more commonly studied glycolipid, rhamnolipid (Rha1C10C10) . Despite the available experimental data, the molecular structure, shape and geometry of micelles formed by rhamnolipid is unknown. Molecular Dynamics (MD) simulations were performed to understand the aggregation behavior of rhamnolipids in aqueous solution and at air-water interface. All calculations were performed in NPT ensembles at 300 K using NAMD 2.8, a parallel code designed for high-performance simulation of large biological macromolecule using the CHARMM force field. The results obtained from MD simulations on the aggregation of rhamnolipids in water and at air-water interface will be presented.

  20. Molecular dynamics study on DNA oligonucleotide translocation through carbon nanotubes.

    PubMed

    Pei, Q X; Lim, C G; Cheng, Y; Gao, Huajian

    2008-09-28

    Molecular dynamics simulations are performed to study the translocation of a DNA oligonucleotide in a carbon nanotube (CNT) channel consisting of CNTs of two different diameters. A strong gravitational acceleration field is applied to the DNA molecule and water solvent as an external driving force for the translocation. It is observed that both the CNT channel size and the strength of gravitational field have significant influence on the DNA translocation process. It is found that the DNA oligonucleotide is unable to pass through the (8,8) CNT even under strong gravitational fields, which extends previous finding that DNA cannot be self-inserted into a (8,8) CNT. It is shown that the DNA can pass through the (10,10)-(12,12) and (12,12)-(14,14) CNTs with stronger gravitational field resulting in faster translocation. The translocation time tau is found to follow the inverse power law relationship with the gravitational acceleration a as tau approximately a(-1.21). The energetic analysis of the translocation process shows that there is an energy barrier for DNA translocation into the (10,10) tube from the (14,14) tube, which is in contrast to previous report that DNA can be self-inserted into a (10,10) tube from outside the CNT. This difference with previous report shows that the dynamic behavior of DNA translocation inside a CNT channel is quite different from that of DNA translocation into a CNT from outside the CNT.

  1. Autoinhibitory mechanisms of ERG studied by molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Lu, Yan; Salsbury, Freddie R.

    2015-01-01

    ERG, an ETS-family transcription factor, acts as a regulator of differentiation of early hematopoietic cells. It contains an autoinhibitory domain, which negatively regulates DNA-binding. The mechanism of autoinhibitory is still illusive. To understand the mechanism, we study the dynamical properties of ERG protein by molecular dynamics simulations. These simulations suggest that DNA binding autoinhibition associates with the internal dynamics of ERG. Specifically, we find that (1), The N-C terminal correlation in the inhibited ERG is larger than that in uninhibited ERG that contributes to the autoinhibition of DNA-binding. (2), DNA-binding changes the property of the N-C terminal correlation from being anti-correlated to correlated, that is, changing the relative direction of the correlated motions and (3), For the Ets-domain specifically, the inhibited and uninhibited forms exhibit essentially the same dynamics, but the binding of the DNA decreases the fluctuation of the Ets-domain. We also find from PCA analysis that the three systems, even with quite different dynamics, do have highly similar free energy surfaces, indicating that they share similar conformations.

  2. Large scale molecular dynamics study of polymer-surfactant complex

    NASA Astrophysics Data System (ADS)

    Goswami, Monojoy; Sumpter, Bobby

    2012-02-01

    In this work, we study the self-assembly of cationic polyelectrolytes mediated by anionic surfactants in dilute or semi-dilute and gel states. The understanding of the dilute system is a requirement for the understanding of gel states. The importance of polyelectrolyte with oppositely charged colloidal particles can be found in biological systems, such as immobilization of enzymes in polyelectrolyte complexes or nonspecific association of DNA with protein. With the same understanding, interaction of surfactants with polyelectrolytes shows intriguing phenomena that are important for both in academic research as well as industrial applications. Many useful properties of PE surfactant complexes come from the highly ordered structures of surfactant self-assembly inside the PE aggregate. We do large scale molecular dynamics simulation using LAMMPS to understand the structure and dynamics of PE-surfactant systems. Our investigation shows highly ordered ring-string structures that have been observed experimentally in biological systems. We will investigate many different properties of PE-surfactant complexation which will be helpful for pharmaceutical, engineering and biological applications.

  3. Hydration of amino acids: FTIR spectra and molecular dynamics studies.

    PubMed

    Panuszko, Aneta; Adamczak, Beata; Czub, Jacek; Gojło, Emilia; Stangret, Janusz

    2015-11-01

    The hydration of selected amino acids, alanine, glycine, proline, valine, isoleucine and phenylalanine, has been studied in aqueous solutions by means of FTIR spectra of HDO isotopically diluted in H2O. The difference spectra procedure and the chemometric method have been applied to remove the contribution of bulk water and thus to separate the spectra of solute-affected HDO. To support interpretation of obtained spectral results, molecular dynamics simulations of amino acids were performed. The structural-energetic characteristic of these solute-affected water molecules shows that, on average, water affected by amino acids forms stronger and shorter H-bonds than those in pure water. Differences in the influence of amino acids on water structure have been noticed. The effect of the hydrophobic side chain of an amino acid on the solvent interactions seems to be enhanced because of the specific cooperative coupling of water strong H-bond chain, connecting the carboxyl and amino groups, with the clathrate-like H-bond network surrounding the hydrocarbon side chain. The parameter derived from the spectral data, which corresponds to the contributions of the population of weak hydrogen bonds of water molecules which have been substituted by the stronger ones in the hydration sphere of amino acids, correlated well with the amino acid hydrophobicity indexes.

  4. Aggregation of model asphaltenes: a molecular dynamics study.

    PubMed

    Costa, J L L F S; Simionesie, D; Zhang, Z J; Mulheran, P A

    2016-10-01

    Natural asphaltenes are defined as polyaromatic compounds whose chemical composition and structure are dependent on their geological origin and production history, hence are regarded as complex molecules with aromatic cores and aliphatic tails that occur in the heaviest fraction of crude oil. The aggregation of asphaltenes presents a range of technical challenges to the production and processing of oil. In this work we study the behaviour of the model asphaltene-like molecule hexa-tert-butylhexa-peri-hexabenzocoronene (HTBHBC) using molecular dynamics simulation. It was found that the regular arrangement of the tert-butyl side chains prevents the formation of strongly-bound dimers by severely restricting the configurational space of the aggregation pathway. In contrast, a modified molecule with only 3 side chains is readily able to form dimers. This work therefore confirms the influence of the molecular structure of polyaromatic compounds on their aggregation mechanism, and reveals the unexpected design rules required for model systems that can mimic the behavior of asphaltenes. PMID:27465036

  5. Mechanistic Insights into Radical-Mediated Oxidation of Tryptophan from ab Initio Quantum Chemistry Calculations and QM/MM Molecular Dynamics Simulations.

    PubMed

    Wood, Geoffrey P F; Sreedhara, Alavattam; Moore, Jamie M; Wang, John; Trout, Bernhardt L

    2016-05-12

    An assessment of the mechanisms of (•)OH and (•)OOH radical-mediated oxidation of tryptophan was performed using density functional theory calculations and ab initio plane-wave Quantum Mechanics/Molecular Mechanics (QM/MM) molecular dynamics simulations. For the (•)OH reactions, addition to the pyrrole ring at position 2 is the most favored site with a barrierless reaction in the gas phase. The subsequent degradation of this adduct through a H atom transfer to water was intermittently observed in aqueous-phase molecular dynamics simulations. For the (•)OOH reactions, addition to the pyrrole ring at position 2 is the most favored pathway, in contrast to the situation in the model system ethylene, where concerted addition to the double bond is preferred. From the (•)OOH position 2 adduct QM/MM simulations show that formation of oxy-3-indolanaline occurs readily in an aqueous environment. The observed transformation starts from an initial rupture of the O-O bond followed by a H atom transfer with the accompanying loss of an (•)OH radical to solution. Finally, classical molecular dynamics simulations were performed to equate observed differential oxidation rates of various tryptophan residues in monoclonal antibody fragments. It was found that simple parameters derived from simulation correlate well with the experimental data. PMID:27082439

  6. Proton transfer and polarity changes in ionic liquid-water mixtures: a perspective on hydrogen bonds from ab initio molecular dynamics at the example of 1-ethyl-3-methylimidazolium acetate-water mixtures--part 1.

    PubMed

    Brehm, Martin; Weber, Henry; Pensado, Alfonso S; Stark, Annegret; Kirchner, Barbara

    2012-04-21

    The ionic liquid 1-ethyl-3-methylimidazolium acetate [C(2)C(1)Im][OAc] shows a great potential to dissolve strongly hydrogen bonded materials, related with the presence of a strong hydrogen bond network in the pure liquid. A first step towards understanding the solvation process is characterising the hydrogen bonding ability of the ionic liquid. The description of hydrogen bonds in ionic liquids is a question under debate, given the complex nature of this media. The purpose of the present article is to rationalise not only the existence of hydrogen bonds in ionic liquids, but also to analyse their influence on the structure of the pure liquid and how the presence of water, an impurity inherent to ionic liquids, affects this type of interaction. We perform an extensive study using ab initio molecular dynamics on the structure of mixtures of the ionic liquid 1-ethyl-3-methylimidazolium acetate with water, at different water contents. Hydrogen bonds are present in the pure liquid, and the presence of water modifies and largely disturbs the hydrogen bond network of the ionic liquid, and also affects the formation of other impurities (carbenes) and the dipole moment of the ions. The use of ab initio molecular dynamics is the recommended tool to explore hydrogen bonding in ionic liquids, as an explicit electronic structure calculation is combined with the study of the condensed phase.

  7. Thermal decomposition of solid phase nitromethane under various heating rates and target temperatures based on ab initio molecular dynamics simulations.

    PubMed

    Xu, Kai; Wei, Dong-Qing; Chen, Xiang-Rong; Ji, Guang-Fu

    2014-10-01

    The Car-Parrinello molecular dynamics simulation was applied to study the thermal decomposition of solid phase nitromethane under gradual heating and fast annealing conditions. In gradual heating simulations, we found that, rather than C-N bond cleavage, intermolecular proton transfer is more likely to be the first reaction in the decomposition process. At high temperature, the first reaction in fast annealing simulation is intermolecular proton transfer leading to CH3NOOH and CH2NO2, whereas the initial chemical event at low temperature tends to be a unimolecular C-N bond cleavage, producing CH3 and NO2 fragments. It is the first time to date that the direct rupture of a C-N bond has been reported as the first reaction in solid phase nitromethane. In addition, the fast annealing simulations on a supercell at different temperatures are conducted to validate the effect of simulation cell size on initial reaction mechanisms. The results are in qualitative agreement with the simulations on a unit cell. By analyzing the time evolution of some molecules, we also found that the time of first water molecule formation is clearly sensitive to heating rates and target temperatures when the first reaction is an intermolecular proton transfer. PMID:25234607

  8. Thermal decomposition of solid phase nitromethane under various heating rates and target temperatures based on ab initio molecular dynamics simulations.

    PubMed

    Xu, Kai; Wei, Dong-Qing; Chen, Xiang-Rong; Ji, Guang-Fu

    2014-10-01

    The Car-Parrinello molecular dynamics simulation was applied to study the thermal decomposition of solid phase nitromethane under gradual heating and fast annealing conditions. In gradual heating simulations, we found that, rather than C-N bond cleavage, intermolecular proton transfer is more likely to be the first reaction in the decomposition process. At high temperature, the first reaction in fast annealing simulation is intermolecular proton transfer leading to CH3NOOH and CH2NO2, whereas the initial chemical event at low temperature tends to be a unimolecular C-N bond cleavage, producing CH3 and NO2 fragments. It is the first time to date that the direct rupture of a C-N bond has been reported as the first reaction in solid phase nitromethane. In addition, the fast annealing simulations on a supercell at different temperatures are conducted to validate the effect of simulation cell size on initial reaction mechanisms. The results are in qualitative agreement with the simulations on a unit cell. By analyzing the time evolution of some molecules, we also found that the time of first water molecule formation is clearly sensitive to heating rates and target temperatures when the first reaction is an intermolecular proton transfer.

  9. Molecular dynamics investigations of ozone on an ab initio potential energy surface with the utilization of pattern-recognition neural network for accurate determination of product formation.

    PubMed

    Le, Hung M; Dinh, Thach S; Le, Hieu V

    2011-10-13

    The singlet-triplet transformation and molecular dissociation of ozone (O(3)) gas is investigated by performing quasi-classical molecular dynamics (MD) simulations on an ab initio potential energy surface (PES) with visible and near-infrared excitations. MP4(SDQ) level of theory with the 6-311g(2d,2p) basis set is executed for three different electronic spin states (singlet, triplet, and quintet). In order to simplify the potential energy function, an approximation is adopted by ignoring the spin-orbit coupling and allowing the molecule to switch favorably and instantaneously to the spin state that is more energetically stable (lowest in energy among the three spin states). This assumption has previously been utilized to study the SiO(2) system as reported by Agrawal et al. (J. Chem. Phys. 2006, 124 (13), 134306). The use of such assumption in this study probably makes the upper limits of computed rate coefficients the true rate coefficients. The global PES for ozone is constructed by fitting 5906 ab initio data points using a 60-neuron two-layer feed-forward neural network. The mean-absolute error and root-mean-squared error of this fit are 0.0446 eV (1.03 kcal/mol) and 0.0756 eV (1.74 kcal/mol), respectively, which reveal very good fitting accuracy. The parameter coefficients of the global PES are reported in this paper. In order to identify the spin state with high confidence, we propose the use of a pattern-recognition neural network, which is trained to predict the spin state of a given configuration (with a prediction accuracy being 95.6% on a set of testing data points). To enhance the prediction effectiveness, a buffer series of five points are validated to confirm the spin state during the MD process to gain better confidence. Quasi-classical MD simulations from 1.2 to 2.4 eV of total internal energy (including zero-point energy) result in rate coefficients of singlet-triplet transformation in the range of 0.027 ps(-1) to 1.21 ps(-1). Also, we find very

  10. Anisotropic mechanoresponse of energetic crystallites: a quantum molecular dynamics study of nano-collision

    NASA Astrophysics Data System (ADS)

    Li, Ying; Kalia, Rajiv K.; Misawa, Masaaki; Nakano, Aiichiro; Nomura, Ken-Ichi; Shimamura, Kohei; Shimojo, Fuyuki; Vashishta, Priya

    2016-05-01

    At the nanoscale, chemistry can happen quite differently due to mechanical forces selectively breaking the chemical bonds of materials. The interaction between chemistry and mechanical forces can be classified as mechanochemistry. An example of archetypal mechanochemistry occurs at the nanoscale in anisotropic detonating of a broad class of layered energetic molecular crystals bonded by inter-layer van der Waals (vdW) interactions. Here, we introduce an ab initio study of the collision, in which quantum molecular dynamic simulations of binary collisions between energetic vdW crystallites, TATB molecules, reveal atomistic mechanisms of anisotropic shock sensitivity. The highly sensitive lateral collision was found to originate from the twisting and bending to breaking of nitro-groups mediated by strong intra-layer hydrogen bonds. This causes the closing of the electronic energy gap due to an inverse Jahn-Teller effect. On the other hand, the insensitive collisions normal to multilayers are accomplished by more delocalized molecular deformations mediated by inter-layer interactions. Our nano-collision studies provide a much needed atomistic understanding for the rational design of insensitive energetic nanomaterials and the detonation synthesis of novel nanomaterials.At the nanoscale, chemistry can happen quite differently due to mechanical forces selectively breaking the chemical bonds of materials. The interaction between chemistry and mechanical forces can be classified as mechanochemistry. An example of archetypal mechanochemistry occurs at the nanoscale in anisotropic detonating of a broad class of layered energetic molecular crystals bonded by inter-layer van der Waals (vdW) interactions. Here, we introduce an ab initio study of the collision, in which quantum molecular dynamic simulations of binary collisions between energetic vdW crystallites, TATB molecules, reveal atomistic mechanisms of anisotropic shock sensitivity. The highly sensitive lateral collision

  11. Vibrational mode frequencies of silica species in SiO2-H2O liquids and glasses from ab initio molecular dynamics

    NASA Astrophysics Data System (ADS)

    Spiekermann, Georg; Steele-MacInnis, Matthew; Schmidt, Christian; Jahn, Sandro

    2012-04-01

    Vibrational spectroscopy techniques are commonly used to probe the atomic-scale structure of silica species in aqueous solution and hydrous silica glasses. However, unequivocal assignment of individual spectroscopic features to specific vibrational modes is challenging. In this contribution, we establish a connection between experimentally observed vibrational bands and ab initio molecular dynamics (MD) of silica species in solution and in hydrous silica glass. Using the mode-projection approach, we decompose the vibrations of silica species into subspectra resulting from several fundamental structural subunits: The SiO4 tetrahedron of symmetry Td, the bridging oxygen (BO) Si-O-Si of symmetry C_{2{v}}, the geminal oxygen O-Si-O of symmetry C_{2{v}}, the individual Si-OH stretching, and the specific ethane-like symmetric stretching contribution of the H6Si2O7 dimer. This allows us to study relevant vibrations of these subunits in any degree of polymerization, from the Q0 monomer up to the fully polymerized Q4 tetrahedra. Demonstrating the potential of this approach for supplementing the interpretation of experimental spectra, we compare the calculated frequencies to those extracted from experimental Raman spectra of hydrous silica glasses and silica species in aqueous solution. We discuss observed features such as the double-peaked contribution of the Q2 tetrahedral symmetric stretch, the individual Si-OH stretching vibrations, the origin of the experimentally observed band at 970 cm-1 and the ethane-like vibrational contribution of the H6Si2O7 dimer at 870 cm-1.

  12. Molecular dynamics studies on the buffalo prion protein.

    PubMed

    Zhang, Jiapu; Wang, Feng; Chatterjee, Subhojyoti

    2016-01-01

    It was reported that buffalo is a low susceptibility species resisting to transmissible spongiform encephalopathies (TSEs) (same as rabbits, horses, and dogs). TSEs, also called prion diseases, are invariably fatal and highly infectious neurodegenerative diseases that affect a wide variety of species (except for rabbits, dogs, horses, and buffalo), manifesting as scrapie in sheep and goats; bovine spongiform encephalopathy (BSE or "mad-cow" disease) in cattle; chronic wasting disease in deer and elk; and Creutzfeldt-Jakob diseases, Gerstmann-Sträussler-Scheinker syndrome, fatal familial insomnia, and Kulu in humans etc. In molecular structures, these neurodegenerative diseases are caused by the conversion from a soluble normal cellular prion protein (PrP(C)), predominantly with α-helices, into insoluble abnormally folded infectious prions (PrP(Sc)), rich in β-sheets. In this article, we studied the molecular structure and structural dynamics of buffalo PrP(C) (BufPrP(C)), in order to understand the reason why buffalo is resistant to prion diseases. We first did molecular modeling of a homology structure constructed by one mutation at residue 143 from the NMR structure of bovine and cattle PrP(124-227); immediately we found that for BufPrP(C)(124-227), there are five hydrogen bonds (HBs) at Asn143, but at this position, bovine/cattle do not have such HBs. Same as that of rabbits, dogs, or horses, our molecular dynamics studies also revealed there is a strong salt bridge (SB) ASP178-ARG164 (O-N) keeping the β2-α2 loop linked in buffalo. We also found there is a very strong HB SER170-TYR218 linking this loop with the C-terminal end of α-helix H3. Other information, such as (i) there is a very strong SB HIS187-ARG156 (N-O) linking α-helices H2 and H1 (if mutation H187R is made at position 187, then the hydrophobic core of PrP(C) will be exposed (L.H. Zhong (2010). Exposure of hydrophobic core in human prion protein pathogenic mutant H187R. Journal of

  13. Molecular dynamics studies on the buffalo prion protein.

    PubMed

    Zhang, Jiapu; Wang, Feng; Chatterjee, Subhojyoti

    2016-01-01

    It was reported that buffalo is a low susceptibility species resisting to transmissible spongiform encephalopathies (TSEs) (same as rabbits, horses, and dogs). TSEs, also called prion diseases, are invariably fatal and highly infectious neurodegenerative diseases that affect a wide variety of species (except for rabbits, dogs, horses, and buffalo), manifesting as scrapie in sheep and goats; bovine spongiform encephalopathy (BSE or "mad-cow" disease) in cattle; chronic wasting disease in deer and elk; and Creutzfeldt-Jakob diseases, Gerstmann-Sträussler-Scheinker syndrome, fatal familial insomnia, and Kulu in humans etc. In molecular structures, these neurodegenerative diseases are caused by the conversion from a soluble normal cellular prion protein (PrP(C)), predominantly with α-helices, into insoluble abnormally folded infectious prions (PrP(Sc)), rich in β-sheets. In this article, we studied the molecular structure and structural dynamics of buffalo PrP(C) (BufPrP(C)), in order to understand the reason why buffalo is resistant to prion diseases. We first did molecular modeling of a homology structure constructed by one mutation at residue 143 from the NMR structure of bovine and cattle PrP(124-227); immediately we found that for BufPrP(C)(124-227), there are five hydrogen bonds (HBs) at Asn143, but at this position, bovine/cattle do not have such HBs. Same as that of rabbits, dogs, or horses, our molecular dynamics studies also revealed there is a strong salt bridge (SB) ASP178-ARG164 (O-N) keeping the β2-α2 loop linked in buffalo. We also found there is a very strong HB SER170-TYR218 linking this loop with the C-terminal end of α-helix H3. Other information, such as (i) there is a very strong SB HIS187-ARG156 (N-O) linking α-helices H2 and H1 (if mutation H187R is made at position 187, then the hydrophobic core of PrP(C) will be exposed (L.H. Zhong (2010). Exposure of hydrophobic core in human prion protein pathogenic mutant H187R. Journal of

  14. Reactivity of aldehydes at the air-water interface. Insights from molecular dynamics simulations and ab initio calculations.

    PubMed

    Martins-Costa, Marilia T C; García-Prieto, Francisco F; Ruiz-López, Manuel F

    2015-02-14

    Understanding the influence of solute-solvent interactions on chemical reactivity has been a subject of intense research in the last few decades. Theoretical studies have focused on bulk solvation phenomena and a variety of models and methods have been developed that are now widely used by both theoreticians and experimentalists. Much less attention has been paid, however, to processes that occur at liquid interfaces despite the important role such interfaces play in chemistry and biology. In this study, we have carried out sequential molecular dynamics simulations and quantum mechanical calculations to analyse the influence of the air-water interface on the reactivity of formaldehyde, acetaldehyde and benzaldehyde, three simple aldehydes of atmospheric interest. The calculated free-energy profiles exhibit a minimum at the interface, where the average reactivity indices may display large solvation effects. The study emphasizes the role of solvation dynamics, which are responsible for large fluctuations of some molecular properties. We also show that the photolysis rate constant of benzaldehyde in the range 290-308 nm increases by one order of magnitude at the surface of a water droplet, from 2.7 × 10(-5) s(-1) in the gas phase to 2.8 × 10(-4) s(-1) at the air-water interface, and we discuss the potential impact of this result on the chemistry of the troposphere. Experimental data in this domain are still scarce and computer simulations like those presented in this work may provide some insights that can be useful to design new experiments.

  15. Interaction of OH- with xylan and its hydrated complexes: structures and molecular dynamics study using elongation method.

    PubMed

    Jin, Lin; Liu, Kai; Aoki, Yuriko

    2015-05-01

    The interaction of OH(-) group with (xylan)12 and its hydrated complexes were theoretically studied using elongation optimization (ELG-OPT) method and elongation ab initio molecular dynamics simulation (ELG-MD) method. OH(-) group could abstract a H-atom from the terminal xylan ring to form a complex (xylan)12(-)-H2O without any energy barrier. One and two extra water molecules were also added to the same terminal xylan ring. All the geometry optimization results obtained using elongation method were compared with conventional calculation results, and it suggested that ELG-OPT method worked well for (xylan)12, (xylan)12-OH(-), and its hydrated complexes. Moreover 10 ps ab initio molecular dynamics simulations were performed for complexes (xylan)12(-)-H2O, (xylan)12(-)-2H2O, and (xylan)12(-)-3H2O at 300 K, 500 K, and 700 K. (xylan)12(-)-H2O complex was stable at room temperature. However H2O molecule which was formed by OH(-) group could move at 500 K. At 700 K the H-abstract reaction reversed. Adding an extra water molecule only accelerated the water transfer reaction, but no more chemical reactions occurred, and the transfer time decreased when the temperature increased. The complex (xylan)12(-)-H2O became very stable when adding two extra water molecules even at high temperature, and it indicated that two extra water molecules stabilized the complex (xylan)12(-)-H2O.

  16. A molecular dynamics study on sI hydrogen hydrate.

    PubMed

    Mondal, S; Ghosh, S; Chattaraj, P K

    2013-07-01

    A molecular dynamics simulation is carried out to explore the possibility of using sI clathrate hydrate as hydrogen storage material. Metastable hydrogen hydrate structures are generated using the LAMMPS software. Different binding energies and radial distribution functions provide important insights into the behavior of the various types of hydrogen and oxygen atoms present in the system. Clathrate hydrate cages become more stable in the presence of guest molecules like hydrogen.

  17. Molecular Dynamics study of Pb overlayer on Cu(100)

    NASA Technical Reports Server (NTRS)

    Karimi, M.; Tibbits, P.; Ila, D.; Dalins, I.; Vidali, G.

    1991-01-01

    Isothermal-isobaric Molecular Dynamics (MD) simulation of a submonolayer Pb film in c(2x2) ordered structure adsorbed on a Cu(100) substrate showed retention of order to high T. The Embedded Atom Method (EAM) calculated the energy of atoms of overlayer and substrate. The time-averaged squared modulus of the two dimensional structure factor for the Pb overlayer measured the order of the overlayer. The results are for increasing T only, and require verification by simulated cooling.

  18. Molecular dynamics studies of supercooled water using a monatomic model

    NASA Astrophysics Data System (ADS)

    Moore, Emily Brooke

    There remain many unanswered questions regarding the structure and behavior of water, particularly when cooled below the melting temperature into water's supercooled region. In this region, liquid water is metastable, and rapid crystallization makes it difficult to study experimentally the liquid and the crystallization process. Computational studies are hindered by the complexity of accurately modeling water and the computational cost of simulating processes such as crystallization. In this work, the development and validation of mW, a monatomic water model, is presented. This model is able to quantitatively reproduce the structure, dynamic anomalies and phase behavior of water without hydrogen atoms or electrostatics by reproducing water's propensity to form locally tetrahedral structures. Using the mW water model in molecular dynamics simulations, we show the evolution of the local structure of water from 300--100 K. We find that the thermodynamic and structural properties studied, density, tetrahedrality and structural correlation length, change maximally or are maximum at 202 +/- 2 K, the liquid-liquid transformation temperature. Shifting to water confined within cylindrical nanopores, we present the development of a rotationally invariant method, the CHILL algorithm, to distinguish between liquid, hexagonal and cubic ice. We analyze the process of homogeneous nucleation, growth and melting within hydrophilic pores, as well as the effect of water-pore interaction strength on the melting of ice and liquid-ice coexistence within pores. Crystallization within the nanopores results in cubic ice with hexagonal stacking faults in agreement with experiments. We also investigate crystallization of bulk liquid within water's experimentally inaccessible "no man's land." Crystallization occurs through rapid development of ice nuclei that grow and consolidate, precluding the measurement of diffusion within the liquid. Analysis of how ice structure develops shows that

  19. Anisotropic mechanoresponse of energetic crystallites: a quantum molecular dynamics study of nano-collision.

    PubMed

    Li, Ying; Kalia, Rajiv K; Misawa, Masaaki; Nakano, Aiichiro; Nomura, Ken-Ichi; Shimamura, Kohei; Shimojo, Fuyuki; Vashishta, Priya

    2016-05-14

    At the nanoscale, chemistry can happen quite differently due to mechanical forces selectively breaking the chemical bonds of materials. The interaction between chemistry and mechanical forces can be classified as mechanochemistry. An example of archetypal mechanochemistry occurs at the nanoscale in anisotropic detonating of a broad class of layered energetic molecular crystals bonded by inter-layer van der Waals (vdW) interactions. Here, we introduce an ab initio study of the collision, in which quantum molecular dynamic simulations of binary collisions between energetic vdW crystallites, TATB molecules, reveal atomistic mechanisms of anisotropic shock sensitivity. The highly sensitive lateral collision was found to originate from the twisting and bending to breaking of nitro-groups mediated by strong intra-layer hydrogen bonds. This causes the closing of the electronic energy gap due to an inverse Jahn-Teller effect. On the other hand, the insensitive collisions normal to multilayers are accomplished by more delocalized molecular deformations mediated by inter-layer interactions. Our nano-collision studies provide a much needed atomistic understanding for the rational design of insensitive energetic nanomaterials and the detonation synthesis of novel nanomaterials.

  20. Anisotropic mechanoresponse of energetic crystallites: a quantum molecular dynamics study of nano-collision.

    PubMed

    Li, Ying; Kalia, Rajiv K; Misawa, Masaaki; Nakano, Aiichiro; Nomura, Ken-Ichi; Shimamura, Kohei; Shimojo, Fuyuki; Vashishta, Priya

    2016-05-14

    At the nanoscale, chemistry can happen quite differently due to mechanical forces selectively breaking the chemical bonds of materials. The interaction between chemistry and mechanical forces can be classified as mechanochemistry. An example of archetypal mechanochemistry occurs at the nanoscale in anisotropic detonating of a broad class of layered energetic molecular crystals bonded by inter-layer van der Waals (vdW) interactions. Here, we introduce an ab initio study of the collision, in which quantum molecular dynamic simulations of binary collisions between energetic vdW crystallites, TATB molecules, reveal atomistic mechanisms of anisotropic shock sensitivity. The highly sensitive lateral collision was found to originate from the twisting and bending to breaking of nitro-groups mediated by strong intra-layer hydrogen bonds. This causes the closing of the electronic energy gap due to an inverse Jahn-Teller effect. On the other hand, the insensitive collisions normal to multilayers are accomplished by more delocalized molecular deformations mediated by inter-layer interactions. Our nano-collision studies provide a much needed atomistic understanding for the rational design of insensitive energetic nanomaterials and the detonation synthesis of novel nanomaterials. PMID:27110831

  1. Ultrafast Molecular Dynamics Studied with Vacuum Ultraviolet Pulses

    NASA Astrophysics Data System (ADS)

    Wright, Travis William

    Studying the ultrafast dynamics of small molecules can serve as the first step in understanding the dynamics in larger chemically and biologically relevant molecules. To make direct comparisons with existing computational techniques, the photons used in pump-probe spectroscopy must make perturbative transitions between the electronic states of isolated small molecules. In this dissertation experimental investigations of ultrafast dynamics in electronic excitations of neutral ethylene and carbon dioxide are discussed. These experiments are performed using VUV/XUV femtosecond pulses as pump and probe. To make photons with sufficient energy for single photon transitions, VUV and XUV light is generated by high harmonic generation (HHG) using a high pulse energy (≈30--40 mJ) Ti:sapphire femtosecond laser. Sufficient flux must be generated to enable splitting of the HHG light into pump and probe arms. The system produces >1010 photons per shot, corresponding to nearly 10 MW of peak power in the XUV. Using a high flux of high energy photons creates a unique set of challenges when designing a detector capable of performing pump-probe experiments. A velocity map imaging (VMI) detector has been designed to address these challenges, and has become a successful tool facilitating studies into molecular dynamics that were not possible before its implementation. The emphasis on using high energy, single photon transitions allowed theoretical calculations to be directly compared to experimental yields for the first time. This comparison resolved a long standing issue in the excited state lifetime of ethylene, and provided a confirmation of the branching ratio between the two nonadiabatic relaxation pathways that return ethylene back to its ground state from the pi*. The participation of the 3s Rydberg state has also been measured by collecting the time resolved photoelectron spectrum during the dynamics on ethylene's pi* excited state, confirming calculations predicting the

  2. Molecular dynamics simulation studies of liquid crystalline materials

    NASA Astrophysics Data System (ADS)

    Tian, Pu

    Molecular dynamics (MD) simulation studies of the phase behavior, the response to an applied field of nematic liquid crystalline (LC) materials and interactions of nanoparticles in isotropic mesogenic materials are presented in this work. Molecular models used include the rigid bead-necklace model and soft spherocylinders. Free energy calculations applying thermodynamic integration and the Gibbs-Duhem integration method were used to establish the (T, P) phase diagram of the repulsive bead-necklace model, subsequently the Gibbs-Duhem integration method was further utilized to investigate the influence of attractive interactions on the phase behavior of the bead-necklace model. Analysis of order and thermodynamics of LC phase transitions (Isotropic-Nematic transition and Nematic-Smectic A transition) demonstrate that this simple model can capture the basic physics of liquid crystalline phases, and good agreement with experimental results is obtained. Further addition of chemical details to this multiple interaction sites model is much easier than to the idealized models (Gay-Berne, Spherocylinders) while the computation cost increase with respect to these idealized models is minimal. With a mean field representation of field-molecules interaction, MD simulation studies of the switching behavior of nematic LC, which is the basis of many LC devices, were performed. The switching mechanisms were explained in terms of the compromise between the elastic energy and field-molecules interactions. Qualitative agreement with experiments confirmed the validity of the mean field approximation. Finally, using the standard umbrella sampling technique and MD simulations, the potential of mean force between two nanoparticles in solvent of spherocylinders is calculated. It is found that while dispersed nanoparticles will delay the Isotropic-Nematics transition to higher density (lower temperature), they can induce local ordering fluctuations (within a few molecular lengths of the

  3. CO2 diffusion in champagne wines: a molecular dynamics study.

    PubMed

    Perret, Alexandre; Bonhommeau, David A; Liger-Belair, Gérard; Cours, Thibaud; Alijah, Alexander

    2014-02-20

    Although diffusion is considered as the main physical process responsible for the nucleation and growth of carbon dioxide bubbles in sparkling beverages, the role of each type of molecule in the diffusion process remains unclear. In the present study, we have used the TIP5P and SPC/E water models to perform force field molecular dynamics simulations of CO2 molecules in water and in a water/ethanol mixture respecting Champagne wine proportions. CO2 diffusion coefficients were computed by applying the generalized Fick's law for the determination of multicomponent diffusion coefficients, a law that simplifies to the standard Fick's law in the case of champagnes. The CO2 diffusion coefficients obtained in pure water and water/ethanol mixtures composed of TIP5P water molecules were always found to exceed the coefficients obtained in mixtures composed of SPC/E water molecules, a trend that was attributed to a larger propensity of SPC/E water molecules to form hydrogen bonds. Despite the fact that the SPC/E model is more accurate than the TIP5P model to compute water self-diffusion and CO2 diffusion in pure water, the diffusion coefficients of CO2 molecules in the water/ethanol mixture are in much better agreement with the experimental values of 1.4 - 1.5 × 10(-9) m(2)/s obtained for Champagne wines when the TIP5P model is employed. This difference was deemed to rely on the larger propensity of SPC/E water molecules to maintain the hydrogen-bonded network between water molecules and form new hydrogen bonds with ethanol, although statistical issues cannot be completely excluded. The remarkable agreement between the theoretical CO2 diffusion coefficients obtained within the TIP5P water/ethanol mixture and the experimental data specific to Champagne wines makes us infer that the diffusion coefficient in these emblematic hydroalcoholic sparkling beverages is expected to remain roughly constant whathever their proportions in sugars, glycerol, or peptides.

