Sample records for initio vibrational levels

  1. Towards accurate ab initio predictions of the vibrational spectrum of methane

    NASA Technical Reports Server (NTRS)

    Schwenke, David W.

    2002-01-01

    We have carried out extensive ab initio calculations of the electronic structure of methane, and these results are used to compute vibrational energy levels. We include basis set extrapolations, core-valence correlation, relativistic effects, and Born-Oppenheimer breakdown terms in our calculations. Our ab initio predictions of the lowest lying levels are superb.

  2. A global ab initio potential for HCN/HNC, exact vibrational energies, and comparison to experiment

    NASA Technical Reports Server (NTRS)

    Bentley, Joseph A.; Bowman, Joel M.; Gazdy, Bela; Lee, Timothy J.; Dateo, Christopher E.

    1992-01-01

    An ab initio (i.e., from first principles) calculation of vibrational energies of HCN and HNC is reported. The vibrational calculations were done with a new potential derived from a fit to 1124 ab initio electronic energies which were calculated using the highly accurate CCSD(T) coupled-cluster method in conjunction with a large atomic natural orbital basis set. The properties of this potential are presented, and the vibrational calculations are compared to experiment for 54 vibrational transitions, 39 of which are for zero total angular momentum, J = 0, and 15 of which are for J = 1. The level of agreement with experiment is unprecedented for a triatomic with two nonhydrogen atoms, and demonstrates the capability of the latest computational methods to give reliable predictions on a strongly bound triatomic molecule at very high levels of vibrational excitation.

  3. Anharmonic force field and vibrational dynamics of CH2F2 up to 5000 cm(-1) studied by Fourier transform infrared spectroscopy and state-of-the-art ab initio calculations.

    PubMed

    Tasinato, Nicola; Regini, Giorgia; Stoppa, Paolo; Pietropolli Charmet, Andrea; Gambi, Alberto

    2012-06-07

    Difluoromethane (CH(2)F(2), HFC-32) is a molecule used in refrigerant mixtures as a replacement of the more environmentally hazardous, ozone depleting, chlorofluorocarbons. On the other hand, presenting strong vibration-rotation bands in the 9 μm atmospheric window, it is a greenhouse gas which contributes to global warming. In the present work, the vibrational and ro-vibrational properties of CH(2)F(2), providing basic data for its atmospheric modeling, are studied in detail by coupling medium resolution Fourier transform infrared spectroscopy to high-level electronic structure ab initio calculations. Experimentally a full quantum assignment and accurate integrated absorption cross sections are obtained up to 5000 cm(-1). Ab initio calculations are carried out by using CCSD(T) theory and large basis sets of either the correlation consistent or atomic natural orbital hierarchies. By using vibrational perturbation theory to second order a complete set of vibrational and ro-vibrational parameters is derived from the ab initio quartic anharmonic force fields, which well compares with the spectroscopic constants retrieved experimentally. An excellent agreement between theory and experiment is achieved for vibrational energy levels and integrated absorption cross sections: transition frequencies up to four quanta of vibrational excitation are reproduced with a root mean square deviation (RMSD) of 7 cm(-1) while intensities are predicted within few km mol(-1) from the experiment. Basis set performances and core correlation effects are discussed throughout the paper. Particular attention is focused in the understanding of the anharmonic couplings which rule the vibrational dynamics of the |ν(1)>, |2ν(8)>, |2ν(2)> three levels interacting system. The reliability of the potential energy and dipole moment surfaces in reproducing the vibrational eigenvalues and intensities as well as in modeling the vibrational and ro-vibrational mixings over the whole 400-5000 cm(-1) region is also demonstrated by spectacular spectral simulations carried out by using the ro-vibrational Hamiltonian constants, and the relevant coupling terms, obtained from the perturbation treatment of the ab initio anharmonic force field. The present results suggest CH(2)F(2) as a prototype molecule to test ab initio calculations and theoretical models.

  4. Anharmonic force field and vibrational dynamics of CH2F2 up to 5000 cm-1 studied by Fourier transform infrared spectroscopy and state-of-the-art ab initio calculations

    NASA Astrophysics Data System (ADS)

    Tasinato, Nicola; Regini, Giorgia; Stoppa, Paolo; Charmet, Andrea Pietropolli; Gambi, Alberto

    2012-06-01

    Difluoromethane (CH2F2, HFC-32) is a molecule used in refrigerant mixtures as a replacement of the more environmentally hazardous, ozone depleting, chlorofluorocarbons. On the other hand, presenting strong vibration-rotation bands in the 9 μm atmospheric window, it is a greenhouse gas which contributes to global warming. In the present work, the vibrational and ro-vibrational properties of CH2F2, providing basic data for its atmospheric modeling, are studied in detail by coupling medium resolution Fourier transform infrared spectroscopy to high-level electronic structure ab initio calculations. Experimentally a full quantum assignment and accurate integrated absorption cross sections are obtained up to 5000 cm-1. Ab initio calculations are carried out by using CCSD(T) theory and large basis sets of either the correlation consistent or atomic natural orbital hierarchies. By using vibrational perturbation theory to second order a complete set of vibrational and ro-vibrational parameters is derived from the ab initio quartic anharmonic force fields, which well compares with the spectroscopic constants retrieved experimentally. An excellent agreement between theory and experiment is achieved for vibrational energy levels and integrated absorption cross sections: transition frequencies up to four quanta of vibrational excitation are reproduced with a root mean square deviation (RMSD) of 7 cm-1 while intensities are predicted within few km mol-1 from the experiment. Basis set performances and core correlation effects are discussed throughout the paper. Particular attention is focused in the understanding of the anharmonic couplings which rule the vibrational dynamics of the |ν1⟩, |2ν8⟩, |2ν2⟩ three levels interacting system. The reliability of the potential energy and dipole moment surfaces in reproducing the vibrational eigenvalues and intensities as well as in modeling the vibrational and ro-vibrational mixings over the whole 400-5000 cm-1 region is also demonstrated by spectacular spectral simulations carried out by using the ro-vibrational Hamiltonian constants, and the relevant coupling terms, obtained from the perturbation treatment of the ab initio anharmonic force field. The present results suggest CH2F2 as a prototype molecule to test ab initio calculations and theoretical models.

  5. Full-Dimensional Quantum Calculations of Vibrational Levels of NH4(+) and Isotopomers on An Accurate Ab Initio Potential Energy Surface.

    PubMed

    Yu, Hua-Gen; Han, Huixian; Guo, Hua

    2016-04-14

    Vibrational energy levels of the ammonium cation (NH4(+)) and its deuterated isotopomers are calculated using a numerically exact kinetic energy operator on a recently developed nine-dimensional permutation invariant semiglobal potential energy surface fitted to a large number of high-level ab initio points. Like CH4, the vibrational levels of NH4(+) and ND4(+) exhibit a polyad structure, characterized by a collective quantum number P = 2(v1 + v3) + v2 + v4. The low-lying vibrational levels of all isotopomers are assigned and the agreement with available experimental data is better than 1 cm(-1).

  6. Full-dimensional quantum calculations of vibrational levels of NH 4 + and isotopomers on an accurate ab initio potential energy surface

    DOE PAGES

    Hua -Gen Yu; Han, Huixian; Guo, Hua

    2016-03-29

    Vibrational energy levels of the ammonium cation (NH 4 +) and its deuterated isotopomers are calculated using a numerically exact kinetic energy operator on a recently developed nine-dimensional permutation invariant semiglobal potential energy surface fitted to a large number of high-level ab initio points. Like CH4, the vibrational levels of NH 4 + and ND 4 + exhibit a polyad structure, characterized by a collective quantum number P = 2(v 1 + v 3) + v 2 + v 4. As a result, the low-lying vibrational levels of all isotopomers are assigned and the agreement with available experimental data ismore » better than 1 cm –1.« less

  7. Ab Initio Vibrational Levels For HO2 and Vibrational Splittings for Hydrogen Atom Transfer

    NASA Technical Reports Server (NTRS)

    Barclay, V. J.; Dateo, Christopher E.; Hamilton, I. P.; Arnold, James O. (Technical Monitor)

    1994-01-01

    We calculate vibrational levels and wave functions for HO2 using the recently reported ab initio potential energy surface of Walch and Duchovic. There is intramolecular hydrogen atom transfer when the hydrogen atom tunnels through a T-shaped saddle point separating two equivalent equilibrium geometries, and correspondingly, the energy levels are split. We focus on vibrational levels and wave functions with significant splitting. The first three vibrational levels with splitting greater than 2/cm are (15 0), (0 7 1) and (0 8 0) where V(sub 2) is the O-O-H bend quantum number. We discuss the dynamics of hydrogen atom transfer; in particular, the O-O distances at which hydrogen atom transfer is most probable for these vibrational levels. The material of the proposed presentation was reviewed and the technical content will not reveal any information not already in the public domain and will not give any foreign industry or government a competitive advantage.

  8. Towards Accurate Ab Initio Predictions of the Spectrum of Methane

    NASA Technical Reports Server (NTRS)

    Schwenke, David W.; Kwak, Dochan (Technical Monitor)

    2001-01-01

    We have carried out extensive ab initio calculations of the electronic structure of methane, and these results are used to compute vibrational energy levels. We include basis set extrapolations, core-valence correlation, relativistic effects, and Born- Oppenheimer breakdown terms in our calculations. Our ab initio predictions of the lowest lying levels are superb.

  9. Vibrational inelastic and charge transfer processes in H++H2 system: An ab initio study

    NASA Astrophysics Data System (ADS)

    Amaran, Saieswari; Kumar, Sanjay

    2007-12-01

    State-resolved differential cross sections, total and integral cross sections, average vibrational energy transfer, and the relative probabilities are computed for the H++H2 system using the newly obtained ab initio potential energy surfaces at the full CI/cc-pVQZ level of accuracy which allow for both the direct vibrational inelastic and the charge transfer processes. The quantum dynamics is treated within the vibrational close-coupling infinite-order-sudden approximation approach using the two ab initio quasidiabatic potential energy surfaces. The computed collision attributes for both the processes are compared with the available state-to-state scattering experiments at Ec.m.=20eV. The results are in overall good agreement with most of the observed scattering features such as rainbow positions, integral cross sections, and relative vibrational energy transfers. A comparison with the earlier theoretical study carried out on the semiempirical surfaces (diatomics in molecules) is also made to illustrate the reliability of the potential energy surfaces used in the present work.

  10. New analytical model for the ozone electronic ground state potential surface and accurate ab initio vibrational predictions at high energy range.

    PubMed

    Tyuterev, Vladimir G; Kochanov, Roman V; Tashkun, Sergey A; Holka, Filip; Szalay, Péter G

    2013-10-07

    An accurate description of the complicated shape of the potential energy surface (PES) and that of the highly excited vibration states is of crucial importance for various unsolved issues in the spectroscopy and dynamics of ozone and remains a challenge for the theory. In this work a new analytical representation is proposed for the PES of the ground electronic state of the ozone molecule in the range covering the main potential well and the transition state towards the dissociation. This model accounts for particular features specific to the ozone PES for large variations of nuclear displacements along the minimum energy path. The impact of the shape of the PES near the transition state (existence of the "reef structure") on vibration energy levels was studied for the first time. The major purpose of this work was to provide accurate theoretical predictions for ozone vibrational band centres at the energy range near the dissociation threshold, which would be helpful for understanding the very complicated high-resolution spectra and its analyses currently in progress. Extended ab initio electronic structure calculations were carried out enabling the determination of the parameters of a minimum energy path PES model resulting in a new set of theoretical vibrational levels of ozone. A comparison with recent high-resolution spectroscopic data on the vibrational levels gives the root-mean-square deviations below 1 cm(-1) for ozone band centres up to 90% of the dissociation energy. New ab initio vibrational predictions represent a significant improvement with respect to all previously available calculations.

  11. Ab initio calculation of the rotational spectrum of methane vibrational ground state

    NASA Astrophysics Data System (ADS)

    Cassam-Chenaï, P.; Liévin, J.

    2012-05-01

    In a previous article we have introduced an alternative perturbation scheme to the traditional one starting from the harmonic oscillator, rigid rotator Hamiltonian, to find approximate solutions of the spectral problem for rotation-vibration molecular Hamiltonians. The convergence of our method for the methane vibrational ground state rotational energy levels was quicker than that of the traditional method, as expected, and our predictions were quantitative. In this second article, we study the convergence of the ab initio calculation of effective dipole moments for methane within the same theoretical frame. The first order of perturbation when applied to the electric dipole moment operator of a spherical top gives the expression used in previous spectroscopic studies. Higher orders of perturbation give corrections corresponding to higher centrifugal distortion contributions and are calculated accurately for the first time. Two potential energy surfaces of the literature have been used for solving the anharmonic vibrational problem by means of the vibrational mean field configuration interaction approach. Two corresponding dipole moment surfaces were calculated in this work at a high level of theory. The predicted intensities agree better with recent experimental values than their empirical fit. This suggests that our ab initio dipole moment surface and effective dipole moment operator are both highly accurate.

  12. Toward spectroscopically accurate global ab initio potential energy surface for the acetylene-vinylidene isomerization

    NASA Astrophysics Data System (ADS)

    Han, Huixian; Li, Anyang; Guo, Hua

    2014-12-01

    A new full-dimensional global potential energy surface (PES) for the acetylene-vinylidene isomerization on the ground (S0) electronic state has been constructed by fitting ˜37 000 high-level ab initio points using the permutation invariant polynomial-neural network method with a root mean square error of 9.54 cm-1. The geometries and harmonic vibrational frequencies of acetylene, vinylidene, and all other stationary points (two distinct transition states and one secondary minimum in between) have been determined on this PES. Furthermore, acetylene vibrational energy levels have been calculated using the Lanczos algorithm with an exact (J = 0) Hamiltonian. The vibrational energies up to 12 700 cm-1 above the zero-point energy are in excellent agreement with the experimentally derived effective Hamiltonians, suggesting that the PES is approaching spectroscopic accuracy. In addition, analyses of the wavefunctions confirm the experimentally observed emergence of the local bending and counter-rotational modes in the highly excited bending vibrational states. The reproduction of the experimentally derived effective Hamiltonians for highly excited bending states signals the coming of age for the ab initio based PES, which can now be trusted for studying the isomerization reaction.

  13. Theoretical and experimental studies of the structure and vibrational spectra of NTO

    NASA Astrophysics Data System (ADS)

    Sorescu, Dan C.; Sutton, Teressa R. L.; Thompson, Donald L.; Beardall, David; Wight, Charles A.

    1996-10-01

    The structure and vibrational spectra of the high explosive 5-nitro-2,4-dihydro-3H-1,2,4-triazol-3-one (NTO) have been determined by ab initio molecular orbital calculations at the Hartree-Fock and second-order Møller-Plesset levels and by density functional theory (B3LYP). Experimental frequencies for the molecule have been determined from infrared spectra of pure NTO films and NTO molecules isolated in an argon matrix at 21 K. A force field for gas phase NTO has been obtained based on calculated results at the MP2/6-311G∗∗ level. In addition, a force field for solid state NTO has been constructed using the experimental vibrational frequencies for NTO films and scaled ab initio vibrational frequencies. Differences between the solid state and gas phase results indicate that the environment and preparation procedure exert a marked influence on the spectral characteristics of the NTO molecule.

  14. Experimental and Ab Initio Studies of the HDO Absorption Spectrum in the 13165-13500 1/cm Spectral Region

    NASA Technical Reports Server (NTRS)

    Schwenke, David; Naumenko, Olga; Bertseva, Elena; Campargue, Alain; Arnold, James O. (Technical Monitor)

    2000-01-01

    The HDO absorption spectrum has been recorded in the 13165 - 13500 cm(exp-1) spectral region by Intracavity Laser Absorption Spectroscopy. The spectrum (615 lines), dominated by the 2n2 + 3n3 and n1+3n3 bands was assigned and modeled leading to the derivation of 196 accurate energy levels of the (103) and (023) vibrational states. Finally, 150 of these levels have been reproduced by an effective Hamiltonian involving two vibrational dark states interacting with the (023) and ( 103) bright states. The rms deviation achieved by variation of 28 parameters is 0.05-1 cm, compared to an averaged experimental uncertainty of 0.007-1 cm, indicating the limit of validity of the effective Hamiltonian approach for HDO at high vibrational excitation. The predictions of previous ab initio calculations of the HDO spectrum were extensively used in the assignment process. The particular spectral region under consideration has been used to test and discuss the improvements of new ab initio calculations recently performed on the basis of the same potential energy surface but with an improved dipole moment surface. The improvements concern both the energy levels and the line intensities. In particular, the strong hybrid character of the n1+3n3 band is very well accounted for by the the new ab initio calculations.

  15. An ab initio global potential-energy surface for NH2(A(2)A') and vibrational spectrum of the Renner-Teller A(2)A'-X(2)A" system.

    PubMed

    Zhou, Shulan; Li, Zheng; Xie, Daiqian; Lin, Shi Ying; Guo, Hua

    2009-05-14

    A global potential-energy surface for the first excited electronic state of NH(2)(A(2)A(')) has been constructed by three-dimensional cubic spline interpolation of more than 20,000 ab initio points, which were calculated at the multireference configuration-interaction level with the Davidson correction using the augmented correlation-consistent polarized valence quadruple-zeta basis set. The (J=0) vibrational energy levels for the ground (X(2)A(")) and excited (A(2)A(')) electronic states of NH(2) were calculated on our potential-energy surfaces with the diagonal Renner-Teller terms. The results show a good agreement with the experimental vibrational frequencies of NH(2) and its isotopomers.

  16. The large amplitude motions of methylamine from the perspective of the highly correlated ab initio methods

    NASA Astrophysics Data System (ADS)

    Senent, M. L.

    2018-01-01

    CCSD(T)-F12 theory in connection with extended basis sets is employed to determine the electronic ground state spectroscopic parameters of methylamine at low temperatures. The geometry, the rotational constants, all the fundamental frequencies, the dipole moment and its components, and the centrifugal distortion constants, are provided. The ground vibrational state rotational constants were found to be A0 = 103067.15 MHz, B0 = 22588.29 MHz, and C0 = 21710.50 MHz and the dipole moment to be 1.4071D. Fermi displacements of the vibrational bands are predicted. The low vibrational energy levels corresponding to the large amplitude motions are determine variationally using a flexible three-dimensional model depending on three variables: the HNH bending, the NH2 wagging and the CH3 torsional coordinates. The computed levels are compared with previous experimental and calculated energies. Methylamine parameters are very sensitive to the level of ab initio calculations.

  17. Toward spectroscopically accurate global ab initio potential energy surface for the acetylene-vinylidene isomerization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Han, Huixian; School of Physics, Northwest University, Xi’an, Shaanxi 710069; Li, Anyang

    2014-12-28

    A new full-dimensional global potential energy surface (PES) for the acetylene-vinylidene isomerization on the ground (S{sub 0}) electronic state has been constructed by fitting ∼37 000 high-level ab initio points using the permutation invariant polynomial-neural network method with a root mean square error of 9.54 cm{sup −1}. The geometries and harmonic vibrational frequencies of acetylene, vinylidene, and all other stationary points (two distinct transition states and one secondary minimum in between) have been determined on this PES. Furthermore, acetylene vibrational energy levels have been calculated using the Lanczos algorithm with an exact (J = 0) Hamiltonian. The vibrational energies upmore » to 12 700 cm{sup −1} above the zero-point energy are in excellent agreement with the experimentally derived effective Hamiltonians, suggesting that the PES is approaching spectroscopic accuracy. In addition, analyses of the wavefunctions confirm the experimentally observed emergence of the local bending and counter-rotational modes in the highly excited bending vibrational states. The reproduction of the experimentally derived effective Hamiltonians for highly excited bending states signals the coming of age for the ab initio based PES, which can now be trusted for studying the isomerization reaction.« less

  18. Infrared Emission Spectrum of the Hydroxyl Radical: A Novel Experiment in Molecular Spectroscopy.

    ERIC Educational Resources Information Center

    Henderson, Giles; And Others

    1982-01-01

    Describes an experiment in which parameters from an "ab-initio" potential are used to calculate vibrational-rotational energy levels and construct a "stick spectrum" for the overtone emission of the hydroxyl radical. Provides background information on ab-initio spectrum, experimental procedures, and analysis of data. (Author/JN)

  19. A full-dimensional ab initio potential energy surface and rovibrational energies of the Ar–HF complex

    NASA Astrophysics Data System (ADS)

    Huang, Jing; Zhou, Yanzi; Xie, Daiqian

    2018-04-01

    We report a new full-dimensional ab initio potential energy surface for the Ar-HF van der Waals complex at the level of coupled-cluster singles and doubles with noniterative inclusion of connected triples levels [CCSD(T)] using augmented correlation-consistent quintuple-zeta basis set (aV5Z) plus bond functions. Full counterpoise correction was employed to correct the basis-set superposition error. The hypersurface was fitted using artificial neural network method with a root mean square error of 0.1085 cm-1 for more than 8000 ab initio points. The complex was found to prefer a linear Ar-H-F equilibrium structure. The three-dimensional discrete variable representation method and the Lanczos propagation algorithm were then employed to calculate the rovibrational states without separating inter- and intra- molecular nuclear motions. The calculated vibrational energies of Ar-HF differ from the experiment values within about 1 cm-1 on the first four HF vibrational states, and the predicted pure rotational energies on (0000) and (1000) vibrational states are deviated from the observed value by about 1%, which shows the accuracy of our new PES.

  20. FTIR, FT-Raman spectra and ab initio, DFT vibrational analysis of 2,4-dinitrophenylhydrazine.

    PubMed

    Sundaraganesan, N; Ayyappan, S; Umamaheswari, H; Joshua, B Dominic

    2007-01-01

    The FTIR and FT-Raman spectra of 2,4-dinitrophenylhydrazine (2,4-DNPH) has been recorded in the region 4000-400 and 3500-50cm-1, respectively. The optimized geometry, frequency and intensity of the vibrational bands of 2,4-DNPH were obtained by the ab initio and density functional theory (DFT) levels of theory with complete relaxation in the potential energy surface using 6-31G(d,p) and 6-311G(d,p) basis sets. The harmonic vibrational frequencies were calculated and the scaled values have been compared with experimental FTIR and FT-Raman spectra. The observed and the calculated frequencies are found to be in good agreement. The experimental spectra also coincide satisfactorily with those of theoretically constructed bar type spectrograms.

  1. FTIR, FT-Raman spectra and ab initio, DFT vibrational analysis of 2,4-dinitrophenylhydrazine

    NASA Astrophysics Data System (ADS)

    Sundaraganesan, N.; Ayyappan, S.; Umamaheswari, H.; Dominic Joshua, B.

    2007-01-01

    The FTIR and FT-Raman spectra of 2,4-dinitrophenylhydrazine (2,4-DNPH) has been recorded in the region 4000-400 and 3500-50 cm -1, respectively. The optimized geometry, frequency and intensity of the vibrational bands of 2,4-DNPH were obtained by the ab initio and density functional theory (DFT) levels of theory with complete relaxation in the potential energy surface using 6-31G(d,p) and 6-311G(d,p) basis sets. The harmonic vibrational frequencies were calculated and the scaled values have been compared with experimental FTIR and FT-Raman spectra. The observed and the calculated frequencies are found to be in good agreement. The experimental spectra also coincide satisfactorily with those of theoretically constructed bar type spectrograms.

  2. Observation of double-well potential of NaH C 1Σ+ state: Deriving the dissociation energy of its ground state

    NASA Astrophysics Data System (ADS)

    Chu, Chia-Ching; Huang, Hsien-Yu; Whang, Thou-Jen; Tsai, Chin-Chun

    2018-03-01

    Vibrational levels (v = 6-42) of the NaH C 1Σ+ state including the inner and outer wells and the near-dissociation region were observed by pulsed optical-optical double resonance fluorescence depletion spectroscopy. The absolute vibrational quantum number is identified by comparing the vibrational energy difference of this experiment with the ab initio calculations. The outer well with v up to 34 is analyzed using the Dunham expansion and a Rydberg-Klein-Rees (RKR) potential energy curve is constructed. A hybrid double-well potential combined with the RKR potential, the ab initio calculation, and a long-range potential is able to describe the whole NaH C 1Σ+ state including the higher vibrational levels (v = 35-42). The dissociation energy of the NaH C 1Σ+ state is determined to be De(C) = 6595.10 ± 5 cm-1 and then the dissociation energy of the NaH ground state De(X) = 15 807.87 ± 5 cm-1 can be derived.

  3. Vibrational modes in thymine molecule from an ab initio MO calculation

    NASA Astrophysics Data System (ADS)

    Aida, Misako; Kaneko, Motohisa; Dupuis, Michel; Ueda, Toyotoshi; Ushizawa, Koichi; Ito, Gen; Kumakura, Akiko; Tsuboi, Masamichi

    1997-03-01

    Ab initio self-consistent field molecular orbital (SCF MO) calculations have been made of the thymine molecule for the equilibrium geometry, harmonic force constants, vibrational frequencies, vibrational modes, infrared intensities, and Raman intensities. The results have been correlated with the observed Raman and infrared spectra of thymine crystalline powder.

  4. Dissociation and Internal Excitation of Molecular Nitrogen Due to N + N2 Collisions Using Direct Molecular Simulation

    NASA Technical Reports Server (NTRS)

    Grover, Maninder S.; Schwartzentruber, Thomas E.; Jaffe, Richard L.

    2017-01-01

    In this work we present a molecular level study of N2+N collisions, focusing on excitation of internal energy modes and non-equilibrium dissociation. The computation technique used here is the direct molecular simulation (DMS) method and the molecular interactions have been modeled using an ab-initio potential energy surface (PES) developed at NASA's Ames Research Center. We carried out vibrational excitation calculations between 5000K and 30000K and found that the characteristic vibrational excitation time for the N + N2 process was an order of magnitude lower than that predicted by the Millikan and White correlation. It is observed that during vibrational excitation the high energy tail of the vibrational energy distribution gets over populated first and the lower energy levels get populated as the system evolves. It is found that the non-equilibrium dissociation rate coefficients for the N + N2 process are larger than those for the N2 + N2 process. This is attributed to the non-equilibrium vibrational energy distributions for the N + N2 process being less depleted than that for the N2 +N2 process. For an isothermal simulation we find that the probability of dissociation goes as 1/T(sub tr) for molecules with internal energy (epsilon(sub int)) less than approximately 9.9eV, while for molecules with epsilon (sub int) greater than 9.9eV the dissociation probability was weakly dependent on translational temperature of the system. We compared non-equilibrium dissociation rate coefficients and characteristic vibrational excitation times obtained by using the ab-initio PES developed at NASA's Ames Research Center to those obtained by using an ab-initio PES developed at the University of Minnesota. Good agreement was found between the macroscopic properties and molecular level description of the system obtained by using the two PESs.

  5. Quantum dynamics study on the binding of a positron to vibrationally excited states of hydrogen cyanide molecule

    NASA Astrophysics Data System (ADS)

    Takayanagi, Toshiyuki; Suzuki, Kento; Yoshida, Takahiko; Kita, Yukiumi; Tachikawa, Masanori

    2017-05-01

    We present computational results of vibrationally enhanced positron annihilation in the e+ + HCN/DCN collisions within a local complex potential model. Vibrationally elastic and inelastic cross sections and effective annihilation rates were calculated by solving a time-dependent complex-potential Schrödinger equation under the ab initio potential energy surface for the positron attached HCN molecule, [HCN; e+], with multi-component configuration interaction level (Kita and Tachikawa, 2014). We discuss the effect of vibrational excitation on the positron affinities from the obtained vibrational resonance features.

  6. Fundamental Vibration of Molecular Hydrogen

    NASA Astrophysics Data System (ADS)

    Dickenson, G. D.; Niu, M. L.; Salumbides, E. J.; Komasa, J.; Eikema, K. S. E.; Pachucki, K.; Ubachs, W.

    2013-05-01

    The fundamental ground tone vibration of H2, HD, and D2 is determined to an accuracy of 2×10-4cm-1 from Doppler-free laser spectroscopy in the collisionless environment of a molecular beam. This rotationless vibrational splitting is derived from the combination difference between electronic excitation from the X1Σg+, v=0, and v=1 levels to a common EF1Σg+, v=0 level. Agreement within 1σ between the experimental result and a full ab initio calculation provides a stringent test of quantum electrodynamics in a chemically bound system.

  7. Vibrational energy levels for CH4 from an ab initio potential

    NASA Technical Reports Server (NTRS)

    Schwenke, D. W.; Partridge, H.

    2001-01-01

    Many areas of astronomy and astrophysics require an accurate high temperature spectrum of methane (CH4). The goal of the present research is to determine an accurate ab initio potential energy surface (PES) for CH4. As a first step towards this goal, we have determined a PES including up to octic terms. We compare our results with experiment and to a PES based on a quartic expansion. Our octic PES gives good agreement with experiment for all levels, while the quartic PES only for the lower levels.

  8. Einstein coefficients and oscillator strengths for low lying state of CO molecules

    NASA Astrophysics Data System (ADS)

    Swer, S.; Syiemiong, A.; Ram, M.; Jha, A. K.; Saxena, A.

    2018-04-01

    Einstein Coefficients and Oscillator Strengths for different state of CO molecule have been calculated using LEROY'S LEVEL program and MOLCAS ab initio code. Using the wave function derived from Morse potential and transition dipole moment obtained from ab initio calculation, The potential energy functions were computed for these states using the spectroscopic constants. The Morse potential of these states and electronic transition dipole moment of the transition calculated in a recent ab initio study have been used in LEVEL program to produce transition dipole matrix element for a large number of bands. Einstein Coefficients have also been used to compute the radiative lifetimes of several vibrational levels and the calculated values are compared with other theoretical results and experimental values.

  9. Quantum wavepacket ab initio molecular dynamics: an approach for computing dynamically averaged vibrational spectra including critical nuclear quantum effects.

    PubMed

    Sumner, Isaiah; Iyengar, Srinivasan S

    2007-10-18

    We have introduced a computational methodology to study vibrational spectroscopy in clusters inclusive of critical nuclear quantum effects. This approach is based on the recently developed quantum wavepacket ab initio molecular dynamics method that combines quantum wavepacket dynamics with ab initio molecular dynamics. The computational efficiency of the dynamical procedure is drastically improved (by several orders of magnitude) through the utilization of wavelet-based techniques combined with the previously introduced time-dependent deterministic sampling procedure measure to achieve stable, picosecond length, quantum-classical dynamics of electrons and nuclei in clusters. The dynamical information is employed to construct a novel cumulative flux/velocity correlation function, where the wavepacket flux from the quantized particle is combined with classical nuclear velocities to obtain the vibrational density of states. The approach is demonstrated by computing the vibrational density of states of [Cl-H-Cl]-, inclusive of critical quantum nuclear effects, and our results are in good agreement with experiment. A general hierarchical procedure is also provided, based on electronic structure harmonic frequencies, classical ab initio molecular dynamics, computation of nuclear quantum-mechanical eigenstates, and employing quantum wavepacket ab initio dynamics to understand vibrational spectroscopy in hydrogen-bonded clusters that display large degrees of anharmonicities.

  10. The Opacity of TiO from a Coupled Electronic State Calculation Parameterized by ab initio and Experimental Data

    NASA Technical Reports Server (NTRS)

    Schwenke, David W.; Huo, Winifred (Technical Monitor)

    1998-01-01

    We have carried out ab initio electronic structure calculations of the spin-orbit and rotation-orbit couplings among the 14 lowest electronic states of TiO and used them to predict ro-vibrational energy levels. We report on the qualitative results as well as our progress in optimizing our Hamiltonian parameters in order to improve agreement with experimental line positions,

  11. The Opacity of TiO from a Coupled Electronic State Calculation Parameterized by ab initio and Experimental Data

    NASA Technical Reports Server (NTRS)

    Schwenke, David W.; Huo, Winifred (Technical Monitor)

    1998-01-01

    We have carried out ab initio electronic structure calculations of the spin-orbit and rotation-orbit couplings among the 14 lowest electronic states of TiO and used them to predict ro-vibrational energy levels. We report on the qualitative results as well as our progress in optimizing our Hamiltonian parameters in order to improve agreement with experimental line positions.

  12. Accurate Vibrational-Rotational Parameters and Infrared Intensities of 1-Bromo-1-fluoroethene: A Joint Experimental Analysis and Ab Initio Study.

    PubMed

    Pietropolli Charmet, Andrea; Stoppa, Paolo; Giorgianni, Santi; Bloino, Julien; Tasinato, Nicola; Carnimeo, Ivan; Biczysko, Malgorzata; Puzzarini, Cristina

    2017-05-04

    The medium-resolution gas-phase infrared (IR) spectra of 1-bromo-1-fluoroethene (BrFC═CH 2 , 1,1-C 2 H 2 BrF) were investigated in the range 300-6500 cm -1 , and the vibrational analysis led to the assignment of all fundamentals as well as many overtone and combination bands up to three quanta, thus giving an accurate description of its vibrational structure. Integrated band intensity data were determined with high precision from the measurements of their corresponding absorption cross sections. The vibrational analysis was supported by high-level ab initio investigations. CCSD(T) computations accounting for extrapolation to the complete basis set and core correlation effects were employed to accurately determine the molecular structure and harmonic force field. The latter was then coupled to B2PLYP and MP2 computations in order to account for mechanical and electrical anharmonicities. Second-order perturbative vibrational theory was then applied to the thus obtained hybrid force fields to support the experimental assignment of the IR spectra.

  13. Ab initio structural and spectroscopic study of HPS{sup x} and HSP{sup x} (x = 0,+1,−1) in the gas phase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yaghlane, Saida Ben; Cotton, C. Eric; Francisco, Joseph S., E-mail: francisc@purdue.edu, E-mail: hochlaf@univ-mlv.fr

    2013-11-07

    Accurate ab initio computations of structural and spectroscopic parameters for the HPS/HSP molecules and corresponding cations and anions have been performed. For the electronic structure computations, standard and explicitly correlated coupled cluster techniques in conjunction with large basis sets have been adopted. In particular, we present equilibrium geometries, rotational constants, harmonic vibrational frequencies, adiabatic ionization energies, electron affinities, and, for the neutral species, singlet-triplet relative energies. Besides, the full-dimensional potential energy surfaces (PESs) for HPS{sup x} and HSP{sup x} (x = −1,0,1) systems have been generated at the standard coupled cluster level with a basis set of augmented quintuple-zeta quality.more » By applying perturbation theory to the calculated PESs, an extended set of spectroscopic constants, including τ, first-order centrifugal distortion and anharmonic vibrational constants has been obtained. In addition, the potentials have been used in a variational approach to deduce the whole pattern of vibrational levels up to 4000 cm{sup −1} above the minima of the corresponding PESs.« less

  14. Fourfold Clusters of Rovibrational Energies in H2Te Studied With an Ab Initio Potential Energy Function

    NASA Technical Reports Server (NTRS)

    Jensen, Per; Li, Yan; Hirsch, Gerhard; Buenker, Robert J.; Lee, Timothy J.; Arnold, James O. (Technical Monitor)

    1994-01-01

    We report an ab initio investigation of the cluster effect (i.e., the formation of nearly degenerate, four member groups of rotation-vibration energy levels at higher J and K(sub a). values) in the H2Te molecule. The potential energy function has been calculated ab initio at a total of 334 molecular geometries by means of the CCSD(T) method where the (1s-4f) core electrons of Te were described by an effective core potential. The values of the potential energy function obtained cover the region up to around 10,000/cm above the equilibrium energy. On the basis of the ab initio potential, the rotation-vibration energy spectra of H2Te-130 and its deuterated isotopomers have been calculated with the MORBID (Morse Oscillator Rigid Bender Internal Dynamics) Hamiltonian and computer program. In particular, we have calculated the rotational energy manifolds for J less than or = 40 in the vibrational ground state, the upsilon(sub 2) state, the "first triad" (the upsilon(sub l)/upsilon(sub 3)/2upsilon(sub 2) interacting vibrational states), and the "second triad" (the upsilon(sub 1) + upsilon(sub 2/upsilon(sub 2) + upsilon(sub 3)/3upsilon(sub 2) states) of H2Te-130. We find that the cluster formation in H2Te is very similar to those of of H2Se and H2S, which we have studied previously. However, contrary to semiclassical predictions, we do not determine any significant displacement of the clusters towards lower J values relative to H2Se. Hence the experimental observation of the cluster states in H2Te will be at least as difficult as in H2Se.

  15. Analysis of the red and green optical absorption spectrum of gas phase ammonia

    NASA Astrophysics Data System (ADS)

    Zobov, Nikolai F.; Coles, Phillip A.; Ovsyannikov, Roman I.; Kyuberis, Aleksandra A.; Hargreaves, Robert J.; Bernath, Peter F.; Tennyson, Jonathan; Yurchenko, Sergei N.; Polyansky, Oleg L.

    2018-04-01

    Room temperature NH3 absorption spectra recorded at the Kitt Peak National Solar Observatory in 1980 are analyzed. The spectra cover two regions in the visible: 15,200 - 15,700 cm-1 and 17,950 - 18,250 cm-1. These high overtone rotation-vibration spectra are analyzed using both combination differences and variational line lists. Two variational line lists were computed using the TROVE nuclear motion program: one is based on an ab initio potential energy surface (PES) while the other used a semi-empirical PES. Ab initio dipole moment surfaces are used in both cases. 95 energy levels with J = 1 - 7 are determined from analysis of the experimental spectrum in the 5νNH (red) region and 46 for 6νNH (green) region. These levels span four vibrational bands in each of the two regions, associated with stretching overtones.

  16. ab initio calculation of the rate of vibrational relaxation and thermal dissociation of hydrogen by helium at high temperatures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dove, J.E.; Raynor, S.

    The master equation for the thermal dissociation of para-H/sub 2/ infinitely dilute in He, was solved for temperatures of 1000 to 10,000/sup 0/K. Transition probabilities, used in the master equation, were obtained, in the case of energy transfer transitions, from distorted wave and quasi-classical trajectory calculations and, for dissociative processes, from trajectory calculations alone. An ab initio potential was used. From the solution, values of the dissociation rate constant, vibrational relaxation times, and incubation times for dissociation and vibrational relaxation were calculated. The sensitivity of the calculated results to variations in the transition probabilities was examined. Vibrational relaxation is mostmore » sensitive to simultaneous transitions in vibration and rotation (VRT processes); pure rotational (RT) transitions also have a substantial effect. Dissociation is most strongly affected by RT processes, but changes in VRT and groups of dissociative transitions also have a significant effect. However complete suppression of all dissociative transitions except those from levels immediately next to the continuum lowers the dissociation rates only by a factor of about 2. The location of the dissociation ''bottleneck'' is discussed. 5 figures, 3 tables.« less

  17. Vibrational spectrum and assignments of 2-(4-methoxyphenyl)-1 H-benzo[ d]imidazole by ab initio Hartree-Fock and density functional methods

    NASA Astrophysics Data System (ADS)

    Arslan, Hakan; Algül, Öztekin

    2008-06-01

    The room temperature attenuated total reflection Fourier transform infrared spectrum of the 2-(4-methoxyphenyl)-1 H-benzo[ d]imidazole has been recorded with diamond/ZnSe prism. The conformational behaviour, structural stability of optimized geometry, frequency and intensity of the vibrational bands of the title compound were investigated by utilizing ab initio calculations with 6-311G** basis set at HF, B3LYP, BLYP, B3PW91 and mPW1PW91 levels. The harmonic vibrational frequencies were calculated and scaled values have been compared with experimental IR spectrum. The observed and the calculated frequencies are found to be in good agreement. The theoretical vibrational spectra of the title compound were interpreted by means of potential energy distributions using VEDA 4 program. Furthermore, the optimal uniform scaling factors calculated for the title compound are 0.9120, 0.9596, 0.9660, 0.9699, and 0.9993 for HF, mPW1PW91, B3PW91, B3LYP and BLYP methods, respectively.

  18. Vibrational spectral investigation, NBO, first hyperpolarizability and UV-Vis spectral analysis of 3,5-dichlorobenzonitrile and m-bromobenzonitrile by ab initio and density functional theory methods.

    PubMed

    Senthil kumar, J; Jeyavijayan, S; Arivazhagan, M

    2015-02-05

    The FT-IR and FT-Raman spectra of 3,5-dichlorobenzonitrile and m-bromobenzonitrile have been recorded in the region 4000-400 cm(-1) and 3500-50 cm(-1), respectively. The optimized geometry, wave numbers and intensity of vibrational bonds of title molecules are obtained by ab initio and DFT level of theory with complete relaxation in the potential energy surface using 6-311++G(d, p) basis set. A complete vibrational assignments aided by the theoretical harmonic frequency, analysis have been proposed. The harmonic vibrational frequencies calculated have been compared with experimental FT-IR and FT-Raman spectra. The observed and calculated frequencies are found to be in good agreement. Stability of the molecule arising from hyperconjugative interactions, charge delocalization have been analyzed using natural bond orbital (NBO) analysis. The UV-Vis spectral analysis of the molecules has also been done which confirms the charge transfer of the molecules. Furthermore, the first hyperpolarizability and total dipole moment of the molecules have been calculated. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. High-Level, First-Principles, Full-Dimensional Quantum Calculation of the Ro-vibrational Spectrum of the Simplest Criegee Intermediate (CH2OO).

    PubMed

    Li, Jun; Carter, Stuart; Bowman, Joel M; Dawes, Richard; Xie, Daiqian; Guo, Hua

    2014-07-03

    The ro-vibrational spectrum of the simplest Criegee intermediate (CH2OO) has been determined quantum mechanically based on nine-dimensional potential energy and dipole surfaces for its ground electronic state. The potential energy surface is fitted to more than 50 000 high-level ab initio points with a root-mean-square error of 25 cm(-1), using a recently proposed permutation invariant polynomial neural network method. The calculated rotational constants, vibrational frequencies, and spectral intensities of CH2OO are in excellent agreement with experiment. The potential energy surface provides a valuable platform for studying highly excited vibrational and unimolecular reaction dynamics of this important molecule.

  20. Water trimer torsional spectrum from accurate ab initio and semiempirical potentials

    NASA Astrophysics Data System (ADS)

    van der Avoird, Ad; Szalewicz, Krzysztof

    2008-01-01

    The torsional levels of (H2O)3 and (D2O)3 were calculated in a restricted dimensionality (three-dimensional) model with several recently proposed water potentials. Comparison with the experimental data provides a critical test, not only of the pair interactions that have already been probed on the water dimer spectra, but also of the nonadditive three-body contributions to the potential. The purely ab initio CC-pol and HBB potentials that were previously shown to yield very accurate water dimer levels, also reproduce the trimer levels well when supplemented with an appropriate three-body interaction potential. The TTM2.1 potential gives considerably less good agreement with experiment. Also the semiempirical VRT(ASP-W)III potential, fitted to the water dimer vibration-rotation-tunneling levels, gives substantial disagreement with the measured water trimer levels, which shows that the latter probe the potential for geometries other than those probed by the dimer spectrum. Although the three-body nonadditive interactions significantly increase the stability of the water trimer, their effect on the torsional energy barriers and vibration-tunneling frequencies is less significant.

  1. On-the-Fly ab Initio Semiclassical Calculation of Glycine Vibrational Spectrum

    PubMed Central

    2017-01-01

    We present an on-the-fly ab initio semiclassical study of vibrational energy levels of glycine, calculated by Fourier transform of the wavepacket correlation function. It is based on a multiple coherent states approach integrated with monodromy matrix regularization for chaotic dynamics. All four lowest-energy glycine conformers are investigated by means of single-trajectory semiclassical spectra obtained upon classical evolution of on-the-fly trajectories with harmonic zero-point energy. For the most stable conformer I, direct dynamics trajectories are also run for each vibrational mode with energy equal to the first harmonic excitation. An analysis of trajectories evolved up to 50 000 atomic time units demonstrates that, in this time span, conformers II and III can be considered as isolated species, while conformers I and IV show a pretty facile interconversion. Therefore, previous perturbative studies based on the assumption of isolated conformers are often reliable but might be not completely appropriate in the case of conformer IV and conformer I for which interconversion occurs promptly. PMID:28489368

  2. Vibrational spectra and ab initio analysis of tert-butyl, trimethylsilyl, and trimethylgermyl derivatives of 3,3-dimethyl cyclopropene V. 3,3-Dimethyl-1-(trimethylgermyl)cyclopropene

    NASA Astrophysics Data System (ADS)

    De Maré, G. R.; Panchenko, Yu. N.; Abramenkov, A. V.; Baird, M. S.; Tverezovsky, V. V.; Nizovtsev, A. V.; Bolesov, I. G.

    2004-02-01

    3,3-Dimethyl-1-(trimethylgermyl)cyclopropene ( I) was synthesised using a standard procedure. The IR and Raman spectra of I in the liquid phase were measured. The molecular geometry of I was optimised completely at the HF/6-31G* level. The HF/6-31G*//HF/6-31G* force field was calculated and scaled using the set of scale factors transferred from those determined previously for scaling the theoretical force fields of 3,3-dimethylbutene-1 and 1-methyl-, 1,2-dimethyl-, and 3,3-dimethylcyclopropene. The assignments of the observed vibrational bands were performed using the theoretical frequencies calculated from the scaled HF/6-31G*//HF/6-31G* force field and the ab initio values of the IR intensities, Raman cross-sections and depolarisation ratios. The theoretical spectra are given. The completely optimised structural parameters of I and its vibrational frequencies are compared with corresponding data of related molecules.

  3. FT-IR spectroscopy combined with DFT calculation to explore solvent effects of vinyl acetate

    NASA Astrophysics Data System (ADS)

    Chen, Yi; Zhang, Hui; Liu, Qing

    The infrared vibration frequencies of vinyl acetate (VAc) in 18 different solvents were theoretically computed at Density Function Theory (DFT) B3LYP/6-311G* level based on Polarizable Continuum Model (PCM) and experimentally recorded by FT-IR spectroscopy. The solvent-induced long-range bulk electrostatic solvation free energies of VAc (ΔGelec) were calculated by the SMD model. The Cdbnd O stretching vibration frequencies of VAc were utilized as a measure of the chemical reactivities of the Cdbnd C group in VAc. The calculated and experimental Cdbnd O stretching vibration frequencies of VAc (νcal(Cdbnd O) and νexp(Cdbnd O)) were correlated with empirical solvent parameters including the KBM equation, the Swain equation and the linear solvation energy relationships (LSER). Through ab initio calculation, assignments of the two Cdbnd O absorption bands of VAc in alcohol solvents were achieved. The PCM, SMD and ab initio calculation offered supporting evidence to explain the FT-IR experimental observations from differing aspects.

  4. Ab initio prediction of the vibration-rotation-tunneling spectrum of HCl-(H2O)2

    NASA Astrophysics Data System (ADS)

    Wormer, P. E. S.; Groenenboom, G. C.; van der Avoird, A.

    2001-08-01

    Quantum calculations of the vibration-rotation-tunneling (VRT) levels of the trimer HCl-(H2O)2 are presented. Two internal degrees of freedom are considered—the rotation angles of the two nonhydrogen-bonded (flipping) hydrogens in the complex—together with the overall rotation of the trimer in space. The kinetic energy expression of van der Avoird et al. [J. Chem. Phys. 105, 8034 (1996)] is used in a slightly modified form. The experimental microwave geometry of Kisiel et al. [J. Chem. Phys. 112, 5767 (2000)] served as input in the generation of a planar reference structure. The two-dimensional potential energy surface is generated ab initio by the iterative coupled-cluster method based on singly and doubly excited states with triply excited states included noniteratively [CCSD(T)]. Frequencies of vibrations and tunnel splittings are predicted for two isotopomers. The effect of the nonadditive three-body forces is considered and found to be important.

  5. A coupled channel study of HN2 unimolecular decay based on a global ab initio potential surface

    NASA Technical Reports Server (NTRS)

    Koizumi, Hiroyasu; Schatz, George C.; Walch, Stephen P.

    1991-01-01

    The unimolecular decay lifetimes of several vibrational states of HN2 are determined on the basis of an accurate coupled channel dynamics study using a global analytical potential surface. The surface reproduces the ab initio points with an rms error of 0.08 kcal/mol for energies below 20 kcal/mol. Modifications to the potential that describe the effect of improving the basis set in the ab initio calculations are provided. Converged coupled channel calculations are performed for the ground rotational state of HN2 to determine the lifetimes of the lowest ten vibrational states. Only the ground vibrational state (000) and first excited bend (001) are found to have lifetimes longer than 1 ps. The lifetimes of these states are estimated at 3 x 10 to the -9th and 2 x 10 to the -10th s, respectively. Variation of these results with quality of the ab initio calculations is not more than a factor of 5.

  6. A highly accurate ab initio potential energy surface for methane.

    PubMed

    Owens, Alec; Yurchenko, Sergei N; Yachmenev, Andrey; Tennyson, Jonathan; Thiel, Walter

    2016-09-14

    A new nine-dimensional potential energy surface (PES) for methane has been generated using state-of-the-art ab initio theory. The PES is based on explicitly correlated coupled cluster calculations with extrapolation to the complete basis set limit and incorporates a range of higher-level additive energy corrections. These include core-valence electron correlation, higher-order coupled cluster terms beyond perturbative triples, scalar relativistic effects, and the diagonal Born-Oppenheimer correction. Sub-wavenumber accuracy is achieved for the majority of experimentally known vibrational energy levels with the four fundamentals of (12)CH4 reproduced with a root-mean-square error of 0.70 cm(-1). The computed ab initio equilibrium C-H bond length is in excellent agreement with previous values despite pure rotational energies displaying minor systematic errors as J (rotational excitation) increases. It is shown that these errors can be significantly reduced by adjusting the equilibrium geometry. The PES represents the most accurate ab initio surface to date and will serve as a good starting point for empirical refinement.

  7. State of the art for ab initio vs empirical potentials for HeH+ (2e-), BeH+ (4e-), BeH (5e-), Li2 (6e-) and BH (6e-)

    NASA Astrophysics Data System (ADS)

    Dattani, Nike

    For large internuclear distances, the potential energy between two atoms is known analytically, based on constants that are calculated from atomic ab initio rather than molecular ab initio. This analytic form can be built into models for molecular potentials that are fitted to spectroscopic data. Such empirical potentials constitute the most accurate molecular potentials known. For HeH+, and BeH+, the long-range form of the potential is based only on the polarizabilities for He and H respectively, for which we have included up to 4th order QED corrections. For BeH, the best ab initio potential matches all but one observed vibrational spacing to < 1 cm- accuracy, and for Li2 the discrepancy in the spacings is < 0.08 cm-1 for all vibrational levels. But experimental methods such as photoassociation require the absolute energies, not spacings, and these are still several in several cm-1 disagreement. So empirical potentials are still the only reliable way to predict energies for few-electron systems. We also give predictions for various unobserved ''halo nucleonic molecules'' containing the ''halo'' isotopes: 6,8He, 11Li, 11,14Be and 8 , 17 , 19B.

  8. Dynamics and Novel Mechanisms of SN2 Reactions on ab Initio Analytical Potential Energy Surfaces.

    PubMed

    Szabó, István; Czakó, Gábor

    2017-11-30

    We describe a novel theoretical approach to the bimolecular nucleophilic substitution (S N 2) reactions that is based on analytical potential energy surfaces (PESs) obtained by fitting a few tens of thousands high-level ab initio energy points. These PESs allow computing millions of quasi-classical trajectories thereby providing unprecedented statistical accuracy for S N 2 reactions, as well as performing high-dimensional quantum dynamics computations. We developed full-dimensional ab initio PESs for the F - + CH 3 Y [Y = F, Cl, I] systems, which describe the direct and indirect, complex-forming Walden-inversion, the frontside attack, and the new double-inversion pathways as well as the proton-transfer channels. Reaction dynamics simulations on the new PESs revealed (a) a novel double-inversion S N 2 mechanism, (b) frontside complex formation, (c) the dynamics of proton transfer, (d) vibrational and rotational mode specificity, (e) mode-specific product vibrational distributions, (f) agreement between classical and quantum dynamics, (g) good agreement with measured scattering angle and product internal energy distributions, and (h) significant leaving group effect in accord with experiments.

  9. DSMC study of oxygen shockwaves based on high-fidelity vibrational relaxation and dissociation models

    NASA Astrophysics Data System (ADS)

    Borges Sebastião, Israel; Kulakhmetov, Marat; Alexeenko, Alina

    2017-01-01

    This work evaluates high-fidelity vibrational-translational (VT) energy relaxation and dissociation models for pure O2 normal shockwave simulations with the direct simulation Monte Carlo (DSMC) method. The O2-O collisions are described using ab initio state-specific relaxation and dissociation models. The Macheret-Fridman (MF) dissociation model is adapted to the DSMC framework by modifying the standard implementation of the total collision energy (TCE) model. The O2-O2 dissociation is modeled with this TCE+MF approach, which is calibrated with O2-O ab initio data and experimental equilibrium dissociation rates. The O2-O2 vibrational relaxation is modeled via the Larsen-Borgnakke model, calibrated to experimental VT rates. All the present results are compared to experimental data and previous calculations available in the literature. It is found that, in general, the ab initio dissociation model is better than the TCE model at matching the shock experiments. Therefore, when available, efficient ab initio models are preferred over phenomenological models. We also show that the proposed TCE + MF formulation can be used to improve the standard TCE model results when ab initio data are not available or limited.

  10. Ab initio study on the ground and low-lying states of BAlk (Alk = Li, Na, K) molecules.

    PubMed

    Xiao, Ke-La; Yang, Chuan-Lu; Wang, Mei-Shan; Ma, Xiao-Guang; Liu, Wen-Wang

    2014-10-02

    The potential energy curves (PECs) and dipole moment functions of (1)Π, (3)Π, (1)Σ(+), and (3)Σ(+) states of BAlk (Alk = Li, Na, K) are calculated using multireference configuration interaction method and large all-electron basis sets. The effects of inner-shell correlation electron for BAlk are considered. The ro-vibrational energy levels are obtained by solving the Schrödinger equation of nuclear motion based on the ab initio PECs. The spectroscopic parameters are determined from the ro-vibrational levels with Dunham expansion. The PECs are fitted into analytical potential energy functions using the Morse long-range potential function. The dipole moment functions for the states of BAlk are presented. The transition dipole moments for (1)Σ(+) → (1)Π and (3)Σ(+) → (3)Π states of BAlk are obtained. The interactions between the outermost electron of Alk and B 2p electrons for (1)Π, (3)Π, (1)Σ(+), and (3)Σ(+) states are also analyzed, respectively.

  11. Molecular structure, vibrational spectra, NBO analysis and molecular packing prediction of 3-nitroacetanilide by ab initio HF and density functional theory.

    PubMed

    Li, Xiao-Hong; Li, Tong-Wei; Ju, Wei-Wei; Yong, Yong-Liang; Zhang, Xian-Zhou

    2014-01-24

    Quantum chemical calculations of geometries and vibrational wavenumbers of 3-nitroacetanilide (C8H8N2O3) in the ground state were carried out by using ab initio HF and density functional theory (DFT/B3LYP) methods with 6-31+G(*) basis set. The -311++G(**) basis set is also used for B3LYP level. The scaled harmonic vibrational frequencies have been compared with experimental FT-IR spectra. Theoretical vibrational spectra of the title compound were interpreted by means of potential energies distributions (PEDs) using MOLVIB program. The theoretical spectrograms for IR spectra of the title compound have been constructed. The shortening of C-H bond length and the elongation of N-H bond length suggest the existence of weak C-H⋯O and N-H⋯O hydrogen bonds, which is confirmed by the natural bond orbital analysis. In addition, the crystal structure obtained by molecular mechanics belongs to the P2(1) space group, with lattice parameters Z=4, a=14.9989 Å, b=4.0367 Å, c=12.9913 Å, ρ=0.998 g cm(-3). Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Molecular structure, vibrational spectra, NBO analysis and molecular packing prediction of 3-nitroacetanilide by ab initio HF and density functional theory

    NASA Astrophysics Data System (ADS)

    Li, Xiao-Hong; Li, Tong-Wei; Ju, Wei-Wei; Yong, Yong-Liang; Zhang, Xian-Zhou

    2014-01-01

    Quantum chemical calculations of geometries and vibrational wavenumbers of 3-nitroacetanilide (C8H8N2O3) in the ground state were carried out by using ab initio HF and density functional theory (DFT/B3LYP) methods with 6-31+G* basis set. The -311++G** basis set is also used for B3LYP level. The scaled harmonic vibrational frequencies have been compared with experimental FT-IR spectra. Theoretical vibrational spectra of the title compound were interpreted by means of potential energies distributions (PEDs) using MOLVIB program. The theoretical spectrograms for IR spectra of the title compound have been constructed. The shortening of Csbnd H bond length and the elongation of Nsbnd H bond length suggest the existence of weak Csbnd H⋯O and Nsbnd H⋯O hydrogen bonds, which is confirmed by the natural bond orbital analysis. In addition, the crystal structure obtained by molecular mechanics belongs to the P21 space group, with lattice parameters Z = 4, a = 14.9989 Å, b = 4.0367 Å, c = 12.9913 Å, ρ = 0.998 g cm-3.

  13. Theoretical study of the changes in the vibrational characteristics arising from the hydrogen bonding between Vitamin C ( L-ascorbic acid) and H 2O

    NASA Astrophysics Data System (ADS)

    Dimitrova, Yordanka

    2006-02-01

    The vibrational characteristics (vibrational frequencies, infrared intensities and Raman activities) for the hydrogen-bonded system of Vitamin C ( L-ascorbic acid) with five water molecules have been predicted using ab initio SCF/6-31G(d, p) calculations and DFT (BLYP) calculations with 6-31G(d, p) and 6-31++G(d, p) basis sets. The changes in the vibrational characteristics from free monomers to a complex have been calculated. The ab initio and BLYP calculations show that the complexation between Vitamin C and five water molecules leads to large red shifts of the stretching vibrations for the monomer bonds involved in the hydrogen bonding and very strong increase in their IR intensity. The predicted frequency shifts for the stretching vibrations from Vitamin C taking part in the hydrogen bonding are up to -508 cm -1. The magnitude of the wavenumber shifts is indicative of relatively strong OH···H hydrogen-bonded interactions. In the same time the IR intensity and Raman activity of these vibrations increase upon complexation. The IR intensity increases dramatically (up to 12 times) and Raman activity increases up to three times. The ab initio and BLYP calculations show, that the symmetric OH vibrations of water molecules are more sensitive to the complexation. The hydrogen bonding leads to very large red shifts of these vibrations and very strong increase in their IR intensity. The asymmetric OH stretching vibrations of water, free from hydrogen bonding are less sensitive to the complexation than the hydrogen-bonded symmetric O sbnd H stretching vibrations. The increases of the IR intensities for these vibrations are lower and red shifts are negligible.

  14. Theoretical studies of dissociative recombination

    NASA Technical Reports Server (NTRS)

    Guberman, S. L.

    1985-01-01

    The calculation of dissociative recombination rates and cross sections over a wide temperature range by theoretical quantum chemical techniques is described. Model calculations on electron capture by diatomic ions are reported which illustrate the dependence of the rates and cross sections on electron energy, electron temperature, and vibrational temperature for three model crossings of neutral and ionic potential curves. It is shown that cross sections for recombination to the lowest vibrational level of the ion can vary by several orders of magnitude depending upon the position of the neutral and ionic potential curve crossing within the turning points of the v = 1 vibrational level. A new approach for calculating electron capture widths is reported. Ab initio calculations are described for recombination of O2(+) leading to excited O atoms.

  15. Ab initio study of the molecular structure and vibrational spectrum of nitric acid and its protonated forms

    NASA Technical Reports Server (NTRS)

    Lee, Timothy J.; Rice, Julia E.

    1992-01-01

    The equilibrium structures, harmonic vibrational frequencies, IR intensities, and relative energetics of HNO3 and its protonated form H2NO3+ were investigated using double-zeta plus polarization and triple-zeta plus polarization basis sets in conjunction with high-level ab initio methods. The latter include second-order Moller-Plesset perturbation theory, the single and double excitation coupled cluster (CCSD) methods, a perturbational estimate of the effects of connected triple excitations (CCSD(T)), and the self-consistent field. To determine accurate energy differences CCSD(T) energies were computed using large atomic natural orbital basis sets. Four different isomers of H2NO3+ were considered. The lowest energy form of protonated nitric acid was found to correspond to a complex between H2O and NO2+, which is consistent with earlier theoretical and experimental studies.

  16. Spectroscopic and Ab Initio Determination of the Ring-Twisting Potential Energy Function for 1,3-Cyclohexadiene

    NASA Astrophysics Data System (ADS)

    Autrey, Daniel; Choo, Jaebum; Laane, Jaan

    2000-10-01

    The ring-twisting vibration of 1,3-cyclohexadiene has been studied using Raman and infrared spectroscopy of the molecule in the vapor phase. The Raman spectrum shows five ring-twisting transitions in the 150 - 200 cm-1 region. The far-infrared spectrum shows only two transitions for this vibration, which is infrared forbidden in the C_2v (planar) approximation. Three ring-twisting combination bands were also observed off a fundamental vibration at 926.1 cm-1. A coordinate dependent kinetic energy expansion for the ring-twisting motion was calculated, and this was used to determine the ring-twisting potential function. Ab initio calculations were performed using Moller-Plesset perturbation theory (MP2) using different basis sets. The barrier to planarity of 1150 cm-1 was determined from the spectroscopic data. The various ab initio calculations gave barriers to planarity in the 1197 - 1593 cm-1 range.

  17. Infrared signature of micro-hydration in the organophosphate sarin: An ab initio study

    DOE PAGES

    Alam, Todd M.; Pearce, Charles Joseph

    2015-06-28

    The infrared (IR) spectra of micro-hydrated Sarin•(H 2O) n clusters containing between one and four explicit waters have been studied using ab initio density functional theory (DFT) methods. The phosphate group P=O bond vibration region (~1270 to 1290 cm –1) revealed the largest frequency variation with hydration, with a frequency red shift reflecting the direct hydrogen bond formation between the P=O of Sarin and water. Small variations to the P-F stretch (~810 to 815 cm –1) and the C-O-P vibrational modes (~995 to 1004 cm –1) showed that the water interactions with these functional groups were minor, and that themore » structures of Sarin were not extensively perturbed in the hydrated complexes. Increasing the number of explicit hydration waters produced only small vibrational changes in the lowest free energy complexes. These minor changes were consistent with a single water-phosphate hydrogen bond being the dominant structure, though a second water-phosphate hydrogen bond was observed in some complexes and was identified by an additional red shift of the P=O bond vibration. As a result, the H 2O•H 2O vibrational modes (~3450 to 3660 cm –1) increased in complexity with higher hydration levels and reflect the extended hydrogen bonding networks formed between the explicit waters in the hydrated Sarin clusters.« less

  18. Calibration-quality adiabatic potential energy surfaces for H3(+) and its isotopologues.

    PubMed

    Pavanello, Michele; Adamowicz, Ludwik; Alijah, Alexander; Zobov, Nikolai F; Mizus, Irina I; Polyansky, Oleg L; Tennyson, Jonathan; Szidarovszky, Tamás; Császár, Attila G

    2012-05-14

    Calibration-quality ab initio adiabatic potential energy surfaces (PES) have been determined for all isotopologues of the molecular ion H(3)(+). The underlying Born-Oppenheimer electronic structure computations used optimized explicitly correlated shifted Gaussian functions. The surfaces include diagonal Born-Oppenheimer corrections computed from the accurate electronic wave functions. A fit to the 41,655 ab initio points is presented which gives a standard deviation better than 0.1 cm(-1) when restricted to the points up to 6000 cm(-1) above the first dissociation asymptote. Nuclear motion calculations utilizing this PES, called GLH3P, and an exact kinetic energy operator given in orthogonal internal coordinates are presented. The ro-vibrational transition frequencies for H(3)(+), H(2)D(+), and HD(2)(+) are compared with high resolution measurements. The most sophisticated and complete procedure employed to compute ro-vibrational energy levels, which makes explicit allowance for the inclusion of non-adiabatic effects, reproduces all the known ro-vibrational levels of the H(3)(+) isotopologues considered to better than 0.2 cm(-1). This represents a significant (order-of-magnitude) improvement compared to previous studies of transitions in the visible. Careful treatment of linear geometries is important for high frequency transitions and leads to new assignments for some of the previously observed lines. Prospects for further investigations of non-adiabatic effects in the H(3)(+) isotopologues are discussed. In short, the paper presents (a) an extremely accurate global potential energy surface of H(3)(+) resulting from high accuracy ab initio computations and global fit, (b) very accurate nuclear motion calculations of all available experimental line data up to 16,000 cm(-1), and (c) results suggest that we can predict accurately the lines of H(3)(+) towards dissociation and thus facilitate their experimental observation.

  19. Calibration-quality adiabatic potential energy surfaces for H3+ and its isotopologues

    NASA Astrophysics Data System (ADS)

    Pavanello, Michele; Adamowicz, Ludwik; Alijah, Alexander; Zobov, Nikolai F.; Mizus, Irina I.; Polyansky, Oleg L.; Tennyson, Jonathan; Szidarovszky, Tamás; Császár, Attila G.

    2012-05-01

    Calibration-quality ab initio adiabatic potential energy surfaces (PES) have been determined for all isotopologues of the molecular ion H_3^+. The underlying Born-Oppenheimer electronic structure computations used optimized explicitly correlated shifted Gaussian functions. The surfaces include diagonal Born-Oppenheimer corrections computed from the accurate electronic wave functions. A fit to the 41 655 ab initio points is presented which gives a standard deviation better than 0.1 cm-1 when restricted to the points up to 6000 cm-1 above the first dissociation asymptote. Nuclear motion calculations utilizing this PES, called GLH3P, and an exact kinetic energy operator given in orthogonal internal coordinates are presented. The ro-vibrational transition frequencies for H_3^+, H2D+, and HD_2^+ are compared with high resolution measurements. The most sophisticated and complete procedure employed to compute ro-vibrational energy levels, which makes explicit allowance for the inclusion of non-adiabatic effects, reproduces all the known ro-vibrational levels of the H_3^+ isotopologues considered to better than 0.2 cm-1. This represents a significant (order-of-magnitude) improvement compared to previous studies of transitions in the visible. Careful treatment of linear geometries is important for high frequency transitions and leads to new assignments for some of the previously observed lines. Prospects for further investigations of non-adiabatic effects in the H_3^+ isotopologues are discussed. In short, the paper presents (a) an extremely accurate global potential energy surface of H_3^+ resulting from high accuracy ab initio computations and global fit, (b) very accurate nuclear motion calculations of all available experimental line data up to 16 000 cm-1, and (c) results suggest that we can predict accurately the lines of H_3^+ towards dissociation and thus facilitate their experimental observation.

  20. Ab Initio Studies of Chlorine Oxide and Nitrogen Oxide Species of Interest in Stratospheric Chemistry

    NASA Technical Reports Server (NTRS)

    Lee, Timothy J.; Langhoff, Stephen R. (Technical Monitor)

    1995-01-01

    The ability of modern state-of-the art ab initio quantum chemical techniques to characterize reliably the gas-phase molecular structure, vibrational spectrum, electronic spectrum, and thermal stability of chlorine oxide and nitrogen oxide species will be demonstrated by presentation of some example studies. In particular the geometrical structures, vibrational spectra, and heats of formation Of ClNO2, CisClONO, and trans-ClONO are shown to be in excellent agreement with the available experimental data, and where the experimental data are either not known or are inconclusive, the ab initio results are shown to fill in the gaps and to resolve the experimental controversy. In addition, ab initio studies in which the electronic spectra and the characterization of excited electronic states of ClONO2, HONO2, ClOOC17 ClOOH, and HOOH will also be presented. Again where available, the ab initio results are compared to experimental observations, and are used to aid in the interpretation of the experimental studies.

  1. Torsion-wagging tunneling and vibrational states in hydrazine determined from its ab initio potential energy surface

    NASA Astrophysics Data System (ADS)

    Łodyga, Wiesław; Makarewicz, Jan

    2012-05-01

    Geometries, anharmonic vibrations, and torsion-wagging (TW) multiplets of hydrazine and its deuterated species are studied using high-level ab initio methods employing the second-order Møller-Plesset perturbation theory (MP2) as well as the coupled cluster singles and doubles model including connected triple corrections, CCSD(T), in conjunction with extended basis sets containing diffuse and core functions. To describe the splitting patterns caused by tunneling in TW states, the 3D potential energy surface (PES) for the large-amplitude TW modes is constructed. Stationary points in the 3D PES, including equivalent local minima and saddle points are characterized. Using this 3D PES, a flexible Hamiltonian is built numerically and then employed to solve the vibrational problem for TW coupled motion. The calculated ground state rav structure is expected to be more reliable than the experimental one that has been determined using a simplified structural model. The calculated fundamental frequencies allowed resolution of the assignment problems discussed earlier in the literature. The determined energy barriers, including the contributions from the small-amplitude vibrations, to the tunneling of the symmetric and antisymmetric wagging mode of 1997 cm-1 and 3454 cm-1, respectively, are in reasonable agreement with the empirical estimates of 2072 cm-1 and 3312 cm-1, respectively [W. Łodyga et al. J. Mol. Spectrosc. 183, 374 (1997), 10.1006/jmsp.1997.7271]. However, the empirical torsion barrier of 934 cm-1 appears to be overestimated. The ab initio calculations yield two torsion barriers: cis and trans of 744 cm-1 and 2706 cm-1, respectively. The multiplets of the excited torsion states are predicted from the refined 3D PES.

  2. Jet-cooled laser-induced dispersed fluorescence spectroscopy of TaN: Observation of a3Δ and A1Δ states

    NASA Astrophysics Data System (ADS)

    Mukund, Sheo; Bhattacharyya, Soumen; Nakhate, S. G.

    2016-07-01

    Laser-induced dispersed fluorescence spectra of TaN molecules, produced in a free-jet apparatus, have been studied. Two spin components of the lowest-lying a3Δ state along with their vibrational structure have been observed. The A1Δ state, which was predicted earlier by ab initio calculation has also been observed. The X1Σ+ ground state vibrational progression up to v = 9 has been recorded. The experimentally determined term energies and vibrational constants at equilibrium for the ground and a3Δ states are in fairly good agreement with the ab initio values reported earlier.

  3. Character of intermolecular interaction in pyridine-argon complex: Ab initio potential energy surface, internal dynamics, and interrelations between SAPT energy components.

    PubMed

    Makarewicz, Jan; Shirkov, Leonid

    2016-05-28

    The pyridine-Ar (PAr) van der Waals (vdW) complex is studied using a high level ab initio method. Its structure, binding energy, and intermolecular vibrational states are determined from the analytical potential energy surface constructed from interaction energy (IE) values computed at the coupled cluster level of theory with single, double, and perturbatively included triple excitations with the augmented correlation consistent polarized valence double-ζ (aug-cc-pVDZ) basis set complemented by midbond functions. The structure of the complex at its global minimum with Ar at a distance of 3.509 Å from the pyridine plane and shifted by 0.218 Å from the center of mass towards nitrogen agrees well with the corresponding equilibrium structure derived previously from the rotational spectrum of PAr. The PAr binding energy De of 392 cm(-1) is close to that of 387 cm(-1) calculated earlier at the same ab initio level for the prototypical benzene-Ar (BAr) complex. However, under an extension of the basis set, De for PAr becomes slightly lower than De for BAr. The ab initio vdW vibrational energy levels allow us to estimate the reliability of the methods for the determination of the vdW fundamentals from the rotational spectra. To disclose the character of the intermolecular interaction in PAr, the symmetry-adapted perturbation theory (SAPT) is employed for the analysis of different physical contributions to IE. It is found that SAPT components of IE can be approximately expressed in the binding region by only two of them: the exchange repulsion and dispersion energy. The total induction effect is negligible. The interrelations between various SAPT components found for PAr are fulfilled for a few other complexes involving aromatic molecules and Ar or Ne, which indicates that they are valid for all rare gas (Rg) atoms and aromatics.

  4. A modified potential for HO2 with spectroscopic accuracy

    NASA Astrophysics Data System (ADS)

    Brandão, João; Rio, Carolina M. A.; Tennyson, Jonathan

    2009-04-01

    Seven ground state potential energy surfaces for the hydroperoxyl radical are compared. The potentials were determined from either high-quality ab initio calculations, fits to spectroscopic data, or a combination of the two approaches. Vibration-rotation calculations are performed on each potential and the results compared with experiment. None of the available potentials is entirely satisfactory although the best spectroscopic results are obtained using the Morse oscillator rigid bender internal dynamics potential [Bunker et al., J. Mol. Spectrosc. 155, 44 (1992)]. We present modifications of the double many-body expansion IV potential of Pastrana et al. [J. Chem. Phys. 94, 8093 (1990)]. These new potentials reproduce the observed vibrational levels and observed vibrational levels and rotational constants, respectively, while preserving the good global properties of the original potential.

  5. Ro-vibrational averaging of the isotropic hyperfine coupling constant for the methyl radical

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adam, Ahmad Y.; Jensen, Per, E-mail: jensen@uni-wuppertal.de; Yachmenev, Andrey

    2015-12-28

    We present the first variational calculation of the isotropic hyperfine coupling constant of the carbon-13 atom in the CH{sub 3} radical for temperatures T = 0, 96, and 300 K. It is based on a newly calculated high level ab initio potential energy surface and hyperfine coupling constant surface of CH{sub 3} in the ground electronic state. The ro-vibrational energy levels, expectation values for the coupling constant, and its temperature dependence were calculated variationally by using the methods implemented in the computer program TROVE. Vibrational energies and vibrational and temperature effects for coupling constant are found to be in verymore » good agreement with the available experimental data. We found, in agreement with previous studies, that the vibrational effects constitute about 44% of the constant’s equilibrium value, originating mainly from the large amplitude out-of-plane bending motion and that the temperature effects play a minor role.« less

  6. Ab initio non-adiabatic study of the 4pσ B'' 1Σ+u state of H2

    NASA Astrophysics Data System (ADS)

    Glass-Maujean, M.; Schmoranzer, H.

    2018-05-01

    Fully ab initio non-adiabatic multichannel quantum defect calculations of the 4pσ B'' 1∑u+ energy levels, line intensities and widths, based on the latest quantum-chemical clamped-nuclei calculations of Wolniewicz and collaborators are presented for H2. The B″ state corresponds to the inner well of the ? state. The B'' v ≥ 1 levels are rapidly predissociated through vibrational coupling with the 3pσ B' 1Σ+u continuum so that coupled-equation calculations become unstable. Multichannel quantum defect theory, on the other hand, is demonstrated to be particularly suited to this situation. Experimental data as level energies, line intensities and dissociation widths were revisited and corrected. Reinvestigating previously published spectra, several new lines were assigned.

  7. Monomeric and dimeric structures, electronic properties and vibrational spectra of azelaic acid by HF and B3LYP methods

    NASA Astrophysics Data System (ADS)

    Kumar, Amarendra; Narayan, Vijay; Prasad, Onkar; Sinha, Leena

    2012-08-01

    Quantum chemical calculations of energies, dipole moment, polarizability, hyperpolarizability and vibrational wavenumbers of Azelaic acid (AZA) were carried out by using ab initio HF and B3LYP methods with 6-311++G(d,p) basis set. Hydrogen-bonded dimer of AZA, optimized by counterpoise correction, has also been studied by HF and B3LYP at the 6-311++G(d,p) level and the effects of molecular association through Osbnd H⋯O hydrogen bonding have been discussed. A complete vibrational analysis of AZA has been performed and assignments are made on the basis of potential energy distribution. The comparisons and assignments of the vibrational frequencies indicate that the experimental spectra also correspond acceptably with those of theoretically simulated spectra except the hydrogen-bonded coupled infrared vibrations.

  8. A new potential energy surface for vibration-vibration coupling in HF-HF collisions. Formulation and quantal scattering calculations

    NASA Astrophysics Data System (ADS)

    Schwenke, David W.; Truhlar, Donald G.

    1988-04-01

    We present new ab initio calculations of the HF-HF interaction potential for the case where both molecules are simultaneously displaced from their equilibrium internuclear distance. These and previous ab initio calculations are then fit to a new analytic representation which is designed to be efficient to evaluate and to provide an especially faithful account of the forces along the vibrational coordinates. We use the new potential for two sets of quantal scattering calculations for collisions in three dimensions with total angular momentum zero. First we test that the angular harmonic representation of the anisotropy is adequate by comparing quantal rigid rotator calculations to those carried out for potentials involving higher angular harmonics and for which the expansion in angular harmonics is systematically increased to convergence. Then we carry out large-scale quantal calculations of vibration-vibration energy transfer including the coupling of both sets of vibrational and rotational coordinates. These calculations indicate that significant rotational energy transfer accompanies the vibration-to-vibration energy transfer process.

  9. Ab Initio and Improved Empirical Potentials for the Calculation of the Anharmonic Vibrational States and Intramolecular Mode Coupling of N-Methylacetamide

    NASA Technical Reports Server (NTRS)

    Gregurick, Susan K.; Chaban, Galina M.; Gerber, R. Benny; Kwak, Dochou (Technical Monitor)

    2001-01-01

    The second-order Moller-Plesset ab initio electronic structure method is used to compute points for the anharmonic mode-coupled potential energy surface of N-methylacetamide (NMA) in the trans(sub ct) configuration, including all degrees of freedom. The vibrational states and the spectroscopy are directly computed from this potential surface using the Correlation Corrected Vibrational Self-Consistent Field (CC-VSCF) method. The results are compared with CC-VSCF calculations using both the standard and improved empirical Amber-like force fields and available low temperature experimental matrix data. Analysis of our calculated spectroscopic results show that: (1) The excellent agreement between the ab initio CC-VSCF calculated frequencies and the experimental data suggest that the computed anharmonic potentials for N-methylacetamide are of a very high quality; (2) For most transitions, the vibrational frequencies obtained from the ab initio CC-VSCF method are superior to those obtained using the empirical CC-VSCF methods, when compared with experimental data. However, the improved empirical force field yields better agreement with the experimental frequencies as compared with a standard AMBER-type force field; (3) The empirical force field in particular overestimates anharmonic couplings for the amide-2 mode, the methyl asymmetric bending modes, the out-of-plane methyl bending modes, and the methyl distortions; (4) Disagreement between the ab initio and empirical anharmonic couplings is greater than the disagreement between the frequencies, and thus the anharmonic part of the empirical potential seems to be less accurate than the harmonic contribution;and (5) Both the empirical and ab initio CC-VSCF calculations predict a negligible anharmonic coupling between the amide-1 and other internal modes. The implication of this is that the intramolecular energy flow between the amide-1 and the other internal modes may be smaller than anticipated. These results may have important implications for the anharmonic force fields of peptides, for which N-methylacetamide is a model.

