Sample records for injectable bone substitute

  1. Injectable bone substitute to preserve alveolar ridge resorption after tooth extraction: a study in dog.

    PubMed

    Boix, D; Weiss, P; Gauthier, O; Guicheux, J; Bouler, J-M; Pilet, P; Daculsi, G; Grimandi, G

    2006-11-01

    The aim of the present study was to assess the efficacy of a ready-to-use injectable bone substitute on the prevention of alveolar ridge resorption after tooth extraction. Maxillary and mandibular premolars were extracted from 3 Beagle dogs with preservation of alveolar bone. Thereafter, distal sockets were filled with an injectable bone substitute (IBS), obtained by combining a polymer solution and granules of a biphasic calcium phosphate (BCP) ceramic. As a control, the mesial sockets were left unfilled. After a 3 months healing period, specimens were removed and prepared for histomorphometric evaluation with image analysis. Histomorphometric study allowed to measure the mean and the maximal heights of alveolar crest modifications. Results always showed an alveolar bone resorption in unfilled sockets. Resorption in filled maxillary sites was significantly lower than in control sites. Interestingly, an alveolar ridge augmentation was measured in mandibular filled sockets including 30% of newly-formed bone. It was concluded that an injectable bone substitute composed of a polymeric carrier and calcium phosphate can significantly increase alveolar ridge preservation after tooth extraction.

  2. Alveolar bone regeneration for immediate implant placement using an injectable bone substitute: an experimental study in dogs.

    PubMed

    Boix, Damien; Gauthier, Olivier; Guicheux, Jérôme; Pilet, Paul; Weiss, Pierre; Grimandi, Gaël; Daculsi, Guy

    2004-05-01

    The aim of the present study was to assess the efficacy of a ready-to-use injectable bone substitute for bone regeneration around dental implants placed into fresh extraction sockets. Third and fourth mandibular premolars were extracted from three beagle dogs and the interradicular septa were surgically reduced to induce a mesial bone defect. Thereafter, titanium implants were immediately placed. On the left side of the jaw, mesial bone defects were filled with an injectable bone substitute (IBS), obtained by combining a polymer and biphasic calcium phosphate ceramic granules. The right defects were left unfilled as controls. After 3 months of healing, specimens were prepared for histological and histomorphometric evaluations. No post-surgical complications were observed during the healing period. In all experimental conditions, histological observations revealed a lamellar bone formation in contact with the implant. Histomorphometric analysis showed that IBS triggers a significant (P<0.05) increase in terms of the number of threads in contact with bone, bone-to-implant contact, and peri-implant bone density of approximately 8.6%, 11.0%, and 14.7%, respectively. In addition, no significant difference was observed when number of threads, bone-to-implant contact, and bone density in the filled defects were compared to the no-defect sites. It is concluded that an injectable bone substitute composed of a polymeric carrier and calcium phosphate significantly increases bone regeneration around immediately placed implants.

  3. Novel microinjector for carrying bone substitutes for bone regeneration in periodontal diseases.

    PubMed

    Tsai, Hsiao-Cheng; Li, Yi-Chen; Young, Tai-Horng; Chen, Min-Huey

    2016-01-01

    Traditionally, guide bone regeneration (GBR) was a widely used method for repairing bone lost from periodontal disease. There were some disadvantages associated with the GBR method, such as the need for a stable barrier membrane and a new creative cavity during the surgical process. To address these disadvantages, the purpose of this study was to evaluate a novel microinjector developed for dental applications. The microinjector was designed to carry bone graft substitutes to restore bone defects for bone regeneration in periodontal diseases. The device would be used to replace the GBR method. In this study, the injected force and ejected volume of substitutes (including air, water, and ethanol) were defined by Hooke's law (n = 3). The optimal particle size of bone graft substitutes was determined by measuring the recycle ratio of bone graft substitutes from the microinjector (n = 3). Furthermore, a novel agarose gel model was used to evaluate the feasibility of the microinjector. The current study found that the injected force was less than 0.4 N for obtaining the ejected volume of approximately 2 mL, and when the particle size of tricalcium phosphate (TCP) was smaller than 0.5 mm, 80% TCP could be ejected from the microinjector. Furthermore, by using an agarose model to simulate the periodontal soft tissue, it was also found that bone graft substitutes could be easily injected into the gel. The results confirmed the feasibility of this novel microinjector for dental applications to carry bone graft substitutes for the restoration of bone defects of periodontal disease. Copyright © 2015. Published by Elsevier B.V.

  4. Short-term effects of mineral particle sizes on cellular degradation activity after implantation of injectable calcium phosphate biomaterials and the consequences for bone substitution.

    PubMed

    Gauthier, O; Bouler, J M; Weiss, P; Bosco, J; Aguado, E; Daculsi, G

    1999-08-01

    This in vivo study investigated the influence of two calcium phosphate particle sizes (40-80 microm and 200-500 microm) on the cellular degradation activity associated with the bone substitution process of two injectable bone substitutes (IBS). The tested biomaterials were obtained by associating a biphasic calcium phosphate (BCP) ceramic mineral phase and a 3% aqueous solution of a cellulosic polymer (hydroxypropylmethylcellulose). Both were injected into osseous defects at the distal end of rabbit femurs for 2- and 3-week periods. Quantitative results for tartrate-resistant acid phosphatase (TRAP) cellular activity, new bone formation, and ceramic resorption were studied for statistical purposes. Positive TRAP-stained degradation cells were significantly more numerous for IBS 40-80 than IBS 200-500, regardless of implantation time. BCP degradation was quite marked during the first 2 weeks for IBS 40-80, and bone colonization occurred more extensively for IBS 40-80 than for IBS 200-500. The resorption-bone substitution process occurred earlier and faster for IBS 40-80 than IBS 200-500. Both tested IBS displayed similar biological efficiency, with conserved in vivo bioactivity and bone-filling ability. Differences in calcium phosphate particle sizes influenced cellular degradation activity and ceramic resorption but were compatible with efficient bone substitution.

  5. Augmentation of tibial plateau fractures with an injectable bone substitute: CERAMENT™. Three year follow-up from a prospective study.

    PubMed

    Iundusi, Riccardo; Gasbarra, Elena; D'Arienzo, Michele; Piccioli, Andrea; Tarantino, Umberto

    2015-05-13

    Reduction of tibial plateau fractures and maintain a level of well aligned congruent joint is key to a satisfactory clinical outcome and is important for the return to pre-trauma level of activity. Stable internal fixation support early mobility and weight bearing. The augmentation with bone graft substitute is often required to support the fixation to mantain reduction. For these reasons there has been development of novel bone graft substitutes for trauma applications and in particular synthetic materials based on calcium phosphates and/or apatite combined with calcium sulfates. Injectable bone substitutes can optimize the filling of irregular bone defects. The purpose of this study was to assess the potential of a novel injectable bone substitute CERAMENT™|BONE VOID FILLER in supporting the initial reduction and preserving alignment of the joint surface until fracture healing. From June 2010 through May 2011 adult patients presenting with acute, closed and unstable tibial plateau fractures which required both grafting and internal fixation, were included in a prospective study with percutaneous or open reduction and internal fixation (ORIF) augmented with an injectable ceramic biphasic bone substitute CERAMENT™|BONE VOID FILLER (BONESUPPORT™, Lund, Sweden) to fill residual voids. Clinical follow up was performed at 1, 3, 9 and 12 months and any subsequent year; including radiographic analysis and Rasmussen system for knee functional grading. Twenty four patients, balanced male-to-female, with a mean age of 47 years, were included and followed with an average of 44 months (range 41-52 months). Both Schatzker and Müller classifications were used and was type II or 41-B3 in 7 patients, type III or 41-B2 in 12 patients, type IV or 41-C1 in 2 patients and type VI or 41-C3 in 3 patients, respectively. The joint alignement was satisfactory and manteined within a range of 2 mm, with an average of 1.18 mm. The mean Rasmussen knee function score was 26.5, with 14 patients having an excellent result and the remaining 10 with a good result. It can be concluded that radiological and clinical outcome was satisfactory and obtained in all cases without complications. This injectable novel biphasic hydroxyapatite and calcium sulfate ceramic material is a valuable armamentarium in the treatment of trauma where bone graft is required.

  6. Bone repair using a new injectable self-crosslinkable bone substitute.

    PubMed

    Fellah, Borhane H; Weiss, Pierre; Gauthier, Olivier; Rouillon, Thierry; Pilet, Paul; Daculsi, Guy; Layrolle, Pierre

    2006-04-01

    A new injectable and self-crosslinkable bone substitute (IBS2) was developed for filling bone defects. The IBS2 consisted of a chemically modified polymer solution mixed with biphasic calcium phosphate (BCP) ceramic particles. The polymer hydroxypropylmethyl cellulose was functionalized with silanol groups (Si-HPMC) and formed a viscous solution (3 wt %) in alkaline medium. With a decrease in pH, self-hardening occurred due to the formation of intermolecular -Si-O- bonds. During setting, BCP particles, 40 to 80 microm in diameter, were added to the polymer solution at a weight ratio of 50/50. The resulting injectable material was bilaterally implanted into critically sized bone defects at the distal femoral epiphyses of nine New Zealand White rabbits. The IBS2 filled the bone defects entirely and remained in place. After 8 weeks, bone had grown centripetally and progressed towards the center of the defects. Newly formed bone, ceramic, and nonmineralized tissue ratios were 24.6% +/- 5.6%, 21.6% +/- 5.8%, and 53.7% +/- 0.1%, respectively. Mineralized and mature bone was observed between and in contact with the BCP particles. The bone/ceramic apposition was 73.4% +/- 10.6%. The yield strength for the IBS2-filled defects was 16.4 +/- 7.2 MPa, significantly higher than for the host trabecular bone tissue (2.7 +/- 0.4 MPa). This study showed that BCP particles supported the bone healing process by osteoconduction while the Si-HPMC hydrogel created intergranular space for bone ingrowth. This new injectable and self-crosslinkable bone substitute could be used conveniently in orthopedic surgery for filling critical-size bone defects. Copyright 2006 Orthopaedic Research Society

  7. Healing bone lesion defects using injectable CaSO4 /CaPO4 -TCP bone graft substitute compared to cancellous allograft bone chips in a canine model.

    PubMed

    Hall, Deborah J; Turner, Thomas M; Urban, Robert M

    2018-04-16

    CaSO 4 /CaPO 4 -TCP bone graft substitute has been shown to be effective for treatment of bone lesion defects, but its mechanical, histological, and radiographic characteristics have not been studied in direct comparison with a conventional treatment such as cancellous allograft bone. Thirteen canines had a critical-size axial defect created bilaterally into the proximal humerus. CaSO 4 /CaPO 4 -TCP bone graft substitute (PRO-DENSE™, Wright Medical Technology) was injected into the defect in one humerus, and an equal volume of freeze-dried cancellous allograft bone chips was placed in the contralateral defect. The area fraction of new bone, residual graft, and fibrous tissue and the compressive strength and elastic modulus of bone within the defects were determined after 6, 13, or 26 weeks and correlated with radiographic changes. The data were analyzed using Friedman and Mann-Whitney tests. There was more bone in defects treated with the CaSO 4 /CaPO 4 -TCP bone graft substitute compared to defects treated with cancellous bone allograft at all three time points, and the difference at 13 weeks was significant (p = 0.025). The new bone was significantly stronger and stiffer in defects treated with the CaSO 4 /CaPO 4 -TCP bone graft substitute compared to defects treated with cancellous bone allograft at 13 (p = 0.046) and 26 weeks (p = 0.025). At 26 weeks, all defects treated with CaSO 4 /CaPO 4 -TCP bone graft substitute demonstrated complete healing with new bone, whereas healing was incomplete in all defects treated with cancellous allograft chips. The CaSO 4 /CaPO 4 -TCP bone graft substitute could provide faster and significantly stronger healing of bone lesions compared to the conventional treatment using freeze-dried cancellous allograft bone. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 2018. © 2018 Wiley Periodicals, Inc.

  8. Endoscopic Surgery for Symptomatic Unicameral Bone Cyst of the Proximal Femur

    PubMed Central

    Miyamoto, Wataru; Takao, Masato; Yasui, Youichi; Miki, Shinya; Matsushita, Takashi

    2013-01-01

    Recently, surgical treatment of a symptomatic unicameral cyst of the proximal femur has been achieved with less invasive procedures than traditional open curettage with an autologous bone graft. In this article we introduce endoscopic surgery for a symptomatic unicameral cyst of the proximal femur. The presented technique, which includes minimally invasive endoscopic curettage of the cyst and injection of a bone substitute, not only minimizes muscle damage around the femur but also enables sufficient curettage of the fibrous membrane in the cyst wall and the bony septum through direct detailed visualization by an endoscope. Furthermore, sufficient initial strength after curettage can be obtained by injecting calcium phosphate cement as a bone substitute. PMID:24892010

  9. Endoscopic Surgery for Symptomatic Unicameral Bone Cyst of the Proximal Femur.

    PubMed

    Miyamoto, Wataru; Takao, Masato; Yasui, Youichi; Miki, Shinya; Matsushita, Takashi

    2013-11-01

    Recently, surgical treatment of a symptomatic unicameral cyst of the proximal femur has been achieved with less invasive procedures than traditional open curettage with an autologous bone graft. In this article we introduce endoscopic surgery for a symptomatic unicameral cyst of the proximal femur. The presented technique, which includes minimally invasive endoscopic curettage of the cyst and injection of a bone substitute, not only minimizes muscle damage around the femur but also enables sufficient curettage of the fibrous membrane in the cyst wall and the bony septum through direct detailed visualization by an endoscope. Furthermore, sufficient initial strength after curettage can be obtained by injecting calcium phosphate cement as a bone substitute.

  10. Injection of Unicameral Bone Cysts with Bone Marrow Aspirate and Demineralized Bone Matrix Avoids Open Curettage and Bone Grafting in a Retrospective Cohort.

    PubMed

    Gundle, Kenneth R; Bhatt, Etasha M; Punt, Stephanie E; Bompadre, Viviana; Conrad, Ernest U

    2017-01-01

    Many treatment options exist for unicameral bone cysts (UBC), without clear evidence of superiority. Meta-analyses have been limited by small numbers of patients in specific anatomic and treatment subgroups. The purpose of this study was to report the outcomes of injecting bone marrow aspirate and demineralized bone matrix (BMA/DBM) for the treatment of proximal humerus UBC. Fifty-one patients with proximal humerus lesions treated by BMA/DBM injection were retrospectively reviewed from a single academic medical center. The mean number of injections performed per patient was 2.14 (range 1-5). Eleven patients underwent only one injection (22%), an additional 19 patients completed treatment after two injections (37%), four patients healed after three injections (8%), and one patient healed after four injections (2%). The cumulative success rate of serial BMA/DBM injections was 22% (11/51), 58% (30/51), 67% (34/51), and 69% (35/51). Eleven patients (22%) ultimately underwent open curettage and bone grafting, and five patients (10%) were treated with injection of calcium phosphate bone substitute. A BMA/DBM injection strategy avoided an open procedure in 78% of patients with a proximal humerus UBC. The majority of patients underwent at least 2 injection treatments. Level IV retrospective cohort study.

  11. Kinetic study of bone ingrowth and ceramic resorption associated with the implantation of different injectable calcium-phosphate bone substitutes.

    PubMed

    Gauthier, O; Bouler, J M; Weiss, P; Bosco, J; Daculsi, G; Aguado, E

    1999-10-01

    This study investigated the in vivo performance of two composite injectable bone substitutes (IBS), each with different calcium-phosphate particles granulometries [40-80 (IBS 40-80) and 200-500 microm (IBS 200-500)]. These biomaterials were obtained by associating a biphasic calcium-phosphate (BCP) ceramic mineral phase with a 3% aqueous solution of a cellulosic polymer (hydroxy-propyl-methyl-cellulose). Both materials were injected for periods of 2, 3, 8, or 12 weeks into bone defects at the distal end of rabbit femurs. Quantitative results on new bone formation, BCP resorption, and staining for tartrate-resistant acid phosphatase (TRAP) activity were studied for statistical purposes. Measurements with scanning electron microscopy and image analysis showed that the final rates of newly formed bone were similar for both tested IBS after 12 weeks of implantation. Bone colonization occurred more extensively during early implantation times for IBS 40-80 than for IBS 200-500. For the latter, BCP degradation occurred regularly throughout the implantation period, whereas it was very intensive during the first 2 weeks for IBS 40-80. Positive TRAP-stained degradation cells were significantly more numerous for IBS 40-80 than for IBS 200-500 regardless of implantation time. With the granulometry of either mineral phase, both tested IBS supported extensive bone colonization, which was greater than that previously reported for an equivalent block of macroporous BCP. The resorption-bone substitution process seemed to occur earlier and faster for IBS 40-80 than for IBS 200-500. Both tested IBS expressed similar biological efficiency, with conserved in vivo bioactivity and bone-filling ability. Copyright 1999 John Wiley & Sons, Inc.

  12. Injection of Unicameral Bone Cysts with Bone Marrow Aspirate and Demineralized Bone Matrix Avoids Open Curettage and Bone Grafting in a Retrospective Cohort

    PubMed Central

    Gundle, Kenneth R.; Bhatt, Etasha M.; Punt, Stephanie E.; Bompadre, Viviana; Conrad, Ernest U.

    2017-01-01

    Background: Many treatment options exist for unicameral bone cysts (UBC), without clear evidence of superiority. Meta-analyses have been limited by small numbers of patients in specific anatomic and treatment subgroups. The purpose of this study was to report the outcomes of injecting bone marrow aspirate and demineralized bone matrix (BMA/DBM) for the treatment of proximal humerus UBC. Methods: Fifty-one patients with proximal humerus lesions treated by BMA/DBM injection were retrospectively reviewed from a single academic medical center. Results: The mean number of injections performed per patient was 2.14 (range 1-5). Eleven patients underwent only one injection (22%), an additional 19 patients completed treatment after two injections (37%), four patients healed after three injections (8%), and one patient healed after four injections (2%). The cumulative success rate of serial BMA/DBM injections was 22% (11/51), 58% (30/51), 67% (34/51), and 69% (35/51). Eleven patients (22%) ultimately underwent open curettage and bone grafting, and five patients (10%) were treated with injection of calcium phosphate bone substitute. Conclusion: A BMA/DBM injection strategy avoided an open procedure in 78% of patients with a proximal humerus UBC. The majority of patients underwent at least 2 injection treatments. Level of Evidence: Level IV retrospective cohort study. PMID:28694887

  13. Development and characterization of novel alginate-based hydrogels as vehicles for bone substitutes.

    PubMed

    Morais, D S; Rodrigues, M A; Silva, T I; Lopes, M A; Santos, M; Santos, J D; Botelho, C M

    2013-06-05

    In this work three different hydrogels were developed to associate, as vehicles, with the synthetic bone substitute GR-HAP. One based on an alginate matrix (Alg); a second on a mixture of alginate and chitosan (Alg/Ch); and a third on alginate and hyaluronate (Alg/HA), using Ca(2+) ions as cross-linking agents. The hydrogels, as well as the respective injectable bone substitutes (IBSs), were fully characterized from the physical-chemical point of view. Weight change studies proved that all hydrogels were able to swell and degrade within 72 h at pH 7.4 and 4.0, being Alg/HA the hydrogel with the highest degradation rate (80%). Rheology studies demonstrated that all hydrogels are non-Newtonian viscoelastic fluids, and injectability tests showed that IBSs presented low maximum extrusion forces, as well as quite stable average forces. In conclusion, the studied hydrogels present the necessary features to be successfully used as vehicles of GR-HAP, particularly the hydrogel Alg/HA. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Bioactivation of calcium deficient hydroxyapatite with foamed gelatin gel. A new injectable self-setting bone analogue.

    PubMed

    Dessì, M; Alvarez-Perez, M A; De Santis, R; Ginebra, M P; Planell, J A; Ambrosio, L

    2014-02-01

    An alternative approach to bone repair for less invasive surgical techniques, involves the development of biomaterials directly injectable into the injury sites and able to replicate a spatially organized platform with features of bone tissue. Here, the preparation and characterization of an innovative injectable bone analogue made of calcium deficient hydroxyapatite and foamed gelatin is presented. The biopolymer features and the cement self-setting reaction were investigated by rheological analysis. The porous architecture, the evolution of surface morphology and the grains dimension were analyzed with electron microscopy (SEM/ESEM/TEM). The physico-chemical properties were characterized by X-ray diffraction and FTIR analysis. Moreover, an injection test was carried out to prove the positive effect of gelatin on the flow ensuing that cement is fully injectable. The cement mechanical properties are adequate to function as temporary substrate for bone tissue regeneration. Furthermore, MG63 cells and bone marrow-derived human mesenchymal stem cells (hMSCs) were able to migrate and proliferate inside the pores, and hMSCs differentiated to the osteoblastic phenotype. The results are paving the way for an injectable bone substitute with properties that mimic natural bone tissue allowing the successful use as bone filler for craniofacial and orthopedic reconstructions in regenerative medicine.

  15. Evaluation of injectable silica-embedded nanohydroxyapatite bone substitute in a rat tibia defect model

    PubMed Central

    Xu, Weiguo; Ganz, Cornelia; Weber, Ulf; Adam, Martin; Holzhüter, Gerd; Wolter, Daniel; Frerich, Bernhard; Vollmar, Brigitte; Gerber, Thomas

    2011-01-01

    In clinical practice, vertebral compression fractures occur after trauma and osteoporosis. Kyphoplasty is a minimally invasive procedure using bone filler material for the treatment of such fractures. A full synthetic injectable bone substitute (SIBS) was manufactured by means of spray drying. The aim of this study was to characterize the SIBS and to analyze the remodelling process during degradation of the biomaterial and new bone formation after implantation. SIBS is an aqueous suspension of donut-like microparticles. These microparticles consist of nanocrystallites of synthetic hydroxyapatite embedded in amorphous silica gel. After implantation of SIBS in a proximal tibial diaphyseal defect in 52 rats, grafts were harvested for subsequent analysis on different days. Newly formed bone originating from endosteum was observed on day 6. Hematomas in the medullary space and cortical wounds disappeared on day 12. The wound region was completely replaced by a composite of newly formed cancellous bone, extracellular matrix, and SIBS. At day 63 the cortical defect was fully healed by bone, while newly formed bone in the medullary space almost disappeared and was replaced with bone marrow. In conclusion, SIBS demonstrated a unique structure with osteoinductive and bioresorbable properties, which induced fast bone regeneration. Therefore, a clinical application of SIBS for kyphoplasty is promising. PMID:21845044

  16. Rheological and Mechanical Properties of Thermoresponsive Methylcellulose/Calcium Phosphate-Based Injectable Bone Substitutes.

    PubMed

    Demir Oğuz, Öznur; Ege, Duygu

    2018-04-14

    In this study, a novel injectable bone substitute (IBS) was prepared by incorporating a bioceramic powder in a polymeric solution comprising of methylcellulose (MC), gelatin and citric acid. Methylcellulose was utilized as the polymeric matrix due to its thermoresponsive properties and biocompatibility. 2.5 wt % gelatin and 3 wt % citric acid were added to the MC to adjust the rheological properties of the prepared IBS. Then, 0, 20, 30 and 50 wt % of the bioceramic component comprising tetracalcium phosphate/hydroxyapatite (TTCP/HA), dicalcium phosphate dehydrate (DCPD) and calcium sulfate dehydrate (CSD) were added into the prepared polymeric component. The prepared IBS samples had a chewing gum-like consistency. IBS samples were investigated in terms of their chemical structure, rheological characteristics, and mechanical properties. After that, in vitro degradation studies were carried out by measurement of pH and % remaining weight. Viscoelastic characteristics of the samples indicated that all of the prepared IBS were injectable and they hardened at approximately 37 °C. Moreover, with increasing wt % of the bioceramic component, the degradation rate of the samples significantly reduced and the mechanical properties were improved. Therefore, the experimental results indicated that the P50 mix may be a promising candidates to fill bone defects and assist bone recovery for non-load bearing applications.

  17. Rheological and Mechanical Properties of Thermoresponsive Methylcellulose/Calcium Phosphate-Based Injectable Bone Substitutes

    PubMed Central

    2018-01-01

    In this study, a novel injectable bone substitute (IBS) was prepared by incorporating a bioceramic powder in a polymeric solution comprising of methylcellulose (MC), gelatin and citric acid. Methylcellulose was utilized as the polymeric matrix due to its thermoresponsive properties and biocompatibility. 2.5 wt % gelatin and 3 wt % citric acid were added to the MC to adjust the rheological properties of the prepared IBS. Then, 0, 20, 30 and 50 wt % of the bioceramic component comprising tetracalcium phosphate/hydroxyapatite (TTCP/HA), dicalcium phosphate dehydrate (DCPD) and calcium sulfate dehydrate (CSD) were added into the prepared polymeric component. The prepared IBS samples had a chewing gum-like consistency. IBS samples were investigated in terms of their chemical structure, rheological characteristics, and mechanical properties. After that, in vitro degradation studies were carried out by measurement of pH and % remaining weight. Viscoelastic characteristics of the samples indicated that all of the prepared IBS were injectable and they hardened at approximately 37 °C. Moreover, with increasing wt % of the bioceramic component, the degradation rate of the samples significantly reduced and the mechanical properties were improved. Therefore, the experimental results indicated that the P50 mix may be a promising candidates to fill bone defects and assist bone recovery for non-load bearing applications. PMID:29662018

  18. Combined micro computed tomography and histology study of bone augmentation and distraction osteogenesis

    NASA Astrophysics Data System (ADS)

    Ilgenstein, Bernd; Deyhle, Hans; Jaquiery, Claude; Kunz, Christoph; Stalder, Anja; Stübinger, Stefan; Jundt, Gernot; Beckmann, Felix; Müller, Bert; Hieber, Simone E.

    2012-10-01

    Bone augmentation is a vital part of surgical interventions of the oral and maxillofacial area including dental implantology. Prior to implant placement, sufficient bone volume is needed to reduce the risk of peri-implantitis. While augmentation using harvested autologous bone is still considered as gold standard, many surgeons prefer bone substitutes to reduce operation time and to avoid donor site morbidity. To assess the osteogenic efficacy of commercially available augmentation materials we analyzed drill cores extracted before implant insertion. In younger patients, distraction osteogenesis is successfully applied to correct craniofacial deformities through targeted bone formation. To study the influence of mesenchymal stem cells on bone regeneration during distraction osteogenesis, human mesenchymal stem cells were injected into the distraction gap of nude rat mandibles immediately after osteotomy. The distraction was performed over eleven days to reach a distraction gap of 6 mm. Both the rat mandibles and the drill cores were scanned using synchrotron radiation-based micro computed tomography. The three-dimensional data were manually registered and compared with corresponding two-dimensional histological sections to assess bone regeneration and its morphology. The analysis of the rat mandibles indicates that bone formation is enhanced by mesenchymal stem cells injected before distraction. The bone substitutes yielded a wide range of bone volume and degree of resorption. The volume fraction of the newly formed bone was determined to 34.4% in the computed tomography dataset for the augmentation material Geistlich Bio-Oss®. The combination of computed tomography and histology allowed a complementary assessment for both bone augmentation and distraction osteogenesis.

  19. Fabrication of calcium phosphate–calcium sulfate injectable bone substitute using hydroxy-propyl-methyl-cellulose and citric acid

    PubMed Central

    Thai, Van Viet

    2010-01-01

    In this study, an injectable bone substitute (IBS) consisting of citric acid, chitosan, and hydroxyl propyl methyl cellulose (HPMC) as the liquid phase and tetra calcium phosphate (TTCP), dicalcium phosphate dihydrate (DCPD) and calcium sulfate dehydrate (CSD, CaSO4·2H2O) powders as the solid phase, were fabricated. Two groups were classified based on the percent of citric acid in the liquid phase (20, 40 wt%). In each groups, the HPMC percentage was 0, 2, and 4 wt%. An increase in compressive strength due to changes in morphology was confirmed by scanning electron microscopy images. A good conversion rate of HAp at 20% citric acid was observed in the XRD profiles. In addition, HPMC was not obviously affected by apatite formation. However, both HPMC and citric acid increased the compressive strength of IBS. The maximum compressive strength for IBS was with 40% citric acid and 4% HPMC after 14 days of incubation in 100% humidity at 37°C. PMID:20333539

  20. An Injectable Method for Posterior Lateral Spine Fusion

    DTIC Science & Technology

    2013-09-01

    any problems that would prevent us from reaching our proposed goals. We have begun to establish optimal parameters for encapsulation of the MSCs...783–799 (2009). 3. U. Heise, J. F. Osborn, and F. Duwe, “ Hydroxyapatite ceramic as a bone substitute,” Int. Orthop. 14(3), 329–338 (1990). 4. H...gel and porous hydroxyapatite for posterolateral lumbar spine fusion,” Spine 30(10), 1134–1138 (2005). 9. M. R. Urist, “Bone: formation by

  1. Endoscopic surgery for young athletes with symptomatic unicameral bone cyst of the calcaneus.

    PubMed

    Innami, Ken; Takao, Masato; Miyamoto, Wataru; Abe, Satoshi; Nishi, Hideaki; Matsushita, Takashi

    2011-03-01

    Open curettage with bone graft has been the traditional surgical treatment for symptomatic unicameral calcaneal bone cyst. Endoscopic procedures have recently provided less invasive techniques with shorter postoperative morbidity. The authors' endoscopic procedure is effective for young athletes with symptomatic calcaneal bone cyst. Case series; Level of evidence, 4. Of 16 young athletes with symptomatic calcaneal bone cyst, 13 underwent endoscopic curettage and percutaneous injection of bone substitute under the new method. Three patients were excluded because of short-term follow-up, less than 24 months. For the remaining 10 patients, with a mean preoperative 3-dimensional size of 23 × 31 × 35 mm as calculated by computed tomography, clinical evaluation was made with the American Orthopaedic Foot and Ankle Society Ankle-Hindfoot Scale just before surgery and at the most recent follow-up (mean, 36.2 months; range, 24-51 months), and radiologic assessment was performed at the most recent follow-up, to discover any recurrence or pathologic fracture. Furthermore, the 10 patients-all of whom returned to sports activities-were asked how long it took to return to initial sports activity level after surgery. Mean ankle-hindfoot scale score improved from preoperative 78.7 ± 4.7 points (range, 74-87) to postoperative 98.0 ± 4.2 points (range, 90-100) (P < .001). Pain and functional scores significantly improved after surgery (P < .01 and P < .05, respectively). Radiologic assessment at most recent follow-up revealed no recurrence or pathologic fracture, with retention of injected calcium phosphate cement in all cases. All patients could return to their initial levels of sports activities within 8 weeks after surgery (mean period, 7.1 weeks; range, 4-8 weeks), which was quite early as compared with past reports. Endoscopic curettage and injection of bone substitute appears to be an excellent option for young athletes with symptomatic calcaneal bone cyst for early return to sports activities, because it has the possibility to minimize the risk of postoperative pathologic fracture and local recurrence after early return to initial level of sports activities.

  2. Therapeutic ion-releasing bioactive glass ionomer cements with improved mechanical strength and radiopacity

    NASA Astrophysics Data System (ADS)

    Fuchs, Maximilian; Gentleman, Eileen; Shahid, Saroash; Hill, Robert; Brauer, Delia

    2015-10-01

    Bioactive glasses (BG) are used to regenerate bone, as they degrade and release therapeutic ions. Glass ionomer cements (GIC) are used in dentistry, can be delivered by injection and set in situ by a reaction between an acid-degradable glass and a polymeric acid. Our aim was to combine the advantages of BG and GIC, and we investigated the use of alkali-free BG (SiO2-CaO-CaF2-MgO) with 0 to 50% of calcium replaced by strontium, as the beneficial effects of strontium on bone formation are well documented. When mixing BG and poly(vinyl phosphonic-co-acrylic acid), ions were released fast (up to 90% within 15 minutes at pH 1), which resulted in GIC setting, as followed by infrared spectroscopy. GIC mixed well and set to hard cements (compressive strength up to 35 MPa), staying hard when in contact with aqueous solution. This is in contrast to GIC prepared with poly(acrylic acid), which were shown previously to become soft in contact with water. Strontium release from GIC increased linearly with strontium for calcium substitution, allowing for tailoring of strontium release depending on clinical requirements. Furthermore, strontium substitution increased GIC radiopacity. GIC passed ISO10993 cytotoxicity test, making them promising candidates for use as injectable bone cements.

  3. A simple and effective approach to prepare injectable macroporous calcium phosphate cement for bone repair: Syringe-foaming using a viscous hydrophilic polymeric solution.

    PubMed

    Zhang, Jingtao; Liu, Weizhen; Gauthier, Olivier; Sourice, Sophie; Pilet, Paul; Rethore, Gildas; Khairoun, Khalid; Bouler, Jean-Michel; Tancret, Franck; Weiss, Pierre

    2016-02-01

    In this study, we propose a simple and effective strategy to prepare injectable macroporous calcium phosphate cements (CPCs) by syringe-foaming via hydrophilic viscous polymeric solution, such as using silanized-hydroxypropyl methylcellulose (Si-HPMC) as a foaming agent. The Si-HPMC foamed CPCs demonstrate excellent handling properties such as injectability and cohesion. After hardening the foamed CPCs possess hierarchical macropores and their mechanical properties (Young's modulus and compressive strength) are comparable to those of cancellous bone. Moreover, a preliminary in vivo study in the distal femoral sites of rabbits was conducted to evaluate the biofunctionality of this injectable macroporous CPC. The evidence of newly formed bone in the central zone of implantation site indicates the feasibility and effectiveness of this foaming strategy that will have to be optimized by further extensive animal experiments. A major challenge in the design of biomaterial-based injectable bone substitutes is the development of cohesive, macroporous and self-setting calcium phosphate cement (CPC) that enables rapid cell invasion with adequate initial mechanical properties without the use of complex processing and additives. Thus, we propose a simple and effective strategy to prepare injectable macroporous CPCs through syringe-foaming using a hydrophilic viscous polymeric solution (silanized-hydroxypropyl methylcellulose, Si-HPMC) as a foaming agent, that simultaneously meets all the aforementioned aims. Evidence from our in vivo studies shows the existence of newly formed bone within the implantation site, indicating the feasibility and effectiveness of this foaming strategy, which could be used in various CPC systems using other hydrophilic viscous polymeric solutions. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  4. Development and characterization of an injectable cement of nano calcium-deficient hydroxyapatite/multi(amino acid) copolymer/calcium sulfate hemihydrate for bone repair

    PubMed Central

    Qi, Xiaotong; Li, Hong; Qiao, Bo; Li, Weichao; Hao, Xinyan; Wu, Jun; Su, Bao; Jiang, Dianming

    2013-01-01

    A novel injectable bone cement was developed by integration of nano calcium-deficient hydroxyapatite/multi(amino acid) copolymer (n-CDHA/MAC) and calcium sulfate hemihydrate (CSH; CaSO4 · 1/2H2O). The structure, setting time, and compressive strength of the cement were investigated. The results showed that the cement with a liquid to powder ratio of 0.8 mL/g exhibited good injectability and appropriate setting time and mechanical properties. In vitro cell studies indicated that MC3T3-E1 cells cultured on the n-CDHA/MAC/CSH composite spread well and showed a good proliferation state. The alkaline phosphatase activity of the MC3T3-E1 cells cultured on the n-CDHA/MAC/CSH composite was significantly higher than that of the cells on pure CSH at 4 and 7 days of culture. The n-CDHA/MAC/CSH cement was implanted into critical size defects of the femoral condyle in rabbits to evaluate its biocompatibility and osteogenesis in vivo. Radiological and histological results indicated that introduction of the n-CDHA/MAC into CSH enhanced new bone formation, and the n-CDHA/MAC/CSH cement exhibited good biocompatibility and degradability. In conclusion, the injectable n-CDHA/MAC/CSH composite cement has a significant clinical advantage over pure CSH cement, and may be a promising bone graft substitute for the treatment of bone defects. PMID:24293996

  5. Injectable calcium sulfate/mineralized collagen-based bone repair materials with regulable self-setting properties.

    PubMed

    Chen, Zonggang; Liu, Huanye; Liu, Xi; Cui, Fu-Zhai

    2011-12-15

    An injectable and self-setting bone repair materials (nano-hydroxyapatite/collagen/calcium sulfate hemihydrate, nHAC/CSH) was developed in this study. The nano-hydroxyapatite/collagen (nHAC) composite, which is the mineralized fibril by self-assembly of nano-hydrocyapatite and collagen, has the same features as natural bone in both main hierarchical microstructure and composition. It is a bioactive osteoconductor due to its high level of biocompatibility and appropriate degradation rate. However, this material lacks handling characteristics because of its particle or solid-preformed block shape. Herein, calcium sulfate hemihydrate (CSH) was introduced into nHAC to prepare an injectable and self-setting in situ bone repair materials. The morphology of materials was observed using SEM. Most important and interesting of all, calcium sulfate dihydrate (CSD), which is not only the reactant of preparing CSH but also the final solidified product of CSH, was introduced into nHAC as setting accelerator to regulate self-setting properties of injectable nHAC/CSH composite, and thus the self-setting time of nHAC/CSH composite can be regulated from more than 100 min to about 30 min and even less than 20 min by adding various amount of setting accelerator. The compressive properties of bone graft substitute after final setting are similar to those of cancellous bone. CSD as an excellent setting accelerator has no significant effect on the mechanical property and degradability of bone repair materials. In vitro biocompatibility and in vivo histology studies demonstrated that the nHAC/CSH composite could provide more adequate stimulus for cell adhesion and proliferation, embodying favorable cell biocompatibility and a strong ability to accelerate bone formation. It can offer a satisfactory biological environment for growing new bone in the implants and for stimulating bone formation. Copyright © 2011 Wiley Periodicals, Inc.

  6. * Hypoxia Biomimicry to Enhance Monetite Bone Defect Repair.

    PubMed

    Drager, Justin; Ramirez-GarciaLuna, Jose Luis; Kumar, Abhishek; Gbureck, Uwe; Harvey, Edward J; Barralet, Jake E

    2017-12-01

    Tissue hypoxia is a critical driving force for angiogenic and osteogenic responses in bone regeneration and is, at least partly, under the control of the Hypoxia Inducible Factor-1α (HIF-1α) pathway. Recently, the widely used iron chelator deferoxamine (DFO) has been found to elevate HIF-1α levels independent of oxygen concentrations, thereby, creating an otherwise normal environment that mimics the hypoxic state. This has the potential to augment the biological properties of inorganic scaffolds without the need of recombinant growth factors. This pilot study investigates the effect of local delivery of DFO on bone formation and osseointegration of an anatomically matched bone graft substitute, in the treatment of segmental bone defects. Three-dimensional printing was used to create monetite grafts, which were implanted into 10 mm midshaft ulnar defects in eight rabbits. Starting postoperative day 4, one graft site in each animal was injected with 600 μL (200 μM) of DFO every 48 h for six doses. Saline was injected in the contralateral limb as a control. At 8 weeks, micro-CT and histology were used to determine new bone growth, vascularity, and assess osseointegration. Six animals completed the protocol. Bone metric analysis using micro-CT showed a significantly greater amount of new bone formed (19.5% vs. 13.65% p = 0.042) and an increase in bone-implant contact area (63.1 mm 2 vs. 33.2 mm 2 p = 0.03) in the DFO group compared with control. Vascular channel volume was significantly greater in the DFO group (20.9% vs. 16.2% p = 0.004). Histology showed increased bone formation within the osteotomy gap, more bone integrated with the graft surface as well as more matured soft tissue callus in the DFO group. This study demonstrates a significant increase in new bone formation after delivery of DFO in a rabbit long bone defect bridged by a 3D-printed bioresorbable bone graft substitute. Given the safety, ease of handling, and low expense of this medication, the results of this study support further investigation into the use of iron chelators in creating a biomimetic environment for bone healing in segmental bone loss.

  7. Bone Graft Substitute Provides Metaphyseal Fixation for a Stemless Humeral Implant.

    PubMed

    Kim, Myung-Sun; Kovacevic, David; Milks, Ryan A; Jun, Bong-Jae; Rodriguez, Eric; DeLozier, Katherine R; Derwin, Kathleen A; Iannotti, Joseph P

    2015-07-01

    Stemless humeral fixation has become an alternative to traditional total shoulder arthroplasty, but metaphyseal fixation may be compromised by the quality of the trabecular bone that diminishes with age and disease, and augmentation of the fixation may be desirable. The authors hypothesized that a bone graft substitute (BGS) could achieve initial fixation comparable to polymethylmethacrylate (PMMA) bone cement. Fifteen fresh-frozen human male humerii were randomly implanted using a stemless humeral prosthesis, and metaphyseal fixation was augmented with either high-viscosity PMMA bone cement (PMMA group) or a magnesium-based injectable BGS (OsteoCrete; Bone Solutions Inc, Dallas, Texas) (OC group). Both groups were compared with a control group with no augmentation. Initial stiffness, failure load, failure displacement, failure cycle, and total work were compared among groups. The PMMA and OC groups showed markedly higher failure loads, failure displacements, and failure cycles than the control group (P<.01). There were no statistically significant differences in initial stiffness, failure load, failure displacement, failure cycle, or total work between the PMMA and OC groups. The biomechanical properties of magnesium-based BGS fixation compared favorably with PMMA bone cement in the fixation of stemless humeral prostheses and may provide sufficient initial fixation for this clinical application. Future work will investigate the long-term remodeling characteristics and bone quality at the prosthetic-bone interface in an in vivo model to evaluate the clinical efficacy of this approach. Copyright 2015, SLACK Incorporated.

  8. Composite Bone Models in Orthopaedic Surgery Research and Education

    PubMed Central

    Elfar, John; Stanbury, Spencer; Menorca, Ron Martin Garcia; Reed, Jeffrey Douglas

    2014-01-01

    Composite bone models are increasingly used in orthopaedic biomechanics research and surgical education—applications that traditionally relied on cadavers. Cadaver bones are suboptimal for myriad reasons, including issues of cost, availability, preservation, and inconsistency between specimens. Further, cadaver samples disproportionately represent the elderly, whose bone quality may not be representative of the greater orthopaedic population. The current fourth-generation composite bone models provide an accurate reproduction of the biomechanical properties of human bone when placed under bending, axial, and torsional loads. The combination of glass fiber and epoxy resin components into a single phase has enabled manufacturing by injection molding. The high anatomic fidelity of the cadaver-based molds and negligible shrinkage properties of the epoxy resin results in a process that allows for excellent definition of anatomic detail in the cortical wall and optimized consistency of features between models. Recent biomechanical studies of composites have validated their use as a suitable substitute for cadaver specimens. PMID:24486757

  9. Composite bone models in orthopaedic surgery research and education.

    PubMed

    Elfar, John; Menorca, Ron Martin Garcia; Reed, Jeffrey Douglas; Stanbury, Spencer

    2014-02-01

    Composite bone models are increasingly used in orthopaedic biomechanics research and surgical education-applications that traditionally relied on cadavers. Cadaver bones are suboptimal for many reasons, including issues of cost, availability, preservation, and inconsistency between specimens. Further, cadaver samples disproportionately represent the elderly, whose bone quality may not be representative of the greater orthopaedic population. The current fourth-generation composite bone models provide an accurate reproduction of the biomechanical properties of human bone when placed under bending, axial, and torsional loads. The combination of glass fiber and epoxy resin components into a single phase has enabled manufacturing by injection molding. The high level of anatomic fidelity of the cadaver-based molds and negligible shrinkage properties of the epoxy resin results in a process that allows for excellent definition of anatomic detail in the cortical wall and optimized consistency of features between models. Recent biomechanical studies of composites have validated their use as a suitable substitute for cadaver specimens.

  10. Biodegradation and biocompatability of a calcium sulphate-hydroxyapatite bone substitute.

    PubMed

    Nilsson, M; Wang, J S; Wielanek, L; Tanner, K E; Lidgren, L

    2004-01-01

    An injectable material consisting of calcium sulphate mixed with hydroxyapatite was investigated as a possible alternative to autograft in the restoration of bone defects. The material was studied both in vitro in simulated body fluid (SBF) and in vivo when implanted in rat muscles and into the proximal tibiae of rabbits. Variation in the strength and weight of the material during ageing in SBF was measured. Tissue response, material resorption and bone ingrowth were studied in the animal models. A good tissue response was observed in both the rat muscles and rabbit tibiae without inflammatory reactions or the presence of fibrous tissue. Ageing in SBF showed that during the first week carbonated hydroxyapatite precipitated on the surfaces of the material and this may enhance bone ingrowth.

  11. Degradable Bone Graft Substitute for Effective Delivery of Multiple Growth Factors in the Treatment of Nonunion Fractures

    DTIC Science & Technology

    2011-10-01

    During this reporting period, a more general set of hydrogel synthesis steps were defined which enables the incorporation of chitosan from multiple...sources and suppliers and still produce a consistent material. Functional behavior of the hydrogel was confirmed with a new source of chitosan ...inducing tissue ingrowth into a subcutaneously injected scaffold loaded with the composite xylan/ chitosan hydrogel. Delivery of new hydrogel treatment for

  12. Bioceramic bone graft substitute for treatment of unicameral bone cysts.

    PubMed

    Fillingham, Y A; Cvetanovich, G L; Haughom, B D; Erickson, B J; Gitelis, S

    2016-08-01

    To review the outcome of 12 patients who underwent debridement and injection of bioceramic for unicameral bone cyst (UBC). The resorption rate of the bioceramic was estimated by both traditional and novel methods. Records of 10 males and 2 females aged 6 to 34 years who underwent debridement and injection of bioceramic for UBC and were followed up for a mean of 41 (range, 26-57) months were reviewed. Functional outcome was assessed using the selfcompleted Musculoskeletal Tumor Society (MSTS) questionnaire. Radiological outcome was assessed using both original and modified Neer Outcome Rating System. The resorption rate of the bioceramic was estimated using both traditional and novel (ImageJ) methods. The mean MSTS score was 29.7 (range, 28-30) indicating excellent functional outcome. Of the 12 patients, 9 achieved complete healing and 3 had a residual cyst of 1%, 11%, and 52%. The last was considered a local recurrence, and the patient underwent repeat percutaneous injection of the bioceramic 1.5 years later and remained disease-free 4 years later. The mean resorption rate was 29% faster when estimated using the traditional rather than the ImageJ method (0.47 vs. 0.33 cm3/day, p=0.02). In the patient with recurrence, the resorption rate was faster than the average (0.68 vs. 0.33 cm3/day). A single percutaneous injection of the bioceramic for UBC achieved good functional and radiological outcome while avoiding donor-site morbidity.

  13. Bone substitutes: a review of their characteristics, clinical use, and perspectives for large bone defects management

    PubMed Central

    Fernandez de Grado, Gabriel; Keller, Laetitia; Idoux-Gillet, Ysia; Wagner, Quentin; Musset, Anne-Marie; Benkirane-Jessel, Nadia; Bornert, Fabien; Offner, Damien

    2018-01-01

    Bone replacement might have been practiced for centuries with various materials of natural origin, but had rarely met success until the late 19th century. Nowadays, many different bone substitutes can be used. They can be either derived from biological products such as demineralized bone matrix, platelet-rich plasma, hydroxyapatite, adjunction of growth factors (like bone morphogenetic protein) or synthetic such as calcium sulfate, tri-calcium phosphate ceramics, bioactive glasses, or polymer-based substitutes. All these substitutes are not suitable for every clinical use, and they have to be chosen selectively depending on their purpose. Thus, this review aims to highlight the principal characteristics of the most commonly used bone substitutes and to give some directions concerning their clinical use, as spine fusion, open-wedge tibial osteotomy, long bone fracture, oral and maxillofacial surgery, or periodontal treatments. However, the main limitations to bone substitutes use remain the management of large defects and the lack of vascularization in their central part, which is likely to appear following their utilization. In the field of bone tissue engineering, developing porous synthetic substitutes able to support a faster and a wider vascularization within their structure seems to be a promising way of research. PMID:29899969

  14. Preparation and Characterization of Injectable Brushite Filled-Poly (Methyl Methacrylate) Bone Cement

    PubMed Central

    Rodriguez, Lucas C.; Chari, Jonathan; Aghyarian, Shant; Gindri, Izabelle M.; Kosmopoulos, Victor; Rodrigues, Danieli C.

    2014-01-01

    Powder-liquid poly (methyl methacrylate) (PMMA) bone cements are widely utilized for augmentation of bone fractures and fixation of orthopedic implants. These cements typically have an abundance of beneficial qualities, however their lack of bioactivity allows for continued development. To enhance osseointegration and bioactivity, calcium phosphate cements prepared with hydroxyapatite, brushite or tricalcium phosphates have been introduced with rather unsuccessful results due to increased cement viscosity, poor handling and reduced mechanical performance. This has limited the use of such cements in applications requiring delivery through small cannulas and in load bearing. The goal of this study is to design an alternative cement system that can better accommodate calcium-phosphate additives while preserving cement rheological properties and performance. In the present work, a number of brushite-filled two-solution bone cements were prepared and characterized by studying their complex viscosity-versus-test frequency, extrusion stress, clumping tendency during injection through a syringe, extent of fill of a machined void in cortical bone analog specimens, and compressive strength. The addition of brushite into the two-solution cement formulations investigated did not affect the pseudoplastic behavior and handling properties of the materials as demonstrated by rheological experiments. Extrusion stress was observed to vary with brushite concentration with values lower or in the range of control PMMA-based cements. The materials were observed to completely fill pre-formed voids in bone analog specimens. Cement compressive strength was observed to decrease with increasing concentration of fillers; however, the materials exhibited high enough strength for consideration in load bearing applications. The results indicated that partially substituting the PMMA phase of the two-solution cement with brushite at a 40% by mass concentration provided the best combination of the properties investigated. This alternative material may find applications in systems requiring highly injectable and viscous cements such as in the treatment of spinal fractures and bone defects. PMID:28788212

  15. Osteogenic potential of the human bone morphogenetic protein 2 gene activated nanobone putty.

    PubMed

    Tian, Xiao-bin; Sun, Li; Yang, Shu-hua; Zhang, Yu-kun; Hu, Ru-yin; Fu, De-hao

    2008-04-20

    Nanobone putty is an injectable and bioresorbable bone substitute. The neutral-pH putty resembles hard bone tissue, does not contain polymers or plasticizers, and is self-setting and nearly isothermic, properties which are helpful for the adhesion, proliferation, and function of bone cells. The aim of this study was to investigate the osteogenic potential of human bone morphogenetic protein 2 (hBMP2) gene activated nanobone putty in inducing ectopic bone formation, and the effects of the hBMP2 gene activated nanobone putty on repairing bone defects. Twenty four Kunming mice were randomly divided into two groups. The nanobone putty + hBMP2 plasmid was injected into the right thigh muscle pouches of the mice (experiment side). The nanobone putty + blank plasmid or nanobone putty was injected into the left thigh muscle pouches of the group 1 (control side 1) or group 2 (control side 2), respectively. The effects of ectopic bone formation were evaluated by radiography, histology, and molecular biology analysis at 2 and 4 weeks after operation. Bilateral 15 mm radial defects were made in forty-eight rabbits. These rabbits were randomly divided into three groups: Group A, nanobone putty + hBMP2 plasmid; Group B, putty + blank plasmid; Group C, nanobone putty only. Six rabbits with left radial defects served as blank controls. The effect of bone repairing was evaluated by radiography, histology, molecular biology, and biomechanical analysis at 4, 8, and 12 weeks after operation. The tissue from the experimental side of the mice expressed hBMP2. Obvious cartilage and island-distributed immature bone formation in implants of the experiment side were observed at 2 weeks after operation, and massive mature bone observed at 4 weeks. No bone formation was observed in the control side of the mice. The ALP activity in the experiment side of the mice was higher than that in the control side. The tissue of Group A rabbits expressed hBMP2 protein and higher ALP level. The new bone formation rate and antibending strength of group A was significantly higher than those of group B and C. The defects in blank control were not healed. The hBMP2 gene activated nanobone putty exhibited osteoinductive ability, and had a better bone defect repair capability than that of nanobone putty only.

  16. Porous titanium scaffolds with injectable hyaluronic acid-DBM gel for bone substitution in a rat critical-sized calvarial defect model.

    PubMed

    van Houdt, C I A; Cardoso, D A; van Oirschot, B A J A; Ulrich, D J O; Jansen, J A; Leeuwenburgh, S C G; van den Beucken, J J J P

    2017-09-01

    Demineralized bone matrix (DBM) is an allograft bone substitute used for bone repair surgery to overcome drawbacks of autologous bone grafting, such as limited supply and donor-site comorbidities. In view of different demineralization treatments to obtain DBM, we examined the biological performance of two differently demineralized types of DBM, i.e. by acidic treatment using hydrochloric acid (HCl) or treatment with the chelating agent ethylene diamine tetra-acetate (EDTA). First, we evaluated the osteo-inductive properties of both DBMs by implanting the materials subcutaneously in rats. Second, we evaluated the effects on bone formation by incorporating DBM in a hyaluronic acid (HA) gel to fill a porous titanium scaffold for use in a critical-sized calvarial defect model in 36 male Wistar rats. These porous titanium scaffolds were implanted empty or filled with HA gel containing either DBM HCl or DBM EDTA. Ectopically implanted DBM HCl and DBM EDTA did not induce ectopic bone formation over the course of 12 weeks. For the calvarial defects, mean percentages of newly formed bone at 2 weeks were significantly higher for Ti-Empty compared to Ti-HA + DBM HCl , but not compared to Ti-HA + DBM EDTA. Significant temporal bone formation was observed for Ti-Empty and Ti-HA + DBM HCl, but not for Ti-HA + DBM EDTA. At 8 weeks there were no significant differences in values of bone formation between the three experimental constructs. In conclusion, these results showed that, under the current experimental conditions, neither DBM HCl nor DBM EDTA possess osteo-inductive properties. Additionally, in combination with an HA gel loaded in a porous titanium scaffold, DBM HCl and DBM EDTA showed similar amounts of new bone formation after 8 weeks, which were lower than using the empty porous titanium scaffold. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  17. Sinus Floor Elevation and Augmentation Using Synthetic Nanocrystalline and Nanoporous Hydroxyapatite Bone Substitute Materials: Preliminary Histologic Results.

    PubMed

    Belouka, Sofia-Maria; Strietzel, Frank Peter

    To compare the tissue composition of augmented sites after using two different synthetic bone substitute materials, nanocrystalline and nanoporous hydroxyapatite (HA), for sinus floor elevation and augmentation. Forty-four patients received 88 titanium screw implants (Camlog Promote plus) of 4.3-mm diameter and 11- or 13-mm length, placed simultaneously during sinus floor elevation and augmentation. Nanocrystalline (Ostim) or nanoporous (NanoBone) HA were used exclusively. Bone substitute materials and implant lengths were allocated by randomization. Bone biopsy specimens were obtained from the former area of the lateral access window at implant exposure during healing abutment placement after 6 months. Biopsy specimens were prepared and examined histologically and histomorphometrically. All implants were osseointegrated at the time of exposure. Clinically and histologically, no signs of inflammation in the augmented sites were present. The histomorphometric analysis of 44 biopsy specimens revealed 31.8% ± 11.6% newly formed bone for sites augmented with nanocrystalline HA and 34.6% ± 9.2% for nanoporous HA (P = .467). The proportion of remaining bone substitute material was 28.4% ± 18.6% and 30% ± 13%, respectively (P = .453). The proportion of soft tissue within the biopsy specimens was 39.9% ± 11.1% and 35.4% ± 6.8%, respectively (P = .064). No significant differences were found between the area fractions of bone, bone substitute material, and soft tissue concerning the bone substitute material utilized. Within the present study, both synthetic bone substitute materials, nanocrystalline and nanoporous HA, were found to support bone formation in sinus floor elevation and augmentation procedures by osteoconductivity. They were not completely resorbed after 6 months. The amounts of newly formed bone, soft tissue, and bone substitute material remnants were found to be similar, indicating that both materials are likewise suitable for sinus floor elevation and augmentation procedures.

  18. Basic research and clinical application of beta-tricalcium phosphate (β-TCP).

    PubMed

    Tanaka, T; Komaki, H; Chazono, M; Kitasato, S; Kakuta, A; Akiyama, S; Marumo, K

    2017-09-01

    The mechanism of bone substitute resorption involves two processes: solution-mediated and cell-mediated disintegration. In our previous animal studies, the main resorption process of beta-tricalcium phosphate (β-TCP) was considered to be cell-mediated disintegration by TRAP-positive cells. Thus, osteoclast-mediated resorption of β-TCP is important for enabling bone formation. We also report the results of treatment with β-TCP graft in patients since 1989. Two to three weeks after implantation, resorption of β-TCP occurred from the periphery, and then continued toward the center over time. Complete or nearly complete bone healing was achieved in most cases within a few years and was dependent upon the amount of implanted material, the patient's age, and the type of bone (cortical or cancellous). We have previously reported that an injectable complex of β-TCP granules and collagen supplemented with rhFGF-2 enabled cortical bone regeneration of rabbit tibiae. Based on the experimental results, we applied this technique to the patients with femoral and humeral fractures in elderly patients, and obtained bone union. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  19. The manufacture of synthetic non-sintered and degradable bone grafting substitutes.

    PubMed

    Gerike, W; Bienengräber, V; Henkel, K-O; Bayerlein, T; Proff, P; Gedrange, T; Gerber, Th

    2006-02-01

    A new synthetic bone grafting substitute (NanoBone, ARTOSS GmbH, Germany) is presented. This is produced by a new technique, the sol-gel-method. This bone grafting substitute consists of nanocrystalline hydroxyapatite (HA) and nanostructured silica (SiO2). By achieving a highly porous structure good osteoconductivity can be seen. In addition, the material will be completely biodegraded and new own bone is formed. It has been demonstrated that NanoBone is biodegraded by osteoclasts in a manner comparable to the natural bone remodelling process.

  20. Resorption behavior of a nanostructured bone substitute: in vitro investigation and clinical application.

    PubMed

    Reichert, Christoph; Götz, Werner; Reimann, Susanne; Keilig, Ludger; Hagner, Martin; Bourauel, Christoph; Jäger, Andreas

    2013-03-01

    To develop an in vitro assay for quantitative analysis of the degradation to which a bone substitute is exposed by osteoclasts. The aim of establishing this method was to improve the predictability of carrying out tooth movements via bone substitutes and to provide a basis for verification in exemplary clinical cases. After populating a bone substitute (NanoBone®; ArtOss, Germany) with osteoclastic cells, inductively-coupled mass spectrometry was used to evaluate changing calcium levels in the culture medium as a marker of resorption activity. It was observed that calcium levels increased substantially in the culture medium with the cells populating the bone substitute. This in vitro assay is a valid method that can assist clinicians in selecting the appropriate materials for certain patients. While tooth movements occurring through this material were successful, uncertainty about the approach will remain as long-term results are not available.

  1. Short-term implantation effects of a DCPD-based calcium phosphate cement.

    PubMed

    Frayssinet, P; Gineste, L; Conte, P; Fages, J; Rouquet, N

    1998-06-01

    Calcium phosphate cements can be handled in paste form and set in a wet medium after precipitation of calcium phosphate crystals in the implantation site. Depending on the products entering into the chemical reaction leading to the precipitation of calcium phosphates, different phases can be obtained with different mechanical properties, setting times and injectability. We tested a cement composed of a powder, containing beta-tricalcium phosphate (beta-TCP) and sodium pyrophosphate mixed with a solution of phosphoric and sulphuric acids. The cement set under a dicalcium phosphate dihydrate (DCPD)-based matrix containing beta-TCP particles. This was injected with a syringe into a defect drilled in rabbit condyles, the control being an identical defect left empty in the opposite condyle. The condyles were analysed histologically 2, 6 and 18 weeks after implantation. After injection into the bone defect the cement set and formed a porous calcium phosphate structure. Two different calcium phosphate phases with different solubility rates could be identified by scanning electron microscopy (SEM) observation. The less-soluble fragments could be degraded by cell phagocytosis in cell compartments of low pH or integrated in the newly formed bone matrix. The degradation rate of the material was relatively high but compatible with the ingrowth of bone trabeculae within the resorbing material. The ossification process was different from the creeping substitution occurring at the ceramic contact. Bone did not form directly at the cement surface following the differentiation of osteoblasts at the material surface. The trabeculae came to the material surface from the edges of the implantation site. Bone formation in the implantation site was significantly higher than in the control region during the first week of implantation. In conclusion, this material set in situ was well tolerated, inducing a mild foreign-body reaction, which did not impair its replacement by newly formed bone within a few weeks.

  2. Osteointegration of porous absorbable bone substitutes: A systematic review of the literature.

    PubMed

    Paulo, Maria Júlia Escanhoela; Dos Santos, Mariana Avelino; Cimatti, Bruno; Gava, Nelson Fabrício; Riberto, Marcelo; Engel, Edgard Eduard

    2017-07-01

    Biomaterials' structural characteristics and the addition of osteoinductors influence the osteointegration capacity of bone substitutes. This study aims to identify the characteristics of porous and resorbable bone substitutes that influence new bone formation. An Internet search for studies reporting new bone formation rates in bone defects filled with porous and resorbable substitutes was performed in duplicate using the PubMed, Web of Science, Scielo, and University of São Paulo Digital Library databases. Metaphyseal or calvarial bone defects 4 to 10 mm in diameter from various animal models were selected. New bone formation rates were collected from the histomorphometry or micro-CT data. The following variables were analyzed: animal model, bone region, defect diameter, follow-up time after implantation, basic substitute material, osteoinductor addition, pore size and porosity. Of 3,266 initially identified articles, 15 articles describing 32 experimental groups met the inclusion criteria. There were no differences between the groups in the experimental model characteristics, except for the follow-up time, which showed a very weak to moderate correlation with the rate of new bone formation. In terms of the biomaterial and structural characteristics, only porosity showed a significant influence on the rate of new bone formation. Higher porosity is related to higher new bone formation rates. The influence of other characteristics could not be identified, possibly due to the large variety of experimental models and methodologies used to estimate new bone formation rates. We suggest the inclusion of standard control groups in future experimental studies to compare biomaterials.

  3. Unicameral bone cysts treated by injection of bone marrow or methylprednisolone.

    PubMed

    Chang, C H; Stanton, R P; Glutting, J

    2002-04-01

    In 79 consecutive patients with unicameral bone cysts we compared the results of aspiration and injection of bone marrow with those of aspiration and injection of steroid. All were treated by the same protocol. The only difference was the substance injected into the cysts. The mean radiological follow-up to detect activity in the cyst was 44 months (12 to 108). Of the 79 patients, 14 received a total of 27 injections of bone marrow and 65 a total of 99 injections of steroid. Repeated injections were required in 57% of patients after bone marrow had been used and in 49% after steroid. No complications were noted in either group. In this series no advantage could be shown for the use of autogenous injection of bone marrow compared with injection of steroid in the management of unicameral bone cysts.

  4. Healing of extraction sockets filled with BoneCeramic® prior to implant placement: preliminary histological findings.

    PubMed

    De Coster, Peter; Browaeys, Hilde; De Bruyn, Hugo

    2011-03-01

    Various grafting materials have been designed to minimize edentulous ridge volume loss following tooth extraction by encouraging new bone formation in healing sockets. BoneCeramic® is a composite of hydroxyapatite and bèta-tricalcium phosphate with pores of 100-500 microns. The aim of this study was to evaluate bone regeneration in healing sockets substituted with BoneCeramic® prior to implant procedures. Fifteen extraction sockets were substituted with BoneCeramic® and 14 sockets were left to heal naturally in 10 patients (mean age 59.6 years). Biopsies were collected only from the implant recipient sites during surgery after healing periods ranging from 6-74 weeks (mean 22). In total, 24 biopsies were available; 10 from substituted and 14 from naturally healed sites. In one site, the implant was not placed intentionally and, in four substituted sites, implant placement had to be postponed due to inappropriate healing, hence from five sites biopsies were not available. Histological sections were examined by transmitted light microscope. At the time of implant surgery, bone at substituted sites was softer than in controls, compromising initial implant stability. New bone formation at substituted sites was consistently poorer than in controls, presenting predominantly loose connective tissue and less woven bone. The use of BoneCeramic® as a grafting material in fresh extraction sockets appears to interfere with normal healing processes of the alveolar bone. On the basis of the present preliminary findings, its indication as a material for bone augmentation, when implant placement is considered within 6-38 weeks after extraction, should be revised. © 2009, Copyright the Authors. Journal Compilation © 2011, Wiley Periodicals, Inc.

  5. Histological comparison of autograft, allograft-DBM, xenograft, and synthetic grafts in a trabecular bone defect: an experimental study in rabbits.

    PubMed

    Athanasiou, Vasilis T; Papachristou, Dionysios J; Panagopoulos, Andreas; Saridis, Alkis; Scopa, Chrisoula D; Megas, Panagiotis

    2010-01-01

    Different types of bone-graft substitutes have been developed and are on the market worldwide to eliminate the drawbacks of autogenous grafting. This experimental animal study was undertaken to evaluate the different histological properties of various bone graft substitutes utilized in this hospital. Ninety New Zealand white rabbits were divided into six groups of 15 animals. Under general anesthesia, a 4.5 mm-wide hole was drilled into both the lateral femoral condyles of each rabbit, for a total of 180 condyles for analysis. The bone defects were filled with various grafts, these being 1) autograft, 2) DBM crunch allograft (Grafton), 3) bovine cancellous bone xenograft (Lubboc), 4) calcium phosphate hydroxyapatite substitute (Ceraform), 5) calcium sulfate substitute (Osteoset), and 6) no filling (control). The animals were sacrificed at 1, 3, and 6 months after implantation and tissue samples from the implanted areas were processed for histological evaluation. A histological grading scale was designed to determine the different histological parameters of bone healing. The highest histological grades were achieved with the use of cancellous bone autograft. Bovine xenograft (Lubboc) was the second best in the histological scale grading. The other substitutes (Grafton, Ceraform, Osteoset) had similar scores but were inferior to both allograft and xenograft. Bovine xenograft showed better biological response than the other bone graft substitutes; however, more clinical studies are necessary to determine its overall effectiveness.

  6. Osteointegration of porous absorbable bone substitutes: A systematic review of the literature

    PubMed Central

    Paulo, Maria Júlia Escanhoela; dos Santos, Mariana Avelino; Cimatti, Bruno; Gava, Nelson Fabrício; Riberto, Marcelo; Engel, Edgard Eduard

    2017-01-01

    Biomaterials’ structural characteristics and the addition of osteoinductors influence the osteointegration capacity of bone substitutes. This study aims to identify the characteristics of porous and resorbable bone substitutes that influence new bone formation. An Internet search for studies reporting new bone formation rates in bone defects filled with porous and resorbable substitutes was performed in duplicate using the PubMed, Web of Science, Scielo, and University of São Paulo Digital Library databases. Metaphyseal or calvarial bone defects 4 to 10 mm in diameter from various animal models were selected. New bone formation rates were collected from the histomorphometry or micro-CT data. The following variables were analyzed: animal model, bone region, defect diameter, follow-up time after implantation, basic substitute material, osteoinductor addition, pore size and porosity. Of 3,266 initially identified articles, 15 articles describing 32 experimental groups met the inclusion criteria. There were no differences between the groups in the experimental model characteristics, except for the follow-up time, which showed a very weak to moderate correlation with the rate of new bone formation. In terms of the biomaterial and structural characteristics, only porosity showed a significant influence on the rate of new bone formation. Higher porosity is related to higher new bone formation rates. The influence of other characteristics could not be identified, possibly due to the large variety of experimental models and methodologies used to estimate new bone formation rates. We suggest the inclusion of standard control groups in future experimental studies to compare biomaterials. PMID:28793006

  7. Treatment for unicameral bone cysts in long bones: an evidence based review.

    PubMed

    Donaldson, Sandra; Chundamala, Josie; Yandow, Suzanne; Wright, James G

    2010-03-20

    The purpose of this paper is to perform an evidence based review for treatment of unicameral bone cysts. A search of MEDLINE (1966 to 2009) was conducted and the studies were classified according to levels of evidence. This review includes only comparative Level I-III studies. The systematic review identified 16 studies. There is one level I study, one level II study and the remaining 14 studies are level III. Seven of the sixteen studies had statistically different results: three studies indicated that steroid injection was superior to bone marrow injection or curettage and bone grafting; one study indicated that cannulated screws were superior to steroid injections; one study indicated resection and myoplasty was superior to steroid injection; one study indicated a combination of steroid, demineralized bone matrix and bone marrow aspirate, and curettage and bone grafting were superior to steroid injection; and one study indicated that curettage and bone grafting was superior to non-operative immobilization. Based on one Level I study, including a limited number of individuals, steroid injection seems to be superior to bone marrow injection. As steroid injections have already demonstrated superiority over bone marrow injections in a randomized clinical trial, the next step would be a prospective trial comparing steroid injections with other treatments.