  4. molecular dynamics study of the gallium vacancy diffusion in GaAs

    NASA Astrophysics Data System (ADS)

    Bockstedte, Michel; Scheffler, Matthias

    1996-03-01

    Experimentally(T. Y. Tan et al.), Rev. Solid State Mater. Sci. 17, 47 (1991). it is well established that cation self-diffusion in GaAs proceeds by gallium vacancies. An analysis(J-L. Rouviere et al.), Phys. Rev. Lett. 68, 2798 (1992). of diffusion experiments yielded an exceptionally high value for the formation entropy of 32.9 kB and a migration energy barrier of 1.7 eV. The physics underlying this result is quite puzzling. Even the question whether the diffusion involves only the gallium sublattice or whether it proceeds by nearest neighbor hops is unanswered. Employing ab initio molecular dynamics simulations we analyze the motion of atoms and evaluate the free energy of vacancy formation and the diffusion constant. For the Ga vacancy we obtain a value for the formation entropy of 8 kB - comparable to that of the vacancy in silicon - but significantly lower than that extracted from experimentfootnotemark[2]. Based on our studies we therefore dare to question the experimental analysis. The calculated motion of a gallium vacancy close to the melting temperature of GaAs and the analysis of the different diffusion events exclude a diffusion mechanism by nearest neighbor hops. We discuss the microscopic picture of the second nearest neighbor hop, and determine its rate constant.

  5. Ab Initio Molecular Dynamics Simulations of Low-Energy Recoil Events in ThO2, CeO2, and ZrO2

    SciTech Connect

    Xiao, Haiyan Y.; Zhang, Yanwen; Weber, William J.

    2012-08-13

    Ab initio molecular dynamics simulations of low-energy recoil events in ThO2, CeO2, and ZrO2 have been carried out to determine the threshold displacement energies, resulting defect configurations, dynamics of defect generation, and role of charge transfer during the process. The results reveal that, in most cases, these fluorite structure oxides exhibit a similar response to low-energy recoils. A variety of different defect configurations are created, consisting mainly of vacancies and interstitials. Charge transfer occurs during the dynamic displacement process. Local charge redistribution leads to cation and O vacancies being negatively and positively charged, respectively. Likewise, due to charge redistribution, the cation and O interstitials are less positively and negatively charged, respectively, than the ions on lattice sites in perfect MO2.

  6. Ab initio molecular dynamics simulations of low energy recoil events in ThO2, CeO2 and ZrO2

    SciTech Connect

    Xiao, Haiyan; Zhang, Yanwen; Weber, William J

    2012-01-01

    Ab initio molecular dynamics simulations of low energy recoil events in ThO2, CeO2 and ZrO2 have been carried out to determine the threshold displacement energies, resulting defect configurations, dynamics of defect generation, and role of charge transfer during the process. The results reveal that, in most cases, these fluorite structure oxides exhibit a similar response to low-energy recoils. A variety of different defect configurations are created, consisting mainly of vacancies and interstitials. Charge transfer occurs during the dynamic displacement process. Local charge redistribution leads to cation and O vacancies being negatively and positively charged, respectively. Likewise, due to charge redistribution, the cation and O interstitials are less positively and negatively charged, respectively, than the ions on lattice sites in perfect MO2.

  7. Theoretical gas to liquid shift of (15)N isotropic nuclear magnetic shielding in nitromethane using ab initio molecular dynamics and GIAO/GIPAW calculations.

    PubMed

    Gerber, Iann C; Jolibois, Franck

    2015-05-14

    Chemical shift requires the knowledge of both the sample and a reference magnetic shielding. In few cases as nitrogen (15N), the standard experimental reference corresponds to its liquid phase. Theoretical estimate of NMR magnetic shielding parameters of compounds in their liquid phase is then mandatory but usually replaced by an easily-get gas phase value, forbidding direct comparisons with experiments. We propose here to combine ab initio molecular dynamic simulations with the calculations of magnetic shielding using GIAO approach on extracted cluster's structures from MD. Using several computational strategies, we manage to accurately calculate 15N magnetic shielding of nitromethane in its liquid phase. Theoretical comparison between liquid and gas phase allows us to extrapolate an experimental value for the 15N magnetic shielding of nitromethane in gas phase between -121.8 and -120.8 ppm.

  8. Characterization of structure and dynamics of an aqueous scandium(III) ion by an extended ab initio QM/MM molecular dynamics simulation.

    PubMed

    Vchirawongkwin, Viwat; Kritayakornupong, Chinapong; Tongraar, Anan; Rode, Bernd M

    2012-10-14

    Hydration structure and dynamics of an aqueous Sc(III) solution were characterized by means of an extended ab initio quantum mechanical/molecular dynamical (QM/MM) molecular dynamics simulation at Hartree-Fock level. A monocapped trigonal prismatic structure composed of seven water molecules surrounding scandium(III) ion was proposed by the QM/MM simulation including the quantum mechanical effects for the first and second hydration shells. The mean Sc(III)-O bond length of 2.14 Å was identified for six prism water molecules with one capping water located at around 2.26 Å, reproducing well the X-ray diffraction data. The Sc(III)-O stretching frequency of 432 cm(-1) corresponding to a force constant of 130 N m(-1), evaluated from the enlarged QM/MM simulation, is in good agreement with the experimentally determined value of 430 cm(-1) (128 N m(-1)). Various water exchange processes in the second hydration shell of the hydrated Sc(III) ion predict a mean ligand residence time of 7.3 ps.

  9. Curvy-steps approach to constraint-free extended-Lagrangian ab initio molecular dynamics, using atom-centered basis functions: convergence toward Born-Oppenheimer trajectories.

    PubMed

    Herbert, John M; Head-Gordon, Martin

    2004-12-15

    A dynamical extension of the "curvy-steps" approach to linear-scaling self-consistent field calculations is presented, which yields an extended-Lagrangian formulation of ab initio molecular dynamics. An exponential parametrization of the one-electron density matrix, expressed in terms of atom-centered Gaussian basis functions, facilitates propagation along the manifold of density matrices in a geometrically correct fashion that automatically enforces idempotency constraints. The extended Lagrangian itself is constraint free, thus neither density matrix purification nor expensive, iterative solution for Lagrange multipliers is required. Propagation is highly efficient, and time steps compare favorably to those used in Car-Parrinello molecular dynamics simulations. The behavior of the method, especially with regard to the maintenance of adiabatic decoupling of nuclei and electrons, is examined for a sequence of diatomic molecules, and comparison is made to trajectories propagated on the converged Born-Oppenheimer surface. Certain claims to the contrary notwithstanding, our results demonstrate that vibrational frequencies may depend on the value of the fictitious mass parameter, even in an atom-centered basis. Light-atom stretching frequencies can be significantly redshifted, even when the nuclear and electronic energy scales are well separated. With a sufficiently small fictitious mass and a short time step, accurate frequencies can be obtained; we characterize appropriate values of these parameters for a wide range of vibrational frequencies.

  10. Molecular-Dynamics Study Melting Aluminum at High Pressures

    NASA Astrophysics Data System (ADS)

    Gubin, S. A.; Maklashova, I. V.; Selezenev, A. A.; Kozlova, S. A.

    The dependence of the melting temperature versus the pressure under static conditions and under shock-wave compression of aluminum was calculated by molecular-dynamic modeling technique. The Morse potential and EAM potential (embedded atom method) was used for the interatomic interaction for the solid and liquid phases of aluminum. The calculations show a change of crystal structure of aluminum close to the melting range static compression and compression in the shock wave. Melting point was determined by analysis of the radial distribution function and the standard deviation of the atoms with the visualization of crystal structure. The results of molecular dynamics calculations are consistent with experimental data on the compressibility of the shock wave up to 200 GPa. Static melting results are consistent across the field of experimental data up to 30 GPa. A short-term compression in the shock wave, accompanied by the increase of entropy can be leads to overheating nonequilibrium substances. Under these conditions, the melting temperature under static and shock compression may be different from each other. However, the calculations showed on pressure in the shock wave 122 GPa aluminum melting occurs at temperatures close to the melting temperature in static conditions.

  11. Quantum mechanical molecular dynamics studies of chemical systems

    NASA Astrophysics Data System (ADS)

    Pavese, Marc

    Methods for including quantum mechanical effects in molecular dynamics (MD) simulations are discussed in this thesis. The thesis focuses on the path integral centroid molecular dynamics (CMD) algorithm. This algorithm is first described and then used in simulations of low temperature para-hydrogen, and also in simulations of the excess proton in water clusters and in the bulk. The CMD method allows one to include the effects of nuclear quantization approximately while still maintaining a quasi-classical, trajectory based, description of the dynamics. The effects of quantization of the electronic degrees of freedom are also discussed. These effects are usually taken into account implicitly through parameterized potential functions. However, methods for including the quantum electronic degrees of freedom explicitly in a MD simulation are also discussed in this thesis. Most notably, the Car-Parrinello method, which combines density functional theory (DFT) with MD, is employed with the CMD algorithm. This yields a method which takes explicit account of the quantum electrons and nuclei. Thus, this work represents one feasible approach for considering the quantum nature of all the degrees of freedom of the system while still maintaining an MD framework. In the concluding remarks, future directions and possibilities for this type of approach are discussed.

  12. Accelerated Molecular Dynamics studies of He Bubble Growth in Tungsten

    NASA Astrophysics Data System (ADS)

    Uberuaga, Blas; Sandoval, Luis; Perez, Danny; Voter, Arthur

    2015-11-01

    Understanding how materials respond to extreme environments is critical for predicting and improving performance. In materials such as tungsten exposed to plasmas for nuclear fusion applications, novel nanoscale fuzzes, comprised of tendrils of tungsten, form as a consequence of the implantation of He into the near surface. However, the detailed mechanisms that link He bubble formation to the ultimate development of fuzz are unclear. Molecular dynamics simulations provide insight into the He implantation process, but are necessarily performed at implantation rates that are orders of magnitudes faster than experiment. Here, using accelerated molecular dynamics methods, we examine the role of He implantation rates on the physical evolution of He bubbles in tungsten. We find that, as the He rate is reduced, new types of events involving the response of the tungsten matrix to the pressure in the bubble become competitive and change the overall evolution of the bubble as well as the subsequent morphology of the tungsten surface. We have also examined how bubble growth differs at various microstructural features. These results highlight the importance of performing simulations at experimentally relevant conditions in order to correctly capture the contributions of the various significant kinetic processes and predict the overall response of the material.

  13. Molecular dynamics studies of organic-coated nano aerosols

    NASA Astrophysics Data System (ADS)

    Chakraborty, Purnendu

    2008-10-01

    Atmospheric aerosols play an important role in atmospheric processes. These aerosol particles can affect climate through scattering, transmission and absorption of radiation as well as acting as cloud condensation nuclei. It has recently been found that fatty acids reside on the surfaces of marine and continental aerosols. In this research, an attempt has been made to understand the structures and properties of such organic coated aerosols using Molecular Dynamics simulation. The model particle consisted of a water droplet coated with fatty acid. The density profile (using both Coarse-Grained and Atomistic/United atom models) demonstrated that such aerosol particles have an inverted micelle structure consisting of an aqueous core and with the hydrophobic hydrocarbon tails exposed to the atmosphere. For smaller chains, with the organic molecules directed radially outwards from the water---organic interface) the normal pressure profile showed that the organic coating is under tension resulting in a 'negative' surface tension. As a result, such particles would have an inverse Kelvin vapor pressure effect and would be able to process water vapor despite the hydrophobic surface. Following the work on surface tension, the rate of water uptake by coated aerosols was computed. It was found that the sticking coefficient of water vapor on such particles was about a sixth of that on pure water droplets. This may seem to imply that the net condensation rate is lower, but we also need to take into account the evaporation of water from such particles. With a significant reduction in the evaporation rate (the coating lends greater stability to the particle resulting in reduced evaporation rate), the equilibrium vapor pressure of water on such particles reduced, resulting in a "net water attractor". Thus if such structures were created in sufficient concentration, they might be important contributors in the cloud condensation process. Next the effect of longer Fatty acid molecules

  14. Palladium complexation in chloride- and bisulfide-rich fluids: Insights from ab initio molecular dynamics simulations and X-ray absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Mei, Yuan; Etschmann, Barbara; Liu, Weihua; Sherman, David M.; Barnes, Stephen J.; Fiorentini, Marco L.; Seward, Terry M.; Testemale, Denis; Brugger, Joël

    2015-07-01

    Palladium (Pd) is the most mobile element of the platinum group elements (PGE) in hydrothermal fluids. The characterization of the nature and stability of Pd(II) complexes in geofluids is essential in understanding the formation of hydrothermal PGE deposits and the remobilization of PGE during hydrothermal and metamorphic overprints of magmatic deposits. However, the aqueous speciation of this metal in a range of geologically relevant conditions remains controversial. A number of experimental studies of Pd solubility and speciation in hydrothermal fluids suggest that chloride and bisulfide are the major ligands responsible for carrying Pd as Pd(II)-Cl and Pd(II)-HS complexes, but different experimental studies predicted different predominant chloride and bisulfide complexes and their relative strengths. Hence, we conducted ab initio molecular dynamics (MD) simulations to predict the speciation of Pd-Cl and Pd-HS complexes at 300 °C. The simulations predicted that all complexes share fourfold square-planar structures, which is consistent with X-ray absorption spectroscopy measurements of Pd(II) in chloride-rich solutions. The stability constants for the stepwise formation of Pd(II)-Cl and Pd(II)-HS complexes were determined using thermodynamic integration. The predicted formation constants of Pd(II)-Cl complexes show excellent agreement (within ∼1 order of magnitude for PdCl+, within 0.3 for PdCl2(aq) and PdCl3-, within 0.1 for PdCl42-) with the recent experimental study of Tagirov et al. (2013). However, our results suggest that the Pd(HS)42- complex predominates in HS--rich hydrothermal fluids, whereas interpretation of previous experimental studies neglected this species. Modeling of Pd solubility in chloride- and sulfur-rich hydrothermal fluids demonstrated that Pd is mainly carried as the Pd(HS)42- hydrosulfide complex at neutral-alkaline and reduced (pyrite/pyrrhotite stable) conditions, and as the PdCl42- chloride complex at acidic and oxidized conditions

  15. Xenon Implantation in Nanodiamonds: In Situ Transmission Electron Microscopy Study and Molecular Dynamics Simulations

    NASA Astrophysics Data System (ADS)

    Shiryaev, A. A.; Hinks, J.; Marks, N.; Greaves, G.; Donnelly, S.; Fisenko, A. V.; Kiwi, M.

    2016-08-01

    We present results of the first investigation of the Xe implantation process into nanodiamonds of various sizes studied in situ in transmission electron microscope (TEM), complemented by advanced molecular dynamics simulations.

  16. Accurate path integral molecular dynamics simulation of ab-initio water at near-zero added cost

    NASA Astrophysics Data System (ADS)

    Elton, Daniel; Fritz, Michelle; Soler, José; Fernandez-Serra, Marivi

    It is now established that nuclear quantum motion plays an important role in determining water's structure and dynamics. These effects are important to consider when evaluating DFT functionals and attempting to develop better ones for water. The standard way of treating nuclear quantum effects, path integral molecular dynamics (PIMD), multiplies the number of energy/force calculations by the number of beads, which is typically 32. Here we introduce a method whereby PIMD can be incorporated into a DFT molecular dynamics simulation at virtually zero cost. The method is based on the cluster (many body) expansion of the energy. We first subtract the DFT monomer energies, using a custom DFT-based monomer potential energy surface. The evolution of the PIMD beads is then performed using only the more-accurate Partridge-Schwenke monomer energy surface. The DFT calculations are done using the centroid positions. Various bead thermostats can be employed to speed up the sampling of the quantum ensemble. The method bears some resemblance to multiple timestep algorithms and other schemes used to speed up PIMD with classical force fields. We show that our method correctly captures some of key effects of nuclear quantum motion on both the structure and dynamics of water. We acknowledge support from DOE Award No. DE-FG02-09ER16052 (D.E.) and DOE Early Career Award No. DE-SC0003871 (M.V.F.S.).

  17. Molecular structure of poly(methyl methacrylate) surface: Combination of interface-sensitive infrared-visible sum frequency generation, molecular dynamics simulations, and ab initio calculations

    NASA Astrophysics Data System (ADS)

    Zhu, He; Jha, Kshitij C.; Bhatta, Ram S.; Tsige, Mesfin; Dhinojwala, Ali

    2015-03-01

    The chemical composition and molecular structure of polymeric surfaces are important in understanding wetting, adhesion, and friction. Here, we combine interface-sensitive sum frequency generation spectroscopy (SFG), all-atom molecular dynamics (MD) simulations, and ab initio calculations to understand the composition and the orientation of chemical groups on poly(methyl methacrylate) (PMMA) surface as a function of tacticity and temperature. The SFG spectral features for isotactic and syndiotactic PMMA surfaces are similar and the dominant peak in the spectra corresponds to the ester-methyl groups. The SFG spectra for solid and melt states are very similar for both syndiotactic and isotactic PMMA. In comparison, the MD simulation results show that both the ester-methyl and the α-methyl groups of syndiotactic-PMMA are ordered and tilted towards the surface normal. For the isotactic-PMMA, the α-methyl groups are less ordered compared to their ester-methyl groups. The backbone methylene groups have a broad angular distribution and on average tilt along the surface plane, independent of tacticity and temperature. We have compared the SFG results with theoretical spectra calculated using MD simulations and ab initio calculations. National Science Foundation.

  18. Ab initio molecular dynamics of liquid water using embedded-fragment second-order many-body perturbation theory towards its accurate property prediction

    PubMed Central

    Willow, Soohaeng Yoo; Salim, Michael A.; Kim, Kwang S.; Hirata, So

    2015-01-01

    A direct, simultaneous calculation of properties of a liquid using an ab initio electron-correlated theory has long been unthinkable. Here we present structural, dynamical, and response properties of liquid water calculated by ab initio molecular dynamics using the embedded-fragment spin-component-scaled second-order many-body perturbation method with the aug-cc-pVDZ basis set. This level of theory is chosen as it accurately and inexpensively reproduces the water dimer potential energy surface from the coupled-cluster singles, doubles, and noniterative triples with the aug-cc-pVQZ basis set, which is nearly exact. The calculated radial distribution function, self-diffusion coefficient, coordinate number, and dipole moment, as well as the infrared and Raman spectra are in excellent agreement with experimental results. The shapes and widths of the OH stretching bands in the infrared and Raman spectra and their isotropic-anisotropic Raman noncoincidence, which reflect the diverse local hydrogen-bond environment, are also reproduced computationally. The simulation also reveals intriguing dynamic features of the environment, which are difficult to probe experimentally, such as a surprisingly large fluctuation in the coordination number and the detailed mechanism by which the hydrogen donating water molecules move across the first and second shells, thereby causing this fluctuation. PMID:26400690

  19. Ab initio molecular dynamics of liquid water using embedded-fragment second-order many-body perturbation theory towards its accurate property prediction.

    PubMed

    Willow, Soohaeng Yoo; Salim, Michael A; Kim, Kwang S; Hirata, So

    2015-01-01

    A direct, simultaneous calculation of properties of a liquid using an ab initio electron-correlated theory has long been unthinkable. Here we present structural, dynamical, and response properties of liquid water calculated by ab initio molecular dynamics using the embedded-fragment spin-component-scaled second-order many-body perturbation method with the aug-cc-pVDZ basis set. This level of theory is chosen as it accurately and inexpensively reproduces the water dimer potential energy surface from the coupled-cluster singles, doubles, and noniterative triples with the aug-cc-pVQZ basis set, which is nearly exact. The calculated radial distribution function, self-diffusion coefficient, coordinate number, and dipole moment, as well as the infrared and Raman spectra are in excellent agreement with experimental results. The shapes and widths of the OH stretching bands in the infrared and Raman spectra and their isotropic-anisotropic Raman noncoincidence, which reflect the diverse local hydrogen-bond environment, are also reproduced computationally. The simulation also reveals intriguing dynamic features of the environment, which are difficult to probe experimentally, such as a surprisingly large fluctuation in the coordination number and the detailed mechanism by which the hydrogen donating water molecules move across the first and second shells, thereby causing this fluctuation.

  20. A rotary nano ion pump: a molecular dynamics study.

    PubMed

    Lohrasebi, A; Feshanjerdi, M

    2012-09-01

    The dynamics of a rotary nano ion pump, inspired by the F (0) part of the F(0)F(1)-ATP synthase biomolecular motor, were investigated. This nanopump is composed of a rotor, which is constructed of two carbon nanotubes with benzene rings, and a stator, which is made of six graphene sheets. The molecular dynamics (MD) method was used to simulate the dynamics of the ion nanopump. When the rotor of the nanopump rotates mechanically, an ion gradient will be generated between the two sides of the nanopump. It is shown that the ion gradient generated by the nanopump is dependant on parameters such as the rotary frequency of the rotor, temperature and the amounts and locations of the positive and negative charges of the stator part of the nanopump. Also, an electrical potential difference is generated between the two sides of the pump as a result of its operation.

  1. Molecular dynamics study of a polymeric reverse osmosis membrane.

    SciTech Connect

    Harder, E.; Walters, D. E.; Bodnar, Y. D.; Faibish, R. S.; Roux, B.

    2009-07-30

    Molecular dynamics (MD) simulations are used to investigate the properties of an atomic model of an aromatic polyamide reverse osmosis membrane. The monomers forming the polymeric membrane are cross-linked progressively on the basis of a heuristic distance criterion during MD simulations until the system interconnectivity reaches completion. Equilibrium MD simulations of the hydrated membrane are then used to determine the density and diffusivity of water within the membrane. Given a 3 MPa pressure differential and a 0.125 {micro}m width membrane, the simulated water flux is calculated to be 1.4 x 10{sup -6} m/s, which is in fair agreement with an experimental flux measurement of 7.7 x 10{sup -6} m/s.

  2. Molecular Dynamics Studies of Thermal Induced Chemistry in Tatb

    NASA Astrophysics Data System (ADS)

    Quenneville, J.; Germann, T. C.; Thompson, A. P.; Kober, E. M.

    2007-12-01

    A reactive force field (ReaxFF) is used with molecular dynamics to probe the chemistry induced by intense heating (`accelerated cook-off') of 1,3,5-triamino-2,4,6-trinitrobenzene (TATB). Large-system simulations are desired for TATB because of the high degree of carbon clustering expected in this material. Using small, 32-molecule simulations, we calculate the reaction rate as a function of temperature and compare the Arrhenius-predicted activation energy with experiment. Decomposition product evolution (mainly N2, H2O, CO2 and graphitic carbon clusters) is followed using a 576-molecule larger simulation, which also illustrates the effect of system size on both carbon clustering and reaction rate.

  3. Molecular dynamics studies of interfacial water at the alumina surface.

    SciTech Connect

    Argyris, Dr. Dimitrios; Ho, Thomas; Cole, David

    2011-01-01

    Interfacial water properties at the alumina surface were investigated via all-atom equilibrium molecular dynamics simulations at ambient temperature. Al-terminated and OH-terminated alumina surfaces were considered to assess the structural and dynamic behavior of the first few hydration layers in contact with the substrates. Density profiles suggest water layering up to {approx}10 {angstrom} from the solid substrate. Planar density distribution data indicate that water molecules in the first interfacial layer are organized in well-defined patterns dictated by the atomic terminations of the alumina surface. Interfacial water exhibits preferential orientation and delayed dynamics compared to bulk water. Water exhibits bulk-like behavior at distances greater than {approx}10 {angstrom} from the substrate. The formation of an extended hydrogen bond network within the first few hydration layers illustrates the significance of water?water interactions on the structural properties at the interface.

  4. Interpretation of the Ir/uv Spectra of Ac-Trp-Tyr-NH2 and Ac-Trp-Tyr-Ser-NH2 Using Molecular Dynamics and AB Initio Methods.

    NASA Astrophysics Data System (ADS)

    Thomas, Jessica A.; Pratt, David W.; Gloaguen, Eric; Tardivel, Benjamin; Piuzzi, François; Mons, Michel

    2011-06-01

    The peptides Ac-Trp-Tyr-NH2 and Ac-Trp-Tyr-Ser-NH2, which form the N-terminal region of a folding nucleus in β-lactoglobulin, were studied in the gas phase using IR/UV double resonance spectroscopy and initial results were presented at a previous symposium. Molecular dynamics (AMBER 99/99SB, CHARMM 27) and ab initio calculations (RI-B97-D/TZVPP, pbe GGA/cc-PVDZ) resulted in an improved interpretation of the spectra and assignments for the observed conformers. Results are compared to similar molecules such as Ac-Trp-NH2 and Ac-Phe-Phe-NH2. J.A. Thomas, D.W. Pratt, E. Gloaguen, B. Tardivel, F. Piuzzi, and M. Mons 63Rd International Symposium on Molecular Spectroscopy, FB11, 2008.

  5. Ab initio molecular dynamics simulation of ethanol decomposition on platinum cluster at initial stage of carbon nanotube growth

    NASA Astrophysics Data System (ADS)

    Shibuta, Yasushi; Shimamura, Kohei; Arifin, Rizal; Shimojo, Fuyuki

    2015-09-01

    Ethanol decomposition on a platinum cluster is investigated by ab initio MD simulation. As the dehydrogenation proceeds, the Mulliken charge of the methylene carbon becomes a positive value, whereas that of the methyl carbon keeps a negative value. Especially, the Mulliken charge of the methylene carbon in CHxCO (x = 0, 1, 2 and 3) fragment molecules takes a large positive value. These fragment molecules correspond to those with Csbnd C bond that dissociated in the MD simulation. It suggests the large deviation in the Mulliken charge between methylene and methyl carbons is the key factor inducing the Csbnd C bond dissociation.

  6. The Wacker oxidation of allyl alcohol along cyclic-intermediate routes: An ab initio molecular dynamics investigation

    NASA Astrophysics Data System (ADS)

    Imandi, Venkataramana; Nair, Nisanth N.

    2016-09-01

    The absence of isotope scrambling observed by Henry and coworkers in the Wacker oxidation of deuterated allylic alcohol was used by them as support for the inner-sphere mechanism hydroxypalladation mechanism. One of the assumptions used to interpret their experimental data was that allyl alcohol oxidation takes place through non-cyclic intermediate routes as in the case of ethene. Here we verify this assumption through ab initio metadynamics simulations of the Wacker oxidation of allyl alcohol in explicit solvent. Importance of our results in interpreting the isotope scrambling experiments is discussed.

  7. A First Principles Molecular Dynamics Study Of Calcium Ion In Water

    SciTech Connect

    Lightstone, F; Schwegler, E; Allesch, M; Gygi, F; Galli, G

    2005-01-28

    In this work we report on Car-Parrinello simulations of the divalent calcium ion in water, aimed at understanding the structure of the hydration shell and at comparing theoretical results with a series of recent experiments. Our paper shows some of the progress in the investigation of aqueous solutions brought about by the advent of ab initio molecular dynamics and highlights the importance of accessing subtle details of ion-water interactions from first-principles. Calcium plays a vital role in many biological systems, including signal transduction, blood clotting and cell division. In particular, calcium ions are known to interact strongly with proteins as they tend to bind well to both negatively charged (e.g. in aspartate and glutamate) and uncharged oxygens (e.g. in main-chain carbonyls). The ability of calcium to coordinate multiple ligands (from 6 to 8 oxygen atoms) with an asymmetric coordination shell enables it to cross-link different segments of a protein and induce large conformational changes. The great biochemical importance of the calcium ion has led to a number of studies to determine its hydration shell and its preferred coordination number in water. Experimental studies have used a variety of techniques, including XRD, EXAFS, and neutron diffraction to elucidate the coordination of Ca{sup 2+} in water. The range of coordination numbers (n{sub C}) inferred by X-ray diffraction studies varies from 6 to 8, and is consistent with that reported in EXAFS experiments (8 and 7.2). A wider range of values (6 to 10) was found in early neutron diffraction studies, depending on concentration, while a more recent measurement by Badyal, et al. reports a value close to 7. In addition to experimental measurements, many theoretical studies have been carried out to investigate the solvation of Ca{sup 2+} in water and have also reported a wide range of coordination numbers. Most of the classical molecular dynamics (MD) and QM/MM simulations report n{sub C} in the

  8. Molecular dynamics studies of the conformation of sorbitol

    PubMed Central

    Lerbret, A.; Mason, P.E.; Venable, R.M.; Cesàro, A.; Saboungi, M.-L.; Pastor, R.W.; Brady, J.W.

    2009-01-01

    Molecular dynamics simulations of a 3 m aqueous solution of D-sorbitol (also called D-glucitol) have been performed at 300 K, as well as at two elevated temperatures to promote conformational transitions. In principle, sorbitol is more flexible than glucose since it does not contain a constraining ring. However, a conformational analysis revealed that the sorbitol chain remains extended in solution, in contrast to the bent conformation found experimentally in the crystalline form. While there are 243 staggered conformations of the backbone possible for this open-chain polyol, only a very limited number were found to be stable in the simulations. Although many conformers were briefly sampled, only eight were significantly populated in the simulation. The carbon backbones of all but two of these eight conformers were completely extended, unlike the bent crystal conformation. These extended conformers were stabilized by a quite persistent intramolecular hydrogen bond between the hydroxyl groups of carbon C-2 and C-4. The conformational populations were found to be in good agreement with the limited available NMR data except for the C-2–C-3 torsion (spanned by the O-2–O-4 hydrogen bond), where the NMR data supports a more bent structure. PMID:19744646

  9. Enhanced Fluid Mixing in Nanochannels: A Molecular Dynamics Study

    NASA Astrophysics Data System (ADS)

    Oliver, Eric C. J.; Slater, Gary W.