  10. Ab initio and density functional computations of the vibrational spectrum, molecular geometry and some molecular properties of the antidepressant drug sertraline (Zoloft) hydrochloride

    NASA Astrophysics Data System (ADS)

    Sagdinc, Seda; Kandemirli, Fatma; Bayari, Sevgi Haman

    2007-02-01

    Sertraline hydrochloride is a highly potent and selective inhibitor of serotonin (5HT). It is a basic compound of pharmaceutical application for antidepressant treatment (brand name: Zoloft). Ab initio and density functional computations of the vibrational (IR) spectrum, the molecular geometry, the atomic charges and polarizabilities were carried out. The infrared spectrum of sertraline is recorded in the solid state. The observed IR wave numbers were analysed in light of the computed vibrational spectrum. On the basis of the comparison between calculated and experimental results and the comparison with related molecules, assignments of fundamental vibrational modes are examined. The X-ray geometry and experimental frequencies are compared with the results of our theoretical calculations.

  11. Associative electron detachment - O(-) + H yields OH + e(-)

    NASA Astrophysics Data System (ADS)

    Acharya, P. K.; Kendall, R. A.; Simons, J.

    1985-10-01

    Diatomic associative electron detachment (AED) involves the ejection of an electron when a atomic anion and another atom collisionally associate to produce a neutral diatomic molecule in a vibration-rotation state labeled V-prime, J-prime. Electron ejection rate calculations are discussed, taking into account aspects of rate expressions, calculations of ingredients in rate expression, initial-condition weighting factors, and the vibration and rotation dependence of ejection rates. The results of ab initio theoretical simulations indicate that AED in O(-) + H is so slow (approximately 10,000 per s) that it is likely to be inaccessible to present experimental observation. Propensity for producing OH in high vibrational levels does occur but the propensity is not sharp.

  12. Theoretical and Experimental Studies on the Nonlinear Optical Chromophore para Bromoacetanilide

    NASA Astrophysics Data System (ADS)

    Jothy, V. Bena; Vijayakumar, T.; Jayakumar, V. S.; Udayalekshmi, K.; Ramamurthy, K.; Joe, I. Hubert

    2008-11-01

    Vibrational spectral analysis of the hydrogen bonded non-linear optical (NLO) material para Bromo Acetanilide (PBA) is carried out using NIR FT-Raman and FT-IR spectroscopy. Ab initio molecular orbital computations have been performed at HF/6-31G(d) level to derive equilibrium geometry, vibrational wavenumbers, intensities and first hyperpolarizability. The lowering of the imino stretching wavenumbers suggests the existence of strong intermolecular N-H⋯O hydrogen bonding substantiated by the natural bond orbital (NBO) analysis. Blue shifting CH stretching wavenumbers, simultaneous activation of carbonyl stretching mode and the strong activation of low wavenumber H-bond stretching vibrations shows the presence of intramolecular charge transfer in the molecule.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shirkov, Leonid; Makarewicz, Jan, E-mail: jama@amu.edu.pl

    An ab initio intermolecular potential energy surface (PES) has been constructed for the benzene-krypton (BKr) van der Waals (vdW) complex. The interaction energy has been calculated at the coupled cluster level of theory with single, double, and perturbatively included triple excitations using different basis sets. As a result, a few analytical PESs of the complex have been determined. They allowed a prediction of the complex structure and its vibrational vdW states. The vibrational energy level pattern exhibits a distinct polyad structure. Comparison of the equilibrium structure, the dipole moment, and vibrational levels of BKr with their experimental counterparts has allowedmore » us to design an optimal basis set composed of a small Dunning’s basis set for the benzene monomer, a larger effective core potential adapted basis set for Kr and additional midbond functions. Such a basis set yields vibrational energy levels that agree very well with the experimental ones as well as with those calculated from the available empirical PES derived from the microwave spectra of the BKr complex. The basis proposed can be applied to larger complexes including Kr because of a reasonable computational cost and accurate results.« less

  14. a Diatomic Molecule with Extremely Large Amplitude Motion in its Vibrational States that have Lengths of at Least 12,000 Angstroms.

    NASA Astrophysics Data System (ADS)

    Dattani, Nikesh S.

    2016-06-01

    The state-of-the-art empirical potential, and the state-of-the-art ab initio potential for the b(1^3Π2_u) state of 7,7Li_2 agree with each other that the (v=100,J=0) ro-vibrational state has an outer classical turning point larger than the diameter of most bacteria and many animal cells. The 2015 empirical potential based on a significant amount of spectroscopic data, predicts the (v=100,J=0) level to be bound by only 0.000 000 000 004 cm-1 (<0.2 Hz). The outer turning point of the vibrational wavefunction is about 671 000 Å or 0.07 mm. Here, the two Li atoms are bound to each other, despite being nearly as far apart as the lines on a macroscopic ruler. The 2014 ab initio calculation based on a powerful Fock space MRCC method and with the long-range tail anchored by C_3^7{Li}/r^3 with the ultra-high precision 2015 value of C_3^7{Li}, has this same level bound by 0.000 000 000 1 cm-1 (<3 Hz), with an outer turning point of >0.01 mm. While this discovery occurred during a study of Li_2, the b(1^3Π2_u) states of heavier alkali diatomics are expected to have even larger amplitude vibrational states. While it might be tempting to call these very large molecules ``Rydberg molecules", it is important to remember that this term is already used to describe highly excited electronic states whose energy levels follow a formula similar to that for the famous Rydberg series. The highly delocalized vibrational states are a truly unfamiliar phenomenon. Dattani (2015) http://arxiv.org/abs/1508.07184v1 Musial & Kucharski (2014) Journal of Chemical Theory and Computation, 10, 1200

  15. Structures and vibrational spectra of pinacol.. 1. Infrared and matrix infrared spectra of monomeric pinacol. Ab initio calculations on conformers and vibrational frequencies

    NASA Astrophysics Data System (ADS)

    Dahlqvist, Martti; Hotokka, Matti; Räsänen, Markku

    1998-04-01

    The infrared spectra of monomeric pinacol molecules (2,3-dimethyl-2,3-butanediol; (CH 3) 2C(OH)C(OH)(CH 3) 2) have been recorded in the gas phase and dilute nonpolar solutions, and in an argon matrix. The vibrational data are consistent with the intramolecularly hydrogen-bonded G-type (gauche with respect to the central C-C bond) conformers and there is no evidence for the T-type (trans with respect to the central C-C bond) conformers, which have been observed in the condensed phases. This was confirmed by studying the infrared region 835-815 cm -1, which was found to be the most indicative to show spectral changes within the type of the conformers. In this region the band of the T-type conformers (assigned to the hybridized asymmetric vibration of the central CC and CO stretching modes) disappears when going from the condensed phases to phases, where pinacol molecules are monomeric. Ab initio HF/6-311G** (MP2/6-311G**) calculations support the experimental findings; the calculated relative energies for the tGg', gGg', g'Gg', tTt, and gTg' conformers are 0.0 (0.0), 3.4 (3.4), 5.1 (5.9), 7.9 (11.3), and 12.0 (14.0) kJ mol -1, respectively. Consequently, only the G-type conformers are sufficiently populated to give rise to observable spectral lines. Both experimental findings and theoretical calculations demonstrated that the bands in the argon matrix spectrum of pinacol are due to the most stable tGg' conformer. Although the ab initio calculations predict that also the gGg' and g'Gg' conformers are present in the gas phase and in dilute nonpolar solutions their existence could not be confirmed experimentally. Hence, we conclude that the conformation sensitive bands may coincide in the spectra. The HF/6-311G** ab initio calculations for vibrational frequencies of pinacol are consistent with this conclusion, suggesting only small differences between the wavenumbers of the G-type conformers. Pinacol does not show infrared-induced photorotamerization in the low-temperature argon matrix. This is due to the high energy barrier to internal rotation around the central C-C bond as demonstrated by ab initio calculations. Assignments of the vibrational bands were made with the aid of computer animations of the ab initio calculated harmonic vibrations, common group frequencies, and analogy conclusions from related compounds. The deuterium derivatives [(CD 3) 2C(OH)C(OH)(CD 3) 2 and (CH 3) 2C(OD)C(OD)(CH 3) 2] of pinacol were also utilized even though their spectra were recorded only in the condensed phases.

  16. Ab initio NMR parameters of BrCH3 and ICH3 with relativistic and vibrational corrections

    NASA Astrophysics Data System (ADS)

    Uhlíková, Tereza; Urban, Štěpán

    2018-05-01

    This study is focused on two effects identified when NMR parameters are calculated based on first principles. These effects are 1. vibrational correction of properties when using ab initio optimized equilibrium geometry; 2. relativistic effects and limits of using the Flygare equation. These effects have been investigated and determined for nuclear spin-rotation constants and nuclear magnetic shieldings for the CH3Br and CH3I molecules. The most significant result is the difference between chemical shieldings determined based on the ab initio relativistic four-component Dirac-Coulomb Hamiltonian and chemical shieldings calculated using experimental values and the Flygare equation. This difference is approximately 320 ppm and 1290 ppm for 79Br and 127I in the CH3X molecule, respectively.

  17. A rigorous full-dimensional quantum dynamics study of tunneling splitting of rovibrational states of vinyl radical C 2 H 3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Hua-Gen; Song, Hongwei; Yang, Minghui

    Here, we report a rigorous quantum mechanical study of the rovibrational energy levels of vinyl radical C 2H 3. The calculations are carried out using a real two-component multi-layer Lanczos algorithm in a set of orthogonal polyspherical coordinates based on a recently developed accurate ab initio potential energy surface of C 2H 3. All well converged 158 vibrational bands up to 3200 cm -1 are determined, together with a comparison to previous calculations and experimental results. Our results show a remarkable multi-dimensional tunneling effect on the vibrational spectra of the radical. The vibrational tunneling splitting is substantially different from thatmore » of previous reduced dimensional calculations. The rotational constants of the fundamental vibrational bands of C 2H 3 are also given. It was found that the rovibrational states are strongly coupled, especially among those bending vibrational modes. Additionally, the perturbative iteration approach of Gruebele has been extended to assign the rovibrational energy levels of C 2H 3 without the requirement of explicit wavefunctions.« less

  18. A rigorous full-dimensional quantum dynamics study of tunneling splitting of rovibrational states of vinyl radical C2H3.

    PubMed

    Yu, Hua-Gen; Song, Hongwei; Yang, Minghui

    2017-06-14

    We report a rigorous quantum mechanical study of the rovibrational energy levels of vinyl radical C 2 H 3 . The calculations are carried out using a real two-component multi-layer Lanczos algorithm in a set of orthogonal polyspherical coordinates based on a recently developed accurate ab initio potential energy surface of C 2 H 3 . All well converged 158 vibrational bands up to 3200 cm -1 are determined, together with a comparison to previous calculations and experimental results. Results show a remarkable multi-dimensional tunneling effect on the vibrational spectra of the radical. The vibrational tunneling splitting is substantially different from that of previous reduced dimensional calculations. The rotational constants of the fundamental vibrational bands of C 2 H 3 are also given. It was found that the rovibrational states are strongly coupled, especially among those bending vibrational modes. In addition, the perturbative iteration approach of Gruebele has been extended to assign the rovibrational energy levels of C 2 H 3 without the requirement of explicit wavefunctions.

  19. A rigorous full-dimensional quantum dynamics study of tunneling splitting of rovibrational states of vinyl radical C 2 H 3

    DOE PAGES

    Yu, Hua-Gen; Song, Hongwei; Yang, Minghui

    2017-06-12

    Here, we report a rigorous quantum mechanical study of the rovibrational energy levels of vinyl radical C 2H 3. The calculations are carried out using a real two-component multi-layer Lanczos algorithm in a set of orthogonal polyspherical coordinates based on a recently developed accurate ab initio potential energy surface of C 2H 3. All well converged 158 vibrational bands up to 3200 cm -1 are determined, together with a comparison to previous calculations and experimental results. Our results show a remarkable multi-dimensional tunneling effect on the vibrational spectra of the radical. The vibrational tunneling splitting is substantially different from thatmore » of previous reduced dimensional calculations. The rotational constants of the fundamental vibrational bands of C 2H 3 are also given. It was found that the rovibrational states are strongly coupled, especially among those bending vibrational modes. Additionally, the perturbative iteration approach of Gruebele has been extended to assign the rovibrational energy levels of C 2H 3 without the requirement of explicit wavefunctions.« less

  20. Ab initio and DFT studies of the structure and vibrational spectra of anhydrous caffeine

    NASA Astrophysics Data System (ADS)

    Srivastava, Santosh K.; Singh, Vipin B.

    2013-11-01

    Vibrational spectra and molecular structure of anhydrous caffeine have been systematically investigated by second order Moller-Plesset (MP2) perturbation theory and density functional theory (DFT) calculations. Vibrational assignments have been made and many previous ambiguous assignments in IR and Raman spectra are amended. The calculated DFT frequencies and intensities at B3LYP/6-311++G(2d,2p) level, were found to be in better agreement with the experimental values. It was found that DFT with B3LYP functional predicts harmonic vibrational wave numbers more close to experimentally observed value when it was performed on MP2 optimized geometry rather than DFT geometry. The calculated TD-DFT vertical excitation electronic energies of the valence excited states of anhydrous caffeine are found to be in consonance to the experimental absorption peaks.

  1. Vibrational spectra and ab initio analysis of tert-butyl, trimethylsilyl, and trimethylgermyl derivatives of 3,3-dimethylcyclopropene III. 3,3-Dimethyl-1-(trimethylsilyl)cyclopropene

    NASA Astrophysics Data System (ADS)

    De Maré, G. R.; Panchenko, Yu. N.; Abramenkov, A. V.; Baird, M. S.; Tverezovsky, V. V.; Nizovtsev, A. V.; Bolesov, I. G.

    2003-07-01

    The experimental Raman and IR vibrational spectra of 3,3-dimethyl-1-(trimethylsilyl)cyclopropene in the liquid phase were recorded. Total geometry optimisation was carried out at the HF/6-31G* level and the HF/6-31G*//HF/6-31G* force field was computed. This force field was corrected by scale factors determined previously (using Pulay's method) for correction of the HF/6-31G*//HF/6-31G* force fields of 3,3-dimethylbutene-1, 1-methyl-, 1,2-dimethyl-, and 3,3-dimethylcyclopropene. The theoretical vibrational frequencies calculated from the scaled quantum mechanical force field and the theoretical intensities obtained from the quantum mechanical calculation were used to construct predicted spectra and to perform the vibrational analysis of the experimental spectra.

  2. The vibrational dependence of dissociative recombination: Rate constants for N{sub 2}{sup +}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guberman, Steven L., E-mail: slg@sci.org

    Dissociative recombination rate constants are reported with electron temperature dependent uncertainties for the lowest 5 vibrational levels of the N{sub 2}{sup +} ground state. The rate constants are determined from ab initio calculations of potential curves, electronic widths, quantum defects, and cross sections. At 100 K electron temperature, the rate constants overlap with the exception of the third vibrational level. At and above 300 K, the rate constants for excited vibrational levels are significantly smaller than that for the ground level. It is shown that any experimentally determined total rate constant at 300 K electron temperature that is smaller thanmore » 2.0 × 10{sup −7} cm{sup 3}/s is likely to be for ions that have a substantially excited vibrational population. Using the vibrational level specific rate constants, the total rate constant is in very good agreement with that for an excited vibrational distribution found in a storage ring experiment. It is also shown that a prior analysis of a laser induced fluorescence experiment is quantitatively flawed due to the need to account for reactions with unknown rate constants. Two prior calculations of the dissociative recombination rate constant are shown to be inconsistent with the cross sections upon which they are based. The rate constants calculated here contribute to the resolution of a 30 year old disagreement between modeled and observed N{sub 2}{sup +} ionospheric densities.« less

  3. A quantum chemistry study of Qinghaosu

    NASA Astrophysics Data System (ADS)

    Gu, Jian-De; Chen, Kai-Xian; Jiang, Hua-Liang; Zhu, Wei-Liang; Chen, Jian-Zhong; Ji, Ru-Yun

    1997-10-01

    The powerful anti-malarial drug, Qinghaosu (Artemisinin), has been studied using ab initio methods. The DFT B3LYP method with the 6-31G ∗ basis set gives an excellent geometry compared to experiments, especially for the OO bond length and the 1,2,4-Trioxane ring subsystem. The R(OO) bond length predicted at this level is 1.460 Å, only 0.018 Å shorter than the experimental measurement. The vibrational analysis shows that the OO stretching mode is combined with the OC vibration mode, having the character of an OOC entity. The OO vibrational band at 722 cm -1 suggested in the experimental studies has been assigned as 1,2,4-trioxane ring breathing.

  4. Tunneling Splittings in Vibronic Structure of CH_3F^+ ( X^2E): Studied by High Resolution Photoelectron Spectra and AB Initio Theoretical Method

    NASA Astrophysics Data System (ADS)

    Mo, Yuxiang; Gao, Shuming; Dai, Zuyang; Li, Hua

    2013-06-01

    We report a combined experimental and theoretical study on the vibronic structure of CH_3F^+. The results show that the tunneling splittings of vibrational energy levels occur in CH_3F^+ due to the Jahn-Teller effect. Experimentally, we have measured a high resolution ZEKE spectrum of CH_3F up to 3500 cm^-^1 above the ground state. Theoretically, we performed an ab initio calculation based on the diabatic model. The adiabatic potential energy surfaces (APES) of CH_3F^+ have been calculated at the MRCI/CAS/avq(t)z level and expressed by Taylor expansions with normal coordinates as variables. The energy gradients for the lower and upper APES, the derivative couplings between them and also the energies of the APES have been used to determine the coefficients in the Taylor expansion. The spin-vibronic energy levels have been calculated by accounting all six vibrational modes and their couplings. The experimental ZEKE spectra were assigned based on the theoretical calculations. W. Domcke, D. R. Yarkony, and H. Köpple (Eds.), Conical Intersections: Eletronic Structure, Dynamics and Spectroscopy (World Scientific, Singapore, 2004). M. S. Schuurman, D. E. Weinberg, and D. R. Yarkony, J. Chem. Phys. 127, 104309 (2007).

  5. Ab Initio Effective Rovibrational Hamiltonians for Non-Rigid Molecules via Curvilinear VMP2

    NASA Astrophysics Data System (ADS)

    Changala, Bryan; Baraban, Joshua H.

    2017-06-01

    Accurate predictions of spectroscopic constants for non-rigid molecules are particularly challenging for ab initio theory. For all but the smallest systems, ``brute force'' diagonalization of the full rovibrational Hamiltonian is computationally prohibitive, leaving us at the mercy of perturbative approaches. However, standard perturbative techniques, such as second order vibrational perturbation theory (VPT2), are based on the approximation that a molecule makes small amplitude vibrations about a well defined equilibrium structure. Such assumptions are physically inappropriate for non-rigid systems. In this talk, we will describe extensions to curvilinear vibrational Møller-Plesset perturbation theory (VMP2) that account for rotational and rovibrational effects in the molecular Hamiltonian. Through several examples, we will show that this approach provides predictions to nearly microwave accuracy of molecular constants including rotational and centrifugal distortion parameters, Coriolis coupling constants, and anharmonic vibrational and tunneling frequencies.

  6. Computational molecular spectroscopy of X ˜ 2 Π NCS: Electronic properties and ro-vibrationally averaged structure

    NASA Astrophysics Data System (ADS)

    Hirano, Tsuneo; Nagashima, Umpei; Jensen, Per

    2018-04-01

    For NCS in the X ˜ 2 Π electronic ground state, three-dimensional potential energy surfaces (3D PESs) have been calculated ab initio at the core-valence, full-valence MR-SDCI+Q/[aug-cc-pCVQZ (N, C, S)] level of theory. The ab initio 3D PESs are employed in second-order-perturbation-theory and DVR3D calculations to obtain various molecular constants and ro-vibrationally averaged structures. The 3D PESs show that the X ˜ 2 Π NCS has its potential minimum at a linear configuration, and hence it is a "linear molecule." The equilibrium structure has re (N-C) = 1.1778 Å, re (C-S) = 1.6335 Å, and ∠e (N-C-S) = 180°. The ro-vibrationally averaged structure, determined as expectation values over DVR3D wavefunctions, has 〈 r (N-C)〉0 = 1.1836 Å, 〈 r (C-S)〉0 = 1.6356 Å, and 〈 ∠ (N-C-S)〉0 = 172.5°. Using these expectation values as the initial guess, a bent r0 structure having an 〈 ∠ (N-C-S)〉0 of 172.2° is deduced from the experimentally reported B0 values for NC32S and NC34S. Our previous prediction that a linear molecule, in any ro-vibrational state including the ro-vibrational ground state, is to be "observed" as being bent on ro-vibrational average, has been confirmed here theoretically through the expectation value for the bond-angle deviation from linearity, 〈 ρ bar 〉 , and experimentally through the interpretation of the experimentally derived rotational-constant values.

  7. Red shift of the SF6 vibration spectrum induced by the electron absorption: An ab initio study

    NASA Astrophysics Data System (ADS)

    Tang, Bin; Zhang, Long-Fei; Han, Fang-Yuan; Luo, Zong-Chang; Liang, Qin-Qin; Liu, Chen-Yao; Zhu, Li-Ping; Zhang, Jie-Ming

    2018-01-01

    As a widely used gas insulator, sulfur hexafluoride (SF6) has a large cross section for electron absorption, which may make the molecule ionized to the -1 charge state in the high-voltage environment. Using ab initio calculations, we show that the absorbed electron is located averagely on the six F atoms, occupying the antibonding level of the s-p σ bonds and increasing the S-F bond length. The ionized SF6- molecule decreases its decomposition energy to only 1.5 eV, much lower than that of the neutral molecule (4.8 eV), which can be understood according to the occupying of the antibonding orbital and thus weakening of the s-p σ bonds. The weakening of the bonds results in an obvious red shift in the vibrational modes of the ionized SF6- molecule by 120-270 cm-1, compared to those of the neutral molecule. The detailed origin of these vibrational modes is analyzed. Since the appearance of the ionized SF6- molecules is before the decomposition reaction of the SF6- molecule into low-fluoride sulfides, this method may improve the sensitivity of the defection of the partial discharge and save more time for the prevention of the insulation failure in advance.

  8. Absorption spectra of ammonia near 1 μm

    NASA Astrophysics Data System (ADS)

    Barton, Emma J.; Polyansky, Oleg L.; Yurchenko, Sergei. N.; Tennyson, Jonathan; Civiš, S.; Ferus, M.; Hargreaves, R.; Ovsyannikov, R. I.; Kyuberis, A. A.; Zobov, N. F.; Béguier, S.; Campargue, A.

    2017-12-01

    An ammonia absorption spectrum recorded at room temperature in the region 8800-10,400 cm-1 is analysed using a variational line list, BYTe, and ground state energies determined using the MARVEL procedure. BYTe is used as a starting point to initialise assignments by combination differences and the method of branches. Assignments are presented for the region 9400-9850 cm-1. 642 lines are assigned to 6 previously unobserved vibrational bands, (2v1 + 2 v42) ±, (2v1 + v31) ± and (v1 + v31 + 2 v42) ±, leading to 428 new energy levels with 208 confirmed by combination differences. A recently calculated purely ab initio NH3 PES is also used to calculate rovibrational energy levels. Comparison with assigned levels shows better agreement between observed and calculated levels than for BYTe for higher vibrational bands.

  9. N-H stretching modes of adenosine monomer in solution studied by ultrafast nonlinear infrared spectroscopy and ab initio calculations.

    PubMed

    Greve, Christian; Preketes, Nicholas K; Costard, Rene; Koeppe, Benjamin; Fidder, Henk; Nibbering, Erik T J; Temps, Friedrich; Mukamel, Shaul; Elsaesser, Thomas

    2012-07-26

    The N-H stretching vibrations of adenine, one of the building blocks of DNA, are studied by combining infrared absorption and nonlinear two-dimensional infrared spectroscopy with ab initio calculations. We determine diagonal and off-diagonal anharmonicities of N-H stretching vibrations in chemically modified adenosine monomer dissolved in chloroform. For the single-quantum excitation manifold, the normal mode picture with symmetric and asymmetric NH(2) stretching vibrations is fully appropriate. For the two-quantum excitation manifold, however, the interplay between intermode coupling and frequency shifts due to a large diagonal anharmonicity leads to a situation where strong mixing does not occur. We compare our findings with previously reported values obtained on overtone spectroscopy of coupled hydrogen stretching oscillators.

  10. Vibrational Frequencies and Spectroscopic Constants for 1(sup 3)A' HNC and 1(sup 3)A' HOC+ from High-Accuracy Quartic Force Fields

    NASA Technical Reports Server (NTRS)

    Fortenberry, Ryan C.; Crawford, T. Daniel; Lee, Timothy J.

    2014-01-01

    The spectroscopic constants and vibrational frequencies for the 1(sup 3)A' states of HNC, DNC, HOC+, and DOC+ are computed and discussed in this work. The reliable CcCR quartic force field based on high-level coupled cluster ab initio quantum chemical computations is exclusively utilized to provide the anharmonic potential. Then, second order vibrational perturbation theory and vibrational configuration interaction methods are employed to treat the nuclear Schroedinger equation. Second-order perturbation theory is also employed to provide spectroscopic data for all molecules examined. The relationship between these molecules and the corresponding 1(sup 3)A' HCN and HCO+ isomers is further developed here. These data are applicable to laboratory studies involving formation of HNC and HOC+ as well as astronomical observations of chemically active astrophysical environments.

  11. Quantum Scattering Study of Ro-Vibrational Excitations in N+N(sub 2) Collisions under Re-entry Conditions

    NASA Technical Reports Server (NTRS)

    Wang, Dunyou; Stallcop, James R.; Dateo, Christopher E.; Schwenke, David W.; Huo, Winifred M.

    2004-01-01

    A three-dimensional time-dependent quantum dynamics approach using a recently developed ab initio potential energy surface is applied to study ro-vibrational excitation in N+N2 exchange scattering for collision energies in the range 2.1- 3.2 eV. State-to-state integral exchange cross sections are examined to determine the distribution of excited rotational states of N(sub 2). The results demonstrate that highly-excited rotational states are produced by exchange scattering and furthermore, that the maximum value of (Delta)j increases rapidly with increasing collision energies. Integral exchange cross sections and exchange rate constants for excitation to the lower (upsilon = 0-3) vibrational energy levels are presented as a function of the collision energy. Excited-vibrational-state distributions for temperatures at 2,000 K and 10,000 K are included.

  12. Localization and anharmonicity of the vibrational modes for GC Watson-Crick and Hoogsteen base pairs.

    PubMed

    Bende, Attila; Bogdan, Diana; Muntean, Cristina M; Morari, Cristian

    2011-12-01

    We present an ab initio study of the vibrational properties of cytosine and guanine in the Watson-Crick and Hoogsteen base pair configurations. The results are obtained by using two different implementations of the DFT method. We assign the vibrational frequencies to cytosine or to guanine using the vibrational density of states. Next, we investigate the importance of anharmonic corrections for the vibrational modes. In particular, the unusual anharmonic effect of the H(+) vibration in the case of the Hoogsteen base pair configuration is discussed.

  13. Ab initio theoretical calculations of the electronic excitation energies of small water clusters.

    PubMed

    Tachikawa, Hiroto; Yabushita, Akihiro; Kawasaki, Masahiro

    2011-12-14

    A direct ab initio molecular dynamics method has been applied to a water monomer and water clusters (H(2)O)(n) (n = 1-3) to elucidate the effects of zero-point energy (ZPE) vibration on the absorption spectra of water clusters. Static ab initio calculations without ZPE showed that the first electronic transitions of (H(2)O)(n), (1)B(1)←(1)A(1), are blue-shifted as a function of cluster size (n): 7.38 eV (n = 1), 7.58 eV (n = 2) and 8.01 eV (n = 3). The inclusion of the ZPE vibration strongly affects the excitation energies of a water dimer, and a long red-tail appears in the range of 6.42-6.90 eV due to the structural flexibility of a water dimer. The ultraviolet photodissociation of water clusters and water ice surfaces is relevant to these results.

  14. Multi-layer Lanczos iteration approach to calculations of vibrational energies and dipole transition intensities for polyatomic molecules

    DOE PAGES

    Yu, Hua-Gen

    2015-01-28

    We report a rigorous full dimensional quantum dynamics algorithm, the multi-layer Lanczos method, for computing vibrational energies and dipole transition intensities of polyatomic molecules without any dynamics approximation. The multi-layer Lanczos method is developed by using a few advanced techniques including the guided spectral transform Lanczos method, multi-layer Lanczos iteration approach, recursive residue generation method, and dipole-wavefunction contraction. The quantum molecular Hamiltonian at the total angular momentum J = 0 is represented in a set of orthogonal polyspherical coordinates so that the large amplitude motions of vibrations are naturally described. In particular, the algorithm is general and problem-independent. An applicationmore » is illustrated by calculating the infrared vibrational dipole transition spectrum of CH₄ based on the ab initio T8 potential energy surface of Schwenke and Partridge and the low-order truncated ab initio dipole moment surfaces of Yurchenko and co-workers. A comparison with experiments is made. The algorithm is also applicable for Raman polarizability active spectra.« less

  15. A comparison of force fields and calculation methods for vibration intervals of isotopic H3(+) molecules

    NASA Astrophysics Data System (ADS)

    Carney, G. D.; Adler-Golden, S. M.; Lesseski, D. C.

    1986-04-01

    This paper reports (1) improved values for low-lying vibration intervals of H3(+), H2D(+), D2H(+), and D3(+) calculated using the variational method and Simons-Parr-Finlan (1973) representations of the Carney-Porter (1976) and Dykstra-Swope (1979) ab initio H3(+) potential energy surfaces, (2) quartic normal coordinate force fields for isotopic H3(+) molecules, (3) comparisons of variational and second-order perturbation theory, and (4) convergence properties of the Lai-Hagstrom internal coordinate vibrational Hamiltonian. Standard deviations between experimental and ab initio fundamental vibration intervals of H3(+), H2D(+), D2H(+), and D3(+) for these potential surfaces are 6.9 (Carney-Porter) and 1.2/cm (Dykstra-Swope). The standard deviations between perturbation theory and exact variational fundamentals are 5 and 10/cm for the respective surfaces. The internal coordinate Hamiltonian is found to be less efficient than the previously employed 't' coordinate Hamiltonian for these molecules, except in the case of H2D(+).

  16. Ab initio study of the chlorine nitrate protonation reaction - Implications for loss of ClONO2 in the stratosphere

    NASA Technical Reports Server (NTRS)

    Lee, Timothy J.; Rice, Julia E.

    1993-01-01

    Ab initio quantum mechanical methods, including coupled-cluster theory, are used to determine the equilibrium geometries, dipole moments, and harmonic vibrational frequencies of ClONO2, NO2(+), and four isomers of protonated ClONO2. It was found that, for the equilibrium structures and harmonic frequencies of ClONO2, HOCl, and NO2(+), the highest-level theoretical predictions are consistent with the available experimental information concerning the reactions of ClONO2 and HOCl with HCl on the surface of polar stratospheric clouds (PSCs). The study supports a recent hypothesis that the reaction of ClONO2 on the surface of PSCs is proton catalyzed, although the mechanism is different.

  17. Ab initio study of energy transfer rates and impact sensitivities of crystalline explosives.

    PubMed

    Bernstein, Jonathan

    2018-02-28

    Impact sensitivities of various crystalline explosives were predicted by means of plane wave-density functional theory calculations. Crystal structures and complete vibrational spectra of TATB, PETN, FOX7, TEX, 14DNI, and β-HMX molecular crystals were calculated. A correlation between the phonon-vibron coupling (which is proportionally related to the energy transfer rate between the phonon manifold and the intramolecular vibrational modes) and impact sensitivities of secondary explosives was found. We propose a method, based on ab initio calculations, for the evaluation of impact sensitivities, which consequently can assist in screening candidates for chemical synthesis of high energetic materials.

  18. Ab initio study of energy transfer rates and impact sensitivities of crystalline explosives

    NASA Astrophysics Data System (ADS)

    Bernstein, Jonathan

    2018-02-01

    Impact sensitivities of various crystalline explosives were predicted by means of plane wave-density functional theory calculations. Crystal structures and complete vibrational spectra of TATB, PETN, FOX7, TEX, 14DNI, and β-HMX molecular crystals were calculated. A correlation between the phonon-vibron coupling (which is proportionally related to the energy transfer rate between the phonon manifold and the intramolecular vibrational modes) and impact sensitivities of secondary explosives was found. We propose a method, based on ab initio calculations, for the evaluation of impact sensitivities, which consequently can assist in screening candidates for chemical synthesis of high energetic materials.

  19. Ab Initio Potential Energy Surfaces and the Calculation of Accurate Vibrational Frequencies

    NASA Technical Reports Server (NTRS)

    Lee, Timothy J.; Dateo, Christopher E.; Martin, Jan M. L.; Taylor, Peter R.; Langhoff, Stephen R. (Technical Monitor)

    1995-01-01

    Due to advances in quantum mechanical methods over the last few years, it is now possible to determine ab initio potential energy surfaces in which fundamental vibrational frequencies are accurate to within plus or minus 8 cm(exp -1) on average, and molecular bond distances are accurate to within plus or minus 0.001-0.003 Angstroms, depending on the nature of the bond. That is, the potential energy surfaces have not been scaled or empirically adjusted in any way, showing that theoretical methods have progressed to the point of being useful in analyzing spectra that are not from a tightly controlled laboratory environment, such as vibrational spectra from the interstellar medium. Some recent examples demonstrating this accuracy will be presented and discussed. These include the HNO, CH4, C2H4, and ClCN molecules. The HNO molecule is interesting due to the very large H-N anharmonicity, while ClCN has a very large Fermi resonance. The ab initio studies for the CH4 and C2H4 molecules present the first accurate full quartic force fields of any kind (i.e., whether theoretical or empirical) for a five-atom and six-atom system, respectively.

  20. MARVEL analysis of the rotational-vibrational states of the molecular ions H2D+ and D2H+.

    PubMed

    Furtenbacher, Tibor; Szidarovszky, Tamás; Fábri, Csaba; Császár, Attila G

    2013-07-07

    Critically evaluated rotational-vibrational line positions and energy levels, with associated critically reviewed labels and uncertainties, are reported for two deuterated isotopologues of the H3(+) molecular ion: H2D(+) and D2H(+). The procedure MARVEL, standing for Measured Active Rotational-Vibrational Energy Levels, is used to determine the validated levels and lines and their self-consistent uncertainties based on the experimentally available information. The spectral ranges covered for the isotopologues H2D(+) and D2H(+) are 5.2-7105.5 and 23.0-6581.1 cm(-1), respectively. The MARVEL energy levels of the ortho and para forms of the ions are checked against ones determined from accurate variational nuclear motion computations employing the best available adiabatic ab initio potential energy surfaces of these isotopologues. The number of critically evaluated, validated and recommended experimental (levels, lines) are (109, 185) and (104, 136) for H2D(+) and D2H(+), respectively. The lists of assigned MARVEL lines and levels and variational levels obtained for H2D(+) and D2H(+) as part of this study are deposited in the ESI to this paper.

  1. The dipole moment surface for hydrogen sulfide H2S

    NASA Astrophysics Data System (ADS)

    Azzam, Ala`a. A. A.; Lodi, Lorenzo; Yurchenko, Sergey N.; Tennyson, Jonathan

    2015-08-01

    In this work we perform a systematic ab initio study of the dipole moment surface (DMS) of H2S at various levels of theory and of its effect on the intensities of vibration-rotation transitions; H2S intensities are known from the experiment to display anomalies which have so far been difficult to reproduce by theoretical calculations. We use the transition intensities from the HITRAN database of 14 vibrational bands for our comparisons. The intensities of all fundamental bands show strong sensitivity to the ab initio method used for constructing the DMS while hot, overtone and combination bands up to 4000 cm-1 do not. The core-correlation and relativistic effects are found to be important for computed line intensities, for instance affecting the most intense fundamental band (ν2) by about 20%. Our recommended DMS, called ALYT2, is based on the CCSD(T)/aug-cc-pV(6+d)Z level of theory supplemented by a core-correlation/relativistic corrective surface obtained at the CCSD[T]/aug-cc-pCV5Z-DK level. The corresponding computed intensities agree significantly better (to within 10%) with experimental data taken directly from original papers. Worse agreement (differences of about 25%) is found for those HITRAN intensities obtained from fitted effective dipole models, suggesting the presence of underlying problems in those fits.

  2. Nuclear spin/parity dependent spectroscopy and predissociation dynamics in vOH = 2 ← 0 overtone excited Ne-H2O clusters: Theory and experiment

    NASA Astrophysics Data System (ADS)

    Ziemkiewicz, Michael P.; Pluetzer, Christian; Loreau, Jérôme; van der Avoird, Ad; Nesbitt, David J.

    2017-12-01

    Vibrationally state selective overtone spectroscopy and state- and nuclear spin-dependent predissociation dynamics of weakly bound ortho- and para-Ne-H2O complexes (D0(ortho) = 34.66 cm-1 and D0(para) = 31.67 cm-1) are reported, based on near-infrared excitation of van der Waals cluster bands correlating with vOH = 2 ← 0 overtone transitions (|02-〉 and |02+〉) out of the ortho (101) and para (000) internal rotor states of the H2O moiety. Quantum theoretical calculations for nuclear motion on a high level potential energy surface [CCSD(T)/VnZf12 (n = 3, 4)], corrected for basis set superposition error and extrapolated to the complete basis set (CBS) limit, are employed to successfully predict and assign Π-Σ, Σ-Σ, and Σ-Π infrared bands in the spectra, where Σ or Π represent approximate projections of the body-fixed H2O angular momentum along the Ne-H2O internuclear axis. IR-UV pump-probe experimental capabilities permit real-time measurements of the vibrational predissociation dynamics, which indicate facile intramolecular vibrational energy transfer from the H2O vOH = 2 overtone vibrations into the VdWs (van der Waals) dissociation coordinate on the τprediss = 15-25 ns time scale. Whereas all predicted strong transitions in the ortho-Ne-H2O complexes are readily detected and assigned, vibrationally mediated photolysis spectra for the corresponding para-Ne-H2O bands are surprisingly absent despite ab initio predictions of Q-branch intensities with S/N > 20-40. Such behavior signals the presence of highly selective nuclear spin ortho-para predissociation dynamics in the upper state, for which we offer a simple mechanism based on Ne-atom mediated intramolecular vibrational relaxation in the H2O subunit (i.e., |02±〉 → {|01±〉; v2 = 2}), which is confirmed by the ab initio energy level predictions and the nascent OH rotational (N), spin orbit (Π1/2,3/2), and lambda doublet product distributions.

  3. Thermodynamic Calculations for Molecules with Asymmetric Internal Rotors. II. Application to the 1,2-Dihaloethanes

    PubMed Central

    Wong, Bryan M.; Fadri, Maria M.; Raman, Sumathy

    2012-01-01

    The thermodynamic properties of three halocarbon molecules relevant in atmospheric and public health applications are presented from ab initio calculations. Our technique makes use of a reaction path-like Hamiltonian to couple all the vibrational modes to a large-amplitude torsion for 1,2-difluoroethane, 1,2-dichloroethane, and 1,2-dibromoethane, each of which possesses a heavy asymmetric rotor. Optimized ab initio energies and Hessians were calculated at the CCSD(T) and MP2 levels of theory, respectively. In addition, to investigate the contribution of electronically excited states to thermodynamic properties, several excited singlet and triplet states for each of the halocarbons were computed at the CASSCF/MRCI level. Using the resulting potentials and projected frequencies, the couplings of all the vibrational modes to the large-amplitude torsion are calculated using the new STAR-P 2.4.0 software platform that automatically parallelizes our codes with distributed memory via a familiar MATLAB interface. Utilizing the efficient parallelization scheme of STAR-P, we obtain thermodynamic properties for each of the halocarbons, with temperatures ranging from 298.15 to 1000 K. We propose that the free energies, entropies, and heat capacities obtained from our methods be used to supplement theoretical and experimental values found in current thermodynamic tables. PMID:17663439

  4. Thermodynamic calculations for molecules with asymmetric internal rotors. II. Application to the 1,2-dihaloethanes.

    PubMed

    Wong, Bryan M; Fadri, Maria M; Raman, Sumathy

    2008-02-01

    The thermodynamic properties of three halocarbon molecules relevant in atmospheric and public health applications are presented from ab initio calculations. Our technique makes use of a reaction path-like Hamiltonian to couple all the vibrational modes to a large-amplitude torsion for 1,2-difluoroethane, 1,2-dichloroethane, and 1,2-dibromoethane, each of which possesses a heavy asymmetric rotor. Optimized ab initio energies and Hessians were calculated at the CCSD(T) and MP2 levels of theory, respectively. In addition, to investigate the contribution of electronically excited states to thermodynamic properties, several excited singlet and triplet states for each of the halocarbons were computed at the CASSCF/MRCI level. Using the resulting potentials and projected frequencies, the couplings of all the vibrational modes to the large-amplitude torsion are calculated using the new STAR-P 2.4.0 software platform that automatically parallelizes our codes with distributed memory via a familiar MATLAB interface. Utilizing the efficient parallelization scheme of STAR-P, we obtain thermodynamic properties for each of the halocarbons, with temperatures ranging from 298.15 to 1000 K. We propose that the free energies, entropies, and heat capacities obtained from our methods be used to supplement theoretical and experimental values found in current thermodynamic tables. (c) 2007 Wiley Periodicals, Inc.

  5. Ab initio-informed maximum entropy modeling of rovibrational relaxation and state-specific dissociation with application to the O2 + O system

    NASA Astrophysics Data System (ADS)

    Kulakhmetov, Marat; Gallis, Michael; Alexeenko, Alina

    2016-05-01

    Quasi-classical trajectory (QCT) calculations are used to study state-specific ro-vibrational energy exchange and dissociation in the O2 + O system. Atom-diatom collisions with energy between 0.1 and 20 eV are calculated with a double many body expansion potential energy surface by Varandas and Pais [Mol. Phys. 65, 843 (1988)]. Inelastic collisions favor mono-quantum vibrational transitions at translational energies above 1.3 eV although multi-quantum transitions are also important. Post-collision vibrational favoring decreases first exponentially and then linearly as Δv increases. Vibrationally elastic collisions (Δv = 0) favor small ΔJ transitions while vibrationally inelastic collisions have equilibrium post-collision rotational distributions. Dissociation exhibits both vibrational and rotational favoring. New vibrational-translational (VT), vibrational-rotational-translational (VRT) energy exchange, and dissociation models are developed based on QCT observations and maximum entropy considerations. Full set of parameters for state-to-state modeling of oxygen is presented. The VT energy exchange model describes 22 000 state-to-state vibrational cross sections using 11 parameters and reproduces vibrational relaxation rates within 30% in the 2500-20 000 K temperature range. The VRT model captures 80 × 106 state-to-state ro-vibrational cross sections using 19 parameters and reproduces vibrational relaxation rates within 60% in the 5000-15 000 K temperature range. The developed dissociation model reproduces state-specific and equilibrium dissociation rates within 25% using just 48 parameters. The maximum entropy framework makes it feasible to upscale ab initio simulation to full nonequilibrium flow calculations.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Makarewicz, Jan, E-mail: jama@amu.edu.pl; Shirkov, Leonid

    The pyridine-Ar (PAr) van der Waals (vdW) complex is studied using a high level ab initio method. Its structure, binding energy, and intermolecular vibrational states are determined from the analytical potential energy surface constructed from interaction energy (IE) values computed at the coupled cluster level of theory with single, double, and perturbatively included triple excitations with the augmented correlation consistent polarized valence double-ζ (aug-cc-pVDZ) basis set complemented by midbond functions. The structure of the complex at its global minimum with Ar at a distance of 3.509 Å from the pyridine plane and shifted by 0.218 Å from the center ofmore » mass towards nitrogen agrees well with the corresponding equilibrium structure derived previously from the rotational spectrum of PAr. The PAr binding energy D{sub e} of 392 cm{sup −1} is close to that of 387 cm{sup −1} calculated earlier at the same ab initio level for the prototypical benzene-Ar (BAr) complex. However, under an extension of the basis set, D{sub e} for PAr becomes slightly lower than D{sub e} for BAr. The ab initio vdW vibrational energy levels allow us to estimate the reliability of the methods for the determination of the vdW fundamentals from the rotational spectra. To disclose the character of the intermolecular interaction in PAr, the symmetry-adapted perturbation theory (SAPT) is employed for the analysis of different physical contributions to IE. It is found that SAPT components of IE can be approximately expressed in the binding region by only two of them: the exchange repulsion and dispersion energy. The total induction effect is negligible. The interrelations between various SAPT components found for PAr are fulfilled for a few other complexes involving aromatic molecules and Ar or Ne, which indicates that they are valid for all rare gas (Rg) atoms and aromatics.« less

  7. Torsional anharmonicity in the conformational thermodynamics of flexible molecules

    NASA Astrophysics Data System (ADS)

    Miller, Thomas F., III; Clary, David C.

    We present an algorithm for calculating the conformational thermodynamics of large, flexible molecules that combines ab initio electronic structure theory calculations with a torsional path integral Monte Carlo (TPIMC) simulation. The new algorithm overcomes the previous limitations of the TPIMC method by including the thermodynamic contributions of non-torsional vibrational modes and by affordably incorporating the ab initio calculation of conformer electronic energies, and it improves the conventional ab initio treatment of conformational thermodynamics by accounting for the anharmonicity of the torsional modes. Using previously published ab initio results and new TPIMC calculations, we apply the algorithm to the conformers of the adrenaline molecule.

  8. Non-Adiabatic Effects on Excited States of Vinylidene Observed with Slow Photoelectron Velocity-Map Imaging.

    PubMed

    DeVine, Jessalyn A; Weichman, Marissa L; Zhou, Xueyao; Ma, Jianyi; Jiang, Bin; Guo, Hua; Neumark, Daniel M

    2016-12-21

    High-resolution slow photoelectron velocity-map imaging spectra of cryogenically cooled X̃ 2 B 2 H 2 CC - and D 2 CC - in the region of the vinylidene triplet excited states are reported. Three electronic bands are observed and, with the assistance of electronic structure calculations and quantum dynamics on ab initio-based near-equilibrium potential energy surfaces, are assigned as detachment to the [Formula: see text] 3 B 2 (T 1 ), b̃ 3 A 2 (T 2 ), and à 1 A 2 (S 1 ) excited states of neutral vinylidene. This work provides the first experimental observation of the à singlet excited state of H 2 CC. While regular vibrational structure is observed for the ã and à electronic bands, a number of irregular features are resolved in the vicinity of the b̃ band vibrational origin. High-level ab initio calculations suggest that this anomalous structure arises from a conical intersection between the ã and b̃ triplet states near the b̃ state minimum, which strongly perturbs the vibrational levels in the two electronic states through nonadiabatic coupling. Using the adiabatic electron affinity of H 2 CC previously measured to be 0.490(6) eV by Ervin and co-workers [J. Chem. Phys. 1989, 91, 5974], term energies for the excited neutral states of H 2 CC are found to be T 0 (ã 3 B 2 ) = 2.064(6), T 0 (b̃ 3 A 2 ) = 2.738(6), and T 0 (à 1 A 2 ) = 2.991(6) eV.

  9. N-H Stretching Excitations in Adenosine-Thymidine Base Pairs in Solution: Base Pair Geometries, Infrared Line Shapes and Ultrafast Vibrational Dynamics

    PubMed Central

    Greve, Christian; Preketes, Nicholas K.; Fidder, Henk; Costard, Rene; Koeppe, Benjamin; Heisler, Ismael A.; Mukamel, Shaul; Temps, Friedrich; Nibbering, Erik T. J.; Elsaesser, Thomas

    2013-01-01

    We explore the N-H stretching vibrations of adenosine-thymidine base pairs in chloroform solution with linear and nonlinear infrared spectroscopy. Based on estimates from NMR measurements and ab initio calculations, we conclude that adenosine and thymidine form hydrogen bonded base pairs in Watson-Crick, reverse Watson-Crick, Hoogsteen and reverse Hoogsteen configurations with similar probability. Steady-state concentration- and temperature dependent linear FT-IR studies, including H/D exchange experiments, reveal that these hydrogen-bonded base pairs have complex N-H/N-D stretching spectra with a multitude of spectral components. Nonlinear 2D-IR spectroscopic results, together with IR-pump-IR-probe measurements, as also corroborated by ab initio calculations, reveal that the number of N-H stretching transitions is larger than the total number of N-H stretching modes. This is explained by couplings to other modes, such as an underdamped low-frequency hydrogen-bond mode, and a Fermi resonance with NH2 bending overtone levels of the adenosine amino-group. Our results demonstrate that modeling based on local N-H stretching vibrations only is not sufficient and call for further refinement of the description of the N-H stretching manifolds of nucleic acid base pairs of adenosine and thymidine, incorporating a multitude of couplings with fingerprint and low-frequency modes. PMID:23234439

  10. Bound state potential energy surface construction: ab initio zero-point energies and vibrationally averaged rotational constants.

    PubMed

    Bettens, Ryan P A

    2003-01-15

    Collins' method of interpolating a potential energy surface (PES) from quantum chemical calculations for reactive systems (Jordan, M. J. T.; Thompson, K. C.; Collins, M. A. J. Chem. Phys. 1995, 102, 5647. Thompson, K. C.; Jordan, M. J. T.; Collins, M. A. J. Chem. Phys. 1998, 108, 8302. Bettens, R. P. A.; Collins, M. A. J. Chem. Phys. 1999, 111, 816) has been applied to a bound state problem. The interpolation method has been combined for the first time with quantum diffusion Monte Carlo calculations to obtain an accurate ground state zero-point energy, the vibrationally average rotational constants, and the vibrationally averaged internal coordinates. In particular, the system studied was fluoromethane using a composite method approximating the QCISD(T)/6-311++G(2df,2p) level of theory. The approach adopted in this work (a) is fully automated, (b) is fully ab initio, (c) includes all nine nuclear degrees of freedom, (d) requires no assumption of the functional form of the PES, (e) possesses the full symmetry of the system, (f) does not involve fitting any parameters of any kind, and (g) is generally applicable to any system amenable to quantum chemical calculations and Collins' interpolation method. The calculated zero-point energy agrees to within 0.2% of its current best estimate. A0 and B0 are within 0.9 and 0.3%, respectively, of experiment.

  11. Ab Initio Anharmonic Analysis of Vibrational Spectra of Uracil Using the Numerical-Analytic Implementation of Operator Van Vleck Perturbation Theory.

    PubMed

    Krasnoshchekov, Sergey V; Vogt, Natalja; Stepanov, Nikolay F

    2015-06-25

    The numerical-analytic implementation of the operator version of the canonical Van Vleck second-order vibrational perturbation theory (CVPT2) is employed for a purely ab initio prediction and interpretation of the infrared (IR) and Raman anharmonic spectra of a medium-size molecule of the diketo tautomer of uracil (2,4(1H,3H)-pyrimidinedione), which has high biological importance as one of the four RNA nucleobases. A nonempirical, semidiagonal quartic potential energy surface (PES) expressed in normal coordinates was evaluated at the MP2/cc-pVTZ level of theory. The quality of the PES was improved by replacing the harmonic frequencies with the "best" estimated CCSD(T)-based values taken from the literature. The theoretical method is enhanced by an accurate treatment of multiple Fermi and Darling-Dennison resonances with evaluation of the corresponding resonance constants W and K (CVPT2+WK method). A prediction of the anharmonic frequencies as well as IR and Raman intensities was used for a detailed interpretation of the experimental spectra of uracil. Very good agreement between predicted and observed vibrational frequencies has been achieved (RMSD ∼4.5 cm(-1)). The model employed gave a theoretically robust treatment of the multiple resonances in the 1680-1790 cm(-1) region. Our new analysis gives the most reliable reassignments of IR and Raman spectra of uracil available to date.

  12. Ab Initio Calculations of Anharmonic Vibrational Spectroscopy for Hydrogen Fluoride (HF)n (n=3,4) and Mixed Hydrogen Fluoride/Water (HF)n(H20)n (n=1,2,4) Clusters

    NASA Technical Reports Server (NTRS)

    Chaban, Galina M.; Gerber, R. Benny; Kwak, Dochan (Technical Monitor)

    2001-01-01

    Anharmonic vibrational frequencies and intensities are computed for hydrogen fluoride clusters (HF)n with n=3,4 and mixed clusters of hydrogen fluoride with water (HF)n(H2O)n where n=1,2. For the (HF)4(H2O)4 complex, the vibrational spectra are calculated at the harmonic level, and anharmonic effects are estimated. Potential energy surfaces for these systems are obtained at the MP2/TZP level of electronic structure theory. Vibrational states are calculated from the potential surface points using the correlation-corrected vibrational self-consistent field (CC-VSCF) method. The method accounts for the anharmonicities and couplings between all vibrational modes and provides fairly accurate anharmonic vibrational spectra that can be directly compared with experimental results without a need for empirical scaling. For (HF)n, good agreement is found with experimental data. This agreement shows that the MP2 potential surfaces for these systems are reasonably reliable. The accuracy is best for the stiff intramolecular modes, which indicates the validity of MP2 in describing coupling between intramolecular and intermolecular degrees of freedom. For (HF)n(H2O)n experimental results are unavailable. The computed intramolecular frequencies show a strong dependence on cluster size. Intensity features are predicted for future experiments.

  13. Ab initio calculations of anharmonic vibrational spectroscopy for hydrogen fluoride (HF)n (n = 3, 4) and mixed hydrogen fluoride/water (HF)n(H2O)n (n = 1, 2, 4) clusters

    NASA Technical Reports Server (NTRS)

    Chaban, Galina M.; Gerber, R. Benny

    2002-01-01

    Anharmonic vibrational frequencies and intensities are computed for hydrogen fluoride clusters (HF)n, with n = 3, 4 and mixed clusters of hydrogen fluoride with water (HF)n(H2O)n where n = 1, 2. For the (HF)4(H2O)4 complex, the vibrational spectra are calculated at the harmonic level, and anharmonic effects are estimated. Potential energy surfaces for these systems are obtained at the MP2/TZP level of electronic structure theory. Vibrational states are calculated from the potential surface points using the correlation-corrected vibrational self-consistent field method. The method accounts for the anharmonicities and couplings between all vibrational modes and provides fairly accurate anharmonic vibrational spectra that can be directly compared with experimental results without a need for empirical scaling. For (HF)n, good agreement is found with experimental data. This agreement shows that the Moller-Plesset (MP2) potential surfaces for these systems are reasonably reliable. The accuracy is best for the stiff intramolecular modes, which indicates the validity of MP2 in describing coupling between intramolecular and intermolecular degrees of freedom. For (HF)n(H2O)n experimental results are unavailable. The computed intramolecular frequencies show a strong dependence on cluster size. Intensity features are predicted for future experiments.

  14. Vibration-rotation-tunneling dynamics in small water clusters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pugliano, Nick

    The goal of this work is to characterize the intermolecular vibrations of small water clusters. Using tunable far infrared laser absorption spectroscopy, large amplitude vibration-rotation-tunneling (VRT) dynamics in vibrationally excited states of the water dimer and the water trimer are investigated. This study begins with the measurement of 12 VRT subbands, consisting of approximately 230 transitions, which are assigned to an 82.6 cm -1 intermolecular vibration of the water dimer-d 4. Each of the VRT subbands originate from K a''=0 and terminate in either K a'=0 or 1. These data provide a complete characterization of the tunneling dynamics in themore » vibrationally excited state as well as definitive symmetry labels for all VRT energy levels. Furthermore, an accurate value for the A' rotational constant is found to agree well with its corresponding ground state value. All other excited state rotational constants are fitted, and discussed in terms of the corresponding ground state constants. In this vibration, the quantum tunneling motions are determined to exhibit large dependencies with both the K a' quantum number and the vibrational coordinate, as is evidenced by the measured tunneling splittings. The generalized internal-axis-method treatment which has been developed to model the tunneling dynamics, is considered for the qualitative description of each tunneling pathway, however, the variation of tunneling splittings with vibrational excitation indicate that the high barrier approximation does not appear to be applicable for this vibrational coordinate. The data are consistent with a motion possessing a' symmetry, and the vibration is assigned as the v 12 acceptor bending coordinate. This assignment is in agreement with the vibrational symmetry, the resultsof high level ab initio calculations, and preliminary data assigned to the analogous vibration in the D 2O-DOH isotopomer.« less

  15. Ab initio molecular orbital calculations on the associated complexes of lithium cyanide with ammonia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mohandas, P.; Shivaglal, M.C.; Chandrasekhar, J.

    Ab initio molecular orbital (MO) calculations with the 3-21G and 6-31G basis sets are carried out on a series of complexes of NH{sub 3} with Li{sup +}, C{triple_bond}N{sup -}, LiCN, and its isomer LiNC. The BSSE-corrected interaction energies, geometrical parameters, internal force constants, and harmonic vibrational frequencies are evaluated for 15 species. Complexes with trifurcated (C{sub 3v}) structures are calculated to be saddle points on the potential energy surfaces and have one imaginary frequency each. Calculated energies, geometrical parameters, internal force constants, and harmonic vibrational frequencies of the various species considered are discussed in terms of the nature of associationmore » of LiCN with ammonia. The vibrational frequencies of the relevant complexed species are compared with the experimental frequencies reported earlier for solutions of lithium cyanide in liquid ammonia. 40 refs., 1 fig., 4 tabs.« less

  16. Ab initio calculation of a global potential, vibrational energies, and wave functions for HCN/HNC, and a simulation of the (A-tilde)-(X-tilde) emission spectrum

    NASA Technical Reports Server (NTRS)

    Bowman, Joel M.; Gazdy, Bela; Bentley, Joseph A.; Lee, Timothy J.; Dateo, Christopher E.

    1993-01-01

    A potential energy surface for the HCN/HNC system which is a fit to extensive, high-quality ab initio, coupled-cluster calculations is presented. All HCN and HNC states with energies below the energy of the first delocalized state are reported and characterized. Vibrational transition energies are compared with all available experimental data on HCN and HNC, including high CH-overtone states up to 23,063/cm. A simulation of the (A-tilde)-(X-tilde) stimulated emission pumping (SEP) spectrum is also reported, and the results are compared to experiment. Franck-Condon factors are reported for odd bending states of HCN, with one quantum of vibrational angular momentum, in order to compare with the recent assignment by Jonas et al. (1992), on the basis of axis-switching arguments of a number of previously unassigned states in the SEP spectrum.

  17. Ab initio study on the formation of triiodide CT complex from the reaction of iodine with 2,3-diaminopyridine.

    PubMed

    Al-Hashimi, Nessreen A; Hussein, Yasser H A

    2010-01-01

    The charge transfer (CT) interaction between iodine and 2,3-diaminopyridine (DAPY) has been thoroughly investigated via theoretical calculations. A Hartree-Fock, 3-21G level of theory was used to optimize and calculate the Mullican charge distribution scheme as well as the vibrational frequencies of DAPY alone and both its CT complexes with one and two iodine molecules. A very good agreement was found between experiment and theory. New illustrations were concluded with a deep analysis and description for the vibrational frequencies of the formed CT complexes. The two-step CT complex formation mechanism published earlier was supported. Copyright 2009 Elsevier B.V. All rights reserved.

  18. Approximate Quantum Dynamics using Ab Initio Classical Separable Potentials: Spectroscopic Applications.

    PubMed

    Hirshberg, Barak; Sagiv, Lior; Gerber, R Benny

    2017-03-14

    Algorithms for quantum molecular dynamics simulations that directly use ab initio methods have many potential applications. In this article, the ab initio classical separable potentials (AICSP) method is proposed as the basis for approximate algorithms of this type. The AICSP method assumes separability of the total time-dependent wave function of the nuclei and employs mean-field potentials that govern the dynamics of each degree of freedom. In the proposed approach, the mean-field potentials are determined by classical ab initio molecular dynamics simulations. The nuclear wave function can thus be propagated in time using the effective potentials generated "on the fly". As a test of the method for realistic systems, calculations of the stationary anharmonic frequencies of hydrogen stretching modes were carried out for several polyatomic systems, including three amino acids and the guanine-cytosine pair of nucleobases. Good agreement with experiments was found. The method scales very favorably with the number of vibrational modes and should be applicable for very large molecules, e.g., peptides. The method should also be applicable for properties such as vibrational line widths and line shapes. Work in these directions is underway.

  19. Ab initio and classical molecular dynamics studies of the structural and dynamical behavior of water near a hydrophobic graphene sheet.

    PubMed

    Rana, Malay Kumar; Chandra, Amalendu

    2013-05-28

    The behavior of water near a graphene sheet is investigated by means of ab initio and classical molecular dynamics simulations. The wetting of the graphene sheet by ab initio water and the relation of such behavior to the strength of classical dispersion interaction between surface atoms and water are explored. The first principles simulations reveal a layered solvation structure around the graphene sheet with a significant water density in the interfacial region implying no drying or cavitation effect. It is found that the ab initio results of water density at interfaces can be reproduced reasonably well by classical simulations with a tuned dispersion potential between the surface and water molecules. Calculations of vibrational power spectrum from ab initio simulations reveal a shift of the intramolecular stretch modes to higher frequencies for interfacial water molecules when compared with those of the second solvation later or bulk-like water due to the presence of free OH modes near the graphene sheet. Also, a weakening of the water-water hydrogen bonds in the vicinity of the graphene surface is found in our ab initio simulations as reflected in the shift of intermolecular vibrational modes to lower frequencies for interfacial water molecules. The first principles calculations also reveal that the residence and orientational dynamics of interfacial water are somewhat slower than those of the second layer or bulk-like molecules. However, the lateral diffusion and hydrogen bond relaxation of interfacial water molecules are found to occur at a somewhat faster rate than that of the bulk-like water molecules. The classical molecular dynamics simulations with tuned Lennard-Jones surface-water interaction are found to produce dynamical results that are qualitatively similar to those of ab initio molecular dynamics simulations.

  20. Axial and equatorial hydrogen-bond conformers between (CH2)3S and H(D)F: Fourier transform infrared spectroscopy and ab initio calculations.

    PubMed

    Madebène, B; Asselin, P; Soulard, P; Alikhani, M E

    2011-08-21

    The coexistence of axial and equatorial hydrogen-bonded conformers of 1 : 1 (CH(2))(3)S-HF (and -DF) has been observed in the same adiabatic expansion of a supersonic jet seeded with argon and in a static absorption cell at room temperature. High level calculations computed the axial conformer to be the most stable one with a small energy difference with respect to the equatorial one, in full agreement with previous microwave experiments. On the grounds of band contour simulations of FTIR spectra and ab initio energetic and anharmonic vibrational calculations, two pairs of ν(s) HF donor stretching bands, observed in a series of jet-FTIR spectra at 3457.9 and 3480.5 cm(-1) have been respectively assigned to the axial and equatorial forms of the 1 : 1 complex. In the jet-FTIR spectra series with HF, the assignment of an additional broad band (about 200 cm(-1) higher in frequency with respect to ν(s)) to a 1 : 2 complex has been supported by theoretical investigations. Experimental detection of both axial and equatorial forms of a cyclic trimer has been confirmed by calculated energetic and vibrational properties. The nature of hydrogen bonding has been examined within topological frameworks. The energetic partitioning within the 1 : 1 dimers has been elucidated with SAPT techniques. Interestingly, the interconversion pathway between two 1 : 1 structures has been explored and it was seen that the formation of the 1 : 1 complex affects the interconversion barrier on the ring puckering motion. The band contour analysis of gas phase FTIR experiments provided a consistent set of vibrational frequencies and anharmonic coupling constants, in good agreement with ab initio anharmonic vibrational calculations. Finally, from a series of cell-FTIR spectra recorded at different partial pressures of (CH(2))(3)S and HF monomers, the absorption signal of the 1 : 1 complex could be isolated which enabled to estimate the equilibrium constant K(p) = 0.023 at 298 K for the dimerization.

  1. Ab initio-informed maximum entropy modeling of rovibrational relaxation and state-specific dissociation with application to the O{sub 2} + O system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kulakhmetov, Marat, E-mail: mkulakhm@purdue.edu; Alexeenko, Alina, E-mail: alexeenk@purdue.edu; Gallis, Michael, E-mail: magalli@sandia.gov

    Quasi-classical trajectory (QCT) calculations are used to study state-specific ro-vibrational energy exchange and dissociation in the O{sub 2} + O system. Atom-diatom collisions with energy between 0.1 and 20 eV are calculated with a double many body expansion potential energy surface by Varandas and Pais [Mol. Phys. 65, 843 (1988)]. Inelastic collisions favor mono-quantum vibrational transitions at translational energies above 1.3 eV although multi-quantum transitions are also important. Post-collision vibrational favoring decreases first exponentially and then linearly as Δv increases. Vibrationally elastic collisions (Δv = 0) favor small ΔJ transitions while vibrationally inelastic collisions have equilibrium post-collision rotational distributions. Dissociationmore » exhibits both vibrational and rotational favoring. New vibrational-translational (VT), vibrational-rotational-translational (VRT) energy exchange, and dissociation models are developed based on QCT observations and maximum entropy considerations. Full set of parameters for state-to-state modeling of oxygen is presented. The VT energy exchange model describes 22 000 state-to-state vibrational cross sections using 11 parameters and reproduces vibrational relaxation rates within 30% in the 2500–20 000 K temperature range. The VRT model captures 80 × 10{sup 6} state-to-state ro-vibrational cross sections using 19 parameters and reproduces vibrational relaxation rates within 60% in the 5000–15 000 K temperature range. The developed dissociation model reproduces state-specific and equilibrium dissociation rates within 25% using just 48 parameters. The maximum entropy framework makes it feasible to upscale ab initio simulation to full nonequilibrium flow calculations.« less

  2. A new Morse-oscillator based Hamiltonian for H 3+: Calculation of line strengths

    NASA Astrophysics Data System (ADS)

    Jensen, Per; Špirko, V.

    1986-07-01

    In two recent publications [V. Špirko, P. Jensen, P. R. Bunker, and A. Čejchan, J. Mol. Spectrosc.112, 183-202 (1985); P. Jensen, V. Špirko, and P. R. Bunker, J. Mol. Spectrosc.115, 269-293 (1986)], we have described the development of Morse oscillator adapted rotation-vibration Hamiltonians for equilateral triangular X3 and Y2X molecules, and we have used these Hamiltonians to calculate the rotation-vibration energies for H 3+ and its X3+ and Y2X+ isotopes from ab initio potential energy functions. The present paper presents a method for calculating rotation-vibration line strengths of H 3+ and its isotopes using an ab initio dipole moment function [G. D. Carney and R. N. Porter, J. Chem. Phys.60, 4251-4264 (1974)] together with the energies and wave-functions obtained by diagonalization of the Morse oscillator adapted Hamiltonians. We use this method for calculating the vibrational transition moments involving the lowest vibrational states of H 3+, D 3+, H 2D +, and D 2H +. Further, we calculate the line strengths of the low- J transitions in the rotational spectra of H 3+ in the vibrational ground state and in the ν1 and ν2 states. We hope that the calculations presented will facilitate the search for further rotation-vibration transitions of H 3+ and its isotopes.

  3. Accurate theoretical prediction of vibrational frequencies in an inhomogeneous dynamic environment: A case study of a glutamate molecule in water solution and in a protein-bound form

    PubMed Central

    Speranskiy, Kirill; Kurnikova, Maria

    2012-01-01

    We propose a hierarchical approach to model vibrational frequencies of a ligand in a strongly fluctuating inhomogeneous environment such as a liquid solution or when bound to a macromolecule, e.g., a protein. Vibrational frequencies typically measured experimentally are ensemble averaged quantities which result (in part) from the influence of the strongly fluctuating solvent. Solvent fluctuations can be sampled effectively by a classical molecular simulation, which in our model serves as the first, low level of the hierarchy. At the second high level of the hierarchy a small subset of system coordinates is used to construct a patch of the potential surface (ab initio) relevant to the vibration in question. This subset of coordinates is under the influence of an instantaneous external force exerted by the environment. The force is calculated at the lower level of the hierarchy. The proposed methodology is applied to model vibrational frequencies of a glutamate in water and when bound to the Glutamate receptor protein and its mutant. Our results are in close agreement with the experimental values and frequency shifts measured by the Jayaraman group by the Fourier transform infrared spectroscopy [Q. Cheng et al., Biochem. 41, 1602 (2002)]. Our methodology proved useful in successfully reproducing vibrational frequencies of a ligand in such a soft, flexible, and strongly inhomogeneous protein as the Glutamate receptor. PMID:15260697

  4. Far-Infrared and Raman Spectra and The Ring-Twisting Potential Energy Function of 1,3-Cyclohexadiene

    NASA Astrophysics Data System (ADS)

    Autrey, Daniel; Choo, Jaebum; Laane, Jaan

    2001-10-01

    The nu19 (A2) ring-twisting vibration of 1,3-cyclohexadiene has been analyzed from the vapor-phase Raman and infrared spectra. The Raman spectrum shows nine ring-twisting transitions in the 116 - 199 cm-1 region. The far-infrared spectrum confirms five of these transitions, despite the fact that the vibration is infrared forbidden in the C2v (planar) approximation. Other Raman and infrared combination bands verify the assignments and provide information on the vibrational coupling. A coordinate dependent kinetic energy expansion for the ring-twisting motion was calculated, and this was used to determine the ring-twisting potential function, which has a barrier to planarity of 1132 cm-1 and energy minima corresponding to twisting angles of 9.1º and 30.1º. Ab initio calculations were also carried out using Moller-Plesset perturbation theory (MP2) with a large number of different basis sets. The various ab initio calculations gave barriers to planarity in the 1197 - 1593 cm-1 range and calculated vibrational frequencies in excellent agreement with the experimental values.

  5. Vibrational spectra (FT-IR, Raman and MI-IR) of α- and β-alanine

    NASA Astrophysics Data System (ADS)

    Rosado, Mário Túlio S.; Duarte, Maria Leonor R. S.; Fausto, Rui

    1997-06-01

    The vibrational spectra of α- and β-alaine molecules in both their zwitterionic and neutral forms are studied by FT-IR, Raman and MI-IR spectroscopy. Together with results from theoretical SCF-MO ab initio calculations, the spectroscopic data obtained under the various experimental conditions used in this study (crystalline phase; low temperature matrix isolated molecules) enable to undertake a detailed assignment of the vibrational spectra of the studied compounds.

  6. Vibrational energies for HFCO using a neural network sum of exponentials potential energy surface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pradhan, Ekadashi; Brown, Alex, E-mail: alex.brown@ualberta.ca

    2016-05-07

    A six-dimensional potential energy surface (PES) for formyl fluoride (HFCO) is fit in a sum-of-products form using neural network exponential fitting functions. The ab initio data upon which the fit is based were computed at the explicitly correlated coupled cluster with single, double, and perturbative triple excitations [CCSD(T)-F12]/cc-pVTZ-F12 level of theory. The PES fit is accurate (RMSE = 10 cm{sup −1}) up to 10 000 cm{sup −1} above the zero point energy and covers most of the experimentally measured IR data. The PES is validated by computing vibrational energies for both HFCO and deuterated formyl fluoride (DFCO) using block improved relaxationmore » with the multi-configuration time dependent Hartree approach. The frequencies of the fundamental modes, and all other vibrational states up to 5000 cm{sup −1} above the zero-point energy, are more accurate than those obtained from the previous MP2-based PES. The vibrational frequencies obtained on the PES are compared to anharmonic frequencies at the MP2/aug-cc-pVTZ and CCSD(T)/aug-cc-pVTZ levels of theory obtained using second-order vibrational perturbation theory. The new PES will be useful for quantum dynamics simulations for both HFCO and DFCO, e.g., studies of intramolecular vibrational redistribution leading to unimolecular dissociation and its laser control.« less

  7. Fourth-Order Vibrational Transition State Theory and Chemical Kinetics

    NASA Astrophysics Data System (ADS)

    Stanton, John F.; Matthews, Devin A.; Gong, Justin Z.

    2015-06-01

    Second-order vibrational perturbation theory (VPT2) is an enormously successful and well-established theory for treating anharmonic effects on the vibrational levels of semi-rigid molecules. Partially as a consequence of the fact that the theory is exact for the Morse potential (which provides an appropriate qualitative model for stretching anharmonicity), VPT2 calculations for such systems with appropriate ab initio potential functions tend to give fundamental and overtone levels that fall within a handful of wavenumbers of experimentally measured positions. As a consequence, the next non-vanishing level of perturbation theory -- VPT4 -- offers only slight improvements over VPT2 and is not practical for most calculations since it requires information about force constants up through sextic. However, VPT4 (as well as VPT2) can be used for other applications such as the next vibrational correction to rotational constants (the ``gammas'') and other spectroscopic parameters. In addition, the marriage of VPT with the semi-classical transition state theory of Miller (SCTST) has recently proven to be a powerful and accurate treatment for chemical kinetics. In this talk, VPT4-based SCTST tunneling probabilities and cumulative reaction probabilities are give for the first time for selected low-dimensional model systems. The prospects for VPT4, both practical and intrinsic, will also be discussed.

  8. Nonlinear network model analysis of vibrational energy transfer and localisation in the Fenna-Matthews-Olson complex

    NASA Astrophysics Data System (ADS)

    Morgan, Sarah E.; Cole, Daniel J.; Chin, Alex W.

    2016-11-01

    Collective protein modes are expected to be important for facilitating energy transfer in the Fenna-Matthews-Olson (FMO) complex of photosynthetic green sulphur bacteria, however to date little work has focussed on the microscopic details of these vibrations. The nonlinear network model (NNM) provides a computationally inexpensive approach to studying vibrational modes at the microscopic level in large protein structures, whilst incorporating anharmonicity in the inter-residue interactions which can influence protein dynamics. We apply the NNM to the entire trimeric FMO complex and find evidence for the existence of nonlinear discrete breather modes. These modes tend to transfer energy to the highly connected core pigments, potentially opening up alternative excitation energy transfer routes through their influence on pigment properties. Incorporating localised modes based on these discrete breathers in the optical spectra calculations for FMO using ab initio site energies and excitonic couplings can substantially improve their agreement with experimental results.

  9. Origin of Vibrational Instabilities in Molecular Wires with Separated Electronic States.

    PubMed

    Foti, Giuseppe; Vázquez, Héctor

    2018-06-07

    Current-induced heating in molecular junctions stems from the interaction between tunneling electrons and localized molecular vibrations. If the electronic excitation of a given vibrational mode exceeds heat dissipation, a situation known as vibrational instability is established, which can seriously compromise the integrity of the junction. Using out of equilibrium first-principles calculations, we demonstrate that vibrational instabilities can take place in the general case of molecular wires with separated unoccupied electronic states. From the ab initio results, we derive a model to characterize unstable vibrational modes and construct a diagram that maps mode stability. These results generalize previous theoretical work and predict vibrational instabilities in a new regime.

  10. Vibration-Rotation-Tunneling Levels of the Water Dimer from an ab Initio Potential Surface with Flexible Monomers

    NASA Astrophysics Data System (ADS)

    Leforestier, Claude; van Harrevelt, Rob; van der Avoird, Ad

    2009-05-01

    The 12-dimensional ab initio potential for the water dimer with flexible monomers from Huang et al. (J. Chem. Phys. 2008, 128, 034312) was used in accurate calculations of the vibration-rotation-tunneling (VRT) levels of (H2O)2 and (D2O)2 involving the intermolecular rovibrational and tunneling states as well as the intramolecular vibrations. For the intermolecular VRT levels we used a 6 + 6d model in which the fast intramolecular vibrations are adiabatically separated from the much slower intermolecular vibrations, tunneling motions, and overall rotations. We also tested two six-dimensional (6d) rigid monomer models in which the monomers were frozen either at their equilibrium geometry or at their ground state vibrationally averaged geometry. All the results from the 6 + 6d model agree well with the large amount of detailed experimental data available from high-resolution spectroscopy. For most of the parameters characterizing the spectra the results of the two 6d rigid monomer models do not significantly differ from the 6 + 6d results. An exception is the relatively large acceptor tunneling splitting, which was the only quantity for which the 6d model with the monomers frozen at their equilibrium geometry was not in good agreement with the experimental data. The 6d model with monomers at their vibrationally averaged geometry performs considerably better, and the full 6 + 6d results agree with the measurements also for this quantity. For the excited intramolecular vibrations we tested two 6 + 6d models. In the first model the excitation was assumed to be either on the donor in the hydrogen bond or on the acceptor, and to hop from one monomer to the other upon donor-acceptor interchange. In the second model the monomer excitation remains localized on a given monomer for all dimer geometries. Almost the same frequencies of the intramolecular vibrations were found for the two models. The calculations show considerable variations in the frequencies of the intramolecular modes for transitions involving different tunneling levels and different values of the rotational quantum number K. For K = 0 → 0 transitions these variations largely cancel, however. A comparison with experimental data is difficult, except for the acceptor asymmetric stretch mode observed in high-resolution spectra, because it is not clear how much the different transitions contribute to the (unresolved) peaks in most of the experimental spectra. The large red shift of the donor bound OH stretch mode is correctly predicted, but the value calculated for this red shift is too small by more than 20%. Also in the smaller shifts of the other modes we find relatively large errors. It is useful, however, that our detailed calculations including all ground and excited state tunneling levels provide an explanation for the splitting of the acceptor asymmetric stretch band observed in He nanodroplet spectra, as well as for the fact that the other bands in these spectra show much smaller or no splittings.

  11. The CO 2 with dimethylamine reaction: ab initio predicted vibrational spectra

    NASA Astrophysics Data System (ADS)

    Jamróz, M. H.; Dobrowolski, J. Cz.; Borowiak, M. A.

    1999-05-01

    The IR spectra of CO 2, dimethylamine (DMA), (DMA) 2 dimers, DMA⋯CO 2 (2 : 1) complex, dimethylcarbamic acid (DMCA), DMCA⋯DMA (1 : 1) complex, DMCA -, and DMA(H) + were calculated at the B3PW91/6-31G** level. Potential energy distribution (PED) was calculated for predicted spectra to form basis for elucidation of experimental IR data. The stabilisation energy of the studied complexes was corrected by counterpoise method.

