Science.gov

Sample records for initio order-n materials

  1. AB INITIO AND CALPHAD THERMODYNAMICS OF MATERIALS

    SciTech Connect

    Turchi, P A

    2004-04-14

    Ab initio electronic structure methods can supplement CALPHAD in two major ways for subsequent applications to stability in complex alloys. The first one is rather immediate and concerns the direct input of ab initio energetics in CALPHAD databases. The other way, more involved, is the assessment of ab initio thermodynamics {acute a} la CALPHAD. It will be shown how these results can be used within CALPHAD to predict the equilibrium properties of multi-component alloys.

  2. THERMODYNAMICS OF MATERIALS: FROM AB INITIO TO PHENOMENOLOGY

    SciTech Connect

    Turchi, P A

    2004-09-24

    Quantum mechanical-based (or ab initio) methods are used to predict the stability properties of materials although their application is limited to relatively simple systems in terms of structures and number of alloy components. However thermodynamics of complex multi-component alloys requires a more versatile approach afforded within the CALPHAD formalism. Despite its success, the lack of experimental data very often prevents the design of robust thermodynamic databases. After a brief survey of ab initio methodologies and CALPHAD, it will be shown how ab initio electronic structure methods can supplement in two ways CALPHAD for subsequent applications. The first one is rather immediate and concerns the direct input of ab initio energetics in CALPHAD databases. The other way, more involved, is the assessment of ab initio thermodynamics '{acute a} la CALPHAD'. It will be shown how these results can be used within CALPHAD to predict the equilibrium properties of multi-component alloys. Finally, comments will be made on challenges and future prospects.

  3. Ab initio calculations for industrial materials engineering: successes and challenges.

    PubMed

    Wimmer, Erich; Najafabadi, Reza; Young, George A; Ballard, Jake D; Angeliu, Thomas M; Vollmer, James; Chambers, James J; Niimi, Hiroaki; Shaw, Judy B; Freeman, Clive; Christensen, Mikael; Wolf, Walter; Saxe, Paul

    2010-09-29

    Computational materials science based on ab initio calculations has become an important partner to experiment. This is demonstrated here for the effect of impurities and alloying elements on the strength of a Zr twist grain boundary, the dissociative adsorption and diffusion of iodine on a zirconium surface, the diffusion of oxygen atoms in a Ni twist grain boundary and in bulk Ni, and the dependence of the work function of a TiN-HfO(2) junction on the replacement of N by O atoms. In all of these cases, computations provide atomic-scale understanding as well as quantitative materials property data of value to industrial research and development. There are two key challenges in applying ab initio calculations, namely a higher accuracy in the electronic energy and the efficient exploration of large parts of the configurational space. While progress in these areas is fueled by advances in computer hardware, innovative theoretical concepts combined with systematic large-scale computations will be needed to realize the full potential of ab initio calculations for industrial applications.

  4. AB INITIO SIMULATIONS FOR MATERIAL PROPERTIES ALONG THE JUPITER ADIABAT

    SciTech Connect

    French, Martin; Becker, Andreas; Lorenzen, Winfried; Nettelmann, Nadine; Bethkenhagen, Mandy; Redmer, Ronald; Wicht, Johannes

    2012-09-15

    We determine basic thermodynamic and transport properties of hydrogen-helium-water mixtures for the extreme conditions along Jupiter's adiabat via ab initio simulations, which are compiled in an accurate and consistent data set. In particular, we calculate the electrical and thermal conductivity, the shear and longitudinal viscosity, and diffusion coefficients of the nuclei. We present results for associated quantities like the magnetic and thermal diffusivity and the kinematic shear viscosity along an adiabat that is taken from a state-of-the-art interior structure model. Furthermore, the heat capacities, the thermal expansion coefficient, the isothermal compressibility, the Grueneisen parameter, and the speed of sound are calculated. We find that the onset of dissociation and ionization of hydrogen at about 0.9 Jupiter radii marks a region where the material properties change drastically. In the deep interior, where the electrons are degenerate, many of the material properties remain relatively constant. Our ab initio data will serve as a robust foundation for applications that require accurate knowledge of the material properties in Jupiter's interior, e.g., models for the dynamo generation.

  5. Ab initio electronic stopping power of protons in bulk materials

    NASA Astrophysics Data System (ADS)

    Shukri, Abdullah Atef; Bruneval, Fabien; Reining, Lucia

    2016-01-01

    The electronic stopping power is a crucial quantity for ion irradiation: it governs the deposited heat, the damage profile, and the implantation depth. Whereas experimental data are readily available for elemental solids, the data are much more scarce for compounds. Here we develop a fully ab initio computational scheme based on linear response time-dependent density-functional theory to predict the random electronic stopping power (RESP) of materials without any empirical fitting. We show that the calculated RESP compares well with experimental data, when at full convergence, with the inclusion of the core states and of the exchange correlation. We evaluate the unexpectedly limited magnitude of the nonlinear terms in the RESP by comparing with other approaches based on the time propagation of time-dependent density-functional theory. Finally, we check the validity of a few empirical rules of thumbs that are commonly used to estimate the electronic stopping power.

  6. Ab initio engineering of materials with stacked hexagonal tin frameworks

    PubMed Central

    Shao, Junping; Beaufils, Clément; Kolmogorov, Aleksey N.

    2016-01-01

    The group-IV tin has been hypothesized to possess intriguing electronic properties in an atom-thick hexagonal form. An attractive pathway of producing sizable 2D crystallites of tin is based on deintercalation of bulk compounds with suitable tin frameworks. Here, we have identified a new synthesizable metal distannide, NaSn2, with a 3D stacking of flat hexagonal layers and examined a known compound, BaSn2, with buckled hexagonal layers. Our ab initio results illustrate that despite being an exception to the 8-electron rule, NaSn2 should form under pressures easily achievable in multi-anvil cells and remain (meta)stable under ambient conditions. Based on calculated Z2 invariants, the predicted NaSn2 may display topologically non-trivial behavior and the known BaSn2 could be a strong topological insulator. PMID:27387140

  7. Ab initio engineering of materials with stacked hexagonal tin frameworks

    NASA Astrophysics Data System (ADS)

    Shao, Junping; Beaufils, Clément; Kolmogorov, Aleksey N.

    2016-07-01

    The group-IV tin has been hypothesized to possess intriguing electronic properties in an atom-thick hexagonal form. An attractive pathway of producing sizable 2D crystallites of tin is based on deintercalation of bulk compounds with suitable tin frameworks. Here, we have identified a new synthesizable metal distannide, NaSn2, with a 3D stacking of flat hexagonal layers and examined a known compound, BaSn2, with buckled hexagonal layers. Our ab initio results illustrate that despite being an exception to the 8-electron rule, NaSn2 should form under pressures easily achievable in multi-anvil cells and remain (meta)stable under ambient conditions. Based on calculated Z2 invariants, the predicted NaSn2 may display topologically non-trivial behavior and the known BaSn2 could be a strong topological insulator.

  8. Ab initio studies of equations of state and chemical reactions of reactive structural materials

    NASA Astrophysics Data System (ADS)

    Zaharieva, Roussislava

    subject of studies of the shock or thermally induced chemical reactions of the two solids comprising these reactive materials, from first principles, is a relatively new field of study. The published literature on ab initio techniques or quantum mechanics based approaches consists of the ab initio or ab initio-molecular dynamics studies in related fields that contain a solid and a gas. One such study in the literature involves a gas and a solid. This is an investigation of the adsorption of gasses such as carbon monoxide (CO) on Tungsten. The motivation for these studies is to synthesize alternate or synthetic fuel technology by Fischer-Tropsch process. In this thesis these studies are first to establish the procedure for solid-solid reaction and then to extend that to consider the effects of mechanical strain and temperature on the binding energy and chemisorptions of CO on tungsten. Then in this thesis, similar studies are also conducted on the effect of mechanical strain and temperature on the binding energies of Titanium and hydrogen. The motivations are again to understand the method and extend the method to such solid-solid reactions. A second motivation is to seek strained conditions that favor hydrogen storage and strain conditions that release hydrogen easily when needed. Following the establishment of ab initio and ab initio studies of chemical reactions between a solid and a gas, the next step of research is to study thermally induced chemical reaction between two solids (Ni+Al). Thus, specific new studies of the thesis are as follows: (1) Ab initio Studies of Binding energies associated with chemisorption of (a) CO on W surfaces (111, and 100) at elevated temperatures and strains and (b) adsorption of hydrogen in titanium base. (2) Equations of state of mixtures of reactive material structures from ab initio methods. (3) Ab initio studies of the reaction initiation, transition states and reaction products of intermetallic mixtures of (Ni+Al) at elevated

  9. Ab Initio Prediction of Piezoelectricity in Two-Dimensional Materials.

    PubMed

    Blonsky, Michael N; Zhuang, Houlong L; Singh, Arunima K; Hennig, Richard G

    2015-10-27

    Two-dimensional (2D) materials present many unique materials concepts, including material properties that sometimes differ dramatically from those of their bulk counterparts. One of these properties, piezoelectricity, is important for micro- and nanoelectromechanical systems applications. Using symmetry analysis, we determine the independent piezoelectric coefficients for four groups of predicted and synthesized 2D materials. We calculate with density-functional perturbation theory the stiffness and piezoelectric tensors of these materials. We determine the in-plane piezoelectric coefficient d11 for 37 materials within the families of 2D metal dichalcogenides, metal oxides, and III-V semiconductor materials. A majority of the structures, including CrSe2, CrTe2, CaO, CdO, ZnO, and InN, have d11 coefficients greater than 5 pm/V, a typical value for bulk piezoelectric materials. Our symmetry analysis shows that buckled 2D materials exhibit an out-of-plane coefficient d31. We find that d31 for 8 III-V semiconductors ranges from 0.02 to 0.6 pm/V. From statistical analysis, we identify correlations between the piezoelectric coefficients and the electronic and structural properties of the 2D materials that elucidate the origin of the piezoelectricity. Among the 37 2D materials, CdO, ZnO, and CrTe2 stand out for their combination of large piezoelectric coefficient and low formation energy and are recommended for experimental exploration.

  10. Optical and other material properties of SiO2 from ab initio studies

    NASA Astrophysics Data System (ADS)

    Warmbier, Robert; Mohammed, Faris; Quandt, Alexander

    2014-07-01

    The optical properties of photonic devices largely depend on the dielectric properties of the underlying materials. We apply modern ab initio methods to study crystalline SiO2 phases, which serve as toy models for amorphous glass. We discuss the dielectric response from the infrared to the VIS/UV, which is crucial for glass based photonic applications. Low density silica, like cristobalite, may provide a good basis for high transmission optical devices.

  11. Controlling Magnetic and Ferroelectric Order Through Geometry: Synthesis, Ab Initio Theory, Characterization of New Multi-Ferric Fluoride Materials

    SciTech Connect

    Halasyamani, Shiv; Fennie, Craig

    2016-11-03

    We have focused on the synthesis, characterization, and ab initio theory on multi-functional mixed-metal fluorides. With funding from the DOE, we have successfully synthesized and characterized a variety of mixed metal fluoride materials.

  12. Communication: comparing ab initio methods of obtaining effective U parameters for closed-shell materials.

    PubMed

    Yu, Kuang; Carter, Emily A

    2014-03-28

    The density functional theory (DFT)+U method is an efficient and effective way to calculate the ground-state properties of strongly correlated transition metal compounds, with the effective U parameters typically determined empirically. Two ab initio methods have been developed to compute the U parameter based on either constrained DFT (CDFT) or unrestricted Hartree-Fock (UHF) theory. Previous studies have demonstrated the success of both methods in typical open-shell materials such as FeO and NiO. In this Communication we report numerical instability issues that arise for the CDFT method when applied to closed-shell transition metals, by using ZnO and Cu2O as examples. By contrast, the UHF method behaves much more robustly for both closed- and open-shell materials, making it more suitable for treating closed-shell transition metals, as well as main group elements.

  13. High-throughput ab initio screening for two-dimensional electride materials.

    PubMed

    Tada, Tomofumi; Takemoto, Seiji; Matsuishi, Satoru; Hosono, Hideo

    2014-10-06

    High-throughput ab initio screening of approximately 34000 materials in the Materials Project was conducted to identify two-dimensional (2D) electride materials, which are composed of cationic layers and anionic electrons confined in a 2D empty space. The screening was based on three indicators: (1) a positive total formal charge per formula unit; (2) layered structures for two-dimensionality; (3) empty spaces between the layer units. Three nitrides, Ca2N, Sr2N, and Ba2N, and the carbide Y2C were identified as 2D electrides, where Ca2N is the only experimentally confirmed 2D electride (Lee, K.; et al. Nature 2013, 494, 336-341). Electron density analysis using ionic radii revealed a smaller number of anionic electrons in Y2C than those in the three nitrides as a result of the partial occupation of the anionic electrons in the d orbitals of Y. In addition, no candidates were identified from the p-block elements, and thus the ab initio screening indicates that the s-block elements (i.e., alkali or alkaline-earth metals) are highly preferable as cation elements. To go beyond the database screening, a tailored modeling was conducted to determine unexplored compounds including the s-block elements that are suitable for 2D electrides. The tailored modeling found that (1) K2Cl, K2Br, Rb2Cl, and Rb2Br dialkali halides are highly plausible candidates, (2) Li2F and Na2Cl dialkali halides are highly challenging candidates, and (3) the Cs2O(1-x)F(x) halogen-doped dialkali oxide is a promising candidate.

  14. Ab initio density-functional calculations in materials science: from quasicrystals over microporous catalysts to spintronics

    NASA Astrophysics Data System (ADS)

    Hafner, Jürgen

    2010-09-01

    During the last 20 years computer simulations based on a quantum-mechanical description of the interactions between electrons and atomic nuclei have developed an increasingly important impact on materials science, not only in promoting a deeper understanding of the fundamental physical phenomena, but also enabling the computer-assisted design of materials for future technologies. The backbone of atomic-scale computational materials science is density-functional theory (DFT) which allows us to cast the intractable complexity of electron-electron interactions into the form of an effective single-particle equation determined by the exchange-correlation functional. Progress in DFT-based calculations of the properties of materials and of simulations of processes in materials depends on: (1) the development of improved exchange-correlation functionals and advanced post-DFT methods and their implementation in highly efficient computer codes, (2) the development of methods allowing us to bridge the gaps in the temperature, pressure, time and length scales between the ab initio calculations and real-world experiments and (3) the extension of the functionality of these codes, permitting us to treat additional properties and new processes. In this paper we discuss the current status of techniques for performing quantum-based simulations on materials and present some illustrative examples of applications to complex quasiperiodic alloys, cluster-support interactions in microporous acid catalysts and magnetic nanostructures.

  15. Ab initio study of perovskite type oxide materials for solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Lee, Yueh-Lin

    2011-12-01

    Perovskite type oxides form a family of materials of significant interest for cathodes and electrolytes of solid oxide fuel cells (SOFCs). These perovskites not only are active catalysts for surface oxygen reduction (OR) reactions but also allow incorporating the spilt oxygen monomers into their bulk, an unusual and poorly understood catalytic mechanism that couples surface and bulk properties. The OR mechanisms can be influenced strongly by defects in perovskite oxides, composition, and surface defect structures. This thesis work initiates a first step in developing a general strategy based on first-principles calculations for detailed control of oxygen vacancy content, transport rates of surface and bulk oxygen species, and surface/interfacial reaction kinetics. Ab initio density functional theory methods are used to model properties relevant for the OR reactions on SOFC cathodes. Three main research thrusts, which focus on bulk defect chemistry, surface defect structures and surface energetics, and surface catalytic properties, are carried to investigate different level of material chemistry for improved understanding of key physics/factors that govern SOFC cathode OR activity. In the study of bulk defect chemistry, an ab initio based defect model is developed for modeling defect chemistry of LaMnO 3 under SOFC conditions. The model suggests an important role for defect interactions, which are typically excluded in previous defect models. In the study of surface defect structures and surface energetics, it is shown that defect energies change dramatically (1˜2 eV lower) from bulk values near surfaces. Based on the existing bulk defect model with the calculated ab initio surface defect energetics, we predict the (001) MnO 2 surface oxygen vacancy concentration of (La0.9Sr0.1 )MnO3 is about 5˜6 order magnitude higher than that of the bulk under typical SOFC conditions. Finally, for surface catalytic properties, we show that area specific resistance, oxygen

  16. Piezoelectricity in two-dimensional materials: Comparative study between lattice dynamics and ab initio calculations

    NASA Astrophysics Data System (ADS)

    Michel, K. H.; ćakır, D.; Sevik, C.; Peeters, F. M.

    2017-03-01

    The elastic constant C11 and piezoelectric stress constant e1 ,11 of two-dimensional (2D) dielectric materials comprising h-BN, 2 H -MoS2 , and other transition-metal dichalcogenides and dioxides are calculated using lattice dynamical theory. The results are compared with corresponding quantities obtained with ab initio calculations. We identify the difference between clamped-ion and relaxed-ion contributions with the dependence on inner strains which are due to the relative displacements of the ions in the unit cell. Lattice dynamics allows us to express the inner-strain contributions in terms of microscopic quantities such as effective ionic charges and optoacoustical couplings, which allows us to clarify differences in the piezoelectric behavior between h-BN and MoS2. Trends in the different microscopic quantities as functions of atomic composition are discussed.

  17. Ab Initio Molecular-Dynamics Simulation of Neuromorphic Computing in Phase-Change Memory Materials.

    PubMed

    Skelton, Jonathan M; Loke, Desmond; Lee, Taehoon; Elliott, Stephen R

    2015-07-08

    We present an in silico study of the neuromorphic-computing behavior of the prototypical phase-change material, Ge2Sb2Te5, using ab initio molecular-dynamics simulations. Stepwise changes in structural order in response to temperature pulses of varying length and duration are observed, and a good reproduction of the spike-timing-dependent plasticity observed in nanoelectronic synapses is demonstrated. Short above-melting pulses lead to instantaneous loss of structural and chemical order, followed by delayed partial recovery upon structural relaxation. We also investigate the link between structural order and electrical and optical properties. These results pave the way toward a first-principles understanding of phase-change physics beyond binary switching.

  18. Ab-initio simulations of materials using VASP: Density-functional theory and beyond.

    PubMed

    Hafner, Jürgen

    2008-10-01

    During the past decade, computer simulations based on a quantum-mechanical description of the interactions between electrons and between electrons and atomic nuclei have developed an increasingly important impact on solid-state physics and chemistry and on materials science-promoting not only a deeper understanding, but also the possibility to contribute significantly to materials design for future technologies. This development is based on two important columns: (i) The improved description of electronic many-body effects within density-functional theory (DFT) and the upcoming post-DFT methods. (ii) The implementation of the new functionals and many-body techniques within highly efficient, stable, and versatile computer codes, which allow to exploit the potential of modern computer architectures. In this review, I discuss the implementation of various DFT functionals [local-density approximation (LDA), generalized gradient approximation (GGA), meta-GGA, hybrid functional mixing DFT, and exact (Hartree-Fock) exchange] and post-DFT approaches [DFT + U for strong electronic correlations in narrow bands, many-body perturbation theory (GW) for quasiparticle spectra, dynamical correlation effects via the adiabatic-connection fluctuation-dissipation theorem (AC-FDT)] in the Vienna ab initio simulation package VASP. VASP is a plane-wave all-electron code using the projector-augmented wave method to describe the electron-core interaction. The code uses fast iterative techniques for the diagonalization of the DFT Hamiltonian and allows to perform total-energy calculations and structural optimizations for systems with thousands of atoms and ab initio molecular dynamics simulations for ensembles with a few hundred atoms extending over several tens of ps. Applications in many different areas (structure and phase stability, mechanical and dynamical properties, liquids, glasses and quasicrystals, magnetism and magnetic nanostructures, semiconductors and insulators, surfaces

  19. ``Phantom'' Modes in Ab Initio Tunneling Calculations: Implications for Theoretical Materials Optimization, Tunneling, and Transport

    NASA Astrophysics Data System (ADS)

    Barabash, Sergey V.; Pramanik, Dipankar

    2015-03-01

    Development of low-leakage dielectrics for semiconductor industry, together with many other areas of academic and industrial research, increasingly rely upon ab initio tunneling and transport calculations. Complex band structure (CBS) is a powerful formalism to establish the nature of tunneling modes, providing both a deeper understanding and a guided optimization of materials, with practical applications ranging from screening candidate dielectrics for lowest ``ultimate leakage'' to identifying charge-neutrality levels and Fermi level pinning. We demonstrate that CBS is prone to a particular type of spurious ``phantom'' solution, previously deemed true but irrelevant because of a very fast decay. We demonstrate that (i) in complex materials, phantom modes may exhibit very slow decay (appearing as leading tunneling terms implying qualitative and huge quantitative errors), (ii) the phantom modes are spurious, (iii) unlike the pseudopotential ``ghost'' states, phantoms are an apparently unavoidable artifact of large numerical basis sets, (iv) a presumed increase in computational accuracy increases the number of phantoms, effectively corrupting the CBS results despite the higher accuracy achieved in resolving the true CBS modes and the real band structure, and (v) the phantom modes cannot be easily separated from the true CBS modes. We discuss implications for direct transport calculations. The strategy for dealing with the phantom states is discussed in the context of optimizing high-quality high- κ dielectric materials for decreased tunneling leakage.

  20. Large scale ab initio calculations of extended defects in materials: screw dislocations in bcc metals

    NASA Astrophysics Data System (ADS)

    Dézerald, Lucile; Ventelon, Lisa; Willaime, François; Clouet, Emmanuel; Rodney, David

    2014-06-01

    Ab initio methods, based on the Density Functional Theory (DFT), have been extensively used to study point defects and defect clusters in materials. Present HPC resources and DFT codes now allow similar investigations to be performed on dislocations. The study of these extended defects requires not only larger simulation cells but also a higher accuracy because the energy differences, which are involved, are rather small, typically 50-to-100 meV for supercells containing 50-to-500 atoms. The topology of the Peierls potential of screw dislocations with 1/2 <111>Burgers vector, i.e. the 2D energy landscape seen by these dislocations, is being completely revisited by DFT calculations. From results obtained in all body-centered cubic (bcc) transition metals, except Cr (V, Nb, Ta, Mo, W and Fe), using the PWSCF code, which is part of the Quantum-Espresso package, we concluded that the 2D Peierls potentials have two common features: the single-hump shape of the barrier between two minima of the potential, and the presence of a maximum - and not a minimum as predicted by most empirical potentials - around the split core. In iron, the topology of the Peierls potential is reversed compared to the classical sinusoidal picture: the location of the saddle point and the maximum are indeed inverted with unexpected flat regions. The first results obtained within the framework of the PRACE project, DIMAIM (DIslocations in Metals using Ab Initio Methods), started at the beginning of 2013, will also be presented. In particular, in order to address the twinning-antitwinning asymmetry often observed in bcc metals and regarded as the major contribution to the breakdown of Schmid's law, we have determined the crystal orientation dependence of the Peierls stress, i.e. the critical stress required for dislocation motion. These computationally most expensive simulations were performed on the PRACE Tier-0 system at Barcelona Supercomputing Center (Marenostrum III). The scalability results

  1. Ab initio studies on the adsorption and implantation of Al and Fe to nitride materials

    SciTech Connect

    Riedl, H.; Zálešák, J.; Arndt, M.; Polcik, P.; Holec, D.; Mayrhofer, P. H.

    2015-09-28

    The formation of transfer material products on coated cutting and forming tools is a major failure mechanism leading to various sorts of wear. To describe the atomistic processes behind the formation of transfer materials, we use ab initio to study the adsorption energy as well as the implantation barrier of Al and Fe atoms for (001)-oriented surfaces of TiN, Ti{sub 0.50}Al{sub 0.50}N, Ti{sub 0.90}Si{sub 0.10}N, CrN, and Cr{sub 0.90}Si{sub 0.10}N. The interactions between additional atoms and nitride-surfaces are described for pure adhesion, considering no additional stresses, and for the implantation barrier. The latter, we simplified to the stress required to implant Al and Fe into sub-surface regions of the nitride material. The adsorption energies exhibit pronounced extrema at high-symmetry positions and are generally highest at nitrogen sites. Here, the binary nitrides are comparable to their ternary counterparts and the average adhesive energy is higher (more negative) on CrN than TiN based systems. Contrary, the implantation barrier for Al and Fe atoms is higher for the ternary systems Ti{sub 0.50}Al{sub 0.50}N, Ti{sub 0.90}Si{sub 0.10}N, and Cr{sub 0.90}Si{sub 0.10}N than for their binary counterparts TiN and CrN. Based on our results, we can conclude that TiN based systems outperform CrN based systems with respect to pure adhesion, while the Si-containing ternaries exhibit higher implantation barriers for Al and Fe atoms. The data obtained are important to understand the atomistic interaction of metal atoms with nitride-based materials, which is valid not just for machining operations but also for any combination such as interfaces between coatings and substrates or multilayer and phase arrangements themselves.

  2. Point defect modeling in materials: Coupling ab initio and elasticity approaches

    NASA Astrophysics Data System (ADS)

    Varvenne, Céline; Bruneval, Fabien; Marinica, Mihai-Cosmin; Clouet, Emmanuel

    2013-10-01

    Modeling point defects at an atomic scale requires careful treatment of the long-range atomic relaxations. This elastic field can strongly affect point defect properties calculated in atomistic simulations because of the finite size of the system under study. This is an important restriction for ab initio methods which are limited to a few hundred atoms. We propose an original approach coupling ab initio calculations and linear elasticity theory to obtain the properties of an isolated point defect for reduced supercell sizes. The reliability and benefit of our approach are demonstrated for three problematic cases: the self-interstitial in zirconium, clusters of self-interstitials in iron, and the neutral vacancy in silicon.

  3. Ab Initio Quality NMR Parameters in Solid-State Materials Using a High-Dimensional Neural-Network Representation.

    PubMed

    Cuny, Jérôme; Xie, Yu; Pickard, Chris J; Hassanali, Ali A

    2016-02-09

    Nuclear magnetic resonance (NMR) spectroscopy is one of the most powerful experimental tools to probe the local atomic order of a wide range of solid-state compounds. However, due to the complexity of the related spectra, in particular for amorphous materials, their interpretation in terms of structural information is often challenging. These difficulties can be overcome by combining molecular dynamics simulations to generate realistic structural models with an ab initio evaluation of the corresponding chemical shift and quadrupolar coupling tensors. However, due to computational constraints, this approach is limited to relatively small system sizes which, for amorphous materials, prevents an adequate statistical sampling of the distribution of the local environments that is required to quantitatively describe the system. In this work, we present an approach to efficiently and accurately predict the NMR parameters of very large systems. This is achieved by using a high-dimensional neural-network representation of NMR parameters that are calculated using an ab initio formalism. To illustrate the potential of this approach, we applied this neural-network NMR (NN-NMR) method on the (17)O and (29)Si quadrupolar coupling and chemical shift parameters of various crystalline silica polymorphs and silica glasses. This approach is, in principal, general and has the potential to be applied to predict the NMR properties of various materials.

  4. Ab-Initio Description and Prediction of Properties of Carbon-Based and Other Non-Metallic Materials

    NASA Technical Reports Server (NTRS)

    Bagayoko, D.; Zhao, G. L.; Hasan, S.

    2001-01-01

    We have resolved the long-standing problem consisting of 30%-50% theoretical underestimates of the band gaps of non-metallic materials. We describe the Bagayoko, Zhao, and Williams (BZW) method that rigorously circumvents the basis-set and variational effect presumed to be a cause of these underestimates. We present ab-initio, computational results that are in agreement with experiment for diamond (C), silicon (Si), silicon carbides (3C-SiC and 4H-SiC), and other semiconductors (GaN, BaTiO3, AlN, ZnSe, ZnO). We illustrate the predictive capability of the BZW method in the case of the newly discovered cubic phase of silicon nitride (c-Si3N4) and of selected carbon nanotabes [(10,0), and (8,4)]. Our conclusion underscores the inescapable need for the BZW method in ab-initio calculations that employ a basis set in a variational approach. Current nanoscale trends amplify this need. We estimate that the potential impact of applications of the BZW method in advancing our understanding of nonmetallic materials, in informing experiment, and particularly in guiding device design and fabrication is simply priceless.

  5. Ab initio electronic structure of quasi-two-dimensional materials: A "native" Gaussian-plane wave approach.

    PubMed

    Trevisanutto, Paolo E; Vignale, Giovanni

    2016-05-28

    Ab initio electronic structure calculations of two-dimensional layered structures are typically performed using codes that were developed for three-dimensional structures, which are periodic in all three directions. The introduction of a periodicity in the third direction (perpendicular to the layer) is completely artificial and may lead in some cases to spurious results and to difficulties in treating the action of external fields. In this paper we develop a new approach, which is "native" to quasi-2D materials, making use of basis function that are periodic in the plane, but atomic-like in the perpendicular direction. We show how some of the basic tools of ab initio electronic structure theory - density functional theory, GW approximation and Bethe-Salpeter equation - are implemented in the new basis. We argue that the new approach will be preferable to the conventional one in treating the peculiarities of layered materials, including the long range of the unscreened Coulomb interaction in insulators, and the effects of strain, corrugations, and external fields.

  6. Symmetry-general least-squares extraction of elastic data for strained materials from ab initio calculations of stress

    NASA Astrophysics Data System (ADS)

    Le Page, Yvon; Saxe, Paul

    2002-03-01

    A symmetry-general approach for the least-squares, therefore precise, extraction of elastic coefficients for strained materials is reported. It analyzes stresses calculated ab initio for properly selected strains. The problem, its implementation, and its solution strategy all differ radically from a previous energy-strain approach that we published last year, but the normal equations turn out to be amenable to the same constrainment scheme that makes both approaches symmetry general. The symmetry considerations governing the automated selection of appropriately strained models and their Cartesian systems are detailed. The extension to materials under general stress is discussed and implemented. VASP was used for ab initio calculation of stresses. A comprehensive range of examples includes a triclinic material (kyanite) and simple materials with a range of symmetries at zero pressure, MgO under hydrostatic pressure, Ti4As3 under [001] uniaxial strain, and Si under [001] uniaxial stress. The MgO case agrees with recent experimental work including elastic coefficients as well as their first and second derivatives. The curves of elastic coefficients for Si show a gradual increase in the 33 compliance coefficient, leading to a collapse of the material at -11.7 GPa, compared with -12.0 GPa experimentally. Interpretation of results for Be using two approximations [local density (LDA), generalized gradient (GGA)], two approaches (stress strain and energy strain), two potential types (projector augmented wave and ultrasoft), and two quantum engines (VASP and ORESTES) expose the utmost importance of the cell data used for the elastic calculations and the lesser importance of the other factors. For stiffness at relaxed cell data, differences are shown to originate mostly in the considerable overestimation of the residual compressive stresses at x-ray cell data by LDA, resulting in a smaller relaxed cell, thus larger values for diagonal stiffness coefficients. The symmetry

  7. Ab initio materials design using conformational space annealing and its application to searching for direct band gap silicon crystals

    NASA Astrophysics Data System (ADS)

    Lee, In-Ho; Oh, Young Jun; Kim, Sunghyun; Lee, Jooyoung; Chang, K. J.

    2016-06-01

    Lately, the so-called inverse method of materials design has drawn much attention, where specific material properties are initially assigned and target materials are subsequently searched for. Although this method has been successful for some problems, the success of designing complex crystal structures containing many atoms is often limited by the efficiency of the search method utilized. Here we combine the global optimization method of conformational space annealing (CSA) with first-principles quantum calculations and report a new scheme named AMADEUS (Ab initio MAterials DEsign Using cSa). We demonstrate the utility of AMADEUS through the discovery of direct band gap Si crystals. The newly-designed direct gap Si allotropes show excellent optical properties and the spectroscopic limited maximum efficiencies comparable to those of best-known non-silicon photovoltaic materials. Our scheme not only provides a new perspective for the inverse problem of materials design but also may serve as a new tool for the computational design of a wide range of materials.

  8. Ab Initio Simulation of Electrical Currents Induced by Ultrafast Laser Excitation of Dielectric Materials

    NASA Astrophysics Data System (ADS)

    Wachter, Georg; Lemell, Christoph; Burgdörfer, Joachim; Sato, Shunsuke A.; Tong, Xiao-Min; Yabana, Kazuhiro

    2014-08-01

    We theoretically investigate the generation of ultrafast currents in insulators induced by strong few-cycle laser pulses. Ab initio simulations based on time-dependent density functional theory give insight into the atomic-scale properties of the induced current signifying a femtosecond-scale insulator-metal transition. We observe the transition from nonlinear polarization currents during the laser pulse at low intensities to tunnelinglike excitation into the conduction band at higher laser intensities. At high intensities, the current persists after the conclusion of the laser pulse considered to be the precursor of the dielectric breakdown on the femtosecond scale. We show that the transferred charge sensitively depends on the orientation of the polarization axis relative to the crystal axis, suggesting that the induced charge separation reflects the anisotropic electronic structure. We find good agreement with very recent experimental data on the intensity and carrier-envelope phase dependence [A. Schiffrin et al., Nature (London) 493, 70 (2013)].

  9. Synthesis, characterization, and ab initio theoretical study of a molecularly imprinted polymer selective for biosensor materials.

    PubMed

    Jacob, Rebecca; Tate, Margaret; Banti, Yididya; Rix, Colin; Mainwaring, David E

    2008-01-17

    Despite the complex phenomena involved in encoding template molecule information within stable synthetic polymers to yield selective and efficient molecular recognition processes, molecularly imprinted polymers (MIP) are increasingly finding broad areas of application. Molecular interactions, both during the polymerization of the functional monomers in the presence of the template and during the processes of specific recognition after template removal, are key determinants of an effective MIP. Covalent and noncovalent template imprinting have been employed to achieve specific recognition sites. In the present study, a molecularly imprinted biocompatible polymer, having a high capacity and affinity for the dye template, nickel(II) phthalocyanine tetrasulfonic acid, has been prepared. UV-visible spectroscopy, FTIR spectroscopy, and ICP analysis were used to investigate the aspects of the synthesis, binding capacity, and adsorption kinetics of the system. Poly(allylamine) cross-linked with epichlorohydrin has been used to represent an amino-functional receptor. Binding isotherms and capacities were correlated with the degree of template removal. Kinetic studies of binding allowed diffusion mechanisms to be evaluated for the fine particulate MIP. Ab initio molecular orbital calculations were performed using Hartree-Fock, MP2, and density functional theory methods to determine the most likely mechanisms of molecular imprinting. Suitable theoretical models have been constructed to mimic the interactions between the template molecule and the polymer. Simulation of the vibrational spectra was also undertaken to make meaningful assignments to experimentally determined spectral bands resulting from these template MIP receptor interactions.

  10. The modular approach enables a fully ab initio simulation of the contacts between 3D and 2D materials.

    PubMed

    Fediai, Artem; Ryndyk, Dmitry A; Cuniberti, Gianaurelio

    2016-10-05

    Up to now, the electrical properties of the contacts between 3D metals and 2D materials have never been computed at a fully ab initio level due to the huge number of atomic orbitals involved in a current path from an electrode to a pristine 2D material. As a result, there are still numerous open questions and controversial theories on the electrical properties of systems with 3D/2D interfaces-for example, the current path and the contact length scalability. Our work provides a first-principles solution to this long-standing problem with the use of the modular approach, a method which rigorously combines a Green function formalism with the density functional theory (DFT) for this particular contact type. The modular approach is a general approach valid for any 3D/2D contact. As an example, we apply it to the most investigated among 3D/2D contacts-metal/graphene contacts-and show its abilities and consistency by comparison with existing experimental data. As it is applicable to any 3D/2D interface, the modular approach allows the engineering of 3D/2D contacts with the pre-defined electrical properties.

  11. Two-Dimensional Materials from Data Filtering and Ab Initio Calculations

    NASA Astrophysics Data System (ADS)

    Lebègue, S.; Björkman, T.; Klintenberg, M.; Nieminen, R. M.; Eriksson, O.

    2013-07-01

    Progress in materials science depends on the ability to discover new materials and to obtain and understand their properties. This has recently become particularly apparent for compounds with reduced dimensionality, which often display unexpected physical and chemical properties, making them very attractive for applications in electronics, graphene being so far the most noteworthy example. Here, we report some previously unknown two-dimensional materials and their electronic structure by data mining among crystal structures listed in the International Crystallographic Structural Database, combined with density-functional-theory calculations. As a result, we propose to explore the synthesis of a large group of two-dimensional materials, with properties suggestive of applications in nanoscale devices, and anticipate further studies of electronic and magnetic phenomena in low-dimensional systems.

  12. Research Update: The materials genome initiative: Data sharing and the impact of collaborative ab initio databases

    NASA Astrophysics Data System (ADS)

    Jain, Anubhav; Persson, Kristin A.; Ceder, Gerbrand

    2016-05-01

    Materials innovations enable new technological capabilities and drive major societal advancements but have historically required long and costly development cycles. The Materials Genome Initiative (MGI) aims to greatly reduce this time and cost. In this paper, we focus on data reuse in the MGI and, in particular, discuss the impact of three different computational databases based on density functional theory methods to the research community. We also discuss and provide recommendations on technical aspects of data reuse, outline remaining fundamental challenges, and present an outlook on the future of MGI's vision of data sharing.

  13. AFLOWLIB.ORG: a Distributed Materials Properties Repository from High-throughput Ab initio Calculations

    DTIC Science & Technology

    2011-11-15

    919 660 8963 Abstract Empirical databases of crystal structures and thermodynamic properties are fundamental tools for materials research. Recent...for structure discovery and optimization, including uncovering of unsuspected compounds, metastable structures and correlations between various...diagrams, electronic structure and magnetic properties, gen- erated by the high-throughput framework A. This continuously updated compilation currently

  14. Phonon transport properties of two-dimensional group-IV materials from ab initio calculations

    NASA Astrophysics Data System (ADS)

    Peng, Bo; Zhang, Hao; Shao, Hezhu; Xu, Yuanfeng; Ni, Gang; Zhang, Rongjun; Zhu, Heyuan

    2016-12-01

    It has been argued that stanene has lowest lattice thermal conductivity among two-dimensional (2D) group-IV materials because of its largest atomic mass, weakest interatomic bonding, and enhanced ZA phonon scattering due to the breaking of an out-of-plane symmetry selection rule. However, we show that, although the lattice thermal conductivity κ for graphene, silicene, and germanene decreases monotonically with decreasing Debye temperature, unexpected higher κ is observed in stanene. By enforcing all the invariance conditions in 2D materials and including Ge 3 d and Sn 4 d electrons as valence electrons for germanene and stanene, respectively, the lattice dynamics in these materials are accurately described. A large acoustic-optical gap and the bunching of the acoustic-phonon branches significantly reduce phonon scattering in stanene, leading to higher thermal conductivity than germanene. The vibrational origin of the acoustic-optical gap can be attributed to the buckled structure. Interestingly, a buckled system has two competing influences on phonon transport: the breaking of the symmetry selection rule leads to reduced thermal conductivity, and the enlarging of the acoustic-optical gap results in enhanced thermal conductivity. The size dependence of thermal conductivity is investigated as well. In nanoribbons, the κ of silicene, germanene, and stanene is much less sensitive to size effect due to their short intrinsic phonon mean-free paths. This work sheds light on the nature of phonon transport in buckled 2D materials.

  15. Modeling Disordered Materials with a High Throughput ab-initio Approach

    DTIC Science & Technology

    2015-11-13

    or partial, occupation. Such disorder is intrinsic in many technologically significant systems, including those used in fuel cells [4], solar cells [5...promising rare-earth free materials for use in free sensors, actuators, energy -harvesters, and spintronic devices [10]. Hence, a comprehensive compu...reformulation, those that are accessi- ble are of significant practical importance, including the DOS, band gap energy Egap, and magnetic moment M. A

  16. Ab initio simulation of radiation damage in nuclear reactor pressure vessel materials

    NASA Astrophysics Data System (ADS)

    Watts, Daniel; Finkenstadt, Daniel

    2012-02-01

    Using Kinetic Monte Carlo we developed a code to study point defect hopping in BCC metallic alloys using energetics and attempt frequencies calculated using VASP, an electronic structure software package. Our code provides a way of simulating the effects of neutron radiation on potential reactor materials. Specifically we will compare the Molybdenum-Chromium alloy system to steel alloys for use in nuclear reactor pressure vessels.

  17. Ab-Initio Determination of Novel Crystal Structures of the Thermoelectric Material MgAgSb

    SciTech Connect

    Kirkham, Melanie J; Moreira Dos Santos, Antonio F; Rawn, Claudia J; Lara-Curzio, Edgar; Sharp, Jeff W.; Thompson, Alan

    2012-01-01

    Materials with the half-Heusler structure possess interesting electrical and magnetic properties, including potential for thermoelectric applications. MgAgSb is compositionally and structurally related to many half-Heusler materials, but has not been extensively studied. This work presents the high-temperature X-ray diffraction analysis of MgAgSb between 27 and 420 C, complemented with thermoelectric property measurements. MgAgSb is found to exist in three different structures in this temperature region, taking the half-Heusler structure at high temperatures, a Cu2Sb-related structure at intermediate temperatures, and a previously unreported tetragonal structure at room temperature. All three structures are related by a distorted Mg-Sb rocksalt-type sublattice, differing primarily in the Ag location among the available tetrahedral sites. Transition temperatures between the three phases correlate well with discontinuities in the Seebeck coefficient and electrical conductivity; the best performance occurs with the novel room temperature phase. For application of MgAgSb as a thermoelectric material, it may be desirable to develop methods to stabilize the room temperature phase at higher temperatures.

  18. Multiscale Design of Advanced Materials based on Hybrid Ab Initio and Quasicontinuum Methods

    SciTech Connect

    Luskin, Mitchell

    2014-03-12

    This project united researchers from mathematics, chemistry, computer science, and engineering for the development of new multiscale methods for the design of materials. Our approach was highly interdisciplinary, but it had two unifying themes: first, we utilized modern mathematical ideas about change-of-scale and state-of-the-art numerical analysis to develop computational methods and codes to solve real multiscale problems of DOE interest; and, second, we took very seriously the need for quantum mechanics-based atomistic forces, and based our methods on fast solvers of chemically accurate methods.

  19. TRIQS/DFTTools: A TRIQS application for ab initio calculations of correlated materials

    NASA Astrophysics Data System (ADS)

    Aichhorn, Markus; Pourovskii, Leonid; Seth, Priyanka; Vildosola, Veronica; Zingl, Manuel; Peil, Oleg E.; Deng, Xiaoyu; Mravlje, Jernej; Kraberger, Gernot J.; Martins, Cyril; Ferrero, Michel; Parcollet, Olivier

    2016-07-01

    We present the TRIQS/DFTTools package, an application based on the TRIQS library that connects this toolbox to realistic materials calculations based on density functional theory (DFT). In particular, TRIQS/DFTTools together with TRIQS allows an efficient implementation of DFT plus dynamical mean-field theory (DMFT) calculations. It supplies tools and methods to construct Wannier functions and to perform the DMFT self-consistency cycle in this basis set. Post-processing tools, such as band-structure plotting or the calculation of transport properties are also implemented. The package comes with a fully charge self-consistent interface to the Wien2k band structure code, as well as a generic interface that allows to use TRIQS/DFTTools together with a large variety of DFT codes. It is distributed under the GNU General Public License (GPLv3).

  20. Methods and Strategies for the Ab Initio Design of Novel Manganese Oxide- Based Water Splitting Photocatalyst Materials

    NASA Astrophysics Data System (ADS)

    Kanan, Dalal K.

    Photoelectrochemical cells (PECs) use sunlight to drive endoergic reactions such as carbon dioxide reduction to fuels or water-splitting for renewable hydrogen production. However, materials that combine both the efficiency and low cost needed to make solar-powered catalysis a practical reality have yet to be discovered. This thesis presents methods and new design strategies for developing novel, efficient, robust, and inexpensive photocatalysts based on transition metal oxides (TMOs). Quantum mechanics methodologies are developed and tested for their ability to predict the properties of known materials and then used to predict how altering the composition by alloying and doping with abundant elements affects optical, electronic, transport, and catalytic properties. The first material considered for photocatalysis is MnO, the bio-inspired solid state analogue of the photosystem II active site. GW theory with input from hybrid DFT and ab initio DFT+U capably predicts the photoemission/inverse photoemission (PE/IPE) band gap and dielectric properties. An ab initio value of U-J = 3.5 eV for Mn2+ was determined using unrestricted Hartree-Fock theory on cluster-size-converged electrostatically embedded clusters. The lowest-lying excitations in MnO, studied using ECW theory, are found to be single Mn d → d ligand field excitations (~2.5 eV, ~108 s lifetime), followed by double d → d excitations (~5.2 eV, ~106 s lifetime), Mn 3d-4s excitations (~6.3 eV, ~10-3 s lifetime), and higher-lying O 2p → Mn 3d ligand-to-metal charge-transfer (LMCT) excitations (~10.1 eV, ~10-4 s lifetime). The longer-lived transitions should exhibit better electron-hole pair separation and enhance photoconductivity depending on ease of carrier transport. While MnO possesses suitable band edge energies, its band gap is too large for efficient sunlight absorption. We predict alloying MnO with ZnO in varying amounts reduces the PE/IPE band gap (to 2.6 eV for the 1:1 alloy) while preserving

  1. Ab initio and experimental pre-edge investigations of the Mn K -edge XANES in oxide-type materials

    NASA Astrophysics Data System (ADS)

    Farges, François

    2005-04-01

    Mn K edge ab initio FEFF8.2 calculations of the pre-edge features of the x-ray-absorption near-edge structure (XANES) region were undertaken for a series of Mn-bearing oxide-type compounds. The aim of the study is to provide a reliable method for determining quantitative and accurate redox and symmetry information for manganese. In agreement with multiplet calculations by Glatzel and co-workers, FEFF8.2 predicts a doublet and a triplet for Mn(II) and Mn(III) in octahedral symmetry, respectively, in agreement with high-resolution XANES experiments. Site distortion increases notably the contribution from dipolar transitions and, consequently, the pre-edge feature integrated area. An even more intense pre-edge feature is calculated and measured for the Td symmetry (singletlike). For Mn(IV), a triplet is predicted and measured for the Oh symmetry. However, additional transitions are found in Mn(IV)-rich compounds, that are related to metal-metal transitions. These transitions overlap strongly with the “true pre-edge,” making extraction of redox and symmetry information for Mn(IV) more challenging. However, a model of the pre-edge with pseudo-Voigt functions of fixed calculated width (based on core-hole lifetime and experimental resolution) helps to separate the contributions related to first-neighbor symmetry from those of the metal-metal pairs. Application to multivalent defective manganese oxide materials suggests that the pre-edge information varies linearly as a function of Mn redox state or symmetry but varies nonlinearly as a function of both parameters. Finally, the polymerization of the manganese networks can be estimated from the metal-metal transitions found in the pre-edge region.

  2. Ab initio and experimental pre-edge investigations of the Mn K-edge XANES in oxide-type materials

    SciTech Connect

    Farges, Francois

    2005-04-15

    Mn K edge ab initio FEFF8.2 calculations of the pre-edge features of the x-ray-absorption near-edge structure (XANES) region were undertaken for a series of Mn-bearing oxide-type compounds. The aim of the study is to provide a reliable method for determining quantitative and accurate redox and symmetry information for manganese. In agreement with multiplet calculations by Glatzel and co-workers, FEFF8.2 predicts a doublet and a triplet for Mn(II) and Mn(III) in octahedral symmetry, respectively, in agreement with high-resolution XANES experiments. Site distortion increases notably the contribution from dipolar transitions and, consequently, the pre-edge feature integrated area. An even more intense pre-edge feature is calculated and measured for the T{sub d} symmetry (singletlike). For Mn(IV), a triplet is predicted and measured for the O{sub h} symmetry. However, additional transitions are found in Mn(IV)-rich compounds, that are related to metal-metal transitions. These transitions overlap strongly with the 'true pre-edge', making extraction of redox and symmetry information for Mn(IV) more challenging. However, a model of the pre-edge with pseudo-Voigt functions of fixed calculated width (based on core-hole lifetime and experimental resolution) helps to separate the contributions related to first-neighbor symmetry from those of the metal-metal pairs. Application to multivalent defective manganese oxide materials suggests that the pre-edge information varies linearly as a function of Mn redox state or symmetry but varies nonlinearly as a function of both parameters. Finally, the polymerization of the manganese networks can be estimated from the metal-metal transitions found in the pre-edge region.

  3. Mimicking photoisomerisation of azo-materials by a force field switch derived from nonadiabatic ab initio simulations: Application to photoswitchable helical foldamers in solution

    NASA Astrophysics Data System (ADS)

    Böckmann, Marcus; Braun, Sebastian; Doltsinis, Nikos L.; Marx, Dominik

    2013-08-01

    A force field to induce isomerisation of photoswitchable azobenzene groups embedded in molecular materials has been developed in the framework of force field molecular dynamics simulations. A molecular mechanics switching potential has been tuned so as to reproduce both the correct photoisomerisation timescale and mechanism that has been generated by reference nonadiabatic ab initio molecular dynamics. As a first application, we present a force field molecular dynamics study of a prototype photoswitchable foldamer in acetonitrile as solvent. Our analyses reveal that the photoisomerisation of the azobenzene unit embedded in the foldamer occurs via the so-called NN-twist mechanism, and that there exist several distinct unfolding channels for the helix that could be exploited in novel applications of photoresponsive materials.

  4. Ab initio study of vacancy formation in cubic LaMnO3 and SmCoO3 as cathode materials in solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Olsson, Emilia; Aparicio-Anglès, Xavier; de Leeuw, Nora H.

    2016-07-01

    Doped LaMnO3 and SmCoO3 are important solid oxide fuel cell cathode materials. The main difference between these two perovskites is that SmCoO3 has proven to be a more efficient cathode material than LaMnO3 at lower temperatures. In order to explain the difference in efficiency, we need to gain insight into the materials' properties at the atomic level. However, while LaMnO3 has been widely studied, ab initio studies on SmCoO3 are rare. Hence, in this paper, we perform a comparative DFT + U study of the structural, electronic, and magnetic properties of these two perovskites. To that end, we first determined a suitable Hubbard parameter for the Co d-electrons to obtain a proper description of SmCoO3 that fully agrees with the available experimental data. We next evaluated the impact of oxygen and cation vacancies on the geometry, electronic, and magnetic properties. Oxygen vacancies strongly alter the electronic and magnetic structures of SmCoO3, but barely affect LaMnO3. However, due to their high formation energy, their concentrations in the material are very low and need to be induced by doping. Studying the cation vacancy concentration showed that the formation of cation vacancies is less energetically favorable than oxygen vacancies and would thus not markedly influence the performance of the cathode.

  5. Feature Article: Thermodynamic properties from ab-initio calculations: New theoretical developments, and applications to various materials systems

    NASA Astrophysics Data System (ADS)

    Fähnle, Manfred; Drautz, Ralf; Lechermann, Frank; Singer, Reinhard; Diaz-Ortiz, Alejandro; Dosch, Helmut

    2005-05-01

    The cover picture from the Feature Article [1] depicts the calculated landscape of lowest formation energies for the ternary compound system Ni-Fe-Al. The figure shows for each composition the difference in the formation energy (in meV/atom) for the respective homogeneous configuration with lowest energy on the bcc and the fcc parent lattice. The phases on the fcc lattice dominate the Ni- and Al-rich regions of the Gibbs triangle.The first author Manfred Fähnle is Professor at the University of Stuttgart and member of the theory group of the department of Prof. Schütz at the Max-Planck-Institut für Metallforschung in Stuttgart. In 1980 he was awarded with the Otto-Hahn medal of the Max-Planck Society and in 1985 he received the Academy Award for Physics of the University of Göttingen. His present research interests are the static and dynamic properties of bulk and nanostructured magnetic systems, as well as the ab-initio statistical mechanics of alloys.

  6. Ab-initio study of the physics and chemistry of metals in planetary core materials and nanomaterials at relevant thermodynamics conditions

    NASA Astrophysics Data System (ADS)

    Alnemrat, Sufian

    Material science investigates the relationship between the structure of materials at the atomic or molecular scales and their macroscopic properties. Ab-initio DFT, atomistic force-field, and molecular dynamic simulations have been used to investigate the electronic, optical, structural, magnetic properties of group II-VI semiconductor nanoparticles, metal organic frameworks, amide-water complexes, and planetary core materials at the atomic and/or molecular level. Structure, density of electronic states, magnetic dipole moments, and HOMO-LUMO gaps of surface-passivated ZnnSem, Cd nTem, CdTe-core/ZnTe-shell, and ZnSe-core/CdSe-shell nanocrystals are calculated using a first principles. The intrinsic magnetic dipole moments are found to be strongly size dependent. The detailed analysis of the dipole moment as a function of particle size shows the appearance of zincblende-wurtzite polymorphism in these nano-particles. Energy-efficient adsorption processes are considered promising alternatives to traditional separation techniques. Mg-MOF-74, a magnesium-based metal organic framework, has been used as an efficient adsorbent structure for several gas separation purposes. Adsorption equilibria and kinetics of ethane, ethylene, propane, and propylene on Mg-MOF-74 were determined at temperatures of 278, 298, and 318 K and pressures up to 100 kPa. A grand canonical Monte Carlo simulation was conducted to calculate the adsorption isotherms and to explore adsorption mechanisms. I found that propylene and propane have a stronger affinity to the Mg-MOF-74 adsorbent than ethane and ethylene because of their significant dipole moments. Ab-initio molecular dynamics simulations were carried out to study the role of equilibrium volume and magnetism in Fe and FeX alloys (X=Ni, O) and their stability at earth core conditions. This study provides new insights into the pressure dependence of magnetism by tracking the hybridization between crystal orbitals for pressures up to 600 GPa in

  7. From Model Hamiltonians to ab Initio Hamiltonians and Back Again: Using Single Excitation Quantum Chemistry Methods To Find Multiexciton States in Singlet Fission Materials.

    PubMed

    Mayhall, Nicholas J

    2016-09-13

    Due to the promise of significantly enhanced photovoltaic efficiencies, significant effort has been directed toward understanding and controlling the singlet fission mechanism. Although accurate quantum chemical calculations would provide a detail-rich view of the singlet fission mechanism, this is complicated by the multiexcitonic nature of one of the key intermediates, the (1)(TT) state. Being described as two simultaneous and singlet-coupled triplet excitations on a pair of nearest neighbor monomers, the (1)(TT) state is inherently a multielectronic excitation. This fact renders most single-reference ab initio quantum chemical methods incapable of providing accurate results. This paper serves two purposes: (1) to demonstrate that the multiexciton states in singlet fission materials can be described using a spin-only Hamiltonian and with each monomer treated as a biradical and (2) to propose a very simple procedure for extracting the values for this Hamiltonian from single-reference calculations. Numerical examples are included for a number of different systems, including dimers, trimers, tetramers, and a cluster comprised of seven chromophores.

  8. Ab-initio simulations on adhesion and material transfer between contacting Al and TiN surfaces

    NASA Astrophysics Data System (ADS)

    Feldbauer, Gregor; Wolloch, Michael; Mohn, Peter; Redinger, Josef; Vernes, Andras

    2014-03-01

    Contacts of surfaces at the atomic scale are crucial in many modern applications from analytical techniques like indentation or AFM experiments to technologies such as nano- and micro-electro-mechanical-systems (N-/M-EMS). Furthermore, detailed insights into such contacts are fundamental for a better understanding of tribological processes like wear. A series of simulations is performed within the framework of Density Functional Theory (DFT) to investigate the approaching, contact and subsequent separation of two atomically flat surfaces consisting of different materials. Aluminum (Al) and titanium-nitride (TiN) slabs have been chosen as a model system representing the interaction between a soft and a hard material. The approaching and separation is simulated by moving one slab in discrete steps and allowing for electronic and ionic relaxations after each one. The simulations reveal the influences of different surface orientations ((001), (011), (111)) and alignments of the surfaces with respect to each other on the adhesion, equilibrium distance, charge distribution and material transfer between the surfaces. Material transfer is observed for configurations where the interface is stronger than the softer material.

  9. Si doped T6 carbon structure as an anode material for Li-ion batteries: An ab initio study

    NASA Astrophysics Data System (ADS)

    Rajkamal, A.; Kumar, E. Mathan; Kathirvel, V.; Park, Noejung; Thapa, Ranjit

    2016-11-01

    First-principles calculations are performed to identify the pristine and Si doped 3D metallic T6 carbon structure (having both sp2 and sp3 type hybridization) as a new carbon based anode material. The π electron of C2 atoms (sp2 bonded) forms an out of plane network that helps to capture the Li atom. The highest Li storage capacity of Si doped T6 structure with conformation Li1.7Si1C5 produces theoretical specific capacity of 632 mAh/g which substantially exceeding than graphite. Also, open-circuit voltage (OCV) with respect to Li metal shows large negative when compared to the pristine T6 structure. This indicates modifications in terms of chemical properties are required in anode materials for practical application. Among various doped (Si, Ge, Sn, B, N) configuration, Si doped T6 structure provides a stable positive OCV for high Li concentrations. Likewise, volume expansion study also shows Si doped T6 structure is more stable with less pulverization and substantial capacity losses in comparison with graphite and silicon as an anode materials. Overall, mixed hybridized (sp2 + sp3) Si doped T6 structure can become a superior anode material than present sp2 hybridized graphite and sp3 hybridized Si structure for modern Lithium ion batteries.

  10. Si doped T6 carbon structure as an anode material for Li-ion batteries: An ab initio study

    PubMed Central

    Rajkamal, A.; Kumar, E. Mathan; Kathirvel, V.; Park, Noejung; Thapa, Ranjit

    2016-01-01

    First-principles calculations are performed to identify the pristine and Si doped 3D metallic T6 carbon structure (having both sp2 and sp3 type hybridization) as a new carbon based anode material. The π electron of C2 atoms (sp2 bonded) forms an out of plane network that helps to capture the Li atom. The highest Li storage capacity of Si doped T6 structure with conformation Li1.7Si1C5 produces theoretical specific capacity of 632 mAh/g which substantially exceeding than graphite. Also, open-circuit voltage (OCV) with respect to Li metal shows large negative when compared to the pristine T6 structure. This indicates modifications in terms of chemical properties are required in anode materials for practical application. Among various doped (Si, Ge, Sn, B, N) configuration, Si doped T6 structure provides a stable positive OCV for high Li concentrations. Likewise, volume expansion study also shows Si doped T6 structure is more stable with less pulverization and substantial capacity losses in comparison with graphite and silicon as an anode materials. Overall, mixed hybridized (sp2 + sp3) Si doped T6 structure can become a superior anode material than present sp2 hybridized graphite and sp3 hybridized Si structure for modern Lithium ion batteries. PMID:27892532

  11. Beyond the Fringe: A Framework for Assessing Teach-Yourself Materials for ab initio English-Speaking Learners.

    ERIC Educational Resources Information Center

    Jones, Francis R.

    1993-01-01

    A detailed, nonimpressionistic assessment checklist is presented for teach-yourself language packages. Two example research applications are given: a survey of a range of course packages, and an analysis of the patterns of materials used by an individual learner of Hungarian. (39 references) (Author/LB)

  12. Ab initio dynamical vertex approximation

    NASA Astrophysics Data System (ADS)

    Galler, Anna; Thunström, Patrik; Gunacker, Patrik; Tomczak, Jan M.; Held, Karsten

    2017-03-01

    Diagrammatic extensions of dynamical mean-field theory (DMFT) such as the dynamical vertex approximation (DΓ A) allow us to include nonlocal correlations beyond DMFT on all length scales and proved their worth for model calculations. Here, we develop and implement an Ab initio DΓ A approach (AbinitioDΓ A ) for electronic structure calculations of materials. The starting point is the two-particle irreducible vertex in the two particle-hole channels which is approximated by the bare nonlocal Coulomb interaction and all local vertex corrections. From this, we calculate the full nonlocal vertex and the nonlocal self-energy through the Bethe-Salpeter equation. The AbinitioDΓ A approach naturally generates all local DMFT correlations and all nonlocal G W contributions, but also further nonlocal correlations beyond: mixed terms of the former two and nonlocal spin fluctuations. We apply this new methodology to the prototypical correlated metal SrVO3.

  13. Periodic ab initio calculation of nuclear quadrupole parameters as an assignment tool in solid-state NMR spectroscopy: applications to 23Na NMR spectra of crystalline materials.

    PubMed

    Johnson, Clive; Moore, Elaine A; Mortimer, Michael

    2005-05-01

    Periodic ab initio HF calculations using the CRYSTAL code have been used to calculate (23)Na NMR quadrupole parameters for a wide range of crystalline sodium compounds including Na(3)OCl. An approach is developed that can be used routinely as an alternative to point-charge modelling schemes for the assignment of distinct lines in (23)Na NMR spectra to specific crystallographic sodium sites. The calculations are based on standard 3-21 G and 6-21 G molecular basis sets and in each case the same modified basis set for sodium is used for all compounds. The general approach is extendable to other quadrupolar nuclei. For the 3-21 G calculations a 1:1 linear correlation between experimental and calculated values of C(Q)((23)Na) is obtained. The 6-21 G calculations, including the addition of d-polarisation functions, give better accuracy in the calculation of eta((23)Na). The sensitivity of eta((23)Na) to hydrogen atom location is shown to be useful in testing the reported hydrogen-bonded structure of Na(2)HPO(4).

  14. Ab initio phonon limited transport

    NASA Astrophysics Data System (ADS)

    Verstraete, Matthieu

    We revisit the thermoelectric (TE) transport properties of two champion materials, PbTe and SnSe, using fully first principles methods. In both cases the performance of the material is due to subtle combinations of structural effects, scattering, and phase space reduction. In PbTe anharmonic effects are completely opposite to the predicted quasiharmonic evolution of phonon frequencies and to frequently (and incorrectly) cited extrapolations of experiments. This stabilizes the material at high T, but also tends to enhance its thermal conductivity, in a non linear manner, above 600 Kelvin. This explains why PbTe is in practice limited to room temperature applications. SnSe has recently been shown to be the most efficient TE material in bulk form. This is mainly due to a strongly enhanced carrier concentration and electrical conductivity, after going through a phase transition from 600 to 800 K. We calculate the transport coefficients as well as the defect concentrations ab initio, showing excellent agreement with experiment, and elucidating the origin of the double phase transition as well as the new charge carriers. AH Romero, EKU Gross, MJ Verstraete, and O Hellman PRB 91, 214310 (2015) O. Hellman, IA Abrikosov, and SI Simak, PRB 84 180301 (2011)

  15. Ab initio Theory of Semiconductor Nanocrystals

    NASA Astrophysics Data System (ADS)

    Wang, Lin-Wang

    2007-03-01

    With blooming experimental synthesis of various nanostructures out of many semiconductor materials, there is an urgent need to calculate the electronic structures and optical properties of these nanosystems based on reliable ab initio methods. Unfortunately, due to the O(N^3) scaling of the conventional ab initio calculation methods based on the density functional theory (DFT), and the >1000 atom sizes of the most experimental nanosystems, the direct applications of these conventional ab intio methods are often difficult. Here we will present the calculated results using our O(N) scaling charge patching method (CPM) [1,2] to nanosystems up to 10,000 atoms. The CPM yields the charge density of a nanosystem by patching the charge motifs generated from small prototype systems. The CPM electron/hole eigen energies differ from the directly calculated results by only ˜10-20 meV. We will present the optical band gaps of quantum dots and wires, quantum rods, quantum dot/quantum well, and quantum dots doped with impurities. Besides good agreements with experimental measurements, we will demonstrate why it is important to perform ab initio calculations, in contrast with the continuum model k.p calculations. We will show the effects of surface polarization potentials and the internal electric fields. Finally, a linear scaling 3 dimensional fragment (LS3DF) method will be discussed. The LS3DF method can be used to calculate the total energy and atomic forces of a large nanosystem, with the results practically the same as the direct DFT method. Our work demonstrates that, with the help of supercomputers, it is now feasible to calculate the electronic structures and optical properties of >10,000 atom nanocrystals with ab initio accuracy. [1] L.W. Wang, Phys. Rev. Lett. 88, 256402 (2002). [2] J. Li, L.W. Wang, Phys. Rev. B 72, 125325 (2005).

  16. Ab initio quantum chemistry: Methodology and applications

    PubMed Central

    Friesner, Richard A.

    2005-01-01

    This Perspective provides an overview of state-of-the-art ab initio quantum chemical methodology and applications. The methods that are discussed include coupled cluster theory, localized second-order Moller–Plesset perturbation theory, multireference perturbation approaches, and density functional theory. The accuracy of each approach for key chemical properties is summarized, and the computational performance is analyzed, emphasizing significant advances in algorithms and implementation over the past decade. Incorporation of a condensed-phase environment by means of mixed quantum mechanical/molecular mechanics or self-consistent reaction field techniques, is presented. A wide range of illustrative applications, focusing on materials science and biology, are discussed briefly. PMID:15870212

  17. Ab-initio Studies Of Lithium Oxide

    NASA Astrophysics Data System (ADS)

    Gupta, M. K.; Goel, Prabhatasree; Mittal, R.; Chaplot, S. L.

    2010-12-01

    Lithium oxide is an important material because of its high thermal conductivity and superionic behavior at high temperature. It behaves like a superionic conductor above 1200 K. Phonon frequencies have been calculated using ab-initio method. The calculations of phonon dispersion relation near unit cell volume corresponding to the superionic transition indicate softening of zone boundary transverse acoustic phonon mode along (110). The instability of phonon mode could lead to the dynamical disorder of lithium sub lattice. Thermal expansion and equation of states are also computed. The results compare well with our previous semi-empirical potential calculations.

  18. Charge carrier transport and lifetimes in n-type and p-type phosphorene as 2D device active materials: an ab initio study.

    PubMed

    Tea, E; Hin, C

    2016-08-10

    In this work, we provide a detailed analysis of phosphorene's performance as an n-type and p-type active material. This study is based on first principles calculations of the phosphorene electronic structure, and the resulting electron and hole scattering rates and lifetimes. Emphasis is put on extreme regimes commonly found in semiconductor devices, i.e. high electric fields and heavy doping, where impact ionization and Auger recombination can occur. We found that electron-initiated impact ionization is weaker than the hole-initiated process, when compared to carrier-phonon interaction rates, suggesting resilience to impact ionization initiated breakdown. Moreover, calculated minority electron lifetimes are limited by radiative recombination only, not by Auger processes, suggesting that phosphorene could achieve good quantum efficiencies in optoelectronic devices. The provided scattering rates and lifetimes are critical input data for the modeling and understanding of phosphorene-based device physics.