    2006-03-01

    The efficient mixing of fluids is of paramount importance in several applications such as lab-on-a-chip and microfluidic devices. The main limitation to efficiency is that on small scales where the Reynolds number of the flow is low, mixing is dominated by diffusion. Purely diffusive motion is very slow and is an inefficient mixing mechanism unless the channel width is extremely small. Starting with the basic result for diffusive mixing of a binary fluid in a Poiseuille flow we explore methods to enhance the level of mixing between the two fluid species. We simulate the system using Molecular Dynamics and model the fluids as assemblies of Lennard-Jones beads. In order to increase the rate of mixing we have forced lateral motion in the fluid using configurations of mid-stream posts. Specifically, posts set in a prism-like structure have proven to be extremely well suited to reducing the channel length required to achieve complete mixing. In order to measure efficiency we have proposed a mathematical function that quantifies the level mixing associated with a fluid element. Furthermore, we have developed a basic theory for the position of the mixing front in a flow with spatially dependent velocity and diffusion coefficient.

  10. Molecular dynamics study of nanojoining between axially positioned Ag nanowires

    NASA Astrophysics Data System (ADS)

    Cui, Jianlei; Theogene, Barayavuga; Wang, Xuewen; Mei, Xuesong; Wang, Wenjun; Wang, Kedian

    2016-08-01

    The miniaturization of electronics devices into nanometer scale is indispensable for next-generation semiconductor technology. Ag nanowires (Ag NWs) are considered to be the promising candidates for future electronic circuit owing to the excellent electrical and thermal properties. The nanojoining of axially positioned Ag NWs was performed by molecular dynamics simulation. Through the detailed atomic evolution during the nanojoining, the results indicate that the temperature and the distance between Ag NWs in axial direction have a great impact on nanojoining effect. When the nanojoining temperature is relatively high, the atoms are disordered and the atomic queues become to distort with strong thermodynamic properties and weak effect of metal bonds. At the relatively low temperature, the Ag NWs can be well connected with good junction quality and their own morphology, which is similar to the cold welding without fusion, while the distance between Ag NWs should be controlled for interaction and diffusion of interfacial atoms at nanowires head. When the Ag NWs are placed on Si and SiO2 substrate, because the atomic species and lattice structure of substrate material can differently affect the motions of Ag atoms through the interactive force between the atoms, the nanojoining quality of Ag NWs on Si substrate is better than that on the SiO2 substrate. So, for getting effective and reliable nanojoining without nanosolders and other materials, the temperature, distance and substrate surface should be reasonably controlled and selected, providing helpful theoretical guidance for experiment and application of nanojoining.

  11. Molecular dynamics studies of thermal dissipation during shock induced spalling

    NASA Astrophysics Data System (ADS)

    Xiang, Meizhen; Hu, Haibo; Chen, Jun; Liao, Yi

    2013-09-01

    Under shock loadings, the temperature of materials may vary dramatically during deformation and fracture processes. Thus, thermal effect is important for constructing dynamical failure models. Existing works on thermal dissipation effects are mostly from meso- to macro-scale levels based on phenomenological assumptions. The main purpose of the present work is to provide several atomistic scale perspectives about thermal dissipation during spall fracture by nonequilibrium molecular dynamics simulations on single-crystalline and nanocrystalline Pb. The simulations show that temperature arising starts from the vicinity of voids during spalling. The thermal dissipation rate in void nucleation stage is much higher than that in the later growth and coalescence stages. Both classical spallation and micro-spallation are taken into account. Classical spallation is corresponding to spallation phenomenon where materials keep in solid state during shock compression and release stages, while micro-spallation is corresponding to spallation phenomenon where melting occurs during shock compression and release stages. In classical spallation, whether residuary dislocations are produced in pre-spall stages has significant influences on thermal dissipation rate during void growth and coalescence. The thermal dissipation rates decrease as shock intensity increases. When the shock intensity exceeds the threshold of micro-spallation, the thermal dissipation rate in void nucleation stage drops precipitously. It is found that grain boundaries mainly influence the thermal dissipation rate in void nucleation stage in classical spallation. In micro-spallation, the grain boundary effects are insignificant.

  12. Molecular dynamics study of anisotropic growth of silicon

    NASA Astrophysics Data System (ADS)

    Naigen, Zhou; Bo, Liu; Chi, Zhang; Ke, Li; Lang, Zhou

    2016-07-01

    Based on the Tersoff potential, molecular dynamics simulations have been performed to investigate the kinetic coefficients and growth velocities of Si (100), (110), (111), and (112) planes. The sequences of the kinetic coefficients and growth velocities are μ (100) > μ (110) > μ (112) > μ (111) and v (100) > v (110) > v (112) > v (111), respectively, which are not consistent with the sequences of the interface energies, interplanar spacings, and melting points of the four planes. However, they agree well with the sequences of the distributions and diffusion coefficients of the melting atoms near the solid–liquid interfaces. It indicates that the atomic distributions and diffusion coefficients affected by the crystal orientations determine the anisotropic growth of silicon. The formation of stacking fault structure will further decrease the growth velocity of the Si (111) plane. Project supported by the National Natural Science Foundation of China (Grant Nos. 51361022, 51561022, and 61464007) and the Natural Science Foundation of Jiangxi Province, China (Grant No. 20151BAB206001).

  13. Molecular dynamics study of anisotropic growth of silicon

    NASA Astrophysics Data System (ADS)

    Naigen, Zhou; Bo, Liu; Chi, Zhang; Ke, Li; Lang, Zhou

    2016-07-01

    Based on the Tersoff potential, molecular dynamics simulations have been performed to investigate the kinetic coefficients and growth velocities of Si (100), (110), (111), and (112) planes. The sequences of the kinetic coefficients and growth velocities are μ (100) > μ (110) > μ (112) > μ (111) and v (100) > v (110) > v (112) > v (111), respectively, which are not consistent with the sequences of the interface energies, interplanar spacings, and melting points of the four planes. However, they agree well with the sequences of the distributions and diffusion coefficients of the melting atoms near the solid-liquid interfaces. It indicates that the atomic distributions and diffusion coefficients affected by the crystal orientations determine the anisotropic growth of silicon. The formation of stacking fault structure will further decrease the growth velocity of the Si (111) plane. Project supported by the National Natural Science Foundation of China (Grant Nos. 51361022, 51561022, and 61464007) and the Natural Science Foundation of Jiangxi Province, China (Grant No. 20151BAB206001).

  14. Ab initio molecular dynamics simulations of structural changes associated with the incorporation of fluorine in bioactive phosphate glasses.

    PubMed

    Christie, Jamieson K; Ainsworth, Richard I; de Leeuw, Nora H

    2014-08-01

    Phosphate-based bioactive glasses containing fluoride ions offer the potential of a biomaterial which combines the bioactive properties of the phosphate glass and the protection from dental caries by fluoride. We conduct accurate first-principles molecular dynamics simulations of two compositions of fluorinated phosphate-based glass to assess its suitability as a biomaterial. There is a substantial amount of F-P bonding and as a result the glass network will be structurally homogeneous on medium-range length scales, without the inhomogeneities which reduce the bioactivity of other fluorinated bioactive glasses. We observe a decrease in the network connectivity with increasing F content, caused by the replacement of bridging oxygen atoms by non-bridging fluorine atoms, but this decrease is small and can be opposed by an increase in the phosphate content. We conclude that the structural changes caused by the incorporation of fluoride into phosphate-based glasses will not adversely affect their bioactivity, suggesting that fluorinated phosphate glasses offer a superior alternative to their silicate-based counterparts.

  15. Size dependence of cavity volume: a molecular dynamics study.

    PubMed

    Patel, Nisha; Dubins, David N; Pomès, Régis; Chalikian, Tigran V

    2012-02-01

    Partial molar volume, V°, has been used as a tool to sample solute hydration for decades. The efficacy of volumetric investigations of hydration depends on our ability to reliably discriminate between the cavity, V(C), and interaction, V(I), contributions to the partial molar volume. The cavity volume, V(C), consists of the intrinsic volume, V(M), of a solute molecule and the thermal volume, V(T), with the latter representing the volume of the effective void created around the solute. In this work, we use molecular dynamics simulations in conjunction with the Kirkwood-Buff theory to compute the partial molar volumes for organic solutes of varying sizes in water. We perform our computations using the Lennard-Jones and Coulombic pair potentials as well as truncated potentials which contain only the Lennard-Jones but not the Coulombic contribution. The partial molar volume computed with the Lennard-Jones potentials in the absence of the Coulombic term nearly coincides with the cavity volume, V(C). We determine the thermal volume, V(T), for each compound by subtracting its van der Waals volume, V(W), from V(C). Finally, we apply the spherical approximation of solute geometry to evaluate the thickness of the thermal volume, δ. Our results reveal an increase in the thickness of thermal volume, δ, with an increase in the size of the solute. This finding may be related to dewetting of large nonpolar solutes and the concomitant increase in the compressibility of water of hydration. PMID:22133917

  16. Molecular dynamics

    SciTech Connect

    Ladd, A.J.C.

    1988-08-01

    The basic methodology of equilibrium molecular dynamics is described. Examples from the literature are used to illustrate how molecular dynamics has been used to resolve theoretical controversies, provide data to test theories, and occasionally to discover new phenomena. The emphasis is on the application of molecular dynamics to an understanding of the microscopic physics underlying the transport properties of simple fluids. 98 refs., 4 figs.

  17. Computational Improvements to Quantum Wave Packet ab Initio Molecular Dynamics Using a Potential-Adapted, Time-Dependent Deterministic Sampling Technique.

    PubMed

    Jakowski, Jacek; Sumner, Isaiah; Iyengar, Srinivasan S

    2006-09-01

    In a recent publication, we introduced a computational approach to treat the simultaneous dynamics of electrons and nuclei. The method is based on a synergy between quantum wave packet dynamics and ab initio molecular dynamics. Atom-centered density-matrix propagation or Born-Oppenheimer dynamics can be used to perform ab initio dynamics. In this paper, wave packet dynamics is conducted using a three-dimensional direct product implementation of the distributed approximating functional free-propagator. A fundamental computational difficulty in this approach is that the interaction potential between the two components of the methodology needs to be calculated frequently. Here, we overcome this problem through the use of a time-dependent deterministic sampling measure that predicts, at every step of the dynamics, regions of the potential which are important. The algorithm, when combined with an on-the-fly interpolation scheme, allows us to determine the quantum dynamical interaction potential and gradients at every dynamics step in an extremely efficient manner. Numerical demonstrations of our sampling algorithm are provided through several examples arranged in a cascading level of complexity. Starting from a simple one-dimensional quantum dynamical treatment of the shared proton in [Cl-H-Cl](-) and [CH3-H-Cl](-) along with simultaneous dynamical treatment of the electrons and classical nuclei, through a complete three-dimensional treatment of the shared proton in [Cl-H-Cl](-) as well as treatment of a hydrogen atom undergoing donor-acceptor transitions in the biological enzyme, soybean lipoxygenase-1 (SLO-1), we benchmark the algorithm thoroughly. Apart from computing various error estimates, we also compare vibrational density of states, inclusive of full quantum effects from the shared proton, using a novel unified velocity-velocity, flux-flux autocorrelation function. In all cases, the potential-adapted, time-dependent sampling procedure is seen to improve the

  18. Vibrational circular dichroism from ab initio molecular dynamics and nuclear velocity perturbation theory in the liquid phase

    NASA Astrophysics Data System (ADS)

    Scherrer, Arne; Vuilleumier, Rodolphe; Sebastiani, Daniel

    2016-08-01

    We report the first fully ab initio calculation of dynamical vibrational circular dichroism spectra in the liquid phase using nuclear velocity perturbation theory (NVPT) derived electronic currents. Our approach is rigorous and general and thus capable of treating weak interactions of chiral molecules as, e.g., chirality transfer from a chiral molecule to an achiral solvent. We use an implementation of the NVPT that is projected along the dynamics to obtain the current and magnetic dipole moments required for accurate intensities. The gauge problem in the liquid phase is resolved in a twofold approach. The electronic expectation values are evaluated in a distributed origin gauge, employing maximally localized Wannier orbitals. In a second step, the gauge invariant spectrum is obtained in terms of a scaled molecular moments, which allows to systematically include solvent effects while keeping a significant signal-to-noise ratio. We give a thorough analysis and discussion of this choice of gauge for the liquid phase. At low temperatures, we recover the established double harmonic approximation. The methodology is applied to chiral molecules ((S)-d2-oxirane and (R)-propylene-oxide) in the gas phase and in solution. We find an excellent agreement with the theoretical and experimental references, including the emergence of signals due to chirality transfer from the solute to the (achiral) solvent.

  19. Vibrational circular dichroism from ab initio molecular dynamics and nuclear velocity perturbation theory in the liquid phase.

    PubMed

    Scherrer, Arne; Vuilleumier, Rodolphe; Sebastiani, Daniel

    2016-08-28

    We report the first fully ab initio calculation of dynamical vibrational circular dichroism spectra in the liquid phase using nuclear velocity perturbation theory (NVPT) derived electronic currents. Our approach is rigorous and general and thus capable of treating weak interactions of chiral molecules as, e.g., chirality transfer from a chiral molecule to an achiral solvent. We use an implementation of the NVPT that is projected along the dynamics to obtain the current and magnetic dipole moments required for accurate intensities. The gauge problem in the liquid phase is resolved in a twofold approach. The electronic expectation values are evaluated in a distributed origin gauge, employing maximally localized Wannier orbitals. In a second step, the gauge invariant spectrum is obtained in terms of a scaled molecular moments, which allows to systematically include solvent effects while keeping a significant signal-to-noise ratio. We give a thorough analysis and discussion of this choice of gauge for the liquid phase. At low temperatures, we recover the established double harmonic approximation. The methodology is applied to chiral molecules ((S)-d2-oxirane and (R)-propylene-oxide) in the gas phase and in solution. We find an excellent agreement with the theoretical and experimental references, including the emergence of signals due to chirality transfer from the solute to the (achiral) solvent. PMID:27586898

  20. Structure, dynamics and stability of water/scCO2/mineral interfaces from ab initio molecular dynamics simulations

    DOE PAGES

    Lee, Mal -Soon; Peter McGrail, B.; Rousseau, Roger; Glezakou, Vassiliki -Alexandra

    2015-10-12

    Here, the interface between a solid and a complex multi-component liquid forms a unique reaction environment whose structure and composition can significantly deviate from either bulk or liquid phase and is poorly understood due the innate difficulty to obtain molecular level information. Feldspar minerals, as typified by the Ca-end member Anorthite, serve as prototypical model systems to assess the reactivity and ion mobility at solid/water-bearing supercritical fluid (WBSF) interfaces due to recent X-ray based measurements that provide information on water-film formation, and cation vacancies at these surfaces. Using density functional theory based molecular dynamics, which allows the evaluation of reactivitymore » and condensed phase dynamics on equal footing, we report on the structure and dynamics of water nucleation and surface aggregation, carbonation and Ca mobilization under geologic carbon sequestration scenarios (T = 323 K and P = 90 bar). We find that water has a strong enthalpic preference for aggregation on a Ca-rich, O-terminated anorthite (001) surface, but entropy strongly hinders the film formation at very low water concentrations. Carbonation reactions readily occur at electron-rich terminal Oxygen sites adjacent to cation vacancies, when in contact with supercritical CO2. Cation vacancies of this type can form readily in the presence of a water layer that allows for facile and enthalpicly favorable Ca2+ extraction and solvation. Apart from providing unprecedented molecular level detail of a complex three component (mineral, water and scCO2) system), this work highlights the ability of modern capabilities of AIMD methods to begin to qualitatively and quantitatively address structure and reactivity at solid-liquid interfaces of high chemical complexity. This work was supported by the US Department of Energy, Office of Fossil Energy (M.-S. L., B. P. M. and V.-A. G.) and the Office of Basic Energy Science, Division of Chemical Sciences

  1. Avoiding fractional electrons in subsystem DFT based ab-initio molecular dynamics yields accurate models for liquid water and solvated OH radical

    NASA Astrophysics Data System (ADS)

    Genova, Alessandro; Ceresoli, Davide; Pavanello, Michele

    2016-06-01

    In this work we achieve three milestones: (1) we present a subsystem DFT method capable of running ab-initio molecular dynamics simulations accurately and efficiently. (2) In order to rid the simulations of inter-molecular self-interaction error, we exploit the ability of semilocal frozen density embedding formulation of subsystem DFT to represent the total electron density as a sum of localized subsystem electron densities that are constrained to integrate to a preset, constant number of electrons; the success of the method relies on the fact that employed semilocal nonadditive kinetic energy functionals effectively cancel out errors in semilocal exchange-correlation potentials that are linked to static correlation effects and self-interaction. (3) We demonstrate this concept by simulating liquid water and solvated OH• radical. While the bulk of our simulations have been performed on a periodic box containing 64 independent water molecules for 52 ps, we also simulated a box containing 256 water molecules for 22 ps. The results show that, provided one employs an accurate nonadditive kinetic energy functional, the dynamics of liquid water and OH• radical are in semiquantitative agreement with experimental results or higher-level electronic structure calculations. Our assessments are based upon comparisons of radial and angular distribution functions as well as the diffusion coefficient of the liquid.

  2. Ab initio molecular dynamics simulations of short-range order in Zr50Cu45Al5 and Cu50Zr45Al5 metallic glasses

    DOE PAGES

    Huang, Yuxiang; Huang, Li; Wang, C. Z.; Kramer, M. J.; Ho, K. M.

    2016-02-01

    Comparative analysis between Zr-rich Zr50Cu45Al5 and Cu-rich Cu50Zr45Al5 metallic glasses (MGs) is extensively performed to locate the key structural motifs accounting for their difference of glass forming ability. Here we adopt ab initio molecular dynamics simulations to investigate the local atomic structures of Zr50Cu45Al5 and Cu50Zr45Al5 MGs. A high content of icosahedral-related (full and distorted) orders was found in both samples, while in the Zr-rich MG full icosahedrons < 0,0,12,0 > is dominant, and in the Cu-rich one the distorted icosahedral orders, especially < 0,2,8,2 > and < 0,2,8,1 >, are prominent. And the < 0,2,8,2 > polyhedra in Cu50Zr45Al5more » MG mainly originate from Al-centered clusters, while the < 0,0,12,0 > in Zr50Cu45Al5 derives from both Cu-centered clusters and Al-centered clusters. These difference may be ascribed to the atomic size difference and chemical property between Cu and Zr atoms. Lastly, the relatively large size of Zr and large negative heat of mixing between Zr and Al atoms, enhancing the packing density and stability of metallic glass system, may be responsible for the higher glass forming ability of Zr50Cu45Al5.« less

  3. Estimating successive pKa values of polyprotic acids from ab initio molecular dynamics using metadynamics: the dissociation of phthalic acid and its isomers.

    PubMed

    Tummanapelli, Anil Kumar; Vasudevan, Sukumaran

    2015-03-01

    Estimation of the dissociation constant, or pKa, of weak acids continues to be a central goal in theoretical chemistry. Here we show that ab initio Car-Parrinello molecular dynamics simulations in conjunction with metadynamics calculations of the free energy profile of the dissociation reaction can provide reasonable estimates of the successive pKa values of polyprotic acids. We use the distance-dependent coordination number of the protons bound to the hydroxyl oxygen of the carboxylic group as the collective variable to explore the free energy profile of the dissociation process. Water molecules, sufficient to complete three hydration shells surrounding the acid molecule, were included explicitly in the computation procedure. Two distinct minima corresponding to the dissociated and un-dissociated states of the acid are observed and the difference in their free energy values provides the estimate for pKa, the acid dissociation constant. We show that the method predicts the pKa value of benzoic acid in good agreement with experiment and then show using phthalic acid (benzene dicarboxylic acid) as a test system that both the first and second pKa values as well, as the subtle difference in their values for different isomers can be predicted in reasonable agreement with experimental data. PMID:25652329

  4. Ab Initio Molecular Dynamics Simulations of ..beta..-D-Glucose and ..beta..-D-Xylose Degradation Mechanisms in Acidic Aqueous Solution

    SciTech Connect

    Qian, X.; Nimlos, M. R.; Davis, M.; Johnson, D. K.; Himmel, M. E.

    2005-01-01

    Ab initio molecular dynamics simulations were employed to investigate, with explicit solvent water molecules, {beta}-d-glucose and {beta}-d-xylose degradation mechanisms in acidic media. The rate-limiting step in sugar degradation was found to be protonation of the hydroxyl groups on the sugar ring. We found that the structure of water molecules plays a significant role in the acidic sugar degradation pathways. Firstly, a water molecule competes with the hydroxyl group on the sugar ring for protons. Secondly, water forms hydrogen bonds with the hydroxyl groups on the sugar rings, thus weakening the C-C and C-O bonds (each to a different degree). Note that the reaction pathways could be altered due to the change of relative stability of the C-C and C-O bonds. Thirdly, water molecules that are hydrogen-bonded to sugar hydroxyls could easily extract a proton from the reaction intermediate, terminating the reaction. Indeed, the sugar degradation pathway is complex due to multiple protonation probabilities and the surrounding water structure. Our experimental data support multiple sugar acidic degradation pathways.

  5. Dissociation constants of weak acids from ab initio molecular dynamics using metadynamics: influence of the inductive effect and hydrogen bonding on pKa values.

    PubMed

    Tummanapelli, Anil Kumar; Vasudevan, Sukumaran

    2014-11-26

    The theoretical estimation of the dissociation constant, or pKa, of weak acids continues to be a challenging field. Here, we show that ab initio Car-Parrinello molecular dynamics simulations in conjunction with metadynamics calculations of the free-energy profile of the dissociation reaction provide reasonable estimates of the pKa value. Water molecules, sufficient to complete the three hydration shells surrounding the acid molecule, were included explicitly in the computation procedure. The free-energy profiles exhibit two distinct minima corresponding to the dissociated and neutral states of the acid, and the difference in their values provides the estimate for pKa. We show for a series of organic acids that CPMD simulations in conjunction with metadynamics can provide reasonable estimates of pKa values. The acids investigated were aliphatic carboxylic acids, chlorine-substituted carboxylic acids, cis- and trans-butenedioic acid, and the isomers of hydroxybenzoic acid. These systems were chosen to highlight that the procedure could correctly account for the influence of the inductive effect as well as hydrogen bonding on pKa values of weak organic acids. In both situations, the CPMD metadynamics procedure faithfully reproduces the experimentally observed trend and the magnitudes of the pKa values.

  6. On the formation of proton-shared and contact ion pair forms during the dissociation of moderately strong acids: an Ab initio molecular dynamics investigation.

    PubMed

    Thomas, Vibin; Maurer, Patrick; Iftimie, Radu

    2010-06-24

    Acid ionization and dissociation are phenomena that play a fundamental role in chemistry and biology, but their microscopic details are largely unknown. We use ab initio molecular dynamics to identify and characterize various structures that are formed along the pathway of dissociation of trifluoroacetic acid (pK(a) = 0.5). The present results demonstrate that solutions of moderately strong (-1

  7. Estimating successive pKa values of polyprotic acids from ab initio molecular dynamics using metadynamics: the dissociation of phthalic acid and its isomers.

    PubMed

    Tummanapelli, Anil Kumar; Vasudevan, Sukumaran

    2015-03-01

    Estimation of the dissociation constant, or pKa, of weak acids continues to be a central goal in theoretical chemistry. Here we show that ab initio Car-Parrinello molecular dynamics simulations in conjunction with metadynamics calculations of the free energy profile of the dissociation reaction can provide reasonable estimates of the successive pKa values of polyprotic acids. We use the distance-dependent coordination number of the protons bound to the hydroxyl oxygen of the carboxylic group as the collective variable to explore the free energy profile of the dissociation process. Water molecules, sufficient to complete three hydration shells surrounding the acid molecule, were included explicitly in the computation procedure. Two distinct minima corresponding to the dissociated and un-dissociated states of the acid are observed and the difference in their free energy values provides the estimate for pKa, the acid dissociation constant. We show that the method predicts the pKa value of benzoic acid in good agreement with experiment and then show using phthalic acid (benzene dicarboxylic acid) as a test system that both the first and second pKa values as well, as the subtle difference in their values for different isomers can be predicted in reasonable agreement with experimental data.

  8. Ab Initio Investigation of O-H Dissociation from the Al-OH2 Complex Using Molecular Dynamics and Neural Network Fitting.

    PubMed

    Ho, Thi H; Pham-Tran, Nguyen-Nguyen; Kawazoe, Yoshiyuki; Le, Hung M

    2016-01-28

    The dissociation dynamics of the O-H bond in Al-OH2 is investigated on an approximated ab initio potential energy surface (PES). By adopting a dynamic sampling method, we obtain a database of 92 834 configurations. The potential energy for each point is calculated using MP2/6-311G (3df, 2p) calculations; then, a 60-neuron feed-forward neural network is utilized to fit the data to construct an analytic PES. The root-mean-square error (rmse) for the training set is reported as 0.0036 eV, while the rmse for the independent testing set is 0.0034 eV. Such excellent fitting accuracy indeed confirms the reliability of the constructed PES. Subsequently, quasi-classical molecular dynamics (MD) trajectories are performed on the constructed PES at various levels of vibrational excitation in the range of 1.03 to 2.23 eV to investigate the probability of O-H bond dissociation. The results indicate a linear relationship between reaction probability and internal energy, from which we can determine the minimum activation internal energy required for the dissociation as 0.62 eV. Moreover, the O-H bond rupture is shown to be highly correlated with the formation of Al-O bond. PMID:26741404

  9. Dissociation and recombination of D{sub 2} on Cu(111): Ab initio molecular dynamics calculations and improved analysis of desorption experiments

    SciTech Connect

    Nattino, Francesco Genova, Alessandro; Guijt, Marieke; Kroes, Geert-Jan; Muzas, Alberto S.; Díaz, Cristina; Auerbach, Daniel J.

    2014-09-28

    Obtaining quantitative agreement between theory and experiment for dissociative adsorption of hydrogen on and associative desorption of hydrogen from Cu(111) remains challenging. Particularly troubling is the fact that theory gives values for the high energy limit to the dissociative adsorption probability that is as much as two times larger than experiment. In the present work we approach this discrepancy in three ways. First, we carry out a new analysis of the raw experimental data for D{sub 2} associatively desorbing from Cu(111). We also perform new ab initio molecular dynamics (AIMD) calculations that include effects of surface atom motion. Finally, we simulate time-of-flight (TOF) spectra from the theoretical reaction probability curves and we directly compare them to the raw experimental data. The results show that the use of more flexible functional forms for fitting the raw TOF spectra gives fits that are in slightly better agreement with the raw data and in considerably better agreement with theory, even though the theoretical reaction probabilities still achieve higher values at high energies. The mean absolute error (MAE) for the energy E{sub 0} at which the reaction probability equals half the experimental saturation value is now lower than 1 kcal/mol, the limit that defines chemical accuracy, while a MAE of 1.5 kcal/mol was previously obtained. The new AIMD results are only slightly different from the previous static surface results and in slightly better agreement with experiment.

  10. Multiscale reactive molecular dynamics

    PubMed Central

    Knight, Chris; Lindberg, Gerrick E.; Voth, Gregory A.

    2012-01-01

    Many processes important to chemistry, materials science, and biology cannot be described without considering electronic and nuclear-level dynamics and their coupling to slower, cooperative motions of the system. These inherently multiscale problems require computationally efficient and accurate methods to converge statistical properties. In this paper, a method is presented that uses data directly from condensed phase ab initio simulations to develop reactive molecular dynamics models that do not require predefined empirical functions. Instead, the interactions used in the reactive model are expressed as linear combinations of interpolating functions that are optimized by using a linear least-squares algorithm. One notable benefit of the procedure outlined here is the capability to minimize the number of parameters requiring nonlinear optimization. The method presented can be generally applied to multiscale problems and is demonstrated by generating reactive models for the hydrated excess proton and hydroxide ion based directly on condensed phase ab initio molecular dynamics simulations. The resulting models faithfully reproduce the water-ion structural properties and diffusion constants from the ab initio simulations. Additionally, the free energy profiles for proton transfer, which is sensitive to the structural diffusion of both ions in water, are reproduced. The high fidelity of these models to ab initio simulations will permit accurate modeling of general chemical reactions in condensed phase systems with computational efficiency orders of magnitudes greater than currently possible with ab initio simulation methods, thus facilitating a proper statistical sampling of the coupling to slow, large-scale motions of the system. PMID:23249062

  11. Structural studies on choline-carboxylate bio-ionic liquids by x-ray scattering and molecular dynamics

    SciTech Connect

    Tanzi, Luana; Ramondo, Fabio; Caminiti, Ruggero; Campetella, Marco; Di Luca, Andrea; Gontrani, Lorenzo

    2015-09-21

    We report a X-ray diffraction and molecular dynamics study on three choline-based bio-ionic liquids, choline formate, [Ch] [For], choline propanoate, [Ch][Pro], and choline butanoate, [Ch][But]. For the first time, this class of ionic liquids has been investigated by X-ray diffraction. Experimental and theoretical structure factors have been compared for each term of the series. Local structural organization has been obtained from ab initio calculations through static models of isolated ion pairs and dynamic simulations of small portions of liquids through twelve, ten, and nine ion pairs for [Ch][For], [Ch][Pro], and [Ch][But], respectively. All the theoretical models indicate that cations and anions are connected by strong hydrogen bonding and form stable ion pairs in the liquid that are reminiscent of the static ab initio ion pairs. Different structural aspects may affect the radial distribution function, like the local structure of ion pairs and the conformation of choline. When small portions of liquids have been simulated by dynamic quantum chemical methods, some key structural features of the X-ray radial distribution function were well reproduced whereas the classical force fields here applied did not entirely reproduce all the observed structural features.

  12. Crystal structural and diffusion property in titanium carbides: A molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Lv, Yanan; Gao, Weimin

    2016-09-01

    Titanium carbides were studied via molecular dynamics simulation to characterize TiCx structures with respect to the carbon diffusion properties in this study. The effect of carbon concentration on atomic structures of titanium carbides was investigated through discussing the structure variation and the radial distribution functions of carbon atoms in titanium carbides. The carbon diffusion in titanium carbides was also analyzed, focusing on the dependence on carbon concentration and carbide structure. Carbon diffusivity with different carbon concentrations was determined by molecular dynamics (MD) calculations and compared with the available experimental data. The simulation results showed an atomic exchange mechanism for carbon diffusion in titanium carbide.

  13. Molecular dynamics study of an aqueous SrCl/sub 2/ solution

    SciTech Connect

    Spohr, E.; Palinkas, G.; Heinzinger, K.; Bopp, P.; Probst, M.M.

    1988-11-17

    A molecular dynamics simulation of a 1.1 m SrCl/sub 2/ solution was performed with an improved central force model for water at the experimental density at room temperature. The ion-water and ion-ion potentials were derived from ab initio calculations. The simulation extended over 4 ps at an average temperature of 298 K. The structural properties of the solution are discussed on the basis of radial distribution functions and the orientation of the water molecules and their geometrical arrangement in the hydration shells of the ions. The dynamical properties are calculated from various autocorrelation functions. Results are presented for the influence of the ions on self-diffusion coefficients, hindered translations, librations, and internal vibrations of the water molecules.

  14. Molecular dynamics.

    PubMed

    Cheng, Xiaolin; Ivanov, Ivaylo

    2012-01-01

    Molecular dynamics (MD) simulation holds the promise of revealing the mechanisms of biological processes in their ultimate detail. It is carried out by computing the interaction forces acting on each atom and then propagating the velocities and positions of the atoms by numerical integration of Newton's equations of motion. In this review, we present an overview of how the MD simulation can be conducted to address computational toxicity problems. The study cases will cover a standard MD simulation performed to investigate the overall flexibility of a cytochrome P450 (CYP) enzyme and a set of more advanced MD simulations to examine the barrier to ion conduction in a human α7 nicotinic acetylcholine receptor (nAChR).

  15. Molecular Dynamics Study on the Biophysical Interactions of Seven Green Tea Catechins with Cell Membranes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Molecular dynamics simulations were performed to study the interactions of bioactive catechins (flavonoids) commonly found in green tea with lipid bilayers, as model for cell membranes. Previously, a number of experimental studies rationalized catechin’s anticarcinogenic, antibacterial, and other be...