  8. Treatment for unicameral bone cysts in long bones: an evidence based review

    PubMed Central

    Donaldson, Sandra; Chundamala, Josie; Yandow, Suzanne; Wright, James G.

    2010-01-01

    The purpose of this paper is to perform an evidence based review for treatment of unicameral bone cysts. A search of MEDLINE (1966 to 2009) was conducted and the studies were classified according to levels of evidence. This review includes only comparative Level I-III studies. The systematic review identified 16 studies. There is one level I study, one level II study and the remaining 14 studies are level III. Seven of the sixteen studies had statistically different results: three studies indicated that steroid injection was superior to bone marrow injection or curettage and bone grafting; one study indicated that cannulated screws were superior to steroid injections; one study indicated resection and myoplasty was superior to steroid injection; one study indicated a combination of steroid, demineralized bone matrix and bone marrow aspirate, and curettage and bone grafting were superior to steroid injection; and one study indicated that curettage and bone grafting was superior to non-operative immobilization. Based on one Level I study, including a limited number of individuals, steroid injection seems to be superior to bone marrow injection. As steroid injections have already demonstrated superiority over bone marrow injections in a randomized clinical trial, the next step would be a prospective trial comparing steroid injections with other treatments. PMID:21808696

  9. Comparison of the effectiveness of two different bone substitute materials for socket preservation after tooth extraction: a controlled clinical study.

    PubMed

    Shakibaie-M, Behnam

    2013-01-01

    The aim of this study was to compare the effectiveness of two bone substitute materials for socket preservation after tooth extraction. Extraction sockets in 10 patients were filled with either inorganic bovine bone material (Bio-Oss) or with synthetic material consisting of hydroxyapatite and silicon dioxide (NanoBone). Extraction sockets without filling served as the control. The results demonstrate the effectiveness of the presented protocol for socket preservation and that the choice of a suitable bone substitute material is crucial. The dimensions of the alveolar ridge were significantly better preserved with Bio-Oss than with NanoBone or without treatment. Bio-Oss treatment resulted in better bone quality and quantity for successful implant placement.

  10. Engineering bone tissue substitutes from human induced pluripotent stem cells.

    PubMed

    de Peppo, Giuseppe Maria; Marcos-Campos, Iván; Kahler, David John; Alsalman, Dana; Shang, Linshan; Vunjak-Novakovic, Gordana; Marolt, Darja

    2013-05-21

    Congenital defects, trauma, and disease can compromise the integrity and functionality of the skeletal system to the extent requiring implantation of bone grafts. Engineering of viable bone substitutes that can be personalized to meet specific clinical needs represents a promising therapeutic alternative. The aim of our study was to evaluate the utility of human-induced pluripotent stem cells (hiPSCs) for bone tissue engineering. We first induced three hiPSC lines with different tissue and reprogramming backgrounds into the mesenchymal lineages and used a combination of differentiation assays, surface antigen profiling, and global gene expression analysis to identify the lines exhibiting strong osteogenic differentiation potential. We then engineered functional bone substitutes by culturing hiPSC-derived mesenchymal progenitors on osteoconductive scaffolds in perfusion bioreactors and confirmed their phenotype stability in a subcutaneous implantation model for 12 wk. Molecular analysis confirmed that the maturation of bone substitutes in perfusion bioreactors results in global repression of cell proliferation and an increased expression of lineage-specific genes. These results pave the way for growing patient-specific bone substitutes for reconstructive treatments of the skeletal system and for constructing qualified experimental models of development and disease.

  11. Preparation of porous PLA/DBM composite biomaterials and experimental research of repair rabbit radius segmental bone defect.

    PubMed

    Zhang, Yumin; Wang, Jianru; Wang, Jue; Niu, Xiaojun; Liu, Jianchun; Gao, Lan; Zhai, Xiaoyan; Chu, Kaibo

    2015-12-01

    Bone substitutes are used in wide range of orthopaedic application. An ideal bone substitute should exhibit superior osteoinductive and osteoconductive properties. Neither bio-derived materials nor synthetic materials can meet the needs of an ideal bone substitute. Preparation of composite materials is a promising way to improve properties of biomaterial. In this study, the porous poly lactic acid (PLA)/demineralized bone matrix (DBM) composite biomaterials prepared by supercritical CO2 technique were implanted to repair rabbit radius segmental bone defect. By comparing with PLA and bone autograft, the X-ray result and histological analysis showed the repair effect of PLA/DBM porous composite materials is significantly better than that of the PLA group and the blank control group, and is similar to autologous bone. The PLA/DBM can promote the healing of bone defects and can be used as a kind of ideal alternative materials to repair bone defects.

  12. Alternatives to Autologous Bone Graft in Alveolar Cleft Reconstruction: The State of Alveolar Tissue Engineering.

    PubMed

    Liang, Fan; Leland, Hyuma; Jedrzejewski, Breanna; Auslander, Allyn; Maniskas, Seija; Swanson, Jordan; Urata, Mark; Hammoudeh, Jeffrey; Magee, William

    2018-05-01

    Alveolar cleft reconstruction has historically relied on autologous iliac crest bone grafting (ICBG), but donor site morbidity, pain, and prolonged hospitalization have prompted the search for bone graft substitutes. The authors evaluated bone graft substitutes with the highest levels of evidence, and highlight the products that show promise in alveolar cleft repair and in maxillary augmentation. This comprehensive review guides the craniofacial surgeon toward safe and informed utilization of biomaterials in the alveolar cleft.A literature search was performed to identify in vitro human studies that fulfilled the following criteria: Level I or Level II of evidence, ≥30 subjects, and a direct comparison between a autologous bone graft and a bone graft substitute. A second literature search was performed that captured all studies, regardless of level of evidence, which evaluated bone graft substitutes for alveolar cleft repair or alveolar augmentation for dental implants. Adverse events for each of these products were tabulated as well.Sixteen studies featuring 6 bone graft substitutes: hydroxyapatite, demineralized bone matrix (DBM), β-tricalcium phosphate (TCP), calcium phosphate, recombinant human bone morphogenic protein-2 (rhBMP-2), and rhBMP7 fit the inclusion criteria for the first search. Through our second search, the authors found that DBM, TCP, rhBMP-2, and rhBMP7 have been studied most extensively in the alveolar cleft literature, though frequently in studies using less rigorous methodology (Level III evidence or below). rhBMP-2 was the best studied and showed comparable efficacy to ICBG in terms of volume of bone regeneration, bone density, and capacity to accommodate tooth eruption within the graft site. Pricing for products ranged from $290 to $3110 per 5 mL.The balance between innovation and safety is a complex process requiring constant vigilance and evaluation. Here, the authors profile several bone graft substitutes that demonstrate the most promise in alveolar cleft reconstruction.

  13. Tissue Reaction to a Novel Bone Substitute Material Fabricated With Biodegradable Polymer-Calcium Phosphate Nanoparticle Composite.

    PubMed

    Shimizu, Hideo; Jinno, Yohei; Ayukawa, Yasunori; Atsuta, Ikiru; Arahira, Takaaki; Todo, Mitsugu; Koyano, Kiyoshi

    2016-10-01

    The aim of this study was to evaluate the effectiveness of a novel bone substitute material fabricated using a biodegradable polymer-calcium phosphate nanoparticle composite. Porous structured poly-L-lactic acid (PLLA) and hydroxyapatite (HA) nanoparticle composite, which was fabricated using solid-liquid phase separation and freeze-drying methods, was grafted into bone defects created in rat calvarium or tibia. Rats were killed 4 weeks after surgery, and histological analyses were performed to evaluate new bone formation. Scanning electron microscopic observation showed the interconnecting pores within the material and the pore diameter was approximately 100 to 300 μm. HA nanoparticles were observed to be embedded into the PLLA beams. In the calvarial implantation model, abundant blood vessels and fibroblastic cells were observed penetrating into pores, and in the tibia model, newly formed bone was present around and within the composite. The PLLA-HA nanoparticle composite bone substitute developed in this study showed biocompatibility, elasticity, and operability and thus has potential as a novel bone substitute.

  14. Nanocrystalline hydroxyapatite bone substitute leads to sufficient bone tissue formation already after 3 months: histological and histomorphometrical analysis 3 and 6 months following human sinus cavity augmentation.

    PubMed

    Ghanaati, Shahram; Barbeck, Mike; Willershausen, Ines; Thimm, Benjamin; Stuebinger, Stefan; Korzinskas, Tadas; Obreja, Karina; Landes, Constantin; Kirkpatrick, Charles J; Sader, Robert A

    2013-12-01

    In this study the de novo bone formation capacity of a nanocrystalline hydroxyapatite bone substitute was assessed 3 and 6 months after its insertion into the human sinus cavity. Sinus cavity augmentation was performed in a total of 14 patients (n = 7 implantation after 3 months; n = 7 implantation after 6 months) with severely atrophic maxillary bone. The specimens obtained after 3 and 6 months were analyzed histologically and histomorphometrically with special focus on bone metabolism within the residual bone and the augmented region. This study revealed that bone tissue formation started from the bone-biomaterial-interface and was directed into the most cranial parts of the augmented region. There was no statistically significant difference in new bone formation after 3 and 6 months (24.89 ± 10.22% vs 31.29 ± 2.29%), respectively. Within the limits of the present study and according to previously published data, implant insertion in regions augmented with this bone substitute material could be considered already after 3 months. Further clinical studies with bone substitute materials are necessary to validate these findings. © 2012 Wiley Periodicals, Inc.

  15. Histological and radiological evaluation of sintered and non-sintered deproteinized bovine bone substitute materials in sinus augmentation procedures. A prospective, randomized-controlled, clinical multicenter study.

    PubMed

    Fienitz, Tim; Moses, Ofer; Klemm, Christoph; Happe, Arndt; Ferrari, Daniel; Kreppel, Matthias; Ormianer, Zeev; Gal, Moti; Rothamel, Daniel

    2017-04-01

    The objective of this study is to histologically and radiologically compare a sintered and a non-sintered bovine bone substitute material in sinus augmentation procedures. Thirty-three patients were included in the clinically controlled randomized multicentre study resulting in a total of 44 treated sinuses. After lateral approach, sinuses were filled with either a sintered (SBM, Alpha Bio's Graft ® ) or a non-sintered (NSBM, Bio Oss ® ) deproteinized bovine bone substitute material. The augmentation sites were radiologically assessed before and immediately after the augmentation procedure as well as prior to implant placement. Bone trephine biopsies for histological analysis were harvested 6 months after augmentation whilst preparing the osteotomies for implant placement. Healing was uneventful in all patients. After 6 months, radiological evaluation of 43 sinuses revealed a residual augmentation height of 94.65 % (±2.74) for SBM and 95.76 % (±2.15) for NSBM. One patient left the study for personal reasons. Histological analysis revealed a percentage of new bone of 29.71 % (±13.67) for SBM and 30.57 % (±16.07) for NSBM. Residual bone substitute material averaged at 40.68 % (±16.32) for SBM compared to 43.43 % (±19.07) for NSBM. All differences between the groups were not statistically significant (p > 0.05, Student's t test). Both xenogeneic bone substitute materials showed comparable results regarding new bone formation and radiological height changes in external sinus grafting procedures. Both bone substitute materials allow for a predictable new bone formation following sinus augmentation procedures.

  16. Comparison of six bone-graft substitutes regarding to cell seeding efficiency, metabolism and growth behaviour of human mesenchymal stem cells (MSC) in vitro.

    PubMed

    Seebach, Caroline; Schultheiss, Judith; Wilhelm, Kerstin; Frank, Johannes; Henrich, Dirk

    2010-07-01

    Various synthetic bone-graft substitutes are used commercially as osteoconductive scaffolds in the treatment of bone defects and fractures. The role of bone-graft substitutes is changing from osteoconductive conduits for growth to an delivery system for biologic fracture treatments. Achieving optimal bone regeneration requires biologics (e.g. MSC) and using the correct scaffold incorporated into a local environment for bone regeneration. The need for an unlimited supply with high quality bone-graft substitutes continue to find alternatives for bone replacement surgery. This in vitro study investigates cell seeding efficiency, metabolism, gene expression and growth behaviour of MSC sown on six commercially clinical available bone-graft substitutes in order to define their biological properties: synthetic silicate-substituted porous hydroxyapatite (Actifuse ABX), synthetic alpha-TCP (Biobase), synthetic beta-TCP (Vitoss), synthetic beta-TCP (Chronos), processed human cancellous allograft (Tutoplast) and processed bovines hydroxyapatite ceramic (Cerabone). 250,000 MSC derived from human bone marrow (n=4) were seeded onto the scaffolds, respectively. On days 2, 6 and 10 the adherence of MSC (fluorescence microscopy) and cellular activity (MTT assay) were analysed. Osteogenic gene expression (cbfa-1) was analysed by RT-PCR and scanning electron microscopy was performed. The highest number of adhering cells was found on Tutoplast (e.g. day 6: 110.0+/-24.0 cells/microscopic field; p<0.05) followed by Chronos (47.5+/-19.5, p<0.05), Actifuse ABX (19.1+/-4.4), Biobase (15.7+/-9.9), Vitoss (8.8+/-8.7) and Cerabone (8.1+/-2.2). MSC seeded onto Tutoplast showed highest metabolic activity and gene expression of cbfa-1. These data are confirmed by scanning electron microscopy. The cell shapes varied from round-shaped cells to wide spread cells and cell clusters, depending on the bone-graft substitutes. Processed human cancellous allograft is a well-structured and biocompatible scaffold for ingrowing MSC in vitro. Of all other synthetical scaffolds, beta-tricalcium phosphate (Chronos) have shown the best growth behaviour for MSC. Our results indicate that various bone-graft substitutes influence cell seeding efficiency, metabolic activity and growth behaviour of MSC in different manners. We detected a high variety of cellular integration of MSC in vitro, which may be important for bony integration in the clinical setting. 2010 Elsevier Ltd. All rights reserved.

  17. Role of platelet-rich plasma in combination with alloplastic bone substitute in regeneration of osseous defects

    PubMed Central

    Singh, Indrajeet; Gupta, Hemant; Pradhan, R; Sinha, VP; Gupta, Sumit

    2012-01-01

    Introduction Bone grafts are frequently used for the treatment of bone defects, but can cause postoperative complications, and sometimes a sufficient quantity of bone is not available. Hence, synthetic biomaterials have been used as an alternative to autogenous bone grafts. Recent clinical reports suggest that application of autologous blood plasma enriched with platelets can enhance the formation of new bone. There are very few in vitro or in vivo studies published on the efficiency of platelet-rich plasma (PRP). The objective of this study was to evaluate the alloplastic bone substitute for its osteogenic potential with or without PRP. Materials and Methods Twenty-three patients with periapical bony defects were selected for this study. Clinical parameters such as pain visual analog scale (VAS), swelling, infection, graft migration, rejection, radiographical interpretations at regular interval and scintigraphic evaluation were done to evaluate osteogenic potential of alloplastic bone substitute with or without PRP. Results The highest acceleration in bone formation was observed in groups where alloplastic bone substitute was used with PRP. There were no statistically significant differences between the two groups regarding other outcome variables throughout the postoperative period. Conclusion Addition of PRP significantly accelerates vascularization of the graft, improves soft tissue healing, reduces postoperative morbidity and enhances bone regeneration. PMID:25756013

  18. Primary stability of different plate positions and the role of bone substitute in open wedge high tibial osteotomy.

    PubMed

    Takeuchi, Ryohei; Woon-Hwa, Jung; Ishikawa, Hiroyuki; Yamaguchi, Yuichiro; Osawa, Katsunari; Akamatsu, Yasushi; Kuroda, Koichi

    2017-12-01

    The purpose of this study was to compare the mechanical fixation strengths of anteromedial and medial plate positions in osteotomy, and clarify the effects of bone substitute placement into the osteotomy site. Twenty-eight sawbone tibia models were used. Four different models were prepared: Group A, the osteotomy site was open and the plate position was anteromedial; Group B, bone substitutes were inserted into the osteotomy site and the plate position was anteromedial; Group C, the osteotomy site was open and the plate position was medial; and Group D, bone substitutes were inserted into the osteotomy site and the plate position was medial. The loading condition ranged from 0 to 800N and one hertz cycles were applied. Changes of the tibial posterior slope angle (TPS), stress on the plate and lateral hinge were measured. The changes in the TPS and the stress on the plate were significantly larger in Group A than in Group C. These were significantly larger in Group A than in Group B, and in Group C than in Group D. There was no significant difference between Group B and Group D, and no significant difference between knee flexion angles of 0° and 10°. Stress on the lateral hinge was significantly smaller when bone substitute was used. A medial plate position was biomechanically superior to an anteromedial position if bone substitute was not used. Bone substitute distributed the stress concentration around the osteotomy gap and prevented an increase in TPS angle regardless of the plate position. Copyright © 2017. Published by Elsevier B.V.

  19. TRAP-Positive Multinucleated Giant Cells Are Foreign Body Giant Cells Rather Than Osteoclasts: Results From a Split-Mouth Study in Humans.

    PubMed

    Lorenz, Jonas; Kubesch, Alica; Korzinskas, Tadas; Barbeck, Mike; Landes, Constantin; Sader, Robert A; Kirkpatrick, Charles J; Ghanaati, Shahram

    2015-12-01

    This study compared the material-specific tissue response to the synthetic, hydroxyapatite-based bone substitute material NanoBone (NB) with that of the xenogeneic, bovine-based bone substitute material Bio-Oss (BO). The sinus cavities of 14 human patients were augmented with NB and BO in a split-mouth design. Six months after augmentation, bone biopsies were extracted for histological and histomorphometric investigation prior to dental implant insertion. The following were evaluated: the cellular inflammatory pattern, the induction of multinucleated giant cells, vascularization, the relative amounts of newly formed bone, connective tissue, and the remaining bone substitute material. NB granules were well integrated in the peri-implant tissue and were surrounded by newly formed bone tissue. Multinucleated giant cells were visible on the surfaces of the remaining granules. BO granules were integrated into the newly formed bone tissue, which originated from active osteoblasts on their surface. Histomorphometric analysis showed a significantly higher number of multinucleated giant cells and blood vessels in the NB group compared to the BO group. No statistical differences were observed in regard to connective tissue, remaining bone substitute, and newly formed bone. The results of this study highlight the different cellular reactions to synthetic and xenogeneic bone substitute materials. The significantly higher number of multinucleated giant cells within the NB implantation bed seems to have no effect on its biodegradation. Accordingly, the multinucleated giant cells observed within the NB implantation bed have characteristics more similar to those of foreign body giant cells than to those of osteoclasts.

  20. Organic-inorganic composites designed for biomedical applications.

    PubMed

    Miyazaki, Toshiki; Ishikawa, Kunio; Shirosaki, Yuki; Ohtsuki, Chikara

    2013-01-01

    Several varieties of ceramics, such as Bioglass-type glasses, sintered hydroxyapatite and glass-ceramic A-W, exhibit specific biological affinity, i.e., direct bonding to surrounding bone, when implanted in bony defects. These bone-bonding ceramics are called bioactive ceramics and are utilized as important bone substitutes in the medical field. However, there is a limitation to their clinical applications because of their inappropriate mechanical properties. Natural bone takes a kind of organic-inorganic composite, where apatite nanocrystals are precipitated on collagen fibers. Therefore, problems with the bioactive ceramics can be solved by material design based on the composites. In this paper, current research topics on the development of bioactive organic-inorganic composites inspired by actual bone microstructure have been reviewed in correlation with preparation methods and various properties. Several kinds of inorganic components have been found to exhibit bioactivity in the body environment. Combination of the inorganic components with various organic polymers enables the development of bioactive organic-inorganic composites. In addition, novel biomedical applications of the composites to drug delivery systems, scaffolds for tissue regeneration and injectable biomaterials are available by combining drugs or biological molecules with appropriate control of its microstructure.

  1. Bone substitutes and expanders in Spine Surgery: A review of their fusion efficacies

    PubMed Central

    Millhouse, Paul W; Kepler, Christopher K; Radcliff, Kris E.; Fehlings, Michael G.; Janssen, Michael E.; Sasso, Rick C.; Benedict, James J.; Vaccaro, Alexander R

    2016-01-01

    Study Design A narrative review of literature. Objective This manuscript intends to provide a review of clinically relevant bone substitutes and bone expanders for spinal surgery in terms of efficacy and associated clinical outcomes, as reported in contemporary spine literature. Summary of Background Data Ever since the introduction of allograft as a substitute for autologous bone in spinal surgery, a sea of literature has surfaced, evaluating both established and newly emerging fusion alternatives. An understanding of the available fusion options and an organized evidence-based approach to their use in spine surgery is essential for achieving optimal results. Methods A Medline search of English language literature published through March 2016 discussing bone graft substitutes and fusion extenders was performed. All clinical studies reporting radiological and/or patient outcomes following the use of bone substitutes were reviewed under the broad categories of Allografts, Demineralized Bone Matrices (DBM), Ceramics, Bone Morphogenic proteins (BMPs), Autologous growth factors (AGFs), Stem cell products and Synthetic Peptides. These were further grouped depending on their application in lumbar and cervical spine surgeries, deformity correction or other miscellaneous procedures viz. trauma, infection or tumors; wherever data was forthcoming. Studies in animal populations and experimental in vitro studies were excluded. Primary endpoints were radiological fusion rates and successful clinical outcomes. Results A total of 181 clinical studies were found suitable to be included in the review. More than a third of the published articles (62 studies, 34.25%) focused on BMP. Ceramics (40 studies) and Allografts (39 studies) were the other two highly published groups of bone substitutes. Highest radiographic fusion rates were observed with BMPs, followed by allograft and DBM. There were no significant differences in the reported clinical outcomes across all classes of bone substitutes. Conclusions There is a clear publication bias in the literature, mostly favoring BMP. Based on the available data, BMP is however associated with the highest radiographic fusion rate. Allograft is also very well corroborated in the literature. The use of DBM as a bone expander to augment autograft is supported, especially in the lumbar spine. Ceramics are also utilized as bone graft extenders and results are generally supportive, although limited. The use of autologous growth factors is not substantiated at this time. Cell matrix or stem cell-based products and the synthetic peptides have inadequate data. More comparative studies are needed to evaluate the efficacy of bone graft substitutes overall. PMID:27909654

  2. Bone grafts, bone substitutes and orthobiologics

    PubMed Central

    Roberts, Timothy T.; Rosenbaum, Andrew J.

    2012-01-01

    The biology of fracture healing is better understood than ever before, with advancements such as the locking screw leading to more predictable and less eventful osseous healing. However, at times one’s intrinsic biological response, and even concurrent surgical stabilization, is inadequate. In hopes of facilitating osseous union, bone grafts, bone substitutes and orthobiologics are being relied on more than ever before. The osteoinductive, osteoconductive and osteogenic properties of these substrates have been elucidated in the basic science literature and validated in clinical orthopaedic practice. Furthermore, an industry built around these items is more successful and in demand than ever before. This review provides a comprehensive overview of the basic science, clinical utility and economics of bone grafts, bone substitutes and orthobiologics. PMID:23247591

  3. The ultrastructure and processing properties of Straumann Bone Ceramic and NanoBone.

    PubMed

    Dietze, S; Bayerlein, T; Proff, P; Hoffmann, A; Gedrange, T

    2006-02-01

    The ultrastructure, fundamental chemistry, and processing modes of fully synthetic bone grafting materials are relevant to the reconstruction of osseous defects. Rapid progress in the profitable market of biomaterials has led to the development of various bone substitutes. Despite all these efforts, an ideal and full substitute of autologous bone is not yet in sight. With regard to anorganic calcium phosphate ceramics, Straumann Bone Ceramic and NanoBone are compared. These have a similar composition and are osteoconductive, which indispensably requires contact with well-vascularised bone.

  4. Current trends and future perspectives of bone substitute materials - from space holders to innovative biomaterials.

    PubMed

    Kolk, Andreas; Handschel, Jörg; Drescher, Wolf; Rothamel, Daniel; Kloss, Frank; Blessmann, Marco; Heiland, Max; Wolff, Klaus-Dietrich; Smeets, Ralf

    2012-12-01

    An autologous bone graft is still the ideal material for the repair of craniofacial defects, but its availability is limited and harvesting can be associated with complications. Bone replacement materials as an alternative have a long history of success. With increasing technological advances the spectrum of grafting materials has broadened to allografts, xenografts, and synthetic materials, providing material specific advantages. A large number of bone-graft substitutes are available including allograft bone preparations such as demineralized bone matrix and calcium-based materials. More and more replacement materials consist of one or more components: an osteoconductive matrix, which supports the ingrowth of new bone; and osteoinductive proteins, which sustain mitogenesis of undifferentiated cells; and osteogenic cells (osteoblasts or osteoblast precursors), which are capable of forming bone in the proper environment. All substitutes can either replace autologous bone or expand an existing amount of autologous bone graft. Because an understanding of the properties of each material enables individual treatment concepts this review presents an overview of the principles of bone replacement, the types of graft materials available, and considers future perspectives. Bone substitutes are undergoing a change from a simple replacement material to an individually created composite biomaterial with osteoinductive properties to enable enhanced defect bridging. Copyright © 2012 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.

  5. Bone healing and bone substitutes.

    PubMed

    Costantino, Peter D; Hiltzik, David; Govindaraj, Satish; Moche, Jason

    2002-02-01

    With the advent of new biomaterials and surgical techniques, the reconstructive surgeon has a wider range of treatment modalities for the rehabilitation and reconstruction of craniofacial skeletal deformities than ever before. These innovative substances act as true bone graft substitutes, thereby allowing the surgeon to avoid the use of autogenous bone grafts and their associated donor site morbidity. Surgeons have long been interested in producing a composite graft that can heal faster by induction, incorporate with surrounding tissues, and be remodeled to resemble native bone. Currently, there are a host of bone graft substitutes available that vary in both their composition and properties. Craniomaxillofacial surgeons must therefore become comfortable with numerous biomaterials to best tailor the treatment for each patient individually. Ongoing investigations into the next phase of tissue engineering will continue to bring us closer to the ability to regenerate or replace bone.

  6. Design, synthesis, and initial evaluation of D-glyceraldehyde crosslinked gelatin-hydroxyapatite as a potential bone graft substitute material

    NASA Astrophysics Data System (ADS)

    Florschutz, Anthony Vatroslav

    Utilization of bone grafts for the treatment of skeletal pathology is a common practice in orthopaedic, craniomaxillofacial, dental, and plastic surgery. Autogenous bone graft is the established archetype but has disadvantages including donor site morbidity, limited supply, and prolonging operative time. In order to avoid these and other issues, bone graft substitute materials are becoming increasingly prevalent among surgeons for reconstructing skeletal defects and arthrodesis applications. Bone graft substitutes are biomaterials, biologics, and guided tissue/bone regenerative devices that can be used alone or in combinations as supplements or alternatives to autogenous bone graft. There is a growing interest and trend to specialize graft substitutes for specific indications and although there is good rationale for this indication-specific approach, the development and utility of a more universal bone graft substitute may provide a better answer for patients and surgeons. The aim of the present research focuses on the design, synthesis, and initial evaluation of D-glyceraldehyde crosslinked gelatin-hydroxyapatite composites for potential use as a bone graft substitutes. After initial establishment of rational material design, gelatinhydroxyapatite scaffolds were fabricated with different gelatin:hydroxyapatite ratios and crosslinking concentrations. The synthesized scaffolds were subsequently evaluated on the basis of their swelling behavior, porosity, density, percent composition, mechanical properties, and morphology and further assessed with respect to cell-biomaterial interaction and biomineralization in vitro. Although none of the materials achieved mechanical properties suitable for structural graft applications, a reproducible material design and synthesis was achieved with properties recognized to facilitate bone formation. Select scaffold formulations as well as a subset of scaffolds loaded with recombinant human bone morphogenetic protein-2 were implanted ectopically in a rodent animal model and histologically evaluated for biocompatibility, degradation, and bone formation in vivo. The gelatin-hydroxyapatite scaffolds retained dimensional structure over 28 days and did not elicit any undesirable systemic or local effects. Distinct areas of mineralization and osteoid/bone were noted in all the implanted scaffolds and quantitative differences were primarily dependent on the presence of hydroxyapatite.

  7. VEGF induces neuroglial differentiation in bone marrow-derived stem cells and promotes microglia conversion following mobilization with GM-CSF.

    PubMed

    Avraham-Lubin, Bat-Chen R; Goldenberg-Cohen, Nitza; Sadikov, Tamilla; Askenasy, Nadir

    2012-12-01

    Evaluation of potential tropic effects of vascular endothelial growth factor (VEGF) on the incorporation and differentiation of bone-marrow-derived stem cells (BMSCs) in a murine model of anterior ischemic optic neuropathy (AION). In the first approach, small-sized subset of BMCs were isolated from GFP donors mice by counterflow centrifugal elutriation and depleted of hematopoietic lineages (Fr25lin(-)). These cells were injected into a peripheral vein (1 × 10(6) in 0.2 ml) or inoculated intravitreally (2 × 10(5)) to syngeneic mice, with or without intravitreal injection of 5 μg/2μL VEGF, simultaneously with AION induction. In a second approach, hematopoietic cells were substituted by myelablative transplant of syngeseic GFP + bone marrow cells. After 3 months, progenitors were mobilized with granulocyte-macrophage colony-stimulating factor (GM-CSF) followed by VEGF inoculation into the vitreous body and AION induction . Engraftment and phenotype were examined by immunohistochemistry and FISH at 4 and 24 weeks post-transplantation, and VEGF receptors were determined by real time PCR. VEGF had no quantitative effect on incorporation of elutriated cells in the injured retina, yet it induced early expression of neuroal markers in cells incorporated in the RGC layer and promoted durable gliosis, most prominent perivascular astrocytes. These effects were mediated by VEGF-R1/Flt-1, which is constitutively expresses in the elutriated fraction of stem cells. Mobilization with GM-CSF limited the differentiation of bone marrow progenitors to microglia, which was also fostered by VEGF. VEGF signaling mediated by Flt-1 induces early neural and sustained astrocytic differentiation of stem cells elutriated from adult bone-marrow, with significant contribution to stabilization retinal architecture following ischemic injury.

  8. The Efficacy of Cyclic Injection of Bone Morphogenetic Protein-2 in Large-Scale Calvarial Bone Defects.

    PubMed

    Choi, Jin Mi; Jeong, Woo Shik; Park, Eun Jung; Choi, Jong Woo

    2017-03-01

    Bone morphogenetic protein-2 (BMP-2) appears to be one of the most potent growth factors thus far studied. However, recent publications on the clinical application of BMP-2 revealed that its correct control is the paramount issue in clinical practice. For improving BMP-2 delivery, the cyclic administration might be an alternative. Accordingly, the authors cyclically injected BMP-2 in a cyclic injection model of large cranial defects to maintain the proper dosage during the bone healing process. A 10-mm diameter calvarial bone defect was produced using a round drill in 8-week-old Sprague-Dawley rats. Silk-hydroxyapatite scaffolds soaked in the appropriate concentration of BMP-2 were implanted into the defect. The animals were split into 4 single-injection groups and 3 multiple-injection groups; the latter groups received weekly subcutaneous injections of BMP-2 solution (1, 5, and 10 μg/mL) for 4 weeks, whereas the former groups received a single injection of BMP-2 at these concentrations. Each rat underwent computed tomography at 8 weeks. In terms of total volumes of the new bone, the 5 μg/mL multiple-injection BMP-2 group had significantly greater increases in bone volume than the single-injection groups. In terms of bone thickness, the multiple-injection groups had better outcomes than the single-injection groups. Thus, the cyclic injection protocol restored the original thickness without overgrowth. Cyclic injection of BMP-2 permits more accurate dosage control than single injection and improves thickness and dense bone regeneration. Therefore, it may represent a promising approach for future clinical trials. Further investigation using a greater number of animals is required.

  9. Elastomeric enriched biodegradable polyurethane sponges for critical bone defects: a successful case study reducing donor site morbidity.

    PubMed

    Lavrador, Catarina; Mascarenhas, Ramiro; Coelho, Paulo; Brites, Cláudia; Pereira, Alfredo; Gogolewski, Sylwester

    2016-03-01

    Bone substitutes have been a critical issue as the natural source can seldom provide enough bone to support full healing. No bone substitute complies with all necessary functions and characteristics that an autograft does. Polyurethane sponges have been used as a surgical alternative to cancellous bone grafts for critical bone defect donor sites. Critical bone defects were created on the tibial tuberosity and iliac crest using an ovine model. In group I (control-untreated), no bone regeneration was observed in any animal. In group II (defects left empty but covered with a microporous polymeric membrane), the new bone bridged the top ends in all animals. In groups III and IV, bone defects were implanted with polyurethane scaffolds modified with biologically active compounds, and bone regeneration was more efficient than in group II. In groups III and IV there were higher values of bone regeneration specific parameters used for evaluation (P < 0.05) although the comparison between these groups was not possible. The results obtained in this study suggest that biodegradable polyurethane substitutes modified with biologically active substances may offer an alternative to bone graft, reducing donor site morbidity associated with autogenous cancellous bone harvesting.

  10. Demineralized Bone Matrix Scaffolds Modified by CBD-SDF-1α Promote Bone Regeneration via Recruiting Endogenous Stem Cells.

    PubMed

    Shi, Jiajia; Sun, Jie; Zhang, Wen; Liang, Hui; Shi, Qin; Li, Xiaoran; Chen, Yanyan; Zhuang, Yan; Dai, Jianwu

    2016-10-07

    The reconstruction of bone usually depends on substitute transplantation, which has drawbacks including the limited bone substitutes available, comorbidity, immune rejection, and limited endogenous bone regeneration. Here, we constructed a functionalized bone substitute by combining application of the demineralized bone matrix (DBM) and collagen-binding stromal-cell-derived factor-1α (CBD-SDF-1α). DBM was a poriferous and biodegradable bone substitute, derived from bovine bone and consisting mainly of collagen. CBD-SDF-1α could bind to collagen and be controllably released from the DBM to mobilize stem cells. In a rat femur defect model, CBD-SDF-1α-modified DBM scaffolds could efficiently mobilize CD34 + and c-kit + endogenous stem cells homing to the injured site at 3 days after implantation. According to the data from micro-CT, CBD-SDF-1α-modified DBM scaffolds could help the bone defects rejoin with mineralization accumulated and bone volume expanded. Interestingly, osteoprotegerin (OPG) and osteopontin (OPN) were highly expressed in CBD-SDF-1α group at an early time after implantation, while osteocalcin (OCN) was more expanded. H&E and Masson's trichrome staining showed that the CBD-SDF-1α-modified DBM scaffold group had more osteoblasts and that the bone defect rejoined earlier. The ultimate strength of the regenerated bone was investigated by three-point bending, showing that the CBD-SDF-1α group had superior strength. In conclusion, CBD-SDF-1α-modified DBM scaffolds could promote bone regeneration by recruiting endogenous stem cells.

  11. Implantation of silicon dioxide-based nanocrystalline hydroxyapatite and pure phase beta-tricalciumphosphate bone substitute granules in caprine muscle tissue does not induce new bone formation

    PubMed Central

    2013-01-01

    Background Osteoinductive bone substitutes are defined by their ability to induce new bone formation even at heterotopic implantation sites. The present study was designed to analyze the potential osteoinductivity of two different bone substitute materials in caprine muscle tissue. Materials and methods One gram each of either a porous beta-tricalcium phosphate (β-TCP) or an hydroxyapatite/silicon dioxide (HA/SiO2)-based nanocrystalline bone substitute material was implanted in several muscle pouches of goats. The biomaterials were explanted at 29, 91 and 181 days after implantation. Conventional histology and special histochemical stains were performed to detect osteoblast precursor cells as well as mineralized and unmineralized bone matrix. Results Both materials underwent cellular degradation in which tartrate-resistant acid phosphatase (TRAP)-positive osteoclast-like cells and TRAP-negative multinucleated giant cells were involved. The ß-TCP was completely resorbed within the observation period, whereas some granules of the HA-groups were still detectable after 180 days. Neither osteoblasts, osteoblast precursor cells nor extracellular bone matrix were found within the implantation bed of any of the analyzed biomaterials at any of the observed time points. Conclusions This study showed that ß-TCP underwent a faster degradation than the HA-based material. The lack of osteoinductivity for both materials might be due to their granular shape, as osteoinductivity in goat muscle has been mainly attributed to cylindrical or disc-shaped bone substitute materials. This hypothesis however requires further investigation to systematically analyze various materials with comparable characteristics in the same experimental setting. PMID:23286366

  12. Implantation of silicon dioxide-based nanocrystalline hydroxyapatite and pure phase beta-tricalciumphosphate bone substitute granules in caprine muscle tissue does not induce new bone formation.

    PubMed

    Ghanaati, Shahram; Udeabor, Samuel E; Barbeck, Mike; Willershausen, Ines; Kuenzel, Oliver; Sader, Robert A; Kirkpatrick, C James

    2013-01-04

    Osteoinductive bone substitutes are defined by their ability to induce new bone formation even at heterotopic implantation sites. The present study was designed to analyze the potential osteoinductivity of two different bone substitute materials in caprine muscle tissue. One gram each of either a porous beta-tricalcium phosphate (β-TCP) or an hydroxyapatite/silicon dioxide (HA/SiO2)-based nanocrystalline bone substitute material was implanted in several muscle pouches of goats. The biomaterials were explanted at 29, 91 and 181 days after implantation. Conventional histology and special histochemical stains were performed to detect osteoblast precursor cells as well as mineralized and unmineralized bone matrix. Both materials underwent cellular degradation in which tartrate-resistant acid phosphatase (TRAP)-positive osteoclast-like cells and TRAP-negative multinucleated giant cells were involved. The ß-TCP was completely resorbed within the observation period, whereas some granules of the HA-groups were still detectable after 180 days. Neither osteoblasts, osteoblast precursor cells nor extracellular bone matrix were found within the implantation bed of any of the analyzed biomaterials at any of the observed time points. This study showed that ß-TCP underwent a faster degradation than the HA-based material. The lack of osteoinductivity for both materials might be due to their granular shape, as osteoinductivity in goat muscle has been mainly attributed to cylindrical or disc-shaped bone substitute materials. This hypothesis however requires further investigation to systematically analyze various materials with comparable characteristics in the same experimental setting.

  13. Bone cysts: unicameral and aneurysmal bone cyst.

    PubMed

    Mascard, E; Gomez-Brouchet, A; Lambot, K

    2015-02-01

    Simple and aneurysmal bone cysts are benign lytic bone lesions, usually encountered in children and adolescents. Simple bone cyst is a cystic, fluid-filled lesion, which may be unicameral (UBC) or partially separated. UBC can involve all bones, but usually the long bone metaphysis and otherwise primarily the proximal humerus and proximal femur. The classic aneurysmal bone cyst (ABC) is an expansive and hemorrhagic tumor, usually showing characteristic translocation. About 30% of ABCs are secondary, without translocation; they occur in reaction to another, usually benign, bone lesion. ABCs are metaphyseal, excentric, bulging, fluid-filled and multicameral, and may develop in all bones of the skeleton. On MRI, the fluid level is evocative. It is mandatory to distinguish ABC from UBC, as prognosis and treatment are different. UBCs resolve spontaneously between adolescence and adulthood; the main concern is the risk of pathologic fracture. Treatment in non-threatening forms consists in intracystic injection of methylprednisolone. When there is a risk of fracture, especially of the femoral neck, surgery with curettage, filling with bone substitute or graft and osteosynthesis may be required. ABCs are potentially more aggressive, with a risk of bone destruction. Diagnosis must systematically be confirmed by biopsy, identifying soft-tissue parts, as telangiectatic sarcoma can mimic ABC. Intra-lesional sclerotherapy with alcohol is an effective treatment. In spinal ABC and in aggressive lesions with a risk of fracture, surgical treatment should be preferred, possibly after preoperative embolization. The risk of malignant transformation is very low, except in case of radiation therapy. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  14. Tantalum oxide and barium sulfate as radiopacifiers in injectable calcium phosphate-poly(lactic-co-glycolic acid) cements for monitoring in vivo degradation.

    PubMed

    Hoekstra, Jan Willem M; van den Beucken, Jeroen J J P; Leeuwenburgh, Sander C G; Bronkhorst, Ewald M; Meijer, Gert J; Jansen, John A

    2014-01-01

    Monitoring the degradation of calcium phosphate-based bone substitute materials in vivo by means of noninvasive techniques (e.g., radiography) is often a problem due to the chemical resemblance of those substitutes with the mineral phase of bone. In the view of that, the present study aimed at enhancing the radiopacity of calcium phosphate cement enriched with poly(lactic-co-glycolic acid) (CPC-PLGA) microspheres, by adding tantalum oxide (Ta2O5) or the more traditional radiopacifier barium sulfate (BaSO4). The radiopacifying capacity of these radiopacifiers was first evaluated in vitro by microcomputed tomography (μCT). Thereafter, both radiopacifiers were tested in vivo using a distal femoral condyle model in rabbits, with subsequent ex vivo μCT analysis in parallel with histomorphometry. Addition of either one of the radiopacifiers proved to enhance radiopacity of CPC-PLGA in vitro. The in vivo experiment showed that both radiopacifiers did not induce alterations in biological performance compared to plain CPC-PLGA, hence both radiopacifiers can be considered safe and biocompatible. The histomorphometrical assessment of cement degradation and bone formation showed similar values for the three experimental groups. Interestingly, μCT analysis showed that monitoring cement degradation becomes feasible upon incorporation of either type of radiopacifier, albeit that BaSO4 showed more accuracy compared to Ta2O5. Copyright © 2013 Wiley Periodicals, Inc., a Wiley Company.

  15. Autologous serum improves bone formation in a primary stable silica-embedded nanohydroxyapatite bone substitute in combination with mesenchymal stem cells and rhBMP-2 in the sheep model

    PubMed Central

    Boos, Anja M; Weigand, Annika; Deschler, Gloria; Gerber, Thomas; Arkudas, Andreas; Kneser, Ulrich; Horch, Raymund E; Beier, Justus P

    2014-01-01

    New therapeutic strategies are required for critical size bone defects, because the gold standard of transplanting autologous bone from an unharmed area of the body often leads to several severe side effects and disadvantages for the patient. For years, tissue engineering approaches have been seeking a stable, axially vascularized transplantable bone replacement suitable for transplantation into the recipient bed with pre-existing insufficient conditions. For this reason, the arteriovenous loop model was developed and various bone substitutes have been vascularized. However, it has not been possible thus far to engineer a primary stable and axially vascularized transplantable bone substitute. For that purpose, a primary stable silica-embedded nanohydroxyapatite (HA) bone substitute in combination with blood, bone marrow, expanded, or directly retransplanted mesenchymal stem cells, recombinant human bone morphogenetic protein 2 (rhBMP-2), and different carrier materials (fibrin, cell culture medium, autologous serum) was tested subcutaneously for 4 or 12 weeks in the sheep model. Autologous serum lead to an early matrix change during degradation of the bone substitute and formation of new bone tissue. The best results were achieved in the group combining mesenchymal stem cells expanded with 60 μg/mL rhBMP-2 in autologous serum. Better ingrowth of fibrovascular tissue could be detected in the autologous serum group compared with the control (fibrin). Osteoclastic activity indicating an active bone remodeling process was observed after 4 weeks, particularly in the group with autologous serum and after 12 weeks in every experimental group. This study clearly demonstrates the positive effects of autologous serum in combination with mesenchymal stem cells and rhBMP-2 on bone formation in a primary stable silica-embedded nano-HA bone grafting material in the sheep model. In further experiments, the results will be transferred to the sheep arteriovenous loop model in order to engineer an axially vascularized primary stable bone replacement in clinically relevant size for free transplantation. PMID:25429218

  16. [Assessment of therapeutic results for simple bone cyst with percutaneous injection of autogenous bone marrow].

    PubMed

    Wang, Enbo; Zhao, Qun; Zhang, Lijun

    2006-09-01

    To evaluate the therapeutic results of percutaneous injection of autogenous bone marrow for simple bone cyst and to analyze the prognostic factors of the treatment. From March 2000 to June 2005, 31 patients with simple bone cysts were treated by percutaneous injection of autogenous bone marrow. Of 31 patients, there were 18 males and 13 females, aged 5 years and 7 months to 15 years. The locations were proximal humerus in 18 cases, proximal femur in 7 cases and other sites in 6 cases. Two cases were treated with repeated injections. The operative process included percutaneous aspiration of fluid in the bone cysts and injection of autogenous bone marrow aspirated from posterior superior iliac spine. The mean volume of marrow injected was 40 ml (30-70 ml). No complications were noted during treatment. Thirty patients were followed for an average of 2.2 years (1-5 years) with 2 cases out of follow-up. After one injection of bone marrow, 9 cysts (29.0%) were healed up completely, 7 cysts (22.6%) basically healed up, 13 cysts (41.9%) healed up partially and 2 (6.5%) had no response. The satisfactory and effective rates were 67.7% and 93.5% respectively. There was significant difference between active stage group and resting stage group(P<0.05). There were no statistically significant difference in therapeutic results between groups of different ages, lesion sites or bone marrow hyperplasia(P>0.05). Percutaneous injection of autogenous bone marrow is a safe and effective method to treat simple bone cyst, but repeated injections is necessary for some patients. The therapeutic results are better in cysts at resting stage than those at active stage.

  17. Experimental Validation of the Efficiency of Gamalant-paste-FORTE Plus, a Russian Osteoinductive Material, in Oral Surgery.

    PubMed

    Olesova, V N; Amkhadova, M A; Simakova, T G; Mirgazizov, M Z; Pozharitskaya, M M

    2017-03-01

    For evaluation of the efficiency of bone substitute, nanostructurized Gamalant-paste-FORTEPlus was placed into a mandibular defect in rats. Bone tissue reparation was evaluated after 30 days by histological methods under a microscope. Use of bone substitute in experimental mandibular defect ensured more complete and rapid restructuring of the bone tissue in comparison with the control (natural healing).

  18. Foreign Body Giant Cell-Related Encapsulation of a Synthetic Material Three Years After Augmentation.

    PubMed

    Lorenz, Jonas; Barbeck, Mike; Sader, Robert A; Kirkpatrick, Charles J; Russe, Philippe; Choukroun, Joseph; Ghanaati, Shahram

    2016-06-01

    Bone substitute materials of different origin and chemical compositions are frequently used in augmentation procedures to enlarge the local bone amount. However, relatively little data exist on the long-term tissue reactions. The presented case reports for the first time histological and histomorphometrical analyses of a nanocrystaline hydroxyapatite-based bone substitute material implanted in the human sinus cavity after an integration period of 3 years. The extracted biopsy was analyzed histologically and histomorphometrically with focus on the tissue reactions, vascularization, new bone formation, and the induction of a foreign body reaction. A comparably high rate of connective tissue (48.25%) surrounding the remaining bone substitute granules (42.13%) was observed. Accordingly, the amount of bone tissue (9.62%) built the smallest fraction within the biopsy. Further, tartrate-resistant acid phosphatase-positive and -negative multinucleated giant cells (4.35 and 3.93 cells/mm(2), respectively) were detected on the material-tissue interfaces. The implantation bed showed a mild vascularization of 10.03 vessels/mm(2) and 0.78%. The present case report shows that after 3 years, a comparable small amount of bone tissue was observable. Thus, the foreign body response to the bone substitute seems to be folded without further degradation or regeneration.

  19. Treatment of active unicameral bone cysts with percutaneous injection of demineralized bone matrix and autogenous bone marrow.

    PubMed

    Rougraff, Bruce T; Kling, Thomas J

    2002-06-01

    The treatment of unicameral bone cysts varies from open bone-grafting procedures to percutaneous injection of corticosteroids or bone marrow. The purpose of this study was to evaluate the feasibility and effectiveness of percutaneous injection of a mixture of demineralized bone matrix and autogenous bone marrow for the treatment of simple bone cysts. Twenty-three patients with an active unicameral bone cyst were treated with trephination and injection of allogeneic demineralized bone matrix and autogenous bone marrow. The patients were followed for an average of fifty months (range, thirty to eighty-one months), at which time pain, function, and radiographic signs of resolution of the cyst were assessed. The average time until the patients had pain relief was five weeks, and the average time until the patients returned to full, unrestricted activities was six weeks. Bone-healing at the site of the injection was first seen radiographically at three to six months. No patient had a pathologic fracture during this early bone-healing stage. Cortical remodeling was seen radiographically by six to nine months, and after one year the response was usually complete, changing very little from then on. Five patients required a second injection because of recurrence of the cyst, and all five had a clinically and radiographically quiescent cyst after an average of thirty-six additional months of follow-up. Seven of the twenty-three patients had incomplete healing manifested by small, persistent radiolucent areas within the original cyst. None of these cysts increased in size or resulted in pain or fracture. Percutaneous injection of allogeneic demineralized bone matrix and autogenous bone marrow is an effective treatment for unicameral bone cysts.

  20. Muscle and bone follow similar temporal patterns of recovery from muscle-induced disuse due to botulinum toxin injection.

    PubMed

    Manske, Sarah L; Boyd, Steven K; Zernicke, Ronald F

    2010-01-01

    If muscle force is a primary source for triggering bone adaptation, with disuse and reloading, bone changes should follow muscle changes. We examined the timing and magnitude of changes in muscle cross-sectional area (MCSA) and bone architecture in response to muscle inactivity following botulinum toxin (BTX) injection. We hypothesized that MCSA would return to baseline levels sooner than bone properties following BTX injection. Female BALB mice (15 weeks old) were injected with 20 muL of BTX (1 U/100 g body mass, n=18) or saline (SAL, n=18) into the posterior calf musculature of one limb. The contralateral limb (CON) served as an internal control. MCSA and bone properties were assessed at baseline, 2, 4, 8, 12, and 16 weeks post-injection using in vivo micro-CT at the tibia proximal metaphysis (bone only) and diaphysis. Muscles were dissected and weighed after sacrifice. Significant GroupxLegxTime interactions indicated that the maximal decrease in MCSA (56%), proximal metaphyseal BV/TV (38%) and proximal diaphyseal Ct.Ar (7%) occurred 4 weeks after injection. There was no delay prior to bone recovery as both muscle and bone properties began to recover after this time, but MCSA and BV/TV remained 15% and 20% lower, respectively, in the BTX-injected leg than the BTX-CON leg 16 weeks post-injection. Gastrocnemius mass (primarily fast-twitch) was 14% lower in the BTX-injected leg than the SAL-injected leg, while soleus mass (primarily slow-twitch) was 15% greater in the BTX group than the SAL group. Our finding that muscle size and bone began to recover at similar times after BTX injection was unexpected. This suggested that partial weight-bearing and/or return of slow-twitch muscle activity in the BTX leg may have been sufficient to stimulate bone recovery. Alternatively, muscle function may have recovered sooner than MCSA. Our results indicated that muscle cross-sectional area, while important, may not be the primary factor associated with bone loss and recovery when muscle atrophy is induced through BTX injection. To understand the nature of the interaction between muscle and bone, future work should focus on the functional recovery of individual muscles in relation to bone. Copyright (c) 2009 Elsevier Inc. All rights reserved.

  1. Bone tissue engineering: state of the art and future trends.

    PubMed

    Salgado, António J; Coutinho, Olga P; Reis, Rui L

    2004-08-09

    Although several major progresses have been introduced in the field of bone regenerative medicine during the years, current therapies, such as bone grafts, still have many limitations. Moreover, and in spite of the fact that material science technology has resulted in clear improvements in the field of bone substitution medicine, no adequate bone substitute has been developed and hence large bone defects/injuries still represent a major challenge for orthopaedic and reconstructive surgeons. It is in this context that TE has been emerging as a valid approach to the current therapies for bone regeneration/substitution. In contrast to classic biomaterial approach, TE is based on the understanding of tissue formation and regeneration, and aims to induce new functional tissues, rather than just to implant new spare parts. The present review pretends to give an exhaustive overview on all components needed for making bone tissue engineering a successful therapy. It begins by giving the reader a brief background on bone biology, followed by an exhaustive description of all the relevant components on bone TE, going from materials to scaffolds and from cells to tissue engineering strategies, that will lead to "engineered" bone. Scaffolds processed by using a methodology based on extrusion with blowing agents.

  2. Histological Features and Biocompatibility of Bone and Soft Tissue Substitutes in the Atrophic Alveolar Ridge Reconstruction

    PubMed Central

    Rancitelli, Davide; Grossi, Giovanni Battista; Herford, Alan Scott

    2016-01-01

    The reconstruction of the atrophic alveolar ridges for implant placement is today a common procedure in dentistry daily practice. The surgical reconstruction provides for the optimization of the supporting bone for the implants and a restoration of the amount of keratinized gingiva for esthetic and functional reasons. In the past, tissue regeneration has been performed with autogenous bone and free gingival or connective tissue grafts. Nowadays, bone substitutes and specific collagen matrix allow for a complete restoration of the atrophic ridge without invasive harvesting procedures. A maxillary reconstruction of an atrophic ridge by means of tissue substitutes and its histological features are then presented. PMID:27022489

  3. Histological Features and Biocompatibility of Bone and Soft Tissue Substitutes in the Atrophic Alveolar Ridge Reconstruction.

    PubMed

    Maiorana, Carlo; Beretta, Mario; Rancitelli, Davide; Grossi, Giovanni Battista; Cicciù, Marco; Herford, Alan Scott

    2016-01-01

    The reconstruction of the atrophic alveolar ridges for implant placement is today a common procedure in dentistry daily practice. The surgical reconstruction provides for the optimization of the supporting bone for the implants and a restoration of the amount of keratinized gingiva for esthetic and functional reasons. In the past, tissue regeneration has been performed with autogenous bone and free gingival or connective tissue grafts. Nowadays, bone substitutes and specific collagen matrix allow for a complete restoration of the atrophic ridge without invasive harvesting procedures. A maxillary reconstruction of an atrophic ridge by means of tissue substitutes and its histological features are then presented.

  4. Socket preservation.

    PubMed

    Fee, L

    2017-04-21

    Socket preservation maintains bone volume post-extraction in anticipation of an implant placement or fixed partial denture pontic site. This procedure helps compensate for the resorption of the facial bone wall. Socket preservation should be considered when implant placement needs to be delayed for patient or site-related reasons. The ideal healing time before implant placement is six months. Socket preservation can reduce the need for later bone augmentation. By reducing bone resorption and accelerating bone formation it increases implant success and survival. Biomaterials for socket grafting including autograft, allograft, xenograft and alloplast. A bone substitute with a low substitution rate is recommended.

  5. Recent progress in injectable bone repair materials research

    NASA Astrophysics Data System (ADS)

    Chen, Zonggang; Zhang, Xiuli; Kang, Lingzhi; Xu, Fei; Wang, Zhaoling; Cui, Fu-Zhai; Guo, Zhongwu

    2015-12-01

    Minimally invasive injectable self-setting materials are useful for bone repairs and for bone tissue regeneration in situ. Due to the potential advantages of these materials, such as causing minimal tissue injury, nearly no influence on blood supply, easy operation and negligible postoperative pain, they have shown great promises and successes in clinical applications. It has been proposed that an ideal injectable bone repair material should have features similar to that of natural bones, in terms of both the microstructure and the composition, so that it not only provides adequate stimulus to facilitate cell adhesion, proliferation and differentiation but also offers a satisfactory biological environment for new bone to grow at the implantation site. This article reviews the properties and applications of injectable bone repair materials, including those that are based on natural and synthetic polymers, calcium phosphate, calcium phosphate/polymer composites and calcium sulfate, to orthopedics and bone tissue repairs, as well as the progress made in biomimetic fabrication of injectable bone repair materials.

  6. Acceleration of vascularized bone tissue-engineered constructs in a large animal model combining intrinsic and extrinsic vascularization.

    PubMed

    Weigand, Annika; Beier, Justus P; Hess, Andreas; Gerber, Thomas; Arkudas, Andreas; Horch, Raymund E; Boos, Anja M

    2015-05-01

    During the last decades, a range of excellent and promising strategies in Bone Tissue Engineering have been developed. However, the remaining major problem is the lack of vascularization. In this study, extrinsic and intrinsic vascularization strategies were combined for acceleration of vascularization. For optimal biomechanical stability of the defect site and simplifying future transition into clinical application, a primary stable and approved nanostructured bone substitute in clinically relevant size was used. An arteriovenous (AV) loop was microsurgically created in sheep and implanted, together with the bone substitute, in either perforated titanium chambers (intrinsic/extrinsic) for different time intervals of up to 18 weeks or isolated Teflon(®) chambers (intrinsic) for 18 weeks. Over time, magnetic resonance imaging and micro-computed tomography (CT) analyses illustrate the dense vascularization arising from the AV loop. The bone substitute was completely interspersed with newly formed tissue after 12 weeks of intrinsic/extrinsic vascularization and after 18 weeks of intrinsic/extrinsic and intrinsic vascularization. Successful matrix change from an inorganic to an organic scaffold could be demonstrated in vascularized areas with scanning electron microscopy and energy dispersive X-ray spectroscopy. Using the intrinsic vascularization method only, the degradation of the scaffold and osteoclastic activity was significantly lower after 18 weeks, compared with 12 and 18 weeks in the combined intrinsic-extrinsic model. Immunohistochemical staining revealed an increase in bone tissue formation over time, without a difference between intrinsic/extrinsic and intrinsic vascularization after 18 weeks. This study presents the combination of extrinsic and intrinsic vascularization strategies for the generation of an axially vascularized bone substitute in clinically relevant size using a large animal model. The additional extrinsic vascularization promotes tissue ingrowth and remodeling processes of the bone substitute. Extrinsic vessels contribute to faster vascularization and finally anastomose with intrinsic vasculature, allowing microvascular transplantation of the bone substitute after a shorter prevascularization time than using the intrinsic method only. It can be reasonably assumed that the usage of perforated chambers can significantly reduce the time until transplantation of bone constructs. Finally, this study paves the way for further preclinical testing for proof of the concept as a basis for early clinical applicability.

  7. Treatment of unicameral bone cyst: surgical technique.

    PubMed

    Hou, Hsien-Yang; Wu, Karl; Wang, Chen-Ti; Chang, Shun-Min; Lin, Wei-Hsin; Yang, Rong-Sen

    2011-03-01

    There is a variety of treatment modalities for unicameral bone cysts, with variable outcomes reported in the literature. Although good initial outcomes have been reported, the success rate has often changed with longer-term follow-up. We introduce a novel, minimally invasive treatment method and compare its clinical outcomes with those of other methods of treatment of this lesion. From February 1994 to April 2008, forty patients with a unicameral bone cyst were treated with one of four techniques: serial percutaneous steroid and autogenous bone-marrow injection (Group 1, nine patients); open curettage and grafting with a calcium sulfate bone substitute either without instrumentation (Group 2, twelve patients) or with internal instrumentation (Group 3, seven patients); or minimally invasive curettage, ethanol cauterization, disruption of the cystic boundary, insertion of a synthetic calcium sulfate bone-graft substitute, and placement of a cannulated screw to provide drainage (Group 4, twelve patients). Success was defined as radiographic evidence of a healed cyst or of a healed cyst with some defect according to the modified Neer classification, and failure was defined as a persistent or recurrent cyst that needed additional treatment. Patients who sustained a fracture during treatment were also considered to have had a failure. The outcome parameters included the radiographically determined healing rate, the time to solid union, and the total number of procedures needed. The follow-up time ranged from eighteen to eighty-four months. Group-4 patients had the highest radiographically determined healing rate. Healing was seen in eleven of the twelve patients in that group compared with three of the nine in Group 1, eight of the twelve in Group 2, and six of the seven in Group 3. Group-4 patients also had the shortest mean time to union: 3.7 ± 2.3 months compared with 23.4 ± 14.9, 12.2 ± 8.5, and 6.6 ± 4.3 months in Groups 1, 2, and 3, respectively. This new minimally invasive method achieved a favorable outcome, with a higher radiographically determined healing rate and a shorter time to union. Thus, it can be considered an option for initial treatment of unicameral bone cysts.

  8. Treatment of unicameral bone cyst: a comparative study of selected techniques.

    PubMed

    Hou, Hsien-Yang; Wu, Karl; Wang, Chen-Ti; Chang, Shun-Min; Lin, Wei-Hsin; Yang, Rong-Sen

    2010-04-01

    There is a variety of treatment modalities for unicameral bone cysts, with variable outcomes reported in the literature. Although good initial outcomes have been reported, the success rate has often changed with longer-term follow-up. We introduce a novel, minimally invasive treatment method and compare its clinical outcomes with those of other methods of treatment of this lesion. From February 1994 to April 2008, forty patients with a unicameral bone cyst were treated with one of four techniques: serial percutaneous steroid and autogenous bone-marrow injection (Group 1, nine patients); open curettage and grafting with a calcium sulfate bone substitute either without instrumentation (Group 2, twelve patients) or with internal instrumentation (Group 3, seven patients); or minimally invasive curettage, ethanol cauterization, disruption of the cystic boundary, insertion of a synthetic calcium sulfate bone-graft substitute, and placement of a cannulated screw to provide drainage (Group 4, twelve patients). Success was defined as radiographic evidence of a healed cyst or of a healed cyst with some defect according to the modified Neer classification, and failure was defined as a persistent or recurrent cyst that needed additional treatment. Patients who sustained a fracture during treatment were also considered to have had a failure. The outcome parameters included the radiographically determined healing rate, the time to solid union, and the total number of procedures needed. The follow-up time ranged from eighteen to eighty-four months. Group-4 patients had the highest radiographically determined healing rate. Healing was seen in eleven of the twelve patients in that group compared with three of the nine in Group 1, eight of the twelve in Group 2, and six of the seven in Group 3. Group-4 patients also had the shortest mean time to union: 3.7 +/- 2.3 months compared with 23.4 +/- 14.9, 12.2 +/- 8.5, and 6.6 +/- 4.3 months in Groups 1, 2, and 3, respectively. This new minimally invasive method achieved a favorable outcome, with a higher radiographically determined healing rate and a shorter time to union. Thus, it can be considered an option for initial treatment of unicameral bone cysts.

  9. Fabrication and characterization of a novel carbon fiber-reinforced calcium phosphate silicate bone cement with potential osteo-inductivity.

    PubMed

    Zheng, Jiangjiang; Xiao, Yu; Gong, Tianxing; Zhou, Shuxin; Troczynski, Tom; Yang, Quanzu; Bao, Chongyun; Xu, Xiaoming

    2015-12-23

    The repair of bone defects is still a pressing challenge in clinics. Injectable bone cement is regarded as a promising material to solve this problem because of its special self-setting property. Unfortunately, its poor mechanical conformability, unfavorable osteo-genesis ability and insufficient osteo-inductivity seriously limit its clinical application. In this study, novel experimental calcium phosphate silicate bone cement reinforced by carbon fibers (CCPSC) was fabricated and characterized. First, a compressive strength test and cell culture study were carried out. Then, the material was implanted into the femoral epiphysis of beagle dogs to further assess its osteo-conductivity using a micro-computed tomography scan and histological analysis. In addition, we implanted CCPSC into the beagles' intramuscular pouches to perform an elementary investigation of its osteo-inductivity. The results showed that incorporation of carbon fibers significantly improved its mechanical properties. Meanwhile, CCPSC had better biocompatibility to activate cell adhesion as well as proliferation than poly-methyl methacrylate bone cement based on the cell culture study. Moreover, pronounced biodegradability and improved osteo-conductivity of CCPSC could be observed through the in vivo animal study. Finally, a small amount of osteoid was found at the heterotopic site one month after implantation which indicated potential osteo-inductivity of CCPSC. In conclusion, the novel CCPSC shows promise as a bioactive bone substitute in certain load-bearing circumstances.

  10. No influence of simultaneous bone-substitute application on the success of immediately loaded dental implants: a retrospective cohort study.

    PubMed

    Kopp, Sigmar; Behrend, Detlef; Kundt, Günther; Ottl, Peter; Frerich, Bernhard; Warkentin, Mareike

    2013-06-01

    To examine the influence of bone-substitute application during implantation on the success of immediately placed and loaded dental implants. A total of 147 consecutive patients (age, 16.5-80.4 years) were provided with 696 immediately loaded implants. The mean follow-up time was 34.1 months. Of these implants, 50.4% (n=351) were immediately placed into extraction sockets. A total of 119 implants were added by simultaneous bone-substitute application (NanoBone, Artoss GmbH, Rostock Germany), whereas the other implants were placed in healed bone. Univariate and multivariate analysis was performed using IBM SPSS V.20. The overall implant success rate was 96.1%. Implants with simultaneous bone replacement had a hazard ratio of 0.877 (p=0.837); 95% CI, 0.253-3.04). Factors found to be statistically significant modifiers of success on multivariate analysis (p<0.05) included type of superstructure (p<0.001), implant-abutment connection (p<0.001), membrane use (p=0.010), and jaw (p=0.026). None of the other factors investigated were significant modifiers. The present study demonstrates high success rates for immediately loaded implants and their superstructures independent of the simultaneous application of bone substitute. The declared aim of socket preservation, the prevention avoiding bone loss, is achieved in the immediate implant placement scenario under immediate-loading conditions.

  11. Doped Calcium Silicate Ceramics: A New Class of Candidates for Synthetic Bone Substitutes

    PubMed Central

    No, Young Jung; Li, Jiao Jiao; Zreiqat, Hala

    2017-01-01

    Doped calcium silicate ceramics (DCSCs) have recently gained immense interest as a new class of candidates for the treatment of bone defects. Although calcium phosphates and bioactive glasses have remained the mainstream of ceramic bone substitutes, their clinical use is limited by suboptimal mechanical properties. DCSCs are a class of calcium silicate ceramics which are developed through the ionic substitution of calcium ions, the incorporation of metal oxides into the base binary xCaO–ySiO2 system, or a combination of both. Due to their unique compositions and ability to release bioactive ions, DCSCs exhibit enhanced mechanical and biological properties. Such characteristics offer significant advantages over existing ceramic bone substitutes, and underline the future potential of adopting DCSCs for clinical use in bone reconstruction to produce improved outcomes. This review will discuss the effects of different dopant elements and oxides on the characteristics of DCSCs for applications in bone repair, including mechanical properties, degradation and ion release characteristics, radiopacity, and biological activity (in vitro and in vivo). Recent advances in the development of DCSCs for broader clinical applications will also be discussed, including DCSC composites, coated DCSC scaffolds and DCSC-coated metal implants. PMID:28772513

  12. Injection of demineralized bone matrix with bone marrow concentrate improves healing in unicameral bone cyst.

    PubMed

    Di Bella, Claudia; Dozza, Barbara; Frisoni, Tommaso; Cevolani, Luca; Donati, Davide

    2010-11-01

    Unicameral bone cysts are benign lesions that usually spontaneously regress with skeletal maturity; however, the high risk of pathologic fractures often justifies treatment that could reinforce a weakened bone cortex. Various treatments have been proposed but there is no consensus regarding the best procedure. We compared the healing rates and failures of two methods of cure based on multiple injections of corticosteroid or a single injection of demineralized bone matrix (DBM) in association with bone marrow concentrate (BMC). We retrospectively reviewed 184 patients who had one of the two treatments for unicameral bone cysts with cortical erosion. Clinical records were reviewed for treatment failures and radiographs for healing in all patients. The minimum followup was 12 months for the Steroids Group (mean, 48 months; range, 12-120 months) and 12 months for the DBM + BMC Group (mean, 20 months; range, 12-28 months). After one treatment we observed a lower healing rate of cysts treated with multiple injections of steroids compared with the healing after the first injection of DBM + BMC (21% versus 58%, respectively). At last followup, 38% healed with steroids and 71% with DBM + BMC. The rate of failure after one steroid injection was higher than after a single injection of BDM + BMC (63% versus 24%, respectively). We observed no difference in fracture rates after treatment between the two groups. A single injection of DBM added with autologous bone marrow concentrate appears to provide a higher healing rate with a lower number of failures compared with a single injection of steroids.