  19. (Na,□)5[MnO2]13 nanorods: a new tunnel structure for electrode materials determined ab initio and refined through a combination of electron and synchrotron diffraction data

    PubMed Central

    Mugnaioli, Enrico; Gemmi, Mauro; Merlini, Marco; Gregorkiewitz, Michele

    2016-01-01

    (Nax□1 − x)5[MnO2]13 has been synthesized with x = 0.80 (4), corresponding to Na0.31[MnO2]. This well known material is usually cited as Na0.4[MnO2] and is believed to have a romanèchite-like framework. Here, its true structure is determined, ab initio, by single-crystal electron diffraction tomography (EDT) and refined both by EDT data applying dynamical scattering theory and by the Rietveld method based on synchrotron powder diffraction data (χ2 = 0.690, R wp = 0.051, R p = 0.037, R F2 = 0.035). The unit cell is monoclinic C2/m, a = 22.5199 (6), b = 2.83987 (6), c = 14.8815 (4) Å, β = 105.0925 (16)°, V = 918.90 (4) Å3, Z = 2. A hitherto unknown [MnO2] framework is found, which is mainly based on edge- and corner-sharing octahedra and comprises three types of tunnels: per unit cell, two are defined by S-shaped 10-rings, four by egg-shaped 8-rings, and two by slightly oval 6-rings of Mn polyhedra. Na occupies all tunnels. The so-determined structure excellently explains previous reports on the electrochemistry of (Na,□)5[MnO2]13. The trivalent Mn3+ ions concentrate at two of the seven Mn sites where larger Mn—O distances and Jahn–Teller distortion are observed. One of the Mn3+ sites is five-coordinated in a square pyramid which, on oxidation to Mn4+, may easily undergo topotactic transformation to an octahedron suggesting a possible pathway for the transition among different tunnel structures. PMID:27910840

  20. Phase stability of Li-Mn-O oxides as cathode materials for Li-ion batteries: insights from ab initio calculations.

    PubMed

    Longo, R C; Kong, F T; KC, Santosh; Park, M S; Yoon, J; Yeon, D-H; Park, J-H; Doo, S-G; Cho, K

    2014-06-21

    In this work, we present a density-functional theory (DFT) investigation of the phase stability, electrochemical stability and phase transformation mechanisms of the layered and over-lithiated Mn oxides. This study includes the thermodynamic stability of Li and oxygen vacancies, to examine the electrochemical activation mechanisms of these cathode materials. The DFT calculations provide phase diagrams of the Li-Mn-O system in both physical and chemical potential spaces, including the crystals containing vacancies as independent phases. The results show the ranges of electrochemical activity for both layered LiMnO2 and over-lithiated Li2MnO3. By using a thermodynamic model analysis, we found that the required temperature for oxygen evolution and Li vacancy formation is too high to be compatible with any practical synthesis temperature. Using solid-state transition calculations, we have identified the key steps in the phase transition mechanism of the layered LiMnO2 into the spinel phase. The calculated effects of pH on the Li-Mn-O phase stability elucidated the mechanism of Mn(2+) formation from the spinel phase under acidic conditions.

  1. Development and Evaluation of an Order-N Formulation for Multi-Flexible Body Space Systems

    NASA Technical Reports Server (NTRS)

    Ghosh, Tushar K.; Quiocho, Leslie J.

    2013-01-01

    This paper presents development of a generic recursive Order-N algorithm for systems with rigid and flexible bodies, in tree or closed-loop topology, with N being the number of bodies of the system. Simulation results are presented for several test cases to verify and evaluate the performance of the code compared to an existing efficient dense mass matrix-based code. The comparison brought out situations where Order-N or mass matrix-based algorithms could be useful.

  2. Towards SiC Surface Functionalization: An Ab Initio Study

    SciTech Connect

    Cicero, G; Catellani, A

    2005-01-28

    We present a microscopic model of the interaction and adsorption mechanism of simple organic molecules on SiC surfaces as obtained from ab initio molecular dynamics simulations. Our results open the way to functionalization of silicon carbide, a leading candidate material for bio-compatible devices.

  3. Ab initio non-relativistic spin dynamics

    SciTech Connect

    Ding, Feizhi; Goings, Joshua J.; Li, Xiaosong; Frisch, Michael J.

    2014-12-07

    Many magnetic materials do not conform to the (anti-)ferromagnetic paradigm where all electronic spins are aligned to a global magnetization axis. Unfortunately, most electronic structure methods cannot describe such materials with noncollinear electron spin on account of formally requiring spin alignment. To overcome this limitation, it is necessary to generalize electronic structure methods and allow each electron spin to rotate freely. Here, we report the development of an ab initio time-dependent non-relativistic two-component spinor (TDN2C), which is a generalization of the time-dependent Hartree-Fock equations. Propagating the TDN2C equations in the time domain allows for the first-principles description of spin dynamics. A numerical tool based on the Hirshfeld partitioning scheme is developed to analyze the time-dependent spin magnetization. In this work, we also introduce the coupling between electron spin and a homogenous magnetic field into the TDN2C framework to simulate the response of the electronic spin degrees of freedom to an external magnetic field. This is illustrated for several model systems, including the spin-frustrated Li{sub 3} molecule. Exact agreement is found between numerical and analytic results for Larmor precession of hydrogen and lithium atoms. The TDN2C method paves the way for the ab initio description of molecular spin transport and spintronics in the time domain.

  4. Guiding ab initio calculations by alchemical derivatives

    NASA Astrophysics Data System (ADS)

    to Baben, M.; Achenbach, J. O.; von Lilienfeld, O. A.

    2016-03-01

    We assess the concept of alchemical transformations for predicting how a further and not-tested change in composition would change materials properties. This might help to guide ab initio calculations through multidimensional property-composition spaces. Equilibrium volumes, bulk moduli, and relative lattice stability of fcc and bcc 4d transition metals Zr, Nb, Mo, Tc, Ru, Rh, Pd, and Ag are calculated using density functional theory. Alchemical derivatives predict qualitative trends in lattice stability while equilibrium volumes and bulk moduli are predicted with less than 9% and 28% deviation, respectively. Predicted changes in equilibrium volume and bulk moduli for binary and ternary mixtures of Rh-Pd-Ag are in qualitative agreement even for predicted bulk modulus changes as large as +100% or -50%. Based on these results, it is suggested that alchemical transformations could be meaningful for enhanced sampling in the context of virtual high-throughput materials screening projects.

  5. Ab-initio study of hexagonal apatites

    NASA Astrophysics Data System (ADS)

    Calderin, Lazaro; Stott, Malcom J.

    2001-03-01

    A silicon stabilized mixture of calcium phosphate phases has been recognized as playing an important role in actively resorbable coatings and in ceramics as bone materials. The nature of this material is being investigated using a variety of techniques including a combination of crystallographic analysis of measured x-ray diffraction spectra, and ab initio quantum mechanics simulations. We have used all-electron, density functional based calculations to investigate a group of hexagonal apatites. The fully relaxed crystallographic structures of hydroxyapatite, and related apatites have been obtained. We will present the results and discuss the nature of the bonding in these materials. The x-ray diffraction pattern and the infra-red spectra have also been obtained and will be compared with experiment. Acknowledgments:This work is part of a collaboration with the Applied Ceramics group of M.Sayer, and with Millenium Biologix Inc. Support of the NSERC of Canada through the award of a Co-operative R & D grant to the collaboration is acknowledged.

  6. Mixed approach to incorporate self-consistency into order-N LCAO methods

    SciTech Connect

    Ordejon, P.; Artacho, E.; Soler, J.M.

    1996-12-31

    The authors present a method for selfconsistent Density Functional Theory calculations in which the effort required is proportional to the size of the system, thus allowing the application to problems with a very large size. The method is based on the LCAO approximation, and uses a mixed approach to obtain the Hamiltonian integrals between atomic orbitals with Order-N effort. They show the performance and the convergence properties of the method in several silicon and carbon systems, and in a DNA periodic chain.

  7. Ab initio two-component Ehrenfest dynamics

    SciTech Connect

    Ding, Feizhi; Goings, Joshua J.; Liu, Hongbin; Lingerfelt, David B.; Li, Xiaosong

    2015-09-21

    We present an ab initio two-component Ehrenfest-based mixed quantum/classical molecular dynamics method to describe the effect of nuclear motion on the electron spin dynamics (and vice versa) in molecular systems. The two-component time-dependent non-collinear density functional theory is used for the propagation of spin-polarized electrons while the nuclei are treated classically. We use a three-time-step algorithm for the numerical integration of the coupled equations of motion, namely, the velocity Verlet for nuclear motion, the nuclear-position-dependent midpoint Fock update, and the modified midpoint and unitary transformation method for electronic propagation. As a test case, the method is applied to the dissociation of H{sub 2} and O{sub 2}. In contrast to conventional Ehrenfest dynamics, this two-component approach provides a first principles description of the dynamics of non-collinear (e.g., spin-frustrated) magnetic materials, as well as the proper description of spin-state crossover, spin-rotation, and spin-flip dynamics by relaxing the constraint on spin configuration. This method also holds potential for applications to spin transport in molecular or even nanoscale magnetic devices.

  8. A hierarchical research by large-scale and ab initio electronic structure theories—Si and Ge cleavage and stepped (111)-2×1 surfaces

    NASA Astrophysics Data System (ADS)

    Hoshi, T.; Tanikawa, M.; Ishii, A.

    2010-09-01

    The ab initio calculation with the density functional theory and plane-wave bases is carried out for stepped Si(1 1 1)-2×1 surfaces that were predicted in a cleavage simulation by the large-scale (order- N) electronic structure theory (T. Hoshi, Y. Iguchi and T. Fujiwara, Phys. Rev. B 72 (2005) 075323). The present ab initio calculation confirms the predicted stepped structure and its bias-dependent STM image. Moreover, two (meta)stable step-edge structures are found and compared. The investigation is carried out also for Ge(1 1 1)-2×1 surfaces, so as to construct a common understanding among elements. The present study demonstrates the general importance of the hierarchical research between large-scale and ab initio electronic structure theories.

  9. Electric field response in bilayer graphene: Ab initio investigation

    NASA Astrophysics Data System (ADS)

    Mori, Yutaro; Minamitani, Emi; Ando, Yasunobu; Kasamatsu, Shusuke; Watanabe, Satoshi

    2016-11-01

    Stimulated by quantum capacitance measurements, we have investigated the electric properties of bilayer graphene (BLG) with carrier doping under an external electric field using ab initio calculations. We found that the relative permittivity of BLG depends weakly on the applied electric field, and that the BLG can be regarded as a dielectric material rather than a pair of metallic films. We also found that carrier doping affects the band gap of BLG under electric fields, although carrier doping has a much smaller effect on the band gap and density of states than the application of electric fields.

  10. Ab initio liquid water from PBE0 hybrid functional simulations

    NASA Astrophysics Data System (ADS)

    Li, Zhaofeng; Wu, Xifan; Car, Roberto

    2010-03-01

    For reasons of computational efficiency, so far most ab initio molecular dynamics simulations of liquid water have been based on semi-local density functional approximations, such as PBE and BLYP. These approaches yield a liquid structure that, albeit qualitatively correct, is overstructured compared to experiment, even after nuclear quantum effects have been taken into account.footnotetextJ. A. Morrone and R. Car, Phys. Rev. Lett. 101, 017801(2008) A major cause of this inaccuracy is the delocalization error associated to semi-local density functional approximations, which, as a consequence, overestimate slightly the hydrogen bond strength in the liquid. In this work we adopt the PBE0 hybrid functional approximation, which, by mixing a fraction of exact (Hartree-Fock) exchange, reduces significantly the delocalization error of semi-local functionals. Our approach is based on a numerically efficient order-N implementation of exact exchange.footnotetextX. Wu, A. Selloni, and R. Car, Phys. Rev. B 79, 085102(2009) We find that PBE0 systematically improves the agreement of the simulated liquid with experiment. Our conclusion is substantiated by the calculated radial distribution functions, H-bond statistics, and molecular dipole distribution.

  11. ICSM: An order N method for calculating electrostatic interactions added to TINKER

    NASA Astrophysics Data System (ADS)

    Baker, Katherine; Baumketner, Andrij; Lin, Yuchun; Deng, Shaozhong; Jacobs, Donald; Cai, Wei

    2013-01-01

    We present an order N method for calculating electrostatic interactions that has been integrated into the molecular dynamics portion of the TINKER Molecular Modeling package. This method, introduced in a previous paper [Y. Lin, A. Baumketner, S. Deng, Z. Xu, D. Jacobs, W. Cai, An image-based reaction field method for electrostatic interactions in molecular dynamics simulations of aqueous solutions, J. Chem. Phys. 131 (2009) 154103] and termed the Image-Charge Solvation Model (ICSM), is a hybrid electrostatic approach that combines the strengths of both explicit and implicit representations of the solvent. A multiple-image method is used to calculate reaction fields due to the implicit part while the Fast Multipole Method (FMM) is used to calculate the Coulomb interactions for all charges, including the explicit part. The integrated package is validated through test simulations of liquid water. The results are compared with those obtained by the Particle Mesh Ewald (PME) method that is built in the TINKER package. Timing performance of TINKER with the integrated ICSM is benchmarked on bulk water as a function of the size of the system. In particular, timing analysis results show that the ICSM outperforms the PME for sufficiently large systems with the break-even point at around 30,000 particles in the simulated system.

  12. Large-Scale Hybrid Density Functional Theory Calculations in the Condensed-Phase: Ab Initio Molecular Dynamics in the Isobaric-Isothermal Ensemble

    NASA Astrophysics Data System (ADS)

    Ko, Hsin-Yu; Santra, Biswajit; Distasio, Robert A., Jr.; Wu, Xifan; Car, Roberto

    Hybrid functionals are known to alleviate the self-interaction error in density functional theory (DFT) and provide a more accurate description of the electronic structure of molecules and materials. However, hybrid DFT in the condensed-phase has a prohibitively high associated computational cost which limits their applicability to large systems of interest. In this work, we present a general-purpose order(N) implementation of hybrid DFT in the condensed-phase using Maximally localized Wannier function; this implementation is optimized for massively parallel computing architectures. This algorithm is used to perform large-scale ab initio molecular dynamics simulations of liquid water, ice, and aqueous ionic solutions. We have performed simulations in the isothermal-isobaric ensemble to quantify the effects of exact exchange on the equilibrium density properties of water at different thermodynamic conditions. We find that the anomalous density difference between ice I h and liquid water at ambient conditions as well as the enthalpy differences between ice I h, II, and III phases at the experimental triple point (238 K and 20 Kbar) are significantly improved using hybrid DFT over previous estimates using the lower rungs of DFT This work has been supported by the Department of Energy under Grants No. DE-FG02-05ER46201 and DE-SC0008626.

  13. Ab Initio Study of Polonium

    SciTech Connect

    Zabidi, Noriza Ahmad; Kassim, Hasan Abu; Shrivastava, Keshav N.

    2008-05-20

    Polonium is the only element with a simple cubic (sc) crystal structure. Atoms in solid polonium sit at the corners of a simple cubic unit cell and no where else. Polonium has a valence electron configuration 6s{sup 2}6p{sup 4} (Z = 84). The low temperature {alpha}-phase transforms into the rhombohedral (trigonal) {beta} structure at {approx}348 K. The sc {alpha}-Po unit cell constant is a = 3.345 A. The beta form of polonium ({beta}-Po) has the lattice parameters, a{sub R} = 3.359 A and a rhombohedral angle 98 deg. 13'. We have performed an ab initio electronic structure calculation by using the density functional theory. We have performed the calculation with and without spin-orbit (SO) coupling by using both the LDA and the GGA for the exchange-correlations. The k-points in a simple cubic BZ are determined by R (0.5, 0.5, 0.5), {gamma} (0, 0, 0), X (0.5, 0, 0), M (0.5, 0.5, 0) and {gamma} (0, 0, 0). Other directions of k-points are {gamma} (0, 0, 0), X (0.5, 0, 0), R (0.5, 0.5, 0.5) and {gamma} (0, 0, 0). The SO splittings of p states at the {gamma} point in the GGA+SO scheme for {alpha}-Po are 0.04 eV and 0.02 eV while for the {beta}-Po these are 0.03 eV and 0.97 eV. We have also calculated the vibrational spectra for the unit cells in both the structures. We find that exchanging of a Po atom by Pb atom produces several more bands and destabilizes the {beta} phase.

  14. Ab initio molecular simulations with numeric atom-centered orbitals

    NASA Astrophysics Data System (ADS)

    Blum, Volker; Gehrke, Ralf; Hanke, Felix; Havu, Paula; Havu, Ville; Ren, Xinguo; Reuter, Karsten; Scheffler, Matthias

    2009-11-01

    We describe a complete set of algorithms for ab initio molecular simulations based on numerically tabulated atom-centered orbitals (NAOs) to capture a wide range of molecular and materials properties from quantum-mechanical first principles. The full algorithmic framework described here is embodied in the Fritz Haber Institute "ab initio molecular simulations" (FHI-aims) computer program package. Its comprehensive description should be relevant to any other first-principles implementation based on NAOs. The focus here is on density-functional theory (DFT) in the local and semilocal (generalized gradient) approximations, but an extension to hybrid functionals, Hartree-Fock theory, and MP2/GW electron self-energies for total energies and excited states is possible within the same underlying algorithms. An all-electron/full-potential treatment that is both computationally efficient and accurate is achieved for periodic and cluster geometries on equal footing, including relaxation and ab initio molecular dynamics. We demonstrate the construction of transferable, hierarchical basis sets, allowing the calculation to range from qualitative tight-binding like accuracy to meV-level total energy convergence with the basis set. Since all basis functions are strictly localized, the otherwise computationally dominant grid-based operations scale as O(N) with system size N. Together with a scalar-relativistic treatment, the basis sets provide access to all elements from light to heavy. Both low-communication parallelization of all real-space grid based algorithms and a ScaLapack-based, customized handling of the linear algebra for all matrix operations are possible, guaranteeing efficient scaling (CPU time and memory) up to massively parallel computer systems with thousands of CPUs.

  15. Ab initio study of cyanoguanidine isomers

    NASA Astrophysics Data System (ADS)

    Arbuznikov, A. V.; Sheludyakova, L. A.; Burgina, E. B.

    1995-06-01

    An ab initio quantum chemical study of the geometric structure and stability of cyanoguanidine isomers was carried out at the Hartree-Fock and Møller-Plesset levels of theory. Two stable separable isomers ('cyanioime' and 'cyanoamine') are found. This gives evidence in favour of the vibrational spectroscopy data showing the existence of both isomers.

  16. Ab initio study of cyanoguanidine isomers

    NASA Astrophysics Data System (ADS)

    Arbuznikov, A. V.; Sheludyakova, L. A.; Burgina, E. B.

    1995-06-01

    An ab initio quantum chemical study of the geometric structure and stability of cyanoguanidine isomers was carried out at the Hartree-Fock and Møller-Plesset levels of theory. Two stable separable isomers (‘cyanioime' and ‘cyanoamine') are found. This gives evidence in favour of the vibrational spectroscopy data showing the existence of both isomers.

  17. Ab initio study of hot electrons in GaAs.

    PubMed

    Bernardi, Marco; Vigil-Fowler, Derek; Ong, Chin Shen; Neaton, Jeffrey B; Louie, Steven G

    2015-04-28

    Hot carrier dynamics critically impacts the performance of electronic, optoelectronic, photovoltaic, and plasmonic devices. Hot carriers lose energy over nanometer lengths and picosecond timescales and thus are challenging to study experimentally, whereas calculations of hot carrier dynamics are cumbersome and dominated by empirical approaches. In this work, we present ab initio calculations of hot electrons in gallium arsenide (GaAs) using density functional theory and many-body perturbation theory. Our computed electron-phonon relaxation times at the onset of the Γ, L, and X valleys are in excellent agreement with ultrafast optical experiments and show that the ultrafast (tens of femtoseconds) hot electron decay times observed experimentally arise from electron-phonon scattering. This result is an important advance to resolve a controversy on hot electron cooling in GaAs. We further find that, contrary to common notions, all optical and acoustic modes contribute substantially to electron-phonon scattering, with a dominant contribution from transverse acoustic modes. This work provides definitive microscopic insight into hot electrons in GaAs and enables accurate ab initio computation of hot carriers in advanced materials.

  18. Ab initio study of hot electrons in GaAs

    PubMed Central

    Bernardi, Marco; Vigil-Fowler, Derek; Ong, Chin Shen; Neaton, Jeffrey B.; Louie, Steven G.

    2015-01-01

    Hot carrier dynamics critically impacts the performance of electronic, optoelectronic, photovoltaic, and plasmonic devices. Hot carriers lose energy over nanometer lengths and picosecond timescales and thus are challenging to study experimentally, whereas calculations of hot carrier dynamics are cumbersome and dominated by empirical approaches. In this work, we present ab initio calculations of hot electrons in gallium arsenide (GaAs) using density functional theory and many-body perturbation theory. Our computed electron–phonon relaxation times at the onset of the Γ, L, and X valleys are in excellent agreement with ultrafast optical experiments and show that the ultrafast (tens of femtoseconds) hot electron decay times observed experimentally arise from electron–phonon scattering. This result is an important advance to resolve a controversy on hot electron cooling in GaAs. We further find that, contrary to common notions, all optical and acoustic modes contribute substantially to electron–phonon scattering, with a dominant contribution from transverse acoustic modes. This work provides definitive microscopic insight into hot electrons in GaAs and enables accurate ab initio computation of hot carriers in advanced materials. PMID:25870287

  19. Ab initio infrared and Raman spectra

    NASA Astrophysics Data System (ADS)

    Fredkin, Donald R.; Komornicki, Andrew; White, Steven R.; Wilson, Kent R.

    1983-06-01

    We discuss several ways in which molecular absorption and scattering spectra can be computed ab initio, from the fundamental constants of nature. These methods can be divided into two general categories. In the first, or sequential, type of approach, one first solves the electronic part of the Schrödinger equation in the Born-Oppenheimer approximation, mapping out the potential energy, dipole moment vector (for infrared absorption) and polarizability tensor (for Raman scattering) as functions of nuclear coordinates. Having completed the electronic part of the calculation, one then solves the nuclear part of the problem either classically or quantum mechanically. As an example of the sequential ab initio approach, the infrared and Raman rotational and vibrational-rotational spectral band contours for the water molecule are computed in the simplest rigid rotor, normal mode approximation. Quantum techniques are used to calculate the necessary potential energy, dipole moment, and polarizability information at the equilibrium geometry. A new quick, accurate, and easy to program classical technique involving no reference to Euler angles or special functions is developed to compute the infrared and Raman band contours for any rigid rotor, including asymmetric tops. A second, or simultaneous, type of ab initio approach is suggested for large systems, particularly those for which normal mode analysis is inappropriate, such as liquids, clusters, or floppy molecules. Then the curse of dimensionality prevents mapping out in advance the complete potential, dipole moment, and polarizability functions over the whole space of nuclear positions of all atoms, and a solution in which the electronic and nuclear parts of the Born-Oppenheimer approximation are simultaneously solved is needed. A quantum force classical trajectory (QFCT) molecular dynamic method, based on linear response theory, is described, in which the forces, dipole moment, and polarizability are computed quantum

  20. On standing waves with a vortex point of order N for the nonlinear Chern-Simons-Schrödinger equations

    NASA Astrophysics Data System (ADS)

    Byeon, Jaeyoung; Huh, Hyungjin; Seok, Jinmyoung

    2016-07-01

    In this paper, we are interested in standing waves with a vortex for the nonlinear Chern-Simons-Schrödinger equations (CSS for short). We study the existence and the nonexistence of standing waves when a constant λ > 0, representing the strength of the interaction potential, varies. We prove every standing wave is trivial if λ ∈ (0 , 1), every standing wave is gauge equivalent to a solution of the first order self-dual system of CSS if λ = 1 and for every positive integer N, there is a nontrivial standing wave with a vortex point of order N if λ > 1. We also provide some classes of interaction potentials under which the nonexistence of standing waves and the existence of a standing wave with a vortex point of order N are proved.

  1. Obstacles toward unity efficiency of LiNi1-2xCoxMnxO2 (x = 0 ∼ 1/3) (NCM) cathode materials: Insights from ab initio calculations

    NASA Astrophysics Data System (ADS)

    Liang, Chaoping; Longo, Roberto C.; Kong, Fantai; Zhang, Chenxi; Nie, Yifan; Zheng, Yongping; Kim, Jeom-Soo; Jeon, Sanghoon; Choi, SuAn; Cho, Kyeongjae

    2017-02-01

    In this work, we perform a comprehensive study of five phenomena of LiNi1-2xCoxMnxO2 (NCM) (x = 0-1/3) cathodes at the end of charge (phase reaction, crack propagation, Li-Ni exchange, phase transition, and oxygen evolution), using first-principle calculations within the DFT + U framework. Based on our results, we have located the obstacles toward unity efficiency and revealed that the degradation strongly depends on the Ni concentration and the depth of charge. The threshold capacities for degradation of LiyNi1-2xCoxMnxO2 are 130-140 mA·hg-1 (y < 0.5) for 1/4 ≤ x = 1/3 (33.33-50% of Ni), and 200-210 mA·hg-1 (y < 0.25) for 0 ≤ x = 1/4 (50-100% of Ni), respectively. For 1/4 ≤ x = 1/3, our results show that the origin of the degradation is the oxidation of O2-, which is the result of the pining of O-p and Ni-d bands at the valence band edge. For 0 ≤ x = 1/4, lattice distortion and Li-Ni exchange are the mechanisms responsible for the degradation of the cathode material, leading to severe structural instabilities in the Ni-rich region (x = 0.1). Our findings will help to rationally design NCM cathode materials with high-energy density, also providing possible solution mechanisms to the degradation factors, such as doping, coating or novel nanostructures, like core-shell or concentration gradient cathodes.

  2. Ab initio infrared and Raman spectra

    NASA Technical Reports Server (NTRS)

    Fredkin, D. R.; White, S. R.; Wilson, K. R.; Komornicki, A.

    1983-01-01

    It is pointed out that with increased computer power and improved computational techniques, such as the gradients developed in recent years, it is becoming practical to compute spectra ab initio, from the fundamental constants of nature, for systems of increasing complexity. The present investigation has the objective to explore several possible ab initio approaches to spectra, giving particular attention to infrared and nonresonance Raman. Two approaches are discussed. The sequential approach, in which first the electronic part and then later the nuclear part of the Born-Oppenheimer approximation is solved, is appropriate for small systems. The simultaneous approach, in which the electronic and nuclear parts are solved at the same time, is more appropriate for many-atom systems. A review of the newer quantum gradient techniques is provided, and the infrared and Raman spectral band contours for the water molecule are computed.

  3. Efficient Ab initio Modeling of Random Multicomponent Alloys.

    PubMed

    Jiang, Chao; Uberuaga, Blas P

    2016-03-11

    We present in this Letter a novel small set of ordered structures (SSOS) method that allows extremely efficient ab initio modeling of random multicomponent alloys. Using inverse II-III spinel oxides and equiatomic quinary bcc (so-called high entropy) alloys as examples, we demonstrate that a SSOS can achieve the same accuracy as a large supercell or a well-converged cluster expansion, but with significantly reduced computational cost. In particular, because of this efficiency, a large number of quinary alloy compositions can be quickly screened, leading to the identification of several new possible high-entropy alloy chemistries. The SSOS method developed here can be broadly useful for the rapid computational design of multicomponent materials, especially those with a large number of alloying elements, a challenging problem for other approaches.

  4. Ab initio study of II-(VI)2 dichalcogenides

    NASA Astrophysics Data System (ADS)

    Olsson, P.; Vidal, J.; Lincot, D.

    2011-10-01

    The structural stabilities of the (Zn,Cd)(S,Se,Te)2 dichalcogenides have been determined ab initio. These compounds are shown to be stable in the pyrite phase, in agreement with available experiments. Structural parameters for the ZnTe2 pyrite semiconductor compound proposed here are presented. The opto-electronic properties of these dichalcogenide compounds have been calculated using quasiparticle GW theory. Bandgaps, band structures and effective masses are proposed as well as absorption coefficients and refraction indices. The compounds are all indirect semiconductors with very flat conduction band dispersion and high absorption coefficients. The work functions and surface properties are predicted. The Te and Se based compounds could be of interest as absorber materials in photovoltaic applications.

  5. Simple calculation of ab initio melting curves: Application to aluminum

    NASA Astrophysics Data System (ADS)

    Robert, Grégory; Legrand, Philippe; Arnault, Philippe; Desbiens, Nicolas; Clérouin, Jean

    2015-03-01

    We present a simple, fast, and promising method to compute the melting curves of materials with ab initio molecular dynamics. It is based on the two-phase thermodynamic model of Lin et al [J. Chem. Phys. 119, 11792 (2003), 10.1063/1.1624057] and its improved version given by Desjarlais [Phys. Rev. E 88, 062145 (2013), 10.1103/PhysRevE.88.062145]. In this model, the velocity autocorrelation function is utilized to calculate the contribution of the nuclei motion to the entropy of the solid and liquid phases. It is then possible to find the thermodynamic conditions of equal Gibbs free energy between these phases, defining the melting curve. The first benchmark on the face-centered cubic melting curve of aluminum from 0 to 300 GPa demonstrates how to obtain an accuracy of 5%-10%, comparable to the most sophisticated methods, for a much lower computational cost.

  6. Predicting lattice thermal conductivity with help from ab initio methods

    NASA Astrophysics Data System (ADS)

    Broido, David

    2015-03-01

    The lattice thermal conductivity is a fundamental transport parameter that determines the utility a material for specific thermal management applications. Materials with low thermal conductivity find applicability in thermoelectric cooling and energy harvesting. High thermal conductivity materials are urgently needed to help address the ever-growing heat dissipation problem in microelectronic devices. Predictive computational approaches can provide critical guidance in the search and development of new materials for such applications. Ab initio methods for calculating lattice thermal conductivity have demonstrated predictive capability, but while they are becoming increasingly efficient, they are still computationally expensive particularly for complex crystals with large unit cells . In this talk, I will review our work on first principles phonon transport for which the intrinsic lattice thermal conductivity is limited only by phonon-phonon scattering arising from anharmonicity. I will examine use of the phase space for anharmonic phonon scattering and the Grüneisen parameters as measures of the thermal conductivities for a range of materials and compare these to the widely used guidelines stemming from the theory of Liebfried and Schölmann. This research was supported primarily by the NSF under Grant CBET-1402949, and by the S3TEC, an Energy Frontier Research Center funded by the US DOE, office of Basic Energy Sciences under Award No. DE-SC0001299.

  7. Thermal transport in nanocrystalline Si and SiGe by ab initio based Monte Carlo simulation

    NASA Astrophysics Data System (ADS)

    Yang, Lina; Minnich, Austin J.

    2017-03-01

    Nanocrystalline thermoelectric materials based on Si have long been of interest because Si is earth-abundant, inexpensive, and non-toxic. However, a poor understanding of phonon grain boundary scattering and its effect on thermal conductivity has impeded efforts to improve the thermoelectric figure of merit. Here, we report an ab-initio based computational study of thermal transport in nanocrystalline Si-based materials using a variance-reduced Monte Carlo method with the full phonon dispersion and intrinsic lifetimes from first-principles as input. By fitting the transmission profile of grain boundaries, we obtain excellent agreement with experimental thermal conductivity of nanocrystalline Si [Wang et al. Nano Letters 11, 2206 (2011)]. Based on these calculations, we examine phonon transport in nanocrystalline SiGe alloys with ab-initio electron-phonon scattering rates. Our calculations show that low energy phonons still transport substantial amounts of heat in these materials, despite scattering by electron-phonon interactions, due to the high transmission of phonons at grain boundaries, and thus improvements in ZT are still possible by disrupting these modes. This work demonstrates the important insights into phonon transport that can be obtained using ab-initio based Monte Carlo simulations in complex nanostructured materials.

  8. Thermal transport in nanocrystalline Si and SiGe by ab initio based Monte Carlo simulation

    PubMed Central

    Yang, Lina; Minnich, Austin J.

    2017-01-01

    Nanocrystalline thermoelectric materials based on Si have long been of interest because Si is earth-abundant, inexpensive, and non-toxic. However, a poor understanding of phonon grain boundary scattering and its effect on thermal conductivity has impeded efforts to improve the thermoelectric figure of merit. Here, we report an ab-initio based computational study of thermal transport in nanocrystalline Si-based materials using a variance-reduced Monte Carlo method with the full phonon dispersion and intrinsic lifetimes from first-principles as input. By fitting the transmission profile of grain boundaries, we obtain excellent agreement with experimental thermal conductivity of nanocrystalline Si [Wang et al. Nano Letters 11, 2206 (2011)]. Based on these calculations, we examine phonon transport in nanocrystalline SiGe alloys with ab-initio electron-phonon scattering rates. Our calculations show that low energy phonons still transport substantial amounts of heat in these materials, despite scattering by electron-phonon interactions, due to the high transmission of phonons at grain boundaries, and thus improvements in ZT are still possible by disrupting these modes. This work demonstrates the important insights into phonon transport that can be obtained using ab-initio based Monte Carlo simulations in complex nanostructured materials. PMID:28290484

  9. Thermal transport in nanocrystalline Si and SiGe by ab initio based Monte Carlo simulation.

    PubMed

    Yang, Lina; Minnich, Austin J

    2017-03-14

    Nanocrystalline thermoelectric materials based on Si have long been of interest because Si is earth-abundant, inexpensive, and non-toxic. However, a poor understanding of phonon grain boundary scattering and its effect on thermal conductivity has impeded efforts to improve the thermoelectric figure of merit. Here, we report an ab-initio based computational study of thermal transport in nanocrystalline Si-based materials using a variance-reduced Monte Carlo method with the full phonon dispersion and intrinsic lifetimes from first-principles as input. By fitting the transmission profile of grain boundaries, we obtain excellent agreement with experimental thermal conductivity of nanocrystalline Si [Wang et al. Nano Letters 11, 2206 (2011)]. Based on these calculations, we examine phonon transport in nanocrystalline SiGe alloys with ab-initio electron-phonon scattering rates. Our calculations show that low energy phonons still transport substantial amounts of heat in these materials, despite scattering by electron-phonon interactions, due to the high transmission of phonons at grain boundaries, and thus improvements in ZT are still possible by disrupting these modes. This work demonstrates the important insights into phonon transport that can be obtained using ab-initio based Monte Carlo simulations in complex nanostructured materials.

  10. Ab Initio Crystal Field for Lanthanides.

    PubMed

    Ungur, Liviu; Chibotaru, Liviu F

    2017-03-13

    An ab initio methodology for the first-principle derivation of crystal-field (CF) parameters for lanthanides is described. The methodology is applied to the analysis of CF parameters in [Tb(Pc)2 ](-) (Pc=phthalocyanine) and Dy4 K2 ([Dy(4) K(2) O(OtBu)(12) ]) complexes, and compared with often used approximate and model descriptions. It is found that the application of geometry symmetrization, and the use of electrostatic point-charge and phenomenological CF models, lead to unacceptably large deviations from predictions based on ab initio calculations for experimental geometry. It is shown how the predictions of standard CASSCF (Complete Active Space Self-Consistent Field) calculations (with 4f orbitals in the active space) can be systematically improved by including effects of dynamical electronic correlation (CASPT2 step) and by admixing electronic configurations of the 5d shell. This is exemplified for the well-studied Er-trensal complex (H3 trensal=2,2',2"-tris(salicylideneimido)trimethylamine). The electrostatic contributions to CF parameters in this complex, calculated with true charge distributions in the ligands, yield less than half of the total CF splitting, thus pointing to the dominant role of covalent effects. This analysis allows the conclusion that ab initio crystal field is an essential tool for the decent description of lanthanides.

  11. AB initio infrared and Raman spectra

    NASA Astrophysics Data System (ADS)

    Fredkin, D. R.; Komornicki, A.; White, S. R.; Wilson, K. R.

    1982-08-01

    We discuss several ways in which molecular absorption and scattering spectra can be computed ab initio, from the fundamental constants of nature. These methods can be divided into two general categories. In the first, or sequential, type of approach, one first solves the electronic part of the Schroedinger equation in the Born-Oppenheimer approximation, mapping out the potential energy, dipole moment vector (for infrared absorption) and polarizability tensor (for Raman scattering) as functions of nuclear coordinates. Having completed the electronic part of the calculation, one then solves the nuclear part of the problem either classically or quantum mechanically. As an example of the sequential ab initio approach, the infrared and Raman rotational and vibrational-rotational spectral band contours for the water molecule are computed in the simplest rigid rotor, normal mode approximation. Quantum techniques, are used to calculate the necessary potential energy, dipole moment, and polarizability information at the equilibrium geometry. A new quick, accurate, and easy to program classical technique involving no reference to Euler angles or special functions is developed to compute the infrared and Raman angles or special functions is developed to compute the infrared and Raman band contours for any rigid rotor, including asymmetric tops. A second, or simultaneous, type of ab initio approach is suggested for large systems, particularly those for which normal mode analysis is inappropriate, such as liquids, clusters, or floppy molecules.

  12. Ab initio electron mobility and polar phonon scattering in GaAs

    NASA Astrophysics Data System (ADS)

    Zhou, Jin-Jian; Bernardi, Marco

    2016-11-01

    In polar semiconductors and oxides, the long-range nature of the electron-phonon (e -ph ) interaction is a bottleneck to compute charge transport from first principles. Here, we develop an efficient ab initio scheme to compute and converge the e -ph relaxation times (RTs) and electron mobility in polar materials. We apply our approach to GaAs, where by using the Boltzmann equation with state-dependent RTs, we compute mobilities in excellent agreement with experiment at 250 -500 K . The e -ph RTs and the phonon contributions to intravalley and intervalley e -ph scattering are also analyzed. Our work enables efficient ab initio computations of transport and carrier dynamics in polar materials.

  13. Materialism.

    PubMed

    Melnyk, Andrew

    2012-05-01

    Materialism is nearly universally assumed by cognitive scientists. Intuitively, materialism says that a person's mental states are nothing over and above his or her material states, while dualism denies this. Philosophers have introduced concepts (e.g., realization and supervenience) to assist in formulating the theses of materialism and dualism with more precision, and distinguished among importantly different versions of each view (e.g., eliminative materialism, substance dualism, and emergentism). They have also clarified the logic of arguments that use empirical findings to support materialism. Finally, they have devised various objections to materialism, objections that therefore serve also as arguments for dualism. These objections typically center around two features of mental states that materialism has had trouble in accommodating. The first feature is intentionality, the property of representing, or being about, objects, properties, and states of affairs external to the mental states. The second feature is phenomenal consciousness, the property possessed by many mental states of there being something it is like for the subject of the mental state to be in that mental state. WIREs Cogn Sci 2012, 3:281-292. doi: 10.1002/wcs.1174 For further resources related to this article, please visit the WIREs website.

  14. Ab initio study of optical absorption spectra of semiconductors and conjugated polymers

    SciTech Connect

    Tiago, M.L.; Chang, Eric K.; Rohlfing, Michael; Louie, Steven G.

    2000-04-30

    The effects of electron-hole interaction on the optical properties of a variety of materials have been calculated using an ab initio method based on solving the Bethe-Salpeter equation. Results on selected semiconductors, insulators, and semiconducting polymers are presented. In the cases of alpha-quartz (SiO2) and poly-phenylene-vinylene, resonant excitonic states qualitatively alter the absorption spectra.

  15. Germacrene D Cyclization: An Ab Initio Investigation

    PubMed Central

    Setzer, William N.

    2008-01-01

    Essential oils that contain large concentrations of germacrene D are typically accompanied by cadinane sesquiterpenoids. The acid-catalyzed cyclization of germacrene D to give cadinane and selinane sesquiterpenes has been computationally investigated using both density functional (B3LYP/6-31G*) and post Hartree-Fock (MP2/6-31G* *) ab initio methods. The calculated energies are in general agreement with experimentally observed product distributions, both from acid-catalyzed cyclizations as well as distribution of the compounds in essential oils. PMID:19325722

  16. Molecular associations from ab initio pair potentials

    NASA Astrophysics Data System (ADS)

    Iglesias, E.; Sordo, T. L.; Sordo, J. A.

    1991-12-01

    A method of building up stable molecular associations by using pair potentials from ab initio calculations is presented. The Matsuoka-Clementi-Yoshimine potential has been chosen to emulate the water-water interactions while 1-6-12 potentials are used to compute both solute-solvent and solute-solute interactions. Parameters for neutral-amino-acid-water and neutral- amino-acid-neutral-amino-acid interactions are provided by the program. Supermolecules are constructed by minimization of the interaction energy of the molecules involved. Both steepest-decent and Fletcher-Powell algorithms are available to carry out such a minimization.

  17. Ab-initio phasing in protein crystallography

    NASA Astrophysics Data System (ADS)

    van der Plas, J. L.; Millane, Rick P.

    2000-11-01

    The central problem in the determination of protein structures form x-ray diffraction dada (x-ray crystallography) corresponds to a phase retrieval problem with undersampled amplitude data. Algorithms for this problem that have an increased radius of convergence have the potential for reducing the amount of experimental work, and cost, involved in determining protein structures. We describe such an algorithm. Application of the algorithm to a simulated crystallographic problem shows that it converges to the correct solution, with no initial phase information, where currently used algorithms fail. The results lend support to the possibility of ab initio phasing in protein crystallography.

  18. Lead-Chalcogenides Under Pressure: Ab-Initio Study

    NASA Astrophysics Data System (ADS)

    Gupta, Dinesh C.; Hamid, Idris

    ab-initio calculations using fully relativistic pseudo-potential have been performed to investigate the high pressure phase transition, elastic and electronic properties of lead-chalcogenides including the less known lead polonium. The calculated ground state parameters, for the rock-salt structure show good agreement with the experimental data. The enthalpy calculations show that these materials undergo a first-order phase transition from rock-salt to CsCl structure at 19.4, 15.5, 11.5 and 7.3 GPa for PbS, PbSe, PbTe and PbPo, respectively. Present calculations successfully predicted the location of the band gap at L-point of Brillouin zone as well as the value of the band gap in every case at ambient pressure. It is observed that unlike other lead-chalcogenides, PbPo is semi-metal at ambient pressure. The pressure variation of the energy gap indicates that these materials metalized under high pressures. For this purpose, the electronic structure of these materials has also been computed in parent as well as in high pressure phase.

  19. Challenges for large scale ab initio Quantum Monte Carlo

    NASA Astrophysics Data System (ADS)

    Kent, Paul

    2015-03-01

    Ab initio Quantum Monte Carlo is an electronic structure method that is highly accurate, well suited to large scale computation, and potentially systematically improvable in accuracy. Due to increases in computer power, the method has been applied to systems where established electronic structure methods have difficulty reaching the accuracies desired to inform experiment without empiricism, a necessary step in the design of materials and a helpful step in the improvement of cheaper and less accurate methods. Recent applications include accurate phase diagrams of simple materials through to phenomena in transition metal oxides. Nevertheless there remain significant challenges to achieving a methodology that is robust and systematically improvable in practice, as well as capable of exploiting the latest generation of high-performance computers. In this talk I will describe the current state of the art, recent applications, and several significant challenges for continued improvement. Supported through the Predictive Theory and Modeling for Materials and Chemical Science program by the Office of Basic Energy Sciences (BES), Department of Energy (DOE).

  20. Towards Accurate Ab Initio Predictions of the Spectrum of Methane

    NASA Technical Reports Server (NTRS)

    Schwenke, David W.; Kwak, Dochan (Technical Monitor)

    2001-01-01

    We have carried out extensive ab initio calculations of the electronic structure of methane, and these results are used to compute vibrational energy levels. We include basis set extrapolations, core-valence correlation, relativistic effects, and Born- Oppenheimer breakdown terms in our calculations. Our ab initio predictions of the lowest lying levels are superb.

  1. Ab initio based polarizable force field parametrization

    NASA Astrophysics Data System (ADS)

    Masia, Marco

    2008-05-01

    Experimental and simulation studies of anion-water systems have pointed out the importance of molecular polarization for many phenomena ranging from hydrogen-bond dynamics to water interfaces structure. The study of such systems at molecular level is usually made with classical molecular dynamics simulations. Structural and dynamical features are deeply influenced by molecular and ionic polarizability, which parametrization in classical force field has been an object of long-standing efforts. Although when classical models are compared to ab initio calculations at condensed phase, it is found that the water dipole moments are underestimated by ˜30%, while the anion shows an overpolarization at short distances. A model for chloride-water polarizable interaction is parametrized here, making use of Car-Parrinello simulations at condensed phase. The results hint to an innovative approach in polarizable force fields development, based on ab initio simulations, which do not suffer for the mentioned drawbacks. The method is general and can be applied to the modeling of different systems ranging from biomolecular to solid state simulations.

  2. Ab initio simulations of pseudomorphic silicene and germanene bidimensional heterostructures

    NASA Astrophysics Data System (ADS)

    Debernardi, Alberto; Marchetti, Luigi

    2016-06-01

    Among the novel two-dimensional (2D) materials, silicene and germanene, which are two honeycomb crystal structures composed of a monolayer of Si and Ge, respectively, have attracted the attention of material scientists because they combine the advantages of the new 2D ultimate-scaled electronics with their compatibility with industrial processes presently based on Si and Ge. We envisage pseudomorphic lateral heterostructures based on ribbons of silicene and germanene, which are the 2D analogs of conventional 3D Si/Ge superlattices and quantum wells. In spite of the considerable lattice mismatch (˜4 % ) between free-standing silicene and germanene, our ab initio simulations predict that, considering striped 2D lateral heterostructures made by alternating silicene and germanene ribbons of constant width, the silicene/germanene junction remains pseudomorphic—i.e., it maintains lattice-matched edges—up to critical ribbon widths that can reach some tens of nanometers. Such critical widths are one order of magnitude larger than the critical thickness measured in 3D pseudomorphic Si/Ge heterostructures and the resolution of state-of-the-art lithography, thus enabling the possibility of lithography patterned silicene/germanene junctions. We computed how the strain produced by the pseudomorphic growth modifies the crystal structure and electronic bands of the ribbons, providing a mechanism for band-structure engineering. Our results pave the way for lithography patterned lateral heterostructures that can serve as the building blocks of novel 2D electronics.

  3. Ab Initio Calculations and Synthesis of Sc2InC-Y2InC Solid Solution

    DTIC Science & Technology

    2010-02-03

    tribological materials. It will study a solid solution of this fascinating new class of nanolaminated materials using both theoretical and experimental means...Sc2InC-Y2InC solid solution using ab initio calculations and 2) to synthesize Sc2InC-Y2InC thin films using magnetron sputtering and to determine the correlation between composition, structure, and mechanical properties thereof.

  4. Order- N electron transport calculations from ballistic to diffusive regimes by a time-dependent wave-packet diffusion method: Application to transport properties of carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Ishii, Hiroyuki; Kobayashi, Nobuhiko; Hirose, Kenji

    2010-08-01

    We present an order- N [O(N)] calculation method for the quantum electron transport of huge systems up to 80 million atoms. Based on the linear-response Kubo-Greenwood formula, we calculate the conductance through time-dependent diffusion coefficients using the time-dependent wave-packet diffusion approach, which treats the electron wave-packet motion with an O(N) and very high-speed calculation. Combining with molecular-dynamics simulations, we can study the temperature dependence of electron transport properties of materials from atomistic viewpoints from ballistic to diffusive regimes. We apply the present calculation method to transport of the carbon nanotubes (CNTs) with various lengths at various temperatures. In metallic CNTs, the mean-free paths are in good agreements with recent experiments, which reach about 500 nm at room temperature and increase up to several micrometers at low temperature. We find that the resistance increases almost linearly with temperature and takes larger values than expected in the quasiballistic regime. In semiconducting CNTs, the mobilities are affected strongly by the contacts with metallic electrodes through Schottky barriers. The mobilities are maximally 30000cm2/Vs and cut-off frequencies of 300 GHz at room temperature. These calculated results provide useful information to the design of CNT field-effect-transistor devices.

  5. Ab Initio Modeling of Molecular Radiation

    NASA Technical Reports Server (NTRS)

    Jaffe, Richard; Schwenke, David

    2014-01-01

    Radiative emission from excited states of atoms and molecules can comprise a significant fraction of the total heat flux experienced by spacecraft during atmospheric entry at hypersonic speeds. For spacecraft with ablating heat shields, some of this radiative flux can be absorbed by molecular constituents in the boundary layer that are formed by the ablation process. Ab initio quantum mechanical calculations are carried out to predict the strengths of these emission and absorption processes. This talk will describe the methods used in these calculations using, as examples, the 4th positive emission bands of CO and the 1g+ 1u+ absorption in C3. The results of these calculations are being used as input to NASA radiation modeling codes like NeqAir, HARA and HyperRad.

  6. Discovering chemistry with an ab initio nanoreactor

    SciTech Connect

    Wang, Lee-Ping; Titov, Alexey; McGibbon, Robert; Liu, Fang; Pande, Vijay S.; Martínez, Todd J.

    2014-11-02

    Chemical understanding is driven by the experimental discovery of new compounds and reactivity, and is supported by theory and computation that provides detailed physical insight. While theoretical and computational studies have generally focused on specific processes or mechanistic hypotheses, recent methodological and computational advances harken the advent of their principal role in discovery. Here we report the development and application of the ab initio nanoreactor – a highly accelerated, first-principles molecular dynamics simulation of chemical reactions that discovers new molecules and mechanisms without preordained reaction coordinates or elementary steps. Using the nanoreactor we show new pathways for glycine synthesis from primitive compounds proposed to exist on the early Earth, providing new insight into the classic Urey-Miller experiment. Ultimately, these results highlight the emergence of theoretical and computational chemistry as a tool for discovery in addition to its traditional role of interpreting experimental findings.

  7. Discovering chemistry with an ab initio nanoreactor

    NASA Astrophysics Data System (ADS)

    Martinez, Todd

    Traditional approaches for modeling chemical reaction networks such as those involved in combustion have focused on identifying individual reactions and using theoretical approaches to explore the underlying mechanisms. Recent advances involving graphical processing units (GPUs), commodity products developed for the videogaming industry, have made it possible to consider a distinct approach wherein one attempts to discover chemical reactions and mechanisms. We provide a brief summary of these developments and then discuss the concept behind the ``ab initio nanoreactor'' which explores the space of possible chemical reactions and molecular species for a given stoichiometry. The nanoreactor concept is exemplified with an example to the Urey-Miller reaction network which has been previously advanced as a potential model for prebiotic chemistry. We briefly discuss some of the future directions envisioned for the development of this nanoreactor concept.

  8. Ab Initio Calculation of the Hoyle State

    SciTech Connect

    Epelbaum, Evgeny; Krebs, Hermann; Lee, Dean; Meissner, Ulf-G.

    2011-05-13

    The Hoyle state plays a crucial role in the helium burning of stars heavier than our Sun and in the production of carbon and other elements necessary for life. This excited state of the carbon-12 nucleus was postulated by Hoyle as a necessary ingredient for the fusion of three alpha particles to produce carbon at stellar temperatures. Although the Hoyle state was seen experimentally more than a half century ago nuclear theorists have not yet uncovered the nature of this state from first principles. In this Letter we report the first ab initio calculation of the low-lying states of carbon-12 using supercomputer lattice simulations and a theoretical framework known as effective field theory. In addition to the ground state and excited spin-2 state, we find a resonance at -85(3) MeV with all of the properties of the Hoyle state and in agreement with the experimentally observed energy.

  9. Discovering chemistry with an ab initio nanoreactor

    PubMed Central

    Wang, Lee-Ping; Titov, Alexey; McGibbon, Robert; Liu, Fang; Pande, Vijay S.; Martínez, Todd J.

    2014-01-01

    Chemical understanding is driven by the experimental discovery of new compounds and reactivity, and is supported by theory and computation that provides detailed physical insight. While theoretical and computational studies have generally focused on specific processes or mechanistic hypotheses, recent methodological and computational advances harken the advent of their principal role in discovery. Here we report the development and application of the ab initio nanoreactor – a highly accelerated, first-principles molecular dynamics simulation of chemical reactions that discovers new molecules and mechanisms without preordained reaction coordinates or elementary steps. Using the nanoreactor we show new pathways for glycine synthesis from primitive compounds proposed to exist on the early Earth, providing new insight into the classic Urey-Miller experiment. These results highlight the emergence of theoretical and computational chemistry as a tool for discovery in addition to its traditional role of interpreting experimental findings. PMID:25411881

  10. Discovering chemistry with an ab initio nanoreactor

    DOE PAGES

    Wang, Lee-Ping; Titov, Alexey; McGibbon, Robert; ...

    2014-11-02

    Chemical understanding is driven by the experimental discovery of new compounds and reactivity, and is supported by theory and computation that provides detailed physical insight. While theoretical and computational studies have generally focused on specific processes or mechanistic hypotheses, recent methodological and computational advances harken the advent of their principal role in discovery. Here we report the development and application of the ab initio nanoreactor – a highly accelerated, first-principles molecular dynamics simulation of chemical reactions that discovers new molecules and mechanisms without preordained reaction coordinates or elementary steps. Using the nanoreactor we show new pathways for glycine synthesis frommore » primitive compounds proposed to exist on the early Earth, providing new insight into the classic Urey-Miller experiment. Ultimately, these results highlight the emergence of theoretical and computational chemistry as a tool for discovery in addition to its traditional role of interpreting experimental findings.« less

  11. Ab initio alpha-alpha scattering.

    PubMed

    Elhatisari, Serdar; Lee, Dean; Rupak, Gautam; Epelbaum, Evgeny; Krebs, Hermann; Lähde, Timo A; Luu, Thomas; Meißner, Ulf-G

    2015-12-03

    Processes such as the scattering of alpha particles ((4)He), the triple-alpha reaction, and alpha capture play a major role in stellar nucleosynthesis. In particular, alpha capture on carbon determines the ratio of carbon to oxygen during helium burning, and affects subsequent carbon, neon, oxygen, and silicon burning stages. It also substantially affects models of thermonuclear type Ia supernovae, owing to carbon detonation in accreting carbon-oxygen white-dwarf stars. In these reactions, the accurate calculation of the elastic scattering of alpha particles and alpha-like nuclei--nuclei with even and equal numbers of protons and neutrons--is important for understanding background and resonant scattering contributions. First-principles calculations of processes involving alpha particles and alpha-like nuclei have so far been impractical, owing to the exponential growth of the number of computational operations with the number of particles. Here we describe an ab initio calculation of alpha-alpha scattering that uses lattice Monte Carlo simulations. We use lattice effective field theory to describe the low-energy interactions of protons and neutrons, and apply a technique called the 'adiabatic projection method' to reduce the eight-body system to a two-cluster system. We take advantage of the computational efficiency and the more favourable scaling with system size of auxiliary-field Monte Carlo simulations to compute an ab initio effective Hamiltonian for the two clusters. We find promising agreement between lattice results and experimental phase shifts for s-wave and d-wave scattering. The approximately quadratic scaling of computational operations with particle number suggests that it should be possible to compute alpha scattering and capture on carbon and oxygen in the near future. The methods described here can be applied to ultracold atomic few-body systems as well as to hadronic systems using lattice quantum chromodynamics to describe the interactions of

  12. Ab initio alpha-alpha scattering

    NASA Astrophysics Data System (ADS)

    Elhatisari, Serdar; Lee, Dean; Rupak, Gautam; Epelbaum, Evgeny; Krebs, Hermann; Lähde, Timo A.; Luu, Thomas; Meißner, Ulf-G.

    2015-12-01

    Processes such as the scattering of alpha particles (4He), the triple-alpha reaction, and alpha capture play a major role in stellar nucleosynthesis. In particular, alpha capture on carbon determines the ratio of carbon to oxygen during helium burning, and affects subsequent carbon, neon, oxygen, and silicon burning stages. It also substantially affects models of thermonuclear type Ia supernovae, owing to carbon detonation in accreting carbon-oxygen white-dwarf stars. In these reactions, the accurate calculation of the elastic scattering of alpha particles and alpha-like nuclei—nuclei with even and equal numbers of protons and neutrons—is important for understanding background and resonant scattering contributions. First-principles calculations of processes involving alpha particles and alpha-like nuclei have so far been impractical, owing to the exponential growth of the number of computational operations with the number of particles. Here we describe an ab initio calculation of alpha-alpha scattering that uses lattice Monte Carlo simulations. We use lattice effective field theory to describe the low-energy interactions of protons and neutrons, and apply a technique called the ‘adiabatic projection method’ to reduce the eight-body system to a two-cluster system. We take advantage of the computational efficiency and the more favourable scaling with system size of auxiliary-field Monte Carlo simulations to compute an ab initio effective Hamiltonian for the two clusters. We find promising agreement between lattice results and experimental phase shifts for s-wave and d-wave scattering. The approximately quadratic scaling of computational operations with particle number suggests that it should be possible to compute alpha scattering and capture on carbon and oxygen in the near future. The methods described here can be applied to ultracold atomic few-body systems as well as to hadronic systems using lattice quantum chromodynamics to describe the interactions of

  13. Materials

    NASA Technical Reports Server (NTRS)

    Glaessgen, Edward H.; Schoeppner, Gregory A.

    2006-01-01

    NASA Langley Research Center has successfully developed an electron beam freeform fabrication (EBF3) process, a rapid metal deposition process that works efficiently with a variety of weldable alloys. The EBF3 process can be used to build a complex, unitized part in a layer-additive fashion, although the more immediate payoff is for use as a manufacturing process for adding details to components fabricated from simplified castings and forgings or plate products. The EBF3 process produces structural metallic parts with strengths comparable to that of wrought product forms and has been demonstrated on aluminum, titanium, and nickel-based alloys to date. The EBF3 process introduces metal wire feedstock into a molten pool that is created and sustained using a focused electron beam in a vacuum environment. Operation in a vacuum ensures a clean process environment and eliminates the need for a consumable shield gas. Advanced metal manufacturing methods such as EBF3 are being explored for fabrication and repair of aerospace structures, offering potential for improvements in cost, weight, and performance to enhance mission success for aircraft, launch vehicles, and spacecraft. Near-term applications of the EBF3 process are most likely to be implemented for cost reduction and lead time reduction through addition of details onto simplified preforms (casting or forging). This is particularly attractive for components with protruding details that would require a significantly large volume of material to be machined away from an oversized forging, offering significant reductions to the buy-to-fly ratio. Future far-term applications promise improved structural efficiency through reduced weight and improved performance by exploiting the layer-additive nature of the EBF3 process to fabricate tailored unitized structures with functionally graded microstructures and compositions.

  14. Ab Initio: And a New Era of Airline Pilot Training.

    ERIC Educational Resources Information Center

    Gesell, Laurence E.

    1995-01-01

    Expansion of air transportation and decreasing numbers seeking pilot training point to a shortage of qualified pilots. Ab initio training, in which candidates with no flight time are trained to air transport proficiency, could resolve the problem. (SK)

  15. Ab initio electronic structure and optical conductivity of bismuth tellurohalides

    NASA Astrophysics Data System (ADS)

    Schwalbe, Sebastian; Wirnata, René; Starke, Ronald; Schober, Giulio A. H.; Kortus, Jens

    2016-11-01

    We investigate the electronic structure, dielectric, and optical properties of bismuth tellurohalides BiTe X (X =I , Cl, Br) by means of all-electron density functional theory. In particular, we present the ab initio conductivities and dielectric tensors calculated over a wide frequency range, and compare our results with the recent measurements by Akrap et al. [Phys. Rev. B 90, 035201 (2014), 10.1103/PhysRevB.90.035201], Makhnev et al. [Opt. Spectrosc. 117, 764 (2014), 10.1134/S0030400X14110125], and Rusinov et al. [JETP Lett. 101, 507 (2015), 10.1134/S0021364015080147]. We show how the low-frequency branch of the optical conductivity can be used to identify characteristic intra- and interband transitions between the Rashba spin-split bands in all three bismuth tellurohalides. We further calculate the refractive indices and dielectric constants, which in turn are systematically compared to previous predictions and measurements. We expect that our quantitative analysis will contribute to the general assessment of bulk Rashba materials for their potential use in spintronics devices.

  16. Ab-Initio Molecular Dynamics Simulation of Graphene Sheet

    NASA Astrophysics Data System (ADS)

    Kolev, S.; Balchev, I.; Cvetkov, K.; Tinchev, S.; Milenov, T.

    2017-01-01

    The study of graphene is important because it is a promising material for a variety of applications in the electronic industry. In the present work, the properties of а 2D periodic graphene sheet are studied with the use of ab initio molecular dynamics. DFT in the generalized gradient approximation is used in order to carry out the dynamical simulations. The PBE functional and DZVP-MOLOPT basis set are implemented in the CP2K/Quickstep package. A periodic box, consisting of 288 carbon atoms is chosen for the simulations. After geometry optimization it has dimensions 2964 x 2964 x 1500 pm and form angles of 90, 90, 60 degrees. The dynamical simulation is run for 1 ps in the NPT ensemble, at temperature T = 298.15 K. The radial distribution function shows a first peak at 142 pm, marking the bond length between carbon atoms. The density of states for the periodic systems is simulated as occupied orbitals represent the valence band and unoccupied ones the conduction band. The calculated bandgap, as expected is close to 0 eV.

  17. Assessing the Thermoelectric Properties of Sintered Compounds via High-Throughput Ab-Initio Calculations

    NASA Astrophysics Data System (ADS)

    Wang, Shidong; Wang, Zhao; Setyawan, Wahyu; Mingo, Natalio; Curtarolo, Stefano

    2011-10-01

    Several thousand compounds from the Inorganic Crystal Structure Database have been considered as nanograined, sintered-powder thermoelectrics with the high-throughput ab-initio AFLOW framework. Regression analysis unveils that the power factor is positively correlated with both the electronic band gap and the carrier effective mass, and that the probability of having large thermoelectric power factors increases with the increasing number of atoms per primitive cell. Avenues for further investigation are revealed by this work. These avenues include the role of experimental and theoretical databases in the development of novel materials.

  18. Ab initio phase diagram of iridium

    NASA Astrophysics Data System (ADS)

    Burakovsky, L.; Burakovsky, N.; Cawkwell, M. J.; Preston, D. L.; Errandonea, D.; Simak, S. I.

    2016-09-01

    The phase diagram of iridium is investigated using the Z methodology. The Z methodology is a technique for phase diagram studies that combines the direct Z method for the computation of melting curves and the inverse Z method for the calculation of solid-solid phase boundaries. In the direct Z method, the solid phases along the melting curve are determined by comparing the solid-liquid equilibrium boundaries of candidate crystal structures. The inverse Z method involves quenching the liquid into the most stable solid phase at various temperatures and pressures to locate a solid-solid boundary. Although excellent agreement with the available experimental data (to ≲65 GPa) is found for the equation of state (EOS) of Ir, it is the third-order Birch-Murnaghan EOS with B0'=5 rather than the more widely accepted B0'=4 that describes our ab initio data to higher pressure (P ) . Our results suggest the existence of a random-stacking hexagonal close-packed structure of iridium at high P . We offer an explanation for the 14-layer hexagonal structure observed in experiments by Cerenius and Dubrovinsky.

  19. Ab Initio Quantum Simulations of Liquid Water

    NASA Astrophysics Data System (ADS)

    Gergely, John; Ceperley, David; Gygi, Francois

    2007-03-01

    Some recent efforts at simulating liquid water have employed ``ab initio'' molecular dynamics (AIMD) methods with forces from a version of density functional theory (DFT) and, in some cases, imaginary-time path integrals (PI) to study quantum effects of the protons. Although AIMD methods have met with many successes, errors introduced by the approximations and choices of simulation parameters are not fully understood. We report on path integral Monte Carlo (PIMC) studies of liquid water using DFT energies that provide quantitative benchmarks for PI-AIMD work. Specifically, we present convergence studies of the path integrals and address whether the Trotter number can be reduced by improving the form of the (approximate) action. Also, we assess 1) whether typical AIMD simulations are sufficiently converged in simulation time, i.e., if there is reason to suspect that nonergodic behavior in PI-AIMD methods leads to poor convergence, and 2) the relative efficiency of the methods. E. Schwegler, J.C. Grossman, F. Gygi, G. Galli, J. Chem. Phys 121, 5400 (2004).

  20. Ab initio calculations of nitramine dimers

    NASA Astrophysics Data System (ADS)

    Koh-Fallet, Sharon; Schweigert, Igor

    2015-06-01

    Elevated temperatures and pressures are typically thought to have opposing effects on the reaction channels of nitramine decomposition. These high temperatures promote reactions with loose transition structures (positive activation entropies and volumes), such as N-N bond homolysis. Elevated pressures promote reactions with tight transition structures (negative activation entropies and volumes), such as intramolecular and intermolecular H transfer. However, no quantitative data exists regarding the range of temperatures and pressures at which these effects become pronounced. We are pursuing ab initio calculations of the corresponding unimolecular and bimolecular transition structures with the objective of estimating the relevant thermochemical parameters and quantifying the effects of elevated temperature and pressures on the corresponding rate constants. Here, we present density functional theory and complete active space calculations of gas-phase molecular dimers of nitramines as an intermediate step toward modeling transition structures directly in the condensed phase. This work was supported by the Naval Research Laboratory via the American Society for Engineering and Education and by the Office of Naval Research, both directly and through the Naval Research Laboratory.

  1. Ab initio Computations of the Electronic, Mechanical, and Thermal Properties of Ultra High Temperature Ceramics (UHTC) ZrB2 and HfB2

    NASA Technical Reports Server (NTRS)

    Lawson, John W.; Bauschlicher, Charles W.; Daw, Murray

    2011-01-01

    Refractory materials such as metallic borides, often considered as ultra high temperature ceramics (UHTC), are characterized by high melting point, high hardness, and good chemical inertness. These materials have many applications which require high temperature materials that can operate with no or limited oxidation. Ab initio, first principles methods are the most accurate modeling approaches available and represent a parameter free description of the material based on the quantum mechanical equations. Using these methods, many of the intrinsic properties of these material can be obtained. We performed ab initio calculations based on density functional theory for the UHTC materials ZrB2 and HfB2. Computational results are presented for structural information (lattice constants, bond lengths, etc), electronic structure (bonding motifs, densities of states, band structure, etc), thermal quantities (phonon spectra, phonon densities of states, specific heat), as well as information about point defects such as vacancy and antisite formation energies.

  2. ab initio study of hot carriers in the first picosecond after sunlight absorption in silicon.