  16. Ab initio molecular dynamics simulations reveal localization and time evolution dynamics of an excess electron in heterogeneous CO{sub 2}–H{sub 2}O systems

    SciTech Connect

    Liu, Ping; Zhao, Jing; Liu, Jinxiang; Zhang, Meng; Bu, Yuxiang

    2014-01-28

    In view of the important implications of excess electrons (EEs) interacting with CO{sub 2}–H{sub 2}O clusters in many fields, using ab initio molecular dynamics simulation technique, we reveal the structures and dynamics of an EE associated with its localization and subsequent time evolution in heterogeneous CO{sub 2}–H{sub 2}O mixed media. Our results indicate that although hydration can increase the electron-binding ability of a CO{sub 2} molecule, it only plays an assisting role. Instead, it is the bending vibrations that play the major role in localizing the EE. Due to enhanced attraction of CO{sub 2}, an EE can stably reside in the empty, low-lying π{sup *} orbital of a CO{sub 2} molecule via a localization process arising from its initial binding state. The localization is completed within a few tens of femtoseconds. After EE trapping, the ∠OCO angle of the core CO{sub 2}{sup −} oscillates in the range of 127°∼142°, with an oscillation period of about 48 fs. The corresponding vertical detachment energy of the EE is about 4.0 eV, which indicates extreme stability of such a CO{sub 2}-bound solvated EE in [CO{sub 2}(H{sub 2}O){sub n}]{sup −} systems. Interestingly, hydration occurs not only on the O atoms of the core CO{sub 2}{sup −} through formation of O⋯H–O H–bond(s), but also on the C atom, through formation of a C⋯H–O H–bond. In the latter binding mode, the EE cloud exhibits considerable penetration to the solvent water molecules, and its IR characteristic peak is relatively red-shifted compared with the former. Hydration on the C site can increase the EE distribution at the C atom and thus reduce the C⋯H distance in the C⋯H–O H–bonds, and vice versa. The number of water molecules associated with the CO{sub 2}{sup −} anion in the first hydration shell is about 4∼7. No dimer-core (C{sub 2}O{sub 4}{sup −}) and core-switching were observed in the double CO{sub 2} aqueous media. This work provides molecular dynamics

  17. Vibrational Properties of Hydrogen-Bonded Systems Using the Multireference Generalization to the "On-the-Fly" Electronic Structure within Quantum Wavepacket ab Initio Molecular Dynamics (QWAIMD).

    PubMed

    Li, Junjie; Li, Xiaohu; Iyengar, Srinivasan S

    2014-06-10

    We discuss a multiconfigurational treatment of the "on-the-fly" electronic structure within the quantum wavepacket ab initio molecular dynamics (QWAIMD) method for coupled treatment of quantum nuclear effects with electronic structural effects. Here, multiple single-particle electronic density matrices are simultaneously propagated with a quantum nuclear wavepacket and other classical nuclear degrees of freedom. The multiple density matrices are coupled through a nonorthogonal configuration interaction (NOCI) procedure to construct the instantaneous potential surface. An adaptive-mesh-guided set of basis functions composed of Gaussian primitives are used to simplify the electronic structure calculations. Specifically, with the replacement of the atom-centered basis functions positioned on the centers of the quantum-mechanically treated nuclei by a mesh-guided band of basis functions, the two-electron integrals used to compute the electronic structure potential surface become independent of the quantum nuclear variable and hence reusable along the entire Cartesian grid representing the quantum nuclear coordinates. This reduces the computational complexity involved in obtaining a potential surface and facilitates the interpretation of the individual density matrices as representative diabatic states. The parametric nuclear position dependence of the diabatic states is evaluated at the initial time-step using a Shannon-entropy-based sampling function that depends on an approximation to the quantum nuclear wavepacket and the potential surface. This development is meant as a precursor to an on-the-fly fully multireference electronic structure procedure embedded, on-the-fly, within a quantum nuclear dynamics formalism. We benchmark the current development by computing structural, dynamic, and spectroscopic features for a series of bihalide hydrogen-bonded systems: FHF(-), ClHCl(-), BrHBr(-), and BrHCl(-). We find that the donor-acceptor structural features are in good

  18. A molecular dynamics study of freezing in a confined geometry

    NASA Technical Reports Server (NTRS)

    Ma, Wen-Jong; Banavar, Jayanth R.; Koplik, Joel

    1992-01-01

    The dynamics of freezing of a Lennard-Jones liquid in narrow channels bounded by molecular walls is studied by computer simulation. The time development of ordering is quantified and a novel freezing mechanism is observed. The liquid forms layers and subsequent in-plane ordering within a layer is accompanied by a sharpening of the layer in the transverse direction. The effects of channel size, the methods of quench, the liquid-wall interaction and the roughness of walls on the freezing mechanism are elucidated. Comparison with recent experiments on freezing in confined geometries is presented.

  19. Synaptobrevin Transmembrane Domain Dimerization Studied by Multiscale Molecular Dynamics Simulations

    PubMed Central

    Han, Jing; Pluhackova, Kristyna; Wassenaar, Tsjerk A.; Böckmann, Rainer A.

    2015-01-01

    Synaptic vesicle fusion requires assembly of the SNARE complex composed of SNAP-25, syntaxin-1, and synaptobrevin-2 (sybII) proteins. The SNARE proteins found in vesicle membranes have previously been shown to dimerize via transmembrane (TM) domain interactions. While syntaxin homodimerization is supposed to promote the transition from hemifusion to complete fusion, the role of synaptobrevin’s TM domain association in the fusion process remains poorly understood. Here, we combined coarse-grained and atomistic simulations to model the homodimerization of the sybII transmembrane domain and of selected TM mutants. The wild-type helix is shown to form a stable, right-handed dimer with the most populated helix-helix interface, including key residues predicted in a previous mutagenesis study. In addition, two alternative binding interfaces were discovered, which are essential to explain the experimentally observed higher-order oligomerization of sybII. In contrast, only one dimerization interface was found for a fusion-inactive poly-Leu mutant. Moreover, the association kinetics found for this mutant is lower as compared to the wild-type. These differences in dimerization between the wild-type and the poly-Leu mutant are suggested to be responsible for the reported differences in fusogenic activity between these peptides. This study provides molecular insight into the role of TM sequence specificity for peptide aggregation in membranes. PMID:26287628

  20. Densification effects on the Boson peak in vitreous silica: A molecular-dynamics study

    NASA Astrophysics Data System (ADS)

    Jund, P.; Jullien, R.

    2000-08-01

    We perform classical molecular-dynamics simulation to study the effect of densification on the vibrational spectrum of a model silica glass. We concentrate this study on the so-called Boson peak and compare our results, obtained from a direct diagonalization of the dynamical matrix, with experimental Raman data. We show that, upon densification, the position of the Boson peak shifts towards higher frequencies while its magnitude decreases which is in agreement with a recent experimental study.

  1. Proton transport in triflic acid hydrates studied via path integral car-parrinello molecular dynamics.

    PubMed

    Hayes, Robin L; Paddison, Stephen J; Tuckerman, Mark E

    2009-12-31

    The mono-, di-, and tetrahydrates of trifluoromethanesulfonic acid, which contain characteristic H(3)O(+), H(5)O(2)(+), and H(9)O(4)(+) structures, provide model systems for understanding proton transport in materials with high perfluorosulfonic acid density such as perfluorosulfonic acid membranes commonly employed in hydrogen fuel cells. Ab initio molecular dynamics simulations indicate that protons in these solids are predisposed to transfer to the water most strongly bound to sulfonate groups via a Grotthuss-type mechanism, but quickly return to the most solvated defect structure either due to the lack of a nearby species to stabilize the new defect or a preference for the proton to be maximally hydrated. Path integral molecular dynamics of the mono- and dihydrate reveal significant quantum effects that facilitate proton transfer to the "presolvated" water or SO(3)(-) in the first solvation shell and increase the Zundel character of all the defects. These trends are quantified in free energy profiles for each bonding environment. Hydrogen bonding criteria for HOH-OH(2) and HOH-O(3)S are extracted from the two-dimensional potential of mean force. The quantum radial distribution function, radius of gyration, and root-mean-square displacement position correlation function show that the protonic charge is distributed over two or more water molecules. Metastable structural defects with one excess proton shared between two sulfonate groups and another Zundel or Eigen type cation defect are found for the mono- and dihydrate but not for the tetrahydrate crystal. Results for the tetrahydrate native crystal exhibit minor differences at 210 and 250 K. IR spectra are calculated for all native and stable defect structures. Graph theory techniques are used to characterize the chain lengths and ring sizes in the hydrogen bond network. Low conductivities when limited water is present may be attributable to trapping of protons between SO(3)(-) groups and the increased

  2. Studying the unfolding kinetics of proteins under pressure using long molecular dynamic simulation runs.

    PubMed

    Chara, Osvaldo; Grigera, José Raúl; McCarthy, Andrés N

    2007-12-01

    The usefulness of computational methods such as molecular dynamics simulation has been extensively established for studying systems in equilibrium. Nevertheless, its application to complex non-equilibrium biological processes such as protein unfolding has been generally regarded as producing results which cannot be interpreted straightforwardly. In the present study, we present results for the kinetics of unfolding of apomyoglobin, based on the analysis of long simulation runs of this protein in solution at 3 kbar (1 atm = 1.01325, bar = 101,325 Pa). We hereby demonstrate that the analysis of the data collected within a simulated time span of 0.18 mus suffices for producing results, which coincide remarkably with the available unfolding kinetics experimental data. This not only validates molecular dynamics simulation as a valuable alternative for studying non-equilibrium processes, but also enables a detailed analysis of the actual structural mechanism which underlies the unfolding process of proteins under elusive denaturing conditions such as high pressure.

  3. Theoretical studies of amorphous silicon and hydrogenated amorphous silicon with molecular dynamics simulations

    SciTech Connect

    Kwon, I.

    1991-12-20

    Amorphous silicon (a-Si) and hydrogenated amorphous silicon (a-Si:H) have been studied with molecular dynamics simulations. The structural, vibrational, and electronic properties of these materials have been studied with computer-generated structural models and compare well with experimental observations. The stability of a-si and a-Si:H have been studied with the aim of understanding microscopic mechanisms underlying light-induced degradation in a-Si:H (the Staebler-Wronski effect). With a view to understanding thin film growth processes, a-Si films have been generated with molecular dynamics simulations by simulating the deposition of Si-clusters on a Si(111) substrate. A new two- and three-body interatomic potential for Si-H interactions has been developed. The structural properties of a-Si:H networks are in good agreement with experimental measurements. The presence of H atoms reduces strain and disorder relative to networks without H.

  4. Molecular dynamics study of structure and glass forming ability of Zr70Pd30 alloy

    NASA Astrophysics Data System (ADS)

    Celtek, Murat; Sengul, Sedat; Domekeli, Unal; Canan, Cem

    2016-03-01

    In this study, the temperature effects on the structural evolution of the Zr70Pd30 binary alloy in the glassy and liquid states were studied using the molecular dynamics simulations based on the many-body type tight-binding potential. We considered the following properties in detail: the temperature dependence of the volume, the partial and total pair distribution functions and the simulated glass transition temperature. The effects of the cooling rates on the glass transition temperature were examined. The Wendt-Abraham parameter was calculated to determine the glass transition temperature of Zr70Pd30 glassy alloy. The pair analysis technique of Honeycutt-Andersen was applied to define local atomic arrangements produced from molecular dynamics simulations. The results show that the icosahedral ordering in glassy state has been composed during quenching period, and the simulated glass transition temperature and the total pair distribution functions are in good agreement with the experimental data.

  5. Discotic columnar liquid crystal studied in the bulk and nanoconfined states by molecular dynamics simulation

    NASA Astrophysics Data System (ADS)

    Busselez, Rémi; Cerclier, Carole V.; Ndao, Makha; Ghoufi, Aziz; Lefort, Ronan; Morineau, Denis

    2014-10-01

    A prototypical Gay Berne discotic liquid crystal was studied by means of molecular dynamics simulations both in the bulk state and under confinement in a nanoporous channel. The phase behavior of the confined system strongly differs from its bulk counterpart: the bulk isotropic-to-columnar transition is replaced by a continuous ordering from a paranematic to a columnar phase. Moreover, a new transition is observed at a lower temperature in the confined state, which corresponds to a reorganization of the intercolumnar order. It reflects the competing effects of pore surface interaction and genuine hexagonal packing of the columns. The translational molecular dynamics in the different phases has been thoroughly studied and discussed in terms of collective relaxation modes, non-Gaussian behavior, and hopping processes.

  6. Removal of trihalomethanes from aqueous solution through armchair carbon nanotubes: a molecular dynamics study.

    PubMed

    Azamat, Jafar; Khataee, Alireza; Joo, Sang Woo; Yin, Binfeng

    2015-04-01

    Molecular dynamics simulations were performed to investigate the removal of trihalomethanes (THMs) including CH3Cl, CH2Cl2 and CHCl3 from aqueous solutions by armchair carbon nanotubes (CNTs) under induced pressure. The studied system involved the armchair CNTs embedded between two graphene sheets with an aqueous solution of THMs in the simulation box. An external pressure was applied to the system along the z-axis of the simulation box. Six types of armchair CNTs with different diameter were used in this work, included (4,4), (5,5), (6,6), (7,7), (8,8) and (9,9) CNTs. The results of molecular dynamics simulation display that the armchair CNTs behave differently relative to THMs and water molecules. The permeation of THMs and water molecules through the armchair CNTs was dependent on the diameter of CNTs and the applied pressure.

  7. Direct study of eos mixing laws through an orbital-free-molecular-dynamics point of view

    NASA Astrophysics Data System (ADS)

    Lambert, Flavien; Danel, Jean-Francois; Kazandjian, Luc; Clerouin, Jean

    2008-04-01

    We have investigated eos mixing rules by an approach coupling consistently molecular dynamics for the nuclei and orbital free density functional theory for the electronic fluid. This framework allowed us to study, without mixing approximation, mixtures in the hot and dense regime -- ie a plasma strongly coupled and partially degenerated --, regime relevant for inertial confinement fusion. Several mixtures borrowed from this field have been examined in order to both present the method and check the validity of eos mixing rules commonly used in hydrodynamics simulations. [1] F. Lambert, J. Clerouin, J.-F. Danel, L. Kazandjian, and G. Zerah. Direct verification of mixing rules in the hot and dense regime. Phys. Rev. E, 2007. Submitted. [2] F. Lambert, J. Clerouin, and S. Mazevet. Structural and dynamical properties of hot dense matter by a Thomas-Fermi-Dirac molecular dynamics. Europhysics Lett., 75(5):681--687, 2006.

  8. Probing ultrafast molecular dynamics in O2 using XUV/IR pump-probe studies

    NASA Astrophysics Data System (ADS)

    Ray, D.; Sturm, F. P.; Wright, T. W.; Ranitovic, P.; Shivaram, N. H.; Bocharova, I.; Belkacem, A.; Weber, Th.

    2015-05-01

    We investigate the molecular dynamics via different dissociative and autoionizing pathways in molecular oxygen using a pump-probe scheme with ultrashort extreme ultraviolet (XUV) laser pulses. Our primary focus is to study the molecular dynamics in the superexcited Rydberg states in a time-resolved manner. The O2 molecules are pumped by 20.2 eV and 23.1 eV XUV pulses (13th and 15th harmonics). Probing the relaxation dynamics with an infrared (IR) pulse at very long delays (100s of fs) enables us to measure the lifetimes of these Rydberg states. We also observe an enhancement and suppression of vibrational levels of the O2+ion due to the presence of IR. The high flux XUV pulses used for this experiment are generated in an Ar gas by IR pulses from our state-of-the-art 30 mJ, 50 Hz laser system. The pulses are overlapped with the supersonic jet in our Momentum Imaging for TimE Resolved Studies (MISTERS) setup. The cold target in our setup, combined with a very tight focussing geometry and a 3D momentum detection capability gives a high kinetic energy resolution. Molecular dynamics in other polyatomic molecules are also under investigation. Chemical Sciences Division, Lawrence Berkeley National Laboratory.

  9. An ab initio MO study of butalene

    NASA Astrophysics Data System (ADS)

    Ohta, Katsuhisa; Shima, Toru

    1994-01-01

    Butalene as a structural isomer of p-benzyne has been studied by using an ab initio GVB wavefunction. The geometry of butalene, which is shown to be almost rectangular, is first optimized as a local minimum on the energy surface at the ab initio level. However, the energy barrier of conversion to p-benzyne is as small as 1.6 kcal/mol, and experimental isolation of butalene is predicted to be difficult from a force-constant analysis.

  10. Evaporation characteristics of thin film liquid argon in nano-scale confinement: A molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Hasan, Mohammad Nasim; Shavik, Sheikh Mohammad; Rabbi, Kazi Fazle; Haque, Mominul

    2016-07-01

    Molecular dynamics simulation has been carried out to explore the evaporation characteristics of thin liquid argon film in nano-scale confinement. The present study has been conducted to realize the nano-scale physics of simultaneous evaporation and condensation inside a confined space for a three phase system with particular emphasis on the effect of surface wetting conditions. The simulation domain consisted of two parallel platinum plates; one at the top and another at the bottom. The fluid comprised of liquid argon film at the bottom plate and vapor argon in between liquid argon and upper plate of the domain. Considering hydrophilic and hydrophobic nature of top and bottom surfaces, two different cases have been investigated: (i) Case A: Both top and bottom surfaces are hydrophilic, (ii) Case B: both top and bottom surfaces are hydrophobic. For all cases, equilibrium molecular dynamics (EMD) was performed to reach equilibrium state at 90 K. Then the lower wall was set to four different temperatures such as 110 K, 120 K, 130 K and 140 K to perform non-equilibrium molecular dynamics (NEMD). The variation of temperature and density as well as the variation of system pressure with respect to time were closely monitored for each case. The heat fluxes normal to top and bottom walls were estimated and discussed to illuminate the effectiveness of heat transfer in both hydrophilic and hydrophobic confinement at various boundary temperatures of the bottom plate.

  11. NMR J-coupling constants in cisplatin derivatives studied by molecular dynamics and relativistic DFT.

    PubMed

    Sutter, Kiplangat; Truflandier, Lionel A; Autschbach, Jochen

    2011-06-01

    Solvent effects on J((195)Pt-(15)N) one-bond nuclear spin-spin coupling constants (J(PtN)) of cisplatin [cis-diamminedichloroplatinum(II)] and three cisplatin derivatives are investigated using a combination of density functional theory (DFT) based ab initio molecular dynamics (aiMD) and all-electron relativistic DFT NMR calculations employing the two-component relativistic zeroth-order regular approximation (ZORA). Good agreement with experiment is obtained when explicit solvent molecules are considered and when the computations are performed with a hybrid functional. Spin-orbit coupling causes only small effects on J(PtN) . Key factors contributing to the magnitude of coupling constants are elucidated, with the most significant being the presence of solvent as well as the quality of the density functional and basis set combination. The solvent effects are of the same magnitude as J(PtN) calculated for gas-phase geometries. However, the trends of J(PtN) among the complexes are already present in the gas phase. Results obtained with a continuum solvent model agree quite well with the aiMD results, provided that the Pt solvent-accessible radius is carefully chosen. The aiMD results support the existence of a partial hydrogen-bond-like inverse-hydration-type interaction affording a weak (1)J(Pt⋅⋅⋅H(w)) coupling between the complexes and the coordinating water molecule.

  12. Hybrid DFT Functional-Based Static and Molecular Dynamics Studies of Excess Electron in Liquid Ethylene Carbonate

    SciTech Connect

    Yu, J. M.; Balbuena, P. B.; Budzien, J. L.; Leung, Kevin

    2011-02-22

    We applied static and dynamic hybrid functional density functional theory (DFT) calculations to study the interactions of one and two excess electrons with ethylene carbonate (EC) liquid and clusters. Optimal structures of (EC)n and (EC)n- clusters devoid of Li+ ions, n = 1–6, were obtained. The excess electron was found to be localized on a single EC in all cases, and the EC dimeric radical anion exhibits a reduced barrier associated with the breaking of the ethylene carbon–oxygen covalent bond compared to EC-. In ab initio molecular dynamics (AIMD) simulations of EC- solvated in liquid EC, large fluctuations in the carbonyl carbon–oxygen bond lengths were observed. AIMD simulations of a two-electron attack on EC in EC liquid and on Li metal surfaces yielded products similar to those predicted using nonhybrid DFT functionals, except that CO release did not occur for all attempted initial configurations in the liquid state.

  13. Photochemical processes in laser ablation of organic solids: Molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Yingling, Yaroslava G.

    In this thesis, a comprehensive study of the effect of the photochemical processes on laser ablation mechanisms has been conducted using molecular dynamics simulations. We developed a new concept for modeling photochemical processes in laser ablation of organic films using a mesoscopic coarse-grain breathing sphere model for molecular dynamics simulations. The main advantage of our model is the ability to study the dynamics of the system at the mesoscopic length scale, a regime that is not accessible either with atomistic or continuum computational methods. The photodecomposition of the excited molecules and the chemical reaction patterns in our simulations are based on the photochemistry of chlorobenzene due to ease of its fragmentation and available experimental data. Interpretation of the experimental data is the main objective of our theoretical efforts. Molecular dynamics simulations are used to investigate the effect of photochemical processes on molecular ejection mechanisms in 248-nm laser irradiation of organic solids. Photochemical reactions are found to release additional energy into the irradiated sample and decrease the average cohesive energy, therefore decreasing the value of the ablation threshold. The yield of emitted fragments becomes significant only above the ablation threshold. Below the ablation threshold, only the most volatile photoproduct, HCl, is ejected in very small amounts, whereas the remainder of photoproducts are trapped inside the sample. The presence of photochemical decomposition processes and subsequent chemical reactions changes the temporal and spatial energy deposition profile from pure photothermal ablation. The chemical reactions create an additional local pressure build up and, as a result, generate a strong and broad acoustic pressure wave propagating toward the bottom of the computational cell. The strong pressure wave in conjunction with the temperature increase in the absorbing region causes the ejection of hot massive

  14. Molecular dynamics studies of pathways of water movement in cyanobacterial photosystem II

    SciTech Connect

    Gabdulkhakov, A. G. Kljashtorny, V. G.; Dontsova, M. V.

    2015-01-15

    Photosystem II (PSII) catalyzes the light-induced generation of oxygen from water. The oxygen-evolving complex is buried deep in the protein on the lumenal side of PSII, and water molecules need to pass through protein subunits to reach the active site—the manganese cluster. Previous studies on the elucidation of water channels in PSII were based on an analysis of the cavities in the static PSII structure determined by X-ray diffraction. In the present study, we perform molecular dynamics simulations of the water movement in the transport system of PSII.

  15. Study of critical dynamics in fluids via molecular dynamics in canonical ensemble.

    PubMed

    Roy, Sutapa; Das, Subir K

    2015-12-01

    With the objective of understanding the usefulness of thermostats in the study of dynamic critical phenomena in fluids, we present results for transport properties in a binary Lennard-Jones fluid that exhibits liquid-liquid phase transition. Various collective transport properties, calculated from the molecular dynamics (MD) simulations in canonical ensemble, with different thermostats, are compared with those obtained from MD simulations in microcanonical ensemble. It is observed that the Nosé-Hoover and dissipative particle dynamics thermostats are useful for the calculations of mutual diffusivity and shear viscosity. The Nosé-Hoover thermostat, however, as opposed to the latter, appears inadequate for the study of bulk viscosity. PMID:26687057

  16. A molecular dynamics study on the interaction between epoxy and functionalized graphene sheets

    NASA Astrophysics Data System (ADS)

    Melro, L. S.; Pyrz, R.; Jensen, L. R.

    2016-07-01

    The interaction between graphene and epoxy resin was studied using molecular dynamics simulations. The interfacial shear strength and pull out force were calculated for functionalised graphene layers (carboxyl, carbonyl, and hydroxyl) and epoxy composites interfaces. The influence of functional groups, as well as their distribution and coverage density on the graphene sheets were also analysed through the determination of the Young's modulus. Functionalisation proved to be detrimental to the mechanical properties, nonetheless according to interfacial studies the interaction between graphene and epoxy resin increases.

  17. Variation after Angular Momentum Projection for the Study of Excited States Based on Antisymmetrized Molecular Dynamics

    NASA Astrophysics Data System (ADS)

    Kanada-En'yo, Y.

    1998-12-01

    In order to study the structure of excited states we perform a variational calculation after spin parity projection (VAP) within the framework of antisymmetrized molecular dynamics (AMD). The framework is proven to be a new powerful approach for the study of the various structures of excited states because it is free from model assumptions such as inert cores, existence of clusters, and the axial symmetry. By using finite range interactions with a density dependent term we reproduce well all the energy levels below 15 MeV in 12C. This is the first theoretical model that reproduces many E2 transition rates and β decays to 12C successfully.

  18. Molecular dynamics study of electron-irradiation effects in single-walled carbon nanotubes

    SciTech Connect

    Yasuda, Masaaki; Kimoto, Yoshihisa; Tada, Kazuhiro; Mori, Hideki; Akita, Seiji; Hirai, Yoshihiko; Nakayama, Yoshikazu

    2007-05-15

    Molecular dynamics studies are carried out to investigate electron-irradiation effects in single-walled carbon nanotubes. We have proposed a simulation model which includes the interaction between a high-energy incident electron and a carbon atom, based on Monte Carlo method using the elastic-scattering cross section. The atomic level behavior of a single-walled carbon nanotube under electron irradiation is demonstrated in nanosecond time scale. The incident electron energy, tube diameter, and tube temperature dependences of electron-irradiation effects are studied with the simulation.

  19. Deformation behavior of bulk and nanostructured metallic glasses studied via molecular dynamics simulations

    SciTech Connect

    Sopu, D.; Ritter, Y.; Albe, K.; Gleiter, H.

    2011-03-01

    In this study, we characterize the mechanical properties of Cu{sub 64}Zr{sub 36} nanoglasses under tensile load by means of large-scale molecular dynamics simulations and compare the deformation behavior to the case of a homogeneous bulk glass. The simulations reveal that interfaces act as precursors for the formation of multiple shear bands. In contrast, a bulk metallic glass under uniaxial tension shows inhomogeneous plastic flow confined in one dominant shear band. The results suggest that controlling the microstructure of a nanoglass can pave the way for tuning the mechanical properties of glassy materials.

  20. Biopreservative Capabilities of Disaccharides on Proteins: A Study by Molecular Dynamics Simulations

    NASA Astrophysics Data System (ADS)

    Affouard, F.; Lerbret, A.; Hédoux, A.; Guinet, Y.; Descamps, M.

    2008-02-01

    A comparative investigation of lysozyme in trehalose, sucrose and maltose aqueous solutions has been performed using Molecular Dynamics simulations. The vibrational properties in the low frequency spectral range [0-350] cm-1 were mainly analyzed. This study confirms that the hydrogen bond (HB) network of water is highly dependent on the presence of sugars and contributes to the stabilization of lysozyme. The favored interaction of trehalose with water is confirmed below a threshold weight sugar concentration of about 50%. Above this concentration and unlikely to the sugar/water binary mixtures, trehalose becomes less efficient to distort the tetra-bonded HB network of water than maltose.

  1. Kinetics of microphase separation in block copolymers: A molecular-dynamics study

    NASA Astrophysics Data System (ADS)

    Singh, Awaneesh; Krishnan, Raishma; Puri, Sanjay

    2015-01-01

    We study the kinetics of microphase separation in block copolymers (BCPs) via molecular-dynamics (MD) simulations in d = 3. The BCPs consist of AnBm polymer chains. In the early stages, the BCP segregation is analogous to usual spinodal decomposition in fluid or polymer mixtures. At late times, the BCP evolution freezes into a micro-scale morphology dictated by the n : m ratio, e.g., lamellar, cylindrical, droplet, etc. We investigate the crossovers in a) the scaling forms of the correlation function and structure factor; and b) the domain growth law.

  2. Molecular dynamics study of liquid methanol with a flexible three-site model

    SciTech Connect

    Palinkas, G.; Hawlicka, E.; Heinzinger, K.

    1987-07-30

    A new potential is presented which describes the methanol-methanol interactions on the basis of a flexible three-site model. The intramolecular part of the potential has been derived from spectroscopic data. A molecular dynamics study has been performed with this potential at 286 K. The structural properties of liquid methanol calculated from the simulations are in good agreement with X-ray measurements. The average geometrical arrangement of nearest neighbors and their hydrogen bonding are discussed. The potential describes correctly the gas-liquid frequency shifts of the intramolecular vibrations. Several thermodynamic properties calculated from the simulation compare favorably with experimental results.

  3. Interaction of monovalent ions with the water liquid-vapor interface - A molecular dynamics study

    NASA Technical Reports Server (NTRS)

    Wilson, Michael A.; Pohorille, Andrew

    1991-01-01

    Results of molecular dynamics calculations are presented for a series of ions at infinite dilution near the water liquid-vapor interface. The free energies of ion transfer from the bulk to the interface are discussed, as are the accompanying changes of water structure at the surface and ion mobilities as a function of their proximity to the interface. It is shown that simple dielectric models do not provide an accurate description of ions at the water surface. The results of the study should be useful in the development of better models incorporating the shape and molecular structure of the interface.

  4. Structural transformations from point to extended defects in silicon: A molecular dynamics study

    SciTech Connect

    Marques, Luis A.; Pelaz, Lourdes; Santos, Ivan; Lopez, Pedro; Aboy, Maria

    2008-11-15

    We use classical molecular dynamics simulation techniques to study how point defects aggregate to form extended defects in silicon. We have found that <110> chains of alternating interstitials and bond defects, a generalization of the Si di-interstitial structure, are metastable at room temperature but spontaneously transform into (311) defects when annealed at higher temperatures. Obtained atomic configurations and energetics are in good agreement with experiments and previous theoretical calculations. We have found a (311) structural unit which consists of two interstitial chains along <110> but arranged differently with respect to the known (311) units.

  5. Melting and superheating of sI methane hydrate: molecular dynamics study.

    PubMed

    Smirnov, Grigory S; Stegailov, Vladimir V

    2012-01-28

    Melting and decay of the superheated sI methane structure are studied using molecular dynamics simulation. The melting curve is calculated by the direct coexistence simulations in a wide range of pressures up to 5000 bar for the SPC/E, TIP4P/2005 and TIP4P/Ice water models and the united-atom model for methane. We locate the kinetic stability boundary of the superheated metastable sI structure that is found to be surprisingly high comparing with the predictions based on the classical nucleation theory. PMID:22299907

  6. Coarse grained molecular dynamics and theoretical studies of carbon nanotubes entering cell membrane

    NASA Astrophysics Data System (ADS)

    Shi, Xinghua; Kong, Yong; Gao, Huajian

    2008-04-01

    Motivated by recent experimental observations that carbon nanotubes (CNT) can enter animal cells, here we conduct coarse grained molecular dynamics and theoretical studies of the intrinsic interaction mechanisms between CNT’s and lipid bilayer. The results indicate that CNT-cell interaction is dominated by van der Waals and hydrophobic forces, and that CNT’s with sufficiently small radii can directly pierce through cell membrane while larger tubes tend to enter cell via a wrapping mechanism. Theoretical models are proposed to explain the observed size effect in transition of entry mechanisms.

  7. Formation of carbon nanoscrolls from graphene sheet: A molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Zhang, Danhui; Yang, Houbo

    2016-12-01

    In recent year, carbon nanoscrolls have attracted intensive attention both in theory and experiments for their unique and excellent fundamental properties and the wide range of potential applications. In this paper, the fabrication of carbon nanoscrolls using graphene and carbon nanotubes has been studied by molecular dynamics (MD) method. The formation mechanism of carbon nanoscrolls has been presented convincing explanations. Furthermore, the position and number of carbon nanotubes also influence the formation of carbon nanoscrolls. Our theoretical results will provide researchers a powerful guide and helpful assistance in designing better targeted programs in experiments.

  8. Allosteric activation of Bordetella pertussis adenylyl cyclase by calmodulin: molecular dynamics and mutagenesis studies.

    PubMed

    Selwa, Edithe; Davi, Marilyne; Chenal, Alexandre; Sotomayor-Pérez, Ana-Cristina; Ladant, Daniel; Malliavin, Thérèse E

    2014-07-25

    Adenylyl cyclase (AC) toxin is an essential toxin that allows Bordetella pertussis to invade eukaryotic cells, where it is activated after binding to calmodulin (CaM). Based on the crystal structure of the AC catalytic domain in complex with the C-terminal half of CaM (C-CaM), our previous molecular dynamics simulations (Selwa, E., Laine, E., and Malliavin, T. (2012) Differential role of calmodulin and calcium ions in the stabilization of the catalytic domain of adenyl cyclase CyaA from Bordetella pertussis. Proteins 80, 1028–1040) suggested that three residues (i.e. Arg(338), Asn(347), and Asp(360)) might be important for stabilizing the AC/CaM interaction. These residues belong to a loop-helix-loop motif at the C-terminal end of AC, which is located at the interface between CaM and the AC catalytic loop. In the present study, we conducted the in silico and in vitro characterization of three AC variants, where one (Asn(347); ACm1A), two (Arg(338) and Asp(360); ACm2A), or three residues (Arg(338), Asn(347), and Asp(360); ACm3A) were substituted with Ala. Biochemical studies showed that the affinities of ACm1A and ACm2A for CaM were not affected significantly, whereas that of ACm3A was reduced dramatically. To understand the effects of these modifications, molecular dynamics simulations were performed based on the modified proteins. The molecular dynamics trajectories recorded for the ACm3AC-CaM complex showed that the calcium-binding loops of C-CaM exhibited large fluctuations, which could be related to the weakened interaction between ACm3A and its activator. Overall, our results suggest that the loop-helix-loop motif at the C-terminal end of AC is crucial during CaM binding for stabilizing the AC catalytic loop in an active configuration.