  13. Determining the best treatment for simple bone cyst: a decision analysis.

    PubMed

    Lee, Seung Yeol; Chung, Chin Youb; Lee, Kyoung Min; Sung, Ki Hyuk; Won, Sung Hun; Choi, In Ho; Cho, Tae-Joon; Yoo, Won Joon; Yeo, Ji Hyun; Park, Moon Seok

    2014-03-01

    The treatment of simple bone cysts (SBC) in children varies significantly among physicians. This study examined which procedure is better for the treatment of SBC, using a decision analysis based on current published evidence. A decision tree focused on five treatment modalities of SBC (observation, steroid injection, autologous bone marrow injection, decompression, and curettage with bone graft) were created. Each treatment modality was further branched, according to the presence and severity of complications. The probabilities of all cases were obtained by literature review. A roll back tool was utilized to determine the most preferred treatment modality. One-way sensitivity analysis was performed to determine the threshold value of the treatment modalities. Two-way sensitivity analysis was utilized to examine the joint impact of changes in probabilities of two parameters. The decision model favored autologous bone marrow injection. The expected value of autologous bone marrow injection was 0.9445, while those of observation, steroid injection, decompression, and curettage and bone graft were 0.9318, 0.9400, 0.9395, and 0.9342, respectively. One-way sensitivity analysis showed that autologous bone marrow injection was better than that of decompression for the expected value when the rate of pathologic fracture, or positive symptoms of SBC after autologous bone marrow injection, was lower than 20.4%. In our study, autologous bone marrow injection was found to be the best choice of treatment of SBC. However, the results were sensitive to the rate of pathologic fracture after treatment of SBC. Physicians should consider the possibility of pathologic fracture when they determine a treatment method for SBC.

  14. A post-market surveillance analysis of the safety of hydroxyapatite-derived products as bone graft extenders or substitutes for spine fusion.

    PubMed

    Barbanti Brodano, G; Griffoni, C; Zanotti, B; Gasbarrini, A; Bandiera, S; Ghermandi, R; Boriani, S

    2015-10-01

    Iliac crest bone graft (ICBG) is considered the gold standard for spine surgical procedures to achieve a successful fusion, because of its known osteoinductive and osteoconductive properties. Considering its autogenous origin, the use of ICBG has not been associated to an increase of intraoperative or postoperative complications directly related to the surgery. However, complications related to the harvesting procedure and to the donor site morbidity have been largely reported in the literature, favoring the development of a wide range of alternative products to be used as bone graft extenders or substitutes for spine fusion. The family of ceramic-based bone grafts has been widely used and studied during the last years for spine surgical procedures in order to reduce the need for iliac crest bone grafting and the consequent morbidity associated to the harvesting procedures. We report here the results of a post-market surveillance analysis performed on four independent cohorts of patients (115 patients) to evaluate the safety of three different formulations of hydroxyapatite-derived products used as bone graft extenders/substitutes for lumbar arthrodesis. No intraoperative or post-operative complications related to the use of hydroxyapatite-derived products were detected, during medium and long follow up period (minimum 12 months-maximum 5 years). This post-market surveillance analysis evidenced the safety of ceramic products as bone graft extenders or substitutes for spine fusion. Moreover, the evidence of the safety of hydroxyapatite-derived products allows to perform clinical studies aimed at evaluating the fusion rates and the clinical outcomes of these materials as bone graft extenders/substitutes, in order to support their use as an alternative to ICBG for spine fusion.

  15. Histological and histomorphometrical analysis of a silica matrix embedded nanocrystalline hydroxyapatite bone substitute using the subcutaneous implantation model in Wistar rats.

    PubMed

    Ghanaati, Shahram; Orth, Carina; Barbeck, Mike; Willershausen, Ines; Thimm, Benjamin W; Booms, Patrick; Stübinger, Stefan; Landes, Constantin; Sader, Robert Anton; Kirkpatrick, Charles James

    2010-06-01

    The clinical suitability of a bone substitute material is determined by the ability to induce a tissue reaction specific to its composition. The aim of this in vivo study was to analyze the tissue reaction to a silica matrix-embedded, nanocrystalline hydroxyapatite bone substitute.The subcutaneous implantation model in Wistar rats was chosen to assess the effect of silica degradation on the vascularization of the biomaterial and its biodegradation within a time period of 6 months. Already at day 10 after implantation, histomorphometrical analysis showed that the vascularization of the implantation bed reached its peak value compared to all other time points. Both vessel density and vascularization significantly decreased until day 90 after implantation. In this time period, the bone substitute underwent a significant degradation initiated by TRAP-positive and TRAP-negative multinucleated giant cells together with macrophages and lymphocytes. Although no specific tissue reaction could be related to the described silica degradation, the biomaterial was close to being fully degraded without a severe inflammatory response. These characteristics are advantageous for bone regeneration and remodeling processes.

  16. A study of 23 unicameral bone cysts of the calcaneus: open chip allogeneic bone graft versus percutaneous injection of bone powder with autogenous bone marrow.

    PubMed

    Park, Il-Hyung; Micic, Ivan Dragoljub; Jeon, In-Ho

    2008-02-01

    The treatment of unicameral bone cyst varies from percutaneous needle biopsy, aspiration and local injection of steroid, autologous bone marrow, or demineralized bone matrix to curettage and open bone-grafting. The purpose of this study was to compare the results of open chip allogeneic bone graft versus percutaneous injection of demineralized bone powder with autogenous bone marrow in management of calcaneal cysts. Twenty-three calcaneal unicameral cysts in 20 patients were treated. Lyophilized irradiated chip allogeneic bone (CAB) and autogenous bone marrow were used for treatment of 13 cysts in 11 patients, and 10 cysts in 9 patients were treated with percutaneous injection of irradiated allogeneic demineralized bone powder (DBP) and autogenous bone marrow. There were 11 males and 9 female patients with mean age of 17 years. The patients were followed for an average of 49.4 months. Complete healing was achieved in 9 cysts treated with chip allogeneic bone and in 5 cysts treated with powdered bone. Four cysts treated with CAB and 3 cysts treated with DBP healed with a defect. Two cysts treated with powdered bone and autogenous bone marrow were classified as persistent. No infections or pathological fractures were observed during the followup period. Percutaneous injection of a mixture of allogeneic bone powder with autogenous bone marrow is a minimal invasive method and could be an effective alternative in the treatment of unicameral calcaneal bone cysts. The postoperative morbidity was low, the hospital stay was brief, and patient's comfort for unrestricted activity was enhanced.

  17. A comparison of treating Unicameral bone cyst using steroids and percutaneous autologous bone marrow aspiration injection.

    PubMed

    Akram, Muhammad; Farooqi, Faheem Mubashir; Shahzad, Muhammad Latif; Awais, Syed Muhammad

    2015-11-01

    To compare the results of percutaneous autologous bone aspiration injection and steroids injections in the treatment of unicameral bone cyst. The prospective study was conducted at Mayo Hospital, Lahore, from January 2008 to March 2014, and comprised patients diagnosed radiologically as a case of unicameral bone cyst. The patients were divided into two groups, with group 1 being treated with bone marrow aspiration injection, while group 2 was given steroids injection. Aspiration of bone marrow was done from tibial tuberosity. The 30 patients in the study were divided into two groups of 15(50%) each. In group 1, 8(53.34%) patients and in group 2, 3 (20%) patients achieved healing after the first injection (p<0.05), while overall success rates were 13(86.67%) in group 1, and 11(73.33%) in group 2 (p> 0.05). The mean number of procedures required in group 1 was 1.57± 0.495 (range: 01-3) and for 2.19 ± 1.076 (range: 1-5) in group 2 (p<0.05), and mean interval-to-healing was 14.3 months ± 8.705 (range: 7-36) for group 1 and 12.5 months ± 7.88 (range: 4-32) for group 2 (p> 0.05). Bone marrow aspiration injection was better than steroids in treating unicameral bone cyst.

  18. Efficacy of bone substitute material in preserving volume when placing a maxillary immediate complete denture: study protocol for the PANORAMIX randomized controlled trial.

    PubMed

    Rignon-Bret, Christophe; Hadida, Alain; Aidan, Alexis; Nguyen, Thien-Huong; Pasquet, Gerard; Fron-Chabouis, Helene; Wulfman, Claudine

    2016-05-20

    Bone preservation is an essential issue in the context of last teeth extraction and complete edentulism. The intended treatment, whether a complete denture or an implant placement, is facilitated with a voluminous residual ridge. Bone resorption after multiple extractions has not been as well studied as the bone resorption that occurs after the extraction of a single tooth. Recent advances in bone substitute materials have revived this issue. The purpose of this study is to evaluate the interest in using bone substitute material to fill the socket after last teeth extraction in a maxillary immediate complete denture procedure compared with the conventional protocol without socket filling. A randomized, controlled, clinical trial was designed. The 34 participants eligible for maxillary immediate complete denture were divided into two groups. Complete dentures were prepared despite persistence of the last anterior teeth. The control group received a conventional treatment including denture placement immediately after extractions. In the experimental group, in addition to the immediate denture placement, a xenograft bone-substitute material (Bio-Oss Collagen®) was placed in the fresh sockets. The primary outcome of the study is to compare mean bone ridge height loss 1 year after maxillary immediate complete denture placement, with or without bone-substitute material, in incisor and canine sockets. The secondary outcomes are to compare the average bone ridge height and width loss for each extraction site. An original quantitative evaluation method using cone beam computed tomography was designed for reproducible measurements, with a radio-opaque denture duplicate. Two independent operators perform the radiologic measurements. The immediate complete denture technique limits bone resorption in multiple extraction situations and thus allows better denture retention and better options for implant placement. To compare the benefit of using any bone socket-filling material, we proposed a quantitative evaluation protocol of resorption in the specific case of the last anterior maxillary teeth extraction with immediate denture placement. ClinicalTrials.gov, NCT02120053 . Registered on 18 April 2014.

  19. Vascularized Bone Tissue Engineering: Approaches for Potential Improvement

    PubMed Central

    Nguyen, Lonnissa H.; Annabi, Nasim; Nikkhah, Mehdi; Bae, Hojae; Binan, Loïc; Park, Sangwon; Kang, Yunqing

    2012-01-01

    Significant advances have been made in bone tissue engineering (TE) in the past decade. However, classical bone TE strategies have been hampered mainly due to the lack of vascularization within the engineered bone constructs, resulting in poor implant survival and integration. In an effort toward clinical success of engineered constructs, new TE concepts have arisen to develop bone substitutes that potentially mimic native bone tissue structure and function. Large tissue replacements have failed in the past due to the slow penetration of the host vasculature, leading to necrosis at the central region of the engineered tissues. For this reason, multiple microscale strategies have been developed to induce and incorporate vascular networks within engineered bone constructs before implantation in order to achieve successful integration with the host tissue. Previous attempts to engineer vascularized bone tissue only focused on the effect of a single component among the three main components of TE (scaffold, cells, or signaling cues) and have only achieved limited success. However, with efforts to improve the engineered bone tissue substitutes, bone TE approaches have become more complex by combining multiple strategies simultaneously. The driving force behind combining various TE strategies is to produce bone replacements that more closely recapitulate human physiology. Here, we review and discuss the limitations of current bone TE approaches and possible strategies to improve vascularization in bone tissue substitutes. PMID:22765012

  20. Comparison of titanium elastic intramedullary nailing versus injection of bone marrow in treatment of simple bone cysts in children: a retrospective study.

    PubMed

    Li, Wenchao; Xu, Ruijiang; Du, Minghua; Chen, Hui

    2016-08-15

    Simple bone cysts are common benign lytic bone lesions in children. The main goals of treatment for bone cysts are to prevent pathological fractures, support the healing process, and prevent recurrence. This retrospective study compared fixation with titanium elastic intramedullary nailing (TEN) versus aspiration and injection of autogenous bone marrow (ABM) for the treatment of simple bone cysts in children. Forty-six patients (mean follow-up, 62 months; range, 34-71 months) who presented with bone cysts (30 in the humerus, 16 in the femur) from January 2006 to December 2012 were retrospectively evaluated. Patients were treated with either TEN or ABM injection. Radiographs were evaluated according to previously established criteria. Clinical evaluations of pain, infection, additional fractures, and range of motion were performed. After treatment, all patients were pain-free and had normal range of motion in adjacent joints. In the ABM group, 14 (60.9 %) bone cysts completely healed, six (26.1 %) healed with small residuals after two injections, and three (13.0 %) recurred. In the TEN group, 16 (69.6 %) bone cysts completely healed, four (17.4 %) healed with small residuals, and three (13.0 %) recurred. There were no significant differences in radiographic outcomes between groups at the final follow-up (P > 0.05). Three patients developed skin irritation as a result of the nail ends. Additional fractures occurred in four patients who underwent ABM injection and in two patients who underwent TEN. No significant associations were found between pathological fractures and cyst activity, location, or treatment outcomes in the patients studied. Both TEN and ABM injection are safe and effective treatment for bone cysts. ABM injection promotes osteogenic differentiation of bone marrow stromal cells; multiple injections can reduce the likelihood of recurrence. TEN stabilizes the affected bone and thus allows early limb mobilization. It also reduces pressure in the capsule wall by continuous decompression to promote cyst healing. ABM injections can be used to treat cyst recurrence after previous TEN, with favorable results.

  1. New description of gradual substitution of graft by bone tissue including biomechanical and structural effects, nutrients supply and consumption

    NASA Astrophysics Data System (ADS)

    Lu, Yanfei; Lekszycki, Tomasz

    2018-03-01

    A new description of graft substitution by bone tissue is proposed in this work. The studied domain is considered as a continuum model consisting of a mixture of the bone tissue and the graft material. Densities of both components evolve in time as a result of cellular activity and biodegradation. The proposed model focuses on the interaction between the bone cell activity, mechanical stimuli, nutrients supply and scaffold microstructure. Different combinations of degradation rate and stiffness of the graft material were examined by numerical simulation. It follows from the calculations that the degradation rate of the scaffold should be tuned to the synthesis/resorption rate of the tissue, which are dependent among the others on scaffold porosity changes. Simulation results imply potential criteria to choose proper bone substitute material in consideration of degradation rate, initial porosity and mechanical characteristics.

  2. Tailoring the degradation and biological response of a magnesium-strontium alloy for potential bone substitute application.

    PubMed

    Han, Junjie; Wan, Peng; Ge, Ye; Fan, Xinmin; Tan, Lili; Li, Jianjun; Yang, Ke

    2016-01-01

    Bone defects are very challenging in orthopedic practice. There are many practical and clinical shortcomings in the repair of the defect by using autografts, allografts or xenografts, which continue to motivate the search for better alternatives. The ideal bone grafts should provide mechanical support, fill osseous voids and enhance the bone healing. Biodegradable magnesium-strontium (Mg-Sr) alloys demonstrate good biocompatibility and osteoconductive properties, which are promising biomaterials for bone substitutes. The aim of this study was to evaluate and pair the degradation of Mg-Sr alloys for grafting with their clinical demands. The microstructure and performance of Mg-Sr alloys, in vitro degradation and biological properties including in vitro cytocompatibility and in vivo implantation were investigated. The results showed that the as-cast Mg-Sr alloy exhibited a rapid degradation rate compared with the as-extruded alloy due to the intergranular distribution of the second phase and micro-galvanic corrosion. However, the initial degradation could be tailored by the coating protection, which was proved to be cytocompatible and also suitable for bone repair observed by in vivo implantation. The integrated fracture calluses were formed and bridged the fracture gap without gas bubble accumulation, meanwhile the substitutes simultaneously degraded. In conclusion, the as-cast Mg-Sr alloy with coating is potential to be used for bone substitute alternative. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Volumetric analysis of bone substitute material performance within the human sinus cavity of former head and neck cancer patients: A prospective, randomized clinical trial.

    PubMed

    Lorenz, Jonas; Eichler, Kathrin; Barbeck, Mike; Lerner, Henriette; Stübinger, Stefan; Seipel, Catherine; Vogl, Thomas J; Kovács, Adorján F; Ghanaati, Shahram; Sader, Robert A

    2016-01-01

    In numerous animal and human studies, it could be detected that in bone augmentation procedures, material's physicochemical characteristics can influence the cellular inflammatory pattern and therefore the integration in the host tissue. Histological, histomorphometrical, and clinical analyses of the integration of the biomaterial in the surrounding tissue are well established methodologies; however, they do not make a statement on volume and density changes of the augmented biomaterial. The aim of the present study was to assess the volume and density of a xenogeneic (Bio-Oss ® , BO) and a synthetic (NanoBone ® , NB) bone substitute material in split-mouth sinus augmentations in former tumor patients to complete histological and histomorphometrical assessment. Immediately and 6 months after sinus augmentation computed tomography scans were recorded, bone grafts were marked, and the volume was calculated with radiologic RIS-PACS software (General Electric Healthcare, Chalfont St. Giles, Great Britain) to determine the integration and degradation behavior of both biomaterials. Radiographic analysis revealed a volume reduction of the initial augmented bone substitute material (i.e. 100%) to 77.36 (±11.68) % in the BO-group, respectively, 75.82 (±22.28) % in the NB-group six months after augmentation. In both materials, the volume reduction was not significant. Bone density significantly increased in both groups. The presented radiological investigation presents a favorable method to obtain clinically relevant information concerning the integration and degradation behavior of bone substitute materials.

  4. Lanthanum-silicon-substituted hydroxyapatite: Mechanochemical synthesis and prospects for medical applications

    NASA Astrophysics Data System (ADS)

    Chaikina, M. V.; Komarova, E. G.; Sharkeev, Yu. P.; Bulina, N. V.; Prosanov, I. Yu.

    2016-08-01

    The paper presents the results of mechanochemical synthesis of hydroxyapatite (HAP) with simultaneous substitutions of lanthanum (La3+) for calcium ions and silicate ((SiO4)4--group) for the phosphate group with the substituent concentrations in the range 0.2-2.0 mol per HAP mol. The use of Si-substituted HAP as a coating material promotes accelerated osteosynthesis and osteointegration of implants into the bone tissue. The replacement of calcium ions by La3+ in the HAP structure plays an antimicrobial role preventing inflammatory processes. Annealing-induced variations in the lattice parameters of synthesized samples indicate the substituent incorporation into the HAP structure. It is known that complex compounds with lanthanides are used for cancer chemotherapy. In particular, La plays a key role in the course of treatment of injured defects of bone tissue. In addition, La-substituted HAP can be used for filling bone defects and coating implants in postoperational areas affected by bone cancer.

  5. Paracrystalline Disorder from Phosphate Ion Orientation and Substitution in Synthetic Bone Mineral.

    PubMed

    Marisa, Mary E; Zhou, Shiliang; Melot, Brent C; Peaslee, Graham F; Neilson, James R

    2016-12-05

    Hydroxyapatite is an inorganic mineral closely resembling the mineral phase in bone. However, as a biological mineral, it is highly disordered, and its composition and atomistic structure remain poorly understood. Here, synchrotron X-ray total scattering and pair distribution function analysis methods provide insight into the nature of atomistic disorder in a synthetic bone mineral analogue, chemically substituted hydroxyapatite. By varying the effective hydrolysis rate and/or carbonate concentration during growth of the mineral, compounds with varied degrees of paracrystallinity are prepared. From advanced simulations constrained by the experimental pair distribution function and density functional theory, the paracrystalline disorder prevalent in these materials appears to result from accommodation of carbonate in the lattice through random displacement of the phosphate groups. Though many substitution modalities are likely to occur in concert, the most predominant substitution places carbonate into the mirror plane of an ideal phosphate site. Understanding the mineralogical imperfections of a biologically analogous hydroxyapatite is important not only to potential bone grafting applications but also to biological mineralization processes themselves.

  6. Comparing the Efficacy of Three Different Nano-scale Bone Substitutes: In vivo Study.

    PubMed

    Razavi, Sayed Mohammad; Rismanchian, Mansour; Jafari-Pozve, Nasim; Nosouhian, Saied

    2017-01-01

    Synthetic biocompatible bone substitutions have been used widely for bone tissue regeneration as they are safe and effective. The aim of this animal study is to compare the effectiveness of three different biocompatible bone substitutes, including nano-hydroxyapatite (nano-HA) nano-bioglass (nano-BG) and forstrite scaffolds. In this interventional and experimental study, four healthy dogs were anesthetized, and the first to fourth premolars were extracted in each quadrant. After healing, the linear incision on the crestal ridge from molar to anterior segment prepared in each quadrant and 16 defects in each dog were prepared. Nano-HA, nano-BG, and forstrite scaffold was prepared according to the size of defects and placed in the 12 defects randomly, four defects remained as a control group. The dogs were sacrificed in four time intervals (15, 30, 45, and 60 days after) and the percentage of different types of regenerated bones (lamellar and woven) and connective tissue were recorded in histological process. The data were analyzed using Mann-Whitney test (α = 0.05). The difference in nano-HA and nano-BG with the control group was significant in three-time intervals regarding the amount of bone formation ( P < 0.01). After 15 days, the nano-HA showed the highest amount of woven and lamellar bone regeneration (18.37 ± 1.06 and 30.44 ± 0.54). Nano-HA and nano-BG groups showed a significant amount of bone regeneration, especially after 30 days, but paying more surveys and observation to these materials as bone substitutes seem to be needed.

  7. Comparing the Efficacy of Three Different Nano-scale Bone Substitutes: In vivo Study

    PubMed Central

    Razavi, Sayed Mohammad; Rismanchian, Mansour; Jafari-pozve, Nasim; Nosouhian, Saied

    2017-01-01

    Background: Synthetic biocompatible bone substitutions have been used widely for bone tissue regeneration as they are safe and effective. The aim of this animal study is to compare the effectiveness of three different biocompatible bone substitutes, including nano-hydroxyapatite (nano-HA) nano-bioglass (nano-BG) and forstrite scaffolds. Materials and Methods: In this interventional and experimental study, four healthy dogs were anesthetized, and the first to fourth premolars were extracted in each quadrant. After healing, the linear incision on the crestal ridge from molar to anterior segment prepared in each quadrant and 16 defects in each dog were prepared. Nano-HA, nano-BG, and forstrite scaffold was prepared according to the size of defects and placed in the 12 defects randomly, four defects remained as a control group. The dogs were sacrificed in four time intervals (15, 30, 45, and 60 days after) and the percentage of different types of regenerated bones (lamellar and woven) and connective tissue were recorded in histological process. The data were analyzed using Mann–Whitney test (α = 0.05). Results: The difference in nano-HA and nano-BG with the control group was significant in three-time intervals regarding the amount of bone formation (P < 0.01). After 15 days, the nano-HA showed the highest amount of woven and lamellar bone regeneration (18.37 ± 1.06 and 30.44 ± 0.54). Conclusion: Nano-HA and nano-BG groups showed a significant amount of bone regeneration, especially after 30 days, but paying more surveys and observation to these materials as bone substitutes seem to be needed. PMID:28603705

  8. Bone substitute material composition and morphology differentially modulate calcium and phosphate release through osteoclast-like cells.

    PubMed

    Konermann, A; Staubwasser, M; Dirk, C; Keilig, L; Bourauel, C; Götz, W; Jäger, A; Reichert, C

    2014-04-01

    The aim of this study was to determine the material composition and cell-mediated remodelling of different calcium phosphate-based bone substitutes. Osteoclasts were cultivated on bone substitutes (Cerabone, Maxresorb, and NanoBone) for up to 5 days. Bafilomycin A1 addition served as the control. To determine cellular activity, the supernatant content of calcium and phosphate was measured by inductively coupled plasma optical emission spectrometry. Cells were visualized on the materials by scanning electron microscopy. Material composition and surface characteristics were assessed by energy-dispersive X-ray spectroscopy. Osteoclast-induced calcium and phosphate release was material-specific. Maxresorb exhibited the highest ion release to the medium (P = 0.034; calcium 40.25mg/l day 5, phosphate 102.08 mg/l day 5) and NanoBone the lowest (P = 0.021; calcium 8.43 mg/l day 5, phosphate 15.15 mg/l day 5); Cerabone was intermediate (P = 0.034; calcium 16.34 mg/l day 5, phosphate 30.6 mg/l day 5). All investigated materials showed unique resorption behaviours. The presented methodology provides a new perspective on the investigation of bone substitute biodegradation, maintaining the material-specific micro- and macrostructure. Copyright © 2013 International Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.

  9. How bone forms in large cancellous defects: critical analysis based on experimental work and literature.

    PubMed

    Draenert, K; Draenert, M; Erler, M; Draenert, A; Draenert, Y

    2011-09-01

    The behaviour of physiological biomaterials, β-tricalciumphosphate and hydroxyapatite, is analysed based on current literature and our own experimental work. The properties of graft substitutes based on ceramic materials are clearly defined according to their scientific efficiency. The strength of the materials and their biodegradability are still not fully evaluated. Strength and degradability have a direct proportional relationship and are considered the most efficient way to be adapted by their properties to the needs for the treatment of bone defects. New technologies for the manufacturing process are presented that increase those properties and thus open up new indications and easier application of the ceramic materials. The implantation process as well is carefully validated by animal experiments to avoid failures. Based on the experiments, a completely new approach is defined as to how primary bone formation with osteoconductive ceramics can be achieved. The milestones in that approach comprise a synthetically manufactured replica of the bone marrow spaces as osteoconductive ladder, whereas the bead is defined as bone-forming element. As a result, materials are available with high strength if the ceramic is solid or highly porous and possesses a micro-structure. The injection moulding process allows for the combination of high strength of the material with high porosity. Based on the strong capillary forces, micro-chambered beads fulfil most expectations for primary bone formation in cancellous bone defects, including drug delivery, mechanical strengthening if necessary, and stable implantation in situ by coagulation of the blood and bone marrow suctioned in. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. New nano-hydroxyapatite in bone defect regeneration: A histological study in rats.

    PubMed

    Kubasiewicz-Ross, Paweł; Hadzik, Jakub; Seeliger, Julia; Kozak, Karol; Jurczyszyn, Kamil; Gerber, Hanna; Dominiak, Marzena; Kunert-Keil, Christiane

    2017-09-01

    Many types of bone substitute materials are available on the market. Researchers are refining new bone substitutes to make them comparable to autologous grafting materials in treatment of bone defects. The purpose of the study was to evaluate the osseoconductive potential and bone defect regeneration in rat calvaria bone defects treated with new synthetic nano-hydroxyapatite. The study was performed on 30 rats divided into 5 equal groups. New preproduction of experimental nano-hydroxyapatite material by NanoSynHap (Poznań, Poland) was tested and compared with commercially available materials. Five mm critical size defects were created and filled with the following bone grafting materials: 1) Geistlich Bio-Oss ® ; 2) nano-hydroxyapatite+β-TCP; 3) nano-hydroxyapatite; 4) nano-hydroxyapatite+collagen membrane. The last group served as controls without any augmentation. Bone samples from calvaria were harvested for histological and micro-ct evaluation after 8 weeks. New bone formation was observed in all groups. Histomorphometric analysis revealed an amount of regenerated bone between 34.2 and 44.4% in treated bone defects, whereas only 13.0% regenerated bone was found in controls. Interestingly, in group 3, no significant particles of the nano-HA material were found. In contrast, residual bone substitute material could be detected in all other test groups. Micro-CT study confirmed the results of the histological examinations. The new nano-hydroxyapatite provides comparable results to other grafts in the field of bone regeneration. Copyright © 2017 Elsevier GmbH. All rights reserved.

  11. Botulinum toxin in masticatory muscles of the adult rat induces bone loss at the condyle and alveolar regions of the mandible associated with a bone proliferation at a muscle enthesis.

    PubMed

    Kün-Darbois, Jean-Daniel; Libouban, Hélène; Chappard, Daniel

    2015-08-01

    In man, botulinum toxin type A (BTX) is injected in masticatory muscles for several indications such as trismus, bruxism, or masseter hypertrophy. Bone changes in the mandible following BTX injections in adult animal have therefore became a subject of interest. The aim of this study was to analyze condylar and alveolar bone changes following BTX unilateral injections in masseter and temporal muscles in adult rats. Mature male rats (n = 15) were randomized into 2 groups: control (CTRL; n = 6) and BTX group (n= 9). Rats of the BTX group received a single injection of BTX into right masseter and temporal muscles. Rats of the CTRL group were similarly injected with saline solution. Rats were sacrificed 4 weeks after injections. Masticatory muscles examination and microcomputed tomography (microCT) were performed. A significant difference of weight was found between the 2 groups at weeks 2, 3 and 4 (p < 0.05). Atrophy of the right masseter and temporal muscles was observed in all BTX rats. MicroCT analysis showed significant bone loss in the right alveolar and condylar areas in BTX rats. Decrease in bone volume reached -20% for right alveolar bone and -35% for right condylar bone. A hypertrophic bone metaplasia at the digastric muscle enthesis was found on every right hemimandible in the BTX group and none in the CTRL group. BTX injection in masticatory muscles leads to a significant and major mandible bone loss. These alterations can represent a risk factor for fractures in human. The occurrence of a hypertrophic bone metaplasia at the Mus Digastricus enthesis may constitute an etiological factor for tori. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Combination of Heel-strike like Mechanical Loading with Deproteinized Cancellous Bone Scaffold Implantation to Repair Segmental Bone Defects in Rabbits.

    PubMed

    Huang, Guofeng; Liu, Guojun; Zhang, Feng; Gao, Jianting; Wang, Jiangze; Chen, Qi; Wu, Benwen; Ding, Zhenqi; Cai, Taoyi

    2017-01-01

    Under physiological conditions bone defects often occur at mechanical load bearing sites and bone substitutes used for regeneration should be similarly subjected to mechanical loading stress. In this study, we investigated whether a novel heel-strike like mechanical loading method can be used as a complementary therapy to promote bone regeneration following bone substitute grafting. To test this, three groups of rabbits with segmental bone defects in the tibia were implanted with bovine deproteinized cancellous bone scaffold (DCBS), with one group also receiving heel-strike like mechanical loading generated by a rap stress stimulator. From weeks 4-12 post-operation X-ray and micro-CT scanning showed that rabbits receiving combination therapy had significantly more callus at the bone defect. Moreover, bone defects in the combination group were completely replaced with new bone at week 12, while the DCBS implantation alone group healed only partially and rabbits receiving neither DCBS nor mechanical loading developed only small calluses throughout the observation period. Analysis of micro-CT scanning results demonstrated that new bone density in the combination group was significantly higher than the DCBS only group at weeks 4 and 12 ( p <0.05). H&E staining results also indicated a significantly higher percentage of new bone in the bone defect area and a lower percentage of residual scaffold in the combination group compared to the DCBS only group ( p <0.05). Thus, this heel-strike like mechanical loading method appears to accelerate bone regeneration following substitute implantation by restoring a local mechanical loading environment in segmental bone defects.

  13. Unicameral bone cysts: comparison of percutaneous curettage, steroid, and autologous bone marrow injections.

    PubMed

    Canavese, Federico; Wright, James G; Cole, William G; Hopyan, Sevan

    2011-01-01

    The purpose of this study was to compare the outcome of percutaneous curettage with intralesional injection of methylprednisolone and bone marrow for unicameral bone cysts (UBCs). This was a retrospective review of 46 children and adolescents with UBC treated with autologous bone marrow injection, methylprednisolone acetate injection or percutaneous curettage alone. Inclusion criteria were a radiological diagnosis of UBC and at least 24 months follow-up from the last procedure. Healing was determined using Neer/Cole 4-grades rating scale. The 3 treatment groups were comparable with regard to age, sex, location of the cyst, and the number of procedures undertaken. At 2 years follow-up, the proportion of patients with satisfactory healing (Neer/Cole grades I and II) was greatest among those who underwent percutaneous curettage (70%) compared with bone marrow injection (21%) and methylprednisolone acetate injection (41%) (P = 0.03). We found no association between healing and age (P = 0.80) nor between healing and sex (P = 0.61). These results suggest that mechanical disruption of the cyst membrane may be helpful in healing of cysts and that this technique may be preferred to simple intralesional injections. Level III.

  14. Synthesis and characterization of an injectable allograft bone/polymer composite bone void filler with tunable mechanical properties.

    PubMed

    Dumas, Jerald E; Zienkiewicz, Katarzyna; Tanner, Shaun A; Prieto, Edna M; Bhattacharyya, Subha; Guelcher, Scott A

    2010-08-01

    In recent years, considerable effort has been expended toward the development of synthetic bone graft materials. Injectable biomaterials offer several advantages relative to implants due to their ability to cure in situ, thus conforming to irregularly shaped defects. While Food and Drug Administration-approved injectable calcium phosphate cements have excellent osteoconductivity and compressive strengths, these materials have small pore sizes (e.g., 1 mum) and are thus relatively impermeable to cellular infiltration. To overcome this limitation, we aimed to develop injectable allograft bone/polyurethane (PUR) composite bone void fillers with tunable properties that support rapid cellular infiltration and remodeling. The materials comprised particulated (e.g., >100 microm) allograft bone particles and a biodegradable two-component PUR, and had variable (e.g., 30%-70%) porosities. The injectable void fillers exhibited an initial dynamic viscosity of 220 Pa.s at clinically relevant shear rates (40 s(-1)), wet compressive strengths ranging from < 1 to 13 MPa, working times from 3 to 8 min, and setting times from 10 to 20 min, which are comparable to the properties of calcium phosphate bone cements. When injected in femoral plug defects in athymic rats, the composites supported extensive cellular infiltration, allograft resorption, collagen deposition, and new bone formation at 3 weeks. The combination of both initial mechanical properties suitable for weight-bearing applications as well as the ability of the materials to undergo rapid cellular infiltration and remodeling may present potentially compelling opportunities for injectable allograft/PUR composites as biomedical devices for bone regeneration.

  15. Nanocomposite Porous Microcarriers Based on Strontium-Substituted HA- g-Poly(γ-benzyl-l-glutamate) for Bone Tissue Engineering.

    PubMed

    Yan, Shifeng; Xia, Pengfei; Xu, Shenghua; Zhang, Kunxi; Li, Guifei; Cui, Lei; Yin, Jingbo

    2018-05-04

    Porous microcarriers have aroused increasing attention recently, which can create a protected environment for sufficient cell seeding density, facilitate oxygen and nutrient transfer, and well support the cell attachment and growth. In this study, porous microcarriers fabricated from the strontium-substituted hydroxyapatite- graft-poly(γ-benzyl-l-glutamate) (Sr10-HA- g-PBLG) hybrid nanocomposite were developed. The surface grating of PBLG, the micromorphology and element distribution, mechanical strength, in vitro degradation, and Sr 2+ ion release of the obtained Sr10-HA- g-PBLG porous microcarriers were investigated, respectively. The grafting ratio and the molecular weight of the grafted PBLG of Sr10-HA- g-PBLG could be effectively controlled by varying the initial ratio of BLG-NCA to Sr10-HA-NH 2 . The microcarriers exhibited a highly porous and interconnected microstructure with the porosity of about 90% and overall density of 1.03-1.06 g/cm 3 . Also, the degradation rate of Sr10-HA-PBLG microcarriers could be effectively controlled and long-term Sr 2+ release was obtained. The Sr10-HA-PBLG microcarriers allowed cells adhesion, infiltration, and proliferation and promoted the osteogenic differentiation of rabbit adipose-derived stem cells (ADSCs). Successful healing of femoral bone defect was proved by injection of the ADSCs-seeded Sr10-HA-PBLG microcarriers in a rabbit model.

  16. Initial glenoid fixation using two different reverse shoulder designs with an equivalent center of rotation in a low-density and high-density bone substitute.

    PubMed

    Stroud, Nicholas J; DiPaola, Matthew J; Martin, Brian L; Steiler, Cindy A; Flurin, Pierre-Henri; Wright, Thomas W; Zuckerman, Joseph D; Roche, Christopher P

    2013-11-01

    Numerous glenoid implant designs have been introduced into the global marketplace in recent years; however, little comparative biomechanical data exist to substantiate one design consideration over another. This study dynamically evaluated reverse shoulder glenoid baseplate fixation and compared the initial fixation associated with 2 reverse shoulder designs having an equivalent center of rotation in low-density and high-density bone substitute substrates. Significant differences in fixation were observed between implant designs, where the circular-porous reverse shoulder was associated with approximately twice the micromotion per equivalent test than the oblong-grit-blasted design. Additionally, 6 of the 7 circular-porous reverse shoulders failed catastrophically in the low-density bone model at an average of 2603 ± 981 cycles. None of the oblong-grit-blasted designs failed in the low-or high-density bone models and none of the circular-porous designs failed in the high-density bone models after 10,000 cycles of loading. These results demonstrate that significant differences in initial fixation exist between reverse shoulder implants having an equivalent center of rotation and suggest that design parameters, other than the position of the center of rotation, significantly affect fixation in low-density and high-density polyurethane bone substitutes. Subtle changes in glenoid baseplate design can dramatically affect fixation, particularly in low-density bone substitutes that are intended to simulate the bone quality of the recipient population for reverse shoulders. Copyright © 2013 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Mosby, Inc. All rights reserved.

  17. Volumetric analysis of bone substitute material performance within the human sinus cavity of former head and neck cancer patients: A prospective, randomized clinical trial

    PubMed Central

    Lorenz, Jonas; Eichler, Kathrin; Barbeck, Mike; Lerner, Henriette; Stübinger, Stefan; Seipel, Catherine; Vogl, Thomas J.; Kovács, Adorján F.; Ghanaati, Shahram; Sader, Robert A.

    2016-01-01

    Background: In numerous animal and human studies, it could be detected that in bone augmentation procedures, material's physicochemical characteristics can influence the cellular inflammatory pattern and therefore the integration in the host tissue. Histological, histomorphometrical, and clinical analyses of the integration of the biomaterial in the surrounding tissue are well established methodologies; however, they do not make a statement on volume and density changes of the augmented biomaterial. Aims: The aim of the present study was to assess the volume and density of a xenogeneic (Bio-Oss®, BO) and a synthetic (NanoBone®, NB) bone substitute material in split-mouth sinus augmentations in former tumor patients to complete histological and histomorphometrical assessment. Methods: Immediately and 6 months after sinus augmentation computed tomography scans were recorded, bone grafts were marked, and the volume was calculated with radiologic RIS-PACS software (General Electric Healthcare, Chalfont St. Giles, Great Britain) to determine the integration and degradation behavior of both biomaterials. Results: Radiographic analysis revealed a volume reduction of the initial augmented bone substitute material (i.e. 100%) to 77.36 (±11.68) % in the BO-group, respectively, 75.82 (±22.28) % in the NB-group six months after augmentation. In both materials, the volume reduction was not significant. Bone density significantly increased in both groups. Conclusion: The presented radiological investigation presents a favorable method to obtain clinically relevant information concerning the integration and degradation behavior of bone substitute materials. PMID:28299254

  18. A preliminary report of percutaneous craniofacial osteoplasty in a rat calvarium.

    PubMed

    Parkes, William J; Greywoode, Jewel; O'Hara, Brian J; Heffelfinger, Ryan N; Krein, Howard

    2014-07-01

    To evaluate the potential for injectable, permanent bone augmentation by assessing the biocompatability and bioactivity of subperiosteal hydroxylapatite (Radiesse) deposition in a rat model. Randomized controlled animal model. Fourteen adult Sprague Dawley rats were injected in the parietal skull with 0.2 ml of hydroxylapatite (10 animals) or 0.2 ml of a carrier gel control (4 animals), using a subperiosteal injection technique on the right and a subcutaneous injection technique on the left. At 1, 3, and 6 months, three rats (1 negative control, 2 variables) were sacrificed and the calvaria were harvested. At 12 months, the remaining five rats were sacrificed. After each harvest, the specimens were processed and then examined under both light and polarized microscopy for new bone growth at the injection sites. The inflammatory response was limited with both hydroxylapatite and carrier injections. Injectables were still present 12 months after the injection. New bone formation was only observed when the injection was located deep to a disrupted periosteum The odds of new bone formation was 48.949 times higher (95% confidence intervals CI [2.637, 3759.961]; P=0.002) with subperiosteal hydroxylapatite injections compared to all other combinations of injection plane and injectable. This preliminary report of subperiosteal hydroxylapatite (Radiesse) injection in a rat model has verified the biocompatibility of injectable hydroxylapatite at the bony interface and suggests the potential for new bone formation. N/A. © 2013 The American Laryngological, Rhinological and Otological Society, Inc.

  19. Divergent Resorbability and Effects on Osteoclast Formation of Commonly Used Bone Substitutes in a Human In Vitro-Assay

    PubMed Central

    Busse, Björn; Schilling, Arndt F.; Schinke, Thorsten; Amling, Michael; Lange, Tobias

    2012-01-01

    Bioactive bone substitute materials are a valuable alternative to autologous bone transplantations in the repair of skeletal defects. However, clinical studies have reported varying success rates for many commonly used biomaterials. While osteoblasts have traditionally been regarded as key players mediating osseointegration, increasing evidence suggests that bone-resorbing osteoclasts are of crucial importance for the longevity of applied biomaterials. As no standardized data on the resorbability of biomaterials exists, we applied an in vitro-assay to compare ten commonly used bone substitutes. Human peripheral blood mononuclear cells (PBMCs) were differentiated into osteoclasts in the co-presence of dentin chips and biomaterials or dentin alone (control) for a period of 28 days. Osteoclast maturation was monitored on day 0 and 14 by light microscopy, and material-dependent changes in extracellular pH were assessed twice weekly. Mature osteoclasts were quantified using TRAP stainings on day 28 and their resorptive activity was determined on dentin (toluidin blue staining) and biomaterials (scanning electron microscopy, SEM). The analyzed biomaterials caused specific changes in the pH, which were correlated with osteoclast multinuclearity (r = 0.942; p = 0.034) and activity on biomaterials (r = 0.594; p = 0.041). Perossal led to a significant reduction of pH, nuclei per osteoclast and dentin resorption, whereas Tutogen bovine and Tutobone human strikingly increased all three parameters. Furthermore, natural biomaterials were resorbed more rapidly than synthetic biomaterials leading to differential relative resorption coefficients, which indicate whether bone substitutes lead to a balanced resorption or preferential resorption of either the biomaterial or the surrounding bone. Taken together, this study for the first time compares the effects of widely used biomaterials on osteoclast formation and resorbability in an unbiased approach that may now aid in improving the preclinical evaluation of bone substitute materials. PMID:23071629

  20. Individualized titanium mesh combined with platelet-rich fibrin and deproteinized bovine bone: A new approach for challenging augmentation.

    PubMed

    Lorenz, Jonas; Al-Maawi, Sarah; Sader, Robert; Ghanaati, Shahram

    2018-05-21

    Autologous bone transfer is regarded as the gold standard for ridge augmentation before dental implantation, especially in severe bony defects caused by tumor resection or atrophy. In addition to the advantages of autologous bone, transplantation has several disadvantages, such as secondary operation, increased morbidity and pain. The present study reports, for the first time, a combination of a xenogeneic bone substitute (BO) with platelet-rich fibrin (PRF), which is a fully autologous blood concentrate derived from the patient's own peripheral blood by centrifugation. Solid A-PRF+TM and liquid i-PRFTM together with an individualized 3-D planned titanium mesh were used for reconstruction of a severe tumor-related bony defect within the mandible of a former head and neck cancer patient. The BO enriched with regenerative components from PRF allowed the reconstruction of the mandibular resective defect under the 3-D-mesh without autologous bone transplantation. Complete rehabilitation and restoration of the patient´s oral function were achieved. Histological analysis of extracted bone biopsies confirmed that the new bone within the augmented region originated from the residual bone. Within the limitations of the presented case, the applied concept appears to be a promising approach to increase the regenerative capacity of a bone substitute material, as well as decrease the demand for autologous bone transplantation, even in cases in which autologous bone is considered the golden standard. PRF can be considered a reliable source for increasing the biological capacities of bone substitute materials.

  1. Human mesenchymal stem cells and biomaterials interaction: a promising synergy to improve spine fusion.

    PubMed

    Barbanti Brodano, G; Mazzoni, E; Tognon, M; Griffoni, C; Manfrini, M

    2012-05-01

    Spine fusion is the gold standard treatment in degenerative and traumatic spine diseases. The bone regenerative medicine needs (i) in vitro functionally active osteoblasts, and/or (ii) the in vivo induction of the tissue. The bone tissue engineering seems to be a very promising approach for the effectiveness of orthopedic surgical procedures, clinical applications are often hampered by the limited availability of bone allograft or substitutes. New biomaterials have been recently developed for the orthopedic applications. The main characteristics of these scaffolds are the ability to induce the bone tissue formation by generating an appropriate environment for (i) the cell growth and (ii) recruiting precursor bone cells for the proliferation and differentiation. A new prototype of biomaterials known as "bioceramics" may own these features. Bioceramics are bone substitutes mainly composed of calcium and phosphate complex salt derivatives. In this study, the characteristics bioceramics bone substitutes have been tested with human mesenchymal stem cells obtained from the bone marrow of adult orthopedic patients. These cellular models can be employed to characterize in vitro the behavior of different biomaterials, which are used as bone void fillers or three-dimensional scaffolds. Human mesenchymal stem cells in combination with biomaterials seem to be good alternative to the autologous or allogenic bone fusion in spine surgery. The cellular model used in our study is a useful tool for investigating cytocompatibility and biological features of HA-derived scaffolds.

  2. Prostate Cancer Metastases Alter Bone Mineral and Matrix Composition Independent of Effects on Bone Architecture in Mice A Quantitative Study Using microCT and Raman Spectroscopy

    PubMed Central

    Bi, Xiaohong; Sterling, Julie A.; Merkel, Alyssa R.; Perrien, Daniel S.; Nyman, Jeffry; Mahadevan-Jansen, Anita

    2013-01-01

    Prostate cancer is the most common primary tumor and the second leading cause of cancer-related deaths in men in the United States. Prostate cancer bone metastases are characterized by abnormal bone remodeling processes and result in a variety of skeletal morbidities. Prevention of skeletal complications is a crucial element in prostate cancer management. This study investigated prostate cancer-induced alterations in the molecular composition and morphological structure of metastasis-bearing bones in a mouse model of prostate cancer using Raman spectroscopy and micro-computed tomography (microCT). LNCaP C4-2B prostate cancer cells were injected into the right tibiae of 5-week old male SCID mice. Upon sacrifice at 8 weeks post tumor inoculation, two out of the ten tumor-bearing tibiae showed only osteoblastic lesions in the radiographs, 4 osteolytic lesions only and 4 mixed with osteoblastic and osteolytic lesions.. Carbonate substitution was significantly increased while there was a marked reduction in the level of collagen mineralization, mineral crystallinity, and carbonate:matrix ratio in the cortex of the intact tumor-bearing tibiae compared to contralateral controls. MicroCT analysis revealed a significant reduction in bone volume/total volume, trabecular number and trabecular thickness, as well as significant increase in bone surface/volume ratio in tibiae with osteolytic lesions, suggesting active bone remodeling and bone loss. None of the changes in bone compositional properties were correlated with lesion area from radiographs or the changes in bone architecture from microCT. This study indicates that LNCaP C4-2B prostate cancer metastases alter bone tissue composition independent of changes in architecture, and altered bone quality may be an important contributor to fracture risk in these patients. Raman spectroscopy may provide a new avenue of investigation into interactions between tumor and bone microenvironment. PMID:23867219

  3. Carbon-centered radicals in γ-irradiated bone substituting biomaterials based on hydroxyapatite.

    PubMed

    Sadlo, Jaroslaw; Strzelczak, Grazyna; Lewandowska-Szumiel, Malgorzata; Sterniczuk, Marcin; Pajchel, Lukasz; Michalik, Jacek

    2012-09-01

    Gamma irradiated synthetic hydroxyapatite, bone substituting materials NanoBone(®) and HA Biocer were examined using EPR spectroscopy and compared with powdered human compact bone. In every case, radiation-induced carbon centered radicals were recorded, but their molecular structures and concentrations differed. In compact bone and synthetic hydroxyapatite the main signal assigned to the CO(2) (-) anion radical was stable, whereas the signal due to the CO(3) (3-) radical dominated in NanoBone(®) and HA Biocer just after irradiation. However, after a few days of storage of these samples, also a CO(2) (-) signal was recorded. The EPR study of irradiated compact bone and the synthetic graft materials suggest that their microscopic structures are different. In FT-IR spectra of NanoBone(®), HA Biocer and synthetic hydroxyapatite the HPO(4) (2-) and CO(3) (2-) in B-site groups are detected, whereas in compact bone signals due to collagen dominate.

  4. Injectable biomaterials for minimally invasive orthopedic treatments.

    PubMed

    Jayabalan, M; Shalumon, K T; Mitha, M K

    2009-06-01

    Biodegradable and injectable hydroxy terminated-poly propylene fumarate (HT-PPF) bone cement was developed. The injectable formulation consisting HT-PPF and comonomer, n-vinyl pyrrolidone, calcium phosphate filler, free radical catalyst, accelerator and radiopaque agent sets rapidly to hard mass with low exothermic temperature. The candidate bone cement attains mechanical strength more than the required compressive strength of 5 MPa and compressive modulus 50 MPa. The candidate bone cement resin elicits cell adhesion and cytoplasmic spreading of osteoblast cells. The cured bone cement does not induce intracutaneous irritation and skin sensitization. The candidate bone cement is tissue compatible without eliciting any adverse tissue reactions. The candidate bone cement is osteoconductive and inductive and allow osteointegration and bone remodeling. HT-PPF bone cement is candidate bone cement for minimally invasive radiological procedures for the treatment of bone diseases and spinal compression fractures.

  5. Histological evaluation of an impacted bone graft substitute composed of a combination of mineralized and demineralized allograft in a sheep vertebral bone defect.

    PubMed

    Fujishiro, Takaaki; Bauer, Thomas W; Kobayashi, Naomi; Kobayashi, Hideo; Sunwoo, Moon Hae; Seim, Howard B; Turner, A Simon

    2007-09-01

    Demineralized bone matrix (DBMs) preparations are a potential alternative or supplement to autogenous bone graft, but many DBMs have not been adequately tested in clinically relevant animal models. The aim of current study was to compare the efficacy of a new bone graft substitute composed of a combination of mineralized and demineralized allograft, along with hyaluronic acid (AFT Bone Void Filler) with several other bone graft materials in a sheep vertebral bone void model. A drilled defect in the sheep vertebral body was filled with either the new DBM preparation, calcium sulfate (OsteoSet), autologous bone graft, or left empty. The sheep were euthanized after 6 or 12 weeks, and the defects were examined by histology and quantitative histomorphometry. The morphometry data were analyzed by one-way analysis of variance with the post hoc Tukey-Kramer test or the Student's t-test. All of the bone defects in the AFT DBM preparation group showed good new bone formation with variable amounts of residual DBM and mineralized bone graft. The DBM preparation group at 12 weeks contained significantly more new bone than the defects treated with calcium sulfate or left empty (respectively, p < 0.05, p < 0.01). There was no significant difference between the DBM and autograft groups. No adverse inflammatory reactions were associated with any of the three graft materials. The AFT preparation of a mixture of mineralized and demineralized allograft appears to be an effective autograft substitute as tested in this sheep vertebral bone void model.

  6. Analysis of Impingement between Patella Bone and Bearing Post in Cruciate-Substituting High-Flexion Total Knee Arthroplasty

    PubMed Central

    Chon, Jegyun; Shin, Sangyeop; Jang, Gunil; Jeon, Taehyeon

    2016-01-01

    Background We investigated the causes of impingement between the patella bone and the bearing post during high flexion in cruciate-substituting total knee arthroplasty and proposed a treatment strategy. Methods This prospective cohort study included 218 cases that had undergone cruciate-substituting total knee arthroplasty from February 2014 to January 2015; a single surgeon performed the operation using the same method without patellar resurfacing in all patients. Results In these patients, the occurrence of impingement was determined by performing more than 120° high knee flexion after inserting a bearing perioperatively. The incidence of impingement was significantly associated with bearing design, femoral implant size, patella bone length, and patella inferior pole angle (p < 0.05). The impingement was resolved by resection of the lower articular side of the patella bone. Conclusions In the cruciate-substituting high-flexion total knee arthroplasty, impingement between the patella bone and bearing post was more common in patients with mobile bearing, small-size femoral component, and a long patella or a large inferior pole angle. In cases of intraoperative impingement between the patella bone and the bearing post, resection in the lower portion of the patella prevented impingement of the bearing with soft tissue or the patella by widening the space between the patella and the bearing post, which in turn prevented postoperative reduction in range of motion. PMID:27247740

  7. Analysis of Impingement between Patella Bone and Bearing Post in Cruciate-Substituting High-Flexion Total Knee Arthroplasty.

    PubMed

    Chon, Jegyun; Lee, Bongju; Shin, Sangyeop; Jang, Gunil; Jeon, Taehyeon

    2016-06-01

    We investigated the causes of impingement between the patella bone and the bearing post during high flexion in cruciate-substituting total knee arthroplasty and proposed a treatment strategy. This prospective cohort study included 218 cases that had undergone cruciate-substituting total knee arthroplasty from February 2014 to January 2015; a single surgeon performed the operation using the same method without patellar resurfacing in all patients. In these patients, the occurrence of impingement was determined by performing more than 120° high knee flexion after inserting a bearing perioperatively. The incidence of impingement was significantly associated with bearing design, femoral implant size, patella bone length, and patella inferior pole angle (p < 0.05). The impingement was resolved by resection of the lower articular side of the patella bone. In the cruciate-substituting high-flexion total knee arthroplasty, impingement between the patella bone and bearing post was more common in patients with mobile bearing, small-size femoral component, and a long patella or a large inferior pole angle. In cases of intraoperative impingement between the patella bone and the bearing post, resection in the lower portion of the patella prevented impingement of the bearing with soft tissue or the patella by widening the space between the patella and the bearing post, which in turn prevented postoperative reduction in range of motion.

  8. Osteoconductive composite graft based on bacterial synthesized hydroxyapatite nanoparticles doped with different ions: From synthesis to in vivo studies.

    PubMed

    Ahmadzadeh, Elham; Talebnia, Farid; Tabatabaei, Meisam; Ahmadzadeh, Hossein; Mostaghaci, Babak

    2016-07-01

    To repair damaged bone tissues, osteoconductive bone graft substitutes are required for enhancement of the regenerative potential of osteoblast cells. Nanostructured hydroxyapatite is a bioactive ceramic used for bone tissue engineering purposes. In this study, carbonate hydroxyapatite (cHA) and zinc-magnesium substituted hydroxyapatite (Zn-Mg-HA) nanoparticles were synthesized via biomineralization method using Enterobacter aerogenes. The structural phase composition and the morphology of the samples were analyzed using appropriate powder characterization methods. Next, a composite graft was fabricated by using polyvinyl alcohol and both cHA and Zn-Mg-HA samples. In vivo osteogenic potential of the graft was then investigated in a rabbit tibial osteotomy model. Histological, radiological and morphological studies showed that the graft was mineralized by the newly formed bone tissue without signs of inflammation or infection after 4 weeks of implantation. These histomorphometric results suggest that the fabricated graft can function as a potent osteoconductive bone tissue substitute. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Reconstruction of Craniomaxillofacial Bone Defects Using Tissue-Engineering Strategies with Injectable and Non-Injectable Scaffolds

    PubMed Central

    Gaihre, Bipin; Uswatta, Suren; Jayasuriya, Ambalangodage C.

    2017-01-01

    Engineering craniofacial bone tissues is challenging due to their complex structures. Current standard autografts and allografts have many drawbacks for craniofacial bone tissue reconstruction; including donor site morbidity and the ability to reinstate the aesthetic characteristics of the host tissue. To overcome these problems; tissue engineering and regenerative medicine strategies have been developed as a potential way to reconstruct damaged bone tissue. Different types of new biomaterials; including natural polymers; synthetic polymers and bioceramics; have emerged to treat these damaged craniofacial bone tissues in the form of injectable and non-injectable scaffolds; which are examined in this review. Injectable scaffolds can be considered a better approach to craniofacial tissue engineering as they can be inserted with minimally invasive surgery; thus protecting the aesthetic characteristics. In this review; we also focus on recent research innovations with different types of stem-cell sources harvested from oral tissue and growth factors used to develop craniofacial bone tissue-engineering strategies. PMID:29156629

  10. Variability of the pullout strength of cancellous bone screws with cement augmentation.

    PubMed

    Procter, P; Bennani, P; Brown, C J; Arnoldi, J; Pioletti, D P; Larsson, S

    2015-06-01

    Orthopaedic surgeons often face clinical situations where improved screw holding power in cancellous bone is needed. Injectable calcium phosphate cements are one option to enhance fixation. Paired screw pullout tests were undertaken in which human cadaver bone was augmented with calcium phosphate cement. A finite element model was used to investigate sensitivity to screw positional placement. Statistical analysis of the data concluded that the pullout strength was generally increased by cement augmentation in the in vitro human cadaver tests. However, when comparing the individual paired samples there were surprising results with lower strength than anticipated after augmentation, in apparent contradiction to the generally expected conclusion. Investigation using the finite element model showed that these strength reductions could be accounted for by small screw positional changes. A change of 0.5mm might result in predicted pullout force changes of up to 28%. Small changes in screw position might lead to significant changes in pullout strength sufficient to explain the lower than expected individual pullout values in augmented cancellous bone. Consequently whilst the addition of cement at a position of low strength would increase the pullout strength at that point, it might not reach the pullout strength of the un-augmented paired test site. However, the overall effect of cement augmentation produces a significant improvement at whatever point in the bone the screw is placed. The use of polymeric bone-substitute materials for tests may not reveal the natural variation encountered in tests using real bone structures. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Single-Stranded γPNAs for In Vivo Site-Specific Genome Editing via Watson-Crick Recognition

    PubMed Central

    Bahal, Raman; Quijano, Elias; McNeer, Nicole Ali; Liu, Yanfeng; Bhunia, Dinesh C.; López-Giráldez, Francesco; Fields, Rachel J.; Saltzman, W. Mark; Ly, Danith H.; Glazer, Peter M.

    2014-01-01

    Triplex-forming peptide nucleic acids (PNAs) facilitate gene editing by stimulating recombination of donor DNAs within genomic DNA via site-specific formation of altered helical structures that further stimulate DNA repair. However, PNAs designed for triplex formation are sequence restricted to homopurine sites. Herein we describe a novel strategy where next generation single-stranded gamma PNAs (γPNAs) containing miniPEG substitutions at the gamma position can target genomic DNA in mouse bone marrow at mixed-sequence sites to induce targeted gene editing. In addition to enhanced binding, γPNAs confer increased solubility and improved formulation into poly(lactic-co-glycolic acid) (PLGA) nanoparticles for efficient intracellular delivery. Single-stranded γPNAs induce targeted gene editing at frequencies of 0.8% in mouse bone marrow cells treated ex vivo and 0.1% in vivo via IV injection, without detectable toxicity. These results suggest that γPNAs may provide a new tool for induced gene editing based on Watson-Crick recognition without sequence restriction. PMID:25174576

  12. Single-stranded γPNAs for in vivo site-specific genome editing via Watson-Crick recognition.

    PubMed

    Bahal, Raman; Quijano, Elias; McNeer, Nicole A; Liu, Yanfeng; Bhunia, Dinesh C; Lopez-Giraldez, Francesco; Fields, Rachel J; Saltzman, William M; Ly, Danith H; Glazer, Peter M

    2014-01-01

    Triplex-forming peptide nucleic acids (PNAs) facilitate gene editing by stimulating recombination of donor DNAs within genomic DNA via site-specific formation of altered helical structures that further stimulate DNA repair. However, PNAs designed for triplex formation are sequence restricted to homopurine sites. Herein we describe a novel strategy where next generation single-stranded gamma PNAs (γPNAs) containing miniPEG substitutions at the gamma position can target genomic DNA in mouse bone marrow at mixed-sequence sites to induce targeted gene editing. In addition to enhanced binding, γPNAs confer increased solubility and improved formulation into poly(lactic-co-glycolic acid) (PLGA) nanoparticles for efficient intracellular delivery. Single-stranded γPNAs induce targeted gene editing at frequencies of 0.8% in mouse bone marrow cells treated ex vivo and 0.1% in vivo via IV injection, without detectable toxicity. These results suggest that γPNAs may provide a new tool for induced gene editing based on Watson-Crick recognition without sequence restriction.

  13. A Novel Injectable Magnesium/Calcium Sulfate Hemihydrate Composite Cement for Bone Regeneration

    PubMed Central

    2015-01-01

    Objective. A novel injectable magnesium/calcium sulfate hemihydrate (Mg/CSH) composite with improved properties was reported here. Methods. Composition, setting time, injectability, compressive strength, and bioactivity in simulated body fluid (SBF) of the Mg/CSH composite were evaluated. Furthermore, the cellular responses of canine bone marrow stromal cells (cBMSCs) and bone formation capacity after the implantation of Mg/CSH in tibia defects of canine were investigated. Results. Mg/CSH possessed a prolonged setting time and markedly improved injectability and mechanical property (p < 0.05). Mg/CSH samples showed better degradability than CSH in SBF after 21 days of soaking (p < 0.05). Moreover, the degrees of cell attachment, proliferation, and capability of osteogenic differentiation on the Mg/CSH specimens were higher than those on CSH, without significant cytotoxicity and with the increased proliferation index, ALP activity, and expression levels of integrin β1 and Coll I in cBMSCs (p < 0.05). Mg/CSH enhanced the efficiency of new bone formation at the tibia defect area, including the significantly elevated bone mineral density, bone area fraction, and Coll I expression level (p < 0.05). Conclusions. The results implied that this new injectable bone scaffold exhibited promising prospects for bone repair and had a great potential in bone tissue engineering. PMID:26114102

  14. Paracrystalline Disorder from Phosphate Ion Orientation and Substitution in Synthetic Bone Mineral

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marisa, Mary E.; Zhou, Shiliang; Melot, Brent C.

    Hydroxyapatite is an inorganic mineral closely resembling the mineral phase in bone. However, as a biological mineral, it is highly disordered, and its composition and atomistic structure remain poorly understood. Here, synchrotron X-ray total scattering and pair distribution function analysis methods provide insight into the nature of atomistic disorder in a synthetic bone mineral analogue, chemically substituted hydroxyapatite. By varying the effective hydrolysis rate and/or carbonate concentration during growth of the mineral, compounds with varied degrees of paracrystallinity are prepared. From advanced simulations constrained by the experimental pair distribution function and density functional theory, the paracrystalline disorder prevalent in thesemore » materials appears to result from accommodation of carbonate in the lattice through random displacement of the phosphate groups. Though many substitution modalities are likely to occur in concert, the most predominant substitution places carbonate into the mirror plane of an ideal phosphate site. Understanding the mineralogical imperfections of a biologically analogous hydroxyapatite is important not only to potential bone grafting applications but also to biological mineralization processes themselves.« less

  15. In vivo bone regeneration with injectable chitosan/hydroxyapatite/collagen composites and mesenchymal stem cells

    NASA Astrophysics Data System (ADS)

    Huang, Zhi; Chen, Yan; Feng, Qing-Ling; Zhao, Wei; Yu, Bo; Tian, Jing; Li, Song-Jian; Lin, Bo-Miao

    2011-09-01

    For reconstruction of irregular bone defects, injectable biomaterials are more appropriate than the preformed biomaterials. We herein develop a biomimetic in situ-forming composite consisting of chitosan (CS) and mineralized collagen fibrils (nHAC), which has a complex hierarchical structure similar to natural bone. The CS/nHAC composites with or without mesenchymal stem cells (MSCs) are injected into cancellous bone defects at the distal end of rabbit femurs. Defects are assessed by radiographic, histological diagnosis and Raman microscopy until 12 weeks. The results show that MSCs improve the biocompatibility of CS/nHAC composites and enhance new bone formation in vivo at 12 weeks. It can be concluded that the injectable CS/nHAC composites combined with MSCs may be a novel method for reconstruction of irregular bone defects.

  16. Chronic sinusitis associated with the use of unrecognized bone substitute: a case report.

    PubMed

    Beklen, Arzu; Pihakari, Antti; Rautemaa, Riina; Hietanen, Jarkko; Ali, Ahmed; Konttinen, Yrjö T

    2008-05-01

    Bone grafts are used for bone augmentation to ensure optimal implant placement. However, this procedure may sometimes cause sinusitis. The case of a 44-year-old woman with the diagnosis of recurrent and chronic sinusitis of her right maxillary sinus with a history of dental implant surgery is presented. After several attempts with normal standard sinusitis therapy, unrecognized bone substitute was removed from the sinus cavity, which finally led to resolution of the sinusitis. This case reiterates the importance of a careful examination, consultation, and second opinion for the selection of optimal treatment.

  17. Investigation of composition and structure of spongy and hard bone tissue using FTIR spectroscopy, XRD and SEM

    NASA Astrophysics Data System (ADS)

    Al-Akhras, M.-Ali H.; Hasan Qaseer, M. K.; Albiss, B. A.; Alebrhim, M. Anwar; Gezawa, Umar S.

    2018-02-01

    Valuable structural and chemical features can be obtained for spongy and hard bone by infrared spectroscopy and X-ray diffraction. A better understanding of chemical and structural differences between spongy and hard bone is a very important contributor to bone quality. Our data according to IR data showed that the collagen cross-links occurred to be higher in spongy bone, and crystallinity was lower in spongy bone. Deconvolution of the infrared band near 870 cm-1 reveals evidence for A2-type carbonate substitution on hydroxyapatite of spongy bone in addition to the A and B type carbonate substitution that are also found in hard bone. IR and XRD data confirmed the results of each other since full width at half maximum of 002-apatite pattern of XRD showed that the crystallinity was lower in spongy bone. The microstructure was examined by using scanning electron microscope and the result showed that the lattice of thin threads in spongy bone and is less dense than hard bone.

  18. Injectable hydrogels for cartilage and bone tissue engineering

    PubMed Central

    Liu, Mei; Zeng, Xin; Ma, Chao; Yi, Huan; Ali, Zeeshan; Mou, Xianbo; Li, Song; Deng, Yan; He, Nongyue

    2017-01-01

    Tissue engineering has become a promising strategy for repairing damaged cartilage and bone tissue. Among the scaffolds for tissue-engineering applications, injectable hydrogels have demonstrated great potential for use as three-dimensional cell culture scaffolds in cartilage and bone tissue engineering, owing to their high water content, similarity to the natural extracellular matrix (ECM), porous framework for cell transplantation and proliferation, minimal invasive properties, and ability to match irregular defects. In this review, we describe the selection of appropriate biomaterials and fabrication methods to prepare novel injectable hydrogels for cartilage and bone tissue engineering. In addition, the biology of cartilage and the bony ECM is also summarized. Finally, future perspectives for injectable hydrogels in cartilage and bone tissue engineering are discussed. PMID:28584674

  19. Enhanced bioactivity, biocompatibility and mechanical behavior of strontium substituted bioactive glasses.

    PubMed

    Arepalli, Sampath Kumar; Tripathi, Himanshu; Hira, Sumit Kumar; Manna, Partha Pratim; Pyare, Ram; S P Singh

    2016-12-01

    Strontium contained biomaterials have been reported as a potential bioactive material for bone regeneration, as it reduces bone resorption and stimulates bone formation. In the present investigation, the bioactive glasses were designed to partially substitute SrO for SiO2 in Na2O-CaO-SrO-P2O5-SiO2 system. This work demonstrates that the substitution of SrO for SiO2 has got significant benefit than substitution for CaO in the bioactive glass. Bioactivity was assessed by the immersion of the samples in simulated body fluid for different intervals. The formation of hydroxy carbonate apatite layer was identified by X-ray diffractometry, scanning electron microscopy (SEM) and energy dispersive spectroscopy. The elastic modulus of the bioactive glasses was measured and found to increase with increasing SrO for SiO2. The blood compatibility of the samples was evaluated. In vitro cell culture studies of the samples were performed using human osteosarcoma U2-OS cell lines and found a significant improvement in cell viability and proliferation. The investigation showed enhancement in bioactivity, mechanical and biological properties of the strontia substituted for silica in glasses. Thus, these bioactive glasses would be highly potential for bone regeneration. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Muscle changes can account for bone loss after botulinum toxin injection.