    PubMed

    Bernardi, Marco; Vigil-Fowler, Derek; Lischner, Johannes; Neaton, Jeffrey B; Louie, Steven G

    2014-06-27

    Hot carrier thermalization is a major source of efficiency loss in solar cells. Because of the subpicosecond time scale and complex physics involved, a microscopic characterization of hot carriers is challenging even for the simplest materials. We develop and apply an ab initio approach based on density functional theory and many-body perturbation theory to investigate hot carriers in semiconductors. Our calculations include electron-electron and electron-phonon interactions, and require no experimental input other than the structure of the material. We apply our approach to study the relaxation time and mean free path of hot carriers in Si, and map the band and k dependence of these quantities. We demonstrate that a hot carrier distribution characteristic of Si under solar illumination thermalizes within 350 fs, in excellent agreement with pump-probe experiments. Our work sheds light on the subpicosecond time scale after sunlight absorption in Si, and constitutes a first step towards ab initio quantification of hot carrier dynamics in materials.

  3. Time-domain ab initio modeling of photoinduced dynamics at nanoscale interfaces.

    PubMed

    Wang, Linjun; Long, Run; Prezhdo, Oleg V

    2015-04-01

    Nonequilibrium processes involving electronic and vibrational degrees of freedom in nanoscale materials are under active experimental investigation. Corresponding theoretical studies are much scarcer. The review starts with the basics of time-dependent density functional theory, recent developments in nonadiabatic molecular dynamics, and the fusion of the two techniques. Ab initio simulations of this kind allow us to directly mimic a great variety of time-resolved experiments performed with pump-probe laser spectroscopies. The focus is on the ultrafast photoinduced charge and exciton dynamics at interfaces formed by two complementary materials. We consider purely inorganic materials, inorganic-organic hybrids, and all organic interfaces, involving bulk semiconductors, metallic and semiconducting nanoclusters, graphene, carbon nanotubes, fullerenes, polymers, molecular crystals, molecules, and solvent. The detailed atomistic insights available from time-domain ab initio studies provide a unique description and a comprehensive understanding of the competition between electron transfer, thermal relaxation, energy transfer, and charge recombination processes. These advances now make it possible to directly guide the development of organic and hybrid solar cells, as well as photocatalytic, electronic, spintronic, and other devices relying on complex interfacial dynamics.

  4. Time-Domain Ab Initio Modeling of Photoinduced Dynamics at Nanoscale Interfaces

    NASA Astrophysics Data System (ADS)

    Wang, Linjun; Long, Run; Prezhdo, Oleg V.

    2015-04-01

    Nonequilibrium processes involving electronic and vibrational degrees of freedom in nanoscale materials are under active experimental investigation. Corresponding theoretical studies are much scarcer. The review starts with the basics of time-dependent density functional theory, recent developments in nonadiabatic molecular dynamics, and the fusion of the two techniques. Ab initio simulations of this kind allow us to directly mimic a great variety of time-resolved experiments performed with pump-probe laser spectroscopies. The focus is on the ultrafast photoinduced charge and exciton dynamics at interfaces formed by two complementary materials. We consider purely inorganic materials, inorganic-organic hybrids, and all organic interfaces, involving bulk semiconductors, metallic and semiconducting nanoclusters, graphene, carbon nanotubes, fullerenes, polymers, molecular crystals, molecules, and solvent. The detailed atomistic insights available from time-domain ab initio studies provide a unique description and a comprehensive understanding of the competition between electron transfer, thermal relaxation, energy transfer, and charge recombination processes. These advances now make it possible to directly guide the development of organic and hybrid solar cells, as well as photocatalytic, electronic, spintronic, and other devices relying on complex interfacial dynamics.

  5. Ab initio MD simulations of Mg2SiO4 liquid at high pressures and temperatures relevant to the Earth's mantle

    NASA Astrophysics Data System (ADS)

    Martin, G. B.; Kirtman, B.; Spera, F. J.

    2010-12-01

    Computational studies implementing Density Functional Theory (DFT) methods have become very popular in the Materials Sciences in recent years. DFT codes are now used routinely to simulate properties of geomaterials—mainly silicates and geochemically important metals such as Fe. These materials are ubiquitous in the Earth’s mantle and core and in terrestrial exoplanets. Because of computational limitations, most First Principles Molecular Dynamics (FPMD) calculations are done on systems of only 100 atoms for a few picoseconds. While this approach can be useful for calculating physical quantities related to crystal structure, vibrational frequency, and other lattice-scale properties (especially in crystals), it would be useful to be able to compute larger systems especially for extracting transport properties and coordination statistics. Previous studies have used codes such as VASP where CPU time increases as N2, making calculations on systems of more than 100 atoms computationally very taxing. SIESTA (Soler, et al. 2002) is a an order-N (linear-scaling) DFT code that enables electronic structure and MD computations on larger systems (N 1000) by making approximations such as localized numerical orbitals. Here we test the applicability of SIESTA to simulate geosilicates in the liquid and glass state. We have used SIESTA for MD simulations of liquid Mg2SiO4 at various state points pertinent to the Earth’s mantle and congruous with those calculated in a previous DFT study using the VASP code (DeKoker, et al. 2008). The core electronic wave functions of Mg, Si, and O were approximated using pseudopotentials with a core cutoff radius of 1.38, 1.0, and 0.61 Angstroms respectively. The Ceperly-Alder parameterization of the Local Density Approximation (LDA) was used as the exchange-correlation functional. Known systematic overbinding of LDA was corrected with the addition of a pressure term, P 1.6 GPa, which is the pressure calculated by SIESTA at the experimental

  6. Ab Initio Studies of Stratospheric Ozone Depletion Chemistry

    NASA Technical Reports Server (NTRS)

    Lee, Timothy J.; Head-Gordon, Martin; Langhoff, Stephen R. (Technical Monitor)

    1995-01-01

    An overview of the current understanding of ozone depletion chemistry, particularly with regards the formation of the so-called Antarctic ozone hole, will be presented together with an outline as to how ab initio quantum chemistry can be used to further our understanding of stratospheric chemistry. The ability of modern state-of-the art ab initio quantum chemical techniques to characterize reliably the gas-phase molecular structure, vibrational spectrum, electronic spectrum, and thermal stability of fluorine, chlorine, bromine and nitrogen oxide species will be demonstrated by presentation of some example studies. The ab initio results will be shown to be in excellent agreement with the available experimental data, and where the experimental data are either not known or are inconclusive, the theoretical results are shown to fill in the gaps and to resolve experimental controversies. In addition, ab initio studies in which the electronic spectra and the characterization of excited electronic states of halogen oxide species will also be presented. Again where available, the ab initio results are compared to experimental observations, and are used to aid in the interpretation of experimental studies.

  7. Skutterudites under pressure: An ab initio study

    SciTech Connect

    Ram, Swetarekha; Kanchana, V.; Valsakumar, M. C.

    2014-03-07

    Ab initio results on the band structure, density of states, and Fermi surface (FS) properties of LaRu{sub 4}X{sub 12} (X = P, As, Sb) are presented at ambient pressure as well as under compression. The analysis of density of states reveals the major contribution at the Fermi level to be mainly from the Ru-d and X-p states. We have a complicated Fermi surface with both electron and hole characters for all the three compounds which is derived mainly from the Ru-d and X-p states. There is also a simpler FS with hole character derived from the P-p{sub z} orbital for LaRu{sub 4}P{sub 12} and Ru-d{sub z{sup 2}} orbital in the case of As and Sb containing compounds. More interestingly, Fermi surface nesting feature is observed only in the case of the LaRu{sub 4}P{sub 12}. Under compression, we observe the topology of the complicated FS sheet of LaRu{sub 4}As{sub 12} to change around V/V{sub 0} = 0.85, leading to a behaviour similar to that of a multiband superconductor, and in addition, we have two more hole pockets centered around Γ at V/V{sub 0} = 0.8 for the same compound. Apart from this, we find the hole pocket to vanish at V/V{sub 0} = 0.8 in the case of LaRu{sub 4}Sb{sub 12} and the opening of the complicated FS sheet gets reduced. The de Haas van Alphen calculation shows the number of extremal orbits in the complicated sheet to change in As and Sb containing compounds under compression, where we also observe the FS topology to change.

  8. Ab-initio atomic level stresses in Cu-Zr crystal, liquid and glass phases

    NASA Astrophysics Data System (ADS)

    Ojha, Madhusudan; Nicholson, Don M.; Egami, Takeshi

    2013-03-01

    The Cu-Zr system provides interesting playground for the study of glass structure, stability, and formability and liquid dynamics. Glasses form over a wide range of concentrations while they compete against various intermetallic compounds. We have calculated from first-principles the atomic level stresses, a new tool to characterize materials, within the local approximation to Density Functional Theory (DFT) for Cu-Zr glasses and compounds from low temperature to 4500K. Comparisons between ordered crystalline compounds and liquids and glasses allow us to relate atomic level stress to relaxation of chemical short-range order and structural relaxation. The results are counter-intuitive at times; a smaller atom is under higher compressive pressure, whereas geometrically they should be under tension. Ab-initio calculations were done using Vienna Ab-initio Simulation Package (VASP) and Locally Self-consistent Multiple Scattering (LSMS) codes. The work at the University of Tennessee and Oak Ridge National laboratory was supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Materials Science and Engineering Division.

  9. Ab initio computations of photodissociation products of CFC alternatives

    SciTech Connect

    Tai, S.; Illinger, K.H.; Kenny, J.E.

    1995-12-31

    Ab initio computations, have already been used to examine the energetics of the photodissociation of stratospheric chlorofluorocarbons. Our awn research has investigated the ab initio computation of vibrational frequencies and infrared intensities of CF{sub 3}CH{sub 2}F, CF{sub 3}CF{sub 2}H, and CF{sub 3}CH{sub 3}; continuing research will attempt to expand these computations to the energetics of the photodissociation of these molecules, since sane of the most common types of chlorofluorocarbon substitutes are hydrofluoroethanes.

  10. Ab initio no core shell model

    SciTech Connect

    Barrett, Bruce R.; Navrátil, Petr; Vary, James P.

    2012-11-17

    A long-standing goal of nuclear theory is to determine the properties of atomic nuclei based on the fundamental interactions among the protons and neutrons (i.e., nucleons). By adopting nucleon-nucleon (NN), three-nucleon (NNN) and higher-nucleon interactions determined from either meson-exchange theory or QCD, with couplings fixed by few-body systems, we preserve the predictive power of nuclear theory. This foundation enables tests of nature's fundamental symmetries and offers new vistas for the full range of complex nuclear phenomena. Basic questions that drive our quest for a microscopic predictive theory of nuclear phenomena include: (1) What controls nuclear saturation; (2) How the nuclear shell model emerges from the underlying theory; (3) What are the properties of nuclei with extreme neutron/proton ratios; (4) Can we predict useful cross sections that cannot be measured; (5) Can nuclei provide precision tests of the fundamental laws of nature; and (6) Under what conditions do we need QCD to describe nuclear structure, among others. Along with other ab initio nuclear theory groups, we have pursued these questions with meson-theoretical NN interactions, such as CD-Bonn and Argonne V18, that were tuned to provide high-quality descriptions of the NN scattering phase shifts and deuteron properties. We then add meson-theoretic NNN interactions such as the Tucson-Melbourne or Urbana IX interactions. More recently, we have adopted realistic NN and NNN interactions with ties to QCD. Chiral perturbation theory within effective field theory ({chi}EFT) provides us with a promising bridge between QCD and hadronic systems. In this approach one works consistently with systems of increasing nucleon number and makes use of the explicit and spontaneous breaking of chiral symmetry to expand the strong interaction in terms of a dimensionless constant, the ratio of a generic small momentum divided by the chiral symmetry breaking scale taken to be about 1 GeV/c. The resulting NN

  11. ab initio MD simulations of geomaterials with ~1000 atoms

    NASA Astrophysics Data System (ADS)

    Martin, G. B.; Kirtman, B.; Spera, F. J.

    2009-12-01

    In the last two decades, ab initio studies of materials using Density Functional Theory (DFT) have increased exponentially in popularity. DFT codes are now used routinely to simulate properties of geomaterials--mainly silicates and geochemically important metals such as Fe. These materials are ubiquitous in the Earth’s mantle and core and in terrestrial exoplanets. Because of computational limitations, most First Principles Molecular Dynamics (FPMD) calculations are done on systems of only ~100 atoms for a few picoseconds. While this approach can be useful for calculating physical quantities related to crystal structure, vibrational frequency, and other lattice-scale properties (especially in crystals), it is statistically marginal for duplicating physical properties of the liquid state like transport and structure. In MD simulations in the NEV ensemble, temperature (T), and pressure (P) fluctuations scale as N-1/2; small particle number (N) systems are therefore characterized by greater statistical state point location uncertainty than large N systems. Previous studies have used codes such as VASP where CPU time increases with N2, making calculations with N much greater than 100 impractical. SIESTA (Soler, et al. 2002) is a DFT code that enables electronic structure and MD computations on larger systems (N~103) by making some approximations, such as localized numerical orbitals, that would be useful in modeling some properties of geomaterials. Here we test the applicability of SIESTA to simulate geosilicates, both hydrous and anhydrous, in the solid and liquid state. We have used SIESTA for lattice calculations of brucite, Mg(OH)2, that compare very well to experiment and calculations using CRYSTAL, another DFT code. Good agreement between more classical DFT calculations and SIESTA is needed to justify study of geosilicates using SIESTA across a range of pressures and temperatures relevant to the Earth’s interior. Thus, it is useful to adjust parameters in

  12. Application of ab-initio calculations to modeling of nanoscale diffusion and activation in silicon

    NASA Astrophysics Data System (ADS)

    Diebel, Milan

    As ULSI devices enter the nanoscale, ultra-shallow and highly electrically active junctions become necessary. New materials and 3D device structures as well as new process technologies are under exploration to meet the requirements of future devices. A detailed understanding of the atomistic mechanisms of point-defect/dopant interactions which govern diffusion and activation behavior is required to overcome the challenges in building these devices. This dissertation describes how ab-initio calculations can be used to develop physical models of diffusion and activation in silicon. A hierarchy of approaches (ab-initio, kinetic lattice Monte Carlo, continuum) is used to bridge the gaps in time scale and system size between atomistic calculations and nanoscale devices. This modeling approach is demonstrated by investigating two very different challenges in process technology: F co-implantation and stress effects on dopant diffusion/activation. In the first application, ab-initio calculations are used to understand anomalous F diffusion behavior. A set of strongly bound fluorine vacancy complexes (FnVm ) were found. The decoration of vacancies/dangling silicon bonds by fluorine leads to fluorine accumulating in vacancy rich regions, which explains the fluorine redistribution behavior reported experimentally. The revealed interactions of F with point-defects explain the benefits of F co-implantation for B and P activation and diffusion. Based on the insight gained, a simplified F diffusion model at the continuum level (50--100 nm scale) is extracted that accounts for co-implantation effects on B and P for various implant energies and doses. The second application addresses the effect of stress on point-defect/dopant equilibrium concentration, diffusion, and activation. A methodology is developed to extract detailed stress effects from ab-initio calculations. The approach is used to extract induced strains and elasticity tensors for various defects and impurities in order

  13. Ab initio study of magnetic single layer MPX3 metal-phosphorous-trichalcogenides

    NASA Astrophysics Data System (ADS)

    Chittari, Bheema Lingam; Hwang, Euyheon; Jung, Jeil; MacDonald, Allan H.

    We analyze the electronic structure of two dimensional (2D) MPX3 (M= V, Cr, Mn, Fe, Co, Ni, Cu, Zn, and X = S, Se, Te) transition metal thiophosphates, viewing them as single layer van der Waals materials that can exhibit magnetic order. Our ab initio calculations for MPX3 single layer compounds predict both semiconducting phases with variable band gap sizes and metallic phases, and an intimate interplay between magnetic order and the presence of a gap. A systematic trend of decreasing band gaps in antiferromagnetic states is observed as the chalcogen atoms S, Se, and Te change from smaller to larger atomic number, Ferromagnetic, antiferromagnetic, and nonmagnetic phases, and lattice constant changes accompanied by distortions in crystal symmetry, occur as the metal atom is varied. The sensitive interdependence between magnetic, structural, and electronic properties suggests the important potential of this class of 2D magnetic van der Waals materials for strain and field-effect carrier tunable spintronics.

  14. Ab Initio Theory of Coherent Laser-Induced Magnetization in Metals

    NASA Astrophysics Data System (ADS)

    Berritta, Marco; Mondal, Ritwik; Carva, Karel; Oppeneer, Peter M.

    2016-09-01

    We present the first materials specific ab initio theory of the magnetization induced by circularly polarized laser light in metals. Our calculations are based on nonlinear density matrix theory and include the effect of absorption. We show that the induced magnetization, commonly referred to as inverse Faraday effect, is strongly materials and frequency dependent, and demonstrate the existence of both spin and orbital induced magnetizations which exhibit a surprisingly different behavior. We show that for nonmagnetic metals (such as Cu, Au, Pd, Pt) and antiferromagnetic metals the induced magnetization is antisymmetric in the light's helicity, whereas for ferromagnetic metals (Fe, Co, Ni, FePt) the imparted magnetization is only asymmetric in the helicity. We compute effective optomagnetic fields that correspond to the induced magnetizations and provide guidelines for achieving all-optical helicity-dependent switching.

  15. Multiple time step integrators in ab initio molecular dynamics

    SciTech Connect

    Luehr, Nathan; Martínez, Todd J.; Markland, Thomas E.

    2014-02-28

    Multiple time-scale algorithms exploit the natural separation of time-scales in chemical systems to greatly accelerate the efficiency of molecular dynamics simulations. Although the utility of these methods in systems where the interactions are described by empirical potentials is now well established, their application to ab initio molecular dynamics calculations has been limited by difficulties associated with splitting the ab initio potential into fast and slowly varying components. Here we present two schemes that enable efficient time-scale separation in ab initio calculations: one based on fragment decomposition and the other on range separation of the Coulomb operator in the electronic Hamiltonian. We demonstrate for both water clusters and a solvated hydroxide ion that multiple time-scale molecular dynamics allows for outer time steps of 2.5 fs, which are as large as those obtained when such schemes are applied to empirical potentials, while still allowing for bonds to be broken and reformed throughout the dynamics. This permits computational speedups of up to 4.4x, compared to standard Born-Oppenheimer ab initio molecular dynamics with a 0.5 fs time step, while maintaining the same energy conservation and accuracy.

  16. Motif based Hessian matrixfor ab initio geometry optimization ofnanostructures

    SciTech Connect

    Zhao, Zhengji; Wang, Lin-Wang; Meza, Juan

    2006-04-05

    A simple method to estimate the atomic degree Hessian matrixof a nanosystem is presented. The estimated Hessian matrix, based on themotif decomposition of the nanosystem, can be used to accelerate abinitio atomic relaxations with speedups of 2 to 4 depending on the sizeof the system. In addition, the programing implementation for using thismethod in a standard ab initio package is trivial.

  17. The application of ab initio calculations to molecular spectroscopy

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles W., Jr.; Langhoff, Stephen R.

    1989-01-01

    The state of the art in ab initio molecular structure calculations is reviewed, with an emphasis on recent developments such as full configuration-interaction benchmark calculations and atomic natural orbital basis sets. It is shown that new developments in methodology combined with improvements in computer hardware are leading to unprecedented accuracy in solving problems in spectroscopy.

  18. The application of ab initio calculations to molecular spectroscopy

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles W., Jr.; Langhoff, Stephen R.

    1989-01-01

    The state of the art in ab initio molecular structure calculations is reviewed with an emphasis on recent developments, such as full configuration-interaction benchmark calculations and atomic natural orbital basis sets. It is found that new developments in methodology, combined with improvements in computer hardware, are leading to unprecedented accuracy in solving problems in spectroscopy.

  19. Ab initio quantum Monte Carlo calculations of ground-state properties of manganese's oxides

    NASA Astrophysics Data System (ADS)

    Sharma, Vinit; Krogel, Jaron T.; Kent, P. R. C.; Reboredo, Fernando A.

    One of the critical scientific challenges of contemporary research is to obtain an accurate theoretical description of the electronic properties of strongly correlated systems such as transition metal oxides and rare-earth compounds, since state-of-art ab-initio methods based on approximate density functionals are not always sufficiently accurate. Quantum Monte Carlo (QMC) methods, which use statistical sampling to evaluate many-body wave functions, have the potential to answer this challenge. Owing to the few fundamental approximations made and the direct treatment of electron correlation, QMC methods are among the most accurate electronic structure methods available to date. We assess the accuracy of the diffusion Monte Carlo method in the case of rocksalt manganese oxide (MnO). We study the electronic properties of this strongly-correlated oxide, which has been identified as a suitable candidate for many applications ranging from catalysts to electronic devices. ``This work was supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division.'' Ab initio quantum Monte Carlo calculations of ground-state properties of manganese's oxides.

  20. Ab initio prediction of the critical thickness of a precipitate.

    PubMed

    Sampath, S; Janisch, R

    2013-09-04

    Segregation and precipitation of second phases in metals and metallic alloys is an important phenomenon that has a strong influence on the mechanical properties of the material. Models exist that describe the growth of coherent, semi-coherent and incoherent precipitates. One important parameter of these models is the energy of the interface between matrix and precipitate. In this work we apply ab initio density functional theory calculations to obtain this parameter and to understand how it depends on chemical composition and mechanical strain at the interface.Our example is a metastable Mo-C phase, the body-centred tetragonal structure, which exists as a semi-coherent precipitate in body-centred cubic molybdenum. The interface of this precipitate is supposed to change from coherent to semi-coherent during the growth of the precipitate. We predict the critical thickness of the precipitate by calculating the different contributions to a semi-coherent interface energy by means of ab initio density functional theory calculations. The parameters in our model include the elastic strain energy stored in the precipitate, as well as a misfit dislocation energy that depends on the dislocation core width and the dislocation spacing. Our predicted critical thickness agrees well with experimental observations.

  1. Kinetic products in coordination networks: ab initio X-ray powder diffraction analysis.

    PubMed

    Martí-Rujas, Javier; Kawano, Masaki

    2013-02-19

    Porous coordination networks are materials that maintain their crystal structure as molecular "guests" enter and exit their pores. They are of great research interest with applications in areas such as catalysis, gas adsorption, proton conductivity, and drug release. As with zeolite preparation, the kinetic states in coordination network preparation play a crucial role in determining the final products. Controlling the kinetic state during self-assembly of coordination networks is a fundamental aspect of developing further functionalization of this class of materials. However, unlike for zeolites, there are few structural studies reporting the kinetic products made during self-assembly of coordination networks. Synthetic routes that produce the necessary selectivity are complex. The structural knowledge obtained from X-ray crystallography has been crucial for developing rational strategies for design of organic-inorganic hybrid networks. However, despite the explosive progress in the solid-state study of coordination networks during the last 15 years, researchers still do not understand many chemical reaction processes because of the difficulties in growing single crystals suitable for X-ray diffraction: Fast precipitation can lead to kinetic (metastable) products, but in microcrystalline form, unsuitable for single crystal X-ray analysis. X-ray powder diffraction (XRPD) routinely is used to check phase purity, crystallinity, and to monitor the stability of frameworks upon guest removal/inclusion under various conditions, but rarely is used for structure elucidation. Recent advances in structure determination of microcrystalline solids from ab initio XRPD have allowed three-dimensional structure determination when single crystals are not available. Thus, ab initio XRPD structure determination is becoming a powerful method for structure determination of microcrystalline solids, including porous coordination networks. Because of the great interest across scientific

  2. Ab initio computational applications to complex biomolecular systems

    NASA Astrophysics Data System (ADS)

    Liang, Lei

    A series of biomaterial related systems---including water and DNA molecules---have been studied using ab initio (first-principles) methods. By investigating the properties of water as the preliminary step, the hydrogen bond (HB) interactions, which play important roles in biomolecules, were better understood from the quantum mechanical viewpoint. The calculated K-edge x-ray absorption near edge structure (XANES) spectra of all 340 oxygen atoms in the model have been accumulated to reproduce the experimental one. The spectra were shown to be very sensitive to the HB configurations of O atoms, which could be used to elucidate the subtle structural variations in complex biomolecules. The simulation of single-molecule DNA overstretching experiments under torsionally constrained condition has been carried out afterwards. The initial DNA models were stretched stepwisely and eventually gained an extension of 1.5-fold (150% x the original length). The variation of total energy, atomic configuration, and the electronic structure during this process were analyzed in details. At the extension of ˜1.3-fold, the ring opening reactions occurred in the backbones. The backbone nicks appeared at elongations of ˜1.40-fold. The whole process was accompanied by HB breaking and charge transfers. We have proposed an overstretched structure named O-DNA (Opened-DNA) to clarify the confusion in understanding the behavior of DNA under high force load. With more experiences gained, a comprehensive methodology revealing the underlying principles of bioprocesses from the quantum mechanical viewpoint eventually come up. For the purpose of better computational accuracy, the scheme of implementing the generalized gradient approximation (GGA) exchange-correlation functionals into the Orthogonalized Linear Combination of Atomic Orbitals (OLCAO) program suite has been discussed, and the computational efficiency has been analyzed correspondingly. Moreover, the parallel strategy for performing

  3. Separable metamaterials: analytical ab-initio homogenization and chirality

    NASA Astrophysics Data System (ADS)

    Ciattoni, Alessandro; Rago, Domenico; Rizza, Carlo

    2016-11-01

    We investigate the ab-initio homogenization of separable metamaterials with factorized dielectric permittivity profiles, which can be achieved through suitable grey-scale permittivity design techniques. Separability allows such metamaterials to be physically regarded as the superposition of three fictitious 1D generating media. We prove that, in the long-wavelength limit, separable metamaterials admit a simple and analytical description of their electromagnetic bi-anisotropic response, which can be reconstructed from the properties of the 1D generating media. Our approach provides a strategy that allows the full ab-initio and flexible design of a complex bianisotropic response by using the simple and well-known properties of 1D metamaterials.

  4. High Level Ab Initio Kinetics as a Tool for Astrochemistry

    NASA Astrophysics Data System (ADS)

    Klippenstein, Stephen

    2015-05-01

    We will survey the application of ab initio theoretical kinetics to reactions of importance to astrochemistry. Illustrative examples will be taken from our calculations for (i) interstellar chemistry, (ii) Titan's atmospheric chemistry, and (iii) the chemistry of extrasolar giant planets. The accuracy of various aspects of the calculations will be summarized including (i) the underlying ab initio electronic structure calculations, (ii) the treatment of the high pressure recombination process, and (iii) the treatment of the pressure dependence of the kinetics. The applications will consider the chemistry of phosphorous on giant planets, the kinetics of water dimerization, the chemistry of nitrogen on Titan's atmosphere, as well as various reactions of interstellar chemistry interest such as the recombination of OH with H, and O(3P) reacting with C2H5, CH2, and CCS. Chemical Sciences and Engineering Division.

  5. Ab Initio Calculations Of Light-Ion Reactions

    SciTech Connect

    Navratil, P; Quaglioni, S; Roth, R; Horiuchi, W

    2012-03-12

    The exact treatment of nuclei starting from the constituent nucleons and the fundamental interactions among them has been a long-standing goal in nuclear physics. In addition to the complex nature of nuclear forces, one faces the quantum-mechanical many-nucleon problem governed by an interplay between bound and continuum states. In recent years, significant progress has been made in ab initio nuclear structure and reaction calculations based on input from QCD employing Hamiltonians constructed within chiral effective field theory. In this contribution, we present one of such promising techniques capable of describing simultaneously both bound and scattering states in light nuclei. By combining the resonating-group method (RGM) with the ab initio no-core shell model (NCSM), we complement a microscopic cluster approach with the use of realistic interactions and a microscopic and consistent description of the clusters. We discuss applications to light nuclei scattering, radiative capture and fusion reactions.

  6. Ab initio theories for light nuclei and neutron stars

    NASA Astrophysics Data System (ADS)

    Gezerlis, Alexandros

    2016-09-01

    In this talk I will touch upon several features of modern ab initio low-energy nuclear theory. I will start by discussing what ``ab initio'' means in this context. Specifically, I will spend some time going over nucleon-nucleon and three-nucleon interactions and their connections with the underlying theory of Quantum Chromodynamics. I will then show how these interactions are used to describe light nuclei using essentially exact few-body methods. I will then discuss heavier systems, especially those of astrophysical relevance, as well as the methods used to tackle them. This work was supported by the Natural Sciences and Engineering Research Council (NSERC) of Canada and the Canada Foundation for Innovation (CFI).

  7. Spin-orbit decomposition of ab initio nuclear wave functions

    NASA Astrophysics Data System (ADS)

    Johnson, Calvin W.

    2015-03-01

    Although the modern shell-model picture of atomic nuclei is built from single-particle orbits with good total angular momentum j , leading to j -j coupling, decades ago phenomenological models suggested that a simpler picture for 0 p -shell nuclides can be realized via coupling of the total spin S and total orbital angular momentum L . I revisit this idea with large-basis, no-core shell-model calculations using modern ab initio two-body interactions and dissect the resulting wave functions into their component L - and S -components. Remarkably, there is broad agreement with calculations using the phenomenological Cohen-Kurath forces, despite a gap of nearly 50 years and six orders of magnitude in basis dimensions. I suggest that L -S decomposition may be a useful tool for analyzing ab initio wave functions of light nuclei, for example, in the case of rotational bands.

  8. Ab initio downfolding for electron-phonon-coupled systems: Constrained density-functional perturbation theory

    NASA Astrophysics Data System (ADS)

    Nomura, Yusuke; Arita, Ryotaro

    2015-12-01

    We formulate an ab initio downfolding scheme for electron-phonon-coupled systems. In this scheme, we calculate partially renormalized phonon frequencies and electron-phonon coupling, which include the screening effects of high-energy electrons, to construct a realistic Hamiltonian consisting of low-energy electron and phonon degrees of freedom. We show that our scheme can be implemented by slightly modifying the density functional-perturbation theory (DFPT), which is one of the standard methods for calculating phonon properties from first principles. Our scheme, which we call the constrained DFPT, can be applied to various phonon-related problems, such as superconductivity, electron and thermal transport, thermoelectricity, piezoelectricity, dielectricity, and multiferroicity. We believe that the constrained DFPT provides a firm basis for the understanding of the role of phonons in strongly correlated materials. Here, we apply the scheme to fullerene superconductors and discuss how the realistic low-energy Hamiltonian is constructed.

  9. Electronic and optical properties of K-doped ZnO: Ab initio study

    NASA Astrophysics Data System (ADS)

    Aimouch, D. E.; Meskine, S.; Hayn, R.; Zaoui, A.; Boukortt, A.

    2016-08-01

    We present the results of ab initio calculations of K-doped ZnO in the wurtzite structure using a supercell of 32 atoms and density functional theory. A complete analysis of its electronic, optical and magnetic properties is provided. The local spin density approximation (LSDA) has been used to analyze the density of states and to understand the K influence at different concentration values. The material is revealed to become a p-type doped semiconductor. The optical constant or refractive index, the dielectric function, and the absorption coefficient were determined and show a good agreement with available experimental data. Potassium doping leads to an absorption peak at about 380 nm. That peak might improve the absorption characteristics of ZnO for solar cell or optical applications.

  10. Ab initio Prediction of Martensitic and Intermartensitic Phase Boundaries in Ni-Mn-Ga.

    PubMed

    Dutta, B; Çakır, A; Giacobbe, C; Al-Zubi, A; Hickel, T; Acet, M; Neugebauer, J

    2016-01-15

    Despite the importance of martensitic transformations of Ni-Mn-Ga Heusler alloys for their magnetocaloric and shape-memory properties, the martensitic part of their phase diagrams is not well determined. Using an ab initio approach that includes the interplay of lattice and vibrational degrees of freedom we identify an intermartensitic transformation between a modulated and a nonmodulated phase as a function of excess Ni and Mn content. Based on an evaluation of the theoretical findings and experimental x-ray diffraction data for Mn-rich alloys, we are able to predict the phase diagram for Ni-rich alloys. In contrast to other mechanisms discussed for various material systems in the literature, we herewith show that the intermartensitic transformation can be understood solely using thermodynamic concepts.

  11. Excitons in Mg(OH)2 and Ca(OH)2 from ab initio calculations

    NASA Astrophysics Data System (ADS)

    Pishtshev, A.; Karazhanov, S. Zh.; Klopov, M.

    2014-09-01

    By using ab initio calculations with the HSE06 hybrid functional and GW approximation combined with numerical solution of the Bethe Salpeter equation (GW-BSE) we predict the existence of diverse number of excitonic states in multifunctional hydroxides X(OH)2 (X=Mg and Ca) that were not previously reported experimentally or theoretically. The imaginary part of the dielectric function and the reflectivity spectra show very strong peaks corresponding to the electron-hole pair states of large binding energy. The origin of the excitons is attributed to strong localization of the hole and the electron associated with oxygen 2px,2py occupied states as well as to oxygen and earth metal s empty states, respectively. The results have important implications for different applications of the materials in optoelectronic devices.

  12. Ab Initio Vibrational Levels For HO2 and Vibrational Splittings for Hydrogen Atom Transfer

    NASA Technical Reports Server (NTRS)

    Barclay, V. J.; Dateo, Christopher E.; Hamilton, I. P.; Arnold, James O. (Technical Monitor)

    1994-01-01

    We calculate vibrational levels and wave functions for HO2 using the recently reported ab initio potential energy surface of Walch and Duchovic. There is intramolecular hydrogen atom transfer when the hydrogen atom tunnels through a T-shaped saddle point separating two equivalent equilibrium geometries, and correspondingly, the energy levels are split. We focus on vibrational levels and wave functions with significant splitting. The first three vibrational levels with splitting greater than 2/cm are (15 0), (0 7 1) and (0 8 0) where V(sub 2) is the O-O-H bend quantum number. We discuss the dynamics of hydrogen atom transfer; in particular, the O-O distances at which hydrogen atom transfer is most probable for these vibrational levels. The material of the proposed presentation was reviewed and the technical content will not reveal any information not already in the public domain and will not give any foreign industry or government a competitive advantage.

  13. Impact of oxygen on the 300-K isotherm of Laser Megajoule ablator using ab initio simulation

    NASA Astrophysics Data System (ADS)

    Colin-Lalu, P.; Recoules, V.; Salin, G.; Huser, G.

    2015-11-01

    The ablator material for inertial confinement fusion (ICF) capsules on the Laser Mégajoule is a glow-discharge polymer (GDP) plastic. Its equation of state (EOS) is of primary importance for the design of such capsules, since it has direct consequences on shock timing and is essential to mitigate hydrodynamic instabilities. Using ab initio molecular dynamics (AIMD), we have investigated the 300-K isotherm of amorphous CH1.37O0.08 plastic, whose structure is close to GDP plastic. The 300-K isotherm, which is often used as a cold curve within tabular EOS, is an important contribution of the EOS in the multimegabar pressure range. AIMD results are compared to analytic models within tabular EOS, pointing out large discrepancies. In addition, we show that the effect of oxygen decreases 300-K isotherm pressure by 10%-15%. The implication of these observations is the ability to improve ICF target performance, which is essential to achieve fusion ignition.

  14. Ab-initio kinetics and thermodynamics studies of ammonia-borane for hydrogen storage

    NASA Astrophysics Data System (ADS)

    Miranda, Caetano R.; Ceder, Gerbrand

    2007-03-01

    Ammonia-borane (BH3NH3) is a promising chemical hydrogen storage material given its high gravimetry and volumetric properties. However, the ammonia-borane (AB) thermal hydrogen release is not very efficient, being mainly limited by the kinetics of hydrogenation. Using ab initio calculations, we have investigated the thermodynamics and kinetics of hydrogen release on AB by calculating the free energies of the H2 release reactions for different possible decomposition products. Our results indicate that AB regeneration through the ammonia-borane polymeric and borazine-cyclotriborazane cycles is very unlikely due to the strong exothermic character of the reactions. The kinetics of hydrogen release is further investigated with the recently developed metadynamics method. This method allows us to calculate the multidimensional free energy surface of hydrogen release on AB. Our simulations reveal the atomistic mechanism of hydrogenation and provide the free energies barriers and transition states involved in inter and intramolecule H2 release on AB.

  15. Voltage and capacity control of polyaniline based organic cathodes: An ab initio study

    NASA Astrophysics Data System (ADS)

    Chen, Yingqian; Manzhos, Sergei

    2016-12-01

    Polyaniline (PANI) is a promising organic cathode material for electrochemical batteries. Its specific capacity is limited by irreversible formation of pernigraniline base, and its energy density is limited by the voltage which could be improved. We present an ab initio study of PANI and PANI functionalized with functional groups which lead to increased voltage and stabilization of the pernigraniline salt. Specifically, the oxidation potential achieved by functionalization with CN on the nitrogen is computed to be 1.3 V higher than that of pristine PANI oligomer, leading to a higher voltage, and the formation of the pernigraniline base is predicted to be simultaneously suppressed, leading to a higher reversible capacity. Therefore, functionalized PANI could be a promising candidate organic cathode for Li-ion batteries.

  16. Ab Initio Atomistic Thermodynamics for Surfaces: A Primer

    DTIC Science & Technology

    2006-02-01

    Ab Initio Atomistic Thermodynamics for Surfaces: A Primer Jutta Rogal and Karsten Reuter Fritz - Haber -Institut der Max-Planck-Gesellschaft... Fritz - Haber -Institut der Max-Planck-Gesellschaft Faradayweg 4-6 D-14195 Berlin Germany 8. PERFORMING ORGANIZATION REPORT NUMBER 9. SPONSORING...of the Fritz - Haber -Institut, in particular Wei-Xue Li, Cathy Stampfl and Mira Todorova. Particular thanks go to Matthias Scheffler for his continued

  17. Thermochemical data for CVD modeling from ab initio calculations

    SciTech Connect

    Ho, P.; Melius, C.F.

    1993-12-31

    Ab initio electronic-structure calculations are combined with empirical bond-additivity corrections to yield thermochemical properties of gas-phase molecules. A self-consistent set of heats of formation for molecules in the Si-H, Si-H-Cl, Si-H-F, Si-N-H and Si-N-H-F systems is presented, along with preliminary values for some Si-O-C-H species.

  18. The study of molecular spectroscopy by ab initio methods

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles W., Jr.; Langhoff, Stephen R.

    1991-01-01

    This review illustrates the potential of theory for solving spectroscopic problems. The accuracy of approximate techniques for including electron correlation have been calibrated by comparison with full configuration-interaction calculations. Examples of the application of ab initio calculations to vibrational, rotational, and electronic spectroscopy are given. It is shown that the state-averaged, complete active space self-consistent field, multireference configuration-interaction procedure provides a good approach for treating several electronic states accurately in a common molecular orbital basis.

  19. GAUSSIAN 76: An ab initio Molecular Orbital Program

    DOE R&D Accomplishments Database

    Binkley, J. S.; Whiteside, R.; Hariharan, P. C.; Seeger, R.; Hehre, W. J.; Lathan, W. A.; Newton, M. D.; Ditchfield, R.; Pople, J. A.

    1978-01-01

    Gaussian 76 is a general-purpose computer program for ab initio Hartree-Fock molecular orbital calculations. It can handle basis sets involving s, p and d-type Gaussian functions. Certain standard sets (STO-3G, 4-31G, 6-31G*, etc.) are stored internally for easy use. Closed shell (RHF) or unrestricted open shell (UHF) wave functions can be obtained. Facilities are provided for geometry optimization to potential minima and for limited potential surface scans.

  20. Ab initio multiple cloning algorithm for quantum nonadiabatic molecular dynamics.

    PubMed

    Makhov, Dmitry V; Glover, William J; Martinez, Todd J; Shalashilin, Dmitrii V

    2014-08-07

    We present a new algorithm for ab initio quantum nonadiabatic molecular dynamics that combines the best features of ab initio Multiple Spawning (AIMS) and Multiconfigurational Ehrenfest (MCE) methods. In this new method, ab initio multiple cloning (AIMC), the individual trajectory basis functions (TBFs) follow Ehrenfest equations of motion (as in MCE). However, the basis set is expanded (as in AIMS) when these TBFs become sufficiently mixed, preventing prolonged evolution on an averaged potential energy surface. We refer to the expansion of the basis set as "cloning," in analogy to the "spawning" procedure in AIMS. This synthesis of AIMS and MCE allows us to leverage the benefits of mean-field evolution during periods of strong nonadiabatic coupling while simultaneously avoiding mean-field artifacts in Ehrenfest dynamics. We explore the use of time-displaced basis sets, "trains," as a means of expanding the basis set for little cost. We also introduce a new bra-ket averaged Taylor expansion (BAT) to approximate the necessary potential energy and nonadiabatic coupling matrix elements. The BAT approximation avoids the necessity of computing electronic structure information at intermediate points between TBFs, as is usually done in saddle-point approximations used in AIMS. The efficiency of AIMC is demonstrated on the nonradiative decay of the first excited state of ethylene. The AIMC method has been implemented within the AIMS-MOLPRO package, which was extended to include Ehrenfest basis functions.

  1. Ab Initio Nuclear Structure and Reaction Calculations for Rare Isotopes

    SciTech Connect

    Draayer, Jerry P.

    2014-09-28

    We have developed a novel ab initio symmetry-adapted no-core shell model (SA-NCSM), which has opened the intermediate-mass region for ab initio investigations, thereby providing an opportunity for first-principle symmetry-guided applications to nuclear structure and reactions for nuclear isotopes from the lightest p-shell systems to intermediate-mass nuclei. This includes short-lived proton-rich nuclei on the path of X-ray burst nucleosynthesis and rare neutron-rich isotopes to be produced by the Facility for Rare Isotope Beams (FRIB). We have provided ab initio descriptions of high accuracy for low-lying (including collectivity-driven) states of isotopes of Li, He, Be, C, O, Ne, Mg, Al, and Si, and studied related strong- and weak-interaction driven reactions that are important, in astrophysics, for further understanding stellar evolution, X-ray bursts and triggering of s, p, and rp processes, and in applied physics, for electron and neutrino-nucleus scattering experiments as well as for fusion ignition at the National Ignition Facility (NIF).

  2. Diffusion in liquid Germanium using ab initio molecular dynamics

    NASA Astrophysics Data System (ADS)

    Kulkarni, R. V.; Aulbur, W. G.; Stroud, D.

    1996-03-01

    We describe the results of calculations of the self-diffusion constant of liquid Ge over a range of temperatures. The calculations are carried out using an ab initio molecular dynamics scheme which combines an LDA model for the electronic structure with the Bachelet-Hamann-Schlüter norm-conserving pseudopotentials^1. The energies associated with electronic degrees of freedom are minimized using the Williams-Soler algorithm, and ionic moves are carried out using the Verlet algorithm. We use an energy cutoff of 10 Ry, which is sufficient to give results for the lattice constant and bulk modulus of crystalline Ge to within 1% and 12% of experiment. The program output includes not only the self-diffusion constant but also the structure factor, electronic density of states, and low-frequency electrical conductivity. We will compare our results with other ab initio and semi-empirical calculations, and discuss extension to impurity diffusion. ^1 We use the ab initio molecular dynamics code fhi94md, developed at 1cm the Fritz-Haber Institute, Berlin. ^2 Work supported by NASA, Grant NAG3-1437.

  3. Ab initio molecular dynamics using hybrid density functionals.

    PubMed

    Guidon, Manuel; Schiffmann, Florian; Hutter, Jürg; VandeVondele, Joost

    2008-06-07

    Ab initio molecular dynamics simulations with hybrid density functionals have so far found little application due to their computational cost. In this work, an implementation of the Hartree-Fock exchange is presented that is specifically targeted at ab initio molecular dynamics simulations of medium sized systems. We demonstrate that our implementation, which is available as part of the CP2K/Quickstep program, is robust and efficient. Several prescreening techniques lead to a linear scaling cost for integral evaluation and storage. Integral compression techniques allow for in-core calculations on systems containing several thousand basis functions. The massively parallel implementation respects integral symmetry and scales up to hundreds of CPUs using a dynamic load balancing scheme. A time-reversible multiple time step scheme, exploiting the difference in computational efficiency between hybrid and local functionals, brings further time savings. With extensive simulations of liquid water, we demonstrate the ability to perform, for several tens of picoseconds, ab initio molecular dynamics based on hybrid functionals of systems in the condensed phase containing a few thousand Gaussian basis functions.

  4. Ab initio molecular dynamics using hybrid density functionals

    NASA Astrophysics Data System (ADS)

    Guidon, Manuel; Schiffmann, Florian; Hutter, Jürg; Vandevondele, Joost

    2008-06-01

    Ab initio molecular dynamics simulations with hybrid density functionals have so far found little application due to their computational cost. In this work, an implementation of the Hartree-Fock exchange is presented that is specifically targeted at ab initio molecular dynamics simulations of medium sized systems. We demonstrate that our implementation, which is available as part of the CP2K/Quickstep program, is robust and efficient. Several prescreening techniques lead to a linear scaling cost for integral evaluation and storage. Integral compression techniques allow for in-core calculations on systems containing several thousand basis functions. The massively parallel implementation respects integral symmetry and scales up to hundreds of CPUs using a dynamic load balancing scheme. A time-reversible multiple time step scheme, exploiting the difference in computational efficiency between hybrid and local functionals, brings further time savings. With extensive simulations of liquid water, we demonstrate the ability to perform, for several tens of picoseconds, ab initio molecular dynamics based on hybrid functionals of systems in the condensed phase containing a few thousand Gaussian basis functions.

  5. A highly accurate ab initio potential energy surface for methane

    NASA Astrophysics Data System (ADS)

    Owens, Alec; Yurchenko, Sergei N.; Yachmenev, Andrey; Tennyson, Jonathan; Thiel, Walter

    2016-09-01

    A new nine-dimensional potential energy surface (PES) for methane has been generated using state-of-the-art ab initio theory. The PES is based on explicitly correlated coupled cluster calculations with extrapolation to the complete basis set limit and incorporates a range of higher-level additive energy corrections. These include core-valence electron correlation, higher-order coupled cluster terms beyond perturbative triples, scalar relativistic effects, and the diagonal Born-Oppenheimer correction. Sub-wavenumber accuracy is achieved for the majority of experimentally known vibrational energy levels with the four fundamentals of 12CH4 reproduced with a root-mean-square error of 0.70 cm-1. The computed ab initio equilibrium C-H bond length is in excellent agreement with previous values despite pure rotational energies displaying minor systematic errors as J (rotational excitation) increases. It is shown that these errors can be significantly reduced by adjusting the equilibrium geometry. The PES represents the most accurate ab initio surface to date and will serve as a good starting point for empirical refinement.

  6. Ab initio rotation-vibration spectra of HCN and HNC

    NASA Astrophysics Data System (ADS)

    Harris, Gregory J.; Polyansky, Oleg L.; Tennyson, Jonathan

    2002-03-01

    We have calculated an ab initio HCN/HNC linelist for all transitions up to J=25 and 18 000 cm -1 above the zero point energy. This linelist contains more than 200 million lines each with frequencies and transition dipoles. The linelist has been calculated using our semi-global HCN/HNC VQZANO+PES and dipole moment surface, which were reported in van Mourik et al. (J. Chem. Phys. 115 (2001) 3706). With this linelist we synthesise absorption spectra of HCN and HNC at 298 K and we present the band centre and band transition dipoles for the bands which are major features in these spectra. Several of the HCN bands and many of the HNC bands have not been previously studied. Our line intensities reproduce via fully ab initio methods the unusual intensity structure of the HCN CN stretch fundamental (00 01) for the first time and also the forbidden (02 20) HCN bending overtone. We also compare the J=1→0 pure rotational transition dipole in the HCN/HNC ground and vibrationally excited states with experimental and existing ab initio results.

  7. Ab initio multiple cloning algorithm for quantum nonadiabatic molecular dynamics

    SciTech Connect

    Makhov, Dmitry V.; Shalashilin, Dmitrii V.; Glover, William J.; Martinez, Todd J.

    2014-08-07

    We present a new algorithm for ab initio quantum nonadiabatic molecular dynamics that combines the best features of ab initio Multiple Spawning (AIMS) and Multiconfigurational Ehrenfest (MCE) methods. In this new method, ab initio multiple cloning (AIMC), the individual trajectory basis functions (TBFs) follow Ehrenfest equations of motion (as in MCE). However, the basis set is expanded (as in AIMS) when these TBFs become sufficiently mixed, preventing prolonged evolution on an averaged potential energy surface. We refer to the expansion of the basis set as “cloning,” in analogy to the “spawning” procedure in AIMS. This synthesis of AIMS and MCE allows us to leverage the benefits of mean-field evolution during periods of strong nonadiabatic coupling while simultaneously avoiding mean-field artifacts in Ehrenfest dynamics. We explore the use of time-displaced basis sets, “trains,” as a means of expanding the basis set for little cost. We also introduce a new bra-ket averaged Taylor expansion (BAT) to approximate the necessary potential energy and nonadiabatic coupling matrix elements. The BAT approximation avoids the necessity of computing electronic structure information at intermediate points between TBFs, as is usually done in saddle-point approximations used in AIMS. The efficiency of AIMC is demonstrated on the nonradiative decay of the first excited state of ethylene. The AIMC method has been implemented within the AIMS-MOLPRO package, which was extended to include Ehrenfest basis functions.

  8. High pressure behaviour of uranium dicarbide (UC2): Ab-initio study

    NASA Astrophysics Data System (ADS)

    Sahoo, B. D.; Mukherjee, D.; Joshi, K. D.; Kaushik, T. C.

    2016-08-01

    The structural stability of uranium dicarbide has been examined under hydrostatic compression employing evolutionary structure search algorithm implemented in the universal structure predictor: evolutionary Xtallography (USPEX) code in conjunction with ab-initio electronic band structure calculation method. The ab-initio total energy calculations involved for this purpose have been carried out within both generalized gradient approximations (GGA) and GGA + U approximations. Our calculations under GGA approximation predict the high pressure structural sequence of tetragonal → monoclinic → orthorhombic for this material with transition pressures of ˜8 GPa and 42 GPa, respectively. The same transition sequence is predicted by calculations within GGA + U also with transition pressures placed at ˜24 GPa and ˜50 GPa, respectively. Further, on the basis of comparison of zero pressure equilibrium volume and equation of state with available experimental data, we find that GGA + U approximation with U = 2.5 eV describes this material better than the simple GGA approximation. The theoretically predicted high pressure structural phase transitions are in disagreement with the only high experimental study by Dancausse et al. [J. Alloys. Compd. 191, 309 (1993)] on this compound which reports a tetragonal to hexagonal phase transition at a pressure of ˜17.6 GPa. Interestingly, during lowest enthalpy structure search using USPEX, we do not see any hexagonal phase to be closer to the predicted monoclinic phase even within 0.2 eV/f. unit. More experiments with varying carbon contents in UC2 sample are required to resolve this discrepancy. The existence of these high pressure phases predicted by static lattice calculations has been further substantiated by analyzing the elastic and lattice dynamic stability of these structures in the pressure regimes of their structural stability. Additionally, various thermo-physical quantities such as equilibrium volume, bulk modulus, Debye

  9. Ab Initio Studies of Surfaces and Interfaces

    NASA Astrophysics Data System (ADS)

    Garrity, Kevin F.

    2011-12-01

    Over the past 50 years, our ability to design and fabricate materials and devices with ever-smaller components has improved to the point that many technologies are crucially dependent on surfaces and interfaces. As this process continues, the atomic details of these surfaces and interfaces will take on increasing importance, both in understanding the behavior of existing structures as well as proposing and testing new materials and devices. First principles techniques are especially well-suited for exploring these systems, as they have the predictive capability required to understand the new phenomena which emerge at atomic length scales. In this work, we use first principles density functional theory to explore the properties of a variety of interesting surfaces and interfaces. First, we consider the thermodynamics and kinetics of Sr and La deposition on semiconductor surfaces, which is the first step in epitaxial oxide growth on semiconductors. Using this knowledge, we propose a method for growing LaAlO3 on epitaxially on Si. In addition, we explore the surface chemistry of a ferroelectric (PbTiO3) as a function a polarization in order to understand its applications to advanced catalysis. Finally, we investigate the coupling of phonons through an epitaxial interface between SrTiO3 and La 1-xSrxMnO 3, where an interfacial coupling of atomic motion is used to dynamically modulate the conductivity of a La1-xSr xMnO3 thin film.

  10. Ab initio and experimental studies of glow-discharge polymer used in laser mégajoule capsules

    NASA Astrophysics Data System (ADS)

    Colin-Lalu, P.; Recoules, V.; Salin, G.; Huser, G.

    2017-01-01

    The equations of state tables used in Inertial Confinement Fusion Capsule design tools are highly dependent on the cold curve in the multimegabar pressure range. Original ab initio molecular dynamic simulations were performed to get accurate cold curves of glow-discharge polymer (GDP) plastics. Furthermore the effect of oxygen absorption by GDP structure is studied on the cold curve, as well as its impact on the Hugoniot curves. Results are compared with the Hugoniot experimental data obtained in a recent experiment at the LULI2000 laser facility in France. This study leads to improve the equation of states knowledge of ablator materials, which is of primary importance for NIF and LMJ experiments.

  11. Solving local structure around dopants in metal nanoparticles with ab initio modeling of X-ray absorption near edge structure

    DOE PAGES

    Timoshenko, J.; Shivhare, A.; Scott, R. W.; ...

    2016-06-30

    We adopted ab-initio X-ray Absorption Near Edge Structure (XANES) modelling for structural refinement of local environments around metal impurities in a large variety of materials. Our method enables both direct modelling, where the candidate structures are known, and the inverse modelling, where the unknown structural motifs are deciphered from the experimental spectra. We present also estimates of systematic errors, and their influence on the stability and accuracy of the obtained results. We illustrate our approach by following the evolution of local environment of palladium atoms in palladium-doped gold thiolate clusters upon chemical and thermal treatments.

  12. Solving local structure around dopants in metal nanoparticles with ab initio modeling of X-ray absorption near edge structure.

    PubMed

    Timoshenko, Janis; Shivhare, Atal; Scott, Robert W J; Lu, Deyu; Frenkel, Anatoly I

    2016-07-20

    We adopted ab initio X-ray absorption near edge structure (XANES) modeling for structural refinement of local environments around metal impurities in a large variety of materials. Our method enables both direct modeling, where the candidate structures are known, and the inverse modeling, where the unknown structural motifs are deciphered from the experimental spectra. We present also estimates of systematic errors, and their influence on the stability and accuracy of the obtained results. We illustrate our approach by revealing the evolution of local environment of palladium atoms in palladium-doped gold thiolate clusters upon chemical and thermal treatments.

  13. Combined electron beam imaging and ab initio modeling of T{sub 1} precipitates in Al-Li-Cu alloys

    SciTech Connect

    Dwyer, C.; Weyland, M.; Chang, L. Y.; Muddle, B. C.

    2011-05-16

    Among the many considerable challenges faced in developing a rational basis for advanced alloy design, establishing accurate atomistic models is one of the most fundamental. Here we demonstrate how advanced imaging techniques in a double-aberration-corrected transmission electron microscope, combined with ab initio modeling, have been used to determine the atomic structure of embedded 1 nm thick T{sub 1} precipitates in precipitation-hardened Al-Li-Cu aerospace alloys. The results provide an accurate determination of the controversial T{sub 1} structure, and demonstrate how next-generation techniques permit the characterization of embedded nanostructures in alloys and other nanostructured materials.

  14. Ab initio and experimental studies of glow-discharge polymer used in Laser MégaJoule capsules

    NASA Astrophysics Data System (ADS)

    Colin-Lalu, Pierre; Huser, Gaël; Recoules, Vanina; Salin, Gwenael; CEA DAM DIF Team

    2015-06-01

    Equations of state tables used in Initial Confinement Fusion capsule design tools are highly dependent on the cold curve in the multimegabar range. Original ab-initio molecular dynamic simulations were performed to get accurate cold curves of glow-discharge polymer (GDP) plastics. Furthermore the effect of oxygen absorption by GDP structure is studied on the cold curve, as well as its impact on the Hugoniot curves. Results are compared with Hugoniot experimental data obtained in a recent experiment at the LULI2000 laser facility in France. This study leads to improve equation of states knowledge of ablator materials, which is of primary importance for NIF and LMJ experiments.

  15. Ab initio approach for gap plasmonics

    NASA Astrophysics Data System (ADS)

    Hohenester, Ulrich; Draxl, Claudia

    2016-10-01

    Gap plasmonics deals with the properties of surface plasmons in the narrow region between two metallic nanoparticles forming the gap. For subnanometer gap distances, electrons can tunnel between the nanoparticles, leading to the emergence of novel charge-transfer plasmons. These are conveniently described within the quantum corrected model by introducing an artificial material with a tunnel conductivity inside the gap region. Here we develop a methodology for computing such tunnel conductivities within the first-principles framework of density functional theory and apply our approach to a jellium model representative for sodium. We show that the frequency dependence of the tunnel conductivity at infrared and optical frequencies can be significantly more complicated than previously thought.

  16. Ab initio Mapping of Interlayer Coupling in Transition Metal Dichalcogenides and Graphene

    NASA Astrophysics Data System (ADS)

    Fang, Shiang; Kaxiras, Efthimios

    Two-dimensional layered materials cover a wide variety of physics phenomena, such as topological phases, superconductivity, magnetism and charge density waves. Owing to the layered geometry and the van der Waals interactions in between, stacks of these van der Waals layered materials provide a venue to create a heterostructure with various physics properties. The interaction between different physics properties is particular interesting to engineer the material with the desired properties. One of the crucial ingredient in understanding the heterostructure is the interlayer coupling in between. In the literature, such kind of coupling has been proposed in various empirical forms. However, a true ab initio coupling model is still lacking. For the first time, here we have derived such interlayer coupling model from the first principle calculations based on the Wannier transformation of graphene stacks. We further investigate the Fermi velocity renormalization, van Hove singularities and the moire pattern for electron localization. Such microscopic understanding of the interlayer coupling would shed light on orbital hybridization and transport in multilayer stacks. This work was supported by the STC Center for Integrated Quantum Materials, NSF Grant No. DMR-1231319, and by ARO MURI Award No. W911NF-14-0247.

  17. International Conference on Energetic Materials

    DTIC Science & Technology

    2007-11-02

    M. Suceska, Brodarski Institute, Zagreb, CROATIA 14. Physics of Nitrozoamine combustion as a monopropellant and as an ingredient of modern...material studied in a high speed piston driven compaction experiment J.F. Moxnes, FFI, Kjeller, N G. Odegardstuen, Nammo Raufoss AS, Raufoss, N A...RUSSIA 26. Ab initio study of mechanism of gas-phase monomolecular destruction of Nitroethylene A.G. Shamov, G.M. Khrapkovskii, Kazan State

  18. Ab initio study of thermoelectric properties of doped SnO{sub 2} superlattices

    SciTech Connect

    Borges, P.D.; Silva, D.E.S.; Castro, N.S.; Ferreira, C.R.; Pinto, F.G.; Tronto, J.; Scolfaro, L.

    2015-11-15

    Transparent conductive oxides, such as tin dioxide (SnO{sub 2}), have recently shown to be promising materials for thermoelectric applications. In this work we studied the thermoelectric properties of Fe-, Sb- and Zn-uniformly doping and co-doping SnO{sub 2}, as well as of Sb and Zn planar (or delta)-doped layers in SnO{sub 2} forming oxide superlattices (SLs). Based on the semiclassical Boltzmann transport equations (BTE) in conjunction with ab initio electronic structure calculations, the Seebeck coefficient (S) and figure of merit (ZT) are obtained for these systems, and are compared with available experimental data. The delta doping approach introduces a remarkable modification in the electronic structure of tin dioxide, when compared with the uniform doping, and colossal values for ZT are predicted for the delta-doped oxide SLs. This result is a consequence of the two-dimensional electronic confinement and the strong anisotropy introduced by the doped planes. In comparison with the uniformly doped systems, our predictions reveal a promising use of delta-doped SnO{sub 2} SLs for enhanced S and ZT, which emerge as potential candidates for thermoelectric applications. - Graphical abstract: Band structure and Figure of merit for SnO2:Sb superlattice along Z direction, P. D. Borges, D. E. S. Silva, N. S. Castro, C. R. Ferreira, F. G. Pinto, J. Tronto and L. Scolfaro, Ab initio study of thermoelectric properties of doped SnO2 superlattices. - Highlights: • Thermoelectric properties of SnO{sub 2}-based alloys and superlattices. • High figure of merit is predicted for planar-doped SnO{sub 2} superlattices. • Nanotechnology has an important role for the development of thermoelectric devices.

  19. Ab initio Study of He Stability in hcp-Ti

    SciTech Connect

    Dai, Yunya; Yang, Li; Peng, SM; Long, XG; Gao, Fei; Zu, Xiaotao T.

    2010-12-20

    The stability of He in hcp-Ti was studied using ab initio method based on density functional theory. The results indicate that a single He atom prefers to occupy the tetrahedral site rather than the octahedral site. The interaction of He defects with Ti atoms has been used to explain the relative stabilities of He point defects in hcp-Ti. The relative stability of He defects in hcp-Ti is useful for He clustering and bubble nucleation in metal tritides, which provides the basis for development of improved atomistic models.

  20. Ab Initio Study of Phase Equilibria in TiCx

    NASA Astrophysics Data System (ADS)

    Korzhavyi, P. A.; Pourovskii, L. V.; Hugosson, H. W.; Ruban, A. V.; Johansson, B.

    2002-01-01

    The phase diagram for the vacancy-ordered structures in the substoichiometric TiCx ( x = 0.5-1.0) has been established from Monte Carlo simulations with the long-range pair and multisite effective interactions obtained from ab initio calculations. Three ordered superstructures of vacancies ( Ti2C, Ti3C2, and Ti6C5) are found to be ground state configurations. Their stability has been verified by full-potential total energy calculations of the fully relaxed structures.

  1. Pseudorotation motion in tetrahydrofuran: an ab initio study.

    PubMed

    Rayón, Víctor M; Sordo, Jose A

    2005-05-22

    The use of different models based on experimental information about the observed level splitings, rotational constants, and far-infrared transition frequencies leads to different predictions on the equilibrium geometry for tetrahydrofuran. High-level ab initio calculations [coupled cluster singles, doubles (triples)/complete basis set (second order Moller-Plesset triple, quadrupole, quintuple)+zero-point energy(anharmonic)] suggest that the equilibrium conformation of tetrahydrofuran is an envelope C(s) structure. The theoretical geometrical parameters might be helpful to plan further microwave spectroscopic studies in order to get a physical interpretation of the measurements.

  2. Accelerating ab initio molecular dynamics simulations by linear prediction methods

    NASA Astrophysics Data System (ADS)

    Herr, Jonathan D.; Steele, Ryan P.

    2016-09-01

    Acceleration of ab initio molecular dynamics (AIMD) simulations can be reliably achieved by extrapolation of electronic data from previous timesteps. Existing techniques utilize polynomial least-squares regression to fit previous steps' Fock or density matrix elements. In this work, the recursive Burg 'linear prediction' technique is shown to be a viable alternative to polynomial regression, and the extrapolation-predicted Fock matrix elements were three orders of magnitude closer to converged elements. Accelerations of 1.8-3.4× were observed in test systems, and in all cases, linear prediction outperformed polynomial extrapolation. Importantly, these accelerations were achieved without reducing the MD integration timestep.

  3. Morphing ab initio potential energy curve of beryllium monohydride

    NASA Astrophysics Data System (ADS)

    Špirko, Vladimír

    2016-12-01

    Effective (mass-dependent) potential energy curves of the ground electronic states of 9BeH, 9BeD, and 9BeT are constructed by morphing a very accurate MR-ACPF ab initio potential of Koput (2011) within the framework of the reduced potential energy curve approach of Jenč (1983). The morphing is performed by fitting the RPC parameters to available experimental ro-vibrational data. The resulting potential energy curves provide a fairly quantitative reproduction of the fitted data. This allows for a reliable prediction of the so-far unobserved molecular states in terms of only a small number of fitting parameters.

  4. Ab initio evidence for nonthermal characteristics in ultrafast laser melting

    NASA Astrophysics Data System (ADS)

    Lian, Chao; Zhang, S. B.; Meng, Sheng

    2016-11-01

    Laser melting of semiconductors has been observed for almost 40 years; surprisingly, it is not well understood where most theoretical simulations show a laser-induced thermal process. Ab initio nonadiabatic simulations based on real-time time-dependent density functional theory reveal intrinsic nonthermal melting of silicon, at a temperature far below the thermal melting temperature of 1680 K. Both excitation threshold and time evolution of diffraction intensity agree well with experiment. Nonthermal melting is attributed to excitation-induced drastic changes in bonding electron density, and the subsequent decrease in the melting barrier, rather than lattice heating as previously assumed in the two-temperature models.

  5. Communication: Ab initio Joule-Thomson inversion data for argon

    NASA Astrophysics Data System (ADS)

    Wiebke, Jonas; Senn, Florian; Pahl, Elke; Schwerdtfeger, Peter

    2013-02-01

    The Joule-Thomson coefficient μH(P, T) is computed from the virial equation of state up to seventh-order for argon obtained from accurate ab initio data. Higher-order corrections become increasingly more important to fit the low-temperature and low-pressure regime and to avoid the early onset of divergence in the Joule-Thomson inversion curve. Good agreement with experiment is obtained for temperatures T > 250 K. The results also illustrate the limitations of the virial equation in regions close to the critical temperature.

  6. Ab initio quantum chemical study of electron transfer in carboranes

    NASA Astrophysics Data System (ADS)

    Pati, Ranjit; Pineda, Andrew C.; Pandey, Ravindra; Karna, Shashi P.

    2005-05-01

    The electron transfer (ET) properties of 10- and 12-vertex carboranes are investigated by the ab initio Hartree-Fock method within the Marcus-Hush (MH) two-state model and the Koopman theorem (KT) approach. The calculated value of the ET coupling matrix element, VAB, is consistently higher in the KT approach than in the MH two-state model. For the carborane molecules functionalized by -CH 2 groups at C-vertices, VAB strongly depends on the relative orientation of the planes containing the terminal -CH 2 groups. The predicted conformation dependence of VAB offers a molecular mechanism to control ET between two active centers in molecular systems.

  7. Ab-Initio Shell Model with a Core

    SciTech Connect

    Lisetskiy, A F; Barrett, B R; Kruse, M; Navratil, P; Stetcu, I; Vary, J P

    2008-06-04

    We construct effective 2- and 3-body Hamiltonians for the p-shell by performing 12{h_bar}{Omega} ab initio no-core shell model (NCSM) calculations for A=6 and 7 nuclei and explicitly projecting the many-body Hamiltonians onto the 0{h_bar}{Omega} space. We then separate these effective Hamiltonians into 0-, 1- and 2-body contributions (also 3-body for A=7) and analyze the systematic behavior of these different parts as a function of the mass number A and size of the NCSM basis space. The role of effective 3- and higher-body interactions for A > 6 is investigated and discussed.