  9. Lattice constants of pure methane and carbon dioxide hydrates at low temperatures. Implementing quantum corrections to classical molecular dynamics studies

    NASA Astrophysics Data System (ADS)

    Costandy, Joseph; Michalis, Vasileios K.; Tsimpanogiannis, Ioannis N.; Stubos, Athanassios K.; Economou, Ioannis G.

    2016-03-01

    We introduce a simple correction to the calculation of the lattice constants of fully occupied structure sI methane or carbon dioxide pure hydrates that are obtained from classical molecular dynamics simulations using the TIP4PQ/2005 water force field. The obtained corrected lattice constants are subsequently used in order to obtain isobaric thermal expansion coefficients of the pure gas hydrates that exhibit a trend that is significantly closer to the experimental behavior than previously reported classical molecular dynamics studies.

  10. A molecular dynamics study of guest-host hydrogen bonding in alcohol clathrate hydrates.

    PubMed

    Hiratsuka, Masaki; Ohmura, Ryo; Sum, Amadeu K; Alavi, Saman; Yasuoka, Kenji

    2015-05-21

    Clathrate hydrates are typically stabilized by suitably sized hydrophobic guest molecules. However, it has been experimentally reported that isomers of amyl-alcohol C5H11OH can be enclosed into the 5(12)6(4) cages in structure II (sII) clathrate hydrates, even though the effective radii of the molecules are larger than the van der Waals radii of the cages. To reveal the mechanism of the anomalous enclathration of hydrophilic molecules, we performed ab initio and classical molecular dynamics simulations (MD) and analyzed the structure and dynamics of a guest-host hydrogen bond for sII 3-methyl-1-butanol and structure H (sH) 2-methyl-2-butanol clathrate hydrates. The simulations clearly showed the formation of guest-host hydrogen bonds and the incorporation of the O-H group of 3-methyl-1-butanol guest molecules into the framework of the sII 5(12)6(4) cages, with the remaining hydrophobic part of the amyl-alcohol molecule well accommodated into the cages. The calculated vibrational spectra of alcohol O-H bonds showed large frequency shifts due to the strong guest-host hydrogen bonding. The 2-methyl-2-butanol guests form strong hydrogen bonds with the cage water molecules in the sH clathrate, but are not incorporated into the water framework. By comparing the structures of the alcohols in the hydrate phases, the effect of the location of O-H groups in the butyl chain of the guest molecules on the crystalline structure of the clathrate hydrates is indicated.

  11. Molecular dynamics and simulations study on the vibrational and electronic solvatochromism of benzophenone

    NASA Astrophysics Data System (ADS)

    Ravi Kumar, Venkatraman; Verma, Chandra; Umapathy, Siva

    2016-02-01

    Solvent plays a key role in diverse physico-chemical and biological processes. Therefore, understanding solute-solvent interactions at the molecular level of detail is of utmost importance. A comprehensive solvatochromic analysis of benzophenone (Bzp) was carried out in various solvents using Raman and electronic spectroscopy, in conjunction with Density Functional Theory (DFT) calculations of supramolecular solute-solvent clusters generated using classical Molecular Dynamics Simulations (c-MDSs). The >C=O stretching frequency undergoes a bathochromic shift with solvent polarity. Interestingly, in protic solvents this peak appears as a doublet: c-MDS and ad hoc explicit solvent ab initio calculations suggest that the lower and higher frequency peaks are associated with the hydrogen bonded and dangling carbonyl group of Bzp, respectively. Additionally, the dangling carbonyl in methanol (MeOH) solvent is 4 cm-1 blue-shifted relative to acetonitrile solvent, despite their similar dipolarity/polarizability. This suggests that the cybotactic region of the dangling carbonyl group in MeOH is very different from its bulk solvent structure. Therefore, we propose that this blue-shift of the dangling carbonyl originates in the hydrophobic solvation shell around it resulting from extended hydrogen bonding network of the protic solvents. Furthermore, the 11nπ∗ (band I) and 11ππ∗ (band II) electronic transitions show a hypsochromic and bathochromic shift, respectively. In particular, these shifts in protic solvents are due to differences in their excited state-hydrogen bonding mechanisms. Additionally, a linear relationship is obtained for band I and the >C=O stretching frequency (cm-1), which suggests that the different excitation wavelengths in band I correspond to different solvation states. Therefore, we hypothesize that the variation in excitation wavelengths in band I could arise from different solvation states leading to varying solvation dynamics. This will have

  12. Molecular dynamics and simulations study on the vibrational and electronic solvatochromism of benzophenone.

    PubMed

    Ravi Kumar, Venkatraman; Verma, Chandra; Umapathy, Siva

    2016-02-14

    Solvent plays a key role in diverse physico-chemical and biological processes. Therefore, understanding solute-solvent interactions at the molecular level of detail is of utmost importance. A comprehensive solvatochromic analysis of benzophenone (Bzp) was carried out in various solvents using Raman and electronic spectroscopy, in conjunction with Density Functional Theory (DFT) calculations of supramolecular solute-solvent clusters generated using classical Molecular Dynamics Simulations (c-MDSs). The >C=O stretching frequency undergoes a bathochromic shift with solvent polarity. Interestingly, in protic solvents this peak appears as a doublet: c-MDS and ad hoc explicit solvent ab initio calculations suggest that the lower and higher frequency peaks are associated with the hydrogen bonded and dangling carbonyl group of Bzp, respectively. Additionally, the dangling carbonyl in methanol (MeOH) solvent is 4 cm(-1) blue-shifted relative to acetonitrile solvent, despite their similar dipolarity/polarizability. This suggests that the cybotactic region of the dangling carbonyl group in MeOH is very different from its bulk solvent structure. Therefore, we propose that this blue-shift of the dangling carbonyl originates in the hydrophobic solvation shell around it resulting from extended hydrogen bonding network of the protic solvents. Furthermore, the 1(1)nπ(∗) (band I) and 1(1)ππ(∗) (band II) electronic transitions show a hypsochromic and bathochromic shift, respectively. In particular, these shifts in protic solvents are due to differences in their excited state-hydrogen bonding mechanisms. Additionally, a linear relationship is obtained for band I and the >C=O stretching frequency (cm(-1)), which suggests that the different excitation wavelengths in band I correspond to different solvation states. Therefore, we hypothesize that the variation in excitation wavelengths in band I could arise from different solvation states leading to varying solvation dynamics. This

  13. Molecular dynamics simulation study of friction force and torque on a rough spherical particle.

    PubMed

    Kohale, Swapnil C; Khare, Rajesh

    2010-06-21

    Recent developments in techniques of micro- and nanofluidics have led to an increased interest in nanoscale hydrodynamics in confined geometries. In our previous study [S. C. Kohale and R. Khare, J. Chem. Phys. 129, 164706 (2008)], we analyzed the friction force experienced by a smooth spherical particle that is translating in a fluid confined between parallel plates. The magnitude of three effects--velocity slip at particle surface, the presence of confining surfaces, and the cooperative hydrodynamic interactions between periodic images of the moving particle--that determine the friction force was quantified in that work using molecular dynamics simulations. In this work, we have studied the motion of a rough spherical particle in a confined geometry. Specifically, the friction force experienced by a translating particle and the torque experienced by a rotating particle are studied using molecular dynamics simulations. Our results demonstrate that the surface roughness of the particle significantly reduces the slip at the particle surface, thus leading to higher values of the friction force and hence a better agreement with the continuum predictions. The particle size dependence of the friction force and the torque values is shown to be consistent with the expectations from the continuum theory. As was observed for the smooth sphere, the cooperative hydrodynamic interactions between the images of the sphere have a significant effect on the value of the friction force experienced by the translating sphere. On the other hand, the torque experienced by a spherical particle that is rotating at the channel center is insensitive to this effect.

  14. Vacancy profile in reverse osmosis membranes studied by positron annihilation lifetime measurements and molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Shimazu, A.; Goto, H.; Shintani, T.; Hirose, M.; Suzuki, R.; Kobayashi, Y.

    2013-06-01

    The positron annihilation technique using a slow positron beam can be used for the study of the vacancy profiles in typical reverse osmosis (RO) membranes. In this study, the vacancy profile in the polyamide membrane that exhibits a high permselectivity between ions and water was studied using the positron annihilation technique and molecular dynamics simulations. Ortho-positronium (o-Ps) lifetimes in the surface region of the membranes were evaluated by using a slow positron beam. The diffusion behavior of Na+ and water in the polyamides was simulated by molecular dynamics (MD) methods using the TSUBAME2 supercomputer at the Tokyo Institute of Technology and discussed with the vacancy profile probed by the o-Ps. The results suggested that the large hydration size of Na+ compared to the vacancy size in the polyamides contributes to the increased diffusivity selectivity of water/Na+ that is related to the NaCl desalination performance of the membrane. Both the hydration size of the ions and the vacancy size appeared to be significant parameters to discuss the diffusivity selectivity of water/ions in typical polyamide membranes.

  15. Studying the Unfolding Kinetics of Proteins under Pressure Using Long Molecular Dynamic Simulation Runs

    PubMed Central

    Chara, Osvaldo; Grigera, José Raúl

    2008-01-01

    The usefulness of computational methods such as molecular dynamics simulation has been extensively established for studying systems in equilibrium. Nevertheless, its application to complex non-equilibrium biological processes such as protein unfolding has been generally regarded as producing results which cannot be interpreted straightforwardly. In the present study, we present results for the kinetics of unfolding of apomyoglobin, based on the analysis of long simulation runs of this protein in solution at 3 kbar (1 atm = 1.01325, bar = 101 325 Pa). We hereby demonstrate that the analysis of the data collected within a simulated time span of 0.18 μs suffices for producing results, which coincide remarkably with the available unfolding kinetics experimental data. This not only validates molecular dynamics simulation as a valuable alternative for studying non-equilibrium processes, but also enables a detailed analysis of the actual structural mechanism which underlies the unfolding process of proteins under elusive denaturing conditions such as high pressure. PMID:19669536

  16. Molecular dynamics simulation for ligand-receptor studies. Carbohydrates interactions in aqueous solutions.

    PubMed

    Grigera, J Raul

    2002-01-01

    The review deals with the problem of the study of ligand-receptor interactions and the use of Molecular Dynamics (MD) simulation to approach such a problem. After a short review of the fundamentals of MD we describe the medium in which all biology takes place, water. Emphasis is put on the water models appropriate for simulation of macromolecular systems explicitly including the water molecules. We consider the quality of the water model both in terms of simplicity and performance to describe the liquid water properties. Heavy water, although not a biologically viable medium, is considered since many experiments make use of it as a solvent. Sweetness of carbohydrates is considered as an example of the procedure suitable to characterize active sites on the ligands. Consideration is given to the computation of the binding constants through molecular dynamics. The computation of the Free Energy is described and illustrated. The potentiality of MD for studies of ligand-receptor interactions is limited by the computer resources, for even with large computing facilities the need of relatively long simulation times severely restricts the study of large systems. A method is described in which several shells are treated at different levels of approximation, form mechanical response and mean electrical field to quantum mechanics, through stochastic dynamics and atomic classical MD. The review closes with a brief account of the perspectives of the method.

  17. Extra precision docking, free energy calculation and molecular dynamics simulation studies of CDK2 inhibitors.

    PubMed

    Tripathi, Sunil Kumar; Muttineni, Ravikumar; Singh, Sanjeev Kumar

    2013-10-01

    Molecular docking, free energy calculation and molecular dynamics (MD) simulation studies have been performed, to explore the putative binding modes of 3,5-diaminoindazoles, imidazo(1,2-b)pyridazines and triazolo(1,5-a) pyridazines series of Cyclin-dependent kinase (CDK2) inhibitors. To evaluate the effectiveness of docking protocol in flexible docking, we have selected crystallographic bound compound to validate our docking procedure as evident from root mean square deviations (RMSDs). We found different binding sites namely catalytic, inhibitory phosphorylation, cyclin binding and CKS-binding site of the CDK2 contributing towards the binding of these compounds. Moreover, correlation between free energy of binding and biological activity yielded a statistically significant correlation coefficient. Finally, three representative protein-ligand complexes were subjected to molecular dynamics simulation to determine the stability of the predicted conformations. The low value of the RMSDs between the initial complex structure and the energy minimized final average complex structure suggests that the derived docked complexes are close to equilibrium. We suggest that the phenylacetyl type of substituents and cyclohexyl moiety make the favorable interactions with a number of residues in the active site, and show better inhibitory activity to improve the pharmacokinetic profile of compounds against CDK2. The structure-based drug design strategy described in this study will be highly useful for the development of new inhibitors with high potency and selectivity.

  18. Integrating atomistic molecular dynamics simulations, experiments, and network analysis to study protein dynamics: strength in unity

    PubMed Central

    Papaleo, Elena

    2015-01-01

    In the last years, we have been observing remarkable improvements in the field of protein dynamics. Indeed, we can now study protein dynamics in atomistic details over several timescales with a rich portfolio of experimental and computational techniques. On one side, this provides us with the possibility to validate simulation methods and physical models against a broad range of experimental observables. On the other side, it also allows a complementary and comprehensive view on protein structure and dynamics. What is needed now is a better understanding of the link between the dynamic properties that we observe and the functional properties of these important cellular machines. To make progresses in this direction, we need to improve the physical models used to describe proteins and solvent in molecular dynamics, as well as to strengthen the integration of experiments and simulations to overcome their own limitations. Moreover, now that we have the means to study protein dynamics in great details, we need new tools to understand the information embedded in the protein ensembles and in their dynamic signature. With this aim in mind, we should enrich the current tools for analysis of biomolecular simulations with attention to the effects that can be propagated over long distances and are often associated to important biological functions. In this context, approaches inspired by network analysis can make an important contribution to the analysis of molecular dynamics simulations. PMID:26075210

  19. Integrating atomistic molecular dynamics simulations, experiments, and network analysis to study protein dynamics: strength in unity.

    PubMed

    Papaleo, Elena

    2015-01-01

    In the last years, we have been observing remarkable improvements in the field of protein dynamics. Indeed, we can now study protein dynamics in atomistic details over several timescales with a rich portfolio of experimental and computational techniques. On one side, this provides us with the possibility to validate simulation methods and physical models against a broad range of experimental observables. On the other side, it also allows a complementary and comprehensive view on protein structure and dynamics. What is needed now is a better understanding of the link between the dynamic properties that we observe and the functional properties of these important cellular machines. To make progresses in this direction, we need to improve the physical models used to describe proteins and solvent in molecular dynamics, as well as to strengthen the integration of experiments and simulations to overcome their own limitations. Moreover, now that we have the means to study protein dynamics in great details, we need new tools to understand the information embedded in the protein ensembles and in their dynamic signature. With this aim in mind, we should enrich the current tools for analysis of biomolecular simulations with attention to the effects that can be propagated over long distances and are often associated to important biological functions. In this context, approaches inspired by network analysis can make an important contribution to the analysis of molecular dynamics simulations.

  20. NMR and molecular dynamics studies of the interaction of melatonin with calmodulin

    PubMed Central

    Turjanski, Adrián G.; Estrin, Darío A.; Rosenstein, Ruth E.; McCormick, John E.; Martin, Stephen R.; Pastore, Annalisa; Biekofsky, Rodolfo R.; Martorana, Vincenzo

    2004-01-01

    Pineal hormone melatonin (N-acetyl-5-methoxytryptamine) is thought to modulate the calcium/calmodulin signaling pathway either by changing intracellular Ca2+ concentration via activation of its G-protein–coupled membrane receptors, or through a direct interaction with calmodulin (CaM). The present work studies the direct interaction of melatonin with intact calcium-saturated CaM both experimentally, by fluorescence and nuclear magnetic resonance spectroscopies, and theoretically, by molecular dynamics simulations. The analysis of the experimental data shows that the interaction is calcium-dependent. The affinity, as obtained from monitoring 15N and 1H chemical shift changes for a melatonin titration, is weak (in the millimolar range) and comparable for the N- and C-terminal domains. Partial replacement of diamagnetic Ca2+ by paramagnetic Tb3+ allowed the measurement of interdomain NMR pseudocontact shifts and residual dipolar couplings, indicating that each domain movement in the complex is not correlated with the other one. Molecular dynamics simulations allow us to follow the dynamics of melatonin in the binding pocket of CaM. Overall, this study provides an example of how a combination of experimental and theoretical approaches can shed light on a weakly interacting system of biological and pharmacological significance. PMID:15498938

  1. Methodology for solid state NMR off-resonance study of molecular dynamics in heteronuclear systems.

    PubMed

    Jurga, Kazimierz; Woźniak-Braszak, Aneta; Baranowski, Mikołaj

    2015-10-01

    Methodology for the study of dynamics in heteronuclear systems in the laboratory frame was described in the previous paper [1]. Now the methodology for the study of molecular dynamics in the solid state heteronuclear systems in the rotating frame is presented. The solid state NMR off-resonance experiments were carried out on a homemade pulse spectrometer operating at the frequency of 30.2 MHz for protons. This spectrometer includes a specially designed probe which contains two independently tuned and electrically isolated coils installed in the coaxial position on the dewar. A unique probe design allows working at three slightly differing frequencies off and on resonance for protons and at the frequency of 28.411 MHz for fluorine nuclei with complete absence of their electrical interference. The probe allows simultaneously creating rf magnetic fields at off-resonance frequencies within the range of 30.2-30.6 MHz and at the frequency of 28.411 MHz. Presented heteronuclear cross-relaxation off-resonance experiments in the rotating frame provide information about molecular dynamics.

  2. Ab Initio Molecular Dynamics Simulations of an Excess Proton in a Triethylene Glycol-Water Solution: Solvation Structure, Mechanism, and Kinetics.

    PubMed

    McDonnell, Marshall T; Xu, Haixuan; Keffer, David J

    2016-06-16

    We investigate the solvation shell structures, the distribution of protonic defects, mechanistic details, kinetics, and dynamics of proton transfer for an excess proton in bulk water and for an excess proton in an aqueous solution of triethylene glycol (TEG) via Car-Parrinello molecular dynamics simulations. The PW91, PBE, and PBE with the Tkatchenko-Scheffler (TS) density-dependent dispersion functionals were used and compared for bulk water and the TEG-water mixtures. The excess proton is found to reside predominantly on water molecules but also resides on hydroxyl groups of TEG. The lifetimes associated with structural diffusion time scales of the protonated water were found to be on the order of ∼1 ps. All three functionals studied support the presolvation requirement for structural diffusion. The highest level of theory shows a reduction in the free energy barrier for water-water proton transfer in TEG-water mixtures compared to bulk water. The effect of TEG shows no strong change in the kinetics for TEG-water mixtures compared to bulk water for this same level of theory. The excess proton displays burst-rest behavior in the presence of TEG, similar to that found in bulk water. We find that the TEG chain disrupts the hydrogen-bond network, causing the solvation shell around water to be populated by TEG chain groups instead of other waters, reducing the rigidity of the hydrogen-bond network. Methylene is a dominant hydrogen bond donor for the protonated water in hydrogen-bond networks associated with proton transfer and structural diffusion. This is consistent with previous studies that have found the hydronium ion to be amphiphilic in nature and to have higher proton mobility at oil-water interfaces. PMID:27218455

  3. Study on the thermal resistance in secondary particles chain of silica aerogel by molecular dynamics simulation

    SciTech Connect

    Liu, M.; Qiu, L. E-mail: jzzhengxinghua@163.com; Zheng, X. H. E-mail: jzzhengxinghua@163.com; Zhu, J.; Tang, D. W.

    2014-09-07

    In this article, molecular dynamics simulation was performed to study the heat transport in secondary particles chain of silica aerogel. The two adjacent particles as the basic heat transport unit were modelled to characterize the heat transfer through the calculation of thermal resistance and vibrational density of states (VDOS). The total thermal resistance of two contact particles was predicted by non-equilibrium molecular dynamics simulations (NEMD). The defects were formed by deleting atoms in the system randomly first and performing heating and quenching process afterwards to achieve the DLCA (diffusive limited cluster-cluster aggregation) process. This kind of treatment showed a very reasonable prediction of thermal conductivity for the silica aerogels compared with the experimental values. The heat transport was great suppressed as the contact length increased or defect concentration increased. The constrain effect of heat transport was much significant when contact length fraction was in the small range (<0.5) or the defect concentration is in the high range (>0.5). Also, as the contact length increased, the role of joint thermal resistance played in the constraint of heat transport was increasing. However, the defect concentration did not affect the share of joint thermal resistance as the contact length did. VDOS of the system was calculated by numerical method to characterize the heat transport from atomic vibration view. The smaller contact length and greater defect concentration primarily affected the longitudinal acoustic modes, which ultimately influenced the heat transport between the adjacent particles.

  4. Thermo-responsive behavior of borinic acid polymers: experimental and molecular dynamics studies.

    PubMed

    Wan, Wen-Ming; Zhou, Peng; Cheng, Fei; Sun, Xiao-Li; Lv, Xin-Hu; Li, Kang-Kang; Xu, Hai; Sun, Miao; Jäkle, Frieder

    2015-09-28

    The thermo-responsive properties of borinic acid polymers were investigated by experimental and molecular dynamics simulation studies. The homopolymer poly(styrylphenyl(tri-iso-propylphenyl)borinic acid) (PBA) exhibits an upper critical solution temperature (UCST) in polar organic solvents that is tunable over a wide temperature range by addition of small amounts of H2O. The UCST of a 1 mg mL(-1) PBA solution in DMSO can be adjusted from 20 to 100 °C by varying the H2O content from ∼0-2.5%, in DMF from 0 to 100 °C (∼3-17% H2O content), and in THF from 0 to 60 °C (∼4-19% H2O). The UCST increases almost linearly from the freezing point of the solvent with higher freezing point to the boiling point of the solvent with the lower boiling point. The mechanistic aspects of this process were investigated by molecular dynamics simulations. The latter indicate rapid and strong hydrogen-bond formation between BOH moieties and H2O molecules, which serve as crosslinkers to form an insoluble network. Our results suggest that borinic acid-containing polymers are promising as new "smart" materials, which display thermo-responsive properties that are tunable over a wide temperature range.

  5. A molecular dynamics and circular dichroism study of a novel synthetic antimicrobial peptide

    NASA Astrophysics Data System (ADS)

    Rodina, N. P.; Yudenko, A. N.; Terterov, I. N.; Eliseev, I. E.

    2013-08-01

    Antimicrobial peptides are a class of small, usually positively charged amphiphilic peptides that are used by the innate immune system to combat bacterial infection in multicellular eukaryotes. Antimicrobial peptides are known for their broad-spectrum antimicrobial activity and thus can be used as a basis for a development of new antibiotics against multidrug-resistant bacteria. The most challengeous task on the way to a therapeutic use of antimicrobial peptides is a rational design of new peptides with enhanced activity and reduced toxicity. Here we report a molecular dynamics and circular dichroism study of a novel synthetic antimicrobial peptide D51. This peptide was earlier designed by Loose et al. using a linguistic model of natural antimicrobial peptides. Molecular dynamics simulation of the peptide folding in explicit solvent shows fast formation of two antiparallel beta strands connected by a beta-turn that is confirmed by circular dichroism measurements. Obtained from simulation amphipatic conformation of the peptide is analysed and possible mechanism of it's interaction with bacterial membranes together with ways to enhance it's antibacterial activity are suggested.

  6. Thermo-responsive behavior of borinic acid polymers: experimental and molecular dynamics studies.

    PubMed

    Wan, Wen-Ming; Zhou, Peng; Cheng, Fei; Sun, Xiao-Li; Lv, Xin-Hu; Li, Kang-Kang; Xu, Hai; Sun, Miao; Jäkle, Frieder

    2015-09-28

    The thermo-responsive properties of borinic acid polymers were investigated by experimental and molecular dynamics simulation studies. The homopolymer poly(styrylphenyl(tri-iso-propylphenyl)borinic acid) (PBA) exhibits an upper critical solution temperature (UCST) in polar organic solvents that is tunable over a wide temperature range by addition of small amounts of H2O. The UCST of a 1 mg mL(-1) PBA solution in DMSO can be adjusted from 20 to 100 °C by varying the H2O content from ∼0-2.5%, in DMF from 0 to 100 °C (∼3-17% H2O content), and in THF from 0 to 60 °C (∼4-19% H2O). The UCST increases almost linearly from the freezing point of the solvent with higher freezing point to the boiling point of the solvent with the lower boiling point. The mechanistic aspects of this process were investigated by molecular dynamics simulations. The latter indicate rapid and strong hydrogen-bond formation between BOH moieties and H2O molecules, which serve as crosslinkers to form an insoluble network. Our results suggest that borinic acid-containing polymers are promising as new "smart" materials, which display thermo-responsive properties that are tunable over a wide temperature range. PMID:26256052

  7. The Effect of Tethers on Artificial Cell Membranes: A Coarse-Grained Molecular Dynamics Study

    PubMed Central

    Hoiles, William; Gupta, Rini; Cornell, Bruce; Krishnamurthy, Vikram

    2016-01-01

    Tethered bilayer lipid membranes (tBLMs) provide a stable platform for modeling the dynamics and order of biological membranes where the tethers mimic the cytoskeletal supports present in biological cell membranes. In this paper coarse-grained molecular dynamics (CGMD) is applied to study the effects of tethers on lipid membrane properties. Using results from the CGMD model and the overdamped Fokker-Planck equation, we show that the diffusion tensor and particle density of water in the tBLM is spatially dependent. Further, it is shown that the membrane thickness, lipid diffusion, defect density, free energy of lipid flip-flop, and membrane dielectric permittivity are all dependent on the tether density. The numerically computed results from the CGMD model are in agreement with the experimentally measured results from tBLMs containing different tether densities and lipids derived from Archaebacteria. Additionally, using experimental measurements from Escherichia coli bacteria and Saccharomyces Cerevisiae yeast tethered membranes, we illustrate how previous molecular dynamics results can be combined with the proposed model to estimate the dielectric permittivity and defect density of these membranes as a function of tether density. PMID:27736860

  8. Molecular design of responsive fluids: molecular dynamics studies of viscoelastic surfactant solutions

    NASA Astrophysics Data System (ADS)

    Boek, E. S.; Jusufi, A.; Löwen, H.; Maitland, G. C.

    2002-10-01

    Understanding how macroscopic properties depend on intermolecular interactions for complex fluid systems is an enormous challenge in statistical mechanics. This issue is of particular importance for designing optimal industrial fluid formulations such as responsive oilfield fluids, based on viscoelastic surfactant solutions. We have carried out extensive molecular dynamics simulations, resolving the full chemical details in order to study how the structure of the lamellar phase of viscoelastic surfactant solutions depends on the head group (HG) chemistry of the surfactant. In particular, we consider anionic carboxylate and quaternary ammonium HGs with erucyl tails in aqueous solutions together with their sodium and chloride counterions at room temperature. We find a strong HG dependence of the lamellar structure as characterized by suitable pair correlation functions and density distributions. The depth of penetration of water into the bilayer membrane, the nature of counterion condensation on the HGs and even the order and correlation of the tails in the lamellae depend sensitively on the chemical details of the HG. We also determine the compressibility of the lamellar system as a first step to using atom-resolved molecular dynamics in order to link the molecular and macroscopic scales of length and time. The results give important insight into the links between molecular details and surfactant phase structure which is being exploited to develop more systematic procedures for the molecular design and formulation of industrial systems.

  9. A new force field for molecular dynamics studies of Li + and Na +-nafion

    NASA Astrophysics Data System (ADS)

    Soolo, Endel; Liivat, Anti; Kasemägi, Heiki; Tamm, Tarmo; Brandell, Daniel; Aabloo, Alvo

    2008-03-01

    Nafion is widely known as one of the most popular membrane materials for low temperature fuel cell applications. However, the particular exchange membrane material properties make it also valuable for other applications. One of the electroactive polymer (EAP) subclasses, ionic polymer metal composites (IPMC) commonly exploits Nafion as the ion exchange polymer membrane. The ion conducting properties of Nafion are extremely important for IPMCs. Although, ion conductivity depends strongly on the structural properties of the polymer matrix, there has been very little insight at the atomistic level. Molecular dynamics simulations are one of the possibilities to study the ion conduction mechanism at atomistic level. So far, the simulation results have been rather contradictory and very much dependent from the force fields and polymer matrix setup used. In the present work, new force field parameters for Li + and Na + - nafion based on DFT calculations are presented. The developed potentials and the force field were tested by molecular dynamics simulations. It can be concluded that Li + and Na + ions are coordinated to different Nafion side-chain terminal group (SO 3 -) oxygens and to very few water molecules. One cation is coordinated to three different side-chains. Oxygens of SO 3 groups and cations form complicated multi-header systems. In the equilibrium state, no cations dissociated from side chains were found.

  10. Nanoindentation experiments for single-layer rectangular graphene films: a molecular dynamics study

    PubMed Central

    2014-01-01

    A molecular dynamics study on nanoindentation experiments is carried out for some single-layer rectangular graphene films with four edges clamped. Typical load–displacement curves are obtained, and the effects of various factors including indenter radii, loading speeds, and aspect ratios of the graphene film on the simulation results are discussed. A formula describing the relationship between the load and indentation depth is obtained according to the molecular dynamics simulation results. Young’s modulus and the strength of the single-layer graphene film are measured as about 1.0 TPa and 200 GPa, respectively. It is found that the graphene film ruptured in the central point at a critical indentation depth. The deformation mechanisms and dislocation activities are discussed in detail during the loading-unloading-reloading process. It is observed from the simulation results that once the loading speed is larger than the critical loading speed, the maximum force exerted on the graphene film increases and the critical indentation depth decreases with the increase of the loading speed. PMID:24447765

  11. Ion transport through membrane-spanning nanopores studied by molecular dynamics simulations and continuum electrostatics calculations.

    PubMed

    Peter, Christine; Hummer, Gerhard

    2005-10-01

    Narrow hydrophobic regions are a common feature of biological channels, with possible roles in ion-channel gating. We study the principles that govern ion transport through narrow hydrophobic membrane pores by molecular dynamics simulation of model membranes formed of hexagonally packed carbon nanotubes. We focus on the factors that determine the energetics of ion translocation through such nonpolar nanopores and compare the resulting free-energy barriers for pores with different diameters corresponding to the gating regions in closed and open forms of potassium channels. Our model system also allows us to compare the results from molecular dynamics simulations directly to continuum electrostatics calculations. Both simulations and continuum calculations show that subnanometer wide pores pose a huge free-energy barrier for ions, but a small increase in the pore diameter to approximately 1 nm nearly eliminates that barrier. We also find that in those wider channels the ion mobility is comparable to that in the bulk phase. By calculating local electrostatic potentials, we show that the long range Coulomb interactions of ions are strongly screened in the wide water-filled channels. Whereas continuum calculations capture the overall energetics reasonably well, the local water structure, which is not accounted for in this model, leads to interesting effects such as the preference of hydrated ions to move along the pore wall rather than through the center of the pore.

  12. Detailed study of the dielectric function of a lysozyme solution studied with molecular dynamics simulations.

    PubMed

    Floros, Stelios; Liakopoulou-Kyriakides, Maria; Karatasos, Kostas; Papadopoulos, Georgios E

    2015-12-01

    The spread of microwave technology and new microwave applications in medicine have revitalized interest in the dielectric behavior of biological systems. In this work, the Fröhlich-Kirkwood approach and the linear response theory have been applied in conjunction with molecular dynamics simulations to study the dielectric response of a lysozyme solution as a model. The overall experimental dielectric behavior of a 9.88 mM lysozyme solution has been reproduced in a quantitative manner by employing a method based on the decomposition of the hydration shells close to the solute. Detailed analysis of the calculated spectra identified two δ-processes located at 200 MHz (δ1) and about 1 GHz (δ2), respectively. δ1 is associated mainly with the first hydration shell, while δ2 mainly with bulk water and the second hydration shell. Moreover, indications for the existence of an even faster relaxation in the 10(11)-Hz frequency range were found for the first time. Finally, the static dielectric constants of lysozyme and its first and second hydration shells were calculated based on the Fröhlich-Kirkwood and the linear response theory approaches.