    PubMed

    Manske, Sarah L; Boyd, Steven K; Zernicke, Ronald F

    2010-12-01

    Studies to date have assumed that botulinum toxin type A (BTX) affects bone indirectly, through its action on muscle. We hypothesized that BTX has no discernable effect on bone morphometry, independent of its effect on muscle. Therefore, we investigated whether BTX had an additional effect on bone when combined with tenotomy compared to tenotomy in isolation. Female BALB/c mice (n = 73) underwent one of the following procedures in the left leg: BTX injection and Achilles tenotomy (BTX-TEN), BTX injection and sham surgery (BTX-sham), Achilles tenotomy (TEN), or sham surgery (sham). BTX groups were injected with 20 μL of BTX (1 U/100 g) in the posterior lower hindlimb. At 4 weeks, muscle cross-sectional area (MCSA) and tibial bone morphometry were assessed using micro-CT. Each treatment, other than sham, resulted in significant muscle and bone loss (P < 0.05). BTX-TEN experienced the greatest muscle loss (23-45% lower than other groups) and bone loss (20-30% lower bone volume fraction than other groups). BTX-sham had significantly lower MCSA and bone volume fraction than TEN and sham. After adjusting for differences in MCSA, there were no significant between-group differences in bone properties. We found that BTX injection resulted in more adverse muscle and bone effects than tenotomy and that effects were amplified when the procedures were combined. However, between-group differences in bone could be accounted for by MCSA. We conclude that any independent effect of BTX on bone morphometry is likely small or negligible compared with the effect on muscle.

  1. Hybrid Hydroxyapatite Nanoparticle Colloidal Gels are Injectable Fillers for Bone Tissue Engineering

    PubMed Central

    Gu, Zhen; Jamal, Syed; Detamore, Michael S.

    2013-01-01

    Injectable bone fillers have emerged as an alternative to the invasive surgery often required to treat bone defects. Current bone fillers may benefit from improvements in dynamic properties such as shear thinning during injection and recovery of material stiffness after placement. Negatively charged inorganic hydroxyapatite (HAp) nanoparticles (NPs) were assembled with positively charged organic poly(d,l-lactic-co-glycolic acid) (PLGA) NPs to create a cohesive colloidal gel. This material is held together by electrostatic forces that may be disrupted by shear to facilitate extrusion, molding, or injection. Scanning electron micrographs of the dried colloidal gels showed a well-organized, three-dimensional porous structure. Rheology tests revealed that certain colloidal gels could recover after being sheared. Human umbilical cord mesenchymal stem cells were also highly viable when seeded on the colloidal gels. HAp/PLGA NP colloidal gels offer an attractive scheme for injectable filling and regeneration of bone tissue. PMID:23815275

  2. Interventions for treating simple bone cysts in the long bones of children.

    PubMed

    Zhao, Jia-Guo; Wang, Jia; Huang, Wan-Jie; Zhang, Peng; Ding, Ning; Shang, Jian

    2017-02-04

    Simple bone cysts, also known as a unicameral bone cysts or solitary bone cysts, are the most common type of benign bone lesion in growing children. Cysts may lead to repeated pathological fracture (fracture that occurs in an area of bone weakened by a disease process). Occasionally, these fractures may result in symptomatic malunion. The main goals of treatment are to decrease the risk of pathological fracture, enhance cyst healing and resolve pain. Despite the numerous treatment methods that have been used for simple bone cysts in long bones of children, there is no consensus on the best procedure. This is an update of a Cochrane review first published in 2014. To assess the effects (benefits and harms) of interventions for treating simple bone cysts in the long bones of children, including adolescents.We intended the following main comparisons: invasive (e.g. injections, curettage, surgical fixation) versus non-invasive interventions (e.g. observation, plaster cast, restricted activity); different categories of invasive interventions (i.e. injections, curettage, drilling holes and decompression, surgical fixation and continued decompression); different variations of each category of invasive intervention (e.g. different injection substances: autologous bone marrow versus steroid). We searched the Cochrane Bone, Joint and Muscle Trauma Group Specialised Register, the Cochrane Central Register of Controlled Trials, MEDLINE, Embase, the China National Knowledge Infrastructure Platform, trial registers, conference proceedings and reference lists. Date of last search: April 2016. Randomised and quasi-randomised controlled trials evaluating methods for treating simple bone cysts in the long bones of children. Two review authors independently screened search results and performed study selection. We resolved differences in opinion between review authors by discussion and by consulting a third review author. Two review authors independently assessed risk of bias and data extraction. We summarised data using risk ratios (RRs) or mean differences (MDs), as appropriate, and 95% confidence intervals (CIs). We used the Grading of Recommendations Assessment, Development, and Evaluation (GRADE) system to assess the overall quality of the evidence. In this update in 2017, we did not identify any new randomised controlled trials (RCT) for inclusion. We identified one ongoing trial that we are likely to include in a future update. Accordingly, our results are unchanged. The only included trial is a multicentre RCT conducted at 24 locations in North America and India that compared bone marrow injection with steroid (methylprednisolone acetate) injection for treating simple bone cysts. Up to three injections were planned for participants in each group. The trial involved 90 children (mean age 9.5 years) and presented results for 77 children at two-year follow-up. Although the trial had secure allocation concealment, it was at high risk of performance bias and from major imbalances in baseline characteristics. Reflecting these study limitations, we downgraded the quality of evidence by two levels to 'low' for most outcomes, meaning that we are unsure about the estimates of effect. For outcomes where there was serious imprecision, we downgraded the quality of evidence by a further level to 'very low'.The trial provided very low quality evidence that fewer children in the bone marrow injection group had radiographically assessed healing of bone cysts at two years than in the steroid injection group (9/39 versus 16/38; RR 0.55 favouring steroid injection, 95% CI 0.28 to 1.09). However, the result was uncertain and may be compatible with no difference or small benefit favouring bone marrow injection. Based on an illustrative success rate of 421 children with healed bone cysts per 1000 children treated with steroid injections, this equates to 189 fewer (95% CI 303 fewer to 38 more) children with healed bone cysts per 1000 children treated with bone marrow injections. There was low quality evidence of a lack of difference between the two interventions at two years in functional outcome, based on the Activity Scale for Kids function score (0 to 100; higher scores equate to better outcome: MD -0.90; 95% CI -4.26 to 2.46) or in pain assessed using the Oucher pain score. There was very low quality evidence of a lack of differences between the two interventions for adverse events: subsequent pathological fracture (9/39 versus 11/38; RR 0.80, 95% CI 0.37 to 1.70) or superficial infection (two cases in the bone marrow group). Recurrence of bone cyst, unacceptable malunion, return to normal activities, and participant satisfaction were not reported. The available evidence is insufficient to determine the relative effects of bone marrow versus steroid injections, although the bone marrow injections are more invasive. Noteably, the rate of radiographically assessed healing of the bone cyst at two years was well under 50% for both interventions. Overall, there is a lack of evidence to determine the best method for treating simple bone cysts in the long bones of children. Further RCTs of sufficient size and quality are needed to guide clinical practice.

  3. Decreased bone mineral density in experimental myasthenia gravis in C57BL/6 mice.

    PubMed

    Oshima, Minako; Iida-Klein, Akiko; Maruta, Takahiro; Deitiker, Philip R; Atassi, M Zouhair

    2017-09-01

    Experimental autoimmune myasthenia gravis (EAMG), an animal model of myasthenia gravis (MG), can be induced in C57BL/6 (B6, H-2  b ) mice by 2-3 injections with Torpedo californica AChR (tAChR) in complete Freund's adjuvant. Some EAMG mice exhibit weight loss with muscle weakness. The loss in body weight, which is closely associated with bone structure, is particularly evident in EAMG mice with severe muscle weakness. However, the relationship between muscle weakness and bone loss in EAMG has not been studied before. Recent investigations on bone have shed light on association of bone health and immunological states. It is possible that muscle weakness in EAMG developed by anti-tAChR immune responses might accompany bone loss. We determined whether reduced muscle strength associates with decreased bone mineral density (BMD) in EAMG mice. EAMG was induced by two injections at 4-week interval of tAChR and adjuvants in two different age groups. The first tAChR injection was either at age 8 weeks or at 15 weeks. We measured BMD at three skeletal sites, including femur, tibia, and lumbar vertebrae, using dual energy X-ray absorptiometry. Among these bone areas, femur of EAMG mice in both age groups showed a significant decrease in BMD compared to control adjuvant-injected and to non-immunized mice. Reduction in BMD in induced EAMG at a later-age appears to parallel the severity of the disease. The results indicate that anti-tAChR autoimmune response alone can reduce bone density in EAMG mice. BMD reduction was also observed in adjuvant-injected mice in comparison to normal un-injected mice, suggesting that BMD decrease can occur even when muscle activity is normal. Decreased BMD observed in both tAChR-injected and adjuvant-injected mice groups were discussed in relation to innate immunity and bone-related immunology involving activated T cells and tumour necrosis factor-related cytokines that trigger osteoclastogenesis and bone loss.

  4. Experimental analysis of insertion torques and forces of threaded and press-fit acetabular cups by means of ex vivo and in vivo measurements.

    PubMed

    Vogel, Danny; Rathay, Andreas; Teufel, Stephanie; Ellenrieder, Martin; Zietz, Carmen; Sander, Manuela; Bader, Rainer

    2017-01-01

    In THA a sufficient primary implant stability is the precondition for successful secondary stability. Industrial foams of different densities have been used for primary stability investigations. The aim of this study was to analyse and compare the insertion behaviour of threaded and press-fit cups in vivo and ex vivo using bone substitutes with various densities. Two threaded (Bicon Plus®, Trident® TC) and one press-fit cup (Trident PSL®) were inserted by orthopaedic surgeons (S1, S2) into 10, 20 and 31 pcf blocks, using modified surgical instruments allowing measurements of the insertion forces and torques. Furthermore, the insertion behaviour of two cups were analysed intraoperatively. Torques for the threaded cups increased while bone substitute density increased. Maximum insertion torques were observed for S2 with 102 Nm for the Bicon Plus® in 20 pcf blocks and 77 Nm for the Trident® TC in 31 pcf blocks, which compares to the in vivo measurement (85 Nm). The average insertion forces for the press-fit cup varied from 5.2 to 6.8 kN (S1) and 7.2-11.5 kN (S2) ex vivo. Intraoperatively an average insertion force of 8.0 kN was determined. Implantation behaviour was influenced by acetabular cup design, bone substitute and experience of the surgeon. No specific density of bone substitute could be favoured for ex vivo investigations on the implantation behaviour of acetabular cups. The use synthetic bone blocks of high density (31 pcf) led to problems regarding cup orientation and seating. Therefore, bone substitutes used should be critically scrutinized in terms of the comparability to the in vivo situation.

  5. Hydroxyapatite crystals as a bone graft substitute in benign lytic lesions of bone

    PubMed Central

    Gupta, Anil Kumar; Kumar, Praganesh; Keshav, Kumar; Singh, Anant

    2015-01-01

    Background: Bone grafts are required to fill a cavity created after curettage of benign lytic lesions of the bone. To avoid the problems associated at donor site with autologous bone graft, we require allograft or bone graft substitutes. We evaluated the healing of lytic lesions after hydroxyapatite (HA) grafting by serial radiographs. Materials and Methods: Forty cases of benign lytic lesions of bone were managed by simple curettage and grafting using HA blocks. Commercially available HA of bovine origin (Surgiwear Ltd., Shahjahanpur, India) was used for this purpose. Mean duration of followup was 34.8 months (range 12–84 months). Mean patient age was 19.05 years (range 3–55 years). Radiological staging of graft incorporation was done as per criteria of Irwin et al. 2001. Results: In our series, two cases were in stage I. A total of 11 cases were in stage II and 27 were in stage III. Graft incorporation was radiologically complete by 15 months. Clinical recovery was observed before radiological healing. The average time taken to return to preoperative function was 3 months. Recurrence was observed in giant cell tumor (n = 3) and chondromyxoid fibroma (n = 1). There was no incidence of graft rejection, collapse, growth plate disturbances or antigenic response. Conclusions: We conclude that calcium HA is biologically acceptable bone graft substitute in the management of benign lytic lesions of bone. PMID:26806973

  6. Liquid nitrogen-treated autogenous dentin as bone substitute: an experimental study in a rabbit model.

    PubMed

    Atiya, Basim K; Shanmuhasuntharam, Palasuntharam; Huat, Siar; Abdulrazzak, Shurooq; Oon, Ha

    2014-01-01

    Different forms of dentin, including untreated, undemineralized, demineralized, boiled, or mixed with other materials, have been evaluated for efficacy as bone substitutes. However, the effects of application of liquid nitrogen-treated dentin for bone grafting remain unknown. The objective of this study was to chronologically evaluate bone healing following grafting with liquid nitrogen-treated dentin in a rabbit model. Autogenous dentin treated with liquid nitrogen at -196°C for 20 minutes was used. In 16 New Zealand White rabbits, a bone defect (5 mm in diameter) was created in each femur and randomly grafted with either autogenous dentin (experimental group) or autogenous bone grafts (positive control). In another four rabbits (negative control), a similar defect in each femur was left empty. The rabbits were sacrificed at 2, 4, 8, and 12 weeks. Explants of grafted sites were harvested for histologic and histomorphometric analysis. At 2 and 4 weeks in both the experimental and positive control groups, accelerated formation of new bone was observed, which was undergoing remodeling at 8 and 12 weeks. The mean new bone score was higher in the experimental than in the negative control groups, but this was not statistically significant. The present results demonstrated that liquid nitrogen-treated autogenous dentin has both osteoconductive and osteoinductive properties and therefore has potential as a bone substitute.

  7. Hepatic Osteodystrophy: The Mechanism of Bone Loss in Hepatocellular Disease and the Effects of Pamidronate Treatment

    PubMed Central

    Spirlandeli, Adriano L.; Dick-de-Paula, Ingrid; Zamarioli, Ariane; Jorgetti, Vanda; Ramalho, Leandra N.Z.; Nogueira-Barbosa, Marcello H.; Volpon, Jose B.; Jordão, Alceu A.; Cunha, Fernando Q.; Fukada, Sandra Y.; de Paula, Francisco J.A.

    2017-01-01

    OBJECTIVES: The present study was designed to evaluate the bone phenotypes and mechanisms involved in bone disorders associated with hepatic osteodystrophy. Hepatocellular disease was induced by carbon tetrachloride (CCl4). In addition, the effects of disodium pamidronate on bone tissue were evaluated. METHODS: The study included 4 groups of 15 mice: a) C = mice subjected to vehicle injections; b) C+P = mice subjected to vehicle and pamidronate injections; c) CCl4+V = mice subjected to CCl4 and vehicle injections; and d) CCl4+P = mice subjected to CCl4 and pamidronate injections. CCl4 or vehicle was administered for 8 weeks, while pamidronate or vehicle was injected at the end of the fourth week. Bone histomorphometry and biomechanical analysis were performed in tibiae, while femora were used for micro-computed tomography and gene expression. RESULTS: CCl4 mice exhibited decreased bone volume/trabecular volume and trabecular numbers, as well as increased trabecular separation, as determined by bone histomorphometry and micro-computed tomography, but these changes were not detected in the group treated with pamidronate. CCl4 mice showed increased numbers of osteoclasts and resorption surface. High serum levels of receptor activator of nuclear factor-κB ligand and the increased expression of tartrate-resistant acid phosphatase in the bones of CCl4 mice supported the enhancement of bone resorption in these mice. CONCLUSION: Taken together, these results suggest that bone resorption is the main mechanism of bone loss in chronic hepatocellular disease in mice. PMID:28492723

  8. Hepatic Osteodystrophy: The Mechanism of Bone Loss in Hepatocellular Disease and the Effects of Pamidronate Treatment.

    PubMed

    Spirlandeli, Adriano L; Dick-de-Paula, Ingrid; Zamarioli, Ariane; Jorgetti, Vanda; Ramalho, Leandra N Z; Nogueira-Barbosa, Marcello H; Volpon, Jose B; Jordão, Alceu A; Cunha, Fernando Q; Fukada, Sandra Y; de Paula, Francisco J A

    2017-04-01

    The present study was designed to evaluate the bone phenotypes and mechanisms involved in bone disorders associated with hepatic osteodystrophy. Hepatocellular disease was induced by carbon tetrachloride (CCl4). In addition, the effects of disodium pamidronate on bone tissue were evaluated. The study included 4 groups of 15 mice: a) C = mice subjected to vehicle injections; b) C+P = mice subjected to vehicle and pamidronate injections; c) CCl4+V = mice subjected to CCl4 and vehicle injections; and d) CCl4+P = mice subjected to CCl4 and pamidronate injections. CCl4 or vehicle was administered for 8 weeks, while pamidronate or vehicle was injected at the end of the fourth week. Bone histomorphometry and biomechanical analysis were performed in tibiae, while femora were used for micro-computed tomography and gene expression. CCl4 mice exhibited decreased bone volume/trabecular volume and trabecular numbers, as well as increased trabecular separation, as determined by bone histomorphometry and micro-computed tomography, but these changes were not detected in the group treated with pamidronate. CCl4 mice showed increased numbers of osteoclasts and resorption surface. High serum levels of receptor activator of nuclear factor-κB ligand and the increased expression of tartrate-resistant acid phosphatase in the bones of CCl4 mice supported the enhancement of bone resorption in these mice. Taken together, these results suggest that bone resorption is the main mechanism of bone loss in chronic hepatocellular disease in mice.

  9. Optimising implant anchorage (augmentation) during fixation of osteoporotic fractures: is there a role for bone-graft substitutes?

    PubMed

    Larsson, Sune; Procter, Philip

    2011-09-01

    When stabilising a fracture the contact between the screw and the surrounding bone is crucial for mechanical strength. Through development of screws with new thread designs, as well as optimisation of other properties, improved screw purchase has been gained. Other alternatives to improve screw fixation in osteoporotic bone, as well as normal bone if needed, includes the use of various coatings on the screw that will induce a bonding between the implant surface and the bone implant, as well as application of drugs such as bisphosphonates locally in the screw hole to induce improved screw anchorage through their anticatabolic effect on the bone tissue. As failure of internal fixation of fractures in osteoporotic bone typically occurs through breakage of the bone that surrounds the implant, rather than the implant itself, an alternative strategy in osteoporotic bone can include augmentation of the bone around the screw. This is useful when screws alone are being used for fixation, as it will increase pull-out resistance, but also when conventional plates and screws are used. In angularly stable plate-screw systems, screw back-out is not a problem if the locking mechanism between the screws and the plate works. However, augmentation that will strengthen the bone around the screws can also be useful in conjunction with angle-stable plate-screw systems, as the augmentation will provide valuable support when subjected to loading that might cause cut-out. For many years conventional bone cement, polymethylmethacrylate (PMMA), has been used for augmentation, but due to side effects--including great difficulties if removal becomes necessary--the use of PMMA has never gained wide acceptance. With the introduction of bone substitutes, such as calcium phosphate cement, it has been shown that augmentation around screws can be achieved without the drawbacks seen with PMMA. When dealing with fixation of fractures in osteoporotic bone where screw stability might be inadequate, it therefore seems an attractive option to include bone substitutes for augmentation around screws as part of the armamentarium. Clinical studies now are needed to determine the indications in which bone augmentation with bone-graft substitutes (BGSs) would merit clinical usage. Copyright © 2011. Published by Elsevier Ltd.

  10. Pathologic fracture through a unicameral bone cyst of the pelvis: CT-guided percutaneous curettage, biopsy, and bone matrix injection.

    PubMed

    Tynan, Jennifer R; Schachar, Norman S; Marshall, Geoffrey B; Gray, Robin R

    2005-02-01

    Unicameral bone cysts of the pelvis are extremely rare. A 19-year old man presented with a pathologic fracture through a pelvic unicameral bone cyst. He was treated with computed tomography-guided percutaneous curettage, biopsy, and demineralized bone matrix injection. Treatment has proven successful in short-term follow-up.

  11. Risk assessment of bovine spongiform encephalopathy transmission through bone graft material derived from bovine bone used for dental applications.

    PubMed

    Sogal, A; Tofe, A J

    1999-09-01

    Several commercial products are currently available for clinical application as bone graft substitutes. These products can be broadly classified into two categories: synthetic and natural. Bovine bone is a popular source for several of the natural bone substitutes. The availability of bovine derived xenogenic bone substitutes has made it possible to avoid traumatic and expensive secondary surgery to obtain autogenous bone once thought essential for effective bone replacement. While autogenous bone still remains the undisputed "gold standard" in bone grafting, the realization that bone requirement in several clinical applications is as effectively met by xenografts has lead to their widespread use. But the convenience of using xenografts is tempered by the possibility of disease transmission from cattle to humans. The recent incidents of bovine spongiform encephalopathies (BSE) in humans have underscored this likelihood. In this paper, we report a risk analysis performed to assess the possibility of such disease transmission from a commercially available bone graft substitute (BGS) that is popularly used in clinical dentistry. An extensive review of current literature on the status of risk assessment of BSE transmission was conducted, and two risk assessment models were identified as applicable to the present study. Risk assessment models developed by the German Federal Ministry of Health and by the Pharmaceutical Research and Manufacturers Association of America were applied to BGS. Results from the analyses conducted using both models showed that the risk of disease (BSE) transmission from BGS was negligible and could be attributed to the stringent protocols followed in sourcing and processing of the raw bovine bone used in the commercial product. Based on the risk analysis, it is evident that the risk of BSE infection from BGS is several orders of magnitude less than that posed by the risk of death related to, lightning, tornadoes, or similar remote events. However, this low risk can only be maintained as long as an effective and active risk management program is implemented in operations that involve processing xenogenic tissue for human use.

  12. An Injectable Glass Polyalkenoate Cement Engineered for Fracture Fixation and Stabilization

    PubMed Central

    Peel, Sean A. F.; Towler, Mark R.

    2017-01-01

    Glass polyalkenoate cements (GPCs) have potential as bio-adhesives due to their ease of application, appropriate mechanical properties, radiopacity and chemical adhesion to bone. Aluminium (Al)-free GPCs have been discussed in the literature, but have proven difficult to balance injectability with mechanical integrity. For example, zinc-based, Al-free GPCs reported compressive strengths of 63 MPa, but set in under 2 min. Here, the authors design injectable GPCs (IGPCs) based on zinc-containing, Al-free silicate compositions containing GeO2, substituted for ZnO at 3% increments through the series. The setting reactions, injectability and mechanical properties of these GPCs were evaluated using both a hand-mix (h) technique, using a spatula for sample preparation and application and an injection (i) technique, using a 16-gauge needle, post mixing, for application. GPCs ability to act as a carrier for bovine serum albumin (BSA) was also evaluated. Germanium (Ge) and BSA containing IGPCs were produced and reported to have working times between 26 and 44 min and setting times between 37 and 55 min; the extended handling properties being as a result of less Ge. The incorporation of BSA into the cement had no effect on the handling and mechanical properties, but the latter were found to have increased compression strength with the addition of Ge from between 27 and 37 MPa after 30 days maturation. PMID:28678157

  13. [Current treatment situation and progress on bone defect of collapsed tibial plateau fractures].

    PubMed

    Luo, Chang-qi; Fang, Yue; Tu, Chong-qi; Yang, Tian-fu

    2016-02-01

    Characteristics of collapsed tibial plateau fracture determines that the joint surface must remain anatomical reduction,line of force in tibial must exist and internal fixation must be strong. However, while renewing articular surface smoothness, surgeons have a lot of problems in dealing with bone defect under the joint surface. Current materials used for bone defect treatment include three categories: autologous bone, allograft bone and bone substitutes. Some scholars think that autologous bone grafts have a number of drawbacks, such as increasing trauma, prolonged operation time, the limited source, bone area bleeding,continuous pain, local infection and anesthesia,but most scholars believe that the autologous cancellous bone graft is still the golden standard. Allograft bone has the ability of bone conduction, but the existence of immune responses, the possibility of a virus infection, and the limited source of the allograft cannot meet the clinical demands. Likewise, bone substitutes have the problem that osteogenesis does not match with degradation in rates. Clinical doctors can meet the demand of the patient's bone graft according to patient's own situation and economic conditions.

  14. Cellular and Matrix Response of the Mandibular Condylar Cartilage to Botulinum Toxin

    PubMed Central

    Dutra, Eliane H.; O’ Brien, Mara H.; Lima, Alexandro; Kalajzic, Zana; Tadinada, Aditya; Nanda, Ravindra; Yadav, Sumit

    2016-01-01

    Objectives To evaluate the cellular and matrix effects of botulinum toxin type A (Botox) on mandibular condylar cartilage (MCC) and subchondral bone. Materials and Methods Botox (0.3 unit) was injected into the right masseter of 5-week-old transgenic mice (Col10a1-RFPcherry) at day 1. Left side masseter was used as intra-animal control. The following bone labels were intraperitoneally injected: calcein at day 7, alizarin red at day 14 and calcein at day 21. In addition, EdU was injected 48 and 24 hours before sacrifice. Mice were sacrificed 30 days after Botox injection. Experimental and control side mandibles were dissected and examined by x-ray imaging and micro-CT. Subsequently, MCC along with the subchondral bone was sectioned and stained with tartrate resistant acid phosphatase (TRAP), EdU, TUNEL, alkaline phosphatase, toluidine blue and safranin O. In addition, we performed immunohistochemistry for pSMAD and VEGF. Results Bone volume fraction, tissue density and trabecular thickness were significantly decreased on the right side of the subchondral bone and mineralized cartilage (Botox was injected) when compared to the left side. There was no significant difference in the mandibular length and condylar head length; however, the condylar width was significantly decreased after Botox injection. Our histology showed decreased numbers of Col10a1 expressing cells, decreased cell proliferation and increased cell apoptosis in the subchondral bone and mandibular condylar cartilage, decreased TRAP activity and mineralization of Botox injected side cartilage and subchondral bone. Furthermore, we observed reduced proteoglycan and glycosaminoglycan distribution and decreased expression of pSMAD 1/5/8 and VEGF in the MCC of the Botox injected side in comparison to control side. Conclusion Injection of Botox in masseter muscle leads to decreased mineralization and matrix deposition, reduced chondrocyte proliferation and differentiation and increased cell apoptosis in the MCC and subchondral bone. PMID:27723812

  15. SU-C-213-01: 3D Printed Patient Specific Phantom Composed of Bone and Soft Tissue Substitute Plastics for Radiation Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ehler, E; Sterling, D; Higgins, P

    Purpose: 3D printed phantoms constructed of multiple tissue approximating materials could be useful in both clinical and research aspects of radiotherapy. This work describes a 3D printed phantom constructed with tissue substitute plastics for both bone and soft tissue; air cavities were included as well. Methods: 3D models of an anonymized nasopharynx patient were generated for air cavities, soft tissues, and bone, which were segmented by Hounsfield Unit (HU) thresholds. HU thresholds were chosen to define air-to-soft tissue boundaries of 0.65 g/cc and soft tissue-to-bone boundaries of 1.18 g/cc based on clinical HU to density tables. After evaluation of severalmore » composite plastics, a bone tissue substitute was identified as an acceptable material for typical radiotherapy x-ray energies, composed of iron and PLA plastic. PET plastic was determined to be an acceptable soft tissue substitute. 3D printing was performed on a consumer grade dual extrusion fused deposition model 3D printer. Results: MVCT scans of the 3D printed heterogeneous phantom were acquired. Rigid image registration of the patient and the 3D printed phantom scans was performed. The average physical density of the soft tissue and bone regions was 1.02 ± 0.08 g/cc and 1.39 ± 0.14 g/cc, respectively, for the patient kVCT scan. In the 3D printed phantom MVCT scan, the average density of the soft tissue and bone was 1.01 ± 0.09 g/cc and 1.44 ± 0.12 g/cc, respectively. Conclusion: A patient specific phantom, constructed of heterogeneous tissue substitute materials was constructed by 3D printing. MVCT of the 3D printed phantom showed realistic tissue densities were recreated by the 3D printing materials. Funding provided by intra-department grant by University of Minnesota Department of Radiation Oncology.« less

  16. Purification processes of xenogeneic bone substitutes and their impact on tissue reactions and regeneration.

    PubMed

    Perić Kačarević, Zeljka; Kavehei, Faraz; Houshmand, Alireza; Franke, Jörg; Smeets, Ralf; Rimashevskiy, Denis; Wenisch, Sabine; Schnettler, Reinhard; Jung, Ole; Barbeck, Mike

    2018-04-01

    Xenogeneic bone substitute materials are widely used in oral implantology. Prior to their clinical use, purification of the former bone tissue has to be conducted to ensure the removal of immunogenic components and pathogens. Different physicochemical methods are applied for purification of the donor tissue, and temperature treatment is one of these methods. Differences in these methods and especially the application of different temperatures for purification may lead to different material characteristics, which may influence the tissue reactions to these materials and the related (bone) healing process. However, little is known about the different material characteristics and their influences on the healing process. Thus, the aim of this mini-review is to summarize the preparation processes and the related material characteristics, safety aspects, tissue reactions, resorbability and preclinical and clinical data of two widely used xenogeneic bone substitutes that mainly differ in the temperature treatment: sintered (cerabone ® ) and non-sintered (Bio-Oss ® ) bovine-bone materials. Based on the summarized data from the literature, a connection between the material-induced tissue reactions and the consequences for the healing processes are presented with the aim of translation into their clinical application.

  17. Socket Preservation Using a Biomimetic Nanostructured Matrix and Atraumatic Surgical Extraction Technique.

    PubMed

    Mozzati, Marco; Gallesio, Giorgia; Staiti, Giorgio; Iezzi, Giovanna; Piattelli, Adriano; Mortellaro, Carmen

    2017-06-01

    The aim of the present study was to evaluate the efficacy of biomimetic composite bone substitute composed of equine collagen I and Mg-hydroxyapatite in improving socket preservation after tooth extraction in humans. Thirty-two patients were subjected to a single tooth extraction, performed without elevation of the full-thickness flap. In each patient, socket was grafted with the bone substitute and specimens were retrieved 2 months after surgery and processed for histological observations. The clinical outcome variables were healing index, visual analog score for pain, postsurgery complications, and patient satisfaction evaluated through a questionnaire. No adverse reaction or infection occurred, in which healing index averaged 5.8 (range 4-7). Pain scores were lower. The patients' questionnaire outcomes were unanimously in favor of the test treatment. At low-power magnification, it was possible to see a portion of native bone with small marrow spaces and many areas of bone remodeling. At high-power magnification, it could be observed that small newly formed trabeculae originated from the preexisting bone and bone spicules in the middle of the defect. Grafting the postextraction socket with composite bone substitute may improve the healing process by accelerating socket closure and tissue maturation. Such a product demonstrated excellent biocompatibility as no inflammatory reaction could be detected histologically and was well accepted by patients.

  18. Bone regeneration in the presence of a synthetic hydroxyapatite/silica oxide-based and a xenogenic hydroxyapatite-based bone substitute material.

    PubMed

    Kruse, A; Jung, R E; Nicholls, F; Zwahlen, R A; Hämmerle, C H F; Weber, F E

    2011-05-01

    A comparison of synthetic hydroxyapatite/silica oxide, xenogenic hydroxyapatite-based bone substitute materials with empty control sites in terms of bone regeneration enhancement in a rabbit calvarial four non-critical-sized defect model. In each of six rabbits, four bicortical calvarial bone defects were generated. The following four treatment modalities were randomly allocated: (1) empty control site, (2) synthetic hydroxyapatite/silica oxide-based (HA/SiO) test granules, (3) xenogenic hydroxyapatite -based granules, (4) synthetic hydroxyapatite/silica oxide -based (HA/SiO) test two granules. The results of the latter granules have not been reported due to their size being three times bigger than the other two granule types. After 4 weeks, the animals were sacrificed and un-decalcified sections were obtained for histological analyses. For statistical analysis, the Kruskal-Wallis test was applied (P<0.05). Histomorphometric analysis showed an average area fraction of newly formed bone of 12.32±10.36% for the empty control, 17.47±6.42% for the xenogenic hydroxyapatite -based granules group, and 21.2±5.32% for the group treated with synthetic hydroxyapatite/silica oxide -based granules. Based on the middle section, newly formed bone bridged the defect to 38.33±37.55% in the empty control group, 54.33±22.12% in the xenogenic hydroxyapatite -based granules group, and to 79±13.31% in the synthetic hydroxyapatite/silica oxide -based granules group. The bone-to-bone substitute contact was 46.38±18.98% for the xenogenic and 59.86±14.92% for the synthetic hydroxyapatite/silica oxide-based granules group. No significant difference in terms of bone formation and defect bridging could be detected between the two bone substitute materials or the empty defect. There is evidence that the synthetic hydroxyapatite/silica oxide granules provide comparable results with a standard xenogenic bovine mineral in terms of bone formation and defect bridging in non-critical size defects. © 2010 John Wiley & Sons A/S.

  19. Histomorphometric evaluation of a calcium-phosphosilicate putty bone substitute in extraction sockets.

    PubMed

    Kotsakis, Georgios A; Joachim, Frederic P C; Saroff, Stephen A; Mahesh, Lanka; Prasad, Hari; Rohrer, Michael D

    2014-01-01

    The objective of this study was to evaluate bone regeneration in 24 sockets grafted with a calcium phosphosilicate putty alloplastic bone substitute. A core was obtained from 17 sockets prior to implant placement for histomorphometry at 5 to 6 months postextraction. Radiographic analysis during the same postextraction healing period showed radiopaque tissue in all sockets. Histomorphometric analysis revealed a mean vital bone content of 31.76% (± 14.20%) and residual graft content of 11.47% (± 8.99%) after a mean healing period of 5.7 months. The high percentage of vital bone in the healed sites in combination with its timely absorption rate suggest that calcium phosphosilicate putty can be a reliable choice for osseous regeneration in extraction sockets.

  20. [Osteoconductive behaviour of beta-tricalcium phosphate ceramics in osteoporotic, metaphyseal bone defects of the distal radius].

    PubMed

    Hainich, J; von Rechenberg, B; Jakubietz, R G; Jakubietz, M G; Giovanoli, P; Grünert, J G

    2014-02-01

    Surgical treatment of osteoporotic distal radius fractures with locking plates does not completely prevent loss of reduction. Additional bone deficit stabilisation with the use of bone substitute materials is receiving increased attention. Most knowledge on the in vivo behavior of bone substitutes originates from a small number of animal models after its implantation in young, good vascularized bone. This paper investigates the osteoconductivity, resorption and biocompatibility of beta-tricalcium phosphate as a temporary bone replacement in osteoporotic type distal radius fractures. 15 bone samples taken from the augmented area of the distal radius of elderly people during metal removal were examined. The material was found to be osteoconductive, good degradable, and biocompatible. Degrading process and remodelling to woven bone seem to require more time than in available comparative bioassays. The material is suitable for temporary replacement of lost, distal radius bone from the histological point of view. © Georg Thieme Verlag KG Stuttgart · New York.

  1. Development of high strength hydroxyapatite for bone tissue regeneration using nanobioactive glass composites

    NASA Astrophysics Data System (ADS)

    Shrivastava, Pragya; Dalai, Sridhar; Sudera, Prerna; Sivam, Santosh Param; Vijayalakshmi, S.; Sharma, Pratibha

    2013-02-01

    With an increasing demand of biocompatible bone substitutes for the treatment of bone diseases and bone tissue regeneration, bioactive glass composites are being tested to improvise the osteoconductive as well as osteoinductive properties. Nanobioactive glass (nBG) composites, having composition of SiO2 70 mol%, CaO 26 mol % and P2O5 4 mol% were prepared by Freeze drying method using PEG-PPG-PEG co-polymer. Polymer addition improves the mechanical strength and porosity of the scaffold of nBG. Nano Bioactive glass composites upon implantation undergo specific reactions leading to the formation of crystalline hydroxyapatite (HA). This is tested in vitro using Simulated Body Fluid (SBF). This high strength hydroxyapatite (HA) layer acts as osteoconductive in cellular environment, by acting as mineral base of bones, onto which new bone cells proliferate leading to new bone formation. Strength of the nBG composites as well as HA is in the range of cortical and cancellous bone, thus proving significant for bone tissue regeneration substitutes.

  2. Achieving interconnected pore architecture in injectable PolyHIPEs for bone tissue engineering.

    PubMed

    Robinson, Jennifer L; Moglia, Robert S; Stuebben, Melissa C; McEnery, Madison A P; Cosgriff-Hernandez, Elizabeth

    2014-03-01

    Template polymerization of a high internal phase emulsion (polyHIPE) is a relatively new method to produce tunable high-porosity scaffolds for tissue regeneration. This study focuses on the development of biodegradable injectable polyHIPEs with interconnected porosity that have the potential to fill bone defects and enhance healing. Our laboratory previously fabricated biodegradable polyHIPEs that cure in situ upon injection; however, these scaffolds possessed a closed-pore morphology, which could limit bone ingrowth. To address this issue, HIPEs were fabricated with a radical initiator dissolved in the organic phase rather than the aqueous phase of the emulsion. Organic-phase initiation resulted in macromer densification forces that facilitated pore opening during cure. Compressive modulus and strength of the polyHIPEs were found to increase over 2 weeks to 43±12 MPa and 3±0.2 MPa, respectively, properties comparable to cancellous bone. The viscosity of the HIPE before cure (11.0±2.3 Pa·s) allowed for injection and filling of the bone defect, retention at the defect site during cure under water, and microscale integration of the graft with the bone. Precuring the materials before injection allowed for tuning of the work and set times. Furthermore, storage of the HIPEs before cure for 1 week at 4°C had a negligible effect on pore architecture after injection and cure. These findings indicate the potential of these emulsions to be stored at reduced temperatures and thawed in the surgical suite before injection. Overall, this work highlights the potential of interconnected propylene fumarate dimethacrylate polyHIPEs as injectable scaffolds for bone tissue engineering.

  3. Can we improve fixation and outcomes? Use of bone substitutes.

    PubMed

    Moroni, Antonio; Larsson, Sune; Hoang Kim, Amy; Gelsomini, Letizia; Giannoudis, Peter V

    2009-07-01

    Hip fractures secondary to osteoporosis are common in the elderly. Stabilizing these fractures until union is achieved is a challenge due to poor bone stock and insufficient purchase of the implant to the bone. The reported high rate of complications has prompted extensive research in the development of fixation techniques. Furthermore, manipulation of both the local fracture environment in terms of application of growth factors, scaffolds, and mesenchymal cells and the systemic administration of agents promoting bone formation and bone strength has been considered as a treatment option with promising results. There are only a few evidence-based studies reporting on fixation augmentation techniques. This article reports on the efficacy of bone graft substitutes for the fixation of hip fractures, in particular calcium phosphates, which have been used as granules, cements, and implant coatings.

  4. Coralline hydroxyapatite bone graft substitutes.

    PubMed

    Elsinger, E C; Leal, L

    1996-01-01

    The authors present a review of the various bone grafts currently available with special attention to coral bone grafts. Several of the benefits of coralline hydroxyapatite bone graft substitutes, such as safety and biocompatibility, will be addressed in this article, part of an ongoing investigation of coral bone grafts used in triple arthrodesis procedures. To date, eight cases have been performed. In seven cases, granular chips were employed to pack the subtalar joint. The final case, presented in this article, represents a 26-year-old male who, 2 years previously, sustained a calcaneal fracture with resultant shortening along the lateral column. A coralline hydroxyapatite block was used at the calcaneocuboid joint to achieve distraction. Clinically, the patient is progressing well at 10 months postoperatively. Radiographically, one can still clearly appreciate the margins of the bone graft at 5 months.

  5. Nanoparticles of cobalt-substituted hydroxyapatite in regeneration of mandibular osteoporotic bones.

    PubMed

    Ignjatović, Nenad; Ajduković, Zorica; Savić, Vojin; Najman, Stevo; Mihailović, Dragan; Vasiljević, Perica; Stojanović, Zoran; Uskoković, Vuk; Uskoković, Dragan

    2013-02-01

    Indications exist that paramagnetic calcium phosphates may be able to promote regeneration of bone faster than their regular, diamagnetic counterparts. In this study, analyzed was the influence of paramagnetic cobalt-substituted hydroxyapatite nanoparticles on osteoporotic alveolar bone regeneration in rats. Simultaneously, biocompatibility of the material was tested in vitro, on osteoblastic MC3T3-E1 and epithelial Caco-2 cells in culture. The material was shown to be biocompatible and nontoxic when added to epithelial monolayers in vitro, while it caused a substantial decrease in the cell viability as well as deformation of the cytoskeleton and cell morphology when incubated with the osteoblastic cells. In the course of 6 months after the implantation of the material containing different amounts of cobalt, ranging from 5 to 12 wt%, in the osteoporotic alveolar bone of the lower jaw, the following parameters were investigated: histopathological parameters, alkaline phosphatase and alveolar bone density. The best result in terms of osteoporotic bone tissue regeneration was observed for hydroxyapatite nanoparticles with the largest content of cobalt ions. The histological analysis showed a high level of reparatory ability of the nanoparticulate material implanted in the bone defect, paralleled by a corresponding increase in the alveolar bone density. The combined effect of growth factors from autologous plasma admixed to cobalt-substituted hydroxyapatite was furthermore shown to have a crucial effect on the augmented osteoporotic bone regeneration upon the implantation of the biomaterial investigated in this study.

  6. Nanoparticles of cobalt-substituted hydroxyapatite in regeneration of mandibular osteoporotic bones

    PubMed Central

    Ignjatović, Nenad; Ajduković, Zorica; Savić, Vojin; Najman, Stevo; Mihailović, Dragan; Vasiljević, Perica; Stojanović, Zoran; Uskoković, Vuk; Uskoković, Dragan

    2012-01-01

    Indications exist that paramagnetic calcium phosphates may be able to promote regeneration of bone faster than their regular, diamagnetic counterparts. In this study, analyzed was the influence of paramagnetic cobalt-substituted hydroxyapatite nanoparticles on osteoporotic alveolar bone regeneration in rats. Simultaneously, biocompatibility of the material was tested in vitro, on osteoblastic MC3T3-E1 and epithelial Caco-2 cells in culture. The material was shown to be biocompatible and nontoxic when added to epithelial monolayers in vitro, while it caused a substantial decrease in the cell viability as well as deformation of the cytoskeleton and cell morphology when incubated with the osteoblastic cells. In the course of six months after the implantation of the material containing different amounts of cobalt, ranging from 5 – 12 wt%, in the osteoporotic alveolar bone of the lower jaw, the following parameters were investigated: histopathological parameters, alkaline phosphatase and alveolar bone density. The best result in terms of osteoporotic bone tissue regeneration was observed for hydroxyapatite nanoparticles with the largest content of cobalt ions. The histological analysis showed a high level of reparatory ability of the nanoparticulate material implanted in the bone defect, paralleled by a corresponding increase in the alveolar bone density. The combined effect of growth factors from autologous plasma admixed to cobalt-substituted hydroxyapatite was furthermore shown to have a crucial effect on the augmented osteoporotic bone regeneration upon the implantation of the biomaterial investigated in this study. PMID:23090835

  7. Supercritical carbon dioxide-processed resorbable polymer nanocomposites for bone graft substitute applications

    NASA Astrophysics Data System (ADS)

    Baker, Kevin C.

    Numerous clinical situations necessitate the use of bone graft materials to enhance bone formation. While autologous and allogenic materials are considered the gold standards in the setting of fracture healing and spine fusion, their disadvantages, which include donor site morbidity and finite supply have stimulated research and development of novel bone graft substitute materials. Among the most promising candidate materials are resorbable polymers, composed of lactic and/or glycolic acid. While the characteristics of these materials, such as predictable degradation kinetics and biocompatibility, make them an excellent choice for bone graft substitute applications, they lack mechanical strength when synthesized with the requisite porous morphology. As such, porous resorbable polymers are often reinforced with filler materials. In the presented work, we describe the use of supercritical carbon dioxide (scCO2) processing to create porous resorbable polymeric constructs reinforced by nanostructured, organically modified Montmorillonite clay (nanoclay). scCO2 processing simultaneously disperses the nanoclay throughout the polymeric matrix, while imparting a porous morphology to the construct conducive to facilitating cellular infiltration and neoangiogenesis, which are necessary components of bone growth. With the addition of as little as 2.5wt% of nanoclay, the compressive strength of the constructs nearly doubles putting them on par with human cortico-cancellous bone. Rheological measurements indicate that the dominant mode of reinforcement of the nanocomposite constructs is the restriction of polymer chain mobility. This restriction is a function of the positive interaction between polymer chains and the nanoclay. In vivo inflammation studies indicate biocompatibility of the constructs. Ectopic osteogenesis assays have determined that the scCO2-processed nanocomposites are capable of supporting growth-factor induced bone formation. scCO 2-processed resorbable polymer nanocomposites composed of resorbable polymers and nanocaly exhibit physical, mechanical and biologic properties that make them excellent candidate materials for structural bone graft substitute applications.

  8. Evaluation of suitable porosity for sintered porous {beta}-tricalcium phosphate as a bone substitute

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, Jin-Hong; Bae, Ji-Yong; Shim, Jaebum

    2012-09-15

    Structural and mechanical characterization is performed for sintered porous beta tricalcium phosphate ({beta}-TCP) to determine the appropriate porosity for use as a bone substitute. Four different types of porous {beta}-TCP specimen with different porosities are fabricated through a sintering process. For structural characterization, scanning electron microscopy and a Microfocus X-ray computed tomography system are used to investigate the pore openings on the specimen's surface, pore size, pore distribution, and pore interconnections. Compression tests of the specimens are performed, and mechanical properties such as the elastic modulus and compressive strength are obtained. Also, the geometric shape and volume of the {beta}-TCPmore » around the contact region of two pores, which need to be initially resolved after implantation in order to increase the size of the pore openings, are evaluated through simple calculations. The results show that porous {beta}-TCP with 42.1% porosity may be a suitable bone substitute candidate in terms of sustaining external loads, and inducing and cultivating bone cells. - Highlights: Black-Right-Pointing-Pointer Structural and mechanical characterization was performed for sintered porous {beta}-TCP specimens. Black-Right-Pointing-Pointer For structural characterization, SEM and Microfocus X-ray CT system were used. Black-Right-Pointing-Pointer For mechanical characterization, compression tests were performed. Black-Right-Pointing-Pointer Porous {beta}-TCP with 42.1% porosity may be a suitable bone substitute.« less

  9. Infected nonunion of tibia

    PubMed Central

    Chaudhary, Milind Madhav

    2017-01-01

    Infected nonunions of tibia pose many challenges to the treating surgeon and the patient. Challenges include recalcitrant infection, complex deformities, sclerotic bone ends, large bone gaps, shortening, and joint stiffness. They are easy to diagnose and difficult to treat. The ASAMI classification helps decide treatment. The nonunion severity score proposed by Calori measures many parameters to give a prognosis. The infection severity score uses simple clinical signs to grade severity of infection. This determines number of surgeries and allows choice of hardware, either external or internal for definitive treatment. Co-morbid factors such as smoking, diabetes, nonsteroidal anti-inflammatory drug use, and hypovitaminosis D influence the choice and duration of treatment. Thorough debridement is the mainstay of treatment. Removal of all necrotic bone and soft tissue is needed. Care is exercised in shaping bone ends. Internal fixation can help achieve union if infection was mild. Severe infections need external fixation use in a second stage. Compression at nonunion site achieves union. It can be combined with a corticotomy lengthening at a distant site for equalization. Soft tissue deficit has to be covered by flaps, either local or microvascular. Bone gaps are best filled with the reliable technique of bone transport. Regenerate bone may be formed proximally, distally, or at both sites. Acute compression can fill bone gaps and may need a fibular resection. Gradual reduction of bone gap happens with bone transport, without need for fibulectomy. When bone ends dock, union may be achieved by vertical or horizontal compression. Biological stimulus from iliac crest bone grafts, bone marrow aspirate injections, and platelet concentrates hasten union. Bone graft substitutes add volume to graft and help fill defects. Addition of rh-BMP-7 may help in healing albeit at a much higher cost. Regeneration may need stimulation and augmentation. Induced membrane technique is an alternative to bone transport to fill gaps. It needs large amounts of bone graft from iliac crest or femoral canal. This is an expensive method physiologically and economically. Infection can resorb the graft and cause failure of treatment. It can be done in select cases after thorough eradication of infection. Patience and perseverance are needed for successful resolution of infection and achieving union. PMID:28566776

  10. Bisphosphonate-coated BSA nanoparticles lack bone targeting after systemic administration.

    PubMed

    Wang, Guilin; Kucharski, Cezary; Lin, Xiaoyue; Uludağ, Hasan

    2010-09-01

    A polymeric conjugate of polyethyleneimine-graft-poly(ethylene glycol) and 2-(3-mercaptopropylsulfanyl)-ethyl-1,1-bisphosphonic acid (PEI-PEG-thiolBP) was prepared and used for surface coating of bovine serum albumin (BSA) nanoparticles (NPs) designed for bone-specific delivery of bone morphogenetic protein-2 (BMP-2). The NP coating was achieved with a dialysis and an evaporation method, and the obtained NPs were characterized by particle size, zeta-potential, morphology, and cytotoxicity in vitro. The particle size and surface charge of the NPs could be effectively tuned by the PEG and thiolBP substitution ratios of the conjugate, the coating method, and the polymer concentration used for coating. The PEG modification on PEI reduced the toxicity of PEI and the coated NPs, based on in vitro assessment with human C2C12 cells and rat bone marrow stromal cells. On the basis of an alkaline phosphatase (ALP) induction assay, the NP-encapsulated BMP-2 displayed full retention of its bioactivity, except for BMP-2 in PEI-coated NPs. By encapsulating (125)I-labeled BMP-2, the polymer-coated NPs were assessed for hydroxyapatite (HA) affinity; all NP-encapsulated BMP-2 showed significant affinity to HA as compared with free BMP-2 in vitro, and the PEI-PEG-thiolBP coated NPs improved the in vivo retention of BMP-2 compared with uncoated NPs. However, the biodistribution of NPs after intravenous injection in a rat model indicated no beneficial effects of thiolBP-coated NPs for bone targeting. Our results suggested that the BP-conjugated NPs are useful for localized delivery of BMP-2 in bone repair and regeneration, but they are not effective for bone targeting after intravenous administration.

  11. Unicameral bone cysts: a comparison of injection of steroid and grafting with autologous bone marrow.

    PubMed

    Cho, H S; Oh, J H; Kim, H-S; Kang, H G; Lee, S H

    2007-02-01

    Open surgery is rarely justified for the initial treatment of a unicameral bone cyst, but there is some debate concerning the relative effectiveness of closed methods. This study compared the results of steroid injection with those of autologous bone marrow grafting for the treatment of unicameral bone cysts. Between 1990 and 2001, 30 patients were treated by steroid injection and 28 by grafting with autologous bone marrow. The overall success rates were 86.7% and 92.0%, respectively (p>0.05). The success rate after the initial procedure was 23.3% in the steroid group and 52.0% in those receiving autologous bone marrow (p<0.05), and the respective cumulative success rates after second injections were 63.3% and 80.0% (p>0.05). The mean number of procedures required was 2.19 (1 to 5) and 1.57 (1 to 3) (p<0.05), the mean interval to healing was 12.5 months (4 to 32) and 14.3 months (7 to 36) (p>0.05), and the rate of recurrence after the initial procedure was 41.7% and 13.3% in the steroid and in the autologous bone marrow groups, respectively (p<0.05). Although the overall rates of success of both methods were similar, the steroid group had higher recurrence after a single procedure and required more injections to achieve healing.

  12. Radionuclide distribution dynamics in skeletons of beagles fed 90Sr: Correlation with injected 226Ra and 239Pu

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parks, N.J.

    Data for the bone-by-bone redistribution of 90Sr in the beagle skeleton are reported for a period of 4000 d following a midgestation-to-540-d-exposure by ingestion. The partitioned clearance model (PCM) that was originally developed to describe bone-by-bone radionuclide redistribution of 226Ra after eight semimonthly injections at ages 435-535 d has been fitted to the 90Sr data. The parameter estimates for the PCM that describe the distribution and clearance of 226Ra after deposition on surfaces following injection and analogous parameter estimates for 90Sr after uniform deposition in the skeleton as a function of Ca mass are given. Fractional compact bone masses permore » bone group (mi,COM) are also predicted by the model and compared to measured values; a high degree of correlation (r = 0.84) is found. Bone groups for which the agreement between the model and experimental values of mi,COM was poor had tissue-to-calcium weight ratios about 1.5 times those for bones that agreed well. Metabolically defined surface in PCM is initial activity fraction per Ca fraction in a given skeletal component for intravenously injected alkaline earth (Sae) radionuclides; comparisons are made to similarly defined surface (Sact) values from 239Pu injection studies. The patterns of Sae and Sact distribution throughout the skeleton are similar.« less

  13. Scaffold Design for Bone Regeneration

    PubMed Central

    Polo-Corrales, Liliana; Latorre-Esteves, Magda; Ramirez-Vick, Jaime E.

    2014-01-01

    The use of bone grafts is the standard to treat skeletal fractures, or to replace and regenerate lost bone, as demonstrated by the large number of bone graft procedures performed worldwide. The most common of these is the autograft, however, its use can lead to complications such as pain, infection, scarring, blood loss, and donor-site morbidity. The alternative is allografts, but they lack the osteoactive capacity of autografts and carry the risk of carrying infectious agents or immune rejection. Other approaches, such as the bone graft substitutes, have focused on improving the efficacy of bone grafts or other scaffolds by incorporating bone progenitor cells and growth factors to stimulate cells. An ideal bone graft or scaffold should be made of biomaterials that imitate the structure and properties of natural bone ECM, include osteoprogenitor cells and provide all the necessary environmental cues found in natural bone. However, creating living tissue constructs that are structurally, functionally and mechanically comparable to the natural bone has been a challenge so far. This focus of this review is on the evolution of these scaffolds as bone graft substitutes in the process of recreating the bone tissue microenvironment, including biochemical and biophysical cues. PMID:24730250

  14. In vitro osteogenesis of human stem cells by using a three-dimensional perfusion bioreactor culture system: a review.

    PubMed

    Ceccarelli, Gabriele; Bloise, Nora; Vercellino, Marco; Battaglia, Rosalia; Morgante, Lucia; De Angelis, Maria Gabriella Cusella; Imbriani, Marcello; Visai, Livia

    2013-04-01

    Tissue engineering (by culturing cells on appropriate scaffolds, and using bioreactors to drive the correct bone structure formation) is an attractive alternative to bone grafting or implantation of bone substitutes. Osteogenesis is a biological process that involves many molecular intracellular pathways organized to optimize bone modeling. The use of bioreactor systems and especially the perfusion bioreactor, provides both the technological means to reveal fundamental mechanisms of cell function in a 3D environment, and the potential to improve the quality of engineered tissues. In this mini-review all the characteristics for the production of an appropriate bone construct are analyzed: the stem cell source, scaffolds useful for the seeding of pre-osteoblastic cells and the effects of fluid flow on differentiation and proliferation of bone precursor cells. By automating and standardizing tissue manufacture in controlled closed systems, engineered tissues may reduce the gap between the process of bone formation in vitro and subsequent graft of bone substitutes in vivo.

  15. Polymeric scaffolds as stem cell carriers in bone repair.

    PubMed

    Rossi, Filippo; Santoro, Marco; Perale, Giuseppe

    2015-10-01

    Although bone has a high potential to regenerate itself after damage and injury, the efficacious repair of large bone defects resulting from resection, trauma or non-union fractures still requires the implantation of bone grafts. Materials science, in conjunction with biotechnology, can satisfy these needs by developing artificial bones, synthetic substitutes and organ implants. In particular, recent advances in polymer science have provided several innovations, underlying the increasing importance of macromolecules in this field. To address the increasing need for improved bone substitutes, tissue engineering seeks to create synthetic, three-dimensional scaffolds made from polymeric materials, incorporating stem cells and growth factors, to induce new bone tissue formation. Polymeric materials have shown a great affinity for cell transplantation and differentiation and, moreover, their structure can be tuned in order to maintain an adequate mechanical resistance and contemporarily be fully bioresorbable. This review emphasizes recent progress in polymer science that allows relaible polymeric scaffolds to be synthesized for stem cell growth in bone regeneration. Copyright © 2013 John Wiley & Sons, Ltd.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shrivastava, Pragya; Dalai, Sridhar; Vijayalakshmi, S.

    With an increasing demand of biocompatible bone substitutes for the treatment of bone diseases and bone tissue regeneration, bioactive glass composites are being tested to improvise the osteoconductive as well as osteoinductive properties. Nanobioactive glass (nBG) composites, having composition of SiO{sub 2} 70 mol%, CaO 26 mol % and P{sub 2}O{sub 5} 4 mol% were prepared by Freeze drying method using PEG-PPG-PEG co-polymer. Polymer addition improves the mechanical strength and porosity of the scaffold of nBG. Nano Bioactive glass composites upon implantation undergo specific reactions leading to the formation of crystalline hydroxyapatite (HA). This is tested in vitro using Simulatedmore » Body Fluid (SBF). This high strength hydroxyapatite (HA) layer acts as osteoconductive in cellular environment, by acting as mineral base of bones, onto which new bone cells proliferate leading to new bone formation. Strength of the nBG composites as well as HA is in the range of cortical and cancellous bone, thus proving significant for bone tissue regeneration substitutes.« less

  17. Periodontal regeneration in swine after cell injection and cell sheet transplantation of human dental pulp stem cells following good manufacturing practice.

    PubMed

    Hu, Jingchao; Cao, Yu; Xie, Yilin; Wang, Hua; Fan, Zhipeng; Wang, Jinsong; Zhang, Chunmei; Wang, Jinsong; Wu, Chu-Tse; Wang, Songlin

    2016-09-09

    Periodontitis, one of the most prevalent infectious diseases in humans, results in the destruction of tooth-supporting tissues. The purpose of the present study is to evaluate the effect of cell injection and cell sheet transplantation on periodontal regeneration in a swine model. In the present study, human dental pulp stem cells (hDPSCs) were transplanted into a swine model for periodontal regeneration. Twelve miniature pigs were used to generate periodontitis with bone defects of 5 mm in width, 7 mm in length, and 3 mm in depth. hDPSCs were obtained for bone regeneration using cell injection or cell sheet transplantation. After 12 weeks, clinical, radiological, and histological assessments of regenerated periodontal tissues were performed to compare periodontal regeneration treated with xenogeneic cell injection and cell sheet implantation. Our study showed that translating hDPSCs into this large animal model could significantly improve periodontal bone regeneration and soft tissue healing. After 12 weeks, both the hDPSC sheet treatment and hDPSC injection significantly improved periodontal tissue healing clinically in comparison with the control group. The volume of regenerative bone in the hDPSC sheet group (52.7 ± 4.1 mm(3)) was significantly larger than in the hDPSC injection group (32.4 ± 5.1 mm(3)) (P < 0.05). The percentage of bone in the periodontium in the hDPSC injection group was 12.8 ± 4.4 %, while it was 17.4 ± 5.3 % in the hDPSC sheet group (P < 0.05). Both hDPSC injection and cell sheet transplantation significantly regenerated periodontal bone in swine. The hDPSC sheet had more bone regeneration capacity compared with hDPSC injection.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chaikina, M. V., E-mail: chaikinam@solid.nsc.ru; Bulina, N. V., E-mail: bulina@solid.nsc.ru; Prosanov, I. Yu., E-mail: prosanov@mail.ru

    The paper presents the results of mechanochemical synthesis of hydroxyapatite (HAP) with simultaneous substitutions of lanthanum (La{sup 3+}) for calcium ions and silicate ((SiO{sub 4}){sup 4−}-group) for the phosphate group with the substituent concentrations in the range 0.2–2.0 mol per HAP mol. The use of Si-substituted HAP as a coating material promotes accelerated osteosynthesis and osteointegration of implants into the bone tissue. The replacement of calcium ions by La{sup 3+} in the HAP structure plays an antimicrobial role preventing inflammatory processes. Annealing-induced variations in the lattice parameters of synthesized samples indicate the substituent incorporation into the HAP structure. It ismore » known that complex compounds with lanthanides are used for cancer chemotherapy. In particular, La plays a key role in the course of treatment of injured defects of bone tissue. In addition, La-substituted HAP can be used for filling bone defects and coating implants in postoperational areas affected by bone cancer.« less

  19. Effect of the masseter muscle injection of botulinum toxin A on the mandibular bone growth of developmental rats.

    PubMed

    Seok, Hyun; Kim, Seong-Gon; Kim, Min-Keun; Jang, Insan; Ahn, Janghoon

    2018-12-01

    The objective of this study was to evaluate the influence of masticatory muscle injection of botulinum toxin type A (BTX-A) on the growth of the mandibular bone in vivo. Eleven Sprague-Dawley rats were used, and BTX-A ( n  = 6) or saline ( n  = 5) was injected at 13 days of age. All injections were given to the right masseter muscle, and the BTX-A dose was 0.5 units. All of the rats were euthanized at 60 days of age. The skulls of the rats were separated and fixed with 10% formalin for micro-computed tomography (micro-CT) analysis. The anthropometric analysis found that the ramus heights and bigonial widths of the BTX-A-injected group were significantly smaller than those of the saline-injected group ( P  < 0.05), and the mandibular plane angle of the BTX-A-injected group was significantly greater than in the saline-injected group ( P  < 0.001). In the BTX-A-injected group, the ramus heights II and III and the mandibular plane angles I and II showed significant differences between the injected and non-injected sides ( P  < 0.05). The BTX-A-injected side of the mandible in the masseter group showed significantly lower mandibular bone growth compared with the non-injected side. BTX-A injection into the masseter muscle influences mandibular bone growth.

  20. Applications of Metals for Bone Regeneration.

    PubMed

    Glenske, Kristina; Donkiewicz, Phil; Köwitsch, Alexander; Milosevic-Oljaca, Nada; Rider, Patrick; Rofall, Sven; Franke, Jörg; Jung, Ole; Smeets, Ralf; Schnettler, Reinhard; Wenisch, Sabine; Barbeck, Mike

    2018-03-12

    The regeneration of bone tissue is the main purpose of most therapies in dental medicine. For bone regeneration, calcium phosphate (CaP)-based substitute materials based on natural (allo- and xenografts) and synthetic origins (alloplastic materials) are applied for guiding the regeneration processes. The optimal bone substitute has to act as a substrate for bone ingrowth into a defect, as well as resorb in the time frame needed for complete regeneration up to the condition of restitution ad integrum . In this context, the modes of action of CaP-based substitute materials have been frequently investigated, where it has been shown that such materials strongly influence regenerative processes such as osteoblast growth or differentiation and also osteoclastic resorption due to different physicochemical properties of the materials. However, the material characteristics needed for the required ratio between new bone tissue formation and material degradation has not been found, until now. The addition of different substances such as collagen or growth factors and also of different cell types has already been tested but did not allow for sufficient or prompt application. Moreover, metals or metal ions are used differently as a basis or as supplement for different materials in the field of bone regeneration. Moreover, it has already been shown that different metal ions are integral components of bone tissue, playing functional roles in the physiological cellular environment as well as in the course of bone healing. The present review focuses on frequently used metals as integral parts of materials designed for bone regeneration, with the aim to provide an overview of currently existing knowledge about the effects of metals in the field of bone regeneration.

  1. Applications of Metals for Bone Regeneration

    PubMed Central

    Glenske, Kristina; Donkiewicz, Phil; Köwitsch, Alexander; Milosevic-Oljaca, Nada; Rider, Patrick; Rofall, Sven; Franke, Jörg; Jung, Ole; Smeets, Ralf; Schnettler, Reinhard; Wenisch, Sabine

    2018-01-01

    The regeneration of bone tissue is the main purpose of most therapies in dental medicine. For bone regeneration, calcium phosphate (CaP)-based substitute materials based on natural (allo- and xenografts) and synthetic origins (alloplastic materials) are applied for guiding the regeneration processes. The optimal bone substitute has to act as a substrate for bone ingrowth into a defect, as well as resorb in the time frame needed for complete regeneration up to the condition of restitution ad integrum. In this context, the modes of action of CaP-based substitute materials have been frequently investigated, where it has been shown that such materials strongly influence regenerative processes such as osteoblast growth or differentiation and also osteoclastic resorption due to different physicochemical properties of the materials. However, the material characteristics needed for the required ratio between new bone tissue formation and material degradation has not been found, until now. The addition of different substances such as collagen or growth factors and also of different cell types has already been tested but did not allow for sufficient or prompt application. Moreover, metals or metal ions are used differently as a basis or as supplement for different materials in the field of bone regeneration. Moreover, it has already been shown that different metal ions are integral components of bone tissue, playing functional roles in the physiological cellular environment as well as in the course of bone healing. The present review focuses on frequently used metals as integral parts of materials designed for bone regeneration, with the aim to provide an overview of currently existing knowledge about the effects of metals in the field of bone regeneration. PMID:29534546

  2. 3D-Printed Scaffolds and Biomaterials: Review of Alveolar Bone Augmentation and Periodontal Regeneration Applications

    PubMed Central

    Asa'ad, Farah; Giannì, Aldo Bruno; Giannobile, William V.; Rasperini, Giulio

    2016-01-01

    To ensure a successful dental implant therapy, the presence of adequate vertical and horizontal alveolar bone is fundamental. However, an insufficient amount of alveolar ridge in both dimensions is often encountered in dental practice due to the consequences of oral diseases and tooth loss. Although postextraction socket preservation has been adopted to lessen the need for such invasive approaches, it utilizes bone grafting materials, which have limitations that could negatively affect the quality of bone formation. To overcome the drawbacks of routinely employed grafting materials, bone graft substitutes such as 3D scaffolds have been recently investigated in the dental field. In this review, we highlight different biomaterials suitable for 3D scaffold fabrication, with a focus on “3D-printed” ones as bone graft substitutes that might be convenient for various applications related to implant therapy. We also briefly discuss their possible adoption for periodontal regeneration. PMID:27366149

  3. Genetic perturbations that impair functional trait interactions lead to reduced bone strength and increased fragility in mice

    PubMed Central

    Smith, Lauren M.; Bigelow, Erin M.R.; Nolan, Bonnie T.; Faillace, Meghan E.; Nadeau, Joseph H.; Jepsen, Karl J.

    2014-01-01

    Functional adaptation may complicate the choice of phenotype used in genetic studies that seek to identify genes contributing to fracture susceptibility. Often, genetic variants affecting one trait are compensated by coordinated changes in other traits. Bone fracture is a prototypic example because mechanical function of long bones (stiffness and strength) depends on how the system coordinately adjusts the amount (cortical area) and quality (tissue-mineral density, TMD) of bone tissue to mechanically offset the natural variation in bone robustness (total area/length). We propose that efforts aimed at identifying genes regulating fracture resistance will benefit from better understanding how functional adaptation contributes to the genotype-phenotype relationship. We analyzed the femurs of C57BL/6J – ChrA/J/NaJ Chromosome Substitution Strains (CSSs) to systemically interrogate the mouse genome for chromosomes harboring genes that regulate mechanical function. These CSSs (CSS-i, i = the substituted chromosome) showed changes in mechanical function on the order of -26.6 to 11.5% relative to the B6 reference strain after adjusting for body size. Seven substitutions showed altered robustness, cortical area, or TMD, but no effect on mechanical function (CSS-4, 5, 8, 9, 17, 18, 19); six substitutions showed altered robustness, cortical area, or TMD, and reduced mechanical function (CSS-1, 2, 6, 10, 12, 15); and one substitution also showed reduced mechanical function but exhibited no significant changes in the three physical traits analyzed in this study (CSS-3). A key feature that distinguished CSSs that maintained function from those with reduced function was whether the system adjusted cortical area and TMD to the levels needed to compensate for the natural variation in bone robustness. These results provide a novel biomechanical mechanism linking genotype with phenotype, indicating that genes control function not only by regulating individual traits, but also by regulating how the system coordinately adjusts multiple traits to establish function. PMID:25003813

  4. Effect of whole-body vibration and insulin-like growth factor-I on muscle paralysis-induced bone degeneration after botulinum toxin injection in mice.