  8. Ab Initio and Ab Exitu No-Core Shell Model

    SciTech Connect

    Vary, J P; Navratil, P; Gueorguiev, V G; Ormand, W E; Nogga, A; Maris, P; Shirokov, A

    2007-10-02

    We outline two complementary approaches based on the no core shell model (NCSM) and present recent results. In the ab initio approach, nuclear properties are evaluated with two-nucleon (NN) and three-nucleon interactions (TNI) derived within effective field theory (EFT) based on chiral perturbation theory (ChPT). Fitting two available parameters of the TNI generates good descriptions of light nuclei. In a second effort, an ab exitu approach, results are obtained with a realistic NN interaction derived by inverse scattering theory with off-shell properties tuned to fit light nuclei. Both approaches produce good results for observables sensitive to spin-orbit properties.

  9. Ab-initio study of transition metal hydrides

    SciTech Connect

    Sharma, Ramesh; Shukla, Seema Dwivedi, Shalini Sharma, Yamini

    2014-04-24

    We have performed ab initio self consistent calculations based on Full potential linearized augmented plane wave (FP-LAPW) method to investigate the optical and thermal properties of yttrium hydrides. From the band structure and density of states, the optical absorption spectra and specific heats have been calculated. The band structure of Yttrium metal changes dramatically due to hybridization of Y sp orbitals with H s orbitals and there is a net charge transfer from metal to hydrogen site. The electrical resistivity and specific heats of yttrium hydrides are lowered but the thermal conductivity is slightly enhanced due to increase in scattering from hydrogen sites.

  10. Ab Initio Calculations Applied to Problems in Metal Ion Chemistry

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles W., Jr.; Langhoff, Stephen R.; Partridge, Harry; Arnold, James O. (Technical Monitor)

    1994-01-01

    Electronic structure calculations can provide accurate spectroscopic data (such as molecular structures) vibrational frequencies, binding energies, etc.) that have been very useful in explaining trends in experimental data and in identifying incorrect experimental measurements. In addition, ab initio calculations. have given considerable insight into the many interactions that make the chemistry of transition metal systems so diverse. In this review we focus on cases where calculations and experiment have been used to solve interesting chemical problems involving metal ions. The examples include cases where theory was used to differentiate between disparate experimental values and cases where theory was used to explain unexpected experimental results.

  11. Communication: Ab initio Joule-Thomson inversion data for argon.

    PubMed

    Wiebke, Jonas; Senn, Florian; Pahl, Elke; Schwerdtfeger, Peter

    2013-02-21

    The Joule-Thomson coefficient μ(H)(P, T) is computed from the virial equation of state up to seventh-order for argon obtained from accurate ab initio data. Higher-order corrections become increasingly more important to fit the low-temperature and low-pressure regime and to avoid the early onset of divergence in the Joule-Thomson inversion curve. Good agreement with experiment is obtained for temperatures T > 250 K. The results also illustrate the limitations of the virial equation in regions close to the critical temperature.

  12. Ab initio guided design of bcc Mg-Li alloys for ultra light-weight applications

    NASA Astrophysics Data System (ADS)

    Friák, Martin; Counts, William Art; Raabe, Dierk; Neugebauer, Jörg

    2009-03-01

    Ab initio calculations are becoming increasingly useful to engineers interested in designing new alloys because these calculations are able to accurately predict basic material properties only knowing the atomic composition of the material. In this paper, fundamental physical properties (like formation energies and elastic constants) of 11 bcc Mg-Li compounds are calculated using density-functional theory (DFT) and compared with available experimental data. These DFT-determined properties are in turn used to calculate engineering parameters like (i) specific Young's modulus (Y/ρ) or (ii) bulk over shear modulus ratio (B/G) differentiating between brittle and ductile behavior. The engineering parameters are then used to identify alloys that have optimal mechanical properties needed for a light weight structural material. It was found that the stiffest bcc magnesium-lithium alloys contain about 70 at.% Mg while the most ductile alloys have 0-20 at.% Mg. The specific modulus for alloys with 70 at.% Mg is equal to that of Al-Mg alloys. An Ashby map containing Y/ρ vs. B/G shows that it is not possible to increase both Y/ρ and B/G by changing only the composition or local order of a binary alloy (W. A. Counts, M. Fri'ak, D. Raabe and J. Neugebauer, Acta Mater 57 (2009) 69-76).

  13. ICME for Crashworthiness of TWIP Steels: From Ab Initio to the Crash Performance

    NASA Astrophysics Data System (ADS)

    Güvenç, O.; Roters, F.; Hickel, T.; Bambach, M.

    2015-01-01

    During the last decade, integrated computational materials engineering (ICME) emerged as a field which aims to promote synergetic usage of formerly isolated simulation models, data and knowledge in materials science and engineering, in order to solve complex engineering problems. In our work, we applied the ICME approach to a crash box, a common automobile component crucial to passenger safety. A newly developed high manganese steel was selected as the material of the component and its crashworthiness was assessed by simulated and real drop tower tests. The crashworthiness of twinning-induced plasticity (TWIP) steel is intrinsically related to the strain hardening behavior caused by the combination of dislocation glide and deformation twinning. The relative contributions of those to the overall hardening behavior depend on the stacking fault energy (SFE) of the selected material. Both the deformation twinning mechanism and the stacking fault energy are individually well-researched topics, but especially for high-manganese steels, the determination of the stacking-fault energy and the occurrence of deformation twinning as a function of the SFE are crucial to understand the strain hardening behavior. We applied ab initio methods to calculate the stacking fault energy of the selected steel composition as an input to a recently developed strain hardening model which models deformation twinning based on the SFE-dependent dislocation mechanisms. This physically based material model is then applied to simulate a drop tower test in order to calculate the energy absorption capacity of the designed component. The results are in good agreement with experiments. The model chain links the crash performance to the SFE and hence to the chemical composition, which paves the way for computational materials design for crashworthiness.

  14. Surface Segregation Energies of BCC Binaries from Ab Initio and Quantum Approximate Calculations

    NASA Technical Reports Server (NTRS)

    Good, Brian S.

    2003-01-01

    We compare dilute-limit segregation energies for selected BCC transition metal binaries computed using ab initio and quantum approximate energy method. Ab initio calculations are carried out using the CASTEP plane-wave pseudopotential computer code, while quantum approximate results are computed using the Bozzolo-Ferrante-Smith (BFS) method with the most recent parameterization. Quantum approximate segregation energies are computed with and without atomistic relaxation. The ab initio calculations are performed without relaxation for the most part, but predicted relaxations from quantum approximate calculations are used in selected cases to compute approximate relaxed ab initio segregation energies. Results are discussed within the context of segregation models driven by strain and bond-breaking effects. We compare our results with other quantum approximate and ab initio theoretical work, and available experimental results.

  15. Ab initio centroid path integral molecular dynamics: Application to vibrational dynamics of diatomic molecular systems

    NASA Astrophysics Data System (ADS)

    Ohta, Yasuhito; Ohta, Koji; Kinugawa, Kenichi

    2004-01-01

    An ab initio centroid molecular dynamics (CMD) method is developed by combining the CMD method with the ab initio molecular orbital method. The ab initio CMD method is applied to vibrational dynamics of diatomic molecules, H2 and HF. For the H2 molecule, the temperature dependence of the peak frequency of the vibrational spectral density is investigated. The results are compared with those obtained by the ab initio classical molecular dynamics method and exact quantum mechanical treatment. It is shown that the vibrational frequency obtained from the ab initio CMD approaches the exact first excitation frequency as the temperature lowers. For the HF molecule, the position autocorrelation function is also analyzed in detail. The present CMD method is shown to well reproduce the exact quantum result for the information on the vibrational properties of the system.

  16. Three-cluster dynamics within an ab initio framework

    DOE PAGES

    Quaglioni, Sofia; Romero-Redondo, Carolina; Navratil, Petr

    2013-09-26

    In this study, we introduce a fully antisymmetrized treatment of three-cluster dynamics within the ab initio framework of the no-core shell model/resonating-group method. Energy-independent nonlocal interactions among the three nuclear fragments are obtained from realistic nucleon-nucleon interactions and consistent ab initio many-body wave functions of the clusters. The three-cluster Schrödinger equation is solved with bound-state boundary conditions by means of the hyperspherical-harmonic method on a Lagrange mesh. We discuss the formalism in detail and give algebraic expressions for systems of two single nucleons plus a nucleus. Using a soft similarity-renormalization-group evolved chiral nucleon-nucleon potential, we apply the method to amore » 4He+n+n description of 6He and compare the results to experiment and to a six-body diagonalization of the Hamiltonian performed within the harmonic-oscillator expansions of the no-core shell model. Differences between the two calculations provide a measure of core (4He) polarization effects.« less

  17. An Ab Initio Study of Alkali-C60 Complexes

    NASA Astrophysics Data System (ADS)

    Frick, Nathan; Hira, A. S.; Ray, A. K.

    2003-03-01

    We extend our previous work on fullerene-alkali complexes1-2 by presenting the results of an ab initio theoretical study of the alkali LiC60+, LiC60, NaC60+, NaC60, KC60+, and KC60 complexes. In the endohedral complexes for Li and Na, there is displacement of the adatom from the center. Of the ions, exohedral Li+ will sit closest to the cage, and among the neutrals, exohedral K remains closest. Bond lengths are consistently longer for the fivefold and threefold approaches. Adsorbates inside the fullerene donate negative charge to the carbons, but ions outside obtain a small amount, resulting in a polarization of the molecule. In the ion complexes, there is lowering of the orbital energy levels by 3 to 4 eV, resulting in an increase in the number of bound, but unoccupied, electronic orbitals. The HOMO-LUMO gap, of interest in superconductivity studies, is reduced by about 50 1. A.S. Hira and A.K. Ray, Phys. Rev. A 52, 141(1995); A 54, 2205(1996). 2. Ajit Hira and A. K. Ray, "An Initio Modeling of the Endohedral and Exohedral Complexes of C60Na2+ Complexes", Bull. Am. Phys. Soc. 47 (March 2002).

  18. Emission Spectroscopy and Ab Initio Calculations for TaN

    NASA Astrophysics Data System (ADS)

    Ram, R. S.; Liévin, J.; Bernath, P. F.

    2002-10-01

    The emission spectra of TaN have been investigated in the region 3000-35 000 cm -1 using a Fourier transform spectrometer. The spectra were observed in a tantalum hollow-cathode lamp by discharging a mixture of 1.5 Torr of Ne and about 6 mTorr of N 2. In addition to previously known bands, numerous additional bands were observed and assigned to a number of new transitions. The spectroscopic properties of the low-lying electronic states of TaN were also predicted by ab initio calculations. A 1Σ + state, with equilibrium constants of Be=0.457 852 1(48) cm -1, α e=0.002 235 9(67) cm -1, and Re=1.683 099 9(88) Å, has been identified as the ground state of TaN based on our experimental observations supported by the ab initio results. The first excited state has been identified as the a3Δ 1 spin component at 2827 cm -1 above the ground state. To higher energies, the states become difficult to assign because of their Hund's case (c) behavior and extensive interactions between the spin components of the electronic terms.

  19. Ab initio dynamics of the cytochrome P450 hydroxylation reaction

    PubMed Central

    Elenewski, Justin E.; Hackett, John C

    2015-01-01

    The iron(IV)-oxo porphyrin π-cation radical known as Compound I is the primary oxidant within the cytochromes P450, allowing these enzymes to affect the substrate hydroxylation. In the course of this reaction, a hydrogen atom is abstracted from the substrate to generate hydroxyiron(IV) porphyrin and a substrate-centered radical. The hydroxy radical then rebounds from the iron to the substrate, yielding the hydroxylated product. While Compound I has succumbed to theoretical and spectroscopic characterization, the associated hydroxyiron species is elusive as a consequence of its very short lifetime, for which there are no quantitative estimates. To ascertain the physical mechanism underlying substrate hydroxylation and probe this timescale, ab initio molecular dynamics simulations and free energy calculations are performed for a model of Compound I catalysis. Semiclassical estimates based on these calculations reveal the hydrogen atom abstraction step to be extremely fast, kinetically comparable to enzymes such as carbonic anhydrase. Using an ensemble of ab initio simulations, the resultant hydroxyiron species is found to have a similarly short lifetime, ranging between 300 fs and 3600 fs, putatively depending on the enzyme active site architecture. The addition of tunneling corrections to these rates suggests a strong contribution from nuclear quantum effects, which should accelerate every step of substrate hydroxylation by an order of magnitude. These observations have strong implications for the detection of individual hydroxylation intermediates during P450 catalysis. PMID:25681906

  20. Ab initio thermodynamic model for magnesium carbonates and hydrates.

    PubMed

    Chaka, Anne M; Felmy, Andrew R

    2014-09-04

    An ab initio thermodynamic framework for predicting properties of hydrated magnesium carbonate minerals has been developed using density-functional theory linked to macroscopic thermodynamics through the experimental chemical potentials for MgO, water, and CO2. Including semiempirical dispersion via the Grimme method and small corrections to the generalized gradient approximation of Perdew, Burke, and Ernzerhof for the heat of formation yields a model with quantitative agreement for the benchmark minerals brucite, magnesite, nesquehonite, and hydromagnesite. The model shows how small differences in experimental conditions determine whether nesquehonite, hydromagnesite, or magnesite is the result of laboratory synthesis from carbonation of brucite, and what transformations are expected to occur on geological time scales. Because of the reliance on parameter-free first-principles methods, the model is reliably extensible to experimental conditions not readily accessible to experiment and to any mineral composition for which the structure is known or can be hypothesized, including structures containing defects, substitutions, or transitional structures during solid state transformations induced by temperature changes or processes such as water, CO2, or O2 diffusion. Demonstrated applications of the ab initio thermodynamic framework include an independent means to evaluate differences in thermodynamic data for lansfordite, predicting the properties of Mg analogues of Ca-based hydrated carbonates monohydrocalcite and ikaite, which have not been observed in nature, and an estimation of the thermodynamics of barringtonite from the stoichiometry and a single experimental observation.

  1. Unified ab initio approaches to nuclear structure and reactions

    DOE PAGES

    Navratil, Petr; Quaglioni, Sofia; Hupin, Guillaume; ...

    2016-04-13

    The description of nuclei starting from the constituent nucleons and the realistic interactions among them has been a long-standing goal in nuclear physics. In addition to the complex nature of the nuclear forces, with two-, three- and possibly higher many-nucleon components, one faces the quantum-mechanical many-nucleon problem governed by an interplay between bound and continuum states. In recent years, significant progress has been made in ab initio nuclear structure and reaction calculations based on input from QCD-employing Hamiltonians constructed within chiral effective field theory. After a brief overview of the field, we focus on ab initio many-body approaches—built upon the no-core shell model—that are capable of simultaneously describing both bound and scattering nuclear states, and present results for resonances in light nuclei, reactions important for astrophysics and fusion research. In particular, we review recent calculations of resonances in the 6He halo nucleus, of five- and six-nucleon scattering, and an investigation of the role of chiral three-nucleon interactions in the structure of 9Be. Further, we discuss applications to the 7Bemore » $${({\\rm{p}},\\gamma )}^{8}{\\rm{B}}$$ radiative capture. Lastly, we highlight our efforts to describe transfer reactions including the 3H$${({\\rm{d}},{\\rm{n}})}^{4}$$He fusion.« less

  2. Implementation of renormalized excitonic method at ab initio level.

    PubMed

    Zhang, Hongjiang; Malrieu, Jean-Paul; Ma, Haibo; Ma, Jing

    2012-01-05

    The renormalized excitonic method [Hajj et al., Phys Rev B 2005, 72, 224412], in which the excited state of the whole system may be described as a linear combination of local excitations, has been implemented at ab initio level. Its performance is tested on the ionization potential and the energy gap between singlet ground state and lowest triplet for linear molecular hydrogen chains and more realistic systems, such as polyenes and polysilenes, using full configuration interaction (FCI) wave functions with a minimal basis set. The influence of different block sizes and the extent of interblock interactions are investigated. It has been demonstrated that satisfactory results can be obtained if the near degeneracies between the model space and the outer space are avoided and if interactions between the next-nearest neighbor blocks are considered. The method can be used with larger basis sets and other accurate enough ab initio evaluations (instead of FCI) of local excited states, from blocks, or from dimers or trimers of blocks. It provides a new possibility to accurately and economically describe the low-lying delocalized excited states of large systems, even inhomogeneous ones.

  3. Ab initio dynamics of the cytochrome P450 hydroxylation reaction

    SciTech Connect

    Elenewski, Justin E.; Hackett, John C

    2015-02-14

    The iron(IV)-oxo porphyrin π-cation radical known as Compound I is the primary oxidant within the cytochromes P450, allowing these enzymes to affect the substrate hydroxylation. In the course of this reaction, a hydrogen atom is abstracted from the substrate to generate hydroxyiron(IV) porphyrin and a substrate-centered radical. The hydroxy radical then rebounds from the iron to the substrate, yielding the hydroxylated product. While Compound I has succumbed to theoretical and spectroscopic characterization, the associated hydroxyiron species is elusive as a consequence of its very short lifetime, for which there are no quantitative estimates. To ascertain the physical mechanism underlying substrate hydroxylation and probe this timescale, ab initio molecular dynamics simulations and free energy calculations are performed for a model of Compound I catalysis. Semiclassical estimates based on these calculations reveal the hydrogen atom abstraction step to be extremely fast, kinetically comparable to enzymes such as carbonic anhydrase. Using an ensemble of ab initio simulations, the resultant hydroxyiron species is found to have a similarly short lifetime, ranging between 300 fs and 3600 fs, putatively depending on the enzyme active site architecture. The addition of tunneling corrections to these rates suggests a strong contribution from nuclear quantum effects, which should accelerate every step of substrate hydroxylation by an order of magnitude. These observations have strong implications for the detection of individual hydroxylation intermediates during P450 catalysis.

  4. Ab Initio Thermodynamic Model for Magnesium Carbonates and Hydrates

    SciTech Connect

    Chaka, Anne M.; Felmy, Andrew R.

    2014-03-28

    An ab initio thermodynamic framework for predicting properties of hydrated magnesium carbonate minerals has been developed using density-functional theory linked to macroscopic thermodynamics through the experimental chemical potentials for MgO, water, and CO2. Including semiempirical dispersion via the Grimme method and small corrections to the generalized gradient approximation of Perdew, Burke, and Ernzerhof for the heat of formation yields a model with quantitative agreement for the benchmark minerals brucite, magnesite, nesquehonite, and hydromagnesite. The model shows how small differences in experimental conditions determine whether nesquehonite, hydromagnesite, or magnesite is the result of laboratory synthesis from carbonation of brucite, and what transformations are expected to occur on geological time scales. Because of the reliance on parameter-free first principles methods, the model is reliably extensible to experimental conditions not readily accessible to experiment and to any mineral composition for which the structure is known or can be hypothesized, including structures containing defects, substitutions, or transitional structures during solid state transformations induced by temperature changes or processes such as water, CO2, or O2 diffusion. Demonstrated applications of the ab initio thermodynamic framework include an independent means to evaluate differences in thermodynamic data for lansfordite, predicting the properties of Mg analogs of Ca-based hydrated carbonates monohydrocalcite and ikaite which have not been observed in nature, and an estimation of the thermodynamics of barringtonite from the stoichiometry and a single experimental observation.

  5. Ab initio calculation of optical constants from visible to x-ray energies

    NASA Astrophysics Data System (ADS)

    Prange, M. P.; Rivas, G.; Ankudinov, A. L.; Rehr, J. J.

    2004-03-01

    We present a semi-automated approach for ab initio calculations of optical constants of materials from the visible to the hard x-ray energies. The approach is based on a generalization of the real space Green's formalism implemented in the FEFF8 spectroscopy code to include optical spectra. The method includes self-consistent potentials, core-hole and self-energy effects, inelastic losses and a full- or high order multiple-scattering. The procedure is based on calculations of the imaginary part of the dielectric function ɛ2 summed over all edges, from which other optical constants are derived using Kramers-Kronig transforms and analytical relations. These constants include the complex index of refraction, the real part of the dielectric function, and energy loss spectra. In contrast to standard atomic tables, the calculations include solid-state corrections, such as fine structure, Debye-Waller factors, lifetime broadening, etc. Typical results for several materials are presented and compared with experiment.

  6. Ab initio modeling of the optical properties in organometallic halide perovskites for photovoltaic applications

    NASA Astrophysics Data System (ADS)

    Neukirch, Amanda; Nei, Wanyi; Pedesseau, Laurent; Even, Jacky; Katan, Claudine; Mohite, Aditya; Tretiak, Segrei

    2015-03-01

    The need for an inexpensive, clean, and plentiful source of energy has generated large amounts of research in an assortment of solution processed organic and hybrid organic-inorganic solar cells. A relative newcomer to the field of solution processed photovoltaics is the lead halide perovskite solar cell. In the past 5 years, the efficiencies of devices made from this material have increased from 3.5% to nearly 20%. Despite the rapid development of organic-inorganic perovskite solar cells, a thorough understanding of the fundamental photophysical processes driving the high performance of these devices is not well understood. I am using state-of-the-art ab initio computational techniques in order to characterize the properties at the interface of perovskite devices in order to aide in materials design and device engineering. I will present an in-depth analysis of the electronic and optical properties of bulk and surface states of pure and mixed halide systems. The high-level static quantum mechanical calculations, including spin-orbit-coupling and the many body GW approach, identify the key electronic states involved in photoinduced dynamics. This knowledge provides important information on how the optical properties change with variations to the system. Supported by the DOE, the LANL LDRD program XW11, and CNLS.

  7. Ab initio study of the thermodynamic properties and the phonon calculations of Zircon and Reidite

    NASA Astrophysics Data System (ADS)

    Chaudhari, Mrunalkumar; Du, Jincheng

    2011-03-01

    Zircon and Reidite are the polymorphs of Zirconium Silicate which find its importance geologically, because of its natural hosting to various radioactive elements in the crust of the earth. High permittivity also makes it a promising material for the gate dielectric material in metal-oxide semiconductors. Knowledge of the thermodynamic properties and the phonon based calculations is very critical to understand the high temperature and high pressure properties in order to consider its application as an effective natural storage for the radioactive wastes. These properties are thoroughly studied both computationally and experimentally for zircon, while significantly less attention was paid to reidite in the literature. The thermodynamic properties and phonon calculations of Zircon and Reidite were studied using ab initio based periodic density-functional theory (DFT) based calculations using the generalized gradient approximation (GGA). Various properties such as free energy, internal energy, entropy, heat capacity and thermal displacement as a function of temperature is calculated using the PHONON software. Various phonon based density of states and dispersion curves are calculated and compared with the experimental data. No first principles based computational results were reported up to now. Calculated bulk properties agree very well with the experimental data in the literature.

  8. Ab initio calculations of the vibrational and dielectric properties of PbSnTe alloys

    NASA Astrophysics Data System (ADS)

    Scolfaro, Luisa; Rezende Neto, A. R.; Leite Alves, H. W.; Petersen, J. E.; Myers, T. H.; Borges, P. D.

    Thermoelectric devices have promise in dealing with the challenges of the growing demand for alternative clean energy and Te-based materials well-known candidates for them. Recently, we have shown that the high values for the dielectric constant, together with anharmonic LA-TO coupling, reduces the lattice thermal conductivity and enhances the electronic conductivity in PbTe. Also, it was shown that by alloying this material with Se, the electronic conductivity of the alloys is also enhanced. But, it is not clear if the same occurs when alloying with Sn. We show, in this work, our ab initio results for the vibrational and dielectric properties of Pb1-xSnxTe alloys. The calculations were carried out by using the Density Functional Theory, and the alloys were described by both the Virtual Crystal Approximation and Cluster Expansion Method. Our results show that the anharmonic LA-TO coupling enhances and reach its maximum for Sn concentration values of 0.75, corresponding to the maximum value for the dielectric constant, which is higher than that obtained for PbTe

  9. Ab initio calculations for dissociative hydrogen adsorption on lithium oxide surfaces

    SciTech Connect

    Sutjianto, A. |; Tam, S.W.; Curtiss, L.A.; Johnson, C.E.; Pandey, R.

    1994-12-01

    Lithium ceramics are one class of materials being considered as tritium breeders for fusion technology,and hydrogen is known to enhance the release of tritium from lithium ceramic materials. Dissociative hydrogen chemisorption on the Li{sub 2}O surfaces of the (100), (110), and (111) planes has been investigated with ab initio Hartree-Fock calculations. Calculations for unrelaxed crystal Li{sub 2}O structures indicated that except for the (100) surface, the (110) and (111) surfaces are stable. Results on the heterolytic sites of n-layer (110) (where n {ge} 2) slabs and three-layer (111) slabs suggest that dissociative hydrogen chemisorption is endothermic. For a one-layer (110) slab at 100% surface coverage, the dissociative hydrogen chemisorption is exothermic, forming OH{sup {minus}} and Li{sup +}H{sup {minus}}Li{sup +}. The results also indicate that the low coordination environment in surface step structures, such as kinks and ledges, may plan an important role in the hydrogen chemisorption process. On the homolytic sites of the (110) and (111) surfaces, there is no hydrogen chemisorption.

  10. Structural and electronic properties of organo-halide hybrid perovskites from ab initio molecular dynamics.

    PubMed

    Quarti, Claudio; Mosconi, Edoardo; De Angelis, Filippo

    2015-04-14

    The last two years have seen the unprecedentedly rapid emergence of a new class of solar cells, based on hybrid organic-inorganic halide perovskites. The success of this class of materials is due to their outstanding photoelectrochemical properties coupled to their low cost, mainly solution-based, fabrication techniques. Solution processed materials are however often characterized by an inherent flexible structure, which is hardly mapped into a single local minimum energy structure. In this perspective, we report on the interplay between structural and electronic properties of hybrid lead iodide perovskites investigated using ab initio molecular dynamics (AIMD) simulations, which allow the dynamical simulation of disordered systems at finite temperature. We compare the prototypical MAPbI3 (MA = methylammonium) perovskite in its cubic and tetragonal structure with the trigonal phase of FAPbI3 (FA = formamidinium), investigating different starting arrangements of the organic cations. Despite the relatively short time scale amenable to AIMD, typically a few tens of ps, this analysis demonstrates the sizable structural flexibility of this class of materials, showing that the instantaneous structure could significantly differ from the time and thermal averaged structure. We also highlight the importance of the organic-inorganic interactions in determining the fluxional properties of this class of materials. A peculiar spatial localization of the valence and conduction band edges is also found, with a dynamics in the range of 0.1 ps, which is associated with the positional dynamics of the organic cations within the cubo-octahedral perovskite cage. This asymmetry in the spatial localization of the band edges is expected to ease exciton dissociation and assist the initial stages of charge separation, possibly constituting one of the key factors for the impressive photovoltaic performances of hybrid lead-iodide perovskites.

  11. Interatomic Coulombic decay widths of helium trimer: Ab initio calculations

    SciTech Connect

    Kolorenč, Přemysl; Sisourat, Nicolas

    2015-12-14

    We report on an extensive study of interatomic Coulombic decay (ICD) widths in helium trimer computed using a fully ab initio method based on the Fano theory of resonances. Algebraic diagrammatic construction for one-particle Green’s function is utilized for the solution of the many-electron problem. An advanced and universal approach to partitioning of the configuration space into discrete states and continuum subspaces is described and employed. Total decay widths are presented for all ICD-active states of the trimer characterized by one-site ionization and additional excitation of an electron into the second shell. Selected partial decay widths are analyzed in detail, showing how three-body effects can qualitatively change the character of certain relaxation transitions. Previously unreported type of three-electron decay processes is identified in one class of the metastable states.

  12. Ab initio electronic and lattice dynamical properties of cerium dihydride

    NASA Astrophysics Data System (ADS)

    Gurel, Tanju; Eryigit, Resul

    2007-03-01

    The rare-earth metal hydrides are interesting systems because of the dramatic structural and electronic changes due to the hydrogen absorption and desorption. Among them, cerium dihydride (CeH2) is one of the less studied rare-earth metal-hydride. To have a better understanding, we have performed an ab initio study of electronic and lattice dynamical properties of CeH2 by using pseudopotential density functional theory within local density approximation (LDA) and a plane-wave basis. Electronic band structure of CeH2 have been obtained within LDA and as well as GW approximation. Lattice dynamical properties are calculated using density functional perturbation theory. The phonon spectrum is found to contain a set of high-frequency (˜ 850-1000 cm-1) optical bands, mostly hydrogen related, and low frequency cerium related acoustic modes climbing to 160 cm^ -1 at the zone boundary.

  13. Approximate ab initio calculations of electronic structure of amorphous silicon

    NASA Astrophysics Data System (ADS)

    Durandurdu, M.; Drabold, D. A.; Mousseau, N.

    2000-12-01

    We report on ab initio calculations of electronic states of two large and realistic models of amorphous silicon generated using a modified version of the Wooten-Winer-Weaire algorithm and relaxed, in both cases, with a Keating and a modified Stillinger-Weber potentials. The models have no coordination defects and a very narrow bond-angle distribution. We compute the electronic density-of-states and pay particular attention to the nature of the band-tail states around the electronic gap. All models show a large and perfectly clean optical gap and realistic Urbach tails. Based on these results and the extended quasi-one-dimensional stringlike structures observed for certain eigenvalues in the band tails, we postulate that the generation of model a-Si without localized states might be achievable under certain circumstances.

  14. The ab-initio density matrix renormalization group in practice

    SciTech Connect

    Olivares-Amaya, Roberto; Hu, Weifeng; Sharma, Sandeep; Yang, Jun; Chan, Garnet Kin-Lic; Nakatani, Naoki

    2015-01-21

    The ab-initio density matrix renormalization group (DMRG) is a tool that can be applied to a wide variety of interesting problems in quantum chemistry. Here, we examine the density matrix renormalization group from the vantage point of the quantum chemistry user. What kinds of problems is the DMRG well-suited to? What are the largest systems that can be treated at practical cost? What sort of accuracies can be obtained, and how do we reason about the computational difficulty in different molecules? By examining a diverse benchmark set of molecules: π-electron systems, benchmark main-group and transition metal dimers, and the Mn-oxo-salen and Fe-porphine organometallic compounds, we provide some answers to these questions, and show how the density matrix renormalization group is used in practice.

  15. Quantum plasmonics: from jellium models to ab initio calculations

    NASA Astrophysics Data System (ADS)

    Varas, Alejandro; García-González, Pablo; Feist, Johannes; García-Vidal, F. J.; Rubio, Angel

    2016-08-01

    Light-matter interaction in plasmonic nanostructures is often treated within the realm of classical optics. However, recent experimental findings show the need to go beyond the classical models to explain and predict the plasmonic response at the nanoscale. A prototypical system is a nanoparticle dimer, extensively studied using both classical and quantum prescriptions. However, only very recently, fully ab initio time-dependent density functional theory (TDDFT) calculations of the optical response of these dimers have been carried out. Here, we review the recent work on the impact of the atomic structure on the optical properties of such systems. We show that TDDFT can be an invaluable tool to simulate the time evolution of plasmonic modes, providing fundamental understanding into the underlying microscopical mechanisms.

  16. Reactive Monte Carlo sampling with an ab initio potential

    DOE PAGES

    Leiding, Jeff; Coe, Joshua D.

    2016-05-04

    Here, we present the first application of reactive Monte Carlo in a first-principles context. The algorithm samples in a modified NVT ensemble in which the volume, temperature, and total number of atoms of a given type are held fixed, but molecular composition is allowed to evolve through stochastic variation of chemical connectivity. We also discuss general features of the method, as well as techniques needed to enhance the efficiency of Boltzmann sampling. Finally, we compare the results of simulation of NH3 to those of ab initio molecular dynamics (AIMD). Furthermore, we find that there are regions of state space formore » which RxMC sampling is much more efficient than AIMD due to the “rare-event” character of chemical reactions.« less

  17. Ab initio water pair potential with flexible monomers.

    PubMed

    Jankowski, Piotr; Murdachaew, Garold; Bukowski, Robert; Akin-Ojo, Omololu; Leforestier, Claude; Szalewicz, Krzysztof

    2015-03-26

    A potential energy surface for the water dimer with explicit dependence on monomer coordinates is presented. The surface was fitted to a set of previously published interaction energies computed on a grid of over a quarter million points in the 12-dimensional configurational space using symmetry-adapted perturbation theory and coupled-cluster methods. The present fit removes small errors in published fits, and its accuracy is critically evaluated. The minimum and saddle-point structures of the potential surface were found to be very close to predictions from direct ab initio optimizations. The computed second virial coefficients agreed well with experimental values. At low temperatures, the effects of monomer flexibility in the virial coefficients were found to be much smaller than the quantum effects.

  18. Ab initio study of helium behavior in titanium tritides

    SciTech Connect

    Liang, J. H.; Dai, Yunya; Yang, Li; Peng, SM; Fan, K. M.; Long, XG; Zhou, X. S.; Zu, Xiaotao; Gao, Fei

    2013-03-01

    Ab initio calculations based on density functional theory have been performed to investigate the relative stability of titanium tritides and the helium behavior in stable titanium tritides. The results show that the β-phase TiT1.5 without two tritium along the [100] direction (TiT1.5[100]) is more stable than other possible structures. The stability of titanium tritides decrease with the increased generation of helium in TiT1.5[100]. In addition, helium generated by tritium decay prefers locating at a tetrahedral site, and favorably migrates between two neighbor vacant tetrahedral sites through an intermediate octahedral site in titanium tritides, with a migration energy of 0.23 eV. Furthermore, helium is easily accumulated on a (100) plane in β-phase TiT1.5[100].

  19. Ab initio electron propagator theory of molecular wires. I. Formalism.

    PubMed

    Dahnovsky, Yu; Zakrzewski, V G; Kletsov, A; Ortiz, J V

    2005-11-08

    Ab initio electron propagator methodology may be applied to the calculation of electrical current through a molecular wire. A new theoretical approach is developed for the calculation of the retarded and advanced Green functions in terms of the electron propagator matrix for the bridge molecule. The calculation of the current requires integration in a complex half plane for a trace that involves terminal and Green's-function matrices. Because the Green's-function matrices have complex poles represented by matrices, a special scheme is developed to express these "matrix poles" in terms of ordinary poles. An expression for the current is derived for a terminal matrix of arbitrary rank. For a single terminal orbital, the analytical expression for the current is given in terms of pole strengths, poles, and terminal matrix elements of the electron propagator. It is shown that Dyson orbitals with high pole strengths and overlaps with terminal orbitals are most responsible for the conduction of electrical current.

  20. Ab initio simulations of liquid carbon monoxide at high pressure

    NASA Astrophysics Data System (ADS)

    Leonhardi, Tanis C.; Militzer, Burkhard

    2017-03-01

    Carbon monoxide occurs as a volatile species in the interiors of terrestrial planets, and as a disequilibrium atmospheric constituent in the giant planets. It plays an important role during the accretionary stages of planet formation reacting with gases to form compounds such as CH4 and H2O. The structure of carbon monoxide is unknown over the majority of the temperature and pressure regime in giant planet interiors. Here we perform ab initio molecular dynamics simulations to characterize CO to 140 GPa and 5,000 K. We find that CO is stable as a molecular liquid at lower P-T conditions, as a polymeric liquid at higher P-T conditions found in ice giant interiors, and as a plasma at high-T.

  1. Ab initio Potential Energy Surface for H-H2

    NASA Technical Reports Server (NTRS)

    Partridge, Harry; Bauschlicher, Charles W., Jr.; Stallcop, James R.; Levin, Eugene

    1993-01-01

    Ab initio calculations employing large basis sets are performed to determine an accurate potential energy surface for H-H2 interactions for a broad range of separation distances. At large distances, the spherically averaged potential determined from the calculated energies agrees well with the corresponding results determined from dispersion coefficients; the van der Waals well depth is predicted to be 75 +/- (mu)E(sub h). Large basis sets have also been applied to reexamine the accuracy of theoretical repulsive potential energy surfaces. Multipolar expansions of the computed H-H2 potential energy surface are reported for four internuclear separation distances (1.2, 1.401, 1.449, and 1.7a(sub 0) of the hydrogen molecule. The differential elastic scattering cross section calculated from the present results is compared with the measurements from a crossed beam experiment.

  2. An ab initio study on anionic aerogen bonds

    NASA Astrophysics Data System (ADS)

    Esrafili, Mehdi D.; Mohammadian-Sabet, Fariba

    2017-01-01

    An ab initio study is carried out to investigate the anionic aerogen bonds in complexes of KrO3, XeO3 and XeOF2 with F-, Cl-, Br-, CN-, NC-, N3-, SH-, SCN-, NCS-, OH- and OCH3- anions. All of the anionic aerogen bonds analyzed here have a partial covalent character. Charge transfer from the anion to the Kr-O or Xe-O σ∗ orbital stabilizes these complexes and leads to a sizable redshift in the corresponding stretching frequencies. The J(Kr-O) or J(Xe-O) spin-spin coupling constants can be regarded as a useful tool for the characterization of strength of the anionic aerogen-bonded complexes.

  3. Ab Initio Study of KCl and NaCl Clusters

    NASA Astrophysics Data System (ADS)

    Brownrigg, Clifton; Hira, Ajit; Pacheco, Jose; Salazar, Justin

    2013-03-01

    We continue our interest in the theoretical study of molecular clusters to examine the chemical properties of small KnCln and NanCln clusters (n = 2 - 15). The potentially important role of these molecular species in biochemical and medicinal processes is well known. This work applies the hybrid ab initio methods of quantum chemistry to derive the different alkali-halide (MnHn) geometries. Of particular interest is the competition between hexagonal ring geometries and rock salt structures. Electronic energies, rotational constants, dipole moments, and vibrational frequencies for these geometries are calculated. Magic numbers for cluster stability are identified and are related to the property of cluster compactness. Mapping of the singlet, triplet, and quintet, potential energy surfaces is performed. Calculations have been performed to examine the interactions of these clusters with some atoms and molecules of biological interest, including O, O2, and Fe. The potential for design of new medicinal drugs is explored.

  4. Ab initio quantum transport in atomic carbon chains

    NASA Astrophysics Data System (ADS)

    Botello-Méndez, Andrés R.; Charlier, Jean-Christophe; Banhart, Florian; NAPS Team; Carbyne Collaboration

    2015-03-01

    Carbyne, the sp-hybridized phase of carbon, is still a missing link in the family of carbon allotropes. Recently, detailed electrical measurements and first-principles electronic transport calculations have been performed on monoatomic carbon chains. When the 1D system is under strain, the current-voltage curves exhibit a semiconducting behavior, which corresponds to the polyyne structure of the atomic chain with alternating single and triple bonds. Conversely, when the chain is unstrained, the ohmic behavior is observed in agreement with the metallic cumulene structure with double bonds, confirming recent theoretical predictions, namely that a metal-insulator transition can be induced by adjusting the strain. The key role of the contacting leads is also scrutinized by ab initio quantum conductance calculations, explaining the rectifying behavior measured in monoatomic carbon chains in a non-symmetric contact configuration.

  5. High-throughput ab-initio dilute solute diffusion database

    NASA Astrophysics Data System (ADS)

    Wu, Henry; Mayeshiba, Tam; Morgan, Dane

    2016-07-01

    We demonstrate automated generation of diffusion databases from high-throughput density functional theory (DFT) calculations. A total of more than 230 dilute solute diffusion systems in Mg, Al, Cu, Ni, Pd, and Pt host lattices have been determined using multi-frequency diffusion models. We apply a correction method for solute diffusion in alloys using experimental and simulated values of host self-diffusivity. We find good agreement with experimental solute diffusion data, obtaining a weighted activation barrier RMS error of 0.176 eV when excluding magnetic solutes in non-magnetic alloys. The compiled database is the largest collection of consistently calculated ab-initio solute diffusion data in the world.

  6. Ab-initio theory of spin fluctuations in magnets

    NASA Astrophysics Data System (ADS)

    Antropov, Vladimir; Ke, Liqin; van Schilfgaarde, Mark; Katsnelson, Mikhael

    2011-03-01

    We propose a framework for a true ab initio theory of magnetism, based on many-body perturbation theory (MPBT). It fits in naturally with methods based MPBT such as the GW approximation; but the approach can be implemented as an extension to any existing static method for electronic structure such as the local spin density approximation to density functional theory, to include spin fluctuations. Initially we calculated the spin fluctuation contributions using random phase approximation. The self consistency procedure similar to the one used in Moryia-Kawabata theory can be naturally implemented. The fluctuation dissipation theorem is used to calculate the reduction of the mean field magnetic moment in itinerant magnets. The applications of the technique includes traditional 3d ferromagnetic metals, their alloys and compounds and 5f systems.

  7. Molecular tailoring approach: a route for ab initio treatment of large clusters.

    PubMed

    Sahu, Nityananda; Gadre, Shridhar R

    2014-09-16

    Conspectus Chemistry on the scale of molecular clusters may be dramatically different from that in the macroscopic bulk. Greater understanding of chemistry in this size regime could greatly influence fields such as materials science and atmospheric and environmental chemistry. Recent advances in experimental techniques and computational resources have led to accurate investigations of the energies and spectral properties of weakly bonded molecular clusters. These have enabled researchers to learn how the physicochemical properties evolve from individual molecules to bulk materials and to understand the growth patterns of clusters. Experimental techniques such as infrared, microwave, and photoelectron spectroscopy are the most popular and powerful tools for probing molecular clusters. In general, these experimental techniques do not directly reveal the atomistic details of the clusters but provide data from which the structural details need to be unearthed. Furthermore, the resolution of the spectral properties of energetically close cluster conformers can be prohibitively difficult. Thus, these investigations of molecular aggregates require a combination of experiments and theory. On the theoretical front, researchers have been actively engaged in quantum chemical ab initio calculations as well as simulation-based studies for the last few decades. To obtain reliable results, there is a need to use correlated methods such as Møller-Plesset second order method, coupled cluster theory, or dispersion corrected density functional theory. However, due to nonlinear scaling of these methods, optimizing the geometry of large clusters still remains a formidable quantum chemistry challenge. Fragment-based methods, such as divide-and-conquer, molecular tailoring approach (MTA), fragment molecular orbitals, and generalized energy-based fragmentation approach, provide alternatives for overcoming the scaling problem for spatially extended molecular systems. Within MTA, a large

  8. Heats of Segregation of BCC Binaries from ab Initio and Quantum Approximate Calculations

    NASA Technical Reports Server (NTRS)

    Good, Brian S.

    2004-01-01

    We compare dilute-limit heats of segregation for selected BCC transition metal binaries computed using ab initio and quantum approximate energy methods. Ab initio calculations are carried out using the CASTEP plane-wave pseudopotential computer code, while quantum approximate results are computed using the Bozzolo-Ferrante-Smith (BFS) method with the most recent LMTO-based parameters. Quantum approximate segregation energies are computed with and without atomistic relaxation, while the ab initio calculations are performed without relaxation. Results are discussed within the context of a segregation model driven by strain and bond-breaking effects. We compare our results with full-potential quantum calculations and with available experimental results.

  9. Ab initio calculations of the melting temperatures of refractory bcc metals.

    PubMed

    Wang, L G; van de Walle, A

    2012-01-28

    We present ab initio calculations of the melting temperatures for bcc metals Nb, Ta and W. The calculations combine phase coexistence molecular dynamics (MD) simulations using classical embedded-atom method potentials and ab initio density functional theory free energy corrections. The calculated melting temperatures for Nb, Ta and W are, respectively, within 3%, 4%, and 7% of the experimental values. We compare the melting temperatures to those obtained from direct ab initio molecular dynamics simulations and see if they are in excellent agreement with each other. The small remaining discrepancies with experiment are thus likely due to inherent limitations associated with exchange-correlation energy approximations within density-functional theory.

  10. Ab initio path integral ring polymer molecular dynamics: Vibrational spectra of molecules

    NASA Astrophysics Data System (ADS)

    Shiga, Motoyuki; Nakayama, Akira

    2008-01-01

    The path integral ring polymer molecular dynamics method is combined with 'on-the-fly' ab initio electronic structure calculations and applied to vibrational spectra of small molecules, LiH and H 2O, at the room temperature. The results are compared with those of the numerically exact solution and ab initio path integral centroid molecular dynamics calculation. The peak positions in the calculated spectra are found to be reasonable, showing the red-shift due to potential anharmonicity. This unification enables the investigation of real-time quantum dynamics of chemically complex molecular systems on the ab initio Born-Oppenheimer potential energy surface.

  11. Ab initio MCDHF calculations of electron-nucleus interactions

    NASA Astrophysics Data System (ADS)

    Bieroń, Jacek; Froese Fischer, Charlotte; Fritzsche, Stephan; Gaigalas, Gediminas; Grant, Ian P.; Indelicato, Paul; Jönsson, Per; Pyykkö, Pekka

    2015-05-01

    We present recent advances in the development of atomic ab initio multiconfiguration Dirac-Hartree-Fock theory, implemented in the GRASP relativistic atomic structure code. For neutral atoms, the deviations of properties calculated within the Dirac-Hartree-Fock (DHF) method (based on independent particle model of an atomic cloud) are usually dominated by electron correlation effects, i.e. the non-central interactions of individual electrons. We present the recent advances in accurate calculations of electron correlation effects in small, medium, and heavy neutral atoms. We describe methods of systematic development of multiconfiguration expansions leading to systematic, controlled improvement of the accuracy of the ab initio calculations. These methods originate from the concept of the complete active space (CAS) model within the DHF theory, which, at least in principle, permits fully relativistic calculations with full account of electron correlation effects. The calculations within the CAS model on currently available computer systems are feasible only for very light systems. For heavier atoms or ions with more than a few electrons, restrictions have to be imposed on the multiconfiguration expansions. We present methods and tools, which are designed to extend the numerical calculations in a controlled manner, where multiconfiguration expansions account for all leading electron correlation effects. We show examples of applications of the GRASP code to calculations of hyperfine structure constants, but the code may be used for calculations of arbitrary bound-state atomic properties. In recent years it has been applied to calculations of atomic and ionic spectra (transition energies and rates), to determinations of nuclear electromagnetic moments, as well as to calculations related to interactions of bound electrons with nuclear electromagnetic moments leading to violations of discrete symmetries.

  12. Metallic VS2 Monolayer Polytypes as Potential Sodium-Ion Battery Anode via ab Initio Random Structure Searching.

    PubMed

    Putungan, Darwin Barayang; Lin, Shi-Hsin; Kuo, Jer-Lai

    2016-07-27

    We systematically investigated the potential of single-layer VS2 polytypes as Na-battery anode materials via density functional theory calculations. We found that sodiation tends to inhibit the 1H-to-1T structural phase transition, in contrast to lithiation-induced transition on monolayer MoS2. Thus, VS2 can have better structural stability in the cycles of charging and discharging. Diffussion of Na atom was found to be very fast on both polytypes, with very small diffusion barriers of 0.085 eV (1H) and 0.088 eV (1T). Ab initio random structure searching was performed in order to explore stable configurations of Na on VS2. Our search found that both the V top and the hexagonal center sites are preferred adsorption sites for Na, with the 1H phase showing a relatively stronger binding. Notably, our random structures search revealed that Na clusters can form as a stacked second layer at full Na concentration, which is not reported in earlier works wherein uniform, single-layer Na adsorption phases were assumed. With reasonably high specific energy capacity (232.91 and 116.45 mAh/g for 1H and 1T phases, respectively) and open-circuit voltage (1.30 and 1.42 V for 1H and 1T phases, respectively), VS2 is a promising alternative material for Na-ion battery anodes with great structural sturdiness. Finally, we have shown the capability of the ab initio random structure searching in the assessment of potential materials for energy storage applications.

  13. Strongly correlated materials.

    PubMed

    Morosan, Emilia; Natelson, Douglas; Nevidomskyy, Andriy H; Si, Qimiao

    2012-09-18

    Strongly correlated materials are profoundly affected by the repulsive electron-electron interaction. This stands in contrast to many commonly used materials such as silicon and aluminum, whose properties are comparatively unaffected by the Coulomb repulsion. Correlated materials often have remarkable properties and transitions between distinct, competing phases with dramatically different electronic and magnetic orders. These rich phenomena are fascinating from the basic science perspective and offer possibilities for technological applications. This article looks at these materials through the lens of research performed at Rice University. Topics examined include: Quantum phase transitions and quantum criticality in "heavy fermion" materials and the iron pnictide high temperature superconductors; computational ab initio methods to examine strongly correlated materials and their interface with analytical theory techniques; layered dichalcogenides as example correlated materials with rich phases (charge density waves, superconductivity, hard ferromagnetism) that may be tuned by composition, pressure, and magnetic field; and nanostructure methods applied to the correlated oxides VO₂ and Fe₃O₄, where metal-insulator transitions can be manipulated by doping at the nanoscale or driving the system out of equilibrium. We conclude with a discussion of the exciting prospects for this class of materials.

  14. Ab Initio Studies of Halogen and Nitrogen Oxide Species of Interest in Stratospheric Chemistry

    NASA Technical Reports Server (NTRS)

    Lee, Timothy J.; Langhoff, Stephen R. (Technical Monitor)

    1995-01-01

    The ability of modern state-of-the art ab initio quantum chemical techniques to characterize reliably the gas-phase molecular structure, vibrational spectrum, electronic spectrum, and thermal stability of fluorine, chlorine, bromine and nitrogen oxide species will be demonstrated by presentation of some example studies. The ab initio results are shown to be in excellent agreement with the available experimental data, and where the experimental data are either not known or are inconclusive, the theoretical results are shown to fill in the gaps and to resolve experimental controversies. In addition, ab initio studies in which the electronic spectra and the characterization of excited electronic states of halogen oxide species will also be presented. Again where available, the ab initio results are compared to experimental observations, and are used to aid in the interpretation of experimental studies.

  15. Ab initio prediction of electronic, transport and bulk properties of Li2S

    NASA Astrophysics Data System (ADS)

    Malozovsky, Yuriy; Franklin, Lashounda; Ekuma, Chinedu; Bagayoko, Diola

    2015-08-01

    In this paper, we present results from ab initio, self-consistent, local density approximation (LDA) calculations of electronic and related properties of cubic antifluorite (anti-CaF2) lithium sulfide (Li2S). Our nonrelativistic computations implemented the linear combination of atomic orbital (LCAO) formalism following the Bagayoko, Zhao and Williams method, as enhanced by Ekuma and Franklin (BZW-EF). Consequently, using several self-consistent calculations with increasing basis sets, we searched for the smallest basis set that yields the absolute minima of the occupied energies. The outcomes of the calculation with this basis set, called the optimal basis set, have the full physical content of density functional theory (DFT). Our calculated indirect band gap, from Γ to X, is 3.723 eV, for the low temperature experimental lattice constant of 5.689 Å. The predicted indirect band gap of 3.702 eV is obtained for the computationally determined equilibrium lattice constant of 5.651 Å. We have also calculated the total density of states (DOS) and partial densities of states (pDOS), electron and hole effective masses and the bulk modulus of Li2S. Due to a lack of experimental results, most of the calculated ones reported here are predictions for this material suspected of exhibiting a high temperature superconductivity similar to that of MgB2.

  16. Silicon and Germanium Nanostructures for Photovoltaic Applications: Ab-Initio Results

    PubMed Central

    2010-01-01

    Actually, most of the electric energy is being produced by fossil fuels and great is the search for viable alternatives. The most appealing and promising technology is photovoltaics. It will become truly mainstream when its cost will be comparable to other energy sources. One way is to significantly enhance device efficiencies, for example by increasing the number of band gaps in multijunction solar cells or by favoring charge separation in the devices. This can be done by using cells based on nanostructured semiconductors. In this paper, we will present ab-initio results of the structural, electronic and optical properties of (1) silicon and germanium nanoparticles embedded in wide band gap materials and (2) mixed silicon-germanium nanowires. We show that theory can help in understanding the microscopic processes important for devices performances. In particular, we calculated for embedded Si and Ge nanoparticles the dependence of the absorption threshold on size and oxidation, the role of crystallinity and, in some cases, the recombination rates, and we demonstrated that in the case of mixed nanowires, those with a clear interface between Si and Ge show not only a reduced quantum confinement effect but display also a natural geometrical separation between electron and hole. PMID:21076696

  17. Ab initio molecular dynamics simulations of low energy recoil events in MgO

    DOE PAGES

    Petersen, B. A.; Liu, B.; Weber, W. J.; ...

    2017-01-11

    In this paper, low-energy recoil events in MgO are studied using ab initio molecular dynamics simulations to reveal the dynamic displacement processes and final defect configurations. Threshold displacement energies, Ed, are obtained for Mg and O along three low-index crystallographic directions, [100], [110], and [111]. The minimum values for Ed are found along the [110] direction consisting of the same element, either Mg or O atoms. Minimum threshold values of 29.5 eV for Mg and 25.5 eV for O, respectively, are suggested from the calculations. For other directions, the threshold energies are considerably higher, 65.5 and 150.0 eV for Omore » along [111] and [100], and 122.5 eV for Mg along both [111] and [100] directions, respectively. These results show that the recoil events in MgO are partial-charge transfer assisted processes where the charge transfer plays an important role. Finally, there is a similar trend found in other oxide materials, where the threshold displacement energy correlates linearly with the peak partial-charge transfer, suggesting this behavior might be universal in ceramic oxides.« less

  18. Ab initio investigation into the stability and electronic properties of GaN-nanowires

    NASA Astrophysics Data System (ADS)

    Carter, D. J.; Gale, J. D.; Delley, B.; Stampfl, C.

    2006-03-01

    Recent reports of successful fabrication of high quality gallium nanostructures such as quantum dots, nanocrystallites and nanowires, eg. [1], open the door to their possible role as important nanoscale building blocks for future optoelectronic, high-temperature/power and spintronic device applications. In the present work we perform ab initio calculations, using the DMol^3 [2] and SIESTA [3] codes, for wurtzite GaN nanowires. We have examined nanowires in the [0001], [1010], and [1120] directions, and investigated the stability, electronic and atomic structures as a function of nanowire radius. We found that only nanowires in the [0001] direction are stable, and that wires in the other directions can be stabilised by saturating dangling bonds with hydrogen. We have also investigated the properties of key point defects and dopants. [1] J. C. Johnson, et al. Nature Materials 1, 106 (2002). [2] B. Delley, J. Chem. Phys. 92, 508 (1990); ibid 113, 7756 (2000). [3] J.M. Soler, et al. J. Phys.: Condens. Matter. 14, 2745 (2002).

  19. Ab initio Study of Transition metal binding to the Prion Protein

    NASA Astrophysics Data System (ADS)

    Cox, Daniel L.; Singh, Rajiv R. P.; Pan, Jianping

    2004-03-01

    Fundamental understanding of the prion protein (PrP) is of critical public health importance in view of mad cow and chronic wasting diseases. In recent years, it has been shown that the normal form (PrP^c) binds copper^1), and the structure of the copper binding domain has been elaborated. Hypotheses about toxicity associated with binding of other metals (notably manganese) have been put forward, Accordingly, using the ab initio SIESTA density functional theory code^2), we calculated the binding energy E_B(M) of M-(PrP) complexes relative to initially uncomplexed M ions, with M=Cu,Ni,Zn,Mn and (PrP)^* the minimal binding domain. The binding energy trend is E_B(Ni)>E_B(Cu)>E_B(Zn)>E_B(Mn), consistent with recent experiments apart from the surprising stability of Ni. We will also present preliminary results for binding of initially complexed M ions. *-Supported by U.S. DOE, Office of Basic Energy Sciences, Division of Materials Research 1) G.S. Jackson et al., Proc. Nat. Acad. Sci. (USA) 98, 8531 (2001). 2) P. Ordejón, et al., Phys. Rev. B53, R10441 (1996); J.M. Soler et al., J. Phys. Cond. Matt. 14, 2745 (2002).

  20. Ferromagnetic ordering of Cr and Fe doped p-type diamond: An ab initio study

    SciTech Connect

    Benecha, E. M.; Lombardi, E. B.

    2014-02-21

    Ferromagnetic ordering of transition metal dopants in semiconductors holds the prospect of combining the capabilities of semiconductors and magnetic systems in single hybrid devices for spintronic applications. Various semiconductors have so far been considered for spintronic applications, but low Curie temperatures have hindered room temperature applications. We report ab initio DFT calculations on the stability and magnetic properties of Fe and Cr impurities in diamond, and show that their ground state magnetic ordering and stabilization energies depend strongly on the charge state and type of co-doping. We predict that divacancy Cr{sup +2} and substitutional Fe{sup +1} order ferromagnetically in p-type diamond, with magnetic stabilization energies (and magnetic moment per impurity ion) of 16.9 meV (2.5 μ{sub B}) and 33.3 meV (1.0 μ{sub B}), respectively. These magnetic stabilization energies are much larger than what has been achieved in other semiconductors at comparable impurity concentrations, including the archetypal dilute magnetic semiconductor GaAs:Mn. In addition, substitutional Fe{sup +1} exhibits a strong half-metallic character, with the Fermi level crossing bands in only the spin down channel. These results, combined with diamond’s extreme properties, demonstrate that Cr or Fe dopedp-type diamond may successfully be considered in the search for room temperature spintronic materials.

  1. Ab initio diffuse-interface model for lithiated electrode interface evolution

    NASA Astrophysics Data System (ADS)

    Stournara, Maria E.; Kumar, Ravi; Qi, Yue; Sheldon, Brian W.

    2016-07-01

    The study of chemical segregation at interfaces, and in particular the ability to predict the thickness of segregated layers via analytical expressions or computational modeling, is a fundamentally challenging topic in the design of novel heterostructured materials. This issue is particularly relevant for the phase-field (PF) methodology, which has become a prominent tool for describing phase transitions. These models rely on phenomenological parameters that pertain to the interfacial energy and thickness, quantities that cannot be experimentally measured. Instead of back-calculating these parameters from experimental data, here we combine a set of analytical expressions based on the Cahn-Hilliard approach with ab initio calculations to compute the gradient energy parameter κ and the thickness λ of the segregated Li layer at the LixSi-Cu interface. With this bottom-up approach we calculate the thickness λ of the Li diffuse interface to be on the order of a few nm, in agreement with prior experimental secondary ion mass spectrometry observations. Our analysis indicates that Li segregation is primarily driven by solution thermodynamics, while the strain contribution in this system is relatively small. This combined scheme provides an essential first step in the systematic evaluation of the thermodynamic parameters of the PF methodology, and we believe that it can serve as a framework for the development of quantitative interface models in the field of Li-ion batteries.

  2. Ferromagnetic ordering of Cr and Fe doped p-type diamond: An ab initio study

    NASA Astrophysics Data System (ADS)

    Benecha, E. M.; Lombardi, E. B.

    2014-02-01

    Ferromagnetic ordering of transition metal dopants in semiconductors holds the prospect of combining the capabilities of semiconductors and magnetic systems in single hybrid devices for spintronic applications. Various semiconductors have so far been considered for spintronic applications, but low Curie temperatures have hindered room temperature applications. We report ab initio DFT calculations on the stability and magnetic properties of Fe and Cr impurities in diamond, and show that their ground state magnetic ordering and stabilization energies depend strongly on the charge state and type of co-doping. We predict that divacancy Cr+2 and substitutional Fe+1 order ferromagnetically in p-type diamond, with magnetic stabilization energies (and magnetic moment per impurity ion) of 16.9 meV (2.5 μB) and 33.3 meV (1.0 μB), respectively. These magnetic stabilization energies are much larger than what has been achieved in other semiconductors at comparable impurity concentrations, including the archetypal dilute magnetic semiconductor GaAs:Mn. In addition, substitutional Fe+1 exhibits a strong half-metallic character, with the Fermi level crossing bands in only the spin down channel. These results, combined with diamond's extreme properties, demonstrate that Cr or Fe dopedp-type diamond may successfully be considered in the search for room temperature spintronic materials.

  3. Ab-initio Electronic, Transport and Related Properties of Zinc Blende Boron Arsenide (zb-BAs)

    NASA Astrophysics Data System (ADS)

    Nwigboji, Ifeanyi H.; Malozovsky, Yuriy; Bagayoko, Diola

    We present results from ab-initio, self-consistent density functional theory (DFT) calculations of electronic, transport, and bulk properties of zinc blende boron arsenide (zb-BAs). We utilized a local density approximation (LDA) potential and the linear combination of atomic orbital (LCAO) formalism. Our computational technique follows the Bagayoko, Zhao, and Williams method, as enhanced by Ekuma and Franklin. Our results include electronic energy bands, densities of states, and effective masses. We explain the agreement between these findings, including the indirect band gap, and available, corresponding, experimental ones. This work confirms the capability of DFT to describe accurately properties of materials, provided the computations adhere to the conditions of validity of DFT [AIP Advances, 4, 127104 (2014)]. Acknowledgments: This work was funded in part by the National Science Foundation (NSF) and the Louisiana Board of Regents, through LASiGMA [Award Nos. EPS- 1003897, NSF (2010-15)-RII-SUBR] and NSF HRD-1002541, the US Department of Energy - National, Nuclear Security Administration (NNSA) (Award No. DE- NA0002630), LaSPACE, and LONI-SUBR.

  4. An ab-initio coupled mode theory for near field radiative thermal transfer.

    PubMed

    Chalabi, Hamidreza; Hasman, Erez; Brongersma, Mark L

    2014-12-01

    We investigate the thermal transfer between finite-thickness planar slabs which support surface phonon polariton modes (SPhPs). The thickness-dependent dispersion of SPhPs in such layered materials provides a unique opportunity to manipulate and enhance the near field thermal transfer. The key accomplishment of this paper is the development of an ab-initio coupled mode theory that accurately describes all of its thermal transfer properties. We illustrate how the coupled mode parameters can be obtained in a direct fashion from the dispersion relation of the relevant modes of the system. This is illustrated for the specific case of a semi-infinite SiC substrate placed in close proximity to a thin slab of SiC. This is a system that exhibits rich physics in terms of its thermal transfer properties, despite the seemingly simple geometry. This includes a universal scaling behavior of the thermal conductance with the slab thickness and spacing. The work highlights and further increases the value of coupled mode theories in rapidly calculating and intuitively understanding near-field transfer.

  5. Ab initio calculation of the crystalline structure and IR spectrum of polymers: nylon 6 polymorphs.

    PubMed

    Quarti, Claudio; Milani, Alberto; Civalleri, Bartolomeo; Orlando, Roberto; Castiglioni, Chiara

    2012-07-19

    State-of-the-art computational methods in solid-state chemistry were applied to predict the structural and spectroscopic properties of the α and γ crystalline polymorphs of nylon 6. Density functional theory calculations augmented with an empirical dispersion correction (DFT-D) were used for the optimization of the two different crystal structures and of the isolated chains, characterized by a different regular conformation and described as one-dimensional infinite chains. The structural parameters of both crystalline polymorphs were correctly predicted, and new insight into the interplay of conformational effects, hydrogen bonding, and van der Waals interactions in affecting the properties of the crystal structures of polyamides was obtained. The calculated infrared spectra were compared to experimental data; based on computed vibrational eigenvectors, assignment of the infrared absorptions of the two nylon 6 polymorphs was carried out and critically analyzed in light of previous investigations. On the basis of a comparison of the computed and experimental IR spectra, a set of marker bands was identified and proposed as a tool for detecting and quantifying the presence of a given polymorph in a real sample: several marker bands employed in the past were confirmed, whereas some of the previous assignments are criticized. In addition, some new marker bands are proposed. The results obtained demonstrate that accurate computational techniques are now affordable for polymers characterization, opening the way to several applications of ab initio modeling to the study of many families of polymeric materials.

  6. An ab initio HCN/HNC rotational-vibrational line list and opacity function for astronomy

    NASA Astrophysics Data System (ADS)

    Harris, Gregory John

    HCN/HNC is an important molecule which is found throughout the universe. For example HCN/HNC is known to exist in comets, planetary atmospheres and the interstellar medium. HCN is also an important opacity source in carbon rich stars (C-stars). HCN masers have been observed in the circumstellar material around these C-stars and also in galaxies. Jorgensen and co-workers investigated model carbon star atmospheres in which they included HCN as an opacity source. They found that including a HCN opacity function had a remarkable effect: the atmosphere expanded by five times and the pressure of the atmosphere in the surface layers dropped by one or two orders of magnitude. This suggests that a full and detailed treatment of the rotational-vibrational spectrum of HCN/HNC could have a profound effect on the models of carbon stars, this provides the main motivation in this work. The temperatures of the stars in which HCN is an important opacity source Teff = 2000 - 3000 K. If HCN and HNC are in thermodynamic equilibrium it would be expected that HNC as well as HCN are found in significant populations. The transition dipoles of the fundamental bands of HNC are more than twice as strong as their HCN counter parts. These factors mean that both HCN and HNC will be considered, which makes a semiglobal treatment of the [H,C,N] system necessary. In this thesis an ab initio HCN/HNC linelist, from which accurate spectra and opacity functions can be calculated, is computed. Within this thesis I present least squares fits for ab initio semiglobal potential energy, dipole moment, relativistic correction and adiabatic correction surfaces. The potential energy surface (PES) is morphed for HNC geometries of the potential to improve the HNC representation of the surface. The PES and dipole moment surface (DMS) are used to perform quantum mechanical nuclear motion (rotational-vibrational) calculations with the DVR3D suite of codes. Preliminary calculations are made to optimise a ro

  7. Ab initio Quantum Chemical Reaction Kinetics: Recent Applications in Combustion Chemistry (Briefing Charts)

    DTIC Science & Technology

    2015-06-28

    Charts 3. DATES COVERED (From - To) June 2015-June 2015 4. TITLE AND SUBTITLE AB INITIO QUANTUM CHEMICAL REACTION KINETICS: RECENT APPLICATIONS IN...Unlimited. 13. SUPPLEMENTARY NOTES Briefing Charts presented at 9th Int. Conf. Chemical Kinetics; Ghent, Belgium; 28 Jun 2015. PA#15351. 14. ABSTRACT...ghanshyam.vaghjiani@us.af.mil Ab initio Quantum Chemical Reaction Kinetics: Recent Applications in Combustion Chemistry Ghanshyam L. Vaghjiani* DISTRIBUTION A

  8. Experimental and ab initio study of the mechanical properties of hydroxyapatite

    NASA Astrophysics Data System (ADS)

    Snyders, R.; Music, D.; Sigumonrong, D.; Schelnberger, B.; Jensen, J.; Schneider, J. M.

    2007-05-01

    The authors have studied the elastic properties of radio frequency sputtered phase pure, stoichiometric, and dense hydroxyapatite films by nanoindentation. The measured elastic modulus values have been compared to ab initio calculated data. The calculation technique was based on the determination of all elastic constants. The calculated and measured elastic modulus values differ by ˜10%. The good agreement indicates that the elasticity of hydroxyapatite can be described using ab initio calculations, establishing the elastic modulus thereof.