  13. Effect of Composition and Chain Length on χ Parameter of Polyolefin Blends: A Molecular Dynamics Study

    NASA Astrophysics Data System (ADS)

    Khare, Rajesh; Ravichandran, Ashwin; Chen, Chau-Chyun

    Polymer blends exhibit complex phase behavior which is governed by several factors including temperature, composition and molecular weight of components. The thermodynamics of polymer blends is commonly described using the χ parameter. While variety of experimental studies exist on identifying the factors affecting the χ parameter, a detailed molecular scale understanding of these is a topic of current research. We have studied the effect of blend composition and chain length on χ parameter values for two model polyolefin blends. The blends studied are: polyisobutylene (PIB)/polybutadiene (PBD) and polyethylene (PE)/atactic polypropylene (aPP). Molecular dynamics simulations in combination with the integral equation theory formalism proposed by Schweizer and Curro [Journal of Chemical Physics, 91, 5059 (1989)] are used to determine the χ parameter for these systems and thereby study the effect of blend composition and chain length. The resulting χ parameter values are explained in terms of the molecular structure of these polymeric systems.

  14. Accelerated Molecular Dynamics Study of the Effects of Surface Hydrophilicity on Protein Adsorption.

    PubMed

    Mücksch, Christian; Urbassek, Herbert M

    2016-09-13

    The adsorption of streptavidin is studied on two surfaces, graphite and titanium dioxide, using accelerated molecular dynamics. Adsorption on graphite leads to strong conformational changes while the protein spreads out over the surface. Interestingly, also adsorption on the highly hydrophilic rutile surface induces considerable spreading of the protein. We pin down the cause for this unfolding to the interaction of the protein with the ordered water layers above the rutile surface. For special orientations, the protein penetrates the ordered water layers and comes into direct contact with the surface where the positively charged amino acids settle in places adjacent to the negatively charged top surface atom layer of rutile. We conclude that for both surface materials studied, streptavidin changes its conformation so strongly that it loses its potential for binding biotin. Our results are in good qualitative agreement with available experimental studies. PMID:27533302

  15. Mechanical properties of stanene under uniaxial and biaxial loading: A molecular dynamics study

    SciTech Connect

    Mojumder, Satyajit; Amin, Abdullah Al; Islam, Md Mahbubul

    2015-09-28

    Stanene, a graphene like two dimensional honeycomb structure of tin has attractive features in electronics application. In this study, we performed molecular dynamics simulations using modified embedded atom method potential to investigate mechanical properties of stanene. We studied the effect of temperature and strain rate on mechanical properties of α-stanene for both uniaxial and biaxial loading conditions. Our study suggests that with the increasing temperature, both the fracture strength and strain of the stanene decrease. Uniaxial loading in zigzag direction shows higher fracture strength and strain compared to the armchair direction, while no noticeable variation in the mechanical properties is observed for biaxial loading. We also found at a higher loading rate, material exhibits higher fracture strength and strain. These results will aid further investigation of stanene as a potential nano-electronics substitute.

  16. Ab Initio Study of Polonium

    SciTech Connect

    Zabidi, Noriza Ahmad; Kassim, Hasan Abu; Shrivastava, Keshav N.

    2008-05-20

    Polonium is the only element with a simple cubic (sc) crystal structure. Atoms in solid polonium sit at the corners of a simple cubic unit cell and no where else. Polonium has a valence electron configuration 6s{sup 2}6p{sup 4} (Z = 84). The low temperature {alpha}-phase transforms into the rhombohedral (trigonal) {beta} structure at {approx}348 K. The sc {alpha}-Po unit cell constant is a = 3.345 A. The beta form of polonium ({beta}-Po) has the lattice parameters, a{sub R} = 3.359 A and a rhombohedral angle 98 deg. 13'. We have performed an ab initio electronic structure calculation by using the density functional theory. We have performed the calculation with and without spin-orbit (SO) coupling by using both the LDA and the GGA for the exchange-correlations. The k-points in a simple cubic BZ are determined by R (0.5, 0.5, 0.5), {gamma} (0, 0, 0), X (0.5, 0, 0), M (0.5, 0.5, 0) and {gamma} (0, 0, 0). Other directions of k-points are {gamma} (0, 0, 0), X (0.5, 0, 0), R (0.5, 0.5, 0.5) and {gamma} (0, 0, 0). The SO splittings of p states at the {gamma} point in the GGA+SO scheme for {alpha}-Po are 0.04 eV and 0.02 eV while for the {beta}-Po these are 0.03 eV and 0.97 eV. We have also calculated the vibrational spectra for the unit cells in both the structures. We find that exchanging of a Po atom by Pb atom produces several more bands and destabilizes the {beta} phase.

  17. Interaction of C60 fullerenes with asymmetric and curved lipid membranes: a molecular dynamics study.

    PubMed

    Cherniavskyi, Yevhen K; Ramseyer, Christophe; Yesylevskyy, Semen O

    2016-01-01

    Interaction of fullerenes with asymmetric and curved DOPC/DOPS bicelles is studied by means of coarse-grained molecular dynamics simulations. The effects caused by asymmetric lipid composition of the membrane leaflets and the curvature of the membrane are analyzed. It is shown that the aggregates of fullerenes prefer to penetrate into the membrane in the regions of the moderately positive mean curvature. Upon penetration into the hydrophobic core of the membrane fullerenes avoid the regions of the extreme positive or the negative curvature. Fullerenes increase the ordering of lipid tails, which are in direct contact with them, but do not influence other lipids significantly. Our data suggest that the effects of the membrane curvature should be taken into account in the studies concerning permeability of the membranes to fullerenes and fullerene-based drug delivery systems.

  18. Interactions of lipids and detergents with a viral ion channel protein: molecular dynamics simulation studies.

    PubMed

    Rouse, Sarah L; Sansom, Mark S P

    2015-01-22

    Structural studies of membrane proteins have highlighted the likely influence of membrane mimetic environments (i.e., lipid bilayers versus detergent micelles) on the conformation and dynamics of small α-helical membrane proteins. We have used molecular dynamics simulations to compare the conformational dynamics of BM2 (a small α-helical protein from the membrane of influenza B) in a model phospholipid bilayer environment with its behavior in protein-detergent complexes with either the zwitterionic detergent dihexanoylphosphatidylcholine (DHPC) or the nonionic detergent dodecylmaltoside (DDM). We find that DDM more closely resembles the lipid bilayer in terms of its interaction with the protein, while the short-tailed DHPC molecule forms "nonphysiological" interactions with the protein termini. We find that the intrinsic micelle properties of each detergent are conserved upon formation of the protein-detergent complex. This implies that simulations of detergent micelles may be used to help select optimal conditions for experimental studies of membrane proteins.

  19. Methanol coupling in the zeolite chabazite studied via Car-Parrinello molecular dynamics

    NASA Astrophysics Data System (ADS)

    Lo, Cynthia; Giurumescu, Claudiu A.; Radhakrishnan, Ravi; Trout, Bernhardt L.

    We have used Car-Parrinello constrained molecular dynamics to study the coupling of two molecules of methanol in the zeolite chabazite to form ethanol and water. We have chosen to study this reaction because it represents the formation of the first C-C bond, which is thought to be the rate limiting step for the MTO and MTG processes. We have elucidated a new mechanism for this reaction that does not require the prior formation of surface methoxy groups or dimethyl ether intermediates. The mechanism involves stable intermediates of methane and protonated formaldehyde. We have also calculated an upper bound of the free energy barrier for the overall reaction, and found that it compares favourably with the rough experimental measurements available. Finally, we consider what are the natural reaction coordinates for the methanol-methanol coupling process.

  20. Car-Parrinello molecular dynamics study of the uranyl behaviour at the gibbsite/water interface

    NASA Astrophysics Data System (ADS)

    Lectez, Sébastien; Roques, Jérôme; Salanne, Mathieu; Simoni, Eric

    2012-10-01

    The uranyl cation UO22+ adsorption on the basal face of gibbsite is studied via Car-Parrinello molecular dynamics. In a first step, we study the water sorption on a gibbsite surface. Three different sorption modes are observed and their hydrogen bond patterns are, respectively, characterized. Then we investigate the sorption properties of an uranyl cation, in the presence of water. In order to take into account the protonation state of the (001) gibbsite face, both a neutral (001) face and a locally deprotonated (001) face are modeled. In the first case, three adsorbed uranyl complexes (1 outer sphere and 2 inner spheres) with similar stabilities are identified. In the second case, when the gibbsite face is locally deprotonated, two adsorbed complexes (1 inner sphere and 1 outer one) are characterized. The inner sphere complex appears to be the most strongly linked to the gibbsite face.

  1. Molecular dynamics study of phase separation in fluids with chemical reactions

    NASA Astrophysics Data System (ADS)

    Krishnan, Raishma; Puri, Sanjay

    2015-11-01

    We present results from the first d =3 molecular dynamics (MD) study of phase-separating fluid mixtures (AB) with simple chemical reactions (A ⇌B ). We focus on the case where the rates of forward and backward reactions are equal. The chemical reactions compete with segregation, and the coarsening system settles into a steady-state mesoscale morphology. However, hydrodynamic effects destroy the lamellar morphology which characterizes the diffusive case. This has important consequences for the phase-separating structure, which we study in detail. In particular, the equilibrium length scale (ℓeq) in the steady state suggests a power-law dependence on the reaction rate ɛ :ℓeq˜ɛ-θ with θ ≃1.0 .

  2. Molecular dynamics study of phase separation in fluids with chemical reactions.

    PubMed

    Krishnan, Raishma; Puri, Sanjay

    2015-11-01

    We present results from the first d=3 molecular dynamics (MD) study of phase-separating fluid mixtures (AB) with simple chemical reactions (A⇌B). We focus on the case where the rates of forward and backward reactions are equal. The chemical reactions compete with segregation, and the coarsening system settles into a steady-state mesoscale morphology. However, hydrodynamic effects destroy the lamellar morphology which characterizes the diffusive case. This has important consequences for the phase-separating structure, which we study in detail. In particular, the equilibrium length scale (ℓ(eq)) in the steady state suggests a power-law dependence on the reaction rate ε:ℓ(eq)∼ε(-θ) with θ≃1.0.

  3. Molecular dynamics study of accelerated ion-induced shock waves in biological media

    NASA Astrophysics Data System (ADS)

    de Vera, Pablo; Mason, Nigel J.; Currell, Fred J.; Solov'yov, Andrey V.

    2016-09-01

    We present a molecular dynamics study of the effects of carbon- and iron-ion induced shock waves in DNA duplexes in liquid water. We use the CHARMM force field implemented within the MBN Explorer simulation package to optimize and equilibrate DNA duplexes in liquid water boxes of different sizes and shapes. The translational and vibrational degrees of freedom of water molecules are excited according to the energy deposited by the ions and the subsequent shock waves in liquid water are simulated. The pressure waves generated are studied and compared with an analytical hydrodynamics model which serves as a benchmark for evaluating the suitability of the simulation boxes. The energy deposition in the DNA backbone bonds is also monitored as an estimation of biological damage, something which is not possible with the analytical model. Contribution to the Topical Issue "Atomic Cluster Collisions (7th International Symposium)", edited by Gerardo Delgado Barrio, Andrey V. Solov'yov, Pablo Villarreal, Rita Prosmiti.

  4. Carbon nanotube self-assembly with lipids and detergent: a molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Wallace, E. Jayne; Sansom, Mark S. P.

    2009-01-01

    The dispersion of carbon nanotubes (CNTs) in aqueous media is of potential importance in a number of biomedical applications. CNT solubilization has been achieved via the non-covalent adsorption of lipids and detergent onto the tube surface. We use coarse-grained molecular dynamics to study the self-assembly of CNTs with various amphiphiles, namely a bilayer-forming lipid, dipalmitoylphosphatidylcholine (DPPC), and two species of detergent, dihexanoylphosphatidylcholine (DHPC) and lysophosphatidylcholine (LPC). We find that for a low amphiphile/CNT ratio, DPPC, DHPC and LPC all wrap around the CNT. Upon increasing the number of amphiphiles, a transition in adsorption is observed: DPPC encapsulates the CNT within a cylindrical micelle, whilst both DHPC and LPC adsorb onto CNTs in hemimicelles. This study highlights differences in adsorption mechanism of bilayer-forming lipids and detergents on CNTs which may in the future be exploitable to enable enhancement of CNT solubilization whilst minimizing perturbation of cell membrane integrity.

  5. Molecular dynamics study of accelerated ion-induced shock waves in biological media

    NASA Astrophysics Data System (ADS)

    de Vera, Pablo; Mason, Nigel J.; Currell, Fred J.; Solov'yov, Andrey V.

    2016-09-01

    We present a molecular dynamics study of the effects of carbon- and iron-ion induced shock waves in DNA duplexes in liquid water. We use the CHARMM force field implemented within the MBN Explorer simulation package to optimize and equilibrate DNA duplexes in liquid water boxes of different sizes and shapes. The translational and vibrational degrees of freedom of water molecules are excited according to the energy deposited by the ions and the subsequent shock waves in liquid water are simulated. The pressure waves generated are studied and compared with an analytical hydrodynamics model which serves as a benchmark for evaluating the suitability of the simulation boxes. The energy deposition in the DNA backbone bonds is also monitored as an estimation of biological damage, something which is not possible with the analytical model.

  6. Molecular dynamics study of diffusion of krypton in water at different temperatures

    NASA Astrophysics Data System (ADS)

    Bhandari, Dipendra; Adhikari, N. P.

    2016-04-01

    Molecular dynamics study of diffusion of two krypton atoms in 300 SPC/E water molecules at temperatures 293, 303, 313, 323 and 333 K has been carried out. Self-diffusion coefficient of krypton and water along with their mutual diffusion coefficients are estimated. Self-diffusion coefficient for krypton is calculated by using Mean Square Displacement (MSD) method and Velocity Autocorrelation (VACF) method, while that for water is calculated by using MSD method only. The mutual diffusion coefficient is estimated by using the Darken’s relation. The diffusion coefficients are found to follow the Arrhenius behavior. The structural properties of the system have been estimated by the study of solute-solute, solvent-solvent, and solute-solvent Radial Distribution Function (RDF).

  7. Molecular dynamic and docking interaction study of Heterodera glycines serine proteinase with Vigna mungo proteinase inhibitor.

    PubMed

    Prasad, C V S Siva; Gupta, Saurabh; Gaponenko, Alex; Tiwari, Murlidhar

    2013-08-01

    Many plants do produce various defense proteins like proteinase inhibitors (PIs) to protect them against various pests. PIs function as pseudosubstrates of digestive proteinase, which inhibits proteolysis in pests and leads to amino acid deficiency-based mortality. This work reports the structural interaction studies of serine proteinase of Heterodera glycines (SPHG) with Vigna mungo proteinase inhibitor (VMPI). 3D protein structure modeling, validation of SPHG and VMPI, and their putative protein-protein binding sites were predicted. Protein-protein docking followed by molecular dynamic simulation was performed to find the reliable confirmation of SPHG-VMPI complex. Trajectory analysis of each successive conformation concludes better interaction of first loop in comparison with second loop. Lysine residues of first loop were actively participating in complex formation. Overall, this study discloses the structural aspects and interaction mechanisms of VMPI with SPHG, and it would be helpful in the development of pest-resistant genetically modified crops.

  8. Atomic packing and diffusion in Fe{sub 85}Si{sub 2}B{sub 9}P{sub 4} amorphous alloy analyzed by ab initio molecular dynamics simulation

    SciTech Connect

    Wang, Yaocen; Takeuchi, Akira; Makino, Akihiro; Liang, Yunye; Kawazoe, Yoshiyuki

    2015-05-07

    In the work reported in this paper, ab initio molecular dynamics simulation was performed on Fe{sub 85}Si{sub 2}B{sub 9}P{sub 4} amorphous alloy. Preferred atomic environment of the elements was analyzed with Voronoi polyhedrons. It showed that B and P atoms prefer less neighbors compared with Fe and Si, making them structurally incompatible with Fe rich structure and repulsive to the formation of α-Fe. However, due to the low bonding energy of B and P caused by low coordination number, the diffusion rates of them were considerably large, resulting in the requirement of fast annealing for achieving optimum nano-crystallization for its soft magnetic property. The simulation work also indicates that diffusion rate in amorphous alloy is largely determined by bonding energy rather than atomic size.

  9. Damage in materials following ablation by ultrashort laser pulses: A molecular-dynamics study

    SciTech Connect

    Bouilly, Delphine; Perez, Danny; Lewis, Laurent J.

    2007-11-01

    The formation of craters following femtosecond- and picosecond-pulse laser ablation in the thermal regime is studied using a generic two-dimensional numerical model based on molecular-dynamics simulations and the Lennard-Jones potential. Femtosecond pulses are found to produce very clean craters through a combination of etching of the walls and the formation of a very thin heat affected zone. Our simulations also indicate that dislocations are emitted continuously during all of the ablation process (i.e., for hundreds of ps). For picosecond pulses, we observe much thicker heat affected zones which result from melting and recrystallization following the absorption of the light. In this case also, continuous emission of dislocations--though fewer in number--takes place throughout the ablation process.

  10. Docking and molecular dynamics studies at trypanothione reductase and glutathione reductase active sites.

    PubMed

    Iribarne, Federico; Paulino, Margot; Aguilera, Sara; Murphy, Miguel; Tapia, Orlando

    2002-05-01

    A theoretical docking study on the active sites of trypanothione reductase (TR) and glutathione reductase (GR) with the corresponding natural substrates, trypanothione disulfide (T[S]2) and glutathione disulfide (GSSG), is reported. Molecular dynamics simulations were carried out in order to check the robustness of the docking results. The energetic results are in agreement with previous experimental findings and show the crossed complexes have lower stabilization energies than the natural ones. To test DOCK3.5, four nitro furanic compounds, previously designed as potentially active anti-chagasic molecules, were docked at the GR and TR active sites with the DOCK3.5 procedure. A good correlation was found between differential inhibitory activity and relative interaction energy (affinity). The results provide a validation test for the use of DOCK3.5 in connection with the design of anti-chagasic drugs.

  11. A molecular dynamics study of chloride binding by the cryptand SC24

    NASA Technical Reports Server (NTRS)

    Owenson, B.; MacElroy, R. D.; Pohorille, A.

    1988-01-01

    The capture of chloride from water by the tetraprotonated form of the spherical macrotricyclic molecule SC24 was studied using molecular dynamics simulation methods. This model ionophore represents a broad class of molecules which remove ions from water. Two binding sites for the chloride were found, one inside and one outside the ligand. These sites are separated by a potential energy barrier of approximately 20 kcal mol-1. The major contribution to this barrier comes from dehydration of the chloride. The large, unfavorable dehydration effect is compensated for by an increase in electrostatic attraction between the oppositely charged chloride and cryptand, and by energetically favorable rearrangements of water structure. Additional assistance in crossing the barrier and completing the dehydration of the ion is provided by the shift of three positively charged hydrogen atoms of the cryptand towards the chloride. This structural rigidity is partially responsible for its selectivity.

  12. The study of dynamics heterogeneity and slow down of silica by molecular dynamics simulation

    NASA Astrophysics Data System (ADS)

    San, L. T.; Hung, P. K.; Hue, H. V.

    2016-06-01

    We have numerically studied the diffusion in silica liquids via the SiOx → SiOx±1, OSiy → OSiy±1 reactions and coordination cells (CC). Five models with temperatures from 1000 to 3500 K have been constructed by molecular dynamics simulation. We reveal that the reactions happen not randomly in the space. In addition, the reactions correlated strongly with the mobility of CC atom. Further we examine the clustering of atoms having unbroken bonds and restored bonds. The time evolution of these clusters under temperature is also considered. The simulation shows that both slow down and dynamic heterogeneity (DH) is related not only to the percolation of restored-rigid clusters near glass transition but also to their long lifetime.

  13. Correlation between electron-irradiation defects and applied stress in graphene: A molecular dynamics study

    SciTech Connect

    Kida, Shogo; Yamamoto, Masaya; Kawata, Hiroaki; Hirai, Yoshihiko; Yasuda, Masaaki; Tada, Kazuhiro

    2015-09-15

    Molecular dynamics (MD) simulations are performed to study the correlation between electron irradiation defects and applied stress in graphene. The electron irradiation effect is introduced by the binary collision model in the MD simulation. By applying a tensile stress to graphene, the number of adatom-vacancy (AV) and Stone–Wales (SW) defects increase under electron irradiation, while the number of single-vacancy defects is not noticeably affected by the applied stress. Both the activation and formation energies of an AV defect and the activation energy of an SW defect decrease when a tensile stress is applied to graphene. Applying tensile stress also relaxes the compression stress associated with SW defect formation. These effects induced by the applied stress cause the increase in AV and SW defect formation under electron irradiation.

  14. Hydration of Y3+ ion: A Car-Parrinello molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Ikeda, Takashi; Hirata, Masaru; Kimura, Takaumi

    2005-01-01

    The solvation shell structure of Y3+ and the dynamics of the hydrated ion in an aqueous solution of 0.8M YCl3 are studied in two conditions with and without an excess proton by using first principles molecular dynamics method. We find that the first solvation shell around Y3+ contains eight water molecules forming a square antiprism as expected from x-ray absorption near edge structure in both the conditions we examined. A detailed analysis relying upon localized orbitals reveals that the complexation of water molecules with yttrium cation leads to a substantial amount of charge redistribution particularly on the oxygen atoms, giving rise to the chemical shifts of ˜-20 ppm in 17O nuclear magnetic resonance relative to the computed nuclear shieldings of the bulk water.

  15. A molecular dynamics computer simulation study of the hydration of bis(methylsulphonyl)methane in water

    NASA Astrophysics Data System (ADS)

    Remerie, Klaas; van Gunsteren, Wilfred F.; Engberts, Jan B. F. N.

    The molecular dynamics computer simulation technique has been applied to study the hydration of bis(methylsulphonyl)methane (1) in water. This 1,3-disulphone has water-structure breaking properties as is deduced from both simulated time-averaged and time-dependent properties. The time-averaged properties of water molecules in the various atomic hydration shells can be directly related to the solute atom under consideration. Time-dependent properties show a mutual influencing of the hydration shells of neighbouring atoms. Moderate sulphonyl oxygen-water hydrogen bonding competes with water-water hydrogen bonding in the same hydration shell, while methylene hydrogen-water hydrogen bonding is stronger than water-water hydrogen bonding. These results are in accord with previous interpretations of 1H-N.M.R. chemical shift data for the central methylene moiety of (1) in mixtures of water with 1,4-dioxane, 1,3-dioxane, and 1,2-dimethoxyethane.

  16. Studies on Deformation Mechanism and Punch Taper Effects on Nanoimprint Processes by Molecular Dynamics

    NASA Astrophysics Data System (ADS)

    Hsu, Quang-Cherng; Wu, Chen-Da; Fang, Te-Hua

    2004-06-01

    A molecular dynamics analysis model is proposed to study the effects of parameters on nanoimprint process, for example: taper angle, imprint depth and spring back. The nanoimprint process comprises one punch and one specimen at an isothermal state of 400K, while the deformed material is a copper FCC single crystal and the punch material is a nickel FCC single crystal. There were a total of 10,080 atoms in copper measuring 12.02 nm × 5.72 nm in length and height, respectively. There were a total of 4,200 atoms in nickel where the typical length and depth in punch tooth are 6.24 nm × 3.52 nm, respectively. Computer simulation codes based on Hamiltonian dynamics, periodical boundary conditions and Morse potential function were used to simulate the nanoimprint processes. By varying the punch taper angle and the imprinting depth, useful information for nanoimprint process has been obtained.

  17. Molecular Dynamics Simulation Study on Energy Exchange Between Vibration Modes of a Square Graphene Nanoflake Oscillator.

    PubMed

    Lee, Eunae; Kang, Jeong Won; Kim, Ki-Sub; Kwon, Oh-Kuen

    2016-02-01

    Superlubricity in nanoscale graphene structures has been of interest for developing graphene-based nanoelectromechanical systems, as well as for the study of basic mechanical properties. Here, we investigated the translational and rotational motions of a square graphene nanoflake with retracting motions by performing classical molecular dynamics simulations. Our results show that the kinetic energy of the translational motion was exchanged into the kinetic energy of the rotational motion. Thus, square graphene nanoflake oscillators have very low quality factors in translational motions. We discuss that square graphene nanoflakes have great potential to be a core component in nanoelectromechanical systems by detecting their motions with ultrahigh sensitivity to facilitate the development of sensor, memory, and quantum computing.

  18. A molecular dynamics study of melting and dissociation of tungsten nanoparticles

    NASA Astrophysics Data System (ADS)

    Li, Min; Wang, Jun; Fu, Baoqin; Hou, Qing

    2015-12-01

    Molecular dynamics simulations were conducted to study the melting and dissociation of free tungsten nanoparticles. For the various interatomic potentials applied, the melting points of the tungsten nanoparticles increased with increasing nanoparticle diameter. Combining these results with the melting point of bulk tungsten in the experiment, the melting point of nanoparticles with diameters ranging from 4 to 12 nm could be determined. As the temperature increases, free nanoparticles are subject to dissociation phenomena. The dissociation rate was observed to follow Arrhenius behavior, and the Meyer-Neldel rule was obeyed. These results are useful in understanding the behavior of tungsten dust generated in nuclear fusion devices as well as for the preparation, formation, and application of tungsten powders.

  19. Relaxation processes and glass transition in confined 1,4-polybutadiene films: A Molecular Dynamics study

    NASA Astrophysics Data System (ADS)

    Paul, Wolfgang; Solar, Mathieu

    We will present results from Molecular Dynamics simulations of a chemically realistic model of 1,4-polybutadiene (PB) chains confined by graphite walls. Relaxation processes in this system are heterogeneous and anisotropic. We will present evidence for a slow additional relaxation process related to chain desorption from the walls. We also study the structural relaxation resolved with respect to the distance from the graphite walls and show the influence of structural changes on the relaxation behavior. The temperature dependence of the dielectric relaxation in layers of different thickness near the walls shows no indication of a shift of Tg as a function of thickness when analyzed with a Vogel-Fulcher fit. We explain this by the importance of intramolecular dihedral barriers for the glass transition in PB which dominate over the density changes next to a wall except for a 1 nm thick layer directly at the wall.

  20. The laser annealing induced phase transition in silicon: a molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Marqués, Luis A.; Pelaz, Lourdes; Aboy, María.; Barbolla, Juan

    2004-02-01

    Laser thermal annealing of pre-amorphized silicon can be used to achieve sharp junctions with enhanced dopant activation. The changes in the properties of silicon as a consequence of the phase transition form amorphous to liquid caused by the laser annealing could influence the subsequent recrystallization and the activation of the dopants. In this work we have used the molecular dynamics simulation technique to study the physics of the amorphous-to-liquid transition in silicon. The changes in density, internal energy, structure and diffusion behavior are obtained from the simulations and analyzed. We have observed that for temperatures between the amorphous and crystal melting points there exists an intermediate phase which shares some of the properties of the amorphous and liquid silicon.

  1. Molecular dynamics study of two-dimensional sum frequency generation spectra at vapor/water interface

    SciTech Connect

    Ishiyama, Tatsuya; Morita, Akihiro; Tahara, Tahei

    2015-06-07

    Two-dimensional heterodyne-detected vibrational sum frequency generation (2D HD-VSFG) spectra at vapor/water interface were studied by molecular dynamics (MD) simulation with a classical flexible and nonpolarizable model. The present model well describes the spectral diffusion of 2D infrared spectrum of bulk water as well as 2D HD-VSFG at the interface. The effect of isotopic dilution on the 2D HD-VSFG was elucidated by comparing the normal (H{sub 2}O) water and HOD water. We further performed decomposition analysis of 2D HD-VSFG into the hydrogen-bonding and the dangling (or free) OH vibrations, and thereby disentangled the different spectral responses and spectral diffusion in the 2D HD-VSFG. The present MD simulation demonstrated the role of anharmonic coupling between these modes on the cross peak in the 2D HD-VSFG spectrum.

  2. Constant-pH Molecular Dynamics Study of Kyotorphin in an Explicit Bilayer.

    PubMed

    Magalhães, Pedro R; Machuqueiro, Miguel; Baptista, António M

    2015-05-01

    To our knowledge, we present the first constant-pH molecular dynamics study of the neuropeptide kyotorphin in the presence of an explicit lipid bilayer. The overall conformation freedom of the peptide was found to be affected by the interaction with the membrane, in accordance with previous results using different methodologies. Analysis of the interactions between the N-terminus amine group of the peptide and several lipid atoms shows that the membrane is able to stabilize both ionized and neutral forms of kyotorphin, resulting in a pKa value that is similar to the one obtained in water. This illustrates how a detailed molecular model of the membrane leads to rather different results than would be expected from simply regarding it as a low-dielectric slab. PMID:25954885

  3. Diffusion in a Cu-Zr metallic glass studied by microsecond-scale molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Wang, C. Z.; Mendelev, M. I.; Zhang, F.; Kramer, M. J.; Ho, K. M.

    2015-05-01

    Icosahedral short-range order (ISRO) has been widely accepted to be dominant in Cu-Zr metallic glasses (MGs). However, the diffusion mechanism and correlation of ISRO and medium-range order (MRO) to diffusion in MGs remain largely unexplored. Here, we perform a long time annealing up to 1.8 μs in molecular dynamics simulations to study the diffusion mechanism and the relationship between atomic structures and the diffusion path in a C u64.5Z r35.5 MG. It is found that most of the diffusing events performed by the diffusing atoms are outside ISRO and the Bergman-type MRO. The long-range diffusion in MGs is highly heterogeneous, via collective diffusing events through the liquidlike channels in the glass. Our results clearly demonstrate a strong correlation between the atomic structures and transport in MGs.

  4. Molecular Dynamics Simulation Study on Energy Exchange Between Vibration Modes of a Square Graphene Nanoflake Oscillator.

    PubMed

    Lee, Eunae; Kang, Jeong Won; Kim, Ki-Sub; Kwon, Oh-Kuen

    2016-02-01

    Superlubricity in nanoscale graphene structures has been of interest for developing graphene-based nanoelectromechanical systems, as well as for the study of basic mechanical properties. Here, we investigated the translational and rotational motions of a square graphene nanoflake with retracting motions by performing classical molecular dynamics simulations. Our results show that the kinetic energy of the translational motion was exchanged into the kinetic energy of the rotational motion. Thus, square graphene nanoflake oscillators have very low quality factors in translational motions. We discuss that square graphene nanoflakes have great potential to be a core component in nanoelectromechanical systems by detecting their motions with ultrahigh sensitivity to facilitate the development of sensor, memory, and quantum computing. PMID:27433628

  5. Effect of hydrogen on degradation mechanism of zirconium: A molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Chakraborty, Poulami; Moitra, Amitava; Saha-Dasgupta, Tanusri

    2015-11-01

    Using large scale molecular dynamics simulation, we investigate the deleterious effect of hydrogen in Zr. We consider both dilute and concentrated limit of H. In the dilute and concentrated H limits, we study the effect of 1-5 atomic percentage of hydrogen, and that of ε-ZrH2 precipitate having 5-10 nm diameters, respectively. From the stress-strain curves and micro-structure analysis at different strain values, we characterize the deformation behavior and correlate our result with previously reported mechanisms. We show hydrogen atoms in dilute limit help in dislocation multiplication, following the hydrogen-enhanced localized plasticity mechanism. In the concentrated limit, on the other hand, dislocations and cracks nucleate from precipitate-matrix interface, indicating the decohesion mechanism as primary method for Zr degradation. These findings are corroborated with a nucleation and growth model as expressed in Kolmogorov-Johnson-Mehl-Avrami equation.

  6. A molecular dynamics study of melting and dissociation of tungsten nanoparticles

    SciTech Connect

    Li, Min; Wang, Jun; Fu, Baoqin; Hou, Qing

    2015-12-15

    Molecular dynamics simulations were conducted to study the melting and dissociation of free tungsten nanoparticles. For the various interatomic potentials applied, the melting points of the tungsten nanoparticles increased with increasing nanoparticle diameter. Combining these results with the melting point of bulk tungsten in the experiment, the melting point of nanoparticles with diameters ranging from 4 to 12 nm could be determined. As the temperature increases, free nanoparticles are subject to dissociation phenomena. The dissociation rate was observed to follow Arrhenius behavior, and the Meyer–Neldel rule was obeyed. These results are useful in understanding the behavior of tungsten dust generated in nuclear fusion devices as well as for the preparation, formation, and application of tungsten powders.