    PubMed

    Niehoff, Anja; Lechner, Philipp; Ratiu, Oana; Reuter, Sven; Hamann, Nina; Brüggemann, Gert-Peter; Schönau, Eckhard; Bloch, Wilhelm; Beccard, Ralf

    2014-04-01

    Botulinum toxin A (BTX)-induced muscle paralysis results in pronounced bone degradation with substantial bone loss. We hypothesized that whole-body vibration (WBV) and insulin-like growth factor-I (IGF-I) treatment can counteract paralysis-induced bone degradation following BTX injections by activation of the protein kinase B (Akt) signaling pathway. Female C57BL/6 mice (n = 60, 16 weeks) were assigned into six groups (n = 10 each): SHAM, BTX, BTX+WBV, BTX+IGF-I, BTX+WBV+IGF-I, and a baseline group, which was killed at the beginning of the study. Mice received a BTX (1.0 U/0.1 mL) or saline (SHAM) injection in the right hind limb. The BTX+IGF-I and BTX+WBV+IGF-I groups obtained daily subcutaneous injections of human IGF-I (1 μg/day). The BTX+WBV and BTX+WBV+IGF-I groups underwent WBV (25 Hz, 2.1 g, 0.83 mm) for 30 min/day, 5 days/week for 4 weeks. Femora were scanned by pQCT, and mechanical properties were determined. On tibial sections TRAP staining, static histomorphometry, and immunohistochemical staining against Akt, phospho-Akt, IGF-IR (IGF-I receptor), and phospho-IGF-IR were conducted. BTX injection decreased trabecular and cortical bone mineral density. The WBV and WBV+IGF-I groups showed no difference in trabecular bone mineral density compared to the SHAM group. The phospho-IGF-IR and phospho-Akt stainings were not differentially altered in the injected hind limbs between groups. We found that high-frequency, low-magnitude WBV can counteract paralysis-induced bone loss following BTX injections, while we could not detect any effect of treatment with IGF-I.

  5. Combined Use of Mesenchymal Stromal Cell Sheet Transplantation and Local Injection of SDF-1 for Bone Repair in a Rat Nonunion Model.

    PubMed

    Chen, Guangnan; Fang, Tingting; Qi, Yiying; Yin, Xiaofan; Di, Tuoyu; Feng, Gang; Lei, Zhong; Zhang, Yuxiang; Huang, Zhongming

    2016-10-01

    Bone nonunion treatments pose a challenge in orthopedics. This study investigated the joint effects of using mesenchymal stem cell (MSC) sheets with local injection of stromal cell-derived factor-1 (SDF-1) on bone formation. In vitro, we found that migration of MSCs was mediated by SDF-1 in a dose-dependent manner. Moreover, stimulation with SDF-1 had no direct effect on the proliferation or osteogenic differentiation of MSCs. Furthermore, the results indicated elevated expression levels of bone morphogenetic protein 2, alkaline phosphatase, osteocalcin, and vascular endothelial growth factor in MSC sheets compared with MSCs cultured in medium. New bone formation in fractures was evaluated by X-ray, micro-computed tomography (micro-CT), hematoxylin and eosin (H&E) staining, Safranin-O staining, and immunohistochemistry in vivo. In the rat bone fracture model, the MSC sheets transplanted into the injured site along with injection of SDF-1 showed significantly more new bone formation within the gap. Moreover, at 8 weeks, complete bone union was obtained in this group. In contrast, the control group showed nonunion of the bone. Our study suggests a new strategy involving the use of MSC sheets with a local injection of SDF-1 for hard tissue reconstruction, such as the healing of nonunions and bone defects.

  6. Lymphatic Endothelial Cells Produce M-CSF, Causing Massive Bone Loss in Mice.

    PubMed

    Wang, Wensheng; Wang, Hua; Zhou, Xichao; Li, Xing; Sun, Wen; Dellinger, Michael; Boyce, Brendan F; Xing, Lianping

    2017-05-01

    Gorham-Stout disease (GSD) is a rare bone disorder characterized by aggressive osteolysis associated with lymphatic vessel invasion within bone marrow cavities. The etiology of GSD is not known, and there is no effective therapy or animal model for the disease. Here, we investigated if lymphatic endothelial cells (LECs) affect osteoclasts (OCs) to cause a GSD osteolytic phenotype in mice. We examined the effect of a mouse LEC line on osteoclastogenesis in co-cultures. LECs significantly increased receptor activator of NF-κB ligand (RANKL)-mediated OC formation and bone resorption. LECs expressed high levels of macrophage colony-stimulating factor (M-CSF), but not RANKL, interleukin-6 (IL-6), and tumor necrosis factor (TNF). LEC-mediated OC formation and bone resorption were blocked by an M-CSF neutralizing antibody or Ki20227, an inhibitor of the M-CSF receptor, c-Fms. We injected LECs into the tibias of wild-type (WT) mice and observed massive osteolysis on X-ray and micro-CT scans. Histology showed that LEC-injected tibias had significant trabecular and cortical bone loss and increased OC numbers. M-CSF protein levels were significantly higher in serum and bone marrow plasma of mice given intra-tibial LEC injections. Immunofluorescence staining showed extensive replacement of bone and marrow by podoplanin+ LECs. Treatment of LEC-injected mice with Ki20227 significantly decreased tibial bone destruction. In addition, lymphatic vessels in a GSD bone sample were stained positively for M-CSF. Thus, LECs cause bone destruction in vivo in mice by secreting M-CSF, which promotes OC formation and activation. Blocking M-CSF signaling may represent a new therapeutic approach for treatment of patients with GSD. Furthermore, tibial injection of LECs is a useful mouse model to study GSD. © 2017 American Society for Bone and Mineral Research. © 2017 American Society for Bone and Mineral Research.

  7. A cost-effective method for femoral head allograft procurement for spinal arthrodesis: an alternative to commercially available allograft.

    PubMed

    Brown, Desmond A; Mallory, Grant W; Higgins, Dominique M; Abdulaziz, Mohammed; Huddleston, Paul M; Nassr, Ahmad; Fogelson, Jeremy L; Clarke, Michelle J

    2014-07-01

    A cost-effective procurement process for harvesting, storing, and using femoral head allografts is described. A brief review of the literature on the use of these allografts and a discussion of costs are provided. To describe a cost-effective method for the harvesting, storage, and use of femoral heads from patients undergoing total hip arthroplasty at our institution as a source of allograft bone. Spine fusion surgery uses a large proportion of commercially available bone grafts and bone substitutes. As the number of such surgical procedures performed in the United States continues to rise, these materials are at a historically high level of demand, which is projected to continue. Iliac crest bone autograft has historically been the standard of care, although this may be losing favor due to potential donor site morbidity. Although many substitutes are effective in promoting arthrodesis, their use is limited because of cost. Femoral heads are harvested under sterile conditions during total hip arthroplasty. The patient is tested per Food and Drug Administration regulations, and the tissue sample is cultured. The tissue is frozen and quarantined for a 6-month minimum pending repeat testing of donors and subsequently released for use. The relative cost-effectiveness of this tissue as a source of allograft bone is discussed. The average femoral head allograft is 54 to 56 mm in diameter and yields 50 cm of bone graft, with an average cost of US $435 for processing of the tissue resulting in a cost of US $8.70 per cm of allograft produced. Average production costs are significantly lower than those for other commonly available commercial bone grafts and substitutes. Femoral head allograft is a cost-effective alternative to commercially available allografts and bone substitutes. The method of procurement, storage, and use described could be adopted by other institutions in an effort to mitigate cost and increase supply. N/A.

  8. Bone Regeneration Using a Mixture of Silicon-Substituted Coral HA and β-TCP in a Rat Calvarial Bone Defect Model

    PubMed Central

    Roh, Jiyeon; Kim, Ji-Youn; Choi, Young-Muk; Ha, Seong-Min; Kim, Kyoung-Nam; Kim, Kwang-Mahn

    2016-01-01

    The demand of bone graft materials has been increasing. Among various origins of bone graft materials, natural coral composed of up to 99% calcium carbonate was chosen and converted into hydroxyapatite (HA); silicon was then substituted into the HA. Then, the Si-HA was mixed with β-tricalcium phosphate (TCP) in the ratios 100:0 (S100T0), 70:30 (S70T30), 60:40 (S60T40), and 50:50 (S50T50). The materials were implanted for four and eight weeks in a rat calvarial bone defect model (8 mm). The MBCPTM (HA:β-TCP = 60:40, Biomatalante, Vigneux de Bretagne, France) was used as a control. After euthanasia, the bone tissue was analyzed by making histological slides. From the results, S60T40 showed the fastest bone regeneration in four weeks (p < 0.05). In addition, S60T40, S50T50, and MBCPTM showed significant new bone formation in eight weeks (p < 0.05). In conclusion, Si-HA/TCP showed potential as a bone graft material. PMID:28787903

  9. Bone Regeneration Using a Mixture of Silicon-Substituted Coral HA and β-TCP in a Rat Calvarial Bone Defect Model.

    PubMed

    Roh, Jiyeon; Kim, Ji-Youn; Choi, Young-Muk; Ha, Seong-Min; Kim, Kyoung-Nam; Kim, Kwang-Mahn

    2016-02-06

    The demand of bone graft materials has been increasing. Among various origins of bone graft materials, natural coral composed of up to 99% calcium carbonate was chosen and converted into hydroxyapatite (HA); silicon was then substituted into the HA. Then, the Si-HA was mixed with β-tricalcium phosphate (TCP) in the ratios 100:0 (S100T0), 70:30 (S70T30), 60:40 (S60T40), and 50:50 (S50T50). The materials were implanted for four and eight weeks in a rat calvarial bone defect model (8 mm). The MBCPTM (HA:β-TCP = 60:40, Biomatalante, Vigneux de Bretagne, France) was used as a control. After euthanasia, the bone tissue was analyzed by making histological slides. From the results, S60T40 showed the fastest bone regeneration in four weeks (p < 0.05). In addition, S60T40, S50T50, and MBCPTM showed significant new bone formation in eight weeks (p < 0.05). In conclusion, Si-HA/TCP showed potential as a bone graft material.

  10. A perfusion bioreactor system efficiently generates cell-loaded bone substitute materials for addressing critical size bone defects.

    PubMed

    Kleinhans, Claudia; Mohan, Ramkumar Ramani; Vacun, Gabriele; Schwarz, Thomas; Haller, Barbara; Sun, Yang; Kahlig, Alexander; Kluger, Petra; Finne-Wistrand, Anna; Walles, Heike; Hansmann, Jan

    2015-09-01

    Critical size bone defects and non-union fractions are still challenging to treat. Cell-loaded bone substitutes have shown improved bone ingrowth and bone formation. However, a lack of methods for homogenously colonizing scaffolds limits the maximum volume of bone grafts. Additionally, therapy robustness is impaired by heterogeneous cell populations after graft generation. Our aim was to establish a technology for generating grafts with a size of 10.5 mm in diameter and 25 mm of height, and thus for grafts suited for treatment of critical size bone defects. Therefore, a novel tailor-made bioreactor system was developed, allowing standardized flow conditions in a porous poly(L-lactide-co-caprolactone) material. Scaffolds were seeded with primary human mesenchymal stem cells derived from four different donors. In contrast to static experimental conditions, homogenous cell distributions were accomplished under dynamic culture. Additionally, culture in the bioreactor system allowed the induction of osteogenic lineage commitment after one week of culture without addition of soluble factors. This was demonstrated by quantitative analysis of calcification and gene expression markers related to osteogenic lineage. In conclusion, the novel bioreactor technology allows efficient and standardized conditions for generating bone substitutes that are suitable for the treatment of critical size defects in humans. © 2015 The Authors. Biotechnology Journal published by Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. This is an open access article under the terms of the Creative Commons Attribution Non-Commercial Licence, which permits use, distribution and reproduction in any medium, provided the Contribution is properly cited and is not used for commercial purpose.

  11. Efficacy of Bone Source™ and Cementek™ in comparison with Endobon™ in critical size metaphyseal defects, using a minipig model.

    PubMed

    Spies, Christian K G; Schnürer, Stefan; Gotterbarm, Tobias; Breusch, Steffen J

    2010-01-01

    To examine and compare biocompatibility, osteocompatibility, rate of resorption, and remodelling dynamics of 2 calcium phosphate cements in comparison with a well-established hydroxyapatite ceramic. In a randomised fashion, Bone Source™, Cementek™, and Endobon™ were implanted bilaterally into the proximal metaphyseal tibiae of 35 Göttinger minipigs in a direct right vs. left intra-individual comparison. Fluorescent labelling was used. Histological and morphometric evaluations were carried out at 6, 12, and 52 weeks. All bone substitutes showed good biocompatibility, bioactivity, and osteoconductivity. Endobon™ was not degraded over the follow-up period. Cementek™ was degraded constantly and significantly over the time intervals, whereas Bone Source™ was degraded mainly from the 6 week to 12 week interval. After 52 weeks, a significant difference of residual material within the defect zone was detected between all substitutes, with the highest resorption rate for Cementek™. Bone Source™ was least degraded. Defects filled with Endobon™ were characterised by a significantly continuous bony ingrowth over the time intervals. Bone formation within the defects filled with Cementek™ and Bone Source™ showed significant peaks 12 weeks after implantation. After 52 weeks, a significant difference in the amount of new bone within the defect area was detected, with the highest levels for Endobon™, followed by Cementek™. After 1 year a restitution ad integrum could not be observed in any treatment group. The ceramic Endobon™ showed the expected response histologically. Based on its porosity it excelled in osteoconductivity. Concerning the calcium phosphate cements, a thorough osseous incorporation seemed to inhibit further degradation of both bone substitute materials.

  12. Bone Marrow Stromal Cells Contribute to Bone Formation Following Infusion into Femoral Cavities of a Mouse Model of Osteogenesis Imperfecta

    PubMed Central

    Li, Feng; Wang, Xujun; Niyibizi, Christopher

    2010-01-01

    Currently, there are conflicting data in literature regarding contribution of bone marrow stromal cells (BMSCs) to bone formation when the cells are systemically delivered in recipient animals. To understand if BMSCs contribute to bone cell phenotype and bone formation in osteogenesis imperfecta bones (OI), MSCs marked with GFP were directly infused into the femurs of a mouse model of OI (oim). The contribution of the cells to the cell phenotype and bone formation was assessed by histology, immunohistochemistry and biomechanical loading of recipient bones. Two weeks following infusion of BMSCs, histological examination of the recipient femurs demonstrated presence of new bone when compared to femurs injected with saline which showed little or no bone formation. The new bone contained few donor cells as demonstrated by GFP fluorescence. At six weeks following cell injection, new bone was still detectable in the recipient femurs but was enhanced by injection of the cells suspended in pepsin solublized type I collagen. Immunofluorescence and immunohistochemical staining showed that donor GFP positive cells in the new bone were localized with osteocalcin expressing cells suggesting that the cells differentiated into osteoblasts in vivo. Biomechanical loading to failure in thee point bending, revealed that, femurs infused with BMSCs in PBS or in soluble type I collagen were biomechanically stronger than those injected with PBS or type I collagen alone. Taken together, the results indicate that transplanted cells differentiated into osteoblasts in vivo and contributed to bone formation in vivo; we also speculate that donor cells induced differentiation or recruitment of endogenous cells to initiate reparative process at early stages following transplantation. PMID:20570757

  13. Injectable calcium phosphate with hydrogel fibers encapsulating induced pluripotent, dental pulp and bone marrow stem cells for bone repair

    PubMed Central

    Wang, Lin; Zhang, Chi; Li, Chunyan; Weir, Michael D.; Wang, Ping; Reynolds, Mark A.; Zhao, Liang; Xu, Hockin H.K.

    2017-01-01

    Human induced pluripotent stem cell-derived mesenchymal stem cells (hiPSC-MSCs), dental pulp stem cells (hDPSCs) and bone marrow MSCs (hBMSCs) are exciting cell sources in regenerative medicine. However, there has been no report comparing hDPSCs, hBMSCs and hiPSC-MSCs for bone engineering in an injectable calcium phosphate cement (CPC) scaffold. The objectives of this study were to: (1) develop a novel injectable CPC containing hydrogel fibers encapsulating stem cells for bone engineering, and (2) compare cell viability, proliferation and osteogenic differentiation of hDPSCs, hiPSC-MSCs from bone marrow (BM-hiPSC-MSCs) and from foreskin (FS-hiPSC-MSCs), and hBMSCs in CPC for the first time. The results showed that the injection did not harm cell viability. The porosity of injectable CPC was 62%. All four types of cells proliferated and differentiated down the osteogenic lineage inside hydrogel fibers in CPC. hDPSCs, BM-hiPSC-MSCs, and hBMSCs exhibited high alkaline phosphatase, runt-related transcription factor, collagen I, and osteocalcin gene expressions. Cell-synthesized minerals increased with time (p < 0.05), with no significant difference among hDPSCs, BM-hiPSC-MSCs and hBMSCs (p > 0.1). Mineralization by hDPSCs, BM-hiPSC-MSCs, and hBMSCs inside CPC at 14 d was 14-fold that at 1 d. FS-hiPSC-MSCs were inferior in osteogenic differentiation compared to the other cells. In conclusion, hDPSCs, BM-hiPSC-MSCs and hBMSCs are similarly and highly promising for bone tissue engineering; however, FS-hiPSC-MSCs were relatively inferior in osteogenesis. The novel injectable CPC with cell-encapsulating hydrogel fibers may enhance bone regeneration in dental, craniofacial and orthopedic applications. PMID:27612810

  14. Fabrication of porous low crystalline calcite block by carbonation of calcium hydroxide compact.

    PubMed

    Matsuya, Shigeki; Lin, Xin; Udoh, Koh-ichi; Nakagawa, Masaharu; Shimogoryo, Ryoji; Terada, Yoshihiro; Ishikawa, Kunio

    2007-07-01

    Calcium carbonate (CaCO(3)) has been widely used as a bone substitute material because of its excellent tissue response and good resorbability. In this experimental study, we propose a new method obtaining porous CaCO(3) monolith for an artificial bone substitute. In the method, calcium hydroxide compacts were exposed to carbon dioxide saturated with water vapor at room temperature. Carbonation completed within 3 days and calcite was the only product. The mechanical strength of CaCO(3) monolith increased with carbonation period and molding pressure. Development of mechanical strength proceeded through two steps; the first rapid increase by bonding with calcite layer formed at the surface of calcium hydroxide particles and the latter increase by the full conversion of calcium hydroxide to calcite. The latter process was thought to be controlled by the diffusion of CO(2) through micropores in the surface calcite layer. Porosity of calcite blocks thus prepared had 36.8-48.1% depending on molding pressure between 1 MPa and 5 MPa. We concluded that the present method may be useful for the preparation of bone substitutes or the preparation of source material for bone substitutes since this method succeeded in fabricating a low-crystalline, and thus a highly reactive, porous calcite block.

  15. Effect of glycerol concentrations on the mechanical properties of additive manufactured porous calcium polyphosphate structures for bone substitute applications.

    PubMed

    Sheydaeian, Esmat; Vlasea, Mihaela; Woo, Ami; Pilliar, Robert; Hu, Eugene; Toyserkani, Ehsan

    2017-05-01

    This article addresses the effects of glycerol (GLY) concentrations on the mechanical properties of calcium polyphosphate (CPP) bone substitute structures manufactured using binder jetting additive manufacturing. To achieve this goal, nine types of water-based binder solutions were prepared with 10, 12.5, and 15 wt % GLY liquid-binding agent, mixed, respectively, with 0, 0.75, and 1.5 wt % ethylene glycol diacetate (EGD) flow enhancer. The print quality of each of the solutions was established quantitatively using an image processing algorithm. The print quality analysis narrowed down the solutions to three batches containing 1.5 wt % EGD and variable amount of GLY. These solutions were used to manufacture porous CPP bone substitute samples, which were characterized physically to determine shrinkage, porosity, microstructure, and compression strength. The 12.5 wt % GLY, 1.5 wt % EGD solution resulted in the highest mechanical strength after sintering (34.6 ± 5.8 MPa), illustrating similar mechanical properties when compared to previous studies (33.9 ± 6.3 MPa) of additively manufactured CPP bone substitutes using a commercially available binder. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 828-835, 2017. © 2016 Wiley Periodicals, Inc.

  16. [Local injection of exogenous nerve growth factor improves early bone maturation of implants].

    PubMed

    Yao, Yang; Du, Yu; Gu, Xia; Guang, Meng-Kai; Huang, Bo; Gong, Ping

    2018-04-01

    To investigate the effects of nerve growth factor (NGF) in the osteogenic action of implants and the maturation and reconstruction changes in bone tissues in the early stage of osseointegration. The mouse implant model was established by placing titanium in the femoral head of the mouse and locally injecting NGF in the implant zone. On 1, 2 and 4 weeks after operation, stain samples were collected from animals using hematoxylin-eosin (HE) staining and Masson staining. The effect of NGF on the bone maturation was compared at different time points of early stage osseointegration. The results of HE and Masson staining indicated that the local injection of external NGF can up-regulate bone mass, amount of bone trabecula, and bone maturity in the mouse model. The mature bone rate in treatment group of 1 week and 4 weeks after operation were significantly higher than those in the control group (P<0.05). NGF can shorten the period of bone maturation.

  17. Osteoblastic mesenchymal stem cell sheet combined with Choukroun platelet-rich fibrin induces bone formation at an ectopic site.

    PubMed

    Wang, Zhifa; Weng, Yanming; Lu, Shengjun; Zong, Chunlin; Qiu, Jianyong; Liu, Yanpu; Liu, Bin

    2015-08-01

    To analyze the effects of platelet-rich fibrin (PRF) on mesenchymal stem cells (MSCs) in vitro and investigate in vivo bone formation by MSC sheets with PRF. Cell proliferation and expression of osteogenesis-related genes within MSC sheets were assessed upon exposure to PRF from the same donors. We then injected MSC sheet fragments with or without PRF subcutaneously in nude mice and assessed bone formation by micro-computed tomography and histological analyses. PRF significantly stimulated MSC proliferation and osteogenesis in vitro. MSC sheets injected with or without PRF formed new bone, but those with PRF produced significantly more and denser bone. MSC sheets can be used to generate tissue engineered bone upon injection, and PRF increases the osteogenic capacity of MSC sheets in vitro and in vivo. © 2014 Wiley Periodicals, Inc.

  18. Design of Bioactive Organic-inorganic Hybrid Materials with Self-setting Ability

    NASA Astrophysics Data System (ADS)

    Miyazaki, T.; Machida, S.; Morita, Y.; Ishida, E.

    2011-10-01

    Paste-like materials with ability of self-setting are attractive for bone substitutes, since they can be injected from the small hole with minimized invasion to the patient. Although bone cements which set as apatite are clinically used, there is limitation on clinical applications due to their mechanical properties such as high brittleness and low fracture toughness. To overcome this problem, organic-inorganic hybrids based on a flexible polymer are attractive. We have obtained an idea for design of self-setting hybrids using polyion complex fabricated by ionic interaction of anionic and cationic polymers. We aimed at preparation of organic-inorganic hybrids exhibiting self-setting ability and bioactivity. The liquid component was prepared from cationic chitosan aqueous solution. The powder component was prepared by mixing various carrageenans with α-tricalcium phosphate (α-TCP). The obtained cements set within 1 day. Compressive strength showed tendency to increase with increase in α-TCP content in the powder component. The prepared cements formed the apatite in simulated body fluid within 3 days. Novel self-setting materials based on organic-inorganic hybrid can be designed utilizing ionic interaction of polysaccharide.

  19. Investigating the weight ratio variation of alginate-hydroxyapatite composites for vertebroplasty method bone filler material

    NASA Astrophysics Data System (ADS)

    Lestari, Gusti Ruri; Yuwono, Akhmad Herman; Sofyan, Nofrijon; Ramahdita, Ghiska

    2017-02-01

    One of the newly developed methods for curing spinal fracture due to osteoporosis is vertebroplasty. The method is basically based on injection of special material directly to the fractured spine in order to commence the formation of new bone. Therefore, appropriate injectable materials are very important to the curing success. In this study, injectable alginate-hydroxyapatite (HA) composites were fabricated varying the weight percentage of alginate upon synthesis procedure. The result of injection capability and compressive tests as well as Fourier transform infrared (FTIR) spectroscopy and scanning electron microscope (SEM) suggested that bone filler composite containing 60 wt% alginate is the optimum composition obtaining a compressive modulus up to 0.15 MPa, injection capability of more than 85% and morphology with uniform porous and fibrous structure. This injectable composite fabrication process can be used for the development of injectable materials system for vertebroplasty method.

  20. Locally limited inhibition of bone resorption and orthodontic relapse by recombinant osteoprotegerin protein.

    PubMed

    Schneider, D A; Smith, S M; Campbell, C; Hayami, T; Kapila, S; Hatch, N E

    2015-04-01

    To determine minimal dose levels required for local inhibition of orthodontic relapse by recombinant OPG protein (OPG-Fc), while also determining effects of injected OPG-Fc on alveolar bone and long bone. The Department of Orthodontics and Pediatric Dentistry at the University of Michigan. Eighteen male Sprague Dawley rats. Maxillary molars were moved with nickel-titanium springs and then allowed to relapse in Sprague Dawley rats. Upon appliance removal, animals were injected with a single dose of 1.0 mg/kg OPG-Fc, 0.1 mg/kg OPG-Fc, or phosphate-buffered saline (vehicle) just distal to the molar teeth. Tooth movement measurements were made from stone casts, which were scanned and digitally measured. Alveolar tissues were examined by histology. Micro-computed tomography was used to quantify changes in alveolar and femur bone. Local injection of OPG-Fc inhibited molar but not incisor relapse, when compared to vehicle-injected animals. No significant differences in alveolar or femur bone were seen between the three treatment groups after 24 days of relapse. Our results demonstrate that a single local injection of OPG-Fc effectively inhibits orthodontic relapse, with minimal systemic bone metabolic effects. Our results also show that a single injection of OPG-Fc will influence tooth movement only in teeth close to the injection site. These findings indicate that OPG-Fc has potential as a safe and effective pharmacological means to locally control osteoclasts, for uses such as maintaining anchorage during orthodontic tooth movement and preventing orthodontic relapse in humans. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  1. A Novel Injectable Calcium Phosphate Cement-Bioactive Glass Composite for Bone Regeneration

    PubMed Central

    Zhao, Kang; Tang, Yufei; Cheng, Zhe; Chen, Jun; Zang, Yuan; Wu, Jianwei; Kong, Liang; Liu, Shuai; Lei, Wei; Wu, Zixiang

    2013-01-01

    Background Calcium phosphate cement (CPC) can be molded or injected to form a scaffold in situ, which intimately conforms to complex bone defects. Bioactive glass (BG) is known for its unique ability to bond to living bone and promote bone growth. However, it was not until recently that literature was available regarding CPC-BG applied as an injectable graft. In this paper, we reported a novel injectable CPC-BG composite with improved properties caused by the incorporation of BG into CPC. Materials and Methods The novel injectable bioactive cement was evaluated to determine its composition, microstructure, setting time, injectability, compressive strength and behavior in a simulated body fluid (SBF). The in vitro cellular responses of osteoblasts and in vivo tissue responses after the implantation of CPC-BG in femoral condyle defects of rabbits were also investigated. Results CPC-BG possessed a retarded setting time and markedly better injectability and mechanical properties than CPC. Moreover, a new Ca-deficient apatite layer was deposited on the composite surface after immersing immersion in SBF for 7 days. CPC-BG samples showed significantly improved degradability and bioactivity compared to CPC in simulated body fluid (SBF). In addition, the degrees of cell attachment, proliferation and differentiation on CPC-BG were higher than those on CPC. Macroscopic evaluation, histological evaluation, and micro-computed tomography (micro-CT) analysis showed that CPC-BG enhanced the efficiency of new bone formation in comparison with CPC. Conclusions A novel CPC-BG composite has been synthesized with improved properties exhibiting promising prospects for bone regeneration. PMID:23638115

  2. Hydrogel fibers encapsulating hiPSC-MSCs, hESC-MSCs and hUCMSCs in injectable calcium phosphate scaffold for bone tissue engineering

    PubMed Central

    Wang, Lin; Wang, Ping; Weir, Michael D.; Reynolds, Mark A.; Zhao, Liang; Xu, Hockin H. K.

    2016-01-01

    Human induced pluripotent stem cells (hiPSCs), human embryonic stem cells (hESCs) and human umbilical cord MSCs (hUCMSCs) are exciting cell sources for use in regenerative medicine. There has been no report on long hydrogel fibers encapsulating stem cells inside injectable calcium phosphate cement (CPC) scaffold for bone tissue engineering. The objectives of this study were to: (1) develop a novel injectable CPC construct containing hydrogel fibers encapsulating cells for bone engineering, and (2) investigate and compare cell viability, proliferation and osteogenic differentiation of hiPSC-MSCs, hESC-MSCs and hUCMSCs in injectable CPC. The stem cell-encapsulating pastes were fully injectable under a small injection force, and the injection did not harm the cells, compared to cells without injection (p > 0.1). Mechanical properties of stem cell-CPC construct were much higher than previous injectable polymers and hydrogels for cell delivery. hiPSC-MSCs, hESC-MSCs and hUCMSCs in hydrogel fibers in CPC had excellent proliferation and osteogenic differentiation. All three cells yielded high alkaline phosphatase, runt-related transcription factor, collagen I, and osteocalcin expressions (mean ± sd; n = 6). Cell-synthesized minerals increased substantially with time (p < 0.05), with no significant difference among the three types of cells (p > 0.1). Mineralization by hiPSC-MSCs, hESC-MSCs and hUCMSCs in CPC at 14 d was 13-fold that at 1 d. In conclusion, all three types of cells (hiPSC-MSCs, hESC-MSCs and hUCMSCs) in CPC scaffold showed high potential for bone tissue engineering, and the novel injectable CPC construct with cell-encapsulating hydrogel fibers is promising to enhance bone regeneration in dental, craniofacial and orthopedic applications. PMID:27811389

  3. Do Clinical and Radiological Assessments Contribute to the Understanding of Biomaterials? Results From a Prospective Randomized Sinus Augmentation Split-Mouth Trial.

    PubMed

    Lorenz, Jonas; Korzinskas, Tadas; Chia, Poju; Maawi, Sarah Al; Eichler, Katrin; Sader, Robert A; Ghanaati, Shahram

    2018-02-01

    The present prospective randomized split-mouth trial reports on the 3-year clinical and radiological follow-up investigation of implants placed 7 months after sinus augmentation with 2 different bone substitute materials. The aim of the study was to complete the histologic observation of cellular reactions by analyses of the implants and the volumetric changes of the augmented bone substitute materials. A sinus augmentation split-mouth trial was performed in 14 patients with the synthetic bone substitute material Nanobone (NB) and the xenogeneic Bio-Oss (BO). Changes in volume and density of the augmented biomaterials were investigated by analysis of computed tomography scans, taken immediately after augmentation and after 7 months. Clinical implant parameters were assessed after 3 years of loading. Both bone substitute materials underwent nonsignificant volume reduction and significant increase in bone density over an integration period of 7 months. No significant differences concerning volume and bone density were observed between the groups. Three years after loading, 51 of 53 implants were in situ with no peri-implant infections, and only a few soft-tissue variations were present. The present prospective randomized study showed that no differences could be observed clinically and radiologically. Accordingly, it seems that both biomaterials, independent of their physicochemical composition, enable clinical success and long-time stability for dental implants. Interestingly, the histological results showed distinct differences in cellular reactions: While the xenogeneic BO induced a mild tissue reaction with only few multinucleated giant cells and comparably low vascularization, the synthetic NB induced a multinucleated giant cell-triggered tissue reaction with an increase of vascularization. Thus, the present study showed that a combination analysis-histological, clinical, and radiological-is necessary for a detailed assessment of a biomaterial's quality for clinical application.

  4. Acute intraoperative reactions during the injection of calcium sulfate bone cement for the treatment of unicameral bone cysts: a review of four cases.

    PubMed

    Nystrom, Lukas; Raw, Robert; Buckwalter, Joseph; Morcuende, Jose A

    2008-01-01

    Unicameral bone cysts can predispose patients to pathologic fracture and deformities of growth. Treatment options vary from continuous decompression with transcortical placement of a cannulated screw to percutaneous aspiration and injection of medical-grade calcium sulfate. From 2005 to 2007, we treated 22 patients with unicameral bone cysts using aspiration and injection of calcium sulfate. Three patients experienced acute laryngospasm and one patient developed tachyarrhythmia, temporarily, associated with injection of calcium sulfate. All reactions occurred in patients under age 18 without predisposing risk factors and resolved spontaneously with supportive care. Although the mechanism is unclear, we hypothesize that these reactions are either due to the nociceptive stimulus of the calcium sulfate injection or a systemic calcium bolus. Clinicians using this product for this indication should be aware that such reactions may occur. We suggest endotracheal intubation and communication to the anesthesiologist about the time of the injection in preparation for these idiopathic responses. Further research is necessary to determine exactly how this reaction occurs and how it can be avoided.

  5. Acute Intraoperative Reactions During the Injection of Calcium Sulfate Bone Cement for the Treatment of Unicameral Bone Cysts: A Review of Four Cases

    PubMed Central

    Nystrom, Lukas; Raw, Robert; Buckwalter, Joseph; Morcuende, Jose A.

    2008-01-01

    Unicameral bone cysts can predispose patients to pathologic fracture and deformities of growth. Treatment options vary from continuous decompression with transcortical placement of a cannulated screw to percutaneous aspiration and injection of medical-grade calcium sulfate. From 2005 to 2007, we treated 22 patients with unicameral bone cysts using aspiration and injection of calcium sulfate. Three patients experienced acute laryngospasm and one patient developed tachyarrhythmia, temporarily, associated with injection of calcium sulfate. All reactions occurred in patients under age 18 without predisposing risk factors and resolved spontaneously with supportive care. Although the mechanism is unclear, we hypothesize that these reactions are either due to the nociceptive stimulus of the calcium sulfate injection or a systemic calcium bolus. Clinicians using this product for this indication should be aware that such reactions may occur. We suggest endotracheal intubation and communication to the anesthesiologist about the time of the injection in preparation for these idiopathic responses. Further research is necessary to determine exactly how this reaction occurs and how it can be avoided. PMID:19223954

  6. Alveolar bone repair with strontium- containing nanostructured carbonated hydroxyapatite.

    PubMed

    Carmo, André Boziki Xavier do; Sartoretto, Suelen Cristina; Alves, Adriana Terezinha Neves Novellino; Granjeiro, José Mauro; Miguel, Fúlvio Borges; Calasans-Maia, Jose; Calasans-Maia, Monica Diuana

    2018-01-18

    This study aimed to evaluate bone repair in rat dental sockets after implanting nanostructured carbonated hydroxyapatite/sodium alginate (CHA) and nanostructured carbonated hydroxyapatite/sodium alginate containing 5% strontium microspheres (SrCHA) as bone substitute materials. Twenty male Wistar rats were randomly divided into two experimental groups: CHA and SrCHA (n=5/period/group). After one and 6 weeks of extraction of the right maxillary central incisor and biomaterial implantation, 5 μm bone blocks were obtained for histomorphometric evaluation. The parameters evaluated were remaining biomaterial, loose connective tissue and newly formed bone in a standard area. Statistical analysis was performed by Mann-Withney and and Wilcoxon tests at 95% level of significance. The histomorphometric results showed that the microspheres showed similar fragmentation and bio-absorbation (p>0.05). We observed the formation of new bones in both groups during the same experimental periods; however, the new bone formation differed significantly between the weeks 1 and 6 (p=0.0039) in both groups. The CHA and SrCHA biomaterials were biocompatible, osteoconductive and bioabsorbable, indicating their great potential for clinical use as bone substitutes.

  7. [Nano-hydroxyapatite/collagen composite for bone repair].

    PubMed

    Feng, Qing-ling; Cui, Fu-zhai; Zhang, Wei

    2002-04-01

    To develop nano-hydroxyapatite/collagen (NHAC) composite and test its ability in bone repairing. NHAC composite was developed by biomimetic method. The composite showed some features of natural bone in both composition and microstructure. The minerals could contribute to 50% by weight of the composites in sheet form. The inorganic phase in the composite was carbonate-substituted hydroxyapatite (HA) with low crystallinity and nanometer size. HA precipitates were uniformly distributed on the type I collagen matrix without preferential orientation. The composite exhibited an isotropic mechanical behavior. However, the resistance of the composite to localized pressure could reach the lower limit of that of femur compacta. The tissue response to the NHAC composite implanted in marrow cavity was investigated. Knoop micro-hardness test was performed to compare the mechanical behavior of the composite and bone. At the interface of the implant and marrow tissue, solution-mediated dissolution and macrophage-mediated resorption led to the degradation of the composite, followed by interfacial bone formation by osteoblasts. The process of implant degradation and bone substitution was reminiscent of bone remodeling. The composite can be incorporated into bone metabolism instead of being a permanent implant.

  8. Busulfan Injection

    MedlinePlus

    ... marrow and cancer cells in preparation for a bone marrow transplant. Busulfan is in a class of medications called ... days (for a total of 16 doses) before bone marrow transplant.Busulfan injection may cause seizures during therapy with ...

  9. Nasal Floor Augmentation for the Reconstruction of the Atrophic Maxilla: A Case Series

    PubMed Central

    El-Ghareeb, Moustafa; Pi-Anfruns, Joan; Khosousi, Mohammed; Aghaloo, Tara; Moy, Peter

    2012-01-01

    Purpose The severely atrophic edentulous maxilla imposes a challenge for dental implant rehabilitation. Nasal floor augmentation (NFA) is a method of augmenting bone height in the anterior maxilla. Autogenous bone has been commonly used as a graft material. Because of variations in results and lack of insufficient studies reporting the use of bone substitutes to graft the nasal floor, this study aims to evaluate the survival and success of dental implants placed in nasally grafted maxillae with osteoconductive bone substitutes. Materials and Methods Six patients with completely edentulous maxillae and inadequate height in the anterior to support implants underwent NFA. The nasal floor was exposed through an intraoral approach and grafted with osteoconductive bone graft substitutes. Twenty-four dental implants were placed, restored with a bar-retained implant-supported overdenture after a traditional healing period, and followed up after prosthetic loading. Patient satisfaction was evaluated with a questionnaire, and responses were expressed on a visual analog scale from 1 to 10. Bone levels were quantified radiographically based on a score ranging from 1 to 3, where 3 represented the highest bone support. Implants were evaluated for thread exposure and soft tissue health and were considered successful if the following criteria were met: absence of mobility; lack of symptoms; bone score of 3; and healthy peri-implant soft tissue without thread exposure. Results The age of patients ranged from 48 to 84 years, with a mean of 71.2 years. Three patients underwent NFA and simultaneous implant placement, whereas the other 3 had a mean healing period of 6.5 months before implant placement. Post-loading follow-up ranged from 4 to 29 months, with a mean of 14.2 months. The implant survival rate was 100%, with no complications. Ninety-three percent of the responses to the treatment satisfaction questionnaire had a score of 7 or greater. Bone scores ranged from 2 to 3, with 87.5% of implants having a score of 3 and 12.5% having a score of 2. None of the implants had a bone score of 1. Conclusions The use of osteoconductive bone substitutes for NFA, as shown in this small case series, is a reliable method for reconstruction of the anterior atrophic maxilla for implant-supported overdentures. PMID:22177805

  10. RimabotulinumtoxinB Injection

    MedlinePlus

    ... tightening of the neck muscles that may cause neck pain and abnormal head positions). RimabotulinumtoxinB injection is in ... cannot be substituted for another.RimabotulinumtoxinB injection controls ... longer before you feel the full benefit of rimabotulinumtoxinB injection.

  11. Surgical management of calcaneal unicameral bone cysts.

    PubMed

    Glaser, D L; Dormans, J P; Stanton, R P; Davidson, R S

    1999-03-01

    Unicameral bone cysts are not seen commonly in the calcaneus. Little is known about the etiology and natural history of these lesions. Calcaneal cysts often are symptomatic, although some of these lesions are detected as incidental findings. Treatment has been advocated based on the fear of pathologic fracture and collapse. Several published series have been divided in their favor for either open treatment or injection management. These series are small, and the optimal treatment is still in question. The current study compared the efficacy of methylprednisolone acetate injection treatment with curettage and bone grafting in the treatment of unicameral bone cysts of the calcaneus. All patients treated for unicameral bone cysts of the calcaneus during the past 7 years at two institutions were reviewed. Eleven patients met inclusion criteria. All diagnoses were confirmed radiographically or histologically. Demographic information, presenting complaints, diagnostic imaging, treatment modalities, and outcome were analyzed. Long term radiographic and subjective followup was obtained. Eighteen surgical procedures were performed on 11 patients with 12 cysts. Nine injections performed on six patients failed to show healing of the cyst. Nine cysts treated with curettage and bone grafting showed cyst healing. At mean followup of 28 months (range, 12-77 months), all 11 patients had no symptoms; there were no recurrences of the cyst in the nine patients who underwent bone grafting and persistence of the cyst in the two patients who underwent injection therapy. This review reports one of the largest series of cysts in this location. The results indicate that steroid injection treatment, although useful in other locations, may not be the best option for the management of unicameral bone cysts in the calcaneus. Curettage and bone grafting yielded uniformly good results.

  12. Effect of Low-Intensity Pulsed Ultrasound after Mesenchymal Stromal Cell Injection to Treat Osteochondral Defects: An In Vivo Study.

    PubMed

    Yamaguchi, Shoki; Aoyama, Tomoki; Ito, Akira; Nagai, Momoko; Iijima, Hirotaka; Tajino, Junichi; Zhang, Xiangkai; Wataru, Kiyan; Kuroki, Hiroshi

    2016-12-01

    We investigated the effect of low-intensity pulsed ultrasound (LIPUS) treatment combined with mesenchymal stromal cell (MSC) injection for cartilage repair and subchondral bone reconstitution for treatment of osteochondral defects. An osteochondral defect was created on both femur grooves of Wistar rats. Four weeks later, bone marrow MSCs were injected into the right knee joint. The rats were divided into two intervention groups: without or with LIPUS irradiation. Cartilage repair was evaluated histologically based on the Wakitani cartilage repair score. Subchondral bone reconstitution was evaluated as bone volume (BV)/tissue volume (TV) by micro-computed tomography analysis. MSC injection improved the cartilage repair score, and LIPUS irradiation improved BV/TV. Combination treatment promoted both cartilage repair and BV/TV improvement. Thus, MSC injection combined with LIPUS irradiation is more effective than either treatment alone in promoting concurrent cartilage repair and subchondral reconstitution. Copyright © 2016 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  13. Oral substitution treatment of injecting opioid users for prevention of HIV infection.

    PubMed

    Gowing, Linda; Farrell, Michael F; Bornemann, Reinhard; Sullivan, Lynn E; Ali, Robert

    2011-08-10

    Injecting drug users are vulnerable to infection with Human Immunodeficiency Virus (HIV) and other blood borne viruses as a result of collective use of injecting equipment as well as sexual behaviour To assess the effect of oral substitution treatment for opioid dependent injecting drug users on risk behaviours and rates of HIV infections We searched the Cochrane Central Register of Controlled Trials, MEDLINE, EMBASE and PsycINFO to May 2011. We also searched reference lists of articles, reviews and conference abstracts Studies were required to consider the incidence of risk behaviours, or the incidence of HIV infection related to substitution treatment of opioid dependence. All types of original studies were considered. Two authors independently assessed each study for inclusion Two authors independently extracted key information from each of the included studies. Any differences were resolved by discussion or by referral to a third author. Thirty-eight studies, involving some 12,400 participants, were included. The majority were descriptive studies, or randomisation processes did not relate to the data extracted, and most studies were judged to be at high risk of bias. Studies consistently show that oral substitution treatment for opioid-dependent injecting drug users with methadone or buprenorphine is associated with statistically significant reductions in illicit opioid use, injecting use and sharing of injecting equipment. It is also associated with reductions in the proportion of injecting drug users reporting multiple sex partners or exchanges of sex for drugs or money, but has little effect on condom use. It appears that the reductions in risk behaviours related to drug use do translate into reductions in cases of HIV infection. However, because of the high risk of bias and variability in several aspects of the studies, combined totals were not calculated. Oral substitution treatment for injecting opioid users reduces drug-related behaviours with a high risk of HIV transmission, but has less effect on sex-related risk behaviours. The lack of data from randomised controlled studies limits the strength of the evidence presented in this review.

  14. Bone Tissue Engineering Under Xenogeneic-Free Conditions in a Large Animal Model as a Basis for Early Clinical Applicability.

    PubMed

    Weigand, Annika; Beier, Justus P; Schmid, Rafael; Knorr, Tobias; Kilian, David; Götzl, Rebekka; Gerber, Thomas; Horch, Raymund E; Boos, Anja M

    2017-03-01

    For decades, researchers have been developing a range of promising strategies in bone tissue engineering with the aim of producing a significant clinical benefit over existing therapies. However, a major problem concerns the traditional use of xenogeneic substances for the expansion of cells, which complicates direct clinical transfer. The study's aim was to establish a totally autologous sheep model as a basis for further preclinical studies and future clinical application. Ovine mesenchymal stromal cells (MSC) were cultivated in different concentrations (0%, 2%, 5%, 10%, and 25%) of either autologous serum (AS) or fetal calf serum (FCS). With an increase of serum concentration, enhanced metabolic activity and proliferation could be observed. There were minor differences between MSC cultivated in AS or FCS, comparing gene and protein expression of osteogenic and stem cell markers, morphology, and osteogenic differentiation. MSC implanted subcutaneously in the sheep model, together with a nanostructured bone substitute, either in stable block or moldable putty form, induced similar vascularization and remodeling of the bone substitute irrespective of cultivation of MSC in AS or FCS and osteogenic differentiation. The bone substitute in block form together with MSC proved particularly advantageous in the induction of ectopic bone formation compared to the cell-free control and putty form. It could be demonstrated that AS is suitable for replacement of FCS for cultivation of ovine MSC for bone tissue engineering purposes. Substantial progress has been made in the development of a strictly xenogeneic-free preclinical animal model to bring future clinical application of bone tissue engineering strategies within reach.

  15. Early matrix change of a nanostructured bone grafting substitute in the rat.

    PubMed

    Xu, Weiguo; Holzhüter, Gerd; Sorg, Heiko; Wolter, Daniel; Lenz, Solvig; Gerber, Thomas; Vollmar, Brigitte

    2009-11-01

    A nanocrystalline bone substitute embedded in a highly porous silica gel matrix (NanoBone) has previously been shown to bridge bone defects by an organic matrix. As the initial host response on the bone graft substitute might be a determinant for subsequent bone formation, our present purpose was to characterize the early tissue reaction on this biomaterial. After implantation of 80 mg of NanoBone into the adipose neck tissue of a total of 35 rats, grafts were harvested for subsequent analysis at days 3, 6, 9, 12, and 21. The biomaterial was found encapsulated by granulation tissue which partly penetrated the implant at day 3 and completely pervaded the graft at day 12 on implantation. Histology revealed tartrate-resistant acid phosphatase (TRAP)-positive giant cells covering the biomaterial. ED1 (CD68) immunopositivity of these cells further indicated their osteoclast-like phenotype. Scanning electron microscopy revealed organic tissue components within the periphery of the graft already at day 9, whereas the central hematoma region still presented the silica-surface of the biomaterial. Energy dispersive X-ray spectroscopy further demonstrated that the silica gel was degraded faster in the peripheral granulation tissue than in the central hematoma and was replaced by organic host components by day 12. In conclusion, the silica gel matrix is rapidly replaced by carbohydrate macromolecules. This might represent a key step in the process of graft degradation on its way toward induction of bone formation. The unique composition and structure of this nanoscaled biomaterial seem to support its degradation by host osteoclast-like giant cells.

  16. Reinforcement of osteosynthesis screws with brushite cement.

    PubMed

    Van Landuyt, P; Peter, B; Beluze, L; Lemaître, J

    1999-08-01

    The fixation of osteosynthesis screws remains a severe problem for fracture repair among osteoporotic patients. Polymethyl-methacrylate (PMMA) is routinely used to improve screw fixation, but this material has well-known drawbacks such as monomer toxicity, exothermic polymerization, and nonresorbability. Calcium phosphate cements have been developed for several years. Among these new bone substitution materials, brushite cements have the advantage of being injectable and resorbable. The aim of this study is to assess the reinforcement of osteosynthesis screws with brushite cement. Polyurethane foams, whose density is close to that of cancellous bone, were used as bone model. A hole was tapped in a foam sample, then brushite cement was injected. Trabecular osteosynthesis screws were inserted. After 24 h of aging in water, the stripping force was measured by a pull-out test. Screws (4.0 and 6.5 mm diameter) and two foam densities (0.14 and 0.28 g/cm3) were compared. Cements with varying solid/liquid ratios and xanthan contents were used in order to obtain the best screw reinforcement. During the pull-out test, the stripping force first increases to a maximum, then drops to a steady-state value until complete screw extraction. Both maximum force and plateau value increase drastically in the presence of cement. The highest stripping force is observed for 6.5-mm screws reinforced with cement in low-density foams. In this case, the stripping force is multiplied by 3.3 in the presence of cement. In a second experiment, cements with solid/liquid ratio ranging from 2.0 to 3.5 g/mL were used with 6.5-mm diameter screws. In some compositions, xanthan was added to improve injectability. The best results were obtained with 2.5 g/mL cement containing xanthan and with 3.0 g/mL cements without xanthan. A 0.9-kN maximal stripping force was observed with nonreinforced screws, while 1.9 kN was reached with reinforced screws. These first results are very promising regarding screw reinforcement with brushite cement. However, the polyurethane foam model presents noninterconnected porosity and physiological liquid was not modelized.

  17. The effects of prostaglandin E2 in growing rats - Increased metaphyseal hard tissue and cortico-endosteal bone formation

    NASA Technical Reports Server (NTRS)

    Jee, W. S. S.; Ueno, K.; Deng, Y. P.; Woodbury, D. M.

    1985-01-01

    The role of in vivo prostaglandin E2 (PGE2) in bone formation is investigated. Twenty-five male Sprague-Dawley rats weighing between 223-267 g were injected subcutaneously with 0.3, 1.0, 3.0, and 6.0 mg of PGE2-kg daily for 21 days. The processing of the tibiae for observation is described. Radiographs and histomorphometric analyses are also utilized to study bone formation. Body weight, weights of soft tissues and bones morphometry are evaluated. It is observed that PGE2 depressed longitudinal bone growth, increased growth cartilage thickness, decreased degenerative cartilage cell size and cartilage cell production, and significantly increased proximal tibial metaphyseal hard tissue mass. The data reveal that periosteal bone formation is slowed down at higher doses of PGE2 and endosteal bone formation is slightly depressed less than 10 days post injection; however, here is a late increase (10 days after post injection) in endosteal bone formation and in the formation of trabecular bone in the marrow cavity of the tibial shaft. It is noted that the effects of PGE2 on bone formation are similar to the responses of weaning rats to PGE2.

  18. Guided bone regeneration with a synthetic biodegradable membrane: a comparative study in dogs.

    PubMed

    Jung, Ronald E; Kokovic, Vladimir; Jurisic, Milan; Yaman, Duygu; Subramani, Karthikeyan; Weber, Franz E

    2011-08-01

    The aim of the present study was to compare a newly developed biodegradable polylactide/polyglycolide/N-methyl-2-pyrrolidone (PLGA/NMP) membrane with a standard resorbable collagen membrane (RCM) in combination with and without the use of a bone substitute material (deproteinized bovine bone mineral [DBBM]) looking at the proposed tenting effect and bone regeneration. In five adult German sheepdogs, the mandibular premolars P2, P3, P4, and the molar M1 were bilaterally extracted creating two bony defects on each site. A total of 20 dental implants were inserted and allocated to four different treatment modalities within each dog: PLGA/NMP membrane only (Test 1), PLGA/NMP membrane with DBBM (Test 2), RCM only (negative control), and RCM with DBBM (positive control). A histomorphometric analysis was performed 12 weeks after implantation. For statistical analysis, a Friedman test and subsequently a Wilcoxon signed ranks test were applied. In four out of five PLGA/NMP membrane-treated defects, the membranes had broken into pieces without the support of DBBM. This led to a worse outcome than in the RCM group. In combination with DBBM, both membranes revealed similar amounts of area of bone regeneration and bone-to-implant contact without significant differences. On the level of the third implant thread, the PLGA/NMP membrane induced more horizontal bone formation beyond the graft than the RCM. The newly developed PLGA/NMP membrane performs equally well as the RCM when applied in combination with DBBM. Without bone substitute material, the PLGA/NMP membrane performed worse than the RCM in challenging defects, and therefore, a combination with a bone substitute material is recommended. © 2010 John Wiley & Sons A/S.

  19. Preparation of hydroxyapatite/collagen injectable bone paste with an anti-washout property utilizing sodium alginate. Part 1: influences of excess supplementation of calcium compounds.

    PubMed

    Sato, Taira; Kikuchi, Masanori; Aizawa, Mamoru

    2017-03-01

    The anti-washout property, viscosity, and cytocompatibility to an osteoblastic cell line, MG-63, of anti-washout pastes were investigated. Mixing a hydroxyapatite/collagen bone-like nanocomposite (HAp/Col), an aqueous solution of sodium alginate (Na-Alg), which is a paste hardening and lubricant agent, and supplementation of calcium carbonate or calcium citrate (Ca-Cit) as a calcium resource for the hardening reaction realized an injectable bone paste. Adding Ca-Cit at a concentration greater than eight times the Ca 2+ ion concentration to Na-Alg improved the anti-washout property. Although the viscosity test indicated a gradual increase in the paste viscosity as the calcium compounds increased, pastes with excess supplementation of calcium compounds exhibited injectability through a syringe with a 1.8 mm inner diameter, realizing an injectable bone filler. Furthermore, the anti-washout pastes with Ca-Cit had almost the same cell proliferation rate as that of the HAp/Col dense body. Therefore, HAp/Col injectable anti-washout pastes composed of the HAp/Col, Na-Alg, and Ca-Cit are potential candidates for bioresorbable bone filler pastes.

  20. Management of segmental bony defects: the role of osteoconductive orthobiologics.

    PubMed

    McKee, Michael D

    2006-01-01

    Our knowledge about, and the availability of, orthobiologic materials has increased exponentially in the last decade. Although previously confined to the experimental or animal-model realm, several orthobiologics have been shown to be useful in a variety of clinical situations. As surgical techniques in vascular anastomosis, soft-tissue coverage, limb salvage, and fracture stabilization have improved, the size and frequency of bony defects (commensurate with the severity of the initial injury) have increased, as well. Because all methods of managing segmental bony defects have drawbacks, a need remains for a readily available, void-filling, inexpensive bone substitute. Such a bone substitute fulfills a permissive role in allowing new bone to grow into a given defect. Such potential osteoconductive materials include ceramics, calcium sulfate or calcium phosphate compounds, hydroxyapatite, deproteinized bone, corals, and recently developed polymers. Some materials that have osteoinductive properties, such as demineralized bone matrix, also display prominent osteoconductive properties.

  1. The biodegradation of hydroxyapatite bone graft substitutes in vivo.

    PubMed

    Rumpel, E; Wolf, E; Kauschke, E; Bienengräber, V; Bayerlein, T; Gedrange, T; Proff, P

    2006-02-01

    Hydroxyapatite (HA) ceramics are widely used for bone reconstruction. They are osteoconductive and serve as structural scaffolds for the deposition of new bone. Generally, scaffold materials should be degradable as they affect the mechanical properties of the reconstructed bone negatively. Degradation by osteoclasts during the bone remodelling process is desirable but often does not take place. In the current study we analysed by light microscopy the degradation of two granular HA implants in critically sized defects in the mandibula of Goettingen mini-pigs five weeks after implantation. Bio-Oss consists of sintered bovine bone and NanoBone is a synthetic HA produced in a sol-gel process in the presence of SiO2. We found that both biomaterials were degraded by osteoclasts with ruffled borders and acid phosphatase activity. The osteoclasts created resorption lacunae and resorptive trails and contained mineral particles. Frequently, resorption surfaces were in direct contact with bone formative surfaces on one granule. Granules, especially of NanoBone, were also covered by osteoclasts if located in vascularised connective tissue distant from bone tissue. However, this usually occurred without the creation of resorption lacunae. The former defect margins consisted of newly formed bone often without remnants of bone substitutes. Our results show that the degradation of both biomaterials corresponds to the natural bone degradation processes and suggest the possibility of complete resorption during bone remodelling.

  2. Ceramic and non-ceramic hydroxyapatite as a bone graft material: a brief review.

    PubMed

    Dutta, S R; Passi, D; Singh, P; Bhuibhar, A

    2015-03-01

    Treatment of dental, craniofacial and orthopedic defects with bone graft substitutes has shown promising result achieving almost complete bone regeneration depending on product resorption similar to human bone's physicochemical and crystallographic characteristics. Among these, non-ceramic and ceramic hydroxyapatite being the main inorganic salt of bone is the most studied calcium phosphate material in clinical practices ever since 1970s and non-ceramic since 1985. Its "chemical similarity" with the mineralized phase of biologic bone makes it unique. Hydroxyapatite as an excellent carrier of osteoinductive growth factors and osteogenic cell populations is also useful as drug delivery vehicle regardless of its density. Porous ceramic and non-ceramic hydroxyapatite is osteoconductive, biocompatible and very inert. The need for bone graft material keeps on increasing with increased age of the population and the increased conditions of trauma. Recent advances in genetic engineering and doping techniques have made it possible to use non-ceramic hydroxyapatite in larger non-ceramic crystals and cluster forms as a successful bone graft substitute to treat various types of bone defects. In this paper we have mentioned some recently studied properties of hydroxyapatite and its various uses through a brief review of the literatures available to date.

  3. Multiphasic modelling of bone-cement injection into vertebral cancellous bone.

    PubMed

    Bleiler, Christian; Wagner, Arndt; Stadelmann, Vincent A; Windolf, Markus; Köstler, Harald; Boger, Andreas; Gueorguiev-Rüegg, Boyko; Ehlers, Wolfgang; Röhrle, Oliver

    2015-01-01

    Percutaneous vertebroplasty represents a current procedure to effectively reinforce osteoporotic bone via the injection of bone cement. This contribution considers a continuum-mechanically based modelling approach and simulation techniques to predict the cement distributions within a vertebra during injection. To do so, experimental investigations, imaging data and image processing techniques are combined and exploited to extract necessary data from high-resolution μCT image data. The multiphasic model is based on the Theory of Porous Media, providing the theoretical basis to describe within one set of coupled equations the interaction of an elastically deformable solid skeleton, of liquid bone cement and the displacement of liquid bone marrow. The simulation results are validated against an experiment, in which bone cement was injected into a human vertebra under realistic conditions. The major advantage of this comprehensive modelling approach is the fact that one can not only predict the complex cement flow within an entire vertebra but is also capable of taking into account solid deformations in a fully coupled manner. The presented work is the first step towards the ultimate and future goal of extending this framework to a clinical tool allowing for pre-operative cement distribution predictions by means of numerical simulations. Copyright © 2015 John Wiley & Sons, Ltd.

  4. Improving the clinical evidence of bone graft substitute technology in lumbar spine surgery.

    PubMed

    Hsu, Wellington K; Nickoli, M S; Wang, J C; Lieberman, J R; An, H S; Yoon, S T; Youssef, J A; Brodke, D S; McCullough, C M

    2012-12-01

    Bone graft substitutes have been used routinely for spine fusion for decades, yet clinical evidence establishing comparative data remains sparse. With recent scrutiny paid to the outcomes, complications, and costs associated with osteobiologics, a need to improve available data guiding efficacious use exists. We review the currently available clinical literature, studying the outcomes of various biologics in posterolateral lumbar spine fusion, and establish the need for a multicenter, independent osteobiologics registry.

  5. Improving the Clinical Evidence of Bone Graft Substitute Technology in Lumbar Spine Surgery

    PubMed Central

    Hsu, Wellington K.; Nickoli, M. S.; Wang, J. C.; Lieberman, J. R.; An, H. S.; Yoon, S. T.; Youssef, J. A.; Brodke, D. S.; McCullough, C. M.

    2012-01-01

    Bone graft substitutes have been used routinely for spine fusion for decades, yet clinical evidence establishing comparative data remains sparse. With recent scrutiny paid to the outcomes, complications, and costs associated with osteobiologics, a need to improve available data guiding efficacious use exists. We review the currently available clinical literature, studying the outcomes of various biologics in posterolateral lumbar spine fusion, and establish the need for a multicenter, independent osteobiologics registry. PMID:24353975

  6. Clinical effectiveness of combining platelet rich fibrin with alloplastic bone substitute for the management of combined endodontic periodontal lesion

    PubMed Central

    2014-01-01

    The term "endo-perio" lesion has been proposed to describe the destructive lesion resulting from inflammatory products found in varying degrees in both the periodontium and the pulpal tissues. In most of the cases, clinical symptoms disappear following successful endodontic therapy. However failure after conventional root canal treatment calls for surgical intervention. A 35 year old male patient with endo-perio lesion in right maxillary lateral incisor was treated with platelet rich fibrin (PRF) and alloplastic bone substitute after conventional endodontic therapy. At the end of 6 months there was gain in clinical attachment, increased radiographic bone fill and reduction in probing depth which was maintained till 18 month follow-up. Present case report aims to evaluate the efficacy of PRF and alloplastic bone substitute in the management of intrabony defect associated with endo-perio lesion in maxillary lateral incisor because the healing potential of PRF and bone graft has not been widely studied in endodontics. The use of PRF allows the clinician to optimize tissue remodelling, wound healing and angiogenesis by the local delivery of growth factors and proteins. The novel technique described here enables the clinician to be benefited from the full regenerative capacity of this autologous biologic material. PMID:24516830

  7. Clinical effectiveness of combining platelet rich fibrin with alloplastic bone substitute for the management of combined endodontic periodontal lesion.

    PubMed

    Goyal, Lata

    2014-02-01

    The term "endo-perio" lesion has been proposed to describe the destructive lesion resulting from inflammatory products found in varying degrees in both the periodontium and the pulpal tissues. In most of the cases, clinical symptoms disappear following successful endodontic therapy. However failure after conventional root canal treatment calls for surgical intervention. A 35 year old male patient with endo-perio lesion in right maxillary lateral incisor was treated with platelet rich fibrin (PRF) and alloplastic bone substitute after conventional endodontic therapy. At the end of 6 months there was gain in clinical attachment, increased radiographic bone fill and reduction in probing depth which was maintained till 18 month follow-up. Present case report aims to evaluate the efficacy of PRF and alloplastic bone substitute in the management of intrabony defect associated with endo-perio lesion in maxillary lateral incisor because the healing potential of PRF and bone graft has not been widely studied in endodontics. The use of PRF allows the clinician to optimize tissue remodelling, wound healing and angiogenesis by the local delivery of growth factors and proteins. The novel technique described here enables the clinician to be benefited from the full regenerative capacity of this autologous biologic material.

  8. The growth hormone secretagogue ipamorelin counteracts glucocorticoid-induced decrease in bone formation of adult rats.

    PubMed

    Andersen, N B; Malmlöf, K; Johansen, P B; Andreassen, T T; Ørtoft, G; Oxlund, H

    2001-10-01

    The ability of the growth hormone secretagogue (GHS) Ipamorelin to counteract the catabolic effects of glucocorticoid (GC) on skeletal muscles and bone was investigated in vivo in an adult rat model. Groups of 8-month-old female rats were injected subcutaneously for 3 months with GC (methylprednisolone) 9 mg/kg/day or GHS (Ipamorelin) 100 microg/kg three times daily, or both GC and GHS in combination. The maximum tetanic tension of the calf muscles was determined in vivo in a materials testing machine. The maximum tetanic tension was increased significantly, and the periosteal bone formation rate increased four-fold in animals injected with GC and GHS in combination, compared with the group injected with GC alone. In conclusion, the decrease in muscle strength and bone formation found in GC-injected rats was counteracted by simultaneous administration of the growth hormone secretagogue. Copyright 2001 Harcourt Publishers Ltd.

  9. Simulation of mechanical behavior and optimization of simulated injection molding process for PLA based antibacterial composite and nanocomposite bone screws using central composite design.

    PubMed

    Heidari, Behzad Shiroud; Oliaei, Erfan; Shayesteh, Hadi; Davachi, Seyed Mohammad; Hejazi, Iman; Seyfi, Javad; Bahrami, Mozhgan; Rashedi, Hamid

    2017-01-01

    In this study, injection molding of three poly lactic acid (PLA) based bone screws was simulated and optimized through minimizing the shrinkage and warpage of the bone screws. The optimization was carried out by investigating the process factors such as coolant temperature, mold temperature, melt temperature, packing time, injection time, and packing pressure. A response surface methodology (RSM), based on the central composite design (CCD), was used to determine the effects of the process factors on the PLA based bone screws. Upon applying the method of maximizing the desirability function, optimization of the factors gave the lowest warpage and shrinkage for nanocomposite PLA bone screw (PLA9). Moreover, PLA9 has the greatest desirability among the selected materials for bone screw injection molding. Meanwhile, a finite element analysis (FE analysis) was also performed to determine the force values and concentration points which cause yielding of the screws under certain conditions. The Von-Mises stress distribution showed that PLA9 screw is more resistant against the highest loads as compared to the other ones. Finally, according to the results of injection molding simulations, the design of experiments (DOE) and structural analysis, PLA9 screw is recommended as the best candidate for the production of biomedical materials among all the three types of screws. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Translating Periosteum's Regenerative Power: Insights From Quantitative Analysis of Tissue Genesis With a Periosteum Substitute Implant

    PubMed Central

    Moore, Shannon R.; Heu, Céline; Yu, Nicole Y.C.; Whan, Renee M.; Knothe, Ulf R.; Milz, Stefan

    2016-01-01

    An abundance of surgical studies during the past 2 centuries provide empirical evidence of periosteum's regenerative power for reconstructing tissues as diverse as trachea and bone. This study aimed to develop quantitative, efficacy-based measures, thereby providing translational guidelines for the use of periosteum to harness the body's own healing potential and generate target tissues. The current study quantitatively and qualitatively demonstrated tissue generation modulated by a periosteum substitute membrane that replicates the structural constituents of native periosteum (elastin, collagen, progenitor cells) and its barrier, extracellular, and cellular properties. It shows the potentiation of the periosteum's regenerative capacity through the progenitor cells that inhabit the tissue, biological factors intrinsic to the extracellular matrix of periosteum, and mechanobiological factors related to implant design and implementation. In contrast to the direct intramembranous bone generated in defects surrounded by patent periosteum in situ, tissue generation in bone defects bounded by the periosteum substitute implant occurred primarily via endochondral mechanisms whereby cartilage was first generated and then converted to bone. In addition, in defects treated with the periosteum substitute, tissue generation was highest along the major centroidal axis, which is most resistant to prevailing bending loads. Taken together, these data indicate the possibility of designing modular periosteum substitute implants that can be tuned for vectorial and spatiotemporal delivery of biological agents and facilitation of target tissue genesis for diverse surgical scenarios and regenerative medicine approaches. It also underscores the potential to develop physical therapy protocols to maximize tissue genesis via the implant's mechanoactive properties. Significance In the past 2 centuries, the periosteum, a niche for stem cells and super-smart biological material, has been used empirically in surgery to repair tissues as diverse as trachea and bone. In the past 25 years, the number of articles indexed in PubMed for the keywords “periosteum and tissue engineering” and “periosteum and regenerative medicine” has burgeoned. Yet the biggest limitation to the prescriptive use of periosteum is lack of easy access, giving impetus to the development of periosteum substitutes. Recent studies have opened up the possibility to bank periosteal tissues (e.g., from the femoral neck during routine resection for implantation of hip replacements). This study used an interdisciplinary, quantitative approach to assess tissue genesis in modular periosteum substitute implants, with the aim to provide translational strategies for regenerative medicine and tissue engineering. PMID:27465072

  11. Translating Periosteum's Regenerative Power: Insights From Quantitative Analysis of Tissue Genesis With a Periosteum Substitute Implant.