  9. Ab initio calculation of the potential bubble nucleus 34Si

    NASA Astrophysics Data System (ADS)

    Duguet, T.; Somà, V.; Lecluse, S.; Barbieri, C.; Navrátil, P.

    2017-03-01

    Background: The possibility that an unconventional depletion (referred to as a "bubble") occurs in the center of the charge density distribution of certain nuclei due to a purely quantum mechanical effect has attracted theoretical and experimental attention in recent years. Based on a mean-field rationale, a correlation between the occurrence of such a semibubble and an anomalously weak splitting between low angular-momentum spin-orbit partners has been further conjectured. Energy density functional and valence-space shell model calculations have been performed to identify and characterize the best candidates, among which 34Si appears as a particularly interesting case. While the experimental determination of the charge density distribution of the unstable 34Si is currently out of reach, (d ,p ) experiments on this nucleus have been performed recently to test the correlation between the presence of a bubble and an anomalously weak 1 /2--3 /2- splitting in the spectrum of 35Si as compared to 37S. Purpose: We study the potential bubble structure of 34Si on the basis of the state-of-the-art ab initio self-consistent Green's function many-body method. Methods: We perform the first ab initio calculations of 34Si and 36S. In addition to binding energies, the first observables of interest are the charge density distribution and the charge root-mean-square radius for which experimental data exist in 36S. The next observable of interest is the low-lying spectroscopy of 35Si and 37S obtained from (d ,p ) experiments along with the spectroscopy of 33Al and 35P obtained from knock-out experiments. The interpretation in terms of the evolution of the underlying shell structure is also provided. The study is repeated using several chiral effective field theory Hamiltonians as a way to test the robustness of the results with respect to input internucleon interactions. The convergence of the results with respect to the truncation of the many-body expansion, i.e., with respect to

  10. Electronic and mechanical properties of ZnX (X = S, Se and Te)--An ab initio study

    SciTech Connect

    Verma, Ajay Singh; Sharma, Sheetal; Jindal, Vijay Kumar; Sarkar, Bimal Kumar

    2011-12-12

    Zinc chalcogenides (ZnX, X = S, Se and Te) have been increasing attention as wide and direct band gap semiconductor for blue and ultraviolet optical devices. This paper analyzes electronic and mechanical properties of these materials by ab initio pseudo-potential method that uses non conserving pseudopotentials in fully nonlocal form, as implemented in SIESTA code. In this approach the local density approximation (LDA) is used for the exchange-correlation (XC) potential. The calculations are given for band gap, elastic constants (C{sub 11}, C{sub 12} and C{sub 44}), shear modulus, and Young's modulus. The results are in very good agreement with previous theoretical calculations and available experimental data.

  11. High pressure elastic properties of minerals from ab initio simulations: The case of pyrope, grossular and andradite silicate garnets

    SciTech Connect

    Erba, A. Mahmoud, A.; Dovesi, R.; Belmonte, D.

    2014-03-28

    A computational strategy is devised for the accurate ab initio simulation of elastic properties of crystalline materials under pressure. The proposed scheme, based on the evaluation of the analytical stress tensor and on the automated computation of pressure-dependent elastic stiffness constants, is implemented in the CRYSTAL solid state quantum-chemical program. Elastic constants and related properties (bulk, shear and Young moduli, directional seismic wave velocities, elastic anisotropy index, Poisson's ratio, etc.) can be computed for crystals of any space group of symmetry. We apply such a technique to the study of high-pressure elastic properties of three silicate garnet end-members (namely, pyrope, grossular, and andradite) which are of great geophysical interest, being among the most important rock-forming minerals. The reliability of this theoretical approach is proved by comparing with available experimental measurements. The description of high-pressure properties provided by several equations of state is also critically discussed.

  12. High pressure elastic properties of minerals from ab initio simulations: the case of pyrope, grossular and andradite silicate garnets.

    PubMed

    Erba, A; Mahmoud, A; Belmonte, D; Dovesi, R

    2014-03-28

    A computational strategy is devised for the accurate ab initio simulation of elastic properties of crystalline materials under pressure. The proposed scheme, based on the evaluation of the analytical stress tensor and on the automated computation of pressure-dependent elastic stiffness constants, is implemented in the CRYSTAL solid state quantum-chemical program. Elastic constants and related properties (bulk, shear and Young moduli, directional seismic wave velocities, elastic anisotropy index, Poisson's ratio, etc.) can be computed for crystals of any space group of symmetry. We apply such a technique to the study of high-pressure elastic properties of three silicate garnet end-members (namely, pyrope, grossular, and andradite) which are of great geophysical interest, being among the most important rock-forming minerals. The reliability of this theoretical approach is proved by comparing with available experimental measurements. The description of high-pressure properties provided by several equations of state is also critically discussed.

  13. High adsorption capacity of heavy metals on two-dimensional MXenes: an ab initio study with molecular dynamics simulation.

    PubMed

    Guo, Xun; Zhang, Xitong; Zhao, Shijun; Huang, Qing; Xue, Jianming

    2016-01-07

    Density functional theory (DFT) calculation is employed to study the adsorption properties of Pb and Cu on recently synthesized two-dimensional materials MXenes, including Ti3C2, V2C1 and Ti2C1. The influence of surface decoration with functional groups such as H, OH and F have also been investigated. Most of these studied MXenes exhibit excellent capability to adsorb Pb and Cu, especially the adsorption capacity of Pb on Ti2C1 is as high as 2560 mg g(-1). Both the binding energies and the adsorption capacities are sensitive to the functional groups attached to the MXenes' surface. Ab initio molecular dynamics (ab-init MD) simulation confirms that Ti2C1 remains stable at room temperature after adsorbing Pb atoms. Our calculations imply that these newly emerging two-dimensional MXenes are promising candidates for wastewater treatment and ion separation.

  14. AB initio free energy calculations of the solubility of silica in metallic hydrogen and application to giant planet cores

    SciTech Connect

    González-Cataldo, F.; Wilson, Hugh F.; Militzer, B.

    2014-05-20

    By combining density functional molecular dynamics simulations with a thermodynamic integration technique, we determine the free energy of metallic hydrogen and silica, SiO{sub 2}, at megabar pressures and thousands of degrees Kelvin. Our ab initio solubility calculations show that silica dissolves into fluid hydrogen above 5000 K for pressures from 10 and 40 Mbars, which has implications for the evolution of rocky cores in giant gas planets like Jupiter, Saturn, and a substantial fraction of known extrasolar planets. Our findings underline the necessity of considering the erosion and redistribution of core materials in giant planet evolution models, but they also demonstrate that hot metallic hydrogen is a good solvent at megabar pressures, which has implications for high-pressure experiments.

  15. Ab initio molecular dynamics study of the properties of cerium in liquid sodium at 1000 K temperature

    SciTech Connect

    Samin, Adib; Li, Xiang; Zhang, Jinsuo; Mariani, R. D.; Unal, Cetin

    2015-12-21

    For liquid-sodium-cooled fast nuclear reactor systems, it is crucial to understand the behavior of lanthanides and other potential fission products in liquid sodium or other liquid metal solutions such as liquid cesium-sodium. In this study, we focus on lanthanide behavior in liquid sodium. Using ab initio molecular dynamics, we found that the solubility of cerium in liquid sodium at 1000 K was less than 0.78 at. %, and the diffusion coefficient of cerium in liquid sodium was calculated to be 5.57 × 10{sup −9} m{sup 2}/s. Furthermore, it was found that cerium in small amounts may significantly alter the heat capacity of the liquid sodium system. Our results are consistent with the experimental results for similar materials under similar conditions.

  16. Atomic structure of amorphous Mg40Cu35Ti25 alloy: An ab initio molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Durandurdu, Murat

    2013-01-01

    Ab initio molecular dynamics simulations are carried out to model amorphous Mg40Cu35Ti25 and its local structural packing are investigated using a variety of analyzing techniques. Cu-atoms commonly form 12 fold coordinated clusters and some of which are perfect or defective types icosahedrons, implying an icosohedral short range order around Cu atoms. Mg and Ti atoms, on the other hand, favor to structure in higher coordinated polyhedrons. The coordination number of Ti atoms is slightly less than Mg atoms. The immiscibility effect between Ti and Mg is reflected by a low fraction of Mg-Ti bonding in the model. The atomic packing of Mg40Cu35Ti25 appears to be noticeably different from that of Mg-Cu-X (X=Y and Gd) metallic glasses even though all these materials exhibit primarily the same type of bonding natures.

  17. Electronic structure of AlCrN films investigated using various photoelectron spectroscopies and ab initio calculations

    NASA Astrophysics Data System (ADS)

    Tatemizo, N.; Imada, S.; Miura, Y.; Yamane, H.; Tanaka, K.

    2017-03-01

    The valence band (VB) structures of wurtzite AlCrN (Cr concentration: 0-17.1%), which show optical absorption in the ultraviolet-visible-infrared light region, were investigated via photoelectron yield spectroscopy (PYS), x-ray/ultraviolet photoelectron spectroscopy (XPS/UPS), and ab initio density of states (DOS) calculations. An obvious photoelectron emission threshold was observed ~5.3 eV from the vacuum level for AlCrN, whereas no emission was observed for AlN in the PYS spectra. Comparisons of XPS and UPS VB spectra and the calculated DOS imply that Cr 3d states are formed both at the top of the VB and in the AlN gap. These data suggest that Cr doping could be a viable option to produce new materials with relevant energy band structures for solar photoelectric conversion.

  18. Ab initio molecular dynamics study of the properties of cerium in liquid sodium at 1000 K temperature

    NASA Astrophysics Data System (ADS)

    Samin, Adib; Li, Xiang; Zhang, Jinsuo; Mariani, R. D.; Unal, Cetin

    2015-12-01

    For liquid-sodium-cooled fast nuclear reactor systems, it is crucial to understand the behavior of lanthanides and other potential fission products in liquid sodium or other liquid metal solutions such as liquid cesium-sodium. In this study, we focus on lanthanide behavior in liquid sodium. Using ab initio molecular dynamics, we found that the solubility of cerium in liquid sodium at 1000 K was less than 0.78 at. %, and the diffusion coefficient of cerium in liquid sodium was calculated to be 5.57 × 10-9 m2/s. Furthermore, it was found that cerium in small amounts may significantly alter the heat capacity of the liquid sodium system. Our results are consistent with the experimental results for similar materials under similar conditions.

  19. Protons in polar media: An ab initio molecular dynamics study

    NASA Astrophysics Data System (ADS)

    von Rosenvinge, Tycho

    1998-10-01

    The hydrates of hydrogen chloride are ionic crystals that contain hydronium (H3O+). The hydronium in the monohydrate has been reported to be statistically disordered between two possible sites related by inversion symmetry. Ab initio molecular dynamics calculations are presented for the monohydrate, as well as the di-, and tri-hydrates, of hydrogen chloride using the density functional based Car-Parrinello technique. The simulations were carried out with the goal of investigating proton disorder in these crystals. The possible role of nuclear quantum effects has been explored via path integral molecular dynamic simulations. The present results suggest that the proposed disordered sites in the monohydrate are dynamically unstable and therefore unlikely to be responsible for the reported disorder. No useful information was obtained for the dihydrate because the large unit cell leads to difficulties in carrying out the simulations. Nuclear quantum effects are shown to be important for characterizing the proton distributions in the trihydrate. The structure and dynamical behavior of liquid HF with dissolved KF have been investigated using the Car- Parrinello ab initio molecular dynamics scheme. Specifically, a system with stoichiometry KFċ2HF was studied at temperatures of 400K and 1000K. This system, which was started from a phase separated mixture, rapidly formed into solvated potassium ions and HnFn+1/sp- polyfluoride anions with n = 1, 2, 3, and 4. The resulting polyfluoride anions were classified, and their structures and dynamical behavior were compared with the known structures and spectra of crystalline compounds KF/cdot xHF and with theoretical predictions of isolated gas phase species. The present study reveals dramatic frequency shifts in the H atom vibrational modes with variation in the HF coordination number of the polyfluoride anion. In particular the FH wagging motion red shifts while the FH stretch blue shifts as n increases. The present calculations

  20. Designing thin film materials — Ternary borides from first principles

    PubMed Central

    Euchner, H.; Mayrhofer, P.H.

    2015-01-01

    Exploiting the mechanisms responsible for the exceptional properties of aluminum based nitride coatings, we apply ab initio calculations to develop a recipe for designing functional thin film materials based on ternary diborides. The combination of binary diborides, preferring different structure types, results in supersaturated metastable ternary systems with potential for phase transformation induced effects. For the exemplary cases of MxW1 − xB2 (with M = Al, Ti, V) we show by detailed ab initio calculations that the respective ternary solid solutions are likely to be experimentally accessible by modern depositions techniques. PMID:26082562

  1. Ab-initio simulations of deformation potentials and electron mobility in chemically modified graphene and two-dimensional hexagonal boron-nitride

    NASA Astrophysics Data System (ADS)

    Bruzzone, Samantha; Fiori, Gianluca

    2011-11-01

    We present an ab-initio study of electron mobility and electron-phonon coupling in chemically modified graphene, considering fluorinated and hydrogenated graphene at different percentage coverage. Hexagonal boron carbon nitrogen is also investigated due the increased interest shown by the research community towards this material. In particular, the deformation potentials are computed by means of density functional theory, while the carrier mobility is obtained according to the Takagi model (S. Takagi, A. Toriumi, and H. Tango, IEEE Trans. Electron Devices 41, 2363 (1994)). We will show that graphene with a reduced degree of hydrogenation can compete, in terms of mobility, with silicon technology.

  2. Ab initio solution of macromolecular crystal structures without direct methods.

    PubMed

    McCoy, Airlie J; Oeffner, Robert D; Wrobel, Antoni G; Ojala, Juha R M; Tryggvason, Karl; Lohkamp, Bernhard; Read, Randy J

    2017-04-04

    The majority of macromolecular crystal structures are determined using the method of molecular replacement, in which known related structures are rotated and translated to provide an initial atomic model for the new structure. A theoretical understanding of the signal-to-noise ratio in likelihood-based molecular replacement searches has been developed to account for the influence of model quality and completeness, as well as the resolution of the diffraction data. Here we show that, contrary to current belief, molecular replacement need not be restricted to the use of models comprising a substantial fraction of the unknown structure. Instead, likelihood-based methods allow a continuum of applications depending predictably on the quality of the model and the resolution of the data. Unexpectedly, our understanding of the signal-to-noise ratio in molecular replacement leads to the finding that, with data to sufficiently high resolution, fragments as small as single atoms of elements usually found in proteins can yield ab initio solutions of macromolecular structures, including some that elude traditional direct methods.

  3. Ab initio study of MoS2 nanotube bundles

    NASA Astrophysics Data System (ADS)

    Verstraete, Matthieu; Charlier, Jean-Christophe

    2003-07-01

    Recently, the synthesis of a new phase of MoS2I1/3 stoichiometry was reported [M. Remskar, A. Mrzel, Z. Skraba, A. Jesih, M. Ceh, J. Demšar, P. Stadelmann, F. Lévy, and D. Mihailovic, Science 292, 479 (2001)]. Electron microscope images and diffraction data were interpreted to indicate bundles of sub-nanometer-diameter single-wall MoS2 nanotubes. After experimental characterization, the structure was attributed to an assembly of “armchair” nanotubes with interstitial iodine. Using first-principles total-energy calculations, bundles of MoS2 nanotubes with different topologies and stoichiometries are investigated. All of the systems are strongly metallic. Configurations with “zigzag” structures are found to be more stable energetically than the “armchair” ones, though all of the structures have similar stabilities. After relaxation, there remain several candidates which give a lattice parameter in relative agreement with experiment. Further, spin-polarized calculations indicate that a structure with armchair tubes iodine atoms in their center acquires a very large spontaneous magnetic moment of 12μB, while the other structures are nonmagnetic. Our ab initio calculations show that in most of the other structures, the tubes are very strongly bound together, and that the compounds should be considered as a crystal, rather than as a bundle of tubes in the habitual sense.

  4. Melting curves of metals by ab initio calculations

    NASA Astrophysics Data System (ADS)

    Minakov, Dmitry; Levashov, Pavel

    2015-06-01

    In this work we used several ab initio approaches to reproduce melting curves and discussed their abilities, advantages and drawbacks. We used quasiharmonic appoximation and Lindemann criterion to build melting curves in wide region of pressures. This approach allows to calculate the total free energy of electrons and phonons, so it is possible to obtain all thermodynamic properties in the crystalline state. We also used quantum molecular dynamics simulations to investigate melting at various pressures. We explored the size-effect of the heat until it melts (HUM) method in detail. Special attention was paid to resolve the boundaries of the melting region on density. All calculations were performed for aluminum, copper and gold. Results were in good agreement with available experimental data. Also we studied the influence of electronic temperature on melting curves. It turned out that the melting temperature increased with the rise of electron temperature at normal density and had non-monotonic behavior at higher densities. This work is supported by the Ministry of Education and Science of the Russian Federation (Project No. 3.522.2014/K).

  5. Ab-Initio Study of Incongruent Melting in Silicates

    NASA Astrophysics Data System (ADS)

    Pinilla, C.; Stixrude, L. P.

    2014-12-01

    Knowledge of the multi-component thermodynamics and phase equilibria of silicate melts at Earth's interior conditions are key to understand the chemical and thermal evolution of the planet. Yet they remain poorly constrained with a wide uncertainty on the eutectic composition and temperature. In this work we present results from ab-initio molecular dynamics in combination with the two-phase coexistance method to study properties of a system of MgSiO3 liquid coexisting with crystalline MgO at conditions of the deep lower mantle. During incongruent melting the crystal may either grow via partial freezing of the liquid or shrink via partial melting at a given temperature and pressure. The melting process can be studied using the two-phases method where liquid and solid are in contact at a given temperature and pressure and so under thermodynamic equilibrium. We characterise the composition and densities of the resultant solid and liquid phases, provide chemical potentials of the liquid phase and study the structural and dynamical properties of the melt. In addition, we discuss the performance of alternative computational methods applied to the study of incongruent melting in silicate systems where long simulation times and a large number of atoms are usually needed. Finally, we discuss the implication of our findings for the evolution of the Earth's interior.

  6. Ab initio description of the exotic unbound 7He nucleus

    DOE PAGES

    Baroni, Simone; Navratil, Petr; Quaglioni, Sofia

    2013-01-11

    In this study, the neutron-rich unbound 7He nucleus has been the subject of many experimental investigations. While the ground-state 3/2– resonance is well established, there is a controversy concerning the excited 1/2– resonance reported in some experiments as low lying and narrow (ER~1 MeV, Γ≤1 MeV) while in others as very broad and located at a higher energy. This issue cannot be addressed by ab initio theoretical calculations based on traditional bound-state methods. We introduce a new unified approach to nuclear bound and continuum states based on the coupling of the no-core shell model, a bound-state technique, with the no-coremore » shell model combined with the resonating-group method, a nuclear scattering technique. Our calculations describe the ground-state resonance in agreement with experiment and, at the same time, predict a broad 1/2– resonance above 2 MeV.« less

  7. Volumic omit maps in ab initio dual-space phasing.

    PubMed

    Oszlányi, Gábor; Sütő, András

    2016-07-01

    Alternating-projection-type dual-space algorithms have a clear construction, but are susceptible to stagnation and, thus, inefficient for solving the phase problem ab initio. To improve this behaviour new omit maps are introduced, which are real-space perturbations applied periodically during the iteration process. The omit maps are called volumic, because they delete some predetermined subvolume of the unit cell without searching for atomic regions or analysing the electron density in any other way. The basic algorithms of positivity, histogram matching and low-density elimination are tested by their solution statistics. It is concluded that, while all these algorithms based on weak constraints are practically useless in their pure forms, appropriate volumic omit maps can transform them to practically useful methods. In addition, the efficiency of the already useful reflector-type charge-flipping algorithm can be further improved. It is important that these results are obtained by using non-sharpened structure factors and without any weighting scheme or reciprocal-space perturbation. The mathematical background of volumic omit maps and their expected applications are also discussed.

  8. Ab Initio Study of Covalently Functionalized Graphene and Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Jha, Sanjiv; Hammouri, Mahmoud; Vasiliev, Igor; Magedov, Igor; Frolova, Liliya; Kalugin, Nikolai

    2014-03-01

    The electronic and structural properties of carbon nanomaterials can be affected by chemical functionalization. We apply ab initio computational methods based on density functional theory to study the properties of graphene and single-walled carbon nanotubes functionalized with benzyne. Our calculations are carried out using the SIESTA electronic structure code combined with the generalized gradient approximation for the exchange correlation functional. The calculated binding energies, densities of states, and band structures of functionalized graphene and carbon nanotubes are analyzed in comparison with the available experimental data. The surfaces of carbon nanotubes are found to be significantly more reactive toward benzyne molecules than the surface of graphene. The strength of interaction between benzyne and carbon nanotubes is affected by the curvature of the nanotube sidewall. The binding energies of benzyne molecules attached to both semiconducting zigzag and metallic armchair nanotubes increase with decreasing the nanotube diameter. Supported by NSF CHE-1112388, NMSU GREG Award, NSF ECCS-0925988, NIH-5P20RR016480-12, and NIH- P20 GM103451.

  9. Accurate ab initio vibrational energies of methyl chloride

    SciTech Connect

    Owens, Alec; Yurchenko, Sergei N.; Yachmenev, Andrey; Tennyson, Jonathan; Thiel, Walter

    2015-06-28

    Two new nine-dimensional potential energy surfaces (PESs) have been generated using high-level ab initio theory for the two main isotopologues of methyl chloride, CH{sub 3}{sup 35}Cl and CH{sub 3}{sup 37}Cl. The respective PESs, CBS-35{sup  HL}, and CBS-37{sup  HL}, are based on explicitly correlated coupled cluster calculations with extrapolation to the complete basis set (CBS) limit, and incorporate a range of higher-level (HL) additive energy corrections to account for core-valence electron correlation, higher-order coupled cluster terms, scalar relativistic effects, and diagonal Born-Oppenheimer corrections. Variational calculations of the vibrational energy levels were performed using the computer program TROVE, whose functionality has been extended to handle molecules of the form XY {sub 3}Z. Fully converged energies were obtained by means of a complete vibrational basis set extrapolation. The CBS-35{sup  HL} and CBS-37{sup  HL} PESs reproduce the fundamental term values with root-mean-square errors of 0.75 and 1.00 cm{sup −1}, respectively. An analysis of the combined effect of the HL corrections and CBS extrapolation on the vibrational wavenumbers indicates that both are needed to compute accurate theoretical results for methyl chloride. We believe that it would be extremely challenging to go beyond the accuracy currently achieved for CH{sub 3}Cl without empirical refinement of the respective PESs.

  10. Ab initio predictions of the symmetry energy and recent constraints

    NASA Astrophysics Data System (ADS)

    Sammarruca, Francesca

    2017-01-01

    The symmetry energy plays a crucial role in the structure and the dynamics of neutron-rich systems, including the formation of neutron skins, the location of neutron drip lines, as well as intriguing correlations with the structure of compact stars. With experimental efforts in progress or being planned to shed light on the less known aspects of the nuclear chart, microscopic predictions based on ab initio approaches are very important. In recent years, chiral effective field theory has become popular because of its firm connection with quantum chromodynamics and its systematic approach to the development of nuclear forces. Predictions of the symmetry energy obtained from modern chiral interactions will be discussed in the light of recent empirical constraints extracted from heavy ion collisions at 400 MeV per nucleon at GSI. Applications of our equations of state to neutron-rich systems will also be discussed, with particular emphasis on neutron skins, which are sensitive to the density dependence of the symmetry energy.

  11. An efficient approach to ab initio Monte Carlo simulation.

    PubMed

    Leiding, Jeff; Coe, Joshua D

    2014-01-21

    We present a Nested Markov chain Monte Carlo (NMC) scheme for building equilibrium averages based on accurate potentials such as density functional theory. Metropolis sampling of a reference system, defined by an inexpensive but approximate potential, was used to substantially decorrelate configurations at which the potential of interest was evaluated, thereby dramatically reducing the number needed to build ensemble averages at a given level of precision. The efficiency of this procedure was maximized on-the-fly through variation of the reference system thermodynamic state (characterized here by its inverse temperature β(0)), which was otherwise unconstrained. Local density approximation results are presented for shocked states of argon at pressures from 4 to 60 GPa, where-depending on the quality of the reference system potential-acceptance probabilities were enhanced by factors of 1.2-28 relative to unoptimized NMC. The optimization procedure compensated strongly for reference potential shortcomings, as evidenced by significantly higher speedups when using a reference potential of lower quality. The efficiency of optimized NMC is shown to be competitive with that of standard ab initio molecular dynamics in the canonical ensemble.

  12. Ab initio studies of phosphorene island single electron transistor

    NASA Astrophysics Data System (ADS)

    Ray, S. J.; Venkata Kamalakar, M.; Chowdhury, R.

    2016-05-01

    Phosphorene is a newly unveiled two-dimensional crystal with immense potential for nanoelectronic and optoelectronic applications. Its unique electronic structure and two dimensionality also present opportunities for single electron devices. Here we report the behaviour of a single electron transistor (SET) made of a phosphorene island, explored for the first time using ab initio calculations. We find that the band gap and the charging energy decrease monotonically with increasing layer numbers due to weak quantum confinement. When compared to two other novel 2D crystals such as graphene and MoS2, our investigation reveals larger adsorption energies of gas molecules on phosphorene, which indicates better a sensing ability. The calculated charge stability diagrams show distinct changes in the presence of an individual molecule which can be applied to detect the presence of different molecules with sensitivity at a single molecular level. The higher charging energies of the molecules within the SET display operational viability at room temperature, which is promising for possible ultra sensitive detection applications.

  13. Ab initio Raman spectroscopy of water under extreme conditions

    NASA Astrophysics Data System (ADS)

    Rozsa, Viktor; Pan, Ding; Wan, Quan; Galli, Giulia

    Water exhibits one of the most complex phase diagrams of any binary compound. Despite extensive studies, the melting lines of high-pressure ice phases remain very controversial, with reports differing by hundreds of Kelvin. The boundary between ice VII and liquid phase is particularly disputed, with recent work exploring plasticity and amorphization mediating the transition. Raman measurements are often used to fingerprint melting, yet their interpretation is difficult without atomistic modeling. Here, we report a study of high P/T water where we computed Raman spectra using a method combining ab initio molecular dynamics and density functional perturbation theory, as implemented in the Qbox code. Spectra were computed for the liquid at 10 and 20 GPa, both at 1000 K, and for solid ice VII (20 GPa, 500 K). Decomposing the spectra into inter and intra molecular contributions provided insight into the dynamics of the hydrogen-bonded network at extreme conditions. The relevance of our simulation results for models of water in Earth, Uranus, and Neptune will be discussed, and an interpretation of existing experiments at high pressure will be presented.

  14. Ab initio studies of niobium defects in uranium

    SciTech Connect

    Xiang, S; Huang, H; Hsiung, L

    2007-06-01

    Uranium (U), with the addition of small amount of niobium (Nb), is stainless. The Nb is fully miscible with the high temperature phase of U and tends to segregate upon cooling below 647 C. The starting point of segregation is the configuration of Nb substitutional or interstitial defects. Using density-functional-theory based ab initio calculations, the authors find that the formation energy of a single vacancy is 1.08 eV, that of Nb substitution is 0.59 eV, that of Nb interstitial at octahedral site is 1.58 eV, and that of Nb interstitial at tetrahedral site is 2.35 eV; all with reference to a reservoir of {gamma} phase U and pure Nb. The formation energy of Nb defects correlates with the local perturbation of electron distribution; higher formation energy to larger perturbation. Based on this study, Nb atoms thermodynamically prefer to occupy substitutional sites in {gamma} phase U, and they prefer to be in individual substitutional defects than clusters.

  15. Perovskite transparent conducting oxides: an ab initio study.

    PubMed

    Dabaghmanesh, S; Saniz, R; Amini, M N; Lamoen, D; Partoens, B

    2013-10-16

    We present an ab initio study of the electronic structure and of the formation energies of various point defects in BaSnO3 and SrGeO3. We show that La and Y impurities substituting Ba or Sr are shallow donors with a preferred 1 + charge state. These defects have a low formation energy within all the suitable equilibrium growth conditions considered. Oxygen vacancies behave as shallow donors as well, preferring the 2 + charge state. Their formation energies, however, are higher in most growth conditions, indicating a limited contribution to conductivity. The calculated electron effective mass in BaSnO3, with a value of 0.21 m(e), and the very high mobility reported recently in La-doped BaSnO3 single-crystals, suggest that remarkably low scattering rates can be achieved in the latter. In the case of SrGeO3, our results point to carrier density and mobility values in the low range for typical polycrystalline TCOs, in line with experiment.

  16. Ab initio calculations of nuclear reactions important for astrophysics

    NASA Astrophysics Data System (ADS)

    Navratil, Petr; Dohet-Eraly, Jeremy; Calci, Angelo; Horiuchi, Wataru; Hupin, Guillaume; Quaglioni, Sofia

    2016-09-01

    In recent years, significant progress has been made in ab initio nuclear structure and reaction calculations based on input from QCD employing Hamiltonians constructed within chiral effective field theory. One of the newly developed approaches is the No-Core Shell Model with Continuum (NCSMC), capable of describing both bound and scattering states in light nuclei simultaneously. We will present NCSMC results for reactions important for astrophysics that are difficult to measure at relevant low energies, such as 3He(α,γ)7Be and 3H(α,γ)7Li and 11C(p,γ)12N radiative capture, as well as the 3H(d,n)4He fusion. We will also address prospects of calculating the 2H(α,γ)6Li capture reaction within the NCSMC formalism. Prepared in part by LLNL under Contract DE-AC52-07NA27344. Supported by the U.S. DOE, OS, NP, under Work Proposal No. SCW1158, and by the NSERC Grant No. SAPIN-2016-00033. TRIUMF receives funding from the NRC Canada.

  17. Ab Initio Potential Energy Surface for H-H2

    NASA Technical Reports Server (NTRS)

    Patridge, Harry; Bauschlicher, Charles W., Jr.; Stallcop, James R.; Levin, Eugene

    1993-01-01

    Ab initio calculations employing large basis sets are performed to determine an accurate potential energy surface for H-H2 interactions for a broad range of separation distances. At large distances, the spherically averaged potential determined from the calculated energies agrees well with the corresponding results determined from dispersion coefficients; the van der Waals well depth is predicted to be 75 +/- 3 micro E(h). Large basis sets have also been applied to reexamine the accuracy of theoretical repulsive potential energy surfaces (25-70 kcal/mol above the H-H2 asymptote) at small interatomic separations; the Boothroyd, Keogh, Martin, and Peterson (BKMP) potential energy surface is found to agree with results of the present calculations within the expected uncertainty (+/- 1 kcal/mol) of the fit. Multipolar expansions of the computed H-H2 potential energy surface are reported for four internuclear separation distances (1.2, 1.401, 1.449, and 1.7a(0)) of the hydrogen molecule. The differential elastic scattering cross section calculated from the present results is compared with the measurements from a crossed beam experiment.

  18. An Ab Initio Based Potential Energy Surface for Water

    NASA Technical Reports Server (NTRS)

    Partridge, Harry; Schwenke, David W.; Langhoff, Stephen R. (Technical Monitor)

    1996-01-01

    We report a new determination of the water potential energy surface. A high quality ab initio potential energy surface (PES) and dipole moment function of water have been computed. This PES is empirically adjusted to improve the agreement between the computed line positions and those from the HITRAN 92 data base. The adjustment is small, nonetheless including an estimate of core (oxygen 1s) electron correlation greatly improves the agreement with experiment. Of the 27,245 assigned transitions in the HITRAN 92 data base for H2(O-16), the overall root mean square (rms) deviation between the computed and observed line positions is 0.125/cm. However the deviations do not correspond to a normal distribution: 69% of the lines have errors less than 0.05/cm. Overall, the agreement between the line intensities computed in the present work and those contained in the data base is quite good, however there are a significant number of line strengths which differ greatly.

  19. Electronic structure and conductivity of ferroelectric hexaferrite: Ab initio calculations

    NASA Astrophysics Data System (ADS)

    Knížek, K.; Novák, P.; Küpferling, M.

    2006-04-01

    Ba0.5Sr1.5Zn2Fe12O22 is a promising multiferroic compound in which the electric polarization is intimately connected to the magnetic state. In principle, ferroelectrity might exist above the room temperature, but the electrical conductivity that increases with increasing temperature limits it to temperatures below ≈130K . We present results of an ab initio electronic structure calculation of the (BaSr)Zn2Fe12O22 system. To improve the description of strongly correlated 3d electrons of iron, the GGA+U method is used. The results show that the electrical conductivity strongly depends on relative fractions of iron and zinc in the tetrahedral sublattice that belongs to the spinel block of the hexaferrite structure. If this sublattice is fully occupied by zinc, the system is an insulator with a gap of ≈1.5eV . If it is occupied equally by Fe and Zn the gap decreases by a factor of 2, and the system is metallic when this sublattice is filled by iron only.

  20. Exploring the free energy surface using ab initio molecular dynamics

    NASA Astrophysics Data System (ADS)

    Samanta, Amit; Morales, Miguel A.; Schwegler, Eric

    2016-04-01

    Efficient exploration of configuration space and identification of metastable structures in condensed phase systems are challenging from both computational and algorithmic perspectives. In this regard, schemes that utilize a set of pre-defined order parameters to sample the relevant parts of the configuration space [L. Maragliano and E. Vanden-Eijnden, Chem. Phys. Lett. 426, 168 (2006); J. B. Abrams and M. E. Tuckerman, J. Phys. Chem. B 112, 15742 (2008)] have proved useful. Here, we demonstrate how these order-parameter aided temperature accelerated sampling schemes can be used within the Born-Oppenheimer and the Car-Parrinello frameworks of ab initio molecular dynamics to efficiently and systematically explore free energy surfaces, and search for metastable states and reaction pathways. We have used these methods to identify the metastable structures and reaction pathways in SiO2 and Ti. In addition, we have used the string method [W. E, W. Ren, and E. Vanden-Eijnden, Phys. Rev. B 66, 052301 (2002); L. Maragliano et al., J. Chem. Phys. 125, 024106 (2006)] within the density functional theory to study the melting pathways in the high pressure cotunnite phase of SiO2 and the hexagonal closed packed to face centered cubic phase transition in Ti.

  1. Ab initio modeling of decomposition in iron based alloys

    NASA Astrophysics Data System (ADS)

    Gorbatov, O. I.; Gornostyrev, Yu. N.; Korzhavyi, P. A.; Ruban, A. V.

    2016-12-01

    This paper reviews recent progress in the field of ab initio based simulations of structure and properties of Fe-based alloys. We focus on thermodynamics of these alloys, their decomposition kinetics, and microstructure formation taking into account disorder of magnetic moments with temperature. We review modern theoretical tools which allow a consistent description of the electronic structure and energetics of random alloys with local magnetic moments that become totally or partially disordered when temperature increases. This approach gives a basis for an accurate finite-temperature description of alloys by calculating all the relevant contributions to the Gibbs energy from first-principles, including a configurational part as well as terms due to electronic, vibrational, and magnetic excitations. Applications of these theoretical approaches to the calculations of thermodynamics parameters at elevated temperatures (solution energies and effective interatomic interactions) are discussed including atomistic modeling of decomposition/clustering in Fe-based alloys. It provides a solid basis for understanding experimental data and for developing new steels for modern applications. The precipitation in Fe-Cu based alloys, the decomposition in Fe-Cr, and the short-range order formation in iron alloys with s-p elements are considered as examples.

  2. Ab initio calculation of infrared intensities for hydrogen peroxide

    NASA Technical Reports Server (NTRS)

    Rogers, J. D.; Hillman, J. J.

    1982-01-01

    Results of an ab initio SCF quantum mechanical study are used to derive estimates for the infrared intensities of the fundamental vibrations of hydrogen peroxide. Atomic polar tensors (APTs) were calculated on the basis of a 4-31G basis set, and used to derive absolute intensities for the vibrational transitions. Comparison of the APTs calculated for H2O2 with those previously obtained for H2O and CH3OH, and of the absolute intensities derived from the H2O2 APTs with those derived from APTs transferred from H2O and CH3OH, reveals the sets of values to differ by no more than a factor of two, supporting the validity of the theoretical calculation. Values of the infrared intensities obtained correspond to A1 = 14.5 km/mol, A2 = 0.91 km/mol, A3 = 0.058 km/mol, A4 = 123 km/mol, A5 = 46.2 km/mol, and A6 = 101 km/mol. Charge, charge flux and overlap contributions to the dipole moment derivatives are also computed.

  3. Ab initio calculations of correlated electron dynamics in ultrashort pulses

    NASA Astrophysics Data System (ADS)

    Feist, Johannes

    2010-03-01

    The availability of ultrashort and intense light pulses on the femtosecond and attosecond timescale promises to allow to directly probe and control electron dynamics on their natural timescale. A crucial ingredient to understanding the dynamics in many-electron systems is the influence of electron correlation, induced by the interelectronic repulsion. In order to study electron correlation in ultrafast processes, we have implemented an ab initio simulation of the two-electron dynamics in helium atoms. We solve the time-dependent Schr"odinger equation in its full dimensionality, with one temporal and five spatial degrees of freedom in linearly polarized laser fields. In our computational approach, the wave function is represented through a combination of time-dependent close coupling with the finite element discrete variable representation, while time propagation is performed using an Arnoldi-Lanczos approximation with adaptive step size. This approach is optimized to allow for efficient parallelization of the program and has been shown to scale linearly using up to 1800 processor cores for typical problem sizes. This has allowed us to perform highly accurate and well- converged computations for the interaction of ultrashort laser pulses with He. I will present some recent results on using attosecond and femtosecond pulses to probe and control the temporal structure of the ionization process. This work was performed in collaboration with Stefan Nagele, Renate Pazourek, Andreas Kaltenb"ack, Emil Persson, Barry I. Schneider, Lee A. Collins, and Joachim Burgd"orfer.

  4. Ab initio molecular dynamics calculations of ion hydration free energies.

    PubMed

    Leung, Kevin; Rempe, Susan B; von Lilienfeld, O Anatole

    2009-05-28

    We apply ab initio molecular dynamics (AIMD) methods in conjunction with the thermodynamic integration or "lambda-path" technique to compute the intrinsic hydration free energies of Li(+), Cl(-), and Ag(+) ions. Using the Perdew-Burke-Ernzerhof functional, adapting methods developed for classical force field applications, and with consistent assumptions about surface potential (phi) contributions, we obtain absolute AIMD hydration free energies (DeltaG(hyd)) within a few kcal/mol, or better than 4%, of Tissandier et al.'s [J. Phys. Chem. A 102, 7787 (1998)] experimental values augmented with the SPC/E water model phi predictions. The sums of Li(+)/Cl(-) and Ag(+)/Cl(-) AIMD DeltaG(hyd), which are not affected by surface potentials, are within 2.6% and 1.2 % of experimental values, respectively. We also report the free energy changes associated with the transition metal ion redox reaction Ag(+)+Ni(+)-->Ag+Ni(2+) in water. The predictions for this reaction suggest that existing estimates of DeltaG(hyd) for unstable radiolysis intermediates such as Ni(+) may need to be extensively revised.

  5. Methods for Using Ab Initio Potential Energy Surfaces in Studies of Gas-Phase Reactions of Energetic Molecules

    DTIC Science & Technology

    2014-08-20

    Ab Initio Potential Energy Surfaces in Studies of Gas-Phase Reactions of Energetic Molecules The focus of this research was to apply efficient...methods for using ab initio potential energy surfaces (PESs) computed with high levels of quantum chemistry theory to predict chemical reaction properties...in non peer-reviewed journals: Methods for Using Ab Initio Potential Energy Surfaces in Studies of Gas-Phase Reactions of Energetic Molecules Report

  6. Ab initio Kinetics of Methylamine Radical Thermal Decomposition and H-abstraction from Monomethylhydrazine by H Atom

    DTIC Science & Technology

    2014-08-01

    Technical Paper 3. DATES COVERED (From - To) December 2013- August 2014 4. TITLE AND SUBTITLE Ab initio Kinetics of Methylamine Radical Thermal...phase kinetics of H-abstraction reactions from CH3NHNH2 by H atoms was further investigated by ab initio second-order multireference perturbation...distribution unlimited Ab initio Kinetics of Methylamine Radical Thermal Decomposition and H-abstraction from Monomethylhydrazine by H Atom

  7. An investigation of ab initio shell-model interactions derived by no-core shell model

    NASA Astrophysics Data System (ADS)

    Wang, XiaoBao; Dong, GuoXiang; Li, QingFeng; Shen, CaiWan; Yu, ShaoYing

    2016-09-01

    The microscopic shell-model effective interactions are mainly based on the many-body perturbation theory (MBPT), the first work of which can be traced to Brown and Kuo's first attempt in 1966, derived from the Hamada-Johnston nucleon-nucleon potential. However, the convergence of the MBPT is still unclear. On the other hand, ab initio theories, such as Green's function Monte Carlo (GFMC), no-core shell model (NCSM), and coupled-cluster theory with single and double excitations (CCSD), have made many progress in recent years. However, due to the increasing demanding of computing resources, these ab initio applications are usually limited to nuclei with mass up to A = 16. Recently, people have realized the ab initio construction of valence-space effective interactions, which is obtained through a second-time renormalization, or to be more exactly, projecting the full-manybody Hamiltonian into core, one-body, and two-body cluster parts. In this paper, we present the investigation of such ab initio shell-model interactions, by the recent derived sd-shell effective interactions based on effective J-matrix Inverse Scattering Potential (JISP) and chiral effective-field theory (EFT) through NCSM. In this work, we have seen the similarity between the ab initio shellmodel interactions and the interactions obtained by MBPT or by empirical fitting. Without the inclusion of three-body (3-bd) force, the ab initio shell-model interactions still share similar defects with the microscopic interactions by MBPT, i.e., T = 1 channel is more attractive while T = 0 channel is more repulsive than empirical interactions. The progress to include more many-body correlations and 3-bd force is still badly needed, to see whether such efforts of ab initio shell-model interactions can reach similar precision as the interactions fitted to experimental data.

  8. Ab-initio Computational Modeling Of Complex Magnetism In Spintronic Materials

    NASA Astrophysics Data System (ADS)

    Sanyal, Biplab; Iuşan, Diana M.; Knut, Ronny; Grânäs, Oscar; Eriksson, Olle

    2008-04-01

    In this paper, we present the results of density functional based first-principles electronic structure calculations for diluted magnetic semiconductors (DMS) used in semiconductor spintronics. We show that due to disorder, short ranged interactions and low concentration of dopants, magnetic percolation plays an important role in determining the Curie temperature. Using our calculated first principles parameters in Monte-Carlo simulations (MCS), we demonstrate this for Mn doped NiTiSn Heusler alloy. We also show how defects affect the properties of DMS, e.g., Mn doped ZnO. It will be shown that one can have a sizable Curie temperature with a certain combination of defects. One of the main obstacles to obtain well characterized properties of DMS is the wide variation of sample quality obtained from different growth conditions, e.g., in spinodal decomposition leading to an inhomogeneous system consisting of clusters of magnetic dopants. We will demonstrate this by MCS of the inhomogeneous growth in Mn doped GaAs.

  9. Non-equilibrium dynamics in disordered materials: Ab initio molecular dynamics simulations

    SciTech Connect

    Ohmura, Satoshi; Nagaya, Kiyonobu; Yao, Makoto; Shimojo, Fuyuki

    2015-08-17

    The dynamic properties of liquid B{sub 2}O{sub 3} under pressure and highly-charged bromophenol molecule are studied by using molecular dynamics (MD) simulations based on density functional theory (DFT). Diffusion properties of covalent liquids under high pressure are very interesting in the sense that they show unexpected pressure dependence. It is found from our simulation that the magnitude relation of diffusion coefficients for boron and oxygen in liquid B{sub 2}O{sub 3} shows the anomalous pressure dependence. The simulation clarified the microscopic origin of the anomalous diffusion properties. Our simulation also reveals the dissociation mechanism in the coulomb explosion of the highly-charged bromophenol molecule. When the charge state n is 6, hydrogen atom in the hydroxyl group dissociates at times shorter than 20 fs while all hydrogen atoms dissociate when n is 8. After the hydrogen dissociation, the carbon ring breaks at about 100 fs. There is also a difference on the mechanism of the ring breaking depending on charge states, in which the ring breaks with expanding (n = 6) or shrink (n = 8)

  10. Non-equilibrium dynamics in disordered materials: Ab initio molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Ohmura, Satoshi; Nagaya, Kiyonobu; Shimojo, Fuyuki; Yao, Makoto

    2015-08-01

    The dynamic properties of liquid B2O3 under pressure and highly-charged bromophenol molecule are studied by using molecular dynamics (MD) simulations based on density functional theory (DFT). Diffusion properties of covalent liquids under high pressure are very interesting in the sense that they show unexpected pressure dependence. It is found from our simulation that the magnitude relation of diffusion coefficients for boron and oxygen in liquid B2O3 shows the anomalous pressure dependence. The simulation clarified the microscopic origin of the anomalous diffusion properties. Our simulation also reveals the dissociation mechanism in the coulomb explosion of the highly-charged bromophenol molecule. When the charge state n is 6, hydrogen atom in the hydroxyl group dissociates at times shorter than 20 fs while all hydrogen atoms dissociate when n is 8. After the hydrogen dissociation, the carbon ring breaks at about 100 fs. There is also a difference on the mechanism of the ring breaking depending on charge states, in which the ring breaks with expanding (n = 6) or shrink (n = 8).

  11. Understanding Anharmonicity in fcc Materials: From its Origin to ab initio Strategies beyond the Quasiharmonic Approximation.

    PubMed

    Glensk, A; Grabowski, B; Hickel, T; Neugebauer, J

    2015-05-15

    We derive the Gibbs energy including the anharmonic contribution due to phonon-phonon interactions for an extensive set of unary fcc metals (Al, Ag, Au, Cu, Ir, Ni, Pb, Pd, Pt, Rh) by combining density-functional-theory (DFT) calculations with efficient statistical sampling approaches. We show that the anharmonicity of the macroscopic system can be traced back to the anharmonicity in local pairwise interactions. Using this insight, we derive and benchmark a highly efficient approach which allows the computation of anharmonic contributions using a few T=0 K DFT calculations only.

  12. Cosmic-Ray Modulation: an Ab Initio Approach

    NASA Astrophysics Data System (ADS)

    Engelbrecht, N. E.; Burger, R. A.

    2014-10-01

    A better understanding of cosmic-ray modulation in the heliosphere can only be gained through a proper understanding of the effects of turbulence on the diffusion and drift of cosmic rays. We present an ab initio model for cosmic-ray modulation, incorporating for the first time the results yielded by a two-component turbulence transport model. This model is solved for periods of minimum solar activity, utilizing boundary values chosen so that model results are in fair to good agreement with spacecraft observations of turbulence quantities, not only in the solar ecliptic plane but also along the out-of-ecliptic trajectory of the Ulysses spacecraft. These results are employed as inputs for modelled slab and 2D turbulence energy spectra. The latter spectrum is chosen based on physical considerations, with a drop-off at the very lowest wavenumbers commencing at the 2D outerscale. There currently exist no models or observations for this quantity, and it is the only free parameter in this study. The modelled turbulence spectra are used as inputs for parallel mean free path expressions based on those derived from quasi-linear theory and perpendicular mean free paths from extended nonlinear guiding center theory. Furthermore, the effects of turbulence on cosmic-ray drifts are modelled in a self-consistent way, employing a recently developed model for drift along the wavy current sheet. The resulting diffusion coefficients and drift expressions are applied to the study of galactic cosmic-ray protons and antiprotons using a three-dimensional, steady-state cosmic-ray modulation code, and sample solutions in fair agreement with multiple spacecraft observations are presented.

  13. The hydration structure of carbon monoxide by ab initio methods

    NASA Astrophysics Data System (ADS)

    Awoonor-Williams, Ernest; Rowley, Christopher N.

    2017-01-01

    The solvation of carbon monoxide (CO) in liquid water is important for understanding its toxicological effects and biochemical roles. In this paper, we use ab initio molecular dynamics (AIMD) and CCSD(T)-F12 calculations to assess the accuracy of the Straub and Karplus molecular mechanical (MM) model for CO(aq). The CCSD(T)-F12 CO-H2O potential energy surfaces show that the most stable structure corresponds to water donating a hydrogen bond to the C center. The MM-calculated surface incorrectly predicts that the O atom is a stronger hydrogen bond acceptor than the C atom. The AIMD simulations indicate that CO is solvated like a hydrophobic solute, with very limited hydrogen bonding with water. The MM model tends to overestimate the degree of hydrogen bonding and overestimates the atomic radius of the C atom. The calculated Gibbs energy of hydration using the TIP3P water model is in good agreement with the experiment (9.3 kJ mol-1 expt. vs 10.7 kJ mol-1 calc.). The calculated diffusivity of CO (aq) in TIP3P-model water was 5.1 ×10-5 cm2/s calc., more than double the experimental value of 2.3 ×10-5 cm2/s. The hydration energy calculated using the TIP4P-FB water model is in poorer agreement with the experiment (ΔG = 6.8 kJ/mol) but the diffusivity is in better agreement (D =2.5 ±0.1 ×10-5 cm2/s).

  14. Ab initio molecular dynamics of liquid hydrogen chloride

    NASA Astrophysics Data System (ADS)

    Dubois, Vincent; Pasquarello, Alfredo

    2005-03-01

    We carried out an ab initio molecular dynamics simulation of liquid hydrogen chloride (ℓ-HCl) at a temperature of 313 K. Comparison with inelastic neutron scattering data shows that the simulation achieves an overall good description of the structural correlations, improving significantly upon a description based on classical interaction potentials. Despite some minor differences between theory and experiment in the H-H partial structure factor, the simulation gives a description of the hydrogen bonding in impressive agreement with experiment, for both the amount and the bond-length distribution of the bonds. In the simulation, 40% of the molecules are nonbonded, while the hydrogen-bonded chains are short, principally consisting of dimers (25%) and trimers (15%). Neighboring molecules in the simulation are found to form L-shaped arrangements, like in the isolated (HCl)2 dimer and in crystalline phases of HCl. The time correlation of the molecular-axis orientation is found to be characterized by a very short decay time (0.13 ps), consistent with the short length of the hydrogen-bonded chains. Other dynamical properties investigated in this work include the diffusion coefficient and the vibrational density of states. We evaluated the molecular dipole of the HCl molecule in the liquid using a definition based on the coupling of rotational modes to an external electric field. The average dipole moment (1.53 D) derived in this way is found to be considerably larger than for the isolated molecule (1.11 D). Our results show that the dipole moment in ℓ-HCl undergoes large fluctuations, both in orientation and in modulus. Upon the onset of an external field, such dipole fluctuations concur to reduce the fluctuations of the dielectric response.

  15. Efficient conformational space exploration in ab initio protein folding simulation

    PubMed Central

    Ullah, Ahammed; Ahmed, Nasif; Pappu, Subrata Dey; Shatabda, Swakkhar; Ullah, A. Z. M. Dayem; Rahman, M. Sohel

    2015-01-01

    Ab initio protein folding simulation largely depends on knowledge-based energy functions that are derived from known protein structures using statistical methods. These knowledge-based energy functions provide us with a good approximation of real protein energetics. However, these energy functions are not very informative for search algorithms and fail to distinguish the types of amino acid interactions that contribute largely to the energy function from those that do not. As a result, search algorithms frequently get trapped into the local minima. On the other hand, the hydrophobic–polar (HP) model considers hydrophobic interactions only. The simplified nature of HP energy function makes it limited only to a low-resolution model. In this paper, we present a strategy to derive a non-uniform scaled version of the real 20×20 pairwise energy function. The non-uniform scaling helps tackle the difficulty faced by a real energy function, whereas the integration of 20×20 pairwise information overcomes the limitations faced by the HP energy function. Here, we have applied a derived energy function with a genetic algorithm on discrete lattices. On a standard set of benchmark protein sequences, our approach significantly outperforms the state-of-the-art methods for similar models. Our approach has been able to explore regions of the conformational space which all the previous methods have failed to explore. Effectiveness of the derived energy function is presented by showing qualitative differences and similarities of the sampled structures to the native structures. Number of objective function evaluation in a single run of the algorithm is used as a comparison metric to demonstrate efficiency. PMID:26361554

  16. Ab initio valence-space theory for exotic nuclei

    NASA Astrophysics Data System (ADS)

    Holt, Jason

    2015-10-01

    Recent advances in ab initio nuclear structure theory have led to groundbreaking predictions in the exotic medium-mass region, from the location of the neutron dripline to the emergence of new magic numbers far from stability. Playing a key role in this progress has been the development of sophisticated many-body techniques and chiral effective field theory, which provides a systematic basis for consistent many-nucleon forces and electroweak currents. Within the context of valence-space Hamiltonians derived from the nonperturbative in-medium similarity renormalization group (IM-SRG) approach, I will discuss the importance of 3N forces in understanding and making new discoveries in the exotic sd -shell region. Beginning in oxygen, we find that the effects of 3N forces are decisive in explaining why 24O is the last bound oxygen isotope, validating first predictions of this phenomenon from several years ago. Furthermore, 3N forces play a key role in reproducing spectroscopy, including signatures of doubly magic 22,24O, and physics beyond the dripline. Similar improvements are obtained in new spectroscopic predictions for exotic fluorine and neon isotopes, where agreement with recent experimental data is competitive with state-of-the-art phenomenology. Finally, I will discuss first applications of the IM-SRG to effective valence-space operators, such as radii and E 0 transitions, as well as extensions to general operators crucial for our future understanding of electroweak processes, such as neutrinoless double-beta decay. This work was supported by NSERC and the NRC Canada.

  17. Efficient conformational space exploration in ab initio protein folding simulation.

    PubMed

    Ullah, Ahammed; Ahmed, Nasif; Pappu, Subrata Dey; Shatabda, Swakkhar; Ullah, A Z M Dayem; Rahman, M Sohel

    2015-08-01

    Ab initio protein folding simulation largely depends on knowledge-based energy functions that are derived from known protein structures using statistical methods. These knowledge-based energy functions provide us with a good approximation of real protein energetics. However, these energy functions are not very informative for search algorithms and fail to distinguish the types of amino acid interactions that contribute largely to the energy function from those that do not. As a result, search algorithms frequently get trapped into the local minima. On the other hand, the hydrophobic-polar (HP) model considers hydrophobic interactions only. The simplified nature of HP energy function makes it limited only to a low-resolution model. In this paper, we present a strategy to derive a non-uniform scaled version of the real 20×20 pairwise energy function. The non-uniform scaling helps tackle the difficulty faced by a real energy function, whereas the integration of 20×20 pairwise information overcomes the limitations faced by the HP energy function. Here, we have applied a derived energy function with a genetic algorithm on discrete lattices. On a standard set of benchmark protein sequences, our approach significantly outperforms the state-of-the-art methods for similar models. Our approach has been able to explore regions of the conformational space which all the previous methods have failed to explore. Effectiveness of the derived energy function is presented by showing qualitative differences and similarities of the sampled structures to the native structures. Number of objective function evaluation in a single run of the algorithm is used as a comparison metric to demonstrate efficiency.

  18. Resonance and aromaticity: an ab initio valence bond approach.

    PubMed

    Rashid, Zahid; van Lenthe, Joop H; Havenith, Remco W A

    2012-05-17

    Resonance energy is one of the criteria to measure aromaticity. The effect of the use of different orbital models is investigated in the calculated resonance energies of cyclic conjugated hydrocarbons within the framework of the ab initio Valence Bond Self-Consistent Field (VBSCF) method. The VB wave function for each system was constructed using a linear combination of the VB structures (spin functions), which closely resemble the Kekulé valence structures, and two types of orbitals, that is, strictly atomic (local) and delocalized atomic (delocal) p-orbitals, were used to describe the π-system. It is found that the Pauling-Wheland's resonance energy with nonorthogonal structures decreases, while the same with orthogonalized structures and the total mean resonance energy (the sum of the weighted off-diagonal contributions in the Hamiltonian matrix of orthogonalized structures) increase when delocal orbitals are used as compared to local p-orbitals. Analysis of the interactions between the different structures of a system shows that the resonance in the 6π electrons conjugated circuits have the largest contributions to the resonance energy. The VBSCF calculations also show that the extra stability of phenanthrene, a kinked benzenoid, as compared to its linear counterpart, anthracene, is a consequence of the resonance in the π-system rather than the H-H interaction in the bay region as suggested previously. Finally, the empirical parameters for the resonance interactions between different 4n+2 or 4n π electrons conjugated circuits, used in Randić's conjugated circuits theory or Herdon's semi-emprical VB approach, are quantified. These parameters have to be scaled by the structure coefficients (weights) of the contributing structures.

  19. AN AB INITIO MODEL FOR COSMIC-RAY MODULATION

    SciTech Connect

    Engelbrecht, N. E.; Burger, R. A.

    2013-07-20

    A proper understanding of the effects of turbulence on the diffusion and drift of cosmic rays (CRs) is of vital importance for a better understanding of CR modulation in the heliosphere. This study presents an ab initio model for CR modulation, incorporating for the first time the results yielded by a two-component turbulence transport model. This model is solved for solar minimum heliospheric conditions, utilizing boundary values chosen so that model results are in reasonable agreement with spacecraft observations of turbulence quantities in the solar ecliptic plane and along the out-of-ecliptic trajectory of the Ulysses spacecraft. These results are employed as inputs for modeled slab and two-dimensional (2D) turbulence energy spectra. The modeled 2D spectrum is chosen based on physical considerations, with a drop-off at the very lowest wavenumbers. There currently exist no models or observations for the wavenumber where this drop-off occurs, and it is considered to be the only free parameter in this study. The modeled spectra are used as inputs for parallel mean free path expressions based on those derived from quasi-linear theory and perpendicular mean free paths from extended nonlinear guiding center theory. Furthermore, the effects of turbulence on CR drifts are modeled in a self-consistent way, also employing a recently developed model for wavy current sheet drift. The resulting diffusion and drift coefficients are applied to the study of galactic CR protons and antiprotons using a 3D, steady-state CR modulation code, and sample solutions in fair to good agreement with multiple spacecraft observations are presented.

  20. Uniaxial phase transition in Si: Ab initio calculations

    NASA Astrophysics Data System (ADS)

    Cheng, C.

    2003-04-01

    Based on a previously proposed thermodynamic analysis, [C. Cheng, W. H. Huang, and H. J. Li, Phys. Rev. B 63, 153202 (2001)] we study the relative stabilities of five Si phases under uniaxial compression using ab initio methods. The five phases are diamond, βSn, simple-hexagonal (sh), simple-cubic, and hexagonal closed-packed structures. The possible phase-transition patterns were investigated by considering the phase transitions between any two chosen phases of the five phases. By analyzing the different contributions to the relative phase stability, we identified the most important factors in reducing the phase-transition pressures at uniaxial compression. We also show that it is possible to have phase transitions occur only when the phases are under uniaxial compression, in spite of no phase transition when under hydrostatic compression. Taking all five phases into consideration, the phase diagram at uniaxial compression was constructed for pressures up to 20 GPa. The stable phases were found to be diamond, βSn, and sh structures, i.e., the same as those when under hydrostatic condition. According to the phase diagram, direct phase transition from the diamond to the sh phase is possible if the applied uniaxial pressures, on increasing, satisfy the condition Px>Pz. Similarly, the sh-to-βSn transition on increasing pressures is also possible if the applied uniaxial pressures are varied from the condition of Px>Pz, on which the phase of sh is stable to the condition Px

  1. Ab initio and DFT study of the geometric structures and static dipole (hyper)polarizabilities of aromatic anions.

    PubMed

    Castellano, O; Bermúdez, Y; Giffard, M; Mabon, G; Cubillan, N; Sylla, M; Nguyen-Phu, X; Hinchliffe, A; Soscún, H

    2005-11-17

    The geometries and the static dipole (hyper)polarizabilities (alpha, beta, gamma) of a series of aromatic anions were investigated at the ab initio (HF, MP2, and MP4) and density functional theory DFT (B3LYP) levels of theory. The anions chosen for the present study are the benzenethiolate (Ph-S-), benzenecarboxylate (Ph-CO2-), benzenesulfinate (Ph-SO2-), benzenesulfonate (Ph-SO3-), and 1,3-benzenedicarboxylate (1,3-Ph-(CO2)2(2-)). For benzenethiolate anion, additional alpha, beta, and gamma calculations were performed at the coupled cluster CCSD level with MP2 optimized geometries. The standard diffuse and polarized 6-31+G(d,p) basis set was employed in conjunction to the ab initio and DFT methods. Additional HF calculations were performed with the 6-311++G(3d,3p) basis set for all the anions. The correlated electric properties were evaluated numerically within the formalism of finite field. The optimized geometries were analyzed in terms of the few reports about the phenolate and sulfonate ions. The results show that electron correlation effects on the polarizabilities are very important in all the anion series. Was found that Ph-SO2- is highly polarizable in terms of alpha and beta, and the Ph-S- is the highest second hyperpolarizable in the series. The results of alpha were rationalized in terms of the analysis of the polarization of charge based in Mulliken atomic population and the structural features of the optimized geometries of anions, whereas the large differences in the beta and gamma values in the series were respectively interpreted in terms of the bond length alternation BLA and the separation of charge in the aromatic ring by effects of the substitution. These results allowed us to suggest the benzenesulfinate and benzenethiolate anions as promising candidates that should be incorporated in ionic materials for second and third-order nonlinear optical devices.

  2. Electronic, mechanical, phase transition, and thermo-physical properties of TMC (TM = V, Nb, and Ta): high pressure ab initio study

    NASA Astrophysics Data System (ADS)

    Chauhan, Mamta; Gupta, Dinesh C.

    2015-12-01

    The structural, electronic, mechanical, phase transition, and thermo-physical properties of refractory carbides, viz. VC, NbC, and TaC have been computed in stable B1 and high pressure B2 phases by means of two different ab initio calculations using pseudo- and full-potential schemes. These materials have mixed covalent-, metallic-, and ionic-type bonding. The calculations of elastic constants show the mechanical stability of these materials in B1 phase only. The brittle nature and anisotropy is observed in these materials in B1 phase. Non-central forces are present in both the phases. Elastic wave velocities and Debye temperature have also been calculated. The present results on structural, phase transition, elastic, and other properties are in reasonably good agreement with the available experimental and theoretical data. The calculations in high pressure phase need experimental verification.

  3. Complementary ab initio and X-ray nanodiffraction studies of Ta2O5

    PubMed Central

    Hollerweger, R.; Holec, D.; Paulitsch, J.; Bartosik, M.; Daniel, R.; Rachbauer, R.; Polcik, P.; Keckes, J.; Krywka, C.; Euchner, H.; Mayrhofer, P.H.

    2015-01-01

    The complex structure of Ta2O5 led to the development of various structural models. Among them, superstructures represent the most stable configurations. However, their formation requires kinetic activity and long-range ordering processes, which are hardly present during physical vapor deposition. Based on nano-beam X-ray diffraction and concomitant ab initio studies, a new metastable orthorhombic basic structure is introduced for Ta2O5 with lattice parameters a = 6.425 Å, b = 3.769 Å and c = 7.706 Å. The unit cell containing only 14 atoms, i.e. two formula unit blocks in the c direction, is characterized by periodically alternating the occupied oxygen site between two possible positions in succeeding 002-planes. This structure can be described by the space group 53 (Pncm) with four Wyckoff positions, and exhibits an energy of formation of −3.209 eV atom−1. Among all the reported basic structures, its energy of formation is closest to those of superstructures. Furthermore, this model exhibits a 2.5 eV band gap, which is closer to experimental data than the band gap of any other basic-structure model. The sputtered Ta2O5 films develop only a superstructure if annealed at temperatures >800 °C in air or vacuum. Based on these results and the conveniently small unit cell size, it is proposed that the basic-structure model described here is an ideal candidate for both structure and electronic state descriptions of orthorhombic Ta2O5 materials. PMID:25642136

  4. Well-characterized sequence features of eukaryote genomes and implications for ab initio gene prediction.

    PubMed

    Huang, Ying; Chen, Shi-Yi; Deng, Feilong

    2016-01-01

    In silico analysis of DNA sequences is an important area of computational biology in the post-genomic era. Over the past two decades, computational approaches for ab initio prediction of gene structure from genome sequence alone have largely facilitated our understanding on a variety of biological questions. Although the computational prediction of protein-coding genes has already been well-established, we are also facing challenges to robustly find the non-coding RNA genes, such as miRNA and lncRNA. Two main aspects of ab initio gene prediction include the computed values for describing sequence features and used algorithm for training the discriminant function, and by which different combinations are employed into various bioinformatic tools. Herein, we briefly review these well-characterized sequence features in eukaryote genomes and applications to ab initio gene prediction. The main purpose of this article is to provide an overview to beginners who aim to develop the related bioinformatic tools.

  5. An ab initio-based Er–He interatomic potential in hcp Er

    SciTech Connect

    Yang, Li; ye, Yeting; Fan, K. M.; Shen, Huahai; Peng, Shuming; Long, XG; Zhou, X. S.; Zu, Xiaotao; Gao, Fei

    2014-09-01

    We have developed an empirical erbium-helium (Er-He) potential by fitting to the results calculated from ab initio method. Based on the electronic hybridization between Er and He atoms, an s-band model, along with a repulsive pair potential, has been derived to describe the Er-He interaction. The atomic configurations and the formation energies of single He defects, small He interstitial clusters (Hen) and He-vacancy (HenV ) clusters obtained by ab initio calculations are used as the fitting database. The binding energies and relative stabilities of the HnVm clusters are studied by the present potential and compared with the ab initio calculations. The Er-He potential is also applied to study the migration of He in hcp-Er at different temperatures, and He clustering is found to occur at 600 K in hcp Er crystal, which may be due to the anisotropic migration behavior of He interstitials.

  6. Electron Transport through Polyene Junctions in between Carbon Nanotubes: an Ab Initio Realization

    NASA Astrophysics Data System (ADS)

    Chen, Yiing-Rei; Chen, Kai-Yu; Dou, Kun-Peng; Tai, Jung-Shen; Lee, Hsin-Han; Kaun, Chao-Cheng

    With both ab initio and tight-binding model calculations, we study a system of polyene bridged armchair carbon nanotube electrodes, considering one-polyene and two-polyene cases, to address aspects of quantum transport through junctions with multiple conjugated molecules. The ab initio results of the two-polyene cases not only show the interference effect in transmission, but also the sensitive dependence of such effect on the combination of relative contact sites, which agrees nicely with the tight-binding model. Moreover, we show that the discrepancy mainly brought by ab initio relaxation provides an insight into the influence upon transmission spectra, from the junction's geometry, bonding and effective potential. This work was supported by the Ministry of Science and Technology of the Republic of China under Grant Nos. 99-2112-M-003-012-MY2 and 103-2622-E-002-031, and the National Center for Theoretical Sciences of Taiwan.