  7. Influence of Montmorillonite on Nucleotide Oligomerization Reactions: A Molecular Dynamics Study

    NASA Astrophysics Data System (ADS)

    Mathew, Damien C.; Luthey-Schulten, Zaida

    2010-03-01

    We investigate a proposed origins of life scenario involving the clay montmorillonite and its catalytic role in forming oligonucleotides from activated mononucleotides. Clay and mineral surfaces are important for concentrating the reactants and for promoting nucleotide polymerization reactions. Using classical molecular dynamics methods we provide atomic details of reactant conformations prior to polynucleotide formation, lending insight into previously reported experimental observations of this phenomenon. The simulations clarify the catalytic role of metal ions, demonstrate that reactions leading to correct linkages take place primarily in the interlayer, and explain the observed sequence selectivity in the elongation of the chain. The study comparing reaction probabilities involving L- and D-chiral forms of the reactants has found enhancement of homochiral over heterochiral products when catalyzed by montmorillonite.

  8. Effects of temperature on Cu structure deposited on Si substrate: A molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Hidayat, Aulia Fikri; Rosikhin, Ahmad; Syuhada, Ibnu; Winata, Toto

    2016-02-01

    The deposition process of copper onto silicon substrate was studied by the molecular dynamics method. Tersoff, MEAM, and Morse potentials were used to describe the interaction of Si-Si Cu-Cu, and Cu-Si, respectively. Deposition process was performed using NVE ensemble and applying Berendsen thermostat with 0,2 fs timestep for 100 ps. The effect of substrate temperature on the percentage of amorphous structure, radial distribution function (RDF), and coordination number was investigated. The result was indicated that at 300 K, the percentage of amorphous structure was relatively lower compared to another temperature. First peaks of RDF at each temperature were found at radius 3,05 Å and were still relatively wide, indicating short-range order structure.

  9. Molecular Dynamics and Neutron Scattering Study of Glucose Solutions Confined in MCM-41

    PubMed Central

    Lerbret, Adrien; Lelong, Gérald; Mason, Philip E.; Saboungi, Marie-Louise; Brady, John W.

    2011-01-01

    Glucose aqueous solutions confined in MCM-41 cylindrical pores of diameter 3.2 nm have been studied by molecular dynamics (MD) simulations and quasielastic neutron scattering (QENS). MD simulations reveal a strong preferential interaction of glucose molecules with the silica walls, which induces significant concentration gradients within the pore. The influence of glucose on the structural and dynamical properties of water strongly depends on the region of the pore considered. The distortion of the hydrogen bond network (HBN) and of the tetrahedral organization of interfacial water molecules induced by silica is much stronger than that induced by glucose molecules. The interfacial glucose molecules diffuse about one order of magnitude slower than those in the core region. Differences in affinities for silica of the different species in confined hydrogen-bonded mixtures induce significant structural and dynamical heterogeneities not present in bulk solutions. PMID:21214282

  10. Molecular dynamics studies of sticking and reflection of low-energy deuterium on single crystal tungsten

    NASA Astrophysics Data System (ADS)

    Maya, P. N.

    2016-11-01

    Molecular dynamics simulations have been performed to study deuterium sticking and reflection properties of single crystal tungsten surfaces using two different Tersoff-type tungsten-hydrogen potentials. Single crystal tungsten surfaces of (001) and (110) orientations were bombarded with deuterium atoms up to 100 eV energy at 300 K sample temperature. The potentials show differences in the nature of sticking as well as in the sticking coefficient. In order to understand the variation in the observed sticking coefficient, detailed potential energy analysis has been carried out using both the potentials. The analysis is able to explain the nature of the sticking for various surfaces as well as the observed minima in sticking coefficient in both the potentials. The variation in the sticking and reflection coefficients with energy can be explained from the local variation of the repulsive and attractive potential energy in the near-surface region which are considerably different in both the potentials.

  11. Molecular-dynamics study of amorphous SiO{sub 2} relaxation

    SciTech Connect

    Fadhilah, Irfan Muhammad; Rosandi, Yudi

    2015-09-30

    Using Molecular-Dynamics simulation we observed the generation of amorphous SiO{sub 2} target from a randomly distributed Si and O atoms. We applied a sequence of annealing of the target with various temperature and quenching to room temperature. The relaxation time required by the system to form SiO{sub 4} tetrahedral mesh after a relatively long simulation time, is studied. The final amorphous target was analyzed using the radial distribution function method, which can be compared with the available theoretical and experimental data. We found that up to 70% of the target atoms form the tetrahedral SiO{sub 4} molecules. The number of formed tetrahedral increases following the growth function and the rate of SiO{sub 4} formation follows Arrhenius law, depends on the annealing temperature. The local structure of amorphous SiO{sub 2} after this treatment agrees well with those reported in some literatures.

  12. Flow alignment phenomena in liquid crystals studied by molecular dynamics simulation

    NASA Astrophysics Data System (ADS)

    Sarman, Sten; Laaksonen, Aatto

    2009-10-01

    The flow alignment of a nematic liquid crystal has been studied as a function of temperature, beginning at high temperature in the nematic phase and down to the nematic-smectic A phase transition. The alignment angle is obtained by estimating the twist viscosities by nonequilibrium molecular dynamics (NEMD) methods. These estimates are cross-checked by evaluating the corresponding equilibrium fluctuation relations. As a further comparison, shear flow simulations are carried out by application of the SLLOD equations of motion (so named because of their close relationship to the Doll's equation of motion, which can be derived from the Doll's tensor Hamiltonian), whereby the alignment angle is obtained directly. All these methods give consistent results for the alignment angle. At low temperatures near the nematic-smectic A transition the system becomes flow unstable. In this region the alignment angle has been calculated as a function of time.

  13. Molecular dynamics study of electrostatic potential along lipid bilayer with gramicidin A

    NASA Astrophysics Data System (ADS)

    Saito, Hiroaki; Nishimura, Megumi; Takagi, Hiroyuki; Miyakawa, Takeshi; Kawaguchi, Kazutomo; Nagao, Hidemi

    2013-02-01

    The structure and electrostatic potential profile of the DMPC lipid bilayers with a gramicidin A (GA) were studied by molecular dynamics (MD) simulation. The MD simulation reproduced the effect of GA on the membrane structure; the area per lipid decreases and membrane thickness increases, and the observed membrane structures correspond to the experimental data. The polar headgroup of lipid was found to orient toward the membrane normal as the lipid approaches the GA. The observed electrostatic potential map showed that the electrostatic potential around the region of GA gate was lower than the others at the same level of the membrane normal and the values of electrostatic potential in the pore region of GA were negative. These results indicate that a cation in the aqueous region of membrane can be electrostatically led to the GA entrance and penetrate the GA channel following the gradient of ion concentration.

  14. Role of temperature in the formation and growth of gold monoatomic chains: A molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Cortes-Huerto, R.; Sondon, T.; Saúl, A.

    2013-12-01

    The effect of temperature on the formation and growth of monoatomic chains is investigated by extensive molecular dynamics simulations using a semiempirical potential based on the second-moment approximation to the tight-binding Hamiltonian. Gold nanowires, with an aspect ratio of ˜13 and a cross section of ˜1 nm2, are stretched at a rate of 3 m /s in the range of temperatures 5-600 K with 50 initial configurations per temperature. A detailed study on the probability to form monoatomic chains (MACs) is presented. Two domains are apparent in our simulations: one at T <100 K, where MACs develop from crystalline disorder at the constriction, and the other at T >100 K, where MACs form as a consequence of plastic deformation of the nanowire. Our results show that the average length of the formed MACs maximizes at T =150 K, which is supported by simple energy arguments.

  15. Constant-pH Molecular Dynamics Study of Kyotorphin in an Explicit Bilayer

    PubMed Central

    Magalhães, Pedro R.; Machuqueiro, Miguel; Baptista, António M.

    2015-01-01

    To our knowledge, we present the first constant-pH molecular dynamics study of the neuropeptide kyotorphin in the presence of an explicit lipid bilayer. The overall conformation freedom of the peptide was found to be affected by the interaction with the membrane, in accordance with previous results using different methodologies. Analysis of the interactions between the N-terminus amine group of the peptide and several lipid atoms shows that the membrane is able to stabilize both ionized and neutral forms of kyotorphin, resulting in a pKa value that is similar to the one obtained in water. This illustrates how a detailed molecular model of the membrane leads to rather different results than would be expected from simply regarding it as a low-dielectric slab. PMID:25954885

  16. Structure and dynamics of DNA loops on nucleosomes studied with atomistic, microsecond-scale molecular dynamics

    PubMed Central

    Pasi, Marco; Lavery, Richard

    2016-01-01

    DNA loop formation on nucleosomes is strongly implicated in chromatin remodeling and occurs spontaneously in nucleosomes subjected to superhelical stress. The nature of such loops depends crucially on the balance between DNA deformation and DNA interaction with the nucleosome core. Currently, no high-resolution structural data on these loops exist. Although uniform rod models have been used to study loop size and shape, these models make assumptions concerning DNA mechanics and DNA–core binding. We present here atomic-scale molecular dynamics simulations for two different loop sizes. The results point to the key role of localized DNA kinking within the loops. Kinks enable the relaxation of DNA bending strain to be coupled with improved DNA–core interactions. Kinks lead to small, irregularly shaped loops that are asymmetrically positioned with respect to the nucleosome core. We also find that loop position can influence the dynamics of the DNA segments at the extremities of the nucleosome. PMID:27098037

  17. Structural and kinetic molecular dynamics study of electroporation in cholesterol-containing bilayers.

    PubMed

    Fernández, M Laura; Marshall, Guillermo; Sagués, Francesc; Reigada, Ramon

    2010-05-27

    We present a numerical study of pore formation in lipid bilayers containing cholesterol (Chol) and subjected to a transverse electric field. Molecular dynamics simulations of 1,2-dipalmitoyl-sn-glycero-3-phosphatidylcholine (DOPC) membranes reveal the formation of a pore when an electric field of 325 mV/nm is applied. The minimum electric field needed for membrane permeabilization strongly increases with the addition of cholesterol above 10 mol %, reaching 750 mV/nm for 40 mol % Chol. Analysis of simulations of DOPC/Chol bilayers suggests this is caused by a substantial increment of membrane cohesion. Simulations also show that pore formation kinetics is much slower at high Chol contents.

  18. Molecular dynamics study to identify the reactive sites of a liquid squalane surface.

    PubMed

    Köhler, Sven P K; Reed, Stewart K; Westacott, Robin E; McKendrick, Kenneth G

    2006-06-22

    Molecular dynamics simulations of liquid squalane, C30H62, were performed, focusing in particular on the liquid-vacuum interface. These theoretical studies were aimed at identifying potentially reactive sites on the surface, knowledge of which is important for a number of inelastic and reactive scattering experiments. A united atom force field (Martin, M. G.; Siepmann, J. I. J. Phys. Chem. B 1999, 103, 4508-4517) was used, and the simulations were analyzed with respect to their interfacial properties. A modest but clearly identifiable preference for methyl groups to protrude into the vacuum has been found at lower temperatures. This effect decreases when going to higher temperatures. Additional simulations tracking the flight paths of projectiles directed at a number of randomly chosen surfaces extracted from the molecular dynamics simulations were performed. The geometrical parameters for these calculations were chosen to imitate a typical abstraction reaction, such as the reaction between ground-state oxygen atoms and hydrocarbons. Despite the preference for methyl groups to protrude further into the vacuum, Monte Carlo tracking simulations suggest, on geometric grounds, that primary and secondary hydrogen atoms are roughly equally likely to react with incoming gas-phase atoms. These geometric simulations also indicate that a substantial fraction of the scattered products is likely to undergo at least one secondary collision with hydrocarbon side chains. These results help to interpret the outcome of previous measurements of the internal and external energy distribution of the gas-phase OH products of the interfacial reaction between oxygen atoms and liquid squalane.

  19. Transport properties of cholesteric liquid crystals studied by molecular dynamics simulation

    NASA Astrophysics Data System (ADS)

    Sarman, Sten

    We have studied the transport properties of a cholesteric liquid crystal by molecular dynamics simulation. The molecules consist of six soft ellipsoids of revolution, the axes of which are perpendicular to the line connecting their centres of symmetry. The angle between the symmetry axes of two adjacent ellipsoids is 7.5°, so the molecules are twisted. At high densities they form a cholesteric phase where their twist axes are oriented around the cholesteric axis and the symmetry axes of the ellipsoids are approximately parallel to the local director. We have been particularly interested in thermomechanical coupling or the Lehmann effect, which arises when a temperature gradient parallel to the cholesteric axis induces a torque that rotates the director. The converse is also possible: rotation of the director can drive a heat current. The thermal conductivity, the twist viscosity, the cross-coupling coefficient between the temperature gradient and the torque, and the cross-coupling coefficient between the director angular velocity and the heat current have been calculated by non-equilibrium molecular dynamics simulation methods (NEMD) and by evaluation of the Green-Kubo relations from equilibrium simulations. Two ensembles have been utilized: the ordinary canonical ensemble and another ensemble where the director angular velocity is constrained to be a constant of motion. All the methods give consistent results for the twist viscosity and the thermal conductivity. The NEMD estimates of the cross-coupling coefficients agree within a relative error of 20%. This is consistent with the Onsager reciprocity relations that state that the two cross-coupling coefficients should be equal. The relative error of the Green-Kubo estimates is about 100% even though the order of magnitude is the same as that of the NEMD estimates.

  20. Solute–solute correlations responsible for the prepeak in structure factors of undercooled Al-rich liquids: A molecular dynamics study

    DOE PAGES

    Zhang, Feng; Sun, Yang; Ye, Zhuo; Zhang, Yue; Wang, Cai -Zhuang; Mendelev, Mikhail I.; Ott, Ryan T.; Kramer, Matthew J.; Ding, Ze -Jun; Ho, Kai -Ming

    2015-05-06

    In this study, we have performed molecular dynamics simulations on a typical Al-based alloy Al90Sm10. The short-range and medium-range correlations of the system are reliably produced by ab initio calculations, whereas the long-range correlations are obtained with the assistance of a semi-empirical potential well-fitted to ab initio data. Our calculations show that a prepeak in the structure factor of this system emerges well above the melting temperature, and the intensity of the prepeak increases with increasing undercooling of the liquid. These results are in agreement with x-ray diffraction experiments. The interplay between the short-range order of the system originating frommore » the large affinity between Al and Sm atoms, and the intrinsic repulsion between Sm atoms gives rise to a stronger correlation in the second peak than the first peak in the Sm–Sm partial pair correlation function (PPCF), which in turn produces the prepeak in the structure factor.« less

  1. Solute–solute correlations responsible for the prepeak in structure factors of undercooled Al-rich liquids: A molecular dynamics study

    SciTech Connect

    Zhang, Feng; Sun, Yang; Ye, Zhuo; Zhang, Yue; Wang, Cai -Zhuang; Mendelev, Mikhail I.; Ott, Ryan T.; Kramer, Matthew J.; Ding, Ze -Jun; Ho, Kai -Ming

    2015-05-06

    In this study, we have performed molecular dynamics simulations on a typical Al-based alloy Al90Sm10. The short-range and medium-range correlations of the system are reliably produced by ab initio calculations, whereas the long-range correlations are obtained with the assistance of a semi-empirical potential well-fitted to ab initio data. Our calculations show that a prepeak in the structure factor of this system emerges well above the melting temperature, and the intensity of the prepeak increases with increasing undercooling of the liquid. These results are in agreement with x-ray diffraction experiments. The interplay between the short-range order of the system originating from the large affinity between Al and Sm atoms, and the intrinsic repulsion between Sm atoms gives rise to a stronger correlation in the second peak than the first peak in the Sm–Sm partial pair correlation function (PPCF), which in turn produces the prepeak in the structure factor.

  2. Molecular Dynamics Study on the Particle Dispersion Mechanism of Polyamide-imide/Silica Nano-composite Materials

    NASA Astrophysics Data System (ADS)

    Kikuchi, Hideyuki; Iwasaki, Tomio; Hanawa, Hidehito; Honda, Yuki

    We studied the particle dispersion mechanism of polyamide-imide/silica nano-composite material by using molecular-dynamics simulation technique based on Newtonian dynamics and quantum mechanics. In simulations, adhesive fracture energies at the interfaces between silica and solvents were calculated, and Brownian motions of silica particles were simulated to clarify dispersion properties. The simulation results showed that the colloidal state of silica was maintained by covering the silica surface with a new low hygroscopicity solvent and that the chemical structure of polymer contributed to the dispersion of silica. It is found that the results obtained from molecular dynamics agree well with those obtained by experiments, and that molecular-dynamics simulation technique will become very useful for the development of nano-composite materials in the future.

  3. Formation and atomic configuration of binary metallic glasses studied by ion beam mixing and molecular dynamics simulation

    SciTech Connect

    Tai, K. P.; Gao, N.; Dai, X. D.; Li, J. H.; Liu, B. X.

    2007-06-15

    Metallic glasses are obtained in an immiscible Ag-Nb system with overall composition ranging from 25 to 90 at. % of Nb by ion beam mixing. Interestingly, the diffraction analysis shows that the formed Nb-rich metallic glass features are two distinct atomic configurations. In atomistic modeling, an n-body Ag-Nb potential is derived, under the assistance of ab initio calculation, and then applied in molecular dynamics simulations. An atomic configuration is discovered, i.e., an icositetrahedral ordering, and as well as an icosahedral ordering observed in the Ag-Nb metallic glasses and in some previously reported systems. Simulations confirm that the two dominate local atomic packing units are formed through a structural phase transition from the Nb-based bcc and fcc solid solutions, respectively, suggesting a concept of structural heredity that the crystalline structure of the constituent metals play a decisive role in determining the atomic structure of the resultant metallic glasses.

  4. Infrared Spectroscopy with ab initio molecular dynamics simulations : gas phase floppy peptides of increasing size and complexity, in relation with IR-MPD experiments

    NASA Astrophysics Data System (ADS)

    Gaigeot, Marie-Pierre

    2009-03-01

    We present finite temperature DFT-based Car-Parrinello molecular dynamics (MD) simulations for the calculation of infrared spectra of complex molecular systems, either in the gas phase or in the condensed phase. We will review the fundamentals of the method, as well as the applicability and originality of finite temperature MD simulations for the purpose of modeling infrared spectra. Illustrations are taken from the infrared spectroscopy of alanine peptides of increasing size and complexity (from dipeptides to an octo-peptide) in the gas phase, in relation with IR-MPD (Infrared Multi Photon Dissociation) experiments : 300-400 K gas-phase action spectroscopy as devised on the CLIO platform at the University of Orsay-France or on the platform developed in the group of L. Snoek at Oxford-UK. A special emphasis on vibrational anharmonicities and how they can be extracted from molecular dynamics simulations will be put forward. Furthermore, band assignments in terms of atomic movements from MD is challenging and we have introduced a general method for obtaining effective normal modes of molecular systems from MD simulations.

  5. Lattice constants of pure methane and carbon dioxide hydrates at low temperatures. Implementing quantum corrections to classical molecular dynamics studies.

    PubMed

    Costandy, Joseph; Michalis, Vasileios K; Tsimpanogiannis, Ioannis N; Stubos, Athanassios K; Economou, Ioannis G

    2016-03-28

    We introduce a simple correction to the calculation of the lattice constants of fully occupied structure sI methane or carbon dioxide pure hydrates that are obtained from classical molecular dynamics simulations using the TIP4PQ/2005 water force field. The obtained corrected lattice constants are subsequently used in order to obtain isobaric thermal expansion coefficients of the pure gas hydrates that exhibit a trend that is significantly closer to the experimental behavior than previously reported classical molecular dynamics studies. PMID:27036466

  6. A path integral molecular dynamics study of the hyperfine coupling constants of the muoniated and hydrogenated acetone radicals

    NASA Astrophysics Data System (ADS)

    Oba, Yuki; Kawatsu, Tsutomu; Tachikawa, Masanori

    2016-08-01

    The on-the-fly ab initio density functional path integral molecular dynamics (PIMD) simulations, which can account for both the nuclear quantum effect and thermal effect, were carried out to evaluate the structures and "reduced" isotropic hyperfine coupling constants (HFCCs) for muoniated and hydrogenated acetone radicals (2-muoxy-2-propyl and 2-hydoxy-2-propyl) in vacuo. The reduced HFCC value from a simple geometry optimization calculation without both the nuclear quantum effect and thermal effect is -8.18 MHz, and that by standard ab initio molecular dynamics simulation with only the thermal effect and without the nuclear quantum effect is 0.33 MHz at 300 K, where these two methods cannot distinguish the difference between muoniated and hydrogenated acetone radicals. In contrast, the reduced HFCC value of the muoniated acetone radical by our PIMD simulation is 32.1 MHz, which is about 8 times larger than that for the hydrogenated radical of 3.97 MHz with the same level of calculation. We have found that the HFCC values are highly correlated with the local molecular structures; especially, the Mu—O bond length in the muoniated acetone radical is elongated due to the large nuclear quantum effect of the muon, which makes the expectation value of the HFCC larger. Although our PIMD result calculated in vacuo is about 4 times larger than the measured experimental value in aqueous solvent, the ratio of these HFCC values between muoniated and hydrogenated acetone radicals in vacuo is in reasonable agreement with the ratio of the experimental values in aqueous solvent (8.56 MHz and 0.9 MHz); the explicit presence of solvent molecules has a major effect on decreasing the reduced muon HFCC of in vacuo calculations for the quantitative reproduction.

  7. Study on the Characteristics of Gas Molecular Mean Free Path in Nanopores by Molecular Dynamics Simulations

    PubMed Central

    Liu, Qixin; Cai, Zhiyong

    2014-01-01

    This paper presents studies on the characteristics of gas molecular mean free path in nanopores by molecular dynamics simulation. Our study results indicate that the mean free path of all molecules in nanopores depend on both the radius of the nanopore and the gas-solid interaction strength. Besides mean free path of all molecules in the nanopore, this paper highlights the gas molecular mean free path at different positions of the nanopore and the anisotropy of the gas molecular mean free path at nanopores. The molecular mean free path varies with the molecule’s distance from the center of the nanopore. The least value of the mean free path occurs at the wall surface of the nanopore. The present paper found that the gas molecular mean free path is anisotropic when gas is confined in nanopores. The radial gas molecular mean free path is much smaller than the mean free path including all molecular collisions occuring in three directions. Our study results also indicate that when gas is confined in nanopores the gas molecule number density does not affect the gas molecular mean free path in the same way as it does for the gas in unbounded space. These study results may bring new insights into understanding the gas flow’s characteristic at nanoscale. PMID:25046745

  8. Molecular dynamics study of biodegradation of azo dyes via their interactions with AzrC azoreductase.

    PubMed

    Haghshenas, Hamed; Kay, Maryam; Dehghanian, Fariba; Tavakol, Hossein

    2016-01-01

    Azo dyes are one of the most important class of dyes, which have been widely used in industries. Because of the environmental pollution of azo dyes, many studies have been performed to study their biodegradation using bacterial systems. In present work, the AzrC of mesophilic gram-positive Bacillus sp. B29 has been considered to study its interaction with five common azo dyes (orange G, acid red 88, Sudan I, orange I, and methyl red). The molecular dynamics simulations have been employed to study the interaction between AzrC and azo dyes. The trajectory was confirmed using root mean square deviation and the root mean square fluctuation analyses. Then, the hydrogen bond and alanine scanning analyses were performed to reveal active site residues. Phe105 (A), Phe125 (B), Phe172 (B), and Pro132 (B) have been found as the most important hydrophobic residues whereas Asn104 (A), Tyr127 (B), and Asn187 (A) have key role in making hydrogen bond. The results of molecular mechanics Poisson-Boltzmann surface area and molecular mechanics generalized Born surface area calculations proved that the hydrophobic azo dyes like Acid red 88 binds more tightly to the AzrC protein. The calculated data suggested MR A 121 (B) I as a potential candidate for improving the AzrC-MR interactions.

  9. Dynamics and structure of hydration water on rutile and cassiterite nanopowders studied by quasielastic neutron scattering and molecular dynamics simulations.

    SciTech Connect

    Mamontov, Eugene; Vlcek, Lukas; Wesolowski, David J

    2007-03-01

    Quasielastic neutron scattering (QENS) experiments carried out using time-of-flight and backscattering neutron spectrometers with widely different energy resolution and dynamic range revealed the diffusion dynamics of hydration water in nanopowder rutile (TiO{sub 2}) and cassiterite (SnO{sub 2}) that possess the rutile crystal structure with the (110) crystal face predominant on the surface. These isostructural oxides differ in their bulk dielectric constants, metal atom electronegativities, and lattice spacings, which may all contribute to differences in the structure and dynamics of sorbed water. When hydrated under ambient conditions, the nanopowders had similar levels of hydration: about 3.5 (OH/H{sub 2}O) molecules per Ti{sub 2}O{sub 4} surface structural unit of TiO{sub 2} and about 4.0 (OH/H{sub 2}O) molecules per Sn{sub 2}O{sub 4} surface unit of SnO{sub 2}. Ab initio optimized classical molecular dynamics (MD) simulations of the (110) surfaces in contact with SPC/E water at these levels of hydration indicate three structurally distinct sorbed water layers L{sub 1}, L{sub 2}, and L{sub 3}, where the L{sub 1} species are either associated water molecules or dissociated hydroxyl groups in direct contact with the surface, L{sub 2} water molecules are hydrogen bonded to L{sub 1} and structural oxygen atoms at the surface, and L{sub 3} water molecules are more weakly bound. At the hydration levels studied, L{sub 3} is incomplete compared with axial oxygen density profiles of bulk SPC/E water in contact with these surfaces, but the structure and dynamics of L{sub 1}-L{sub 3} species are remarkably similar at full and reduced water coverage. Three hydration water diffusion components, on the time scale of a picosecond, tens of picoseconds, and a nanosecond could be extracted from the QENS spectra of both oxides. However, the spectral weight of the faster components was significantly lower for SnO{sub 2} compared to TiO{sub 2}. In TiO{sub 2} hydration water, the

  10. Molecular dynamics study of the bulk temperature effect on primary radiation damage in uranium dioxide

    NASA Astrophysics Data System (ADS)

    Martin, G.; Sabathier, C.; Wiktor, J.; Maillard, S.

    2015-06-01

    The effect of bulk temperature on the primary damage induced by a displacement cascade was investigated in uranium dioxide using classical molecular dynamics simulations. In this study, the Morelon potentials were used to model the middle-range interactions between the atoms that constitute the host matrix during the radiation events. Cascades were initiated by accelerating a uranium primary knock-on atom at 10keV inside a perfect UO2 lattice at a temperature between 700K and 1800K , a range which comprises in-pile temperatures of oxide fuels in light water reactors in standard operating conditions. Cascade overlap sequences were also simulated at 700K and 1400K in order to study the radiation damage accumulation in the oxide fuel. This study reveals the maximum damage level which the material can accommodate for decreases with the temperature. Furthermore the direct formation of vacancy clusters under irradiation is considerably slowed down above 1000K , notably during cascade overlap sequences.

  11. Vibrational spectra and anharmonic effects in crystals studied by molecular dynamics simulation

    NASA Astrophysics Data System (ADS)

    Dolgusheva, E. B.; Trubitsin, V. Yu.

    2012-12-01

    Using the molecular-dynamics method with pair and many-body potentials of interatomic interaction we study the role of the lattice vibrations and anharmonicity in structural stability and structural transformations in both bulk crystals (periodic boundary conditions) and nanoparticles (free boundary conditions) in a wide range of temperatures and pressures. In particular, the structural stability and lattice dynamics of the high-temperature bcc phase in zirconium and iron are studied under various thermodynamical conditions (P-const, V-const). The dispersion curves of the vibrational spectrum of Zr are calculated at high temperature and pressure. The anharmonic corrections (frequency shift and phonon damping) are estimated for different volumes. It is shown that the lattice vibrations in bcc Zr, remaining strongly anharmonic in a wide interval of volumes and temperatures, determine the peculiarities of the zirconium P-T phase diagram. The effect of the cluster size on physical properties of bcc Zr and Fe nanoparticles is studied. It is found that in bcc Zr nanocrystals the temperature and mechanism of the structural bcc → hcp transition depend substantially on the particle size and shape. The effect of lattice vibrations on the mechanism of structural bcc → hcp transformation and the local lattice distortions is discussed.

  12. Interaction of Curcumin with PEO-PPO-PEO block copolymers: a molecular dynamics study.

    PubMed

    Samanta, Susruta; Roccatano, Danilo

    2013-03-21

    Curcumin, a naturally occurring drug molecule, has been extensively investigated for its various potential usages in medicine. Its water insolubility and high metabolism rate require the use of drug delivery systems to make it effective in the human body. Among various types of nanocarriers, block copolymer based ones are the most effective. These polymers are broadly used as drug-delivery systems, but the nature of this process is poorly understood. In this paper, we propose a molecular dynamics simulation study of the interaction of Curcumin with block copolymer based on polyethylene oxide (PEO) and polypropylene oxide (PPO). The study has been conducted considering the smallest PEO and PPO oligomers and multiple chains of the block copolymer Pluronic P85. Our study shows that the more hydrophobic 1,2-dimethoxypropane (DMP) molecules and PPO block preferentially coat the Curcumin molecule. In the case of the Pluronic P85, simulation shows formation of a drug-polymer aggregate within 50 ns. This process leaves exposed the PEO part of the polymers, resulting in better solvation and stability of the drug in water.

  13. Thermal boundary conductance enhancement using experimentally achievable nanostructured interfaces - analytical study combined with molecular dynamics simulation.

    PubMed

    Lee, Eungkyu; Zhang, Teng; Hu, Ming; Luo, Tengfei

    2016-06-22

    Interfacial thermal resistance presents great challenges to the thermal management of modern electronics. In this work, we perform an analytical study to enhance the thermal boundary conductance (TBC) of nanostructured interfaces with square-shape pillar arrays, extendable to the characteristic lengths that can be fabricated in practice. As a representative system, we investigate a SiC substrate with the square-shape pillar array combined with epitaxial GaN as the nanostructured interface. By applying a first-order ray tracing method and molecular dynamics simulations to analyze phonon incidence and transmission at the nanostructured interface, we systematically study the impact of the characteristic dimensions of the pillar array on the TBC. Based on the multi-scale analysis we provide a general guideline to optimize the nanostructured interfaces to achieve higher TBC, demonstrating that the optimized TBC value of the nanostructured SiC/GaN interfaces can be 42% higher than that of the planar SiC/GaN interfaces without nanostructures. The model used and results obtained in this study will guide the further experimental realization of nanostructured interfaces for better thermal management in microelectronics. PMID:27275647

  14. Molecular dynamics studies of material property effects on thermal boundary conductance.

    PubMed

    Zhou, X W; Jones, R E; Duda, J C; Hopkins, P E

    2013-07-14

    Thermal boundary resistance (inverse of conductance) between different material layers can dominate the overall thermal resistance in nanostructures and therefore impact the performance of the thermal property limiting nano devices. Because relationships between material properties and thermal boundary conductance have not been fully understood, optimum devices cannot be developed through a rational selection of materials. Here we develop generic interatomic potentials to enable material properties to be continuously varied in extremely large molecular dynamics simulations to explore the dependence of thermal boundary conductance on the characteristic properties of materials such as atomic mass, stiffness, and interfacial crystallography. To ensure that our study is not biased to a particular model, we employ different types of interatomic potentials. In particular, both a Stillinger-Weber potential and a hybrid embedded-atom-method + Stillinger-Weber potential are used to study metal-on-semiconductor compound interfaces, and the results are analyzed considering previous work based upon a Lennard-Jones (LJ) potential. These studies, therefore, reliably provide new understanding of interfacial transport phenomena particularly in terms of effects of material properties on thermal boundary conductance. Our most important finding is that thermal boundary conductance increases with the overlap of the vibrational spectra between metal modes and the acoustic modes of the semiconductor compound, and increasing the metal stiffness causes a continuous shift of the metal modes. As a result, the maximum thermal boundary conductance occurs at an intermediate metal stiffness (best matched to the semiconductor stiffness) that maximizes the overlap of the vibrational modes.

  15. Molecular dynamics studies on the thermodynamics of supercooled sodium chloride aqueous solution at different concentrations.