    PubMed

    Moore, Shannon R; Heu, Céline; Yu, Nicole Y C; Whan, Renee M; Knothe, Ulf R; Milz, Stefan; Knothe Tate, Melissa L

    2016-12-01

    : An abundance of surgical studies during the past 2 centuries provide empirical evidence of periosteum's regenerative power for reconstructing tissues as diverse as trachea and bone. This study aimed to develop quantitative, efficacy-based measures, thereby providing translational guidelines for the use of periosteum to harness the body's own healing potential and generate target tissues. The current study quantitatively and qualitatively demonstrated tissue generation modulated by a periosteum substitute membrane that replicates the structural constituents of native periosteum (elastin, collagen, progenitor cells) and its barrier, extracellular, and cellular properties. It shows the potentiation of the periosteum's regenerative capacity through the progenitor cells that inhabit the tissue, biological factors intrinsic to the extracellular matrix of periosteum, and mechanobiological factors related to implant design and implementation. In contrast to the direct intramembranous bone generated in defects surrounded by patent periosteum in situ, tissue generation in bone defects bounded by the periosteum substitute implant occurred primarily via endochondral mechanisms whereby cartilage was first generated and then converted to bone. In addition, in defects treated with the periosteum substitute, tissue generation was highest along the major centroidal axis, which is most resistant to prevailing bending loads. Taken together, these data indicate the possibility of designing modular periosteum substitute implants that can be tuned for vectorial and spatiotemporal delivery of biological agents and facilitation of target tissue genesis for diverse surgical scenarios and regenerative medicine approaches. It also underscores the potential to develop physical therapy protocols to maximize tissue genesis via the implant's mechanoactive properties. In the past 2 centuries, the periosteum, a niche for stem cells and super-smart biological material, has been used empirically in surgery to repair tissues as diverse as trachea and bone. In the past 25 years, the number of articles indexed in PubMed for the keywords "periosteum and tissue engineering" and "periosteum and regenerative medicine" has burgeoned. Yet the biggest limitation to the prescriptive use of periosteum is lack of easy access, giving impetus to the development of periosteum substitutes. Recent studies have opened up the possibility to bank periosteal tissues (e.g., from the femoral neck during routine resection for implantation of hip replacements). This study used an interdisciplinary, quantitative approach to assess tissue genesis in modular periosteum substitute implants, with the aim to provide translational strategies for regenerative medicine and tissue engineering. ©AlphaMed Press.

  12. Synthetic Bone Substitute Engineered with Amniotic Epithelial Cells Enhances Bone Regeneration after Maxillary Sinus Augmentation

    PubMed Central

    Barboni, Barbara; Mangano, Carlo; Valbonetti, Luca; Marruchella, Giuseppe; Berardinelli, Paolo; Martelli, Alessandra; Muttini, Aurelio; Mauro, Annunziata; Bedini, Rossella; Turriani, Maura; Pecci, Raffaella; Nardinocchi, Delia; Zizzari, Vincenzo Luca; Tetè, Stefano; Piattelli, Adriano; Mattioli, Mauro

    2013-01-01

    Background Evidence has been provided that a cell-based therapy combined with the use of bioactive materials may significantly improve bone regeneration prior to dental implant, although the identification of an ideal source of progenitor/stem cells remains to be determined. Aim In the present research, the bone regenerative property of an emerging source of progenitor cells, the amniotic epithelial cells (AEC), loaded on a calcium-phosphate synthetic bone substitute, made by direct rapid prototyping (rPT) technique, was evaluated in an animal study. Material And Methods Two blocks of synthetic bone substitute (∼0.14 cm3), alone or engineered with 1×106 ovine AEC (oAEC), were grafted bilaterally into maxillary sinuses of six adult sheep, an animal model chosen for its high translational value in dentistry. The sheep were then randomly divided into two groups and sacrificed at 45 and 90 days post implantation (p.i.). Tissue regeneration was evaluated in the sinus explants by micro-computer tomography (micro-CT), morphological, morphometric and biochemical analyses. Results And Conclusions The obtained data suggest that scaffold integration and bone deposition are positively influenced by allotransplantated oAEC. Sinus explants derived from sheep grafted with oAEC engineered scaffolds displayed a reduced fibrotic reaction, a limited inflammatory response and an accelerated process of angiogenesis. In addition, the presence of oAEC significantly stimulated osteogenesis either by enhancing bone deposition or making more extent the foci of bone nucleation. Besides the modulatory role played by oAEC in the crucial events successfully guiding tissue regeneration (angiogenesis, vascular endothelial growth factor expression and inflammation), data provided herein show that oAEC were also able to directly participate in the process of bone deposition, as suggested by the presence of oAEC entrapped within the newly deposited osteoid matrix and by their ability to switch-on the expression of a specific bone-related protein (osteocalcin, OCN) when transplanted into host tissues. PMID:23696804

  13. Cellular bone matrices: viable stem cell-containing bone graft substitutes

    PubMed Central

    Skovrlj, Branko; Guzman, Javier Z.; Al Maaieh, Motasem; Cho, Samuel K.; Iatridis, James C.; Qureshi, Sheeraz A.

    2015-01-01

    BACKGROUND CONTEXT Advances in the field of stem cell technology have stimulated the development and increased use of allogenic bone grafts containing live mesenchymal stem cells (MSCs), also known as cellular bone matrices (CBMs). It is estimated that CBMs comprise greater than 17% of all bone grafts and bone graft substitutes used. PURPOSE To critically evaluate CBMs, specifically their technical specifications, existing published data supporting their use, US Food and Drug Administration (FDA) regulation, cost, potential pitfalls, and other aspects pertaining to their use. STUDY DESIGN Areview of literature. METHODS A series of Ovid, Medline, and Pubmed-National Library of Medicine/National Institutes of Health (www.ncbi.nlm.nih.gov) searches were performed. Only articles in English journals or published with English language translations were included. Level of evidence of the selected articles was assessed. Specific technical information on each CBM was obtained by direct communication from the companies marketing the individual products. RESULTS Five different CBMs are currently available for use in spinal fusion surgery. There is a wide variation between the products with regard to the average donor age at harvest, total cellular concentration, percentage of MSCs, shelf life, and cell viability after defrosting. Three retrospective studies evaluating CBMs and fusion have shown fusion rates ranging from 90.2% to 92.3%, and multiple industry-sponsored trials are underway. No independent studies evaluating spinal fusion rates with the use of CBMs exist. All the commercially available CBMs claim to meet the FDA criteria under Section 361, 21 CFR Part 1271, and are not undergoing FDA premarket review. The CBMs claim to provide viable MSCs and are offered at a premium cost. Numerous challenges exist in regard to MSCs’ survival, function, osteoblastic potential, and cytokine production once implanted into the intended host. CONCLUSIONS Cellular bone matrices may be a promising bone augmentation technology in spinal fusion surgery. Although CBMs appear to be safe for use as bone graft substitutes, their efficacy in spinal fusion surgery remains highly inconclusive. Large, nonindustry sponsored studies evaluating the efficacy of CBMs are required. Without results from such studies, surgeons must be made aware of the potential pitfalls of CBMs in spinal fusion surgery. With the currently available data, there is insufficient evidence to support the use of CBMs as bone graft substitutes in spinal fusion surgery. PMID:24929059

  14. Cellular bone matrices: viable stem cell-containing bone graft substitutes.

    PubMed

    Skovrlj, Branko; Guzman, Javier Z; Al Maaieh, Motasem; Cho, Samuel K; Iatridis, James C; Qureshi, Sheeraz A

    2014-11-01

    Advances in the field of stem cell technology have stimulated the development and increased use of allogenic bone grafts containing live mesenchymal stem cells (MSCs), also known as cellular bone matrices (CBMs). It is estimated that CBMs comprise greater than 17% of all bone grafts and bone graft substitutes used. To critically evaluate CBMs, specifically their technical specifications, existing published data supporting their use, US Food and Drug Administration (FDA) regulation, cost, potential pitfalls, and other aspects pertaining to their use. Areview of literature. A series of Ovid, Medline, and Pubmed-National Library of Medicine/National Institutes of Health (www.ncbi.nlm.nih.gov) searches were performed. Only articles in English journals or published with English language translations were included. Level of evidence of the selected articles was assessed. Specific technical information on each CBM was obtained by direct communication from the companies marketing the individual products. Five different CBMs are currently available for use in spinal fusion surgery. There is a wide variation between the products with regard to the average donor age at harvest, total cellular concentration, percentage of MSCs, shelf life, and cell viability after defrosting. Three retrospective studies evaluating CBMs and fusion have shown fusion rates ranging from 90.2% to 92.3%, and multiple industry-sponsored trials are underway. No independent studies evaluating spinal fusion rates with the use of CBMs exist. All the commercially available CBMs claim to meet the FDA criteria under Section 361, 21 CFR Part 1271, and are not undergoing FDA premarket review. The CBMs claim to provide viable MSCs and are offered at a premium cost. Numerous challenges exist in regard to MSCs' survival, function, osteoblastic potential, and cytokine production once implanted into the intended host. Cellular bone matrices may be a promising bone augmentation technology in spinal fusion surgery. Although CBMs appear to be safe for use as bone graft substitutes, their efficacy in spinal fusion surgery remains highly inconclusive. Large, nonindustry sponsored studies evaluating the efficacy of CBMs are required. Without results from such studies, surgeons must be made aware of the potential pitfalls of CBMs in spinal fusion surgery. With the currently available data, there is insufficient evidence to support the use of CBMs as bone graft substitutes in spinal fusion surgery. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. Successful treatment of unicameral bone cyst by single percutaneous injection of alpha-BSM.

    PubMed

    Thawrani, Dinesh; Thai, Chia Che; Welch, Robert D; Copley, Lawson; Johnston, Charles E

    2009-01-01

    Unicameral bone cyst (UBC) is a benign bone lesion, recognized for its high rate of recurrence and need for repeat procedures to achieve healing. We hypothesized that the osteoconductive material apatitic calcium phosphate (alpha-BSM) could be effective in filling and stimulating resolution of UBC. The purpose of this study was to evaluate clinical and radiographic outcomes of UBC treated by a single injection of alpha-BSM. Thirteen patients (6 male, 7 female) with a mean age of 10.5 years, underwent single percutaneous injection of alpha-BSM for presumed UBC. The aspiration of the cysts was followed by vigorous saline lavage using 2 wide bore needles to disrupt the cyst walls. alpha-BSM "paste" was then injected under fluoroscopic guidance. Radiographs were digitized to measure cystic area (millimeter squares) on 2 orthogonal views. Healing was rated according to a modified Neer outcome grading system. Nine of the 13 patients had had pathologic fractures in the past. Eleven of the 13 patients had had past unsuccessful treatment: multiple steroid injections in 6, curettage and bone grafting in 3, and bone marrow and demineralized bone matrix (Grafton) injection in 2. Five cysts were grade 1 (healed 100%), 6 grade 2 (healed >50%), 2 grade 3 (healed <50% with increased cortical thickness), and none grade 4 (recurrence/enlargement). The average resolution of cystic area in 11/13 cysts was 85.7% at final follow-up of 35.8 months (P=0.0001) with 2.8 mm of average gain in cortical thickness (P=0.0018). None of the 13 lesions required an additional procedure or repeat injection. All patients were clinically asymptomatic at latest follow-up. This is the first study quantifying cyst resolution objectively according to actual decrease in area (millimeter squares). A single injection of alpha-BSM is a safe, minimally invasive and efficacious method to treat UBC in the pediatric population.

  16. Early diagenesis and recrystallization of bone

    NASA Astrophysics Data System (ADS)

    Keenan, Sarah W.; Engel, Annette Summers

    2017-01-01

    One of the most challenging problems in paleobiology is determining how bone transforms from a living tissue into a fossil. The geologic record is replete with vertebrate fossils preserved from a range of depositional environments, including wetland systems. However, thermodynamic models suggest that bone (modeled as hydroxylapatite) is generally unstable in a range of varying geochemical conditions and should readily dissolve if it does not alter to a more thermodynamically stable phase, such as a fluorine-enriched apatite. Here, we assess diagenesis of alligator bone from fleshed, articulated skeletons buried in wetland soils and from de-fleshed bones in experimental mesocosms with and without microbial colonization. When microbial colonization of bone was inhibited, bioapatite recrystallization to a more stable apatite phase occurred after one month of burial. Ca-Fe-phosphate phases in bone developed after several months to years due to ion substitutions from the protonation of the hydroxyl ion. These rapid changes demonstrate a continuum of structural and bonding transformations to bone that have not been observed previously. When bones were directly in contact with sediment and microbial cells, rapid bioerosion and compositional alteration occurred after one week, but slowed after one month because biofilms reduced exposed surfaces and subsequent bioapatite lattice substitutions. Microbial contributions are likely essential in forming stable apatite phases during early diagenesis and for enabling bone preservation and fossilization.

  17. Promoted new bone formation in maxillary distraction osteogenesis using a tissue-engineered osteogenic material.

    PubMed

    Kinoshita, Kazuhiko; Hibi, Hideharu; Yamada, Yoichi; Ueda, Minoru

    2008-01-01

    Bilateral maxillary distraction was performed at a higher rate in rabbits to determine whether locally applied tissue-engineered osteogenic material (TEOM) enhances bone regeneration. The material was an injectable gel composed of autologous mesenchymal stem cells, which were cultured then induced to be osteogenic in character, and platelet-rich plasma (PRP). After a 5-day latency period, distraction devices were activated at a rate of 2.0 mm once daily for 4 days. Twelve rabbits were divided into 2 groups. At the end of distraction, the experimental group of rabbits received an injection of TEOM into the distracted tissue on one side, whereas, saline solution was injected into the distracted tissue on the contralateral side as the internal control. An additional control group received an injection of PRP or saline solution into the distracted tissue in the same way as the experimental group. The distraction regenerates were assessed by radiological and histomorphometric analyses. The radiodensity of the distraction gap injected with TEOM was significantly higher than that injected with PRP or saline solution at 2, 3, and 4 weeks postdistraction. The histomorphometric analysis also showed that both new bone zone and bony content in the distraction gap injected with TEOM were significantly increased when compared with PRP or saline solution. Our results demonstrated that the distraction gap injected with TEOM showed significant new bone formation. Therefore, injections of TEOM may be able to compensate for insufficient distraction gaps.

  18. Critical review: Injectability of calcium phosphate pastes and cements.

    PubMed

    O'Neill, R; McCarthy, H O; Montufar, E B; Ginebra, M-P; Wilson, D I; Lennon, A; Dunne, N

    2017-03-01

    Calcium phosphate cements (CPC) have seen clinical success in many dental and orthopaedic applications in recent years. The properties of CPC essential for clinical success are reviewed in this article, which includes properties of the set cement (e.g. bioresorbability, biocompatibility, porosity and mechanical properties) and unset cement (e.g. setting time, cohesion, flow properties and ease of delivery to the surgical site). Emphasis is on the delivery of calcium phosphate (CaP) pastes and CPC, in particular the occurrence of separation of the liquid and solid components of the pastes and cements during injection; and established methods to reduce this phase separation. In addition a review of phase separation mechanisms observed during the extrusion of other biphasic paste systems and the theoretical models used to describe these mechanisms are discussed. Occurrence of phase separation of calcium phosphate pastes and cements during injection limits their full exploitation as a bone substitute in minimally invasive surgical applications. Due to lack of theoretical understanding of the phase separation mechanism(s), optimisation of an injectable CPC that satisfies clinical requirements has proven difficult. However, phase separation of pastes during delivery has been the focus across several research fields. Therefore in addition to a review of methods to reduce phase separation of CPC and the associated constraints, a review of phase separation mechanisms observed during extrusion of other pastes and the theoretical models used to describe these mechanisms is presented. It is anticipated this review will benefit future attempts to develop injectable calcium phosphate based systems. Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.

  19. Time-sequential changes of differentially expressed miRNAs during the process of anterior lumbar interbody fusion using equine bone protein extract, rhBMP-2 and autograft

    NASA Astrophysics Data System (ADS)

    Chen, Da-Fu; Zhou, Zhi-Yu; Dai, Xue-Jun; Gao, Man-Man; Huang, Bao-Ding; Liang, Tang-Zhao; Shi, Rui; Zou, Li-Jin; Li, Hai-Sheng; Bünger, Cody; Tian, Wei; Zou, Xue-Nong

    2014-03-01

    The precise mechanism of bone regeneration in different bone graft substitutes has been well studied in recent researches. However, miRNAs regulation of the bone formation has been always mysterious. We developed the anterior lumbar interbody fusion (ALIF) model in pigs using equine bone protein extract (BPE), recombinant human bone morphogenetic protein-2 (rhBMP-2) on an absorbable collagen sponge (ACS), and autograft as bone graft substitute, respectively. The miRNA and gene expression profiles of different bone graft materials were examined using microarray technology and data analysis, including self-organizing maps, KEGG pathway and Biological process GO analyses. We then jointly analyzed miRNA and mRNA profiles of the bone fusion tissue at different time points respectively. Results showed that miRNAs, including let-7, miR-129, miR-21, miR-133, miR-140, miR-146, miR-184, and miR-224, were involved in the regulation of the immune and inflammation response, which provided suitable inflammatory microenvironment for bone formation. At late stage, several miRNAs directly regulate SMAD4, Estrogen receptor 1 and 5-hydroxytryptamine (serotonin) receptor 2C for bone formation. It can be concluded that miRNAs play important roles in balancing the inflammation and bone formation.

  20. In vivo analysis of biocompatibility and vascularization of the synthetic bone grafting substitute NanoBone.

    PubMed

    Abshagen, K; Schrodi, I; Gerber, T; Vollmar, B

    2009-11-01

    One of the major challenges in the application of bone substitutes is adequate vascularization and biocompatibility of the implant. Thus, the temporal course of neovascularization and the microvascular inflammatory response of implants of NanoBone (fully synthetic nanocrystalline bone grafting material) were studied in vivo by using the mouse dorsal skinfold chamber model. Angiogenesis, microhemodynamics, and leukocyte-endothelial cell interaction were analyzed repetitively after implantation in the center and in the border zone of the implant up to 15 days. Both NanoBone granules and plates exhibited high biocompatibility comparable to that of cancellous bone, as indicated by a lack of venular leukocyte activation after implantation. In both synthetic NanoBone groups, signs of angiogenesis could be observed even at day 5 after implantation, whereas granules showed higher functional vessel density compared with NanoBone plates. The angiogenic response of the cancellous bone was markedly accelerated in the center of the implant tissue. Histologically, implant tissue showed an ingrowth of vascularized fibrous tissue into the material combined with an increased number of foreign-body giant cells. In conclusion, NanoBone, particularly in granular form, showed high biocompatibility and high angiogenic response, thus improving the healing of bone defects. Our results underline that, beside the composition and nanostructure, the macrostructure is also of importance for the incorporation of the biomaterial by the host tissue. (c) 2008 Wiley Periodicals, Inc.

  1. Alveolar bone repair with strontium- containing nanostructured carbonated hydroxyapatite

    PubMed Central

    do Carmo, André Boziki Xavier; Sartoretto, Suelen Cristina; Alves, Adriana Terezinha Neves Novellino; Granjeiro, José Mauro; Miguel, Fúlvio Borges; Calasans-Maia, Jose; Calasans-Maia, Monica Diuana

    2018-01-01

    ABSTRACT Objective This study aimed to evaluate bone repair in rat dental sockets after implanting nanostructured carbonated hydroxyapatite/sodium alginate (CHA) and nanostructured carbonated hydroxyapatite/sodium alginate containing 5% strontium microspheres (SrCHA) as bone substitute materials. Methods Twenty male Wistar rats were randomly divided into two experimental groups: CHA and SrCHA (n=5/period/group). After one and 6 weeks of extraction of the right maxillary central incisor and biomaterial implantation, 5 μm bone blocks were obtained for histomorphometric evaluation. The parameters evaluated were remaining biomaterial, loose connective tissue and newly formed bone in a standard area. Statistical analysis was performed by Mann-Withney and and Wilcoxon tests at 95% level of significance. Results The histomorphometric results showed that the microspheres showed similar fragmentation and bio-absorbation (p>0.05). We observed the formation of new bones in both groups during the same experimental periods; however, the new bone formation differed significantly between the weeks 1 and 6 (p=0.0039) in both groups. Conclusion The CHA and SrCHA biomaterials were biocompatible, osteoconductive and bioabsorbable, indicating their great potential for clinical use as bone substitutes. PMID:29364342

  2. Magnesium-enriched hydroxyapatite as bone filler in an ameloblastoma mandibular defect

    PubMed Central

    Grigolato, Roberto; Pizzi, Natalia; Brotto, Maria C; Corrocher, Giovanni; Desando, Giovanna; Grigolo, Brunella

    2015-01-01

    The aim of this study was to evaluate the clinical performance of a magnesium-enriched hydroxyapatite biomaterial used as bone substitute in a case of mandibular ameloblastoma treated with conservative surgery. A 63 year old male patient was treated for an ameloblastoma in the anterior mandibular profile. After tissue excision, the bone defect was filled with a synthetic hydroxyapatite biomaterial enriched with magnesium ions, in order to promote bone tissue regeneration and obtain a good aesthetic result. Twenty-five months after surgery, due to ameloblastoma recurrence in an area adjacent to the previously treated one, the patient underwent to a further surgery. In that occasion the surgeon performed a biopsy in the initially treated area, in order to investigate the nature of the newly-formed tissue and to evaluate the bone regenerative potential of this biomaterial by clinical, radiographic and histological analyses. The clinical, radiographic and histological evaluations showed various characteristics of bone remodeling stage with an ongoing osteogenic formation and a good osteo-integration. In conclusion, magnesium-enriched hydroxyapatite used as bone substitute in a mandibular defect due to ameloblastoma excision showed an effective bone regeneration at 25 months follow-up, demonstrating an excellent biocompatibility and a high osteo-integration property. PMID:25784998

  3. Intra-femoral injection of human mesenchymal stem cells.

    PubMed

    Mohanty, Sindhu T; Bellantuono, Ilaria

    2013-01-01

    In vivo transplantation of putative populations of hematopoietic stem cells (HSC) and assessment of their engraftment is considered the golden standard to assess their quality and degree of stemness. Transplantation is usually carried out by intravenous injection in murine models and assessment of engraftment is performed by monitoring the number and type of mature blood cells produced by the donor cells in time. In contrast intravenous injection of mesenchymal stem cells (MSC), the multipotent stem cells present in bone marrow and capable of differentiating to osteoblasts, chondrocytes and adipocytes, has not been successful. This is due to limited or absent engraftment levels. Here, we describe the use of intra-femoral injection as an improved method to assess MSC engraftment to bone and bone marrow and their quality.

  4. Elastic Stable Intramedullary Nailing (ESIN), Orthoss® and Gravitational Platelet Separation - System (GPS®): An effective method of treatment for pathologic fractures of bone cysts in children

    PubMed Central

    2011-01-01

    Background The different treatment strategies for bone cysts in children are often associated with persistence and high recurrence rates of the lesions. The safety and clinical outcomes of a combined mechanical and biological treatment with elastic intramedullary nailing, artificial bone substitute and autologous platelet rich plasma are evaluated. Methods From 02/07 to 01/09 we offered all children with bone cysts the treatment combination of elastic intramedullary nailing (ESIN), artificial bone substitute (Orthoss®) and autologous platelet rich plasma, concentrated by the Gravitational Platelet Separation (GPS®) - System. All patients were reviewed radiologically for one year following the removal of the intramedullary nailing, which was possible because of cyst obliteration. Results A cohort of 12 children (4 girls, 8 boys) was recruited. The mean patient age was 11.4 years (range 7-15 years). The bone defects (ten humeral, two femoral) included eight juvenile and four aneurysmal bone cysts. Five patients suffered from persistent cysts following earlier unsuccessful treatment of humeral bone cyst after pathologic fracture; the other seven presented with acute pathologic fractures. No peri- or postoperative complications occurred. The radiographic findings showed a total resolution of the cysts in ten cases (Capanna Grade 1); in two cases a small residual cyst remained (Capanna Grade 2). The intramedullary nails were removed six to twelve months (mean 7.7) after the operation; in one case, a fourteen year old boy (Capanna Grade 2), required a further application of GPS® and Orthoss® to reach a total resolution of the cyst. At follow-up (20-41 months, mean 31.8 months) all patients showed very good functional results and had returned to sporting activity. No refracture occurred, no further procedure was necessary. Conclusions The combination of elastic intramedullary nailing, artificial bone substitute and autologous platelet rich plasma (GPS®) enhances the treatment of bone cysts in children, with no resulting complications. PMID:21314981

  5. Effects of Testosterone on Erythropoiesis in a Female Mouse Model of Anemia of Inflammation

    PubMed Central

    Schmidt, Paul J.; Fleming, Mark D.; Bhasin, Shalender

    2016-01-01

    The anemia of inflammation is a common problem in inflammatory and autoimmune diseases. We characterized a mouse model of anemia of chronic inflammation induced by repeated injections of low doses of heat-killed Brucella abortus (HKBA), and determined the effects of T administration on erythropoiesis in this model. Female C57BL/6NCrl mice were injected weekly with HKBA for 10 wk. Weekly injections of T or vehicle oil were started 4 wk later. Control mice were injected with saline and vehicle oil in parallel. HKBA-injected mice had significantly lower hemoglobin, hematocrit, mean corpuscular volume, reticulocyte hemoglobin, transferrin saturation (TSAT), and tissue nonheme iron in liver and spleen, enlarged spleen, and up-regulated hepatic expression of inflammatory markers, serum amyloid A1, and TNFα, but down-regulated IL-6, bone morphogenic protein 6, and hepcidin compared with saline controls. HKBA also reduced serum hepcidin and increased serum erythropoietin. Bone marrow erythroid precursors were substantially reduced in HKBA-injected mice. Cotreatment with T increased the percentage of late-stage erythroid precursors in the bone marrow relative to HKBA-injected and saline controls and reversed HKBA-induced suppression of hemoglobin and hematocrit. T also normalized serum erythropoietin, TSAT, and reticulocyte hemoglobin without correcting the expression of the hepatic inflammation markers. Conclusions are that low-dose HKBA induces moderate anemia characterized by chronic inflammation, decreased iron stores, and suppression of erythroid precursors in the bone marrow. T administration reverses HKBA-induced anemia by stimulating erythropoiesis, which is associated with a shift toward accelerated maturation of erythroid precursors in the bone marrow. PMID:27074351

  6. Mesenchymal Stem Cells in the Bone Marrow Provide a Supportive Niche for Early Disseminated Breast Tumor Initiating Cells

    DTIC Science & Technology

    2013-06-01

    transplanted into the mammary fat pad of NUDE mice to establish tumorigenicity in vivo. At 3 months post- injection , micrometastases to the lung, liver...E-cadherin, nuclear β catenin and fibronectin but were negative for ERα and vimentin. The injection of bone marrow isolated from mice previously... injected with tumorspheres into the mammary fat pad, resulted in large tumor formation in the mammary fat pad 2 months post- injection . The tumors

  7. Carbonate substitution in the mineral component of bone: Discriminating the structural changes, simultaneously imposed by carbonate in A and B sites of apatite

    NASA Astrophysics Data System (ADS)

    Madupalli, Honey; Pavan, Barbara; Tecklenburg, Mary M. J.

    2017-11-01

    The mineral component of bone and other biological calcifications is primarily a carbonate substituted calcium apatite. Integration of carbonate into two sites, substitution for phosphate (B-type carbonate) and substitution for hydroxide (A-type carbonate), influences the crystal properties which relate to the functional properties of bone. In the present work, a series of AB-type carbonated apatites (AB-CAp) having varying A-type and B-type carbonate weight fractions were prepared and analyzed by Fourier transform infrared spectroscopy (FTIR), powder X-ray diffraction (XRD), and carbonate analysis. A detailed characterization of A-site and B-site carbonate assignment in the FTIR ν3 region is proposed. The mass fractions of carbonate in A-site and B-site of AB-CAp correlate differently with crystal axis length and crystallite domain size. In this series of samples reduction in crystal domain size correlates only with A-type carbonate which indicates that carbonate in the A-site is more disruptive to the apatite structure than carbonate in the B-site. High temperature methods were required to produce significant A-type carbonation of apatite, indicating a higher energy barrier for the formation of A-type carbonate than for B-type carbonate. This is consistent with the dominance of B-type carbonate substitution in low temperature synthetic and biological apatites.

  8. A Modified Rabbit Ulna Defect Model for Evaluating Periosteal Substitutes in Bone Engineering: A Pilot Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    El Backly, Rania M.; IRCCS AOU San Martino–IST Istituto Nazionale per la Ricerca sul Cancro, Genova; Faculty of Dentistry, Alexandria University, Alexandria

    The present work defines a modified critical size rabbit ulna defect model for bone regeneration in which a non-resorbable barrier membrane was used to separate the radius from the ulna to create a valid model for evaluation of tissue-engineered periosteal substitutes. Eight rabbits divided into two groups were used. Critical defects (15 mm) were made in the ulna completely eliminating periosteum. For group I, defects were filled with a nanohydroxyapatite poly(ester urethane) scaffold soaked in PBS and left as such (group Ia) or wrapped with a tissue-engineered periosteal substitute (group Ib). For group II, an expanded-polytetrafluoroethylene (e-PTFE) (GORE-TEX{sup ®}) membranemore » was inserted around the radius then the defects received either scaffold alone (group IIa) or scaffold wrapped with periosteal substitute (group IIb). Animals were euthanized after 12–16 weeks, and bone regeneration was evaluated by radiography, computed microtomography (μCT), and histology. In the first group, we observed formation of radio-ulnar synostosis irrespective of the treatment. This was completely eliminated upon placement of the e-PTFE (GORE-TEX{sup ®}) membrane in the second group of animals. In conclusion, modification of the model using a non-resorbable e-PTFE membrane to isolate the ulna from the radius was a valuable addition allowing for objective evaluation of the tissue-engineered periosteal substitute.« less

  9. Ion-substituted calcium phosphate coatings deposited by plasma-assisted techniques: A review.

    PubMed

    Graziani, Gabriela; Bianchi, Michele; Sassoni, Enrico; Russo, Alessandro; Marcacci, Maurilio

    2017-05-01

    One of the main critical aspects behind the failure or success of an implant resides in its ability to fast bond with the surrounding bone. To boost osseointegration, the ideal implant material should exhibit composition and structure similar to those of biological apatite. To this aim, the most common approach is to coat the implant surface with a coating of hydroxyapatite (HA), resembling the main component of mineralized tissues. However, bone apatite is a non-stoichiometric, multi-substituted poorly-crystalline apatite, containing significant amounts of foreign ions, with high biological relevance. Ion-substituted HAs can be deposited by so called "wet methods", which are however poorly reproducible and hardly industrially feasible; at the same time bioactive coatings realized by plasma assisted method, interesting for industrial applications, are generally made of stoichiometric (i.e. un-substituted) HA. In this work, the literature concerning plasma-assisted deposition methods used to deposit ion-substituted HA was reviewed and the last advances in this field discussed. The ions taken into exam are those present in mineralized tissues and possibly having biological relevance. Notably, literature about this topic is scarce, especially relating to in vivo animal and clinical trials; further on, available studies evaluate the performance of substituted coatings from different points of view (mechanical properties, bone growth, coating dissolution, etc.) which hinders a proper evaluation of the real efficacy of ion-doped HA in promoting bone regeneration, compared to stoichiometric HA. Moreover, results obtained for plasma sprayed coatings (which is the only method currently employed for deposition at the industrial scale) were collected and compared to those of novel plasma-assisted techniques, that are expected to overcome its limitations. Data so far available on the topic were discussed to highlight advantages, limitations and possible perspectives of these procedures. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Decreased sensory nerve excitation and bone pain associated with mouse Lewis lung cancer in TRPV1-deficient mice.

    PubMed

    Wakabayashi, Hiroki; Wakisaka, Satoshi; Hiraga, Toru; Hata, Kenji; Nishimura, Riko; Tominaga, Makoto; Yoneda, Toshiyuki

    2018-05-01

    Bone pain is one of the most common and life-limiting complications of cancer metastasis to bone. Although the mechanism of bone pain still remains poorly understood, bone pain is evoked as a consequence of sensitization and excitation of sensory nerves (SNs) innervating bone by noxious stimuli produced in the microenvironment of bone metastases. We showed that bone is innervated by calcitonin gene-related protein (CGRP) + SNs extending from dorsal root ganglia (DRG), the cell body of SNs, in mice. Mice intratibially injected with Lewis lung cancer (LLC) cells showed progressive bone pain evaluated by mechanical allodynia and flinching with increased CGRP + SNs in bone and augmented SN excitation in DRG as indicated by elevated numbers of pERK- and pCREB-immunoreactive neurons. Immunohistochemical examination of LLC-injected bone revealed that the tumor microenvironment is acidic. Bafilomycin A1, a selective inhibitor of H + secretion from vacuolar proton pump, significantly alleviated bone pain, indicating that the acidic microenvironment contributes to bone pain. We then determined whether the transient receptor potential vanilloid 1 (TRPV1), a major acid-sensing nociceptor predominantly expressed on SNs, plays a role in bone pain by intratibially injecting LLC cells in TRPV1-deficient mice. Bone pain and SN excitation in the DRG and spinal dorsal horn were significantly decreased in TRPV1 -/- mice compared with wild-type mice. Our results suggest that TRPV1 activation on SNs innervating bone by the acidic cancer microenvironment in bone contributes to SN activation and bone pain. Targeting acid-activated TRPV1 is a potential therapeutic approach to cancer-induced bone pain.

  11. Treatment of AVN using the induction chamber technique and a biological-based approach: indications and clinical results.

    PubMed

    Calori, G M; Mazza, E; Colombo, M; Mazzola, S; Mineo, G V; Giannoudis, P V

    2014-02-01

    To determine the efficacy of core decompression (CD) technique combined with recombinant morphogenetic proteins, autologous mesenchymal stem cells (MSCs) and xenograft bone substitute into the necrotic lesion of the femoral head on clinical symptoms and on the progression of osteonecrosis of the femoral head. A total of 38 patients (40 hips) with early stage osteonecrosis of the femoral head were studied over a 4-year period. CD technique combined with recombinant morphogenetic proteins, autologous MSCs and xenograft bone substitute was associated with a significant reduction in both pain and joint symptoms and reduced the incidence of fractural stages. At 36 months, 33 patients achieved clinical and radiographic healing. This long-term follow-up study confirmed that CD technique combined with recombinant morphogenetic proteins, autologous MSCs and xenograft bone substitute may be an effective treatment for patients with early stage osteonecrosis of the femoral head. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Bone augmentation for cancellous bone- development of a new animal model

    PubMed Central

    2013-01-01

    Background Reproducible and suitable animal models are required for in vivo experiments to investigate new biodegradable and osteoinductive biomaterials for augmentation of bones at risk for osteoporotic fractures. Sheep have especially been used as a model for the human spine due to their size and similar bone metabolism. However, although sheep and human vertebral bodies have similar biomechanical characteristics, the shape of the vertebral bodies, the size of the transverse processes, and the different orientation of the facet joints of sheep are quite different from those of humans making the surgical approach complicated and unpredictable. Therefore, an adequate and safe animal model for bone augmentation was developed using a standardized femoral and tibia augmentation site in sheep. Methods The cancellous bone of the distal femur and proximal tibia were chosen as injection sites with the surgical approach via the medial aspects of the femoral condyle and proximal tibia metaphysis (n = 4 injection sites). For reproducible drilling and injection in a given direction and length, a custom-made c-shaped aiming device was designed. Exact positioning of the aiming device and needle positioning within the intertrabecular space of the intact bone could be validated in a predictable and standardized fashion using fluoroscopy. After sacrifice, bone cylinders (∅ 32 mm) were harvested throughout the tibia and femur by means of a diamond-coated core drill, which was especially developed to harvest the injected bone area exactly. Thereafter, the extracted bone cylinders were processed as non-decalcified specimens for μCT analysis, histomorphometry, histology, and fluorescence evaluation. Results The aiming device could be easily placed in 63 sheep and assured a reproducible, standardized injection area. In four sheep, cardiovascular complications occurred during surgery and pulmonary embolism was detected by computed tomography post surgery in all of these animals. The harvesting and evaluative methods assured a standardized analysis of all samples. Conclusions This experimental animal model provides an excellent basis for testing new biomaterials for their suitability as bone augmentation materials. Concomitantly, similar cardiovascular changes occur during vertebroplasties as in humans, thus making it a suitable animal model for studies related to vertebroplasty. PMID:23819858

  13. Bone augmentation for cancellous bone- development of a new animal model.

    PubMed

    Klein, Karina; Zamparo, Enrico; Kronen, Peter W; Kämpf, Katharina; Makara, Mariano; Steffen, Thomas; von Rechenberg, Brigitte

    2013-07-02

    Reproducible and suitable animal models are required for in vivo experiments to investigate new biodegradable and osteoinductive biomaterials for augmentation of bones at risk for osteoporotic fractures. Sheep have especially been used as a model for the human spine due to their size and similar bone metabolism. However, although sheep and human vertebral bodies have similar biomechanical characteristics, the shape of the vertebral bodies, the size of the transverse processes, and the different orientation of the facet joints of sheep are quite different from those of humans making the surgical approach complicated and unpredictable. Therefore, an adequate and safe animal model for bone augmentation was developed using a standardized femoral and tibia augmentation site in sheep. The cancellous bone of the distal femur and proximal tibia were chosen as injection sites with the surgical approach via the medial aspects of the femoral condyle and proximal tibia metaphysis (n = 4 injection sites). For reproducible drilling and injection in a given direction and length, a custom-made c-shaped aiming device was designed. Exact positioning of the aiming device and needle positioning within the intertrabecular space of the intact bone could be validated in a predictable and standardized fashion using fluoroscopy. After sacrifice, bone cylinders (Ø 32 mm) were harvested throughout the tibia and femur by means of a diamond-coated core drill, which was especially developed to harvest the injected bone area exactly. Thereafter, the extracted bone cylinders were processed as non-decalcified specimens for μCT analysis, histomorphometry, histology, and fluorescence evaluation. The aiming device could be easily placed in 63 sheep and assured a reproducible, standardized injection area. In four sheep, cardiovascular complications occurred during surgery and pulmonary embolism was detected by computed tomography post surgery in all of these animals. The harvesting and evaluative methods assured a standardized analysis of all samples. This experimental animal model provides an excellent basis for testing new biomaterials for their suitability as bone augmentation materials. Concomitantly, similar cardiovascular changes occur during vertebroplasties as in humans, thus making it a suitable animal model for studies related to vertebroplasty.

  14. Effects of molgramostim, filgrastim and lenograstim in the treatment of myelokathexis.

    PubMed

    Černelč, Peter; Andoljšek, Dušan; Mlakar, Uroš; Pretnar, Jože; Modic, Mojca; Zupan, Irena P; Zver, Samo

    2000-01-01

    Myelokathexis is a very rare form of chronic hereditary neutropenia resulting from impaired neutrophil releasing mechanism in the bone marrow. The recombinant human granulocyte-macrophage (molgramostim) and granulocyte (filgrastim, lenograstim) colony stimulating factors release the mature granulocytes from the bone marrow. We describe a 43-year-old woman suffering from myelokathexis, with the absolute neutrophil count ranging between 0.03 and 1.35 × 10 9 /L. In the period before the introduction of cytokines, the patient had more than 80 major infectious episodes. Since 1991, infections in this patient have been treated with cytokines, given in conjunction with antibiotics. Initially, she received molgramostim in a daily dose of 5 μg/kg subcutaneously, which stimulated the release of granulocytes from her bone marrow, thereby allowing successful treatment of infection. After the development of hypersensitivity, molgramostim was substituted with filgrastim. Finally, lenograstim was given a trial. With all three cytokines, the patient's neutrophil count always attained normal values already 4 hours after subcutaneous application of the drug in a dose of 5 μg/kg, the highest neutrophil levels were measured at 24 hours post-injection, and the neutrophil count was again close to the baseline value 72 hours after the treatment. A slight neutropenia was present 48 hours after the application of filgrastim. We believe that all three cytokines are equally effective in increasing the neutrophil count in venous blood of patients with myelokathexis.

  15. Bone aluminium in haemodialysed patients and in rats injected with aluminium chloride: relationship to impaired bone mineralisation.

    PubMed Central

    Ellis, H A; McCarthy, J H; Herrington, J

    1979-01-01

    Iliac bone aluminium was determined by neutron activation analysis in 34 patients with chronic renal failure and in eight control subjects. In 17 patients treated by haemodialysis there was a significant increase in the amount of aluminium (mean +/- SE = 152 +/- 30 ppm bone ash). In eight patients treated by haemodialysis and subsequent renal transplantation, bone aluminium was still significantly increased (92 +/- 4.5 ppm bone ash) but was less than in the haemodialysed patients. In some patients aluminium persisted in bone for many years after successful renal transplantation. There was no relationship between hyperparathyroidism and bone aluminium. Although no statistically significant relationship was found between the mineralisation status of bone and bone aluminium, patients dialysed for the longest periods tended to be those with the highest levels of aluminium, osteomalacia, and dialysis encephalopathy. In 20 rats given daily intraperitoneal injections of aluminium chloride for periods of up to three months, there was accumulation of aluminium in bone (163 +/- 9 ppm ash) to levels comparable to those obtained in the dialysis patients, and after about eight weeks osteomalacia developed. The increased bone aluminium and osteomalacia persisted after injections had been stopped for up to 49 days, although endochondral ossification was restored to normal. As a working hypothesis it is suggested that aluminium retained in the bone of the dialysis patients and the experimental animals interferes with normal mineralisation. Images Fig. 5 Fig. 6 PMID:389958

  16. Assessment of angiogenesis in osseointegration of a silica-collagen biomaterial using 3D-nano-CT.

    PubMed

    Alt, Volker; Kögelmaier, Daniela Vera; Lips, Katrin S; Witt, Vera; Pacholke, Sabine; Heiss, Christian; Kampschulte, Marian; Heinemann, Sascha; Hanke, Thomas; Thormann, Ulrich; Schnettler, Reinhard; Langheinrich, Alexander C

    2011-10-01

    Bony integration of biomaterials is a complex process in which angiogenesis plays a crucial role. We evaluated micro- and nano-CT imaging to demonstrate and quantify neovascularization in bony integration of a biomaterial and to give an image based estimation for the needed resolution for imaging angiogenesis in an animal model of femora defect healing. In 8 rats 5mm full-size defects were created at the left femur that was filled with silica-collagen bone substitute material and internally fixed with plate osteosynthesis. After 6 weeks the femora were infused in situ with Microfil, harvested and scanned for micro-CT (9 μm)(3) and nano-CT (3 μm)(3) imaging. Using those 3D images, the newly formed blood vessels in the area of the biomaterial were assessed and the total vascular volume fraction, the volume of the bone substitute material and the volume of the bone defect were quantitatively characterized. Results were complemented by histology. Differences were statistically assessed using (ANOVA). High-resolution nano-CT demonstrated new blood vessel formation surrounding the biomaterial in all animals at capillary level. Immunohistochemistry confirmed the newly formed blood vessels surrounding the bone substitute material. The mean vascular volume fraction (VVF) around the implant was calculated to be 3.01 ± 0.4%. The VVF was inversely correlated with the volume of the bone substitute material (r=0.8) but not with the dimension of the fracture zone (r=0.3). Nano-CT imaging is feasible for quantitative analysis of angiogenesis during bony integration of biomaterials and a promising tool in this context for the future. Copyright © 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  17. Alteration of the bone tissue material properties in type 1 diabetes mellitus: A Fourier transform infrared microspectroscopy study.

    PubMed

    Mieczkowska, Aleksandra; Mansur, Sity Aishah; Irwin, Nigel; Flatt, Peter R; Chappard, Daniel; Mabilleau, Guillaume

    2015-07-01

    Type 1 diabetes mellitus (T1DM) is a severe disorder characterized by hyperglycemia and hypoinsulinemia. A higher occurrence of bone fractures has been reported in T1DM, and although bone mineral density is reduced in this disorder, it is also thought that bone quality may be altered in this chronic pathology. Vibrational microscopies such as Fourier transform infrared microspectroscopy (FTIRM) represent an interesting approach to study bone quality as they allow investigation of the collagen and mineral compartment of the extracellular matrix in a specific bone location. However, as spectral feature arising from the mineral may overlap with those of the organic component, the demineralization of bone sections should be performed for a full investigation of the organic matrix. The aims of the present study were to (i) develop a new approach, based on the demineralization of thin bone tissue section to allow a better characterization of the bone organic component by FTIRM, (ii) to validate collagen glycation and collagen integrity in bone tissue and (iii) to better understand what alterations of tissue material properties in newly forming bone occur in T1DM. The streptozotocin-injected mouse (150 mg/kg body weight, injected at 8 weeks old) was used as T1DM model. Animals were randomly allocated to control (n = 8) or diabetic (n = 10) groups and were sacrificed 4 weeks post-STZ injection. Bones were collected at necropsy, embedded in polymethylmethacrylate and sectioned prior to examination by FTIRM. FTIRM collagen parameters were collagen maturity (area ratio between 1660 and 1690 cm(-1) subbands), collagen glycation (area ratio between the 1032 cm(-1) subband and amide I) and collagen integrity (area ratio between the 1338 cm(-1) subband and amide II). No significant differences in the mineral compartment of the bone matrix could be observed between controls and STZ-injected animals. On the other hand, as compared with controls, STZ-injected animals presented with significant higher value for collagen maturity (17%, p = 0.0048) and collagen glycation (99%, p = 0.0121), while collagen integrity was significantly lower by 170% (p = 0.0121). This study demonstrated the profound effect of early T1DM on the organic compartment of the bone matrix in newly forming bone. Further studies in humans are required to ascertain whether T1DM also lead to similar effect on the quality of the bone matrix. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Morphological and chemical analysis of bone substitutes by scanning electron microscopy and microanalysis by spectroscopy of dispersion energy.

    PubMed

    da Cruz, Gabriela Alessandra; de Toledo, Sérgio; Sallum, Enilson Antonio; de Lima, Antonio Fernando Martorelli

    2007-01-01

    This study evaluated the morphological and chemical composition of the following bone substitutes: cancellous and cortical organic bovine bone with macro and microparticle size ranging from 1.0 to 2.0 mm and 0.25 to 1.0 mm, respectively; inorganic bovine bone with particle size ranging from 0.25 to 1.0 mm; hydroxyapatite with particle size ranging from 0.75 to 1.0 mm; and demineralized freeze-dried bone allograft with particle size ranging from 0.25 to 0.5 mm. The samples were sputter-coated with gold in an ion coater, the morphology was observed and particle size was measured under vacuum by scanning electron microscopy (SEM). The chemical composition was evaluated by spectroscopy of dispersion energy (EDS) microanalysis using samples without coating. SEM analysis provided visual evidence that all examined materials have irregular shape and particle sizes larger than those informed by the manufacturer. EDS microanalysis detected the presence of sodium, calcium and phosphorus that are usual elements of the bone tissue. However, mineral elements were detected in all analyzed particles of organic bovine bone except for macro cancellous organic bovine bone. These results suggest that the examined organic bovine bone cannot be considered as a pure organic material.

  19. Angiogenesis in rat uterine cicatrix after injection of autologous bone marrow mesenchymal stem cells.

    PubMed

    Maiborodin, I V; Yakimova, N V; Matveyeva, V A; Pekarev, O G; Maiborodina, E I; Pekareva, E O

    2011-04-01

    Results of injection of autologous bone marrow mesenchymal stem cells with transfected GFP gene into the rat uterine horn cicatrix were studied by light microscopy. Large groups of blood vessels with blood cells inside were seen after injection of autologous bone marrow cells into the cicatrix on the right horn, formed 2 months after its ligation; no groups of vessels of this kind were found in the cicatrix in the contralateral horn. Examination of unstained sections in reflected UV light showed sufficiently bright fluorescence in the endothelium and outer vascular membrane in the uterine horn cicatrix only on the side of injection. Hence, autologous mesenchymal stem cells injected into the cicatrix formed the blood vessels due to differentiation into endotheliocytes and pericytes. The expression of GFP gene not only in the vascular endothelium, but also in vascular outer membranes indicated that autologous mesenchymal stem cells differentiated in the endothelial and pericytic directions.

  20. In Vitro Evaluation of Nanoscale Hydroxyapatite-Based Bone Reconstructive Materials with Antimicrobial Properties.

    PubMed

    Ajduković, Zorica R; Mihajilov-Krstev, Tatjana M; Ignjatović, Nenad L; Stojanović, Zoran; Mladenović-Antić, Snezana B; Kocić, Branislava D; Najman, Stevo; Petrović, Nenad D; Uskoković, Dragan P

    2016-02-01

    In the field of oral implantology the loss of bone tissue prevents adequate patient care, and calls for the use of synthetic biomaterials with properties that resemble natural bone. Special attention is paid to the risk of infection after the implantation of these materials. Studies have suggested that some nanocontructs containing metal ions have antimicrobial properties. The aim of this study was to examine the antimicrobial and hemolytic activity of cobalt-substituted hydroxyapatite nanoparticles, compared to hydroxyapatite and hydroxyapatite/poly-lactide-co-glycolide. The antibacterial effects of these powders were tested against two pathogenic bacterial strains: Escherichia coi (ATCC 25922) and Staphylococcus aureus (ATCC 25923), using the disc diffusion method and the quantitative antimicrobial test in a liquid medium. The quantitative antimicrobial test showed that all of the tested biomaterials have some antibacterial properties. The effects of both tests were more prominent in case of S. aureus than in E coli. A higher percentage of cobalt in the crystal structure of cobalt-substituted hydroxyapatite nanoparticles led to an increased antimicrobial activity. All of the presented biomaterial samples were found to be non-hemolytic. Having in mind that the tested of cobalt-substituted hydroxyapatite (Ca/Co-HAp) material in given concentrations shows good hemocompatibility and antimicrobial effects, along with its previously studied biological properties, the conclusion can be reached that it is a potential candidate that could substitute calcium hydroxyapatite as the material of choice for use in bone tissue engineering and clinical practices in orthopedic, oral and maxillofacial surgery.

  1. Clinical and radiographic evaluation of intrabony periodontal defect treatment by open flap debridement alone or in combination with nanocrystalline hydroxyapatite bone substitute.

    PubMed

    Pietruska, Małgorzata; Skurska, Anna; Pietruski, Jan; Dolińska, Ewa; Arweiler, Nicole; Milewski, Robert; Duraj, Ewa; Sculean, Anton

    2012-11-01

    The aim of this study has been to compare the clinical and radiographic outcome of periodontal intrabony defect treatment by open flap debridement alone or in combination with nanocrystalline hydroxyapatite bone substitute application. Thirty patients diagnosed with advanced periodontits were divided into two groups: the control group (OFD), in which an open flap debridement procedure was performed and the test group (OFD+NHA), in which defects were additionally filled with nanocrystalline hydroxyapatite bone substitute material. Plaque index (PI), gingival index (GI), bleeding on probing (BOP), pocket depth (PD), gingival recession (GR) and clinical attachment level (CAL) were measured prior to, then 6 and 12months following treatment. Radiographic depth and width of defects were also evaluated. There were no differences in any clinical and radiographic parameters between the examined groups prior to treatment. After treatment, BOP, GI, PD, CAL, radiographic depth and width parameter values improved statistically significantly in both groups. The PI value did not change, but the GR value increased significantly after treatment. There were no statistical differences in evaluated parameters between OFD and OFD+NHA groups 6 and 12months after treatment. Within the limits of the study, it can be concluded that the additional use of nanocrystalline hydroxyapatite bone substitute material after open flap procedure does not improve clinical and radiographic treatment outcome. Copyright © 2012 Elsevier GmbH. All rights reserved.

  2. Bone apatite composition of necrotic trabecular bone in the femoral head of immature piglets.

    PubMed

    Aruwajoye, Olumide O; Kim, Harry K W; Aswath, Pranesh B

    2015-04-01

    Ischemic osteonecrosis of the femoral head (IOFH) can lead to excessive resorption of the trabecular bone and collapse of the femoral head as a structure. A well-known mineral component to trabecular bone is hydroxyapatite, which can be present in many forms due to ionic substitution, thus altering chemical composition. Unfortunately, very little is known about the chemical changes to bone apatite following IOFH. We hypothesized that the apatite composition changes in necrotic bone possibly contribute to increased osteoclast resorption and structural collapse of the femoral head. The purpose of this study was to assess the macroscopic and local phosphate composition of actively resorbed necrotic trabecular bone to isolate differences between areas of increased osteoclast resorption and normal bone formation. A piglet model of IOFH was used. Scanning electron microscopy (SEM), histology, X-ray absorbance near edge structure (XANES), and Raman spectroscopy were performed on femoral heads to characterize normal and necrotic trabecular bone. Backscattered SEM, micro-computed tomography and histology showed deformity and active resorption of necrotic bone compared to normal. XANES and Raman spectroscopy obtained from actively resorbed necrotic bone and normal bone showed increased carbonate-to-phosphate content in the necrotic bone. The changes in the apatite composition due to carbonate substitution may play a role in the increased resorption of necrotic bone due to its increase in solubility. Indeed, a better understanding of the apatite composition of necrotic bone could shed light on osteoclast activity and potentially improve therapeutic treatments that target excessive resorption of bone.

  3. Differentiation of osteoblast and osteoclast precursors on pure and silicon-substituted synthesized hydroxyapatites.

    PubMed

    Lehmann, Giorgia; Cacciotti, Ilaria; Palmero, Paola; Montanaro, Laura; Bianco, Alessandra; Campagnolo, Luisa; Camaioni, Antonella

    2012-10-01

    Calcium phosphate-based materials should show excellent bone-bonding and cell-mediated resorption characteristics at the same time, in order to be employed for bone replacement. In this perspective, pure (HAp) and silicon-substituted hydroxyapatite (Si-HAp, 1.4% wt) porous cylinders were prepared starting from synthesized powders and polyethylene spheres used as porogens, and investigated as supports for osteoblast and osteoclast progenitor differentiation. A systematic and detailed biological characterization is reported, in terms of cell adhesion, viability, proliferation, differentiation and bioresorption, aimed at proposing a complete and reliable picture of bone cell in vitro behavior, comprehensive of both the osteogenesis and the bone resorption processes. In order to achieve this purpose, cytocompatibility, differentiation and gene expression by quantitative real-time reverse transcription-polymerase chain reaction (qRT-PCR) were carried out using parietal bone-derived pre-osteoblasts obtained from neonatal mice and the bioresorption capability was assessed by seeding human peripheral blood monocytes, as osteoclast precursors. It resulted that both pure and Si-substituted HAps were able to promote differentiation of precursor cells in mature osteoblasts and osteoclasts. In particular, the Si-HAps enhanced the pre-osteoblast proliferation and showed higher osteoclast-mediated bioresorption capability, as supported by the presence of larger and more numerous resorption lacunae, whereas HAps promoted a more robust cell differentiation in terms of both osteocalcin gene expression by qRT-PCR and cell morphological evaluation by SEM analysis.

  4. Radiographic and Histological Evaluation of the Healing of Extraction Sockets Filled With Bovine-Derived Xenograft: An Experimental Study in Rats.

    PubMed

    Zhou, Fengjuan; Zheng, Xiaofei; Xie, Meng; Mo, Anchun; Wu, Hongkun

    2017-06-01

    To evaluate the microenvironment changes in the sockets substituted with bovine-derived xenografts during the early healing period. After extraction of the right maxillary incisor of Sprague Dawley rats, 48 rats were randomly divided into 2 groups. The extraction sockets of the test group were filled with Bio-Oss, whereas the control group was allowed to heal without intervention. The bone quality of the extraction sockets was observed through micro-CT and immunohistochemistry. Micro-CT scanning showed that the bone mineral density in the test group was significantly higher than that in the control group during the early healing period, whereas immunohistochemistry showed that the bone formation-related factors were significantly different between the test and control groups. The bovine-derived xenografts may interfere with the healing process of the extraction socket in the early healing stage. Bone formation of the extraction socket was delayed after grafting with bone substitute.

  5. Non-union in 3 of 15 osteotomies of the distal radius without bone graft

    PubMed Central

    Scheer, Johan H; Adolfsson, Lars E

    2015-01-01

    Background and purpose Open-wedge osteotomies of the distal radius create a void that is usually filled with either iliac crest bone graft or bone substitute. Previous studies have suggested that this is unnecessary. We investigated the safety of omitting the filling procedure. Patients and methods We included 15 patients with a dorsal malunion of a distal radius fracture. A palmar approach and angle-stable plates were used. The patients were followed until there was radiographic and clinical healing. Results Non-union occurred in 3 of the 15 patients. The study, which had been planned to include 25 patients, was then discontinued. 6 osteotomies created a trapezoid void (no cortical contact); 3 of these did not unite after the index procedure (p = 0.04), but did subsequently, after autogenous bone grafting. A trapezoid void was significantly associated with non-union (p = 0.04). Interpretation When a trapezoid defect is created, one should consider bone substitute or autogenous bone graft. This has been shown to be safe in other studies. PMID:25619425

  6. A comparison of Quincke and Whitacre needles with respect to risk of intravascular uptake in S1 transforaminal epidural steroid injections: a randomized trial of 1376 cases.

    PubMed

    Shin, Jaehyuck; Kim, Yong Chul; Lee, Sang Chul; Kim, Jae Hun

    2013-11-01

    Transforaminal epidural steroid injection (TFESI) is a useful treatment modality for pain management. Most complications of TFESI are minor and transient. However, there is a risk of serious complications such as nerve injury, spinal cord infarct, or paraplegia. Some of the risks are related to direct injury to the vessel or intravascular injection of the particulate steroid. We prospectively tested the hypothesis that the intravascular injection rate of the Whitacre needle is lower than that of the Quincke needle during TFESI. This study was a randomized trial of 1376 TFESIs at the S1 level. We collected data of age, gender, height, weight, laterality (right/left), history of lumbosacral spine operation, history of appropriate interval discontinuation of anticoagulation medicines, and underlying disease. During the S1 TFESI, intrasacral bone contact, a blood aspiration test, and real-time fluoroscopy of the intravascular injection using contrast media were investigated. There were no significant differences in the intravascular injection rate with respect to age, gender, height, weight, hypertension, diabetes mellitus, laterality, history of lumbosacral spine operation, or history of appropriate interval discontinuation of anticoagulation medicines. Intravascular injection was significantly associated with a blood aspiration test (P < 0.001), needle tip type (P = 0.002), intrasacral bone contact (P < 0.001), and physicians (some P < 0.05). The use of Quincke needles and intrasacral bone contact increased the rate of intravascular injection. To reduce the risk of intravascular injection, the use of Whitacre needles without intrasacral bone contact may be a safer and more effective approach.

  7. Automated trabecular bone histomorphometry

    NASA Technical Reports Server (NTRS)

    Polig, E.; Jee, W. S. S.

    1985-01-01

    The toxicity of alpha-emitting bone-seeking radionuclides and the relationship between bone tumor incidence and the local dosimetry of radionuclides in bone are investigated. The microdistributions of alpha-emitting radionuclides in the trabecular bone from the proximal humerus, distal humerus, proximal ulna, proximal femur, and distal femur of six young adult beagles injected with Am-241 (three with 2.8 micro-Ci/kg and three with 0.9 micro-Ci/kg) are estimated using a computer-controlled microscope photometer system; the components of the University of Utah Optical Track Scanner are described. The morphometric parameters for the beagles are calculated and analyzed. It is observed that the beagles injected with 0.9 micro-Ci of Am-241/kg showed an increase in the percentage of bone and trabecular bone thickness, and a reduction in the width of the bone marrow space and surface/volume ratio. The data reveal that radiation damage causes abnormal bone structure.

  8. Bone engineering by phosphorylated-pullulan and β-TCP composite.

    PubMed

    Takahata, Tomohiro; Okihara, Takumi; Yoshida, Yasuhiro; Yoshihara, Kumiko; Shiozaki, Yasuyuki; Yoshida, Aki; Yamane, Kentaro; Watanabe, Noriyuki; Yoshimura, Masahide; Nakamura, Mariko; Irie, Masao; Van Meerbeek, Bart; Tanaka, Masato; Ozaki, Toshifumi; Matsukawa, Akihiro

    2015-11-20

    A multifunctional biomaterial with the capacity bond to hard tissues, such as bones and teeth, is a real need for medical and dental applications in tissue engineering and regenerative medicine. Recently, we created phosphorylated-pullulan (PPL), capable of binding to hydroxyapatite in bones and teeth. In the present study, we employed PPL as a novel biocompatible material for bone engineering. First, an in vitro evaluation of the mechanical properties of PPL demonstrated both PPL and PPL/β-TCP composites have higher shear bond strength than materials in current clinical use, including polymethylmethacrylate (PMMA) cement and α-tricalcium phosphate (TCP) cement, Biopex-R. Further, the compressive strength of PPL/β-TCP composite was significantly higher than Biopex-R. Next, in vivo osteoconductivity of PPL/β-TCP composite was investigated in a murine intramedular injection model. Bone formation was observed 5 weeks after injection of PPL/β-TCP composite, which was even more evident at 8 weeks; whereas, no bone formation was detected after injection of PPL alone. We then applied PPL/β-TCP composite to a rabbit ulnar bone defect model and observed bone formation comparable to that induced by Biopex-R. Implantation of PPL/β-TCP composite induced new bone formation at 4 weeks, which was remarkably evident at 8 weeks. In contrast, Biopex-R remained isolated from the surrounding bone at 8 weeks. In a pig vertebral bone defect model, defects treated with PPL/β-TCP composite were almost completely replaced by new bone; whereas, PPL alone failed to induce bone formation. Collectively, our results suggest PPL/β-TCP composite may be useful for bone engineering.

  9. A method of sealing perforated sinus membrane and histologic finding of bone substitutes: a case report.

    PubMed

    Shin, Hong-In; Sohn, Dong-Seok

    2005-12-01

    To augment the atrophic posterior maxilla, a sinus bone graft has been widely used for sinus floor augmentation. Various bone substitutes have been developed and grafted in the maxillary sinus with and without membranes perforation, although autogenous bone is recommended as a gold standard of grafting materials. Membrane perforation is the most common complication associated with sinus bone graft. To repair a perforation, various methods have been developed. This case report is focused on histologic findings of 1 bovine hydroxyapatite (Bio-Oss; Geistlich Pharma AG, Wolhusen, Switzerland) and 2 kinds of human mineral allograft- Tutoplast cancellous microchips (TutoGen Medical GmbH, Neunkirchen am. Brand Germany), and irradiated allogeniccancellous bone and marrow (ICB; Rocky Mountain Tissue Bank, Aurora, CO) used for sinus graft in the same patient with membrane perforation after various healing periods. Mineral allograft showed favorable new bone regeneration with the repair of membrane perforation. This case report also describes a technique regarding how to repair completely perforated sinus membrane after the removal of a mucocele using human collagen membrane (Tutoplast pericardium; TutoGen Medical GmbH) and fibrin adhesive (Greenplast; Green Cross Co., Youngin, Korea) to stabilize collagen membrane.

  10. Interconnected porous hydroxyapatite ceramics for bone tissue engineering

    PubMed Central

    Yoshikawa, Hideki; Tamai, Noriyuki; Murase, Tsuyoshi; Myoui, Akira

    2008-01-01

    Several porous calcium hydroxyapatite (HA) ceramics have been used clinically as bone substitutes, but most of them possessed few interpore connections, resulting in pathological fracture probably due to poor bone formation within the substitute. We recently developed a fully interconnected porous HA ceramic (IP-CHA) by adopting the ‘foam-gel’ technique. The IP-CHA had a three-dimensional structure with spherical pores of uniform size (average 150 μm, porosity 75%), which were interconnected by window-like holes (average diameter 40 μm), and also demonstrated adequate compression strength (10–12 MPa). In animal experiments, the IP-CHA showed superior osteoconduction, with the majority of pores filled with newly formed bone. The interconnected porous structure facilitates bone tissue engineering by allowing the introduction of mesenchymal cells, osteotropic agents such as bone morphogenetic protein or vasculature into the pores. Clinically, we have applied the IP-CHA to treat various bony defects in orthopaedic surgery, and radiographic examinations demonstrated that grafted IP-CHA gained radiopacity more quickly than the synthetic HA in clinical use previously. We review the accumulated data on bone tissue engineering using the novel scaffold and on clinical application in the orthopaedic field. PMID:19106069

  11. Associations Between Availability and Coverage of HIV-Prevention Measures and Subsequent Incidence of Diagnosed HIV Infection Among Injection Drug Users

    PubMed Central

    Likatavičius, Giedrius; Klempová, Danica; Hedrich, Dagmar; Nardone, Anthony; Griffiths, Paul

    2009-01-01

    HIV-prevention measures specific to injection drug users (IDUs), such as opioid substitution treatment and needle-and-syringe programs, are not provided in many countries where injection drug use is endemic. We describe the incidence of diagnosed HIV infection in IDUs and the availability and coverage of opioid substitution and needle-and-syringe programs in the European Union and 5 middle- and high-income countries. Countries with greater provision of both prevention measures in 2000 to 2004 had lower incidence of diagnosed HIV infection in 2005 and 2006. PMID:19372511

  12. BMP2-loaded hollow hydroxyapatite microspheres exhibit enhanced osteoinduction and osteogenicity in large bone defects.

    PubMed

    Xiong, Long; Zeng, Jianhua; Yao, Aihua; Tu, Qiquan; Li, Jingtang; Yan, Liang; Tang, Zhiming

    2015-01-01

    The regeneration of large bone defects is an osteoinductive, osteoconductive, and osteogenic process that often requires a bone graft for support. Limitations associated with naturally autogenic or allogenic bone grafts have demonstrated the need for synthetic substitutes. The present study investigates the feasibility of using novel hollow hydroxyapatite microspheres as an osteoconductive matrix and a carrier for controlled local delivery of bone morphogenetic protein 2 (BMP2), a potent osteogenic inducer of bone regeneration. Hollow hydroxyapatite microspheres (100±25 μm) with a core (60±18 μm) and a mesoporous shell (180±42 m(2)/g surface area) were prepared by a glass conversion technique and loaded with recombinant human BMP2 (1 μg/mg). There was a gentle burst release of BMP2 from microspheres into the surrounding phosphate-buffered saline in vitro within the initial 48 hours, and continued at a low rate for over 40 days. In comparison with hollow hydroxyapatite microspheres without BMP2 or soluble BMP2 without a carrier, BMP2-loaded hollow hydroxyapatite microspheres had a significantly enhanced capacity to reconstitute radial bone defects in rabbit, as shown by increased serum alkaline phosphatase; quick and complete new bone formation within 12 weeks; and great biomechanical flexural strength. These results indicate that BMP2-loaded hollow hydroxyapatite microspheres could be a potential new option for bone graft substitutes in bone regeneration.

  13. A Biphasic Calcium Sulphate/Hydroxyapatite Carrier Containing Bone Morphogenic Protein-2 and Zoledronic Acid Generates Bone

    PubMed Central

    Raina, Deepak Bushan; Isaksson, Hanna; Hettwer, Werner; Kumar, Ashok; Lidgren, Lars; Tägil, Magnus

    2016-01-01

    In orthopedic surgery, large amount of diseased or injured bone routinely needs to be replaced. Autografts are mainly used but their availability is limited. Commercially available bone substitutes allow bone ingrowth but lack the capacity to induce bone formation. Thus, off-the-shelf osteoinductive bone substitutes that can replace bone grafts are required. We tested the carrier properties of a biphasic, calcium sulphate and hydroxyapatite ceramic material, containing a combination of recombinant human bone morphogenic protein-2 (rhBMP-2) to induce bone, and zoledronic acid (ZA) to delay early resorption. In-vitro, the biphasic material released 90% of rhBMP-2 and 10% of ZA in the first week. No major changes were found in the surface structure using scanning electron microscopy (SEM) or in the mechanical properties after adding rhBMP-2 or ZA. In-vivo bone formation was studied in an abdominal muscle pouch model in rats (n = 6/group). The mineralized volume was significantly higher when the biphasic material was combined with both rhBMP-2 and ZA (21.4 ± 5.5 mm3) as compared to rhBMP-2 alone (10.9 ± 2.1 mm3) when analyzed using micro computed tomography (μ-CT) (p < 0.01). In the clinical setting, the biphasic material combined with both rhBMP-2 and ZA can potentially regenerate large volumes of bone. PMID:27189411

  14. Building better bone: The weaving of biologic and engineering strategies for managing bone loss.

    PubMed

    Schwartz, Andrew M; Schenker, Mara L; Ahn, Jaimo; Willett, Nick J

    2017-09-01

    Segmental bone loss remains a challenging clinical problem for orthopaedic trauma surgeons. In addition to the missing bone itself, the local tissues (soft tissue, vascular) are often highly traumatized as well, resulting in a less than ideal environment for bone regeneration. As a result, attempts at limb salvage become a highly expensive endeavor, often requiring multiple operations and necessitating the use of every available strategy (autograft, allograft, bone graft substitution, Masquelet, bone transport, etc.) to achieve bony union. A cost-sensitive, functionally appropriate, and volumetrically adequate engineered substitute would be practice-changing for orthopaedic trauma surgeons and these patients with difficult clinical problems. In tissue engineering and bone regeneration fields, numerous research efforts continue to make progress toward new therapeutic interventions for segmental bone loss, including novel biomaterial development as well as cell-based strategies. Despite an ever-evolving literature base of these new therapeutic and engineered options, there remains a disconnect with the clinical practice, with very few translating into clinical use. A symposium entitled "Building better bone: The weaving of biologic and engineering strategies for managing bone loss," was presented at the 2016 Orthopaedic Research Society Conference to further explore this engineering-clinical disconnect, by surveying basic, translational, and clinical researchers along with orthopaedic surgeons and proposing ideas for pushing the bar forward in the field of segmental bone loss. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:1855-1864, 2017. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  15. Injection and adhesion palatoplasty: a preliminary study in a canine model.