  12. An AB Initio Study of SbH_2 and BiH_2: the Renner Effect, Spin-Orbit Coupling, Local Mode Vibrations and Rovibronic Energy Level Clustering in SbH_2

    NASA Astrophysics Data System (ADS)

    Ostojic, Bojana; Schwerdtfeger, Peter; Bunker, Phil; Jensen, Per

    2016-06-01

    We present the results of ab initio calculations for the lower electronic states of the Group 15 (pnictogen) dihydrides, SbH_2 and BiH_2. For each of these molecules the two lowest electronic states become degenerate at linearity and are therefore subject to the Renner effect. Spin-orbit coupling is also strong in these two heavy-element containing molecules. For the lowest two electronic states of SbH_2, we construct the three dimensional potential energy surfaces and corresponding dipole moment and transition moment surfaces by multi-reference configuration interaction techniques. Including both the Renner effect and spin-orbit coupling, we calculate term values and simulate the rovibrational and rovibronic spectra of SbH_2. Excellent agreement is obtained with the results of matrix isolation infrared spectroscopic studies and with gas phase electronic spectroscopic studies in absorption [1,2]. For the heavier dihydride BiH_2 we calculate bending potential curves and the spin-orbit coupling constant for comparison. For SbH_2 we further study the local mode vibrational behavior and the formation of rovibronic energy level clusters in high angular momentum states. [1] X. Wang, P. F. Souter and L. Andrews, J. Phys. Chem. A 107, 4244-4249 (2003) [2] N. Basco and K. K. Lee, Spectroscopy Letters 1, 13-15 (1968)

  13. Ab Initio Studies of Halogen and Nitrogen Oxide Species of Interest in Stratospheric Chemistry

    NASA Technical Reports Server (NTRS)

    Lee, Timothy J.; Langhoff, Stephen R. (Technical Monitor)

    1995-01-01

    The ability of modern state-of-the art ab initio quantum chemical techniques to characterize reliably the gas-phase molecular structure, vibrational spectrum, electronic spectrum, and thermal stability of fluorine, chlorine, bromine and nitrogen oxide species will be demonstrated by presentation of some example studies. The ab initio results are shown to be in excellent agreement with the available experimental data, and where the experimental data are either not known or are inconclusive, the theoretical results are shown to fill in the gaps and to resolve experimental controversies. In addition, ab initio studies in which the electronic spectra and the characterization of excited electronic states of halogen oxide species will also be presented. Again where available, the ab initio results are compared to experimental observations, and are used to aid in the interpretation of experimental studies.

  14. Ab initio potential energy and dipole moment surfaces of the F(-)(H2O) complex.

    PubMed

    Kamarchik, Eugene; Toffoli, Daniele; Christiansen, Ove; Bowman, Joel M

    2014-02-05

    We present full-dimensional, ab initio potential energy and dipole moment surfaces for the F(-)(H2O) complex. The potential surface is a permutationally invariant fit to 16,114 coupled-cluster single double (triple)/aVTZ energies, while the dipole surface is a covariant fit to 11,395 CCSD(T)/aVTZ dipole moments. Vibrational self-consistent field/vibrational configuration interaction (VSCF/VCI) calculations of energies and the IR-spectrum are presented both for F(-)(H2O) and for the deuterated analog, F(-)(D2O). A one-dimensional calculation of the splitting of the ground state, due to equivalent double-well global minima, is also reported. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. A refined quartic potential energy surface and large scale vibrational calculations for S0 thiophosgene.

    PubMed

    Rashev, Svetoslav; Moule, David C

    2015-04-05

    In this work we present a full 6D quartic potential energy surface (PES) for S0 thiophosgene in curvilinear symmetrized bond-angle coordinates. The PES was refined starting from an ab initio field derived from acc-pVTZ basis set with CCSD(T) corrections for electron correlation. In the present calculations we used our variational method that was recently tested on formaldehyde and some of its isotopomers, along with additional improvements. The lower experimentally known vibrational levels for 35Cl2CS were reproduced quite well in the calculations, which can be regarded as a test for the feasibility of the obtained quartic PES. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Nonadiabatic couplings in the collisional removal of O(2)(b (1)Sigma(g) (+),v) by O(2).

    PubMed

    Dayou, F; Hernández, M I; Campos-Martínez, J; Hernández-Lamoneda, R

    2010-01-28

    The effect of nonadiabatic couplings on the collisional removal of O(2)(b (1)Sigma(g) (+),v) by O(2)(X (3)Sigma(g) (-), v=0) is investigated. Two-dimensional adiabatic and quasidiabatic potential energy surfaces for the excited dimer states and the corresponding nonadiabatic radial couplings have been computed by means of ab initio calculations. Alternately, a two-state theoretical model, based on the Landau-Zener and Rosen-Zener-Demkov assumptions, has been employed to derive analytical forms for the nonadiabatic couplings and an adiabatic-to-diabatic transformation only depending on a reduced set of adiabatic energy terms. Compared to the ab initio results, the predictions of the model are found to be highly accurate. Quantum dynamics calculations for the removal of the first ten vibrational states of O(2)(b (1)Sigma(g) (+),v) indicate a clear dominant contribution of the vibration-electronic relaxation mechanism relative to the vibration-translation energy transfer. Although the present reduced-dimensionality model precludes any quantitative comparison with experiments, it is found that the removal probabilities for v=1-3 are qualitatively consistent with the experimental observations, once the vibrational structure of the fragments is corrected with spectroscopical terms. Besides, the model served to show how the computation of the adiabatic PESs just at the crossing seam was sufficient to describe the nonadiabatic dynamics related to a given geometrical arrangement. This implies considerable savings in the calculations which will eventually allow for larger accuracy in the ab initio calculations as well as higher dimensional treatments.

  17. Effective representation of amide III, II, I, and A modes on local vibrational modes: Analysis of ab initio quantum calculation results.

    PubMed

    Hahn, Seungsoo

    2016-10-28

    The Hamiltonian matrix for the first excited vibrational states of a protein can be effectively represented by local vibrational modes constituting amide III, II, I, and A modes to simulate various vibrational spectra. Methods for obtaining the Hamiltonian matrix from ab initio quantum calculation results are discussed, where the methods consist of three steps: selection of local vibrational mode coordinates, calculation of a reduced Hessian matrix, and extraction of the Hamiltonian matrix from the Hessian matrix. We introduce several methods for each step. The methods were assessed based on the density functional theory calculation results of 24 oligopeptides with four different peptide lengths and six different secondary structures. The completeness of a Hamiltonian matrix represented in the reduced local mode space is improved by adopting a specific atom group for each amide mode and reducing the effect of ignored local modes. The calculation results are also compared to previous models using C=O stretching vibration and transition dipole couplings. We found that local electric transition dipole moments of the amide modes are mainly bound on the local peptide planes. Their direction and magnitude are well conserved except amide A modes, which show large variation. Contrary to amide I modes, the vibrational coupling constants of amide III, II, and A modes obtained by analysis of a dipeptide are not transferable to oligopeptides with the same secondary conformation because coupling constants are affected by the surrounding atomic environment.

  18. Proton--H/sub 2/ scattering on an ab initio CI potential energy surface. II. Combined vibrational--rotational excitation at 4. 67 and 6 eV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schinke, R.

    1980-04-01

    Infinite-order-sudden calculations have been performed at 4.67 and 6 eV on the ab initio CI potential energy surface determined recently by Schinke, Dupuis, and Lester. The vibrational degree of freedom has been treated exactly by solving vibrationally coupled radial equations. The rotationally summed differential cross sections for vibrational excitation are in good agreement with the measurements of Schmidt, Hermann, and Linder. It is shown that the rotational excitation cross sections in the vibrational ground state near the rainbow angle are almost exclusively determined by the potential between 2.5a/sub 0/ and 5a/sub 0/ proton--H/sub 2/ separations. In this region only themore » V/sub 2/ term of an expansion into Legendre polynomials is nonvanishing and is a factor of approx.3 smaller for the new surface than for the Giese and Gentry analytic potential. These differences result in a dramatic decrease of the rotational excitation cross sections in the rainbow region so that the present theoretical transition probabilities are in much better agreement with the experiments than our previous sudden vib--rotor calculations utilizing Giese and Gentry's surface.« less

  19. On-the-fly ab initio semiclassical dynamics: Emission spectra of oligothiophenes

    NASA Astrophysics Data System (ADS)

    Wehrle, Marius; Sulc, Miroslav; Vanicek, Jiri

    2014-03-01

    We employ the thawed Gaussian approximation (TGA) [E. J. Heller, J. Chem. Phys. 62, 1544 (1975)] within an on-the-fly ab initio (OTF-AI) scheme to calculate the vibrationally resolved emission spectra of oligothiophenes up to five rings. OTF-AI-TGA is efficient enough to treat all vibrational degrees of freedom on an equal footing even in case of 5-oligothiophene (105 vibrational degrees of freedom), thus obviating the need for the crude global harmonic approximation, popular for large system. The experimental emission spectra have been almost perfectly reproduced. In order to provide a deeper insight into the associated physical and chemical processes, we present a systematic approach to assess the importance and to analyze the mutual coupling of individual vibrational degrees of freedom during the dynamics. This allows us to explain the changes in the vibrational line shapes of the oligothiophenes with increasing number of rings. Furthermore, we observe the dynamical interplay between quinoid and aromatic characters of individual rings in the oligothiophene chain during the dynamics and confirm that the quinoid character prevails in the center of the chain. This research was supported by the Swiss NSF Grant No. 200021_124936/1 and NCCR Molecular Ultrafast Science & Technology (MUST), and by the EPFL.

  20. A new ab initio potential energy surface of LiClH (1A') system and quantum dynamics calculation for Li + HCl (v = 0, j = 0-2) → LiCl + H reaction

    NASA Astrophysics Data System (ADS)

    Tan, Rui Shan; Zhai, Huan Chen; Yan, Wei; Gao, Feng; Lin, Shi Ying

    2017-04-01

    A new ab initio potential energy surface (PES) for the ground state of Li + HCl reactive system has been constructed by three-dimensional cubic spline interpolation of 36 654 ab initio points computed at the MRCI+Q/aug-cc-pV5Z level of theory. The title reaction is found to be exothermic by 5.63 kcal/mol (9 kcal/mol with zero point energy corrections), which is very close to the experimental data. The barrier height, which is 2.99 kcal/mol (0.93 kcal/mol for the vibrationally adiabatic barrier height), and the depth of van der Waals minimum located near the entrance channel are also in excellent agreement with the experimental findings. This study also identified two more van der Waals minima. The integral cross sections, rate constants, and their dependence on initial rotational states are calculated using an exact quantum wave packet method on the new PES. They are also in excellent agreement with the experimental measurements.

  1. Ab Initio energetics of SiO bond cleavage.

    PubMed

    Hühn, Carolin; Erlebach, Andreas; Mey, Dorothea; Wondraczek, Lothar; Sierka, Marek

    2017-10-15

    A multilevel approach that combines high-level ab initio quantum chemical methods applied to a molecular model of a single, strain-free SiOSi bridge has been used to derive accurate energetics for SiO bond cleavage. The calculated SiO bond dissociation energy and the activation energy for water-assisted SiO bond cleavage of 624 and 163 kJ mol -1 , respectively, are in excellent agreement with values derived recently from experimental data. In addition, the activation energy for H 2 O-assisted SiO bond cleavage is found virtually independent of the amount of water molecules in the vicinity of the reaction site. The estimated reaction energy for this process including zero-point vibrational contribution is in the range of -5 to 19 kJ mol -1 . © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  2. Vibrational mode frequencies of silica species in SiO2-H2O liquids and glasses from ab initio molecular dynamics.

    PubMed

    Spiekermann, Georg; Steele-MacInnis, Matthew; Schmidt, Christian; Jahn, Sandro

    2012-04-21

    Vibrational spectroscopy techniques are commonly used to probe the atomic-scale structure of silica species in aqueous solution and hydrous silica glasses. However, unequivocal assignment of individual spectroscopic features to specific vibrational modes is challenging. In this contribution, we establish a connection between experimentally observed vibrational bands and ab initio molecular dynamics (MD) of silica species in solution and in hydrous silica glass. Using the mode-projection approach, we decompose the vibrations of silica species into subspectra resulting from several fundamental structural subunits: The SiO(4) tetrahedron of symmetry T(d), the bridging oxygen (BO) Si-O-Si of symmetry C(2v), the geminal oxygen O-Si-O of symmetry C(2v), the individual Si-OH stretching, and the specific ethane-like symmetric stretching contribution of the H(6)Si(2)O(7) dimer. This allows us to study relevant vibrations of these subunits in any degree of polymerization, from the Q(0) monomer up to the fully polymerized Q(4) tetrahedra. Demonstrating the potential of this approach for supplementing the interpretation of experimental spectra, we compare the calculated frequencies to those extracted from experimental Raman spectra of hydrous silica glasses and silica species in aqueous solution. We discuss observed features such as the double-peaked contribution of the Q(2) tetrahedral symmetric stretch, the individual Si-OH stretching vibrations, the origin of the experimentally observed band at 970 cm(-1) and the ethane-like vibrational contribution of the H(6)Si(2)O(7) dimer at 870 cm(-1).

  3. Interfacing the Ab initio multiple spawning method with electronic structure methods in GAMESS: Photodecay of trans-Azomethane

    DOE PAGES

    Gaenko, Alexander; DeFusco, Albert; Varganov, Sergey A.; ...

    2014-10-20

    This work presents a nonadiabatic molecular dynamics study of the nonradiative decay of photoexcited trans-azomethane, using the ab initio multiple spawning (AIMS) program that has been interfaced with the General Atomic and Molecular Electronic Structure System (GAMESS) quantum chemistry package for on-the-fly electronic structure evaluation. The interface strategy is discussed, and the capabilities of the combined programs are demonstrated with a nonadiabatic molecular dynamics study of the nonradiative decay of photoexcited trans-azomethane. Energies, gradients, and nonadiabatic coupling matrix elements were obtained with the state-averaged complete active space self-consistent field method, as implemented in GAMESS. The influence of initial vibrational excitationmore » on the outcome of the photoinduced isomerization is explored. Increased vibrational excitation in the CNNC torsional mode shortens the excited state lifetime. Depending on the degree of vibrational excitation, the excited state lifetime varies from ~60–200 fs. As a result, these short lifetimes are in agreement with time-resolved photoionization mass spectroscopy experiments.« less

  4. High-resolution infrared spectrum of cyanogen

    NASA Astrophysics Data System (ADS)

    Maki, Arthur G.

    2011-10-01

    The high-resolution spectrum of cyanogen ( 14N 12C 12C 14N) has been measured from 500 to 4900 cm -1. For this isotopomer many combination levels with both degenerate fundamentals, ν4 and ν5, have been measured for the first time and the effects of vibrational l-type resonance are observed as well as rotational l-type resonance. The effects of the vibrational resonance coupling ν2 and 2 ν4 have also been studied. The data have been combined with earlier measurements below 500 cm -1 to give a comprehensive catalog of the vibrational energy levels and the rovibrational constants for the normal isotopomer of cyanogen. A comparison of the term value constants for the three major symmetric isotopomers is given and they are compared with a recent ab initio calculation. The present data were combined with earlier work on the two symmetric isotopomers, 13C 214N 2 and 12C 215N 2, to obtain the equilibrium bond lengths, rCC = 138.109(60) pm and rCN = 115.976(40) pm.

  5. Detailed study of the water trimer potential energy surface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fowler, J.E.; Schaefer, H.F. III

    The potential energy surface of the water trimer has been studied through the use of ab initio quantum mechanical methods. Five stationary points were located, including one minimum and two transition states. All geometries were optimized at levels up to the double-[Zeta] plus polarization plus diffuse (DZP + diff) single and double excitation coupled cluster (CCSD) level of theory. CCSD single energy points were obtained for the minimum, two transition states, and the water monomer using the triple-[Zeta] plus double polarization plus diffuse (TZ2P + diff) basis at the geometries predicted by the DZP + diff CCSD method. Reported aremore » the following: geometrical parameters, total and relative energies, harmonic vibrational frequencies and infrared intensities for the minimum, and zero point vibrational energies for the minimum, two transition states, and three separated water molecules. 27 refs., 5 figs., 10 tabs.« less

  6. Ab initio studies of dissociative recombination

    NASA Technical Reports Server (NTRS)

    Guberman, Steven L.

    1989-01-01

    Quantum chemical calculations of the dissociative recombination of O2(+) and N2(+) are reported. An approach for calculating autoionization widths from high-principal-quantum-number Rydberg states is summarized, and an example is presented for the lowest dissociative state of O2. For O2(+), the 1Sigma(+)u state is the sole source of O(1S) from the lowest 10 vibrational levels of the ion. Rate coefficients for generating O(1S) and O(1D) at ionospheric temperatures are reported.

  7. Structural and vibrational study of 2-MethoxyEthylAmmonium Nitrate (2-OMeEAN): Interpretation of experimental results with ab initio molecular dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Campetella, M.; Caminiti, R.; Bencivenni, L.

    2016-07-14

    In this work we report an analysis of the bulk phase of 2-methoxyethylammonium nitrate based on ab initio molecular dynamics. The structural and dynamical features of the ionic liquid have been characterized and the computational findings have been compared with the experimental X-ray diffraction patterns, with infrared spectroscopy data, and with the results obtained from molecular dynamics simulations. The experimental infrared spectrum was interpreted with the support of calculated vibrational density of states as well as harmonic frequency calculations of selected gas phase clusters. Particular attention was addressed to the high frequency region of the cation (ω > 2000 cm{supmore » −1}), where the vibrational motions involve the NH{sub 3}+ group responsible for hydrogen bond formation, and to the frequency range 1200-1400 cm{sup −1} where the antisymmetric stretching mode (ν{sub 3}) of nitrate is found. Its multiple absorption lines in the liquid arise from the removal of the degeneracy present in the D{sub 3h} symmetry of the isolated ion. Our ab initio molecular dynamics leads to a rationalization of the frequency shifts and splittings, which are inextricably related to the structural modifications induced by a hydrogen bonding environment. The DFT calculations lead to an inhomogeneous environment.« less

  8. Investigation of the highest bound ro-vibrational states of H+ 3, DH+ 2, HD+ 2, D+ 3, and T+ 3: use of a non-direct product basis to compute the highest allowed J > 0 states

    NASA Astrophysics Data System (ADS)

    Jaquet, Ralph

    2013-09-01

    A Lanczos algorithm with a non-direct product basis was used to compute energy levels of H+ 3, H2D+, D2H+, D+ 3, and T+ 3 with J values as large as 46, 53, 66, 66, and 81. The energy levels are based on a modified potential surface of M. Pavanello et al. that is better adapted to the ab initio energies near the dissociation limit.

  9. Using monomer vibrational wavefunctions to compute numerically exact (12D) rovibrational levels of water dimer

    NASA Astrophysics Data System (ADS)

    Wang, Xiao-Gang; Carrington, Tucker

    2018-02-01

    We compute numerically exact rovibrational levels of water dimer, with 12 vibrational coordinates, on the accurate CCpol-8sf ab initio flexible monomer potential energy surface [C. Leforestier et al., J. Chem. Phys. 137, 014305 (2012)]. It does not have a sum-of-products or multimode form and therefore quadrature in some form must be used. To do the calculation, it is necessary to use an efficient basis set and to develop computational tools, for evaluating the matrix-vector products required to calculate the spectrum, that obviate the need to store the potential on a 12D quadrature grid. The basis functions we use are products of monomer vibrational wavefunctions and standard rigid-monomer basis functions (which involve products of three Wigner functions). Potential matrix-vector products are evaluated using the F matrix idea previously used to compute rovibrational levels of 5-atom and 6-atom molecules. When the coupling between inter- and intra-monomer coordinates is weak, this crude adiabatic type basis is efficient (only a few monomer vibrational wavefunctions are necessary), although the calculation of matrix elements is straightforward. It is much easier to use than an adiabatic basis. The product structure of the basis is compatible with the product structure of the kinetic energy operator and this facilitates computation of matrix-vector products. Compared with the results obtained using a [6 + 6]D adiabatic approach, we find good agreement for the inter-molecular levels and larger differences for the intra-molecular water bend levels.

  10. Using monomer vibrational wavefunctions to compute numerically exact (12D) rovibrational levels of water dimer.

    PubMed

    Wang, Xiao-Gang; Carrington, Tucker

    2018-02-21

    We compute numerically exact rovibrational levels of water dimer, with 12 vibrational coordinates, on the accurate CCpol-8sf ab initio flexible monomer potential energy surface [C. Leforestier et al., J. Chem. Phys. 137, 014305 (2012)]. It does not have a sum-of-products or multimode form and therefore quadrature in some form must be used. To do the calculation, it is necessary to use an efficient basis set and to develop computational tools, for evaluating the matrix-vector products required to calculate the spectrum, that obviate the need to store the potential on a 12D quadrature grid. The basis functions we use are products of monomer vibrational wavefunctions and standard rigid-monomer basis functions (which involve products of three Wigner functions). Potential matrix-vector products are evaluated using the F matrix idea previously used to compute rovibrational levels of 5-atom and 6-atom molecules. When the coupling between inter- and intra-monomer coordinates is weak, this crude adiabatic type basis is efficient (only a few monomer vibrational wavefunctions are necessary), although the calculation of matrix elements is straightforward. It is much easier to use than an adiabatic basis. The product structure of the basis is compatible with the product structure of the kinetic energy operator and this facilitates computation of matrix-vector products. Compared with the results obtained using a [6 + 6]D adiabatic approach, we find good agreement for the inter-molecular levels and larger differences for the intra-molecular water bend levels.

  11. Real-time observation of intramolecular proton transfer in the electronic ground state of chloromalonaldehyde: an ab initio study of time-resolved photoelectron spectra.

    PubMed

    do N Varella, Márcio T; Arasaki, Yasuki; Ushiyama, Hiroshi; Takatsuka, Kazuo; Wang, Kwanghsi; McKoy, Vincent

    2007-02-07

    The authors report on studies of time-resolved photoelectron spectra of intramolecular proton transfer in the ground state of chloromalonaldehyde, employing ab initio photoionization matrix elements and effective potential surfaces of reduced dimensionality, wherein the couplings of proton motion to the other molecular vibrational modes are embedded by averaging over classical trajectories. In the simulations, population is transferred from the vibrational ground state to vibrationally hot wave packets by pumping to an excited electronic state and dumping with a time-delayed pulse. These pump-dump-probe simulations demonstrate that the time-resolved photoelectron spectra track proton transfer in the electronic ground state well and, furthermore, that the geometry dependence of the matrix elements enhances the tracking compared with signals obtained with the Condon approximation. Photoelectron kinetic energy distributions arising from wave packets localized in different basins are also distinguishable and could be understood, as expected, on the basis of the strength of the optical couplings in different regions of the ground state potential surface and the Franck-Condon overlaps of the ground state wave packets with the vibrational eigenstates of the ion potential surface.

  12. Spectroscopic (FT-IR and FT-Raman) investigation, first order hyperpolarizability, NBO, HOMO-LUMO and MEP analysis of 6-nitrochromone by ab initio and density functional theory calculations

    NASA Astrophysics Data System (ADS)

    Senthil kumar, J.; Jeyavijayan, S.; Arivazhagan, M.

    2015-02-01

    The vibrational spectral analysis is carried out using FT-Raman and FT-IR spectroscopy in the range 3500-50 cm-1 and 4000-400 cm-1, respectively, for 6-nitrochromone (6NC). The molecular structure, fundamental vibrational frequencies and intensity of the vibrational bands are interpreted with the aid of structure optimization and normal coordinates force field calculation based on ab initio HF and DFT gradient calculations employing the HF/6-311++G(d,p) and B3LYP/6-311++G(d,p) basis set. Stability of the molecule has been analyzed using NBO analysis. The calculated HOMO and LUMO energies show that charge transfer occurs within the molecule. Thermodynamic properties like entropy, heat capacity, zero-point energy and Mulliken's charge analysis have been calculated for the 6NC. The complete assignments were performed on the basis of total energy distribution (TED) of the vibrational modes with scaled quantum mechanical (SQM) method. The MEP map shows the negative potential sites are on oxygen atoms as well as the positive potential sites are around the hydrogen atoms.

  13. Ab initio study of the ground and excited electronic states of the methyl radical

    PubMed Central

    Zanchet, A.; Bañares, L.; Senent, M. L.; García-Vela, A.

    2016-01-01

    The ground and some excited electronic states of the methyl radical have been characterized by means of highly correlated ab intio techniques. The specific excited states investigated are those involved in the dissociation of the radical, namely the 3s and 3pz Rydberg states, and the A1 and B1 valence states crossing them, respectively. The C-H dissociative coordinate and the HCH bending angle were considered in order to generate the first two-dimensional ab initio representation of the potential surfaces of the above electronic states of CH3, along with the nonadiabatic couplings between them. Spectroscopic constants and frequencies calculated for the ground and bound excited states agree well with most of the available experimental data. Implications of the shape of the excited potential surfaces and couplings for the dissociation pathways of CH3 are discussed in the light of recent experimental results for dissociation from low-lying vibrational states of CH3. Based on the ab initio data some predictions are made regarding methyl photodissociation from higher initial vibrational states. PMID:27892569

  14. Vibration-rotation-tunneling dynamics in small water clusters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pugliano, N.

    The goal of this work is to characterize the intermolecular vibrations of small water clusters. Using tunable far infrared laser absorption spectroscopy, large amplitude vibration-rotation-tunneling (VRT) dynamics in vibrationally excited states of the water dimer and the water trimer are investigated. This study begins with the measurement of 12 VRT subbands, consisting of approximately 230 transitions, which are assigned to an 82.6 cm[sup [minus]1] intermolecular vibration of the water dimer-d[sub 4]. Each of the VRT subbands originate from K[sub a][double prime]=0 and terminate in either K[sub a][prime]=0 or 1. These data provide a complete characterization of the tunneling dynamics inmore » the vibrationally excited state as well as definitive symmetry labels for all VRT energy levels. Furthermore, an accurate value for the A[prime] rotational constant is found to agree well with its corresponding ground state value. All other excited state rotational constants are fitted, and discussed in terms of the corresponding ground state constants. In this vibration, the quantum tunneling motions are determined to exhibit large dependencies with both the K[sub a][prime] quantum number and the vibrational coordinate, as is evidenced by the measured tunneling splittings. The generalized internal-axis-method treatment which has been developed to model the tunneling dynamics, is considered for the qualitative description of each tunneling pathway, however, the variation of tunneling splittings with vibrational excitation indicate that the high barrier approximation does not appear to be applicable for this vibrational coordinate. The data are consistent with a motion possessing a[prime] symmetry, and the vibration is assigned as the [nu][sub 12] acceptor bending coordinate. This assignment is in agreement with the vibrational symmetry, the resultsof high level ab initio calculations, and preliminary data assigned to the analogous vibration in the D[sub 2]O-DOH isotopomer.« less

  15. Vibrational spectra for uric acid and its D- and 15N-substituted analogues. Assignments for its normal modes from ab initio 3-21G force field.

    NASA Astrophysics Data System (ADS)

    Majoube, M.; Vergoten, G.

    1993-03-01

    FTR, Raman, FTIR spectra are obtained for polycrystalline uric acid and seven of its D-and 15N-substituted analogues. Assignments are given from a normal coordinate analysis carried out using a 3-21G ab initio force field. These are discussed by considering observed and calculated frequencies and D- and 15N-isotopic shifts.

  16. Vibrations of bioionic liquids by ab initio molecular dynamics and vibrational spectroscopy.

    PubMed

    Tanzi, Luana; Benassi, Paola; Nardone, Michele; Ramondo, Fabio

    2014-12-26

    Density functional theory and vibrational spectroscopy are used to investigate a class of bioionic liquids consisting of a choline cation and carboxylate anions. Through quantum mechanical studies of motionless ion pairs and molecular dynamics of small portions of the liquid, we have characterized important structural features of the ionic liquid. Hydrogen bonding produces stable ion pairs in the liquid and induces vibrational features of the carboxylate groups comparable with experimental results. Infrared and Raman spectra of liquids have been measured, and main bands have been assigned on the basis of theoretical spectra.

  17. Vibrational cooling of spin-stretched dimer states by He buffer gas: quantum calculations for Li2(a 3Sigma(u)+) at ultralow energies.

    PubMed

    Bovino, S; Bodo, E; Yurtsever, E; Gianturco, F A

    2008-06-14

    The interaction between the triplet state of the lithium dimer, (7)Li(2), with (4)He is obtained from accurate ab initio calculations where the vibrational dependence of the potential is newly computed. Vibrational quenching dynamics within a coupled-channel quantum treatment is carried out at ultralow energies, and large differences in efficiency as a function of the initial vibrational state of the targets are found as one compares the triplet results with those of the singlet state of the same target.

  18. Rotational and vibrational transitions for Li + H2 collisions

    NASA Technical Reports Server (NTRS)

    Choi, B. H.; Poe, R. T.; Tang, K. T.

    1977-01-01

    Close coupling calculations for integral and differential cross sections have been carried out for Li + H2 collisions with an ab initio Hartree-Fock potential energy surface. Rotational, vibrational, and vib-rotational excitation cross sections are reported at 0.4336 eV, 0.7 eV, and 0.8673 eV in the center of mass system. For pure rotational excitations, which dominate the inelastic scattering, coupling with vibrational states is not very important. For vibrational transitions, the influence of large multiquantum rotational transitions is far less than that found for Li(+) + H2 collisions.

  19. Theoretical predictions of vibration-rotation-tunneling dynamics of the weakly bound trimer (H 2O) 2HCl

    NASA Astrophysics Data System (ADS)

    Struniewicz, Cezary; Korona, Tatiana; Moszynski, Robert; Milet, Anne

    2001-08-01

    In this Letter we report a theoretical study of the vibration-rotation-tunneling (VRT) states of the (H 2O) 2HCl trimer. Five degrees of freedom are considered: two angles corresponding to the torsional (flipping) motions of the free, non-hydrogen-bonded, hydrogen atoms in the complex, and three angles describing the overall rotation of the trimer in the space. A two-dimensional potential energy surface is generated ab initio by symmetry-adapted perturbation theory (SAPT). Tunneling splittings, frequencies of the intermolecular vibrations, and vibrational line strengths of spectroscopic transitions are predicted.

  20. The eΠ3g state of C2: A pathway to dissociation

    NASA Astrophysics Data System (ADS)

    Welsh, B. A.; Krechkivska, O.; Nauta, K.; Bacskay, G. B.; Kable, S. H.; Schmidt, T. W.

    2017-07-01

    The lowest 13 vibrational levels, v = 0-12, of the eΠ3g state of the C2 molecule have been measured by laser-induced fluorescence of new bands of the Fox-Herzberg system. The newly observed levels, v = 5-12, which span the eΠ3g electronic state up to and beyond the first dissociation threshold of C2, were analyzed to afford highly accurate molecular constants, including band origins, and rotational and spin-orbit constants. The spin-orbit coupling constants of the previously published lowest five levels are revised in sign and magnitude, requiring an overhaul of previously published molecular constants. The analysis is supported by high level ab initio calculations. Lifetimes of all observed levels were recorded and found to be in excellent agreement with ab initio predicted values up to v = 11. v = 12 was found to exhibit a much reduced lifetime and fluorescence quantum yield, which is attributed to the onset of predissociation. This brackets the dissociation energy of ground state XΣ+1g C2 between 6.1803 and 6.2553 eV, in agreement with the Active Thermochemical Tables.

  1. Vibrational Spectroscopy of Ions and Radicals Present in the Interstellar Medium and in Planetary Atmospheres: A Theoretical Study

    NASA Technical Reports Server (NTRS)

    Chaban, Galina M.

    2004-01-01

    Anharmonic vibrational frequencies and intensities are calculated for OH(H2O)n and H(H2O)n radicals (that form on icy particles of the interstellar medium), HCO radical (the main intermediate in the synthesis of organic molecules in space), NH2(-) and C2H(-) anions, H5(+) cation, and other systems relevant to interstellar chemistry. In addition to pure ions and radicals, their complexes with water are studied to assess the effects of water environment on infrared spectra. The calculations are performed using the correlation-corrected vibrational self-consistent field (CC-VSCF) method with ab initio potential surfaces at the MP2 and CCSD(T) levels. Fundamental, overtone, and combination excitations are computed. The results are in good agreement with available experimental data and provide reliable predictions for vibrational excitations not yet measured in laboratory experiments. The data should be useful for interpretation of astronomically observed spectra and identification of ions and radicals present in the interstellar medium and in planetary atmospheres.

  2. Vibrational spectra and structure of benzil and its 18O- and d 10-labelled derivatives: a quantum chemical and experimental study

    NASA Astrophysics Data System (ADS)

    Kolev, Tsonko M.; Stamboliyska, Bistra A.

    2002-12-01

    Geometry and vibrational spectroscopic data of benzil-d 0 benzil-d 10 and benzil- 18O calculated at various levels of theory (RHF/6-31G*, B3LYP/6-31G*, BLYP/6-31G*) are reported. The theoretical results are discussed mainly in terms of the comparisons with infrared (4000-100 cm -1) and Raman (4000-50 cm -1) spectral data. The calculated isotopic frequency shifts, induced by the 18O- and d 10-labeling, are in a good agreement with the measured values. A complete vibrational assignment was made with the help of ab initio force field calculations. The data thus obtained were used for reassigning some vibrational frequencies. The results of the optimized molecular structure obtained on the basis of RHF and the DFT calculations are presented and compared with the experimental X-ray diffraction for the benzil-d 0 single crystal. It turns out that the best structural parameters are predicted by the B3LYP/6-31G* method.

  3. Vibrational spectra and structure of benzil and its 18O- and d10-labelled derivatives: a quantum chemical and experimental study.

    PubMed

    Kolev, Tsonko M; Stamboliyska, Bistra A

    2002-12-01

    Geometry and vibrational spectroscopic data of benzil-d0 benzil-d10 and benzil-18O calculated at various levels of theory (RHF/6-31G*, B3LYP/6-31G*, BLYP/6-31G*) are reported. The theoretical results are discussed mainly in terms of the comparisons with infrared (4000-100 cm(-1)) and Raman (4000-50 cm(-1)) spectral data. The calculated isotopic frequency shifts, induced by the 18O- and d10-labeling, are in a good agreement with the measured values. A complete vibrational assignment was made with the help of ab initio force field calculations. The data thus obtained were used for reassigning some vibrational frequencies. The results of the optimized molecular structure obtained on the basis of RHF and the DFT calculations are presented and compared with the experimental X-ray diffraction for the benzil-d0 single crystal. It turns out that the best structural parameters are predicted by the B3LYP/6-31G* method.

  4. An ab initio potential energy surface for the formic acid dimer: zero-point energy, selected anharmonic fundamental energies, and ground-state tunneling splitting calculated in relaxed 1-4-mode subspaces.

    PubMed

    Qu, Chen; Bowman, Joel M

    2016-09-14

    We report a full-dimensional, permutationally invariant potential energy surface (PES) for the cyclic formic acid dimer. This PES is a least-squares fit to 13475 CCSD(T)-F12a/haTZ (VTZ for H and aVTZ for C and O) energies. The energy-weighted, root-mean-square fitting error is 11 cm -1 and the barrier for the double-proton transfer on the PES is 2848 cm -1 , in good agreement with the directly-calculated ab initio value of 2853 cm -1 . The zero-point vibrational energy of 15 337 ± 7 cm -1 is obtained from diffusion Monte Carlo calculations. Energies of fundamentals of fifteen modes are calculated using the vibrational self-consistent field and virtual-state configuration interaction method. The ground-state tunneling splitting is computed using a reduced-dimensional Hamiltonian with relaxed potentials. The highest-level, four-mode coupled calculation gives a tunneling splitting of 0.037 cm -1 , which is roughly twice the experimental value. The tunneling splittings of (DCOOH) 2 and (DCOOD) 2 from one to three mode calculations are, as expected, smaller than that for (HCOOH) 2 and consistent with experiment.

  5. Dissociative electron attachment and vibrational excitation of CF{sub 3}Cl: Effect of two vibrational modes revisited

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tarana, Michal; JILA, University of Colorado and NIST, Boulder, Colorado 80309-0440; Houfek, Karel

    We present a study of dissociative electron attachment and vibrational excitation processes in electron collisions with the CF{sub 3}Cl molecule. The calculations are based on the two-dimensional nuclear dynamics including the C-Cl symmetric stretch coordinate and the CF{sub 3} symmetric deformation (umbrella) coordinate. The complex potential energy surfaces are calculated using the ab initio R-matrix method. The results for dissociative attachment and vibrational excitation of the umbrella mode agree quite well with experiment whereas the cross section for excitation of the C-Cl symmetric stretch vibrations is about a factor-of-three too low in comparison with experimental data.

  6. An ab initio variationally computed room-temperature line list for (32)S(16)O3.

    PubMed

    Underwood, Daniel S; Tennyson, Jonathan; Yurchenko, Sergei N

    2013-07-07

    Ab initio potential energy and dipole moment surfaces are computed for sulfur trioxide (SO3) at the CCSD(T)-F12b level of theory with appropriate triple-zeta basis sets. The analytical representations of these surfaces are used, with a slight correction, to compute pure rotational and rotation-vibration spectra of (32)S(16)O3 using the variational nuclear motion program TROVE. The calculations considered transitions in the region 0-4000 cm(-1) with rotational states up to J = 85. The resulting line list of 174,674,257 transitions is appropriate for modelling room temperature (32)S(16)O3 spectra. Good agreement is found with the observed infrared absorption spectra and the calculations are used to place the measured relative intensities on an absolute scale. A list of 10,878 experimental transitions is provided in a form suitable for inclusion in standard atmospheric and planetary spectroscopic databases.

  7. An ab initio study of some binary complexes containing methyl fluoride and difluoromethane: red-shifting and blue-shifting hydrogen bonds

    NASA Astrophysics Data System (ADS)

    Ramasami, Ponnadurai; Ford, Thomas A.

    2018-07-01

    The properties of a number of hydrogen-bonded complexes of methyl fluoride and difluoromethane with a range of hydrides of the first two rows of the periodic table have been computed using ab initio molecular orbital theory. The aim of this work was to identify possible examples of blue-shifting hydrogen-bonded species analogous to those formed between fluoroform and ammonia, water, phosphine and hydrogen sulphide, reported earlier. The calculations were carried out using the Gaussian-09 program, at the second-order level of Møller-Plesset perturbation theory, and with the aug-cc-pVTZ basis sets of Dunning. The properties studied include the molecular structures, the hydrogen bond energies and the vibrational spectra. The results have been interpreted with the aid of natural bond orbital theory and the quantum theory of atoms in molecules.

  8. Experimental and theoretical vibrational spectroscopy studies of acetohydroxamic acid and desferrioxamine B in aqueous solution: Effects of pH and iron complexation

    NASA Astrophysics Data System (ADS)

    Edwards, David C.; Nielsen, Steen B.; Jarzęcki, Andrzej A.; Spiro, Thomas G.; Myneni, Satish C. B.

    2005-07-01

    The deprotonation and iron complexation of the hydroxamate siderophore, desferrioxamine B (desB), and a model hydroxamate ligand, acetohydroxamic acid (aHa), were studied using infrared, resonance Raman and UV-vis spectroscopy. The experimental spectra were interpreted by a comparison with DFT calculated spectra of aHa (partly hydrated) and desB (reactive groups of unhydrated molecule) at the B3LYP/6-31G* level of theory. The ab initio models include three water molecules surrounding the deprotonation site of aHa to account for partial hydration. Experiments and calculations were also conducted in D 2O to verify spectral assignments. These studies of aHa suggest that the cis-keto-aHa is the dominant form, and its deprotonation occurs at the oxime oxygen atom in aqueous solutions. The stable form of iron-complexed aHa is identified as Fe(aHa) 3 for a wide range of pH conditions. The spectral information of aHa and an ab initio model of desB were used to interpret the chemical state of different functional groups in desB. Vibrational spectra of desB indicate that the oxime and amide carbonyl groups can be identified unambiguously. Vibrational spectral analysis of the oxime carbonyl after deprotonation and iron complexation of desB indicates that the conformational changes between anion and the iron-complexed anion are small. Enhanced electron delocalization in the oxime group of Fe-desB when compared to that of Fe(aHa) 3 may be responsible for higher stability constant of the former.

  9. On the bonding mechanism of CO to Pt(111) and its effect on the vibrational frequency of chemisorbed CO

    NASA Astrophysics Data System (ADS)

    Illas, F.; Zurita, S.; Márquez, A. M.; Rubio, J.

    1997-04-01

    The chemisorption of CO on the atop site of Pt(111) has been simulated by a Pt4 cluster model. Ab initio self consistent field (SCF) and complete active space self consistent field (CASSCF) cluster model wave functions have been obtained for the electronic ground state. Likewise, ab initio SCF wavefunctions have been obtained for two other electronic states. The optimum geometry and vibrational frequencies of chemisorbed CO are reported for the three states. The interaction energy and vibrational shift of chemisorbed CO, with respect to free gas phase CO, have been analyzed for the three electronic states. This analysis is carried out by means of the constrained space orbital variation (CSOV) method. In all cases the bond is found to be dominated by σ donation and π back-donation, known as Blyholder's mechanism. This mechanism is further supported by SCF calculations on a larger, Pt13, cluster model. For both clusters, the CSOV analysis of the vibrational frequency definitely shows that, contrary to previous recent studies, a major contribution to the experimentally observed vibrational shift comes from the π back-donation mechanism. However, we found that, contrary to common belief, σ donation also acts to lower the CO frequency and not to increase it. Physical reasons for such unexpected behaviour are given.

  10. Ab initio based potential energy surface and kinetics study of the OH + NH3 hydrogen abstraction reaction.

    PubMed

    Monge-Palacios, M; Rangel, C; Espinosa-Garcia, J

    2013-02-28

    A full-dimensional analytical potential energy surface (PES) for the OH + NH3 → H2O + NH2 gas-phase reaction was developed based exclusively on high-level ab initio calculations. This reaction presents a very complicated shape with wells along the reaction path. Using a wide spectrum of properties of the reactive system (equilibrium geometries, vibrational frequencies, and relative energies of the stationary points, topology of the reaction path, and points on the reaction swath) as reference, the resulting analytical PES reproduces reasonably well the input ab initio information obtained at the coupled-cluster single double triple (CCSD(T)) = FULL/aug-cc-pVTZ//CCSD(T) = FC/cc-pVTZ single point level, which represents a severe test of the new surface. As a first application, on this analytical PES we perform an extensive kinetics study using variational transition-state theory with semiclassical transmission coefficients over a wide temperature range, 200-2000 K. The forward rate constants reproduce the experimental measurements, while the reverse ones are slightly underestimated. However, the detailed analysis of the experimental equilibrium constants (from which the reverse rate constants are obtained) permits us to conclude that the experimental reverse rate constants must be re-evaluated. Another severe test of the new surface is the analysis of the kinetic isotope effects (KIEs), which were not included in the fitting procedure. The KIEs reproduce the values obtained from ab initio calculations in the common temperature range, although unfortunately no experimental information is available for comparison.

  11. The hydrogen abstraction reaction O({sup 3}P) + CH{sub 4}: A new analytical potential energy surface based on fit to ab initio calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    González-Lavado, Eloisa; Corchado, Jose C.; Espinosa-Garcia, Joaquin, E-mail: joaquin@unex.es

    2014-02-14

    Based exclusively on high-level ab initio calculations, a new full-dimensional analytical potential energy surface (PES-2014) for the gas-phase reaction of hydrogen abstraction from methane by an oxygen atom is developed. The ab initio information employed in the fit includes properties (equilibrium geometries, relative energies, and vibrational frequencies) of the reactants, products, saddle point, points on the reaction path, and points on the reaction swath, taking especial caution respecting the location and characterization of the intermediate complexes in the entrance and exit channels. By comparing with the reference results we show that the resulting PES-2014 reproduces reasonably well the whole setmore » of ab initio data used in the fitting, obtained at the CCSD(T) = FULL/aug-cc-pVQZ//CCSD(T) = FC/cc-pVTZ single point level, which represents a severe test of the new surface. As a first application, on this analytical surface we perform an extensive dynamics study using quasi-classical trajectory calculations, comparing the results with recent experimental and theoretical data. The excitation function increases with energy (concave-up) reproducing experimental and theoretical information, although our values are somewhat larger. The OH rotovibrational distribution is cold in agreement with experiment. Finally, our results reproduce experimental backward scattering distribution, associated to a rebound mechanism. These results lend confidence to the accuracy of the new surface, which substantially improves the results obtained with our previous surface (PES-2000) for the same system.« less

  12. Ab Initio Studies of Stratospheric Ozone Depletion Chemistry

    NASA Technical Reports Server (NTRS)

    Lee, Timothy J.; Head-Gordon, Martin; Langhoff, Stephen R. (Technical Monitor)

    1995-01-01

    An overview of the current understanding of ozone depletion chemistry, particularly with regards the formation of the so-called Antarctic ozone hole, will be presented together with an outline as to how ab initio quantum chemistry can be used to further our understanding of stratospheric chemistry. The ability of modern state-of-the art ab initio quantum chemical techniques to characterize reliably the gas-phase molecular structure, vibrational spectrum, electronic spectrum, and thermal stability of fluorine, chlorine, bromine and nitrogen oxide species will be demonstrated by presentation of some example studies. The ab initio results will be shown to be in excellent agreement with the available experimental data, and where the experimental data are either not known or are inconclusive, the theoretical results are shown to fill in the gaps and to resolve experimental controversies. In addition, ab initio studies in which the electronic spectra and the characterization of excited electronic states of halogen oxide species will also be presented. Again where available, the ab initio results are compared to experimental observations, and are used to aid in the interpretation of experimental studies.

  13. Comparison between phenomenological and ab-initio reaction and relaxation models in DSMC

    NASA Astrophysics Data System (ADS)

    Sebastião, Israel B.; Kulakhmetov, Marat; Alexeenko, Alina

    2016-11-01

    New state-specific vibrational-translational energy exchange and dissociation models, based on ab-initio data, are implemented in direct simulation Monte Carlo (DSMC) method and compared to the established Larsen-Borgnakke (LB) and total collision energy (TCE) phenomenological models. For consistency, both the LB and TCE models are calibrated with QCT-calculated O2+O data. The model comparison test cases include 0-D thermochemical relaxation under adiabatic conditions and 1-D normal shockwave calculations. The results show that both the ME-QCT-VT and LB models can reproduce vibrational relaxation accurately but the TCE model is unable to reproduce nonequilibrium rates even when it is calibrated to accurate equilibrium rates. The new reaction model does capture QCT-calculated nonequilibrium rates. For all investigated cases, we discuss the prediction differences based on the new model features.

  14. An extensive ab initio study of the structures, vibrational spectra, quadratic force fields, and relative energetics of three isomers of Cl2O2

    NASA Technical Reports Server (NTRS)

    Lee, Timothy J.; Rohlfing, Celeste MCM.; Rice, Julia E.

    1992-01-01

    Quantum mechanical computational methods are employed for an ab initio investigation of: (1) the molecular properties of the lowest isomers of the ClO dimer; and (2) predicted molecular and thermochemical properties. Techniques employed include electron correlation and particularly singles and doubles coupled-cluster (CCSD) theory with or without perturbational estimates of the effects of connected triple excitations. The isomers ClOClO and ClClO2 are found to have higher energies than the ClOOCl isomer, and the theoretical vibrational frequencies of the isomers are well correlated with experimental data. Experimental values of the heat of formation for the isomers are also compared with calculations based on an isodesmic reaction with Cl2O, H2O, and HOOH.

  15. Solvent induced conformational fluctuation of alanine dipeptide studied by using vibrational probes

    NASA Astrophysics Data System (ADS)

    Cai, Kaicong; Du, Fenfen; Liu, Jia; Su, Tingting

    2015-02-01

    The solvation effect on the three dimensional structure and the vibrational feature of alanine dipeptide (ALAD) was evaluated by applying the implicit solvents from polarizable continuum solvent model (PCM) through ab initio calculations, by using molecular dynamic (MD) simulations with explicit solvents, and by combining these two approaches. The implicit solvent induced potential energy fluctuations of ALAD in CHCl3, DMSO and H2O are revealed by means of ab initio calculations, and a global view of conformational and solvation environmental dependence of amide I frequencies is achieved. The results from MD simulations with explicit solvents show that ALAD trends to form PPII, αL, αR, and C5 in water, PPII and C5 in DMSO, and C5 in CHCl3, ordered by population, and the demonstration of the solvated structure, the solute-solvent interaction and hydrogen bonding is therefore enhanced. Representative ALAD-solvent clusters were sampled from MD trajectories and undergone ab initio calculations. The explicit solvents reveal the hydrogen bonding between ALAD and solvents, and the correlation between amide I frequencies and the Cdbnd O bond length is built. The implicit solvents applied to the ALAD-solvent clusters further compensate the solvation effect from the bulk, and thus enlarge the degree of structural distortion and the amide I frequency red shift. The combination of explicit solvent in the first hydration shell and implicit solvent in the bulk is helpful for our understanding about the conformational fluctuation of solvated polypeptides through vibrational probes.

  16. Vibrational spectroscopic study of fluticasone propionate

    NASA Astrophysics Data System (ADS)

    Ali, H. R. H.; Edwards, H. G. M.; Kendrick, J.; Scowen, I. J.

    2009-03-01

    Fluticasone propionate is a synthetic glucocorticoid with potent anti-inflammatory activity that has been used effectively in the treatment of chronic asthma. The present work reports a vibrational spectroscopic study of fluticasone propionate and gives proposed molecular assignments on the basis of ab initio calculations using BLYP density functional theory with a 6-31G* basis set and vibrational frequencies predicted within the quasi-harmonic approximation. Several spectral features and band intensities are explained. This study generated a library of information that can be employed to aid the process monitoring of fluticasone propionate.

  17. Accelerating ab initio path integral molecular dynamics with multilevel sampling of potential surface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Geng, Hua Y., E-mail: huay.geng@gmail.com; Department of Chemistry and Chemical Biology, Cornell University, Baker Laboratory, Ithaca, NY 14853

    A multilevel approach to sample the potential energy surface in a path integral formalism is proposed. The purpose is to reduce the required number of ab initio evaluations of energy and forces in ab initio path integral molecular dynamics (AI-PIMD) simulation, without compromising the overall accuracy. To validate the method, the internal energy and free energy of an Einstein crystal are calculated and compared with the analytical solutions. As a preliminary application, we assess the performance of the method in a realistic model—the FCC phase of dense atomic hydrogen, in which the calculated result shows that the acceleration rate ismore » about 3 to 4-fold for a two-level implementation, and can be increased up to 10 times if extrapolation is used. With only 16 beads used for the ab initio potential sampling, this method gives a well converged internal energy. The residual error in pressure is just about 3 GPa, whereas it is about 20 GPa for a plain AI-PIMD calculation with the same number of beads. The vibrational free energy of the FCC phase of dense hydrogen at 300 K is also calculated with an AI-PIMD thermodynamic integration method, which gives a result of about 0.51 eV/proton at a density of r{sub s}=0.912.« less

  18. Vibrational Raman optical activity of 1-phenylethanol and 1-phenylethylamine: revisiting old friends.

    PubMed

    Kapitán, Josef; Johannessen, Christian; Bour, Petr; Hecht, Lutz; Barron, Laurence D

    2009-01-01

    The samples used for the first observations of vibrational Raman optical activity (ROA) in 1972, namely both enantiomers of 1-phenylethanol and 1-phenylethylamine, have been revisited using a modern commercial ROA instrument together with state-of-the-art ab initio calculations. The simulated ROA spectra reveal for the first time the vibrational origins of the first reported ROA signals, which comprised similar couplets in the alcohol and amine in the spectral range approximately 280-400 cm(-1). The results demonstrate how easy and routine ROA measurements have become, and how current ab initio quantum-chemical calculations are capable of simulating experimental ROA spectra quite closely provided sufficient averaging over accessible conformations is included. Assignment of absolute configuration is, inter alia, completely secure from results of this quality. Anharmonic corrections provided small improvements in the simulated Raman and ROA spectra. The importance of conformational averaging emphasized by this and previous related work provides the underlying theoretical background to ROA studies of dynamic aspects of chiral molecular and biomolecular structure and behavior. (c) 2009 Wiley-Liss, Inc.

  19. The (CH2)2O-H2O hydrogen bonded complex. Ab Initio calculations and Fourier transform infrared spectroscopy from neon matrix and a new supersonic jet experiment coupled to the infrared AILES beamline of synchrotron SOLEIL.

    PubMed

    Cirtog, M; Asselin, P; Soulard, P; Tremblay, B; Madebène, B; Alikhani, M E; Georges, R; Moudens, A; Goubet, M; Huet, T R; Pirali, O; Roy, P

    2011-03-31

    A series of hydrogen bonded complexes involving oxirane and water molecules have been studied. In this paper we report on the vibrational study of the oxirane-water complex (CH(2))(2)O-H(2)O. Neon matrix experiments and ab initio anharmonic vibrational calculations have been performed, providing a consistent set of vibrational frequencies and anharmonic coupling constants. The implementation of a new large flow supersonic jet coupled to the Bruker IFS 125 HR spectrometer at the infrared AILES beamline of the French synchrotron SOLEIL (Jet-AILES) enabled us to record first jet-cooled Fourier transform infrared spectra of oxirane-water complexes at different resolutions down to 0.2 cm(-1). Rovibrational parameters and a lower bound of the predissociation lifetime of 25 ps for the v(OH)(b) = 1 state have been derived from the rovibrational analysis of the ν(OH)(b) band contour recorded at respective rotational temperatures of 12 K (Jet-AILES) and 35 K (LADIR jet).

  20. Synthesis, FTIR, FT-Raman, UV-visible, ab initio and DFT studies on benzohydrazide.

    PubMed

    Arjunan, V; Rani, T; Mythili, C V; Mohan, S

    2011-08-01

    A systematic vibrational spectroscopic assignment and analysis of benzohydrazide (BH) has been carried out by using FTIR and FT-Raman spectral data. The vibrational analysis were aided by electronic structure calculations--ab initio (RHF) and hybrid density functional methods (B3LYP and B3PW91) performed with 6-31G(d,p) and 6-311++G(d,p) basis sets. Molecular equilibrium geometries, electronic energies, IR intensities, harmonic vibrational frequencies, depolarization ratios and Raman activities have been computed. Potential energy distribution (PED) and normal mode analysis have also been performed. The assignments proposed based on the experimental IR and Raman spectra have been reviewed and complete assignment of the observed spectra have been proposed. UV-visible spectrum of the compound was also recorded and the electronic properties, such as HOMO and LUMO energies and λ(max) were determined by time-dependent DFT (TD-DFT) method. The geometrical, thermodynamical parameters and absorption wavelengths were compared with the experimental data. The interactions of carbonyl and hydrazide groups on the benzene ring skeletal modes were investigated. Copyright © 2011 Elsevier B.V. All rights reserved.

  1. Uncertainties in scaling factors for ab initio vibrational zero-point energies

    NASA Astrophysics Data System (ADS)

    Irikura, Karl K.; Johnson, Russell D.; Kacker, Raghu N.; Kessel, Rüdiger

    2009-03-01

    Vibrational zero-point energies (ZPEs) determined from ab initio calculations are often scaled by empirical factors. An empirical scaling factor partially compensates for the effects arising from vibrational anharmonicity and incomplete treatment of electron correlation. These effects are not random but are systematic. We report scaling factors for 32 combinations of theory and basis set, intended for predicting ZPEs from computed harmonic frequencies. An empirical scaling factor carries uncertainty. We quantify and report, for the first time, the uncertainties associated with scaling factors for ZPE. The uncertainties are larger than generally acknowledged; the scaling factors have only two significant digits. For example, the scaling factor for B3LYP/6-31G(d) is 0.9757±0.0224 (standard uncertainty). The uncertainties in the scaling factors lead to corresponding uncertainties in predicted ZPEs. The proposed method for quantifying the uncertainties associated with scaling factors is based upon the Guide to the Expression of Uncertainty in Measurement, published by the International Organization for Standardization. We also present a new reference set of 60 diatomic and 15 polyatomic "experimental" ZPEs that includes estimated uncertainties.

  2. Characterization of adsorbed water in MIL-53(Al) by FTIR spectroscopy and ab-initio calculations.

    PubMed

    Salazar, J M; Weber, G; Simon, J M; Bezverkhyy, I; Bellat, J P

    2015-03-28

    Here, we report ab-initio calculations developed with a twofold purpose: understand how adsorbed water molecules alter the infrared spectrum of the metal-organic framework MIL-53(Al) and to investigate which are the associated physico-chemical processes. The analyzed structures are the two anhydrous narrow (np⊘) and large (lp⊘) pore forms and the hydrated narrow pore form (np-H2O) of the MIL-53(Al). For these structures, we determined their corresponding infrared spectra (FTIR) and we identified the vibrational modes associated to the dominant spectral lines. We show that wagging and scissoring modes of CO2 give flexibility to the structure for facilitating the lp⊘- np⊘ transition. In our studies, this transition is identified by eight vibrational modes including the δCH(18a) vibrational mode currently used to identify the mentioned transition. We report an exhaustive band identification of the infrared spectra associated to the analyzed structures. Moreover, the FTIR for the np-H2O structure allowed us to identify four types of water molecules linked to the host structure by one to three hydrogen bonds.

  3. Experimental and ab initio characterization of HC3N+ vibronic structure. II. High-resolution VUV PFI-ZEKE spectroscopy.

    PubMed

    Gans, Bérenger; Lamarre, Nicolas; Broquier, Michel; Liévin, Jacques; Boyé-Péronne, Séverine

    2016-12-21

    Vacuum-ultraviolet pulsed-field-ionization zero-kinetic-energy photoelectron spectra of X + Π2←XΣ+1 and B + Π2←XΣ+1 transitions of the HC 3 14 N and HC 3 15 N isotopologues of cyanoacetylene have been recorded. The resolution of the photoelectron spectra allowed us to resolve the vibrational structures and the spin-orbit splittings in the cation. Accurate values of the adiabatic ionization potentials of the two isotopologues (E I /hc(HC 3 14 N)=93 909(2) cm -1 and E I /hc(HC 3 15 N)=93 912(2) cm -1 ), the vibrational frequencies of the ν 2 , ν 6 , and ν 7 vibrational modes, and the spin-orbit coupling constant (A SO = -44(2) cm -1 ) of the X + Π2 cationic ground state have been derived from the measurements. Using ab initio calculations, the unexpected structure of the B + Π2←XΣ+1 transition is tentatively attributed to a conical intersection between the A + and B + electronic states of the cation.

  4. The study of molecular spectroscopy by ab initio methods

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles W., Jr.; Langhoff, Stephen R.

    1991-01-01

    This review illustrates the potential of theory for solving spectroscopic problems. The accuracy of approximate techniques for including electron correlation have been calibrated by comparison with full configuration-interaction calculations. Examples of the application of ab initio calculations to vibrational, rotational, and electronic spectroscopy are given. It is shown that the state-averaged, complete active space self-consistent field, multireference configuration-interaction procedure provides a good approach for treating several electronic states accurately in a common molecular orbital basis.

  5. Microwave spectra and molecular structures of (Z)-pent-2-en-4-ynenitrile and maleonitrile.

    PubMed

    Halter, R J; Fimmen, R L; McMahon, R J; Peebles, S A; Kuczkowski, R L; Stanton, J F

    2001-12-12

    Accurate equilibrium structures have been determined for (Z)-pent-2-en-4-ynenitrile (8) and maleonitrile (9) by combining microwave spectroscopy data and ab initio quantum chemistry calculations. The microwave spectra of 10 isotopomers of 8 and 5 isotopomers of 9 were obtained using a pulsed nozzle Fourier transform microwave spectrometer. The ground-state rotational constants were adjusted for vibration-rotation interaction effects calculated from force fields obtained from ab initio calculations. The resultant equilibrium rotational constants were used to determine structures that are in very good agreement with those obtained from high-level ab initio calculations (CCSD(T)/cc-pVTZ). The geometric parameters in 8 and 9 are very similar; they also do not differ significantly from the all-carbon analogue, (Z)-hex-3-ene-1,5-diyne (7), the parent molecule for the Bergman cyclization. A small deviation from linearity about the alkyne and cyano linkages is observed for 7-9 and several related species where accurate equilibrium parameters are available. The data on 7-9 should be of interest to radioastronomy and may provide insights on the formation and interstellar chemistry of unsaturated species such as the cyanopolyynes.

  6. Ab Initio Calculation of Accurate Vibrational Frequencies for Molecules of Interest in Atmospheric Chemistry

    NASA Technical Reports Server (NTRS)

    Lee, Timothy J.; Langhoff, Stephen R. (Technical Monitor)

    1996-01-01

    Due to advances in quantum mechanical methods over the last few years, it is now possible to determine ab initio potential energy surfaces in which fundamental vibrational frequencies are accurate to within +/- 8 cm(sup -1) on average, and molecular bond distances are accurate to within +/- 0.001-0.003 A, depending on the nature of the bond. That is, the potential energy surfaces have not been scaled or empirically adjusted in any way, showing that theoretical methods have progressed to the point of being useful in analyzing spectra that are not from a tightly controlled laboratory environment, such as rovibrational spectra from the interstellar medium. Some recent examples demonstrating this accuracy win be presented and discussed. These include the HNO, CH4, C2H4, and ClCN molecules. The HNO molecule is interesting due to the very large H-N anharmonicity, while ClCN has a very large Fermi resonance. The ab initio studies for the CH4 and C2H4 molecules present the first accurate full quartic force fields of any kind (i.e., whether theoretical or empirical) for a five-atom and six-atom system, respectively.

  7. Unification of the phonon mode behavior in semiconductor alloys: Theory and ab initio calculations

    NASA Astrophysics Data System (ADS)

    Pagès, O.; Postnikov, A. V.; Kassem, M.; Chafi, A.; Nassour, A.; Doyen, S.

    2008-03-01

    We demonstrate how to overcome serious problems in understanding and classification of vibration spectra in semiconductor alloys, following from traditional use of the virtual crystal approximation (VCA). We show that such different systems as InGaAs (1- bond→1 -mode behavior), InGaP (modified 2-mode), and ZnTeSe (2- bond→1 -mode) obey, in fact, the same phonon mode behavior—hence probably a universal one—of a percolation type (1- bond→2 -mode). The change of paradigm from the “VCA insight” (an averaged microscopic one) to the “percolation insight” (a mesoscopic one) offers a promising link toward the understanding of alloy disorder. The discussion is supported by ab initio simulation of the phonon density of states at the zone center of representative supercells at intermediary composition (ZnTeSe) and at the impurity-dilute limits (all systems). In particular, we propose a simple ab initio “protocol” to estimate the basic input parameters of our semiempirical “percolation” model for the calculation of the 1- bond→2 -mode vibration spectra of zinc blende alloys. With this, the model turns self-sufficient.

  8. 10 μm High-resolution spectrum of trans -acrolein: Rotational analysis of the ν 11 , ν 16 , ν 14 and ν 16 + ν 18 - ν 18 bands

    NASA Astrophysics Data System (ADS)

    Xu, Li-Hong; Jiang, Xingjie; Shi, Hongyu; Lees, R. M.; McKellar, A. R. W.; Tokaryk, D. W.; Appadoo, D. R. T.

    2011-07-01

    High-resolution Fourier transform spectra of trans-acrolein, H 2C dbnd C(H) sbnd C(H) dbnd O, have been recorded in the 10 μm region at both room and cooled temperatures on the modified Bomem DA3.002 at the National Research Council of Canada and the Bruker IFS 125HR spectrometer at the far infrared beam line of the Canadian Light Source in Saskatoon. Vibrational fundamentals analyzed so far include the ν11, ν16 and ν14 bands centered at 911.3, 958.7 and 992.7 cm -1 corresponding respectively to the A' in-plane dbnd CH 2-rocking mode, the A″ out-of-plane dbnd CH 2-wagging mode, and the A″ wagging mode highly mixed between the ⩾C sbnd H vinyl and ⩾C sbnd H formyl groups [Vibrational mode descriptions are based on Y.N. Panchenko, P. Pulay, F. Török, J. Mol. Spectrosc. 34 (1976) 283-289.] As well, the ν16 + ν18 - ν18 hot band centred at 957.6 cm -1 has been analyzed, where ν18 is the low-frequency (157.9 cm -1) A″ ⩾C sbnd C ⪕ torsional mode. The ν11 band is a/ b type while the ν16, ν14 and ν16 + ν18 - ν18 bands are c-type. The assigned transitions of each band have been fitted to a Watson asymmetric rotor Hamiltonian, with ground state parameters fixed to values obtained from rotational analyses in the literature. As well, a combined 3-state fit for ν11, ν16 and ν14 was carried out including Coriolis and Z1 constants which account for J and Δ K interactions. Transition dipole moments have been calculated for each of the fundamentals using the ab initio B3LYP method and 6-311++G ∗∗ basis set. For the A' vibrational modes, we have also evaluated transition dipole a- and b-components in the principal axis system from vibrational displacements and dipole moment derivatives. Our ab initio results predict that the ν11 in-plane dbnd CH 2 rocking mode has an a-type transition strength about three times greater than the b-type, which is consistent with our observations. Our ab initio force field analysis gives vibrational mode descriptions consistent with previously published work for all 13 A' modes. However, for the five A″ vibrational modes, our ab initio results disagree with two of the descriptions of Panchenko et al. and three of the descriptions of Hamada et al. [Y. Hamada, Y. Nishimura, M. Tsuboi, Chem. Phys. 100 (1985) 365-375].

  9. Hydration and vibrational dynamics of betaine (N,N,N-trimethylglycine)

    NASA Astrophysics Data System (ADS)

    Li, Tanping; Cui, Yaowen; Mathaga, John; Kumar, Revati; Kuroda, Daniel G.

    2015-06-01

    Zwitterions are naturally occurring molecules that have a positive and a negative charge group in its structure and are of great importance in many areas of science. Here, the vibrational and hydration dynamics of the zwitterionic system betaine (N,N,N-trimethylglycine) is reported. The linear infrared spectrum of aqueous betaine exhibits an asymmetric band in the 1550-1700 cm-1 region of the spectrum. This band is attributed to the carboxylate asymmetric stretch of betaine. The potential of mean force computed from ab initio molecular dynamic simulations confirms that the two observed transitions of the linear spectrum are related to two different betaine conformers present in solution. A model of the experimental data using non-linear response theory agrees very well with a vibrational model comprising of two vibrational transitions. In addition, our modeling shows that spectral parameters such as the slope of the zeroth contour plot and central line slope are both sensitive to the presence of overlapping transitions. The vibrational dynamics of the system reveals an ultrafast decay of the vibrational population relaxation as well as the correlation of frequency-frequency correlation function (FFCF). A decay of ˜0.5 ps is observed for the FFCF correlation time and is attributed to the frequency fluctuations caused by the motions of water molecules in the solvation shell. The comparison of the experimental observations with simulations of the FFCF from ab initio molecular dynamics and a density functional theory frequency map shows a very good agreement corroborating the correct characterization and assignment of the derived parameters.

  10. Hydration and vibrational dynamics of betaine (N,N,N-trimethylglycine)

    PubMed Central

    Li, Tanping; Cui, Yaowen; Mathaga, John; Kumar, Revati; Kuroda, Daniel G.

    2015-01-01

    Zwitterions are naturally occurring molecules that have a positive and a negative charge group in its structure and are of great importance in many areas of science. Here, the vibrational and hydration dynamics of the zwitterionic system betaine (N,N,N-trimethylglycine) is reported. The linear infrared spectrum of aqueous betaine exhibits an asymmetric band in the 1550-1700 cm−1 region of the spectrum. This band is attributed to the carboxylate asymmetric stretch of betaine. The potential of mean force computed from ab initio molecular dynamic simulations confirms that the two observed transitions of the linear spectrum are related to two different betaine conformers present in solution. A model of the experimental data using non-linear response theory agrees very well with a vibrational model comprising of two vibrational transitions. In addition, our modeling shows that spectral parameters such as the slope of the zeroth contour plot and central line slope are both sensitive to the presence of overlapping transitions. The vibrational dynamics of the system reveals an ultrafast decay of the vibrational population relaxation as well as the correlation of frequency-frequency correlation function (FFCF). A decay of ∼0.5 ps is observed for the FFCF correlation time and is attributed to the frequency fluctuations caused by the motions of water molecules in the solvation shell. The comparison of the experimental observations with simulations of the FFCF from ab initio molecular dynamics and a density functional theory frequency map shows a very good agreement corroborating the correct characterization and assignment of the derived parameters. PMID:26049458

  11. ExoMol molecular line lists - XXVI: spectra of SH and NS

    NASA Astrophysics Data System (ADS)

    Yurchenko, Sergei N.; Bond, Wesley; Gorman, Maire N.; Lodi, Lorenzo; McKemmish, Laura K.; Nunn, William; Shah, Rohan; Tennyson, Jonathan

    2018-04-01

    Line lists for the sulphur-containing molecules SH (the mercapto radical) and NS are computed as part of the ExoMol project. These line lists consider transitions within the X 2Π ground state for 32SH, 33SH, 34SH and 32SD, and 14N32S, 14N33S, 14N34S, 14N36S and 15N32S. Ab initio potential energy (PEC) and spin-orbit coupling (SOC) curves are computed and then improved by fitting to experimentally observed transitions. Fully ab initio dipole moment curves (DMCs) computed at high level of theory are used to produce the final line lists. For SH, our fit gives a root-mean-square (rms) error of 0.03 cm-1 between the observed (vmax = 4, Jmax = 34.5) and calculated transitions wavenumbers; this is extrapolated such that all X 2Π rotational-vibrational-electronic (rovibronic) bound states are considered. For 32SH the resulting line list contains about 81 000 transitions and 2 300 rovibronic states, considering levels up to vmax = 14 and Jmax = 60.5. For NS the refinement used a combination of experimentally determined frequencies and energy levels and led to an rms fitting error of 0.002 cm-1. Each NS calculated line list includes around 2.8 million transitions and 31 000 rovibronic states with a vibrational range up to v = 53 and rotational range to J = 235.5, which covers up to 23 000 cm-1. Both line lists should be complete for temperatures up to 5000 K. Example spectra simulated using this line list are shown and comparisons made to the existing data in the CDMS database. The line lists are available from the CDS (http://cdsarc.u-strasbg.fr) and ExoMol (www.exomol.com) data bases.

  12. The Renner-Teller effect in HCCCl(+)(X̃(2)Π) studied by zero-kinetic energy photoelectron spectroscopy and ab initio calculations.

    PubMed

    Sun, Wei; Dai, Zuyang; Wang, Jia; Mo, Yuxiang

    2015-05-21

    The spin-vibronic energy levels of the chloroacetylene cation up to 4000 cm(-1) above the ground state have been measured using the one-photon zero-kinetic energy photoelectron spectroscopic method. The spin-vibronic energy levels have also been calculated using a diabatic model, in which the potential energy surfaces are expressed by expansions of internal coordinates, and the Hamiltonian matrix equation is solved using a variational method with harmonic basis functions. The calculated spin-vibronic energy levels are in good agreement with the experimental data. The Renner-Teller (RT) parameters describing the vibronic coupling for the H-C≡C bending mode (ε4), Cl-C≡C bending mode (ε5), the cross-mode vibronic coupling (ε45) of the two bending vibrations, and their vibrational frequencies (ω4 and ω5) have also been determined using an effective Hamiltonian matrix treatment. In comparison with the spin-orbit interaction, the RT effect in the H-C≡C bending (ε4) mode is strong, while the RT effect in the Cl-C≡C bending mode is weak. There is a strong cross-mode vibronic coupling of the two bending vibrations, which may be due to a vibronic resonance between the two bending vibrations. The spin-orbit energy splitting of the ground state has been determined for the first time and is found to be 209 ± 2 cm(-1).

  13. ExoMol line lists - XXIX. The rotation-vibration spectrum of methyl chloride up to 1200 K

    NASA Astrophysics Data System (ADS)

    Owens, A.; Yachmenev, A.; Thiel, W.; Fateev, A.; Tennyson, J.; Yurchenko, S. N.

    2018-06-01

    Comprehensive rotation-vibration line lists are presented for the two main isotopologues of methyl chloride, 12CH335Cl and 12CH337Cl. The line lists, OYT-35 and OYT-37, are suitable for temperatures up to T = 1200 K and consider transitions with rotational excitation up to J = 85 in the wavenumber range 0-6400 cm-1 (wavelengths λ > 1.56 μm). Over 166 billion transitions between 10.2 million energy levels have been calculated variationally for each line list using a new empirically refined potential energy surface, determined by refining to 739 experimentally derived energy levels up to J = 5, and an established ab initio dipole moment surface. The OYT line lists show excellent agreement with newly measured high-temperature infrared absorption cross-sections, reproducing both strong and weak intensity features across the spectrum. The line lists are available from the ExoMol database and the CDS database.

  14. Car-Parrinello molecular dynamics study of the intramolecular vibrational mode-sensitive double proton-transfer mechanisms in porphycene.

    PubMed

    Walewski, Łukasz; Waluk, Jacek; Lesyng, Bogdan

    2010-02-18

    Car-Parrinello molecular dynamics simulations were carried out to help interpret proton-transfer processes observed experimentally in porphycene under thermodynamic equilibrium conditions (NVT ensemble) as well as during selective, nonequilibrium vibrational excitations of the molecular scaffold (NVE ensemble). In the NVT ensemble, the population of the trans form in the gas phase at 300 K is 96.5%, and of the cis-1 form is 3.5%, in agreement with experimental data. Approximately 70% of the proton-transfer events are asynchronous double proton transfers. According to the high resolution simulation data they consist of two single transfer events that rapidly take place one after the other. The average time-period between the two consecutive jumps is 220 fs. The gas phase reaction rate estimate at 300 K is 3.6 ps, which is comparable to experimentally determined rates. The NVE ensemble nonequilibrium ab initio MD simulations, which correspond to selective vibrational excitations of the molecular scaffold generated with high resolution laser spectroscopy techniques, exhibit an enhancing property of the 182 cm(-1) vibrational mode and an inhibiting property of the 114 cm(-1) one. Both of them influence the proton-transfer rate, in qualitative agreement with experimental findings. Our ab initio simulations provide new predictions regarding the influence of double-mode vibrational excitations on proton-transfer processes. They can help in setting up future programmable spectroscopic experiments for the proton-transfer translocations.

  15. A direct ab initio molecular dynamics (MD) study on the benzophenone-water 1 : 1 complex.

    PubMed

    Tachikawa, Hiroto; Iyama, Tetsuji; Kato, Kohichi

    2009-07-28

    Direct ab initio molecular dynamics (MD) method has been applied to a benzophenone-water 1 : 1 complex Bp(H(2)O) and free benzophenone (Bp) to elucidate the effects of zero-point energy (ZPE) vibration and temperature on the absorption spectra of Bp(H(2)O). The n-pi transition of free-Bp (S(1) state) was blue-shifted by the interaction with a water molecule, whereas three pi-pi transitions (S(2), S(3) and S(4)) were red-shifted. The effects of the ZPE vibration and temperature of Bp(H(2)O) increased the intensity of the n-pi transition of Bp(H(2)O) and caused broadening of the pi-pi transitions. In case of the temperature effect, the intensity of n-pi transition increases with increasing temperature. The electronic states of Bp(H(2)O) were discussed on the basis of the theoretical results.

  16. Vibrational spectra of water solutions of azoles from QM/MM calculations: effects of solvation.

    PubMed

    Tanzi, Luana; Ramondo, Fabio; Guidoni, Leonardo

    2012-10-18

    Using microsolvation models and mixed quantum/classical ab initio molecular dynamics simulations, we investigate the vibrational properties of two azoles in water solution: pyrazole and oxazole. The effects of the water-azole hydrogen bonding are rationalized by an extensive comparison between structural parameters and harmonic frequencies obtained by microsolvation models. Following the effective normal-mode analysis introduced by Martinez et al. [Martinez et al., J. Chem. Phys. 2006, 125, 144106], we identify the vibrational frequencies of the solutes using the decomposition of the vibrational density of states of the gas phase and solution dynamics. The calculated shifts from gas phase to solution are fairly in agreement with the available experimental data.

  17. A Microscopic Interpretation of Pump-Probe Vibrational Spectroscopy Using Ab Initio Molecular Dynamics.

    PubMed

    Lesnicki, Dominika; Sulpizi, Marialore

    2018-06-13

    What happens when extra vibrational energy is added to water? Using nonequilibrium molecular dynamics simulations, also including the full electronic structure, and novel descriptors, based on projected vibrational density of states, we are able to follow the flow of excess vibrational energy from the excited stretching and bending modes. We find that the energy relaxation, mostly mediated by a stretching-stretching coupling in the first solvation shell, is highly heterogeneous and strongly depends on the local environment, where a strong hydrogen bond network can transport energy with a time scale of 200 fs, whereas a weaker network can slow down the transport by a factor 2-3.

  18. New approach for determination of the influence of long-range order and selected ring oscillations on IR spectra in zeolites

    NASA Astrophysics Data System (ADS)

    Mikuła, Andrzej; Król, Magdalena; Mozgawa, Włodzimierz; Koleżyński, Andrzej

    2018-04-01

    Vibrational spectroscopy can be considered as one of the most important methods used for structural characterization of various porous aluminosilicate materials, including zeolites. On the other hand, vibrational spectra of zeolites are still difficult to interpret, particularly in the pseudolattice region, where bands related to ring oscillations can be observed. Using combination of theoretical and computational approach, a detailed analysis of these regions of spectra is possible; such analysis should be, however, carried out employing models with different level of complexity and simultaneously the same theory level. In this work, an attempt was made to identify ring oscillations in vibrational spectra of selected zeolite structures. A series of ab initio calculations focused on S4R, S6R, and as a novelty, 5-1 isolated clusters, as well as periodic siliceous frameworks built from those building units (ferrierite (FER), mordenite (MOR) and heulandite (HEU) type) have been carried out. Due to the hierarchical structure of zeolite frameworks it can be expected that the total envelope of the zeolite spectra should be with good accuracy a sum of the spectra of structural elements that build each zeolite framework. Based on the results of HF calculations, normal vibrations have been visualized and detailed analysis of pseudolattice range of resulting theoretical spectra have been carried out. Obtained results have been applied for interpretation of experimental spectra of selected zeolites.