    PubMed

    Corradini, D; Gallo, P; Rovere, M

    2010-07-21

    In this paper we compare recent results obtained by means of molecular dynamics computer simulations on the thermodynamics of TIP4P bulk water and on solutions of sodium chloride in TIP4P water. The concentrations studied are c = 0.67, 1.36 and 2.10 mol kg( - 1). The results are checked against change of water-salt potential and size effects. The systems are studied in a wide range of temperatures, going from ambient temperature to the supercooled region. Analysis of simulated state points, performed on the isochores and on the isotherm plane, allowed the determination of the limit of mechanical stability and of the temperature of maximum density lines. While the presence of ions in the system does not affect the limit of mechanical stability with respect to the bulk, it causes the temperature of the maximum density line to shift to lower pressure and temperature upon increasing concentration. The occurrence of minima in the trend of potential energy as a function of density and the inflections in the low temperature isotherms suggest the presence of liquid-liquid coexistence for bulk water and for the sodium chloride solutions at all concentrations studied.

  16. Molecular Dynamics Simulation Study of the Selectivity of a Silica Polymer for Ibuprofen

    PubMed Central

    Concu, Riccardo; Cordeiro, M. Natalia D. S.

    2016-01-01

    In the past few years, the sol-gel polycondensation technique has been increasingly employed with great success as an alternative approach to the preparation of molecularly imprinted materials (MIMs). The main aim of this study was to study, through a series of molecular dynamics (MD) simulations, the selectivity of an imprinted silica xerogel towards a new template—the (±)-2-(P-Isobutylphenyl) propionic acid (Ibuprofen, IBU). We have previously demonstrated the affinity of this silica xerogel toward a similar molecule. In the present study, we simulated the imprinting process occurring in a sol-gel mixture using the Optimized Potentials for Liquid Simulations-All Atom (OPLS-AA) force field, in order to evaluate the selectivity of this xerogel for a template molecule. In addition, for the first time, we have developed and verified a new parameterisation for the Ibuprofen® based on the OPLS-AA framework. To evaluate the selectivity of the polymer, we have employed both the radial distribution functions, interaction energies and cluster analyses. PMID:27399685

  17. Hydrated germanium (II): irregular structural and dynamical properties revealed by a quantum mechanical charge field molecular dynamics study.

    PubMed

    Azam, S Sikander; Lim, Len Herald V; Hofer, Thomas S; Randolf, Bernhard R; Rode, Bernd M

    2010-01-30

    Structural and dynamical properties of Ge (II) in aqueous solution have been investigated using the novel ab initio quantum mechanical charge field (QMCF) molecular dynamics (MD) formalism. The first and second hydration shells were treated by ab initio quantum mechanics at restricted Hartree-Fock (RHF) level using the cc-pVDZ-PP basis set for Ge (II) and Dunning double-zeta plus polarization basis sets for O and H. Besides ligand exchange processes and mean ligand residence times to observe dynamics, tilt- and theta-angle distributions along with an advanced structural parameter, namely radial and angular distribution functions (RAD) for different regions were also evaluated. The combined radial and angular distribution depicted through surface plot and contour map is presented to provide a detailed insight into the density distribution of water molecules around the Ge(2+) ion. A strongly distorted hydration structure with two trigonal pyramidal substructures within the first hydration shell is observed, which demonstrates the lone-pair influence and provides a new basis for the interpretation of the catalytic and pharmacological properties of germanium coordination compounds.

  18. Car-Parrinello molecular dynamics study of the intramolecular vibrational mode-sensitive double proton-transfer mechanisms in porphycene.

    PubMed

    Walewski, Łukasz; Waluk, Jacek; Lesyng, Bogdan

    2010-02-18

    Car-Parrinello molecular dynamics simulations were carried out to help interpret proton-transfer processes observed experimentally in porphycene under thermodynamic equilibrium conditions (NVT ensemble) as well as during selective, nonequilibrium vibrational excitations of the molecular scaffold (NVE ensemble). In the NVT ensemble, the population of the trans form in the gas phase at 300 K is 96.5%, and of the cis-1 form is 3.5%, in agreement with experimental data. Approximately 70% of the proton-transfer events are asynchronous double proton transfers. According to the high resolution simulation data they consist of two single transfer events that rapidly take place one after the other. The average time-period between the two consecutive jumps is 220 fs. The gas phase reaction rate estimate at 300 K is 3.6 ps, which is comparable to experimentally determined rates. The NVE ensemble nonequilibrium ab initio MD simulations, which correspond to selective vibrational excitations of the molecular scaffold generated with high resolution laser spectroscopy techniques, exhibit an enhancing property of the 182 cm(-1) vibrational mode and an inhibiting property of the 114 cm(-1) one. Both of them influence the proton-transfer rate, in qualitative agreement with experimental findings. Our ab initio simulations provide new predictions regarding the influence of double-mode vibrational excitations on proton-transfer processes. They can help in setting up future programmable spectroscopic experiments for the proton-transfer translocations. PMID:20099852

  19. Conformational instability of human prion protein upon residue modification: a molecular dynamics simulation study

    PubMed Central

    Bamdad, Kourosh; Naderi-manesh, Hossein; Baumgaertner, Artur

    2014-01-01

    Technical strategies like amino acid substitution and residue modification have been widely used to characterize the importance of key amino acids and the role that each residue plays in the structural and functional properties of protein molecules. However, there is no systematic approach to assess the impact of the substituted/modified amino acids on the conformational dynamics of proteins. In this investigation to clarify the effects of residue modifications on the structural dynamics of human prion protein (PrP), a comparative molecular dynamics simulation study on the native and the amino acid-substituted analog at position 208 of PrP has been performed. It is believed that Arginine to Histidine mutation at position 208 is responsible for the structural transition of the native form of human prion protein to the pathogenic isoform causing Creutzfeldt-Jakob disease (CJD). So, three 10 ns molecular dynamics simulations on three model constructs have been performed. Simulation results indicated considerable differences of conformational fluctuations for Alanine substituted construct (PrPALA) and the analog form (PrPSB) comprising the neutralized state of the Arginine residue at position 208 of the human prion protein. According to our data, substitution of the Arginine residue by the uncharged state of this residue induces some reversible structural alterations in the intrinsically flexible loop area including residues 167–171 of PrP. Thus, deprotonation of Arg208 is a weak perturbation to the structural fluctuations of the protein backbone and the resulting construct behaves almost identical as its native form. Otherwise, Alanine substitution at position 208 imposed an irreversible impact on the secondary and tertiary structure of the protein, which leads to conformational instabilities in the remote hot region comprising residues 190–195 of the C–terminal part of helix 2. Based on the results, it could be deduced that the observed conformational

  20. Homology modeling and molecular dynamics simulation studies of a marine alkaline protease.

    PubMed

    Ji, Xiaofeng; Wang, Wei; Zheng, Yuan; Hao, Jianhua; Sun, Mi

    2012-01-01

    A cold-adapted marine alkaline protease (MP, accession no. ACY25898) was produced by a marine bacterium strain, which was isolated from Yellow Sea sediment in China. Many previous researches showed that this protease had potential application as a detergent additive. It was therefore crucial to determine the tertiary structure of MP. In this study, a homology model of MP was constructed using the multiple templates alignment method. The tools PROCHECK, ERRAT, and Verify_3D were used to check the effectiveness of the model. The result showed that 94% of residues were found in the most favored allowed regions, 6% were in the additional allowed region, and 96.50% of the residues had average 3D-1D scores of no less than 0.2. Meanwhile, the overall quality factor (ERRAT) of our model was 80.657. In this study, we also focused on elucidating the molecular mechanism of the two "flap" motions. Based on the optimized model, molecular-dynamics simulations in explicit solvent environments were carried out by using the AMBER11 package, for the entire protein, in order to characterize the dynamical behavior of the two flaps. Our results showed an open motion of the two flaps in the water solvent. This research may facilitate inhibitor virtual screening for MP and may also lay the foundation knowledge of mechanism of the inhibitors. PMID:23226008

  1. Towards New Insights in the Sterol/Amphotericin Nanochannels Formation: A Molecular Dynamic Simulation Study.

    PubMed

    Boukari, Khaoula; Balme, Sébastien; Janot, Jean-Marc; Picaud, Fabien

    2016-06-01

    Amphotericin B (AmB) is a well-known polyene which self-organizes into membrane cell in order to cause the cell death. Its specific action towards fungal cell is not fully understood but was proved to become from sterol composition. The mechanism was shown experimentally to require the formation of stable sterol/polyene couples which could then organize in a nanochannel. This would allow the leakage of ions responsible for the death of fungal cells, only. In this present study, we investigate the arrangement of AmB/sterols in biological membrane using molecular dynamic simulations in order to understand the role of the sterol structure on the antifungal action of the polyene. We show in particular that the nanochannels tend to close up when cell was composed with cholesterol (animal cell) due to strong interaction between amphotericin and sterol. On the other side, with ergosterol (fungal cell) the largest interactions between amphotericin and lipid membrane lead to the appearance of large hole that could favor the important leakage of ions and thus, the fungal cell death. This work appears as a good complement in the extensive studies linked to the understanding of the antifungal molecules in membrane cells.

  2. Theoretical studies of zirconium and carbon clusters with molecular dynamics simulations

    SciTech Connect

    Zhang, B.

    1993-08-01

    In this dissertation, we will present a systematic study of structures of fullerenes ranging from C{sub 20} to C{sub 100} by introducing a novel scheme. Using our new scheme, we not only reproduce all known fullerene structures but also successfully predicted several other fullerene structures which were confirmed by experiments. By utilizing the tight-binding molecular-dynamic (TBMD) simulation, we also studied the dynamical behavior of fullerenes: Vibrations, thermal disintegration of individual clusters as well as collisions between fullerenes. If the beauty of carbon fullerene is not enough, people found that carbon can also form tubules and even speculated that they can form three-dimensional graphite-like networks. By extending our fullerene structure searching scheme, we performed a search for the ground-state structure of three dimensional carbon network. We found the most stable structure people ever proposed for simple cubic based networks. From the difference of this new form of carbon and graphite in the electronic and vibrational properties, we propose an experimental probe to identify these novel three-dimensional carbon networks.

  3. Molecular Dynamics Simulation Study of a Pulmonary Surfactant Film Interacting with a Carbonaceous Nanoparticle

    PubMed Central

    Choe, Seungho; Chang, Rakwoo; Jeon, Jonggu; Violi, Angela

    2008-01-01

    This article reports an all-atom molecular dynamics simulation to study a model pulmonary surfactant film interacting with a carbonaceous nanoparticle. The pulmonary surfactant is modeled as a dipalmitoylphosphatidylcholine monolayer with a peptide consisting of the first 25 residues from surfactant protein B. The nanoparticle model with a chemical formula C188H53 was generated using a computational code for combustion conditions. The nanoparticle has a carbon cage structure reminiscent of the buckyballs with open ends. A series of molecular-scale structural and dynamical properties of the surfactant film in the absence and presence of nanoparticle are analyzed, including radial distribution functions, mean-square displacements of lipids and nanoparticle, chain tilt angle, and the surfactant protein B peptide helix tilt angle. The results show that the nanoparticle affects the structure and packing of the lipids and peptide in the film, and it appears that the nanoparticle and peptide repel each other. The ability of the nanoparticle to translocate the surfactant film is one of the most important predictions of this study. The potential of mean force for dragging the particle through the film provides such information. The reported potential of mean force suggests that the nanoparticle can easily penetrate the monolayer but further translocation to the water phase is energetically prohibitive. The implication is that nanoparticles can interact with the lung surfactant, as supported by recent experimental data by Bakshi et al. PMID:18923102

  4. Coarse-grain molecular dynamics study of fullerene transport across a cell membrane.

    PubMed

    Sridhar, Akshay; Srikanth, Bharath; Kumar, Amit; Dasmahapatra, Ashok Kumar

    2015-07-14

    The study of the ability of drug molecules to enter cells through the membrane is of vital importance in the field of drug delivery. In cases where the transport of the drug molecules through the membrane is not easily accomplishable, other carrier molecules are used. Spherical fullerene molecules have been postulated as potential carriers of highly hydrophilic drugs across the plasma membrane. Here, we report the coarse-grain molecular dynamics study of the translocation of C60 fullerene and its derivatives across a cell membrane modeled as a 1,2-distearoyl-sn-glycero-3-phosphocholine bilayer. Simulation results indicate that pristine fullerene molecules enter the bilayer quickly and reside within it. The addition of polar functionalized groups makes the fullerenes less likely to reside within the bilayer but increases their residence time in bulk water. Addition of polar functional groups to one half of the fullerene surface, in effect creating a Janus particle, offers the most promise in developing fullerene models that can achieve complete translocation through the membrane bilayer.

  5. Molecular dynamics simulation studies of hyperbranched polyglycerols and their encapsulation behaviors of small drug molecules.

    PubMed

    Yu, Chunyang; Ma, Li; Li, Ke; Li, Shanlong; Liu, Yannan; Zhou, Yongfeng; Yan, Deyue

    2016-08-10

    Hyperbranched polyglycerol (HPG) is one of the most important hyperbranched polymers (HBPs) due to its interesting properties and applications. Herein, the conformation of HPGs depending on the degree of polymerization (DP) and the degree of branching (DB) is investigated explicitly by molecular dynamics simulations. This study shows that the radius of gyration (Rg) scales as Rg ∼ DP(1/3), which is in close agreement with the result of the SANS experiment. For HPGs with the same DP, the radius of gyration, asphericities and solvent accessible surface area all monotonically decrease with the increase of DB; while for HPGs with the same DB, the molecular anisotropy decreases with the increase of DP. The radial density investigation discloses that the cavities are randomly distributed in the interior of the HPG core to support the "dendritic box effect", which can be used to encapsulate the guest molecules. Interestingly, the terminal groups of HPGs with a high Wiener index (WI) are more favorable to fold back into the interiors than those with the low WI when in water. For the hyperbranched multi-arm copolymer with a HPG core and many polyethylene glycol (PEG) arms, drug encapsulation studies show that the PEG caps can not only effectively prevent tamoxifen from leaving the HPG core, but also encapsulate tamoxifen inside the PEG chains. These simulation results have provided more details for understanding the structure-property relationships of HPGs in water. PMID:27465863

  6. Interactions of Borneol with DPPC Phospholipid Membranes: A Molecular Dynamics Simulation Study

    PubMed Central

    Yin, Qianqian; Shi, Xinyuan; Ding, Haiou; Dai, Xingxing; Wan, Guang; Qiao, Yanjiang

    2014-01-01

    Borneol, known as a “guide” drug in traditional Chinese medicine, is widely used as a natural penetration enhancer in modern clinical applications. Despite a large number of experimental studies on borneol’s penetration enhancing effect, the molecular basis of its action on bio-membranes is still unclear. We carried out a series of coarse-grained molecular dynamics simulations with the borneol concentration ranging from 3.31% to 54.59% (v/v, lipid-free basis) to study the interactions of borneol with aDPPC(1,2-dipalmitoylsn-glycero-3-phosphatidylcholine) bilayer membrane, and the temperature effects were also considered. At concentrations below 21.89%, borneol’s presence only caused DPPC bilayer thinning and an increase in fluidity; A rise in temperature could promote the diffusing progress of borneol. When the concentration was 21.89% or above, inverted micelle-like structures were formed within the bilayer interior, which led to increased bilayer thickness, and an optimum temperature was found for the interaction of borneol with the DPPC bilayer membrane. These findings revealed that the choice of optimal concentration and temperature is critical for a given application in which borneol is used as a penetration enhancer. Our results not only clarify some molecular basis for borneol’s penetration enhancing effects, but also provide some guidance for the development and applications of new preparations containing borneol. PMID:25383679

  7. Adsorptive separation of ethylene/ethane mixtures using carbon nanotubes: a molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Tian, Xingling; Wang, Zhigang; Yang, Zaixing; Xiu, Peng; Zhou, Bo

    2013-10-01

    Ethylene/ethane separation is a very important process in the chemical industry. Traditionally, this process is achieved by cryodistillation, which is extremely energy-intensive. The adsorptive separation is an energy-saving and environmentally benign alternative. In this study, we employ molecular dynamics simulations to study the competitive adsorption of an equimolar mixture of gaseous ethane and ethylene inside single-walled carbon nanotubes (SWNTs) of different diameters at room temperature. We find that for narrow SWNTs, i.e. the (6, 6) and (7, 7) SWNTs, the selectivities towards ethane, fselec, can reach values of 3.1 and 3.7, respectively. Such high selectivities are contrary to the opinion of many researchers that the adsorptive separation of an ethylene/ethane mixture by means of dispersion interaction is difficult due to the same carbon number of ethane and ethylene. The key for our observation is that the role of dispersion interaction of ethane's additional two hydrogen atoms with the SWNT becomes significant under extreme confinement. Interestingly, the (8, 8) SWNT prefers ethylene to ethane with fselec = 0.6. For wider SWNTs, fselec converges to ∼1. The mechanisms behind these observations, as well as the kinetics of single-file nanopore filling and kinetics of confined gas molecules are discussed. Our findings suggest that efficient ethane/ethylene separation can be achieved by using bundles/membranes of SWNTs with appropriate diameters.

  8. Molecular dynamics study of contact mechanics: contact area and interfacial separation from small to full contact

    NASA Astrophysics Data System (ADS)

    Yang, Chunyan; Persson, Bo

    2008-03-01

    We report a molecular dynamics study of the contact between a rigid solid with a randomly rough surface and an elastic block with a flat surface. We study the contact area and the interfacial separation from small contact (low load) to full contact (high load). For small load the contact area varies linearly with the load and the interfacial separation depends logarithmically on the load [1-4]. For high load the contact area approaches to the nominal contact area (i.e., complete contact), and the interfacial separation approaches to zero. The present results may be very important for soft solids, e.g., rubber, or for very smooth surfaces, where complete contact can be reached at moderate high loads without plastic deformation of the solids. References: [1] C. Yang and B.N.J. Persson, arXiv:0710.0276, (to appear in Phys. Rev. Lett.) [2] B.N.J. Persson, Phys. Rev. Lett. 99, 125502 (2007) [3] L. Pei, S. Hyun, J.F. Molinari and M.O. Robbins, J. Mech. Phys. Sol. 53, 2385 (2005) [4] M. Benz, K.J. Rosenberg, E.J. Kramer and J.N. Israelachvili, J. Phy. Chem. B.110, 11884 (2006)

  9. Rotational viscosity of fluids composed of linear molecules: An equilibrium molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Moore, R. J. D.; Hansen, J. S.; Todd, B. D.

    2008-06-01

    In this paper, we investigate the rotational viscosity for a chlorine fluid and for a fluid composed of small linear molecules by using equilibrium molecular dynamics simulations. The rotational viscosity is calculated over a large range of state points. It is found that the rotational viscosity is almost independent of temperature in the range studied here but exhibits a power-law dependency on density. The rotational viscosity also shows a power-law relationship with the molecular length, and the ratio between the shear and rotational viscosities approaches 0.5 for the longest molecule studied here. By changing the number of atoms or united atomic units per molecule and by keeping the molecule length fixed, we show that fluids composed of molecules which have a rodlike shape have a lower rotational viscosity. We argue that this phenomenon is due to the reduction in intermolecular connectivity, which leads to larger fluctuations around the values possessed by the fluid on average. The conclusions here can be extended to fluids composed of uniaxial molecules of arbitrary length.

  10. Influence of the sterol aliphatic side chain on membrane properties: a molecular dynamics study.

    PubMed

    Robalo, João R; Ramalho, J P Prates; Huster, Daniel; Loura, Luís M S

    2015-09-21

    Following a recent experimental investigation of the effect of the length of the alkyl side chain in a series of cholesterol analogues (Angew. Chem., Int. Ed., 2013, 52, 12848-12851), we report here an atomistic molecular dynamics characterization of the behaviour of methyl-branched side chain sterols (iso series) in POPC bilayers. The studied sterols included androstenol (i-C0-sterol) and cholesterol (i-C8-sterol), as well as four other derivatives (i-C5, i-C10, i-C12 and i-C14-sterol). For each sterol, both subtle local effects and more substantial differential alterations of membrane properties along the iso series were investigated. The location and orientation of the tetracyclic ring system is almost identical in all compounds. Among all the studied sterols, cholesterol is the sterol that presents the best matching with the hydrophobic length of POPC acyl chains, whereas longer-chained sterols interdigitate into the opposing membrane leaflet. In accordance with the experimental observations, a maximal ordering effect is observed for intermediate sterol chain length (i-C5, cholesterol, i-C10). Only for these sterols a preferential interaction with the saturated sn-1 chain of POPC (compared to the unsaturated sn-2 chain) was observed, but not for either shorter or longer-chained derivatives. This work highlights the importance of the sterol alkyl chain in the modulation of membrane properties and lateral organization in biological membranes.

  11. Molecular dynamics study of interfacial confinement effects of aqueous NaCl brines in nanoporous carbon

    SciTech Connect

    Wander, M. C. F.; Shuford, K. L.

    2010-12-09

    In this paper, studies of aqueous electrolyte solutions in contact with a family of porous carbon geometries using classical molecular dynamics simulations are presented. These simulations provide an atomic scale depiction of ion transport dynamics in different environments to elucidate power of aqueous electrolyte supercapacitors. The electrolyte contains alkali metal and halide ions, which allow for the examination of size trends within specific geometries as well as trends in concentration. The electrode pores are modeled as planar graphite sheets and carbon nanotubes with interstices ranging from one to four nanometers. Ordered layers form parallel to the carbon surface, which facilitates focused ion motion under slightly confining conditions. As a result, the ion’s diffusivities are enhanced in the direction of the slit or pore. Further confining the system leads to decreased ion diffusivities. The ions are fully hydrated in all but the smallest slits and pores with those sizes showing increased ion pairing. There is strong evidence of charge separation perpendicular to the surface at all size scales, concentrations, and ion types, providing a useful baseline for examining differential capacitance behavior and future studies on energy storage. These systems show promise as high-power electrical energy storage devices.

  12. Custom-tailored adsorbers: A molecular dynamics study on optimal design of ion exchange chromatography material.

    PubMed

    Lang, Katharina M H; Kittelmann, Jörg; Pilgram, Florian; Osberghaus, Anna; Hubbuch, Jürgen

    2015-09-25

    The performance of functionalized materials, e.g., ion exchange resins, depends on multiple resin characteristics, such as type of ligand, ligand density, the pore accessibility for a molecule, and backbone characteristics. Therefore, the screening and identification process for optimal resin characteristics for separation is very time and material consuming. Previous studies on the influence of resin characteristics have focused on an experimental approach and to a lesser extent on the mechanistic understanding of the adsorption mechanism. In this in silico study, a previously developed molecular dynamics (MD) tool is used, which simulates any given biomolecule on resins with varying ligand densities. We describe a set of simulations and experiments with four proteins and six resins varying in ligand density, and show that simulations and experiments correlate well in a wide range of ligand density. With this new approach simulations can be used as pre-experimental screening for optimal adsorber characteristics, reducing the actual number of screening experiments, which results in a faster and more knowledge-based development of custom-tailored adsorbers.

  13. Femtosecond laser ablation of CuxZr1-x bulk metallic glasses: A molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Marinier, Sébastien; Lewis, Laurent J.

    2015-11-01

    Molecular-dynamics simulations combined with a two-temperature model are used to study laser ablation in CuxZr1-x (x =0.33 ,0.50 ,0.67 ) metallic glasses as well as crystalline CuZr2 in the C11b (MoSi2) structure. Ablation thresholds are found to be 430 ±10 ,450 ±10 ,510 ±10 , and 470 ±10 J/m 2 for a-Cu2Zr , a-CuZr, a-CuZr2, and c-CuZr2, respectively. The larger threshold in amorphous CuZr2 results from a weaker electron-phonon coupling and thus longer electron-ion equilibration time. We observe that the velocity of the pressure waves in the amorphous samples is not affected by the fluence, in contrast to the crystal; this is due to differences in the behavior of the shear modulus with increasing pressure. The heat-affected zone in the different systems is characterized in terms of the melting depth as well as inelastic deformations. The melting depth is found to be smaller in the crystal than in the amorphous targets because of its higher melting temperature. The inelastic deformations are investigated in terms of the von Mises shear strain invariant ηMises; the homogeneous nucleation of shear transformation zones is observed in the glass as reported in previous theoretical and experimental studies. The coalescence of the shear transformation zones is also found at higher fluence.

  14. A molecular dynamics study of thermal transport in nanoparticle doped Argon like solid

    NASA Astrophysics Data System (ADS)

    Shahadat, Muhammad Rubayat Bin; Ahmed, Shafkat; Morshed, A. K. M. M.

    2016-07-01

    Interfacial phenomena such as mass and type of the interstitial atom, nano scale material defect influence heat transfer and the effect become very significant with the reduction of the material size. Non Equilibrium Molecular Dynamics (NEMD) simulation was carried out in this study to investigate the effect of the interfacial phenomena on solid. Argon like solid was considered in this study and LJ potential was used for atomic interaction. Nanoparticles of different masses and different molecular defects were inserted inside the solid. From the molecular simulation, it was observed that a large interfacial mismatch due to change in mass in the homogenous solid causes distortion of the phonon frequency causing increase in thermal resistance. Position of the doped nanoparticles have more profound effect on the thermal conductivity of the solid whereas influence of the mass ratio is not very significant. Interstitial atom positioned perpendicular to the heat flow causes sharp reduction in thermal conductivity. Structural defect caused by the molecular defect (void) also observed to significantly affect the thermal conductivity of the solid.

  15. A survey and a molecular dynamics study on the (central) hydrophobic region of prion proteins.

    PubMed

    Zhang, Jiapu; Wang, Feng

    2014-01-01

    Prion diseases which are serious neurodegenerative diseases that affect humans and animals occur in various of species. Unlike many other neurodegenerative diseases affected by amyloid, prion diseases can be highly infectious. Prion diseases occur in many species. In humans, prion diseases include the fatal human neurodegenerative diseases such as Creutzfeldt-Jakob Disease (CJD), Fatal Familial Insomnia (FFI), Gerstmann-Strussler-Scheinker syndrome (GSS) and Kuru etc. In animals, prion diseases are related to the bovine spongiform encephalopathy (BSE or 'mad-cow' disease) in cattle, the chronic wasting disease (CWD) found in deer and elk, and scrapie seen in sheep and goats, etc. More seriously, the fact that transmission of the prion diseases across the species barrier to other species such as humans has caused a major public health concern worldwide. For example, the BSE in Europe, the CWD in North America, and variant CJDs (vCJDs) in young people of UK. Fortunately, it is discovered that the hydrophobic region of prion proteins (PrP) controls the formation of diseased prions (PrP(Sc)), which provide some clues in control of such diseases. This article provides a detailed survey of recent studies with respect to the PrP hydrophobic region of human PrP(110-136) using molecular dynamics studies. PMID:25373387

  16. Interactions of borneol with DPPC phospholipid membranes: a molecular dynamics simulation study.

    PubMed

    Yin, Qianqian; Shi, Xinyuan; Ding, Haiou; Dai, Xingxing; Wan, Guang; Qiao, Yanjiang

    2014-11-06

    Borneol, known as a "guide" drug in traditional Chinese medicine, is widely used as a natural penetration enhancer in modern clinical applications. Despite a large number of experimental studies on borneol's penetration enhancing effect, the molecular basis of its action on bio-membranes is still unclear. We carried out a series of coarse-grained molecular dynamics simulations with the borneol concentration ranging from 3.31% to 54.59% (v/v, lipid-free basis) to study the interactions of borneol with aDPPC(1,2-dipalmitoylsn-glycero-3-phosphatidylcholine) bilayer membrane, and the temperature effects were also considered. At concentrations below 21.89%, borneol's presence only caused DPPC bilayer thinning and an increase in fluidity; A rise in temperature could promote the diffusing progress of borneol. When the concentration was 21.89% or above, inverted micelle-like structures were formed within the bilayer interior, which led to increased bilayer thickness, and an optimum temperature was found for the interaction of borneol with the DPPC bilayer membrane. These findings revealed that the choice of optimal concentration and temperature is critical for a given application in which borneol is used as a penetration enhancer. Our results not only clarify some molecular basis for borneol's penetration enhancing effects, but also provide some guidance for the development and applications of new preparations containing borneol.

  17. The effect of salt on the melting of ice: A molecular dynamics simulation study.

    PubMed

    Kim, Jun Soo; Yethiraj, Arun

    2008-09-28

    The effect of added salt (NaCl) on the melting of ice is studied using molecular dynamics simulations. The equilibrium freezing point depression observed in the simulations is in good agreement with experimental data. The kinetic aspects of melting are investigated in terms of the exchange of water molecules between ice and the liquid phase. The ice/liquid equilibrium is a highly dynamic process with frequent exchange of water molecules between ice and the liquid phase. The balance is disturbed when ice melts and the melting proceeds in two stages; the inhibition of the association of water molecules to the ice surface at short times, followed by the increased dissociation of water molecules from the ice surface at longer times. We also find that Cl(-) ions penetrate more deeply into the interfacial region than Na(+) ions during melting. This study provides an understanding of the kinetic aspects of melting that could be useful in other processes such as the inhibition of ice growth by antifreeze proteins.

  18. Molecular dynamics study of the catalyst particle size dependence on carbon nanotube growth.

    PubMed

    Ding, Feng; Rosén, Arne; Bolton, Kim

    2004-08-01

    The molecular dynamics method, based on an empirical potential energy surface, was used to study the effect of catalyst particle size on the growth mechanism and structure of single-walled carbon nanotubes (SWNTs). The temperature for nanotube nucleation (800-1100 K), which occurs on the surface of the cluster, is similar to that used in catalyst chemical vapor deposition experiments, and the growth mechanism, which is described within the vapor-liquid-solid model, is the same for all cluster sizes studied here (iron clusters containing between 10 and 200 atoms were simulated). Large catalyst particles, which contain at least 20 iron atoms, nucleate SWNTs that have a far better tubular structure than SWNTs nucleated from smaller clusters. In addition, the SWNTs that grow from the larger clusters have diameters that are similar to the cluster diameter, whereas the smaller clusters, which have diameters less than 0.5 nm, nucleate nanotubes that are approximately 0.6-0.7 nm in diameter. This is in agreement with the experimental observations that SWNT diameters are similar to the catalyst particle diameter, and that the narrowest free-standing SWNT is 0.6-0.7 nm.

  19. Molecular dynamics study of the catalyst particle size dependence on carbon nanotube growth

    NASA Astrophysics Data System (ADS)

    Ding, Feng; Rosén, Arne; Bolton, Kim

    2004-08-01

    The molecular dynamics method, based on an empirical potential energy surface, was used to study the effect of catalyst particle size on the growth mechanism and structure of single-walled carbon nanotubes (SWNTs). The temperature for nanotube nucleation (800-1100 K), which occurs on the surface of the cluster, is similar to that used in catalyst chemical vapor deposition experiments, and the growth mechanism, which is described within the vapor-liquid-solid model, is the same for all cluster sizes studied here (iron clusters containing between 10 and 200 atoms were simulated). Large catalyst particles, which contain at least 20 iron atoms, nucleate SWNTs that have a far better tubular structure than SWNTs nucleated from smaller clusters. In addition, the SWNTs that grow from the larger clusters have diameters that are similar to the cluster diameter, whereas the smaller clusters, which have diameters less than 0.5 nm, nucleate nanotubes that are ≈0.6-0.7 nm in diameter. This is in agreement with the experimental observations that SWNT diameters are similar to the catalyst particle diameter, and that the narrowest free-standing SWNT is 0.6-0.7 nm.

  20. Comparative study of local structure of two cyanobiphenyl liquid crystals by molecular dynamics method

    SciTech Connect

    Gerts, Egor D. Komolkin, Andrei V.; Burmistrov, Vladimir A.; Alexandriysky, Victor V.; Dvinskikh, Sergey V.

    2014-08-21

    Fully-atomistic molecular dynamics simulations were carried out on two similar cyanobiphenyl nematogens, HO-6OCB and 7OCB, in order to study effects of hydrogen bonds on local structure of liquid crystals. Comparable length of these two molecules provides more evident results on the effects of hydrogen bonding. The analysis of radial and cylindrical distribution functions clearly shows the differences in local structure of two mesogens. The simulations showed that anti-parallel alignment is preferable for the HO-6OCB. Hydrogen bonds between OH-groups are observed for 51% of HO-6OCB molecules, while hydrogen bonding between CN- and OH-groups occurs only for 16% of molecules. The lifetimes of H-bonds differ due to different mobility of molecular fragments (50 ps for N⋅⋅⋅H–O and 41 ps for O⋅⋅⋅H–O). Although the standard Optimized Potentials for Liquid Simulations - All-Atom force field cannot reproduce some experimental parameters quantitatively (order parameters are overestimated, diffusion coefficients are not reproduced well), the comparison of relative simulated results for the pair of mesogens is nevertheless consistent with the same relative experimental parameters. Thus, the comparative study of simulated and experimental results for the pair of similar liquid crystals still can be assumed plausible.