  7. Ab initio calculation of (hyper)polarizabilities using a sum-over-states formalism.

    NASA Astrophysics Data System (ADS)

    Taylor, Caroline M.; Chaudhuri, Rajat K.; Potts, Davin M.; Freed, Karl F.

    2001-03-01

    Hyperpolarizabilities are relevant to a wide range of non-linear optical properties. Ab initio computations often require a high level of correlation for accurate determination of β and γ , and especially of thier frequency dependence. While sum-over-states methods are widely used within semi-empirical frameworks, they have not been employed with high level ab initio methods because of the computational costs associated with calculating a sufficient number of states. The effective valence shell Hamiltonian method (H^v) is a highly correlated, size-extensive, ab initio, multireference, perturbative (``perturb-then-diagonalize'') method. A single H^v calculation yields a large number of states, making it ideal for use with the sum-over-states fomalism for determination of molecular properties. The method has been used to calculate the (hyper)polarizabilities of small polyene systems.

  8. Classical and ab-initio molecular dynamic simulation of an amorphous silica surface

    NASA Astrophysics Data System (ADS)

    Mischler, C.; Kob, W.; Binder, K.

    2002-08-01

    We present the results of a classical molecular dynamic simulation as well as of an ab-initio molecular dynamic simulation of an amorphous silica surface. In the case of the classical simulation we use the potential proposed by van Beest et al. (BKS) whereas the ab-initio simulation is done with a Car-Parrinello method (CPMD). We find that the surfaces generated by BKS have a higher concentration of defects (e.g., concentration of two-membered rings) than those generated with CPMD. In addition also the distribution functions of the angles and of the distances are different for the short rings. Hence we conclude that whereas the BKS potential is able to correctly reproduce the surface on the length scale beyond ≈5 Å, it is necessary to use an ab-initio method to reliably predict the structure at small scales.

  9. Ab Initio potential grid based docking: From High Performance Computing to In Silico Screening

    NASA Astrophysics Data System (ADS)

    de Jonge, Marc R.; Vinkers, H. Maarten; van Lenthe, Joop H.; Daeyaert, Frits; Bush, Ian J.; van Dam, Huub J. J.; Sherwood, Paul; Guest, Martyn F.

    2007-09-01

    We present a new and completely parallel method for protein ligand docking. The potential of the docking target structure is obtained directly from the electron density derived through an ab initio computation. A large subregion of the crystal structure of Isocitrate Lyase, was selected as docking target. To allow the full ab initio treatment of this region special care was taken to assign optimal basis functions. The electrostatic potential is tested by docking a small charged molecule (succinate) into the binding site. The ab initio grid yields a superior result by producing the best binding orientation and position, and by recognizing it as the best. In contrast the same docking procedure, but using a classical point-charge based potential, produces a number of additional incorrect binding poses, and does not recognize the correct pose as the best solution.

  10. Global exploration of the energy landscape of solids on the ab initio level.

    PubMed

    Doll, K; Schön, J C; Jansen, M

    2007-12-14

    Predicting which crystalline modifications can be present in a chemical system requires the global exploration of its energy landscape. Due to the large computational effort involved, in the past this search for sufficiently stable minima has been performed employing a variety of empirical potentials and cost functions followed by a local optimization on the ab initio level. However, this entails the risk of overlooking important modifications that are not modeled accurately using empirical potentials. In order to overcome this critical limitation, we develop an approach to employ ab initio energy functions during the global optimization phase of the structure prediction. As an example, we perform a global exploration of the landscape of LiF on the ab initio level and show that the relevant crystalline modifications are found during the search.

  11. Density-matrix based determination of low-energy model Hamiltonians from ab initio wavefunctions.

    PubMed

    Changlani, Hitesh J; Zheng, Huihuo; Wagner, Lucas K

    2015-09-14

    We propose a way of obtaining effective low energy Hubbard-like model Hamiltonians from ab initio quantum Monte Carlo calculations for molecular and extended systems. The Hamiltonian parameters are fit to best match the ab initio two-body density matrices and energies of the ground and excited states, and thus we refer to the method as ab initio density matrix based downfolding. For benzene (a finite system), we find good agreement with experimentally available energy gaps without using any experimental inputs. For graphene, a two dimensional solid (extended system) with periodic boundary conditions, we find the effective on-site Hubbard U(∗)/t to be 1.3 ± 0.2, comparable to a recent estimate based on the constrained random phase approximation. For molecules, such parameterizations enable calculation of excited states that are usually not accessible within ground state approaches. For solids, the effective Hamiltonian enables large-scale calculations using techniques designed for lattice models.

  12. First-principles modeling of materials for nuclear energy applications

    SciTech Connect

    Dmitriev, Andrey I. Nikonov, Anton Yu.; Ponomareva, Alena V.; Abrikosov, Igor A.; Barannikova, Svetlana A.

    2014-11-14

    We discuss recent developments in the field of ab initio electronic structure theory and its use for studies of materials for nuclear energy applications. We review state-of-the-art simulation methods that allow for an efficient treatment of effects due to chemical and magnetic disorder, and illustrate their predictive power with examples of two materials systems, Fe-Cr-Ni alloys and Zr-Nb alloys.

  13. MURI Center for Materials Chemistry in the Space Environment

    DTIC Science & Technology

    2006-11-30

    coordinates for reactions associated with O( P ) processing of hydrocarbon materials. This ab initio information was used to fit PM3 semi-empirical...capability, coupled with our extant ability to generate supersonic beams of O( P ) and O( D) atoms, gives us unprecedented control over reactivity studies...reaction associated with O( P ) processing of hydrocarbon materials. Electronic structure calculations based on multiconfiguration wave functions were used

  14. Exploring the speed and performance of molecular replacement with AMPLE using QUARK ab initio protein models.

    PubMed

    Keegan, Ronan M; Bibby, Jaclyn; Thomas, Jens; Xu, Dong; Zhang, Yang; Mayans, Olga; Winn, Martyn D; Rigden, Daniel J

    2015-02-01

    AMPLE clusters and truncates ab initio protein structure predictions, producing search models for molecular replacement. Here, an interesting degree of complementarity is shown between targets solved using the different ab initio modelling programs QUARK and ROSETTA. Search models derived from either program collectively solve almost all of the all-helical targets in the test set. Initial solutions produced by Phaser after only 5 min perform surprisingly well, improving the prospects for in situ structure solution by AMPLE during synchrotron visits. Taken together, the results show the potential for AMPLE to run more quickly and successfully solve more targets than previously suspected.

  15. Heats of Segregation of BCC Binaries from Ab Initio and Quantum Approximate Calculations

    NASA Technical Reports Server (NTRS)

    Good, Brian S.

    2003-01-01

    We compare dilute-limit segregation energies for selected BCC transition metal binaries computed using ab initio and quantum approximate energy methods. Ab initio calculations are carried out using the CASTEP plane-wave pseudopotential computer code, while quantum approximate results are computed using the Bozzolo-Ferrante-Smith (BFS) method with the most recent parameters. Quantum approximate segregation energies are computed with and without atomistic relaxation. Results are discussed within the context of segregation models driven by strain and bond-breaking effects. We compare our results with full-potential quantum calculations and with available experimental results.

  16. Ab initio study of collective excitations in a disparate mass molten salt.

    PubMed

    Bryk, Taras; Klevets, Ivan

    2012-12-14

    Ab initio molecular dynamics simulations and the approach of generalized collective modes are applied for calculations of spectra of longitudinal and transverse collective excitations in molten LiBr. Dispersion and damping of low- and high-frequency branches of collective excitations as well as wave-number dependent relaxing modes were calculated. The main mode contributions to partial, total, and concentration dynamic structure factors were estimated in a wide region of wave numbers. A role of polarization effects is discussed from comparison of mode contributions to concentration dynamic structure factors calculated for molten LiBr from ab initio and classical rigid ion simulations.

  17. Microscopic properties of liquid water from combined ab initio molecular dynamics and energy decomposition studies.

    PubMed

    Khaliullin, Rustam Z; Kühne, Thomas D

    2013-10-14

    The application of newly developed first-principle modeling techniques to liquid water deepens our understanding of the microscopic origins of its unusual macroscopic properties and behaviour. Here, we review two novel ab initio computational methods: second-generation Car-Parrinello molecular dynamics and decomposition analysis based on absolutely localized molecular orbitals. We show that these two methods in combination not only enable ab initio molecular dynamics simulations on previously inaccessible time and length scales, but also provide unprecedented insights into the nature of hydrogen bonding between water molecules. We discuss recent applications of these methods to water clusters and bulk water.

  18. A density functional and ab initio investigation of the p-aminobenzoic acid molecule

    NASA Astrophysics Data System (ADS)

    Lago, A. F.; Dávalos, J. Z.; de Brito, A. Naves

    2007-08-01

    The p-aminobenzoic acid (C 7H 7NO 2) molecule has been investigated at different levels of theory. DFT methods (B3LYP and PBE1PBE), second order Møller-Plesset perturbation theory (MP2) and composite ab initio methods (G3MP2 and CBS) have been employed, in conjunction with large basis sets. Important informations on the electronic structure and thermochemistry of this molecule have been extracted, and the performance of the density functional and ab initio methods has been evaluated, based on the comparison of the calculated and the available experimental data.

  19. Ab initio approach to the development of interatomic potentials for the shell model of silica polymorphs

    NASA Astrophysics Data System (ADS)

    de Boer, K.; Jansen, A. P. J.; van Santen, R. A.

    1994-06-01

    We have developed a new method for deriving parameters for the shell model of silica polymorphs. All parameters for the shell model are derived in a self-consistent way from ab initio energy surfaces, polarizabilities and dipole moments of small clusters. This yields an ab initio partial charge shell model potential. The predictive power of our potential is demonstrated by presenting predictions for the structure of α-quartz, α-cristobalite, coesite, stishovite and the IR spectrum of α-quartz which are compared with experiment and predictions of the widely used potentials of Jackson and Catlow, and Kramer, Farragher, van Beest and van Santen.

  20. Ab initio study of the optical properties of carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Chang, Eric

    2006-03-01

    We present an ab initio study of the optical properties of carbon nanotubes. We use state-of-the-art electronic structure methods based on many-body perturbation theory to compute the optical absorption and resonance Raman spectra of large tubes which have up to 200 atoms [1,2]. Our symmetry-based method makes the study of large tubes feasible within the many- body framework and also allows us to understand the symmetry properties of the excitons and selection rules. We include a study of the so-called dark excitons which are crucial for understanding luminescence efficiency in carbon nanotubes. The mechanism that explains the dark-bright splitting can be understood within our symmetry-based approach. Finally, we present an analysis of the two-photon spectra for several carbon nanotubes, a theoretical analysis which, in conjunction with combined one- and two-photon experiments, allows one to measure the binding energy of excitons. We find in all cases that the excitonic binding energy is large, ranging from 0.5 to 0.9 eV depending on the diameter of the tube, and that the excitonic wavefunction is Wannier-like and extended over many atoms. Our studies for the one- and two-photon absorption and resonance Raman spectra have been fruitful for understanding the corresponding experiments. In particular, our theoretical results are in good agreement with one- and two-photon absorption experiments [3-5]. The results for resonance Raman show that such a spectroscopic technique is a good alternative to optical absorption since it allows for the selection of tubes of a given diameter while probing the same excited states. 1. E.K. Chang, G. Bussi, A. Ruini, and E. Molinari, Phys. Rev. Lett. 92, 196401 (2004). 2. E.K. Chang, G. Bussi, A. Ruini, and E. Molinari, Phys. Rev. B 72, 195423 (2005). 3. M. Y. Sfeir et al., Science 306, 1540 (2004). 4. J. Maultzsch et al., to be published in Phys. Rev. B, see also cond-mat/0505150. 5. Z. M. Li et. al., Phys. Rev. Lett. 87, 127401 (2001).

  1. Geometrical parameterization of the crystal chemistry of P6(3)/m apatites: comparison with experimental data and ab initio results.

    PubMed

    Mercier, Patrick H J; Le Page, Yvon; Whitfield, Pamela S; Mitchell, Lyndon D; Davidson, Isobel J; White, T J

    2005-12-01

    Experimental structure refinements and ab initio simulation results for 18 published, fully ordered P6(3)/m (A;{\\rm I}_4)(A;{\\rm II}_6)(BO4)6X2 apatite end-member compositions have been analyzed in terms of a geometric crystal-chemical model that allows the prediction of unit-cell parameters (a and c) and all atom coordinates. To an accuracy of +/- 0.025 A, the magnitude of c was reproduced from crystal-chemical parameters characterizing chains of ...-A(II)-O3-B-O3-A(II)-... atoms, whereas that of a was determined from those describing (A(I)O6)-(BO4) polyhedral arrangements. The c/a ratio could be predicted to +/-0.2% using multi-variable functions based on geometric crystal-chemical model predictions, but could not be ascribed to the adjustment of a single crystal-chemical parameter. The correlations observed between algebraically independent crystal-chemical parameters representing the main observed polyhedral distortions reveal them as the minimum-energy solution to accommodate misfit components within this flexible structure type. For materials with given composition, good agreement (within +/- 0.5-2.0%) of ab initio crystal-chemical parameters was observed with only those from single-crystal refinements with R 4.0% was not as good, while the scatter with those from Rietveld refinements was considerable. Accordingly, ab initio cell data, atomic coordinates and crystal-chemical parameters were reported here for the following compositions awaiting experimental work: (Zn,Hg)10(PO4)6(Cl,F)2, (Ca,Cd)10(VO4)6Cl2 and (Ca,Pb,Cd)10(CrO4)6Cl2.

  2. Ab-initio Simulations of Molten Ni Alloys

    DTIC Science & Technology

    2010-04-01

    29] F. Spaepen, Condensed-matter science : Five-fold symmetry in liquids, Nature 408 (2000) 781–782. [30] P. R. ten Wolde , M. J. Ruiz-Montero, D...California, Berkeley Department of Materials Science and Engineering Berkeley, CA 94720 University of Illinois, Urbana-Champaign Dept. of Materials... Science & Engineering Urbana, IL 61801 --------------------------------------------------- High Performance Technologies Inc. Consultant at WPAFB

  3. Temperature dependent phonon properties of thermoelectric materials

    NASA Astrophysics Data System (ADS)

    Hellman, Olle; Broido, David; Fultz, Brent

    2015-03-01

    We present recent developments using the temperature dependent effective potential technique (TDEP) to model thermoelectric materials. We use ab initio molecular dynamics to generate an effective Hamiltonian that reproduce neutron scattering spectra, thermal conductivity, phonon self energies, and heat capacities. Results are presented for (among others) SnSe, Bi2Te3, and Cu2Se proving the necessity of careful modelling of finite temperature properties for strongly anharmonic materials. Supported by the Swedish Research Council (VR) Project Number 637-2013-7296.

  4. Nonradiative Electron--Hole Recombination Rate Is Greatly Reduced by Defects in Monolayer Black Phosphorus: Ab Initio Time Domain Study.

    PubMed

    Long, Run; Fang, Weihai; Akimov, Alexey V

    2016-02-18

    We report ab initio time-domain simulations of nonradiative electron-hole recombination and electronic dephasing in ideal and defect-containing monolayer black phosphorus (MBP). Our calculations predict that the presence of phosphorus divacancy in MBP (MBP-DV) substantially reduces the nonradiative recombination rate, with time scales on the order of 1.57 ns. The luminescence line width in ideal MBP of 150 meV is 2.5 times larger than MBP-DV at room temperature, and is in excellent agreement with experiment. We find that the electron-hole recombination in ideal MBP is driven by the 450 cm(-1) vibrational mode, whereas the recombination in the MBP-DV system is driven by a broad range of vibrational modes. The reduced electron-phonon coupling and increased bandgap in MBP-DV rationalize slower recombination in this material, suggesting that electron-phonon energy losses in MBP can be minimized by creating suitable defects in semiconductor device material.

  5. An efficient method for electron-atom scattering using ab-initio calculations

    NASA Astrophysics Data System (ADS)

    Xu, Yuan; Yang, Yonggang; Xiao, Liantuan; Jia, Suotang

    2017-02-01

    We present an efficient method based on ab-initio calculations to investigate electron-atom scatterings. Those calculations profit from methods implemented in standard quantum chemistry programs. The new approach is applied to electron-helium scattering. The results are compared with experimental and other theoretical references to demonstrate the efficiency of our method.

  6. Ab Initio Studies of Chlorine Oxide and Nitrogen Oxide Species of Interest in Stratospheric Chemistry

    NASA Technical Reports Server (NTRS)

    Lee, Timothy J.; Langhoff, Stephen R. (Technical Monitor)

    1995-01-01

    The ability of modern state-of-the art ab initio quantum chemical techniques to characterize reliably the gas-phase molecular structure, vibrational spectrum, electronic spectrum, and thermal stability of chlorine oxide and nitrogen oxide species will be demonstrated by presentation of some example studies. In particular the geometrical structures, vibrational spectra, and heats of formation Of ClNO2, CisClONO, and trans-ClONO are shown to be in excellent agreement with the available experimental data, and where the experimental data are either not known or are inconclusive, the ab initio results are shown to fill in the gaps and to resolve the experimental controversy. In addition, ab initio studies in which the electronic spectra and the characterization of excited electronic states of ClONO2, HONO2, ClOOC17 ClOOH, and HOOH will also be presented. Again where available, the ab initio results are compared to experimental observations, and are used to aid in the interpretation of the experimental studies.

  7. Ab initio molecular dynamics simulations of a binary system of ionic liquids.

    PubMed

    Brüssel, Marc; Brehm, Martin; Voigt, Thomas; Kirchner, Barbara

    2011-08-14

    This work presents first insights into the structural properties of a binary mixture of ionic liquids from the perspective of ab initio molecular dynamics simulations. Simulations were carried out for a one-to-one mixture of 1-ethyl-3-methyl-imidazolium thiocyanate and 1-ethyl-3-methyl-imidazolium chloride and compared to pure 1-ethyl-3-methyl-imidazolium thiocyanate.

  8. Computer simulation of acetonitrile and methanol with ab initio-based pair potentials

    NASA Astrophysics Data System (ADS)

    Hloucha, M.; Sum, A. K.; Sandler, S. I.

    2000-10-01

    This study address the adequacy of ab initio pair interaction energy potentials for the prediction of macroscopic properties. Recently, Bukowski et al. [J. Phys. Chem. A 103, 7322 (1999)] performed a comprehensive study of the potential energy surfaces for several pairs of molecules using symmetry-adapted perturbation theory. These ab initio energies were then fit to an appropriate site-site potential form. In an attempt to bridge the gap between ab initio interaction energy information and macroscopic properties prediction, we performed Gibbs ensemble Monte Carlo (GEMC) simulations using their developed pair potentials for acetonitrile and methanol. The simulations results show that the phase behavior of acetonitrile is well described by just the pair interaction potential. For methanol, on the other hand, pair interactions are insufficient to properly predict its vapor-liquid phase behavior, and its saturated liquid density. We also explored simplified forms for representing the ab initio interaction energies by refitting a selected range of the data to a site-site Lennard-Jones and to a modified Buckingham (exponential-6) potentials plus Coulombic interactions. These were also used in GEMC simulations in order to evaluate the quality and computational efficiency of these different potential forms. It was found that the phase behavior prediction for acetonitrile and methanol are highly dependent on the details of the interaction potentials developed.

  9. Ab initio prediction of vacancy properties in concentrated alloys: The case of fcc Cu-Ni

    NASA Astrophysics Data System (ADS)

    Zhang, Xi; Sluiter, Marcel H. F.

    2015-05-01

    Vacancy properties in concentrated alloys continue to be of great interest because nowadays ab initio supercell simulations reach a scale where even defect properties in disordered alloys appear to be within reach. We show that vacancy properties cannot generally be extracted from supercell total energies in a consistent manner without a statistical model. Essential features of such a model are knowledge of the chemical potential and imposition of invariants. In the present work, we derive the simplest model that satisfies these requirements and we compare it with models in the literature. As illustration we compute ab initio vacancy properties of fcc Cu-Ni alloys as a function of composition and temperature. Ab initio density functional calculations were performed for SQS supercells at various compositions with and without vacancies. Various methods of extracting alloy vacancy properties were examined. A ternary cluster expansion yielded effective cluster interactions (ECIs) for the Cu-Ni-Vac system. Composition and temperature dependent alloy vacancy concentrations were obtained using statistical thermodynamic models with the ab initio ECIs. An Arrhenius analysis showed that the heat of vacancy formation was well represented by a linear function of temperature. The positive slope of the temperature dependence implies a negative configurational entropy contribution to the vacancy formation free energy in the alloy. These findings can be understood by considering local coordination effects.

  10. Matrix product operators, matrix product states, and ab initio density matrix renormalization group algorithms.

    PubMed

    Chan, Garnet Kin-Lic; Keselman, Anna; Nakatani, Naoki; Li, Zhendong; White, Steven R

    2016-07-07

    Current descriptions of the ab initio density matrix renormalization group (DMRG) algorithm use two superficially different languages: an older language of the renormalization group and renormalized operators, and a more recent language of matrix product states and matrix product operators. The same algorithm can appear dramatically different when written in the two different vocabularies. In this work, we carefully describe the translation between the two languages in several contexts. First, we describe how to efficiently implement the ab initio DMRG sweep using a matrix product operator based code, and the equivalence to the original renormalized operator implementation. Next we describe how to implement the general matrix product operator/matrix product state algebra within a pure renormalized operator-based DMRG code. Finally, we discuss two improvements of the ab initio DMRG sweep algorithm motivated by matrix product operator language: Hamiltonian compression, and a sum over operators representation that allows for perfect computational parallelism. The connections and correspondences described here serve to link the future developments with the past and are important in the efficient implementation of continuing advances in ab initio DMRG and related algorithms.

  11. Ab initio calculations on the inclusion complexation of cyclobis(paraquat- p-phenylene)

    NASA Astrophysics Data System (ADS)

    Zhang, Ke-Chun; Liu, Lei; Mu, Ting-Wei; Guo, Qing-Xiang

    2001-01-01

    Semiempirical PM3, ab initio HF/3-21g ∗, and DFT B3LYP/6-31g ∗ calculations in vacuum and in solution were performed on the inclusion complexation of cyclobis(paraquat- p-phenylene) with nine symmetric aromatic substrates. A good correlation was found between the theoretical stabilization energies and experimental free energy changes upon complexation.

  12. Dispersion Interactions between Rare Gas Atoms: Testing the London Equation Using ab Initio Methods

    ERIC Educational Resources Information Center

    Halpern, Arthur M.

    2011-01-01

    A computational chemistry experiment is described in which students can use advanced ab initio quantum mechanical methods to test the ability of the London equation to account quantitatively for the attractive (dispersion) interactions between rare gas atoms. Using readily available electronic structure applications, students can calculate the…

  13. Matrix product operators, matrix product states, and ab initio density matrix renormalization group algorithms

    NASA Astrophysics Data System (ADS)

    Chan, Garnet Kin-Lic; Keselman, Anna; Nakatani, Naoki; Li, Zhendong; White, Steven R.

    2016-07-01

    Current descriptions of the ab initio density matrix renormalization group (DMRG) algorithm use two superficially different languages: an older language of the renormalization group and renormalized operators, and a more recent language of matrix product states and matrix product operators. The same algorithm can appear dramatically different when written in the two different vocabularies. In this work, we carefully describe the translation between the two languages in several contexts. First, we describe how to efficiently implement the ab initio DMRG sweep using a matrix product operator based code, and the equivalence to the original renormalized operator implementation. Next we describe how to implement the general matrix product operator/matrix product state algebra within a pure renormalized operator-based DMRG code. Finally, we discuss two improvements of the ab initio DMRG sweep algorithm motivated by matrix product operator language: Hamiltonian compression, and a sum over operators representation that allows for perfect computational parallelism. The connections and correspondences described here serve to link the future developments with the past and are important in the efficient implementation of continuing advances in ab initio DMRG and related algorithms.

  14. An efficient and accurate molecular alignment and docking technique using ab initio quality scoring

    PubMed Central

    Füsti-Molnár, László; Merz, Kenneth M.

    2008-01-01

    An accurate and efficient molecular alignment technique is presented based on first principle electronic structure calculations. This new scheme maximizes quantum similarity matrices in the relative orientation of the molecules and uses Fourier transform techniques for two purposes. First, building up the numerical representation of true ab initio electronic densities and their Coulomb potentials is accelerated by the previously described Fourier transform Coulomb method. Second, the Fourier convolution technique is applied for accelerating optimizations in the translational coordinates. In order to avoid any interpolation error, the necessary analytical formulas are derived for the transformation of the ab initio wavefunctions in rotational coordinates. The results of our first implementation for a small test set are analyzed in detail and compared with published results of the literature. A new way of refinement of existing shape based alignments is also proposed by using Fourier convolutions of ab initio or other approximate electron densities. This new alignment technique is generally applicable for overlap, Coulomb, kinetic energy, etc., quantum similarity measures and can be extended to a genuine docking solution with ab initio scoring. PMID:18624561

  15. Molecular origins of nonlinear optical activity in zinc tris(thiourea)sulfate revealed by high-resolution x-ray diffraction data and ab initio calculations

    NASA Astrophysics Data System (ADS)

    Cole, Jacqueline M.; Hickstein, Daniel D.

    2013-11-01

    Structure-property relationships are established in the nonlinear optical (NLO) material, zinc tris(thiourea)sulfate (ZTS), via an experimental charge-density study, x-ray constrained wave-function refinement, and quantum-mechanical calculations. The molecular charge-transfer characteristics of ZTS, that are important for NLO activity, are topologically analyzed via a multipolar refinement of high-resolution x-ray diffraction data, which is supported by neutron diffraction measurements. The extent to which each chemical bond is ionic or covalent in nature is categorized by Laplacian-based bonding classifiers of the electron density; these include bond ellipticities, energy densities, and the local source function. Correspondingly, the NLO origins of ZTS are judged to best resemble those of organic NLO materials. The molecular dipole moment, μi, and (hyper)polarizability coefficients, αij and βijk, are calculated from the experimental diffraction data using the x-ray constrained wave-function method. Complementary gas-phase ab initio quantum-mechanical calculations of μi, αij, and βijk offer a supporting comparison. When taken alone, the experimental charge-density analysis does not fare well in deriving μi, αij, or βijk, which is not entirely surprising given that the associated calculations are only generally valid for organic molecules. However, by refining the x-ray data within the constrained wave-function method, the evaluations of μi, αij, and βijk are shown to agree very well with those from ab initio calculations and show remarkable normalization to experimental refractive index measurements. The small differences observed between ab initio and x-ray constrained wave-function refinement results can be related directly to gas- versus solid-state phase differences. μi is found to be 28.3 Debye (gas phase) and 29.7 Debye (solid state) while βijk coefficients are not only significant but are also markedly three dimensional in form. Accordingly

  16. The Yambo code: a comprehensive tool to perform ab-initio simulations of equilibrium and out-of-equilibrium properties

    NASA Astrophysics Data System (ADS)

    Marini, Andrea

    Density functional theory and many-body perturbation theory methods (such as GW and Bethe-Selpether equation) are standard approaches to the equilibrium ground and excited state properties of condensed matter systems, surfaces, molecules and other several kind of materials. At the same time ultra-fast optical spectroscopy is becoming a widely used and powerful tool for the observation of the out-of-equilibrium dynamical processes. In this case the theoretical tools (such as the Baym-Kadanoff equation) are well known but, only recently, have been merged with the ab-Initio approach. And, for this reason, highly parallel and efficient codes are lacking. Nevertheless, the combination of these two areas of research represents, for the ab-initio community, a challenging prespective as it requires the development of advanced theoretical, methodological and numerical tools. Yambo is a popular community software implementing the above methods using plane-waves and pseudo-potentials. Yambo is available to the community as open-source software, and oriented to high-performance computing. The Yambo project aims at making the simulation of these equilibrium and out-of-equilibrium complex processes available to a wide community of users. Indeed the code is used, in practice, in many countries and well beyond the European borders. Yambo is a member of the suite of codes of the MAX European Center of Excellence (Materials design at the exascale) . It is also used by the user facilities of the European Spectroscopy Facility and of the NFFA European Center (nanoscience foundries & fine analysis). In this talk I will discuss some recent numerical and methodological developments that have been implemented in Yambo towards to exploitation of next generation HPC supercomputers. In particular, I will present the hybrid MPI+OpenMP parallelization and the specific case of the response function calculation. I will also discuss the future plans of the Yambo project and its potential use as

  17. Ab initio phonon properties of half-Heusler NiTiSn, NiZrSn and NiHfSn.

    PubMed

    Andrea, Luc; Hug, Gilles; Chaput, Laurent

    2015-10-28

    A theoretical investigation of phonon properties from first-principles calculations is carried out for the half-Heusler compounds NiXSn, [Formula: see text], Zr and Hf. The crystal structures are optimised via ab initio calculations within the framework of density functional theory. The phonon properties are retrieved from harmonic and anharmonic interatomic force constants calculations using the finite size displacements method and many-body perturbation theory. A solution to the linearized phonon Boltzmann transport equation is then used to compute the ab initio thermal conductivities. For X   =   Ti, Zr and Hf, we found 15.4, 13.3 and 15.8 W m(-1) K(-1) at 300 K, respectively. Thanks to a spectral analysis of the velocities and lifetimes we were able appreciate the differences in the thermal conductivities between the three compounds under study. Our results provide insights to understand the behaviour of the thermal conductivity and therefore to improve the thermoelectric figure of merit for such materials.

  18. Superhard sp3 carbon allotrope: Ab initio calculations

    NASA Astrophysics Data System (ADS)

    Zhang, Zhiguo; Liu, Hanyu; Zhang, Miao

    2014-11-01

    We have systematically studied the structural, electronic and mechanical properties of a novel superhard sp3 carbon allotrope (Amm2-carbon) based on the density functional theory (DFT). This carbon allotrope was identified using a developed methodology in the theoretical design of superhard materials based on the CALYPSO algorithm, and predicted to be more stable than graphite for pressures above 16.6 GPa. It is found to be dynamically stable and a semiconductor with an insulator with a direct band gap of approximately 4.18 eV. Moreover, the calculated elastic constants for Amm2-carbon satisfy the stability condition. Calculations of bulk modulus and hardness indicate that this Amm2-carbon is an ultra-incompressible and superhard material. Furthermore, we extensively investigated the stress-strain relations of Amm2-carbon under various tensile and shear loading directions. The present results indicate Amm2-carbon is a superhard material.

  19. Carrier multiplication in silicon nanocrystals: ab initio results.

    PubMed

    Marri, Ivan; Govoni, Marco; Ossicini, Stefano

    2015-01-01

    One of the most important goals in the field of renewable energy is the development of original solar cell schemes employing new materials to overcome the performance limitations of traditional solar cell devices. Among such innovative materials, nanostructures have emerged as an important class of materials that can be used to realize efficient photovoltaic devices. When these systems are implemented into solar cells, new effects can be exploited to maximize the harvest of solar radiation and to minimize the loss factors. In this context, carrier multiplication seems one promising way to minimize the effects induced by thermalization loss processes thereby significantly increasing the solar cell power conversion. In this work we analyze and quantify different types of carrier multiplication decay dynamics by analyzing systems of isolated and coupled silicon nanocrystals. The effects on carrier multiplication dynamics by energy and charge transfer processes are also discussed.

  20. Ab Initio Kinetics and Thermal Decomposition Mechanism of Mononitrobiuret and 1,5- Dinitrobiuret

    SciTech Connect

    Sun, Hongyan; Vaghjiani, Ghanshyam G.

    2015-05-26

    Mononitrobiuret (MNB) and 1,5-dinitrobiuret (DNB) are tetrazole-free, nitrogen-rich, energetic compounds. For the first time, a comprehensive ab initio kinetics study on the thermal decomposition mechanisms of MNB and DNB is reported here. In particular, the intramolecular interactions of amine H-atom with electronegative nitro O-atom and carbonyl O-atom have been analyzed for biuret, MNB, and DNB at the M06-2X/aug-cc-pVTZ level of theory. The results show that the MNB and DNB molecules are stabilized through six-member-ring moieties via intramolecular H-bonding with interatomic distances between 1.8 and 2.0 Å, due to electrostatic as well as polarization and dispersion interactions. Furthermore, it was found that the stable molecules in the solid state have the smallest dipole moment amongst all the conformers in the nitrobiuret series of compounds, thus revealing a simple way for evaluating reactivity of fuel conformers. The potential energy surface for thermal decomposition of MNB was characterized by spin restricted coupled cluster theory at the RCCSD(T)/cc-pV∞ Z//M06-2X/aug-cc-pVTZ level. It was found that the thermal decomposition of MNB is initiated by the elimination of HNCO and HNN(O)OH intermediates. Intramolecular transfer of a H-atom, respectively, from the terminal NH2 group to the adjacent carbonyl O-atom via a six-member-ring transition state eliminates HNCO with an energy barrier of 35 kcal/mol and from the central NH group to the adjacent nitro O-atom eliminates HNN(O)OH with an energy barrier of 34 kcal/mol. Elimination of HNN(O)OH is also the primary process involved in the thermal decomposition of DNB, which processes C2v symmetry. The rate coefficients for the primary decomposition channels for MNB and DNB were quantified as functions of temperature and pressure. In addition, the thermal decomposition of HNN(O)OH was analyzed via Rice–Ramsperger–Kassel–Marcus/multi-well master equation simulations, the results of which reveal the

  1. Ab initio joint density-functional theory of solvated electrodes, with model and explicit solvation

    NASA Astrophysics Data System (ADS)

    Arias, Tomas

    2015-03-01

    First-principles guided design of improved electrochemical systems has the potential for great societal impact by making non-fossil-fuel systems economically viable. Potential applications include improvements in fuel-cells, solar-fuel systems (``artificial photosynthesis''), supercapacitors and batteries. Economical fuel-cell systems would enable zero-carbon footprint transportation, solar-fuel systems would directly convert sunlight and water into hydrogen fuel for such fuel-cell vehicles, supercapacitors would enable nearly full recovery of energy lost during vehicle braking thus extending electric vehicle range and acceptance, and economical high-capacity batteries would be central to mitigating the indeterminacy of renewable resources such as wind and solar. Central to the operation of all of the above electrochemical systems is the electrode-electrolyte interface, whose underlying physics is quite rich, yet remains remarkably poorly understood. The essential underlying technical challenge to the first principles studies which could explore this physics is the need to properly represent simultaneously both the interaction between electron-transfer events at the electrode, which demand a quantum mechanical description, and multiscale phenomena in the liquid environment such as the electrochemical double layer (ECDL) and its associated shielding, which demand a statistical description. A direct ab initio approach to this challenge would, in principle, require statistical sampling and thousands of repetitions of already computationally demanding quantum mechanical calculations. This talk will begin with a brief review of a recent advance, joint density-functional theory (JDFT), which allows for a fully rigorous and, in principle, exact representation of the thermodynamic equilibrium between a system described at the quantum-mechanical level and a liquid environment, but without the need for costly sampling. We then shall demonstrate how this approach applies in

  2. An Ab Initio Approach Towards Engineering Fischer-Tropsch Surface Chemistry

    SciTech Connect

    Matthew Neurock

    2006-09-11

    One of the greatest societal challenges over the next decade is the production of cheap, renewable energy for the 10 billion people that inhabit the earth. This will require the development of various energy sources which will likely include fuels derived from methane, coal, and biomass and alternatives sources such as solar, wind and nuclear energy. One approach will be to synthesize gasoline and other fuels from simpler hydrocarbons such as CO derived from methane or other U.S. based sources such as coal. Syngas (CO and H{sub 2}) can be readily converted into higher molecular weight hydrocarbons through Fischer-Tropsch synthesis. Fischer-Tropsch (FT) synthesis involves the adsorption and the activation of CO and H{sub 2}, the subsequent propagation steps including hydrogenation and carbon-carbon coupling, followed by chain termination reactions. The current commercial catalysts are supported Co and Co-alloys particles. This project set out with the following objectives in mind: (1) understand the reaction mechanisms that control FT kinetics, (2) predict how the intrinsic metal-adsorbate bond affects the sequence of elementary steps in FT, (3) establish the effects of the reaction environment on catalytic activity and selectivity, (4) construct a first-principles based algorithm that can incorporate the detailed atomic surface structure and simulate the kinetics for the myriad of elementary pathways that make up FT chemistry, and (5) suggest a set of optimal features such as alloy composition and spatial configuration, oxide support, distribution of defect sites. As part of this effort we devoted a significant portion of time to develop an ab initio based kinetic Monte Carlo simulation which can be used to follow FT surface chemistry over different transition metal and alloy surfaces defined by the user. Over the life of this program, we have used theory and have developed and applied stochastic Monte Carlo simulations in order to establish the fundamental

  3. Ab initio kinetics and thermal decomposition mechanism of mononitrobiuret and 1,5-dinitrobiuret.

    PubMed

    Sun, Hongyan; Vaghjiani, Ghanshyam L

    2015-05-28

    Mononitrobiuret (MNB) and 1,5-dinitrobiuret (DNB) are tetrazole-free, nitrogen-rich, energetic compounds. For the first time, a comprehensive ab initio kinetics study on the thermal decomposition mechanisms of MNB and DNB is reported here. In particular, the intramolecular interactions of amine H-atom with electronegative nitro O-atom and carbonyl O-atom have been analyzed for biuret, MNB, and DNB at the M06-2X/aug-cc-pVTZ level of theory. The results show that the MNB and DNB molecules are stabilized through six-member-ring moieties via intramolecular H-bonding with interatomic distances between 1.8 and 2.0 Å, due to electrostatic as well as polarization and dispersion interactions. Furthermore, it was found that the stable molecules in the solid state have the smallest dipole moment amongst all the conformers in the nitrobiuret series of compounds, thus revealing a simple way for evaluating reactivity of fuel conformers. The potential energy surface for thermal decomposition of MNB was characterized by spin restricted coupled cluster theory at the RCCSD(T)/cc-pV∞ Z//M06-2X/aug-cc-pVTZ level. It was found that the thermal decomposition of MNB is initiated by the elimination of HNCO and HNN(O)OH intermediates. Intramolecular transfer of a H-atom, respectively, from the terminal NH2 group to the adjacent carbonyl O-atom via a six-member-ring transition state eliminates HNCO with an energy barrier of 35 kcal/mol and from the central NH group to the adjacent nitro O-atom eliminates HNN(O)OH with an energy barrier of 34 kcal/mol. Elimination of HNN(O)OH is also the primary process involved in the thermal decomposition of DNB, which processes C2v symmetry. The rate coefficients for the primary decomposition channels for MNB and DNB were quantified as functions of temperature and pressure. In addition, the thermal decomposition of HNN(O)OH was analyzed via Rice-Ramsperger-Kassel-Marcus/multi-well master equation simulations, the results of which reveal the formation

  4. Ab initio kinetics and thermal decomposition mechanism of mononitrobiuret and 1,5-dinitrobiuret

    NASA Astrophysics Data System (ADS)

    Sun, Hongyan; Vaghjiani, Ghanshyam L.

    2015-05-01

    Mononitrobiuret (MNB) and 1,5-dinitrobiuret (DNB) are tetrazole-free, nitrogen-rich, energetic compounds. For the first time, a comprehensive ab initio kinetics study on the thermal decomposition mechanisms of MNB and DNB is reported here. In particular, the intramolecular interactions of amine H-atom with electronegative nitro O-atom and carbonyl O-atom have been analyzed for biuret, MNB, and DNB at the M06-2X/aug-cc-pVTZ level of theory. The results show that the MNB and DNB molecules are stabilized through six-member-ring moieties via intramolecular H-bonding with interatomic distances between 1.8 and 2.0 Å, due to electrostatic as well as polarization and dispersion interactions. Furthermore, it was found that the stable molecules in the solid state have the smallest dipole moment amongst all the conformers in the nitrobiuret series of compounds, thus revealing a simple way for evaluating reactivity of fuel conformers. The potential energy surface for thermal decomposition of MNB was characterized by spin restricted coupled cluster theory at the RCCSD(T)/cc-pV∞ Z//M06-2X/aug-cc-pVTZ level. It was found that the thermal decomposition of MNB is initiated by the elimination of HNCO and HNN(O)OH intermediates. Intramolecular transfer of a H-atom, respectively, from the terminal NH2 group to the adjacent carbonyl O-atom via a six-member-ring transition state eliminates HNCO with an energy barrier of 35 kcal/mol and from the central NH group to the adjacent nitro O-atom eliminates HNN(O)OH with an energy barrier of 34 kcal/mol. Elimination of HNN(O)OH is also the primary process involved in the thermal decomposition of DNB, which processes C2v symmetry. The rate coefficients for the primary decomposition channels for MNB and DNB were quantified as functions of temperature and pressure. In addition, the thermal decomposition of HNN(O)OH was analyzed via Rice-Ramsperger-Kassel-Marcus/multi-well master equation simulations, the results of which reveal the formation

  5. Serious Gaming for Test & Evaluation of Clean-Slate (Ab Initio) National Airspace System (NAS) Designs

    NASA Technical Reports Server (NTRS)

    Allen, B. Danette; Alexandrov, Natalia

    2016-01-01

    Incremental approaches to air transportation system development inherit current architectural constraints, which, in turn, place hard bounds on system capacity, efficiency of performance, and complexity. To enable airspace operations of the future, a clean-slate (ab initio) airspace design(s) must be considered. This ab initio National Airspace System (NAS) must be capable of accommodating increased traffic density, a broader diversity of aircraft, and on-demand mobility. System and subsystem designs should scale to accommodate the inevitable demand for airspace services that include large numbers of autonomous Unmanned Aerial Vehicles and a paradigm shift in general aviation (e.g., personal air vehicles) in addition to more traditional aerial vehicles such as commercial jetliners and weather balloons. The complex and adaptive nature of ab initio designs for the future NAS requires new approaches to validation, adding a significant physical experimentation component to analytical and simulation tools. In addition to software modeling and simulation, the ability to exercise system solutions in a flight environment will be an essential aspect of validation. The NASA Langley Research Center (LaRC) Autonomy Incubator seeks to develop a flight simulation infrastructure for ab initio modeling and simulation that assumes no specific NAS architecture and models vehicle-to-vehicle behavior to examine interactions and emergent behaviors among hundreds of intelligent aerial agents exhibiting collaborative, cooperative, coordinative, selfish, and malicious behaviors. The air transportation system of the future will be a complex adaptive system (CAS) characterized by complex and sometimes unpredictable (or unpredicted) behaviors that result from temporal and spatial interactions among large numbers of participants. A CAS not only evolves with a changing environment and adapts to it, it is closely coupled to all systems that constitute the environment. Thus, the ecosystem that

  6. Ab Initio -Based Bond Order Potential to Investigate Low Thermal Conductivity of Stanene Nanostructures

    SciTech Connect

    Cherukara, Mathew J.; Narayanan, Badri; Kinaci, Alper; Sasikumar, Kiran; Gray, Stephen K.; Chan, Maria K. Y.; Sankaranarayanan, Subramanian K. R. S.

    2016-08-28

    We introduce a bond order potential (BOP) for stanene based on an ab initio derived training data set. The potential is optimized to accurately describe the energetics, as well as thermal and mechanical properties of a free-standing sheet, and used to study diverse nanostructures of stanene, including tubes and ribbons. As a representative case study, using the potential, we perform molecular dynamics simulations to study stanene’s structure and temperature-dependent thermal conductivity. We find that the structure of stanene is highly rippled, far in excess of other 2-D materials (e.g., graphene), owing to its low in-plane stiffness (stanene: ~ 25 N/m; graphene: ~ 480 N/ m). The extent of stanene’s rippling also shows stronger temperature dependence compared to that in graphene. Furthermore, we find that stanene based nanostructures have significantly lower thermal conductivity compared to graphene based structures owing to their softness (i.e., low phonon group velocities) and high anharmonic response. Our newly developed BOP will facilitate the exploration of stanene based low dimensional heterostructures for thermoelectric and thermal management applications.

  7. Ab Initio Study of the Effects of Surface Chemistry and Size on Xray Absorption Spectra of CdSe Nanoparticles

    NASA Astrophysics Data System (ADS)

    Whitley, Heather; Prendergast, David; Ogitsu, Tadashi; Schwegler, Eric

    2009-03-01

    The specificity of their opto-electronic properties with respect to size, shape, and surface chemistry, as well as cost-effective solution based methods of synthesis, make CdSe nanoparticles a material of choice for use in novel opto-electronic devices, such as photovoltaics and field effect transistors. Developing methods by which these nanomaterials can be systematically engineered to meet specific device goals is largely dependent on understanding how surface passivation and reconstruction affect the properties of a given nanomaterial. Xray absorption spectroscopy (XAS) is an ideal method for structural analysis, but its application to studying nanomaterial surfaces is nontrivial due to the convolution of the absorption of surface atoms with those within the nanomaterial. We utilize ab initio methods to investigate the dependence of the Cd L-edge xray absorption cross-section on the size and passivation for Cd atoms both at the surface and within the core of CdSe nanomaterials. We aim to enable routine surface characterization of CdSe nanomaterials via XAS. Prepared by LLNL under Contract DE-AC52 07NA27344.

  8. Condensed-matter ab initio approach for strongly correlated electrons: Application to a quantum spin liquid candidate

    SciTech Connect

    Yamaji, Youhei

    2015-12-31

    Recently, condensed-matter ab initio approaches to strongly correlated electrons confined in crystalline solids have been developed and applied to transition-metal oxides and molecular conductors. In this paper, an ab initio scheme based on constrained random phase approximations and localized Wannier orbitals is applied to a spin liquid candidate Na{sub 2}IrO{sub 3} and is shown to reproduce experimentally observed specific heat.

  9. Exploring the free energy surface using ab initio molecular dynamics

    SciTech Connect

    Samanta, Amit; Morales, Miguel A.; Schwegler, Eric

    2016-04-22

    Efficient exploration of the configuration space and identification of metastable structures are challenging from both computational as well as algorithmic perspectives. Here, we extend the recently proposed orderparameter aided temperature accelerated sampling schemes to efficiently and systematically explore free energy surfaces, and search for metastable states and reaction pathways within the framework of density functional theory based molecular dynamics. The sampling method is applied to explore the relevant parts of the configuration space in prototypical materials SiO2 and Ti to identify the different metastable structures corresponding to different phases in these materials. In addition, we use the string method in collective variables to study the melting pathways in the high pressure cotunnite phase of SiO2 and the hcp to fcc phase transition in Ti.

  10. Exploring the free energy surface using ab initio molecular dynamics

    DOE PAGES

    Samanta, Amit; Morales, Miguel A.; Schwegler, Eric

    2016-04-22

    Efficient exploration of the configuration space and identification of metastable structures are challenging from both computational as well as algorithmic perspectives. Here, we extend the recently proposed orderparameter aided temperature accelerated sampling schemes to efficiently and systematically explore free energy surfaces, and search for metastable states and reaction pathways within the framework of density functional theory based molecular dynamics. The sampling method is applied to explore the relevant parts of the configuration space in prototypical materials SiO2 and Ti to identify the different metastable structures corresponding to different phases in these materials. In addition, we use the string method inmore » collective variables to study the melting pathways in the high pressure cotunnite phase of SiO2 and the hcp to fcc phase transition in Ti.« less

  11. Melting of sodium under high pressure. An ab-initio study

    SciTech Connect

    González, D. J.; González, L. E.

    2015-08-17

    We report ab-initio molecular dynamics simulations of dense liquid/solid sodium for a pressure range from 0 to 100 GPa. The simulations have been performed with the orbital free ab-initio molecular dynamics method which, by using the electron density as the basic variable, allows to perform simulations with large samples and for long runs. The calculated melting curve shows a maximum at a pressure ≈ 30 GPa and it is followed by a long, steep decrease. These features are in good agreement with the experimental data. For various pressures along the melting curve, we have calculated several liquid static properties (pair distribution functions, static structure factors and short-range order parameters) in order to analyze the structural effects of pressure.

  12. Study of atomic structure of liquid Hg-In alloys using ab-initio molecular dynamics

    SciTech Connect

    Sharma, Nalini; Ahluwalia, P. K.; Thakur, Anil

    2015-05-15

    Ab-initio molecular dynamics simulations are performed to study the structural properties of liquid Hg-In alloys. The interatomic interactions are described by ab-initio pseudopotentials given by Troullier and Martins. Five liquid Hg-In mixtures (Hg{sub 10}In{sub 90}, Hg{sub 30}In{sub 70}, Hg{sub 50}In{sub 50}, Hg{sub 70}In{sub 30} and Hg{sub 90}In{sub 10}) at 299K are considered. The radial distribution function g(r) and structure factor S(q) of considered alloys are compared with respective experimental results for liquid Hg (l-Hg) and (l-In). The radial distribution function g(r) shows the presence of short range order in the systems considered. Smooth curves of Bhatia-Thornton partial structure factors factor shows the presence of liquid state in the considered alloys.

  13. Ab initio calculations on the magnetic properties of transition metal complexes

    SciTech Connect

    Bodenstein, Tilmann; Fink, Karin

    2015-12-31

    We present a protocol for the ab initio determination of the magnetic properties of mono- and polynuclear transition metal compounds. First, we obtain the low lying electronic states by multireference methods. Then, we include spin-orbit coupling and an external magnetic field for the determination of zero-field splitting and g-tensors. For the polynuclear complexes the magnetic exchange coupling constants are determined by a modified complete active space self consistent field method. Based on the results of the ab initio calculations, magnetic data such as magnetic susceptibility or magnetization are simulated and compared to experimental data. The results obtained for the polynuclear complexes are further analysed by calculations on model complexes where part of the magnetic centers are substituted by diamagnetic ions. The methods are applied to different Co and Ni containing transition metal complexes.

  14. Ab Initio No-Core Shell Model Calculations Using Realistic Two- and Three-Body Interactions

    SciTech Connect

    Navratil, P; Ormand, W E; Forssen, C; Caurier, E

    2004-11-30

    There has been significant progress in the ab initio approaches to the structure of light nuclei. One such method is the ab initio no-core shell model (NCSM). Starting from realistic two- and three-nucleon interactions this method can predict low-lying levels in p-shell nuclei. In this contribution, we present a brief overview of the NCSM with examples of recent applications. We highlight our study of the parity inversion in {sup 11}Be, for which calculations were performed in basis spaces up to 9{Dirac_h}{Omega} (dimensions reaching 7 x 10{sup 8}). We also present our latest results for the p-shell nuclei using the Tucson-Melbourne TM three-nucleon interaction with several proposed parameter sets.

  15. Ab initio study of AlxMoNbTiV high-entropy alloys.

    PubMed

    Cao, Peiyu; Ni, Xiaodong; Tian, Fuyang; Varga, Lajos K; Vitos, Levente

    2015-02-25

    The Al(x)MoNbTiV (x = 0-1.5) high-entropy alloys (HEAs) adopt a single solid-solution phase, having the body centered cubic (bcc) crystal structure. Here we employ the ab initio exact muffin-tin orbitals method in combination with the coherent potential approximation to investigate the equilibrium volume, elastic constants, and polycrystalline elastic moduli of Al(x)MoNbTiV HEAs. A comparison between the ab initio and experimental equilibrium volumes demonstrates the validity and accuracy of the present approach. Our results indicate that Al addition decreases the thermodynamic stability of the bcc structure with respect to face-centered cubic and hexagonal close packed lattices. For the elastically isotropic Al(0.4)MoNbTiV HEAs, the valence electron concentration (VEC) is about 4.82, which is slightly different from VEC ∼ 4.72 obtained for the isotropic Gum metals and refractory--HEAs.

  16. Ab initio molecular dynamics simulation of liquid water by quantum Monte Carlo

    SciTech Connect

    Zen, Andrea; Luo, Ye Mazzola, Guglielmo Sorella, Sandro; Guidoni, Leonardo

    2015-04-14

    Although liquid water is ubiquitous in chemical reactions at roots of life and climate on the earth, the prediction of its properties by high-level ab initio molecular dynamics simulations still represents a formidable task for quantum chemistry. In this article, we present a room temperature simulation of liquid water based on the potential energy surface obtained by a many-body wave function through quantum Monte Carlo (QMC) methods. The simulated properties are in good agreement with recent neutron scattering and X-ray experiments, particularly concerning the position of the oxygen-oxygen peak in the radial distribution function, at variance of previous density functional theory attempts. Given the excellent performances of QMC on large scale supercomputers, this work opens new perspectives for predictive and reliable ab initio simulations of complex chemical systems.

  17. Effects of Mg II and Ca II ionization on ab-initio solar chromosphere models

    NASA Technical Reports Server (NTRS)

    Rammacher, W.; Cuntz, M.

    1991-01-01

    Acoustically heated solar chromosphere models are computed considering radiation damping by (non-LTE) emission from H(-) and by Mg II and Ca II emission lines. The radiative transfer equations for the Mg II k and Ca II K emission lines are solved using the core-saturation method with complete redistribution. The Mg II k and Ca II K cooling rates are compared with the VAL model C. Several substantial improvements over the work of Ulmschneider et al. (1987) are included. It is found that the rapid temperature rises caused by the ionization of Mg II are not formed in the middle chromosphere, but occur at larger atmospheric heights. These models represent the temperature structure of the 'real' solar chromosphere much better. This result is a major precondition for the study of ab-initio models for solar flux tubes based on MHD wave propagation and also for ab-initio models for the solar transition layer.

  18. B28: the smallest all-boron cage from an ab initio global search

    NASA Astrophysics Data System (ADS)

    Zhao, Jijun; Huang, Xiaoming; Shi, Ruili; Liu, Hongsheng; Su, Yan; King, R. Bruce

    2015-09-01

    Our ab initio global searches reveal the lowest-energy cage for B28, which is built from two B12 units and prevails over the competing structural isomers such as planar, bowl, and tube. This smallest boron cage extends the scope of all-boron fullerene and provides a new structural motif of boron clusters and nanostructures.Our ab initio global searches reveal the lowest-energy cage for B28, which is built from two B12 units and prevails over the competing structural isomers such as planar, bowl, and tube. This smallest boron cage extends the scope of all-boron fullerene and provides a new structural motif of boron clusters and nanostructures. Electronic supplementary information (ESI) available: Planar isomer structures of B28 and spatial distributions of front molecular orbitals. See DOI: 10.1039/c5nr04034e

  19. Specific interactions between DNA and regulatory protein controlled by ligand-binding: Ab initio molecular simulation

    NASA Astrophysics Data System (ADS)

    Matsushita, Y.; Murakawa, T.; Shimamura, K.; Oishi, M.; Ohyama, T.; Kurita, N.

    2015-02-01

    The catabolite activator protein (CAP) is one of the regulatory proteins controlling the transcription mechanism of gene. Biochemical experiments elucidated that the complex of CAP with cyclic AMP (cAMP) is indispensable for controlling the mechanism, while previous molecular simulations for the monomer of CAP+cAMP complex revealed the specific interactions between CAP and cAMP. However, the effect of cAMP-binding to CAP on the specific interactions between CAP and DNA is not elucidated at atomic and electronic levels. We here considered the ternary complex of CAP, cAMP and DNA in solvating water molecules and investigated the specific interactions between them at atomic and electronic levels using ab initio molecular simulations based on classical molecular dynamics and ab initio fragment molecular orbital methods. The results highlight the important amino acid residues of CAP for the interactions between CAP and cAMP and between CAP and DNA.

  20. Liquid Be, Ca and Ba. An orbital-free ab-initio molecular dynamics study

    SciTech Connect

    Rio, B. G. del; González, L. E.

    2015-08-17

    Several static and dynamic properties of liquid beryllium (l-Be), liquid calcium (l-Ca) and liquid barium (l-Ba) near their triple point have been evaluated by the orbital-free ab initio molecular dynamics method (OF-AIMD), where the interaction between valence electrons and ions is described by means of local pseudopotentials. These local pseudopotentials used were constructed through a force-matching process with those obtained from a Kohn-Sham ab initio molecular dynamics study (KS-AIMD) of a reduced system with non-local pseudopotentials. The calculated static structures show good agreement with the available experimental data, including an asymmetric second peak in the structure factor which has been linked to the existence of a marked icosahedral short-range order in the liquid. As for the dynamic properties, we obtain collective density excitations whose associated dispersion relations exhibit a positive dispersion.

  1. Ab initio calculation of valley splitting in monolayer δ-doped phosphorus in silicon

    PubMed Central

    2013-01-01

    The differences in energy between electronic bands due to valley splitting are of paramount importance in interpreting transport spectroscopy experiments on state-of-the-art quantum devices defined by scanning tunnelling microscope lithography. Using vasp, we develop a plane-wave density functional theory description of systems which is size limited due to computational tractability. Nonetheless, we provide valuable data for the benchmarking of empirical modelling techniques more capable of extending this discussion to confined disordered systems or actual devices. We then develop a less resource-intensive alternative via localised basis functions in siesta, retaining the physics of the plane-wave description, and extend this model beyond the capability of plane-wave methods to determine the ab initio valley splitting of well-isolated δ-layers. In obtaining an agreement between plane-wave and localised methods, we show that valley splitting has been overestimated in previous ab initio calculations by more than 50%. PMID:23445785

  2. Specific interactions between DNA and regulatory protein controlled by ligand-binding: Ab initio molecular simulation

    SciTech Connect

    Matsushita, Y. Murakawa, T. Shimamura, K. Oishi, M. Ohyama, T. Kurita, N.

    2015-02-27

    The catabolite activator protein (CAP) is one of the regulatory proteins controlling the transcription mechanism of gene. Biochemical experiments elucidated that the complex of CAP with cyclic AMP (cAMP) is indispensable for controlling the mechanism, while previous molecular simulations for the monomer of CAP+cAMP complex revealed the specific interactions between CAP and cAMP. However, the effect of cAMP-binding to CAP on the specific interactions between CAP and DNA is not elucidated at atomic and electronic levels. We here considered the ternary complex of CAP, cAMP and DNA in solvating water molecules and investigated the specific interactions between them at atomic and electronic levels using ab initio molecular simulations based on classical molecular dynamics and ab initio fragment molecular orbital methods. The results highlight the important amino acid residues of CAP for the interactions between CAP and cAMP and between CAP and DNA.

  3. Properties of metals during the heating by intense laser irradiation using ab initio simulations

    NASA Astrophysics Data System (ADS)

    Holst, Bastian; Recoules, Vanina; Torrent, Marc; Mazevet, Stephane

    2011-10-01

    Ultrashort laser pulses irradiating a target heat the electrons to very high temperatures. In contrast, the ionic lattice is unaffected on the time scale of the laser pulse since the heat capacity of electrons is much smaller than that of the lattice. This non-equilibrium system can be described as a composition of two subsystems: one consisting of hot electrons and the other of an ionic lattice at low temperature. We studied the effect of this intense electronic excitations on the optical properties of gold using ab initio simulations. We additionally use ab initio linear response to compute the phonon spectrum and the electron-phonon coupling constant within Density Functional Theory for several electronic temperatures of few eV. LULI, Ecole Polytechnique, CNRS, CEA, UPMC, 91128 Palaiseau, France.

  4. Theoretical method for full ab initio calculation of DNA/RNA-ligand interaction energy

    NASA Astrophysics Data System (ADS)

    Chen, Xi H.; Zhang, John Z. H.

    2004-06-01

    In this paper, we further develop the molecular fractionation with conjugate caps (MFCC) scheme for quantum mechanical computation of DNA-ligand interaction energy. We study three oligonuclear acid interaction systems: dinucleotide dCG/water, trinucleotide dCGT/water, and a Watson-Crick paired DNA segment, dCGT/dGCA. Using the basic MFCC approach, the nucleotide chains are cut at each phosphate group and a pair of conjugate caps (concaps) are inserted. Five cap molecules have been tested among which the dimethyl phosphate anion is proposed to be the standard concap for application. For each system, one-dimensional interaction potential curves are computed using the MFCC method and the calculated interaction energies are found to be in excellent agreement with corresponding results obtained from the full system ab initio calculations. The current study extends the application of the MFCC method to ab initio calculations for DNA- or RNA-ligand interaction energies.

  5. Study of the betulin molecule in a water environment; ab initio and molecular simulation calculations.

    PubMed

    Pospíšil, Miroslav; Kovář, Petr; Vácha, Robert; Svoboda, Michal

    2012-01-01

    Ab initio and molecular simulation methods were used in calculations of the neutral individual betulin molecule, and molecular simulations were used to optimize the betulin molecule immersed in various amounts of water. Individual betulin was optimized in different force fields to find the one exhibiting best agreement with ab initio calculations obtained in the Gaussian03 program. Dihedral torsions of active groups of betulin were determined for both procedures, and related calculated structures were compared successfully. The selected force field was used for subsequent optimization of betulin in a water environment, and a conformational search was performed using quench molecular dynamics. The total energies of betulin and its interactions in water bulk were calculated, and the influence of water on betulin structure was investigated.

  6. Li ion diffusion mechanisms in LiFePO4: an ab initio molecular dynamics study.

    PubMed

    Yang, Jianjun; Tse, John S

    2011-11-17

    The mechanisms for thermal (self) diffusion of Li ions in fully lithiated LiFePO(4) have been investigated with spin polarized ab initio molecular dynamics calculations. The effect of electron correlation is taken into account with the GGA+U formalism. It was found that Li ion diffusion is not a continuous process but through a series of jumps from one site to another. A dominant process is the hopping between neighboring Li sites around the PO(4) groups, which results in a zigzag pathway along the crystallographic b-axis. This observation is in agreement with a recent neutron diffraction experiment. A second process involves the collaborative movements of the Fe ions leading to the formation of antisite defects and promotes Li diffusion across the Li ion channels. The finding of the second mechanism demonstrates the benefit of ab initio molecular dynamics simulation in sampling diffusion pathways that may not be anticipated.

  7. The Pu-U-Am system: An ab initio informed CALPHAD thermodynamic study

    NASA Astrophysics Data System (ADS)

    Perron, A.; Turchi, P. E. A.; Landa, A.; Söderlind, P.; Ravat, B.; Oudot, B.; Delaunay, F.

    2015-03-01

    Phase diagram and thermodynamic properties of the Am-U system, that are experimentally unknown, are calculated using the CALPHAD method with input from ab initio electronic-structure calculations for the fcc and bcc phases. A strong tendency toward phase separation across the whole composition range is predicted. In addition, ab initio informed Pu-U and Am-Pu thermodynamic assessments are combined to build a Pu-U-Am thermodynamic database. Regarding the Pu-rich corner of the ternary system, predictions indicate that Am acts as a powerful δ-Pu (fcc) stabilizer. In the U-rich corner, similar predictions are made but to a lesser extent. In both cases, the bcc phase is destabilized and the fcc phase is enhanced. Finally, results and methodology are discussed and compared with previous assessments and guidelines are provided for further experimental studies.

  8. Ab initio simulation of atomic-scale imaging in noncontact atomic force microscopy.

    PubMed

    Caciuc, V; Hölscher, H

    2009-07-01

    In this paper, we summarize some results of our ab initio simulations aimed at investigating the mechanism of the NC-AFM image contrast on semiconductor and metallic surfaces. We start with an introduction into the basic ideas behind the ab initio simulation process of the NC-AFM experimental results. Our simulations reveal that the interaction of a clean silicon tip with a semiconductor surface like InAs(110) might lead to bond-formation and bond-breaking processes during the approach and retraction of the tip. This imaging mechanism is very similar to that observed on a metallic surface like Ag(110). Interestingly, a clean silicon tip can become contaminated with Ag surface atoms. On both types of surface we observe a significant energy dissipation which is caused by a hysteresis in the tip-sample force curves calculated on the approach and retraction path.

  9. [Photoelectron Spectra of CCl2-: Ab Initio Calculation and Franck-Condon Analysis].

    PubMed

    Wu, Jun

    2015-12-01

    Geometry optimization and harmonic vibrational frequency calculations were performed on the X¹A₁ state of CCl₂ and X²B₁ state of CCl₂⁻ at the B3LYP, MP2, CCSD levels. Franck-Condon analysis and spectral simulations were carried out on the photoelectron band of CCl₂⁻ including Duschinsky effects. The simulated spectra obtained are in excellent agreement with the experiment. Note that Duschinsky effect between bending vibration and the symmetric stretch modes should be considered in the CCl₂ (X¹A₁)-CCl₂⁻ (X²B₁) photodetachment process. By combining ab initio calculations with Franck-Condon analyses, the assignment of spectrum observed is firmly established to the X¹A₁-X²B₁ photodetachment process of the CCl₂⁻ radical, and the recommended geometric parameters of which in the literature are confirmed again base on ab initio theory and IFCA process.

  10. Ab initio calculations on twisted graphene/hBN: Electronic structure and STM image simulation

    NASA Astrophysics Data System (ADS)

    Correa, J. D.; Cisternas, E.

    2016-09-01

    By performing ab initio calculations we obtained theoretical scanning tunneling microscopy (STM) images and studied the electronic properties of graphene on a hexagonal boron-nitrite (hBN) layer. Three different stack configurations and four twisted angles were considered. All calculations were performed using density functional theory, including van der Waals interactions as implemented in the SIESTA ab initio package. Our results show that the electronic structure of graphene is preserved, although some small changes are induced by the interaction with the hBN layer, particularly in the total density of states at 1.5 eV under the Fermi level. When layers present a twisted angle, the density of states shows several van Hove singularities under the Fermi level, which are associated to moiré patterns observed in theoretical STM images.

  11. Ab-initio molecular dynamics simulations of liquid Hg-Pb alloys

    NASA Astrophysics Data System (ADS)

    Sharma, Nalini; Thakur, Anil; Ahluwalia, P. K.

    2014-04-01

    Ab-initio molecular dynamics simulations are performed to study the structural properties of liquid Hg-Pb alloys. The interatomic interactions are described by ab-initio pseudopotentials given by Troullier and Martins. Three liquid Hg-Pb mixtures (Hg30Pb70, Hg50Pb50 and Hg90Pb10) at 600K are considered. The radial distribution function g(r) and structure factor S(q) of considered alloys are compared with respective experimental results for liquid Hg (l-Hg) and lead (l-Pb). The radial distribution function g(r) shows the presence of short range order in the systems considered. Smooth curves of Bhatia-Thornton partial structure factors factor shows the presence of liquid state in the considered three alloys. Among the all considered alloys, Hg50Pb50 alloy shows presence of more chemical ordering and presence of hetero-coordination.