  19. Structure and vibrational spectra of pyridine betaine hydrochloride

    NASA Astrophysics Data System (ADS)

    Szafran, Mirosław; Koput, Jacek; Baran, Jan; Głowiak, Tadeusz

    1997-12-01

    The crystal structure of pyridine betaine hydrochloride (PBET·HCl) was determined by X-ray diffraction to be monoclinic, space group {P2 1}/{c} with a = 8.533(2) Å, b = 9.548(2) Å, c = 10.781(2) Å, β = 107.228(3)° and Z = 4. Betaine is protonated and the carboxyl group forms a hydrogen bond with the chloride ion: O·Cl - distance is 2.928(3) Å. The interaction of pyridine betaine (PBET) with HCl was examined by ab initio self-consistent field (SCF), second-order Møller-Plesset (MP2) and density functional theory (DFT) methods using the 6-31G(d,p) basis set. Two minima are located in the potential surface at the SCF level (PBETH +·Cl - and PBET·HCl, with the latter being 1.2 kcal mol -1 lower in energy) and only one minimum (PBET·HCl) at the MP2 and DFT levels. The molecular parameters of PBETH +·Cl -, computed by the SCF method, reproduce the corresponding experimental data. The computed vibrational frequencies of PBETH +·Cl - resemble correctly the experimental vibrational spectrum in the solid state. The root-mean-square (r.m.s.) deviations between the experimental and calculated SCF frequencies are 65 cm -1 for all bands and 15 cm -1 without the νClH band. All measured IR bands were interpreted in terms of the calculated vibrational models.

  20. Spectroscopy of Cold LiCa Molecules Formed on Helium Nanodroplets

    PubMed Central

    2013-01-01

    We report on the formation of mixed alkali–alkaline earth molecules (LiCa) on helium nanodroplets and present a comprehensive experimental and theoretical study of the ground and excited states of LiCa. Resonance enhanced multiphoton ionization time-of-flight (REMPI-TOF) spectroscopy and laser induced fluorescence (LIF) spectroscopy were used for the experimental investigation of LiCa from 15000 to 25500 cm–1. The 42Σ+ and 32Π states show a vibrational structure accompanied by distinct phonon wings, which allows us to determine molecular parameters as well as to study the interaction of the molecule with the helium droplet. Higher excited states (42Π, 52Σ+, 52Π, and 62Σ+) are not vibrationally resolved and vibronic transitions start to overlap. The experimental spectrum is well reproduced by high-level ab initio calculations. By using a multireference configuration interaction (MRCI) approach, we calculated the 19 lowest lying potential energy curves (PECs) of the LiCa molecule. On the basis of these calculations, we could identify previously unobserved transitions. Our results demonstrate that the helium droplet isolation approach is a powerful method for the characterization of tailor-made alkali–alkaline earth molecules. In this way, important contributions can be made to the search for optimal pathways toward the creation of ultracold alkali–alkaline earth ground state molecules from the corresponding atomic species. Furthermore, a test for PECs calculated by ab initio methods is provided. PMID:24028555

  1. Study on structures and properties of ammonia clusters (NH3)n (n=1-5) and liquid ammonia in terms of ab initio method and atom-bond electronegativity equalization method ammonia-8P fluctuating charge potential model.

    PubMed

    Yu, Ling; Yang, Zhong-Zhi

    2010-05-07

    Structures, binding energies, and vibrational frequencies of (NH(3))(n) (n=2-5) isomers and dynamical properties of liquid ammonia have been explored using a transferable intermolecular potential eight point model including fluctuating charges and flexible body based on a combination of the atom-bond electronegativity equalization and molecular (ABEEM) mechanics (ABEEM ammonia-8P) in this paper. The important feature of this model is to divide the charge sites of one ammonia molecule into eight points region containing four atoms, three sigma bonds, and a lone pair, and allows the charges in system to fluctuate responding to the ambient environment. Due to the explicit descriptions of charges and special treatment of hydrogen bonds, the results of equilibrium geometries, dipole moments, cluster interaction energies, vibrational frequencies for the gas phase of small ammonia clusters, and radial distribution function for liquid ammonia calculated with the ABEEM ammonia-8P potential model are in good agreement with those measured by available experiments and those obtained from high level ab initio calculations. The properties of ammonia dimer are studied in detail involving the structure and one-dimensional, two-dimensional potential energy surface. As for interaction energies, the root mean square deviation is 0.27 kcal/mol, and the linear correlation coefficient reaches 0.994.

  2. Vibrational spectroscopic study of terbutaline hemisulphate

    NASA Astrophysics Data System (ADS)

    Ali, H. R. H.; Edwards, H. G. M.; Kendrick, J.; Scowen, I. J.

    2009-05-01

    The Raman spectrum of terbutaline hemisulphate is reported for the first time, and molecular assignments are proposed on the basis of ab initio BLYP DFT calculations with a 6-31G* basis set and vibrational frequencies predicted within the quasi-harmonic approximation; these predictions compare favourably with the observed vibrational spectra. Comparison with previously published infrared data explains several spectral features. The results from this study provide data that can be used for the preparative process monitoring of terbutaline hemisulphate, an important β 2 agonist drug in various dosage forms and its interaction with excipients and other components.

  3. Fourier transform vibrational circular dichroism of small pharmaceutical molecules

    NASA Astrophysics Data System (ADS)

    Long, Fujin; Freedman, Teresa B.; Nafie, Laurence A.

    1998-06-01

    Fourier transform vibrational circular dichroism (FT-VCD) spectra of the small pharmaceutical molecules propanolol, ibuprofen and naproxen have been measured in the hydrogen stretching and mid-infrared regions to obtain information on solution conformation and to identify markers for absolute configuration determination. Ab initio molecular orbital calculations of low energy conformations, vibrational frequencies and VCD intensities for fragments of the drugs were utilized in interpreting the spectra. Features characteristic of five conformers of propranolol were identified. The weak positive CH stretching VCD signal in ibuprofen and naproxen is characteristic of the S-configuration of the chiral center common to these two analgesics.

  4. Vibrational spectra and ab initio analysis of tert-butyl, trimethylsilyl, and trimethylgermyl derivatives of 3,3-dimethylcyclopropene . VI: Application of observed trends to stannyl derivatives

    NASA Astrophysics Data System (ADS)

    Panchenko, Yu. N.; De Maré, G. R.; Abramenkov, A. V.; Baird, M. S.; Tverezovsky, V. V.; Nizovtsev, A. V.; Bolesov, I. G.

    2004-09-01

    The effects of substitution of X=C by Si or Ge in X(CH 3) 3 moieties attached to the formal double bond of 3,3-dimethylcyclopropene are examined. Regularities in observed trends of vibrational frequencies implicating the moieties containing the X atom, as the X atomic mass is increased, are extrapolated to X=Sn. The results of this extrapolation made it possible to assign the known experimental vibrational frequencies of 3,3-dimethyl-1-(trimethylstannyl)cyclopropene and 3,3-dimethyl-1,2-bis(trimethylstannyl)cyclopropene.

  5. Ab initio anharmonic vibrational frequency predictions for linear proton-bound complexes OC-H(+)-CO and N(2)-H(+)-N(2).

    PubMed

    Terrill, Kasia; Nesbitt, David J

    2010-08-01

    Ab initio anharmonic transition frequencies are calculated for strongly coupled (i) asymmetric and (ii) symmetric proton stretching modes in the X-H(+)-X linear ionic hydrogen bonded complexes for OCHCO(+) and N(2)HN(2)(+). The optimized potential surface is calculated in these two coordinates for each molecular ion at CCSD(T)/aug-cc-pVnZ (n = 2-4) levels and extrapolated to the complete-basis-set limit (CBS). Slices through both 2D surfaces reveal a relatively soft potential in the asymmetric proton stretching coordinate at near equilibrium geometries, which rapidly becomes a double minimum potential with increasing symmetric proton acceptor center of mass separation. Eigenvalues are obtained by solution of the 2D Schrödinger equation with potential/kinetic energy coupling explicity taken into account, converged in a distributed Gaussian basis set as a function of grid density. The asymmetric proton stretch fundamental frequency for N(2)HN(2)(+) is predicted at 848 cm(-1), with strong negative anharmonicity in the progression characteristic of a shallow "particle in a box" potential. The corresponding proton stretch fundamental for OCHCO(+) is anomalously low at 386 cm(-1), but with a strong alternation in the vibrational spacing due to the presence of a shallow D(infinityh) transition state barrier (Delta = 398 cm(-1)) between the two equivalent minimum geometries. Calculation of a 2D dipole moment surface and transition matrix elements reveals surprisingly strong combination and difference bands with appreciable intensity throughout the 300-1500 cm(-1) region. Corrected for zero point (DeltaZPE) and thermal vibrational excitation (DeltaE(vib)) at 300 K, the single and double dissociation energies in these complexes are in excellent agreement with thermochemical gas phase ion data.

  6. Atomistic non-adiabatic dynamics of the LH2 complex with a GPU-accelerated ab initio exciton model.

    PubMed

    Sisto, Aaron; Stross, Clem; van der Kamp, Marc W; O'Connor, Michael; McIntosh-Smith, Simon; Johnson, Graham T; Hohenstein, Edward G; Manby, Fred R; Glowacki, David R; Martinez, Todd J

    2017-06-14

    We recently outlined an efficient multi-tiered parallel ab initio excitonic framework that utilizes time dependent density functional theory (TDDFT) to calculate ground and excited state energies and gradients of large supramolecular complexes in atomistic detail - enabling us to undertake non-adiabatic simulations which explicitly account for the coupled anharmonic vibrational motion of all the constituent atoms in a supramolecular system. Here we apply that framework to the 27 coupled bacterio-chlorophyll-a chromophores which make up the LH2 complex, using it to compute an on-the-fly nonadiabatic surface-hopping (SH) trajectory of electronically excited LH2. Part one of this article is focussed on calibrating our ab initio exciton Hamiltonian using two key parameters: a shift δ, which corrects for the error in TDDFT vertical excitation energies; and an effective dielectric constant ε, which describes the average screening of the transition-dipole coupling between chromophores. Using snapshots obtained from equilibrium molecular dynamics simulations (MD) of LH2, we tune the values of both δ and ε through fitting to the thermally broadened experimental absorption spectrum, giving a linear absorption spectrum that agrees reasonably well with experiment. In part two of this article, we construct a time-resolved picture of the coupled vibrational and excitation energy transfer (EET) dynamics in the sub-picosecond regime following photo-excitation. Assuming Franck-Condon excitation of a narrow eigenstate band centred at 800 nm, we use surface hopping to follow a single nonadiabatic dynamics trajectory within the full eigenstate manifold. Consistent with experimental data, this trajectory gives timescales for B800→B850 population transfer (τ B800→B850 ) between 650-1050 fs, and B800 population decay (τ 800→ ) between 10-50 fs. The dynamical picture that emerges is one of rapidly fluctuating LH2 eigenstates that are delocalized over multiple chromophores and undergo frequent crossing on a femtosecond timescale as a result of the atomic vibrations of the constituent chromophores. The eigenstate fluctuations arise from disorder that is driven by vibrational dynamics with multiple characteristic timescales. The scalability of our ab initio excitonic computational framework across massively parallel architectures opens up the possibility of addressing a wide range of questions, including how specific dynamical motions impact both the pathways and efficiency of electronic energy-transfer within large supramolecular systems.

  7. An Experimental and Quantum Chemical Study of the Electronic Spectrum of the HBCl Free Radical

    NASA Astrophysics Data System (ADS)

    Gharaibeh, Mohammed A.; Nagarajan, Ramya; Clouthier, Dennis J.; Tarroni, Ricardo

    2012-06-01

    The chloroborane (HBCl) free radical has a complex electronic spectrum in the visible that involves a transition from a bent ground state to a linear excited state, both of which are the Renner-Teller components of what would be a ^2π state at linearity. We have used the synchronous-scan LIF and single vibronic level emission techniques to untangle the many overlapping vibronic bands and assign upper state K quantum numbers for jet-cooled HBCl and DBCl. The radicals were produced in a pulsed electric discharge jet using a precursor mixture of boron trichloride (BCl_3) and hydrogen or deuterium in high-pressure argon. As an important aid to understanding the data, the ground and excited state high level ab initio potential energy surfaces (PES) have been calculated and the vibrational levels obtained variationally. The calculated ground state levels are in excellent agreement with the emission data validating the quality of the PES. Aside from an approximately 100 cm-1 shift in the upper state electronic term value, the calculated excited state vibrational energy levels and isotope shifts match the LIF data very well, allowing the observed bands to be assigned with confidence.

  8. Vibrational spectroscopic investigation of p-, m- and o-nitrobenzonitrile by using Hartree-Fock and density functional theory

    NASA Astrophysics Data System (ADS)

    Sert, Y.; Ucun, F.

    2013-08-01

    In the present work, the theoretical vibrational spectra of p-, m- and o-nitrobenzonitrile molecules have been analyzed. The harmonic vibrational frequencies and geometric parameters (bond lengths and bond angles) of these molecules have been calculated using ab initio Hartree-Fock and density functional theory methods with 6-311++G(d,p) basis set by Gaussian 03 W, for the first time. Assignments of the vibrational frequencies have been performed by potential energy distribution by using VEDA 4 program. The optimized geometric parameters and harmonic vibrational frequencies have been compared with the corresponding experimental data and seen to be in a good agreement with each other. Also, the highest occupied molecular orbital and lowest unoccupied molecular orbital energies have been obtained.

  9. Ab initio study of structural, elastic, and vibrational properties of transition-metal disilicides NbSi2 and TaSi2 in hexagonal C40 structure

    NASA Astrophysics Data System (ADS)

    Ertürk, Esra; Gürel, Tanju

    2018-05-01

    We present an ab initio study of structural, elastic and vibrational properties of transition-metal disilicides NbSi2 and TaSi2. The calculations have been carried out within the density-functional theory and linear-response formalism using norm-conserving pseudopotentials and a plane-wave basis. The calculated lattice parameters, bulk moduli, and elastic constants agree well with previous theoretical and experimental results. The calculated phonon frequencies at the Brillouin zone center are in good agreement with the reported Raman spectra and provide reference values for the future infrared and neutron phonon measurements. Phonon dispersion relations, mode Grüneisen parameters, and total and partial phonon density of states are also discussed. Mode Grüneisen parameters of NbSi2 and TaSi2 at Brillouin zone center show similar trends and all values are found to be positive. From phonon dispersion relations and phonon density of states, we have found a gap around 200 cm-1 for TaSi2, where the frequencies below this gap mainly belong to Ta vibrations and frequencies above the gap is mainly related with Si vibrations. In the case of NbSi2, there is no such gap and both Nb and Si atoms contribute to the phonon density of states in an energy range of 150-270 cm-1.

  10. Molecular structure and vibrational assignments of 2,4-dichlorophenoxyacetic acid herbicide

    NASA Astrophysics Data System (ADS)

    Badawi, Hassan M.

    2010-09-01

    The structural stability of 2,4-dichlorophenoxyacetic acid was investigated by the DFT-B3LYP and the ab initio MP2 calculations with the 6-311G** basis set. From the calculations at both levels of theory the Cgcpp structure was predicted to be the lowest energy minimum for the acid. The DFT and the MP2 levels disagreed about the nature of the second stable structure of 2,4-dichlorophenoxyacetic acid. At the DFT-B3LYP level of calculation the planar Tttp ( transoid O dbnd C sbnd O sbnd H) and the non-planar Tgcpp ( cisoid O dbnd C sbnd O sbnd H) forms were predicted to be 0.7 and 1.5 kcal/mol, respectively higher in energy than the Cgcpp conformation. At the MP2 level the two high energy Tttp and Tgcpp forms were predicted to be 2.7 and 1.4 kcal/mol, respectively higher in energy than the ground state Cgcpp structure. The Tgcpp form was adopted as the second possible structure of 2,4-dichlorophenoxyacetic acid on the basis of the fact that the Møller-Plesset calculations account better than the DFT ones for the non-bonding O⋯H interactions. The vibrational frequencies of the lowest energy Cgcpp conformer were computed at the B3LYP level of theory and tentative vibrational assignments were provided on the basis of normal coordinate analysis and experimental infrared and Raman data.

  11. The vibrational Jahn-Teller effect in E⊗e systems

    NASA Astrophysics Data System (ADS)

    Thapaliya, Bishnu P.; Dawadi, Mahesh B.; Ziegler, Christopher; Perry, David S.

    2015-10-01

    The Jahn-Teller theorem is applied in the vibrational context where degenerate high-frequency vibrational states (E) are considered as adiabatic functions of low-frequency vibrational coordinates (e). For CH3CN and Cr(C6H6)(CO)3, the global minimum of the non-degenerate electronic potential energy surface occurs at the C3v geometry, but in CH3OH, the equilibrium geometry is far from the C3v reference geometry. In the former cases, the computed spontaneous Jahn-Teller distortion is exceptionally small. In methanol, the vibrational Jahn-Teller interaction results in the splitting of the degenerate E-type CH stretch into what have been traditionally assigned as the distinct ν2 and ν9 vibrational bands. The ab initio vibrational frequencies are fit precisely by a two-state high-order Jahn-Teller Hamiltonian (Viel and Eisfeld, 2004). The presence of vibrational conical intersections, including 7 for CH3OH, has implications for spectroscopy, for geometric phase, and for ultrafast localized non-adiabatic energy transfer.

  12. Collisional quenching at ultralow energies: controlling efficiency with internal state selection.

    PubMed

    Bovino, S; Bodo, E; Gianturco, F A

    2007-12-14

    Calculations have been carried out for the vibrational quenching of excited H(2) molecules which collide with Li(+) ions at ultralow energies. The dynamics has been treated exactly using the well-known quantum coupled-channel expansions over different initial vibrational levels. The overall interaction potential has been obtained from the calculations carried out earlier by our group using highly correlated ab initio methods. The results indicate that specific features of the scattering observables, e.g., the appearance of Ramsauer-Townsend minima in elastic channel cross sections and the marked increase of the cooling rates from specific initial states, can be linked to potential properties at vanishing energies (sign and size of scattering lengths) and to the presence of either virtual states or bound states. The suggestion is made such that by selecting the initial state preparation of the molecular partners, the ionic interactions would be amenable to controlling quenching efficiency at ultralow energies.

  13. Temperature effect on the structural stabilities and electronic properties of X22H28 (X=C, Si and Ge) nanocrystals: A first-principles study

    NASA Astrophysics Data System (ADS)

    Deng, Xiao-Lin; Zhao, Yu-Jun; Wang, Ya-Ting; Liao, Ji-Hai; Yang, Xiao-Bao

    2016-12-01

    Based on ab initio molecular dynamic simulations, we have theoretically investigated the structural stabilities and electronic properties of X22H28 (X=C, Si, and Ge) nanocrystals, as a function of temperature with consideration of vibrational entropy effects. To compare the relative stabilities of X22H28 isomers, the vibration free energies are obtained according to the calculated phonon spectrum, where the typical modes are shown to be dominant to the structural stabilities. In addition, there is a significant gap reduction as the temperature increases from 0 K to 300 K, where the decrements are 0.2 /0.5 /0.6eV for C/Si/Ge nanocrystals, respectively. The dependence of energy gap on the variance of bond length is also analyzed according to the corresponding atomic attributions to the HOMO and LUMO levels.

  14. Vibrational Spectroscopy of Fluoroformate, FCO2-, Trapped in Helium Nanodroplets.

    PubMed

    Thomas, Daniel A; Mucha, Eike; Gewinner, Sandy; Schöllkopf, Wieland; Meijer, Gerard; von Helden, Gert

    2018-05-03

    Fluoroformate, also known as carbonofluoridate, is an intriguing molecule readily formed by the reductive derivatization of carbon dioxide. In spite of its well-known stability, a detailed structural characterization of the isolated anion has yet to be reported. Presented in this work is the vibrational spectrum of fluoroformate obtained by infrared action spectroscopy of ions trapped in helium nanodroplets, the first application of this technique to a molecular anion. The experimental method yields narrow spectral lines, providing experimental constraints on the structure that can be accurately reproduced using high-level ab initio methods. In addition, two notable Fermi resonances between a fundamental and combination band are observed. The electrostatic potential map of fluoroformate reveals substantial charge density on fluorine as well as on the oxygen atoms, suggesting multiple sites for interaction with hydrogen bond donors and electrophiles, which may in turn lead to intriguing solvation structures and reaction pathways.

  15. Quantum mechanical and spectroscopic (FT-IR, 13C, 1H NMR and UV) investigations of 2-(5-(4-Chlorophenyl)-3-(pyridin-2-yl)-4,5-dihydropyrazol-1-yl)benzo[d]thiazole by DFT method

    NASA Astrophysics Data System (ADS)

    Diwaker

    2014-07-01

    The electronic, NMR, vibrational, structural properties of a new pyrazoline derivative: 2-(5-(4-Chlorophenyl)-3-(pyridine-2-yl)-4,5-dihydropyrazol-1-yl)benzo[d]thiazole has been studied using Gaussian 09 software package. Using VEDA 4 program we have reported the PED potential energy distribution of normal mode of vibrations of the title compound. We have also reported the 1H and 13C NMR chemical shifts of the title compound using B3LYP level of theory with 6-311++G(2d,2p) basis set. Using time dependent (TD-DFT) approach electronic properties such as HOMO and LUMO energies, electronic spectrum of the title compound has been studied and reported. NBO analysis and MEP surface mapping has also been calculated and reported using ab initio methods.

  16. Structural and Dynamical Details of Biotin

    NASA Astrophysics Data System (ADS)

    Korter, Timothy; Dunmire, David; Romero, Danilo; Middleton, Chris; Jenkins, Tim; Hudson, Bruce; Hight Walker, Angela

    2003-03-01

    Biotin, one of the B vitamins, is a key cofactor of enzymes that transfer units of CO2. Chemically linked to a lysine residue via its carboxylic acid side chain, biotin exhibits incredible flexibility when performing its intraprotein transport role. Not only does Biotin play a critical role in gluconeogenesis, it also is commonly used throughout biotechnology research due to its strong binding affinity for attachment, tethering and labeling chemistries. Therefore, a detailed probe of the structure and dynamics of biotin is important both metabolically and to aid further research. Here, we used several vibrational techniques, THz, IR, Raman and Inelastic Neutron Scattering, to gain a comprehensive understanding of biotin's structure, flexibility and dynamics. Specifically our interests are in hydrogen bonding interactions, torsional vibrations, and conformational changes with varying environments, which frequently lie in the far-infrared region of the spectrum below 200 cm-1. Interpretation and comparison of our multi-technique data are guided by high-level ab initio calculations.

  17. Identifying stereoisomers by ab-initio calculation of secondary isotope shifts on NMR chemical shieldings.

    PubMed

    Böhm, Karl-Heinz; Banert, Klaus; Auer, Alexander A

    2014-04-23

    We present ab-initio calculations of secondary isotope effects on NMR chemical shieldings. The change of the NMR chemical shift of a certain nucleus that is observed if another nucleus is replaced by a different isotope can be calculated by computing vibrational corrections on the NMR parameters using electronic structure methods. We demonstrate that the accuracy of the computational results is sufficient to even distinguish different conformers. For this purpose, benchmark calculations for fluoro(2-2H)ethane in gauche and antiperiplanar conformation are carried out at the HF, MP2 and CCSD(T) level of theory using basis sets ranging from double- to quadruple-zeta quality. The methodology is applied to the secondary isotope shifts for 2-fluoronorbornane in order to resolve an ambiguity in the literature on the assignment of endo- and exo-2-fluoronorbornanes with deuterium substituents in endo-3 and exo-3 positions, also yielding insight into mechanistic details of the corresponding synthesis.

  18. An ab initio molecular dynamics study of S0 ketene fragmentation

    NASA Astrophysics Data System (ADS)

    Forsythe, Kelsey M.; Gray, Stephen K.; Klippenstein, Stephen J.; Hall, Gregory E.

    2001-08-01

    The dynamical origins of product state distributions in the unimolecular dissociation of S0 ketene, CH2CO (X˜ 1A1)→CH2(ã1A1)+CO, are studied with ab initio molecular dynamics. We focus on rotational distributions associated with ground vibrational state fragments. Trajectories are integrated between an inner, variational transition state (TS) and separated fragments in both the dissociative and associative directions. The average rotational energy in both CO and CH2 fragments decreases during the motion from the TS to separated fragments. However, the CO distribution remains slightly hotter than phase space theory (PST) predictions, whereas that for CH2 ends up significantly colder than PST, in good agreement with experiment. Our calculations do not, however, reproduce the experimentally observed correlations between CH2 and CO rotational states, in which the simultaneous formation of low rotational levels of each fragment is suppressed relative to PST. A limited search for nonstatistical behavior in the strong interaction region also fails to explain this discrepancy.

  19. Electronic transition moment for the B(2)II-X(2)II system of NO

    NASA Technical Reports Server (NTRS)

    Luque, Jorge; Crosley, David R.

    1995-01-01

    The upsilon' = 0-3 and 7 vibrational levels of the NO B(2)II state have been selectively excited by laser radiation. The fluorescence spectra together with calculated Franck-Condon factors and r-centroids have been used to evaluate the electronic transition moment. The results for upsilon' = 0-3 are in very good agreement with recent chemiluminescence measurements and ab initio calculations. Furthermore, the data from upsilon' = 7 have been used to extend the empirically determined moment to limits 1.23 and 1.78 A, improving agreement with experimentally determined lifetimes.

  20. An ab initio chemical reaction model for the direct simulation Monte Carlo study of non-equilibrium nitrogen flows.

    PubMed

    Mankodi, T K; Bhandarkar, U V; Puranik, B P

    2017-08-28

    A new ab initio based chemical model for a Direct Simulation Monte Carlo (DSMC) study suitable for simulating rarefied flows with a high degree of non-equilibrium is presented. To this end, Collision Induced Dissociation (CID) cross sections for N 2 +N 2 →N 2 +2N are calculated and published using a global complete active space self-consistent field-complete active space second order perturbation theory N 4 potential energy surface and quasi-classical trajectory algorithm for high energy collisions (up to 30 eV). CID cross sections are calculated for only a selected set of ro-vibrational combinations of the two nitrogen molecules, and a fitting scheme based on spectroscopic weights is presented to interpolate the CID cross section for all possible ro-vibrational combinations. The new chemical model is validated by calculating equilibrium reaction rate coefficients that can be compared well with existing shock tube and computational results. High-enthalpy hypersonic nitrogen flows around a cylinder in the transition flow regime are simulated using DSMC to compare the predictions of the current ab initio based chemical model with the prevailing phenomenological model (the total collision energy model). The differences in the predictions are discussed.

  1. Conformational stability, r(0) structural parameters, vibrational assignments and ab initio calculations of ethyldichlorophosphine.

    PubMed

    Darkhalil, Ikhlas D; Paquet, Charles; Waqas, Mohammad; Gounev, Todor K; Durig, James R

    2015-02-05

    Variable temperature (-60 to -100 °C) studies of ethyldichlorophosphine, CH3CH2PCl2, of the infrared spectra (4000-400 cm(-1)) dissolved in liquid xenon have been carried out. From these data, the two conformers have been identified and the enthalpy difference has been determined between the more stable trans conformer and the less stable gauche form to be 88±9 cm(-1) (1.04±0.11 kJ/mol). The percentage of abundance of the gauche conformer is estimated to be 57% at ambient temperature. The conformational stabilities have been predicted from ab initio calculations by utilizing many different basis sets up to aug-cc-pVTZ for both MP2(full) and density functional theory calculations by the B3LYP method. Vibrational assignments have been provided for both conformers which have been predicted by MP2(full)/6-31G(d) ab initio calculations to predict harmonic force fields, wavenumbers of the fundamentals, infrared intensities, Raman activities and depolarization ratios for both conformers. Estimated r0 structural parameters have been obtained from adjusted MP2(full)/6-311+G(d,p) calculations. The results are discussed and compared to the corresponding properties of some related molecules. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Vibrational energy transport in acetylbenzonitrile described by an ab initio-based quantum tier model

    NASA Astrophysics Data System (ADS)

    Fujisaki, Hiroshi; Yagi, Kiyoshi; Kikuchi, Hiroto; Takami, Toshiya; Stock, Gerhard

    2017-01-01

    Performing comprehensive quantum-chemical calculations, a vibrational Hamiltonian of acetylbenzonitrile is constructed, on the basis of which a quantum-mechanical "tier model" is developed that describes the vibrational dynamics following excitation of the CN stretch mode. Taking into account 36 vibrational modes and cubic and quartic anharmonic couplings between up to three different modes, the tier model calculations are shown to qualitatively reproduce the main findings of the experiments of Rubtsov and coworkers (2011), including the energy relaxation of the initially excited CN mode and the structure-dependent vibrational transport. Moreover, the calculations suggest that the experimentally measured cross-peak among the CN and CO modes does not correspond to direct excitation of the CO normal mode but rather reflects excited low-frequency vibrations that anharmonically couple to the CO mode. Complementary quasiclassical trajectory calculations are found to be in good overall agreement with the quantum calculations.

  3. Ethylenediammonium dication: H-bonded complexes with terephthalate, chloroacetate, phosphite, selenite and sulfamate anions. Detailed vibrational spectroscopic and theoretical studies of ethylenediammonium terephthalate

    NASA Astrophysics Data System (ADS)

    Marchewka, M. K.; Drozd, M.

    2012-12-01

    Crystalline complexes between ethylenediammonium dication and terephthalate, chloroacetate, phosphite, selenite and sulfamate anions were obtained by slow evaporation from water solution method. Room temperature powder infrared and Raman measurements were carried out. For ethylenediammonium terephthalate theoretical calculations of structure were performed by two ways: ab-initio HF and semiempirical PM3. In this case the PM3 method gave more accurate structure (closer to X-ray results). The additional PM3 calculations of vibrational spectra were performed. On the basis theoretical approach and earlier vibrational studies of similar compounds the vibrational assignments for observed bands have been proposed. All compounds were checked for second harmonic generation (SHG).

  4. "Divide-and-conquer" semiclassical molecular dynamics: An application to water clusters

    NASA Astrophysics Data System (ADS)

    Di Liberto, Giovanni; Conte, Riccardo; Ceotto, Michele

    2018-03-01

    We present an investigation of vibrational features in water clusters performed by means of our recently established divide-and-conquer semiclassical approach [M. Ceotto, G. Di Liberto, and R. Conte, Phys. Rev. Lett. 119, 010401 (2017)]. This technique allows us to simulate quantum vibrational spectra of high-dimensional systems starting from full-dimensional classical trajectories and projection of the semiclassical propagator onto a set of lower dimensional subspaces. The potential energy surface employed is a many-body representation up to three-body terms, in which monomers and two-body interactions are described by the high level Wang-Huang-Braams-Bowman (WHBB) water potential, while, for three-body interactions, calculations adopt a fast permutationally invariant ab initio surface at the same level of theory of the WHBB 3-body potential. Applications range from the water dimer up to the water decamer, a system made of 84 vibrational degrees of freedom. Results are generally in agreement with previous variational estimates in the literature. This is particularly true for the bending and the high-frequency stretching motions, while estimates of modes strongly influenced by hydrogen bonding are red shifted, in a few instances even substantially, as a consequence of the dynamical and global picture provided by the semiclassical approach.

  5. The high-resolution infrared spectrum of the ν3 +ν5 combination band of jet-cooled propyne

    NASA Astrophysics Data System (ADS)

    Doney, K. D.; Zhao, D.; Bouwman, J.; Linnartz, H.

    2017-09-01

    We present the first detection of the high-resolution ro-vibrational spectrum of the ν3 +ν5 combination band of propyne around 3070 cm-1. The fully resolved spectrum is recorded for supersonically jet-cooled propyne using continuous wave cavity ring-down spectroscopy (cw-CRDS). The assignments are supported with the help of accurate ab initio vibration-rotation interaction constants (αi) and anharmonic frequencies. A detailed analysis of the rotationally cold spectrum is given.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoobler, Preston Reece; Turney, Justin Matthew; Schaefer III, Henry

    The n-propylperoxy radical has been described as a molecule of critical importance to studies of low temperature combustion. Ab initio methods were used to study this three-carbon alkylperoxy radical, normal propylperoxy. Reliable CCSD(T)/ANO0 geometries were predicted for the molecule's five rotamers. For each rotamer, energetic predictions were made using basis sets as large as the cc-pV5Z in conjunction with coupled cluster levels of theory up to CCSDT(Q). Along with the extrapolations, corrections for relativistic effects, zero-point vibrational energies, and diagonal Born--Oppenheimer corrections were used to further refine energies. The results indicate that the lowest conformer is the gauche-gauche (GG) rotamermore » followed by the gauche-trans (0.12 kcal mol^-1 above GG), trans-gauche (0.44 kcal mol^-1), gauche'-gauche (0.47 kcal mol^-1), and trans-trans (0.57 kcal mol^-1). Fundamental vibrational frequencies were obtained using second-order vibrational perturbation theory (VPT2). This is the first time anharmonic frequencies have been computed for this system. The most intense IR features include all but one of the C-H stretches. The O-O fundamental (1063 cm^-1 for the GG structure) also has a significant IR intensity, 19.6 km mol^-1. The anharmonicity effects on the potential energy surface were also used to compute vibrationally averaged r_g,0 K bond lengths, accounting for zero-point vibrations present within the molecule.« less

  7. Synthesis, electronic structure investigation of 3-pentyl-2,6-di(furan-2-yl)piperidin-4-one by FT-IR, FT-Raman and UV-Visible spectral studies and ab initio/DFT calculations.

    PubMed

    Arockia Doss, M; Savithiri, S; Rajarajan, G; Thanikachalam, V; Anbuselvan, C

    2015-12-05

    FT-IR and FT-Raman spectra of 3-pentyl-2,6-di(furan-2-yl) piperidin-4-one (3-PFPO) were recorded in the solid phase. The structural and spectroscopic analyses of 3-PFPO were made by using B3LYP/HF level with 6-311++G(d, p) basis set. The fundamental vibrations are assigned on the basis of the total energy distribution (TED) of the vibrational modes, calculated with scaled quantum mechanics (SQM) method and PQS program. Comparison of the observed fundamental vibrational frequencies of 3-PFPO with calculated results by HF and DFT methods indicates that B3LYP is superior to HF method for molecular vibrational problems. The electronic properties such as excitation energies, oscillator strength, wavelengths and HOMO-LUMO energies were obtained by time-dependent DFT (TD-DFT) approach. The polarizability and first order hyperpolarizability of the title molecule were calculated and interpreted. The hyperconjugative interaction energy (E((2))) and electron densities of donor (i) and acceptor (j) bonds were calculated using NBO analysis. In addition, MEP and atomic charges of carbon, nitrogen, oxygen and hydrogen were calculated using B3LYP/6-311++G(d, p) level theory. Moreover, thermodynamic properties (heat capacities, entropy and enthalpy) of the title compound at different temperatures were calculated in gas phase. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. New approach for determination of the influence of long-range order and selected ring oscillations on IR spectra in zeolites.

    PubMed

    Mikuła, Andrzej; Król, Magdalena; Mozgawa, Włodzimierz; Koleżyński, Andrzej

    2018-04-15

    Vibrational spectroscopy can be considered as one of the most important methods used for structural characterization of various porous aluminosilicate materials, including zeolites. On the other hand, vibrational spectra of zeolites are still difficult to interpret, particularly in the pseudolattice region, where bands related to ring oscillations can be observed. Using combination of theoretical and computational approach, a detailed analysis of these regions of spectra is possible; such analysis should be, however, carried out employing models with different level of complexity and simultaneously the same theory level. In this work, an attempt was made to identify ring oscillations in vibrational spectra of selected zeolite structures. A series of ab initio calculations focused on S4R, S6R, and as a novelty, 5-1 isolated clusters, as well as periodic siliceous frameworks built from those building units (ferrierite (FER), mordenite (MOR) and heulandite (HEU) type) have been carried out. Due to the hierarchical structure of zeolite frameworks it can be expected that the total envelope of the zeolite spectra should be with good accuracy a sum of the spectra of structural elements that build each zeolite framework. Based on the results of HF calculations, normal vibrations have been visualized and detailed analysis of pseudolattice range of resulting theoretical spectra have been carried out. Obtained results have been applied for interpretation of experimental spectra of selected zeolites. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Antibacterial activity, thermal stability and ab initio study of copolymer containing sulfobetaine and carboxybetaine groups

    NASA Astrophysics Data System (ADS)

    Tarannum, Nazia; Singh, Meenakshi; Yadav, Anil K.

    2017-10-01

    Here, we have explored the antibacterial activity, thermal stability and theoretical study of two copolymers that contain sulfobetaine and carboetaine moiety. Copolymers were synthesized based on Schiff base chemistry with generation of zwitterionic centres by nucleophilic addition of sultone/lactone. To predict and confirm the molecular structure of zwitterionic polyelectrolyte molecule, the theoretical study of structural features and other thermodynamic characteristics of copolymer constituents was obtained by ab initio calculations. Various parameters such as geometry optimization, energy calculations, frequency calculations and intrinsic reaction coefficient (IRC) are simulated using Hartree Fock (HF) method. The geometry optimizations are analyzed at HF/3-21 G default level of theory. The vibrational frequency is calculated via density functional theory (DFT)/B3LYP 6-31G*(d) level whose values are in accord with the experimental observed frequency. Both copolymers have been successfully assessed for antibacterial activity against Staphylococcus aureus and Pseudomonas aeuroginosa bacterial strains by disc diffusion method. The antibacterial study helped in evaluating zone of inhibition, minimum inhibitory concentration and minimum bactericidal concentration. Sulfobetaine copolymer is found to be more effective in curtailing the infection caused by bacteria as compared to carbobetaine.

  10. An ab initio study of the electronic structure and relative stability of the halogenated thiophosphorus compounds SPX (X = Cl, F, Br) and their isomers

    NASA Astrophysics Data System (ADS)

    Nowek, Andrzej; Richardson, Rhonda; Babinec, Peter; Leszczyński, Jerzy

    1997-12-01

    The electronic structure and relative stability of the halogenated thiophosphorus compounds SPCl, SPF, and SPBr and their isomers ClSP, FSP, and BrSP were investigated using ab initio post-Hartree-Fock methods. Molecular geometries of all these structures together with the transition states between isomers, have been optimized at the SCF, MP2, and CCSD levels. Single-point CCSD(T) and MP4 calculations have been performed at the optimal CCSD and MP2 geometries. All calculations have been done using the standard 6-311G(2d) basis set. Harmonic vibrational frequencies and IR intensities for all species were calculated at the correlated levels, and they are in good agreement with the available data from matrix-isolated IR spectroscopy. Because the isomers ClSP, FSP, and BrSP have not yet been experimentally observed, we extended our study by calculating of equilibrium constants of isomerization using Eyring transition state theory, and we have found that at sufficiently high temperatures (≈ 1000 K) the equilibrium constants are large enough for the possible detection of these isomers.

  11. Dynamics of the O(3P) + CHD3(vCH = 0,1) reactions on an accurate ab initio potential energy surface

    PubMed Central

    Czakó, Gábor; Bowman, Joel M.

    2012-01-01

    Recent experimental and theoretical studies on the dynamics of the reactions of methane with F and Cl atoms have modified our understanding of mode-selective chemical reactivity. The O + methane reaction is also an important candidate to extend our knowledge on the rules of reactivity. Here, we report a unique full-dimensional ab initio potential energy surface for the O(3P) + methane reaction, which opens the door for accurate dynamics calculations using this surface. Quasiclassical trajectory calculations of the angular and vibrational distributions for the ground state and CH stretching excited O + CHD3(v1 = 0,1) → OH + CD3 reactions are in excellent agreement with the experiment. Our theory confirms what was proposed experimentally: The mechanistic origin of the vibrational enhancement is that the CH-stretching excitation enlarges the reactive cone of acceptance. PMID:22566657

  12. Vibrational spectra and ab initio analysis of tert-butyl, trimethylsilyl, and trimethylgermyl derivatives of 3,3-dimethylcyclopropene II. 3,3-Dimethyl-1,2-bis(trimethylsilyl)cyclopropene

    NASA Astrophysics Data System (ADS)

    Panchenko, Yu. N.; De Maré, G. R.; Abramenkov, A. V.; Baird, M. S.; Tverezovsky, V. V.; Nizovtsev, A. V.; Bolesov, I. G.

    2003-07-01

    The IR and Raman spectra of 3,3-dimethyl-1,2-bis(trimethylsilyl)cyclopropene (I) (synthesised using standard procedures) were measured in the liquid phase. Total geometry optimisation was performed at the HF/6-31G* level. The HF/6-31G*//HF/6-31G* quantum mechanical force field (QMFF) was calculated and used to determine the theoretical fundamental vibrational frequencies, their predicted IR intensities, Raman activities, and Raman depolarisation ratios. Using Pulay's scaling method and the theoretical molecular geometry, the QMFF of I was scaled by a set of scaling factors used previously for 3,3-dimethyl-1,2-bis(tert-butyl)cyclopropene (17 scale factors for a 105-dimensional problem). The scaled QMFF obtained was used to solve the vibrational problem. The quantum mechanical values of the Raman activities were converted to differential Raman cross sections. The figures for the experimental and theoretical Raman and IR spectra are presented. Assignments of the experimental vibrational spectra of I are given. They take into account the calculated potential energy distribution and the correlation between the estimations of the experimental IR and Raman intensities and Raman depolarisation ratios and the corresponding theoretical values (including Raman cross sections) calculated using the unscaled QMFF.

  13. Full-dimensional quantum dynamics study of the H{sub 2} + C{sub 2}H → H + C{sub 2}H{sub 2} reaction on an ab initio potential energy surface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Liuyang; University of Chinese Academy of Sciences, Beijing 100049; Shao, Kejie

    2016-05-21

    This work performs a time-dependent wavepacket study of the H{sub 2} + C{sub 2}H → H + C{sub 2}H{sub 2} reaction on a new ab initio potential energy surface (PES). The PES is constructed using neural network method based on 68 478 geometries with energies calculated at UCCSD(T)-F12a/aug-cc-pVTZ level and covers H{sub 2} + C{sub 2}H↔H + C{sub 2}H{sub 2}, H + C{sub 2}H{sub 2} → HCCH{sub 2}, and HCCH{sub 2} radial isomerization reaction regions. The reaction dynamics of H{sub 2} + C{sub 2}H → H + C{sub 2}H{sub 2} are investigated using full-dimensional quantum dynamics method. The initial-state selected reactionmore » probabilities are calculated for reactants in eight vibrational states. The calculated results showed that the H{sub 2} vibrational excitation predominantly enhances the reactivity while the excitation of bending mode of C{sub 2}H slightly inhibits the reaction. The excitations of two stretching modes of C{sub 2}H molecule have negligible effect on the reactivity. The integral cross section is calculated with J-shift approximation and the mode selectivity in this reaction is discussed. The rate constants over 200-2000 K are calculated and agree well with the experimental measured values.« less

  14. ExoMol line lists - VII. The rotation-vibration spectrum of phosphine up to 1500 K

    NASA Astrophysics Data System (ADS)

    Sousa-Silva, Clara; Al-Refaie, Ahmed F.; Tennyson, Jonathan; Yurchenko, Sergei N.

    2015-01-01

    A comprehensive hot line list is calculated for 31PH3 in its ground electronic state. This line list, called SAlTY, contains almost 16.8 billion transitions between 7.5 million energy levels and it is suitable for simulating spectra up to temperatures of 1500 K. It covers wavelengths longer than 1 μm and includes all transitions to upper states with energies below hc × 18 000 cm-1 and rotational excitation up to J = 46. The line list is computed by variational solution of the Schrödinger equation for the rotation-vibration motion employing the nuclear-motion program TROVE. A previously reported ab initio dipole moment surface is used as well as an updated `spectroscopic' potential energy surface, obtained by refining an existing ab initio surface through least-squares fitting to the experimentally derived energies. Detailed comparisons with other available sources of phosphine transitions confirms SAlTY's accuracy and illustrates the incompleteness of previous experimental and theoretical compilations for temperatures above 300 K. Atmospheric models are expected to severely underestimate the abundance of phosphine in disequilibrium environments, and it is predicted that phosphine will be detectable in the upper troposphere of many substellar objects. This list is suitable for modelling atmospheres of many astrophysical environments, namely carbon stars, Y dwarfs, T dwarfs, hot Jupiters and Solar system gas giant planets. It is available in full from the Strasbourg data centre, CDS, and at www.exomol.com.

  15. ExoMol line lists - XXII. The rotation-vibration spectrum of silane up to 1200 K

    NASA Astrophysics Data System (ADS)

    Owens, A.; Yachmenev, A.; Thiel, W.; Tennyson, J.; Yurchenko, S. N.

    2017-11-01

    A variationally computed 28SiH4 rotation-vibration line list applicable for temperatures up to T = 1200 K is presented. The line list, called OY2T, considers transitions with rotational excitation up to J = 42 in the wavenumber range 0-5000 cm-1 (wavelengths λ > 2 μm). Just under 62.7 billion transitions have been calculated between 6.1 million energy levels. Rovibrational calculations have utilized a new `spectroscopic' potential energy surface determined by empirical refinement to 1452 experimentally derived energy levels up to J = 6, and a previously reported ab initio dipole moment surface. The temperature-dependent partition function of silane, the OY2T line list format, and the temperature dependence of the OY2T line list are discussed. Comparisons with the PNNL spectral library and other experimental sources indicate that the OY2T line list is robust and able to accurately reproduce weaker intensity features. The full line list is available from the ExoMol data base and the CDS data base.

  16. The spectroscopic (FTIR, FT-IR gas phase and FT-Raman), first order hyperpolarizabilities, NMR analysis of 2,4-dichloroaniline by ab initio HF and density functional methods.

    PubMed

    Sundaraganesan, N; Karpagam, J; Sebastian, S; Cornard, J P

    2009-07-01

    In this work, the experimental and theoretical study on molecular structure and vibrational spectra of 2,4-dichloroaniline (2,4-DCA) were studied. The Fourier transform infrared (gas phase) and Fourier transform Raman spectra of 2,4-DCA were recorded. The molecular geometry and vibrational frequencies of 2,4-DCA in the ground state were calculated by using the Hartree-Fock (HF) and density functional (DF) methods (BLYP, B3LYP and SVWN) with 6-31G(d,p) as basis set. Comparison of the observed fundamental vibrational frequencies of 2,4-DCA with calculated results by HF and density functional methods indicates that BLYP is superior to other methods for molecular vibrational problems. The difference between the observed and scaled wave number values of most of the fundamentals is very small. The electric dipole moment (micro) and the first hyperpolarizability (beta) values of the investigated molecule were computed using ab initio quantum mechanical calculations. The calculated results also show that the 2,4-DCA molecule might have microscopic nonlinear optical (NLO) behavior with non-zero values. Natural atomic charges of 2,4-DCA and 4-chloroaniline was calculated and compared. The isotropic chemical shift computed by (13)C NMR analyses also shows good agreement with experimental observations. The theoretically predicted FTIR and FT-Raman spectra of the title molecule have been constructed.

  17. Ethylenediammonium dication: H-bonded complexes with terephthalate, chloroacetate, phosphite, selenite and sulfamate anions. Detailed vibrational spectroscopic and theoretical studies of ethylenediammonium terephthalate.

    PubMed

    Marchewka, M K; Drozd, M

    2012-12-01

    Crystalline complexes between ethylenediammonium dication and terephthalate, chloroacetate, phosphite, selenite and sulfamate anions were obtained by slow evaporation from water solution method. Room temperature powder infrared and Raman measurements were carried out. For ethylenediammonium terephthalate theoretical calculations of structure were performed by two ways: ab-initio HF and semiempirical PM3. In this case the PM3 method gave more accurate structure (closer to X-ray results). The additional PM3 calculations of vibrational spectra were performed. On the basis theoretical approach and earlier vibrational studies of similar compounds the vibrational assignments for observed bands have been proposed. All compounds were checked for second harmonic generation (SHG). Copyright © 2012 Elsevier B.V. All rights reserved.

  18. Vibrational analysis of 4-chloro-3-nitrobenzonitrile by quantum chemical calculations

    NASA Astrophysics Data System (ADS)

    Sert, Yusuf; Çırak, Çağrı; Ucun, Fatih

    2013-04-01

    In the present study, the experimental and theoretical harmonic and anharmonic vibrational frequencies of 4-chloro-3-nitrobenzonitrile were investigated. The experimental FT-IR (400-4000 cm-1) and μ-Raman spectra (100-4000 cm-1) of the molecule in the solid phase were recorded. Theoretical vibrational frequencies and geometric parameters (bond lengths and bond angles) were calculated using ab initio Hartree Fock (HF), density functional B3LYP and M06-2X methods with 6-311++G(d,p) basis set by Gaussian 09 W program, for the first time. The assignments of the vibrational frequencies were performed by potential energy distribution (PED) analysis by using VEDA 4 program. The theoretical optimized geometric parameters and vibrational frequencies were compared with the corresponding experimental data, and they were seen to be in a good agreement with each other. Also, the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) energies were found.

  19. Stacking fault energies of face-centered cubic concentrated solid solution alloys

    DOE PAGES

    Zhao, Shijun; Stocks, G. Malcolm; Zhang, Yanwen

    2017-06-22

    We report the stacking fault energy (SFE) for a series of face-centered cubic (fcc) equiatomic concentrated solid solution alloys (CSAs) derived as subsystems from the NiCoFeCrMn and NiCoFeCrPd high entropy alloys based on ab initio calculations. At low temperatures, these CSAs display very low even negative SFEs, indicating that hexagonal close-pack ( hcp) is more energy favorable than fcc structure. The temperature dependence of SFE for some CSAs is studied. With increasing temperature, a hcp-to- fcc transition is revealed for those CSAs with negative SFEs, which can be attributed to the role of intrinsic vibrational entropy. The analysis of themore » vibrational modes suggests that the vibrational entropy arises from the high frequency states in the hcp structure that originate from local vibrational mode. Furthermore, our results underscore the importance of vibrational entropy in determining the temperature dependence of SFE for CSAs.« less

  20. Stacking fault energies of face-centered cubic concentrated solid solution alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Shijun; Stocks, G. Malcolm; Zhang, Yanwen

    We report the stacking fault energy (SFE) for a series of face-centered cubic (fcc) equiatomic concentrated solid solution alloys (CSAs) derived as subsystems from the NiCoFeCrMn and NiCoFeCrPd high entropy alloys based on ab initio calculations. At low temperatures, these CSAs display very low even negative SFEs, indicating that hexagonal close-pack ( hcp) is more energy favorable than fcc structure. The temperature dependence of SFE for some CSAs is studied. With increasing temperature, a hcp-to- fcc transition is revealed for those CSAs with negative SFEs, which can be attributed to the role of intrinsic vibrational entropy. The analysis of themore » vibrational modes suggests that the vibrational entropy arises from the high frequency states in the hcp structure that originate from local vibrational mode. Furthermore, our results underscore the importance of vibrational entropy in determining the temperature dependence of SFE for CSAs.« less

  1. Ab initio Hartree-Fock and density functional theory investigations on the conformational stability, molecular structure and vibrational spectra of 5-chloro-3-(2-(4-methylpiperazin-1-yl)-2-oxoethyl)benzo[d]thiazol-2(3H)-one drug molecule.

    PubMed

    Taşal, Erol; Kumalar, Mustafa

    2012-09-01

    In this work, the experimental and theoretical spectra of 5-chloro-3-(2-(4-methylpiperazin-1-yl)-2-oxoethyl)benzo[d]thiazol-2(3H)-one molecule (abbreviated as 5CMOT) are studied. The molecular geometry and vibrational frequencies are calculated in the ground state of molecule using ab initio Hartree-Fock (HF) and Density Function Theory (DFT) methods with 6-311++G(d,p), 6-31G++(d,p), 6-31G(d,p), 6-31G(d) and 6-31G basis sets. Three staggered stable conformers were observed on the torsional potential energy surfaces. The complete assignments were performed on the basis of the total energy distribution (TED) of the vibrational modes calculated. The comparison of the theoretical and experimental geometries of the title compound indicated that the X-ray parameters fairly well agree with the theoretically obtained values for the most stable conformer. The theoretical results showed an excellent agreement with the experimental values. The calculated HOMO and LUMO energies show that the charge transfer occurs within the molecule. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. Atomistic non-adiabatic dynamics of the LH2 complex with a GPU-accelerated ab initio exciton model

    DOE PAGES

    Sisto, Aaron; Stross, Clem; van der Kamp, Marc W.; ...

    2017-03-28

    We recently outlined an efficient multi-tiered parallel ab initio excitonic framework that utilizes time dependent density functional theory (TDDFT) to calculate ground and excited state energies and gradients of large supramolecular complexes in atomistic detail – enabling us to undertake non-adiabatic simulations which explicitly account for the coupled anharmonic vibrational motion of all the constituent atoms in a supramolecular system. Here we apply that framework to the 27 coupled bacterio-chlorophyll-a chromophores which make up the LH2 complex, using it to compute an on-the-fly nonadiabatic surface-hopping (SH) trajectory of electronically excited LH2. Part one of this article is focussed on calibratingmore » our ab initio exciton Hamiltonian using two key parameters: a shift δ, which corrects for the error in TDDFT vertical excitation energies; and an effective dielectric constant ε, which describes the average screening of the transition-dipole coupling between chromophores. Using snapshots obtained from equilibrium molecular dynamics simulations (MD) of LH2, we tune the values of both δ and ε through fitting to the thermally broadened experimental absorption spectrum, giving a linear absorption spectrum that agrees reasonably well with experiment. In part two of this article, we construct a time-resolved picture of the coupled vibrational and excitation energy transfer (EET) dynamics in the sub-picosecond regime following photo-excitation. Assuming Franck–Condon excitation of a narrow eigenstate band centred at 800 nm, we use surface hopping to follow a single nonadiabatic dynamics trajectory within the full eigenstate manifold. Consistent with experimental data, this trajectory gives timescales for B800→B850 population transfer (τ B800→B850) between 650–1050 fs, and B800 population decay (τ 800→) between 10–50 fs. The dynamical picture that emerges is one of rapidly fluctuating LH2 eigenstates that are delocalized over multiple chromophores and undergo frequent crossing on a femtosecond timescale as a result of the atomic vibrations of the constituent chromophores. The eigenstate fluctuations arise from disorder that is driven by vibrational dynamics with multiple characteristic timescales. The scalability of our ab initio excitonic computational framework across massively parallel architectures opens up the possibility of addressing a wide range of questions, including how specific dynamical motions impact both the pathways and efficiency of electronic energy-transfer within large supramolecular systems.« less

  3. On the vibrational spectra and structural parameters of methyl, silyl, and germyl azide from theoretical predictions and experimental data.

    PubMed

    Durig, Douglas T; Durig, M S; Durig, James R

    2005-05-01

    The infrared and Raman spectra of methyl, silyl, and germyl azide (XN3 where X=CH3, SiH3 and GeH3) have been predicted from ab initio calculations with full electron correlation by second order perturbation theory (MP2) and hybrid density function theory (DFT) by the B3LYP method with a variety of basis sets. These predicted data are compared to previously reported experimental data and complete vibrational assignments are provided for all three molecules. It is shown that several of the assignments recently proposed [J. Mol. Struct. (Theochem.) 434 (1998) 1] for methyl azide are not correct. Structural parameters for CH3N3 and GeH3N3 have been obtained by combining the previously reported microwave rotational constants with the ab initio MP2/6-311+G(d,p) predicted values. These "adjusted r0" parameters have very small uncertainties of +/-0.003 A for the XH distances and a maximum of +/-0.005 A for the heavy atom distances and +/-0.5 degrees for the angles. The predicted distance for the terminal NN bond which is nearly a triple bond is much better predicted by the B3LYP calculations, whereas the fundamental frequencies are better predicted by the scaled ab initio calculations. The results are discussed and compared to those obtained for some similar molecules.

  4. Efficient anharmonic vibrational spectroscopy for large molecules using local-mode coordinates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, Xiaolu; Steele, Ryan P., E-mail: ryan.steele@utah.edu

    This article presents a general computational approach for efficient simulations of anharmonic vibrational spectra in chemical systems. An automated local-mode vibrational approach is presented, which borrows techniques from localized molecular orbitals in electronic structure theory. This approach generates spatially localized vibrational modes, in contrast to the delocalization exhibited by canonical normal modes. The method is rigorously tested across a series of chemical systems, ranging from small molecules to large water clusters and a protonated dipeptide. It is interfaced with exact, grid-based approaches, as well as vibrational self-consistent field methods. Most significantly, this new set of reference coordinates exhibits a well-behavedmore » spatial decay of mode couplings, which allows for a systematic, a priori truncation of mode couplings and increased computational efficiency. Convergence can typically be reached by including modes within only about 4 Å. The local nature of this truncation suggests particular promise for the ab initio simulation of anharmonic vibrational motion in large systems, where connection to experimental spectra is currently most challenging.« less

  5. Stimulated Raman signals at conical intersections: Ab initio surface hopping simulation protocol with direct propagation of the nuclear wave function

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kowalewski, Markus, E-mail: mkowalew@uci.edu; Mukamel, Shaul, E-mail: smukamel@uci.edu

    2015-07-28

    Femtosecond Stimulated Raman Spectroscopy (FSRS) signals that monitor the excited state conical intersections dynamics of acrolein are simulated. An effective time dependent Hamiltonian for two C—H vibrational marker bands is constructed on the fly using a local mode expansion combined with a semi-classical surface hopping simulation protocol. The signals are obtained by a direct forward and backward propagation of the vibrational wave function on a numerical grid. Earlier work is extended to fully incorporate the anharmonicities and intermode couplings.

  6. ExoMol molecular line lists - XXVI: spectra of SH and NS

    NASA Astrophysics Data System (ADS)

    Yurchenko, Sergei N.; Bond, Wesley; Gorman, Maire N.; Lodi, Lorenzo; McKemmish, Laura K.; Nunn, William; Shah, Rohan; Tennyson, Jonathan

    2018-07-01

    Line lists for the sulphur-containing molecules SH (the mercapto radical) and NS are computed as part of the ExoMol project. These line lists consider transitions within the X2Π ground state for 32SH, 33SH, 34SH,36SH and, 32SD, and 14N32S, 14N33S, 14N34S, 14N36S, and 15N32S. Ab initio potential energy (PEC) and spin-orbit coupling (SOC) curves are computed and then improved by fitting to experimentally observed transitions. Fully ab initio dipole moment curves (DMCs) computed at high level of theory are used to produce the final line lists. For SH, our fit gives a root-mean-square (rms) error of 0.03 cm-1 between the observed (vmax = 4, Jmax = 34.5) and calculated transitions wavenumbers; this is extrapolated such that all X2Π rotational-vibrational-electronic (rovibronic) bound states are considered. For 32SH the resulting line list contains about 81 000 transitions and 2300 rovibronic states, considering levels up to vmax = 14 and Jmax = 60.5. For NS the refinement used a combination of experimentally determined frequencies and energy levels and led to an rms-fitting error of 0.002 cm-1. Each NS-calculated line list includes around 2.8 million transitions and 31 000 rovibronic states with a vibrational range up to v = 53 and rotational range up to J = 235.5, which covers up to 23 000 cm-1. Both line lists should be complete for temperatures up to 5000 K. Example spectra simulated using this line list are shown and comparisons made to the existing data in the CDMS data base. The line lists are available from the CDS (http://cdsarc.u-strasbg.fr) and ExoMol (www.exomol.com) data bases.

  7. Einstein A coefficients for rovibronic lines of the A2Π → X2Σ+ and B2Σ+ → X2Σ+ transitions of CaH and CaD

    NASA Astrophysics Data System (ADS)

    Alavi, S. Fatemeh; Shayesteh, Alireza

    2018-02-01

    Calcium monohydride is an important diatomic molecule appearing in the spectra of sunspots and M dwarfs. We report complete line lists with Einstein A coefficients for the A2Π-X2Σ+ and B2Σ+-X2Σ+ electronic transitions of CaH and CaD radicals. The most recent ab initio transition dipole moments and potential energy curves were used for the calculation of vibronic band intensities, taking the Herman-Wallis effect into account, and the rotational line strengths were calculated using the PGOPHER program of Western. For the A2Π and B2Σ+ excited states of CaH and CaD, new off-diagonal electronic matrix elements were included in the Hamiltonian matrix, and new sets of spectroscopic constants were determined in order to accurately reproduce the line positions and relative intensities of the observed branches in laboratory spectra. For both CaH and CaD isotopologues, Einstein A coefficients were calculated for all possible rovibronic transitions from the v΄ = 0-3 vibrational levels of the A2Π state and the v΄ = 0-2 vibrational levels of the B2Σ+ state to the v″ = 0-4 vibrational levels of the X2Σ+ ground state. The line lists and intensities reported here can be used to accurately determine the amounts of CaH and CaD in stellar environments.

  8. The structure of the NO(X (2)Pi)-N(2) complex: A joint experimental-theoretical study.

    PubMed

    Wen, B; Meyer, H; Kłos, J

    2010-04-21

    We report the first measurement of the spectrum of the NO-N(2) complex in the region of the first vibrational NO overtone transition. The origin band of the complex is blueshifted by 0.30 cm(-1) from the corresponding NO monomer frequency. The observed spectrum consists of three bands assigned to the origin band, the excitation of one quantum of z-axis rotation and one associated hot band. The spacing of the bands and the rotational structure indicate a T-shaped vibrationally averaged structure with the NO molecule forming the top of the T. These findings are confirmed by high level ab initio calculations of the potential energy surfaces in planar symmetry. The deepest minimum is found for a T-shaped geometry on the A(")-surface. As a result the sum potential also has the global minimum for this structure. The different potential surfaces show several additional local minima at slightly higher energies indicating that the complex most likely will perform large amplitude motion even in its ground vibrational state. Nevertheless, as suggested by the measured spectra, the complex must, on average, spend a substantial amount of time near the T-shaped configuration.

  9. Quasiclassical trajectory studies of the O(3P) + CX4(vk = 0, 1) → OXv + CX3(n1n2n3n4) [X = H and D] reactions on an ab initio potential energy surface.

    PubMed

    Czakó, Gábor; Liu, Rui; Yang, Minghui; Bowman, Joel M; Guo, Hua

    2013-08-01

    We report quasiclassical trajectory calculations of the integral and differential cross sections and the mode-specific product state distributions for the "central-barrier" O((3)P) + CH4/CD4(vk = 0, 1) [k = 1, 2, 3, 4] reactions using a full-dimensional ab initio potential energy surface. The mode-specific vibrational distributions for the polyatomic methyl products are obtained by doing a normal-mode analysis in the Eckart frame, followed by standard histogram binning (HB) and energy-based Gaussian binning (1GB). The reactant bending excitations slightly enhance the reactivity, whereas stretching excitations activate the reaction more efficiently. None of the reactant vibrational excitations is as efficient as an equivalent amount of translational energy to promote the reactions. The excitation functions without product zero-point energy (ZPE) constraint are in good agreement with previous 8-dimensional quantum mechanical (QM) results for the ground-state and stretching-excited O + CH4 reactions, whereas for the bending-excited reactions the soft ZPE constraint, which is applied to the sum of the product vibrational energies, provides better agreement with the QM cross sections. All angular distributions show the dominance of backward scattering indicating a direct rebound mechanism, in agreement with experiment. The title reactions produce mainly OH/OD(v = 0) products for all the initial states. HB significantly overestimates the populations of OH/OD(v = 1), especially in the energetic threshold regions, whereas 1GB provides physically correct results. The CH3/CD3 vibrational distributions show dominant populations for ground (v = 0), umbrella-excited (v2 = 1, 2), in-plane-bending-excited (v4 = 1), and v2 + v4 methyl product states. Neither translational energy nor reactant vibrational excitation transfers significantly into product vibrations.

  10. Investigating the ground-state rotamers of n-propylperoxy radical.

    PubMed

    Hoobler, Preston R; Turney, Justin M; Schaefer, Henry F

    2016-11-07

    The n-propylperoxy radical has been described as a molecule of critical importance to studies of low temperature combustion. Ab initio methods were used to study this three-carbon alkylperoxy radical, normal propylperoxy. Reliable CCSD(T) (coupled-cluster theory, incorporating single, double, and perturbative triple)/ANO0 geometries were predicted for the molecule's five rotamers. For each rotamer, energetic predictions were made using basis sets as large as the cc-pV5Z in conjunction with coupled cluster levels of theory up to CCSDT(Q). Along with the extrapolations, corrections for relativistic effects, zero-point vibrational energies, and diagonal Born-Oppenheimer corrections were used to further refine energies. The results indicate that the lowest conformer is the gauche-gauche (GG) rotamer followed by the gauche-trans (0.12 kcal mol -1 above GG), trans-gauche (0.44 kcal mol -1 ), gauche'-gauche (0.47 kcal mol -1 ), and trans-trans (0.57 kcal mol -1 ). Fundamental vibrational frequencies were obtained using second-order vibrational perturbation theory. This is the first time anharmonic frequencies have been computed for this system. The most intense IR features include all but one of the C-H stretches. The O-O fundamental (1063 cm -1 for the GG structure) also has a significant IR intensity, 19.6 km mol -1 . The anharmonicity effects on the potential energy surface were also used to compute vibrationally averaged r g,0K bond lengths, accounting for zero-point vibrations present within the molecule.

  11. Investigating the Ground-State Rotamers of n-Propylperoxy Radical

    DOE PAGES

    Hoobler, Preston Reece; Turney, Justin Matthew; Schaefer III, Henry

    2016-11-01

    The n-propylperoxy radical has been described as a molecule of critical importance to studies of low temperature combustion. Ab initio methods were used to study this three-carbon alkylperoxy radical, normal propylperoxy. Reliable CCSD(T)/ANO0 geometries were predicted for the molecule's five rotamers. For each rotamer, energetic predictions were made using basis sets as large as the cc-pV5Z in conjunction with coupled cluster levels of theory up to CCSDT(Q). Along with the extrapolations, corrections for relativistic effects, zero-point vibrational energies, and diagonal Born--Oppenheimer corrections were used to further refine energies. The results indicate that the lowest conformer is the gauche-gauche (GG) rotamermore » followed by the gauche-trans (0.12 kcal mol^-1 above GG), trans-gauche (0.44 kcal mol^-1), gauche'-gauche (0.47 kcal mol^-1), and trans-trans (0.57 kcal mol^-1). Fundamental vibrational frequencies were obtained using second-order vibrational perturbation theory (VPT2). This is the first time anharmonic frequencies have been computed for this system. The most intense IR features include all but one of the C-H stretches. The O-O fundamental (1063 cm^-1 for the GG structure) also has a significant IR intensity, 19.6 km mol^-1. The anharmonicity effects on the potential energy surface were also used to compute vibrationally averaged r_g,0 K bond lengths, accounting for zero-point vibrations present within the molecule.« less

  12. Investigating the ground-state rotamers of n-propylperoxy radical

    NASA Astrophysics Data System (ADS)

    Hoobler, Preston R.; Turney, Justin M.; Schaefer, Henry F.

    2016-11-01

    The n-propylperoxy radical has been described as a molecule of critical importance to studies of low temperature combustion. Ab initio methods were used to study this three-carbon alkylperoxy radical, normal propylperoxy. Reliable CCSD(T) (coupled-cluster theory, incorporating single, double, and perturbative triple)/ANO0 geometries were predicted for the molecule's five rotamers. For each rotamer, energetic predictions were made using basis sets as large as the cc-pV5Z in conjunction with coupled cluster levels of theory up to CCSDT(Q). Along with the extrapolations, corrections for relativistic effects, zero-point vibrational energies, and diagonal Born-Oppenheimer corrections were used to further refine energies. The results indicate that the lowest conformer is the gauche-gauche (GG) rotamer followed by the gauche-trans (0.12 kcal mol-1 above GG), trans-gauche (0.44 kcal mol-1), gauche'-gauche (0.47 kcal mol-1), and trans-trans (0.57 kcal mol-1). Fundamental vibrational frequencies were obtained using second-order vibrational perturbation theory. This is the first time anharmonic frequencies have been computed for this system. The most intense IR features include all but one of the C-H stretches. The O-O fundamental (1063 cm-1 for the GG structure) also has a significant IR intensity, 19.6 km mol-1. The anharmonicity effects on the potential energy surface were also used to compute vibrationally averaged rg,0K bond lengths, accounting for zero-point vibrations present within the molecule.

  13. Hydrogen diffusion in liquid aluminum from ab initio molecular dynamics

    NASA Astrophysics Data System (ADS)

    Jakse, N.; Pasturel, A.

    2014-05-01

    Ab initio molecular dynamics simulations are used to describe the diffusion of hydrogen in liquid aluminum at different temperatures. Quasi-instantaneous jumps separating periods of localized vibrations around a mean position are found to characterize the hydrogen motion at the microscopic scale. The hydrogen motion is furthermore analyzed using the van Hove function. We highlight a non-Fickian behavior for the hydrogen diffusion due to a large spatial distribution of hydrogen jumps. We show that a generalized continuous time random walk (CTRW) model describes the experimental diffusion coefficients in a satisfactory manner. Finally, the impact of impurities and alloying elements on hydrogen diffusion in aluminum is discussed.

  14. FTIR cryospectroscopic and ab initio studies of desflurane-dimethyl ether H-bonded complexes.

    PubMed

    Melikova, S M; Rutkowski, K S; Rospenk, M

    2017-09-05

    The IR spectra of mixtures of desflurane and dimethyl ether are studied with the help of FTIR cryospectroscopy in liquefied Kr at T~118-158K. Comparative analysis of the experimental data and results of ab initio calculations show that either of the two C-H groups of desflurane is involved in heterodimer formation of comparable strengths. The blue frequency shift is found for stretching vibrations of those C-H donors which directly participate in H-bond formation. Additionally the complexes are stabilized by weaker contacts between hydrogen atoms of dimethyl ether and fluorine atoms of desflurane. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Ab Initio Calculations Applied to Problems in Metal Ion Chemistry

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles W., Jr.; Langhoff, Stephen R.; Partridge, Harry; Arnold, James O. (Technical Monitor)

    1994-01-01

    Electronic structure calculations can provide accurate spectroscopic data (such as molecular structures) vibrational frequencies, binding energies, etc.) that have been very useful in explaining trends in experimental data and in identifying incorrect experimental measurements. In addition, ab initio calculations. have given considerable insight into the many interactions that make the chemistry of transition metal systems so diverse. In this review we focus on cases where calculations and experiment have been used to solve interesting chemical problems involving metal ions. The examples include cases where theory was used to differentiate between disparate experimental values and cases where theory was used to explain unexpected experimental results.

  16. Electronic absorption, vibrational spectra, nonlinear optical properties, NBO analysis and thermodynamic properties of N-(4-nitro-2-phenoxyphenyl) methanesulfonamide molecule by ab initio HF and density functional methods.

    PubMed

    Rajamani, T; Muthu, S; Karabacak, M

    2013-05-01

    In this work, the vibrational spectral analysis was carried out by using FT-Raman and FT-IR spectroscopy in the range 4000-100 cm(-1) and 4000-400 cm(-1), respectively, for N-(4-nitro-2-phenoxyphenyl) methanesulfonamide molecule. Theoretical calculations were performed by ab initio RHF and density functional theory (DFT) method using 6-31G(d,p) and 6-311G(d,p) basis sets. The complete vibrational assignments of wavenumbers were made on the basis of potential energy distribution (PED). The results of the calculations were applied to simulated spectra of the title compound, which show excellent agreement with observed spectra. The frontier orbital energy gap and dipole moment illustrates the high reactivity of the title molecule. The first order hyperpolarizability (β0) and related properties (μ, α and Δα) of the molecule were also calculated. Stability of the molecule arising from hyperconjugative interactions and charge delocalization were analyzed using natural bond orbital (NBO) analysis. The results show that electron density (ED) in the σ(*) and π(*) anti-bonding orbitals and second order delocalization energies (E2) confirm the occurrence of intramolecular charge transfer (ICT) within the molecule. UV-vis spectrum of the compound was recorded in the region 200-500 nm in ethanol and electronic properties such as excitation energies, oscillator strength and wavelength were calculated by TD-DFT/B3LYP, CIS and TD-HF methods using 6-31G(d,p) basis set. Molecular electrostatic potential (MEP) and HOMO-LUMO energy levels are also constructed. The thermodynamic properties of the title compound were calculated at different temperatures and the results reveals the heat capacity (C), and entropy (S) increases with rise in temperature. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Quantum dynamics of hydrogen atoms on graphene. I. System-bath modeling.

    PubMed

    Bonfanti, Matteo; Jackson, Bret; Hughes, Keith H; Burghardt, Irene; Martinazzo, Rocco

    2015-09-28

    An accurate system-bath model to investigate the quantum dynamics of hydrogen atoms chemisorbed on graphene is presented. The system comprises a hydrogen atom and the carbon atom from graphene that forms the covalent bond, and it is described by a previously developed 4D potential energy surface based on density functional theory ab initio data. The bath describes the rest of the carbon lattice and is obtained from an empirical force field through inversion of a classical equilibrium correlation function describing the hydrogen motion. By construction, model building easily accommodates improvements coming from the use of higher level electronic structure theory for the system. Further, it is well suited to a determination of the system-environment coupling by means of ab initio molecular dynamics. This paper details the system-bath modeling and shows its application to the quantum dynamics of vibrational relaxation of a chemisorbed hydrogen atom, which is here investigated at T = 0 K with the help of the multi-configuration time-dependent Hartree method. Paper II deals with the sticking dynamics.

  18. Quantum dynamics of hydrogen atoms on graphene. I. System-bath modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bonfanti, Matteo, E-mail: matteo.bonfanti@unimi.it; Jackson, Bret; Hughes, Keith H.

    2015-09-28

    An accurate system-bath model to investigate the quantum dynamics of hydrogen atoms chemisorbed on graphene is presented. The system comprises a hydrogen atom and the carbon atom from graphene that forms the covalent bond, and it is described by a previously developed 4D potential energy surface based on density functional theory ab initio data. The bath describes the rest of the carbon lattice and is obtained from an empirical force field through inversion of a classical equilibrium correlation function describing the hydrogen motion. By construction, model building easily accommodates improvements coming from the use of higher level electronic structure theorymore » for the system. Further, it is well suited to a determination of the system-environment coupling by means of ab initio molecular dynamics. This paper details the system-bath modeling and shows its application to the quantum dynamics of vibrational relaxation of a chemisorbed hydrogen atom, which is here investigated at T = 0 K with the help of the multi-configuration time-dependent Hartree method. Paper II deals with the sticking dynamics.« less

  19. Time-Resolved Kinetic Chirped-Pulse Rotational Spectroscopy in a Room-Temperature Flow Reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zaleski, Daniel P.; Harding, Lawrence B.; Klippenstein, Stephen J.

    Chirped-pulse Fourier transform millimeter-wave spectroscopy is a potentially powerful tool for studying chemical reaction dynamics and kinetics. Branching ratios of multiple reaction products and intermediates can be measured with unprecedented chemical specificity; molecular isomers, conformers, and vibrational states have distinct rotational spectra. Here we demonstrate chirped-pulse spectroscopy of vinyl cyanide photoproducts in a flow tube reactor at ambient temperature of 295 K and pressures of 1-10 mu bar. This in situ and time-resolved experiment illustrates the utility of this novel approach to investigating chemical reaction dynamics and kinetics. Following 193 nm photodissociation of CH2CHCN, we observe rotational relaxation of energizedmore » HCN, HNC, and HCCCN photoproducts with 10 mu s time resolution and sample the vibrational population distribution of HCCCN. The experimental branching ratio HCN/HCCCN is compared with a model based on RRKM theory using high-level ab initio calculations, which were in turn validated by comparisons to Active Thermochemical Tables enthalpies.« less

  20. Time-Resolved Kinetic Chirped-Pulse Rotational Spectroscopy in a Room-Temperature Flow Reactor

    DOE PAGES

    Zaleski, Daniel P.; Harding, Lawrence B.; Klippenstein, Stephen J.; ...

    2017-12-01

    Chirped-pulse Fourier transform millimeter-wave spectroscopy is a potentially powerful tool for studying chemical reaction dynamics and kinetics. Branching ratios of multiple reaction products and intermediates can be measured with unprecedented chemical specificity; molecular isomers, conformers, and vibrational states have distinct rotational spectra. Here we demonstrate chirped-pulse spectroscopy of vinyl cyanide photoproducts in a flow tube reactor at ambient temperature of 295 K and pressures of 1-10 mu bar. This in situ and time-resolved experiment illustrates the utility of this novel approach to investigating chemical reaction dynamics and kinetics. Following 193 nm photodissociation of CH2CHCN, we observe rotational relaxation of energizedmore » HCN, HNC, and HCCCN photoproducts with 10 mu s time resolution and sample the vibrational population distribution of HCCCN. The experimental branching ratio HCN/HCCCN is compared with a model based on RRKM theory using high-level ab initio calculations, which were in turn validated by comparisons to Active Thermochemical Tables enthalpies.« less

  1. A New Global Potential Energy Surface for the Hydroperoxyl Radical, HO2: Reaction Coefficients for H + O2 and Vibrational Splittings for H Atom Transfer

    NASA Technical Reports Server (NTRS)

    Dateo, Christopher E.; Arnold, James O. (Technical Monitor)

    1994-01-01

    A new analytic global potential energy surface describing the hydroperoxyl radical system H((sup 2)S) + O2(X (sup 3)Sigma((sup -)(sub g))) (reversible reaction) HO2 ((X-tilde) (sup 2)A'') (reversible reaction) O((sup 3)P) + O H (X (sup 2)Pi) has been fitted using the ab initio complete active space SCF (self-consistent-field)/externally contracted configuration interaction (CASSCF/CCI) energy calculations of Walch and Duchovic. Results of quasiclassical trajectory studies to determine the rate coefficients of the forward and reverse reactions at combustion temperatures will be presented. In addition, vibrational energy levels were calculated using the quantum DVR-DGB (discrete variable representation-distributed Gaussian basis) method and the splitting due to H atom migration is investigated. The material of the proposed presentation was reviewed and the technical content will not reveal any information not already in the public domain and will not give any foreign industry or government a competitive advantage.

  2. Quantum mechanical and spectroscopic (FT-IR, 13C, 1H NMR and UV) investigations of 2-(5-(4-Chlorophenyl)-3-(pyridin-2-yl)-4,5-dihydropyrazol-1-yl)benzo[d]thiazole by DFT method.

    PubMed

    Diwaker

    2014-07-15

    The electronic, NMR, vibrational, structural properties of a new pyrazoline derivative: 2-(5-(4-Chlorophenyl)-3-(pyridine-2-yl)-4,5-dihydropyrazol-1-yl)benzo[d]thiazole has been studied using Gaussian 09 software package. Using VEDA 4 program we have reported the PED potential energy distribution of normal mode of vibrations of the title compound. We have also reported the (1)H and (13)C NMR chemical shifts of the title compound using B3LYP level of theory with 6-311++G(2d,2p) basis set. Using time dependent (TD-DFT) approach electronic properties such as HOMO and LUMO energies, electronic spectrum of the title compound has been studied and reported. NBO analysis and MEP surface mapping has also been calculated and reported using ab initio methods. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Spin-orbit coupled potential energy surfaces and properties using effective relativistic coupling by asymptotic representation.