    PubMed

    Martínez-Álvarez, Concepción; González-Meli, Beatriz; Berenguer-Froehner, Beatriz; Paradas-Lara, Irene; López-Gordillo, Yamila; Rodríguez-Bobada, Cruz; González, Pablo; Chamorro, Manuel; Arias, Pablo; Hilborn, Jöns; Casado-Gómez, Inmaculada; Martínez-Sanz, Elena

    2013-08-01

    Raising mucoperiosteal flaps in traditional palatoplasty impairs mid-facial growth. Hyaluronic acid-based hydrogels have been successfully tested for minimally invasive craniofacial bone generation in vivo as carriers of bone morphogenetic protein-2 (BMP-2). We aimed to develop a novel flapless technique for cleft palate repair by injecting a BMP-2 containing hydrogel. Dog pups with congenital cleft palate were either non-treated (n=4) or treated with two-flap palatoplasty (n=6) or with the proposed injection/adhesion technique (n=5). The experimental approach was to inject a hyaluronic acid-based hydrogel containing hydroxyapatite and BMP-2 subperiosteally at the cleft palate margins of pups aged six weeks. At week ten, a thin strip of the medial edge mucosa was removed and the margins were closed directly. Occlusal photographs and computed tomography (CT) scans were obtained up to week 20. Four weeks after the gel injection the cleft palate margins had reached the midline and engineered bone had enlarged the palatal bones. Removal of the medial edge mucosa and suturing allowed complete closure of the cleft. Compared to traditional palatoplasty, the injection/adhesion technique was easier, and the post-surgical recovery was faster. CT on week 20 revealed some overlapping or "bending" of palatal shelves in the two-flap repair group, which was not observed in the experimental nor control groups. A minimally invasive technique for cleft palate repair upon injectable scaffolds in a dog model of congenital cleft palate is feasible. Results suggest better growth of palatal bones. This represents an attractive clinical alternative to traditional palatoplasty for cleft palate patients. Copyright © 2013 Elsevier Inc. All rights reserved.

  16. Immunization against strontium-90 induction of bone tumors with inactivated FBJ virus and irradiated syngeneic strontium-90-induced tumor cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reif, A.E.; Triest, W.E.

    1981-01-01

    Three hundred six C57BL/6J female mice were subdivided into a control group left untreated and an experimental group treated intraperitoneally with 1.0 ..mu..Ci strontium-90/g of body weight at an age of 66 days. Treatments for the groups were as follows: none, 6 injections of formalin-inactivated FBJ viral preparation, 6 injections of active FBJ viral preparation, and 2 injections of 10,000 rad irradiated transplantable osteosarcoma previously induced in C57BL/6J mice by strontium-90. In addition to the above groups, two other groups were treated with respectively 0.032 and 0.10 ..mu..Ci strontium-90/g body weight in order to obtain information on the dose-response relationshipmore » between the injection of strontium-90 and the yield of bone tumors. In the groups not treated with strontium-90, only 1 bone tumor developed; this occurred in the group injected with FBJ virus. The incidence of bone tumors in the groups treated with 1.0 ..mu..Ci strontium-90 was significantly lower (18.5% or 18.2%) in the two groups that had received injections of inactivated FBJ virus or irradiated isogenic osteosarcoma when compared to the group left uninjected, which developed 43.5% tumors. In contrast, the strontium-90-treated group that also received injections of active FBJ virus developed 63.0% tumors. Only a single bone tumor developed in the groups treated solely with intermediate doses of strontium-90. The results indicate that immunization with inactivated FBJ virus or with irradiated syngeneic strontium-90-induced tumor cells can significantly decrease the development of strontium-90-induced tumors.« less

  17. Novel Injectable Calcium Phosphate Bone Cement from Wet Chemical Precipitation Method

    NASA Astrophysics Data System (ADS)

    Hablee, S.; Sopyan, I.; Mel, M.; Salleh, H. M.; Rahman, M. M.; Singh, R.

    2017-06-01

    Calcium phosphate cement has been prepared via chemical precipitation method for injectable bone filling materials. Calcium hydroxide, Ca(OH)2, and diammonium hydrogen phosphate, (NH4)2HPO4, were used as calcium and phosphorus precursors respectively. The synthesized powder was mixed with water at different powder-to-liquid (P/L) ratios, which was adjusted at 0.8, 0.9, 1.0, 1.1 and 1.2. The influence of P/L ratio on the injectability, setting time and mechanical strength of calcium phosphate cement paste has been evaluated. The synthesized powder appeared as purely hydroxyapatite with nanosized and agglomerated spherical particles. All cement pastes show excellent injectability except for the paste with P/L ratio 1.2. Calcium phosphate cement with P/L ratio 1.1 shows the ideal cement for bone filler application with good injectability, the initial and final setting times of 30 min and 160 min, and the compression strength of 2.47 MPa. The result indicated that the newly developed calcium phosphate cement is physically suitable for bone filler application. This paper presents our investigation on the effect of P/L ratio on the handling and mechanical properties of calcium phosphate cement prepared via wet chemical precipitation method.

  18. Sheep model for osteoporosis: The effects of peripheral hormone therapy on centrally induced systemic bone loss in an osteoporotic sheep model.

    PubMed

    Oheim, Ralf; Simon, Maciej J K; Steiner, Malte; Vettorazzi, Eik; Barvencik, Florian; Ignatius, Anita; Amling, Michael; Clarke, Iain J; Pogoda, Pia; Beil, F Timo

    2017-04-01

    Hypothalamic-pituitary disconnection (HPD) leads to low bone turnover followed by bone loss and reduced biomechanical properties in sheep. To investigate the role of peripheral hormones in this centrally induced systemic bone loss model, we planned a hormone replacement experiment. Therefore, estrogen (OHE), thyroxin (OHT) or a combination of both (OHTE) was substituted in ovariectomized HPD sheep, as both hormones are decreased in HPD sheep and are known to have a significant but yet not fully understood impact on bone metabolism. Bone turnover and structural parameters were analyzed in comparison to different control groups - untreated sheep (C), ovariectomized (O) and ovariectomized+HPD sheep (OH). We performed histomorphometric and HR-pQCT analyses nine months after the HPD procedure, as well as biomechanical testing of all ewes studied. In HPD sheep (OH) the low bone turnover led to a significant bone loss. Treatment with thyroxin alone (OHT) mainly increased bone resorption, leading to a further reduction in bone volume. In contrast, the treatment with estrogen alone (OHE) and the combined treatment with estrogen and thyroxin (OHTE) prevented HPD-induced bone loss completely. In conclusion, peripheral hormone substitution was able to prevent HPD-induced low-turnover osteoporosis in sheep. But only the treatment with estrogen alone or in combination with thyroxin was able to completely preserve bone mass and structure. These findings demonstrate the importance of peripheral hormones for a balanced bone remodeling and a physiological bone turnover. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Evaluation of bone regeneration with biphasic calcium phosphate substitute implanted with bone morphogenetic protein 2 and mesenchymal stem cells in a rabbit calvarial defect model.

    PubMed

    Kim, Beom-Su; Choi, Moon-Ki; Yoon, Jung-Hoon; Lee, Jun

    2015-07-01

    The aim of this study was to evaluate the in vivo osteogenic potential of biphasic calcium phosphate (BCP), bone morphogenetic protein 2 (BMP-2), and/or mesenchymal stem cell (MSC) composites by using a rabbit calvarial defect model. Bone formation was assessed by using three different kinds of implants in rabbit calvarial defects, BCP alone, BCP/recombinant human (rh) BMP-2, and BCP/rhBMP-2/MSCs composite. The implants were harvested after 2 or 8 weeks, and the area of new bone formation was quantified by micro-computed tomography (micro-CT) and histologic studies. The highest bone formation was achieved with the BCP/rhBMP-2/MSCs treatment, and it was significantly higher than that achieved with the empty or BCP-alone treatment. The quantity of new bone at 8 weeks was greater than at 4 weeks in each group. The relative density of osteocalcin immunoreactivity also increased during this interval. These results indicate that the combination of BCP, rhBMP-2, and MSCs synergistically enhances osteogenic potential during the early healing period and could be used as a bone graft substitute. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Synthetic bone substitute material comparable with xenogeneic material for bone tissue regeneration in oral cancer patients: First and preliminary histological, histomorphometrical and clinical results.

    PubMed

    Ghanaati, Shahram; Barbeck, Mike; Lorenz, Jonas; Stuebinger, Stefan; Seitz, Oliver; Landes, Constantin; Kovács, Adorján F; Kirkpatrick, Charles J; Sader, Robert A

    2013-07-01

    The present study was first to evaluate the material-specific cellular tissue response of patients with head and neck cancer to a nanocrystalline hydroxyapatite bone substitute NanoBone (NB) in comparison with a deproteinized bovine bone matrix Bio-Oss (BO) after implantation into the sinus cavity. Eight patients with tumor resection for oral cancer and severely resorbed maxillary bone received materials according to a split mouth design for 6 months. Bone cores were harvested prior to implantation and analyzed histologically and histomorphometrically. Implant survival was followed-up to 2 years after placement. Histologically, NB underwent a higher vascularization and induced significantly more tartrate-resistant acid phosphatase-positive (TRAP-positive) multinucleated giant cells when compared with BO, which induced mainly mononuclear cells. No significant difference was observed in the extent of new bone formation between both groups. The clinical follow-up showed undisturbed healing of all implants in the BO-group, whereas the loss of one implant was observed in the NB-group. Within its limits, the present study showed for the first time that both material classes evaluated, despite their induction of different cellular tissue reactions, may be useful as augmentation materials for dental and maxillofacial surgical applications, particularly in patients who previously had oral cancer.

  1. Evaluation of the osteo-inductive potential of hollow three-dimensional magnesium-strontium substitutes for the bone grafting application.

    PubMed

    Li, Mei; Yang, Xuan; Wang, Weidan; Zhang, Yu; Wan, Peng; Yang, Ke; Han, Yong

    2017-04-01

    Regeneration of bone defects is a clinical challenge that usually necessitates bone grafting materials. Limited bone supply and donor site morbidity limited the application of autografting, and improved biomaterials are needed to match the performance of autografts. Osteoinductive materials would be the perfect candidates for achieving this task. Strontium (Sr) is known to encourage bone formation and also prevent osteoporosis. Such twin requirements have motivated researchers to develop Sr-substituted biomaterials for orthopedic applications. The present study demonstrated a new concept of developing biodegradable and hollow three-dimensional magnesium-strontium (MgSr) devices for grafting with their clinical demands. The microstructure and performance of MgSr devices, in vitro degradation and biological properties including in vitro cytocompatibility and osteoinductivity were investigated. The results showed that our MgSr devices exhibited good cytocompatibility and osteogenic effect. To further investigate the underlying mechanisms, RT-PCR and Western Blotting assays were taken to analyze the expression level of osteogenesis-related genes and proteins, respectively. The results showed that our MgSr devices could both up-regulate the genes and proteins expression of the transcription factors of Runt-related transcription factor 2 (RUNX2) and Osterix (OSX), as well as alkaline phosphatase (ALP), Osteopontin (OPN), Collagen I (COL I) and Osteocalcin (OCN) significantly. Taken together, our innovation presented in this work demonstrated that the hollow three-dimensional MgSr substitutes had excellent biocompatibility and osteogenesis and could be potential candidates for bone grafting for future orthopedic applications. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Human embryonic stem cell-derived mesodermal progenitors display substantially increased tissue formation compared to human mesenchymal stem cells under dynamic culture conditions in a packed bed/column bioreactor.

    PubMed

    de Peppo, Giuseppe Maria; Sladkova, Martina; Sjövall, Peter; Palmquist, Anders; Oudina, Karim; Hyllner, Johan; Thomsen, Peter; Petite, Hervé; Karlsson, Camilla

    2013-01-01

    Bone tissue engineering represents a promising strategy to obviate bone deficiencies, allowing the ex vivo construction of bone substitutes with unprecedented potential in the clinical practice. Considering that in the human body cells are constantly stimulated by chemical and mechanical stimuli, the use of bioreactor is emerging as an essential factor for providing the proper environment for the reproducible and large-scale production of the engineered substitutes. Human mesenchymal stem cells (hMSCs) are experimentally relevant cells but, regardless the encouraging results reported after culture under dynamic conditions in bioreactors, show important limitations for tissue engineering applications, especially considering their limited proliferative potential, loss of functionality following protracted expansion, and decline in cellular fitness associated with aging. On the other hand, we previously demonstrated that human embryonic stem cell-derived mesodermal progenitors (hES-MPs) hold great potential to provide a homogenous and unlimited source of cells for bone engineering applications. Based on prior scientific evidence using different types of stem cells, in the present study we hypothesized that dynamic culture of hES-MPs in a packed bed/column bioreactor had the potential to affect proliferation, expression of genes involved in osteogenic differentiation, and matrix mineralization, therefore resulting in increased bone-like tissue formation. The reported findings suggest that hES-MPs constitute a suitable alternative cell source to hMSCs and hold great potential for the construction of bone substitutes for tissue engineering applications in clinical settings.

  3. The stability mechanisms of an injectable calcium phosphate ceramic suspension

    PubMed Central

    Fatimi, Ahmed; Tassin, Jean-François; Axelos, Monique A. V.; Weiss, Pierre

    2010-01-01

    Calcium phosphate ceramics are widely used as bone substitutes in dentistry and orthopedic applications. For minimally invasive surgery an injectable calcium phosphate ceramic suspension (ICPCS) was developed. It consists in a biopolymer (hydroxypropylmethylcellulose: HPMC) as matrix and bioactive calcium phosphate ceramics (biphasic calcium phosphate: BCP) as fillers. The stability of the suspension is essential to this generation of “ready to use” injectable biomaterial. But, during storage, the particles settle down. The engineering sciences have long been interested in models describing the settling (or sedimentation) of particles in viscous fluids. Our work is dedicated to the comprehension of the effect of the formulation on the stability of calcium phosphate suspension before and after steam sterilization. The rheological characterization revealed the macromolecular behavior of the suspending medium. The investigations of settling kinetics showed the influence of the BCP particle size and the HPMC concentration on the settling velocity and sediment compactness before and after sterilization. To decrease the sedimentation process, the granule size has to be smaller and the polymer concentration has to increase. A much lower sedimentation velocity, as compared to Stokes law, is observed and interpreted in terms of interactions between the polymer network in solution and the particles. This experimentation highlights the granules spacer property of hydrophilic macromolecules that is a key issue for interconnection control, one of the better ways to improve osteoconduction and bioactivity. PMID:20229185

  4. The stability mechanisms of an injectable calcium phosphate ceramic suspension.

    PubMed

    Fatimi, Ahmed; Tassin, Jean-François; Axelos, Monique A V; Weiss, Pierre

    2010-06-01

    Calcium phosphate ceramics are widely used as bone substitutes in dentistry and orthopedic applications. For minimally invasive surgery an injectable calcium phosphate ceramic suspension (ICPCS) was developed. It consists in a biopolymer (hydroxypropylmethylcellulose: HPMC) as matrix and bioactive calcium phosphate ceramics (biphasic calcium phosphate: BCP) as fillers. The stability of the suspension is essential to this generation of "ready to use" injectable biomaterial. But, during storage, the particles settle down. The engineering sciences have long been interested in models describing the settling (or sedimentation) of particles in viscous fluids. Our work is dedicated to the comprehension of the effect of the formulation on the stability of calcium phosphate suspension before and after steam sterilization. The rheological characterization revealed the macromolecular behavior of the suspending medium. The investigations of settling kinetics showed the influence of the BCP particle size and the HPMC concentration on the settling velocity and sediment compactness before and after sterilization. To decrease the sedimentation process, the granule size has to be smaller and the polymer concentration has to increase. A much lower sedimentation velocity, as compared to Stokes law, is observed and interpreted in terms of interactions between the polymer network in solution and the particles. This experimentation highlights the granules spacer property of hydrophilic macromolecules that is a key issue for interconnection control, one of the better ways to improve osteoconduction and bioactivity.

  5. 76 FR 17422 - Orthopaedic and Rehabilitation Devices Panel of the Medical Devices Advisory Committee; Notice of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-29

    ..., and vote on information related to the premarket approval application (PMA) for the Augment Bone Graft, sponsored by Biomimetic Therapeutics, Inc. The intended use of the device is as an alternative bone grafting substitute to autologous bone graft in applications to facilitate fusion in the ankle and foot without...

  6. Application of in vivo micro-computed tomography in the temporal characterisation of subchondral bone architecture in a rat model of low-dose monosodium iodoacetate-induced osteoarthritis

    PubMed Central

    2011-01-01

    Introduction Osteoarthritis (OA) is a complex, multifactorial joint disease affecting both the cartilage and the subchondral bone. Animal models of OA aid in the understanding of the pathogenesis of OA and testing suitable drugs for OA treatment. In this study we characterized the temporal changes in the tibial subchondral bone architecture in a rat model of low-dose monosodium iodoacetate (MIA)-induced OA using in vivo micro-computed tomography (CT). Methods Male Wistar rats received a single intra-articular injection of low-dose MIA (0.2 mg) in the right knee joint and sterile saline in the left knee joint. The animals were scanned in vivo by micro-CT at two, six, and ten weeks post-injection, analogous to early, intermediate, and advanced stages of OA, to assess architectural changes in the tibial subchondral bone. The articular cartilage changes in the tibiae were assessed macroscopically and histologically at ten weeks post-injection. Results Interestingly, tibiae of the MIA-injected knees showed significant bone loss at two weeks, followed by increased trabecular thickness and separation at six and ten weeks. The trabecular number was decreased at all time points compared to control tibiae. The tibial subchondral plate thickness of the MIA-injected knee was increased at two and six weeks and the plate porosity was increased at all time points compared to control. At ten weeks, histology revealed loss of proteoglycans, chondrocyte necrosis, chondrocyte clusters, cartilage fibrillation, and delamination in the MIA-injected tibiae, whereas the control tibiae showed no changes. Micro-CT images and histology showed the presence of subchondral bone sclerosis, cysts, and osteophytes. Conclusions These findings demonstrate that the low-dose MIA rat model closely mimics the pathological features of progressive human OA. The low-dose MIA rat model is therefore suitable to study the effect of therapeutic drugs on cartilage and bone in a non-trauma model of OA. In vivo micro-CT is a non-destructive imaging technique that can track structural changes in the tibial subchondral bone in this animal model, and could also be used to track changes in bone in preclinical drug intervention studies for OA treatments. PMID:22185204

  7. Transplantation of bone marrow stem cells as well as mobilization by granulocyte-colony stimulating factor promotes recovery after spinal cord injury in rats.

    PubMed

    Urdzíková, Lucia; Jendelová, Pavla; Glogarová, Katerina; Burian, Martin; Hájek, Milan; Syková, Eva

    2006-09-01

    Emerging clinical studies of treating brain and spinal cord injury (SCI) with autologous adult stem cells led us to compare the effect of an intravenous injection of mesenchymal stem cells (MSCs), an injection of a freshly prepared mononuclear fraction of bone marrow cells (BMCs) or bone marrow cell mobilization induced by granulocyte colony stimulating factor (G-CSF) in rats with a balloon- induced spinal cord compression lesion. MSCs were isolated from rat bone marrow by their adherence to plastic, labeled with iron-oxide nanoparticles and expanded in vitro. Seven days after injury, rats received an intravenous injection of MSCs or BMCs or a subcutaneous injection of GCSF (from day 7 to 11 post-injury). Functional status was assessed weekly for 5 weeks after SCI, using the Basso-Beattie-Bresnehan (BBB) locomotor rating score and the plantar test. Animals with SCI treated with MSCs, BMCs, or G-CSF had higher BBB scores and better recovery of hind limb sensitivity than controls injected with saline. Morphometric measurements showed an increase in the spared white matter. MR images of the spinal cords were taken ex vivo 5 weeks after SCI using a Bruker 4.7-T spectrometer. The lesions populated by grafted MSCs appeared as dark hypointense areas. Histology confirmed a large number of iron-containing and PKH 26-positive cells in the lesion site. We conclude that treatment with three different bone marrow cell populations had a positive effect on behavioral outcome and histopathological assessment after SCI, which was most pronounced after MSC injection.

  8. Bone grafts.

    PubMed

    Hubble, Matthew J W

    2002-09-01

    Bone grafts are used in musculoskeletal surgery to restore structural integrity and enhance osteogenic potential. The demand for bone graft for skeletal reconstruction in bone tumor, revision arthroplasty, and trauma surgery, couple with recent advances in understanding and application of the biology of bone transplantation, has resulted in an exponential increase in the number of bone-grafting procedures performed over the last decade. It is estimated that 1.5 million bone-grafting procedures are currently performed worldwide each year, compared to a fraction of that number 20 years ago. Major developments also have resulted in the harvesting, storage, and use of bone grafts and production of graft derivatives, substitutes, and bone-inducing agents.

  9. Towards optical brain imaging: getting light through a bone

    NASA Astrophysics Data System (ADS)

    Thompson, J. V.; Hokr, B. H.; Nodurft, D. T.; Yakovlev, V. V.

    2018-06-01

    Optical imaging and detection in biological samples is severely limited by scattering effects. In particular, optical techniques for measuring conditions beneath the skull and within the bone marrow hold significant promise when it comes to speed, sensitivity and specificity. However, the strong optical scattering due to bone hinders the realization of these methods. In this article, we propose a technique to enhance the transmittance of light through bone. This is achieved by injecting light below the top surface of the bone and utilizing multiple scattering to increase transmittance. This technique suggests that enhancements of 2-6 times may be realized by injection of light 1 mm below the surface of the bone. By enhancing the transmittance of light through bone, we will greatly improve our ability to utilize optical methods to better understand and diagnose conditions within biological media.

  10. Nanocomposites and bone regeneration

    NASA Astrophysics Data System (ADS)

    James, Roshan; Deng, Meng; Laurencin, Cato T.; Kumbar, Sangamesh G.

    2011-12-01

    This manuscript focuses on bone repair/regeneration using tissue engineering strategies, and highlights nanobiotechnology developments leading to novel nanocomposite systems. About 6.5 million fractures occur annually in USA, and about 550,000 of these individual cases required the application of a bone graft. Autogenous and allogenous bone have been most widely used for bone graft based therapies; however, there are significant problems such as donor shortage and risk of infection. Alternatives using synthetic and natural biomaterials have been developed, and some are commercially available for clinical applications requiring bone grafts. However, it remains a great challenge to design an ideal synthetic graft that very closely mimics the bone tissue structurally, and can modulate the desired function in osteoblast and progenitor cell populations. Nanobiomaterials, specifically nanocomposites composed of hydroxyapatite (HA) and/or collagen are extremely promising graft substitutes. The biocomposites can be fabricated to mimic the material composition of native bone tissue, and additionally, when using nano-HA (reduced grain size), one mimics the structural arrangement of native bone. A good understanding of bone biology and structure is critical to development of bone mimicking graft substitutes. HA and collagen exhibit excellent osteoconductive properties which can further modulate the regenerative/healing process following fracture injury. Combining with other polymeric biomaterials will reinforce the mechanical properties thus making the novel nano-HA based composites comparable to human bone. We report on recent studies using nanocomposites that have been fabricated as particles and nanofibers for regeneration of segmental bone defects. The research in nanocomposites, highlight a pivotal role in the future development of an ideal orthopaedic implant device, however further significant advancements are necessary to achieve clinical use.

  11. Experimental and computational studies on the femoral fracture risk for advanced core decompression.

    PubMed

    Tran, T N; Warwas, S; Haversath, M; Classen, T; Hohn, H P; Jäger, M; Kowalczyk, W; Landgraeber, S

    2014-04-01

    Two questions are often addressed by orthopedists relating to core decompression procedure: 1) Is the core decompression procedure associated with a considerable lack of structural support of the bone? and 2) Is there an optimal region for the surgical entrance point for which the fracture risk would be lowest? As bioresorbable bone substitutes become more and more common and core decompression has been described in combination with them, the current study takes this into account. Finite element model of a femur treated by core decompression with bone substitute was simulated and analyzed. In-vitro compression testing of femora was used to confirm finite element results. The results showed that for core decompression with standard drilling in combination with artificial bone substitute refilling, daily activities (normal walking and walking downstairs) are not risky for femoral fracture. The femoral fracture risk increased successively when the entrance point is located further distal. The critical value of the deviation of the entrance point to a more distal part is about 20mm. The study findings demonstrate that optimal entrance point should locate on the proximal subtrochanteric region in order to reduce the subtrochanteric fracture risk. Furthermore the consistent results of finite element and in-vitro testing imply that the simulations are sufficient. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Mechanisms of Guided Bone Regeneration: A Review

    PubMed Central

    Liu, Jie; Kerns, David G

    2014-01-01

    Post-extraction crestal bone resorption is common and unavoidable which can lead to significant ridge dimensional changes. To regenerate enough bone for successful implant placement, Guided Bone Regeneration (GBR) is often required. GBR is a surgical procedure that uses barrier membranes with or without particulate bone grafts or/and bone substitutes. There are two approaches of GBR in implant therapy: GBR at implant placement (simultaneous approach) and GBR before implant placement to increase the alveolar ridge or improve ridge morphology (staged approach). Angiogenesis and ample blood supply play a critical role in promoting bone regeneration. PMID:24894890

  13. The anabolic effects of vitamin D-binding protein-macrophage activating factor (DBP-MAF) and a novel small peptide on bone.

    PubMed

    Schneider, Gary B; Grecco, Kristina J; Safadi, Fayez F; Popoff, Steven N

    2003-01-01

    Vitamin D-binding protein-macrophage activating factor (DBP-MAF) has previously been shown to stimulate bone resorption and correct the skeletal defects associated with osteopetrosis in two nonallelic mutations in rats. This same protein and a small fragment of the protein have now been shown to demonstrate an anabolic effect on the skeleton of both newborn and young adult, intact rats. The novel peptide fragment was synthetically produced based on the human amino acid sequence at the site of glycosylation in the third domain of the native protein (DBP). The peptide tested is 14 amino acids in length and demonstrates no homologies other than to that region of DBP. Newborn rats were injected i.p. with saline, peptide (0.4 ng/g body wt.) or DBP-MAF (2 ng/g body wt.) every other day from birth to 14 days of age. On day 16 the rats were euthanized and the long bones collected for bone densitometry by pQCT. After 2 weeks of treatment with either the whole protein (DBP-MAF) or the small peptide, bone density was significantly increased in the treated animals compared to the saline controls. Young adult female rats (180 grams) were given s.c. injections of saline or peptide (0.4 ng/g body wt. or 5 ng/g body wt.) every other day for 2 weeks; 2 days after the final injections, the rats were euthanized and the femurs and tibias collected for bone densitometry. Both doses of the peptide resulted in significant increases in bone density as determined by pQCT. Young adult rats were injected locally with a single dose of the peptide (1 microg) or saline into the marrow cavity of the distal femur. One week after the single injection, the bones were collected for radiographic and histological evaluation. The saline controls showed no evidence of new bone formation, whereas the peptide-treated animals demonstrated osteoinduction in the marrow cavity and osteogenesis of surrounding cortical and metaphyseal bone. These data suggest that DBP-MAF and the synthetic peptide represent therapeutic opportunities for the treatment of a number of bone diseases and skeletal disorders. Systemic administration could be used to treat osteoporosis and a number of other osteopenias, and local administration could be effective in fractures, bony defect repairs, spinal surgery, and joint replacement.

  14. Effect of field-of-view size on gray values derived from cone-beam computed tomography compared with the Hounsfield unit values from multidetector computed tomography scans.

    PubMed

    Shokri, Abbas; Ramezani, Leila; Bidgoli, Mohsen; Akbarzadeh, Mahdi; Ghazikhanlu-Sani, Karim; Fallahi-Sichani, Hamed

    2018-03-01

    This study aimed to evaluate the effect of field-of-view (FOV) size on the gray values derived from conebeam computed tomography (CBCT) compared with the Hounsfield unit values from multidetector computed tomography (MDCT) scans as the gold standard. A radiographic phantom was designed with 4 acrylic cylinders. One cylinder was filled with distilled water, and the other 3 were filled with 3 types of bone substitute: namely, Nanobone, Cenobone, and Cerabone. The phantom was scanned with 2 CBCT systems using 2 different FOV sizes, and 1 MDCT system was used as the gold standard. The mean gray values (MGVs) of each cylinder were calculated in each imaging protocol. In both CBCT systems, significant differences were noted in the MGVs of all materials between the 2 FOV sizes ( P <.05) except for Cerabone in the Cranex3D system. Significant differences were found in the MGVs of each material compared with the others in both FOV sizes for each CBCT system. No significant difference was seen between the Cranex3D CBCT system and the MDCT system in the MGVs of bone substitutes on images obtained with a small FOV. The size of the FOV significantly changed the MGVs of all bone substitutes, except for Cerabone in the Cranex3D system. Both CBCT systems had the ability to distinguish the 3 types of bone substitutes based on a comparison of their MGVs. The Cranex3D CBCT system used with a small FOV had a significant correlation with MDCT results.

  15. [Biphasic ceramic wedge and plate fixation with locked adjustable screws for open wedge tibial osteotomy].

    PubMed

    Lavallé, F; Pascal-Mousselard, H; Rouvillain, J L; Ribeyre, D; Delattre, O; Catonné, Y

    2004-10-01

    The aim of this radiological study was to evaluate the use of a biphasic ceramic wedge combined with plate fixation with locked adjustable screws for open wedge tibial osteotomy. Twenty-six consecutive patients (27 knees) underwent surgery between December 1999 and March 2002 to establish a normal lower-limb axis. The series included 6 women and 20 men, mean age 50 years (16 right knees and 11 left knees). Partial weight-bearing with crutches was allowed on day 1. A standard radiological assessment was performed on day 1, 90, and 360 (plain AP and lateral stance films of the knee). A pangonogram was performed before surgery and at day 360. Presence of a lateral metaphyseal space, development of peripheral cortical bridges, and osteointegration of the bone substitute-bone interface were evaluated used to assess bone healing. The medial tibial angle between the line tangent to the tibial plateau and the anatomic axis of the tibia (beta) was evaluated to assess preservation of postoperative correction. The HKA angle was determined. Three patients were lost to follow-up and 23 patients (24 knees) were retained for analysis. At last follow-up, presence of peripheral cortical bridges and complete filling of the lateral metaphyseal space demonstrated bone healing in all patients. Good quality osteointegration was achieved since 21 knees did not present an interface between the bone substitute and native bone (homogeneous transition zone). The beta angle was unchanged for 23 knees. A normal axis was observed in patients (16 knees) postoperatively. Use of a biphasic ceramic wedge in combination with plate fixation with locked adjustable screws is a reliable option for open wedge tibial osteotomy. The bone substitute fills the gap well. Tolerance and integration are optimal. Bone healing is achieved. Plate fixation with protected weight bearing appears to be a solid assembly, maintaining these corrections.

  16. Regulation and Biological Significance of Formation of Osteoclasts and Foreign Body Giant Cells in an Extraskeletal Implantation Model

    PubMed Central

    Ahmed, Gazi Jased; Tatsukawa, Eri; Morishita, Kota; Shibata, Yasuaki; Suehiro, Fumio; Kamitakahara, Masanobu; Yokoi, Taishi; Koji, Takehiko; Umeda, Masahiro; Nishimura, Masahiro; Ikeda, Tohru

    2016-01-01

    The implantation of biomaterials induces a granulomatous reaction accompanied by foreign body giant cells (FBGCs). The characterization of multinucleated giant cells (MNGCs) around bone substitutes implanted in bone defects is more complicated because of healing with bone admixed with residual bone substitutes and their hybrid, and the appearance of two kinds of MNGCs, osteoclasts and FBGCs. Furthermore, the clinical significance of osteoclasts and FBGCs in the healing of implanted regions remains unclear. The aim of the present study was to characterize MNGCs around bone substitutes using an extraskeletal implantation model and evaluate the clinical significance of osteoclasts and FBGCs. Beta-tricalcium phosphate (β-TCP) granules were implanted into rat subcutaneous tissue with or without bone marrow mesenchymal cells (BMMCs), which include osteogenic progenitor cells. We also compared the biological significance of plasma and purified fibrin, which were used as binders for implants. Twelve weeks after implantation, osteogenesis was only detected in specimens implanted with BMMCs. The expression of two typical osteoclast markers, tartrate-resistant acid phosphatase (TRAP) and cathepsin-K (CTSK), was analyzed, and TRAP-positive and CTSK-positive osteoclasts were only detected beside bone. In contrast, most of the MNGCs in specimens without the implantation of BMMCs were FBGCs that were negative for TRAP, whereas the degradation of β-TCP was detected. In the region implanted with β-TCP granules with plasma, FBGCs tested positive for CTSK, and when β-TCP granules were implanted with purified fibrin, FBGCs tested negative for CTSK. These results showed that osteogenesis was essential to osteoclastogenesis, two kinds of FBGCs, CTSK-positive and CTSK-negative, were induced, and the expression of CTSK was plasma-dependent. In addition, the implantation of BMMCs was suggested to contribute to osteogenesis and the replacement of implanted β-TCP granules to bone. PMID:27462135

  17. Cements of doped calcium phosphates for bone implantation =

    NASA Astrophysics Data System (ADS)

    Pina, Sandra Cristina de Almeida

    The main objective of this study was the development of cements based on calcium phosphates doped with Mg, Sr and Zn, for clinical applications. Powder synthesis was obtained through precipitation reactions, followed by heat treatment in order to obtain appropriate phases, alpha and beta-TCP. The cements were prepared through mixing the powders with different liquids, using citric acid as setting accelerator, and polyethyleneglycol and hydroxyl propylmethylcellulose as gelling agents. Brushite was the end product of the hydration reaction. Injectability and setting behaviour were accessed through rheological measurements, extrusion, calorimetric analysis, Vicat and Gilmore needles. Phase quantification and the structural refinement of powders and cements were determined through X-ray diffraction with Rietveld refinement, as well as, BET specific surface area and particle size analysis. Mechanical strengths of wet hardened cements were evaluated. The results obtained showed that the incorporation of ions into cements led to a significant improvement of their overall properties. Initial setting time increased in the presence of rheological modifiers due to their specific roles at the solid/liquid interface and with increasing L/P ratio. Acceptable workability pastes were obtained for L/P ratios in the range of 0.30-0.34 mL g-1. The cement pastes presented good injectability even under a maximum applied force of 100 N. Filter pressing effects were absent, and all cement pastes could be fully injected for LPR > 0.36 mL g-1. Isothermal calorimetry revealed that hydration reactions produce exothermic effects due to: (i) dissolution of the starting powders and formation of intermediate phases; and (ii) nucleation and growth of brushite crystals. The intensity of the exothermic effects depended on doping element, being stronger in the case of Sr. Wet compressive strength of the cement specimens (after immersion in PBS solution for 48 h) was in the range of values reported for trabecular bone (10-30 MPa). Cell cultures used to evaluate citotoxicity, bioactivity and biocompatibility of cements revealed no toxic effects. The biocompatibility in vivo and cements resorption were evaluated using a pig model through histological and histomorphometric studies of decalcified sections. The results show that the implanted cements are biocompatible and osteoconductive, without foreign body reaction. These properties make them good candidates for applications as bone substitutes. None

  18. The osteogenic differentiation of dog bone marrow mesenchymal stem cells in a thermo-sensitive injectable chitosan/collagen/β-glycerophosphate hydrogel: in vitro and in vivo.

    PubMed

    Sun, Bin; Ma, Wei; Su, Fang; Wang, Yi; Liu, Jiaqiang; Wang, Dongshen; Liu, Hongchen

    2011-09-01

    Type I collagen was added to the composite chitosan solution in a ratio of 1:2 to build a physical cross-linked self-forming chitosan/collagen/β-GP hydrogel. Osteogenic properties of this novel injectable hydrogel were evaluated. Gelation time was about 8 min which offered enough time for handling a mixture containing cells and the subsequent injection. Scanning electronic microscopy (SEM) observations indicated good spreading of bone marrow mesenchymal stem cells (BMSCs) in this hydrogel scaffold. Mineral nodules were found in the dog-BMSCs inoculated hydrogel by SEM after 28 days. After subcutaneous injection into nude mouse dorsum for 4 weeks, partial bone formation was observed in the chitosan/collagen/β-GP hydrogel loaded with pre-osteodifferentiated dog-BMSCs, which indicated that chitosan/collagen/β-GP hydrogel composite could induce osteodifferentiation in BMSCs without exposure to a continual supply of external osteogenic factors. In conclusion, the novel chitosan/collagen/β-GP hydrogel composite should prove useful as a bone regeneration scaffold.

  19. Influence of Magnesium Ion Substitution on Structural and Thermal Behavior of Nanodimensional Hydroxyapatite

    NASA Astrophysics Data System (ADS)

    Batra, Uma; Kapoor, Seema; Sharma, Sonia

    2013-06-01

    Hydroxyapatite (HA), incorporating small amount of magnesium, shows attractive biological performance in terms of improved bone metabolism, osteoblast and osteoclast activity, and bone in-growth. This article reports a systematic investigation on the influence of magnesium (Mg) substitution on structural and thermal behavior of nanodimensional HA. HA and Mg-substituted HA nanopowders were synthesized through sol-gel route. The morphology and size of nanopowders were characterized by transmission electron microscopy. The BET surface area was evaluated from N2 adsorption isotherms. Structural analysis and thermal behavior were investigated by means of Fourier transform infrared spectroscopy, x-ray diffraction, thermogravimetry, and differential thermal analysis. As-synthesized powders consisted of flake-like agglomerates of HA and calcium-deficient HA. The incorporation of magnesium in HA resulted in decrease of crystallite size, crystallinity, and lattice parameters a and c and increase in BET surface area. β-tricalcium phosphate formation occured at lower calcination temperature in Mg-substituted HA than HA.

  20. The influence of systemically administered oxytocin on the implant-bone interface area: an experimental study in the rabbit

    PubMed Central

    Cho, Sung-Am; Park, Sang-Hun

    2014-01-01

    PURPOSE The purpose of this study was to assess the effect of systemically administered oxytocin (OT) on the implant-bone interface by using histomorphometric analysis and the removal torque test. MATERIALS AND METHODS A total of 10 adult, New Zealand white, female rabbits were used in this experiment. We placed 2 implants (CSM; CSM Implant, Daegu, South Korea) in each distal femoral metaphysis on both the right and left sides; the implants on both sides were placed 10 mm apart. In each rabbit, 1 implant was prepared for histomorphometric analysis and the other 3 were prepared for the removal torque test (RT). The animals received intramuscular injections of either saline (control group; 0.15 M NaCl) or OT (experimental group; 200 µg/rabbit). The injections were initiated on Day 3 following the implant surgery and were continued for 4 subsequent weeks; the injections were administered twice per day (at a 12-h interval), for 2 days per week. RESULTS While no statistically significant difference was observed between the two groups (P=.787), the control group had stronger removal torque values. The serum OT concentration (ELISA value) was higher in the OT-treated group, although no statistically significant difference was found. Further, the histomorphometric parameter (bone-toimplant contact [BIC], inter-thread bone, and peri-implant bone) values were higher in the experimental group, but the differences were not significant. CONCLUSION We postulate that OT supplementation via intramuscular injection weakly contributes to the bone response at the implant-bone interface in rabbits. Therefore, higher concentrations or more frequent administration of OT may be required for a greater bone response to the implant. Further studies analyzing these aspects are needed. PMID:25551011

  1. A time-dependent degeneration manner of condyle in rat CFA-induced inflamed TMJ.

    PubMed

    Xu, Liqin; Guo, Huilin; Li, Cheng; Xu, Jie; Fang, Wei; Long, Xing

    2016-01-01

    Temporomandibular joint (TMJ) inflammation is a potential risk factor of osteoarthritis (OA) but the detailed degenerative changes in the inflamed TMJ remain unclear. In this study, we evaluated the changes of condylar cartilage and subchondral bone in rat inflamed TMJ induced by Freund's complete adjuvant (CFA). Articular cavity was injected with CFA and the TMJ samples were collected 1, 2, 3, and 4-week post-injection. Hematoxylin & Eosin (H&E) staining, toluidine blue (TB) staining, Safranin O (S.O) staining, Masson trichrome staining and micro-CT were used to assess TMJ degeneration during inflammation. Osteoclast and osteoblast activities were analyzed by tartrate-resistant acid phosphatase (TRAP) staining and osteocalcin (OCN) immunohistochemistry staining respectively. The expression of receptor activator of NF-kB ligand (RANKL) and osteoprotegerin (OPG) in condylar cartilage and subchondral bone was also evaluated through immunohistochemistry and RANKL/OPG ratio was evaluated. Reduced cartilage thickness, decreased number of chondrocytes, and down-regulated proteoglycan expression were observed in the condylar cartilage in the inflamed TMJ. Enhanced osteoclast activity, and expanded bone marrow cavity were reached the peak in the 2-week after CFA-injection. Meanwhile the RANKL/OPG ratio in the cartilage and subchondral bone also increased in the 2-week CFA-injection. Immature, unmineralized new bones with irregular trabecular bone structure, atypical condylar shape, up-regulated OCN expression, and decreased bone mineral density (BMD) were found in the inflamed TMJ. The time-dependent degeneration manner of TMJ cartilage and subchondral bone was found in CFA-induced arthritis rat model. The degeneration in the TMJ with inflammation might be a risk factor and should be concerned.

  2. An injectable oxidated hyaluronic acid/adipic acid dihydrazide hydrogel as a vitreous substitute.

    PubMed

    Su, Wen-Yu; Chen, Ko-Hua; Chen, Yu-Chun; Lee, Yen-Hsien; Tseng, Ching-Li; Lin, Feng-Huei

    2011-01-01

    Vitrectomy is a common procedure for treating ocular-related diseases. The surgery involves removing the vitreous humor from the center of the eye, and vitreous substitutes are needed to replace the vitreous humor after vitrectomy. In the present study, we developed a colorless, transparent and injectable hydrogel with appropriate refractive index as a vitreous substitute. The hydrogel is formed by oxidated hyaluronic acid (oxi-HA) cross-linked with adipic acid dihydrazide (ADH). Hyaluronic acid (HA) was oxidized by sodium periodate to create aldehyde functional groups, which could be cross-linked by ADH. The refractive index of this hydrogel ranged between 1.3420 and 1.3442, which is quite similar to human vitreous humor (1.3345). The degradation tests demonstrated that the hydrogel could maintain the gel matrix over 35 days, depending on the ADH concentration. In addition, the cytotoxicity was evaluated on retina pigmented epithelium (RPE) cells cultivated following the ISO standard (tests for in vitro cytotoxicity), and the hydrogel was found to be non-toxic. In a preliminary animal study, the oxi-HA/ADH hydrogel was injected into the vitreous cavity of rabbit eyes. The evaluations of slit-lamp observation, intraocular pressure, cornea thickness and histological examination showed no significant abnormal biological reactions for 3 weeks. This study suggests that the injectable oxi-HA/ADH hydrogel should be a potential vitreous substitute. Koninklijke Brill NV, Leiden, 2011

  3. Bone Sialoproteins and Breast Cancer Detection

    DTIC Science & Technology

    2004-07-01

    used to follow proteolytic activity on more natural macromolecular substrates. These substrates are so highly substituted with fluorescein moieties that...uninformative for breast cancer, but does correlate with bone mineral density, parathyroid hormone and phosphorus . (Summary of Appendix II). Normal MEPE...calcium, phosphorus , vitamin D, as well as novel phosphatonin(s), and the bone and kidney organs. Candidate phosphaturic factors include MEPE; PHEX, a

  4. Just a drop of cement: a case of cervical spine bone aneurysmal cyst successfully treated by percutaneous injection of a small amount of polymethyl-methacrylate cement

    PubMed Central

    Fahed, Robert; Clarençon, Frédéric; Riouallon, Guillaume; Cormier, Evelyne; Bonaccorsi, Raphael; Pascal-Mousselard, Hugues; Chiras, Jacques

    2014-01-01

    Aneurysmal bone cyst (ABC) is a benign hemorrhagic tumor, commonly revealed by local pain. The best treatment for this lesion is still controversial. We report the case of a patient with chronic neck pain revealing an ABC of the third cervical vertebra. After percutaneous injection of a small amount of polymethyl-methacrylate bone cement, the patient experienced significant clinical and radiological improvement. PMID:25498806

  5. Just a drop of cement: a case of cervical spine bone aneurysmal cyst successfully treated by percutaneous injection of a small amount of polymethyl-methacrylate cement.

    PubMed

    Fahed, Robert; Clarençon, Frédéric; Riouallon, Guillaume; Cormier, Evelyne; Bonaccorsi, Raphael; Pascal-Mousselard, Hugues; Chiras, Jacques

    2014-12-12

    Aneurysmal bone cyst (ABC) is a benign hemorrhagic tumor, commonly revealed by local pain. The best treatment for this lesion is still controversial. We report the case of a patient with chronic neck pain revealing an ABC of the third cervical vertebra. After percutaneous injection of a small amount of polymethyl-methacrylate bone cement, the patient experienced significant clinical and radiological improvement. 2014 BMJ Publishing Group Ltd.

  6. Calcium phosphate ceramic systems in growth factor and drug delivery for bone tissue engineering: A review

    PubMed Central

    Bose, Susmita; Tarafder, Solaiman

    2012-01-01

    Calcium phosphates (CaPs) are the most widely used bone substitutes in bone tissue engineering due to their compositional similarities to bone mineral and excellent biocompatibility. In recent years, CaPs, especially hydroxyapatite and tricalcium phosphate, have attracted significant interest in simultaneous use as bone substitute and drug delivery vehicle, adding a new dimension to their application. CaPs are more biocompatible than many other ceramic and inorganic nanoparticles. Their biocompatibility and variable stoichiometry, thus surface charge density, functionality, and dissolution properties, make them suitable for both drug and growth factor delivery. CaP matrices and scaffolds have been reported to act as delivery vehicles for growth factors and drugs in bone tissue engineering. Local drug delivery in musculoskeletal disorder treatments can address some of the critical issues more effectively and efficiently than the systemic delivery. CaPs are used as coatings on metallic implants, CaP cements, and custom designed scaffolds to treat musculoskeletal disorders. This review highlights some of the current drug and growth factor delivery approaches and critical issues using CaP particles, coatings, cements, and scaffolds towards orthopedic and dental applications. PMID:22127225

  7. BMP2-loaded hollow hydroxyapatite microspheres exhibit enhanced osteoinduction and osteogenicity in large bone defects

    PubMed Central

    Xiong, Long; Zeng, Jianhua; Yao, Aihua; Tu, Qiquan; Li, Jingtang; Yan, Liang; Tang, Zhiming

    2015-01-01

    The regeneration of large bone defects is an osteoinductive, osteoconductive, and osteogenic process that often requires a bone graft for support. Limitations associated with naturally autogenic or allogenic bone grafts have demonstrated the need for synthetic substitutes. The present study investigates the feasibility of using novel hollow hydroxyapatite microspheres as an osteoconductive matrix and a carrier for controlled local delivery of bone morphogenetic protein 2 (BMP2), a potent osteogenic inducer of bone regeneration. Hollow hydroxyapatite microspheres (100±25 μm) with a core (60±18 μm) and a mesoporous shell (180±42 m2/g surface area) were prepared by a glass conversion technique and loaded with recombinant human BMP2 (1 μg/mg). There was a gentle burst release of BMP2 from microspheres into the surrounding phosphate-buffered saline in vitro within the initial 48 hours, and continued at a low rate for over 40 days. In comparison with hollow hydroxyapatite microspheres without BMP2 or soluble BMP2 without a carrier, BMP2-loaded hollow hydroxyapatite microspheres had a significantly enhanced capacity to reconstitute radial bone defects in rabbit, as shown by increased serum alkaline phosphatase; quick and complete new bone formation within 12 weeks; and great biomechanical flexural strength. These results indicate that BMP2-loaded hollow hydroxyapatite microspheres could be a potential new option for bone graft substitutes in bone regeneration. PMID:25609957

  8. Evaluation of Guided Bone Regeneration around Oral Implants over Different Healing Times Using Two Different Bovine Bone Materials: A Randomized, Controlled Clinical and Histological Investigation.

    PubMed

    Kohal, Ralf Joachim; Straub, Lisa Marie; Wolkewitz, Martin; Bächle, Maria; Patzelt, Sebastian Berthold Maximilian

    2015-10-01

    To evaluate the potential of two bone substitute materials and the influence of different healing periods in guided bone regeneration therapy of osseous defects around implants. Twenty-four edentulous patients received implants in the region of the lost lower incisors. Around two standardized osseous defects were created, treated either with a 50:50 mixture of PepGen P-15® and OsteoGraf®/N-700 (test group) or with BioOss® (control group), and covered with titanium membranes. After healing periods of 2, 4, 6, or 9 months, the implants were removed together with the surrounding bone and subsequently prepared for histological evaluations. Defect depths in both groups showed a clinical reduction after intervention. The histologically measured distance from the implant shoulder to the first point of bone-implant contact (BIC) after treatment did not differ between the two groups. The healing time influenced the level of the first point of BIC, with a longer healing period producing a more coronal first point of BIC. A greater percentage BIC and a higher fraction of mineralized bone were found in the pristine bone area compared with the augmented defect area. It can be concluded that in the treatment of osseous defects around oral implants, both materials were equally effective bone substitute materials when used in combination with guided bone regeneration. © 2014 Wiley Periodicals, Inc.

  9. Calcitonin Salmon Injection

    MedlinePlus

    Calcitonin salmon injection is used to treat osteoporosis in postmenopausal women. Osteoporosis is a disease that causes bones to weaken and break more easily. Calcitonin salmon injection is also used to ...

  10. A single injection of the anabolic bone agent, parathyroid hormone-collagen binding domain (PTH-CBD), results in sustained increases in bone mineral density for up to 12 months in normal female mice.

    PubMed

    Ponnapakkam, Tulasi; Katikaneni, Ranjitha; Suda, Hirofumi; Miyata, Shigeru; Matsushita, Osamu; Sakon, Joshua; Gensure, Robert C

    2012-09-01

    Parathyroid hormone (PTH) is the most effective osteoporosis treatment, but it is only effective if administered by daily injections. We fused PTH(1-33) to a collagen binding domain (PTH-CBD) to extend its activity, and have shown an anabolic bone effect with monthly dosing. We tested the duration of action of this compound with different routes of administration. Normal young C57BL/6J mice received a single intraperitoneal injection of PTH-CBD (320 μg/kg). PTH-CBD treated mice showed a 22.2 % increase in bone mineral density (BMD) at 6 months and 12.8 % increase at 12 months. When administered by subcutaneous injection, PTH-CBD again caused increases in BMD, 15.2 % at 6 months and 14.3 % at 12 months. Radiolabeled PTH-CBD was concentrated in bone and skin after either route of administration. We further investigated skin effects of PTH-CBD, and histological analysis revealed an apparent increase in anagen VI hair follicles. A single dose of PTH-CBD caused sustained increases in BMD by >10 % for 1 year in normal mice, regardless of the route of administration, thus showing promise as a potential osteoporosis therapy.

  11. Evaluation of an injectable bioactive borate glass cement to heal bone defects in a rabbit femoral condyle model.

    PubMed

    Cui, Xu; Huang, Wenhai; Zhang, Yadong; Huang, Chengcheng; Yu, Zunxiong; Wang, Lei; Liu, Wenlong; Wang, Ting; Zhou, Jie; Wang, Hui; Zhou, Nai; Wang, Deping; Pan, Haobo; Rahaman, Mohamed N

    2017-04-01

    There is a need for synthetic biomaterials to heal bone defects using minimal invasive surgery. In the present study, an injectable cement composed of bioactive borate glass particles and a chitosan bonding solution was developed and evaluated for its capacity to heal bone defects in a rabbit femoral condyle model. The injectability and setting time of the cement in vitro decreased but the compressive strength increased (8±2MPa to 31±2MPa) as the ratio of glass particles to chitosan solution increased (from 1.0gml -1 to 2.5gml -1 ). Upon immersing the cement in phosphate-buffered saline, the glass particles reacted and converted to hydroxyapatite, imparting bioactivity to the cement. Osteoblastic MC3T3-E1 cells showed enhanced proliferation and alkaline phosphatase activity when incubated in media containing the soluble ionic product of the cement. The bioactive glass cement showed a better capacity to stimulate bone formation in rabbit femoral condyle defects at 12weeks postimplantation when compared to a commercial calcium sulfate cement. The injectable bioactive borate glass cement developed in this study could provide a promising biomaterial to heal bone defects by minimal invasive surgery. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Short-term muscle atrophy caused by botulinum toxin-A local injection impairs fracture healing in the rat femur.

    PubMed

    Hao, Yongqiang; Ma, Yongcheng; Wang, Xuepeng; Jin, Fangchun; Ge, Shengfang

    2012-04-01

    Damaged bone is sensitive to mechanical stimulation throughout the remodeling phase of bone healing. Muscle damage and muscular atrophy associated with open fractures and subsequent fixation are not beneficial to maintaining optimum conditions for mechanical stability. The aim of this study was to investigate whether local muscle atrophy and dysfunction affect fracture healing in a rat femur fracture model. We combined the rat model of a short period atrophy of the quadriceps with femur fracture. Forty-four-month-old male Wistar rats were adopted for this study. Two units of botulinum toxin-A (BXTA) were administered locally into the right side of the quadriceps of each rat, while the same dose of saline was injected into the contralateral quadriceps. After BXTA had been fully absorbed by the quadriceps, osteotomy was performed in both femurs with intramedullary fixation. Gross observation and weighing of muscle tissue, X-ray analysis, callus histology, and bone biomechanical testing were performed at different time points up to 8 weeks post-surgery. Local injection of BXTA led to a significant decrease in the volume and weight of the quadriceps compared to the control side. At the eighth week, the left side femurs of the saline-injected quadriceps almost reached bony union, and fibrous calluses were completely calcified into woven bone. However, a gap was still visible in the BXTA-treated side on X-ray images. As showed by bone histology, there were no mature osseous calluses or woven bone on the BXTA-treated side, but a resorption pattern was evident. Biomechanical testing indicated that the femurs of the BXTA-treated side exhibited inferior mechanical properties compared with the control side. The inferior outcome following BXTA injection, compared with saline injection, in terms of callus resistance may be the consequence of unexpected load and mechanical unsteadiness caused by muscle atrophy and dysfunction. Copyright © 2011 Orthopaedic Research Society.

  13. Bone tissue reactions to biomimetic ion-substituted apatite surfaces on titanium implants.

    PubMed

    Ballo, Ahmed M; Xia, Wei; Palmquist, Anders; Lindahl, Carl; Emanuelsson, Lena; Lausmaa, Jukka; Engqvist, Håkan; Thomsen, Peter

    2012-07-07

    The aim of this study was to evaluate the bone tissue response to strontium- and silicon-substituted apatite (Sr-HA and Si-HA) modified titanium (Ti) implants. Sr-HA, Si-HA and HA were grown on thermally oxidized Ti implants by a biomimetic process. Oxidized implants were used as controls. Surface properties, i.e. chemical composition, surface thickness, morphology/pore characteristics, crystal structure and roughness, were characterized with various analytical techniques. The implants were inserted in rat tibiae and block biopsies were prepared for histology, histomorphometry and scanning electron microscopy analysis. Histologically, new bone formed on all implant surfaces. The bone was deposited directly onto the Sr-HA and Si-HA implants without any intervening soft tissue. The statistical analysis showed significant higher amount of bone-implant contact (BIC) for the Si-doped HA modification (P = 0.030), whereas significant higher bone area (BA) for the Sr-doped HA modification (P = 0.034), when compared with the non-doped HA modification. The differences were most pronounced at the early time point. The healing time had a significant impact for both BA and BIC (P < 0.001). The present results show that biomimetically prepared Si-HA and Sr-HA on Ti implants provided bioactivity and promoted early bone formation.

  14. Intra-osseous injection of donor mesenchymal stem cell (MSC) into the bone marrow in living donor kidney transplantation; a pilot study.

    PubMed

    Lee, Hyunah; Park, Jae Berm; Lee, Sanghoon; Baek, Soyoung; Kim, HyunSoo; Kim, Sung Joo

    2013-04-11

    Mesenchymal stem cells (MSCs) are multi-potent non-hematopoietic progenitor cells possessing an immune-regulatory function, with suppression of proliferation of activated lymphocytes. In this study, adult living donor kidney transplantation (LDKT) recipients were given MSCs derived from the donor bone marrow to evaluate the safety and the feasibility of immunological changes related to the intra-osseous injection of MSC into the bone marrow. MSCs were derived from negative HLA cross-match donors. Donor bone marrow was harvested 5 weeks prior to KT. At the time of transplantation, 1 x 106 cell/kg of donor MSC was directly injected into the bone marrow of the recipient's right iliac bone. Patients' clinical outcomes, presence of mixed chimerism by short tandem repeat polymerase chain reaction, analysis of plasma FoxP3 mRNA and cytokine level, and mixed lymphocyte reaction (MLR) were performed. Seven patients enrolled in this study and received donor MSC injections simultaneously with LDKT. The median age of recipients was 36 years (32 ~ 48). The number of HLA mismatches was 3 or less in 5 and more than 3 in 2. No local complications or adverse events such as hypersensitivity occurred during or after the injection of donor MSC. There was no graft failure, but the biopsy-proven acute rejections were observed in 3 recipients during the follow-up period controlled well with steroid pulse therapy (SPT). The last serum creatinine was a median of 1.23 mg/dL (0.83 ~ 2.07). Mixed chimerism was not detected in the peripheral blood of the recipients at 1 and 8 week of post-transplantation. Donor-specific lymphocyte or T cell proliferation and Treg priming responses were observed in some patients. Plasma level of IL-10, a known mediator of MSC-induced immune suppression, increased in the patients with Treg induction. Donor MSC injection into the iliac bone at the time of KT was feasible and safe. A possible correlation was observed between the induction of inhibitory immune responses and the clinical outcome in the MSC-kidney transplanted patients. Further research will be performed to evaluate the efficacy of MSC injection for the induction of mixed chimerism and subsequent immune tolerance in KT.

  15. Surgical Membranes as Directional Delivery Devices to Generate Tissue: Testing in an Ovine Critical Sized Defect Model

    PubMed Central

    Knothe Tate, Melissa L.; Chang, Hana; Moore, Shannon R.; Knothe, Ulf R.

    2011-01-01

    Purpose Pluripotent cells residing in the periosteum, a bi-layered membrane enveloping all bones, exhibit a remarkable regenerative capacity to fill in critical sized defects of the ovine femur within two weeks of treatment. Harnessing the regenerative power of the periosteum appears to be limited only by the amount of healthy periosteum available. Here we use a substitute periosteum, a delivery device cum implant, to test the hypothesis that directional delivery of endogenous periosteal factors enhances bone defect healing. Methods Newly adapted surgical protocols were used to create critical sized, middiaphyseal femur defects in four groups of five skeletally mature Swiss alpine sheep. Each group was treated using a periosteum substitute for the controlled addition of periosteal factors including the presence of collagen in the periosteum (Group 1), periosteum derived cells (Group 2), and autogenic periosteal strips (Group 3). Control group animals were treated with an isotropic elastomer membrane alone. We hypothesized that periosteal substitute membranes incorporating the most periosteal factors would show superior defect infilling compared to substitute membranes integrating fewer factors (i.e. Group 3>Group 2>Group 1>Control). Results Based on micro-computed tomography data, bone defects enveloped by substitute periosteum enabling directional delivery of periosteal factors exhibit superior bony bridging compared to those sheathed with isotropic membrane controls (Group 3>Group 2>Group 1, Control). Quantitative histological analysis shows significantly increased de novo tissue generation with delivery of periosteal factors, compared to the substitute periosteum containing a collagen membrane alone (Group 1) as well as compared to the isotropic control membrane. Greatest tissue generation and maximal defect bridging was observed when autologous periosteal transplant strips were included in the periosteum substitute. Conclusion Periosteum-derived cells as well as other factors intrinsic to periosteum play a key role for infilling of critical sized defects. PMID:22174873

  16. In vitro simulation of pathological bone conditions to predict clinical outcome of bone tissue engineered materials

    NASA Astrophysics Data System (ADS)

    Nguyen, Duong Thuy Thi

    According to the Centers for Disease Control, the geriatric population of ≥65 years of age will increase to 51.5 million in 2020; 40% of white women and 13% of white men will be at risk for fragility fractures or fractures sustained under normal stress and loading conditions due to bone disease, leading to hospitalization and surgical treatment. Fracture management strategies can be divided into pharmaceutical therapy, surgical intervention, and tissue regeneration for fracture prevention, fracture stabilization, and fracture site regeneration, respectively. However, these strategies fail to accommodate the pathological nature of fragility fractures, leading to unwanted side effects, implant failures, and non-unions. Compromised innate bone healing reactions of patients with bone diseases are exacerbated with protective bone therapy. Once these patients sustain a fracture, bone healing is a challenge, especially when fracture stabilization is unsuccessful. Traditional stabilizing screw and plate systems were designed with emphasis on bone mechanics rather than biology. Bone grafts are often used with fixation devices to provide skeletal continuity at the fracture gap. Current bone grafts include autologous bone tissue and donor bone tissue; however, the quality and quantity demanded by fragility fractures sustained by high-risk geriatric patients and patients with bone diseases are not met. Consequently, bone tissue engineering strategies are advancing towards functionalized bone substitutes to provide fracture reconstruction while effectively mediating bone healing in normal and diseased fracture environments. In order to target fragility fractures, fracture management strategies should be tailored to allow bone regeneration and fracture stabilization with bioactive bone substitutes designed for the pathological environment. The clinical outcome of these materials must be predictable within various disease environments. Initial development of a targeted treatment strategy should focus on simulating, in vitro, a physiological bone environment to predict clinical effectiveness of engineered bone and understand cellular responses due to the proposed agents and bioactive scaffolds. An in vitro test system can be the necessary catalyst to reduce implant failures and non-unions in fragility fractures.

  17. [Epoxide acrylate maleic resin and hydroxyapatite composite material as a bone graft substitute in surgical correction of orbital reconstruction].

    PubMed

    Mu, X; Dong, J; Wang, W

    1995-11-01

    This paper illustrates the results of surgical correction in 11 cases with orbital deformities such as periorbital deficiency after orbitotomy for retinoblastoma and orbital malposition after facial trauma. EH composite material, mixture of hydroxyapatite and epoxide acrylate maleic resin in constant proportion, was used as a good bone graft substitute in all 11 cases. This material was easier to be molded during surgery, safe to human body, had no toxic effects, no irritation and no implant-related complications. The early results obtained in these patients are encouraging.

  18. Does opioid substitution treatment in prisons reduce injecting-related HIV risk behaviours? A systematic review.

    PubMed

    Larney, Sarah

    2010-02-01

    To review systematically the evidence on opioid substitution treatment (OST) in prisons in reducing injecting-related human immunodeficiency virus (HIV) risk behaviours. Systematic review in accordance with guidelines of the Cochrane Collaboration. Electronic databases were searched to identify studies of prison-based opioid substitution treatment programmes that included assessment of effects of prison OST on injecting drug use, sharing of needles and syringes and HIV incidence. Published data were used to calculate risk ratios for outcomes of interest. Risk ratios were not pooled due to the low number of studies and differences in study designs. Five studies were included in the review. Poor follow-up rates were reported in two studies, and representativeness of the sample was uncertain in the remaining three studies. Compared to inmates in control conditions, for treated inmates the risk of injecting drug use was reduced by 55-75% and risk of needle and syringe sharing was reduced by 47-73%. No study reported a direct effect of prison OST on HIV incidence. There may be a role for OST in preventing HIV transmission in prisons, but methodologically rigorous research addressing this question specifically is required. OST should be implemented in prisons as part of comprehensive HIV prevention programmes that also provide condoms and sterile injecting and tattooing equipment.

  19. Impact of local steroid or statin treatment of experimental temporomandibular joint arthritis on bone growth in young rats.

    PubMed

    Holwegner, Callista; Reinhardt, Adam L; Schmid, Marian J; Marx, David B; Reinhardt, Richard A

    2015-01-01

    Juvenile idiopathic arthritis in temporomandibular joints (TMJs) is often treated with intra-articular steroid injections, which can inhibit condylar growth. The purpose of this study was to compare simvastatin (a cholesterol-lowering drug that reduces TMJ inflammation) with the steroid triamcinolone hexacetonide in experimental TMJ arthritis. Joint inflammation was induced by injecting complete Freund's adjuvant (CFA) into the TMJs of 40 growing Sprague Dawley rats; 4 other rats were left untreated. In the same intra-articular injection, one of the following was applied: (1) 0.5 mg of simvastatin in ethanol carrier, (2) ethanol carrier alone, (3) 0.15 mg of triamcinolone hexacetonide, (4) 0.5 mg of simvastatin and 0.15 mg of triamcinolone hexacetonide, or (5) nothing additional to the CFA. The animals were killed 28 days later, and their mandibles were evaluated morphometrically and with microcomputed tomography. The analysis showed that the TMJs subjected to CFA alone had decreased ramus height compared with those with no treatment (P <0.05). Groups that had injections containing the steroid overall had decreases in weight, ramus height, and bone surface density when compared with the CFA-alone group (P <0.0001). Groups that had injections containing simvastatin, however, had overall increases in weight (P <0.0001), ramus height (P <0.0001), condylar width (P <0.05), condylar bone surface density (P <0.05), and bone volume (P <0.0001) compared with the groups receiving the steroid injections, and they were not different from the healthy (no treatment) group. Treatment of experimentally induced arthritis in TMJs with intra-articular simvastatin preserved normal condylar bone growth. Copyright © 2015 American Association of Orthodontists. Published by Elsevier Inc. All rights reserved.

  20. Requirement of alveolar bone formation for eruption of rat molars

    PubMed Central

    Wise, Gary E.; He, Hongzhi; Gutierrez, Dina L.; Ring, Sherry; Yao, Shaomian

    2011-01-01

    Tooth eruption is a localized event that requires a dental follicle (DF) to regulate the resorption of alveolar bone to form an eruption pathway. During the intra-osseous phase of eruption, the tooth moves through this pathway. The mechanism or motive force that propels the tooth through this pathway is controversial but many studies have shown that alveolar bone growth at the base of the crypt occurs during eruption. To determine if this bone growth (osteogenesis) was causal, experiments were designed in which the expression of an osteogenic gene in the DF, bone morphogenetic protein-6 (BMP6), was inhibited by injection of the 1st mandibular molar of the rat with an siRNA targeted against BMP6. The injection was followed by electroporation to promote uptake of the siRNA. In 45 first molars injected, eruption either was delayed or completely inhibited (7 molars). In the impacted molars, an eruption pathway formed but bone growth at the base of the crypt was greatly reduced as compared to the erupted first molar controls. These studies show that alveolar bone growth at the base of the crypt is required for tooth eruption and that BMP6 may be an essential gene for promoting this growth. PMID:21896048

  1. [The treatment of infected diaphyseal femoral defects by lengthening one of the bone fragments by Ilizarov].

    PubMed

    Tomić, S; Krajcinović, O; Blagojević, Z; Apostolović, M; Lalosević, V

    2006-01-01

    We analyzed 30 patients with infected diaphyseal defect of femur, which have been treated by lengthening one of the bone fragments with Ilizarov apparatus. The mean length of the bone defect was 6 cm. Substitution of the defect, bone healing and elimination of the infection was achieved in 27 patients. The mean time of apparatus fixation was 10 months. According to Palley scoring system, 10 patients had excellent functional results.

  2. The influence of platelet-rich fibrin on angiogenesis in guided bone regeneration using xenogenic bone substitutes: a study of rabbit cranial defects.