  12. Study of atomic structure of liquid Hg-In alloys using ab-initio molecular dynamics

    NASA Astrophysics Data System (ADS)

    Sharma, Nalini; Thakur, Anil; Ahluwalia, P. K.

    2015-05-01

    Ab-initio molecular dynamics simulations are performed to study the structural properties of liquid Hg-In alloys. The interatomic interactions are described by ab-initio pseudopotentials given by Troullier and Martins. Five liquid Hg-In mixtures (Hg10In90, Hg30In70, Hg50In50, Hg70In30 and Hg90In10) at 299K are considered. The radial distribution function g(r) and structure factor S(q) of considered alloys are compared with respective experimental results for liquid Hg (l-Hg) and (l-In). The radial distribution function g(r) shows the presence of short range order in the systems considered. Smooth curves of Bhatia-Thornton partial structure factors factor shows the presence of liquid state in the considered alloys.

  13. Electronic properties of liquid Hg-In alloys : Ab-initio molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Sharma, Nalini; Thakur, Anil; Ahluwalia, P. K.

    2016-05-01

    Ab-initio molecular dynamics simulations are performed to study the structural properties of liquid Hg-In alloys. The interatomic interactions are described by ab-initio pseudopotentials given by Troullier and Martins. Three liquid Hg-In alloys (Hg10In90, Hg30In70,. Hg50In50, Hg70In30, and Hg90Pb10) at 299 K are considered. The calculated results for liquid Hg (l-Hg) and lead (l-In) are also drawn. Along with the calculated results of considered five liquid alloys of Hg-In alloy. The results obtained from electronic properties namely total density of state and partial density of states help to find the local arrangement of Hg and In atoms and the presence of liquid state in the considered five alloys.

  14. Conformational space of clindamycin studied by ab initio and full-atom molecular dynamics.

    PubMed

    Kulczycka-Mierzejewska, Katarzyna; Trylska, Joanna; Sadlej, Joanna

    2016-01-01

    Molecular dynamics (MD) simulations allow determining internal flexibility of molecules at atomic level. Using ab initio Born-Oppenheimer molecular dynamics (BOMD), one can simulate in a reasonable time frame small systems with hundreds of atoms, usually in vacuum. With quantum mechanics/molecular mechanics (QM/MM) or full-atom molecular dynamics (FAMD), the influence of the environment can also be simulated. Here, we compare three types of MD calculations: ab initio BOMD, hybrid QM/MM, and classical FAMD. As a model system, we use a small antibiotic molecule, clindamycin, which is one of the lincosamide antibiotics. Clindamycin acquires two energetically stable forms and we investigated the transition between these two experimentally known conformers. We performed 60-ps BOMD simulations in vacuum, 50-ps QM/MM, and 100-ns FAMD in explicit water. The transition between two antibiotic conformers was observed using both BOMD and FAMD methods but was not noted in the QM/MM simulations.

  15. Ab initio molecular dynamics simulation of liquid water by quantum Monte Carlo.

    PubMed

    Zen, Andrea; Luo, Ye; Mazzola, Guglielmo; Guidoni, Leonardo; Sorella, Sandro

    2015-04-14

    Although liquid water is ubiquitous in chemical reactions at roots of life and climate on the earth, the prediction of its properties by high-level ab initio molecular dynamics simulations still represents a formidable task for quantum chemistry. In this article, we present a room temperature simulation of liquid water based on the potential energy surface obtained by a many-body wave function through quantum Monte Carlo (QMC) methods. The simulated properties are in good agreement with recent neutron scattering and X-ray experiments, particularly concerning the position of the oxygen-oxygen peak in the radial distribution function, at variance of previous density functional theory attempts. Given the excellent performances of QMC on large scale supercomputers, this work opens new perspectives for predictive and reliable ab initio simulations of complex chemical systems.

  16. Low-temperature metallic liquid hydrogen: an ab-initio path-integral molecular dynamics perspective

    NASA Astrophysics Data System (ADS)

    Chen, Ji; Li, Xin-Zheng; Zhang, Qianfan; Probert, Matthew; Pickard, Chris; Needs, Richard; Michaelides, Angelos; Wang, Enge

    2013-03-01

    Experiments and computer simulations have shown that the melting temperature of solid hydrogen drops with pressure above about 65 GPa, suggesting that a low temperature liquid state might exist. It has also been suggested that this liquid state might be non-molecular and metallic, although evidence for such behaviour is lacking. Using a combination of ab initio path-integral molecular dynamics and the two-phase methods, we have simulated the melting of solid hydrogen under finite temperatures. We found an atomic solid phase from 500 to 800 GPa which melts at < 200 K. Beyond this and up to pressures of 1,200 GPa a metallic atomic liquid is stable at temperatures as low as 50 K. The quantum motion of the protons is critical to the low melting temperature in this system as ab initio simulations with classical nuclei lead to a considerably higher melting temperature of ~300 K across the entire pressure range considered.

  17. Structural properties of liquid N-methylacetamide via ab initio, path integral, and classical molecular dynamics

    NASA Astrophysics Data System (ADS)

    Whitfield, T. W.; Crain, J.; Martyna, G. J.

    2006-03-01

    In order to better understand the physical interactions that stabilize protein secondary structure, the neat liquid state of a peptidic fragment, N-methylacetamide (NMA), was studied using computer simulation. Three different descriptions of the molecular liquid were examined: an empirical force field treatment with classical nuclei, an empirical force field treatment with quantum mechanical nuclei, and an ab initio density functional theory (DFT) treatment. The DFT electronic structure was evaluated using the BLYP approximate functional and a plane wave basis set. The different physical effects probed by the three models, such as quantum dispersion, many-body polarization, and nontrivial charge distributions on the liquid properties, were compared. Much of the structural ordering in the liquid is characterized by hydrogen bonded chains of NMA molecules. Modest structural differences are present among the three models of liquid NMA. The average molecular dipole in the liquid under the ab initio treatment, however, is enhanced by 60% over the gas phase value.

  18. Ab-initio study of the magnetism, structure and spin dependent electronic states of Ti substituted MO (M = Mg, Ca, Sr)

    NASA Astrophysics Data System (ADS)

    Jaiganesh, G.; Jaya, S. Mathi

    2015-06-01

    The magnetism, structure and spin polarized electronic structure of Ti substituted MO (M = Mg, Ca, Sr) are studied using the ab-initio techniques within the framework of the density functional theory. Appropriately constructed supercell along with the full structural optimization of these cells is used for studying the influence of Ti substitution on the magnetism and electronic structure of these compounds. We find from our calculations that the Ti substituted MO compounds energetically favor magnetically ordered state. The Ti concentration is found to be important in deciding the magnetic order and we have observed antiferromagnetic order for the Ti concentration of 0.25. The Ti substituted MO compounds are thus an interesting class of materials that deserve further studies.

  19. Ab-initio study of the magnetism, structure and spin dependent electronic states of Ti substituted MO (M = Mg, Ca, Sr)

    SciTech Connect

    Jaiganesh, G. Jaya, S. Mathi

    2015-06-24

    The magnetism, structure and spin polarized electronic structure of Ti substituted MO (M = Mg, Ca, Sr) are studied using the ab-initio techniques within the framework of the density functional theory. Appropriately constructed supercell along with the full structural optimization of these cells is used for studying the influence of Ti substitution on the magnetism and electronic structure of these compounds. We find from our calculations that the Ti substituted MO compounds energetically favor magnetically ordered state. The Ti concentration is found to be important in deciding the magnetic order and we have observed antiferromagnetic order for the Ti concentration of 0.25. The Ti substituted MO compounds are thus an interesting class of materials that deserve further studies.

  20. Five-membered rings as diazo components in optical data storage devices: an ab initio investigation of the lowest singlet excitation energies

    NASA Astrophysics Data System (ADS)

    Åstrand, Per-Olof; Sommer-Larsen, Peter; Hvilsted, Søren; Ramanujam, P. S.; Bak, Keld L.; Sauer, Stephan P. A.

    2000-07-01

    The two lowest singlet excitation energies of 18 azo dyes have been studied by ab initio quantum-chemical methods within the second-order polarization propagator approximation (SOPPA). Various combinations of five-membered rings (furan, thiophene, pyrrole, oxazole, thiazole, and imidazole) have been investigated as diazo components for a potential use in optical data storage materials. It is found that the diazo compounds with two heterocyclic five-membered rings have π→π ∗ excitation energies corresponding to laser wavelengths in the region 450-500 nm whereas one five-membered ring and a phenyl group as diazo components results in wavelengths in the region 400-435 nm.

  1. Steady-state ab initio laser theory for N-level lasers.

    PubMed

    Cerjan, Alexander; Chong, Yidong; Ge, Li; Stone, A Douglas

    2012-01-02

    We show that Steady-state Ab initio Laser Theory (SALT) can be applied to find the stationary multimode lasing properties of an N-level laser. This is achieved by mapping the N-level rate equations to an effective two-level model of the type solved by the SALT algorithm. This mapping yields excellent agreement with more computationally demanding N-level time domain solutions for the steady state.

  2. Ab initio dipole moment and theoretical rovibrational intensities in the electronic ground state of PH 3

    NASA Astrophysics Data System (ADS)

    Yurchenko, Sergei N.; Carvajal, Miguel; Thiel, Walter; Jensen, Per

    2006-09-01

    We report a six-dimensional CCSD(T)/aug-cc-pVTZ dipole moment surface for the electronic ground state of PH 3 computed ab initio on a large grid of 10 080 molecular geometries. Parameterized, analytical functions are fitted through the ab initio data, and the resulting dipole moment functions are used, together with a potential energy function determined by refining an existing ab initio surface in fittings to experimental wavenumber data, for simulating absorption spectra of the first three polyads of PH 3, i.e., ( ν2, ν4), ( ν1, ν3, 2 ν2, 2 ν4, ν2 + ν4), and ( ν1 + ν2, ν3 + ν2, ν1 + ν4, ν3 + ν4, 2 ν2 + ν4, ν2 + 2 ν4, 3 ν2, 3 ν4). The resulting theoretical transition moments show excellent agreement with experiment. A line-by-line comparison of the simulated intensities of the ν2/ ν4 band system with 955 experimental intensity values reported by Brown et al. [L.R. Brown, R.L. Sams, I. Kleiner, C. Cottaz, L. Sagui, J. Mol. Spectrosc. 215 (2002) 178-203] gives an average absolute percentage deviation of 8.7% (and a root-mean-square deviation of 0.94 cm -1 for the transition wavenumbers). This is very remarkable since the calculations rely entirely on ab initio dipole moment surfaces and do not involve any adjustment of these surfaces to reproduce the experimental intensities. Finally, we predict the line strengths for transitions between so-called cluster levels (near-degenerate levels formed at high rotational excitation) for J up to 60.

  3. Ab initio potential energy surface for the highly nonlinear dynamics of the KCN molecule

    SciTech Connect

    Párraga, H.; Arranz, F. J. Benito, R. M.; Borondo, F.

    2013-11-21

    An accurate ab initio quantum chemistry study at level of quadratic configuration interaction method of the electronic ground state of the KCN molecule is presented. A fitting of the results to an analytical series expansion was performed to obtain a global potential energy surface suitable for the study of the associated vibrational dynamics. Additionally, classical Poincaré surfaces of section for different energies and quantum eigenstates were calculated, showing the highly nonlinear behavior of this system.

  4. First fully ab initio potential energy surface of methane with a spectroscopic accuracy

    NASA Astrophysics Data System (ADS)

    Nikitin, A. V.; Rey, M.; Tyuterev, Vl. G.

    2016-09-01

    Full 9-dimensional ab initio potential energy surfaces for the methane molecule are constructed using extended electronic structure coupled-cluster calculations with various series of basis sets following increasing X cardinal numbers: cc-pVXZ (X = 3, 4, 5, 6), aug-cc-ACVXZ (X = 3, 4, 5), and cc-pCVXZ-F12 (X = 3, 4). High-order dynamic electron correlations including triple and quadrupole excitations as well as relativistic and diagonal Born-Oppenheimer breakdown corrections were accounted for. Analytical potential functions are parametrized as non-polynomial expansions in internal coordinates in irreducible tensor representation. Vibrational energy levels are reported using global variational nuclear motion calculations with exact kinetic energy operator and a full account of the tetrahedral symmetry of CH4. Our best ab initio surface including above-mentioned contributions provides the rms (obs.-calc.) errors of less than 0.11 cm-1 for vibrational band centers below 4700 cm-1, and ˜0.3 cm-1 for all 229 assigned experimentally determined vibrational levels up to the Icosad range <7900 cm-1 without empirically adjusted parameters. These results improve the accuracy of ab initio methane vibrational predictions by more than an order of magnitude with respect to previous works. This is an unprecedented accuracy of first-principles calculations of a five-atomic molecule for such a large data set. New ab initio potential results in significantly better band center predictions even in comparison with best available empirically corrected potential energy surfaces. The issues related to the basis set extrapolation and an additivity of various corrections at this level of accuracy are discussed.

  5. Ab initio equation of state of hydrogen for inertial fusion applications

    NASA Astrophysics Data System (ADS)

    Benedict, Lorin X.; Morales, Miguel A.; Schwegler, Eric; Tamblyn, Isaac; Bonev, Stanimir A.; Correa, Alfredo A.; Clark, Daniel S.; Haan, Steven W.; LLNL Collaboration

    2011-06-01

    We describe ab initio electronic structure calculations (DFT molecular dynamics and quantum Monte Carlo) of the equation of state of hydrogen in a regime relevant for ICF applications. We find the computed EOS to be quite close to that of the most recent SESAME table (constructed by G. Kerley, 2004). A simple density-dependent correction brings the recent SESAME EOS into nearly perfect agreement with ours in the chosen region. Simulations of ICF applications with this corrected SESAME table are discussed.

  6. Ab initio molecular dynamics study of liquid sodium and cesium up to critical point

    SciTech Connect

    Yuryev, Anatoly A.; Gelchinski, Boris R.

    2015-08-17

    Ab initio modeling of liquid metals Na and K is carried out using the program SIESTA. We have determined the parameters of the model (the optimal step, the number of particles, the initial state etc) and calculated a wide range of properties: the total energy, pair correlation function, coefficient of self-diffusion, heat capacity, statistics of Voronoi polyhedra, the density of electronic states up to the critical temperature.

  7. Ab initio molecular dynamics study of liquid sodium and cesium up to critical point

    NASA Astrophysics Data System (ADS)

    Yuryev, Anatoly A.; Gelchinski, Boris R.

    2015-08-01

    Ab initio modeling of liquid metals Na and K is carried out using the program SIESTA. We have determined the parameters of the model (the optimal step, the number of particles, the initial state etc) and calculated a wide range of properties: the total energy, pair correlation function, coefficient of self-diffusion, heat capacity, statistics of Voronoi polyhedra, the density of electronic states up to the critical temperature.

  8. Resolution of ab initio shapes determined from small-angle scattering.

    PubMed

    Tuukkanen, Anne T; Kleywegt, Gerard J; Svergun, Dmitri I

    2016-11-01

    Spatial resolution is an important characteristic of structural models, and the authors of structures determined by X-ray crystallography or electron cryo-microscopy always provide the resolution upon publication and deposition. Small-angle scattering of X-rays or neutrons (SAS) has recently become a mainstream structural method providing the overall three-dimensional structures of proteins, nucleic acids and complexes in solution. However, no quantitative resolution measure is available for SAS-derived models, which significantly hampers their validation and further use. Here, a method is derived for resolution assessment for ab initio shape reconstruction from scattering data. The inherent variability of the ab initio shapes is utilized and it is demonstrated how their average Fourier shell correlation function is related to the model resolution. The method is validated against simulated data for proteins with known high-resolution structures and its efficiency is demonstrated in applications to experimental data. It is proposed that henceforth the resolution be reported in publications and depositions of ab initio SAS models.

  9. Elucidation of the physicomechanical and ab initio quantum energy transitions of a crosslinked PLGA scaffold.

    PubMed

    Sibambo, Sibongile R; Pillay, Viness; Choonara, Yahya E; Khan, Riaz A; Sweet, Joe L

    2007-09-01

    This study elucidated the in vitro physicomechanical transitions of a crosslinked polylactic-co-glycolic acid (PLGA) scaffold, utilizing quantum mechanics to compute the ab initio energy requirements of a salted-out and subsequently crosslinked PLGA scaffold interacting with simulated physiological fluid, phosphate buffered saline (PBS) (pH 7.4, 37 degrees C) at a molecular level. Twenty-six salted-out PLGA scaffolds were formulated using a four factor, two centerpoint quadratic Face-Centered Central Composite Design (FCCD). PLGA molecular mass, PLGA concentration, water volume and salting-out reaction time were the dependant formulation variables. Subsequent to PLGA solubilization in dimethyl formamide (DMF), protonated water was added to induce salting-out of PLGA into a scaffolds that were immersed in PBS, oscillated at 100 rpm, and analyzed at pre-determined time intervals for their physicomechanical and ab initio quantum energy transitions. Results indicated that the matrix resilience (MR) decreased with longer incubation periods (MR=35-45%) at day 30. Scaffolds salted-out using higher PLGA concentrations exhibited minimal changes in MR and the matrix ability to absorb energy was found to closely correlate with the scaffold residence time in PBS. Spartan-based ab initio quantum energy predictions elucidated the potential scaffold stability from a molecular viewpoint and its suitability for use in rate-modulated drug delivery.

  10. Density-matrix based determination of low-energy model Hamiltonians from ab initio wavefunctions

    SciTech Connect

    Changlani, Hitesh J.; Zheng, Huihuo; Wagner, Lucas K.

    2015-09-14

    We propose a way of obtaining effective low energy Hubbard-like model Hamiltonians from ab initio quantum Monte Carlo calculations for molecular and extended systems. The Hamiltonian parameters are fit to best match the ab initio two-body density matrices and energies of the ground and excited states, and thus we refer to the method as ab initio density matrix based downfolding. For benzene (a finite system), we find good agreement with experimentally available energy gaps without using any experimental inputs. For graphene, a two dimensional solid (extended system) with periodic boundary conditions, we find the effective on-site Hubbard U{sup ∗}/t to be 1.3 ± 0.2, comparable to a recent estimate based on the constrained random phase approximation. For molecules, such parameterizations enable calculation of excited states that are usually not accessible within ground state approaches. For solids, the effective Hamiltonian enables large-scale calculations using techniques designed for lattice models.

  11. Ab Initio Prediction of Adsorption Isotherms for Small Molecules in Metal-Organic Frameworks.

    PubMed

    Kundu, Arpan; Piccini, GiovanniMaria; Sillar, Kaido; Sauer, Joachim

    2016-10-17

    For CO and N2 on Mg(2+) sites of the metal-organic framework CPO-27-Mg (Mg-MOF-74), ab initio calculations of Gibbs free energies of adsorption have been performed. Combined with the Bragg-Williams/Langmuir model and taking into account the experimental site availability (76.5%), we obtained adsorption isotherms in close agreement with those in experiment. The remaining deviations in the Gibbs free energy (about 1 kJ/mol) are significantly smaller than the "chemical accuracy" limit of about 4 kJ/mol. The presented approach uses (i) a DFT dispersion method (PBE+D2) to optimize the structure and to calculate anharmonic frequencies for vibrational partition functions and (ii) a "hybrid MP2:(PBE+D2)+ΔCCSD(T)" method to determine electronic energies. With the achieved accuracy (estimated uncertainty ±1.4 kJ/mol), the ab initio energies become useful benchmarks for assessing different DFT + dispersion methods (PBE+D2, B3LYP+D*, and vdW-D2), whereas the ab initio heats, entropies, and Gibbs free energies of adsorption are used to assess the reliability of experimental values derived from fitting isotherms or from variable-temperature IR studies.

  12. An ab initio calculation of the fundamental and overtone HCl stretching vibrations for the HCl dimer

    NASA Astrophysics Data System (ADS)

    Jensen, Per; Bunker, P. R.; Epa, V. C.; Karpfen, A.

    1992-02-01

    We have previously determined an analytical ab initio six-dimensional potential energy surface for the HCl dimer, and have used it to determine the minimum energy path for the trans-tunneling motion. In the present paper we refine this path by fitting to data. We calculate a further 178 ab initio points in order to determine the HCl stretching energies, and HCl stretching dipole moment functions, at eight positions along the minimum energy path. We use these ab initio results to compute the stretching wavenumbers and transition moments from the v1 = v2 = 0 state to all states of (HCl) 2 that have v1 + v2 ≤ 3, where v1 and v2 are the local mode quantum numbers for the HCl stretching vibrations. In doing this calculation we have assumed an adiabatic separation of the HCl stretching motion from the other vibrational motions in the dimer, and have used the semirigid bender Hamiltonian to average over the trans-tunneling motion. We obtain the fundamental "free-H" stretch v1 at 2877 cm -1 and the fundamental "bound-H" stretch v2 at 2861 cm -1; the experimental values are 2880 and 2854 cm -1, respectively.

  13. Theoretical study on isotope and temperature effect in hydronium ion using ab initio path integral simulation

    NASA Astrophysics Data System (ADS)

    Tachikawa, Masanori; Shiga, Motoyuki

    2004-09-01

    We have applied the ab initio path integral molecular dynamics simulation to study hydronium ion and its isotopes, which are the simplest systems for hydrated proton and deuteron. In this simulation, all the rotational and vibrational degrees of freedom are treated fully quantum mechanically, while the potential energies of the respective atomic configurations are calculated "on the fly" using ab initio quantum chemical approach. With the careful treatment of the ab initio electronic structure calculation by relevant choices in electron correlation level and basis set, this scheme is theoretically quite rigorous except for Born-Oppenheimer approximation. This accurate calculation allows a close insight into the structural shifts for the isotopes of hydronium ion by taking account of both quantum mechanical and thermal effects. In fact, the calculation is shown to be successful to quantitatively extract the geometrical isotope effect with respect to the Walden inversion. It is also shown that this leads to the isotope effect on the electronic structure as well as the thermochemical properties.

  14. Resolution of ab initio shapes determined from small-angle scattering

    PubMed Central

    Tuukkanen, Anne T.; Kleywegt, Gerard J.; Svergun, Dmitri I.

    2016-01-01

    Spatial resolution is an important characteristic of structural models, and the authors of structures determined by X-ray crystallography or electron cryo-microscopy always provide the resolution upon publication and deposition. Small-angle scattering of X-rays or neutrons (SAS) has recently become a mainstream structural method providing the overall three-dimensional structures of proteins, nucleic acids and complexes in solution. However, no quantitative resolution measure is available for SAS-derived models, which significantly hampers their validation and further use. Here, a method is derived for resolution assessment for ab initio shape reconstruction from scattering data. The inherent variability of the ab initio shapes is utilized and it is demonstrated how their average Fourier shell correlation function is related to the model resolution. The method is validated against simulated data for proteins with known high-resolution structures and its efficiency is demonstrated in applications to experimental data. It is proposed that henceforth the resolution be reported in publications and depositions of ab initio SAS models. PMID:27840683

  15. Accelerating ab initio path integral molecular dynamics with multilevel sampling of potential surface

    SciTech Connect

    Geng, Hua Y.

    2015-02-15

    A multilevel approach to sample the potential energy surface in a path integral formalism is proposed. The purpose is to reduce the required number of ab initio evaluations of energy and forces in ab initio path integral molecular dynamics (AI-PIMD) simulation, without compromising the overall accuracy. To validate the method, the internal energy and free energy of an Einstein crystal are calculated and compared with the analytical solutions. As a preliminary application, we assess the performance of the method in a realistic model—the FCC phase of dense atomic hydrogen, in which the calculated result shows that the acceleration rate is about 3 to 4-fold for a two-level implementation, and can be increased up to 10 times if extrapolation is used. With only 16 beads used for the ab initio potential sampling, this method gives a well converged internal energy. The residual error in pressure is just about 3 GPa, whereas it is about 20 GPa for a plain AI-PIMD calculation with the same number of beads. The vibrational free energy of the FCC phase of dense hydrogen at 300 K is also calculated with an AI-PIMD thermodynamic integration method, which gives a result of about 0.51 eV/proton at a density of r{sub s}=0.912.

  16. Dominant Modes in Light Nuclei - Ab Initio View of Emergent Symmetries

    NASA Astrophysics Data System (ADS)

    Draayer, J. P.; Dytrych, T.; Launey, K. D.; Dreyfuss, A. C.; Langr, D.

    2015-01-01

    An innovative symmetry-guided concept is discussed with a focus on emergent symmetry patterns in complex nuclei. In particular, the ab initio symmetry-adapted no-core shell model (SA-NCSM), which capitalizes on exact as well as partial symmetries that underpin the structure of nuclei, provides remarkable insight into how simple symmetry patterns emerge in the many-body nuclear dynamics from first principles. This ab initio view is complemented by a fully microscopic no-core symplectic shell-model framework (NCSpM), which, in turn, informs key features of the primary physics responsible for the emergent phenomena of large deformation and alpha-cluster substructures in studies of the challenging Hoyle state in Carbon-12 and enhanced collectivity in intermediate-mass nuclei. Furthermore, by recognizing that deformed configurations often dominate the low-energy regime, the SA-NCSM provides a strategy for determining the nature of bound states of nuclei in terms of a relatively small subspace of the symmetry-reorganized complete model space, which opens new domains of nuclei for ab initio investigations, namely, the intermediate-mass region, including isotopes of Ne, Mg, and Si.

  17. Ab initio molecular dynamics simulation of pressure-induced phase transformation in BeO

    SciTech Connect

    Xiao, Haiyan; Duan, G; Zu, X T; Weber, William J

    2011-01-01

    Ab initio molecular dynamics (MD) method has been used to study high pressure-induced phase transformation in BeO based on the local density approximation (LDA) and the generalized gradient approximation (GGA). Both methods show that the wurtzite (WZ) and zinc blende (ZB) BeO transforms to the rocksalt (RS) structure smoothly at high pressure. The transition pressures obtained from the LDA method are about 40 GPa larger than the GGA result for both WZ {yields} RS and ZB {yields} RS phase transformations, and the phase transformation mechanisms revealed by the LDA and GGA methods are different. For WZ {yields} RS phase transformations both mechanisms obtained from the LDA and GGA methods are not comparable to the previous ab initio MD simulations of WZ BeO at 700 GPa based on the GGA method. It is suggested that the phase transformation mechanisms of BeO revealed by the ab initio MD simulations are affected remarkably by the exchange-correlation functional employed and the way of applying pressure.

  18. Accelerating ab initio path integral molecular dynamics with multilevel sampling of potential surface

    NASA Astrophysics Data System (ADS)

    Geng, Hua Y.

    2015-02-01

    A multilevel approach to sample the potential energy surface in a path integral formalism is proposed. The purpose is to reduce the required number of ab initio evaluations of energy and forces in ab initio path integral molecular dynamics (AI-PIMD) simulation, without compromising the overall accuracy. To validate the method, the internal energy and free energy of an Einstein crystal are calculated and compared with the analytical solutions. As a preliminary application, we assess the performance of the method in a realistic model-the FCC phase of dense atomic hydrogen, in which the calculated result shows that the acceleration rate is about 3 to 4-fold for a two-level implementation, and can be increased up to 10 times if extrapolation is used. With only 16 beads used for the ab initio potential sampling, this method gives a well converged internal energy. The residual error in pressure is just about 3 GPa, whereas it is about 20 GPa for a plain AI-PIMD calculation with the same number of beads. The vibrational free energy of the FCC phase of dense hydrogen at 300 K is also calculated with an AI-PIMD thermodynamic integration method, which gives a result of about 0.51 eV/proton at a density of rs = 0.912.

  19. NMR-based structural modeling of graphite oxide using multidimensional 13C solid-state NMR and ab initio chemical shift calculations.

    PubMed

    Casabianca, Leah B; Shaibat, Medhat A; Cai, Weiwei W; Park, Sungjin; Piner, Richard; Ruoff, Rodney S; Ishii, Yoshitaka

    2010-04-28

    Chemically modified graphenes and other graphite-based materials have attracted growing interest for their unique potential as lightweight electronic and structural nanomaterials. It is an important challenge to construct structural models of noncrystalline graphite-based materials on the basis of NMR or other spectroscopic data. To address this challenge, a solid-state NMR (SSNMR)-based structural modeling approach is presented on graphite oxide (GO), which is a prominent precursor and interesting benchmark system of modified graphene. An experimental 2D (13)C double-quantum/single-quantum correlation SSNMR spectrum of (13)C-labeled GO was compared with spectra simulated for different structural models using ab initio geometry optimization and chemical shift calculations. The results show that the spectral features of the GO sample are best reproduced by a geometry-optimized structural model that is based on the Lerf-Klinowski model (Lerf, A. et al. Phys. Chem. B 1998, 102, 4477); this model is composed of interconnected sp(2), 1,2-epoxide, and COH carbons. This study also convincingly excludes the possibility of other previously proposed models, including the highly oxidized structures involving 1,3-epoxide carbons (Szabo, I. et al. Chem. Mater. 2006, 18, 2740). (13)C chemical shift anisotropy (CSA) patterns measured by a 2D (13)C CSA/isotropic shift correlation SSNMR were well reproduced by the chemical shift tensor obtained by the ab initio calculation for the former model. The approach presented here is likely to be applicable to other chemically modified graphenes and graphite-based systems.

  20. Thermodynamically constrained correction to ab initio equations of state

    SciTech Connect

    French, Martin; Mattsson, Thomas R.

    2014-07-07

    We show how equations of state generated by density functional theory methods can be augmented to match experimental data without distorting the correct behavior in the high- and low-density limits. The technique is thermodynamically consistent and relies on knowledge of the density and bulk modulus at a reference state and an estimation of the critical density of the liquid phase. We apply the method to four materials representing different classes of solids: carbon, molybdenum, lithium, and lithium fluoride. It is demonstrated that the corrected equations of state for both the liquid and solid phases show a significantly reduced dependence of the exchange-correlation functional used.

  1. Adsorption and substitution effects of Mg on the growth of calcium sulfate hemihydrate: An ab initio DFT study

    NASA Astrophysics Data System (ADS)

    Xin, Yan; Hou, S. C.; Xiang, Lan; Yu, Yang-Xin

    2015-12-01

    Calcium sulfate hemihydrate (CaSO4·0.5H2O, CSH) whiskers with high aspect ratio are promising reinforce materials which have drawn much attention. In order to obtain high quality CSH materials, effect of Mg2+ ions on properties of the (0 0 2), (2 0 0)1 and (2 0 0)2 planes of CSH is investigated using an ab initio density functional theory (DFT) with a van der Waals (vdW) dispersion-correction. The computed results show that strong adsorption and substitution effects take place between Mg2+ ion and (2 0 0)1 plane. The adsorption energies of an Mg2+ ion on the (0 0 2), (2 0 0)1 and (2 0 0)2 planes are -0.066, -0.571 and -0.047 eV, respectively. An insight into the electrostatic potential of pristine CSH planes has demonstrated that the (2 0 0)1 plane is much more negatively charged than the (0 0 2) and (2 0 0)2 planes. The energies of the substitution of a Ca atom with an Mg atom on the CSH (0 0 2), (2 0 0)1 and (2 0 0)2 planes are 1.572, 0.063 and 1.349 eV, respectively. It is found that Ca atoms on the (2 0 0)1 plane are relatively easy to be substituted by Mg atoms. The calculation results of a Ca2+ ion adsorption on the Mg-doped (2 0 0)1 plane indicate that the adsorption energies increase apparently as the doping ratio varies from 0 to 1.0. Compared with K+, Na+ and Al3+ ions, Mg2+ ion is the most promising additive to promote the growth of CSH along c axis.

  2. Chemical interaction of water molecules with framework Al in acid zeolites: a periodic ab initio study on H-clinoptilolite.

    PubMed

    Valdiviés-Cruz, Karell; Lam, Anabel; Zicovich-Wilson, Claudio M

    2015-09-28

    Periodic quantum-chemistry methods as implemented in the CRYSTAL14 code were considered to analyse the interaction of acid clinoptilolite with water. Initially adsorbed molecules hydrolyse the Al-O bonds, giving rise to defective dealuminated materials. A suitable and representative periodic model of the partially disordered hydrated H-zeolite is the primitive cell (18 T sites) of a decahydrated trialuminated structure of HEU topology. The water distribution inside the material cavities was initially investigated. The model considered for further dealumination was the most stable one from those generated through a combined force field Monte Carlo and ab initio optimization strategy. Optimizations and energy estimations were made at the hybrid DFT level of theory (PBE0 functional) with an atomic basis set of VDZP quality. The energetics of the different pathways involved in the dealumination process was addressed by considering the Gibbs free energy with thermal and zero-point corrections through phonon analysis. It arises that hydrated models exhibit protonated water clusters stabilized by different kinds of H-bonds. The first Al extraction is slightly more energetically favourable from T3 than T2 sites, but at the same time the latter is more probable owing to its larger Al population. However, concerning the second dealumination step, it is more favourable removing the Al atom from both remaining sites after a starting abstraction from T2 rather than T3. These facts determine that the most probable overall pathways go through a first Al removal from T2. The agreement with experimental results is discussed.

  3. Electronic Structure of Silicon Nanowires Matrix from Ab Initio Calculations

    NASA Astrophysics Data System (ADS)

    Monastyrskii, Liubomyr S.; Boyko, Yaroslav V.; Sokolovskii, Bogdan S.; Potashnyk, Vasylyna Ya.

    2016-01-01

    An investigation of the model of porous silicon in the form of periodic set of silicon nanowires has been carried out. The electronic energy structure was studied using a first-principle band method—the method of pseudopotentials (ultrasoft potentials in the basis of plane waves) and linearized mode of the method of combined pseudopotentials. Due to the use of hybrid exchange-correlation potentials (B3LYP), the quantitative agreement of the calculated value of band gap in the bulk material with experimental data is achieved. The obtained results show that passivation of dangling bonds with hydrogen atoms leads to substantial transformation of electronic energy structure. At complete passivation of the dangling silicon bonds by hydrogen atoms, the band gap value takes the magnitude which substantially exceeds that for bulk silicon. The incomplete passivation gives rise to opposite effect when the band gap value decreases down the semimetallic range.

  4. Electronic Structure of Silicon Nanowires Matrix from Ab Initio Calculations.

    PubMed

    Monastyrskii, Liubomyr S; Boyko, Yaroslav V; Sokolovskii, Bogdan S; Potashnyk, Vasylyna Ya

    2016-12-01

    An investigation of the model of porous silicon in the form of periodic set of silicon nanowires has been carried out. The electronic energy structure was studied using a first-principle band method-the method of pseudopotentials (ultrasoft potentials in the basis of plane waves) and linearized mode of the method of combined pseudopotentials. Due to the use of hybrid exchange-correlation potentials (B3LYP), the quantitative agreement of the calculated value of band gap in the bulk material with experimental data is achieved. The obtained results show that passivation of dangling bonds with hydrogen atoms leads to substantial transformation of electronic energy structure. At complete passivation of the dangling silicon bonds by hydrogen atoms, the band gap value takes the magnitude which substantially exceeds that for bulk silicon. The incomplete passivation gives rise to opposite effect when the band gap value decreases down the semimetallic range.

  5. Ab initio calculations of Li and B equilibrium isotope fractionation between high -P and -T minerals and aqueous fluids

    NASA Astrophysics Data System (ADS)

    Kowalski, P.; Jahn, S.; Wunder, B.

    2011-12-01

    Stable isotopes are excellent geochemical tracers widely used in petrology. Among them the isotopes of light elements such as Li or B strongly fractionate between minerals and aqueous fluids during fluid-rock interaction processes, which makes them excellent tracers of mass transfer processes in the subduction cycle. In order to use the full power of isotopes tracing methods the isotope fractionation mechanisms and fractionation factors between minerals and fluids of interest must be well known and characterized. One of the most important mechanisms leading to the formation of isotopic signatures is the equilibrium isotope fractionation, which nowadays can be modeled on the atomic scale by modern computational methods. However, due to high computational requirements the current works have been limited to calculations of simple materials only. In order to overcome these limitations we develop an efficient ab initio based computational approach for prediction of the equilibrium isotope fractionation factors between high pressure and temperature materials, including fluids, which would allow for efficient calculations of the isotope fractionation factors of complex minerals and fluids containing even hundreds of atoms in the supercell. We will show our results for the Li and B stable equilibrium isotope fractionation factors between complex Li/B-bearing crystalline solids (staurolite, spodumene, tourmaline, olenite and micas) and aqueous fluids. The fractionation factors were obtained in an efficient way by simplifying the consideration to calculations of the properties of fractionating atoms only. The comparison of the calculated fractionation factors, on the qualitative and quantitative levels, with the existing experimental data show the comparable to the in situ experimental techniques, predictive power of the computations. We show that with the atomistic scale modelling we are able to reproduce correctly the experimental isotope fractionation sequences

  6. Density functional theory and beyond-opportunities for quantum methods in materials modeling semiconductor technology.

    PubMed

    Shankar, Sadasivan; Simka, Harsono; Haverty, Michael

    2008-02-13

    In the semiconductor industry, the use of new materials has been increasing with the advent of nanotechnology. As critical dimensions decrease, and the number of materials increases, the interactions between heterogeneous materials themselves and processing increase in complexity. Traditionally, applications of ab initio techniques are confined to electronic structure and band gap calculations of bulk materials, which are then used in coarse-grained models such as mesoscopic and continuum models. Density functional theory is the most widely used ab initio technique that was successfully extended to several applications. This paper illustrates applications of density functional theory to semiconductor processes and proposes further opportunities for use of such techniques in process development.

  7. Density functional theory study of phase stability and defect thermodynamics in iron-oxyhydroxide mineral materials

    NASA Astrophysics Data System (ADS)

    Pinney, Nathan Douglas

    Due to their high surface area and reactivity toward a variety of heavy metal and oxyanion species of environmental concern, Fe-(oxyhydr)oxide materials play an important role in the geochemical fate of natural and anthropogenic contaminants in soils, aquifers and surface water environments worldwide. In this research, ab initio simulations describe the bulk structure, magnetic properties, and relative phase stability of major Fe-(oxyhydr)oxide materials, including hematite, goethite, lepidocrocite, and ferrihydrite.These bulk models are employed in further studies of point defect and alloy/dopant thermodynamics in these materials, allowing construction of a phase stability model that better replicates the structure and composition of real materials. Li + adsorption at the predominant goethite (101) surface is simulated using ab initio methods, offering energetic and structural insight into the binding mechanisms of metal cations over a range of surface protonation conditions.

  8. Ab initio study of piezomagnetic effect in Mn-antiperovskites

    NASA Astrophysics Data System (ADS)

    Sandeman, Karl; Gercsi, Zsolt; Zemen, Jan

    2015-03-01

    The magnetocaloric and magnetoelastic coupling that often occur together in magnetically frustrated materials have great potential for practical applications ranging from magnetic refrigeration to data processing and storage. Here we focus on the manganese antiperovskite family. Negative thermal expansion (NTE) close to the Néel temperature and a large magnetovolume effect have been measured recently in Mn3NiN using temperature dependent neutron powder diffraction. A large piezomagnetic effect has been predicted in Mn3GaN from Density Functional Theory (DFT) calculations. We perform a computational study of the piezomagnetic effect in three metallic Mn3XN antiperovskites, based our recent DFT model of anisotropic thermal expansions and large magnetoelastic coupling. We confirm the existence of a fully compensated non-collinear antiferromagnetic ground state and predict canting and the change of magnitude of the Mn local magnetic moments as a function of applied biaxial strain, finding that the induced net magnetization reaches values of 0.1 μB per Mn per 1% of strain. The research leading to these results has received funding from the European Community's 7th Framework Programme under Grant agreement 310748 ``DRREAM.''

  9. Perspectives from ab-initio and tight-binding: Applications to transition metal compounds and superlattices

    NASA Astrophysics Data System (ADS)

    Venkataraman, Vijay Shankar

    The experimental and theoretical study of transition metal compounds have occupied condensed matter physicists for the best part of the last century. The rich variety of physical behaviour exhibited by these compounds owes its origin to the subtle balance of the energy scales at play for the d orbitals. In this thesis, we study three different systems comprised of transition metal atoms from the third, the fourth, and the fifth group of the periodic table using a combination of ab-initio density functional theory (DFT) computations and effective tight-binding models for the electronic properties. We first consider the electronic properties of artificially fabricated perovskite superlattices of the form [(SrIrO3)m / SrTiO3] with integer m denoting the number of layers of SrIrO3. After discussing the results of experiments undertaken by our collaborators, we present the results of our DFT calculations and build tight-binding models for the m = 1 and m = 2 superlattices. The active ingredient is found to be the 5d orbitals with significant spin-orbit coupling. We then study the energies of magnetic ground states within DFT and compare and contrast our results with those obtained for the bulk Ruddlesden-Popper iridates. Together with experimental measurements, our results suggest that these superlattices are an exciting venue to probe the magnetism and metal-insulator transitions that occur from the intricate balance of the spin-orbit coupling and electron interactions, as has been reported for their bulk counterparts. Next, we consider alpha-RuCl3, a honeycomb lattice compound. We first show using DFT calculations in conjunction with experiments performed by our collaborators, how spin-orbit coupling in the 4d orbitals of Ru is essential to understand the insulating state realized in this compound. Then, in the latter half of the chapter, we study the magnetic ground states of a two-dimensional analogue of alpha-RuCl3 in weak and strong-coupling regimes obtained from

  10. Ab initio kinetics and thermal decomposition mechanism of mononitrobiuret and 1,5-dinitrobiuret

    SciTech Connect

    Sun, Hongyan E-mail: ghanshyam.vaghjiani@us.af.mil; Vaghjiani, Ghanshyam L. E-mail: ghanshyam.vaghjiani@us.af.mil

    2015-05-28

    Mononitrobiuret (MNB) and 1,5-dinitrobiuret (DNB) are tetrazole-free, nitrogen-rich, energetic compounds. For the first time, a comprehensive ab initio kinetics study on the thermal decomposition mechanisms of MNB and DNB is reported here. In particular, the intramolecular interactions of amine H-atom with electronegative nitro O-atom and carbonyl O-atom have been analyzed for biuret, MNB, and DNB at the M06-2X/aug-cc-pVTZ level of theory. The results show that the MNB and DNB molecules are stabilized through six-member-ring moieties via intramolecular H-bonding with interatomic distances between 1.8 and 2.0 Å, due to electrostatic as well as polarization and dispersion interactions. Furthermore, it was found that the stable molecules in the solid state have the smallest dipole moment amongst all the conformers in the nitrobiuret series of compounds, thus revealing a simple way for evaluating reactivity of fuel conformers. The potential energy surface for thermal decomposition of MNB was characterized by spin restricted coupled cluster theory at the RCCSD(T)/cc-pV∞ Z//M06-2X/aug-cc-pVTZ level. It was found that the thermal decomposition of MNB is initiated by the elimination of HNCO and HNN(O)OH intermediates. Intramolecular transfer of a H-atom, respectively, from the terminal NH{sub 2} group to the adjacent carbonyl O-atom via a six-member-ring transition state eliminates HNCO with an energy barrier of 35 kcal/mol and from the central NH group to the adjacent nitro O-atom eliminates HNN(O)OH with an energy barrier of 34 kcal/mol. Elimination of HNN(O)OH is also the primary process involved in the thermal decomposition of DNB, which processes C{sub 2v} symmetry. The rate coefficients for the primary decomposition channels for MNB and DNB were quantified as functions of temperature and pressure. In addition, the thermal decomposition of HNN(O)OH was analyzed via Rice–Ramsperger–Kassel–Marcus/multi-well master equation simulations, the results of which

  11. Electrical transport limited by electron-phonon coupling from Boltzmann transport equation: An ab initio study of Si, Al, and MoS2

    NASA Astrophysics Data System (ADS)

    Li, Wu

    2015-08-01

    We demonstrate the ab initio electrical transport calculation limited by electron-phonon coupling by using the full solution of the Boltzmann transport equation (BTE), which applies equally to metals and semiconductors. Numerical issues are emphasized in this work. We show that the simple linear interpolation of the electron-phonon coupling matrix elements from a relatively coarse grid to an extremely fine grid can ease the calculational burden, which makes the calculation feasible in practice. For the Brillouin zone (BZ) integration of the transition probabilities involving one δ function, the Gaussian smearing method with a physical choice of locally adaptive broadening parameters is employed. We validate the calculation in the cases of n -type Si and Al. The calculated conductivity and mobility are in good agreement with experiments. In the metal case we also demonstrate that the Gaussian smearing method with locally adaptive broadening parameters works excellently for the BZ integration with double δ functions involved in the Eliashberg spectral function and its transport variant. The simpler implementation is the advantage of the Gaussian smearing method over the tetrahedron method. The accuracy of the relaxation time approximation and the approximation made by Allen [Phys. Rev. B 17, 3725 (1978), 10.1103/PhysRevB.17.3725] has been examined by comparing with the exact solution of BTE. We also apply our method to n -type monolayer MoS2, for which a mobility of 150 cm2 v-1 s-1 is obtained at room temperature. Moreover, the mean free paths are less than 9 nm, indicating that in the presence of grain boundaries the mobilities should not be effectively affected if the grain boundary size is tens of nanometers or larger. The ab initio approach demonstrated in this paper can be directly applied to other materials without the need for any a priori knowledge about the electron-phonon scattering processes, and can be straightforwardly extended to study cases with

  12. Ab Initio Calculations of the Interaction between CO 2 and the Acetate Ion

    SciTech Connect

    Steckel, Janice A.

    2012-11-29

    A series of ab initio calculations designed to investigate the interaction of CO{sub 2} with acetate are presented. The lowest energy structure, AC–CO{sub 2}-η{sup 2}, is predicted by CCSD(T)/aVTZ to be bound by -10.6 kcal/mol. Six of the bound complexes have binding energies on the order of -8 kcal/mol, but analysis shows that the η{sup 1}-CT complex is fundamentally different from the others. The η{sup 1}-CT complex is characterized by geometric distortion, large polarization and induction effects and charge transfer whereas the other five complexes have little geometric distortion and negligible charge transfer. The amount of charge that is transferred from the anion to the CO{sub 2} in the η{sup 1}-CT complex is estimated to be about half an electron by NPA, DMA, CHELPG, and Mulliken analyses, whereas the EDA-ALMO-CTA (B3LYP) approach predicts a charge transfer of 75 me{sup –}. However, the transfer of this small amount of charge leads to an energy lowering of -56 kcal/mol, without which the complex would not be bound. The RI-MP2 geometries closely approximate those resulting from the CCSD optimizations, and the optimized second-order opposite spin (O2) method performs well for all the complexes except for the η{sup 1}-CT complex. DFT methods do not reproduce all the ab initio geometries, binding energies and/or energy ordering of these complexes although the range-separated hybrid meta-GGA (M11) and nonlocal (VV10 and vdwDF10) functionals are shown to yield results significantly better than other functionals considered for this system. The fact that there is such variation among DFT methods has implications for DFT-based ab initio molecular dynamics simulations and for the parametrization of classical force fields based on DFT calculations.

  13. Ab initio aqueous thermochemistry: application to the oxidation of hydroxylamine in nitric acid solution.

    PubMed

    Ashcraft, Robert W; Raman, Sumathy; Green, William H

    2007-10-18

    Ab initio molecular orbital calculations were performed and thermochemical parameters estimated for 46 species involved in the oxidation of hydroxylamine in aqueous nitric acid solution. Solution-phase properties were estimated using the several levels of theory in Gaussian03 and using COSMOtherm. The use of computational chemistry calculations for the estimation of physical properties and constants in solution is addressed. The connection between the pseudochemical potential of Ben-Naim and the traditional standard state-based thermochemistry is shown, and the connection of these ideas to computational chemistry results is established. This theoretical framework provides a basis for the practical use of the solution-phase computational chemistry estimates for real systems, without the implicit assumptions that often hide the nuances of solution-phase thermochemistry. The effect of nonidealities and a method to account for them is also discussed. A method is presented for estimating the solvation enthalpy and entropy for dilute aqueous solutions based on the solvation free energy from the ab initio calculations. The accuracy of the estimated thermochemical parameters was determined through comparison with (i) enthalpies of formation in the gas phase and in solution, (ii) Henry's law data for aqueous solutions, and (iii) various reaction equilibria in aqueous solution. Typical mean absolute deviations (MAD) for the solvation free energy in room-temperature water appear to be ~1.5 kcal/mol for most methods investigated. The MAD for computed enthalpies of formation in solution was 1.5-3 kcal/mol, depending on the methodology employed and the type of species (ion, radical, closed-shell) being computed. This work provides a relatively simple and unambiguous approach that can be used to estimate the thermochemical parameters needed to build detailed ab initio kinetic models of systems in aqueous solution. Technical challenges that limit the accuracy of the estimates are

  14. Carbon dioxide hydrate phase equilibrium and cage occupancy calculations using ab initio intermolecular potentials.

    PubMed

    Velaga, Srinath C; Anderson, Brian J

    2014-01-16

    Gas hydrate deposits are receiving increased attention as potential locations for CO2 sequestration, with CO2 replacing the methane that is recovered as an energy source. In this scenario, it is very important to correctly characterize the cage occupancies of CO2 to correctly assess the sequestration potential as well as the methane recoverability. In order to predict accurate cage occupancies, the guest–host interaction potential must be represented properly. Earlier, these potential parameters were obtained by fitting to experimental equilibrium data and these fitted parameters do not match with those obtained by second virial coefficient or gas viscosity data. Ab initio quantum mechanical calculations provide an independent means to directly obtain accurate intermolecular potentials. A potential energy surface (PES) between H2O and CO2 was computed at the MP2/aug-cc-pVTZ level and corrected for basis set superposition error (BSSE), an error caused due to the lower basis set, by using the half counterpoise method. Intermolecular potentials were obtained by fitting Exponential-6 and Lennard-Jones 6-12 models to the ab initio PES, correcting for many-body interactions. We denoted this model as the “VAS” model. Reference parameters for structure I carbon dioxide hydrate were calculated using the VAS model (site–site ab initio intermolecular potentials) as Δμ(w)(0) = 1206 ± 2 J/mol and ΔH(w)(0) = 1260 ± 12 J/mol. With these reference parameters and the VAS model, pure CO2 hydrate equilibrium pressure was predicted with an average absolute deviation of less than 3.2% from the experimental data. Predictions of the small cage occupancy ranged from 32 to 51%, and the large cage is more than 98% occupied. The intermolecular potentials were also tested by calculating the pure CO2 density and diffusion of CO2 in water using molecular dynamics simulations.

  15. An Ab Initio Approach Towards Engineering Fischer-Tropsch Surface Chemistry

    SciTech Connect

    Matthew Neurock; David A. Walthall

    2006-05-07

    One of the greatest societal challenges over the next decade is the production of cheap, renewable energy for the 10 billion people that inhabit the earth. This will require the development of various different energy sources potentially including fuels derived from methane, coal, and biomass and alternatives sources such as solar, wind and nuclear energy. One approach will be to synthesize gasoline and other fuels from simpler hydrocarbons such as CO derived from methane or other U.S. based sources such as coal. Syngas (CO and H{sub 2}) can be readily converted into higher molecular weight hydrocarbons through Fischer-Tropsch synthesis. Fischer-Tropsch synthesis involves the initiation or activation of CO and H{sub 2} bonds, the subsequent propagation steps including hydrogenation and carbon-carbon coupling, followed by chain termination reactions. Commercially viable catalysts include supported Co and Co-alloys. Over the first two years of this project we have used ab initio methods to determine the adsorption energies for all reactants, intermediates, and products along with the overall reaction energies and their corresponding activation barriers over the Co(0001) surface. Over the third year of the project we developed and advanced an ab initio-based kinetic Monte Carlo simulation code to simulate Fischer Tropsch synthesis. This report details our work over the last year which has focused on the derivation of kinetic parameters for the elementary steps involved in FT synthesis from ab initio density functional theoretical calculations and the application of the kinetic Monte Carlo algorithm to simulate the initial rates of reaction for FT over the ideal Co(0001) surface. The results from our simulations over Co(0001) indicate the importance of stepped surfaces for the activation of adsorbed CO. In addition, they demonstrate that the dominant CH{sub x}* surface intermediate under steady state conditions is CH*. This strongly suggests that hydrocarbon coupling

  16. Introducing ab initio based neural networks for transition-rate prediction in kinetic Monte Carlo simulations

    NASA Astrophysics Data System (ADS)

    Messina, Luca; Castin, Nicolas; Domain, Christophe; Olsson, Pär

    2017-02-01

    The quality of kinetic Monte Carlo (KMC) simulations of microstructure evolution in alloys relies on the parametrization of point-defect migration rates, which are complex functions of the local chemical composition and can be calculated accurately with ab initio methods. However, constructing reliable models that ensure the best possible transfer of physical information from ab initio to KMC is a challenging task. This work presents an innovative approach, where the transition rates are predicted by artificial neural networks trained on a database of 2000 migration barriers, obtained with density functional theory (DFT) in place of interatomic potentials. The method is tested on copper precipitation in thermally aged iron alloys, by means of a hybrid atomistic-object KMC model. For the object part of the model, the stability and mobility properties of copper-vacancy clusters are analyzed by means of independent atomistic KMC simulations, driven by the same neural networks. The cluster diffusion coefficients and mean free paths are found to increase with size, confirming the dominant role of coarsening of medium- and large-sized clusters in the precipitation kinetics. The evolution under thermal aging is in better agreement with experiments with respect to a previous interatomic-potential model, especially concerning the experiment time scales. However, the model underestimates the solubility of copper in iron due to the excessively high solution energy predicted by the chosen DFT method. Nevertheless, this work proves the capability of neural networks to transfer complex ab initio physical properties to higher-scale models, and facilitates the extension to systems with increasing chemical complexity, setting the ground for reliable microstructure evolution simulations in a wide range of alloys and applications.

  17. Full Dimensional Vibrational Calculations for Methane Using AN Accurate New AB Initio Based Potential Energy Surface

    NASA Astrophysics Data System (ADS)

    Majumder, Moumita; Dawes, Richard; Wang, Xiao-Gang; Carrington, Tucker; Li, Jun; Guo, Hua; Manzhos, Sergei

    2014-06-01

    New potential energy surfaces for methane were constructed, represented as analytic fits to about 100,000 individual high-level ab initio data. Explicitly-correlated multireference data (MRCI-F12(AE)/CVQZ-F12) were computed using Molpro [1] and fit using multiple strategies. Fits with small to negligible errors were obtained using adaptations of the permutation-invariant-polynomials (PIP) approach [2,3] based on neural-networks (PIP-NN) [4,5] and the interpolative moving least squares (IMLS) fitting method [6] (PIP-IMLS). The PESs were used in full-dimensional vibrational calculations with an exact kinetic energy operator by representing the Hamiltonian in a basis of products of contracted bend and stretch functions and using a symmetry adapted Lanczos method to obtain eigenvalues and eigenvectors. Very close agreement with experiment was produced from the purely ab initio PESs. References 1- H.-J. Werner, P. J. Knowles, G. Knizia, 2012.1 ed. 2012, MOLPRO, a package of ab initio programs. see http://www.molpro.net. 2- Z. Xie and J. M. Bowman, J. Chem. Theory Comput 6, 26, 2010. 3- B. J. Braams and J. M. Bowman, Int. Rev. Phys. Chem. 28, 577, 2009. 4- J. Li, B. Jiang and Hua Guo, J. Chem. Phys. 139, 204103 (2013). 5- S Manzhos, X Wang, R Dawes and T Carrington, JPC A 110, 5295 (2006). 6- R. Dawes, X-G Wang, A.W. Jasper and T. Carrington Jr., J. Chem. Phys. 133, 134304 (2010).

  18. The development of explosions in axisymmetric ab initio core-collapse supernova simulations of 12–25 M⊙ stars

    DOE PAGES

    Bruenn, Stephen W.; Lentz, Eric J.; Hix, William Raphael; ...

    2016-02-16

    We present four ab initio axisymmetric core-collapse supernova simulations initiated from 12, 15, 20, and 25 M⊙ zero-age main sequence progenitors. All of the simulations yield explosions and have been evolved for at least 1.2 s after core bounce and 1 s after material first becomes unbound. These simulations were computed with our Chimera code employing RbR spectral neutrino transport, special and general relativistic transport effects, and state-of-the-art neutrino interactions. Continuing the evolution beyond 1 s after core bounce allows the explosions to develop more fully and the processes involved in powering the explosions to become more clearly evident. Wemore » compute explosion energy estimates, including the negative gravitational binding energy of the stellar envelope outside the expanding shock, of 0.34, 0.88, 0.38, and 0.70 Bethe (B ≡ 1051 erg) and increasing at 0.03, 0.15, 0.19, and 0.52 BS–1, respectively, for the 12, 15, 20, and 25 M⊙ models at the endpoint of this report. We examine the growth of the explosion energy in our models through detailed analyses of the energy sources and flows. We discuss how the explosion energies may be subject to stochastic variations as exemplfied by the effect of the explosion geometry of the 20 M⊙ model in reducing its explosion energy. We compute the proto-neutron star masses and kick velocities. In conclusion, we compare our results for the explosion energies and ejected 56Ni masses against some observational standards despite the large error bars in both models and observations.« less

  19. Ab Initio DFT study of electronic and thermoelectric properties of crystalline Ge2 Sb2 Te5

    NASA Astrophysics Data System (ADS)

    Ibarra Hernandez, Wilfredo; Raty, Jean-Yves

    2015-03-01

    Pseudo-binary phase change materials such as (GeTe)n/(Sb2Te3)m have been recently considered for thermoelectric applications. Among these, Ge2Sb2Te5 (GST225, n =2 and m =1) is very popular as it is the leading candidate for non-volatile memory devices such as phase change random access memory. It is well know that the stable crystal structure of GST225 is hexagonal, with atomic layers stacked in the c direction. The stacking sequence is however still under some debate, and structures varying from conventional semiconductor to Dirac semimetal have been claimed to differ only by the nature of the stacking sequence. Here we present electronic, dynamic and thermoelectric calculations on three different stacking sequences of crystalline GST225. We use ab-initio DFT calculations together with Boltzmann transport equations to access thermoelectric properties within the constant relaxation time approximation. Our results show that all three proposed stacking sequences are (meta-)stable. From the density of states we determine that two structures are metallic while the most stable structure has a 0.35 eV band gap. Above 100K, the computed Seebeck coefficient seems to indicate that the experimentally observed structure is the Dirac semimetal one, the doping level being of the order of 1 × 1020 cm-3. The authors acknowledge an A.R.C. grant (TheMoTherm 10/15-03) and the computer time provided by CECI, SEGI-ULg and PRACE projects NanoTherm (2IP FP7 RI-283493) and ThermoSpin on ARCHER (3IP FP7 RI-312763).

  20. Optical Distinctions Between Weyl Semimetal TaAs and Dirac Semimetal Na3Bi: An Ab Initio Investigation

    NASA Astrophysics Data System (ADS)

    Dadsetani, Mehrdad; Ebrahimian, Ali

    2016-11-01

    We present ab initio a study on linear and nonlinear optical properties of topological semimetal Tantalum arsenide and Sodium bismuthate. The real and imaginary part of the dielectric function in addition to the energy loss spectra of TaAs and Na3Bi have been calculated within random phase approximation (RPA); then, the electron-hole interaction is included by solving the Bethe-Salpeter equation for the electron-hole Green's function. In spite of being in the single category of topological materials, we have found obvious distinction between linear optical responses of TaAs and Na3Bi at a high energy region where, in contrast to Na3Bi, Tantalum arsenide has excitonic peaks at 9 eV and 9.5 eV. It is remarkable that the excitonic effects in the high energy range of the spectrum are stronger than in the lower one. The dielectric function is overall red shifted compared with that of RPA approximation. The resulting static dielectric constants for Na3Bi are smaller than corresponding ones in TaAs. At a low energy region, the absorption intensity of TaAs is more than Na3Bi. The calculated second-order nonlinear optical susceptibilities χ ijk (2) ( ω) show that Tantalum arsenide acts as a Weyl semimetal, and has high values of nonlinear responses in the low energy region which makes it promising candidate for the second harmonic generation in the terahertz frequency region. In the low energy regime, optical spectra are dominated by the 2 ω intra-band contributions.

  1. The anharmonic force field of ethylene, C2H4, by means of accurate ab initio calculations

    NASA Astrophysics Data System (ADS)

    Martin, Jan M. L.; Lee, Timothy J.; Taylor, Peter R.; François, Jean-Pierre

    1995-08-01

    The quartic force field of ethylene, C2H4, has been calculated ab initio using augmented coupled cluster, CCSD(T), methods and correlation consistent basis sets of spdf quality. For the 12C isotopomers C2H4, C2H3D, H2CCD2, cis-C2H2D2, trans-C2H2D2, C2HD3, and C2D4, all fundamentals are reproduced to better than 10 cm-1, except for three cases where the error is 11 cm-1. Our calculated harmonic frequencies suggest a thorough revision of the accepted experimentally derived values. Our computed and empirically corrected re geometry differs substantially from experimentally derived values: Both the predicted rz geometry and the ground-state rotational constants are, however, in excellent agreement with experiment, suggesting revision of the older values. Anharmonicity constants agree well with experiment for stretches, but differ substantially for stretch-bend interaction constants, due to equality constraints in the experimental analysis that do not hold. Improved criteria for detecting Fermi and Coriolis resonances are proposed and found to work well, contrary to the established method based on harmonic frequency differences that fails to detect several important resonances for C2H4 and its isotopomers. Surprisingly good results are obtained with a small spd basis at the CCSD(T) level. The well-documented strong basis set effect on the ν8 out-of-plane motion is present to a much lesser extent when correlation-optimized polarization functions are used. Complete sets of anharmonic, rovibrational coupling, and centrifugal distortion constants for the isotopomers are available as supplementary material to the paper via the World-Wide Web.

  2. Physical origins of weak H2 binding on carbon nanostructures: Insight from ab initio studies of chemically functionalized graphene nanoribbons

    DOE PAGES

    Ulman, Kanchan; Bhaumik, Debarati; Wood, Brandon C.; ...

    2014-05-05

    Here, we have performed ab initio density functional theory calculations, incorporating London dispersion corrections, to study the absorption of molecular hydrogen on zigzag graphene nanoribbons whose edges have been functionalized by OH, NH2, COOH, NO2, or H2PO3. We find that hydrogen molecules always preferentially bind at or near the functionalized edge, and display induced dipole moments. Binding is generally enhanced by the presence of polar functional groups. Furthermore, the largest gains are observed for groups with oxygen lone pairs that can facilitate local charge reorganization, with the biggest single enhancement in adsorption energy found for “strong functionalization” by H2PO3 (115more » meV/H2 versus 52 meV/H2 on bare graphene). We show that for binding on the “outer edge” near the functional group, the presence of the group can introduce appreciable contributions from Debye interactions and higher-order multipole electrostatic terms, in addition to the dominant London dispersion interactions. For those functional groups that contain the OH moiety, the adsorption energy is linearly proportional to the number of lone pairs on oxygen atoms. Mixed functionalization with two different functional groups on a graphene edge can also have a synergistic effect, particularly when electron-donating and electron-withdrawing groups are combined. For binding on the “inner edge” somewhat farther from the functional group, most of the binding again arises from London interactions; however, there is also significant charge redistribution in the π manifold, which directly reflects the electron donating or withdrawing capacity of the functional group. These results offer insight into the specific origins of weak binding of gas molecules on graphene, and suggest that edge functionalization could perhaps be used in combination with other strategies to increase the uptake of hydrogen in graphene. They also have relevance for the storage of hydrogen in

  3. Multiferroicity in TTF-CA Organic Molecular Crystals Predicted through Ab Initio Calculations

    NASA Astrophysics Data System (ADS)

    Giovannetti, Gianluca; Kumar, Sanjeev; Stroppa, Alessandro; van den Brink, Jeroen; Picozzi, Silvia

    2009-12-01

    We show by means of ab initio calculations that the organic molecular crystal TTF-CA is multiferroic: it has an instability to develop spontaneously both ferroelectric and magnetic ordering. Ferroelectricity is driven by a Peierls transition of the TTF-CA in its ionic state. Subsequent antiferromagnetic ordering strongly enhances the opposing electronic contribution to the polarization. It is so large that it switches the direction of the total ferroelectric moment. Within an extended Hubbard model, we capture the essence of the electronic interactions in TTF-CA, confirm the presence of a multiferroic groundstate, and clarify how this state develops microscopically.

  4. Ab-initio method for X-ray absorption spectra simulation of hydride molecular ions

    NASA Astrophysics Data System (ADS)

    Puglisi, Alessandra; Sisourat, Nicolas; Carniato, Stéphane

    2017-03-01

    Soft X-ray absorption spectra of molecular ions are important data for the modeling and understanding of laboratory and astrophysical plasma. In this work, we present an ab-initio method, based on the Configuration Interaction (CI) approach, for the calculations of energy positions and oscillator strengths of X-ray absorption spectra. Furthermore, we investigate the effects of the choice of the nature and number of spin-orbitals used in the CI expansion on the spectra. The method is applied on three hydride molecular ions, namely CH+, OH+ and SiH+. However, the approach proposed here is general and may thus be applied to any kind of molecular ions.

  5. Ab initio research of energy loss for energetic protons in solid-density Be

    NASA Astrophysics Data System (ADS)

    He, Bin; Meng, Xu-Jun; Wang, Zhi-Gang; Wang, Jian-Guo

    2017-03-01

    Ab initio research of energy loss for energetic protons in solid-density Be is made based on the average atom model. Our results are found in good agreement with the recent experiment for both warm and cool matter. Our results are compared with the local density approximation model and the reason for their difference is also explored. The energy loss at smaller projectile energies is predicted by our model and local density approximation, which helps probe the higher reliability of the proving model and judge the existence of the non-Fermi-Dirac velocity distribution for free electrons exists in dense plasmas in future.

  6. A high-precision ab initio determination of the equilibrium geometry and force field of HOC(+)

    NASA Technical Reports Server (NTRS)

    Defrees, D. J.; Bunker, P. R.; Binkley, J. S.; Mclean, A. D.

    1987-01-01

    The results of an ab initio molecular orbital investigation of the isoformyl cation, HOC(+), shape are reported. The effects of expanding the basis set to near the Hartree-Fock limit and of electron correlation were examined, and the results indicate that near the Hartree-Fock limit the HOC(+) is linear. An analytic potential function is presented, from which the calculated rotational energies are only 0.03 percent different from the experimental values. This represents a nearly two orders of magnitude reduction in error from earlier work.