    PubMed

    Ndome, Hameth; Eisfeld, Wolfgang

    2012-08-14

    A new method has been reported recently [H. Ndome, R. Welsch, and W. Eisfeld, J. Chem. Phys. 136, 034103 (2012)] that allows the efficient generation of fully coupled potential energy surfaces (PESs) including derivative and spin-orbit (SO) coupling. The method is based on the diabatic asymptotic representation of the molecular fine structure states and an effective relativistic coupling operator and therefore is called effective relativistic coupling by asymptotic representation (ERCAR). The resulting diabatic spin-orbit coupling matrix is constant and the geometry dependence of the coupling between the eigenstates is accounted for by the diabatization. This approach allows to generate an analytical model for the fully coupled PESs without performing any ab initio SO calculations (except perhaps for the atoms) and thus is very efficient. In the present work, we study the performance of this new method for the example of hydrogen iodide as a well-established test case. Details of the diabatization and the accuracy of the results are investigated in comparison to reference ab initio calculations. The energies of the adiabatic fine structure states are reproduced in excellent agreement with reference ab initio data. It is shown that the accuracy of the ERCAR approach mainly depends on the quality of the underlying ab initio data. This is also the case for dissociation and vibrational level energies, which are influenced by the SO coupling. A method is presented how one-electron operators and the corresponding properties can be evaluated in the framework of the ERCAR approach. This allows the computation of dipole and transition moments of the fine structure states in good agreement with ab initio data. The new method is shown to be very promising for the construction of fully coupled PESs for more complex polyatomic systems to be used in quantum dynamics studies.

  4. High-throughput density-functional perturbation theory phonons for inorganic materials

    NASA Astrophysics Data System (ADS)

    Petretto, Guido; Dwaraknath, Shyam; P. C. Miranda, Henrique; Winston, Donald; Giantomassi, Matteo; van Setten, Michiel J.; Gonze, Xavier; Persson, Kristin A.; Hautier, Geoffroy; Rignanese, Gian-Marco

    2018-05-01

    The knowledge of the vibrational properties of a material is of key importance to understand physical phenomena such as thermal conductivity, superconductivity, and ferroelectricity among others. However, detailed experimental phonon spectra are available only for a limited number of materials, which hinders the large-scale analysis of vibrational properties and their derived quantities. In this work, we perform ab initio calculations of the full phonon dispersion and vibrational density of states for 1521 semiconductor compounds in the harmonic approximation based on density functional perturbation theory. The data is collected along with derived dielectric and thermodynamic properties. We present the procedure used to obtain the results, the details of the provided database and a validation based on the comparison with experimental data.

  5. Discovery of the Electronic Spectra of Hps and Dps

    NASA Astrophysics Data System (ADS)

    Grimminger, Robert A.; Wei, Jie; Ellis, Blaine; Clouthier, Dennis J.; Wang, Zhong; Sears, Trevor

    2009-06-01

    The hitherto unknown electronic spectrum of the closed shell transient molecule HPS has been observed in the 685 - 846 nm region by laser-induced fluorescence and single vibronic level emission techniques. HPS (and DPS) were produced in a pulsed electric discharge jet using a precursor mixture of 3% PH_3 and 1% H_2S (or PD_3 and D_2S) in high pressure argon. The weak set of observed bands are assigned to the à ^1A^''-X˜ ^1A^' electronic transition on the basis of chemical evidence, isotope shifts and the correspondence of the vibrational frequencies, excitation energy, and band contours with predictions based on our own high level ab initio calculations. Theory predicts that the HPS bond angle decreases on electronic excitation, contrary to expectations based on Walsh diagrams.

  6. Tautomers of Gas-Phase Erythrose and Their Interconversion Reactions: Insights from High-Level ab Initio Study.

    PubMed

    Szczepaniak, Marek; Moc, Jerzy

    2015-11-05

    D-Erythrose is a C4 monosaccharide with a biological and potential astrobiological relevance. We have investigated low-energy structures of d-erythrose and their interconversion in the gas phase with the highest-level calculations up-to-date. We have identified a number of structurally distinct furanose and open-chain isomers and predicted α ↔ α and β ↔ β furanose interconversion pathways involving the O-H rotamers. We have estimated relative Gibbs free energies of the erythrose species based on the CCSD(T)/aug-cc-pVTZ electronic energies and MP2/aug-cc-pVTZ vibrational frequencies. By using natural bond orbital theory we have also quantified a stabilization of erythrose conformers and interconversion transition states by intramolecular H-bonds.

  7. On the Ground Electronic States of TiF and TiCl

    PubMed

    Boldyrev; Simons

    1998-04-01

    The low-lying electronic states of TiF and TiCl have been studied using high level ab initio techniques. Both are found to have two low-lying excited electronic states, 4Sigma- (0.080 eV (TiF) and 0.236 eV (TiCl)) and 2Delta (0.266 eV (TiF) and 0.348 eV (TiCl)), and 4Phi ground states at the highest CCSD(T)/6-311++G(2d,2f) level of theory. Our theoretical predictions of 4Phi ground electronic states for TiF and TiCl support recent experimental findings by Ram and Bernath, and our calculated bond lengths and vibrational frequencies are in reasonable agreement with their experimental data. Copyright 1998 Academic Press.

  8. Analysis of PH3 spectra in the Octad range 2733-3660 cm-1

    NASA Astrophysics Data System (ADS)

    Nikitin, A. V.; Ivanova, Y. A.; Rey, M.; Tashkun, S. A.; Toon, G. C.; Sung, K.; Tyuterev, Vl. G.

    2017-12-01

    Improved analysis of positions and intensities of phosphine spectral lines in the Octad region 2733-3660 cm-1 is reported. Some 5768 positions and 1752 intensities were modelled with RMS deviations of 0.00185 cm-1 and 10.9%, respectively. Based on an ab initio potential energy surface, the full Hamiltonian of phosphine nuclear motion was reduced to an effective Hamiltonian using high-order Contact Transformations method adapted to polyads of symmetric top AB3-type molecules with a subsequent empirical optimization of parameters. More than 2000 new ro-vibrational lines were assigned that include transitions for all 13 vibrational Octad sublevels. This new fitting of measured positions and intensities considerably improved the accuracy of line parameters in the calculated database. A comparison of our results with experimental spectra of PNNL showed that the new set of line parameters from this work permits better simulation of observed cross-sections than the HITRAN2012 linelist. In the 2733-3660 cm-1 range, our integrated intensities show a good consistency with recent ab initio variational calculations.

  9. Ab initio calculation of harmonic force fields and vibrational spectra for the arsine oxides and sulfides R sub 3 AsY (R = H, F; Y = O, S) and related compounds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schneider, W.; Thiel, W.; Komornicki, A.

    1990-04-05

    Ab initio self-consistent-field calculations using effective core potentials and polarized double-zeta basis sets are reported for the arsenic compounds H{sub 3}As, H{sub 3}AsO, H{sub 3}AsS, F{sub 3}As, F{sub 3}AsO, F{sub 3}AsS, cis- and trans-H{sub 2}AsOH, and HAsO. The calculated geometries, rotational constants, vibrational frequencies, Coriolis coupling constants, centrifugal distortion constants, infrared band intensities, and force fields are compared with the available experimental data. Good agreement is found in the case of the known molecules, especially H{sub 3}As and F{sub 3}As, so that the predictions for the unknown molecules are expected to be realistic. The theoretical results confirm a recent spectroscopicmore » identification of H{sub 3}AsO, H{sub 2}AsOH, and HAsO and suggest reassignment of several observed frequencies.« less

  10. A search for two types of transverse excitations in liquid polyvalent metals at ambient pressure: An ab initio molecular dynamics study of collective excitations in liquid Al, Tl and Ni

    NASA Astrophysics Data System (ADS)

    Bryk, Taras; Demchuk, Taras; Jakse, Noël; Wax, Jean-François

    2018-02-01

    Recent findings of pressure-induced emergence of unusual high-frequency contribution to transverse current spectral functions in several simple liquid metals at high pressures raised a question whether similar features can be observed in liquid metals at ambient conditions. We report here analysis of ab initio molecular dynamics-derived longitudinal (L) and transverse (T) current spectral functions and corresponding dispersions of collective excitations in liquid polyvalent metals Al, Tl, Ni. We have not found evidences of the second branch of high-frequency transverse modes in liquid Al and Ni, while in the case of liquid Tl they were clearly present in transverse dynamics. The vibrational density of states for liquid Tl has a pronounced high-frequency shoulder, which is located right in the frequency range of the second high-frequency transverse branch, while for liquid Al and Ni the vibrational density of states has only a weak indication of possible high-frequency shoulder. The origin of specific behavior of transverse excitations in liquid Tl is discussed.

  11. Enzyme Active Site Interactions by Raman/FTIR, NMR, and Ab Initio Calculations

    PubMed Central

    Deng, Hua

    2017-01-01

    Characterization of enzyme active site structure and interactions at high resolution is important for the understanding of the enzyme catalysis. Vibrational frequency and NMR chemical shift measurements of enzyme-bound ligands are often used for such purpose when X-ray structures are not available or when higher resolution active site structures are desired. This review is focused on how ab initio calculations may be integrated with vibrational and NMR chemical shift measurements to quantitatively determine high-resolution ligand structures (up to 0.001 Å for bond length and 0.01 Å for hydrogen bonding distance) and how interaction energies between bound ligand and its surroundings at the active site may be determined. Quantitative characterization of substrate ionic states, bond polarizations, tautomeric forms, conformational changes and its interactions with surroundings in enzyme complexes that mimic ground state or transition state can provide snapshots for visualizing the substrate structural evolution along enzyme-catalyzed reaction pathway. Our results have shown that the integration of spectroscopic studies with theoretical computation greatly enhances our ability to interpret experimental data and significantly increases the reliability of the theoretical analysis. PMID:24018325

  12. Ab initio calculation of infrared intensities for hydrogen peroxide

    NASA Technical Reports Server (NTRS)

    Rogers, J. D.; Hillman, J. J.

    1982-01-01

    Results of an ab initio SCF quantum mechanical study are used to derive estimates for the infrared intensities of the fundamental vibrations of hydrogen peroxide. Atomic polar tensors (APTs) were calculated on the basis of a 4-31G basis set, and used to derive absolute intensities for the vibrational transitions. Comparison of the APTs calculated for H2O2 with those previously obtained for H2O and CH3OH, and of the absolute intensities derived from the H2O2 APTs with those derived from APTs transferred from H2O and CH3OH, reveals the sets of values to differ by no more than a factor of two, supporting the validity of the theoretical calculation. Values of the infrared intensities obtained correspond to A1 = 14.5 km/mol, A2 = 0.91 km/mol, A3 = 0.058 km/mol, A4 = 123 km/mol, A5 = 46.2 km/mol, and A6 = 101 km/mol. Charge, charge flux and overlap contributions to the dipole moment derivatives are also computed.

  13. Ab initio calculation of infrared intensities for hydrogen peroxide

    NASA Astrophysics Data System (ADS)

    Rogers, J. D.; Hillman, J. J.

    1982-04-01

    Results of an ab initio SCF quantum mechanical study are used to derive estimates for the infrared intensities of the fundamental vibrations of hydrogen peroxide. Atomic polar tensors (APTs) were calculated on the basis of a 4-31G basis set, and used to derive absolute intensities for the vibrational transitions. Comparison of the APTs calculated for H2O2 with those previously obtained for H2O and CH3OH, and of the absolute intensities derived from the H2O2 APTs with those derived from APTs transferred from H2O and CH3OH, reveals the sets of values to differ by no more than a factor of two, supporting the validity of the theoretical calculation. Values of the infrared intensities obtained correspond to A1 = 14.5 km/mol, A2 = 0.91 km/mol, A3 = 0.058 km/mol, A4 = 123 km/mol, A5 = 46.2 km/mol, and A6 = 101 km/mol. Charge, charge flux and overlap contributions to the dipole moment derivatives are also computed.

  14. A new ab initio potential energy surface for the collisional excitation of HCN by para- and ortho-H2

    NASA Astrophysics Data System (ADS)

    Denis-Alpizar, Otoniel; Kalugina, Yulia; Stoecklin, Thierry; Vera, Mario Hernández; Lique, François

    2013-12-01

    We present a new four-dimensional potential energy surface for the collisional excitation of HCN by H2. Ab initio calculations of the HCN-H2 van der Waals complex, considering both molecules as rigid rotors, were carried out at the explicitly correlated coupled cluster with single, double, and perturbative triple excitations [CCSD(T)-F12a] level of theory using an augmented correlation-consistent triple zeta (aVTZ) basis set. The equilibrium structure is linear HCN-H2 with the nitrogen pointing towards H2 at an intermolecular separation of 7.20 a0. The corresponding well depth is -195.20 cm-1. A secondary minimum of -183.59 cm-1 was found for a T-shape configuration with the H of HCN pointing to the center of mass of H2. We also determine the rovibrational energy levels of the HCN-para-H2 and HCN-ortho-H2 complexes. The calculated dissociation energies for the para and ortho complexes are 37.79 cm-1 and 60.26 cm-1, respectively. The calculated ro-vibrational transitions in the HCN-H2 complex are found to agree by more than 0.5% with the available experimental data, confirming the accuracy of the potential energy surface.

  15. Vibrational spectrum, ab initio calculations, conformational stabilities and assignment of fundamentals of 1,2-dibromopropane

    NASA Astrophysics Data System (ADS)

    LaPlante, Arthur J.; Stidham, Howard D.

    2009-10-01

    The mid and far infrared and the Raman spectrum of 1,2-dibromopropane is reported in solid, liquid and gas. Several bands reported by earlier workers are not present in the spectrum of the purified material. Ab initio calculations of optimized geometry, energy, dipole moment, molar volume, vibrational spectrum and normal coordinate calculation were performed using the density functional B3LYP/6-311++g(3df,2pd), and the results used to assist a complete assignment of the 81 fundamental modes of vibrations of the three conformers of 1,2-dibromopropane. Relative energies found conformer A the lowest with G and G' at 815.6 and 871.4 cm -1 higher. The temperature dependence of the Raman spectrum of the liquid was investigated in the CCC bending region and the relative energies determined. It was found that the G' and G conformers lie 236 ± 11 and 327 ±11 cm -1, respectively above the A conformer, leading to the room temperature composition of the liquid as A, 65 ± 1; G', 21 ± 1; G, 14 ± 1%. It is apparent that the calculated highest energy conformer G' is stabilized more than the G conformer in the liquid. The G' conformer has the lowest molar volume effectively changing the interaction distance between conformers in the liquid, and enhancing the effect of its dipole moment.

  16. Vibrational spectrum, ab initio calculations, conformational stabilities and assignment of fundamentals of 1,2-dibromopropane.

    PubMed

    LaPlante, Arthur J; Stidham, Howard D

    2009-10-15

    The mid and far infrared and the Raman spectrum of 1,2-dibromopropane is reported in solid, liquid and gas. Several bands reported by earlier workers are not present in the spectrum of the purified material. Ab initio calculations of optimized geometry, energy, dipole moment, molar volume, vibrational spectrum and normal coordinate calculation were performed using the density functional B3LYP/6-311++g(3df,2pd), and the results used to assist a complete assignment of the 81 fundamental modes of vibrations of the three conformers of 1,2-dibromopropane. Relative energies found conformer A the lowest with G and G' at 815.6 and 871.4 cm(-1) higher. The temperature dependence of the Raman spectrum of the liquid was investigated in the CCC bending region and the relative energies determined. It was found that the G' and G conformers lie 236+/-11 and 327+/-11 cm(-1), respectively above the A conformer, leading to the room temperature composition of the liquid as A, 65+/-1; G', 21+/-1; G, 14+/-1%. It is apparent that the calculated highest energy conformer G' is stabilized more than the G conformer in the liquid. The G' conformer has the lowest molar volume effectively changing the interaction distance between conformers in the liquid, and enhancing the effect of its dipole moment.

  17. An Accurate ab initio Quartic Force Field and Vibrational Frequencies for CH4 and Isotopomers

    NASA Technical Reports Server (NTRS)

    Lee, Timothy J.; Martin, Jan M. L.; Taylor, Peter R.

    1995-01-01

    A very accurate ab initio quartic force field for CH4 and its isotopomers is presented. The quartic force field was determined with the singles and doubles coupled-cluster procedure that includes a quasiperturbative estimate of the effects of connected triple excitations, CCSD(T), using the correlation consistent polarized valence triple zeta, cc-pVTZ, basis set. Improved quadratic force constants were evaluated with the correlation consistent polarized valence quadruple zeta, cc-pVQZ, basis set. Fundamental vibrational frequencies are determined using second-order perturbation theory anharmonic analyses. All fundamentals of CH4 and isotopomers for which accurate experimental values exist and for which there is not a large Fermi resonance, are predicted to within +/- 6 cm(exp -1). It is thus concluded that our predictions for the harmonic frequencies and the anharmonic constants are the most accurate estimates available. It is also shown that using cubic and quartic force constants determined with the correlation consistent polarized double zeta, cc-pVDZ, basis set in conjunction with the cc-pVQZ quadratic force constants and equilibrium geometry leads to accurate predictions for the fundamental vibrational frequencies of methane, suggesting that this approach may be a viable alternative for larger molecules. Using CCSD(T), core correlation is found to reduce the CH4 r(e), by 0.0015 A. Our best estimate for r, is 1.0862 +/- 0.0005 A.

  18. Mode-specific multi-channel dynamics of the F- + CHD2Cl reaction on a global ab initio potential energy surface

    NASA Astrophysics Data System (ADS)

    Szabó, István; Czakó, Gábor

    2016-10-01

    We report a detailed quasiclassical trajectory study for the dynamics of the ground-state and CH/CD stretching-excited F- + CHD2Cl(vCH/CD = 0, 1) → Cl- + CHD2F, HF + CD2Cl-, and DF + CHDCl- SN2, proton-, and deuteron-abstraction reactions using a full-dimensional global ab initio analytical potential energy surface. The simulations show that (a) CHD2Cl(vCH/CD = 1), especially for vCH = 1, maintains its mode-specific excited character prior to interaction, (b) the SN2 reaction is vibrationally mode-specific, (c) double inversion can occur and is enhanced upon CH/CD stretching excitations, (d) in the abstraction reactions the HF channel is preferred and the vCH/CD = 1 excitations significantly promote the HF/DF channels, (e) back-side rebound, back-side stripping, and front-side stripping are the dominant direct abstraction mechanisms based on correlated scattering- and attack-angle distributions, (f) the exact classical vibrational energy-based Gaussian binning (1GB) provides realistic mode-specific polyatomic product state distributions, (g) in the abstraction reactions CH and CD stretchings are not pure spectator modes and mainly ground-state products are produced, thus most of the initial energy transfers into product translation, and (h) the HF and DF product molecules are rotationally cold without any significant dependence on the reactant's and HF/DF vibrational states.

  19. Ab initio and DFT study of hydrogen bond interactions between ascorbic acid and dimethylsulfoxide based on FT-IR and FT-Raman spectra

    NASA Astrophysics Data System (ADS)

    Niazazari, Naser; Zatikyan, Ashkhen L.; Markarian, Shiraz A.

    2013-06-01

    The hydrogen bonding of 1:1 complexes formed between L-ascorbic acid (LAA) and dimethylsulfoxide (DMSO) has been studied by means of ab initio and density functional theory (DFT) calculations. Solutions of L-ascorbic acid (AA) in dimethylsulfoxide (DMSO) have been studied by means of both FT-IR (4000-220 cm-1) and FT-Raman spectroscopy. Ab initio Hartree-Fock (HF) and DFT methods have been used to determine the structure and energies of stable conformers of various types of L-AA/DMSO complexes in gas phase and solution. The basis sets 6-31++G∗∗ and 6-311+G∗ were used to describe the structure, energy, charges and vibrational frequencies of interacting complexes in the gas phase. The optimized geometric parameters and interaction energies for various complexes at different theories have been estimated. Binding energies have been corrected for basis set superposition error (BSSE) and harmonic vibrational frequencies of the structures have been calculated to obtain the stable forms of the complexes. The self-consistent reaction field (SCRF) has been used to calculate the effect of DMSO as the solvent on the geometry, energy and charges of complexes. The solvent effect has been studied using the Onsager models. It is shown that the polarity of the solvent plays an important role on the structures and relative stabilities of different complexes. The results obtained show that there is a satisfactory correlation between experimental and theoretical predictions.

  20. Conformational stability, structural parameters and vibrational assignment from variable temperature infrared spectra of krypton solutions and ab initio calculations of ethylisothiocyanate.

    PubMed

    Durig, James R; Zheng, Chao

    2007-11-01

    Variable temperature (-105 to -150 degrees C) studies of the infrared spectra (3500-400 cm(-1)) of ethylisothiocyanate, CH(3)CH(2)NCS, dissolved in liquid krypton have been recorded. Additionally the infrared spectra of the gas and solid have been re-investigated. These spectroscopic data indicate a single conformer in all physical states with a large number of molecules in the gas phase at ambient temperature in excited states of the CN torsional mode which has a very low barrier to conformational interchange. To aid in the analyses of the vibrational and rotational spectra, ab initio calculations have been carried out by the perturbation method to the second order (MP2) with valence and core electron correlation using a variety of basis sets up to 6-311+G(2df,2pd). With the smaller basis sets up to 6-311+G(d,p) and cc-PVDZ, the cis conformer is indicated as a transition state with all larger basis sets the cis conformer is the only stable form. The predicted energy difference from these calculations between the cis form and the higher energy trans conformer is about 125 cm(-1) which represents essentially the barrier to internal rotation of the NCS group (rotation around NC axis). Density functional theory calculation by the B3LYP method with the same basis sets predicts this barrier to be about 25 cm(-1). By utilizing the previously reported microwave rotational constants with the structural parameters predicted by the ab initio MP2(full)/6-311+G(d,p) calculations, adjusted r(0) structural parameters have been obtained for the cis form. The determined heavy atom parameters are: r(NC)=1.196(5), r(CS)=1.579(5), r(CN)=1.439(5), r(CC)=1.519(5)A for the distances and angles of angleCCN=112.1(5), angleCNC=146.2(5), angleNCS=174.0(5) degrees . The centrifugal distortion constants, dipole moments, conformational stability, vibrational frequencies, infrared intensities and Raman activities have been predicted from ab initio calculations and compared to experimental quantities when available. These results are compared to the corresponding quantities of some similar molecules.

  1. Experimental and computational study on molecular structure and vibrational analysis of an antihyperglycemic biomolecule: Gliclazide

    NASA Astrophysics Data System (ADS)

    Karakaya, Mustafa; Kürekçi, Mehmet; Eskiyurt, Buse; Sert, Yusuf; Çırak, Çağrı

    2015-01-01

    In present study, the experimental and theoretical harmonic vibrational frequencies of gliclazide molecule have been investigated. The experimental FT-IR (400-4000 cm-1) and Laser-Raman spectra (100-4000 cm-1) of the molecule in the solid phase were recorded. Theoretical vibrational frequencies and geometric parameters (bond lengths and bond angles) have been calculated using ab initio Hartree Fock (HF), density functional theory (B3LYP hybrid function) methods with 6-311++G(d,p) and 6-31G(d,p) basis sets by Gaussian 09W program. The assignments of the vibrational frequencies were performed by potential energy distribution (PED) analysis by using VEDA 4 program. Theoretical optimized geometric parameters and vibrational frequencies have been compared with the corresponding experimental data, and they have been shown to be in a good agreement with each other. Also, the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) energies have been found.

  2. Experimental and computational study on molecular structure and vibrational analysis of a modified biomolecule: 5-Bromo-2'-deoxyuridine

    NASA Astrophysics Data System (ADS)

    Çırak, Çağrı; Sert, Yusuf; Ucun, Fatih

    In the present study, the experimental and theoretical vibrational spectra of 5-bromo-2'-deoxyuridine were investigated. The experimental FT-IR (400-4000 cm-1) and μ-Raman spectra (100-4000 cm-1) of the molecule in the solid phase were recorded. Theoretical vibrational frequencies and geometric parameters (bond lengths and bond angles) were calculated using ab initio Hartree Fock (HF) and density functional B3LYP method with 6-31G(d), 6-31G(d,p), 6-311++G(d) and 6-311++G(d,p) basis sets by Gaussian program, for the first time. The assignments of vibrational frequencies were performed by potential energy distribution by using VEDA 4 program. The optimized geometric parameters and theoretical vibrational frequencies are compared with the corresponding experimental data and they were seen to be in a good agreement with the each other. Also, the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) energies were found.

  3. Vibrational analysis of 4-chloro-3-nitrobenzonitrile by quantum chemical calculations.

    PubMed

    Sert, Yusuf; Çırak, Çağrı; Ucun, Fatih

    2013-04-15

    In the present study, the experimental and theoretical harmonic and anharmonic vibrational frequencies of 4-chloro-3-nitrobenzonitrile were investigated. The experimental FT-IR (400-4000 cm(-1)) and μ-Raman spectra (100-4000 cm(-1)) of the molecule in the solid phase were recorded. Theoretical vibrational frequencies and geometric parameters (bond lengths and bond angles) were calculated using ab initio Hartree Fock (HF), density functional B3LYP and M06-2X methods with 6-311++G(d,p) basis set by Gaussian 09 W program, for the first time. The assignments of the vibrational frequencies were performed by potential energy distribution (PED) analysis by using VEDA 4 program. The theoretical optimized geometric parameters and vibrational frequencies were compared with the corresponding experimental data, and they were seen to be in a good agreement with each other. Also, the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) energies were found. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Experimental and computational study on molecular structure and vibrational analysis of an antihyperglycemic biomolecule: gliclazide.

    PubMed

    Karakaya, Mustafa; Kürekçi, Mehmet; Eskiyurt, Buse; Sert, Yusuf; Çırak, Çağrı

    2015-01-25

    In present study, the experimental and theoretical harmonic vibrational frequencies of gliclazide molecule have been investigated. The experimental FT-IR (400-4000 cm(-1)) and Laser-Raman spectra (100-4000 cm(-1)) of the molecule in the solid phase were recorded. Theoretical vibrational frequencies and geometric parameters (bond lengths and bond angles) have been calculated using ab initio Hartree Fock (HF), density functional theory (B3LYP hybrid function) methods with 6-311++G(d,p) and 6-31G(d,p) basis sets by Gaussian 09W program. The assignments of the vibrational frequencies were performed by potential energy distribution (PED) analysis by using VEDA 4 program. Theoretical optimized geometric parameters and vibrational frequencies have been compared with the corresponding experimental data, and they have been shown to be in a good agreement with each other. Also, the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) energies have been found. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Vibronic coupling and selectivity of vibrational excitation in the negative ion resonances of ozone

    NASA Astrophysics Data System (ADS)

    Allan, Michael; Popovic̀, Duška B.

    1997-04-01

    A recent experimental paper reported two shape resonances in electron impact on ozone, A 1 and B 2, both causing vibrational excitation with a distinct pattern of selectivity. The present Letter attempts to rationalize this selectivity using approximate potential curves, calculated for the A 1 and B 2 resonances by adding the SCF energy of neutral ozone to electron attachment energies calculated from ab initio virtual orbital energies using the Koopmans' theorem and an empirical scaling relation. The slopes of the curves explain the efficient excitation of the symmetric stretch by both resonances and the lack of the bending excitation by the B 2 resonance. The A 1 and B 2 resonances are strongly coupled by the b 2 antisymmetric stretch vibration, causing a double minimum on the lower surface. Nonadiabatic effects caused by the strong vibronic coupling explain the observed excitation of the antisymmetric stretch vibration.

  6. Electronic and vibrational spectra of matrix isolated anthracene radical cations - Experimental and theoretical aspects

    NASA Technical Reports Server (NTRS)

    Szczepanski, Jan; Vala, Martin; Talbi, Dahbia; Parisel, Olivier; Ellinger, Yves

    1993-01-01

    The IR vibrational and visible/UV electronic absorption spectra of the anthracene cation, An(+), were studied experimentally, in argon matrices at 12 K, as well as theoretically, using ab initio calculations for the vibrational modes and enhanced semiempirical methods with configuration interaction for the electronic spectra. It was found that both approaches predicted well the observed photoelectron spectrum. The theoretical IR intensities showed some remarkable differences between neutral and ionized species (for example, the CH in-plane bending modes and CC in-plane stretching vibrations were predicted to increase by several orders of magnitude upon ionization). Likewise, estimated experimental IR intensities showed a significant increase in the cation band intensities over the neutrals. The implication of these findings for the hypothesis that polycyclic aromatic hydrocarbon cations are responsible for the unidentified IR emission bands from interstellar space is discussed.

  7. A structural and theoretical study of the alkylammonium nitrates forefather: Liquid methylammonium nitrate

    NASA Astrophysics Data System (ADS)

    Gontrani, Lorenzo; Caminiti, Ruggero; Salma, Umme; Campetella, Marco

    2017-09-01

    We present here a structural and vibrational analysis of melted methylammonium nitrate, the simplest compound of the family of alkylammonium nitrates. The static and dynamical features calculated were endorsed by comparing the experimental X-ray data with the theoretical ones. A reliable description cannot be obtained with classical molecular dynamics owing to polarization effects. Contrariwise, the structure factor and the vibrational frequencies obtained from ab initio molecular dynamics trajectories are in very good agreement with the experiment. A careful analysis has provided additional information on the complex hydrogen bonding network that exists in this liquid.

  8. Self-consistent-field perturbation theory for the Schröautdinger equation

    NASA Astrophysics Data System (ADS)

    Goodson, David Z.

    1997-06-01

    A method is developed for using large-order perturbation theory to solve the systems of coupled differential equations that result from the variational solution of the Schröautdinger equation with wave functions of product form. This is a noniterative, computationally efficient way to solve self-consistent-field (SCF) equations. Possible applications include electronic structure calculations using products of functions of collective coordinates that include electron correlation, vibrational SCF calculations for coupled anharmonic oscillators with selective coupling of normal modes, and ab initio calculations of molecular vibration spectra without the Born-Oppenheimer approximation.

  9. Dipole moments and transition probabilities of the i 3Pi sub g-b 3Sigma(+) sub u, c 3Pi sub u-a 3Sigma(+) sub g, and i 3Pi sub g-c 3Pi sub u systems of molecular hydrogen

    NASA Technical Reports Server (NTRS)

    Guberman, Steven L.; Dalgarno, A.

    1992-01-01

    Bonn-Oppenheimer-based ab initio calculations of dipole moments from the i 3Pi sub g-b 3Sigma(+) sub u, c 3Pi sub u-a 3Sigma(+) sub g, and i 3Pi sub g-c 3Pi sub u transitions of H2 have been conducted, to yield a tabulation of the dipole transition probabilities and Franck-Condon factors. These factors are given for transitions originating in the lowest vibrational level of the ground X 1Sigma(+) sub g state.

  10. Rotational relaxation of CF+(X1Σ) in collision with He(1S)

    NASA Astrophysics Data System (ADS)

    Denis-Alpizar, O.; Inostroza, N.; Castro Palacio, J. C.

    2018-01-01

    The carbon monofluoride cation (CF+) has been detected recently in Galactic and extragalactic regions. Therefore, excitation rate coefficients of this molecule in collision with He and H2 are necessary for a correct interpretation of the astronomical observations. The main goal of this work is to study the collision of CF+ with He in full dimensionality at the close-coupling level and to report a large set of rotational rate coefficients. New ab initio interaction energies at the CCSD(T)/aug-cc-pv5z level of theory were computed, and a three-dimensional potential energy surface was represented using a reproducing kernel Hilbert space. Close-coupling scattering calculations were performed at collisional energies up to 1600 cm-1 in the ground vibrational state. The vibrational quenching cross-sections were found to be at least three orders of magnitude lower than the pure rotational cross-sections. Also, the collisional rate coefficients were reported for the lowest 20 rotational states of CF+ and an even propensity rule was found to be in action only for j > 4. Finally, the hyperfine rate coefficients were explored. These data can be useful for the determination of the interstellar conditions where this molecule has been detected.

  11. A Comparison of Density Functional Theory with Ab initio Approaches for Systems Involving First Transition Row Metals

    NASA Technical Reports Server (NTRS)

    Ricca, Alessandra; Bauschlicher, Charles W.; Langhoff, Stephen R. (Technical Monitor)

    1994-01-01

    Density functional theory (DFT) is found to give a better description of the geometries and vibrational frequencies of FeL and FeL(sup +) systems than second order Moller Plesset perturbation theory (MP2). Namely, the DFT correctly predicts the shift in the CO vibrational frequency between free CO and the Sigma(sup -) state of FeCO and yields a good result for the Fe-C distance in the quartet states of FeCH4(+) 4 These are properties where the MP2 results are unsatisfactory. Thus DFT appears to be an excellent approach for optimizing the geometries and computing the zero-point energies of systems containing first transition row atoms. Because the DFT approach is biased in favor of the 3d(exp 7) occupation, whereas the more traditional approaches are biased in favor of the 3d(exp 6) occupation, differences are found in the relative ordering of states. It is shown that if the dissociation is computed to the most appropriate atomic asymptote and corrected to the ground state asymptote using the experimental separations, the DFT results are in good agreement with high levels of theory. The energetics at the DFT level are much superior to the MP2 and in most cases in good agreement with high levels of theory.

  12. Thermochemical and kinetic analysis of the thermal decomposition of monomethylhydrazine: an elementary reaction mechanism.

    PubMed

    Sun, Hongyan; Law, Chung K

    2007-05-17

    The reaction kinetics for the thermal decomposition of monomethylhydrazine (MMH) was studied with quantum Rice-Ramsperger-Kassel (QRRK) theory and a master equation analysis for pressure falloff. Thermochemical properties were determined by ab initio and density functional calculations. The entropies, S degrees (298.15 K), and heat capacities, Cp degrees (T) (0 < or = T/K < or = 1500), from vibrational, translational, and external rotational contributions were calculated using statistical mechanics based on the vibrational frequencies and structures obtained from the density functional study. Potential barriers for internal rotations were calculated at the B3LYP/6-311G(d,p) level, and hindered rotational contributions to S degrees (298.15 K) and Cp degrees (T) were calculated by solving the Schrödinger equation with free rotor wave functions, and the partition coefficients were treated by direct integration over energy levels of the internal rotation potentials. Enthalpies of formation, DeltafH degrees (298.15 K), for the parent MMH (CH3NHNH2) and its corresponding radicals CH3N*NH2, CH3NHN*H, and C*H2NHNH2 were determined to be 21.6, 48.5, 51.1, and 62.8 kcal mol(-1) by use of isodesmic reaction analysis and various ab initio methods. The kinetic analysis of the thermal decomposition, abstraction, and substitution reactions of MMH was performed at the CBS-QB3 level, with those of N-N and C-N bond scissions determined by high level CCSD(T)/6-311++G(3df,2p)//MPWB1K/6-31+G(d,p) calculations. Rate constants of thermally activated MMH to dissociation products were calculated as functions of pressure and temperature. An elementary reaction mechanism based on the calculated rate constants, thermochemical properties, and literature data was developed to model the experimental data on the overall MMH thermal decomposition rate. The reactions of N-N and C-N bond scission were found to be the major reaction paths for the modeling of MMH homogeneous decomposition at atmospheric conditions.

  13. Two-component, ab initio potential energy surface for CO2—H2O, extension to the hydrate clathrate, CO2@(H2O)20, and VSCF/VCI vibrational analyses of both

    NASA Astrophysics Data System (ADS)

    Wang, Qingfeng Kee; Bowman, Joel M.

    2017-10-01

    We report an ab initio, full-dimensional, potential energy surface (PES) for CO2—H2O, in which two-body interaction energies are fit using a basis of permutationally invariant polynomials and combined with accurate potentials for the non-interacting monomers. This approach which we have termed "plug and play" is extended here to improve the precision of the 2-body fit in the long range. This is done by combining two separate fits. One is a fit to 47 593 2-body energies in the region of strong interaction and approaching the long range, and the second one is a fit to 6244 2-body energies in the long range. The two fits have a region of overlap which permits a smooth switch from one to the other. All energies are obtained at the CCSD(T)-F12b/aug-cc-pVTZ level of theory. Properties of the full PES, i.e., stationary points, harmonic frequencies of the global minimum, etc., are shown to be in excellent agreement with direct CCSD(T)-F12b/aug-cc-pVTZ results. Diffusion Monte Carlo calculations of the dimer zero-point energy (ZPE) are performed, and a dissociation energy, D0, of 787 cm-1 is obtained using that ZPE, De, and the rigorous ZPEs of the monomers. Using a benchmark De, D0 is 758 cm-1. Vibrational self-consistent field (VSCF)/virtual state configuration interaction (VCI) MULTIMODE calculations of intramolecular fundamentals are reported and are in good agreement with available experimental results. Finally, the full dimer PES is combined with an existing ab initio water potential to develop a potential for the CO2 hydrate clathrate CO2(H2O)20(512 water cage). A full normal-mode analysis of this hydrate clathrate is reported as are local-monomer VSCF/VCI calculations of the fundamentals of CO2.

  14. Two-component, ab initio potential energy surface for CO2-H2O, extension to the hydrate clathrate, CO2@(H2O)20, and VSCF/VCI vibrational analyses of both.

    PubMed

    Wang, Qingfeng Kee; Bowman, Joel M

    2017-10-28

    We report an ab initio, full-dimensional, potential energy surface (PES) for CO 2 -H 2 O, in which two-body interaction energies are fit using a basis of permutationally invariant polynomials and combined with accurate potentials for the non-interacting monomers. This approach which we have termed "plug and play" is extended here to improve the precision of the 2-body fit in the long range. This is done by combining two separate fits. One is a fit to 47 593 2-body energies in the region of strong interaction and approaching the long range, and the second one is a fit to 6244 2-body energies in the long range. The two fits have a region of overlap which permits a smooth switch from one to the other. All energies are obtained at the CCSD(T)-F12b/aug-cc-pVTZ level of theory. Properties of the full PES, i.e., stationary points, harmonic frequencies of the global minimum, etc., are shown to be in excellent agreement with direct CCSD(T)-F12b/aug-cc-pVTZ results. Diffusion Monte Carlo calculations of the dimer zero-point energy (ZPE) are performed, and a dissociation energy, D 0 , of 787 cm -1 is obtained using that ZPE, D e , and the rigorous ZPEs of the monomers. Using a benchmark D e , D 0 is 758 cm -1 . Vibrational self-consistent field (VSCF)/virtual state configuration interaction (VCI) MULTIMODE calculations of intramolecular fundamentals are reported and are in good agreement with available experimental results. Finally, the full dimer PES is combined with an existing ab initio water potential to develop a potential for the CO 2 hydrate clathrate CO 2 (H 2 O) 20 (5 12 water cage). A full normal-mode analysis of this hydrate clathrate is reported as are local-monomer VSCF/VCI calculations of the fundamentals of CO 2 .

  15. Spectroscopic and computational studies of ionic clusters as models of solvation and atmospheric reactions

    NASA Astrophysics Data System (ADS)

    Kuwata, Keith T.

    Ionic clusters are useful as model systems for the study of fundamental processes in solution and in the atmosphere. Their structure and reactivity can be studied in detail using vibrational predissociation spectroscopy, in conjunction with high level ab initio calculations. This thesis presents the applications of infrared spectroscopy and computation to a variety of gas-phase cluster systems. A crucial component of the process of stratospheric ozone depletion is the action of polar stratospheric clouds (PSCs) to convert the reservoir species HCl and chlorine nitrate (ClONO2) to photochemically labile compounds. Quantum chemistry was used to explore one possible mechanism by which this activation is effected: Cl- + ClONO2 /to Cl2 + NO3- eqno(1)Correlated ab initio calculations predicted that the direct reaction of chloride ion with ClONO2 is facile, which was confirmed in an experimental kinetics study. In the reaction a weakly bound intermediate Cl2-NO3- is formed, with ~70% of the charge localized on the nitrate moiety. This enables the Cl2-NO3- cluster to be well solvated even in bulk solution, allowing (1) to be facile on PSCs. Quantum chemistry was also applied to the hydration of nitrosonium ion (NO+), an important process in the ionosphere. The calculations, in conjunction with an infrared spectroscopy experiment, revealed the structure of the gas-phase clusters NO+(H2O)n. The large degree of covalent interaction between NO+ and the lone pairs of the H2O ligands is contrasted with the weak electrostatic bonding between iodide ion and H2O. Finally, the competition between ion solvation and solvent self-association is explored for the gas-phase clusters Cl/-(H2O)n and Cl-(NH3)n. For the case of water, vibrational predissociation spectroscopy reveals less hydrogen bonding among H2O ligands than predicted by ab initio calculations. Nevertheless, for n /ge 5, cluster structure is dominated by water-water interactions, with Cl- only partially solvated by the water cluster. Preliminary infrared spectra and computations on Cl- (NH3)n indicate that NH3 preferentially binds to Cl- ion instead of forming inter-solvent networks.

  16. Line Lists for LiF and LiCl in the X^{1}Σ^{+} State

    NASA Astrophysics Data System (ADS)

    Bittner, Dror M.; Bernath, Peter F.

    2017-06-01

    Alkali-containing molecules are expected to be present in the atmospheres of exoplanets such as rocky super-Earths as well as in cool dwarf stars. Line lists for LiF and LiCl in their X^{1}Σ^{+} ground states have been calculated using LeRoy's LEVEL program. The potential energy functions, including the effects of the breakdown of the Born-Oppenheimer approximation, are obtained by direct fitting the experimental infrared vibration-rotation and microwave pure rotation data with extended Morse oscillator potentials using LeRoy's dPotFit program. The transition dipole matrix elements and line intensities were obtained with LEVEL using a dipole moment function from a high level ab initio calculation. Phil. Trans. R. Soc. A 372, 20130087 (2014) Astrophys. J. 519, 793 (1999) J. Quant. Spectrosc. Radiat. Transfer 186, 167 (2017) J. Quant. Spectrosc. Radiat. Transfer 186, 179 (2017)

  17. Introduction to dissociative recombination

    NASA Technical Reports Server (NTRS)

    Guberman, Steven L.; Mitchell, J. Brian A.

    1989-01-01

    Dissociative recombination (DR) of molecular ions with electrons has important consequences in many areas of physical science. Ab-initio calculations coupled with resonant scattering theory and multichannel quantum defect studies have produced detailed results illuminating the role of ion vibrational excitation, the quantum yields of the DR products, and the role of Rydberg states. The theoretical and experimental results are discussed.

  18. A Classical Trajectory Study of the Dissociation and Isomerization of C2H5

    DTIC Science & Technology

    2013-01-01

    modifications are possible but would be sensible only in the context of systematic ab initio calculations to provide the basis for such changes. As the... Ciudad , T.; Ramírez, R.; Schulte, J.; Böhm, M. C. Anharmonic Effects on the Structural and Vibrational Properties of the Ethyl Radical: A Path Integral

  19. Molecular structure and vibrational spectra of three substituted 4-thioflavones by density functional theory and ab initio Hartree-Fock calculations

    NASA Astrophysics Data System (ADS)

    Li, Xiao-Hong; Liu, Xiang-Ru; Zhang, Xian-Zhou

    2011-01-01

    The vibrational frequencies of three substituted 4-thioflavones in the ground state have been calculated using the Hartree-Fock and density functional method (B3LYP) with 6-31G* and 6-31+G** basis sets. The structural analysis shows that there exists H-bonding in the selected compounds and the hydrogen bond lengths increase with the augment of the conjugate parameters of the substituent group on the benzene ring. A complete vibrational assignment aided by the theoretical harmonic wavenumber analysis was proposed. The theoretical spectrograms for FT-IR spectra of the title compounds have been constructed. In addition, it is noted that the selected compounds show significant activity against Shigella flexniri. Several electronic properties and thermodynamic parameters were also calculated.

  20. Piezoelectric monolayers as nonlinear energy harvesters.

    PubMed

    López-Suárez, Miquel; Pruneda, Miguel; Abadal, Gabriel; Rurali, Riccardo

    2014-05-02

    We study the dynamics of h-BN monolayers by first performing ab-initio calculations of the deformation potential energy and then solving numerically a Langevine-type equation to explore their use in nonlinear vibration energy harvesting devices. An applied compressive strain is used to drive the system into a nonlinear bistable regime, where quasi-harmonic vibrations are combined with low-frequency swings between the minima of a double-well potential. Due to its intrinsic piezoelectric response, the nonlinear mechanical harvester naturally provides an electrical power that is readily available or can be stored by simply contacting the monolayer at its ends. Engineering the induced nonlinearity, a 20 nm2 device is predicted to harvest an electrical power of up to 0.18 pW for a noisy vibration of 5 pN.

  1. Terahertz laser vibration-rotation-tunneling spectrum of the water pentamer-d 10. . Constraints on the bifurcation tunneling dynamics

    NASA Astrophysics Data System (ADS)

    Cruzan, Jeff D.; Viant, Mark R.; Brown, Mac G.; Lucas, Don D.; Liu, Kun; Saykally, Richard J.

    1998-08-01

    The vibration-rotation-tunneling (VRT) spectrum of a low-frequency intermolecular vibration of (D 2O) 5 was recorded near 0.9 THz (30.2 cm -1). From an analysis of the relative intensities in the compact Q-branch region, the ground-state C-rotational constant is estimated to be 975±60 MHz, consistent with ab initio structural predictions. The precisely determined B-rotational constant ( B=1750.96±0.20 MHz) agrees well with previous results. Efforts to resolve possible bifurcation tunneling fine structure, such as that observed in VRT spectra of (D 2O) 3, revealed no such effects. This constrains the splittings to be less than 450 kHz, or roughly 3 times smaller than required by previous results.

  2. Proton--H/sub 2/ scattering on an ab initio CI potential energy surface. I. Vibrational excitation at 10 eV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schinke, R.; Dupuis, M.; Lester, W.A. Jr.

    1980-04-01

    A complete configuration interaction (CI) ground state surface for the H/sub 3//sup +/ system has been calculated using 5S and 3(P/sub x/,P/sub y/,P/sub x/) basis functions at each center. A total of 650 nuclear geometries has been considered which makes the new surface appropriate not only for scattering calculations, but also for the evaluation of the vibrational--rotational spectrum of the H/sub 3//sup +/ molecule. Significant deviations are found from the analytic Giese and Gentry potential used in many previous theoretical studies, especially for large and small nonequilibrium H--H separations which are important for vibrational excitation of the H/sub 2/ molecule.more » Vibrational--rotational excitation cross sections have been calculated in the rotational sudden approximation where the vibrational degree of freedom is treated exactly by solving seven vibrationally coupled radial equations. The use of the new surface leads to increased vibrational excitation compared to previous calculations utilizing the same scattering approximation and to excellent agreement at 10 eV with the angle-dependent measurements of Hermann, Schmidt, and Linder.« less

  3. Ab Initio Prediction of Adsorption Isotherms for Small Molecules in Metal-Organic Frameworks.

    PubMed

    Kundu, Arpan; Piccini, GiovanniMaria; Sillar, Kaido; Sauer, Joachim

    2016-10-26

    For CO and N 2 on Mg 2+ sites of the metal-organic framework CPO-27-Mg (Mg-MOF-74), ab initio calculations of Gibbs free energies of adsorption have been performed. Combined with the Bragg-Williams/Langmuir model and taking into account the experimental site availability (76.5%), we obtained adsorption isotherms in close agreement with those in experiment. The remaining deviations in the Gibbs free energy (about 1 kJ/mol) are significantly smaller than the "chemical accuracy" limit of about 4 kJ/mol. The presented approach uses (i) a DFT dispersion method (PBE+D2) to optimize the structure and to calculate anharmonic frequencies for vibrational partition functions and (ii) a "hybrid MP2:(PBE+D2)+ΔCCSD(T)" method to determine electronic energies. With the achieved accuracy (estimated uncertainty ±1.4 kJ/mol), the ab initio energies become useful benchmarks for assessing different DFT + dispersion methods (PBE+D2, B3LYP+D*, and vdW-D2), whereas the ab initio heats, entropies, and Gibbs free energies of adsorption are used to assess the reliability of experimental values derived from fitting isotherms or from variable-temperature IR studies.

  4. Electronic structure investigations of 4-aminophthal hydrazide by UV-visible, NMR spectral studies and HOMO-LUMO analysis by ab initio and DFT calculations.

    PubMed

    Sambathkumar, K; Jeyavijayan, S; Arivazhagan, M

    2015-08-05

    Combined experimental and theoretical studies were conducted on the molecular structure and vibrational spectra of 4-AminoPhthalhydrazide (APH). The FT-IR and FT-Raman spectra of APH were recorded in the solid phase. The molecular geometry and vibrational frequencies of APH in the ground state have been calculated by using the ab initio HF (Hartree-Fock) and density functional methods (B3LYP) invoking 6-311+G(d,p) basis set. The optimized geometric bond lengths and bond angles obtained by HF and B3LYP method show best agreement with the experimental values. Comparison of the observed fundamental vibrational frequencies of APH with calculated results by HF and density functional methods indicates that B3LYP is superior to the scaled Hartree-Fock approach for molecular vibrational problems. The difference between the observed and scaled wave number values of most of the fundamentals is very small. A detailed interpretation of the NMR spectra of APH was also reported. The theoretical spectrograms for infrared and Raman spectra of the title molecule have been constructed. UV-vis spectrum of the compound was recorded and the electronic properties, such as HOMO and LUMO energies, were performed by time dependent density functional theory (TD-DFT) approach. Finally the calculations results were applied to simulated infrared and Raman spectra of the title compound which show good agreement with observed spectra. And the temperature dependence of the thermodynamic properties of constant pressure (Cp), entropy (S) and enthalpy change (ΔH0→T) for APH were also determined. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Exploring Nuclear Photorelaxation of Pyranine in Aqueous Solution: an Integrated Ab-Initio Molecular Dynamics and Time Resolved Vibrational Analysis Approach.

    PubMed

    Chiariello, Maria Gabriella; Rega, Nadia

    2018-03-22

    Advances in time-resolved vibrational spectroscopy techniques provided a new stimulus for understanding the transient molecular dynamics triggered by the electronic excitation. The detailed interpretation of such time-dependent spectroscopic signals is a challenging task from both experimental and theoretical points of view. We simulated and analyzed the transient photorelaxation of the pyranine photoacid in aqueous solution, with special focus on structural parameters and low frequency skeleton modes that are possibly preparatory for the photoreaction occurring at later time, as suggested by experimental spectroscopic studies. To this aim, we adopted an accurate computational protocol that combines excited state ab initio molecular dynamics within an hybrid quantum mechanical/molecular mechanics framework and a time-resolved vibrational analysis based on the Wavelet transform. According to our results, the main nuclear relaxation on the excited potential energy surface is completed in about 500 fs, in agreement with experimental data. The rearrangement of C-C bonds occurs according to a complex vibrational dynamics, showing oscillatory patterns that are out of phase and modulated by modes below 200 cm -1 . We also analyzed in both the ground and the excited state the evolution of some structural parameters involved in excited state proton transfer reaction, namely, those involving the pyranine and the water molecule hydrogen bonded to the phenolic O-H group. Both the hydrogen bond distance and the intermolecular orientation are optimized in the excited state, resulting in a tighter proton donor-acceptor couple. Indeed, we found evidence that collective low frequency skeleton modes, such as the out of plane wagging at 108 cm -1 and the deformation at 280 cm -1 , are photoactivated by the ultrafast part of the relaxation and modulate the pyranine-water molecule rearrangement, favoring the preparatory step for the photoreactivity.

  6. The IUPAC Database of Rotational-Vibrational Energy Levels and Transitions of Water Isotopologues from Experiment and Theory

    NASA Astrophysics Data System (ADS)

    Császár, Attila G.; Furtenbacher, T.; Tennyson, Jonathan; Bernath, Peter F.; Brown, Linda R.; Campargue, Alain; Daumont, Ludovic; Gamache, Robert R.; Hodges, Joseph T.; Naumenko, Olga V.; Polyansky, Oleg L.; Rothman, Laurence S.; Vandaele, Ann Carine; Zobov, Nikolai F.

    2014-06-01

    The results of an IUPAC Task Group formed in 2004 on "A Database of Water Transitions from Experiment and Theory" (Project No. 2004-035-1-100) are presented. Energy levels and recommended labels involving exact and approximate quantum numbers for the main isotopologues of water in the gas phase, H216O, H218O, H217O, HD16O, HD18O, HD17O, D216O, D218O, and D217O, are determined from measured transition wavenumbers. The transition wavenumbers and energy levels are validated using the MARVEL (measured active rotational-vibrational energy levels) approach and first-principles nuclear motion computations. The extensive data, e.g., more than 200,000 transitions have been handled for H216O, including lines and levels that are required for analysis and synthesis of spectra, thermochemical applications, the construction of theoretical models, and the removal of spectral contamination by ubiquitous water lines. These datasets can also be used to assess where measurements are lacking for each isotopologue and to provide accurate frequencies for many yet-to-be measured transitions. The lack of high-quality frequency calibration standards in the near infrared is identified as an issue that has hindered the determination of high-accuracy energy levels at higher frequencies. The generation of spectra using the MARVEL energy levels combined with transition intensities computed using high accuracy ab initio dipole moment surfaces are discussed.

  7. Towards a global model of spin-orbit coupling in the halocarbenes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nyambo, Silver; Karshenas, Cyrus; Reid, Scott A., E-mail: scott.reid@marquette.edu, E-mail: dawesr@mst.edu

    We report a global analysis of spin-orbit coupling in the mono-halocarbenes, CH(D)X, where X = Cl, Br, and I. These are model systems for examining carbene singlet-triplet energy gaps and spin-orbit coupling. Over the past decade, rich data sets collected using single vibronic level emission spectroscopy and stimulated emission pumping spectroscopy have yielded much information on the ground vibrational level structure and clearly demonstrated the presence of perturbations involving the low-lying triplet state. To model these interactions globally, we compare two approaches. First, we employ a diabatic treatment of the spin-orbit coupling, where the coupling matrix elements are written inmore » terms of a purely electronic spin-orbit matrix element which is independent of nuclear coordinates, and an integral representing the overlap of the singlet and triplet vibrational wavefunctions. In this way, the structures, harmonic frequencies, and normal mode displacements from ab initio calculations were used to calculate the vibrational overlaps of the singlet and triplet state levels, including the full effects of Duschinsky mixing. These calculations have allowed many new assignments to be made, particularly for CHI, and provided spin-orbit coupling parameters and values for the singlet-triplet gaps. In a second approach, we have computed and fit full geometry dependent spin-orbit coupling surfaces and used them to compute matrix elements without the product form approximation. Those matrix elements were used in similar fits varying the anharmonic constants and singlet-triplet gap to reproduce the experimental levels. The derived spin-orbit parameters for carbenes CHX (X = Cl, Br, and I) show an excellent linear correlation with the atomic spin-orbit constant of the corresponding halogen, indicating that the spin-orbit coupling in the carbenes is consistently around 14% of the atomic value.« less

  8. Analysis of vibrational spectra of 3-halo-1-propanols CH(2)XCH(2)CH(2)OH (X is Cl and Br).

    PubMed

    Badawi, Hassan M; Förner, Wolfgang

    2008-12-01

    The conformational stability and the three rotor internal rotations in 3-chloro- and 3-bromo-1-propanols were investigated by DFT-B3LYP/6-311+G and ab initio MP2/6-311+G, MP3/6-311+G and MP4(SDTQ)//MP3/6-311+G levels of theory. On the calculated potential energy surface twelve distinct minima were located all of which were not predicted to have imaginary frequencies at the B3LYP level of theory. The calculated lowest energy minimum in the potential curves of both molecules was predicted to correspond to the Gauche-gauche-trans (Ggt) conformer in excellent agreement with earlier microwave and electron diffraction results. The equilibrium constants for the conformational interconversion of the two 3-halo-1-propanols were calculated at the B3LYP/6-311+G level of calculation and found to correspond to an equilibrium mixture of about 32% Ggt, 18% Ggg1, 13% Tgt, 8% Tgg and 8% Gtt conformations for 3-chloro-1-propanol and 34% Ggt, 15% Tgt, 13% Ggg1, 9% Tgg and 7% Gtt conformations for 3-bromo-1-propanol at 298.15K. The nature of the high energy conformations was verified by carrying out solvent experiments using formamide ( epsilon=109.5) and MP3 and MP4//MP3 calculations. The vibrational frequencies of each molecule in its three most stable forms were computed at the B3LYP level and complete vibrational assignments were made based on normal coordinate calculations and comparison with experimental data of the molecules.

  9. The Heat of Formation of HNO

    NASA Technical Reports Server (NTRS)

    Lee, Timothy J.; Dateo, Christopher E.

    1995-01-01

    The HNO molecule is of interest in both combustion and atmospheric chemistry. For example, Guadagnini et al. have recently presented ab initio potential energy surfaces for the three lowest lying electronic states of HNO and then used these in examining several chemical reactions that take place in the combustion of nitrogen containing fuels and in the oxidation of atmospheric nitrogen. We have previously studied the ground state potential energy surface (i.e., stationary points along the HNO reversible reaction HON path), vibrational spectrum (using an accurate quartic force field), zero-point energy, and bonding of HNO using coupled-cluster ab initio methods. HNO is also very interesting because of the unique nature of its bonding characteristics. That is, the potential energy surface is very flat along the H-N bonding coordinate thereby giving unusual harmonic and fundamental vibrational frequencies, and the H-N bond energy is rather weak in comparison to other H-N bond energies. In fact, using experimental heats of formation for HNO, H, and NO, the H- bond energy is computed to be only 49.9 kcal/ mol (298 K). However, ab initio calculations of isodesmic reaction energies involving HNO, FNO, ClNO, and several other molecules have shown that there is an inconsistency in the experimental heats of formation of the XNO (X double bond H, F, and Cl) species. Hence the motivation for this study was to determine a very accurate (Delta)H(sub f, sup o) value for HNO using state-of-the-art ab initio methods. Based on many recent studies it is evident that the singles and doubles coupled-cluster method that includes a perturbational estimate of the effects of connected triple excitations, denoted CCSD(T), in conjunction with large one-particle basis sets should be reliable to better than +/- 0.8 kcal/mol for this quantity. The computational methodology is described in the next section followed by our results and discussion. Conclusions are presented in the final section.

  10. The Heat of Formation of HNO

    NASA Technical Reports Server (NTRS)

    Lee, Timothy J.; Dateo, Christopher E.

    1995-01-01

    The HNO molecule is of interest in both combustion and atmospheric chemistry. For example, Guadagnini et al. have recently presented ab initio potential energy surfaces for the three lowest lying electronic states of HNO and then used these in examining several chemical reactions that take place in the combustion of nitrogen containing fuels and in the oxidation of atmospheric nitrogen. We have previously studied the ground state potential energy surface (i.e., stationary points along the HNO rev. reaction HON path), vibrational spectrum (using an accurate quartic force field), zero-point energy, and bonding of HNO using coupled-cluster ab initio methods. HNO is also very interesting because of the unique nature of its bonding characteristics. That is, the potential energy surface is very flat along the H-N bonding coordinate thereby giving unusual harmonic and fundamental vibrational frequencies, and the H-N bond energy is rather weak in comparison to other H-N bond energies. In fact, using experimental heats of formation for HO, H, and NO, the H- bond energy is computed to be only 49.9 kcal/ mol (298 K). However, ab initio calculations of isodesmic reaction energies involving HNO, FNO, ClNO, and several other molecules have shown that there is an inconsistency in the experimental heats of formation of the XNO (X=H, F, and Cl) species. Hence the motivation for this study was to determine a very accurate(DELTA)H(sup o)(sub f) value for HNO using state of-the-art ab initio methods. Based on many recent studies it is evident that the singles and doubles coupled-cluster method that includes a perturbational estimate of the effects of connected triple excitations, denoted CCSD(T), in conjunction with large one-particle basis sets should be reliable to better than +0.8 kcal/mol for this quantity. The computational methodology is described in the next section followed by our results and discussion. Conclusions are presented in the final section.

  11. Ab initio molecular orbital calculations on HBr - 2 Geometry, frequencies, and enthalpy changes

    NASA Astrophysics Data System (ADS)

    Ikuta, Shigeru; Saitoh, Toshikazu; Nomura, Okio

    1990-08-01

    HBr-2 has D∞h symmetry at both the second-order (MP2) and third-order (MP3) Møller-Plesset perturbation levels of theory with the extended basis sets, whereas the Hartree-Fock level of theory predicts that it has C∞v symmetry. A potential energy map is calculated with the MP2 method as a function of two parameters, i.e., the distance of two Br atoms and the displacement of H from the center of them. Two-dimensional vibration analysis is performed by using this potential energy map. The calculated ν1 is 200 cm-1 and the ν3 is 837 cm-1 in HBr-2, and those in DBr-2 are 199 and 569 cm-1, respectively. Thus the ratio of the asymmetric vibration (ν3)H/(ν3)D is 1.47, being somewhat greater than the value of √2 expected for a harmonic oscillator. The enthalpy changes (ΔH°) in the reaction of Br- with an HBr molecule are determined by both the MP3 total energy changes and the thermal energy changes between the reactants and the product. The calculated enthalpy change of -21.2 kcal/mol is in good agreement with the experimental one (-21 kcal/mol) recently observed by Caldwell and Kebarle. These calculated data on HBr-2, which will provide us with a useful guide for future measurements of gas-phase vibrational spectra, are compared with those on HCl-2 and HF-2.

  12. The vibration-rotation-tunneling levels of N2-H2O and N2-D2O.

    PubMed

    Wang, Xiao-Gang; Carrington, Tucker

    2015-07-14

    In this paper, we report vibration-rotation-tunneling levels of the van der Waals clusters N2-H2O and N2-D2O computed from an ab initio potential energy surface. The only dynamical approximation is that the monomers are rigid. We use a symmetry adapted Lanczos algorithm and an uncoupled product basis set. The pattern of the cluster's levels is complicated by splittings caused by H-H exchange tunneling (larger splitting) and N-N exchange tunneling (smaller splitting). An interesting result that emerges from our calculation is that whereas in N2-H2O, the symmetric H-H tunnelling state is below the anti-symmetric H-H tunnelling state for both K = 0 and K = 1, the order is reversed in N2-D2O for K = 1. The only experimental splitting measurements are the D-D exchange tunneling splittings reported by Zhu et al. [J. Chem. Phys. 139, 214309 (2013)] for N2-D2O in the v2 = 1 region of D2O. Due to the inverted order of the split levels, they measure the sum of the K = 0 and K = 1 tunneling splittings, which is in excellent agreement with our calculated result. Other splittings we predict, in particular those of N2-H2O, may guide future experiments.

  13. The vibration-rotation-tunneling levels of N2-H2O and N2-D2O

    NASA Astrophysics Data System (ADS)

    Wang, Xiao-Gang; Carrington, Tucker

    2015-07-01

    In this paper, we report vibration-rotation-tunneling levels of the van der Waals clusters N2-H2O and N2-D2O computed from an ab initio potential energy surface. The only dynamical approximation is that the monomers are rigid. We use a symmetry adapted Lanczos algorithm and an uncoupled product basis set. The pattern of the cluster's levels is complicated by splittings caused by H-H exchange tunneling (larger splitting) and N-N exchange tunneling (smaller splitting). An interesting result that emerges from our calculation is that whereas in N2-H2O, the symmetric H-H tunnelling state is below the anti-symmetric H-H tunnelling state for both K = 0 and K = 1, the order is reversed in N2-D2O for K = 1. The only experimental splitting measurements are the D-D exchange tunneling splittings reported by Zhu et al. [J. Chem. Phys. 139, 214309 (2013)] for N2-D2O in the v2 = 1 region of D2O. Due to the inverted order of the split levels, they measure the sum of the K = 0 and K = 1 tunneling splittings, which is in excellent agreement with our calculated result. Other splittings we predict, in particular those of N2-H2O, may guide future experiments.

  14. In Pursuit of the Far-Infrared Spectrum of Cyanogen Iso-Thiocyanate Ncncs, Under the Influence of the Energy Level Dislocation due to Quantum Monodromy

    NASA Astrophysics Data System (ADS)

    Winnewisser, Manfred; Winnewisser, Brenda P.; Medvedev, Ivan R.; De Lucia, Frank, C.; Ross, Stephen C.; Koput, Jacek

    2010-06-01

    Quantum Monodromy has a strong impact on the ro-vibrational energy levels of chain molecules whose bending potential energy function has the form of the bottom of a champagne bottle (i.e. with a hump or punt) around the linear configuration. NCNCS is a particularly good example of such a molecule and clearly exhibits a distinctive monodromy-induced dislocation of the energy level pattern at the top of the potential energy hump. The generalized semi-rigid bender (GSRB) wave functions are used to show that the expectation values of any physical quantity which varies with the large amplitude bending coordinate will also have monodromy-induced dislocations. This includes the electric dipole moment components. High level ab initio calculations not only provided the molecular equilibrium structure of NCNCS, but also the electric dipole moment components μa and μb as functions of the large-amplitude bending coordinate. The calculated expectation values of these quantities indicate large ro-vibrational transition moments that will be discussed in pursuit of possible far-infrared bands. To our knowledge there is no NCNCS infrared spectrum reported in the literature. B. P. Winnewisser, M. Winnewisser, I. R. Medvedev, F. C. De Lucia, S. C. Ross and J. Koput, Phys. Chem. Chem. Phys., 2010, DOI:10.1039/B922023B.

  15. Ab initio simulations of iron-nickel alloys at Earth's core conditions

    NASA Astrophysics Data System (ADS)

    Côté, Alexander S.; Vočadlo, Lidunka; Brodholt, John P.

    2012-09-01

    We report ab initio density functional theory calculations on iron-nickel (FeNi) alloys at conditions representative of the Earth's inner core. We test different concentrations of Ni, up to ∼39 wt% using ab initio lattice dynamics, and investigate the thermodynamic and vibrational stability of the three candidate crystal structures (bcc, hcp and fcc). First of all, at inner core pressures, we find that pure Fe transforms from the hcp to the fcc phase at around 6000 K. Secondly, in agreement with low pressure experiments on Fe-Ni alloys, we find the fcc structure is stabilised by the incorporation of Ni under core pressures and temperatures. Our results show that the fcc structure may, therefore, be stable under core conditions depending on the temperature in the inner core and the Ni content. Lastly, we find that within the quasi-harmonic approximation, there is no stability field for FeNi alloys in the bcc structure under core conditions.

  16. Influence of intermolecular amide hydrogen bonding on the geometry, atomic charges, and spectral modes of acetanilide: An ab initio study

    NASA Astrophysics Data System (ADS)

    Binoy, J.; Prathima, N. B.; Murali Krishna, C.; Santhosh, C.; Hubert Joe, I.; Jayakumar, V. S.

    2006-08-01

    Acetanilide, a compound of pharmaceutical importance possessing pain-relieving properties due to its blocking the pulse dissipating along the nerve fiber, is subjected to vibrational spectral investigation using NIR FT Raman, FT-IR, and SERS. The geometry, Mulliken charges, and vibrational spectrum of acetanilide have been computed using the Hartree-Fock theory and density functional theory employing the 6-31G (d) basis set. To investigate the influence of intermolecular amide hydrogen bonding, the geometry, charge distribution, and vibrational spectrum of the acetanilide dimer have been computed at the HF/6-31G (d) level. The computed geometries reveal that the acetanilide molecule is planar, while twisting of the secondary amide group with respect to the phenyl ring is found upon hydrogen bonding. The trans isomerism and “amido” form of the secondary amide, hyperconjugation of the C=O group with the adjacent C-C bond, and donor-acceptor interaction have been investigated using computed geometry. The carbonyl stretching band position is found to be influenced by the tendency of the phenyl ring to withdraw nitrogen lone pair, intermolecular hydrogen bonding, conjugation, and hyperconjugation. A decrease in the NH and C=O bond orders and increase in the C-N bond orders due to donor-acceptor interaction can be observed in the vibrational spectra. The SERS spectral analysis reveals that the flat orientation of the molecule on the adsorption plane is preferred.

  17. The Transition from Hydrogen Bonding to Ionization in (HCI)n(NH3)n and (HCI)n(H2O)n Clusters: Consequences for Anharmonic Vibrational Spectroscopy

    NASA Technical Reports Server (NTRS)

    Chaban, Galina M.; Gerber, R. Benny; Janda, Kenneth C.; Kwak, Dochan (Technical Monitor)

    2001-01-01

    Anharmonic vibrational frequencies and intensities are calculated for 1:1 and 2:2 (HCl)(sub n)(NH3)(sub n) and (HCl)(sub n)(H2O)(sub n) complexes, employing the correlation-corrected vibrational self-consistent field method with ab initio potential surfaces at the MP2/TZP computational level. In this method, the anharmonic coupling between all vibrational modes is included, which is found to be important for the systems studied. For the 4:4 (HCl)(sub n)(H2O)(sub n) complex, the vibrational spectra are calculated at the harmonic level, and anharmonic effects are estimated. Just as the (HCl)(sub n)(NH3)(sub n) structure switches from hydrogen-bonded to ionic for n=2, the (HCl)(sub n)(H2O)(sub n) switches to ionic structure for n=4. For (HCl)2(H2O)2, the lowest energy structure corresponds to the hydrogen-bonded form. However, configurations of the ionic form are separated from this minimum by a barrier of less than an O-H stretching quantum. This suggests the possibility of experiments on ionization dynamics using infrared excitation of the hydrogen-bonded form. The strong cooperative effects on the hydrogen bonding, and concomitant transition to ionic bonding, makes an accurate estimate of the large anharmonicity crucial for understanding the infrared spectra of these systems. The anharmonicity is typically of the order of several hundred wave numbers for the proton stretching motions involved in hydrogen or ionic bonding, and can also be quite large for the intramolecular modes. In addition, the large cooperative effects in the 2:2 and higher order (HCl(sub n)(H2O)(sub n) complexes may have interesting implications for solvation of hydrogen halides at ice surfaces.

  18. Dissociative chemisorption of methane on metal surfaces: Tests of dynamical assumptions using quantum models and ab initio molecular dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jackson, Bret, E-mail: jackson@chem.umass.edu; Nattino, Francesco; Kroes, Geert-Jan

    The dissociative chemisorption of methane on metal surfaces is of great practical and fundamental importance. Not only is it the rate-limiting step in the steam reforming of natural gas, the reaction exhibits interesting mode-selective behavior and a strong dependence on the temperature of the metal. We present a quantum model for this reaction on Ni(100) and Ni(111) surfaces based on the reaction path Hamiltonian. The dissociative sticking probabilities computed using this model agree well with available experimental data with regard to variation with incident energy, substrate temperature, and the vibrational state of the incident molecule. We significantly expand the vibrationalmore » basis set relative to earlier studies, which allows reaction probabilities to be calculated for doubly excited initial vibrational states, though it does not lead to appreciable changes in the reaction probabilities for singly excited initial states. Sudden models used to treat the center of mass motion parallel to the surface are compared with results from ab initio molecular dynamics and found to be reasonable. Similar comparisons for molecular rotation suggest that our rotationally adiabatic model is incorrect, and that sudden behavior is closer to reality. Such a model is proposed and tested. A model for predicting mode-selective behavior is tested, with mixed results, though we find it is consistent with experimental studies of normal vs. total (kinetic) energy scaling. Models for energy transfer into lattice vibrations are also examined.« less

  19. Computational study of collisions between O({sup 3}P) and NO({sup 2}Π) at temperatures relevant to the hypersonic flight regime

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Castro-Palacio, Juan Carlos; Nagy, Tibor; Meuwly, Markus, E-mail: m.meuwly@unibas.ch

    2014-10-28

    Reactions involving N and O atoms dominate the energetics of the reactive air flow around spacecraft when reentering the atmosphere in the hypersonic flight regime. For this reason, the thermal rate coefficients for reactive processes involving O({sup 3}P) and NO({sup 2}Π) are relevant over a wide range of temperatures. For this purpose, a potential energy surface (PES) for the ground state of the NO{sub 2} molecule is constructed based on high-level ab initio calculations. These ab initio energies are represented using the reproducible kernel Hilbert space method and Legendre polynomials. The global PES of NO{sub 2} in the ground statemore » is constructed by smoothly connecting the surfaces of the grids of various channels around the equilibrium NO{sub 2} geometry by a distance-dependent weighting function. The rate coefficients were calculated using Monte Carlo integration. The results indicate that at high temperatures only the lowest A-symmetry PES is relevant. At the highest temperatures investigated (20 000 K), the rate coefficient for the “O1O2+N” channel becomes comparable (to within a factor of around three) to the rate coefficient of the oxygen exchange reaction. A state resolved analysis shows that the smaller the vibrational quantum number of NO in the reactants, the higher the relative translational energy required to open it and conversely with higher vibrational quantum number, less translational energy is required. This is in accordance with Polanyi's rules. However, the oxygen exchange channel (NO2+O1) is accessible at any collision energy. Finally, this work introduces an efficient computational protocol for the investigation of three-atom collisions in general.« less

  20. Computational study of collisions between O(3P) and NO(2Π) at temperatures relevant to the hypersonic flight regime.

    PubMed

    Castro-Palacio, Juan Carlos; Nagy, Tibor; Bemish, Raymond J; Meuwly, Markus

    2014-10-28

    Reactions involving N and O atoms dominate the energetics of the reactive air flow around spacecraft when reentering the atmosphere in the hypersonic flight regime. For this reason, the thermal rate coefficients for reactive processes involving O((3)P) and NO((2)Π) are relevant over a wide range of temperatures. For this purpose, a potential energy surface (PES) for the ground state of the NO2 molecule is constructed based on high-level ab initio calculations. These ab initio energies are represented using the reproducible kernel Hilbert space method and Legendre polynomials. The global PES of NO2 in the ground state is constructed by smoothly connecting the surfaces of the grids of various channels around the equilibrium NO2 geometry by a distance-dependent weighting function. The rate coefficients were calculated using Monte Carlo integration. The results indicate that at high temperatures only the lowest A-symmetry PES is relevant. At the highest temperatures investigated (20,000 K), the rate coefficient for the "O1O2+N" channel becomes comparable (to within a factor of around three) to the rate coefficient of the oxygen exchange reaction. A state resolved analysis shows that the smaller the vibrational quantum number of NO in the reactants, the higher the relative translational energy required to open it and conversely with higher vibrational quantum number, less translational energy is required. This is in accordance with Polanyi's rules. However, the oxygen exchange channel (NO2+O1) is accessible at any collision energy. Finally, this work introduces an efficient computational protocol for the investigation of three-atom collisions in general.

  1. Proton relays in anomalous carbocations dictate spectroscopy, stability, and mechanisms: case studies on C2H5+ and C3H3.

    PubMed

    Sager, LeeAnn M; Iyengar, Srinivasan S

    2017-10-18

    We present a detailed analysis of the anomalous carbocations: C 2 H 5 + and C 3 H 3 + . This work involves (a) probing electronic structural properties, (b) ab initio dynamics simulations over a range of internal energies, (c) analysis of reduced dimensional potential surfaces directed along selected conformational transition pathways, (d) dynamically averaged vibrational spectra computed from ab initio dynamics trajectories, and (e) two-dimensional time-frequency analysis to probe conformational dynamics. Key findings are as follows: (i) as noted in our previous study on C 2 H 3 + , it appears that these non-classical carbocations are stabilized by delocalized nuclear frameworks and "proton shuttles". We analyze this nuclear delocalization and find critical parallels between conformational changes in C 2 H 3 + , C 2 H 5 + , and C 3 H 3 + . (ii) The vibrational signatures of C 2 H 5 + are dominated by the "bridge-proton" conformation, but also show critical contributions from the "classical" configuration, which is a transition state at almost all levels of theory. This result is further substantiated through two-dimensional time-frequency analysis and is at odds with earlier explanations of the experimental spectra, where frequencies close to the classical region were thought to arise from an impurity. While this is still possible, our results here indicate an additional (perhaps more likely) explanation that involves the "classical" isomer. (iii) Finally, in the case of C 3 H 3 + our explanation of the experimental result includes the presence of multiple, namely, "cyclic", "straight", and propargyl, configurations. Proton shuttles and nuclear delocalization, reminiscent of those seen in the case of C 2 H 3 + , were seen all through and have a critical role in all our observations.

  2. Investigation of hydrogen bonding and self-association in neat HCONH 2 and the binary mixture (HCONH 2+CH 3OH) by concentration dependent Raman study and ab initio calculations

    NASA Astrophysics Data System (ADS)

    Ojha, Animesh K.; Srivastava, Sunil K.; Koster, J.; Shukla, M. K.; Leszczynski, J.; Asthana, B. P.; Kiefer, W.

    2004-02-01

    Raman spectra of neat formamide (HCONH 2) and its binary mixture (HCONH 2+CH 3OH) with hydrogen donor solvent, methanol (CH 3OH) were investigated using a sensitive scanning multichannel detection scheme, which is simultaneously more precise also, especially when the observed Raman line profile has multiple component bands. The spectra in the two regions, namely 1200-1500 and 1500-1800 cm -1 were recorded with varying mole fractions of the reference molecule, HCONH 2, from 0.1 to 0.9. The spectra in the region 1200-1500 cm -1 show a broad band at ˜1312 cm -1, which shows a peculiar concentration dependence, and a relatively sharp peak at ˜1392 cm -1, whose peak position is not influenced by concentration. The spectra in the region 1500-1800 cm -1 also show two peaks, one at ˜1593 cm -1 and the other one at ˜1668 cm -1 which are assigned to NH 2 bending and ν(CO) stretching vibrations, respectively. Both these Raman bands show an appreciable upshift of ˜15-20 cm -1 and the one at ˜1668 cm -1 has also a distinct asymmetry towards higher wavenumber. The optimized geometries and vibrational wavenumbers of various normal modes for neat formamide as well as its hydrogen-bonded complexes were also calculated using ab initio theory at the MP2 level. The results have been used to understand and explain the concentration dependent changes in the spectral features in terms of hydrogen bonding and self-association.

  3. Molecular Spectroscopy by Ab Initio Methods

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles W., Jr.; Langhoff, Stephen R.; Partridge, Harry; Arnold, James O. (Technical Monitor)

    1994-01-01

    Due to recent advances in methods and computers, the accuracy of ab calculations has reached a point where these methods can be used to provide accurate spectroscopic constants for small molecules; this will be illustrated with several examples. We will show how ab initio calculations where used to identify the Hermann infrared system in N2 and two band systems in CO. The identification of all three of these band systems relied on very accurate calculations of quintet states. The analysis of the infrared spectra of cool stars requires knowledge of the intensity of vibrational transitions in SiO for high nu and J levels. While experiment can supply very accurate dipole moments for nu = 0 to 3, this is insufficient to construct a global dipole moment function. We show how theory, combined by the experiment, can be used to generate the line intensities up to nu = 40 and J = 250. The spectroscopy of transition metal containing systems is very difficult for both theory and experiment. We will discuss the identification of the ground state of Ti2 and the spectroscopy of AlCu as examples of how theory can contribute to the understanding of these complex systems.

  4. Hydrogen bonds in crystalline D-alanine: diffraction and spectroscopic evidence for differences between enantiomers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Belo, Ezequiel A.; Pereira, Jose E. M.; Freire, Paulo T. C.

    Enantiomeric amino acids have specific physiological functions in complex biological systems. Systematic studies focusing on the solid-state properties of D-amino acids are, however, still limited. To shed light on this field, structural and spectroscopic studies of D-alanine using neutron powder diffraction, polarized Raman scattering and ab initio calculations of harmonic vibrational frequencies were carried out. Clear changes in the number of vibrational modes are observed as a function of temperature, which can be directly connected to variations of the N—D bond lengths. These results reveal dissimilarities in the structural properties of D-alanine compared with L-alanine.

  5. Hydrogen bonds in crystalline D-alanine: diffraction and spectroscopic evidence for differences between enantiomers

    DOE PAGES

    Belo, Ezequiel A.; Pereira, Jose E. M.; Freire, Paulo T. C.; ...

    2018-01-01

    Enantiomeric amino acids have specific physiological functions in complex biological systems. Systematic studies focusing on the solid-state properties of D-amino acids are, however, still limited. To shed light on this field, structural and spectroscopic studies of D-alanine using neutron powder diffraction, polarized Raman scattering and ab initio calculations of harmonic vibrational frequencies were carried out. Clear changes in the number of vibrational modes are observed as a function of temperature, which can be directly connected to variations of the N—D bond lengths. These results reveal dissimilarities in the structural properties of D-alanine compared with L-alanine.

  6. Static electric polarizabilities and first hyperpolarizabilities of molecular ions RgH + (Rg = He, Ne, Ar, Kr, Xe): ab initio study

    NASA Astrophysics Data System (ADS)

    Cukras, Janusz; Antušek, Andrej; Holka, Filip; Sadlej, Joanna

    2009-06-01

    Extensive ab initio calculations of static electric properties of molecular ions of general formula RgH + (Rg = He, Ne, Ar, Kr, Xe) involving the finite field method and coupled cluster CCSD(T) approach have been done. The relativistic effects were taken into account by Douglas-Kroll-Hess approximation. The numerical stability and reliability of calculated values have been tested using the systematic sequence of Dunning's cc-pVXZ-DK and ANO-RCC-VQZP basis sets. The influence of ZPE and pure vibrational contribution has been discussed. The component αzz has increasing trend in RgH + while the relativistic effect on αzz leads to a small increase of this molecular parameter.

  7. Analytical ab initio potential-energy surfaces for the ground and the first singlet excited states of HeH 2

    NASA Astrophysics Data System (ADS)

    Farantos, Stavros C.; Murrell, J. N.; Carter, S.

    1984-07-01

    Analytical potential-energy surfaces have been constructed for the ground and the first excited states of HeH 2. The functions fit ab initio MRD CI calculations with standard deviations of 0.05 and 0.13 eV for the ground and the excited surface respectively. Classical trajectory calculations for collisions of 4Hc with HD(B 1Σ u+, υ = 3, J = 2) at the temperature T = 297 K yields the electronic quenching cross section σ Q = 6.5 A 2 and the vibrational cross section σ 3→2 = 3.8 A 2. The results are in qualitative agreement with the experimental values of Fink, Akins and Moore.

  8. Spectroscopy of H3+ based on a new high-accuracy global potential energy surface.

    PubMed

    Polyansky, Oleg L; Alijah, Alexander; Zobov, Nikolai F; Mizus, Irina I; Ovsyannikov, Roman I; Tennyson, Jonathan; Lodi, Lorenzo; Szidarovszky, Tamás; Császár, Attila G

    2012-11-13

    The molecular ion H(3)(+) is the simplest polyatomic and poly-electronic molecular system, and its spectrum constitutes an important benchmark for which precise answers can be obtained ab initio from the equations of quantum mechanics. Significant progress in the computation of the ro-vibrational spectrum of H(3)(+) is discussed. A new, global potential energy surface (PES) based on ab initio points computed with an average accuracy of 0.01 cm(-1) relative to the non-relativistic limit has recently been constructed. An analytical representation of these points is provided, exhibiting a standard deviation of 0.097 cm(-1). Problems with earlier fits are discussed. The new PES is used for the computation of transition frequencies. Recently measured lines at visible wavelengths combined with previously determined infrared ro-vibrational data show that an accuracy of the order of 0.1 cm(-1) is achieved by these computations. In order to achieve this degree of accuracy, relativistic, adiabatic and non-adiabatic effects must be properly accounted for. The accuracy of these calculations facilitates the reassignment of some measured lines, further reducing the standard deviation between experiment and theory.

  9. Full-dimensional quantum calculations of the dissociation energy, zero-point, and 10 K properties of H7+/D7+ clusters using an ab initio potential energy surface.

    PubMed

    Barragán, Patricia; Pérez de Tudela, Ricardo; Qu, Chen; Prosmiti, Rita; Bowman, Joel M

    2013-07-14

    Diffusion Monte Carlo (DMC) and path-integral Monte Carlo computations of the vibrational ground state and 10 K equilibrium state properties of the H7 (+)/D7 (+) cations are presented, using an ab initio full-dimensional potential energy surface. The DMC zero-point energies of dissociated fragments H5 (+)(D5 (+))+H2(D2) are also calculated and from these results and the electronic dissociation energy, dissociation energies, D0, of 752 ± 15 and 980 ± 14 cm(-1) are reported for H7 (+) and D7 (+), respectively. Due to the known error in the electronic dissociation energy of the potential surface, these quantities are underestimated by roughly 65 cm(-1). These values are rigorously determined for first time, and compared with previous theoretical estimates from electronic structure calculations using standard harmonic analysis, and available experimental measurements. Probability density distributions are also computed for the ground vibrational and 10 K state of H7 (+) and D7 (+). These are qualitatively described as a central H3 (+)/D3 (+) core surrounded by "solvent" H2/D2 molecules that nearly freely rotate.

  10. Infrared and Raman Spectroscopy from Ab Initio Molecular Dynamics and Static Normal Mode Analysis: The C–H Region of DMSO as a Case Study

    DOE PAGES

    Fischer, Sean A.; Ueltschi, Tyler W.; El-Khoury, Patrick Z.; ...

    2015-07-29

    Carbon-hydrogen (C-H) vibration modes serve as key probes in the chemical identification of hydrocarbons and in vibrational sum-frequency generation (SFG) spectroscopy of hydrocarbons at the liquid/gas interface. Their assignments pose a challenge from a theoretical viewpoint. Here in this work, we present a detailed study of the C-H stretching region of dimethyl sulfoxide (DMSO) using a new Gaussian basis set- based ab initio molecular dynamics (AIMD) module that we have implemented in the NWChem computational chemistry program. By combining AIMD simulations and static normal mode analysis, we interpret experimental infrared and Raman spectra and explore the role of anharmonic effectsmore » in this system. Our anharmonic normal mode analysis of the in-phase and out-of-phase symmetric C-H stretching modes challenges the previous experimental assignment of the shoulder in the symmetric C-H stretching peak as an overtone or Fermi resonance. In addition, our AIMD simulations also show significant broadening of the in-phase symmetric C-H stretching resonance, which suggests that the experimentally observed shoulder is due to thermal broadening of the symmetric stretching resonance.« less

  11. FTIR spectroscopy and thermodynamics of hydrogen adsorbed in a cross-linked polymer.

    PubMed

    Spoto, Giuseppe; Vitillo, Jenny G; Cocina, Donato; Damin, Alessandro; Bonino, Francesca; Zecchina, Adriano

    2007-09-28

    The adsorption of H(2) in a cross-linked poly(styrene-co-divinylbenzene) (St-DVB) microporous polymer (BET surface area 920 m(2) g(-1)) is studied by volumetric and gravimetric methods, FTIR spectroscopy at variable temperature (300-14 K) and ab initio calculations. At 77 K the polymer reversibly stores up to 1.3 mass% H(2) at a pressure of 1 bar and 1.8 mass% at 10 bar. The adsorption process involves the specific interaction of H(2) with the structural phenyl rings through weak dispersive forces. The interacting molecules become IR active and give rise to vibrational and rotational-vibrational manifestations which are affected by the temperature, the contact time and the H(2) equilibrium pressure. The spectra of the H(2)/St-DVB system reported here represent the first IR evidence of the adsorption of hydrogen on unsaturated molecules. The adsorption enthalpy is evaluated by the VTIR (variable temperature IR spectroscopy) method (C. Otero Areán et al., Phys. Chem. Chem. Phys., 2007, DOI: 10.1039/b615535a) and compared with the results of ab initio calculations for the H(2)/benzene interaction and with literature data.

  12. Quantum state preparation of homonuclear molecular ions enabled via a cold buffer gas: An ab initio study for the H2+ and the D2+ case

    NASA Astrophysics Data System (ADS)

    Schiller, S.; Kortunov, I.; Hernández Vera, M.; Gianturco, F.; da Silva, H.

    2017-04-01

    Precision vibrational spectroscopy of the molecular hydrogen ions is of significant interest for determining fundamental constants, for searching for new forces, and for testing quantum electrodynamics calculations. Future experiments can profit from the ability of preparing molecular hydrogen ions at ultralow kinetic energy and in preselected internal states, with respect to vibration, rotation, and spin degrees of freedom. For the homonuclear ions (H2+ , D2+ ), direct laser cooling of the rotational degree of freedom is not feasible. We show by quantum calculations that rotational cooling by cold He buffer gas is an effective approach. For this purpose we have computed the energy-dependent cross sections for rotationally elastic and inelastic collisions, h2+ (v =0 ,N ) +He → h2+ (v =0 ,N') +He (where h =H ,D ) , using ab initio coupled-channel calculations. We find that rotational cooling to the lowest rotational state is possible within tens of seconds under experimentally realistic conditions. We furthermore describe possible protocols for the preparation of a single quantum state, where also the spin state is well defined.

  13. Excited electronic states of the methyl radical. Ab initio molecular orbital study of geometries, excitation energies and vibronic spectra

    NASA Astrophysics Data System (ADS)

    Mebel, Alexander M.; Lin, Sheng-Hsien

    1997-03-01

    The geometries, vibrational frequencies and vertical and adiabatic excitation energies of the excited valence and Rydberg 3s, 3p, 3d, and 4s electronic states of CH 3 have been studied using ab initio molecular orbital multiconfigurational SCF (CASSCF), internally contracted multireference configuration interaction (MRCI) and equation-of-motion coupled cluster (EOM-CCSD) methods. The vibronic spectra are determined through the calculation of Franck-Condon factors. Close agreement between theory and experiment has been found for the excitation energies, vibrational frequencies and vibronic spectra. The adiabatic excitation energies of the Rydberg 3s B˜ 2A' 1 and 3p 2 2A″ 2 states are calculated to be 46435 and 60065 cm -1 compared to the experimental values of 46300 and 59972 cm -1, respectively. The valence 2A″ excited state of CH 3 has been found to have a pyramidal geometry within C s symmetry and to be adiabatically by 97 kcal/mol higher in energy than the ground state. The 2A″ state is predicted to be stable by 9 and 13 kcal/mol with respect to H 2 and H elimination.

  14. Structural characterization of tellurite glasses doped with transition metal oxides using Raman spectra and ab initio calculations.

    PubMed

    Mohamed, Tarek A; Shaltout, I; Al Yahyaei, K M

    2006-05-01

    Systems of iron tellurite glasses were prepared by melt quenching with compositions of [85%TeO2+5%Fe2O3+10%TMO], where transition metal oxides (TMO) are TiO2, V2O5, MnO, CoO, NiO and CuO. Furthermore, the main structural units of these samples have been characterized by means of Raman spectra (150-1200 cm(-1)) as well as wavenumber predictions by means of Gaussian 98 ab initio calculations for the proposed site symmetries of TeO4(4-) triagonal bipyramid (C2v) and Te2O7(6-) bridged tetrahedra (Cs and C1). Aided by normal coordinate analysis, calculated vibrational frequencies, Raman scattering activities, force constants in internal coordinates and potential energy distributions (PEDs), revised vibrational assignments for the fundamental modes have been proposed. The main structural features are correlated to the dominant units of triagonal bipyramid (tbp) or bridged tetrahedral (TeO3+1 binds to TeO3 through TeOTe bridge; corner sharing). Moreover, the Raman spectra of the investigated tellurites reflect a structural change from tbp (coordination number is four) to triagonal pyramidal (coordination number is three).

  15. F + H/sub 2/ potential energy surface: the ecstasy and the agony

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schaefer, H.F. III

    1985-12-05

    This account surveys 14 years of more or less continuing theoretical research on the FH/sub 2/ potential energy hypersurface. Early encouragement concerning the ability of theory to reliably characterize the entrance barrier for F + H/sub 2/ ..-->.. FH + H has more recently been sobered by the realization that very high levels of theory are required for this task. The importance of zero-point vibrational corrections and tunneling corrections in reliable predictions of the same activation energy is discussed. In contrast, the barrier height of H + FH ..-->.. HF + H three-center exchange stands as a prominent early successmore » of ab initio molecular electronic structure theory. 90 references, 4 figures, 6 tables.« less

  16. The ethyl radical in superfluid helium nanodroplets: Rovibrational spectroscopy and ab initio computations

    DOE PAGES

    Raston, Paul L.; Agarwal, Jay; Turney, Justin M.; ...

    2013-05-15

    The ethyl radical has been isolated and spectroscopically characterized in 4He nanodroplets. The band origins of the five CH stretch fundamentals are shifted by < 2 cm –1 from those reported for the gas phase species. The symmetric CH 2 stretching band (v 1) is rotationally resolved, revealing nuclear spin statistical weights predicted by G 12 permutation-inversion group theory. A permanent electric dipole moment of 0.28 (2) D is obtained via the Stark spectrum of the v 1 band. The four other CH stretch fundamental bands are significantly broadened in He droplets and lack rotational fine structure. This broadening ismore » attributed to symmetry dependent vibration-to-vibration relaxation facilitated by the He droplet environment. In addition to the five fundamentals, three a 1' overtone/combination bands are observed, and each of these have resolved rotational substructure. As a result, these are assigned to the 2v 12, v 4 + v 6, and 2v 6 bands through comparisons to anharmonic frequency computations at the CCSD(T)/cc-pVTZ level of theory.« less

  17. Benchmark ab Initio Characterization of the Complex Potential Energy Surfaces of the X- + NH2Y [X, Y = F, Cl, Br, I] Reactions.

    PubMed

    Hajdu, Bálint; Czakó, Gábor

    2018-02-22

    We report a comprehensive high-level explicitly correlated ab initio study on the X - + NH 2 Y [X,Y = F, Cl, Br, I] reactions characterizing the stationary points of the S N 2 (Y - + NH 2 X) and proton-transfer (HX + NHY - ) pathways as well as the reaction enthalpies of various endothermic additional product channels such as H - + NHXY, XY - + NH 2 , XY + NH 2 - , and XHY - + NH. Benchmark structures and harmonic vibrational frequencies are obtained at the CCSD(T)-F12b/aug-cc-pVTZ(-PP) level of theory, followed by CCSD(T)-F12b/aug-cc-pVnZ(-PP) [n = Q and 5] and core correlation energy computations. In the entrance and exit channels we find two equivalent hydrogen-bonded C 1 minima, X - ···HH'NY and X - ···H'HNY connected by a C s first-order saddle point, X - ···H 2 NY, as well as a halogen-bonded front-side complex, X - ···YNH 2 . S N 2 reactions can proceed via back-side attack Walden inversion and front-side attack retention pathways characterized by first-order saddle points, submerged [X-NH 2 -Y] - and high-energy [H 2 NXY] - , respectively. Product-like stationary points below the HX + NHY - asymptotes are involved in the proton-transfer processes.

  18. Scattering study of the Ne + NeH+(v0 = 0, j0 = 0) → NeH+ + Ne reaction on an ab initio based analytical potential energy surface

    NASA Astrophysics Data System (ADS)

    Koner, Debasish; Barrios, Lizandra; González-Lezana, Tomás; Panda, Aditya N.

    2016-01-01

    Initial state selected dynamics of the Ne + NeH+(v0 = 0, j0 = 0) → NeH+ + Ne reaction is investigated by quantum and statistical quantum mechanical (SQM) methods on the ground electronic state. The three-body ab initio energies on a set of suitably chosen grid points have been computed at CCSD(T)/aug-cc-PVQZ level and analytically fitted. The fitting of the diatomic potentials, computed at the same level of theory, is performed by spline interpolation. A collinear [NeHNe]+ structure lying 0.72 eV below the Ne + NeH+ asymptote is found to be the most stable geometry for this system. Energies of low lying vibrational states have been computed for this stable complex. Reaction probabilities obtained from quantum calculations exhibit dense oscillatory structures, particularly in the low energy region and these get partially washed out in the integral cross section results. SQM predictions are devoid of oscillatory structures and remain close to 0.5 after the rise at the threshold thus giving a crude average description of the quantum probabilities. Statistical cross sections and rate constants are nevertheless in sufficiently good agreement with the quantum results to suggest an important role of a complex-forming dynamics for the title reaction.

  19. Comparison of some dispersion-corrected and traditional functionals with CCSD(T) and MP2 ab initio methods: Dispersion, induction, and basis set superposition error

    NASA Astrophysics Data System (ADS)

    Roy, Dipankar; Marianski, Mateusz; Maitra, Neepa T.; Dannenberg, J. J.

    2012-10-01

    We compare dispersion and induction interactions for noble gas dimers and for Ne, methane, and 2-butyne with HF and LiF using a variety of functionals (including some specifically parameterized to evaluate dispersion interactions) with ab initio methods including CCSD(T) and MP2. We see that inductive interactions tend to enhance dispersion and may be accompanied by charge-transfer. We show that the functionals do not generally follow the expected trends in interaction energies, basis set superposition errors (BSSE), and interaction distances as a function of basis set size. The functionals parameterized to treat dispersion interactions often overestimate these interactions, sometimes by quite a lot, when compared to higher level calculations. Which functionals work best depends upon the examples chosen. The B3LYP and X3LYP functionals, which do not describe pure dispersion interactions, appear to describe dispersion mixed with induction about as accurately as those parametrized to treat dispersion. We observed significant differences in high-level wavefunction calculations in a basis set larger than those used to generate the structures in many of the databases. We discuss the implications for highly parameterized functionals based on these databases, as well as the use of simple potential energy for fitting the parameters rather than experimentally determinable thermodynamic state functions that involve consideration of vibrational states.

  20. Comparison of some dispersion-corrected and traditional functionals with CCSD(T) and MP2 ab initio methods: dispersion, induction, and basis set superposition error.

    PubMed

    Roy, Dipankar; Marianski, Mateusz; Maitra, Neepa T; Dannenberg, J J

    2012-10-07

    We compare dispersion and induction interactions for noble gas dimers and for Ne, methane, and 2-butyne with HF and LiF using a variety of functionals (including some specifically parameterized to evaluate dispersion interactions) with ab initio methods including CCSD(T) and MP2. We see that inductive interactions tend to enhance dispersion and may be accompanied by charge-transfer. We show that the functionals do not generally follow the expected trends in interaction energies, basis set superposition errors (BSSE), and interaction distances as a function of basis set size. The functionals parameterized to treat dispersion interactions often overestimate these interactions, sometimes by quite a lot, when compared to higher level calculations. Which functionals work best depends upon the examples chosen. The B3LYP and X3LYP functionals, which do not describe pure dispersion interactions, appear to describe dispersion mixed with induction about as accurately as those parametrized to treat dispersion. We observed significant differences in high-level wavefunction calculations in a basis set larger than those used to generate the structures in many of the databases. We discuss the implications for highly parameterized functionals based on these databases, as well as the use of simple potential energy for fitting the parameters rather than experimentally determinable thermodynamic state functions that involve consideration of vibrational states.

  1. Comparison of some dispersion-corrected and traditional functionals with CCSD(T) and MP2 ab initio methods: Dispersion, induction, and basis set superposition error

    PubMed Central

    Roy, Dipankar; Marianski, Mateusz; Maitra, Neepa T.; Dannenberg, J. J.

    2012-01-01

    We compare dispersion and induction interactions for noble gas dimers and for Ne, methane, and 2-butyne with HF and LiF using a variety of functionals (including some specifically parameterized to evaluate dispersion interactions) with ab initio methods including CCSD(T) and MP2. We see that inductive interactions tend to enhance dispersion and may be accompanied by charge-transfer. We show that the functionals do not generally follow the expected trends in interaction energies, basis set superposition errors (BSSE), and interaction distances as a function of basis set size. The functionals parameterized to treat dispersion interactions often overestimate these interactions, sometimes by quite a lot, when compared to higher level calculations. Which functionals work best depends upon the examples chosen. The B3LYP and X3LYP functionals, which do not describe pure dispersion interactions, appear to describe dispersion mixed with induction about as accurately as those parametrized to treat dispersion. We observed significant differences in high-level wavefunction calculations in a basis set larger than those used to generate the structures in many of the databases. We discuss the implications for highly parameterized functionals based on these databases, as well as the use of simple potential energy for fitting the parameters rather than experimentally determinable thermodynamic state functions that involve consideration of vibrational states. PMID:23039587

  2. Molecular geometry and vibrational studies of 3,5-diamino-1,2,4-triazole using quantum chemical calculations and FT-IR and FT-Raman spectroscopies

    NASA Astrophysics Data System (ADS)

    Guennoun, L.; El jastimi, J.; Guédira, F.; Marakchi, K.; Kabbaj, O. K.; El Hajji, A.; Zaydoun, S.

    2011-01-01

    The 3,5-diamino-1,2,4-triazole (guanazole) was investigated by vibrational spectroscopy and quantum methods. The solid phase FT-IR and FT-Raman spectra were recorded in the region 4000-400 cm -1 and 3600-50 cm -1 respectively, and the band assignments were supported by deuteration effects. The results of energy calculations have shown that the most stable form is 1H-3,5-diamino-1,2,4-triazole under C 1 symmetry. For this form, the molecular structure, harmonic vibrational wave numbers, infrared intensities and Raman activities were calculated by the ab initio/HF and DFT/B3LYP methods using 6-31G* basis set. The calculated geometrical parameters of the guanazole molecule using B3LYP methodology are in good agreement with the previously reported X-ray data, and the scaled vibrational wave number values are in good agreement with the experimental data. The normal vibrations were characterized in terms of potential energy distribution (PEDs) using VEDA 4 program.

  3. Experimental and theoretical investigations of H2O-Ar

    NASA Astrophysics Data System (ADS)

    Vanfleteren, Thomas; Földes, Tomas; Herman, Michel; Liévin, Jacques; Loreau, Jérôme; Coudert, Laurent H.

    2017-07-01

    We have used continuous-wave cavity ring-down spectroscopy to record the spectrum of H2O A r in the 2OH excitation range of H2O . 24 sub-bands have been observed. Their rotational structure (Trot = 12 K) is analyzed and the lines are fitted separately for ortho and para species together with microwave and far infrared data from the literature, with a unitless standard deviation σ =0.98 and 1.31, respectively. Their vibrational analysis is supported by a theoretical input based on an intramolecular potential energy surface obtained through ab initio calculations and computation of the rotational energy of sub-states of the complex with the water monomer in excited vibrational states up to the first hexad. For the ground and (010) vibrational states, the theoretical results agree well with experimental energies and rotational constants in the literature. For the excited vibrational states of the first hexad, they guided the assignment of the observed sub-bands. The upper state vibrational predissociation lifetime is estimated to be 3 ns from observed spectral linewidths.

  4. Simulation of X-ray transient absorption for following vibrations in coherently ionized F2 molecules

    NASA Astrophysics Data System (ADS)

    Dutoi, Anthony D.; Leone, Stephen R.

    2017-01-01

    Femtosecond and attosecond X-ray transient absorption experiments are becoming increasingly sophisticated tools for probing nuclear dynamics. In this work, we explore and develop theoretical tools needed for interpretation of such spectra,in order to characterize the vibrational coherences that result from ionizing a molecule in a strong IR field. Ab initio data for F2 is combined with simulations of nuclear dynamics, in order to simulate time-resolved X-ray absorption spectra for vibrational wavepackets after coherent ionization at 0 K and at finite temperature. Dihalogens pose rather difficult electronic structure problems, and the issues encountered in this work will be reflective of those encountered with any core-valence excitation simulation when a bond is breaking. The simulations reveal a strong dependence of the X-ray absorption maximum on the locations of the vibrational wave packets. A Fourier transform of the simulated signal shows features at the overtone frequencies of both the neutral and the cation, which reflect spatial interferences of the vibrational eigenstates. This provides a direct path for implementing ultrafast X-ray spectroscopic methods to visualize coherent nuclear dynamics.

  5. Understanding the Origins of Dipolar Couplings and Correlated Motion in the Vibrational Spectrum of Water.

    PubMed

    Heyden, Matthias; Sun, Jian; Forbert, Harald; Mathias, Gerald; Havenith, Martina; Marx, Dominik

    2012-08-16

    The combination of vibrational spectroscopy and molecular dynamics simulations provides a powerful tool to obtain insights into the molecular details of water structure and dynamics in the bulk and in aqueous solutions. Applying newly developed approaches to analyze correlations of charge currents, molecular dipole fluctuations, and vibrational motion in real and k-space, we compare results from nonpolarizable water models, widely used in biomolecular modeling, to ab initio molecular dynamics. For the first time, we unfold the infrared response of bulk water into contributions from correlated fluctuations in the three-dimensional, anisotropic environment of an average water molecule, from the OH-stretching region down to the THz regime. Our findings show that the absence of electronic polarizability in the force field model not only results in differences in dipolar couplings and infrared absorption but also induces artifacts into the correlated vibrational motion between hydrogen-bonded water molecules, specifically at the intramolecular bending frequency. Consequently, vibrational motion is partially ill-described with implications for the accuracy of non-self-consistent, a posteriori methods to add polarizability.

  6. Vibrationally-resolved Charge Transfer of O^3+ Ions with Molecular Hydrogen

    NASA Astrophysics Data System (ADS)

    Wang, J. G.; Stancil, P. C.; Turner, A. R.; Cooper, D. L.

    2003-05-01

    Charge transfer processes due to collisions of ground state O^3+ ions with H2 are investigated using the quantum-mechanical molecular-orbital close-coupling (MOCC) method. The MOCC calculations utilize ab initio adiabatic potentials and nonadiabatic radial coupling matrix elements obtained with the spin-coupled valence-bond approach. Vibrationally-resolved cross sections for energies between 0.1 eV/u and 2 keV/u using the infinite order sudden approximation (IOSA), vibrational sudden approximation (VSA), and electronic approximation (EA), but including Frank-Condon factors (the centroid approximation) will be presented. Comparison with existing experimental data for total cross sections shows best agreement with IOSA and discrepancies for VSA and EA. Triplet-singlet cross section ratios obtained with IOSA are found generally to be in harmony with experiment. JGW and PCS acknowledge support from NASA grant 11453.

  7. Vibrational spectroscopy investigation using ab initio and density functional theory analysis on the structure of 5-chloro-10-oxa-3-thia-tricyclo[5.2.1.0 1,5]dec-8-ene-3,3-dioxide

    NASA Astrophysics Data System (ADS)

    Arslan, Hakan; Demircan, Aydın; Göktürk, Ersen

    2008-01-01

    The IR spectra of 5-chloro-10-oxa-3-thia-tricyclo[5.2.1.0 1,5]dec-8-ene-3,3-dioxide (COTDO) has been recorded in the region 4000-525 cm -1. The optimized molecular geometry, frequency and intensity of the vibrational bands of COTDO in the ground state has been calculated using the Hartree-Fock and density functional using Becke's three-parameter hybrid method with the Lee, Yang, and Parr correlation functional methods with 6-31G(d,p) and 6-311G(d,p) basis sets. The harmonic vibrational frequencies were calculated and the scaled values have been compared with experimental IR spectra. The calculated geometrical parameters and harmonic vibrations are predicted in a very good agreement with the experimental data. The theoretical vibrational spectra of the title compound were interpreted by means of potential energy distributions (PEDs) using VEDA 4 program. With the help of this modern technique we were able to complete the assignment of the vibrational spectra of the title compound.

  8. Dissociative recombination of HCl+

    NASA Astrophysics Data System (ADS)

    Larson, Åsa; Fonseca dos Santos, Samantha; E. Orel, Ann

    2017-08-01

    The dissociative recombination of HCl+, including both the direct and indirect mechanisms, is studied. For the direct process, the relevant electronic states are calculated ab initio by combining electron scattering calculations to obtain resonance positions and autoionization widths with multi-reference configuration interaction calculations of the ion and Rydberg states. The cross section for the direct dissociation along electronic resonant states is computed by solution of the time-dependent Schrödinger equation. For the indirect process, an upper bound value for the cross section is obtained using a vibrational frame transformation of the elements of the scattering matrix at energies just above the ionization threshold. Vibrational excitations of the ionic core from the ground vibrational state, v = 0 , to the first three excited vibrational states, v = 1 , v = 2 , and v = 3 , are considered. Autoionization is neglected and the effect of the spin-orbit splitting of the ionic potential energy upon the indirect dissociative recombination cross section is considered. The calculated cross sections are compared to measurements.

  9. Vibrational spectroscopy investigation using ab initio and density functional theory analysis on the structure of 3-(6-benzoyl-2-oxobenzo[ d]oxazol-3(2 H)-yl)propanoic acid

    NASA Astrophysics Data System (ADS)

    Arslan, Hakan; Algül, Öztekin; Önkol, Tijen

    2008-08-01

    The molecular structure, vibrational frequencies and infrared intensities of the 3-(6-benzoyl-2-oxobenzo[ d]oxazol-3(2 H)-yl)propanoic acid were calculated by the HF and DFT methods using 6-31G(d) basis set. The FT-infrared spectra have been measured for the title compound in the solid state. We obtained 11 stable conformers for the title compound, however the Conformer 1 is approximately 3.88 kcal/mol more stable than the Conformer 11. The comparison of the theoretical and experimental geometry of the title compound shows that the X-ray parameters fairly well reproduce the geometry of the Conformer 1. The harmonic vibrations computed of this compound by the B3LYP/6-31G(d) method are in a good agreement with the observed IR spectral data. Theoretical vibrational spectra of the title compound were interpreted by means of PEDs using VEDA 4 program.

  10. Experimental and theoretical study on the structure and vibrational spectra of β-2-aminopyridinium dihydrogenphosphate

    NASA Astrophysics Data System (ADS)

    Çırak, Çağrı; Demir, Selçuk; Ucun, Fatih; Çubuk, Osman

    2011-08-01

    Experimental and theoretical vibrational spectra of β-2-aminopyridinium dihydrogenphosphate (β-2APDP) have been investigated. The FT-IR spectrum of β-2APDP was recorded in the region 4000-400 cm -1. The optimized molecular structure and theoretical vibrational frequencies of β-2APDP have been investigated using ab initio Hartree-Fock (HF) and density functional B3LYP method with 6-311++G(d,p) basis set. The optimized geometric parameters (bond lengths and bond angles) and theoretical frequencies have been compared with the corresponding experimental data and it is found that they agree well with each other. All the assignments of the theoretical frequencies were performed by potential energy distributions using VEDA 4 program. Furthermore, the used scale factors were obtained from the ratio of the frequency values of the strongest peaks in the experimental and theoretical IR spectra. From the results it was concluded that the B3LYP method is superior to the HF method for the vibrational frequencies.

  11. Dissociative recombination of HCl.

    PubMed

    Larson, Åsa; Fonseca Dos Santos, Samantha; E Orel, Ann

    2017-08-28

    The dissociative recombination of HCl + , including both the direct and indirect mechanisms, is studied. For the direct process, the relevant electronic states are calculated ab initio by combining electron scattering calculations to obtain resonance positions and autoionization widths with multi-reference configuration interaction calculations of the ion and Rydberg states. The cross section for the direct dissociation along electronic resonant states is computed by solution of the time-dependent Schrödinger equation. For the indirect process, an upper bound value for the cross section is obtained using a vibrational frame transformation of the elements of the scattering matrix at energies just above the ionization threshold. Vibrational excitations of the ionic core from the ground vibrational state, v = 0, to the first three excited vibrational states, v = 1, v = 2, and  v = 3, are considered. Autoionization is neglected and the effect of the spin-orbit splitting of the ionic potential energy upon the indirect dissociative recombination cross section is considered. The calculated cross sections are compared to measurements.

  12. Spectra and structure of organophosphorus compounds. LI. IR and Raman spectra, conformational stability, barriers to internal rotation, vibrational assignment, and ab initio calculations of n-propylphosphine

    NASA Astrophysics Data System (ADS)

    Durig, J. R.; Gounev, T. K.; Lee, M. S.; Little, T. S.

    1994-10-01

    The Raman (3100 to 50 cm -1) and IR (3100 to 50 cm -1) spectra of gaseous and solid n-propylphosphine, C 3H 7PH 2, and the corresponding P- d2 isotopomer have been recorded. Additionally, the Raman spectra of the liquids have been obtained with qualitative depolarization ratios. From these data, all five possible conformers have been identified in the fluid states and the trans-trans conformer is shown to be the most stable rotamer in both the gaseous and liquid states and it is the only conformer present in the solid. The first trans refers to the orientation of the lone pair to the ethylene group (rotation around the PC bond) whereas the second trans refers to the orientation of the methyl group relative to the PC bond (rotation around the -CH 2CH 2 bond). The next most stable conformer is the gauche-trans rotamer where the enthalpy difference has been determined from variable-temperature Raman studies to be 140 ± 5 cm -1 (400 ± 14 cal mol -1) for the vapor and 351 ± 20 cm -1 (1004 ± 57 cal mol -1) for the liquid. The other three conformers have nearly the same stabilities but significantly higher energies than the two more stable rotamers. From the far-IR data and relative conformer stabilities, some of the coefficients of the potential function governing conformer interconversion are estimated. A complete vibrational assignment is proposed for the trans-trans conformer and for the fundamentals for most of the heavy atom motions for the other conformers. The conformational stabilities, barriers to internal rotation, and fundamental vibrational frequencies which have been determined experimentally are compared to those obtained from ab initio calculations employing the RHF/3-21G* and/or RHF/6-31G* basis sets. Additionally, the conformational stabilities and structural parameters have been determined with the 6-31G* basis set with electron correlation at the MP2 level. These results are compared with the corresponding quantities for some similar molecules.

  13. The Ammonia Dimer Revisited

    NASA Astrophysics Data System (ADS)

    Dawes, Richard; Van Der Avoird, Ad

    2012-06-01

    The conclusion from microwave spectra by Nelson, Fraser, and Klemperer that the ammonia dimer has a nearly cyclic structure led to much debate about the issue of whether (NH_3)_2 is hydrogen bonded. This structure was surprising because most {ab initio} calculations led to a classical, nearly linear, hydrogen-bonded structure. An obvious explanation of the discrepancy between the outcome of these calculations and the microwave data which led Nelson {et al.} to their ``surprising structure'' might be the effect of vibrational averaging: the electronic structure calculations focus on finding the minimum of the intermolecular potential, the experiment gives a vibrationally averaged structure. Isotope substitution studies seemed to indicate, however, that the complex is nearly rigid. Additional data became available from high-resolution molecular beam far-infrared spectroscopy in the Saykally group. These spectra, displaying large tunneling splittings, indicate that the complex is very floppy. The seemingly contradictory experimental data were explained when it became possible to calculate the vibration-rotation-tunneling (VRT) states of the complex on a six-dimensional intermolecular potential surface. The potential used was a simple model potential, with parameters fitted to the far-infrared data. Now, for the first time, a six-dimensional potential was computed by high level {ab initio} methods and this potential will be used in calculations of the VRT states of (NH_3)_2 and (ND_3)_2. So, we will finally be able to answer the question whether the conclusions from the model calculations are indeed a valid explanation of the experimental data. D. Nelson, G. T. Fraser, and W. Klemperer J. Chem. Phys. 83 6201 (1985) J. G. Loeser, C. A. Schmuttenmaer, R. C. Cohen, M. J. Elrod, D. W. Steyert, R. J. Saykally, R. E. Bumgarner, and G. A. Blake J. Chem. Phys. 97 4727 (1992) E. H. T. Olthof, A. van der Avoird, and P. E. S. Wormer J. Chem. Phys. 101 8430 (1994) E. H. T. Olthof, A. van der Avoird, P. E. S. Wormer, J. G. Loeser, and R. J. Saykally J. Chem. Phys. 101 8443 (1994)

  14. Excited vibrational level rotational constants for SiC2: A sensitive molecular diagnostic for astrophysical conditions

    NASA Astrophysics Data System (ADS)

    Fortenberry, Ryan C.; Lee, Timothy J.; Müller, Holger S. P.

    2015-11-01

    Silacyclopropynylidene, SiC2, is a known and highly abundant circumstellar molecule. Its spectrum has been established as a major component of lines observed toward the carbon-rich star IRC +10216 (CW Leonis). It has been detected in its low-lying v3 = 1 and 2 vibrational states as well as in various isotopic compositions. Increasing sensitivity and spatial resolution will enable many more emission or absorption lines to be detected. In order to detect new molecular species, unassigned lines of known species must be identified. This work uses established ab initio quartic force fields to produce data necessary for this classification of lines related to SiC2. Agreement between the theoretical vibrational frequencies and known rotational and spectroscopic constants is quite good, as good as 5 cm-1 and 3 MHz, respectively in some cases. In addition, experimentally unknown vibrational frequencies and rotational constants are provided for the first overtones and combination bands in addition to 3ν3, the second overtone of the low-lying antisymmetric stretch/carbide rotation mode. Frequencies of v3 = 3 low-J rotational transitions of the main isotopic species are also estimated from published data for v3 ≤ 2. Further, we determine rotational and centrifugal distortion parameters for which in most cases vibrational effects due to the ν3 mode were reduced to first, and in several cases also to second order. These values may approximate equilibrium values better than the ground state values. The data produced herein will aid in the experimental and observational characterization of this known astromolecule in order to identify some of the unassigned lines for a known entity.

  15. Silyl group internal rotation in S1 phenylsilane and phenylsilane cation: Experiments and ab initio calculations

    NASA Astrophysics Data System (ADS)

    Lu, Kueih-Tzu; Weisshaar, James C.

    1993-09-01

    Resonant two-photon ionization (R2PI) and pulsed field ionization (PFI) were used to measure S1-S0 and cation-S1 spectra of internally cold phenylsilane. We measure the adiabatic ionization potentials IP(phenylsilane)=73 680±5 cm-1, IP(phenylsilane ṡAr)=73 517±5 cm-1 and IP(phenylsilane ṡAr2)=73 359±5 cm-1. We assign many low lying torsion-vibration levels of the S1 (à 1A1) state and of X˜ 2B1 of phenylsilane+. In both states, the pure torsional transitions are well fit by a simple sixfold hindered rotor Hamiltonian. The results for the rotor inertial constant B and internal rotation potential barrier V6 are, in S1, B=2.7±0.2 cm-1 and V6=-44±4 cm-1; in the cation, B=2.7±0.2 cm-1 and V6=+19±3 cm-1. The sign of V6 and the conformation of minimum energy are inferred from spectral intensities of bands terminating on the 3a`1 and 3a`2 torsional levels. In S1 the staggered conformation is most stable, while in the cation ground state the eclipsed conformation is most stable. For all sixfold potentials whose absolute phase is known experimentally, the most stable conformer is staggered in the neutral states (S0 and S1 p-fluorotoluene, S1 toluene, S1 p-fluorotoluene) and eclipsed in the cationic states (ground state toluene+ and phenylsilane+). In phenylsilane+ we estimate several potential energy coupling matrix elements between torsional and vibrational states. For small V6, the term PαPa in the rigid-frame model Hamiltonian strongly mixes the 6a'1 and 6a'2 torsional states, which mediates further torsion-vibrational coupling. In addition, the cation X˜ 2B1 vibrational structure is badly perturbed, apparently by strong vibronic coupling with the low-lying à 2A2 state. Accordingly, ab initio calculations find a substantial in-plane distortion of the equilibrium geometry of the X˜ 2B1 state, while the à 2A2 state is planar and symmetric. The calculations also correctly predict the lowest energy conformer for S0 states and for cation ground states. Finally, we adapt the natural resonance theory (NRT) of Glendening and Weinhold to suggest why sixfold barriers for methyl and silyl rotors are uniformly small, while some threefold barriers are quite large. The phase of the sixfold potential is apparently determined by a subtle competition between two types of rotor-ring potential terms: attractive donor-acceptor interactions and repulsive van der Waals interactions (steric effects).

  16. IR Spectra of (HCOOH)2 and (DCOOH)2: Experiment, VSCF/VCI, and Ab Initio Molecular Dynamics Calculations Using Full-Dimensional Potential and Dipole Moment Surfaces.

    PubMed

    Qu, Chen; Bowman, Joel M

    2018-05-17

    We report quantum VSCF/VCI and ab initio molecular dynamics (AIMD) calculations of the IR spectra of (HCOOH) 2 and (DCOOH) 2 , using full-dimensional, ab initio potential energy and dipole moment surfaces (PES and DMS). These surfaces are fits, using permutationally invariant polynomials, to 13 475 ab initio CCSD(T)-F12a electronic energies and MP2 dipole moments. Here "AIMD" means using these ab initio potential and dipole moment surfaces in the MD calculations. The VSCF/VCI calculations use all (24) normal modes for coupling, with a four-mode representation of the potential. The quantum spectra align well with jet-cooled and room-temperature experimental spectra over the spectral range 600-3600 cm -1 . Analyses of the complex O-H and C-H stretch bands are made based on the mixing of the VSCF/VCI basis functions. The comparisons of the AIMD IR spectra with both experimental and VSCF/VCI ones provide tests of the accuracy of the AIMD approach. These indicate good accuracy for simple bands but not for the complex O-H stretch band, which is upshifted from experimental and VSCF/VCI bands by roughly 300 cm -1 . In addition to testing the AIMD approach, the PES, DMS, and VSCF/VCI calculations for formic acid dimer provide opportunities for testing other methods to represent high-dimensional data and other methods that perform postharmonic vibrational calculations.

  17. Anab InitioStudy of the NH2+Absorption Spectrum

    NASA Astrophysics Data System (ADS)

    Osmann, Gerald; Bunker, P. R.; Jensen, Per; Kraemer, W. P.

    1997-12-01

    In a previous publication (1997. P. Jensen,J. Mol. Spectrosc.181,207-214), rotation-vibration energy levels for the electronic ground stateX˜3B1of the amidogen ion, NH2+, were predicted using the MORBID Hamiltonian and computer program with anab initiopotential energy surface. In the present paper we calculate a newab initiopotential energy surface for theX˜3B1state, and we calculateab initiothe potential energy surfaces of theã1A1andb˜1B1excited singlet electronic states (which become degenerate as a1Δ state at linearity). We use the multireference configuration interaction (MR-CI) level of theory with molecular orbital bases that are optimized separately for each state by complete-active-space SCF (CASSCF) calculations. For theX˜state we use the MORBID Hamiltonian and computer program to obtain the rotation-vibration energies. For theãandb˜excited singlet electronic states we calculate the rovibronic energy levels using the RENNER Hamiltonian and computer program. We also calculateab initiothe dipole moment surfaces for theX˜,ã, andb˜electronic states, and the out-of-plane transition moment surface for theb˜←ãelectronic transition. We use this information to simulate absorption spectra withinX˜3B1andã1A1state and of theb˜1B1← ã1A1transition in order to aid in the search for them.

  18. Accurate thermochemistry and spectroscopy of the oxygen-protonated sulfur dioxide isomers.

    PubMed

    Puzzarini, Cristina

    2011-12-28

    Despite the promising relevance of protonated sulfur dioxide in astrophysical and atmospheric fields, its thermochemical and spectroscopic characterization is very limited. High-level quantum-chemical calculations have shown that the most stable isomer is the cis oxygen-protonated sulfur dioxide, HOSO(+), while the trans form is about 2 kcal mol(-1) less stable; even less stable (by about 42 kcal mol(-1)) is the S-protonated isomer [V. Lattanzi et al., J. Chem. Phys., 2010, 133, 194305]. The enthalpy of formation for the cis- and trans-HOSO(+) is presented, based on the well tested HEAT protocol [A. Tajti et al., J. Chem. Phys., 2004, 121, 11599]. Systematically extrapolated ab initio energies, accounting for electron correlation through coupled cluster theory, including up to single, double, triple and quadruple excitations, have been corrected for core-electron correlation, anharmonic zero-point vibrational energy, diagonal Born-Oppenheimer and scalar relativistic effects. As a byproduct, proton affinity of sulfur dioxide and atomization energies have also been obtained at the same levels of theory. Vibrational and rotational spectroscopic properties have been investigated by means of composite schemes that allow us to account for truncation of basis set as well as core correlation. Where available, for both thermochemistry and spectroscopy, very good agreement with experimental data has been observed.

  19. Spectral Analysis of 3-(Adamantan-1-yl)-4-Ethyl-1-[(4-Phenylpiperazin-1-yl) Methyl]-1 H-1,2,4-Triazole-5(4 H)-Thione

    NASA Astrophysics Data System (ADS)

    Mindarava, Y. L.; Shundalau, M. B.; Al-Wahaibi, L. H.; El-Emam, A. A.; Matsukovich, A. S.; Gaponenko, S. V.

    2018-05-01

    Vibrational IR (3200-650 cm-1) and Raman spectra (3200-150 cm-1) of adamantane-containing 3-(adamantan-1-yl)-4-ethyl-1-[(4-phenylpiperazin-1-yl)methyl]-1H-1,2,4-triazole-5(4H)-thione, which is promising for drug design, were examined. The UV/Vis spectrum (450-200 nm) of the compound in EtOH was measured. Full geometry optimization using density functional theory (DFT) in the B3LYP/cc-pVDZ approximation allowed the equilibrium configuration of the molecule to be determined and IR and Raman spectra to be calculated. Based on these, the experimental vibrational IR and Raman spectra were interpreted and the biological activity indices were predicted. The UV/Vis spectrum of the title compound was simulated at the time-dependent DFT/CAM-B3LYP/cc-pVDZ level with and without solvent effects and at the ab initio multi-reference perturbation theory XMCQDPT2 level. The UV/Vis spectrum that was simulated using the multi-reference XMCQDPT2 approximation agreed very successfully with the experimental data, in contrast to the single-reference DFT method. This was probably a consequence of intramolecular charge transfer.

  20. Spectral Analysis of 3-(Adamantan-1-yl)-4-Ethyl-1-[(4-Phenylpiperazin-1-yl) Methyl]-1H-1,2,4-Triazole-5(4H)-Thione

    NASA Astrophysics Data System (ADS)

    Mindarava, Y. L.; Shundalau, M. B.; Al-Wahaibi, L. H.; El-Emam, A. A.; Matsukovich, A. S.; Gaponenko, S. V.

    2018-05-01

    Vibrational IR (3200-650 cm-1) and Raman spectra (3200-150 cm-1) of adamantane-containing 3-(adamantan-1-yl)-4-ethyl-1-[(4-phenylpiperazin-1-yl)methyl]-1H-1,2,4-triazole-5(4H)-thione, which is promising for drug design, were examined. The UV/Vis spectrum (450-200 nm) of the compound in EtOH was measured. Full geometry optimization using density functional theory (DFT) in the B3LYP/cc-pVDZ approximation allowed the equilibrium configuration of the molecule to be determined and IR and Raman spectra to be calculated. Based on these, the experimental vibrational IR and Raman spectra were interpreted and the biological activity indices were predicted. The UV/Vis spectrum of the title compound was simulated at the time-dependent DFT/CAM-B3LYP/cc-pVDZ level with and without solvent effects and at the ab initio multi-reference perturbation theory XMCQDPT2 level. The UV/Vis spectrum that was simulated using the multi-reference XMCQDPT2 approximation agreed very successfully with the experimental data, in contrast to the single-reference DFT method. This was probably a consequence of intramolecular charge transfer.

  1. Coherent Raman Spectra of the nu(1) Mode of 10BF3 and 11BF3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kirkpatrick, Robynne; Masiello, Tony; Weber, Alfons

    2006-05-01

    High resolution (0.001cm-1) coherent anti-Stokes Raman spectroscopy (CARS) was used to directly examine the v1 symmetric stretching mode of the planar symmetric D3h molecules 10BF3 and 11BF3. Simulations of the spectra were done using v1 rovibrational parameters deduced from published infrared hot-band and difference-band studies and the close similarity to the observed CARS spectra confirms the validity of the infrared constants. No significant perturbations by Fermi resonance or Coriolis interactions with nearby states are observed, in marked contrast to the case of sulfur trioxide, a similar D3h molecule recently studied. In the harmonic approximation, the 10BF3 and 11BF3 v1 Q-more » branches would be identical since the isotopic substitution is at the center of mass but, interestingly, the v1 stretching frequency for 11BF3 is found to be 0.198 cm-1 higher than for the lighter 10BF3 isotopomer. This counterintuitive result is reproduced almost exactly (0.200 cm -1) by ab initio calculations (B3LYP/cc-pVTZ) that included evaluation of cubic and quartic forced constants and xij anharmonicity constants. The ab initio computations also predict to within 1% the ?B, ?C changes in the rotational constants in going from the ground state to the v1=1 vibrational level. The results illustrate nicely the complementary interplay of modern infrared, Raman, and ab initio methods in obtaining and analyzing rovibrational spectra.« less

  2. Nuclear magnetic resonance spectral analysis and molecular properties of berberine

    NASA Astrophysics Data System (ADS)

    Huang, Ming-Ju; Lee, Ken S.; Hurley, Sharon J.

    An extensive theoretical study of berberine has been performed at the ab initio HF/6-31G**, HF/6-311G**, and B3LYP/6-311G** levels with and without solvent effects. The optimized structures are compared with X-ray data. We found that the optimized structures with solvent effects are in slightly better agreement with X-ray data than those without solvent effects. The 1H and 13C nuclear magnetic resonance (NMR) chemical shifts of berberine were calculated by using the gauge-independent atomic orbital (GIAO) (with and without solvent effects), CSGT, and IGAIM methods. The calculated chemical shifts were compared with the two-dimensional NMR experimental data. Overall, the calculated chemical shifts show very good agreement with the experimental results. The harmonic vibrational frequencies for berberine were calculated at the B3LYP/6-311G** level.

  3. AB INITIO STUDY OF STRUCTURES, BARRIERS FOR INTERNAL ROTATION, VIBRATIONAL FREQUENCIES, AND THERMODYNAMIC PROPERTIES OF HYDROPEROXIDE MOLECULES: CH3CH2OOH, CH3CHCLOOH AND CH3CCL2OOH. (R824970)

    EPA Science Inventory

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  4. AB INITIO STUDY OF -CHLORINATED ETHYL HYDROPEROXIDES CH3CH2OOH, CH3CHCLOOH, AND CH3CCL2OOH: CONFORMATIONAL ANALYSIS, INTERNAL ROTATION BARRIERS, VIBRATIONAL FREQUENCIES, AND THERMODYNAMIC PROPERTIES. (R824970)

    EPA Science Inventory

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  5. Vibronic Transitions in the X-Sr Series (X=Li, Na, K, Rb): on the Accuracy of Nuclear Wavefunctions Derived from Quantum Chemistry

    NASA Astrophysics Data System (ADS)

    Meyer, Ralf; Pototschnig, Johann V.; Hauser, Andreas W.; Ernst, Wolfgang E.

    2016-06-01

    Research on ultracold molecules has seen a growing interest recently in the context of high-resolution spectroscopy and quantum computation. The preparation of molecules in low vibrational levels of the ground state is experimentally challenging, and typically achieved by population transfer using excited electronic states. On the theoretical side, highly accurate potential energy surfaces are needed for a correct description of processes such as the coherent de-excitation from the highest and therefore weakly bound vibrational levels in the electronic ground state via couplings to electronically excited states. Particularly problematic is the correct description of potential features at large intermolecular distances. Franck-Condon overlap integrals for nuclear wavefunctions in barely bound vibrational states are extremely sensitive to inaccuracies of the potential at long range. In this study, we compare the predictions of common, wavefunction-based ab initio techniques for a known de-excitation mechanism in alkali-alkaline earth dimers. It is the aim to analyze the predictive power of these methods for a preliminary evaluation of potential cooling mechanisms in heteronuclear open shell systems which offer the experimentalist an electric as well as a magnetic handle for manipulation. The series of X-Sr molecules, with X = Li, Na, K and Rb, has been chosen for a direct comparison. Quantum degenerate mixtures of Rb and Sr have already been produced, making this combination very promising for the production of ultracold molecules. B. Pasquiou, A. Bayerle, S. M. Tzanova, S. Stellmer, J. Szczepkowski, M. Parigger, R. Grimm, and F. Schreck, Phys. Rev. A, 2013, 88, 023601

  6. Hydrogen Recombination and Dimer Formation on Graphite from Ab Initio Molecular Dynamics Simulations.

    PubMed

    Casolo, S; Tantardini, G F; Martinazzo, R

    2016-07-14

    We studied Eley-Rideal molecular hydrogen formation on graphite using ab initio molecular dynamics, in the energy range relevant for the chemistry of the interstellar medium and for terrestrial experiments employing cold plasma (0.02-1 eV). We found substantial projectile steering effects that prevent dimer formation at low energies, thereby ruling out any catalytic synthetic pathways that form hydrogen molecules. Ortho and para dimers do form efficiently thanks to preferential sticking, but only at energies that are too high to be relevant for the chemistry of the interstellar medium. Computed reaction cross sections and ro-vibrational product populations are in good agreement with available experimental data and capable of generating adsorbate configurations similar to those observed with scanning tunneling microscopy techniques.

  7. Ab initio atomic recombination reaction energetics on model heat shield surfaces

    NASA Technical Reports Server (NTRS)

    Senese, Fredrick; Ake, Robert

    1992-01-01

    Ab initio quantum mechanical calculations on small hydration complexes involving the nitrate anion are reported. The self-consistent field method with accurate basis sets has been applied to compute completely optimized equilibrium geometries, vibrational frequencies, thermochemical parameters, and stable site labilities of complexes involving 1, 2, and 3 waters. The most stable geometries in the first hydration shell involve in-plane waters bridging pairs of nitrate oxygens with two equal and bent hydrogen bonds. A second extremely labile local minimum involves out-of-plane waters with a single hydrogen bond and lies about 2 kcal/mol higher. The potential in the region of the second minimum is extremely flat and qualitatively sensitive to changes in the basis set; it does not correspond to a true equilibrium structure.

  8. Ab initio/DFT/GIAO-CCSD(T) calculational study of the t-butyl cation: comparison of experimental data with structures, energetics, IR vibrational frequencies, and 13C NMR chemical shifts indicating preferred C(s) conformation.

    PubMed

    Rasul, Golam; Chen, Jonathan L; Prakash, G K Surya; Olah, George A

    2009-06-18

    The C(s) conformation of the tert-butyl cation 3 was established to be the preferred global energy minimum using a combination of ab initio, DFT, and CCSD(T) methodology with correlation-consistent basis sets. The potential energy surface of methyl rotation involving the C(3v), C(s), and C(3h) forms, however, in accord with previous studies, is quite flat. The computed IR absorptions of 3 indicate that it has the greatest degree of electron donation from C-H bonds into the C(+)-C bonds. The experimental (13)C NMR chemical shifts also agree very well with the experimental data.

  9. Ab initio Prediction of Martensitic and Intermartensitic Phase Boundaries in Ni-Mn-Ga

    NASA Astrophysics Data System (ADS)

    Dutta, B.; ćakır, A.; Giacobbe, C.; Al-Zubi, A.; Hickel, T.; Acet, M.; Neugebauer, J.

    2016-01-01

    Despite the importance of martensitic transformations of Ni-Mn-Ga Heusler alloys for their magnetocaloric and shape-memory properties, the martensitic part of their phase diagrams is not well determined. Using an ab initio approach that includes the interplay of lattice and vibrational degrees of freedom we identify an intermartensitic transformation between a modulated and a nonmodulated phase as a function of excess Ni and Mn content. Based on an evaluation of the theoretical findings and experimental x-ray diffraction data for Mn-rich alloys, we are able to predict the phase diagram for Ni-rich alloys. In contrast to other mechanisms discussed for various material systems in the literature, we herewith show that the intermartensitic transformation can be understood solely using thermodynamic concepts.

  10. New ab initio adiabatic potential energy surfaces and bound state calculations for the singlet ground X˜ 1A1 and excited C˜ 1B2(21A') states of SO2

    NASA Astrophysics Data System (ADS)

    Kłos, Jacek; Alexander, Millard H.; Kumar, Praveen; Poirier, Bill; Jiang, Bin; Guo, Hua

    2016-05-01

    We report new and more accurate adiabatic potential energy surfaces (PESs) for the ground X˜ 1A1 and electronically excited C˜ 1B2(21A') states of the SO2 molecule. Ab initio points are calculated using the explicitly correlated internally contracted multi-reference configuration interaction (icMRCI-F12) method. A second less accurate PES for the ground X ˜ state is also calculated using an explicitly correlated single-reference coupled-cluster method with single, double, and non-iterative triple excitations [CCSD(T)-F12]. With these new three-dimensional PESs, we determine energies of the vibrational bound states and compare these values to existing literature data and experiment.

  11. Raman scattering tensors in thymine molecule from an ab initio MO calculation

    NASA Astrophysics Data System (ADS)

    Tsuboi, Masamichi; Kumakura, Akiko; Aida, Misako; Kaneko, Motohisa; Dupuis, Michel; Ushizawa, Koichi; Ueda, Toyotoshi

    1997-03-01

    Ab initio SCF MO calculations have been made of the thymine molecule for the permanent polarizability and the polarizability derivatives with respect to the normal coordinates. The latter correspond to the components of the Raman tensors, and each of these tensors was brought into a visualized form by a transformation of the tensor axes into the principal system. For a comparison with such computational findings, a polarized Raman spectroscopic measurement has been made of a single crystal of thymine with 488.0 nm excitation. For most of the in-plane vibrations, calculated tensors were found to be well correlated with the observed Raman scattering anisotropy. On the basis of such correlations, discussions are given as for the polarizability oscillations caused by the atomic displacements in the molecule.

  12. Ab initio Prediction of Martensitic and Intermartensitic Phase Boundaries in Ni-Mn-Ga.

    PubMed

    Dutta, B; Çakır, A; Giacobbe, C; Al-Zubi, A; Hickel, T; Acet, M; Neugebauer, J

    2016-01-15

    Despite the importance of martensitic transformations of Ni-Mn-Ga Heusler alloys for their magnetocaloric and shape-memory properties, the martensitic part of their phase diagrams is not well determined. Using an ab initio approach that includes the interplay of lattice and vibrational degrees of freedom we identify an intermartensitic transformation between a modulated and a nonmodulated phase as a function of excess Ni and Mn content. Based on an evaluation of the theoretical findings and experimental x-ray diffraction data for Mn-rich alloys, we are able to predict the phase diagram for Ni-rich alloys. In contrast to other mechanisms discussed for various material systems in the literature, we herewith show that the intermartensitic transformation can be understood solely using thermodynamic concepts.

  13. Correlation of the bond-length change and vibrational frequency shift in model hydrogen-bonded complexes of pyrrole

    NASA Astrophysics Data System (ADS)

    McDowell, Sean A. C.

    2017-04-01

    An MP2 computational study of model hydrogen-bonded pyrrole⋯YZ (YZ = NH3, NCH, BF, CO, N2, OC, FB) complexes was undertaken in order to examine the variation of the Nsbnd H bond length change and its associated vibrational frequency shift. The chemical hardness of Y, as well as the YZ dipole moment, were found to be important parameters in modifying the bond length change/frequency shift. The basis set effect on the computed properties was also assessed. A perturbative model, which accurately reproduced the ab initio Nsbnd H bond length changes and frequency shifts, was useful in rationalizing the observed trends.

  14. Low-energy phonon dispersion in LaFe4Sb12

    NASA Astrophysics Data System (ADS)

    Leithe-Jasper, Andreas; Boehm, Martin; Mutka, Hannu; Koza, Michael M.

    We studied the vibrational dynamics of a single crystal of LaFe4Sb12 by three-axis inelastic neutron spectroscopy. The dispersion of phonons with wave vectors q along [ xx 0 ] and [ xxx ] directions in the energy range of eigenmodes with high amplitudes of lanthanum vibrations, i.e., at ℏω < 12 meV is identified. Symmetry-avoided anticrossing dispersion of phonons is established in both monitored directions and distinct eigenstates at high-symmetry points and at the Brillouin-zone center are discriminated. The experimentally derived phonon dispersion and intensities are compared with and backed up by ab initio lattice dynamics calculations. results of the computer model match well with the experimental data.

  15. Identifying the Role of Terahertz Vibrations in Metal-Organic Frameworks: From Gate-Opening Phenomenon to Shear-Driven Structural Destabilization

    NASA Astrophysics Data System (ADS)

    Ryder, Matthew R.; Civalleri, Bartolomeo; Bennett, Thomas D.; Henke, Sebastian; Rudić, Svemir; Cinque, Gianfelice; Fernandez-Alonso, Felix; Tan, Jin-Chong

    2014-11-01

    We present an unambiguous identification of low-frequency terahertz vibrations in the archetypal imidazole-based metal-organic framework (MOF) materials: ZIF-4, ZIF-7, and ZIF-8, all of which adopt a zeolite-like nanoporous structure. Using inelastic neutron scattering and synchrotron radiation far-infrared absorption spectroscopy, in conjunction with density functional theory (DFT), we have pinpointed all major sources of vibrational modes. Ab initio DFT calculations revealed the complex nature of the collective THz modes, which enable us to establish detailed correlations with experiments. We discover that low-energy conformational dynamics offers multiple pathways to elucidate novel physical phenomena observed in MOFs. New evidence demonstrates that THz modes are intrinsically linked, not only to anomalous elasticity underpinning gate-opening and pore-breathing mechanisms, but also to shear-induced phase transitions and the onset of structural instability.

  16. Molecular vibrational energy flow

    NASA Astrophysics Data System (ADS)

    Gruebele, M.; Bigwood, R.

    This article reviews some recent work in molecular vibrational energy flow (IVR), with emphasis on our own computational and experimental studies. We consider the problem in various representations, and use these to develop a family of simple models which combine specific molecular properties (e.g. size, vibrational frequencies) with statistical properties of the potential energy surface and wavefunctions. This marriage of molecular detail and statistical simplification captures trends of IVR mechanisms and survival probabilities beyond the abilities of purely statistical models or the computational limitations of full ab initio approaches. Of particular interest is IVR in the intermediate time regime, where heavy-atom skeletal modes take over the IVR process from hydrogenic motions even upon X H bond excitation. Experiments and calculations on prototype heavy-atom systems show that intermediate time IVR differs in many aspects from the early stages of hydrogenic mode IVR. As a result, IVR can be coherently frozen, with potential applications to selective chemistry.

  17. Raman bandshape analysis on CH and CSC stretching modes of dimethyl sulfoxide in liquid binary mixture: comparative study with quantum-chemical calculations.

    PubMed

    Upadhyay, Ganesh; Gomti Devi, Th

    2014-12-10

    The interacting nature of dimethyl sulfoxide (DMSO) in binary mixtures has been carried out on CH and CSC stretching modes of vibration using chloroform (CLF), chloroform-d (CLFd), acetonitrile (ACN) and acetonitrile-d3 (ACNd) solvents. Peak frequencies of both the stretching modes show blue shift with the increase in solvent concentration. Variation of Raman bandwidth with the solvent concentration was discussed using different mechanisms. Ab initio calculation for geometry optimization and vibrational wavenumber calculation have been performed on monomer and dimer structures of DMSO to explain the experimentally observed Raman spectra. Theoretically calculated values are found in good agreement with the experimental results. Vibrational and reorientational relaxation times have been studied corresponding to solvent concentrations to elucidate the interacting mechanisms of binary mixtures. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Atomic Origins of the Self-Healing Function in Cement-Polymer Composites.

    PubMed

    Nguyen, Manh-Thuong; Wang, Zheming; Rod, Kenton A; Childers, M Ian; Fernandez, Carlos; Koech, Phillip K; Bennett, Wendy D; Rousseau, Roger; Glezakou, Vassiliki-Alexandra

    2018-01-24

    Motivated by recent advances in self-healing cement and epoxy polymer composites, we present a combined ab initio molecular dynamics and sum frequency generation (SFG) vibrational spectroscopy study of a calcium-silicate-hydrate/polymer interface. On stable, low-defect surfaces, the polymer only weakly adheres through coordination and hydrogen bonding interactions and can be easily mobilized toward defected surfaces. Conversely, on fractured surfaces, the polymer strongly anchors through ionic Ca-O bonds resulting from the deprotonation of polymer hydroxyl groups. In addition, polymer S-S groups are turned away from the cement-polymer interface, allowing for the self-healing function within the polymer. The overall elasticity and healing properties of these composites stem from a flexible hydrogen bonding network that can readily adapt to surface morphology. The theoretical vibrational signals associated with the proposed cement-polymer interfacial chemistry were confirmed experimentally by SFG vibrational spectroscopy.

  19. Protonated sugars: vibrational spectroscopy and conformational structure of protonated O-methyl α-D-galactopyranoside

    NASA Astrophysics Data System (ADS)

    Rudić, Svemir; Xie, Hong-bin; Gerber, R. Benny; Simons, John P.

    2012-08-01

    'Bridging' protons provide a common structural motif in biological assemblies such as proton wires and proton-bound dimers. Here we present a 'proof-of-principle' computational and vibrational spectroscopic investigation of an 'intra-molecular proton-bound dimer,' O-methyl α-D-galactopyranoside (αMeGal-H+), generated in the gas phase through photo-ionisation of its complex with phenol in a molecular beam. Its vibrational spectrum corresponds well with a classical molecular dynamics simulation conducted 'on-the-fly' and also with the lowest-energy structures predicted by DFT and ab initio calculations. They reveal proton-bound structures that bridge neighbouring pairs of oxygen atoms, preferentially O6 and O4, linked together within the carbohydrate scaffold. Motivated by the possibility of an entry into the microscopic mechanism of its acid (or enzyme)-catalysed hydrolysis, we also report the corresponding predictions for its singly hydrated complex.

  20. Tautomerization, molecular structure, transition state structure, and vibrational spectra of 2-aminopyridines: a combined computational and experimental study.

    PubMed

    Al-Otaibi, Jamelah S

    2015-01-01

    2-amino pyridine derivatives have attracted considerable interest because they are useful precursors for the synthesis of a variety of heterocyclic compounds possessing a medicinal value. In this work we aim to study both structural and electronic as well as high quality vibrational spectra for 2-amino-3-methylpyridine (2A3MP) and 2-amino-4-methylpyridine (2A4MP). Møller-Plesset perturbation theory (MP2/6-31G(d) and MP2/6-31++G(d,p) methods were used to investigate the structure and vibrational analysis of (2A3MP) and (2A4MP). Tautomerization of 2A4MP was investigated by Density Functional Theory (DFT/B3LYP) method in the gas phase. For the first time, all tautomers including NH → NH conversions as well as those usually omitted, NH → CH and CH → CH, were considered. The canonical structure (2A4MP1) is the most stable tautomer. It is 13.60 kcal/mole more stable than the next (2A4MP2). Transition state structures of pyramidal N inversion and proton transfer were computed at B3LYP/6-311++G(d,p). Barrier to transition state of hydrogen proton transfer is calculated as 44.81 kcal/mol. Transition state activation energy of pyramidal inversion at amino N is found to be 0.41 kcal/mol using the above method. Bond order and natural atomic charges were also calculated at the same level. The raman and FT-IR spectra of (2A3MP) and (2A4MP) were measured (4000-400 cm(-1)). The optimized molecular geometries, frequencies and vibrational bands intensity were calculated at ab initio (MP2) and DFT(B3LYP) levels of theory with 6-31G(d), 6-31++G(d,p) and 6-311++G(d,p) basis sets. The vibrational frequencies were compared with experimentally measured FT-IR and FT-Raman spectra. Reconsidering the vibrational analysis of (2A3MP) and (2A4MP) with more accurate FT-IR machine and highly accurate animation programs result in new improved vibrational assignments. Sophisticated quantum mechanics methods enable studying the transition state structure for different chemical systems.

  1. Theoretical determination of molecular structure and conformation. Part X. Geometry and puckering potential of azetidine, (CH 2) 3NH, combination of electron diffraction and ab initio studies

    NASA Astrophysics Data System (ADS)

    Cremer, Dieter; Dorofeeva, Olga V.; Mastryukov, Vladimir S.

    1981-09-01

    Restricted Hartree—Fock calculations on 21 planar and puckered conformers of azetidine have been done employing a split valence basis augmented by d functions. Complete geometry optimizations have been performed for eight conformers. In this way the puckering potential of azetidine is explored over the range -40° < ø (puckering angle) < 40°, for both sp3 and sp2 hybridization of the nitrogen atom. In its equatorial form, azetidine is slightly more puckered than cyclobutane. This is because of a decrease of van der Waals' repulsion between H atoms. Charge effects lead to destabilization of the axial forms. There is only moderate coupling between puckering and methylene group rocking. Previously published electron diffraction (ED) data are reinvestigated using vibrational corrections and information from the ab initio calculations. On the basis of this MO constrained ED (MOCED) analysis a puckering angle φ = 35.1(1.8)° is found. Observed rg and re bond distances are compared with ab initio values.

  2. A new ab initio potential energy surface for the Ne-H 2 interaction

    NASA Astrophysics Data System (ADS)

    Lique, François

    2009-03-01

    A new accurate three-dimensional potential energy surface for the Ne-H 2 system, which explicitly takes into account the r-dependence of the H 2 vibration, was determined from ab initio calculations. It was obtained with the single and double excitation coupled-cluster method with noniterative perturbational treatment of triple excitation [CCSD(T)]. Calculations was been performed using the augmented correlation-consistent polarized quintuple zeta basis set (aug-cc-pV5Z) for the three atoms. We checked the accuracy of the present ab initio calculations. We have determined, using the new Ne-H 2 potential energy surface, differential cross-sections for the rotational excitation of the H 2 and D 2 molecules in collision with Ne and we have compared them with experimental results of Faubel et al. [M. Faubel, F.A. Gianturco, F. Ragnetti, L.Y. Rusin, F. Sondermann, U. Tappe, J.P. Toennies, J. Chem. Phys. 101 (1994) 8800]. The overall agreement confirms that the new potential energy surface can be used for the simulation of molecular collisions and/or molecular spectroscopy of the van der Waals complex Ne-H 2.

  3. Time-domain ab initio modeling of photoinduced dynamics at nanoscale interfaces.

    PubMed

    Wang, Linjun; Long, Run; Prezhdo, Oleg V

    2015-04-01

    Nonequilibrium processes involving electronic and vibrational degrees of freedom in nanoscale materials are under active experimental investigation. Corresponding theoretical studies are much scarcer. The review starts with the basics of time-dependent density functional theory, recent developments in nonadiabatic molecular dynamics, and the fusion of the two techniques. Ab initio simulations of this kind allow us to directly mimic a great variety of time-resolved experiments performed with pump-probe laser spectroscopies. The focus is on the ultrafast photoinduced charge and exciton dynamics at interfaces formed by two complementary materials. We consider purely inorganic materials, inorganic-organic hybrids, and all organic interfaces, involving bulk semiconductors, metallic and semiconducting nanoclusters, graphene, carbon nanotubes, fullerenes, polymers, molecular crystals, molecules, and solvent. The detailed atomistic insights available from time-domain ab initio studies provide a unique description and a comprehensive understanding of the competition between electron transfer, thermal relaxation, energy transfer, and charge recombination processes. These advances now make it possible to directly guide the development of organic and hybrid solar cells, as well as photocatalytic, electronic, spintronic, and other devices relying on complex interfacial dynamics.

  4. The origins of intra- and inter-molecular vibrational couplings: A case study of H{sub 2}O-Ar on full and reduced-dimensional potential energy surface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hou, Dan; Ma, Yong-Tao; Zhang, Xiao-Long

    2016-01-07

    The origin and strength of intra- and inter-molecular vibrational coupling is difficult to probe by direct experimental observations. However, explicitly including or not including some specific intramolecular vibrational modes to study intermolecular interaction provides a precise theoretical way to examine the effects of anharmonic coupling between modes. In this work, a full-dimension intra- and inter-molecular ab initio potential energy surface (PES) for H{sub 2}O–Ar, which explicitly incorporates interdependence on the intramolecular (Q{sub 1},  Q{sub 2},  Q{sub 3}) normal-mode coordinates of the H{sub 2}O monomer, has been calculated. In addition, four analytic vibrational-quantum-state-specific PESs are obtained by least-squares fitting vibrationally averagedmore » interaction energies for the (v{sub 1},  v{sub 2},  v{sub 3}) =  (0,  0,  0), (0,  0,  1), (1,  0,  0), (0,  1,  0) states of H{sub 2}O to the three-dimensional Morse/long-range potential function. Each vibrationally averaged PES fitted to 442 points has root-mean-square (rms) deviation smaller than 0.15 cm{sup −1}, and required only 58 parameters. With the 3D PESs of H{sub 2}O–Ar dimer system, we employed the combined radial discrete variable representation/angular finite basis representation method and Lanczos algorithm to calculate rovibrational energy levels. This showed that the resulting vibrationally averaged PESs provide good representations of the experimental infrared data, with rms discrepancies smaller than 0.02 cm{sup −1} for all three rotational branches of the asymmetric stretch fundamental transitions. The infrared band origin shifts associated with three fundamental bands of H{sub 2}O in H{sub 2}O–Ar complex are predicted for the first time and are found to be in good agreement with the (extrapolated) experimental values. Upon introduction of additional intramolecular degrees of freedom into the intermolecular potential energy surface, there is clear spectroscopic evidence of intra- and intermolecular vibrational couplings.« less

  5. Vibrational spectra and ab initio analysis of tert-butyl, trimethylsilyl, and trimethylgermyl derivatives of 3,3-dimethylcyclopropene IV. 3,3-Dimethyl-1,2-bis(trimethylgermyl)cyclopropene

    NASA Astrophysics Data System (ADS)

    Panchenko, Yu. N.; De Maré, G. R.; Abramenkov, A. V.; Baird, M. S.; Tverezovsky, V. V.; Nizovtsev, A. V.; Bolesov, I. G.

    2003-06-01

    The infrared (IR) and Raman spectra of 3,3-dimethyl-1,2-bis(trimethylgermyl)cyclopropene (I) were measured in the liquid phase. Total geometry optimisation was performed at the HF/6-31G* level. The HF/6-31G*//HF6-31G* quantum mechanical force field (QMFF) was calculated and used to determine the theoretical fundamental vibrational frequencies, their predicted IR intensities, Raman activities, and Raman depolarisation ratios. Using Pulay's scaling method and the theoretical molecular geometry, the QMFF of I was scaled by a set of scaling factors comprised of elements transferred from the sets used to correct the QMFF's of 3,3-dimethylbutene-1, and 1-methyl-, 1,2-dimethyl-, and 3,3-dimethylcyclopropene (17 scale factors for a 105-dimensional problem). This set of scale factors was used previously to correct the QMFF of 3,3-dimethyl-1,2-bis(tert-butyl)cyclopropene and 3,3-dimethyl-1,2-bis(trimethylsilyl)cyclopropene. The scaled QMFF obtained was used to solve the vibrational problem. Differential Raman cross-sections were calculated using the quantum mechanical values of the Raman activities. The appropriate theoretical spectrograms for the Raman and IR spectra of I were constructed. Assignments of the experimental vibrational spectra of I are given. They take into account the calculated potential energy distributions and the correlation between the estimations of the experimental IR and Raman intensities and Raman depolarisation ratios and the corresponding theoretical values calculated using the unscaled QMFF.

  6. Line list for the ground state of CaF

    NASA Astrophysics Data System (ADS)

    Hou, Shilin; Bernath, Peter F.

    2018-05-01

    The molecular potential energy function and electronic dipole moment function for the ground state of CaF were studied with MRCI, ACPF, and RCCSD(T) ab initio calculations. The RCCSD(T) potential function reproduces the experimental vibrational intervals to within ∼2 cm-1. The RCCSD(T) dipole moment at the equilibrium internuclear separation agrees well with the experimental value. Over a wide range of internuclear separations, far beyond the range associated with the observed spectra, the ab initio dipole moment functions are similar and highly linear. An extended Morse oscillator (EMO) potential function was also obtained by fitting the observed lines of the laboratory vibration-rotation and pure rotation spectra of the 40CaF X2Σ+ ground state. The fitted potential reproduces the observed transitions (v ≤ 8, N ≤ 121, Δv = 0, 1) within their experimental uncertainties. With this EMO potential and the RCCSD(T) dipole moment function, line lists for 40CaF, 42CaF, 43CaF, 44CaF, 46CaF, and 48CaF were computed for v ≤ 10, N ≤ 121, Δv = 0-10. The calculated emission spectra are in good agreement with an observed laboratory spectrum of CaF at a sample temperature of 1873 K.

  7. Yttrium aluminium garnet under pressure: Structural, elastic, and vibrational properties from ab initio studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Monteseguro, V.; Rodríguez-Hernández, P.; Muñoz, A., E-mail: amunoz@ull.es

    The structural, elastic, and vibrational properties of yttrium aluminum garnet Y{sub 3}Al{sub 5}O{sub 12} are studied under high pressure by ab initio calculations in the framework of the density functional theory. The calculated ground state properties are in good agreement with the available experimental data. Pressure dependences of bond length and bulk moduli of the constituent polyhedra are reported. The evolution of the elastic constants and the major elastic properties, Young and shear modulus, Poisson's ratios, and Zener anisotropy ratio, are described. The mechanical stability is analyzed, on the light of “Born generalized stability criteria,” showing that the garnet ismore » mechanically unstable above 116 GPa. Symmetries, frequencies, and pressure coefficients of the Raman-active modes are discussed on the basis of the calculated total and partial phonon density of states, which reflect the dynamical contribution of each atom. The relations between the phonon modes of Y{sub 3}Al{sub 5}O{sub 12} and the internal and external molecular modes of the different polyhedra are discussed. Infrared-active modes, as well as the silent modes, and their pressure dependence are also investigated. No dynamical instabilities were found below 116 GPa.« less

  8. Resolving the Origins of Crystalline Anharmonicity Using Terahertz Time-Domain Spectroscopy and ab Initio Simulations.