  7. Specific interactions between amyloid-β peptide and curcumin derivatives: Ab initio molecular simulations

    NASA Astrophysics Data System (ADS)

    Ishimura, Hiromi; Kadoya, Ryushi; Suzuki, Tomoya; Murakawa, Takeru; Shulga, Sergiy; Kurita, Noriyuki

    2015-07-01

    Alzheimer's disease is caused by accumulation of amyloid-β (Aβ) peptides in a brain. To suppress the production of Aβ peptides, it is effective to inhibit the cleavage of amyloid precursor protein (APP) by secretases. However, because the secretases also play important roles to produce vital proteins for human body, inhibitors for the secretases may have side effects. To propose new agents for protecting the cleavage site of APP from the attacking of the γ-secretase, we have investigated here the specific interactions between a short APP peptide and curcumin derivatives, using protein-ligand docking as well as ab initio molecular simulations.

  8. Ab Initio Study on Atomic Structures and Physical Properties of CdSe Quantum Nanodots

    DTIC Science & Technology

    2009-11-25

    CdSe quantum dots , with magic number (( CdSe )13, ( CdSe )19, ( CdSe )33 and ( CdSe )34 ). Effects of organic ligand binding on the stability of CdSe as well...calculations of optical absorption spectra for CdSe quantum dots , with magic number (( CdSe )13, ( CdSe )19, ( CdSe )33 and ( CdSe )34 ), have been calculated in...1 AOARD-08-4037 Title of Proposed Project: Ab initio study on atomic structures and physical

  9. Communication: GAIMS—Generalized Ab Initio Multiple Spawning for both internal conversion and intersystem crossing processes

    NASA Astrophysics Data System (ADS)

    Curchod, Basile F. E.; Rauer, Clemens; Marquetand, Philipp; González, Leticia; Martínez, Todd J.

    2016-03-01

    Full multiple spawning is a formally exact method to describe the excited-state dynamics of molecular systems beyond the Born-Oppenheimer approximation. However, it has been limited until now to the description of radiationless transitions taking place between electronic states with the same spin multiplicity. This Communication presents a generalization of the full and ab initio multiple spawning methods to both internal conversion (mediated by nonadiabatic coupling terms) and intersystem crossing events (triggered by spin-orbit coupling matrix elements) based on a spin-diabatic representation. The results of two numerical applications, a model system and the deactivation of thioformaldehyde, validate the presented formalism and its implementation.

  10. Superconductivity in an expanded phase of ZnO: an ab initio study

    NASA Astrophysics Data System (ADS)

    Hapiuk, D.; Marques, M. A. L.; Mélinon, P.; Botti, S.; Masenelli, B.; Flores-Livas, J. A.

    2015-04-01

    It is known that covalent semiconductors become superconducting if conveniently doped with large concentration of impurities. In this article we investigate, using ab initio methods, if the same situation is possible for an ionic, large-band gap semiconductor such as ZnO. We concentrate on the cage-like sodalite phase, with very similar electronic and phononic properties as wurtzite ZnO, but allow for endohedral doping of the cages. We find that sodalite ZnO becomes superconducting for a variety of dopants, reaching a maximum critical temperature of 7 K. This value is comparable to the transition temperatures of doped silicon clathrates, cubic silicon, and diamond.

  11. Structure and dynamics of the Lu2Si2O7 lattice: Ab initio calculation

    NASA Astrophysics Data System (ADS)

    Nazipov, D. V.; Nikiforov, A. E.

    2017-01-01

    The ab initio calculations have been carried out for the crystal structure and Raman spectrum of a single crystal of lutetium pyrosilicate Lu2Si2O7. The types of fundamental vibrations and their frequencies and intensities in the Raman spectrum for two polarizations of the crystal have been determined. The calculations have been performed within the framework of the density functional theory (DFT) using the hybrid functionals. The ions involved in the vibrations have been identified using the method of isotopic substitution. The results of the calculations are in good agreement with the experiment.

  12. The photodissociation of dimethylnitrosamine studied by classical trajectories on ab initio potential energy surfaces

    NASA Astrophysics Data System (ADS)

    Persico, Maurizio; Cacelli, Ivo; Ferretti, Alessandro

    1991-04-01

    We have determined ab initio potential energy surfaces of the S0 and S1 states of dimethylnitrosamine, with particular care for the N-N bond dissociation pathway. The electronic correlation has been taken into account by a multireference perturbation method, CIPSI. Classical trajectories in the S1 surface have been run with statistically determined initial conditions. Computed lifetimes and orientation parameters for the recoil velocity and the NO fragment angular momentum are in agreement with experimental data. Large amplitude internal motions are of primary importance in determining such quantities.

  13. Carbon dioxide capture in 2-aminoethanol aqueous solution from ab initio molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Kubota, Yoshiyuki; Ohnuma, Toshiharu; Bučko, Tomáš

    2017-03-01

    The reaction of carbon dioxide (CO2) with aqueous 2-aminoethanol (MEA) has been investigated using both blue moon ensemble and metadynamics approaches combined with ab initio molecular dynamics (AIMD) simulations. The AIMD simulations predicted the spontaneous deprotonation of the intermediate compound, MEA zwitterion, and they were used to study two possible routes for subsequent proton transfer reactions: the formation of the protonated MEA and the formation of MEA carbamic acid. The free-energy curve depicted by blue moon ensemble technique supported the favorable deprotonation of MEA zwitterion. The overall free-energy profile showed the favorable formation of the ionic products of MEA carbamate ion and protonated MEA.

  14. Flexible Ab initio boundary conditions: simulating isolated dislocations in bcc Mo and Ta.

    PubMed

    Woodward, C; Rao, S I

    2002-05-27

    We report the first ab initio density-functional study of the strain field and Peierls stress of isolated <111> screw dislocations in bcc Mo and Ta. The local dislocation strain field is self-consistently coupled to the long-range elastic field using a flexible boundary condition method. This reduces the mesoscopic atomistic calculation to one involving only degrees of freedom near the dislocation core. The predicted equilibrium core for Mo is significantly different from previous atomistic results and the Peierls stress shows significant non-Schmid behavior as expected for the bcc metals.

  15. Ab initio study on electronically excited states of lithium isocyanide, LiNC

    NASA Astrophysics Data System (ADS)

    Yasumatsu, Hisato; Jeung, Gwang-Hi

    2014-01-01

    The electronically excited states of the lithium isocyanide molecule, LiNC, were studied by means of ab initio calculations. The bonding nature of LiNC up to ∼10 eV is discussed on the basis of the potential energy surfaces according to the interaction between the ion-pair and covalent states. The ion-pair states are described by Coulomb attractive interaction in the long distance range, while the covalent ones are almost repulsive or bound with a very shallow potential dent. These two states interact each other to form adiabatic potential energy surfaces with non-monotonic change in the potential energy with the internuclear distance.

  16. Ab initio no core calculations of light nuclei and preludes to Hamiltonian quantum field theory

    SciTech Connect

    Vary, J. P.; Maris, P.; Honkanen, H.; Li, J.; Shirokov, A. M.; Brodsky, S. J.; Harindranath, A.

    2009-12-17

    Recent advances in ab initio quantum many-body methods and growth in computer power now enable highly precise calculations of nuclear structure. The precision has attained a level sufficient to make clear statements on the nature of 3-body forces in nuclear physics. Total binding energies, spin-dependent structure effects, and electroweak properties of light nuclei play major roles in pinpointing properties of the underlying strong interaction. Eventually, we anticipate a theory bridge with immense predictive power from QCD through nuclear forces to nuclear structure and nuclear reactions. Light front Hamiltonian quantum field theory offers an attractive pathway and we outline key elements.

  17. Ab initio no core calculations of light nuclei and preludes to Hamiltonian quantum field theory

    SciTech Connect

    Vary, J.P.; Maris, P.; Shirokov, A.M.; Honkanen, H.; li, J.; Brodsky, S.J.; Harindranath, A.; Teramond, G.F.de; /Costa Rica U.

    2009-08-03

    Recent advances in ab initio quantum many-body methods and growth in computer power now enable highly precise calculations of nuclear structure. The precision has attained a level sufficient to make clear statements on the nature of 3-body forces in nuclear physics. Total binding energies, spin-dependent structure effects, and electroweak properties of light nuclei play major roles in pinpointing properties of the underlying strong interaction. Eventually,we anticipate a theory bridge with immense predictive power from QCD through nuclear forces to nuclear structure and nuclear reactions. Light front Hamiltonian quantum field theory offers an attractive pathway and we outline key elements.

  18. Ab initio calculation of the deuterium quadrupole coupling in liquid water

    NASA Astrophysics Data System (ADS)

    Eggenberger, Rolf; Gerber, Stefan; Huber, Hanspeter; Searles, Debra; Welker, Marc

    1992-10-01

    The quadrupole coupling constant and asymmetry parameter for the deuteron in liquid heavy water was determined using purely theoretical methods. Molecular-dynamics simulations with the ab initio potential-energy surface of Lie and Clementi were used to generate snapshots of the liquid. The electric-field gradient at the deuteron was then calculated for these configurations and averaged to obtain the liquid quadrupole coupling constant. At 300 K a quadrupole coupling constant of 256±5 kHz and an asymmetry parameter of 0.164±0.003 were obtained. The temperature dependence of the quadrupole coupling constant was investigated.

  19. Longitudinal spin fluctuations and superconductivity in ferromagnetic ZrZn2 from Ab initio calculations.

    PubMed

    Santi, G; Dugdale, S B; Jarlborg, T

    2001-12-10

    The recent discovery of superconductivity coexisting with weak itinerant ferromagnetism in the d-electron intermetallic compound ZrZn2 strongly suggests spin-fluctuation mediated superconductivity. Ab initio electronic structure calculations of the Fermi surface and generalized susceptibilities are performed to investigate the viability of longitudinal spin-fluctuation-induced spin-triplet superconductivity in the ferromagnetic state. The critical temperature is estimated to be of the order of 1 K. Additionally, it is shown that in spite of a strong electron-phonon coupling ( lambda(ph) = 0.7), conventional s-wave superconductivity is inhibited by the presence of strong spin fluctuations.

  20. The role of Metals in Amyloid Aggregation: A Test Case for ab initio Simulations

    SciTech Connect

    Minicozzi, V.; Rossi, G. C.; Stellato, F.; Morante, S.

    2007-12-26

    First principle ab initio molecular dynamics simulations of the Car-Parrinello type have proved to be of invaluable help in understanding the microscopic mechanisms of chemical bonding both in solid state physics and in structural biophysics. In this work we present as test cases the study of the Cu coordination mode in two especially important examples: Prion protein and {beta}-amyloids. Using medium size PC-clusters as well as larger parallel platforms, we are able to deal with systems comprising 300 to 500 atoms and 1000 to 1500 electrons for as long as 2-3 ps. We present structural results which confirm indications coming from NMR and XAS data.

  1. Trivacancy in silicon: A combined DLTS and ab-initio modeling study

    NASA Astrophysics Data System (ADS)

    Markevich, V. P.; Peaker, A. R.; Lastovskii, S. B.; Murin, L. I.; Coutinho, J.; Markevich, A. V.; Torres, V. J. B.; Briddon, P. R.; Dobaczewski, L.; Monakhov, E. V.; Svensson, B. G.

    2009-12-01

    Deep level transient spectroscopy and ab-initio modeling have been used for identification of energy levels and structure of trivacancy (V3) in Si. It is found that in the neutral charge state the V3 is bistable, with the "fourfold" configuration being lower in energy than the (1 1 0) planar configuration. V3 in the (1 1 0) planar configuration gives rise to two acceptor levels at Ec-0.36 eV and Ec-0.46 eV in the gap, while in the "fourfold" configuration the defect has trigonal symmetry and an acceptor level at Ec-0.075 eV.

  2. Ab initio calculations of one-electron-scattering properties of ethyne (acetylene) and ethylene molecules

    SciTech Connect

    Tripathi, A.N.; Smith, V.H. Jr. K7L3N6); Kaijser, P.; Siemens, A.G. ); Diercksen, G.H.F. )

    1990-03-01

    Isotropic scattering functions and Compton profiles together with their directional components for several directions relevant to the molecular structure of C{sub 2}H{sub 2} and C{sub 2}H{sub 4} have been evaluated for {ital ab} {ital initio} self-consistent field and configuration-interaction wave functions. The internally folded density (reciprocal form factor) {ital B}({ital r}) is calculated and discussed as are various momentum expectation values. Comparison is made with available experimental and other theoretical results.

  3. Structure of alcohol cluster ions in the gas phase, according to spectrometry and ab initio calculations

    NASA Astrophysics Data System (ADS)

    Krisilov, A. V.; Lantsuzskaya, E. V.; Levina, A. M.

    2017-01-01

    Reduced ion mobility and scattering cross sections are calculated from experimentally obtained spectra of the ion mobility of linear aliphatic alcohols with carbon atom numbers from 2 to 9. A linear increase in the scattering cross sections as the molecular weight grows is found. According to the results from experiments and quantum chemical calculations, alcohol cluster ions do not form a compact structure. Neither are dipole moments compensated for during dimerization, in contrast to the aldehydes and ketones described earlier. It was concluded from ab initio calculations that charge delocalization in monomeric and dimeric ions of alcohols increases the dipole moment many times over.

  4. Communication: Multiple-timestep ab initio molecular dynamics with electron correlation.

    PubMed

    Steele, Ryan P

    2013-07-07

    A time-reversible, multiple-timestep protocol is presented for ab initio molecular dynamics simulations using correlated, wavefunction-based underlying potentials. The method is motivated by the observation that electron correlation contributions to forces vary on a slower timescale than their Hartree-Fock counterparts. An efficient dynamics algorithm, involving short-timestep Hartree-Fock and long-timestep Moøller-Plesset perturbation theory, is presented and tested. Results indicate stable trajectories and relative speedups comparable to those seen in force field-based multiple-timestep schemes, with the highest efficiency improvement occurring for large systems.

  5. Communication: Multiple-timestep ab initio molecular dynamics with electron correlation

    NASA Astrophysics Data System (ADS)

    Steele, Ryan P.

    2013-07-01

    A time-reversible, multiple-timestep protocol is presented for ab initio molecular dynamics simulations using correlated, wavefunction-based underlying potentials. The method is motivated by the observation that electron correlation contributions to forces vary on a slower timescale than their Hartree-Fock counterparts. An efficient dynamics algorithm, involving short-timestep Hartree-Fock and long-timestep Møller-Plesset perturbation theory, is presented and tested. Results indicate stable trajectories and relative speedups comparable to those seen in force field-based multiple-timestep schemes, with the highest efficiency improvement occurring for large systems.

  6. Electric-field control of magnetism in graphene quantum dots: Ab initio calculations

    PubMed Central

    Agapito, Luis A.; Kioussis, Nicholas; Kaxiras, Efthimios

    2011-01-01

    Employing ab initio calculations we predict that the magnetic states of hydrogenated diamond-shaped zigzag graphene quantum dots (GQDs), each exhibiting unique electronic structure, can be selectively tuned with gate voltage, through Stark or hybridization electric-field modulation of the spatial distribution and energy of the spin-polarized molecular orbitals, leading to transitions between these states. Electrical read-out of the GQD magnetic state can be accomplished by exploiting the distinctive electrical properties of the various magnetic configurations. PMID:21765631

  7. AB Initio Study of Ion-Pair States of the Iodine Molecule

    NASA Astrophysics Data System (ADS)

    Alekseev, Vadim A.

    2013-06-01

    Ion-pair states of the I_2molecule have been the subject of many experimentals studies and to date all 18 states correlating with I^+(^3P_{J=2,1,0}, ^1D_2) + I^-(^1S_0) asymptotes are known from experiment. This contribution reports on {ab initio study of the I_2 molecule with an emphasis on the ion-pair states. Figure shows experimental and calculated potentials of the ion-pair states correlating with I^+(^3P_{2}) + I^-(^1S_0) asymptote (energy is relative to I (^2P_{3/2}) + I (^2P_{3/2}) asymptote).

  8. Ab initio molecular simulations on specific interactions between amyloid beta and monosaccharides

    NASA Astrophysics Data System (ADS)

    Nomura, Kazuya; Okamoto, Akisumi; Yano, Atsushi; Higai, Shin'ichi; Kondo, Takashi; Kamba, Seiji; Kurita, Noriyuki

    2012-09-01

    Aggregation of amyloid β (Aβ) peptides, which is a key pathogenetic event in Alzheimer's disease, can be caused by cell-surface saccharides. We here investigated stable structures of the solvated complexes of Aβ with some types of monosaccharides using molecular simulations based on protein-ligand docking and classical molecular mechanics methods. Moreover, the specific interactions between Aβ and the monosaccharides were elucidated at an electronic level by ab initio fragment molecular orbital calculations. Based on the results, we proposed which type of monosaccharide prefers to have large binding affinity to Aβ and inhibit the Aβ aggregation.

  9. An analytical ab initio potential surface and the calculated tunneling energies for the HCl dimer

    NASA Astrophysics Data System (ADS)

    Bunker, P. R.; Epa, V. C.; Jensen, Per; Karpfen, Alfred

    1991-03-01

    The six-dimensional potential energy surface of the HCl dimer has been calculated ab initio at 1654 nuclear geometries [A. Karpfen, P. R. Bunker and P. Jensen, Chem. Phys., in press]. In the present paper we have fitted an analytical function to these points; the analytical function is similar to that used previously by us for the potential surface of the HF dimer. The fitted function has 38 adjustable parameters and the standard deviation of the weighted fit is 19.0 cm -1. We have determined the minimum energy path for the trans-bending tunneling motion on this surface, and have calculated the tunneling and K-rotation energies and wavefunctions. Around equilibrium the path is qualitatively similar to that for the HF dimer in that there are two equivalent hydrogen-bonded structures of Cs symmetry (which are approximately L-shaped with a "bound" and a "free" H-atom) that can tunnel through a C2 h saddle point (the "closed" C2 h saddle point). However, away from equilibrium the path is qualitatively different from that found for the HF dimer since the HCl dimer never becomes linear along the path; in fact it passes through a second C2 h saddle point (the "open" C2 h saddle point). As a result the A-rotational constant only varies slightly along the path, and this explains the experimental observation that the tunneling splitting varies little with K-type rotation for the HCl dimer, in contrast to the situation for the HF dimer. Quantitatively it is clear that errors in the ab initio calculation, errors in the fitting of an analytic function to the points, the correction to the path that is caused by the zero point motion in the other vibrations, and the coupling between the four low-frequency modes, will all be relatively more significant than they were for the HF dimer because the full six-dimensional potential is much flatter; the ab initio dissociation energy is only ˜600 cm -1, and the ab initio tunneling barrier is only ˜70 cm -1. Therefore, we modify the

  10. Ab Initio Electronic Structure Calculations of Cytochrome P450 -- Ligand Interactions

    NASA Astrophysics Data System (ADS)

    Segall, M. D.; Payne, M. C.; Ellis, S. W.; Tucker, G. T.

    1997-03-01

    The Cytochrome P450 superfamily of enzymes are of great interest in pharmacology as they participate in an enormous range of physiological processes including drug deactivation and xenobiotic detoxification. We apply ab initio electronic structure calculations to model the interactions of the haem molecule at the P450 active site with substrate and inhibitor ligands. These calculations, based on density function theory, were performed with the CETEP code which uses a plane wave basis set and pseudopotentials to perform efficient LDA, GGA and spin dependent calculations. A change in the spin state of the haem iron atom is observed on binding of a substrate molecule, consistent with the accepted reaction mechanism.

  11. Ab initio insight into graphene nanofibers to destabilize hydrazine borane for hydrogen release

    NASA Astrophysics Data System (ADS)

    Qian, Zhao; Raghubanshi, Himanshu; Sterlin Leo Hudson, M.; Srivastava, O. N.; Liu, Xiangfa; Ahuja, Rajeev

    2017-02-01

    We report the potential destabilizing effects of graphene nanofibers on the hydrogen release property of hydrazine borane via state-of-the-art ab initio calculations for the first time. Interactions of a hydrazine borane cluster with two types of graphene patch edges which exist abundantly in our synthesized graphene nanofibers have been investigated. It is found that both zigzag and armchair edges can greatly weaken the H-host bonds (especially the middle Nsbnd H bond) of hydrazine borane. The dramatic decrease in hydrogen removal energy is caused by the strong interaction between hydrazine borane and the graphene patch edges concerning the electronic charge density redistribution.

  12. Testing the density matrix expansion against ab initio calculations of trapped neutron drops

    SciTech Connect

    Bogner, S. K.; Hergert, H.; Furnstahl, R. J.; Kortelainen, Erno M; Stoitsov, M. V.; Maris, Pieter; Vary, J. P.

    2011-01-01

    Microscopic input to a universal nuclear energy density functional can be provided through the density matrix expansion (DME), which has recently been revived and improved. Several DME implementation strategies are tested for neutron drop systems in harmonic traps by comparing to Hartree-Fock (HF) and ab initio no-core full configuration (NCFC) calculations with a model interaction (Minnesota potential). The new DME with exact treatment of Hartree contributions is found to best reproduce HF results and supplementing the functional with fit Skyrme-like contact terms shows systematic improvement toward the full NCFC results.

  13. Ab initio calculations of the electronic structure of silicon nanocrystals doped with shallow donors (Li, P)

    SciTech Connect

    Kurova, N. V. Burdov, V. A.

    2013-12-15

    The results of ab initio calculations of the electronic structure of Si nanocrystals doped with shallow donors (Li, P) are reported. It is shown that phosphorus introduces much more significant distortions into the electronic structure of the nanocrystal than lithium, which is due to the stronger central cell potential of the phosphorus ion. It is found that the Li-induced splitting of the ground state in the conduction band of the nanocrystal into the singlet, doublet, and triplet retains its inverse structure typical for bulk silicon.

  14. Accurate calculation of the p Ka of trifluoroacetic acid using high-level ab initio calculations

    NASA Astrophysics Data System (ADS)

    Namazian, Mansoor; Zakery, Maryam; Noorbala, Mohammad R.; Coote, Michelle L.

    2008-01-01

    The p Ka value of trifluoroacetic acid has been successfully calculated using high-level ab initio methods such as G3 and CBS-QB3. Solvation energies have been calculated using CPCM continuum model of solvation at the HF and B3-LYP levels of theory with various basis sets. Excellent agreement with experiment (to within 0.4 p Ka units) was obtained using CPCM solvation energies at the B3-LYP/6-31+G(d) level (or larger) in conjunction with CBS-QB3 or G3 gas-phase energies of trifluoroacetic acid and its anion.

  15. Relativistic k .p Hamiltonians for centrosymmetric topological insulators from ab initio wave functions

    NASA Astrophysics Data System (ADS)

    Nechaev, I. A.; Krasovskii, E. E.

    2016-11-01

    We present a method to microscopically derive a small-size k .p Hamiltonian in a Hilbert space spanned by physically chosen ab initio spinor wave functions. Without imposing any complementary symmetry constraints, our formalism equally treats three- and two-dimensional systems and simultaneously yields the Hamiltonian parameters and the true Z2 topological invariant. We consider bulk crystals and thin films of Bi2Se3 , Bi2Te3 , and Sb2Te3 . It turns out that the effective continuous k .p models with open boundary conditions often incorrectly predict the topological character of thin films.

  16. Ab initio calculation of excitonic Hamiltonian of light-harvesting complex LH1 of Thermochromatium tepidum

    NASA Astrophysics Data System (ADS)

    Kozlov, Maxim I.; Poddubnyy, Vladimir V.; Glebov, Ilya O.; Belov, Aleksandr S.; Khokhlov, Daniil V.

    2016-02-01

    The electronic properties of light-harvesting complexes determine the efficiency of energy transfer in photosynthetic antennae. Ab initio calculations of the electronic properties of bacteriochlorophylls (composing the LH1 complex of the purple bacteria Thermochromatium tepidum) were performed. Based on these calculations, the excitonic Hamiltonian of a native cyclic complex and the Hamiltonians of open complexes with several removed bacteriochlorophylls were constructed. Absorption spectra calculated based on these Hamiltonians agree well with the experimental data. We found that the parameters of interaction between the neighboring bacteriochlorophylls are significantly larger than the empirical parameters suggested previously.

  17. Dissolution of cellulose in ionic liquids: an ab initio molecular dynamics simulation study.

    PubMed

    Payal, Rajdeep Singh; Balasubramanian, Sundaram

    2014-09-07

    Interactions determining the dissolution of a monomer of β-cellulose, i.e., cellobiose in a room temperature ionic liquid, [Emim][OAc], have been studied using ab initio molecular dynamics simulations. Although anions are the predominant species in the first coordination shell of cellobiose, cations too are present to a minor extent around it. The presence of low concentration of water in the solution does not significantly alter the nature of the coordination environment of cellobiose. All intra-molecular hydrogen bonds of anti-syn cellobiose are replaced by inter-molecular hydrogen bonds formed with the anions, whereas the anti-anti conformer retains an intramolecular hydrogen bond.

  18. The hydrogen diffusion in liquid aluminum alloys from ab initio molecular dynamics

    NASA Astrophysics Data System (ADS)

    Jakse, N.; Pasturel, A.

    2014-09-01

    We study the hydrogen diffusion in liquid aluminum alloys through extensive ab initio molecular dynamics simulations. At the microscopic scale, we show that the hydrogen motion is characterized by a broad distribution of spatial jumps that does not correspond to a Brownian motion. To determine the self-diffusion coefficient of hydrogen in liquid aluminum alloys, we use a generalized continuous time random walk model recently developed to describe the hydrogen diffusion in pure aluminum. In particular, we show that the model successfully accounts the effects of alloying elements on the hydrogen diffusion in agreement with experimental features.

  19. An accurate potential energy curve for helium based on ab initio calculations

    NASA Astrophysics Data System (ADS)

    Janzen, A. R.; Aziz, R. A.

    1997-07-01

    Korona, Williams, Bukowski, Jeziorski, and Szalewicz [J. Chem. Phys. 106, 1 (1997)] constructed a completely ab initio potential for He2 by fitting their calculations using infinite order symmetry adapted perturbation theory at intermediate range, existing Green's function Monte Carlo calculations at short range and accurate dispersion coefficients at long range to a modified Tang-Toennies potential form. The potential with retardation added to the dipole-dipole dispersion is found to predict accurately a large set of microscopic and macroscopic experimental data. The potential with a significantly larger well depth than other recent potentials is judged to be the most accurate characterization of the helium interaction yet proposed.

  20. Simple synthesis, structure and ab initio study of 1,4-benzodiazepine-2,5-diones

    NASA Astrophysics Data System (ADS)

    Jadidi, Khosrow; Aryan, Reza; Mehrdad, Morteza; Lügger, Thomas; Ekkehardt Hahn, F.; Ng, Seik Weng

    2004-04-01

    A simple procedure for the synthesis of pyrido[2,1-c][1,4] benzodiazepine-6,12-dione ( 1) and 1,4-benzodiazepine-2,5-diones ( 2a- 2d), using microwave irradiation and/or conventional heating is reported. The configuration of 1 was determined by single-crystal X-ray diffraction. A detailed ab initio B3LYP/6-31G* calculation of structural parameters and substituent effects on ring inversion barriers (Δ G#) and also free energy differences (Δ G0) for benzodiazepines are reported.

  1. Vibrational energy levels for CH4 from an ab initio potential

    NASA Technical Reports Server (NTRS)

    Schwenke, D. W.; Partridge, H.

    2001-01-01

    Many areas of astronomy and astrophysics require an accurate high temperature spectrum of methane (CH4). The goal of the present research is to determine an accurate ab initio potential energy surface (PES) for CH4. As a first step towards this goal, we have determined a PES including up to octic terms. We compare our results with experiment and to a PES based on a quartic expansion. Our octic PES gives good agreement with experiment for all levels, while the quartic PES only for the lower levels.

  2. Graph Theory Meets Ab Initio Molecular Dynamics: Atomic Structures and Transformations at the Nanoscale

    NASA Astrophysics Data System (ADS)

    Pietrucci, Fabio; Andreoni, Wanda

    2011-08-01

    Social permutation invariant coordinates are introduced describing the bond network around a given atom. They originate from the largest eigenvalue and the corresponding eigenvector of the contact matrix, are invariant under permutation of identical atoms, and bear a clear signature of an order-disorder transition. Once combined with ab initio metadynamics, these coordinates are shown to be a powerful tool for the discovery of low-energy isomers of molecules and nanoclusters as well as for a blind exploration of isomerization, association, and dissociation reactions.

  3. Pathways of electrophilic aromatic substitution reactions catalyzed by group 13 trihalides: An ab initio study

    NASA Astrophysics Data System (ADS)

    Volkov, Alexey N.; Timoshkin, Alexey Y.; Suvorov, Andrew V.

    An ab initio study of the two possible pathways of ectrophilic aromatic substitution reaction catalyzed by monomeric and dimeric forms of group 13 metal halides has been performed. Optimized geometries of π, σ-complexes and corresponding transition states have been obtained at second-order Møller-Plesset/ LANL2DZ(d)+ level of theory. It is found that operation of the dimeric pathway is more favorable both thermodynamically and kinetically. Thus, it is expected that catalytical activity of the metal halide will be greatly increased if the stoichiometric ratio 2:1 is employed. Obtained results are in qualitative agreement with available experimental data.

  4. Ab Initio Calculations of Singlet and Triplet Excited States of Chlorine Nitrate and Nitric Acid

    NASA Technical Reports Server (NTRS)

    Grana, Ana M.; Lee, Timothy J.; Head-Gordon, Martin; Langhoff, Stephen R. (Technical Monitor)

    1994-01-01

    Ab initio calculations of vertical excitations to singlet and triplet excited states of chlorine nitrate and nitric acid are reported. The nature of the electronic transitions are examined by decomposing the difference density into the sum of detachment and attachment densities. Counterparts for the three lowest singlet excited states of nitric acid survive relatively unperturbed in chlorine nitrate, while other low-lying singlet states of chlorine nitrate appear to be directly dissociative in the ClO chromophore. These results suggest an assignment of the two main peaks in the experimental chlorine nitrate absorption spectrum. In addition, triplet vertical excitations and the lowest optimized triplet geometries of both molecules are studied.

  5. Experimental and ab initio infrared study of chi-, kappa- and alpha-aluminas formed from gibbsite

    SciTech Connect

    Favaro, L.; Boumaza, A.; Roy, P.; Ledion, J.; Sattonnay, G.; Brubach, J.B.; Huntz, A.M.; Tetot, R.

    2010-04-15

    chi-, kappa- and alpha-alumina phases formed by dehydration of micro-grained gibbsite between 773 and 1573 K are studied using infrared spectroscopy (IR). The structural transitions evidenced by X-ray diffraction (XRD) were interpreted by comparing IR measurements with ab initio simulations (except for the chi form whose complexity does not allow a reliable simulation). For each phase, IR spectrum presents specific bands corresponding to transverse optical (TO) modes of Al-O stretching and bending under 900 cm{sup -1}. The very complex chi phase, obtained at 773 K, provides a distinctive XRD pattern in contrast with the IR absorbance appearing as a broad structure extending between 200 and 900 cm{sup -1} resembling the equivalent spectra for gamma-alumina phase. kappa-alumina is forming at 1173 K and its rich IR spectrum is in good qualitative agreement with ab initio simulations. This complexity reflects the large number of atoms in the kappa-alumina unit cell and the wide range of internuclear distances as well as the various coordinances of both Al and O atoms. Ab initio simulations suggest that this form of transition alumina demonstrates a strong departure from the simple pattern observed for other transition alumina. At 1573 K, the stable alpha-ALPHAl{sub 2}OMICRON{sub 3} develops. Its IR spectra extends in a narrower energy range as compared to transition alumina and presents characteristics features similar to model alpha-ALPHAl{sub 2}OMICRON{sub 3}. Ab initio calculations show again a very good general agreement with the observed IR spectra for this phase. In addition, for both kappa- and alpha-ALPHAl{sub 2}OMICRON{sub 3}, extra modes, measured at high energy (above 790 cm{sup -1} for kappa and above 650 cm{sup -1} for alpha), can originate from either remnant chi-alumina or from surface modes. - Graphical abstract: Infrared spectra of the sequence Gibbsite ->chi->kappa->alpha-Al{sub 2}O{sub 3} obtained from 24 h calcinations of Gibbsite at 773 K, 1173 K

  6. Converging sequences in the ab initio no-core shell model

    SciTech Connect

    Forssen, C.; Vary, J. P.; Caurier, E.; Navratil, P.

    2008-02-15

    We demonstrate the existence of multiple converging sequences in the ab initio no-core shell model. By examining the underlying theory of effective operators, we expose the physical foundations for the alternative pathways to convergence. This leads us to propose a revised strategy for evaluating effective interactions for A-body calculations in restricted model spaces. We suggest that this strategy is particularly useful for applications to nuclear processes in which states of both parities are used simultaneously, such as for transition rates. We demonstrate the utility of our strategy with large-scale calculations in light nuclei.

  7. Vibrational energy levels for CH4 from an ab initio potential.

    PubMed

    Schwenke, D W; Partridge, H

    2001-03-15

    Many areas of astronomy and astrophysics require an accurate high temperature spectrum of methane (CH4). The goal of the present research is to determine an accurate ab initio potential energy surface (PES) for CH4. As a first step towards this goal, we have determined a PES including up to octic terms. We compare our results with experiment and to a PES based on a quartic expansion. Our octic PES gives good agreement with experiment for all levels, while the quartic PES only for the lower levels.

  8. Graph theory meets ab initio molecular dynamics: atomic structures and transformations at the nanoscale.

    PubMed

    Pietrucci, Fabio; Andreoni, Wanda

    2011-08-19

    Social permutation invariant coordinates are introduced describing the bond network around a given atom. They originate from the largest eigenvalue and the corresponding eigenvector of the contact matrix, are invariant under permutation of identical atoms, and bear a clear signature of an order-disorder transition. Once combined with ab initio metadynamics, these coordinates are shown to be a powerful tool for the discovery of low-energy isomers of molecules and nanoclusters as well as for a blind exploration of isomerization, association, and dissociation reactions.

  9. Ab initio study of the elastic anomalies in Pd-Ag alloys

    NASA Astrophysics Data System (ADS)

    Delczeg-Czirjak, E. K.; Delczeg, L.; Ropo, M.; Kokko, K.; Punkkinen, M. P. J.; Johansson, B.; Vitos, L.

    2009-02-01

    Ab initio total-energy calculations, based on the exact muffin-tin orbital method, are used to determine the elastic properties of Pd1-xAgx random alloys in the face-centered-cubic crystallographic phase. The compositional disorder is treated within the coherent-potential approximation. The single crystal and polycrystalline elastic constants and the Debye temperature are calculated for the whole range of concentration, 0≤x≤1 . It is shown that the variation in the elastic parameters of Pd-Ag alloys with chemical composition strongly deviates from a simple linear or parabolic trend. The complex electronic origin of these anomalies is demonstrated.

  10. Ab initio calculations of elastic properties of Ru1-xNixAl superalloys

    NASA Astrophysics Data System (ADS)

    Bleskov, I. D.; Smirnova, E. A.; Vekilov, Yu. Kh.; Korzhavyi, P. A.; Johansson, B.; Katsnelson, M.; Vitos, L.; Abrikosov, I. A.; Isaev, E. I.

    2009-04-01

    Ab initio total energy calculations based on the exact muffin-tin orbitals method, combined with the coherent potential approximation, have been used to study the thermodynamical and elastic properties of substitutional refractory Ru1-xNixAl alloys. We have found that the elastic constants C' and C11 exhibit pronounced peculiarities near the concentration of about 40 at. % Ni, which we ascribe to electronic topological transitions. Our suggestion is supported by the Fermi surface calculations in the whole concentration range. Results of our calculations show that one can design Ru-Ni-Al alloys substituting Ru by Ni (up to 40 at. %) with almost invariable elastic constants and reduced density.

  11. Ab initio synthesis of linearly compensated zoom lenses by evolutionary programming.

    PubMed

    Pal, Sourav; Hazra, Lakshminarayan

    2011-04-01

    An approach for ab initio synthesis of the thin lens structure of linearly compensated zoom lenses is reported. This method uses evolutionary programming that explores the available configuration space formed by powers of the individual components, the intercomponent separations, and the relative movement parameters of the moving components. Useful thin lens structures of optically and linearly compensated zoom lens systems are obtained by suitable formulation of the merit function of optimization. This paper reports our investigations on three-component zoom lens structures. Illustrative numerical results are presented.

  12. Atomic structure evolution during solidification of liquid niobium from ab initio molecular dynamics simulations

    SciTech Connect

    Debela, T. T.; Wang, X. D.; Cao, Q. P.; Zhang, D. X.; Wang, S. Y.; Wang, Cai-Zhuang; Jiang, J. Z.

    2013-12-12

    Atomic structure transitions of liquid niobium during solidification, at different temperatures from 3200 to 1500 K, were studied by using ab initio molecular dynamics simulations. The local atomic structure variations with temperature are investigated by using the pair-correlation function, the structure factor, the bond-angle distribution function, the Honeycutt–Anderson index, Voronoi tessellation and the cluster alignment methods. Our results clearly show that, upon quenching, the icosahedral short-range order dominates in the stable liquid and supercooled liquid states before the system transforms to crystalline body-center cubic phase at a temperature of about 1830 K.

  13. Synthesis and Ab Initio/DFT Studies on 2-(4-methoxyphenyl)benzo[d]thiazole

    PubMed Central

    Arslan, Hakan; Algül, Öztekin

    2007-01-01

    2-aminothiophenol and 4-methoxybenzaldehyde were cyclized under microwave irridation and solvent free conditions to synthesize 2-(4-methoxyphenyl)benzo[d]thiazole. The molecular structure and vibrational frequencies of the title compound in the ground state have been investigated with ab initio (HF) and density functional theory methods (BLYP, B3LYP, B3PW91 and mPW1PW91) implementing the standard 6–311G(d,p) basis set. Comparison of the observed fundamental vibrational frequencies of title compound and calculated results by HF and DFT methods indicate that B3LYP is superior to the scaled HF approach for molecular problems.

  14. Binding of oxygen with titanium dioxide on singlet potential energy surface: An ab initio investigation

    NASA Astrophysics Data System (ADS)

    Bogdanchikov, Georgii A.; Baklanov, Alexey V.

    2017-01-01

    Ab initio calculations have been carried out to investigate interaction of titanium dioxide TiO2 with oxygen O2 in ground triplet and excited singlet states. On a singlet potential energy surface (PES) formation of a stable compound of titanium peroxide TiO4 is revealed which should appear in reaction of TiO2 with singlet oxygen without activation barrier. This peroxide is lower in energy than the ground state of two individual molecules TiO2 + 3O2 by 34.6 kcal/mol. Location of conical intersection between triplet and singlet PESs of TiO2sbnd O2 is also investigated.

  15. Ab initio Path Integral Molecular Dynamics Based on Fragment Molecular Orbital Method

    NASA Astrophysics Data System (ADS)

    Fujita, Takatoshi; Watanabe, Hirofumi; Tanaka, Shigenori

    2009-10-01

    We have developed an ab initio path integral molecular dynamics method based on the fragment molecular orbital method. This “FMO-PIMD” method can treat both nuclei and electrons quantum mechanically, and is useful to simulate large hydrogen-bonded systems with high accuracy. After a benchmark calculation for water monomer, water trimer and glycine pentamer have been studied using the FMO-PIMD method to investigate nuclear quantum effects on structure and molecular interactions. The applicability of the present approach is demonstrated through a number of test calculations.

  16. Insights into the Distinct Lithiation/Sodiation of Porous Cobalt Oxide by in Operando Synchrotron X-ray Techniques and Ab Initio Molecular Dynamics Simulations.

    PubMed

    Xu, Gui-Liang; Sheng, Tian; Chong, Lina; Ma, Tianyuan; Sun, Cheng-Jun; Zuo, Xiaobing; Liu, Di-Jia; Ren, Yang; Zhang, Xiaoyi; Liu, Yuzi; Heald, Steve M; Sun, Shi-Gang; Chen, Zonghai; Amine, Khalil

    2017-02-08

    Sodium-ion batteries (SIBs) have been considered as one of the promising power source candidates for the stationary storage industries owing to the much lower cost of sodium than lithium. It is well-known that the electrode materials largely determine the energy density of the battery systems. However, recent discoveries on the electrode materials showed that most of them present distinct lithium and sodium storage performance, which is not yet well understood. In this work, we performed a comparative understanding on the structural changes of porous cobalt oxide during its electrochemical lithiation and sodiation process by in operando synchrotron small angel X-ray scattering, X-ray diffraction, and X-ray absorption spectroscopy. It was found that compared to the lithiation process, the porous cobalt oxide undergoes less pore structure changes, oxidation state, and local structure changes as well as crystal structure evolution during its sodiation process, which is attributed to the intrinsic low sodiation activity of cobalt oxide as evidenced by ab initio molecular dynamics simulations. Moreover, it was indicated that the sodiation activity of metal sulfides is higher than that of metal oxides, indicating a better candidate for SIBs. Such understanding is crucial for future design and improvement of high-performance electrode materials for SIBs.

  17. A comparative ab initio study of superconductivity in the body centered tetragonal YC{sub 2} and LaC{sub 2}

    SciTech Connect

    Tütüncü, H. M.; Srivastava, G. P.

    2015-04-21

    Ab initio studies of the electronic band structure and phonon dispersion relations, using the planewave pseudopotential method and the density functional theory, have been made for the superconducting materials YC{sub 2} and LaC{sub 2}. Differences in the phonon spectrum and density of states both in the acoustical and optical ranges between these materials are investigated and discussed. By integrating the Eliashberg spectral function α{sup 2}F(ω), the average electron-phonon coupling parameter is found to be λ = 0.55 for YC{sub 2} and 0.54 for LaC{sub 2}, indicating these to be weak-coupling BCS superconductors. It is established that about 60% of λ is contributed by acoustic phonons in both materials. Using a reasonable value of μ{sup * }= 0.13 for the effective Coulomb repulsion parameter, the superconducting critical temperature T{sub c} is found to be 3.81 K for YC{sub 2} and 2.44 K for LaC{sub 2}, in good agreement with values reported from experimental measurements.

  18. Evolution of atomic structure in Al75Cu25 liquid from experimental and ab initio molecular dynamics simulation studies.

    PubMed

    Xiong, L H; Yoo, H; Lou, H B; Wang, X D; Cao, Q P; Zhang, D X; Jiang, J Z; Xie, H L; Xiao, T Q; Jeon, S; Lee, G W

    2015-01-28

    X-ray diffraction and electrostatic levitation measurements, together with the ab initio molecular dynamics simulation of liquid Al(75)Cu(25) alloy have been performed from 800 to 1600 K. Experimental and ab initio molecular dynamics simulation results match well with each other. No abnormal changes were experimentally detected in the specific heat capacity over total hemispheric emissivity and density curves in the studied temperature range for a bulk liquid Al(75)Cu(25) alloy measured by the electrostatic levitation technique. The structure factors gained by the ab initio molecular dynamics simulation precisely coincide with the experimental data. The atomic structure analyzed by the Honeycutt-Andersen index and Voronoi tessellation methods shows that icosahedral-like atomic clusters prevail in the liquid Al(75)Cu(25) alloy and the atomic clusters evolve continuously. All results obtained here suggest that no liquid-liquid transition appears in the bulk liquid Al(75)Cu(25) alloy in the studied temperature range.

  19. Cross-Linked Nanotube Materials with Variable Stiffness Tethers

    NASA Technical Reports Server (NTRS)

    Frankland, Sarah-Jane V.; Odegard, Gregory M.; Herzog, Matthew N.; Gates, Thomas S.; Fay, Catherine C.

    2004-01-01

    The constitutive properties of a cross-linked single-walled carbon nanotube material are predicted with a multi-scale model. The material is modeled as a transversely isotropic solid using concepts from equivalent-continuum modeling. The elastic constants are determined using molecular dynamics simulation. Some parameters of the molecular force field are determined specifically for the cross-linker from ab initio calculations. A demonstration of how the cross-linked nanotubes may affect the properties of a nanotube/polyimide composite is included using a micromechanical analysis.

  20. Accurate ab initio potential energy computations for the H sub 4 system: Tests of some analytic potential energy surfaces

    SciTech Connect

    Boothroyd, A.I. ); Dove, J.E.; Keogh, W.J. ); Martin, P.G. ); Peterson, M.R. )

    1991-09-15

    The interaction potential energy surface (PES) of H{sub 4} is of great importance for quantum chemistry, as a test case for molecule--molecule interactions. It is also required for a detailed understanding of certain astrophysical processes, namely, collisional excitation and dissociation of H{sub 2} in molecular clouds, at densities too low to be accessible experimentally. Accurate {ital ab} {ital initio} energies were computed for 6046 conformations of H{sub 4}, using a multiple reference (single and) double excitation configuration interaction (MRD-CI) program. Both systematic and random'' errors were estimated to have an rms size of 0.6 mhartree, for a total rms error of about 0.9 mhartree (or 0.55 kcal/mol) in the final {ital ab} {ital initio} energy values. It proved possible to include in a self-consistent way {ital ab} {ital initio} energies calculated by Schwenke, bringing the number of H{sub 4} conformations to 6101. {ital Ab} {ital initio} energies were also computed for 404 conformations of H{sub 3}; adding {ital ab} {ital initio} energies calculated by other authors yielded a total of 772 conformations of H{sub 3}. (The H{sub 3} results, and an improved analytic PES for H{sub 3}, are reported elsewhere.) {ital Ab} {ital initio} energies are tabulated in this paper only for a sample of H{sub 4} conformations; a full list of all 6101 conformations of H{sub 4} (and 772 conformations of H{sub 3} ) is available from Physics Auxiliary Publication Service (PAPS), or from the authors.

  1. Ab initio and classical molecular dynamics studies of the structural and dynamical behavior of water near a hydrophobic graphene sheet.

    PubMed

    Rana, Malay Kumar; Chandra, Amalendu

    2013-05-28

    The behavior of water near a graphene sheet is investigated by means of ab initio and classical molecular dynamics simulations. The wetting of the graphene sheet by ab initio water and the relation of such behavior to the strength of classical dispersion interaction between surface atoms and water are explored. The first principles simulations reveal a layered solvation structure around the graphene sheet with a significant water density in the interfacial region implying no drying or cavitation effect. It is found that the ab initio results of water density at interfaces can be reproduced reasonably well by classical simulations with a tuned dispersion potential between the surface and water molecules. Calculations of vibrational power spectrum from ab initio simulations reveal a shift of the intramolecular stretch modes to higher frequencies for interfacial water molecules when compared with those of the second solvation later or bulk-like water due to the presence of free OH modes near the graphene sheet. Also, a weakening of the water-water hydrogen bonds in the vicinity of the graphene surface is found in our ab initio simulations as reflected in the shift of intermolecular vibrational modes to lower frequencies for interfacial water molecules. The first principles calculations also reveal that the residence and orientational dynamics of interfacial water are somewhat slower than those of the second layer or bulk-like molecules. However, the lateral diffusion and hydrogen bond relaxation of interfacial water molecules are found to occur at a somewhat faster rate than that of the bulk-like water molecules. The classical molecular dynamics simulations with tuned Lennard-Jones surface-water interaction are found to produce dynamical results that are qualitatively similar to those of ab initio molecular dynamics simulations.

  2. Ab initio determination of mode coupling in HSSH - The torsional splitting in the first excited S-S stretching state

    NASA Technical Reports Server (NTRS)

    Herbst, Eric; Winnewisser, G.; Yamada, K. M. T.; Defrees, D. J.; Mclean, A. D.

    1989-01-01

    A mechanism for the enhanced splitting detected in the millimeter-wave rotational spectra of the first excited S-S stretching state of HSSH (disulfane) has been studied. The mechanism, which involves a potential coupling between the first excited S-S stretching state and excited torsional states, has been investigated in part by the use of ab initio theory. Based on an ab initio potential surface, coupling matrix elements have been calculated, and the amount of splitting has then been estimated by second-order perturbation theory. The result, while not in quantitative agreement with the measured splitting, lends plausibility to the assumed mechanism.

  3. Ab initio study of electron-ion structure factors in binary liquids with different types of chemical bonding

    SciTech Connect

    Klevets, Ivan; Bryk, Taras

    2014-12-07

    Electron-ion structure factors, calculated in ab initio molecular dynamics simulations, are reported for several binary liquids with different kinds of chemical bonding: metallic liquid alloy Bi–Pb, molten salt RbF, and liquid water. We derive analytical expressions for the long-wavelength asymptotes of the partial electron-ion structure factors of binary systems and show that the analytical results are in good agreement with the ab initio simulation data. The long-wavelength behaviour of the total charge structure factors for the three binary liquids is discussed.

  4. Ab initio interaction potentials and scattering lengths for ultracold mixtures of metastable helium and alkali-metal atoms

    NASA Astrophysics Data System (ADS)

    Kedziera, Dariusz; Mentel, Łukasz; Żuchowski, Piotr S.; Knoop, Steven

    2015-06-01

    We have obtained accurate ab initio +4Σ quartet potentials for the diatomic metastable triplet helium+alkali-metal (Li, Na, K, Rb) systems, using all-electron restricted open-shell coupled cluster singles and doubles with noniterative triples corrections CCSD(T) calculations and accurate calculations of the long-range C6 coefficients. These potentials provide accurate ab initio quartet scattering lengths, which for these many-electron systems is possible, because of the small reduced masses and shallow potentials that result in a small amount of bound states. Our results are relevant for ultracold metastable triplet helium+alkali-metal mixture experiments.

  5. Liquid and solid phases of water: an extensive molecular dynamics simulation with an ab initio polarizable potential

    NASA Astrophysics Data System (ADS)

    Clementi, Enrico; Corongiu, Giorgina; Sciortino, Francesco

    1993-08-01

    Results are presented on the reliability of the ab initio, polarizable and flexible Nieser—Corongiu—Clementi potential at describing the structure and dynamics of the liquid and solid phases of water. For both structural and dynamic quantities the agreement between experimental and numerical results is good. A "substance" very similar to "real water" has indeed been created on the basis of ab initio quantum mechanical calculations. This gives confidence in the use of the simulations to examine features that are not directly measurable, but are of central importance in the understanding of water structure and dynamics.

  6. Nuclear quantum effect on intramolecular hydrogen bond of hydrogen maleate anion: An ab initio path integral molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Kawashima, Yukio; Tachikawa, Masanori

    2013-05-01

    Ab initio path integral molecular dynamics simulation was performed to understand the nuclear quantum effect on the hydrogen bond of hydrogen malonate anion. Static calculation predicted the proton transfer barrier as 0.12 kcal/mol. Conventional ab initio molecular dynamics simulation at 300 K found proton distribution with a double peak on the proton transfer coordinate. Inclusion of thermal effect alone elongates the hydrogen bond length, which increases the barrier height. Inclusion of nuclear quantum effect washes out this barrier, and distributes a single broad peak in the center. H/D isotope effect on the proton transfer is also discussed.

  7. The Crystal Structure of Impurity Centers Tm^{2+} and Eu^{2+} in SrCl2: Ab Initio Calculations

    NASA Astrophysics Data System (ADS)

    Chernyshev, V. A.; Serdcev, A. V.; Petrov, V. P.; Nikiforov, A. E.

    2016-12-01

    Ab initio calculations of the impurity centers Tm^{2+} thulium and europium Eu^{2+} in SrCl2 and MeF2 (Me = Ca, Sr, Ba) were carried out at low (zero) temperature. The crystal structure of impurity centers was investigated. Charge density maps show that the bonds formed by the rare-earth ions have an ionic character. The crystal structures, lattice dynamics, and band structures of MeF2 and SrCl2 were calculated at low temperature. Ab initio calculations were performed in periodic CRYSTAL code within the framework of the MO LCAO approach by using hybrid DFT functionals.

  8. An ab initio Study of the Crystalline Structure of Sulfuric Acid (H2SO4)- The Point Charge Model.

    DTIC Science & Technology

    1987-12-01

    2 ... 8 1.81. 5 111 .4 1111 . Pj LH~ H I Lp ’V. 1 4% % %4"~4 % 4’°" 111’, f LE AN AB INITIO STUDY OF THE CRYSTALLINE STRUCTURE OF SULFURIC ACID...first child .5 .5 4 S. S. S. ni-Ic A I’ J a ~-, ., I ,I/p - ~ ~SJ. ~ >4" h AN AB INITIO STUDY OF THE CRYSTALLINE STRUCTURE OF SULFURIC ACID (H2SO4)- THE

  9. 4He+n+n continuum within an ab initio framework

    DOE PAGES

    Romero-Redondo, Carolina; Quaglioni, Sofia; Navratil, Petr; ...

    2014-07-16

    In this study, the low-lying continuum spectrum of the 6He nucleus is investigated for the first time within an ab initio framework that encompasses the 4He+n+n three-cluster dynamics characterizing its lowest decay channel. This is achieved through an extension of the no-core shell model combined with the resonating-group method, in which energy-independent nonlocal interactions among three nuclear fragments can be calculated microscopically, starting from realistic nucleon-nucleon interactions and consistent ab initio many-body wave functions of the clusters. The three-cluster Schrödinger equation is solved with three-body scattering boundary conditions by means of the hyperspherical-harmonics method on a Lagrange mesh. Using amore » soft similarity-renormalization-group evolved chiral nucleon-nucleon potential, we find the known Jπ = 2+ resonance as well as a result consistent with a new low-lying second 2+ resonance recently observed at GANIL at ~2.6 MeV above the He6 ground state. We also find resonances in the 2–, 1+, and 0– channels, while no low-lying resonances are present in the 0+ and 1– channels.« less

  10. Operator evolution for ab initio electric dipole transitions of 4He

    DOE PAGES

    Schuster, Micah D.; Quaglioni, Sofia; Johnson, Calvin W.; ...

    2015-07-24

    A goal of nuclear theory is to make quantitative predictions of low-energy nuclear observables starting from accurate microscopic internucleon forces. A major element of such an effort is applying unitary transformations to soften the nuclear Hamiltonian and hence accelerate the convergence of ab initio calculations as a function of the model space size. The consistent simultaneous transformation of external operators, however, has been overlooked in applications of the theory, particularly for nonscalar transitions. We study the evolution of the electric dipole operator in the framework of the similarity renormalization group method and apply the renormalized matrix elements to the calculationmore » of the 4He total photoabsorption cross section and electric dipole polarizability. All observables are calculated within the ab initio no-core shell model. Furthermore, we find that, although seemingly small, the effects of evolved operators on the photoabsorption cross section are comparable in magnitude to the correction produced by including the chiral three-nucleon force and cannot be neglected.« less

  11. Ab initio molecular dynamics simulations of ion-solid interactions in zirconate pyrochlores

    DOE PAGES

    Xiao, Haiyan Y.; Weber, William J.; Zhang, Yanwen; ...

    2015-01-31

    In this paper, an ab initio molecular dynamics method is employed to study low energy recoil events in zirconate pyrochlores (A2Zr2O7, A = La, Nd and Sm). It shows that both cations and anions in Nd2Zr2O7 and Sm2Zr2O7 are generally more likely to be displaced than those in La2Zr2O7. The damage end states mainly consist of Frenkel pair defects, and the Frenkel pair formation energies in Nd2Zr2O7 and Sm2Zr2O7 are lower than those in La2Zr2O7. These results suggest that the order–disorder structural transition more easily occurs in Nd2Zr2O7 and Sm2Zr2O7 resulting in a defect-fluorite structure, which agrees well with experimentalmore » observations. Our calculations indicate that oxygen migration from 48f and 8b to 8a sites is dominant under low energy irradiation. A number of new defects, including four types of cation Frenkel pairs and six types of anion Frenkel pairs, are revealed by ab initio molecular dynamics simulations. The present findings may help to advance the fundamental understanding of the irradiation response behavior of zirconate pyrochlores.« less

  12. Vibrational spectrum, ab initio calculations, conformational equilibria and torsional modes of 1,3-dichloropropane

    NASA Astrophysics Data System (ADS)

    Duffy, Daniel J.; Quenneville, Jason; Baumbaugh, T. M.; Kitchener, S. A.; McCormick, R. K.; Dormady, C. N.; Croce, T. A.; Navabi, A.; Stidham, Howard D.; Hsu, Shaw L.; Guirgis, Gamil A.; Deng, Shiping; Durig, James R.

    2004-02-01

    Ab initio calculations are reported for three of four possible conformers of 1,3-dichloropropane. The fourth conformer, with C s symmetry, has a predicted enthalpy difference of more than 1500 cm -1 from the most stable conformer from each calculation regardless of the basis set used, so there is little chance of observing it. Thus, there is no evidence in the infrared or Raman spectrum of the presence of a fourth conformer. The order of stability given by the ab initio calculations is C 2(GG)>C 1(AG)>C 2v(AA)>C s(GG'), where A indicates the anti form for one of the CH 2Cl groups and G indicates the gauche conformation for the other CH 2Cl group relative to the plane of the carbon atoms. Almost every band observed can be confidently assigned to one or another of the conformers. Many observed bands proved to be of a composite nature, with several nearly coincident vibrations of different conformers contributing to the band contour. Nonetheless, a complete assignment of fundamentals is possible for the most stable C 2 conformer, and 5 of the fundamentals of the C 2v conformer and 13 those of the C 1 conformer can be confidently assigned.

  13. Ab initio simulations of phase stability and martensitic transitions in NiTi

    NASA Astrophysics Data System (ADS)

    Haskins, Justin B.; Thompson, Alexander E.; Lawson, John W.

    2016-12-01

    For NiTi-based alloys, the shape memory effect is governed by a transition from a low-temperature martensite phase to a high-temperature austenite phase. Despite considerable experimental and computational work, basic questions regarding the stability of the phases and the martensitic phase transition remain unclear even for the simple case of binary, equiatomic NiTi. We perform ab initio molecular dynamics simulations to describe the temperature-dependent behavior of NiTi and resolve several of these outstanding issues. Structural correlation functions and finite temperature phonon spectra are evaluated to determine phase stability. We show that finite temperature, entropic effects stabilize the experimentally observed martensite (B19') and austenite (B2) phases while destabilizing the theoretically predicted (B33) phase. Free energy computations based on ab initio thermodynamic integration confirm these results and permit estimates of the transition temperature between the phases. In addition to the martensitic phase transition, we predict a new transition between the B33 and B19' phases. The role of defects in suppressing phase transformation temperatures is discussed.

  14. Ab Initio Simulations of Temperature Dependent Phase Stability and Martensitic Transitions in NiTi

    NASA Technical Reports Server (NTRS)

    Haskins, Justin B.; Thompson, Alexander E.; Lawson, John W.

    2016-01-01

    For NiTi based alloys, the shape memory effect is governed by a transition from a low-temperature martensite phase to a high-temperature austenite phase. Despite considerable experimental and computational work, basic questions regarding the stability of the phases and the martensitic phase transition remain unclear even for the simple case of binary, equiatomic NiTi. We perform ab initio molecular dynamics simulations to describe the temperature-dependent behavior of NiTi and resolve several of these outstanding issues. Structural correlation functions and finite temperature phonon spectra are evaluated to determine phase stability. In particular, we show that finite temperature, entropic effects stabilize the experimentally observed martensite (B19') and austenite (B2) phases while destabilizing the theoretically predicted (B33) phase. Free energy computations based on ab initio thermodynamic integration confirm these results and permit estimates of the transition temperature between the phases. In addition to the martensitic phase transition, we predict a new transition between the B33 and B19' phases. The role of defects in suppressing these phase transformations is discussed.

  15. Polyatomic ab Initio Complex Potential Energy Surfaces: Illustration of Ultracold Collisions.

    PubMed

    Bhattacharya, Debarati; Ben-Asher, Anael; Haritan, Idan; Pawlak, Mariusz; Landau, Arie; Moiseyev, Nimrod

    2017-03-29

    Resonances are metastable states that decay after a finite period of time. These states play a role in many physical processes. For example, in recent cold collision experiments, autoionization from a resonance state was observed. Complementing such observations with theory provides insight into the reaction dynamics under study. Theoretical investigation of autoionization processes is enabled via complex potential energy surfaces (CPESs), where the real and imaginary parts, respectively, provide the energy and decay rate of the system. Unfortunately, calculation of ab initio polyatomic CPESs are cumbersome; hence, they are not in abundance. Here, we present an ab initio polyatomic CPES utilizing a recently developed approach, which makes such calculations feasible. This CPES helps interpret the autoionization process observed in the He(2(3)S) + H2 collision. From the behavior of the calculated CPES we can conclusively determine the nature of the autoionization process. Moreover, this CPES was used to generate reaction rates for the collision of He with ortho- and para-H2. These reaction rates are obtained from first principles. The results show a remarkable agreement with the cold collision experimental measurements, which demonstrates the robustness of our method. Hereby, we provide a computational tool for designing and interpreting new types of experiments that involve resonance states, e.g., in nucleobase damages (DNA or RNA) or in interatomic (intermolecular) Coulombic decay.

  16. Three-cluster dynamics within an ab initio framework

    SciTech Connect

    Quaglioni, Sofia; Romero-Redondo, Carolina; Navratil, Petr

    2013-09-26

    In this study, we introduce a fully antisymmetrized treatment of three-cluster dynamics within the ab initio framework of the no-core shell model/resonating-group method. Energy-independent nonlocal interactions among the three nuclear fragments are obtained from realistic nucleon-nucleon interactions and consistent ab initio many-body wave functions of the clusters. The three-cluster Schrödinger equation is solved with bound-state boundary conditions by means of the hyperspherical-harmonic method on a Lagrange mesh. We discuss the formalism in detail and give algebraic expressions for systems of two single nucleons plus a nucleus. Using a soft similarity-renormalization-group evolved chiral nucleon-nucleon potential, we apply the method to a 4He+n+n description of 6He and compare the results to experiment and to a six-body diagonalization of the Hamiltonian performed within the harmonic-oscillator expansions of the no-core shell model. Differences between the two calculations provide a measure of core (4He) polarization effects.

  17. Ab initio simulation of elastic and mechanical properties of Zn- and Mg-doped hydroxyapatite (HAP).

    PubMed

    Aryal, Sitaram; Matsunaga, Katsuyuki; Ching, Wai-Yim

    2015-07-01

    Hydroxyapatite (HAP) is an important bioceramic which constitutes the mineral components of bones and hard tissues in mammals. It is bioactive and used as bioceramic coatings for metallic implants and bone fillers. HAP readily absorbs a large amount of impurities. Knowledge on the elastic and mechanical properties of impurity-doped HAP is a subject of great importance to its potential for biomedical applications. Zn and Mg are the most common divalent cations HAP absorbs. Using density function theory based ab initio methods, we have carried out a large number of ab initio calculations to obtain the bulk elastic and mechanical properties of HAP with Zn or Mg doped in different concentration at the Ca1 and Ca2 sites using large 352-atom supercells. Detailed information on their dependece on the concetraion of the substitued impurity is obtained. Our results show that Mg enhances overall elastic and bulk mechanical properties whereas Zn tends to degrade except at low concentrations. At a higher concentration, the mechanical properties of Zn and Mg doped HAP also depend significantly on impurity distribution between the Ca1 and Ca2 sites. There is a strong evidence that Zn prefers Ca2 site for substituion whereas Mg has no such preference. These results imply that proper control of dopant concentration and their site preference must carefully considered in using doped HAP for specific biomedical applications.

  18. Quantum supercharger library: hyper-parallel integral derivatives algorithms for ab initio QM/MM dynamics.

    PubMed

    Renison, C Alicia; Fernandes, Kyle D; Naidoo, Kevin J

    2015-07-05

    This article describes an extension of the quantum supercharger library (QSL) to perform quantum mechanical (QM) gradient and optimization calculations as well as hybrid QM and molecular mechanical (QM/MM) molecular dynamics simulations. The integral derivatives are, after the two-electron integrals, the most computationally expensive part of the aforementioned calculations/simulations. Algorithms are presented for accelerating the one- and two-electron integral derivatives on a graphical processing unit (GPU). It is shown that a Hartree-Fock ab initio gradient calculation is up to 9.3X faster on a single GPU compared with a single central processing unit running an optimized serial version of GAMESS-UK, which uses the efficient Schlegel method for s- and l-orbitals. Benchmark QM and QM/MM molecular dynamics simulations are performed on cellobiose in vacuo and in a 39 Å water sphere (45 QM atoms and 24843 point charges, respectively) using the 6-31G basis set. The QSL can perform 9.7 ps/day of ab initio QM dynamics and 6.4 ps/day of QM/MM dynamics on a single GPU in full double precision. © 2015 Wiley Periodicals, Inc.

  19. An Ab Initio Approach Towards Engineering Fischer-Tropsch Surface Chemistry

    SciTech Connect

    Matthew Neurock

    2005-06-13

    As petroleum prices continue to rise and the United States seeks to reduce its dependency on foreign oil, there is a renewed interest in the research and development of more efficient and alternative energy sources, such as fuel cells. One approach is to utilize processes that can produce long-chain hydrocarbons from other sources. One such reaction is Fischer-Tropsch synthesis. Fischer-Tropsch synthesis is a process by which syngas (CO and H{sub 2}) is converted to higher molecular weight hydrocarbons. The reaction involves a complex set of bond-breaking and bond-making reactions, such as CO and H{sub 2} activation, hydrocarbon hydrogenation reactions, and hydrocarbon coupling reactions. This report details our initial construction of an ab initio based kinetic Monte Carlo code that can be used to begin to simulate Fischer-Tropsch synthesis over model Co(0001) surfaces. The code is based on a stochastic kinetic formalism that allows us to explicitly track the transformation of all reactants, intermediates and products. The intrinsic kinetics for the simulations were derived from the ab initio results that we reported in previous year summaries.

  20. Ab initio results for intermediate-mass, open-shell nuclei

    NASA Astrophysics Data System (ADS)

    Baker, Robert B.; Dytrych, Tomas; Launey, Kristina D.; Draayer, Jerry P.

    2017-01-01

    A theoretical understanding of nuclei in the intermediate-mass region is vital to astrophysical models, especially for nucleosynthesis. Here, we employ the ab initio symmetry-adapted no-core shell model (SA-NCSM) in an effort to push first-principle calculations across the sd-shell region. The ab initio SA-NCSM's advantages come from its ability to control the growth of model spaces by including only physically relevant subspaces, which allows us to explore ultra-large model spaces beyond the reach of other methods. We report on calculations for 19Ne and 20Ne up through 13 harmonic oscillator shells using realistic interactions and discuss the underlying structure as well as implications for various astrophysical reactions. This work was supported by the U.S. NSF (OCI-0904874 and ACI -1516338) and the U.S. DOE (DE-SC0005248), and also benefitted from the Blue Waters sustained-petascale computing project and high performance computing resources provided by LSU.