    PubMed

    Ruggiero, Michael T; Zeitler, J Axel

    2016-11-17

    Anharmonicity has been shown to be an important piece of the fundamental framework that dictates numerous observable phenomena. In particular, anharmonicity is the driving force of vibrational relaxation processes, mechanisms that are integral to the proper function of numerous chemical processes. However, elucidating its origins has proven difficult due to experimental and theoretical challenges, specifically related to separating the anharmonic contributions from other unrelated effects. While no one technique is particularly suited for providing a complete picture of anharmonicity, by combining multiple complementary methods such a characterization can be made. In this study the role of individual atomic interactions on the anharmonic properties of crystalline purine, the building block of many DNA and RNA nucleobases, is studied by experimental terahertz time-domain spectroscopy and first-principles density functional theory (DFT) and ab initio molecular dynamics simulations (AIMD). In particular, the detailed vibrational information provided by the DFT calculations is used to interpret the atomic origins of anharmonic-related effects as determined by the AIMD calculations, which are in good agreement with the experimental data. The results highlight that anharmonicity is especially pronounced in the intermolecular interactions, particularly along the amine hydrogen bond coordinate, and yields valuable insight into what is similarly observed complex biosystems and crystalline solids.

  9. Effect of intermolecular hydrogen bonding, vibrational analysis and molecular structure of 4-chlorobenzothioamide

    NASA Astrophysics Data System (ADS)

    Çırak, Çağrı; Sert, Yusuf; Ucun, Fatih

    2013-09-01

    In the present work, the experimental and theoretical vibrational spectra of 4-chlorobenzothioamide were investigated. The FT-IR (400-4000 cm-1) and μ-Raman spectra (100-4000 cm-1) of 4-chlorobenzothioamide in the solid phase were recorded. The geometric parameters (bond lengths and bond angles), vibrational frequencies, Infrared and Raman intensities of the title molecule in the ground state were calculated using ab initio Hartree-Fock and density functional theory (B3LYP) methods with the 6-311++G(d,p) basis set for the first time. The optimized geometric parameters and the theoretical vibrational frequencies were found to be in good agreement with the corresponding experimental data and with the results found in the literature. The vibrational frequencies were assigned based on the potential energy distribution using the VEDA 4 program. The dimeric form of 4-chlorobenzothioamide was also simulated to evaluate the effect of intermolecular hydrogen bonding on the vibrational frequencies. It was observed that the Nsbnd H stretching modes shifted to lower frequencies, while the in-plane and out-of-plane bending modes shifted to higher frequencies due to the intermolecular Nsbnd H⋯S hydrogen bond. Also, the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) energies and diagrams were presented.

  10. Thermal relaxation of molecular oxygen in collisions with nitrogen atoms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andrienko, Daniil A., E-mail: daniila@umich.edu; Boyd, Iain D.

    2016-07-07

    Investigation of O{sub 2}–N collisions is performed by means of the quasi-classical trajectory method on the two lowest ab initio potential energy surfaces at temperatures relevant to hypersonic flows. A complete set of bound–bound and bound–free transition rates is obtained for each precollisional rovibrational state. Special attention is paid to the vibrational and rotational relaxations of oxygen as a result of chemically non-reactive interaction with nitrogen atoms. The vibrational relaxation of oxygen partially occurs via the formation of an intermediate NO{sub 2} complex. The efficient energy randomization results in rapid vibrational relaxation at low temperatures, compared to other molecular systemsmore » with a purely repulsive potential. The vibrational relaxation time, computed by means of master equation studies, is nearly an order of magnitude lower than the relaxation time in N{sub 2}–O collisions. The rotational nonequilibrium starts to play a significant effect at translational temperatures above 8000 K. The present work provides convenient relations for the vibrational and rotational relaxation times as well as for the quasi-steady dissociation rate coefficient and thus fills a gap in data due to a lack of experimental measurements for this system.« less

  11. Quantitative Infrared Absorption Spectra and Vibrational Assignments of Crotonaldehyde and Methyl Vinyl Ketone Using Gas-Phase Mid-Infrared, Far-Infrared, and Liquid Raman Spectra: s-cis vs s-trans Composition Confirmed via Temperature Studies and ab Initio Methods.

    PubMed

    Lindenmaier, Rodica; Williams, Stephen D; Sams, Robert L; Johnson, Timothy J

    2017-02-16

    Methyl vinyl ketone (MVK) and crotonaldehyde are chemical isomers; both are also important species in tropospheric chemistry. We report quantitative vapor-phase infrared spectra of crotonaldehyde and MVK vapors over the 540-6500 cm -1 range. Vibrational assignments of all fundamental modes are made for both molecules on the basis of far- and mid-infrared vapor-phase spectra, liquid Raman spectra, along with density functional theory and ab initio MP2 and high energy-accuracy compound theoretical models (W1BD). Theoretical results indicate that at room temperature the crotonaldehyde equilibrium mixture is approximately 97% s-trans and only 3% s-cis conformer. Nearly all observed bands are thus associated with the s-trans conformer, but a few appear to be uniquely associated with the s-cis conformer, notably ν 16 c at 730.90 cm -1 , which displays a substantial intensity increase with temperature (70% upon going from 5 to 50 o C). The intensity of the corresponding mode of the s-trans conformer decreases with temperature. Under the same conditions, the MVK equilibrium mixture is approximately 69% s-trans conformer and 31% s-cis. W1BD calculations indicate that for MVK this is one of those (rare) cases where there are comparable populations of both conformers, approximately doubling the number of observed bands and exacerbating the vibrational assignments. We uniquely assign the bands associated with both the MVK s-cis conformer as well as those of the s-trans, thus completing the vibrational analyses of both conformers from the same set of experimental spectra. Integrated band intensities are reported for both molecules along with global warming potential values. Using the quantitative IR data, potential bands for atmospheric monitoring are also discussed.

  12. Extension of the MIRS computer package for the modeling of molecular spectra: From effective to full ab initio ro-vibrational Hamiltonians in irreducible tensor form

    NASA Astrophysics Data System (ADS)

    Nikitin, A. V.; Rey, M.; Champion, J. P.; Tyuterev, Vl. G.

    2012-07-01

    The MIRS software for the modeling of ro-vibrational spectra of polyatomic molecules was considerably extended and improved. The original version [Nikitin AV, Champion JP, Tyuterev VlG. The MIRS computer package for modeling the rovibrational spectra of polyatomic molecules. J Quant Spectrosc Radiat Transf 2003;82:239-49.] was especially designed for separate or simultaneous treatments of complex band systems of polyatomic molecules. It was set up in the frame of effective polyad models by using algorithms based on advanced group theory algebra to take full account of symmetry properties. It has been successfully used for predictions and data fitting (positions and intensities) of numerous spectra of symmetric and spherical top molecules within the vibration extrapolation scheme. The new version offers more advanced possibilities for spectra calculations and modeling by getting rid of several previous limitations particularly for the size of polyads and the number of tensors involved. It allows dealing with overlapping polyads and includes more efficient and faster algorithms for the calculation of coefficients related to molecular symmetry properties (6C, 9C and 12C symbols for C3v, Td, and Oh point groups) and for better convergence of least-square-fit iterations as well. The new version is not limited to polyad effective models. It also allows direct predictions using full ab initio ro-vibrational normal mode Hamiltonians converted into the irreducible tensor form. Illustrative examples on CH3D, CH4, CH3Cl, CH3F and PH3 are reported reflecting the present status of data available. It is written in C++ for standard PC computer operating under Windows. The full package including on-line documentation and recent data are freely available at http://www.iao.ru/mirs/mirs.htm or http://xeon.univ-reims.fr/Mirs/ or http://icb.u-bourgogne.fr/OMR/SMA/SHTDS/MIRS.html and as supplementary data from the online version of the article.

  13. Effect of alkaline metal cations on the ionic structure of cryolite melts: Ab-initio NpT MD study.

    PubMed

    Bučko, Tomáš; Šimko, František

    2018-02-14

    Ab initio molecular dynamics simulations in an NpT ensemble have been performed to study the role of alkaline metal cations (Me = Li, Na, K, Rb) on the structure and vibrational properties of melts of Me-cryolites (Me 3 AlF 6 ) at T = 1300 K. In all melts examined in this work, the species AlF 5 2- has been found to be formed at the highest abundance [from 58% (Li) to 70% (Na)] among the Al-containing anionic clusters. The concentration of clusters AlF 4 - increases with the size of cations while that of anions AlF 6 3- follows the opposite trend and it becomes negligible in the melts of the K- and Rb-cryolites. The computed percentage of the Al atoms participating in the formation of dimers Al 2 F m 6-m bridged via common F atoms is significant only in the case of Li- and Na-cryolites (16% and 10%, respectively) and the formation of even larger aggregates is found to be unlikely in all four melts. The percentage of the F atoms that are not bound to Al is ∼20% in all four melts and the ions formed by Me + and F - are found to be only short-lived. Vibrational analysis has been performed using the velocity autocorrelation functions computed for the Cartesian and selected internal coordinates describing Raman-active symmetric stretching vibrations of different AlF n species. The results of vibrational analysis allowed us to identify trends in the variation of positions and shapes of peaks corresponding to the anionic fragments AlF 4 - , AlF 5 2- , and AlF 6 3- with the size of cations, and these trends are found to be consistent with those deduced from the available Raman spectroscopy experiments. Our findings represent a new insight into the properties of cryolite melts, which will be useful for the interpretation of experimental data.

  14. Quantitative Infrared Absorption Spectra and Vibrational Assignments of Crotonaldehyde and Methyl Vinyl Ketone Using Gas-Phase Mid-Infrared, Far-Infrared, and Liquid Raman Spectra: s-cis vs s-trans Composition Confirmed via Temperature Studies and ab Initio Methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lindenmaier, Rodica; Williams, Stephen D.; Sams, Robert L.

    Methyl vinyl ketone (MVK) and crotonaldehyde are chemical isomers; both are also important species in tropospheric chemistry. We report quantitative vapor-phase infrared spectra of crotonaldehyde and MVK vapors over the 540-6500 cm-1 range. Vibrational assignments of all fundamental modes are made for both molecules based on far- and mid-infrared vapor-phase spectra, liquid Raman spectra, along with density functional theory and ab initio MP2 and high energy-accuracy compound theoretical models (W1BD). Theoretical results indicate that at room temperature the crotonaldehyde equilibrium mixture is approximately 97% s-trans and only 3% s-cis conformer. Nearly all observed bands are thus associated with the s-transmore » conformer, but a few appear to be uniquely associated the s-cis conformer, notably ν16c at 730.90 cm-1, which displays a substantial intensity increase with temperature (62% upon going from 5 to 50 oC). The intensity of the corresponding mode of the s-trans conformer decreases with temperature. Under the same conditions, the MVK equilibrium mixture is approximately 69% s-trans conformer and 31% s-cis. W1BD calculations indicate that for MVK this is one of those (rare) cases where there are comparable populations of both conformers, ~doubling the number of observed bands and exacerbating the vibrational assignments. We uniquely assign the bands associated with both the MVK s-cis conformer as well as those of the s-trans, thus completing the vibrational analyses of both conformers from the same set of experimental spectra. Integrated band intensities are reported for both molecules along with global warming potential values. Using the quantitative IR data, potential bands for atmospheric monitoring are also discussed.« less

  15. Effect of alkaline metal cations on the ionic structure of cryolite melts: Ab-initio NpT MD study

    NASA Astrophysics Data System (ADS)

    Bučko, Tomáš; Šimko, František

    2018-02-01

    Ab initio molecular dynamics simulations in an NpT ensemble have been performed to study the role of alkaline metal cations (Me = Li, Na, K, Rb) on the structure and vibrational properties of melts of Me-cryolites (Me3AlF6) at T = 1300 K. In all melts examined in this work, the species AlF52 - has been found to be formed at the highest abundance [from 58% (Li) to 70% (Na)] among the Al-containing anionic clusters. The concentration of clusters AlF4- increases with the size of cations while that of anions AlF63 - follows the opposite trend and it becomes negligible in the melts of the K- and Rb-cryolites. The computed percentage of the Al atoms participating in the formation of dimers Al2Fm6 -m bridged via common F atoms is significant only in the case of Li- and Na-cryolites (16% and 10%, respectively) and the formation of even larger aggregates is found to be unlikely in all four melts. The percentage of the F atoms that are not bound to Al is ˜20% in all four melts and the ions formed by Me+ and F- are found to be only short-lived. Vibrational analysis has been performed using the velocity autocorrelation functions computed for the Cartesian and selected internal coordinates describing Raman-active symmetric stretching vibrations of different AlFn species. The results of vibrational analysis allowed us to identify trends in the variation of positions and shapes of peaks corresponding to the anionic fragments AlF4-, AlF52 -, and AlF63 - with the size of cations, and these trends are found to be consistent with those deduced from the available Raman spectroscopy experiments. Our findings represent a new insight into the properties of cryolite melts, which will be useful for the interpretation of experimental data.

  16. Matrix Isolation and ab initio study of the noncovalent complexes between formamide and acetylene.

    PubMed

    Mardyukov, Artur; Sánchez-García, Elsa; Sander, Wolfram

    2009-02-12

    Matrix isolation spectroscopy in combination with ab initio calculations is a powerful technique for the identification of weakly bound intermolecular complexes. Here, weak complexes between formamide and acetylene are studied, and three 1:1 complexes with binding energies of -2.96, -2.46, and -1.79 kcal/mol have been found at the MP2 level of theory (MP2/cc-pVTZ + ZPE + BSSE). The two most stable dimers A and B are identified in argon and nitrogen matrices by comparison between the experimental and calculated infrared frequencies. Both complexes are stabilized by the formamide C=O...HC acetylene and H...pi interactions. Large shifts have been observed experimentally for the C-H stretching vibrations of the acetylene molecule, in very good agreement with the calculated values. Eight 1:2 FMA-acetylene trimers (T-A to T-H) with binding energies between -5.44 and -2.62 kcal/mol (MP2/aug-cc-pVDZ + ZPE + BSSE) were calculated. The two most stable trimers T-A and T-B are very close in energy and have similar infrared spectra. Several weak bands that are in agreement with the calculated frequencies of the trimers T-A and T-B are observed under matrix isolation conditions. However, the differences are too small for a definitive assignment.

  17. FT-IR, FT-Raman, NMR spectra, density functional computations of the vibrational assignments (for monomer and dimer) and molecular geometry of anticancer drug 7-amino-2-methylchromone

    NASA Astrophysics Data System (ADS)

    Mariappan, G.; Sundaraganesan, N.

    2014-04-01

    Vibrational assignments for the 7-amino-2-methylchromone (abbreviated as 7A2MC) molecule using a combination of experimental vibrational spectroscopic measurements and ab initio computational methods are reported. The optimized geometry, intermolecular hydrogen bonding, first order hyperpolarizability and harmonic vibrational wavenumbers of 7A2MC have been investigated with the help of B3LYP density functional theory method. The calculated molecular geometry parameters, the theoretically computed vibrational frequencies for monomer and dimer and relative peak intensities were compared with experimental data. DFT calculations using the B3LYP method and 6-31 + G(d,p) basis set were found to yield results that are very comparable to experimental IR and Raman spectra. Detailed vibrational assignments were performed with DFT calculations and the potential energy distribution (PED) obtained from the Vibrational Energy Distribution Analysis (VEDA) program. Natural Bond Orbital (NBO) study revealed the characteristics of the electronic delocalization of the molecular structure. 13C and 1H NMR spectra have been recorded and 13C and 1H nuclear magnetic resonance chemical shifts of the molecule have been calculated using the gauge independent atomic orbital (GIAO) method. Furthermore, All the possible calculated values are analyzed using correlation coefficients linear fitting equation and are shown strong correlation with the experimental data.

  18. Scattering study of the Ne + NeH{sup +}(v{sub 0} = 0, j{sub 0} = 0) → NeH{sup +} + Ne reaction on an ab initio based analytical potential energy surface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koner, Debasish; Panda, Aditya N., E-mail: adi07@iitg.ernet.in; Barrios, Lizandra

    2016-01-21

    Initial state selected dynamics of the Ne + NeH{sup +}(v{sub 0} = 0, j{sub 0} = 0) → NeH{sup +} + Ne reaction is investigated by quantum and statistical quantum mechanical (SQM) methods on the ground electronic state. The three-body ab initio energies on a set of suitably chosen grid points have been computed at CCSD(T)/aug-cc-PVQZ level and analytically fitted. The fitting of the diatomic potentials, computed at the same level of theory, is performed by spline interpolation. A collinear [NeHNe]{sup +} structure lying 0.72 eV below the Ne + NeH{sup +} asymptote is found to be the most stablemore » geometry for this system. Energies of low lying vibrational states have been computed for this stable complex. Reaction probabilities obtained from quantum calculations exhibit dense oscillatory structures, particularly in the low energy region and these get partially washed out in the integral cross section results. SQM predictions are devoid of oscillatory structures and remain close to 0.5 after the rise at the threshold thus giving a crude average description of the quantum probabilities. Statistical cross sections and rate constants are nevertheless in sufficiently good agreement with the quantum results to suggest an important role of a complex-forming dynamics for the title reaction.« less

  19. A new ab initio potential energy surface for the collisional excitation of HCN by para- and ortho-H{sub 2}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Denis-Alpizar, Otoniel, E-mail: otonieldenisalpizar@gmail.com; Departamento de Física, Universidad de Matanzas, Matanzas 40100; Kalugina, Yulia

    We present a new four-dimensional potential energy surface for the collisional excitation of HCN by H{sub 2}. Ab initio calculations of the HCN–H{sub 2} van der Waals complex, considering both molecules as rigid rotors, were carried out at the explicitly correlated coupled cluster with single, double, and perturbative triple excitations [CCSD(T)-F12a] level of theory using an augmented correlation-consistent triple zeta (aVTZ) basis set. The equilibrium structure is linear HCN–H{sub 2} with the nitrogen pointing towards H{sub 2} at an intermolecular separation of 7.20 a{sub 0}. The corresponding well depth is −195.20 cm{sup −1}. A secondary minimum of −183.59 cm{sup −1}more » was found for a T-shape configuration with the H of HCN pointing to the center of mass of H{sub 2}. We also determine the rovibrational energy levels of the HCN–para-H{sub 2} and HCN–ortho-H{sub 2} complexes. The calculated dissociation energies for the para and ortho complexes are 37.79 cm{sup −1} and 60.26 cm{sup −1}, respectively. The calculated ro-vibrational transitions in the HCN–H{sub 2} complex are found to agree by more than 0.5% with the available experimental data, confirming the accuracy of the potential energy surface.« less

  20. Ab initio ground and excited state potential energy surfaces for NO-Kr complex and dynamics of Kr solids with NO impurity

    NASA Astrophysics Data System (ADS)

    Castro-Palacios, Juan Carlos; Rubayo-Soneira, Jesús; Ishii, Keisaku; Yamashita, Koichi

    2007-04-01

    The intermolecular potentials for the NO(XΠ2)-Kr and NO(AΣ+2)-Kr systems have been calculated using highly accurate ab initio calculations. The spin-restricted coupled cluster method for the ground 1A'2 state [NO(XΠ2)-Kr ] and the multireference singles and doubles configuration interaction method for the excited 2A'2 state [NO(AΣ+2)-Kr], respectively, were used. The potential energy surfaces (PESs) show two linear wells and one that is almost in the perpendicular position. An analytical representation of the PESs has been constructed for the triatomic systems and used to carry out molecular dynamics (MD) simulations of the NO-doped krypton matrix response after excitation of NO. MD results are shown comparatively for three sets of potentials: (1) anisotropic ab initio potentials [NO molecule direction fixed during the dynamics and considered as a point (its center of mass)], (2) isotropic ab initio potentials (isotropic part in a Legendre polynomial expansion of the PESs), and (3) fitted Kr-NO potentials to the spectroscopic data. An important finding of this work is that the anisotropic and isotropic ab initio potentials calculated for the Kr-NO triatomic system are not suitable for describing the dynamics of structural relaxation upon Rydberg excitation of a NO impurity in the crystal. However, the isotropic ab initio potential in the ground state almost overlaps the published experimental potential, being almost independent of the angle asymmetry. This fact is also manifested in the radial distribution function around NO. However, in the case of the excited state the isotropic ab initio potential differs from the fitted potentials, which indicates that the Kr-NO interaction in the matrix is quite different because of the presence of the surrounding Kr atoms acting on the NO molecule. MD simulations for isotropic potentials reasonably reproduce the experimental observables for the femtosecond response and the bubble size but do not match spectroscopic results. A general overall view of the results suggests that, when the Kr-NO interaction takes place inside the matrix, potentials are rather symmetric and less repulsive than those for the triatomic system. pectroscopy, yields a mean absolute deviation of about 5cm-1 over the 22 levels. The dissociation energy with respect to the lowest vibrational energy is calculated within 30cm-1 of the experimental value of 12953±8cm-1. The reported agreement of the theoretical spectrum and dissociation energy with experiment is contingent upon the inclusion of the effects of core-generated electron correlation, spin-orbit coupling, and scalar relativity. The Dunham analysis [Phys. Rev. 41, 721 (1932)] of the spectrum is found to be very accurate. New values are given for the spectroscopic constants.

  1. Molecular structure and spectroscopic characterization of Carbamazepine with experimental techniques and DFT quantum chemical calculations

    NASA Astrophysics Data System (ADS)

    Suhasini, M.; Sailatha, E.; Gunasekaran, S.; Ramkumaar, G. R.

    2015-04-01

    A systematic vibrational spectroscopic assignment and analysis of Carbamazepine has been carried out by using FT-IR, FT-Raman and UV spectral data. The vibrational analysis were aided by electronic structure calculations - ab initio (RHF) and hybrid density functional methods (B3LYP) performed with standard basis set 6-31G(d,p). Molecular equilibrium geometries, electronic energies, natural bond order analysis, harmonic vibrational frequencies and IR intensities have been computed. A detailed interpretation of the vibrational spectra of the molecule has been made on the basis of the calculated Potential Energy Distribution (PED) by VEDA program. UV-visible spectrum of the compound was also recorded and the electronic properties, such as HOMO and LUMO energies and λmax were determined by HF/6-311++G(d,p) Time-Dependent method. The thermodynamic functions of the title molecule were also performed using the RHF and DFT methods. The restricted Hartree-Fock and density functional theory-based nuclear magnetic resonance (NMR) calculation procedure was also performed, and it was used for assigning the 13C and 1H NMR chemical shifts of Carbamazepine.

  2. FT-Raman, FT-IR and UV-visible spectral investigations and ab initio computations of anti-epileptic drug: Vigabatrin

    NASA Astrophysics Data System (ADS)

    Edwin, Bismi; Joe, I. Hubert

    2013-10-01

    Vibrational analysis of anti-epileptic drug vigabatrin, a structural GABA analog was carried out using NIR FT-Raman and FTIR spectroscopic techniques. The equilibrium geometry, various bonding features and harmonic vibrational wavenumbers were studied using density functional theory method. The detailed interpretation of the vibrational spectra has been carried out with the aid of VEDA.4 program. Vibrational spectra, natural bond orbital analysis and optimized molecular structure show clear evidence for the effect of electron charge transfer on the activity of the molecule. Predicted electronic absorption spectrum from TD-DFT calculation has been compared with the UV-vis spectrum. The Mulliken population analysis on atomic charges and the HOMO-LUMO energy were also calculated. Good consistency is found between the calculated results and experimental data for the electronic absorption as well as IR and Raman spectra. The blue-shifting of the Csbnd C stretching wavenumber reveals that the vinyl group is actively involved in the conjugation path. The NBO analysis confirms the occurrence of intramolecular hyperconjugative interactions resulting in ICT causing stabilization of the system.

  3. Approximate solution of the mode-mode coupling integral: Application to cytosine and its deuterated derivative.

    PubMed

    Rasheed, Tabish; Ahmad, Shabbir

    2010-10-01

    Ab initio Hartree-Fock (HF), density functional theory (DFT) and second-order Møller-Plesset (MP2) methods were used to perform harmonic and anharmonic calculations for the biomolecule cytosine and its deuterated derivative. The anharmonic vibrational spectra were computed using the vibrational self-consistent field (VSCF) and correlation-corrected vibrational self-consistent field (CC-VSCF) methods. Calculated anharmonic frequencies have been compared with the argon matrix spectra reported in literature. The results were analyzed with focus on the properties of anharmonic couplings between pair of modes. A simple and easy to use formula for calculation of mode-mode coupling magnitudes has been derived. The key element in present approach is the approximation that only interactions between pairs of normal modes have been taken into account, while interactions of triples or more are neglected. FTIR and Raman spectra of solid state cytosine have been recorded in the regions 400-4000 cm(-1) and 60-4000 cm(-1), respectively. Vibrational analysis and assignments are based on calculated potential energy distribution (PED) values. Copyright 2010 Elsevier B.V. All rights reserved.

  4. Proton affinity of methyl nitrate - Less than proton affinity of nitric acid

    NASA Technical Reports Server (NTRS)

    Lee, Timothy J.; Rice, Julia E.

    1992-01-01

    Several state-of-the-art ab initio quantum mechanical methods were used to investigate the equilibrium structure, dipole moments, harmonic vibrational frequencies, and IR intensities of methyl nitrate, methanol, and several structures of protonated methyl nitrate, using the same theoretical methods as in an earlier study (Lee and Rice, 1992) of nitric acid. The ab initio results for methyl nitrate and methanol were found to be in good agreement with available experimental data. The proton affinity (PA) of methyl nitrate was calculated to be 176.9 +/-5 kcal/mol, in excellent agreement with the experimental value 176 kcal/mol obtained by Attina et al. (1987) and less than the PA value of nitric acid. An explanation of the discrepancy of the present results with those of an earlier study on protonated nitric acid is proposed.

  5. Rigorous Relativistic Methods for Addressing {P}- and {T}-NONCONSERVATION in Heavy-Element Molecules

    NASA Astrophysics Data System (ADS)

    Fleig, Timo

    2013-06-01

    A new and rigorous method for accurate ab-initio calculations of the electron electric dipole moment {P,T}-odd interaction constant is presented. The approach uses string-based Configuration Interaction wavefunctions and Dirac four-component spinors as one-particle basis functions, and the {P,T}-odd constant is obtained as an expectation value over these correlated wavefunctions. The method has been applied to the HfF^+ molecular ion to determine spectroscopic constants for four low-lying electronic states. For one of these states (Ω = 1) we have determined a new accurate benchmark value for the effective electric field E_{ eff} correlating 34 valence and outer atomic core electrons and using wavefunction expansions with nearly 5 \\cdot 10^8 coefficients. For the Ω = 1 state of the ThO molecule the first ab-initio result for the electron EDM interaction constant is presented. Aspects of modern all-electron relativistic many-body approaches applicable to both atoms and molecules will be discussed, including perspectives for the treatment of other interesting candidate systems and {P}- or {P,T}-non-conserving effects in molecular systems. %Zero-kinetic-energy (ZEKE) photoelectron spectroscopy was used to probe the vibrational levels in the ground electronic state of the chlorobenzene cation using a two-color photoionization scheme via the S{_1} electronic state of the neutral. Exciting through different S{_1} vibrational levels has revealed mixing of some S{_1} normal coordinates in the ground state of the cation. A previously-identified Fermi resonance in the S{_1} state of the neutral is also confirmed by the ZEKE spectra. The adiabatic ionization energy is measured as 73 170±5 cm^{-1}. S. Knecht, H. J. Å. Jensen and T. Fleig J. Chem. Phys. {132}, 014108 (2010 T. Fleig, H. J. Å. Jensen, J. Olsen and L. Visscher J. Chem. Phys. {124}, 104106 (2006) T. Fleig and M. K. Nayak Phys. Rev. X {XXX}, XXXX (submitted). T. G. Wright, S. I. Panov and T. A. Miller J. Chem. Phys. {102}(12), XXXX March 1995.

  6. Structure, energetics and vibrational spectra of dimers, trimers, and tetramers of HX (X = Cl, Br, I)

    NASA Astrophysics Data System (ADS)

    Latajka, Zdzislaw; Scheiner, Steve

    1997-03-01

    The title complexes are studied by correlated ab initio methods using a pseudopotential double-ζ basis set, augmented by diffuse sp and two sets of polarization functions. The binding energies of the complexes decrease in the order HCl > HBr > HI. In the mixed HX…HX' dimers, the nature of the proton-donor molecule is more important than is the proton-acceptor with respect to the strength of the interaction. Only one minimum is found on the potential energy surface of the trimers and tetramers, which corresponds to the C nh cyclic structure. Enlargement of the complex leads to progressively greater individual H-bond energy and HX bond stretch, coupled with reduced intermolecular separation and smaller nonlinearity of each H-bond. Electron correlation makes a larger contribution as the atomic number of X increases. The highest degree of cooperativity is noted for oligomers of HCl and HBr, as compared to HI. The nonadditivity is dominated by terms present at the SCF level. The vibrational frequencies exhibit trends that generally parallel the energetics and geometry patterns, particularly the red shifts of the HX stretches and the intermolecular modes.

  7. Revisiting Adiabatic Switching for Initial Conditions in Quasi-Classical Trajectory Calculations: Application to CH4.

    PubMed

    Qu, Chen; Bowman, Joel M

    2016-07-14

    Semiclassical quantization of vibrational energies, using adiabatic switching (AS), is applied to CH4 using a recent ab initio potential energy surface, for which exact quantum calculations of vibrational energies are available. Details of the present calculations, which employ a harmonic normal-mode zeroth-order Hamiltonian, emphasize the importance of transforming to the Eckart frame during the propagation of the adiabatically switched Hamiltonian. The AS energies for the zero-point, and fundamental excitations of two modes are in good agreement with the quantum ones. The use of AS in the context of quasi-classical trajectory calculations is revisited, following previous work reported in 1995, which did not recommend the procedure. We come to a different conclusion here.

  8. Theoretical infrared spectra of some model polycyclic aromatic hydrocarbons - Effect of ionization

    NASA Technical Reports Server (NTRS)

    De Frees, D. J.; Miller, M. D.; Talbi, D.; Pauzat, F.; Ellinger, Y.

    1993-01-01

    In order to test the hypothesis of ionized PAHs as possible carriers of the UIR bands, we realized a computational exploration on selected PAHs of small dimension in order to identify which changes ionization would induce on their IR spectra. In this study we performed ab initio calculations of the spectra of neutral and positively ionized naphthalene, anthracene, and pyrene. The results are significantly important. The frequencies in the cations are slightly shifted with respect to the neutral species, but no general conclusion can be reached from the three molecules considered. By contrast, the relative intensities of most vibrations are strongly affected by ionization, leading to a much better agreement between the calculated CH/CC vibration intensity ratios and those deduced from observations.

  9. Confirmed assignments of isomeric dimethylbenzyl radicals generated by corona discharge.

    PubMed

    Yoon, Young Wook; Lee, Sang Kuk

    2011-12-07

    The controversial vibronic assignments of isomeric dimethylbenzyl radicals were clearly resolved by using different precursors. By employing corresponding dimethylbenzyl chlorides as precursors, we identified the origins of the vibronic bands of the dimethylbenzyl radicals generated by corona discharge of 1,2,4-trimethylbenzene. From the analysis of the spectra observed from the dimethylbenzyl chlorides in a corona excited supersonic expansion, we revised previous assignments of the 3,4-, 2,4-, and 2,5-dimethylbenzyl radicals. Spectroscopic data of electronic transition and vibrational mode frequencies in the ground electronic state of each isomer were accurately determined by comparing them with those obtained by an ab initio calculation and with the known vibrational data of 1,2,4-trimethylbenzene. © 2011 American Institute of Physics

  10. Molecular structures of Se(SCH3)2 and Te(SCH3)2 using gas-phase electron diffraction and ab initio and DFT geometry optimisations.

    PubMed

    Fleischer, Holger; Wann, Derek A; Hinchley, Sarah L; Borisenko, Konstantin B; Lewis, James R; Mawhorter, Richard J; Robertson, Heather E; Rankin, David W H

    2005-10-07

    The molecular structures of Se(SCH(3))(2) and Te(SCH(3))(2) were investigated using gas-phase electron diffraction (GED) and ab initio and DFT geometry optimisations. While parameters involving H atoms were refined using flexible restraints according to the SARACEN method, parameters that depended only on heavy atoms could be refined without restraints. The GED-determined geometric parameters (r(h1)) are: rSe-S 219.1(1), rS-C 183.2(1), rC-H 109.6(4) pm; angleS-Se-S 102.9(3), angleSe-S-C 100.6(2), angleS-C-H (mean) 107.4(5), phiS-Se-S-C 87.9(20), phiSe-S-C-H 178.8(19) degrees for Se(SCH(3))(2), and rTe-S 238.1(2), rS-C 184.1(3), rC-H 110.0(6) pm; angleS-Te-S 98.9(6), angleTe-S-C 99.7(4), angleS-C-H (mean) 109.2(9), phiS-Te-S-C 73.0(48), phiTe-S-C-H 180.1(19) degrees for Te(SCH(3))(2). Ab initio and DFT calculations were performed at the HF, MP2 and B3LYP levels, employing either full-electron basis sets [3-21G(d) or 6-31G(d)] or an effective core potential with a valence basis set [LanL2DZ(d)]. The best fit to the GED structures was achieved at the MP2 level. Differences between GED and MP2 results for rS-C and angleS-Te-S were explained by the thermal population of excited vibrational states under the experimental conditions. All theoretical models agreed that each compound exists as two stable conformers, one in which the methyl groups are on the same side (g(+)g(-) conformer) and one in which they are on different sides (g(+)g(+) conformer) of the S-Y-S plane (Y = Se, Te). The conformational composition under the experimental conditions could not be resolved from the GED data. Despite GED R-factors and ab initio and DFT energies favouring the g(+)g(+) conformer, it is likely that both conformers are present, for Se(SCH(3))(2) as well as for Te(SCH(3))(2).

  11. FT-IR, FT-Raman, NMR studies and ab initio-HF, DFT-B3LYP vibrational analysis of 4-chloro-2-fluoroaniline

    NASA Astrophysics Data System (ADS)

    Arivazhagan, M.; Anitha Rexalin, D.

    2012-10-01

    The Fourier transform infrared (FT-IR) and Fourier transform Raman (FT-Raman) spectra of 4-chloro-2-fluoroaniline (CFA) have been recorded and analyzed. The equilibrium geometry, bonding features and harmonic vibrational frequencies have been investigated with the help of ab initio and density functional theory (DFT) methods. The assignments of the vibrational spectra have been carried out with the help of normal coordinate analysis (NCA) following the scaled quantum mechanical force field methodology. The 1H and 13C nuclear magnetic resonance (NMR) chemical shifts of the molecule are calculated by the Gauge including atomic orbital (GIAO) method. The first order hyperpolarizability (β0) of this novel molecular system and related properties (β, α0 and Δα) of CFA are calculated using B3LYP/6-311++G(d,p) and HF/6-311++G(d,p) methods on the finite-field approach. The calculated results also show that the CFA molecule might have microscopic nonlinear optical (NLO) behavior with non-zero values. Stability of the molecule arising from hyper conjugative interactions, charge delocalization has been analyzed using natural bond orbital (NBO) analysis. The result confirms the occurrence of intramolecular charge transfer (ICT) within the molecule. The HOMO-LUMO energies UV-vis spectral analysis and MEP are performed by B3LYP/6-311++G(d,p) approach. A detailed interpretation of the infrared and Raman spectra of CFA is also reported based on total energy distribution (TED). The difference between the observed and scaled wave number values of the most of the fundamentals is very small.

  12. Ab initio rate constants from hyperspherical quantum scattering: Application to H+C2H6 and H+CH3OH

    NASA Astrophysics Data System (ADS)

    Kerkeni, Boutheïna; Clary, David C.

    2004-10-01

    The dynamics and kinetics of the abstraction reactions of H atoms with ethane and methanol have been studied using a quantum mechanical procedure. Bonds being broken and formed are treated with explicit hyperspherical quantum dynamics. The ab initio potential energy surfaces for these reactions have been developed from a minimal number of grid points (average of 48 points) and are given by analytical functionals. All the degrees of freedom except the breaking and forming bonds are optimized using the second order perturbation theory method with a correlation consistent polarized valence triple zeta basis set. Single point energies are calculated on the optimized geometries with the coupled cluster theory and the same basis set. The reaction of H with C2H6 is endothermic by 1.5 kcal/mol and has a vibrationally adiabatic barrier of 12 kcal/mol. The reaction of H with CH3OH presents two reactive channels: the methoxy and the hydroxymethyl channels. The former is endothermic by 0.24 kcal/mol and has a vibrationally adiabatic barrier of 13.29 kcal/mol, the latter reaction is exothermic by 7.87 kcal/mol and has a vibrationally adiabatic barrier of 8.56 kcal/mol. We report state-to-state and state-selected cross sections together with state-to-state rate constants for the title reactions. Thermal rate constants for these reactions exhibit large quantum tunneling effects when compared to conventional transition state theory results. For H+CH3OH, it is found that the CH2OH product is the dominant channel, and that the CH3O channel contributes just 2% at 500 K. For both reactions, rate constants are in good agreement with some measurements.

  13. Fluoroethylene Carbonate as a Directing Agent in Amorphous Silicon Anodes: Electrolyte Interface Structure Probed by Sum Frequency Vibrational Spectroscopy and Ab Initio Molecular Dynamics.

    PubMed

    Horowitz, Yonatan; Han, Hui-Ling; Soto, Fernando A; Ralston, Walter T; Balbuena, Perla B; Somorjai, Gabor A

    2018-02-14

    Fluorinated compounds are added to carbonate-based electrolyte solutions in an effort to create a stable solid electrolyte interphase (SEI). The SEI mitigates detrimental electrolyte redox reactions taking place on the anode's surface upon applying a potential in order to charge (discharge) the lithium (Li) ion battery. The need for a stable SEI is dire when the anode material is silicon as silicon cracks due to its expansion and contraction upon lithiation and delithiation (charge-discharge) cycles, consequently limiting the cyclability of a silicon-based battery. Here we show the molecular structures for ethylene carbonate (EC): fluoroethylene carbonate (FEC) solutions on silicon surfaces by sum frequency generation (SFG) vibrational spectroscopy, which yields vibrational spectra of molecules at interfaces and by ab initio molecular dynamics (AIMD) simulations at open circuit potential. Our AIMD simulations and SFG spectra indicate that both EC and FEC adsorb to the amorphous silicon (a-Si) through their carbonyl group (C═O) oxygen atom with no further desorption. We show that FEC additives induce the reorientation of EC molecules to create an ordered, up-right orientation of the electrolytes on the Si surface. We suggest that this might be helpful for Li diffusion under applied potential. Furthermore, FEC becomes the dominant species at the a-Si surface as the FEC concentration increases above 20 wt %. Our finding at open circuit potential can now initiate additive design to not only act as a sacrificial compound but also to produce a better suited SEI for the use of silicon anodes in the Li-ion vehicular industry.

  14. FT-IR, FT-Raman, NMR studies and ab initio-HF, DFT-B3LYP vibrational analysis of 4-chloro-2-fluoroaniline.

    PubMed

    Arivazhagan, M; Anitha Rexalin, D

    2012-10-01

    The Fourier transform infrared (FT-IR) and Fourier transform Raman (FT-Raman) spectra of 4-chloro-2-fluoroaniline (CFA) have been recorded and analyzed. The equilibrium geometry, bonding features and harmonic vibrational frequencies have been investigated with the help of ab initio and density functional theory (DFT) methods. The assignments of the vibrational spectra have been carried out with the help of normal coordinate analysis (NCA) following the scaled quantum mechanical force field methodology. The (1)H and (13)C nuclear magnetic resonance (NMR) chemical shifts of the molecule are calculated by the Gauge including atomic orbital (GIAO) method. The first order hyperpolarizability (β(0)) of this novel molecular system and related properties (β, α(0) and Δα) of CFA are calculated using B3LYP/6-311++G(d,p) and HF/6-311++G(d,p) methods on the finite-field approach. The calculated results also show that the CFA molecule might have microscopic nonlinear optical (NLO) behavior with non-zero values. Stability of the molecule arising from hyper conjugative interactions, charge delocalization has been analyzed using natural bond orbital (NBO) analysis. The result confirms the occurrence of intramolecular charge transfer (ICT) within the molecule. The HOMO-LUMO energies UV-vis spectral analysis and MEP are performed by B3LYP/6-311++G(d,p) approach. A detailed interpretation of the infrared and Raman spectra of CFA is also reported based on total energy distribution (TED). The difference between the observed and scaled wave number values of the most of the fundamentals is very small. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. Mid-infrared signatures of hydroxyl containing water clusters: Infrared laser Stark spectroscopy of OH–H{sub 2}O and OH(D{sub 2}O){sub n} (n = 1-3)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hernandez, Federico J.; INFIQC, Dpto. de Fisicoquímica, Facultad de Ciencias Químicas, Centro Láser de Ciencias Moleculares, Universidad Nacional de Córdoba, Ciudad Universitaria, Pabellón, X5000HUA Córdoba; Brice, Joseph T.

    2015-10-28

    Small water clusters containing a single hydroxyl radical are synthesized in liquid helium droplets. The OH–H{sub 2}O and OH(D{sub 2}O){sub n} clusters (n = 1-3) are probed with infrared laser spectroscopy in the vicinity of the hydroxyl radical OH stretch vibration. Experimental band origins are qualitatively consistent with ab initio calculations of the global minimum structures; however, frequency shifts from isolated OH are significantly over-predicted by both B3LYP and MP2 methods. An effective Hamiltonian that accounts for partial quenching of electronic angular momentum is used to analyze Stark spectra of the OH–H{sub 2}O and OH–D{sub 2}O binary complexes, revealing amore » 3.70(5) D permanent electric dipole moment. Computations of the dipole moment are in good agreement with experiment when large-amplitude vibrational averaging is taken into account. Polarization spectroscopy is employed to characterize two vibrational bands assigned to OH(D{sub 2}O){sub 2}, revealing two nearly isoenergetic cyclic isomers that differ in the orientation of the non-hydrogen-bonded deuterium atoms relative to the plane of the three oxygen atoms. The dipole moments for these clusters are determined to be approximately 2.5 and 1.8 D for “up-up” and “up-down” structures, respectively. Hydroxyl stretching bands of larger clusters containing three or more D{sub 2}O molecules are observed shifted approximately 300 cm{sup −1} to the red of the isolated OH radical. Pressure dependence studies and ab initio calculations imply the presence of multiple cyclic isomers of OH(D{sub 2}O){sub 3}.« less

  16. Overtone-induced dissociation and isomerization dynamics of the hydroxymethyl radical (CH2OH and CD2OH). I. A theoretical study

    NASA Astrophysics Data System (ADS)

    Kamarchik, E.; Rodrigo, C.; Bowman, J. M.; Reisler, H.; Krylov, A. I.

    2012-02-01

    The dissociation of the hydroxymethyl radical, CH2OH, and its isotopolog, CD2OH, following the excitation of high OH stretch overtones is studied by quasi-classical molecular dynamics calculations using a global potential energy surface (PES) fitted to ab initio calculations. The PES includes CH2OH and CH3O minima, dissociation products, and all relevant barriers. Its analysis shows that the transition states for OH bond fission and isomerization are both very close in energy to the excited vibrational levels reached in recent experiments and involve significant geometry changes relative to the CH2OH equilibrium structure. The energies of key stationary points are refined using high-level electronic structure calculations. Vibrational energies and wavefunctions are computed by coupled anharmonic vibrational calculations. They show that high OH-stretch overtones are mixed with other modes. Consequently, trajectory calculations carried out at energies about ˜3000 cm-1 above the barriers reveal that despite initial excitation of the OH stretch, the direct OH bond fission is relatively slow (10 ps) and a considerable fraction of the radicals undergoes isomerization to the methoxy radical. The computed dissociation energies are: D0(CH2OH → CH2O + H) = 10 188 cm-1, D0(CD2OH → CD2O + H) = 10 167 cm-1, D0(CD2OH → CHDO + D) = 10 787 cm-1. All are in excellent agreement with the experimental results. For CH2OH, the barriers for the direct OH bond fission and isomerization are: 14 205 and 13 839 cm-1, respectively.

  17. Modeling the weak hydrogen bonding of pyrrole and dichloromethane through Raman and DFT study.

    PubMed

    Singh, Dheeraj Kumar; Asthana, Birendra Pratap; Srivastava, Sunil Kumar

    2012-08-01

    Raman spectra of neat pyrrole (C(4)H(5)N) and its binary mixtures with dichloromethane (CH(2)Cl(2), DCM) with varying mole fractions of C(4)H(5)N from 0.1 to 0.9 were recorded in order to monitor the influence of molecular interaction on spectral features of selected vibrational bands of pyrrole in the region 600-1600 cm(-1). Only 1369 cm(-1) vibrational band of pyrrole shows a significant change in its peak position in going from neat pyrrole to the complexes. The 1369 cm(-1) band shows (∼6 cm(-1)) blue shift upon dilution and the corresponding linewidth shows the maximum shift at C = 0.5 mole fraction of pyrrole upon dilution which clearly indicates that the concentration fluctuation model plays major role. Quantum chemical calculation using density functional theory (DFT) and ab-initio (MP2 and HF) methods were performed employing high level basis set, 6-311++G(d,p) to obtain the ground state geometry of neat pyrrole and its complexes with DCM in gas phase. Basis set superimpose error (BSSE) correction was also introduced by using the counterpoise method. In order to account for the solvent effect on vibrational features and changes in optimized structural parameters of pyrrole, polarizable continuum model (PCM) (bulk solvations) and PCM (specific plus bulk solvations) calculations were performed. Two possible configurations of pyrrole + DCM complex have been predicted by B3LYP and HF methods, whereas the MP2 method gave only single configuration in which H atom of DCM is bonded to π ring of the pyrrole molecule. This affects significantly the ring vibrations of pyrrole molecule, which was also observed in our experimental results.

  18. Spectroscopic (FT-IR, FT-Raman and UV) investigation, NLO, NBO, molecular orbital and MESP analysis of 2-{2-[(2,6-dichlorophenyl)amino]phenyl}acetic acid

    NASA Astrophysics Data System (ADS)

    Govindasamy, P.; Gunasekaran, S.

    2015-02-01

    In this work, FT-IR and FT-Raman spectra of 2-{2-[(2,6-dichlorophenyl)amino]phenyl}acetic acid (abbreviated as 2DCPAPAA) have been reported in the regions 4000-450 cm-1 and 4000-50 cm-1, respectively. The molecular structure, geometry optimization, intensities, vibrational frequencies were obtained by the ab initio and DFT levels of theory B3LYP with 6-311++G(d,p) standard basis set and a different scaling of the calculated wave numbers. The complete vibrational assignments were performed on the basis of the potential energy distribution (PED) of the vibrational modes calculated using vibrational energy distribution analysis (VEDA 4) program. The harmonic frequencies were calculated and the scaled values were compared with experimental FT-IR and FT-Raman data. The observed and the calculated frequencies are found to be in good agreement. Stability of the molecule arising from hyper conjugative interactions, charge delocalization has been analyzed using natural bond orbital (NBO) analysis. The thermodynamic properties of the title compound at different temperature reveal the correlations between standard heat capacities (C) standard entropies (S) standard enthalpy changes (ΔH). The important non-linear optical properties such as electric dipole momentum, polarizability and first hyperpolarizability of 2DCPAPAA have been computed using B3LYP/6-311++G(d,p) quantum chemical calculations. The Natural charges, HOMO, LUMO, chemical hardness (η), chemical potential (μ), Electro negativity (χ) and electrophilicity values (ω) are calculated and reported. The oscillator's strength, wave length, and energy calculated by TD-DFT and 2DCPAPAA is approach complement with the experimental findings. The molecular electrostatic potential (MESP) surfaces of the molecule were constructed.

  19. Spectroscopic (FT-IR, FT-Raman and UV) investigation, NLO, NBO, molecular orbital and MESP analysis of 2-{2-[(2,6-dichlorophenyl)amino]phenyl}acetic acid.

    PubMed

    Govindasamy, P; Gunasekaran, S

    2015-02-05

    In this work, FT-IR and FT-Raman spectra of 2-{2-[(2,6-dichlorophenyl)amino]phenyl}acetic acid (abbreviated as 2DCPAPAA) have been reported in the regions 4000-450cm(-1) and 4000-50cm(-1), respectively. The molecular structure, geometry optimization, intensities, vibrational frequencies were obtained by the ab initio and DFT levels of theory B3LYP with 6-311++G(d,p) standard basis set and a different scaling of the calculated wave numbers. The complete vibrational assignments were performed on the basis of the potential energy distribution (PED) of the vibrational modes calculated using vibrational energy distribution analysis (VEDA 4) program. The harmonic frequencies were calculated and the scaled values were compared with experimental FT-IR and FT-Raman data. The observed and the calculated frequencies are found to be in good agreement. Stability of the molecule arising from hyper conjugative interactions, charge delocalization has been analyzed using natural bond orbital (NBO) analysis. The thermodynamic properties of the title compound at different temperature reveal the correlations between standard heat capacities (C) standard entropies (S) standard enthalpy changes (ΔH). The important non-linear optical properties such as electric dipole momentum, polarizability and first hyperpolarizability of 2DCPAPAA have been computed using B3LYP/6-311++G(d,p) quantum chemical calculations. The Natural charges, HOMO, LUMO, chemical hardness (η), chemical potential (μ), Electro negativity (χ) and electrophilicity values (ω) are calculated and reported. The oscillator's strength, wave length, and energy calculated by TD-DFT and 2DCPAPAA is approach complement with the experimental findings. The molecular electrostatic potential (MESP) surfaces of the molecule were constructed. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Ab initio state-specific N2 + O dissociation and exchange modeling for molecular simulations

    NASA Astrophysics Data System (ADS)

    Luo, Han; Kulakhmetov, Marat; Alexeenko, Alina

    2017-02-01

    Quasi-classical trajectory (QCT) calculations are used in this work to calculate state-specific N2(X1Σ ) +O(3P ) →2 N(4S ) +O(3P ) dissociation and N2(X1Σ ) +O(3P ) →NO(X2Π ) +N(4S ) exchange cross sections and rates based on the 13A″ and 13A' ab initio potential energy surface by Gamallo et al. [J. Chem. Phys. 119, 2545-2556 (2003)]. The calculations consider translational energies up to 23 eV and temperatures between 1000 K and 20 000 K. Vibrational favoring is observed for dissociation reaction at the whole range of collision energies and for exchange reaction around the dissociation limit. For the same collision energy, cross sections for v = 30 are 4 to 6 times larger than those for the ground state. The exchange reaction has an effective activation energy that is dependent on the initial rovibrational level, which is different from dissociation reaction. In addition, the exchange cross sections have a maximum when the total collision energy (TCE) approaches dissociation energy. The calculations are used to generate compact QCT-derived state-specific dissociation (QCT-SSD) and QCT-derived state-specific exchange (QCT-SSE) models, which describe over 1 × 106 cross sections with about 150 model parameters. The models can be used directly within direct simulation Monte Carlo and computational fluid dynamics simulations. Rate constants predicted by the new models are compared to the experimental measurements, direct QCT calculations and predictions by other models that include: TCE model, Bose-Candler QCT-based exchange model, Macheret-Fridman dissociation model, Macheret's exchange model, and Park's two-temperature model. The new models match QCT-calculated and experimental rates within 30% under nonequilibrium conditions while other models under predict by over an order of magnitude under vibrationally-cold conditions.

  1. Ab initio nonadiabatic molecular dynamics of the ultrafast electron injection from a PbSe quantum dot into the TiO2 surface.

    PubMed

    Long, Run; Prezhdo, Oleg V

    2011-11-30

    Following recent experiments [Science 2010, 328, 1543; PNAS 2011, 108, 965], we report an ab initio nonadiabatic molecular dynamics (NAMD) simulation of the ultrafast photoinduced electron transfer (ET) from a PbSe quantum dot (QD) into the rutile TiO(2) (110) surface. The system forms the basis for QD-sensitized semiconductor solar cells and demonstrates that ultrafast interfacial ET is instrumental for achieving high efficiencies in solar-to-electrical energy conversion. The simulation supports the observation that the ET successfully competes with energy losses due to electron-phonon relaxation. The ET proceeds by the adiabatic mechanism because of strong donor-acceptor coupling. High frequency polar vibrations of both QD and TiO(2) promote the ET, since these modes can rapidly influence the donor-acceptor state energies and coupling. Low frequency vibrations generate a distribution of initial conditions for ET, which shows a broad variety of scenarios at the single-molecule level. Compared to the molecule-TiO(2) interfaces, the QD-TiO(2) system exhibits pronounced differences that arise due to the larger size and higher rigidity of QDs relative to molecules. Both donor and acceptor states are more delocalized in the QD system, and the ET is promoted by optical phonons, which have relatively low frequencies in the QD materials composed of heavy elements. In contrast, in molecular systems, optical phonons are not thermally accessible under ambient conditions. Meanwhile, TiO(2) acceptor states resemble surface impurities due to the local influence of molecular chromophores. At the same time, the photoinduced ET at both QD-TiO(2) and molecule-TiO(2) interfaces is ultrafast and occurs by the adiabatic mechanism, as a result of strong donor-acceptor coupling. The reported state-of-the-art simulation generates a detailed time-domain atomistic description of the interfacial ET process that is fundamental to a wide variety of applications.

  2. Potential energy curves of the Na2+ molecular ion from all-electron ab initio relativistic calculations

    NASA Astrophysics Data System (ADS)

    Bewicz, Anna; Musiał, Monika; Kucharski, Stanisław A.

    2017-11-01

    The equation-of-motion coupled-cluster method for electron affinity calculations has been used to study potential energy curves (PECs) for the Na+2 molecular ion. Although the studied molecule represents the open shell system the applied approach employs the closed shell Na+ 22 ion as the reference. In addition the Na+ 22 system dissociates into the closed shell fragments; hence, the restricted Hartree-Fock scheme can be used within the whole range of interatomic distances, from 2 to 45 Å. We used large basis set engaging 268 basis functions with all 21 electrons correlated. The relativistic effects are included via second-order Douglas-Kroll method. The computed PECs, spectroscopic molecular constants and vibrational energy levels agree well with experimental values if the latter are available or with other theoretical data.

  3. Electron- and photon-impact ionization of furfural

    NASA Astrophysics Data System (ADS)

    Jones, D. B.; Ali, E.; Nixon, K. L.; Limão-Vieira, P.; Hubin-Franskin, M.-J.; Delwiche, J.; Ning, C. G.; Colgan, J.; Murray, A. J.; Madison, D. H.; Brunger, M. J.

    2015-11-01

    The He(i) photoelectron spectrum of furfural has been investigated, with its vibrational structure assigned for the first time. The ground and excited ionized states are assigned through ab initio calculations performed at the outer-valence Green's function level. Triple differential cross sections (TDCSs) for electron-impact ionization of the unresolved combination of the 4a″ + 21a' highest and next-highest occupied molecular orbitals have also been obtained. Experimental TDCSs are recorded in a combination of asymmetric coplanar and doubly symmetric coplanar kinematics. The experimental TDCSs are compared to theoretical calculations, obtained within a molecular 3-body distorted wave framework that employed either an orientation average or proper TDCS average. The proper average calculations suggest that they may resolve some of the discrepancies regarding the angular distributions of the TDCS, when compared to calculations employing the orbital average.

  4. Ab Initio Studies of Shock-Induced Chemical Reactions of Inter-Metallics

    NASA Astrophysics Data System (ADS)

    Zaharieva, Roussislava; Hanagud, Sathya

    2009-06-01

    Shock-induced and shock assisted chemical reactions of intermetallic mixtures are studied by many researchers, using both experimental and theoretical techniques. The theoretical studies are primarily at continuum scales. The model frameworks include mixture theories and meso-scale models of grains of porous mixtures. The reaction models vary from equilibrium thermodynamic model to several non-equilibrium thermodynamic models. The shock-effects are primarily studied using appropriate conservation equations and numerical techniques to integrate the equations. All these models require material constants from experiments and estimates of transition states. Thus, the objective of this paper is to present studies based on ab initio techniques. The ab inito studies, to date, use ab inito molecular dynamics. This paper presents a study that uses shock pressures, and associated temperatures as starting variables. Then intermetallic mixtures are modeled as slabs. The required shock stresses are created by straining the lattice. Then, ab initio binding energy calculations are used to examine the stability of the reactions. Binding energies are obtained for different strain components super imposed on uniform compression and finite temperatures. Then, vibrational frequencies and nudge elastic band techniques are used to study reactivity and transition states. Examples include Ni and Al.

  5. Molecular elimination of Br2 in photodissociation of CH2BrC(O)Br at 248 nm using cavity ring-down absorption spectroscopy.

    PubMed

    Fan, He; Tsai, Po-Yu; Lin, King-Chuen; Lin, Cheng-Wei; Yan, Chi-Yu; Yang, Shu-Wei; Chang, A H H

    2012-12-07

    The primary elimination channel of bromine molecule in one-photon dissociation of CH(2)BrC(O)Br at 248 nm is investigated using cavity ring-down absorption spectroscopy. By means of spectral simulation, the ratio of nascent vibrational population in v = 0, 1, and 2 levels is evaluated to be 1:(0.5 ± 0.1):(0.2 ± 0.1), corresponding to a Boltzmann vibrational temperature of 581 ± 45 K. The quantum yield of the ground state Br(2) elimination reaction is determined to be 0.24 ± 0.08. With the aid of ab initio potential energy calculations, the obtained Br(2) fragments are anticipated to dissociate on the electronic ground state, yielding vibrationally hot Br(2) products. The temperature-dependence measurements support the proposed pathway via internal conversion. For comparison, the Br(2) yields are obtained analogously from CH(3)CHBrC(O)Br and (CH(3))(2)CBrC(O)Br to be 0.03 and 0.06, respectively. The trend of Br(2) yields among the three compounds is consistent with the branching ratio evaluation by Rice-Ramsperger-Kassel-Marcus method. However, the latter result for each molecule is smaller by an order of magnitude than the yield findings. A non-statistical pathway so-called roaming process might be an alternative to the Br(2) production, and its contribution might account for the underestimate of the branching ratio calculations.

  6. Nonequilibrium shock-heated nitrogen flows using a rovibrational state-to-state method

    NASA Astrophysics Data System (ADS)

    Panesi, M.; Munafò, A.; Magin, T. E.; Jaffe, R. L.

    2014-07-01

    A rovibrational collisional model is developed to study the internal energy excitation and dissociation processes behind a strong shock wave in a nitrogen flow. The reaction rate coefficients are obtained from the ab initio database of the NASA Ames Research Center. The master equation is coupled with a one-dimensional flow solver to study the nonequilibrium phenomena encountered in the gas during a hyperbolic reentry into Earth's atmosphere. The analysis of the populations of the rovibrational levels demonstrates how rotational and vibrational relaxation proceed at the same rate. This contrasts with the common misconception that translational and rotational relaxation occur concurrently. A significant part of the relaxation process occurs in non-quasi-steady-state conditions. Exchange processes are found to have a significant impact on the relaxation of the gas, while predissociation has a negligible effect. The results obtained by means of the full rovibrational collisional model are used to assess the validity of reduced order models (vibrational collisional and multitemperature) which are based on the same kinetic database. It is found that thermalization and dissociation are drastically overestimated by the reduced order models. The reasons of the failure differ in the two cases. In the vibrational collisional model the overestimation of the dissociation is a consequence of the assumption of equilibrium between the rotational energy and the translational energy. The multitemperature model fails to predict the correct thermochemical relaxation due to the failure of the quasi-steady-state assumption, used to derive the phenomenological rate coefficient for dissociation.

  7. Structural evolution of the [(CO2)n(H2O)]- cluster anions: quantifying the effect of hydration on the excess charge accommodation motif.

    PubMed

    Muraoka, Azusa; Inokuchi, Yoshiya; Hammer, Nathan I; Shin, Joong-Won; Johnson, Mark A; Nagata, Takashi

    2009-08-06

    The [(CO2)n(H2O)]- cluster anions are studied using infrared photodissociation (IPD) spectroscopy in the 2800-3800 cm(-1) range. The observed IPD spectra display a drastic change in the vibrational band features at n = 4, indicating a sharp discontinuity in the structural evolution of the monohydrated cluster anions. The n = 2 and 3 spectra are composed of a series of sharp bands around 3600 cm(-1), which are assignable to the stretching vibrations of H2O bound to C2O4- in a double ionic hydrogen-bonding (DIHB) configuration, as was previously discussed (J. Chem. Phys. 2005, 122, 094303). In the n > or = 4 spectrum, a pair of intense bands additionally appears at approximately 3300 cm(-1). With the aid of ab initio calculations at the MP2/6-31+G* level, the 3300 cm(-1) bands are assigned to the bending overtone and the hydrogen-bonded OH vibration of H2O bound to CO2- via a single O-H...O linkage. Thus, the structures of [(CO2)n(H2O)]- evolve with cluster size such that DIHB to C2O4- is favored in the smaller clusters with n = 2 and 3 whereas CO2- is preferentially stabilized via the formation of a single ionic hydrogen-bonding (SIHB) configuration in the larger clusters with n > or = 4.

  8. Br2 molecular elimination in photolysis of (COBr)2 at 248 nm by using cavity ring-down absorption spectroscopy: a photodissociation channel being ignored.

    PubMed

    Wu, Chia-Ching; Lin, Hsiang-Chin; Chang, Yuan-Bin; Tsai, Po-Yu; Yeh, Yu-Ying; Fan, He; Lin, King-Chuen; Francisco, J S

    2011-12-21

    A primary dissociation channel of Br(2) elimination is detected following a single-photon absorption of (COBr)(2) at 248 nm by using cavity ring-down absorption spectroscopy. The technique contains two laser beams propagating in a perpendicular configuration. The tunable laser beam along the axis of the ring-down cell probes the Br(2) fragment in the B(3)Π(ou)(+)-X(1)Σ(g)(+) transition. The measurements of laser energy- and pressure-dependence and addition of a Br scavenger are further carried out to rule out the probability of Br(2) contribution from a secondary reaction. By means of spectral simulation, the ratio of nascent vibrational population for v = 0, 1, and 2 levels is evaluated to be 1:(0.65 ± 0.09):(0.34 ± 0.07), corresponding to a Boltzmann vibrational temperature of 893 ± 31 K. The quantum yield of the ground state Br(2) elimination reaction is determined to be 0.11 ± 0.06. With the aid of ab initio potential energy calculations, the pathway of molecular elimination is proposed on the energetic ground state (COBr)(2) via internal conversion. A four-center dissociation mechanism is followed synchronously or sequentially yielding three fragments of Br(2) + 2CO. The resulting Br(2) is anticipated to be vibrationally hot. The measurement of a positive temperature effect supports the proposed mechanism.

  9. Synthesis, characterization and vibrational spectra analysis of ethyl (2Z)-2-(2-amino-4-oxo-1,3-oxazol-5(4H)-ylidene)-3-oxo-3-phenylpropanoate.

    PubMed

    Kıbrız, Ibrahim Evren; Sert, Yusuf; Saçmacı, Mustafa; Sahin, Ertan; Yıldırım, Ismail; Ucun, Fatih

    2013-10-01

    In the present study, the experimental and theoretical vibrational spectra of ethyl (2Z)-2-(2-amino-4-oxo-1,3-oxazol-5(4H)-ylidene)-3-oxo-3-phenylpropanoate (AOX) were investigated. The experimental FT-IR (400-4000 cm(-1)) and Laser-Raman spectra (100-4000 cm(-1)) of the molecule in the solid phase were recorded. Theoretical vibrational frequencies and geometric parameters (bond lengths, bond angles and torsion angles) were calculated using ab initio Hartree Fock (HF), Density Functional Theory (B3LYP and B3PW91) methods with 6-311++G(d,p) basis set by Gaussian 03 program, for the first time. The computed values of frequencies are scaled using a suitable scale factor to yield good coherence with the observed values. The assignments of the vibrational frequencies were performed by potential energy distribution (PED) analysis by using VEDA 4 program. The theoretical optimized geometric parameters and vibrational frequencies were compared with the corresponding experimental X-ray diffraction data, and they were seen to be in a good agreement with each other. The hydrogen bonding geometry of the molecule was also simulated to evaluate the effect of intermolecular hydrogen bonding on the vibrational frequencies. Also, the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) energies were found. Published by Elsevier B.V.

  10. Synthesis, characterization and vibrational spectra analysis of ethyl (2Z)-2-(2-amino-4-oxo-1,3-oxazol-5(4H)-ylidene)-3-oxo-3-phenylpropanoate

    NASA Astrophysics Data System (ADS)

    Kıbrız, İbrahim Evren; Sert, Yusuf; Saçmacı, Mustafa; Şahin, Ertan; Yıldırım, İsmail; Ucun, Fatih

    2013-10-01

    In the present study, the experimental and theoretical vibrational spectra of ethyl (2Z)-2-(2-amino-4-oxo-1,3-oxazol-5(4H)-ylidene)-3-oxo-3-phenylpropanoate (AOX) were investigated. The experimental FT-IR (400-4000 cm-1) and Laser-Raman spectra (100-4000 cm-1) of the molecule in the solid phase were recorded. Theoretical vibrational frequencies and geometric parameters (bond lengths, bond angles and torsion angles) were calculated using ab initio Hartree Fock (HF), Density Functional Theory (B3LYP and B3PW91) methods with 6-311++G(d,p) basis set by Gaussian 03 program, for the first time. The computed values of frequencies are scaled using a suitable scale factor to yield good coherence with the observed values. The assignments of the vibrational frequencies were performed by potential energy distribution (PED) analysis by using VEDA 4 program. The theoretical optimized geometric parameters and vibrational frequencies were compared with the corresponding experimental X-ray diffraction data, and they were seen to be in a good agreement with each other. The hydrogen bonding geometry of the molecule was also simulated to evaluate the effect of intermolecular hydrogen bonding on the vibrational frequencies. Also, the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) energies were found.

  11. Effect of intermolecular hydrogen bonding, vibrational analysis and molecular structure of 4-chlorobenzothioamide.

    PubMed

    Çırak, Çağrı; Sert, Yusuf; Ucun, Fatih

    2013-09-01

    In the present work, the experimental and theoretical vibrational spectra of 4-chlorobenzothioamide were investigated. The FT-IR (400-4000 cm(-1)) and μ-Raman spectra (100-4000 cm(-1)) of 4-chlorobenzothioamide in the solid phase were recorded. The geometric parameters (bond lengths and bond angles), vibrational frequencies, Infrared and Raman intensities of the title molecule in the ground state were calculated using ab initio Hartree-Fock and density functional theory (B3LYP) methods with the 6-311++G(d,p) basis set for the first time. The optimized geometric parameters and the theoretical vibrational frequencies were found to be in good agreement with the corresponding experimental data and with the results found in the literature. The vibrational frequencies were assigned based on the potential energy distribution using the VEDA 4 program. The dimeric form of 4-chlorobenzothioamide was also simulated to evaluate the effect of intermolecular hydrogen bonding on the vibrational frequencies. It was observed that the N-H stretching modes shifted to lower frequencies, while the in-plane and out-of-plane bending modes shifted to higher frequencies due to the intermolecular N-H···S hydrogen bond. Also, the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) energies and diagrams were presented. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. The influence of the long-range order on the vibrational spectra of structures based on sodalite cage.

    PubMed

    Mikuła, A; Król, M; Koleżyński, A

    2015-06-05

    Zeolites are a group of tecto-aluminosilicates with numerous practical applications, e.g. gas separators, molecular sieves and sorbents. The unique properties result from porous structure of channels and cages which are built from smaller units - the so-called Secondary Building Units (SBU), and sometimes also larger groups (Breck, 1974; Ciciszwili et al., 1974; Mozgawa, 2008; Čejka and van Bekkum, 2005). The aim of this study was the examination of the influence of long-range order on vibrational spectra of sodalite and zeolite A. Ab initio calculations (geometry optimizations and vibrational spectra calculations) of sodalite cage and selected SBU were carried out by means of Gaussian09 (Frisch et al., 2009) (in the case of isolated clusters) and Crystal09 (Dovesi et al., 2005, 2009) (for periodic structures). The obtained results were compared with the experimental spectra of sodalite and zeolite A crystal structures, synthesized under hydrothermal conditions. These results allowed analyzing of the long-range ordering influence on the vibrational spectra, as well as the identification of the characteristic vibrations in β cage based frameworks. It has been found, that based on small structural fragment (SBU) models a characteristic vibrations can be identify. However, full spectra analysis and especially the interpretation of far-infrared region of the spectra require using periodic models under the influence of translational crystal lattice. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Accurate ab initio dipole moment surfaces of ozone: First principle intensity predictions for rotationally resolved spectra in a large range of overtone and combination bands.

    PubMed

    Tyuterev, Vladimir G; Kochanov, Roman V; Tashkun, Sergey A

    2017-02-14

    Ab initio dipole moment surfaces (DMSs) of the ozone molecule are computed using the MRCI-SD method with AVQZ, AV5Z, and VQZ-F12 basis sets on a dense grid of about 1950 geometrical configurations. The analytical DMS representation used for the fit of ab initio points provides better behavior for large nuclear displacements than that of previous studies. Various DMS models were derived and tested. Vibration-rotation line intensities of 16 O 3 were calculated from these ab initio surfaces by the variational method using two different potential functions determined in our previous works. For the first time, a very good agreement of first principle calculations with the experiment was obtained for the line-by-line intensities in rotationally resolved ozone spectra in a large far- and mid-infrared range. This includes high overtone and combination bands up to ΔV = 6. A particular challenge was a correct description of the B-type bands (even ΔV 3 values) that represented major difficulties for the previous ab initio investigations and for the empirical spectroscopic models. The major patterns of various B-type bands were correctly described without empirically adjusted dipole moment parameters. For the 10 μm range, which is of key importance for the atmospheric ozone retrievals, our ab initio intensity results are within the experimental error margins. The theoretical values for the strongest lines of the ν 3 band lie in general between two successive versions of HITRAN (HIgh-resolution molecular TRANsmission) empirical database that corresponded to most extended available sets of observations. The overall qualitative agreement in a large wavenumber range for rotationally resolved cold and hot ozone bands up to about 6000 cm -1 is achieved here for the first time. These calculations reveal that several weak bands are yet missing from available spectroscopic databases.

  14. A full-dimensional potential energy surface and quantum dynamics of inelastic collision process for H2-HF

    NASA Astrophysics Data System (ADS)

    Yang, Dongzheng; Huang, Jing; Zuo, Junxiang; Hu, Xixi; Xie, Daiqian

    2018-05-01

    A full-dimensional ab initio potential energy surface for the H2-HF van der Waals complex was constructed by employing the coupled-cluster singles and doubles with noniterative inclusion of connected triples with augmented correlation-consistent polarised valence quadruple-zeta basis set plus bond functions. Using the improved coupled-states approximation including the nearest neighbor Coriolis couplings, we calculated the state-to-state scattering dynamics for pure rotational and ro-vibrational energy transfer processes. For pure rotational energy transfer, our results showed a different dynamical behavior for para-H2 and ortho-H2 in collision with hydrogen fluoride (HF), which is consistent with the previous study. Interestingly, some strong resonant peaks were presented in the cross sections for ro-vibrational energy transfer. In addition, the calculated vibrational-resolved rate constant is in agreement with the experimental results reported by Bott et al. These dynamics data can be further applied to the numerical simulation of HF chemical lasers.

  15. Structural, dynamic, and vibrational properties during heat transfer in Si/Ge superlattices: A Car-Parrinello molecular dynamics study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ji, Pengfei; Zhang, Yuwen, E-mail: zhangyu@missouri.edu; Yang, Mo

    The structural, dynamic, and vibrational properties during heat transfer process in Si/Ge superlattices are studied by analyzing the trajectories generated by the ab initio Car-Parrinello molecular dynamics simulation. The radial distribution functions and mean square displacements are calculated and further discussions are made to explain and probe the structural changes relating to the heat transfer phenomenon. Furthermore, the vibrational density of states of the two layers (Si/Ge) are computed and plotted to analyze the contributions of phonons with different frequencies to the heat conduction. Coherent heat conduction of the low frequency phonons is found and their contributions to facilitate heatmore » transfer are confirmed. The Car-Parrinello molecular dynamics simulation outputs in the work show reasonable thermophysical results of the thermal energy transport process and shed light on the potential applications of treating the heat transfer in the superlattices of semiconductor materials from a quantum mechanical molecular dynamics simulation perspective.« less

  16. Theoretical study on the molecular structure and vibrational properties, NBO and HOMO-LUMO analysis of the POX3 (X = F, Cl, Br, I) series of molecules

    NASA Astrophysics Data System (ADS)

    Galván, Jorge E.; Gil, Diego M.; Lanús, Hernán E.; Altabef, Aida Ben

    2015-02-01

    The fourth member of the series of compounds of the type POX3 with X = I was synthesized and characterized by infrared spectroscopy. The geometrical parameters and vibrational properties of POX3 (X = F, Cl, Br, I) molecules were investigated theoretically by means DFT and ab initio methods. Available geometrical and vibrational data were used together with theoretical calculations in order to obtain a set of scaled force constants. The observed trends in geometrical parameters are analyzed and compared with those obtained in a previous work for the VOX3 (X = F, Cl, Br, I) series of compounds. NBO analysis was performed in order to know the hyper-conjugative interactions that favor one structure over another. The molecular properties such as ionization potential, electron affinity, electronegativity, chemical potential, chemical hardness, softness and global electrophilicity index have been deduced from HOMO-LUMO analysis.

  17. Structural, dynamic, and vibrational properties during heat transfer in Si/Ge superlattices: A Car-Parrinello molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Ji, Pengfei; Zhang, Yuwen; Yang, Mo

    2013-12-01

    The structural, dynamic, and vibrational properties during heat transfer process in Si/Ge superlattices are studied by analyzing the trajectories generated by the ab initio Car-Parrinello molecular dynamics simulation. The radial distribution functions and mean square displacements are calculated and further discussions are made to explain and probe the structural changes relating to the heat transfer phenomenon. Furthermore, the vibrational density of states of the two layers (Si/Ge) are computed and plotted to analyze the contributions of phonons with different frequencies to the heat conduction. Coherent heat conduction of the low frequency phonons is found and their contributions to facilitate heat transfer are confirmed. The Car-Parrinello molecular dynamics simulation outputs in the work show reasonable thermophysical results of the thermal energy transport process and shed light on the potential applications of treating the heat transfer in the superlattices of semiconductor materials from a quantum mechanical molecular dynamics simulation perspective.

  18. The vibrational spectrum of H2O3: An ab initio investigation

    NASA Technical Reports Server (NTRS)

    Jackels, Charles F.

    1991-01-01

    Theoretically determined frequencies and absorption intensities are reported for the vibrational spectrum of the covalent HOOOH and hydrogen bonded HO---HOO intermediates that may form in the reaction of the hydroxyl and hydroperoxyl radicals. Basis sets of DZP quality, augmented by diffuse and second sets of polarization functions have been used with CASSCF wave functions. The calculated harmonic vibrational frequencies of HOOOH have been corrected with empirical factors and presented in the form of a 'stick' spectrum. The oxygen backbone vibrations, predicted to occur at 519, 760, and 870 cm(exp -1), are well separated from most interferences, and may be the most useful for the species' identification. In the case of the hydrogen bonded isomer, emphasis has been placed upon prediction of the shifts in the intramolecular vibrational frequencies that take place upon formation of the complex. In particular, the HO stretch and HOO bend of HO2 are predicted to have shifts of -59 and 53 cm(exp -1), respectively, which should facilitate their identification. It is also noted that the antisymmetric stretching frequency of the oxygen backbone in HOOOH exhibits a strong sensitivity to the degree of electron correlation, such as has been previously observed for the same mode in ozone.

  19. Effect of Defects on Mechanisms of Initiation and Energy Release in Energetic Molecular Crystals

    DTIC Science & Technology

    2011-02-10

    dynamics of NEEMs ," Aberdeen, MD, Mar. 2010. 60. Dana Dlott (invited) American Chemical Society Annual Meeting, "Vibrational Energy in Molecules with High...hydrocarbons to ascertain their stability under extreme conditions. Also, HEs are often mixed with fuel oils as well so we sought to separately...dependence of the EOS. Ab initio calculations were performed to extract the complete equation of state for an organic molecular crystal over a

  20. A Group Increment Scheme for Infrared Absorption Intensities of Greenhouse Gases

    NASA Technical Reports Server (NTRS)

    Kokkila, Sara I.; Bera, Partha P.; Francisco, Joseph S.; Lee, Timothy J.

    2012-01-01

    A molecule's absorption in the atmospheric infrared (IR) window (IRW) is an indicator of its efficiency as a greenhouse gas. A model for estimating the absorption of a fluorinated molecule within the IRW was developed to assess its radiative impact. This model will be useful in comparing different hydrofluorocarbons and hydrofluoroethers contribution to global warming. The absorption of radiation by greenhouse gases, in particular hydrofluoroethers and hydrofluorocarbons, was investigated using ab initio quantum mechanical methods. Least squares regression techniques were used to create a model based on this data. The placement and number of fluorines in the molecule were found to affect the absorption in the IR window and were incorporated into the model. Several group increment models are discussed. An additive model based on one-carbon groups is found to work satisfactorily in predicting the ab initio calculated vibrational intensities.

  1. Electronic state spectroscopy by high-resolution vacuum ultraviolet photoabsorption, He(I) photoelectron spectroscopy and ab initio calculations of ethyl acetate

    NASA Astrophysics Data System (ADS)

    Śmialek, Malgorzata A.; Łabuda, Marta; Guthmuller, Julien; Hubin-Franskin, Marie-Jeanne; Delwiche, Jacques; Hoffmann, Søren Vrønning; Jones, Nykola C.; Mason, Nigel J.; Limão-Vieira, Paulo

    2016-06-01

    The high-resolution vacuum ultraviolet photoabsorption spectrum of ethyl acetate, C4H8O2, is presented over the energy range 4.5-10.7 eV (275.5-116.0 nm). Valence and Rydberg transitions and their associated vibronic series observed in the photoabsorption spectrum, have been assigned in accordance with new ab initio calculations of the vertical excitation energies and oscillator strengths. Also, the photoabsorption cross sections have been used to calculate the photolysis lifetime of this ester in the upper stratosphere (20-50 km). Calculations have also been carried out to determine the ionisation energies and fine structure of the lowest ionic state of ethyl acetate and are compared with a newly recorded photoelectron spectrum (from 9.5 to 16.7 eV). Vibrational structure is observed in the first photoelectron band of this molecule for the first time.

  2. Conformational analysis of a trihydroxylated derivative of cinnamic acid—a combined Raman spectroscopy and Ab initio study

    NASA Astrophysics Data System (ADS)

    Fiuza, S. M.; Van Besien, E.; Milhazes, N.; Borges, F.; Marques, M. P. M.

    2004-05-01

    A conformational analysis of 3-(3,4,5-trihydroxyphenyl)-2-propenoic acid (3,4,5-trihydroxycinnamic acid, THPPE), a trihydroxylated cinnamic acid analogous to caffeic acid (a natural compound often present in diet), was carried out by Raman spectroscopy coupled to Ab initio MO calculations. Apart from the optimised geometrical parameters for the most stable conformers of this compound, and for one of its dimeric species, the corresponding harmonic vibrational frequencies, as well as potential-energy profiles for rotation around several bonds within the molecule, were obtained. Twenty one distinct conformers were found for THPPE, the lowest energy ones—THPPE 1 and THPPE 2—displaying a completely planar geometry. The conformational preferences of this system were thus found to be mainly ruled by the stabilising effect of π-electron delocalisation. At the light of these results, a complete assignment of the corresponding solid state Raman spectra was performed.

  3. Lattice dynamics of Cs2NaYbF6 and Cs2NaYF6 elpasolites: Ab initio calculation

    NASA Astrophysics Data System (ADS)

    Chernyshev, V. A.; Petrov, V. P.; Nikiforov, A. E.; Zakir'yanov, D. O.

    2015-06-01

    The ab initio calculations of the crystal structure and the phonon spectrum of Cs2NaYbF6 and Cs2NaYF6 crystals with the elpasolite structure have been performed. The frequencies and types of fundamental vibrations have been determined. The calculations have been performed in the framework of the density functional theory using the molecular orbital method with hybrid functionals in the CRYSTAL09 program developed for the simulation of periodic structures. The outer 5 s and 5 p shells of the rare-earth ion have been described in Gaussian-type basis sets. The influence of inner shells, including 4 f electron shells, on the outer shells has been described using the pseudopotential. It has been shown that this approach allows the description of the phonon spectrum with the inclusion of the splitting of the longitudinal and transverse optical modes.

  4. THE AB INITIO CALCULATION OF THE DYNAMICAL AND THE THERMODYNAMIC PROPERTIES OF THE ZINC-BLENDE GaX (X=N, P, As AND Sb)

    NASA Astrophysics Data System (ADS)

    Bouhadda, Y.; Bentabet, A.; Fenineche, N. E.; Boudouma, Y.

    2012-12-01

    By this work, we aim to study the dynamical and the thermodynamic properties of the zinc-blende GaX (X = N, P, As and Sb) using the Ab initio simulation method. Indeed, we studied the lattice dynamics, the constant-volume specific heat (Cv), the internal energy (U), the entropy (S) and the free energy (F). The observed differences between the properties of GaX elements were discussed. Our results and the available literature data (theoretical and experimental) seems to be in good agreement. Moreover, Cv, U, F and S were calculated by using the harmonic approximation in the calculation of the dynamic lattice vibration. The good agreement between our results of both the phonon frequency, the constant-volume specific heat and the experimental data allows us to conclude that our results of S, U and F of GaX were well predicted.

  5. New force field for molecular simulation of guanidinium-based ionic liquids.

    PubMed

    Liu, Xiaomin; Zhang, Suojiang; Zhou, Guohui; Wu, Guangwen; Yuan, Xiaoliang; Yao, Xiaoqian

    2006-06-22

    An all-atom force field was proposed for a new class of room temperature ionic liquids (RTILs), N,N,N',N'-tetramethylguanidinium (TMG) RTILs. The model is based on the AMBER force field with modifications on several parameters. The refinements include (1) fitting the vibration frequencies for obtaining force coefficients of bonds and angles against the data obtained by ab initio calculations and/or by experiments and (2) fitting the torsion energy profiles of dihedral angles for obtaining torsion parameters against the data obtained by ab initio calculations. To validate the force field, molecular dynamics (MD) simulations at different temperatures were performed for five kinds of RTILs, where TMG acts as a cation and formate, lactate, perchlorate, trifluoroacetate, and trifluoromethylsulfonate act as anions. The predicted densities were in good agreement with the experimental data. Radial distribution functions (RDFs) and spatial distribution functions (SDFs) were investigated to depict the microscopic structures of the RTILs.

  6. Comparing Vibrationally Averaged Nuclear Shielding Constants by Quantum Diffusion Monte Carlo and Second-Order Perturbation Theory.

    PubMed

    Ng, Yee-Hong; Bettens, Ryan P A

    2016-03-03

    Using the method of modified Shepard's interpolation to construct potential energy surfaces of the H2O, O3, and HCOOH molecules, we compute vibrationally averaged isotropic nuclear shielding constants ⟨σ⟩ of the three molecules via quantum diffusion Monte Carlo (QDMC). The QDMC results are compared to that of second-order perturbation theory (PT), to see if second-order PT is adequate for obtaining accurate values of nuclear shielding constants of molecules with large amplitude motions. ⟨σ⟩ computed by the two approaches differ for the hydrogens and carbonyl oxygen of HCOOH, suggesting that for certain molecules such as HCOOH where big displacements away from equilibrium happen (internal OH rotation), ⟨σ⟩ of experimental quality may only be obtainable with the use of more sophisticated and accurate methods, such as quantum diffusion Monte Carlo. The approach of modified Shepard's interpolation is also extended to construct shielding constants σ surfaces of the three molecules. By using a σ surface with the equilibrium geometry as a single data point to compute isotropic nuclear shielding constants for each descendant in the QDMC ensemble representing the ground state wave function, we reproduce the results obtained through ab initio computed σ to within statistical noise. Development of such an approach could thereby alleviate the need for any future costly ab initio σ calculations.

  7. High-resolution sub-Doppler infrared spectroscopy of atmospherically relevant Criegee precursor CH2I radicals: CH2 stretch vibrations and "charge-sloshing" dynamics

    NASA Astrophysics Data System (ADS)

    Kortyna, A.; Lesko, D. M. B.; Nesbitt, D. J.

    2018-05-01

    The combination of a pulsed supersonic slit-discharge source and single-mode difference frequency direct absorption infrared spectroscopy permit first high resolution infrared study of the iodomethyl (CH2I) radical, with the CH2I radical species generated in a slit jet Ne/He discharge and cooled to 16 K in the supersonic expansion. Dual laser beam detection and collisional collimation in the slit expansion yield sub-Doppler linewidths (60 MHz), an absolute frequency calibration of 13 MHz, and absorbance sensitivities within a factor of two of the shot-noise limit. Fully rovibrationally resolved direct absorption spectra of the CH2 symmetric stretch mode (ν2) are obtained and fitted to a Watson asymmetric top Hamiltonian with electron spin-rotation coupling, providing precision rotational constants and spin-rotation tensor elements for the vibrationally excited state. Analysis of the asymmetric top rotational constants confirms a vibrationally averaged planar geometry in both the ground- and first-excited vibrational levels. Sub-Doppler resolution permits additional nuclear spin hyperfine structures to be observed, with splittings in excellent agreement with microwave measurements on the ground state. Spectroscopic data on CH2I facilitate systematic comparison with previous studies of halogen-substituted methyl radicals, with the periodic trends strongly correlated with the electronegativity of the halogen atom. Interestingly, we do not observe any asymmetric CH2 stretch transitions, despite S/N ≈ 25:1 on strongest lines in the corresponding symmetric CH2 stretch manifold. This dramatic reversal of the more typical 3:1 antisymmetric/symmetric CH2 stretch intensity ratio signals a vibrational transition moment poorly described by simple "bond-dipole" models. Instead, the data suggest that this anomalous intensity ratio arises from "charge sloshing" dynamics in the highly polar carbon-iodine bond, as supported by ab initio electron differential density plots and indeed consistent with observations in other halomethyl radicals and protonated cluster ions.

  8. Ab-initio atomic level stress and role of d-orbitals in CuZr, CuZn and CuY

    NASA Astrophysics Data System (ADS)

    Ojha, Madhusudan; Nicholson, Don M.; Egami, Takeshi

    2015-03-01

    Atomic level stress offers a new tool to characterize materials within the local approximation to density functional theory (DFT). Ab-initio atomic level stresses in B2 structures of CuZr, CuZn and CuY are calculated and results are explained on the basis of d-orbital contributions to Density of States (DOS). The overlap of d-orbital DOS plays an important role in the relative magnitude of atomic level stresses in these structures. The trends in atomic level stresses that we observed in these simple B2 structures are also seen in complex structures such as liquids, glasses and solid solutions. The stresses are however modified by the different coordination and relaxed separation distances in these complex structures. We used the Locally Self-Consistent Multiple Scattering (LSMS) code and Vienna Ab-initio Simulation Package (VASP) for ab-initio calculations.

  9. First Principles Study of Chemically Functionalized Graphene

    NASA Astrophysics Data System (ADS)

    Jha, Sanjiv; Vasiliev, Igor

    2015-03-01

    The electronic, structural and vibrational properties of carbon nanomaterials can be affected by chemical functionalization. We applied ab initio computational methods based on density functional theory to study the covalent functionalization of graphene with benzyne, carboxyl groups and tetracyanoethylene oxide (TCNEO). Our calculations were carried out using the SIESTA and Quantum-ESPRESSO electronic structure codes combined with the local density and generalized gradient approximations for the exchange correlation functional and norm-conserving Troullier-Martins pseudopotentials. The simulated Raman and infrared spectra of graphene functionalized with carboxyl groups and TCNEO were consistent with the available experimental results. The computed vibrational spectra of graphene functionalized with carboxyl groups showed that the presence of point defects near the functionalization site affects the Raman and infrared spectroscopic signatures of functionalized graphene. Supported by NSF CHE-1112388.

  10. The suitability of barium monofluoride for laser cooling from ab initio study

    NASA Astrophysics Data System (ADS)

    Kang, Shuying; Kuang, Fangguang; Jiang, Gang; Du, Jiguang

    2016-03-01

    The feasibility of laser cooling the 138Ba19F molecule is performed using ab initio quantum chemistry. Three low-lying doublet electronic states X 2Σ+, A' 2Δ and A 2Π are determined by the multireference configuration-interaction (MRCI) method, where the spin-orbit coupling (SOC) effect is also taken into account in the electronic structure calculations. The computed spectroscopic constants and permanent dipole moments agree well with the available experimental data. The Franck-Condon factors of the A 2П → X 2Σ+ transition show highly diagonal dominance (f00 = 0.981, f11 = 0.940, f22 = 0.896) and the A 2П state has a radiative lifetime of τ = 37.8 ns, allowing for rapid laser cooling. Our calculation indicates that the laser-cooling scheme require only three lasers at 822 nm, 855 nm and 856 nm proceeded on the A 2П (ν‧) ← X 2Σ+ (ν‧‧) transitions. The appeared intervening state A' 2Δ between the X 2Σ+ and A 2П states is the main challenge for laser cooling this molecule. In fact, the calculated vibrational branching loss ratio to the intermediate A' 2Δ state is almost negligible at a level of η < 4.5 × 10-9. Thus, BaF is a promising laser-cooling candidate with a relatively simple laser-cooling scheme.

  11. Experimental and ab initio structure of BrNO2

    NASA Astrophysics Data System (ADS)

    Kwabia Tchana, F.; Orphal, J.; Kleiner, I.; Rudolph, H. D.; Willner, H.; Garcia, P.; Bouba, O.; Demaison, J.; Redlich, B.

    The ν2 fundamental bands of different isotopomers of BrNO2 (79Br15N16O2, 81Br15N16O2, 79Br14N18O2 and 79Br14N16O18O) located around 13 µm were recorded using high-resolution Fourier transform infrared spectrometry. More than 8000 lines of all these isotopomers were reproduced using a Watson-type A-reduced Hamiltonian with a root-mean-square deviation of better than 7 × 10-4 cm-1 for the four isotopomers. Rotational and centrifugal distortion constants for the ν2 = 1 states as well as for the vibrational ground states of these isotopomers were determined. For the first time, an analysis of the ground-state rotational constants obtained in this study combined with the constants obtained in our previous work on the ν2 bands of 79Br14N16O2 and 81Br14N16O2 has allowed us to calculate the rm structure of nitryl bromide. The structural parameters obtained were rm(Br-N) = 2.0118(16) Å, rm(N-O) = 1.1956(12) Å and α(O-N-O) = 131.02(12) Å. A new ab initio structure of nitryl bromide calculated at the CCSD(T)/SDB-aug-cc-pVQZ level of theory is presented and was found to be in fair agreement with the experimental structure.

  12. Room temperature linelists for CO2 asymmetric isotopologues with ab initio computed intensities

    NASA Astrophysics Data System (ADS)

    Zak, Emil J.; Tennyson, Jonathan; Polyansky, Oleg L.; Lodi, Lorenzo; Zobov, Nikolay F.; Tashkun, Sergei A.; Perevalov, Valery I.

    2017-12-01

    The present paper reports room temperature line lists for six asymmetric isotopologues of carbon dioxide: 16O12C18O (628), 16O12C17O (627), 16O13C18O (638),16O13C17O (637), 17O12C18O (728) and 17O13C18O (738), covering the range 0-8000 cm-1. Variational rotation-vibration wavefunctions and energy levels are computed using the DVR3D software suite and a high quality semi-empirical potential energy surface (PES), followed by computation of intensities using an ab initio dipole moment surface (DMS). A theoretical procedure for quantifying sensitivity of line intensities to minor distortions of the PES/DMS renders our theoretical model as critically evaluated. Several recent high quality measurements and theoretical approaches are discussed to provide a benchmark of our results against the most accurate available data. Indeed, the thesis of transferability of accuracy among different isotopologues with the use of mass-independent PES is supported by several examples. Thereby, we conclude that the majority of line intensities for strong bands are predicted with sub-percent accuracy. Accurate line positions are generated using an effective Hamiltonian, constructed from the latest experiments. This study completes the list of relevant isotopologues of carbon dioxide; these line lists are available to remote sensing studies and inclusion in databases.

  13. Wave packet and statistical quantum calculations for the He + NeH⁺ → HeH⁺ + Ne reaction on the ground electronic state.

    PubMed

    Koner, Debasish; Barrios, Lizandra; González-Lezana, Tomás; Panda, Aditya N

    2014-09-21

    A real wave packet based time-dependent method and a statistical quantum method have been used to study the He + NeH(+) (v, j) reaction with the reactant in various ro-vibrational states, on a recently calculated ab initio ground state potential energy surface. Both the wave packet and statistical quantum calculations were carried out within the centrifugal sudden approximation as well as using the exact Hamiltonian. Quantum reaction probabilities exhibit dense oscillatory pattern for smaller total angular momentum values, which is a signature of resonances in a complex forming mechanism for the title reaction. Significant differences, found between exact and approximate quantum reaction cross sections, highlight the importance of inclusion of Coriolis coupling in the calculations. Statistical results are in fairly good agreement with the exact quantum results, for ground ro-vibrational states of the reactant. Vibrational excitation greatly enhances the reaction cross sections, whereas rotational excitation has relatively small effect on the reaction. The nature of the reaction cross section curves is dependent on the initial vibrational state of the reactant and is typical of a late barrier type potential energy profile.

  14. Infrared Spectra of Hydrated Magnesium Salts and their Role in the Search for Possible Life Conditions on Jupiter Moons

    NASA Technical Reports Server (NTRS)

    Chaban, Galina; Huo, Winifred M.; Lee, Timothy J.; Kwak, Dochan (Technical Monitor)

    2002-01-01

    Recent observations from the Galileo satellite indicate that three of the Jupiter moons, Europa, Ganymede, and Callisto, may have subsurface oceans. Possible existence of such ocean and the nature of its composition are of great interest to astrobiologists. Data from Galileo's NIMS spectrometer indicate the possibility of hydrated salts on Europa's surface. To aid in the design of future missions, we investigated infrared spectra of MgSO4-nH20, n=1-3 using ab initio calculations. Geometry, energetics, dipole moments, vibrational frequencies and infrared intensities of pure and hydrated MgSO4 salts were determined. Significant differences are found between vibrational spectra of water molecules in complexes with MgSO4 and pure water. Some of the O-H stretching frequencies in the complexes are shifted to the red by up to 1,500 - 2,000 per cm. In addition, the SO2 stretching vibrations are found at lower frequency regions than the water vibrations. The calculated bands of water and SO2 fragments can serve as markers for the existence of the salt-water complexes on the surface of Jupiter's moon.

  15. Mode-selective chemistry on metal surfaces: The dissociative chemisorption of CH 4 on Pt(111)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guo, Han; Jackson, Bret

    A quantum approach based on an expansion in vibrationally adiabatic eigenstates is used to explore CH 4 dissociation on Pt(111). Computed sticking probabilities for molecules in the ground, 1v 3 and 2v 3, states are in very good agreement with the available experimental data, reproducing the variation in reactivity with collision energy and vibrational state. As was found in similar studies on Ni(100) and Ni(111), exciting the 1v 1 symmetric stretch of CH 4 is more effective at promoting the dissociative chemisorption of CH 4 than exciting the 1v 3 antisymmetric stretch. This behavior is explained in terms of symmetry,more » mode-softening, and nonadiabatic transitions between vibrationally adiabatic states. We find that the efficacies of the bending modes for promoting reaction are reasonably large, and similar to the 1v 3 state. The vibrational efficacies for promoting reaction on Ni(111) are larger than for reaction on Pt(111), due to the larger nonadiabatic couplings. As a result, our computed sticking probabilities are in good agreement with results from recent ab initio molecular dynamics and reactive force field studies.« less

  16. Mode-selective chemistry on metal surfaces: The dissociative chemisorption of CH{sub 4} on Pt(111)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guo, Han; Jackson, Bret, E-mail: jackson@chem.umass.edu

    A quantum approach based on an expansion in vibrationally adiabatic eigenstates is used to explore CH{sub 4} dissociation on Pt(111). Computed sticking probabilities for molecules in the ground, 1v{sub 3} and 2v{sub 3}, states are in very good agreement with the available experimental data, reproducing the variation in reactivity with collision energy and vibrational state. As was found in similar studies on Ni(100) and Ni(111), exciting the 1v{sub 1} symmetric stretch of CH{sub 4} is more effective at promoting the dissociative chemisorption of CH{sub 4} than exciting the 1v{sub 3} antisymmetric stretch. This behavior is explained in terms of symmetry,more » mode-softening, and nonadiabatic transitions between vibrationally adiabatic states. We find that the efficacies of the bending modes for promoting reaction are reasonably large, and similar to the 1v{sub 3} state. The vibrational efficacies for promoting reaction on Ni(111) are larger than for reaction on Pt(111), due to the larger nonadiabatic couplings. Our computed sticking probabilities are in good agreement with results from recent ab initio molecular dynamics and reactive force field studies.« less

  17. Mode-selective chemistry on metal surfaces: The dissociative chemisorption of CH 4 on Pt(111)

    DOE PAGES

    Guo, Han; Jackson, Bret

    2016-05-13

    A quantum approach based on an expansion in vibrationally adiabatic eigenstates is used to explore CH 4 dissociation on Pt(111). Computed sticking probabilities for molecules in the ground, 1v 3 and 2v 3, states are in very good agreement with the available experimental data, reproducing the variation in reactivity with collision energy and vibrational state. As was found in similar studies on Ni(100) and Ni(111), exciting the 1v 1 symmetric stretch of CH 4 is more effective at promoting the dissociative chemisorption of CH 4 than exciting the 1v 3 antisymmetric stretch. This behavior is explained in terms of symmetry,more » mode-softening, and nonadiabatic transitions between vibrationally adiabatic states. We find that the efficacies of the bending modes for promoting reaction are reasonably large, and similar to the 1v 3 state. The vibrational efficacies for promoting reaction on Ni(111) are larger than for reaction on Pt(111), due to the larger nonadiabatic couplings. As a result, our computed sticking probabilities are in good agreement with results from recent ab initio molecular dynamics and reactive force field studies.« less

  18. Molecular structure and spectroscopic characterization of Carbamazepine with experimental techniques and DFT quantum chemical calculations.

    PubMed

    Suhasini, M; Sailatha, E; Gunasekaran, S; Ramkumaar, G R

    2015-04-15

    A systematic vibrational spectroscopic assignment and analysis of Carbamazepine has been carried out by using FT-IR, FT-Raman and UV spectral data. The vibrational analysis were aided by electronic structure calculations - ab initio (RHF) and hybrid density functional methods (B3LYP) performed with standard basis set 6-31G(d,p). Molecular equilibrium geometries, electronic energies, natural bond order analysis, harmonic vibrational frequencies and IR intensities have been computed. A detailed interpretation of the vibrational spectra of the molecule has been made on the basis of the calculated Potential Energy Distribution (PED) by VEDA program. UV-visible spectrum of the compound was also recorded and the electronic properties, such as HOMO and LUMO energies and λmax were determined by HF/6-311++G(d,p) Time-Dependent method. The thermodynamic functions of the title molecule were also performed using the RHF and DFT methods. The restricted Hartree-Fock and density functional theory-based nuclear magnetic resonance (NMR) calculation procedure was also performed, and it was used for assigning the (13)C and (1)H NMR chemical shifts of Carbamazepine. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. FT-Raman, FT-IR and UV-visible spectral investigations and ab initio computations of anti-epileptic drug: vigabatrin.

    PubMed

    Edwin, Bismi; Joe, I Hubert

    2013-10-01

    Vibrational analysis of anti-epileptic drug vigabatrin, a structural GABA analog was carried out using NIR FT-Raman and FTIR spectroscopic techniques. The equilibrium geometry, various bonding features and harmonic vibrational wavenumbers were studied using density functional theory method. The detailed interpretation of the vibrational spectra has been carried out with the aid of VEDA.4 program. Vibrational spectra, natural bond orbital analysis and optimized molecular structure show clear evidence for the effect of electron charge transfer on the activity of the molecule. Predicted electronic absorption spectrum from TD-DFT calculation has been compared with the UV-vis spectrum. The Mulliken population analysis on atomic charges and the HOMO-LUMO energy were also calculated. Good consistency is found between the calculated results and experimental data for the electronic absorption as well as IR and Raman spectra. The blue-shifting of the C-C stretching wavenumber reveals that the vinyl group is actively involved in the conjugation path. The NBO analysis confirms the occurrence of intramolecular hyperconjugative interactions resulting in ICT causing stabilization of the system. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Ab initio phonon thermal transport in monolayer InSe, GaSe, GaS, and alloys

    NASA Astrophysics Data System (ADS)

    Pandey, Tribhuwan; Parker, David S.; Lindsay, Lucas

    2017-11-01

    We compare vibrational properties and phonon thermal conductivities (κ) of monolayer InSe, GaSe, and GaS systems using density functional theory and Peierls-Boltzmann transport methods. In going from InSe to GaSe to GaS, system mass decreases giving both increasing acoustic phonon velocities and decreasing scattering of these heat-carrying modes with optic phonons, ultimately giving {κ }{InSe}< {κ }{GaSe}< {κ }{GaS}. This behavior is demonstrated by correlating the scattering phase space limited by fundamental conservation conditions with mode scattering rates and phonon dispersions for each material. We also show that, unlike flat monolayer systems such as graphene, in InSe, GaSe and GaS thermal transport is governed by in-plane vibrations. Alloying of InSe, GaSe, and GaS systems provides an effective method for modulating their κ through intrinsic vibrational modifications and phonon scattering from mass disorder giving reductions ˜2-3.5 times. This disorder also suppresses phonon mean free paths in the alloy systems compared to those in their crystalline counterparts. This work provides fundamental insights of lattice thermal transport from basic vibrational properties for an interesting set of two-dimensional materials.

  1. Energy distribution among reaction products. VI - F + H2, D2.

    NASA Technical Reports Server (NTRS)

    Polanyi, J. C.; Woodall, K. B.

    1972-01-01

    Study of the F + H2 reaction, which is of special theoretical interest since it is one of the simplest examples of an exothermic chemical reaction. The FH2 system involves only 11 electrons, and the computation of a potential-energy hypersurface to chemical accuracy may now be within the reach of ab initio calculations. The 'arrested relaxation' variant of the infrared chemiluminescence method is used to obtain the initial vibrational, rotational and translational energy distributions in the products of exothermic reactions.

  2. Structural investigation of the C-O complex in GaAs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alt, H. Ch.; Kersch, A.; Wagner, H. E.

    A carbon-oxygen complex occurring in gallium arsenide crystals after annealing at around 700 °C is studied. Fourier transform infrared absorption measurements on the associated vibrational band at 2060 cm-1 under uniaxial stress reveal that the center has tetragonal symmetry. From the intensity of the {sup 18}O-related satellite band it is concluded that four oxygen atoms are involved. Ab initio local density calculations show that a tetragonal CO{sub 4} molecule forms a stable entity in the gallium arsenide lattice.

  3. Quantifying Hydrogen Bond Cooperativity in Water: VRT Spectroscopy of the Water Tetramer

    NASA Astrophysics Data System (ADS)

    Cruzan, J. D.; Braly, L. B.; Liu, Kun; Brown, M. G.; Loeser, J. G.; Saykally, R. J.

    1996-01-01

    Measurement of the far-infrared vibration-rotation tunneling spectrum of the perdeuterated water tetramer is described. Precisely determined rotational constants and relative intensity measurements indicate a cyclic quasi-planar minimum energy structure, which is in agreement with recent ab initio calculations. The O-O separation deduced from the data indicates a rapid exponential convergence to the ordered bulk value with increasing cluster size. Observed quantum tunneling splittings are interpreted in terms of hydrogen bond rearrangements connecting two degenerate structures.

  4. Dynamics at Conical Intersections

    NASA Astrophysics Data System (ADS)

    Schuurman, Michael S.; Stolow, Albert

    2018-04-01

    The nonadiabatic coupling of electronic and vibrational degrees of freedom is the defining feature of electronically excited states of polyatomic molecules. Once considered a theoretical curiosity, conical intersections (CIs) are now generally accepted as being the dominant source of coupled charge and vibrational energy flow in molecular excited states. Passage through CIs leads to the conversion of electronic to vibrational energy, which drives the ensuing photochemistry, isomerization being a canonical example. It has often been remarked that the CI may be thought of as a transition state in the excited state. As such, we expect that both the direction and the velocity of approach to the CI will matter. We explore this suggestion by looking for dynamical aspects of passage through CIs and for analogies with well-known concepts from ground-state reaction dynamics. Great progress has been made in the development of both experimental techniques and ab initio dynamics simulations, to a degree that direct comparisons may now be made. Here we compare time-resolved photoelectron spectroscopy results with on-the-fly ab initio multiple spawning calculations of the experimental observables, thereby validating each. We adopt a phenomenological approach and specifically concentrate on the excited-state dynamics of the C=C bond in unsaturated hydrocarbons. In particular, we make use of selective chemical substitution (such as replacing an H atom by a methyl group) so as to alter the inertia of certain vibrations relative to others, thus systematically varying (mass-weighted) directions and velocities of approach to a CI. Chemical substituents, however, may affect both the nuclear and electronic components of the total wave function. The former, which we call an inertial effect, influences the direction and velocity of approach. The latter, which we call a potential effect, modifies the electronic structure and therefore the energetic location and topography of the potential energy surfaces involved. Using a series of examples, we discuss both types of effects. We argue that there is a need for dynamical pictures and simple models of nonadiabatic dynamics at CIs and hope that the phenomenology presented here will help inspire such developments.

  5. Spectra and structure of silicon containing compounds. XXXII. Raman and infrared spectra, conformational stability, vibrational assignment and ab initio calculations of n-propylsilane-d0 and Si-d3.

    PubMed

    Durig, James R; Pan, Chunhua; Guirgis, Gamil A

    2003-03-15

    The infrared (3100-40 cm(-1)) and Raman (3100-20 cm(-1)) spectra of gaseous and solid n-propylsilane, CH(3)CH(2)CH(2)SiH(3) and the Si-d(3) isotopomer, CH(3)CH(2)CH(2)SiD(3), have been recorded. Additionally, the Raman spectra of the liquids have been recorded and qualitative depolarization values obtained. Both the anti and gauche conformers have been identified in the fluid phases but only the anti conformer remains in the solid. Variable temperature (-105 to -150 degrees C) studies of the infrared spectra of n-propylsilane dissolved in liquid krypton have been recorded and the enthalpy difference has been determined to be 220+/-22 cm(-1) (2.63+/-0.26 kJ mol(-1)) with the anti conformer the more stable form. A similar value of 234+/-23 cm(-1) (2.80+/-0.28 kJ mol(-1)) was obtained for deltaH for the Si-d(3) isotopomer. At ambient temperature it is estimated that there is 30+/-2% of the gauche conformer present. The potential function governing the conformation interchange has been estimated from the far infrared spectral data, the enthalpy difference, and the dihedral angle of the gauche conformer, which is compared to the one predicted from ab initio MP2/6-31G(d) calculations. The barriers to conformational interchange are: 942, 970 and 716 cm(-1) for the anti to gauche, gauche to gauche, and gauche to anti conformers, respectively. Relatively complete vibrational assignments are proposed for both the n-propylsilane-d(0) and Si-d(3) molecules based on the relative infrared and Raman spectral intensities, infrared band contours, depolarization ratios, and normal coordinate calculations. The geometrical parameters, harmonic force constants, vibrational frequencies, infrared intensities, Raman activities and depolarization ratios, and energy differences have been obtained for the anti and gauche conformers from ab initio MP2/6-31G(d) calculations. Structural parameters and energy differences have also been obtained utilizing the larger 6-311 + G(d,p) and 6-311 + G(2d,2p) basis sets. From the isolated Si-H stretching frequency from the Si-d(2) isotopomer the r(0) distances of 1.484 and 1.485 A have been determined for the SiH(s) and SiH(a) bonds, respectively, for the anti conformer, and 1.486 A for the SiH bond for the gauche conformer. Utilizing previously reported microwave rotational constants for the anti conformer and the determined SiH distances along with ab initio predicted parameters 'adjusted r(0)' parameters have been obtained for the anti conformer. The results are discussed and compared to those obtained for some similar molecules. Copyright 2002 Elsevier Science B.V.

  6. Spectra and structure of silicon containing compounds. XXXII. Raman and infrared spectra, conformational stability, vibrational assignment and ab initio calculations of n-propylsilane-d 0 and Si-d 3

    NASA Astrophysics Data System (ADS)

    Durig, James R.; Pan, Chunhua; Guirgis, Gamil A.

    2003-03-01

    The infrared (3100-40 cm -1) and Raman (3100-20 cm -1) spectra of gaseous and solid n-propylsilane, CH 3CH 2CH 2SiH 3 and the Si-d 3 isotopomer, CH 3CH 2CH 2SiD 3, have been recorded. Additionally, the Raman spectra of the liquids have been recorded and qualitative depolarization values obtained. Both the anti and gauche conformers have been identified in the fluid phases but only the anti conformer remains in the solid. Variable temperature (-105 to -150 °C) studies of the infrared spectra of n-propylsilane dissolved in liquid krypton have been recorded and the enthalpy difference has been determined to be 220±22 cm -1 (2.63±0.26 kJ mol -1) with the anti conformer the more stable form. A similar value of 234±23 cm -1 (2.80±0.28 kJ mol -1) was obtained for Δ H for the Si-d 3 isotopomer. At ambient temperature it is estimated that there is 30±2% of the gauche conformer present. The potential function governing the conformation interchange has been estimated from the far infrared spectral data, the enthalpy difference, and the dihedral angle of the gauche conformer, which is compared to the one predicted from ab initio MP2/6-31G(d) calculations. The barriers to conformational interchange are: 942, 970 and 716 cm -1 for the anti to gauche, gauche to gauche, and gauche to anti conformers, respectively. Relatively complete vibrational assignments are proposed for both the n-propylsilane-d 0 and Si-d 3 molecules based on the relative infrared and Raman spectral intensities, infrared band contours, depolarization ratios, and normal coordinate calculations. The geometrical parameters, harmonic force constants, vibrational frequencies, infrared intensities, Raman activities and depolarization ratios, and energy differences have been obtained for the anti and gauche conformers from ab initio MP2/6-31G(d) calculations. Structural parameters and energy differences have also been obtained utilizing the larger 6-311+G(d,p) and 6-311+G(2d,2p) basis sets. From the isolated SiH stretching frequency from the Si-d 2 isotopomer the r0 distances of 1.484 and 1.485 Å have been determined for the SiH s and SiH a bonds, respectively, for the anti conformer, and 1.486 Å for the SiH bond for the gauche conformer. Utilizing previously reported microwave rotational constants for the anti conformer and the determined SiH distances along with ab initio predicted parameters 'adjusted r0' parameters have been obtained for the anti conformer. The results are discussed and compared to those obtained for some similar molecules.

  7. Ro-vibronic transition intensities for triatomic molecules from the exact kinetic energy operator; electronic spectrum for the C̃ 1B2 ← X̃ 1A1 transition in SO2.

    PubMed

    Zak, Emil J; Tennyson, Jonathan

    2017-09-07

    A procedure for calculating ro-vibronic transition intensities for triatomic molecules within the Born-Oppenheimer approximation is reported. Ro-vibrational energy levels and wavefunctions are obtained with the DVR3D suite, which solves the nuclear motion problem with an exact kinetic energy operator. Absolute transition intensities are calculated both with the Franck-Condon approximation and with a full transition dipole moment surface. The theoretical scheme is tested on C̃  1 B 2  ← X̃  1 A 1 ro-vibronic transitions of SO 2 . Ab initio potential energy and dipole moment surfaces are generated for this purpose. The calculated ro-vibronic transition intensities and cross sections are compared with the available experimental and theoretical data.

  8. Theoretical evaluation of the radiative lifetimes of LiCs and NaCs in the A1Σ+ state

    NASA Astrophysics Data System (ADS)

    Mabrouk, N.; Berriche, H.

    2017-08-01

    Calculations of the adiabatic potential energy curves and the transition dipole moments between the ground (A1Σ+) and the first excited (A1Σ+) states have been determined for the LiCs and NaCs molecules. The calculations are performed using an ab initio approach based on non-empirical pseudopotentials for Cs+, Li+ and Na+ cores, parameterized l-dependent polarization potentials and full configuration interaction calculations. The potential energy curves and the transition dipole moment are used to estimate the radiative lifetimes of the vibrational levels of the A+Σ+ state using the Franck-Condon (FC) approximation and the approximate sum rule method. The radiative lifetimes associated with the A+Σ+ state are presented here for the first time. These data can help experimentalists to optimize photoassociative formation of ultracold molecules and their longevity in a trap or in an optical lattice.

  9. An adiabatic spectroscopic investigation of the CsRb system in ground and numerous excited states

    NASA Astrophysics Data System (ADS)

    Souissi, Hanen; Jellali, Soulef; Maha, Chaieb; Habli, Héla; Oujia, Brahim; Gadéa, Florent Xavier

    2017-10-01

    Via ab-initio approximations, we investigate the electronic and structural features of the CsRb molecule. Adiabatic potential energy curves of 261,3Σ+, 181,3Π and 61,3Δ electronic states with their derived spectroscopic constants as well as vibrational levels spacing have been carried out and well explained. Our approach is founded on an Effective Core Potential (ECP) describing the valence electrons of the system. Using a large Gaussian basis set, the full valence Configuration Interaction can be applied easily on the two-effective valence electrons of the CsRb system. Furthermore, a detailed analysis of the electric dipolar properties has been made through the investigation of both permanent and transition dipole moments (PDM and TDM). It is significant that the ionic character connected with electron transfer that is linked to Cs+ Rb- state has been clearly illustrated in the adiabatic permanent dipole moment.

  10. Non-adiabatic couplings and dynamics in proton transfer reactions of Hn+ systems: application to H2+H2+→H+H3+ collisions

    PubMed Central

    Sanz-Sanz, Cristina; Aguado, Alfredo; Roncero, Octavio; Naumkin, Fedor

    2016-01-01

    Analytical derivatives and non-adiabatic coupling matrix elements are derived for Hn+ systems (n=3, 4 and 5). The method uses a generalized Hellmann-Feynman theorem applied to a multi-state description based on diatomics-in-molecules (for H3+) or triatomics-in-molecules (for H4+ and H5+) formalisms, corrected with a permutationally invariant many-body term to get high accuracy. The analytical non-adiabatic coupling matrix elements are compared with ab initio calculations performed at multi-reference configuration interaction level. These magnitudes are used to calculate H2(v′=0,j′=0)+H2+(v,j=0) collisions, to determine the effect of electronic transitions using a molecular dynamics method with electronic transitions. Cross sections for several initial vibrational states of H2+ are calculated and compared with the available experimental data, yielding an excellent agreement. The effect of vibrational excitation of H2+ reactant, and its relation with non-adiabatic processes are discussed. Also, the behavior at low collisional energies, in the 1 meV-0.1 eV interval, of interest in astrophysical environments, are discussed in terms of the long range behaviour of the interaction potential which is properly described within the TRIM formalism. PMID:26696058

  11. On the accuracy of the MB-pol many-body potential for water: Interaction energies, vibrational frequencies, and classical thermodynamic and dynamical properties from clusters to liquid water and ice

    NASA Astrophysics Data System (ADS)

    Reddy, Sandeep K.; Straight, Shelby C.; Bajaj, Pushp; Huy Pham, C.; Riera, Marc; Moberg, Daniel R.; Morales, Miguel A.; Knight, Chris; Götz, Andreas W.; Paesani, Francesco

    2016-11-01

    The MB-pol many-body potential has recently emerged as an accurate molecular model for water simulations from the gas to the condensed phase. In this study, the accuracy of MB-pol is systematically assessed across the three phases of water through extensive comparisons with experimental data and high-level ab initio calculations. Individual many-body contributions to the interaction energies as well as vibrational spectra of water clusters calculated with MB-pol are in excellent agreement with reference data obtained at the coupled cluster level. Several structural, thermodynamic, and dynamical properties of the liquid phase at atmospheric pressure are investigated through classical molecular dynamics simulations as a function of temperature. The structural properties of the liquid phase are in nearly quantitative agreement with X-ray diffraction data available over the temperature range from 268 to 368 K. The analysis of other thermodynamic and dynamical quantities emphasizes the importance of explicitly including nuclear quantum effects in the simulations, especially at low temperature, for a physically correct description of the properties of liquid water. Furthermore, both densities and lattice energies of several ice phases are also correctly reproduced by MB-pol. Following a recent study of DFT models for water, a score is assigned to each computed property, which demonstrates the high and, in many respects, unprecedented accuracy of MB-pol in representing all three phases of water.

  12. Nonadiabatic dynamics on the two coupled electronic PESs: the H+ + O2 system.

    PubMed

    Xavier, F George D

    2010-09-30

    Multistate adiabatic and diabatic PESs were computed for the H+ + O2 collision system in Jacobi coordinates, (R,r,γ) using the cc-pVTZ basis set and the ic-MRCI level of theory. In addition, all possible interaction potentials and nonadiabatic coupling matrix elements among those different electronic states were also computed. Comparisons with earlier computed interaction potentials were made wherever possible, and the differences between them is attributed to the multistate diabatization and the chosen level of theory and basis set. Focusing our attention on the ground-state (GS) and the first excited-state (ES) PES, quantum dynamics were performed using the 2 × 2 diabatic potential submatrix obtained from the multistate (four) diabatic potential matrix within the VCC-RIOSA scheme at two experimentally reported collision energies, E(cm) = 9.5 and 23 eV. The scattering quantities were computed for two experimentally observed collision processes, namely, the inelastic vibrational excitation (IVE), H+ + O2 (X3Σg(−),v = 0) → H+ + O2 (X3Σg(−),v′), and the vibrational charge transfer (VCT), H+ + O2 (X3Σg(−),v = 0) → H (2S) + O (X2Πg,v′′). Comparisons were made with experimental results and found an overall improvement relative to the earlier computed results, and the discrepancies, if any, could be brought down to minimum by further modification in employed ab initio PESs and the interaction potential.

  13. In search of the X{sub 2}BO and X{sub 2}BS (X = H, F) free radicals: Ab initio studies of their spectroscopic signatures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clouthier, Dennis J., E-mail: dclaser@uky.edu

    2014-12-28

    The F{sub 2}BO free radical is a known, although little studied, species but similar X{sub 2}BY (X = H, D, F; Y = O, S) molecules are largely unknown. High level ab initio methods have been used to predict the molecular structures, vibrational frequencies (in cm{sup −1}), and relative energies of the ground and first two excited electronic states of these free radicals, as an aid to their eventual spectroscopic identification. The chosen theoretical methods and basis sets were tested on F{sub 2}BO and found to give good agreement with the known experimental quantities. In particular, complete basis set extrapolationsmore » of coupled-cluster single and doubles with perturbative triple excitations/aug-cc-pVXZ (X = 3, 4, 5) energies gave excellent electronic term values, due to small changes in geometry between states and the lack of significant multireference character in the wavefunctions. The radicals are found to have planar C{sub 2v} geometries in the X{sup ~2}B{sub 2} ground state, the low-lying A{sup ~2}B{sub 1} first excited state, and the higher B{sup ~2}A{sub 1} state. Some of these radicals have very small ground state dipole moments hindering microwave measurements. Infrared studies in matrices or in the gas phase may be possible although the fundamentals of H{sub 2}BO and H{sub 2}BS are quite weak. The most promising method of identifying these species in the gas phase appears to be absorption or laser-induced fluorescence spectroscopy through the allowed B{sup ~}-X{sup ~} transitions which occur in the visible-near UV region of the electromagnetic spectrum. The ab initio results have been used to calculate the Franck-Condon profiles of the absorption and emission spectra, and the rotational structure of the B{sup ~}-X{sup ~}0{sub 0}{sup 0} bands has been simulated. The calculated single vibronic level emission spectra provide a unique, readily recognizable fingerprint of each particular radical, facilitating the experimental identification of new X{sub 2}BY species in the gas phase.« less

  14. Stimulated emission pumping spectroscopy of the [X](1)A' state of CHF.

    PubMed

    Mukarakate, Calvin; Tao, Chong; Jordan, Christopher D; Polik, William F; Reid, Scott A

    2008-01-24

    We have recorded stimulated emission pumping (SEP) spectra of the A1A' ' 1A' system of CHF, which reveal rich detail concerning the rovibronic structure of the 1A' state up to approximately 7000 cm-1 above the vibrationless level. Using several intermediate A1A' ' state levels, we obtained rotationally resolved spectra for 16 of the 33 levels observed in our previous single vibronic level (SVL) emission study (Fan et al., J. Chem. Phys. 2005, 123, 014314), in addition to one new level. An anharmonic effective Hamiltonian model poorly reproduces the term energies even with the improved set of data because of the extensive interactions among levels in a given polyad (p) having combinations of nu1, nu2, nu3, which satisfy the relationship p = 2nu1 + nu2 + nu3. However, the precise A rotational constants determined from the SEP data were invaluable in clarifying the assignments for these strongly perturbed levels, and the data are well reproduced using a multiresonance effective Hamiltonian model. The derived vibrational parameters are in good agreement with high level ab initio calculations. The experimental frequencies were combined with those of CDF to derive a harmonic force field and average (rz,r(z)e) structures for the ground state.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Song, Hongwei; Yang, Minghui; Guo, Hua

    Vibrational excitations of reactants sometimes promote reactions more effectively than the same amount of translational energy. Such mode specificity provides insights into the transition-state modulation of reactivity and might be used to control chemical reactions. We report here a state-ofthe- art full-dimensional quantum dynamical study of the hydrogen abstraction reaction H + NH 3 → H 2 + NH 2 on an accurate ab initio based global potential energy surface. This reaction serves as an ideal candidate to study the relative efficacies of symmetric and degenerate antisymmetric stretching modes. Strong mode specificity, particularly for the NH 3 stretching modes, ismore » demonstrated. In conclusion, it is further shown that nearly identical efficacies of the symmetric and antisymmetric stretching modes of NH 3 in promoting the reaction can be understood in terms of local-mode stretching vibrations of the reactant molecule.« less

  16. First-principles C band absorption spectra of SO2 and its isotopologues

    NASA Astrophysics Data System (ADS)

    Jiang, Bin; Kumar, Praveen; Kłos, Jacek; Alexander, Millard H.; Poirier, Bill; Guo, Hua

    2017-04-01

    The low-energy wing of the C ˜ B12 ←X˜ 1A1 absorption spectra for SO2 in the ultraviolet region is computed for the 32S,33S,34S and 36S isotopes, using the recently developed ab initio potential energy surfaces (PESs) of the two electronic states and the corresponding transition dipole surface. The state-resolved absorption spectra from various ro-vibrational states of SO2(X˜ 1A1 ) are computed. When contributions of these excited ro-vibrational states are included, the thermally averaged spectra are broadened but maintain their key characters. Excellent agreement with experimental absorption spectra is found, validating the accuracy of the PESs. The isotope shifts of the absorption peaks are found to increase linearly with energy, in good agreement with experiment.

  17. Origin of the blueshift of water molecules at interfaces of hydrophilic cyclic compounds

    PubMed Central

    Tomobe, Katsufumi; Yamamoto, Eiji; Kojić, Dušan; Sato, Yohei; Yasui, Masato; Yasuoka, Kenji

    2017-01-01

    Water molecules at interfaces of materials exhibit enigmatic properties. A variety of spectroscopic studies have observed a high-frequency motion in these water molecules, represented by a blueshift, at both hydrophobic and hydrophilic interfaces. However, the molecular mechanism behind this blueshift has remained unclear. Using Raman spectroscopy and ab initio molecular dynamics simulations, we reveal the molecular mechanism of the blueshift of water molecules around six monosaccharide isomers. In the first hydration shell, we found weak hydrogen-bonded water molecules that cannot have a stable tetrahedral water network. In the water molecules, the vibrational state of the OH bond oriented toward the bulk solvent strongly contributes to the observed blueshift. Our work suggests that the blueshift in various solutions originates from the vibrational motions of these observed water molecules. PMID:29282448

  18. Role of Quantum Vibrations on the Structural, Electronic, and Optical Properties of 9-Methylguanine.

    PubMed

    Law, Yu Kay; Hassanali, Ali A

    2015-11-05

    In this work, we report theoretical predictions of the UV-absorption spectra of 9-methylguanine using time dependent density functional theory (TDDFT). Molecular dynamics simulations of the hydrated DNA base are peformed using an empirical force field, Born-Oppenheimer ab initio molecular dynamics (AIMD), and finally path-integral AIMD to understand the role of the underlying electronic potential, solvation, and nuclear quantum vibrations on the absorption spectra. It is shown that the conformational distributions, including hydrogen bonding interactions, are perturbed by the inclusion of nuclear quantum effects, leading to significant changes in the total charge and dipole fluctuations of the DNA base. The calculated absorption spectra using the different sampling protocols shows that the inclusion of nuclear quantum effects causes a significant broadening and red shift of the spectra bringing it into closer agreement with experiments.

  19. A 'first principles' potential energy surface for liquid water from VRT spectroscopy of water clusters.

    PubMed

    Goldman, Nir; Leforestier, Claude; Saykally, R J

    2005-02-15

    We present results of gas phase cluster and liquid water simulations from the recently determined VRT(ASP-W)III water dimer potential energy surface (the third fitting of the Anisotropic Site Potential with Woermer dispersion to vibration-rotation-tunnelling data). VRT(ASP-W)III is shown to not only be a model of high 'spectroscopic' accuracy for the water dimer, but also makes accurate predictions of vibrational ground-state properties for clusters up through the hexamer. Results of ambient liquid water simulations from VRT(ASP-W)III are compared with those from ab initio molecular dynamics, other potentials of 'spectroscopic' accuracy and with experiment. The results herein represent the first time to the authors' knowledge that a 'spectroscopic' potential surface is able to correctly model condensed phase properties of water.

  20. Far infrared vibration-rotation-tunneling spectroscopy and internal dynamics of methane-water: A prototypical hydrophobic system

    NASA Astrophysics Data System (ADS)

    Dore, L.; Cohen, R. C.; Schmuttenmaer, C. A.; Busarow, K. L.; Elrod, M. J.; Loeser, J. G.; Saykally, R. J.

    1994-01-01

    Thirteen vibration-rotation-tunneling (VRT) bands of the CH4-H2O complex have been measured in the range from 18 to 35.5 cm-1 using tunable far infrared laser spectroscopy. The ground state has an average center of mass separation of 3.70 Å and a stretching force constant of 1.52 N/m, indicating that this complex is more strongly bound than Ar-H2O. The eigenvalue spectrum has been calculated with a variational procedure using a spherical expansion of a site-site ab initio intermolecular potential energy surface [J. Chem. Phys. 93, 7808 (1991)]. The computed eigenvalues exhibit a similar pattern to the observed spectra but are not in quantitative agreement. These observations suggest that both monomers undergo nearly free internal rotation within the complex.

  1. Torsional Splitting in the Degenerate Vibrational States of (70)Ge(2)H(6): Rotation-Torsion Analysis of the nu(7) and nu(9) Fundamentals.

    PubMed

    Lattanzi; di Lauro C; Bürger; Mkadmi

    2000-09-01

    The rotational and torsional structure of the nu(7) and nu(9) degenerate fundamentals of (70)Ge(2)H(6) has been analyzed under high resolution. The torsional structure of both v(7) = 1 and v(9) = 1 states can be fitted by a simple one-parameter formula. The x,y-Coriolis interaction with the parallel nu(5) fundamental was accounted for in the analysis of nu(7). A strong perturbation of the J structure of the E(3s) torsional component of the KDeltaK = -2 subbranches of nu(9) can be explained by the resonance with an E(3s) excited level of the pure torsional manifold. The perturber is centered at 361.58 cm(-1), very close to the value estimated with a barrier height of 285 cm(-1). This confirms that the fundamental torsional wavenumber is close to 103 cm(-1), in good agreement with the "ab initio" prediction. The torsional splittings of all the infrared active degenerate fundamentals, nu(7), nu(8), and nu(9), follow the trend predicted by theory, and have been fitted by exploratory calculations accounting only for the torsional Coriolis-coupling mechanism of all degenerate vibrational fundamentals in several torsional states. This confirms that torsional Coriolis coupling is the dominant mechanism responsible for the decrease of the torsional splitting in the degenerate vibrational states. A higher value of the barrier had to be used for the nu(9) mode. Copyright 2000 Academic Press.

  2. Vibrational quenching of CO2(010) by collisions with O(3P) at thermal energies: A quantum-mechanical study

    NASA Astrophysics Data System (ADS)

    de Lara-Castells, M. P.; Hernández, Marta I.; Delgado-Barrio, G.; Villarreal, P.; López-Puertas, M.

    2006-04-01

    The CO2(010)-O(3P) vibrational energy transfer (VET) efficiency is a key input to aeronomical models of the energy budget of the upper atmospheres of Earth, Venus, and Mars. This work addresses the physical mechanisms responsible for the high efficiency of the VET process at the thermal energies existing in the terrestrial upper atmosphere (150 K<=T<=550 K). We present a quantum-mechanical study of the process within a reduced-dimensionality approach. In this model, all the particles remain along a plane and the O(3P) atom collides along the C2v symmetry axis of CO2, which can present bending oscillations around the linear arrangement, while the stretching C-O coordinates are kept fixed at their equilibrium values. Two kinds of scattering calculations are performed on high-quality ab initio potential energy surfaces (PESs). In the first approach, the calculations are carried out separately for each one of the three PESs correlating to O(3P). In the second approach, nonadiabatic effects induced by spin-orbit couplings (SOC) are also accounted for. The results presented here provide an explanation to some of the questions raised by the experiments and aeronomical observations. At thermal energies, nonadiabatic transitions induced by SOC play a key role in causing large VET efficiencies, the process being highly sensitive to the initial fine-structure level of oxygen. At higher energies, the two above-mentioned approaches tend to coincide towards an impulsive Landau-Teller mechanism of the vibrational to translational (V-T) energy transfer.

  3. Vibrational spectra and normal coordinate analysis of 2-hydroxy-3-(2-methoxyphenoxy) propyl carbamate

    NASA Astrophysics Data System (ADS)

    Muthu, S.; Renuga, S.

    2014-11-01

    In this work, the vibrational spectral analysis was carried out by using FT-Raman and FTIR spectroscopy in the range 50-4000 cm-1 and 450-4000 cm-1 respectively, for 2-hydroxy-3-(2-methoxyphenoxy) propyl carbamate (2H3MPPLC) molecule. The molecular structure, fundamental vibrational frequencies and intensities of the vibrational bands were interpreted with the aid of structure optimizations and normal coordinate force field calculations based on density functional theory (DFT) and ab initio HF methods with 6-31G(d,p) basis set. The complete vibrational assignments of wave numbers were made on the basis of potential energy distribution (PED). The results of the calculations were applied to simulated spectra of the title compound, which show excellent agreement with observed spectra. The scaled B3LYP/6-31G(d,p) results show the best agreement with the experimental values over the other method. Stability of the molecule arising from hyper conjugative interactions, charge delocalization has been analyzed using natural bond orbital (NBO) analysis. The results confirm the occurrence of intramolecular charge-transfer (ICT) within the molecule. The dipole moment (μ), polarizability (α) and hyperpolarizability (β) of the investigated molecule has been computed using B3LYP/6-31G(d,p) method. Mulliken population analysis on atomic charges was also calculated. Besides, frontier molecular orbitals, molecular electrostatic potential (MEP) and thermodynamic properties were performed.

  4. High-temperature partition functions, specific heats and spectral radiative properties of diatomic molecules with an improved calculation of energy levels

    NASA Astrophysics Data System (ADS)

    Qin, Z.; Zhao, J. M.; Liu, L. H.

    2018-05-01

    The level energies of diatomic molecules calculated by the frequently used Dunham expansion will become less accurate for high-lying vibrational and rotational levels. In this paper, the potential curves for the lower-lying electronic states with accurate spectroscopic constants are reconstructed using the Rydberg-Klein-Rees (RKR) method, which are extrapolated to the dissociation limits by fitting of the theoretical potentials, and the rest of the potential curves are obtained from the ab-initio results in the literature. Solving the rotational dependence of the radial Schrödinger equation over the obtained potential curves, we determine the rovibrational level energies, which are then used to calculate the equilibrium and non-equilibrium thermodynamic properties of N2, N2+, NO, O2, CN, C2, CO and CO+. The partition functions and the specific heats are systematically validated by available data in the literature. Finally, we calculate the radiative source strengths of diatomic molecules in thermodynamic equilibrium, which agree well with the available values in the literature. The spectral radiative intensities for some diatomic molecules in thermodynamic non-equilibrium are calculated and validated by available experimental data.

  5. Rotationally inelastic scattering of ND3 with H2 as a probe of the intermolecular potential energy surface

    NASA Astrophysics Data System (ADS)

    Tkáč, Ondřej; Saha, Ashim K.; Loreau, Jérôme; Ma, Qianli; Dagdigian, Paul J.; Parker, David H.; van der Avoird, Ad; Orr-Ewing, Andrew J.

    2015-12-01

    Differential cross sections (DCSs) are reported for rotationally inelastic scattering of ND3 with H2, measured using a crossed molecular beam apparatus with velocity map imaging (VMI). ND3 molecules were quantum-state selected in the ground electronic and vibrational levels and, optionally, in the j±k = 11- rotation-inversion level prior to collisions. Inelastic scattering of state-selected ND3 with H2 was measured at the mean collision energy of 580 cm-1 by resonance-enhanced multiphoton ionisation spectroscopy and VMI of ND3 in selected single final j'±k' levels. Comparison of experimental DCSs with close-coupling quantum-mechanical scattering calculations serves as a test of a recently reported ab initio potential energy surface. Calculated integral cross sections reveal the propensities for scattering into various final j'±k' levels of ND3 and differences between scattering by ortho and para H2. Integral and differential cross sections are also computed at a mean collision energy of 430 cm-1 and compared to our recent results for inelastic scattering of state-selected ND3 with He.

  6. Multiscale Quantum Mechanics/Molecular Mechanics Simulations with Neural Networks.

    PubMed

    Shen, Lin; Wu, Jingheng; Yang, Weitao

    2016-10-11

    Molecular dynamics simulation with multiscale quantum mechanics/molecular mechanics (QM/MM) methods is a very powerful tool for understanding the mechanism of chemical and biological processes in solution or enzymes. However, its computational cost can be too high for many biochemical systems because of the large number of ab initio QM calculations. Semiempirical QM/MM simulations have much higher efficiency. Its accuracy can be improved with a correction to reach the ab initio QM/MM level. The computational cost on the ab initio calculation for the correction determines the efficiency. In this paper we developed a neural network method for QM/MM calculation as an extension of the neural-network representation reported by Behler and Parrinello. With this approach, the potential energy of any configuration along the reaction path for a given QM/MM system can be predicted at the ab initio QM/MM level based on the semiempirical QM/MM simulations. We further applied this method to three reactions in water to calculate the free energy changes. The free-energy profile obtained from the semiempirical QM/MM simulation is corrected to the ab initio QM/MM level with the potential energies predicted with the constructed neural network. The results are in excellent accordance with the reference data that are obtained from the ab initio QM/MM molecular dynamics simulation or corrected with direct ab initio QM/MM potential energies. Compared with the correction using direct ab initio QM/MM potential energies, our method shows a speed-up of 1 or 2 orders of magnitude. It demonstrates that the neural network method combined with the semiempirical QM/MM calculation can be an efficient and reliable strategy for chemical reaction simulations.

  7. SFG experiment and ab initio study of the chemisorption of CN - on low-index platinum surfaces

    NASA Astrophysics Data System (ADS)

    Tadjeddine, M.; Flament, J.-P.; Le Rille, A.; Tadjeddine, A.

    2006-05-01

    A dual analysis is proposed in order to have a better understanding of the adsorption of the cyanide ions on a platinum electrode. The SFG (Sum Frequency Generation) spectroscopy allows the in situ vibrational study and the SFG spectra of the CN - species adsorbed on single crystal Pt electrode allow a systematic study of the low-index platinum surfaces. This experimental work is supported by ab initio calculations using density functional theory and cluster models. For each surface orientation and each geometry, a cluster model of 20-30 Pt atoms has been built in order to interpret the chemisorption of the CN - ions through four kinds of adsorption geometry: on-top or bridge site, bonding via C or N atoms. Geometries have been optimized and adsorption energies, electronic properties and vibrational frequencies have been computed. From the electronic properties, we can propose an analysis of the bonding mechanism for each studied kind of adsorption. The SFG spectra of the CN -/Pt(1 1 1) system present an unique resonance owing to the top C adsorption. It is mainly the same for the CN -/Pt(1 0 0) system. It is also the case for the SFG spectra of the CN -/Pt(1 1 0) system recorded at negative electrochemical voltage; at more positive voltage, a second resonance appears at a lower frequency, owing to the top N adsorption. Experimental and theoretical values of the C-N stretching frequencies are in excellent agreement.

  8. Ab initio calculation of 1H, 17O, 27Al and 29Si NMR parameters, vibrational frequencies and bonding energetics in hydrous silica and Na-aluminosilicate glasses

    NASA Astrophysics Data System (ADS)

    Kubicki, J. D.; Sykes, D. G.

    2004-10-01

    Ab initio, molecular orbital (MO) calculations were performed on model systems of SiO 2, NaAlSi 3O 8 (albite), H 2O-SiO 2 and H 2O-NaAlSi 3O 8 glasses. Model nuclear magnetic resonance (NMR) isotropic chemical shifts (δ iso) for 1H, 17O, 27Al and 29Si are consistent with experimental data for the SiO 2, NaAlSi 3O 8, H 2O-SiO 2 systems where structural interpretations of the NMR peak assignments are accepted. For H 2O-NaSi 3AlO 8 glass, controversy has surrounded the interpretation of NMR and infrared (IR) spectra. Calculated δ iso1H, δ iso17O, δ iso27Al and δ iso29Si are consistent with the interpretation of Kohn et al. (1992) that Si-(OH)-Al linkages are responsible for the observed peaks in hydrous Na-aluminosilicate glasses. In addition, a theoretical vibrational frequency associated with the Kohn et al. (1992) model agrees well with the observed shoulder near 900 cm -1 in the IR and Raman spectra of hydrous albite glasses. MO calculations suggest that breaking this Si-(OH)-Al linkage requires ˜+56 to +82 kJ/mol which is comparable to the activation energies for viscous flow in hydrous aluminosilicate melts.

  9. Site-specific vibrational spectral signatures of water molecules in the magic H3O+(H2O)20 and Cs+(H2O)20 clusters

    PubMed Central

    Fournier, Joseph A.; Wolke, Conrad T.; Johnson, Christopher J.; Johnson, Mark A.; Heine, Nadja; Gewinner, Sandy; Schöllkopf, Wieland; Esser, Tim K.; Fagiani, Matias R.; Knorke, Harald; Asmis, Knut R.

    2014-01-01

    Theoretical models of proton hydration with tens of water molecules indicate that the excess proton is embedded on the surface of clathrate-like cage structures with one or two water molecules in the interior. The evidence for these structures has been indirect, however, because the experimental spectra in the critical H-bonding region of the OH stretching vibrations have been too diffuse to provide band patterns that distinguish between candidate structures predicted theoretically. Here we exploit the slow cooling afforded by cryogenic ion trapping, along with isotopic substitution, to quench water clusters attached to the H3O+ and Cs+ ions into structures that yield well-resolved vibrational bands over the entire 215- to 3,800-cm−1 range. The magic H3O+(H2O)20 cluster yields particularly clear spectral signatures that can, with the aid of ab initio predictions, be traced to specific classes of network sites in the predicted pentagonal dodecahedron H-bonded cage with the hydronium ion residing on the surface. PMID:25489068

  10. Site-specific vibrational spectral signatures of water molecules in the magic H 3O +(H 2O) 20 and Cs +(H 2O) 20 clusters

    DOE PAGES

    Fournier, Joseph A.; Wolke, Conrad T.; Johnson, Christopher J.; ...

    2014-12-08

    Here, theoretical models of proton hydration with tens of water molecules indicate that the excess proton is embedded on the surface of clathrate-like cage structures with one or two water molecules in the interior. The evidence for these structures has been indirect, however, because the experimental spectra in the critical H-bonding region of the OH stretching vibrations have been too diffuse to provide band patterns that distinguish between candidate structures predicted theoretically. Here we exploit the slow cooling afforded by cryogenic ion trapping, along with isotopic substitution, to quench water clusters attached to the H 3O + and Cs +more » ions into structures that yield well-resolved vibrational bands over the entire 215- to 3,800-cm -1 range. The magic H 3O +(H 2O) 20 cluster yields particularly clear spectral signatures that can, with the aid of ab initio predictions, be traced to specific classes of network sites in the predicted pentagonal dodecahedron H-bonded cage with the hydronium ion residing on the surface.« less

  11. Anharmonic Rovibrational Calculations of Singlet Cyclic C4 Using a New Ab Initio Potential and a Quartic Force

    NASA Technical Reports Server (NTRS)

    Wang, Xiaohong; Huang, Xinchuan; Bowman, Joel M.; Lee, Timothy J.

    2013-01-01

    We report a CCSD(T)/cc-pCV5Z quartic force field (QFF) and a semi-global CCSD(T)-F12b/aug-cc-pVTZ potential energy surface (PES) for singlet, cyclic C4. Vibrational fundamentals, combinations and overtones are obtained using vibrational second-order perturbation theory (VPT2) and the vibrational configurationinteraction (VCI) approach. Agreement is within 10 cm(exp -1) between the VCI calculated fundamentals on the QFF and PES using the MULTIMODE (MM) program, and VPT2 and VCI results agree for the fundamentals. The agreement between VPT2- QFF and MM-QFF results is also good for the C4 combinations and overtones. The J = 1 and J = 2 rovibrational energies are reported from both VCI (MM) on the PES and VPT2 on the QFF calculations. The spectroscopic constants of (12)C4 and two C(sub 2v)-symmetry, single (13)C-substituted isotopologues are presented, which may help identification of cyclic C4 in future experimental analyses or astronomical observations.

  12. Ab initio molecular orbital studies of the vibrational spectra of the van der Waals complexes of boron trifluoride with the noble gases.

    PubMed

    Ford, Thomas A

    2005-05-01

    The molecular structures, interaction energies, charge transfer properties and vibrational spectra of the van der Waals complexes formed between boron trifluoride and the noble gases neon, argon, krypton and xenon have been computed using second and fourth order Møller-Plesset perturbation theory and the Los Alamos National Laboratory LANL2DZ basis set. The complexes are all symmetric tops, with the noble gas atom acting as a sigma electron donor along the C3 axis of the BF3 molecule. The interaction energies are all vanishingly small, and the amount of charge transferred in each case is of the order of 0.01e. The directions of the wavenumber shifts of the symmetric bending (nu2) and antisymmetric stretching (nu3) modes of the BF3 fragment confirm those determined experimentally, and the shifts are shown to correlate well with the polarizability of the noble gas atom and the inverse sixth power of the intermonomer separation. The nu2 mode is substantially more sensitive to complexation than the nu3 vibration.

  13. Ab initio study of structural, electronic, optical, and vibrational properties of Zn x S y ( x + y = 2 to 5) nanoclusters

    NASA Astrophysics Data System (ADS)

    Yadav, P. S.; Pandey, D. K.; Agrawal, S.; Agrawal, B. K.

    2010-03-01

    An ab initio study of the stability, structural, electronic. and optical properties has been performed for 46 zinc sulfide nanoclusters Zn x S y ( x + y = n = 2 to 5). Five out of them are seen to be unstable as their vibrational frequencies are found to be imaginary. A B3LYP-DFT/6-311G(3df) method is employed to optimize the geometries and a TDDFT method is used for the study of the optical properties. The binding energies (BE), HOMO-LUMO gaps and the bond lengths have been obtained for all the clusters. For the ZnS2, ZnS3, and ZnS4 nanoclusters, our stable structures are seen to be different from those obtained earlier by using the effective core potentials. We have also considered the zero point energy (ZPE) corrections ignored by the earlier workers. For a fixed value of n, we designate the most stable structure the one, which has maximum final binding energy per atom. The adiabatic and vertical ionization potentials (IP) and electron affinities (EA), charges on the atoms, dipole moments, optical properties, vibrational frequencies, infrared intensities, relative infrared intensities, and Raman scattering activities have been investigated for the most stable structures. The nanoclusters containing large number of S atoms for each n is found to be most stable. The HOMO-LUMO gap decreases from n = 2-3 and then increases above n = 3. The IP and EA both fluctuate with the cluster size n. The optical absorption is quite weak in visible region but strong in the ultraviolet region in most of the nanoclusters except a few. The optical absorption spectrum or electron energy loss spectrum (EELS) is unique for every nanocluster and may be used to characterize a specific nanocluster. The growth of most stable nanoclusters may be possible in the experiments.

  14. Transverse discrete breathers in unstrained graphene

    NASA Astrophysics Data System (ADS)

    Barani, Elham; Lobzenko, Ivan P.; Korznikova, Elena A.; Soboleva, Elvira G.; Dmitriev, Sergey V.; Zhou, Kun; Marjaneh, Aliakbar Moradi

    2017-02-01

    Discrete breathers (DB) are spatially localized vibrational modes of large amplitude in defect-free nonlinear lattices. The search for DBs in graphene is of high importance, taking into account that this one atom thick layer of carbon is promising for a number of applications. There exist several reports on successful excitation of DBs in graphene, based on molecular dynamics and ab initio simulations. In a recent work by Hizhnyakov with co-authors the possibility to excite a DB with atoms oscillating normal to the graphene sheet has been reported. In the present study we use a systematic approach for finding initial conditions to excite transverse DBs in graphene. The approach is based on the analysis of the frequency-amplitude dependence for a delocalized, short-wavelength vibrational mode. This mode is a symmetry-dictated exact solution to the dynamic equations of the atomic motion, regardless the mode amplitude and regardless the type of interatomic potentials used in the simulations. It is demonstrated that if the AIREBO potential is used, the mode frequency increases with the amplitude bifurcating from the upper edge of the phonon spectrum for out-of-plane phonons. Then a bell-shaped function is superimposed on this delocalized mode to obtain a spatially localized vibrational mode, i.e., a DB. Placing the center of the bell-shaped function at different positions with respect to the lattice sites, three different DBs are found. Typically, the degree of spatial localization of DBs increases with the DB amplitude, but the transverse DBs in graphene reported here demonstrate the opposite trend. The results are compared to those obtained with the use of the Savin interatomic potential and no transverse DBs are found in this case. The results of this study contribute to a better understanding of the nonlinear dynamics of graphene and they call for the ab initio simulations to verify which of the two potentials used in this study is more precise.

  15. From photoelectron detachment spectra of BrHBr{sup −}, BrDBr{sup −} and IHI{sup −}, IDI{sup −} to vibrational bonding of BrMuBr and IMuI

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Manz, Jörn; Freie Universität Berlin, Institut für Chemie und Biochemie, 14195 Berlin; Sato, Kazuma

    2015-04-28

    Photoelectron detachment XLX{sup −}(00{sup 0}0) + hν → XLX(vib) + e{sup −} + KER (X = Br or I, L = H or D) at sufficiently low temperatures photoionizes linear dihalogen anions XLX{sup −} in the vibrational ground state (v{sub 1}v{sub 2}{sup l}v{sub 3} = 00{sup 0}0) and prepares the neutral radicals XLX(vib) in vibrational states (vib). At the same time, part of the photon energy (hν) is converted into kinetic energy release (KER) of the electron [R. B. Metz, S. E. Bradforth, and D. M. Neumark, Adv. Chem. Phys. 81, 1 (1992)]. The process may be described approximately inmore » terms of a Franck-Condon type transfer of the vibrational wavefunction representing XLX{sup −}(00{sup 0}0) from the domain close to the minimum of its potential energy surface (PES) to the domain close to the linear transition state of the PES of the neutral XLX. As a consequence, prominent peaks of the photoelectron detachment spectra (pds) correlate with the vibrational energies E{sub XLX,vib} of states XLX(vib) which are centered at linear transition state. The corresponding vibrational quantum numbers may be labeled vib = (v{sub 1}v{sub 2}{sup l}v{sub 3}) = (00{sup 0}v{sub 3}). Accordingly, the related most prominent peaks in the pds are labeled v{sub 3}. We construct a model PES which mimics the “true” PES in the domain of transition state such that it supports vibrational states with energies E{sub XLX,pds,00{sup 0}v{sub 3}} close to the peaks of the pds labeled v{sub 3} = 0, 2, and 4. Subsequently, the same model PES is also used to calculate approximate values of the energies E{sub XMuX,00{sup 0}0} of the isotopomers XMuX(00{sup 0}0). For the heavy isotopomers XHX and XDX, it turns out that all energies E{sub XLX,00{sup 0}v{sub 3}} are above the threshold for dissociation, which means that all heavy XLX(00{sup 0}v{sub 3}) with wavefunctions centered at the transition state are unstable resonances with finite lifetimes. Turning the table, bound states of the heavy XLX are van der Waals (vdW) bonded. In contrast, the energies E{sub XMuX,00{sup 0}0} of the light isotopomers XMuX(00{sup 0}0) are below the threshold for dissociation, with wavefunctions centered at the transition state. This means that XMuX(00{sup 0}0) are vibrationally bonded. This implies a fundamental change of the nature of chemical bonding, from vdW bonding of the heavy XHX, XDX to vibrational bonding of XMuX. For BrMuBr, the present results derived from experimental pds of BrHBr{sup −} and BrDBr{sup −} confirm the recent discovery of vibrational bonding based on quantum chemical ab initio calculations [D. G. Fleming, J. Manz, K. Sato, and T. Takayanagi, Angew. Chem., Int. Ed. 53, 13706 (2014)]. The extension from BrLBr to ILI means the discovery of a new example of vibrational bonding. These empirical results for the vibrational bonding of IMuI, derived from the photoelectron spectra of IHI{sup −} and IDI{sup −}, are supported by ab initio simulations of the spectra and of the wavefunction representing vibrational bonding of IMuI.« less

  16. Near infrared overtone (vOH = 2 ← 0) spectroscopy of Ne-H2O clusters

    NASA Astrophysics Data System (ADS)

    Ziemkiewicz, Michael P.; Pluetzer, Christian; Wojcik, Michael; Loreau, Jérôme; van der Avoird, Ad; Nesbitt, David J.

    2017-03-01

    Vibrationally state selective overtone spectroscopy and dynamics of weakly bound Ne-H2O complexes (D0(para) = 31.67 cm-1, D0(ortho) = 34.66 cm-1) are reported for the first time, based on near infrared excitation of van der Waals cluster bands correlating with vOH = 2 ← 0 overtone transitions (|02-⟩←|00+⟩ and |02+⟩ ←|00+⟩ ) out of the ortho (101) and para (000) internal rotor states of the H2O moiety. Quantum theoretical calculations for nuclear motion on a high level ab initio potential energy surface (CCSD(T)/VnZ-f12 (n = 3,4), corrected for basis set superposition error and extrapolated to the complete basis set limit) are employed for assignment of Σ ←Σ ,Π ←Σ , and Σ ←Π infrared bands in the overtone spectra, where Σ ( K = 0) and Π (K = 1) represent approximate projections (K) of the body angular momentum along the Ne-H2O internuclear axis. End-over-end tumbling of the ortho Ne-H2O cluster is evident via rotational band contours observed, with band origins and rotational progressions in excellent agreement with ab initio frequency and intensity predictions. A clear Q branch in the corresponding |02+⟩fΠ (111) ←eΣ (000) para Ne-H2O spectrum provides evidence for a novel e/f parity-dependent metastability in these weakly bound clusters, in agreement with ab initio bound state calculations and attributable to the symmetry blocking of an energetically allowed channel for internal rotor predissociation. Finally, Boltzmann analysis of the rotational spectra reveals anomalously low jet temperatures (Trot ≈ 4(1) K), which are attributed to "evaporative cooling" of weakly bound Ne-H2O clusters and provide support for similar cooling dynamics in rare gas-tagging studies.

  17. Precision spectroscopy of the X1Σg+, v=0→1(J=0-2) rovibrational splittings in H2, HD and D2

    NASA Astrophysics Data System (ADS)

    Niu, M. L.; Salumbides, E. J.; Dickenson, G. D.; Eikema, K. S. E.; Ubachs, W.

    2014-06-01

    Accurate experimental values for the vibrational ground tone or fundamental vibrational energy splitting of H2, HD, and D2 are presented. Absolute accuracies of 2×10-4 cm-1 are obtained from Doppler-free laser spectroscopy applied in a collisionless environment. The vibrational splitting frequencies are derived from the combination difference between separate electronic excitations from the X1Σg+, v=0, J and v=1, J vibrational states to a common EF1Σg+, v=0, J state. The present work on rotational quantum states J=1,2 extends the results reported by Dickenson et al. on J=0 [Phys. Rev. Lett. 110 (2013) 193601]. The experimental procedures leading to this high accuracy are discussed in detail. A comparison is made with full ab initio calculations encompassing Born-Oppenheimer energies, adiabatic and non-adiabatic corrections, as well as relativistic corrections and QED-contributions. The present agreement between the experimental results and the calculations provides a stringent test on the application of quantum electrodynamics in molecules. Furthermore, the combined experimental-theoretical uncertainty can be interpreted to provide bounds to new interactions beyond the Standard Model of Physics or fifth forces between hadrons.

  18. Ab initio phonon thermal transport in monolayer InSe, GaSe, GaS, and alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pandey, Tribhuwan; Parker, David S.; Lindsay, Lucas

    We compare vibrational properties and phonon thermal conductivities (κ) of monolayer InSe, GaSe and GaS systems using density functional theory and Peierls-Boltzmann transport methods. In going from InSe to GaSe to GaS, system mass decreases giving both increasing acoustic phonon velocities and decreasing scattering of these heat-carrying modes with optic phonons, ultimately giving κInSe< κGaSe< κGaS. This behavior is demonstrated by correlating the scattering phase space limited by fundamental conservation conditions with mode scattering rates and phonon dispersions for each material. We also show that, unlike flat monolayer systems such as graphene, thermal transport is governed by in-plane vibrations inmore » InSe, GaSe and GaS, similar to buckled monolayer materials such as silicene. Alloying of InSe, GaSe and GaS systems provides an effective method for modulating their κ through intrinsic vibrational modifications and phonon scattering from mass disorder giving reductions ~2-3.5 times. This disorder also suppresses phonon mean free paths in the alloy systems compared to those in their crystalline counterparts. This work provides fundamental insights of lattice thermal transport from basic vibrational properties for an interesting set of two-dimensional materials.« less

  19. Ab initio calculation of resonant Raman intensities of transition metal dichalcogenides

    NASA Astrophysics Data System (ADS)

    Miranda, Henrique; Reichardt, Sven; Molina-Sanchez, Alejandro; Wirtz, Ludger

    Raman spectroscopy is used to characterize optical and vibrational properties of materials. Its computational simulation is important for the interpretation of experimental results. Two approaches are the bond polarizability model and density functional perturbation theory. However, both are known to not capture resonance effects. These resonances and quantum interference effects are important to correctly reproduce the intensities as a function of laser energy as, e.g., reported for the case of multi-layer MoTe21.We present two fully ab initio approaches that overcome this limitation. In the first, we calculate finite difference derivatives of the dielectric susceptibility with the phonon displacements2. In the second we calculate electron-light and electron-phonon matrix elements from density functional theory and use them to evaluate expressions for the Raman intensity derived from time-dependent perturbation theory. These expressions are implemented in a computer code that performs the calculations as a post-processing step. We compare both methods and study the case of triple-layer MoTe2. Luxembourg National Research Fund (FNR).

  20. Structure and dynamics of the CrIII ion in aqueous solution: Ab initio QM/MM molecular dynamics simulation.

    PubMed

    Kritayakornupong, Chinapong; Plankensteiner, Kristof; Rode, Bernd M

    2004-10-01

    Structural and dynamical properties of the Cr(III) ion in aqueous solution have been investigated using a combined ab initio quantum mechanical/molecular mechanical (QM/MM) molecular dynamics simulation. The hydration structure of Cr(III) was determined in terms of radial distribution functions, coordination numbers, and angular distributions. The QM/MM simulation gives coordination numbers of 6 and 15.4 for the first and second hydration shell, respectively. The first hydration shell is kinetically very inert but by no means rigid and variations of the first hydration shell geometry lead to distinct splitting in the vibrational spectra of Cr(H(2)O)(6) (3+). A mean residence time of 22 ps was obtained for water ligands residing in the second hydration shell, which is remarkably shorter than the experimentally estimated value. The hydration energy of -1108 +/- 7 kcal/mol, obtained from the QM/MM simulation, corresponds well to the experimental hydration enthalpy value. Copyright 2004 Wiley Periodicals, Inc.

Top