    PubMed

    Yoon, Jong-Suk; Lee, Sang-Hwa; Yoon, Hyun-Joong

    2014-10-01

    The purpose of this study was to investigate the influence of platelet-rich fibrin (PRF) on angiogenesis and osteogenesis in guided bone regeneration (GBR) using xenogenic bone in rabbit cranial defects. In each rabbit, 2 circular bone defects, one on either side of the midline, were prepared using a reamer drill. Each of the experimental sites received bovine bone with PRF, and each of the control sites received bovine bone alone. The animals were sacrificed at 1 week (n = 4), 2 weeks (n = 3) and 4 weeks (n = 3). Biopsy samples were examined histomorphometrically by light microscopy, and expression of vascular endothelial growth factor (VEGF) was determined by immunohistochemical staining. At all experimental time points, immunostaining intensity for VEGF was consistently higher in the experimental group than in the control group. However, the differences between the control group and the experimental group were not statistically significant in the histomorphometrical and immunohistochemical examinations. The results of this study suggest that PRF may increase the number of marrow cells. However, PRF along with xenogenic bone substitutes does not show a significant effect on bony regeneration. Further large-scale studies are needed to confirm our results. Copyright © 2014 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.

  3. Synthetic bone substitute material comparable with xenogeneic material for bone tissue regeneration in oral cancer patients: First and preliminary histological, histomorphometrical and clinical results

    PubMed Central

    Ghanaati, Shahram; Barbeck, Mike; Lorenz, Jonas; Stuebinger, Stefan; Seitz, Oliver; Landes, Constantin; Kovács, Adorján F.; Kirkpatrick, Charles J.; Sader, Robert A.

    2013-01-01

    Background: The present study was first to evaluate the material-specific cellular tissue response of patients with head and neck cancer to a nanocrystalline hydroxyapatite bone substitute NanoBone (NB) in comparison with a deproteinized bovine bone matrix Bio-Oss (BO) after implantation into the sinus cavity. Materials and Methods: Eight patients with tumor resection for oral cancer and severely resorbed maxillary bone received materials according to a split mouth design for 6 months. Bone cores were harvested prior to implantation and analyzed histologically and histomorphometrically. Implant survival was followed-up to 2 years after placement. Results: Histologically, NB underwent a higher vascularization and induced significantly more tartrate-resistant acid phosphatase-positive (TRAP-positive) multinucleated giant cells when compared with BO, which induced mainly mononuclear cells. No significant difference was observed in the extent of new bone formation between both groups. The clinical follow-up showed undisturbed healing of all implants in the BO-group, whereas the loss of one implant was observed in the NB-group. Conclusions: Within its limits, the present study showed for the first time that both material classes evaluated, despite their induction of different cellular tissue reactions, may be useful as augmentation materials for dental and maxillofacial surgical applications, particularly in patients who previously had oral cancer. PMID:24205471

  4. A Particle Model for Prediction of Cement Infiltration of Cancellous Bone in Osteoporotic Bone Augmentation.

    PubMed

    Basafa, Ehsan; Murphy, Ryan J; Kutzer, Michael D; Otake, Yoshito; Armand, Mehran

    2013-01-01

    Femoroplasty is a potential preventive treatment for osteoporotic hip fractures. It involves augmenting mechanical properties of the femur by injecting Polymethylmethacrylate (PMMA) bone cement. To reduce the risks involved and maximize the outcome, however, the procedure needs to be carefully planned and executed. An important part of the planning system is predicting infiltration of cement into the porous medium of cancellous bone. We used the method of Smoothed Particle Hydrodynamics (SPH) to model the flow of PMMA inside porous media. We modified the standard formulation of SPH to incorporate the extreme viscosities associated with bone cement. Darcy creeping flow of fluids through isotropic porous media was simulated and the results were compared with those reported in the literature. Further validation involved injecting PMMA cement inside porous foam blocks - osteoporotic cancellous bone surrogates - and simulating the injections using our proposed SPH model. Millimeter accuracy was obtained in comparing the simulated and actual cement shapes. Also, strong correlations were found between the simulated and the experimental data of spreading distance (R(2) = 0.86) and normalized pressure (R(2) = 0.90). Results suggest that the proposed model is suitable for use in an osteoporotic femoral augmentation planning framework.

  5. Osteoblast and osteoclast responses to A/B type carbonate-substituted hydroxyapatite ceramics for bone regeneration.

    PubMed

    Germaini, Marie-Michèle; Detsch, Rainer; Grünewald, Alina; Magnaudeix, Amandine; Lalloue, Fabrice; Boccaccini, Aldo R; Champion, Eric

    2017-06-06

    The influence of carbonate substitution (4.4 wt%, mixed A/B type) in hydroxyapatite ceramics for bone remodeling scaffolds was investigated by separately analyzing the response of pre-osteoblasts and osteoclast-like cells. Carbonated hydroxyapatite (CHA) (Ca 9.5 (PO 4 ) 5.5 (CO 3 ) 0.5 (OH)(CO 3 ) 0.25 -CHA), mimicking the chemical composition of natural bone mineral, and pure hydroxyapatite (HA) (Ca 10 (PO 4 ) 6 (OH) 2 -HA) porous ceramics were processed to obtain a similar microstructure and surface physico-chemical properties (grain size, porosity ratio and pore size, surface roughness and zeta potential). The biological behavior was studied using MC3T3-E1 pre-osteoblastic and RAW 264.7 monocyte/macrophage cell lines. Chemical dissolution in the culture media and resorption lacunae produced by osteoclasts occur with both HA and CHA ceramics, but CHA exhibits much higher dissolution and greater bioresorption ability. CHA ceramics promoted a significantly higher level of pre-osteoblast proliferation. Osteoblastic differentiation, assessed by qRT-PCR of RUNX2 and COLIA2, and pre-osteoclastic proliferation and differentiation were not significantly different on CHA or HA ceramics but cell viability and metabolism were significantly greater on CHA ceramics. Thus, the activity of both osteoclast-like and osteoblastic cells was influenced by the carbonate substitution in the apatite structure. Furthermore, CHA showed a particularly interesting balance between biodegradation, by osteoclasts and chemical dissolution, and osteogenesis through osteoblasts' activity, to stimulate bone regeneration. It is hypothesized that this amount of 4.4 wt% carbonate substitution leads to an adapted concentration of calcium in the fluid surrounding the ceramic to stimulate the activity of cells. These results highlight the superior biological behavior of microporous 4.4 wt% A/B CHA ceramics that could beneficially replace the commonly used HA of biphasic calcium phosphates for future applications in bone tissue engineering.

  6. Opioid substitution treatment with sublingual buprenorphine in Manipur and Nagaland in Northeast India: what has been established needs to be continued and expanded

    PubMed Central

    Kumar, M Suresh; Natale, Richard D; Langkham, B; Sharma, Charan; Kabi, Rachel; Mortimore, Gordon

    2009-01-01

    Manipur and Nagaland in northeast India report an antenatal HIV prevalence of > 1% and the current HIV prevalence among injecting drug users is 24% and 4.5% respectively. Through support from DFID's Challenge Fund, Emmanuel Hospital Association (EHA) established thirteen drop-in-centres across the two states to deliver opioid substitution treatment with sublingual buprenorphine for 1200 injecting drug users. Within a short span of time the treatment has been found to be attractive to the clients and currently 1248 injecting opioid users are receiving opioid substitution treatment. The project is acceptable to the drug users, the families, the communities, religious as well as the militant groups. The treatment centres operate all days of the week, have trained staff members, utilize standardized protocols and ensure a strict supervised delivery system to prevent illicit diversion of buprenorphine. The drug users receiving the substitution treatment are referred to HIV voluntary counselling and testing. As this treatment has the potential to change HIV related risk behaviours, what has been established in the two states needs to be continued and expanded with the support from the Government of India. PMID:19243636

  7. Structural studies of human alkaline phosphatase in complex with strontium: Implication for its secondary effect in bones

    PubMed Central

    Llinas, Paola; Masella, Michel; Stigbrand, Torgny; Ménez, André; Stura, Enrico A.; Le Du, Marie Hélène

    2006-01-01

    Strontium is used in the treatment of osteoporosis as a ranelate compound, and in the treatment of painful scattered bone metastases as isotope. At very high doses and in certain conditions, it can lead to osteomalacia characterized by impairment of bone mineralization. The osteomalacia symptoms resemble those of hypophosphatasia, a rare inherited disorder associated with mutations in the gene encoding for tissue-nonspecific alkaline phosphatase (TNAP). Human alkaline phosphatases have four metal binding sites—two for zinc, one for magnesium, and one for calcium ion—that can be substituted by strontium. Here we present the crystal structure of strontium-substituted human placental alkaline phosphatase (PLAP), a related isozyme of TNAP, in which such replacement can have important physiological implications. The structure shows that strontium substitutes the calcium ion with concomitant modification of the metal coordination. The use of the flexible and polarizable force-field TCPEp (topological and classical polarization effects for proteins) predicts that calcium or strontium has similar interaction energies at the calcium-binding site of PLAP. Since calcium helps stabilize a large area that includes loops 210–228 and 250–297, its substitution by strontium could affect the stability of this region. Energy calculations suggest that only at high doses of strontium, comparable to those found for calcium, can strontium substitute for calcium. Since osteomalacia is observed after ingestion of high doses of strontium, alkaline phosphatase is likely to be one of the targets of strontium, and thus this enzyme might be involved in this disease. PMID:16815919

  8. Development of implants composed of bioactive materials for bone repair

    NASA Astrophysics Data System (ADS)

    Xiao, Wei

    The purpose of this Ph.D. research was to address the clinical need for synthetic bioactive materials to heal defects in non-loaded and loaded bone. Hollow hydroxyapatite (HA) microspheres created in a previous study were evaluated as a carrier for controlled release of bone morphogenetic protein-2 (BMP2) in bone regeneration. New bone formation in rat calvarial defects implanted with BMP2-loaded microspheres (43%) was significantly higher than microspheres without BMP2 (17%) at 6 weeks postimplantation. Then hollow HA microspheres with a carbonate-substituted composition were prepared to improve their resorption rate. Hollow HA microspheres with 12 wt. % of carbonate showed significantly higher new bone formation (73 +/- 8%) and lower residual HA (7 +/- 2%) than stoichiometric HA microspheres (59 +/- 2% new bone formation; 21 +/- 3% residual HA). The combination of carbonate-substituted hollow HA microspheres and clinically-safe doses of BMP2 could provide promising implants for healing non-loaded bone defects. Strong porous scaffolds of bioactive silicate (13-93) glass were designed with the aid of finite-element modeling, created by robocasting and evaluated for loaded bone repair. Scaffolds with a porosity gradient to mimic human cortical bone showed a compressive strength of 88 +/- 20 MPa, a flexural strength of 34 +/- 5 MPa and the ability to support bone infiltration in vivo. The addition of a biodegradable polylactic acid (PLA) layer to the external surface of these scaffolds increased their load-bearing capacity in four-point bending by 50% and dramatically enhanced their work of fracture, resulting in a "ductile" mechanical response. These bioactive glass-PLA composites, combining bioactivity, high strength, high work of fracture and an internal architecture conducive to bone infiltration, could provide optimal implants for structural bone repair.

  9. Bone regeneration with biomaterials and active molecules delivery.

    PubMed

    D' Este, Matteo; Eglin, David; Alini, Mauro; Kyllonen, Laura

    2015-01-01

    The combination of biomaterials and drug delivery strategies is a promising avenue towards improved synthetic bone substitutes. With the delivery of active species biomaterials can be provided with the bioactivity they still lack for improved bone regeneration. Recently, a lot of research efforts have been put towards this direction. Biomaterials for bone regeneration have been supplemented with small or biological molecules for improved osteoprogenitor cell recruitment, osteoinductivity, anabolic or angiogenic response, regulation of bone metabolism and others. The scope of this review is to summarize the most recent results in this field.

  10. Recent advances in bone tissue engineering scaffolds

    PubMed Central

    Bose, Susmita; Roy, Mangal; Bandyopadhyay, Amit

    2012-01-01

    Bone disorders are of significant concern due to increase in the median age of our population. Traditionally, bone grafts have been used to restore damaged bone. Synthetic biomaterials are now being used as bone graft substitutes. These biomaterials were initially selected for structural restoration based on their biomechanical properties. Later scaffolds were engineered to be bioactive or bioresorbable to enhance tissue growth. Now scaffolds are designed to induce bone formation and vascularization. These scaffolds are often porous, biodegradable materials that harbor different growth factors, drugs, genes or stem cells. In this review, we highlight recent advances in bone scaffolds and discuss aspects that still need to be improved. PMID:22939815

  11. Genetics Home Reference: osteoarthritis

    MedlinePlus

    ... Houard X. Why subchondral bone in osteoarthritis? The importance of the cartilage bone interface in osteoarthritis. Osteoporos ... Reviewed : October 2017 Published : June 26, 2018 The resources on this site should not be used as a substitute ... Department of Health & Human Services National Institutes of Health National Library of ...

  12. Investigation of structural resorption behavior of biphasic bioceramics with help of gravimetry, μCT, SEM, and XRD.

    PubMed

    de Wild, Michael; Amacher, Fabienne; Bradbury, Christopher R; Molenberg, Aart

    2016-04-01

    Resorbable bone substitute materials are widely used for bone augmentation after tumor resection, parallel to implant placement, or in critical size bone defects. In this study, the structural dissolution of a biphasic calcium phosphate bone substitute material with a hydroxyapatite (HA)/tricalcium phosphate (β-TCP) ratio of 60/40 was investigated by repeatedly placing porous blocks in EDTA solution at 37 °C. At several time points, the blocks were investigated by SEM, µCT, and gravimetry. It was found that always complete 2-3 µm sized grains were removed from the structure and that the β-TCP is dissolved more rapidly. This selective dissolution of the β-TCP grains was confirmed by XRD measurements. The blocks were eroded from the outside toward the center. The structure remained mechanically stable because the central part showed a delayed degradation and because the slower dissolving HA grains preserved the integrity of the structure. © 2015 Wiley Periodicals, Inc.

  13. Biomimetics of Bone Implants: The Regenerative Road.

    PubMed

    Brett, Elizabeth; Flacco, John; Blackshear, Charles; Longaker, Michael T; Wan, Derrick C

    2017-01-01

    The current strategies for healing bone defects are numerous and varied. At the core of each bone healing therapy is a biomimetic mechanism, which works to enhance bone growth. These range from porous scaffolds, bone mineral usage, collagen, and glycosaminoglycan substitutes to transplanted cell populations. Bone defects face a range of difficulty in their healing, given the composite of dense outer compact bone and blood-rich inner trabecular bone. As such, the tissue possesses a number of inherent characteristics, which may be clinically harnessed as promoters of bone healing. These include mechanical characteristics, mineral composition, native collagen content, and cellular fraction of bone. This review charts multiple biomimetic strategies to help heal bony defects in large and small osseous injury sites, with a special focus on cell transplantation.

  14. Brentuximab Vedotin Injection

    MedlinePlus

    ... with healthy bone marrow) or at least two treatment periods of chemotherapy. Brentuximab vedotin injection is also ... Hodgkin lymphoma) who did not respond to another treatment period of chemotherapy. Brentuximab vedotin injection is in ...

  15. Composite time-lapse computed tomography and micro finite element simulations: A new imaging approach for characterizing cement flows and mechanical benefits of vertebroplasty.

    PubMed

    Stadelmann, Vincent A; Zderic, Ivan; Baur, Annick; Unholz, Cynthia; Eberli, Ursula; Gueorguiev, Boyko

    2016-02-01

    Vertebroplasty has been shown to reinforce weak vertebral bodies and reduce fracture risks, yet cement leakage is a major problem that can cause severe complications. Since cement flow is nearly impossible to control during surgery, small volumes of cement are injected, but then mechanical benefits might be limited. A better understanding of cement flows within bone structure is required to further optimize vertebroplasty and bone augmentation in general. We developed a novel imaging method, composite time-lapse CT, to characterize cement flow during injection. In brief, composite-resolution time-lapse CT exploits the qualities of microCT and clinical CT. The method consists in overlaying low-resolution time-lapse CT scans acquired during injection onto pre-operative high-resolution microCT scans, generating composite-resolution time-lapse CT series of cement flow within bone. In this in vitro study, composite-resolution time-lapse CT was applied to eight intact and five artificially fractured cadaveric vertebrae during vertebroplasty. The time-lapse scans were acquired at one-milliliter cement injection steps until a total of 10 ml cement was injected. The composite-resolution series were then converted into micro finite element models to compute strains distribution under virtual axial loading. Relocation of strain energy density within bone structure was observed throughout the progression of the procedure. Interestingly, the normalized effect of cement injection on the overall stiffness of the vertebrae was similar between intact and fractured specimens, although at different orders of magnitude. In conclusion, composite time-lapse CT can picture cement flows during bone augmentation. The composite images can also be easily converted into finite element models to compute virtual strain distributions under loading at every step of an injection, providing deeper understanding on the biomechanics of vertebroplasty. Copyright © 2015 IPEM. Published by Elsevier Ltd. All rights reserved.

  16. Effects of Particle Size and Porosity on In Vivo Remodeling of Settable Allograft Bone/Polymer Composites

    PubMed Central

    Prieto, Edna M.; Talley, Anne D.; Gould, Nicholas R.; Zienkiewicz, Katarzyna J.; Drapeau, Susan J.; Kalpakci, Kerem N.

    2014-01-01

    Established clinical approaches to treat bone voids include the implantation of autograft or allograft bone, ceramics, and other bone void fillers (BVFs). Composites prepared from lysine-derived polyurethanes and allograft bone can be injected as a reactive liquid and set to yield BVFs with mechanical strength comparable to trabecular bone. In this study, we investigated the effects of porosity, allograft particle size, and matrix mineralization on remodeling of injectable and settable allograft/polymer composites in a rabbit femoral condyle plug defect model. Both low viscosity (LV) and high viscosity (HV) grafts incorporating small (<105 μm) particles only partially healed at 12 weeks, and the addition of 10% demineralized bone matrix did not enhance healing. In contrast, composite grafts with large (105 – 500 μm) allograft particles healed at 12 weeks post-implantation, as evidenced by radial μCT and histomorphometric analysis. This study highlights particle size and surface connectivity as influential parameters regulating the remodeling of composite bone scaffolds. PMID:25581686

  17. Strength reliability and in vitro degradation of three-dimensional powder printed strontium-substituted magnesium phosphate scaffolds.

    PubMed

    Meininger, Susanne; Mandal, Sourav; Kumar, Alok; Groll, Jürgen; Basu, Bikramjit; Gbureck, Uwe

    2016-02-01

    Strontium ions (Sr(2+)) are known to prevent osteoporosis and also encourage bone formation. Such twin requirements have motivated researchers to develop Sr-substituted biomaterials for orthopaedic applications. The present study demonstrates a new concept of developing Sr-substituted Mg3(PO4)2 - based biodegradable scaffolds. In particular, this work reports the fabrication, mechanical properties with an emphasis on strength reliability as well as in vitro degradation of highly biodegradable strontium-incorporated magnesium phosphate cements. These implantable scaffolds were fabricated using three-dimensional powder printing, followed by high temperature sintering and/or chemical conversion, a technique adaptable to develop patient-specific implants. A moderate combination of strength properties of 36.7MPa (compression), 24.2MPa (bending) and 10.7MPa (tension) were measured. A reasonably modest Weibull modulus of up to 8.8 was recorded after uniaxial compression or diametral tensile tests on 3D printed scaffolds. A comparison among scaffolds with varying compositions or among sintered or chemically hardened scaffolds reveals that the strength reliability is not compromised in Sr-substituted scaffolds compared to baseline Mg3(PO4)2. The micro-computed tomography analysis reveals the presence of highly interconnected porous architecture in three-dimension with lognormal pore size distribution having median in the range of 17.74-26.29μm for the investigated scaffolds. The results of extensive in vitro ion release study revealed passive degradation with a reduced Mg(2+) release and slow but sustained release of Sr(2+) from strontium-substituted magnesium phosphate scaffolds. Taken together, the present study unequivocally illustrates that the newly designed Sr-substituted magnesium phosphate scaffolds with good strength reliability could be used for biomedical applications requiring consistent Sr(2+)- release, while the scaffold degrades in physiological medium. The study investigates the additive manufacturing of scaffolds based on different strontium-substituted magnesium phosphate bone cements by means of three-dimensional powder printing technique (3DPP). Magnesium phosphates were chosen due to their higher biodegradability compared to calcium phosphates, which is due to both a higher solubility as well as the absence of phase changes (to low soluble hydroxyapatite) in vivo. Since strontium ions are known to promote bone formation by stimulating osteoblast growth, we aimed to establish such a highly degradable magnesium phosphate ceramic with an enhanced bioactivity for new bone ingrowth. After post-processing, mechanical strengths of up to 36.7MPa (compression), 24.2MPa (bending) and 10.7MPa (tension) could be achieved. Simultaneously, the failure reliability of those bioceramic implant materials, measured by Weibull modulus calculations, were in the range of 4.3-8.8. Passive dissolution studies in vitro proved an ion release of Mg(2+) and PO4(3-) as well as Sr(2+), which is fundamental for in vivo degradation and a bone growth promoting effect. In our opinion, this work broadens the range of bioceramic bone replacement materials suitable for additive manufacturing processing. The high biodegradability of MPC ceramics together with the anticipated promoting effect on osseointegration opens up the way for a patient-specific treatment with the prospect of a fast and complete healing of bone fractures. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  18. In utero transplantation of adult bone marrow decreases perinatal lethality and rescues the bone phenotype in the knockin murine model for classical, dominant osteogenesis imperfecta

    PubMed Central

    Panaroni, Cristina; Gioia, Roberta; Lupi, Anna; Besio, Roberta; Goldstein, Steven A.; Kreider, Jaclynn; Leikin, Sergey; Vera, Juan Carlos; Mertz, Edward L.; Perilli, Egon; Baruffaldi, Fabio; Villa, Isabella; Farina, Aurora; Casasco, Marco; Cetta, Giuseppe; Rossi, Antonio; Frattini, Annalisa; Marini, Joan C.; Vezzoni, Paolo

    2009-01-01

    Autosomal dominant osteogenesis imperfecta (OI) caused by glycine substitutions in type I collagen is a paradigmatic disorder for stem cell therapy. Bone marrow transplantation in OI children has produced a low engraftment rate, but surprisingly encouraging symptomatic improvements. In utero transplantation (IUT) may hold even more promise. However, systematic studies of both methods have so far been limited to a recessive mouse model. In this study, we evaluated intrauterine transplantation of adult bone marrow into heterozygous BrtlIV mice. Brtl is a knockin mouse with a classical glycine substitution in type I collagen [α1(I)-Gly349Cys], dominant trait transmission, and a phenotype resembling moderately severe and lethal OI. Adult bone marrow donor cells from enhanced green fluorescent protein (eGFP) transgenic mice engrafted in hematopoietic and nonhematopoietic tissues differentiated to trabecular and cortical bone cells and synthesized up to 20% of all type I collagen in the host bone. The transplantation eliminated the perinatal lethality of heterozygous BrtlIV mice. At 2 months of age, femora of treated Brtl mice had significant improvement in geometric parameters (P < .05) versus untreated Brtl mice, and their mechanical properties attained wild-type values. Our results suggest that the engrafted cells form bone with higher efficiency than the endogenous cells, supporting IUT as a promising approach for the treatment of genetic bone diseases. PMID:19414862

  19. Comparison of the osteogenic potential of bone dust and iliac bone chip.

    PubMed

    Ye, Shuai; Seo, Kyu-Bum; Park, Byung-Hyun; Song, Kyung-Jin; Kim, Jung-Ryul; Jang, Kyu-Yun; Chae, Young Ju; Lee, Kwang-Bok

    2013-11-01

    There is no comparative study of the in vitro and in vivo osteogenic potential of iliac bone chips (autogenous iliac cancellous bone chips) compared with bone dusts generated during the decortication process with a high-speed burr in spine fracture or fusion surgery. To compare the osteogenic potential of three sizes of bone dusts with iliac bone chips and to determine whether bone dusts can be used as a bone graft substitute. In vitro and in vivo study. Bone chips were harvested from the posterior superior iliac spine and bone dusts from the vertebrae of 15 patients who underwent spinal fracture surgery. Bone dust was divided into three groups: small (3 mm), middle (4 mm), and large (5 mm) according to the size of the burr tip. A comparison was made using a cell proliferation assay, alkaline phosphatase (ALP) activity, the degree of mineralization in an in vitro model, and radiographic and histologic studies (the change of absorbable area and tissue density) after implantation of the various materials into back muscles of nude mice. Although all three bone dust groups were less active with regard to cell proliferation, ALP activity, and the degree of mineralization, than were bone chips, they still exhibited osteogenic potential. Furthermore, there was no significant difference among the three bone dust groups. The three bone dust groups did show greater absorbable area and change of the tissue density than did the iliac bone chip group. Again, there was no significant difference among the three bone dust groups in this regard. Histologically, specimens from the bone dust groups had a higher osteoclast cell number than specimens from the iliac bone chip group. The osteogenic potential of bone dusts is lower than that of iliac bone chips, and the absorption speed of bone dusts in vivo is faster than that of iliac bone chips. The increased resorption speed appeared to result from an increase in osteoclast cell number. Therefore, caution needs to be used when surgeons employ bone dust as a bone graft substitute. Copyright © 2013 Elsevier Inc. All rights reserved.

  20. Effect of field-of-view size on gray values derived from cone-beam computed tomography compared with the Hounsfield unit values from multidetector computed tomography scans

    PubMed Central

    Shokri, Abbas; Bidgoli, Mohsen; Akbarzadeh, Mahdi; Ghazikhanlu-Sani, Karim; Fallahi-Sichani, Hamed

    2018-01-01

    Purpose This study aimed to evaluate the effect of field-of-view (FOV) size on the gray values derived from conebeam computed tomography (CBCT) compared with the Hounsfield unit values from multidetector computed tomography (MDCT) scans as the gold standard. Materials and Methods A radiographic phantom was designed with 4 acrylic cylinders. One cylinder was filled with distilled water, and the other 3 were filled with 3 types of bone substitute: namely, Nanobone, Cenobone, and Cerabone. The phantom was scanned with 2 CBCT systems using 2 different FOV sizes, and 1 MDCT system was used as the gold standard. The mean gray values (MGVs) of each cylinder were calculated in each imaging protocol. Results In both CBCT systems, significant differences were noted in the MGVs of all materials between the 2 FOV sizes (P<.05) except for Cerabone in the Cranex3D system. Significant differences were found in the MGVs of each material compared with the others in both FOV sizes for each CBCT system. No significant difference was seen between the Cranex3D CBCT system and the MDCT system in the MGVs of bone substitutes on images obtained with a small FOV. Conclusion The size of the FOV significantly changed the MGVs of all bone substitutes, except for Cerabone in the Cranex3D system. Both CBCT systems had the ability to distinguish the 3 types of bone substitutes based on a comparison of their MGVs. The Cranex3D CBCT system used with a small FOV had a significant correlation with MDCT results. PMID:29581947

  1. Obtention of injectable platelets rich-fibrin (i-PRF) and its polymerization with bone graft: technical note.

    PubMed

    Mourão, Carlos Fernando de Almeida Barros; Valiense, Helder; Melo, Elias Rodrigues; Mourão, Natália Belmock Mascarenhas Freitas; Maia, Mônica Diuana-Calasans

    2015-01-01

    The use of autologous platelet concentrates, represent a promising and innovator tools in the medicine and dentistry today. The goal is to accelerate hard and soft tissue healing. Among them, the platelet-rich plasma (PRP) is the main alternative for use in liquid form (injectable). These injectable form of platelet concentrates are often used in regenerative procedures and demonstrate good results. The aim of this study is to present an alternative to these platelet concentrates using the platelet-rich fibrin in liquid form (injectable) and its use with particulated bone graft materials in the polymerized form.

  2. An analysis of the hypothalamic sites at which substituted benzamide drugs act to facilitate gastric emptying in the guinea-pig.

    PubMed

    Costall, B; Gunning, S J; Naylor, R J

    1985-09-01

    An analysis of the hypothalamic sites at which the substituted benzamides, metoclopramide and clebopride, act to facilitate gastric emptying was undertaken in the guinea-pig. Standard stereotaxic techniques for intracerebral injection via chronically indwelling intracerebral guides were combined with measurement of gastric emptying by fluoroscopic following of the passage of barium sulphate spheroids from the stomach. Injections were made at 7 different locations within the hypothalamus at Ant. 8.0, 8.9 and 9.6, Lat. +/- 1.0, +/- 1.6, +/- 2.2 (relative to the stereotaxic frame) and at 7.0, 8.0 and 9.0 mm below guide tips in the cortex. The most sensitive sites for gastric facilitation by the substituted benzamides were located at Ant. 8.9, Lat. +/- 1.6, Vert. -8.0, -9.0, the "perifornical area". As the distance of the injection site from the area of the fornix increased, so the facilitatory gastric action diminished, with marked delays or loss in response occurring when injection sites were moved 1 mm above, 0.6 mm lateral, 0.4 mm medial, 0.9 mm posterior or 0.7 mm anterior. The facilitatory gastric actions of metoclopramide and clebopride in the perifornical area of the hypothalamus were not mimicked by haloperidol, domperidone or sulpiride. Atropine, injected into the hypothalamus, markedly reduced gastric emptying; hexamethonium was less effective, and phentolamine, propranolol and methysergide were inactive. Atropine (but not hexamethonium, phentolamine, propranolol or methysergide), injected into the hypothalamus, dose-dependently antagonised the facilitatory gastric action of metoclopramide injected at the same site. Carbachol (but not serotonin, noradrenaline, dopamine or apomorphine), injected into the perifornical area, caused marked facilitation of gastric emptying.(ABSTRACT TRUNCATED AT 250 WORDS)

  3. Nanocrystallinity effects on osteoblast and osteoclast response to silicon substituted hydroxyapatite.

    PubMed

    Casarrubios, Laura; Matesanz, María Concepción; Sánchez-Salcedo, Sandra; Arcos, Daniel; Vallet-Regí, María; Portolés, María Teresa

    2016-11-15

    Silicon substituted hydroxyapatites (SiHA) are highly crystalline bioceramics treated at high temperatures (about 1200°C) which have been approved for clinical use with spinal, orthopedic, periodontal, oral and craniomaxillofacial applications. The preparation of SiHA with lower temperature methods (about 700°C) provides nanocrystalline SiHA (nano-SiHA) with enhanced bioreactivity due to higher surface area and smaller crystal size. The aim of this study has been to know the nanocrystallinity effects on the response of both osteoblasts and osteoclasts (the two main cell types involved in bone remodelling) to silicon substituted hydroxyapatite. Saos-2 osteoblasts and osteoclast-like cells (differentiated from RAW-264.7 macrophages) have been cultured on the surface of nano-SiHA and SiHA disks and different cell parameters have been evaluated: cell adhesion, proliferation, viability, intracellular content of reactive oxygen species, cell cycle phases, apoptosis, cell morphology, osteoclast-like cell differentiation and resorptive activity. This comparative in vitro study evidences that nanocrystallinity of SiHA affects the cell/biomaterial interface inducing bone cell apoptosis by loss of cell anchorage (anoikis), delaying osteoclast-like cell differentiation and decreasing the resorptive activity of this cell type. These results suggest the potential use of nano-SiHA biomaterial for preventing bone resorption in treatment of osteoporotic bone. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Facilitated receptor-recognition and enhanced bioactivity of bone morphogenetic protein-2 on magnesium-substituted hydroxyapatite surface

    PubMed Central

    Huang, Baolin; Yuan, Yuan; Li, Tong; Ding, Sai; Zhang, Wenjing; Gu, Yuantong; Liu, Changsheng

    2016-01-01

    Biomaterial surface functionalized with bone morphogenetic protein-2 (BMP-2) is a promising approach to fabricating successful orthopedic implants/scaffolds. However, the bioactivity of BMP-2 on material surfaces is still far from satisfactory and the mechanism of related protein-surface interaction remains elusive. Based on the most widely used bone-implants/scaffolds material, hydroxyapatite (HAP), we developed a matrix of magnesium-substituted HAP (Mg-HAP, 2.2 at% substitution) to address these issues. Further, we investigated the adsorption dynamics, BMPRs-recruitment, and bioactivity of recombinant human BMP-2 (rhBMP-2) on the HAP and Mg-HAP surfaces. To elucidate the mechanism, molecular dynamic simulations were performed to calculate the preferred orientations, conformation changes, and cysteine-knot stabilities of adsorbed BMP-2 molecules. The results showed that rhBMP-2 on the Mg-HAP surface exhibited greater bioactivity, evidenced by more facilitated BMPRs-recognition and higher ALP activity than on the HAP surface. Moreover, molecular simulations indicated that BMP-2 favoured distinct side-on orientations on the HAP and Mg-HAP surfaces. Intriguingly, BMP-2 on the Mg-HAP surface largely preserved the active protein structure evidenced by more stable cysteine-knots than on the HAP surface. These findings explicitly clarify the mechanism of BMP-2-HAP/Mg-HAP interactions and highlight the promising application of Mg-HAP/BMP-2 matrixes in bone regeneration implants/scaffolds. PMID:27075233

  5. Facilitated receptor-recognition and enhanced bioactivity of bone morphogenetic protein-2 on magnesium-substituted hydroxyapatite surface

    NASA Astrophysics Data System (ADS)

    Huang, Baolin; Yuan, Yuan; Li, Tong; Ding, Sai; Zhang, Wenjing; Gu, Yuantong; Liu, Changsheng

    2016-04-01

    Biomaterial surface functionalized with bone morphogenetic protein-2 (BMP-2) is a promising approach to fabricating successful orthopedic implants/scaffolds. However, the bioactivity of BMP-2 on material surfaces is still far from satisfactory and the mechanism of related protein-surface interaction remains elusive. Based on the most widely used bone-implants/scaffolds material, hydroxyapatite (HAP), we developed a matrix of magnesium-substituted HAP (Mg-HAP, 2.2 at% substitution) to address these issues. Further, we investigated the adsorption dynamics, BMPRs-recruitment, and bioactivity of recombinant human BMP-2 (rhBMP-2) on the HAP and Mg-HAP surfaces. To elucidate the mechanism, molecular dynamic simulations were performed to calculate the preferred orientations, conformation changes, and cysteine-knot stabilities of adsorbed BMP-2 molecules. The results showed that rhBMP-2 on the Mg-HAP surface exhibited greater bioactivity, evidenced by more facilitated BMPRs-recognition and higher ALP activity than on the HAP surface. Moreover, molecular simulations indicated that BMP-2 favoured distinct side-on orientations on the HAP and Mg-HAP surfaces. Intriguingly, BMP-2 on the Mg-HAP surface largely preserved the active protein structure evidenced by more stable cysteine-knots than on the HAP surface. These findings explicitly clarify the mechanism of BMP-2-HAP/Mg-HAP interactions and highlight the promising application of Mg-HAP/BMP-2 matrixes in bone regeneration implants/scaffolds.

  6. Localized internal radiotherapy with 90Y particles embedded in a new thermosetting alginate gel: a feasibility study in pigs.

    PubMed

    Holte, Oyvind; Skretting, Arne; Bach-Gansmo, Tore; Hol, Per Kristian; Johnsrud, Kjersti; Tønnesen, Hanne Hjorth; Karlsen, Jan

    2006-02-01

    Internal radiotherapy requires the localization of the radionuclide to the site of action. A new injectable alginate gel formulation intended to undergo immediate gelation in tissues and capable of encapsulating radioactive particles containing 90Y was investigated. The formulation was injected intramuscularly, into the bone marrow compartment of the femur and intravenously, respectively, in pigs. The distribution of radioactivity in various tissues was determined. Following intramuscular injection, more than 90% of the radioactivity was found at the site of injection. Following injection into bone marrow, 30-40% of the radioactivity was retained at the site of injection, but a considerable amount of radioactivity was also detected in the lungs (35-45%) and the liver (5-18%). Following intravenous injection, 80-90% of the radioactivity was found in the lungs. The present formulation appears suitable for localized radiotherapy in organs and tissues having low perfusion.

  7. Advanced engineering and biomimetic materials for bone repair and regeneration

    NASA Astrophysics Data System (ADS)

    Yang, Lei; Zhong, Chao

    2013-12-01

    Over the past decade, there has been tremendous progress in developing advanced biomaterials for tissue repair and regeneration. This article reviews the frontiers of this field from two closely related areas, new engineering materials for bone substitution and biomimetic mineralization for bone-like nanocomposites. Rather than providing an exhaustive overview of the literature, we focus on several representative directions. We also discuss likely future trends in these areas, including synthetic biology-enabled biomaterials design and multifunctional implant materials for bone repair and regeneration.

  8. Histomorphometrical analysis following augmentation of infected extraction sites exhibiting severe bone loss and primarily closed by intrasocket reactive soft tissue.

    PubMed

    Mardinger, Ofer; Vered, Marilena; Chaushu, Gavriel; Nissan, Joseph

    2012-06-01

    Intrasocket reactive soft tissue can be used for primary closure during augmentation of infected extraction sites exhibiting severe bone loss prior to implant placement. The present study evaluated the histological characteristics of the initially used intrasocket reactive soft tissue, the overlying soft tissue, and the histomorphometry of the newly formed bone during implant placement. Thirty-six consecutive patients (43 sites) were included in the study. Extraction sites demonstrating extensive bone loss on preoperative periapical and panoramic radiographs served as inclusion criteria. Forty-three implants were inserted after a healing period of 6 months. Porous bovine xenograft bone mineral was used as a single bone substitute. The intrasocket reactive soft tissue was sutured over the grafting material to seal the coronal portion of the socket. Biopsies of the intrasocket reactive soft tissue at augmentation, healed mucosa, and bone cores at implant placement were retrieved and evaluated. The intrasocket reactive soft tissue demonstrated features compatible with granulation tissue and long junctional epithelium. The mucosal samples at implant placement demonstrated histopathological characteristics of keratinized mucosa with no residual elements of granulation tissue. Histomorphometrically, the mean composition of the bone cores was - vital bone 40 ± 19% (13.7-74.8%); bone substitute 25.7 ± 13% (0.6-51%); connective tissue 34.3 ± 15% (13.8-71.9%). Intrasocket reactive soft tissue used for primary closure following ridge augmentation is composed of granulation tissue and long junctional epithelium. At implant placement, clinical and histological results demonstrate its replacement by keratinized gingiva. The histomorphometrical results reveal considerable bone formation. Fresh extraction sites of hopeless teeth demonstrating chronic infection and severe bone loss may be grafted simultaneously with their removal. © 2010 Wiley Periodicals, Inc.

  9. Makings of a brittle bone: Unexpected lessons from a low protein diet study of a mouse OI model

    PubMed Central

    Mertz, E.L.; Makareeva, E.; Mirigian, L.S.; Koon, K.Y.; Perosky, J.E.; Kozloff, K.M.; Leikin, S.

    2016-01-01

    Glycine substitutions in type I collagen appear to cause osteogenesis imperfecta (OI) by disrupting folding of the triple helix, the structure of which requires Gly in every third position. It is less clear, however, whether the resulting bone malformations and fragility are caused by effects of intracellular accumulation of misfolded collagen on differentiation and function of osteoblasts, effects of secreted misfolded collagen on the function of bone matrix, or both. Here we describe a study originally conceived for testing how reducing intracellular accumulation of misfolded collagen would affect mice with a Gly610 to Cys substitution in the triple helical region of the α2(I) chain. To stimulate degradation of misfolded collagen by autophagy, we utilized a low protein diet. The diet had beneficial effects on osteoblast differentiation and bone matrix mineralization, but it also affected bone modeling and suppressed overall animal growth. Our more important observations, however, were not related to the diet. They revealed how altered osteoblast function and deficient bone formation by each cell caused by the G610C mutation combined with increased osteoblastogenesis might make the bone more brittle, all of which are common OI features. In G610C mice, increased bone formation surface compensated for reduced mineral apposition rate, resulting in normal cortical area and thickness at the cost of altering cortical modeling process, retaining woven bone, and reducing the ability of bone to absorb energy through plastic deformation. Reduced collagen and increased mineral density in extracellular matrix of lamellar bone compounded the problem, further reducing bone toughness. The latter observations might have particularly important implications for understanding OI pathophysiology and designing more effective therapeutic interventions. PMID:27039252

  10. Malunion of Long-Bone Fractures in a Conflict Zone in the Democratic Republic of Congo.

    PubMed

    Bauhahn, Grace; Veen, Harald; Hoencamp, Rigo; Olim, Nelson; Tan, Edward C T H

    2017-09-01

    Malunion is a well-recognized complication of long-bone fractures which accounts for more than 25% of injuries in conflict zones. The aim of this study was to investigate the rate of malunion sustained by casualties with penetrating gunshot wounds in an International Committee of the Red Cross (ICRC) surgical substitution project in the Democratic Republic of Congo (DRC) and compare these results with current literature. A retrospective cohort study was performed. All patients admitted to the ICRC facility between the periods of 01.10.2014 and 31.12.2015 with long-bone fractures caused by gunshot wound were included, and data were collected retrospectively from the patient's hospital notes. A total of 191 fractures caused by gunshot were treated in the DRC at the ICRC surgical substitution project during the study period. On average, the fractures were 3 days old on admission and were all open, with 62% also being comminuted. The ICRC management protocol, which emphasizes debridement, antibiotic prophylaxis and conservative fracture stabilization, was followed in all cases. Forty-eight percentage of the fractures were finally classified as 'union without complication'; however, 17% were classified as 'malunion'. This study indicates that open long-bone fractures that are managed by the ICRC surgical substitution project in DRC may have an increased likelihood of malunion as compared to long-bone fractures treated in developed countries. Patient delay and mechanism of injury may have caused increased rates of infection which are likely behind these increased rates of malunion, alongside the lack of definitive fracture treatment options made available to the surgical team.

  11. Comparison of transplantation of bone marrow stromal cells (BMSC) and stem cell mobilization by granulocyte colony stimulating factor after traumatic brain injury in rat.

    PubMed

    Bakhtiary, Mehrdad; Marzban, Mohsen; Mehdizadeh, Mehdi; Joghataei, Mohammad Taghi; Khoei, Samideh; Pirhajati Mahabadi, Vahid; Laribi, Bahareh; Tondar, Mahdi; Moshkforoush, Arash

    2010-10-01

    Recent clinical studies of treating traumatic brain injury (TBI) with autologous adult stem cells led us to compare effect of intravenous injection of bone marrow mesenchymal stem cells (BMSC) and bone marrow hematopoietic stem cell mobilization, induced by granulocyte colony stimulating factor (G-CSF), in rats with a cortical compact device. Forty adult male Wistar rats were injured with controlled cortical impact device and divided randomly into four groups. The treatment groups were injected with 2 × 106 intravenous bone marrow stromal stem cell (n = 10) and also with subcutaneous G-CSF (n = 10) and sham-operation group (n = 10) received PBS and "bromodeoxyuridine (Brdu)" alone, i.p. All injections were performed 1 day after injury into the tail veins of rats. All cells were labeled with Brdu before injection into the tail veins of rats. Functional neurological evaluation of animals was performed before and after injury using modified neurological severity scores (mNSS). Animals were sacrificed 42 days after TBI and brain sections were stained by Brdu immunohistochemistry. Statistically, significant improvement in functional outcome was observed in treatment groups compared with control group (P<0.01). mNSS showed no significant difference between the BMSC and G-CSF-treated groups during the study period (end of the trial). Histological analyses showed that Brdu-labeled (MSC) were present in the lesion boundary zone at 42nd day in all injected animals. In our study, we found that administration of a bone marrow-stimulating factor (G-CSF) and BMSC in a TBI model provides functional benefits.

  12. Regeneration of the periodontium using enamel matrix derivative in combination with an injectable bone cement.

    PubMed

    Oortgiesen, Daniël A W; Meijer, Gert J; Bronckers, Antonius L J J; Walboomers, X Frank; Jansen, John A

    2013-03-01

    Enamel matrix derivative (EMD) has proven to enhance periodontal regeneration; however, its effect is mainly restricted to the soft periodontal tissues. Therefore, to stimulate not only the soft tissues, but also the hard tissues, in this study EMD is combined with an injectable calcium phosphate cement (CaP; bone graft material). The aim was to evaluate histologically the healing of a macroporous CaP in combination with EMD. Intrabony, three-wall periodontal defects (2 × 2 × 1.7 mm) were created mesial of the first upper molar in 15 rats (30 defects). Defects were randomly treated according to one of the three following strategies: EMD, calcium phosphate cement and EMD, or left empty. The animals were killed after 12 weeks, and retrieved samples were processed for histology and histomorphometry. Empty defects showed a reparative type of healing without periodontal ligament or bone regeneration. As measured with on a histological grading scale for periodontal regeneration, the experimental groups (EMD and CaP/EMD) scored equally, both threefold higher compared with empty defects. However, most bone formation was measured in the CaP/EMD group; addition of CAP to EMD significantly enhanced bone formation with 50 % compared with EMD alone. Within the limits of this animal study, the adjunctive use of EMD in combination with an injectable cement, although it did not affect epithelial downgrowth, appeared to be a promising treatment modality for regeneration of bone and ligament tissues in the periodontium. The adjunctive use of EMD in combination with an injectable cement appears to be a promising treatment modality for regeneration of the bone and ligament tissues in the periodontium.

  13. Otoconial complexes as ion reservoirs in endolymph

    NASA Technical Reports Server (NTRS)

    Ross, M. D.; Williams, T. J.

    1982-01-01

    Scintillation spectrometry was employed to examine the Ca-45(2+) uptake and exchange by otoconial complexes in the sensory region endolymph medium, and a comparison was made with bone mineral deposition. CaCl was injected intraperitoneally into 222 rats and blood samples were collected at set intervals during the subsequent 15 min-l mo life durations of the animals. The animals were eventually sacrificed and saccular and utricular otoconial complexes were microdissected while bone chips from the otic bone and femur were gathered by scraping. Ca-45 was present in the saccular otoconial complexes within 15 min of injection, an uptake similar to the bone deposition, while slower rates were observed with the utricular complexes. Utricular uptake, however, accelerated 5-6 hr postinjection, and total otoconial content was always lower than proportional bone absorption.

  14. Cell therapy of hip osteonecrosis with autologous bone marrow grafting.

    PubMed

    Hernigou, Philippe; Poignard, Alexandre; Zilber, Sebastien; Rouard, Hélène

    2009-01-01

    One of the reasons for bone remodeling leading to an insufficient creeping substitution after osteonecrosis in the femoral head may be the small number of progenitor cells in the proximal femur and the trochanteric region. Because of this lack of progenitor cells, treatment modalities should stimulate and guide bone remodeling to sufficient creeping substitution to preserve the integrity of the femoral head. Core decompression with bone graft is used frequently in the treatment of osteonecrosis of the femoral head. In the current series, grafting was done with autologous bone marrow obtained from the iliac crest of patients operated on for early stages of osteonecrosis of the hip before collapse with the hypothesis that before stage of subchondral collapse, increasing the number of progenitor cells in the proximal femur will stimulate bone remodeling and creeping substitution and thereby improve functional outcome. Between 1990 and 2000, 342 patients (534 hips) with avascular osteonecrosis at early stages (Stages I and II) were treated with core decompression and autologous bone marrow grafting obtained from the iliac crest of patients operated on for osteonecrosis of the hip. The percentage of hips affected by osteonecrosis in this series of 534 hips was 19% in patients taking corticosteroids, 28% in patients with excessive alcohol intake, and 31% in patients with sickle cell disease. The mean age of the patients at the time of decompression and autologous bone marrow grafting was 39 years (range: 16-61 years). The aspirated marrow was reduced in volume by concentration and injected into the femoral head after core decompression with a small trocar. To measure the number of progenitor cells transplanted, the fibroblast colony forming unit was used as an indicator of the stroma cell activity. Patients were followed up from 8 to 18 years. The outcome was determined by the changes in the Harris hip score, progression in radiographic stages, change in volume determined by digitizing area of the necrosis on the different cuts obtained on MRI, and by the need for hip replacement. Total hip replacement was necessary in 94 hips (evolution to collapse) among the 534 hips operated before collapse (Stages I and II). Sixty-nine hips with stage I osteonecrosis of the femoral head at the time of surgery demonstrated total resolution of osteonecrosis based on preoperative and postoperative MRI studies; these hips did not show any changes on plain radiographs. Before treatment, these 69 osteonecrosis had only a marginal band like pattern as abnormal signal and a volume less than 20 cubic centimeters. The intralesional area had kept a normal signal as regards the signal of the femoral head outside the osteonecrosis area. For the 371 other hips without collapse at the most recent follow up (average 12 years), the mean preoperative volume of the osteonecrosis was 26 cm(3) (minimum 12, maximum 30 cm(3)). The mean volume of the abnormal signal measured on MRI at the most recent follow up (mean 12 years) was 12 cm(3). The abnormal signal persisting as a sequelae was seen on T1 images as an intralesional area of low intensity signal with a disappearance of the marginal band like pattern. According to our experience, best indication for the procedure is symptomatic hips with osteonecrosis without collapse. In some patients who had Steinberg stage III osteonecrosis (subchondral lucency, no collapse) successful outcomes (no further surgery) has been obtained between 5 to 10 years. Therefore in selected patients, even more advanced disease can be considered for core decompression. Patients who had the greater number of progenitor cells transplanted in their hips had better outcomes.

  15. High-fat diet exacerbates pain-like behaviors and periarticular bone loss in mice with CFA-induced knee arthritis.

    PubMed

    Loredo-Pérez, Aleyda A; Montalvo-Blanco, Carlos E; Hernández-González, Luis I; Anaya-Reyes, Maricruz; Fernández Del Valle-Laisequilla, Cecilia; Reyes-García, Juan G; Acosta-González, Rosa I; Martínez-Martínez, Arisai; Villarreal-Salcido, Jaira C; Vargas-Muñoz, Virginia M; Muñoz-Islas, Enriqueta; Ramírez-Rosas, Martha B; Jiménez-Andrade, Juan M

    2016-05-01

    Our aim was to quantify nociceptive spontaneous behaviors, knee edema, proinflammatory cytokines, bone density, and microarchitecture in high-fat diet (HFD)-fed mice with unilateral knee arthritis. ICR male mice were fed either standard diet (SD) or HFD starting at 3 weeks old. At 17 weeks, HFD and SD mice received intra-articular injections either with Complete Freund's Adjuvant (CFA) or saline into the right knee joint every 7 days for 4 weeks. Spontaneous pain-like behaviors and knee edema were assessed for 26 days. At day 26 post-first CFA injection, serum levels of IL-1β, IL-6, and RANKL were measured by ELISA, and microcomputed tomography analysis of knee joints was performed. HFD-fed mice injected with CFA showed greater spontaneous pain-like behaviors of the affected extremity as well as a decrease in the weight-bearing index compared to SD-fed mice injected with CFA. Knee edema was not significantly different between diets. HFD significantly exacerbated arthritis-induced bone loss at the distal femoral metaphysis but had no effect on femoral diaphyseal cortical bone. HFD did not modify serum levels of proinflammatory cytokines. HFD exacerbates pain-like behaviors and significantly increases the magnitude of periarticular trabecular bone loss in a murine model of unilateral arthritis. © 2016 The Obesity Society.

  16. Tin-117m-labeled stannic (Sn.sup.4+) chelates

    DOEpatents

    Srivastava, Suresh C.; Meinken, George E.; Richards, Powell

    1985-01-01

    The radiopharmaceutical reagents of this invention and the class of Tin-117m radiopharmaceuticals are therapeutic and diagnostic agents that incorporate gamma-emitting nuclides that localize in bone after intravenous injection in mammals (mice, rats, dogs, and rabbits). Images reflecting bone structure or function can then be obtained by a scintillation camera that detects the distribution of ionizing radiation emitted by the radioactive agent. Tin-117m-labeled chelates of stannic tin localize almost exclusively in cortical bone. Upon intravenous injection of the reagent, the preferred chelates are phosphonate compounds, preferable, PYP, MDP, EHDP, and DTPA. This class of reagents is therapeutically and diagnostically useful in skeletal scintigraphy and for the radiotherapy of bone tumors and other disorders.

  17. Whole Body Vibration Reduces Inflammatory Bone Loss in a Lipopolysaccharide Murine Model.

    PubMed

    Kim, I S; Lee, B; Yoo, S J; Hwang, S J

    2014-07-01

    Whole body vibration (WBV) stimulation has a beneficial effect on the recovery of osteoporotic bone. We aimed to investigate the immediate effect of WBV on lipopolysaccharide (LPS)-mediated inflammatory bone loss by varying the exposure timing. Balb/C mice were divided into the following groups: control, LPS (L), and LPS with vibration (LV). The L and LV groups received LPS (5 mg/kg) by 2 intraperitoneal injections on days 0 and 4. The LV group was exposed to WBV (0.4 g, 45 Hz) either during LPS treatment (LV1) or after cessation of LPS injection (LV2) and then continued WBV treatment for 10 min/d for 3 d. Evaluation based on micro-computed tomography was performed 7 d after the first injection, when the L group showed a significant decrease in bone volume (-25.8%) and bone mineral density (-33.5%) compared with the control group. The LV2 group recovered bone volume (35%) and bone mineral density (19.9%) compared with the L group, whereas the LV1 group showed no improvement. This vibratory signal showed a suppressive effect on the LPS-mediated induction of inflammatory cytokines such as IL-1β or TNF-α in human mesenchymal stem cells in vitro. These findings suggest that immediate exposure to WBV after the conclusion of LPS treatment efficiently reduces trabecular bone loss, but WBV might be less effective during the course of treatment with inflammatory factor. © International & American Associations for Dental Research.

  18. Whole Body Vibration Reduces Inflammatory Bone Loss in a Lipopolysaccharide Murine Model

    PubMed Central

    Kim, I.S.; Lee, B.; Yoo, S.J.; Hwang, S.J.

    2014-01-01

    Whole body vibration (WBV) stimulation has a beneficial effect on the recovery of osteoporotic bone. We aimed to investigate the immediate effect of WBV on lipopolysaccharide (LPS)–mediated inflammatory bone loss by varying the exposure timing. Balb/C mice were divided into the following groups: control, LPS (L), and LPS with vibration (LV). The L and LV groups received LPS (5 mg/kg) by 2 intraperitoneal injections on days 0 and 4. The LV group was exposed to WBV (0.4 g, 45 Hz) either during LPS treatment (LV1) or after cessation of LPS injection (LV2) and then continued WBV treatment for 10 min/d for 3 d. Evaluation based on micro–computed tomography was performed 7 d after the first injection, when the L group showed a significant decrease in bone volume (−25.8%) and bone mineral density (−33.5%) compared with the control group. The LV2 group recovered bone volume (35%) and bone mineral density (19.9%) compared with the L group, whereas the LV1 group showed no improvement. This vibratory signal showed a suppressive effect on the LPS-mediated induction of inflammatory cytokines such as IL-1β or TNF-α in human mesenchymal stem cells in vitro. These findings suggest that immediate exposure to WBV after the conclusion of LPS treatment efficiently reduces trabecular bone loss, but WBV might be less effective during the course of treatment with inflammatory factor. PMID:24810275

  19. TCP is hardly resorbed and not osteoconductive in a non-loading calvarial model.

    PubMed

    Handschel, Jörg; Wiesmann, Hans Peter; Stratmann, Udo; Kleinheinz, Johannes; Meyer, Ulrich; Joos, Ulrich

    2002-04-01

    Tricalciumphosphate (TCP) has been used as a ceramic bone substitute material in the orthopedic field as well as in craniofacial surgery. Some controversies exist concerning the osteoconductive potential of this material in different implantation sites. This study was designed to evaluate the biological response of calvarial bone towards TCP granules under non-loading conditions to assess the potential of TCP as a biodegredable and osteoconductive bone substitue material for the cranial vault. Full-thickness non-critical size defects were made bilaterally in the calvaria of 21 adult Wistar rats. One side was filled by TCP granules, the contralateral side was left empty and used as a control. Animals were sacrified in defined time intervals up to 6 months. Bone regeneration was analyzed with special respect toward the micromorphological and microanalytical features of the material-bone interaction by electron microscopy and electron diffraction analysis. Histologic examination revealed no TCP degradation even after 6 months of implantation. In contrast, a nearly complete bone regeneration of control defects was found after 6 months. At all times TCP was surrounded by a thin fibrous layer without presence of osteoblasts and features of regular mineralization. As far as degradation and substitution are concerned, TCP is a less favourable material tinder conditions of non-loading.

  20. Influence of two barrier membranes on staged guided bone regeneration and osseointegration of titanium implants in dogs. Part 2: augmentation using bone graft substitutes.

    PubMed

    Mihatovic, Ilja; Becker, Jürgen; Golubovic, Vladimir; Hegewald, Andrea; Schwarz, Frank

    2012-03-01

    To assess the influence of two barrier membranes and two bone graft substitutes on staged guided bone regeneration and osseointegration of titanium implants in dogs. Saddle-type defects were prepared in the lower jaws of 6 fox hounds and randomly filled with a natural bone mineral (NBM) and a biphasic calcium phosphate (SBC) and allocated to either an in situ gelling polyethylene glycol (PEG) or a collagen membrane (CM). At 8 weeks, modSLA titanium implants were inserted and left to heal in a submerged position. At 8+2 weeks, respectively, dissected blocks were processed for histomorphometrical analysis (e.g., mineralized tissue [MT], bone-to-implant contact [BIC]). The mean MT values (mm2) and BIC values (%) tended to be higher in the PEG groups (MT: NBM [3.4±1.7]; SBC [4.2±2]/BIC: NBM [67.7±16.9]; SBC [66.9±17.8]) when compared with the corresponding CM groups (MT: NBM [2.5±0.8]; SBC [2.3±1.6]/BIC: NBM [54.1±22.6]; SBC [61±8.7]). These differences, however, did not reach statistical significance. It was concluded that all augmentation procedures investigated supported bone regeneration and staged osseointegration of modSLA titanium implants. © 2011 John Wiley & Sons A/S.

  1. Hydroxyapatite/polylactide biphasic combination scaffold loaded with dexamethasone for bone regeneration.

    PubMed

    Son, Jun-Sik; Kim, Su-Gwan; Oh, Ji-Su; Appleford, Mark; Oh, Sunho; Ong, Joo L; Lee, Kyu-Bok

    2011-12-15

    This study presents a novel design of a ceramic/polymer biphasic combination scaffold that mimics natural bone structures and is used as a bone graft substitute. To mimic the natural bone structures, the outside cortical-like shells were composed of porous hydroxyapatite (HA) with a hollow interior using a polymeric template-coating technique; the inner trabecular-like core consisted of porous poly(D,L-lactic acid) (PLA) that was loaded with dexamethasone (DEX) and was directly produced using a particle leaching/gas forming technique to create the inner diameter of the HA scaffold. It was observed that the HA and PLA parts of the fabricated HA/PLA biphasic scaffold contained open and interconnected pore structures, and the boundary between both parts was tightly connected without any gaps. It was found that the structure of the combination scaffold was analogous to that of natural bone based on micro-computed tomography analysis. Additionally, the dense, uniform apatite layer was formed on the surface of the HA/PLA biphasic scaffold through a biomimetic process, and DEX was successfully released from the PLA of the biphasic scaffold over a 1-month period. This release caused human embryonic palatal mesenchyme cells to proliferate, differentiate, produce ECM, and form tissue in vitro. Therefore, it was concluded that this functionally graded scaffold is similar to natural bone and represents a potential bone-substitute material. Copyright © 2011 Wiley Periodicals, Inc.

  2. Three new HLA-C alleles (HLA-C*14:02:13, HLA-C*15:72 and HLA-C*15:74) in Saudi bone marrow donors.

    PubMed

    Fakhoury, H A; Jawdat, D; Alaskar, A S; Al Jumah, M; Cereb, N; Hajeer, A H

    2015-10-01

    Three new HLA-C alleles were identified by sequence-based typing method (SBT) in donors for the Saudi Bone Marrow Donor Registry (SBMDR). HLA-C*14:02:13 differs from HLA-C*14:02:01 by a silent G to A substitution at nucleotide position 400 in exon 2, where lysine at position 66 remains unchanged. HLA-C*15:72 differs from HLA-C*15:22 by a nonsynonymous C to A substitution at nucleotide position 796 in exon 3, resulting in an amino acid change from phenylalanine to leucine at position 116. HLA-C*15:74 differs from HLA-C*15:08 by a nonsynonymous C to T substitution at nucleotide position 914 in exon 3, resulting in an amino acid change from arginine to tryptophan at position 156. © 2015 John Wiley & Sons Ltd.

  3. Bone erosion and subacromial bursitis caused by diphtheria-tetanus-poliomyelitis vaccine.

    PubMed

    Salmon, J H; Geoffroy, M; Eschard, J P; Ohl, X

    2015-11-17

    Revaxis(®) is a vaccine against diphtheria, tetanus and poliomyelitis (dT-IPV). This vaccine should not be administered by the intradermal or intravenous route. Poor injection techniques and related consequences are rare. We report a case of bursitis associated with reactive glenohumeral effusion complicated by bone erosion occurring after injection of the dT-IPV vaccine. A 26 year old patient was admitted for painful left shoulder causing functional impairment. Control magnetic resonance imaging showed bone oedema on the upper outer part of the humeral head, with a slight cortical irregularity, indicating that the vaccine was injected in contact with the bone at this location, causing erosion. Outcome was favourable after intra-articular corticosteroids. Reports of articular or periarticular injury after vaccination are extremely rare, in view of the substantial number of vaccines administered every year. The potential complications of vaccination are well known to general practitioners but under-reported in the literature. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Daily intermittent decreases in serum levels of parathyroid hormone have an anabolic-like action on the bones of uremic rats with low-turnover bone and osteomalacia.

    PubMed

    Ishii, H; Wada, M; Furuya, Y; Nagano, N; Nemeth, E F; Fox, J

    2000-02-01

    The calcium receptor agonist (calcimimetic) compound NPS R-568 causes rapid decreases in circulating levels of parathyroid hormone (PTH) in rats and humans. We hypothesized that daily intermittent decreases in serum PTH levels may have different effects on bone than do chronically sustained decreases. To test this hypothesis, we compared two NPS R-568 dosing regimens in rats with chronic renal insufficiency induced by two intravenous injections of adriamycin. Fourteen weeks after the second adriamycin injection, creatinine clearance was reduced by 52%, PTH levels were elevated approximately 2.5-fold, and serum 25(OH)D3 and 1,25(OH)2D3 levels were reduced substantially. Treatment by daily per os gavage, which decreased PTH levels intermittently, or continuous subcutaneous infusion, which resulted in a sustained suppression of serum PTH levels, then began for 8 weeks. Despite the hyperparathyroidism, the adriamycin-injected rats developed a low-turnover bone lesion with osteomalacia (fourfold increase in osteoid volume in the proximal tibial metaphysis) and osteopenia (67% decrease in cancellous bone volume and an 18% reduction in bone mineral density at the distal femur). Daily administered (but not infused) NPS R-568 significantly increased cancellous bone volume solely by normalizing trabecular thickness, and increased femoral bone mineral density by 14%. These results indicate that daily intermittent, but not sustained, decreases in PTH levels have an "anabolic-like" effect on bones with a low-turnover lesion in this animal model of chronic renal insufficiency.

  5. Autologous implantation of BMP2-expressing dermal fibroblasts to improve bone mineral density and architecture in rabbit long bones.

    PubMed

    Ishihara, Akikazu; Weisbrode, Steve E; Bertone, Alicia L

    2015-10-01

    Cell-mediated gene therapy may treat bone fragility disorders. Dermal fibroblasts (DFb) may be an alternative cell source to stem cells for orthopedic gene therapy because of their rapid cell yield and excellent plasticity with bone morphogenetic protein-2 (BMP2) gene transduction. Autologous DFb or BMP2-expressing autologous DFb were administered in twelve rabbits by two delivery routes; a transcortical intra-medullar infusion into tibiae and delayed intra-osseous injection into femoral drill defects. Both delivery methods of DFb-BMP2 resulted in a successful cell engraftment, increased bone volume, bone mineral density, improved trabecular bone microarchitecture, greater bone defect filling, external callus formation, and trabecular surface area, compared to non-transduced DFb or no cells. Cell engraftment within trabecular bone and bone marrow tissue was most efficiently achieved by intra-osseous injection of DFb-BMP2. Our results suggested that BMP2-expressing autologous DFb have enhanced efficiency of engraftment in target bones resulting in a measurable biologic response by the bone of improved bone mineral density and bone microarchitecture. These results support that autologous implantation of DFb-BMP2 warrants further study on animal models of bone fragility disorders, such as osteogenesis imperfecta and osteoporosis to potentially enhance bone quality, particularly along with other gene modification of these diseases. © 2015 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  6. Hard tissue regeneration using bone substitutes: an update on innovations in materials

    PubMed Central

    Sarkar, Swapan Kumar

    2015-01-01

    Bone is a unique organ composed of mineralized hard tissue, unlike any other body part. The unique manner in which bone can constantly undergo self-remodeling has created interesting clinical approaches to the healing of damaged bone. Healing of large bone defects is achieved using implant materials that gradually integrate with the body after healing is completed. Such strategies require a multidisciplinary approach by material scientists, biological scientists, and clinicians. Development of materials for bone healing and exploration of the interactions thereof with the body are active research areas. In this review, we explore ongoing developments in the creation of materials for regenerating hard tissues. PMID:25995658

  7. Hard tissue regeneration using bone substitutes: an update on innovations in materials.

    PubMed

    Sarkar, Swapan Kumar; Lee, Byong Taek

    2015-05-01

    Bone is a unique organ composed of mineralized hard tissue, unlike any other body part. The unique manner in which bone can constantly undergo self-remodeling has created interesting clinical approaches to the healing of damaged bone. Healing of large bone defects is achieved using implant materials that gradually integrate with the body after healing is completed. Such strategies require a multidisciplinary approach by material scientists, biological scientists, and clinicians. Development of materials for bone healing and exploration of the interactions thereof with the body are active research areas. In this review, we explore ongoing developments in the creation of materials for regenerating hard tissues.

  8. Bone formation in mono cortical mandibular critical size defects after augmentation with two synthetic nanostructured and one xenogenous hydroxyapatite bone substitute - in vivo animal study.

    PubMed

    Dau, Michael; Kämmerer, Peer W; Henkel, Kai-Olaf; Gerber, Thomas; Frerich, Bernhard; Gundlach, Karsten K H

    2016-05-01

    Healing characteristics as well as level of tissue integration and degradation of two different nanostructured hydroxyapatite bone substitute materials (BSM) in comparison with a deproteinized hydroxyapatite bovine BSM were evaluated in an in vivo animal experiment. In the posterior mandible of 18 minipigs, bilateral mono cortical critical size bone defects were created. Randomized augmentation procedures with NanoBone(®) (NHA1), Ostim(®) (NHA2) or Bio-Oss(®) (DBBM) were conducted (each material n = 12). Samples were analyzed after five (each material n = 6) and 8 months (each material n = 6). Defect healing, formation of soft tissue and bone as well as the amount of remaining respective BSM were quantified both macro- and microscopically. For NHA2, the residual bone defect after 5 weeks was significantly less compared to NHA1 or DBBM. There was no difference in residual BSM between NHA1 and DBBM, but the amount in NHA2 was significantly lower. NHA2 also showed the least amount of soft tissue and the highest amount of new bone after 5 weeks. Eight months after implantation, no significant differences in the amount of residual bone defects, in soft tissue or in bone formation were detected between the groups. Again, NHA2 showed significant less residual material than NHA1 and DBBM. We observed non-significant differences in the biological hard tissue response of NHA1 and DBBM. The water-soluble NHA2 initially induced an increased amount of new bone but was highly compressed which may have a negative effect in less stable augmentations of the jaw. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  9. Biomechanical competence of six different bone screws for reconstructive surgery in three different transplants: Fibular, iliac crest, scapular and artificial bone.

    PubMed

    Pietsch, Arnold P; Raith, Stefan; Ode, Jan-Eric; Teichmann, Jan; Lethaus, Bernd; Möhlhenrich, Stephan C; Hölzle, Frank; Duda, Georg N; Steiner, Timm

    2016-06-01

    The goal of this study was to determine a combination of screw and transplantation type that offers optimal primary stability for reconstructive surgery. Fibular, iliac crest, and scapular transplants were tested along with artificial bone substrate. Six different kinds of bone screws (Medartis(©)) were compared, each type utilized with one of six specimens from human transplants (n = 6). Controlled screw-in-tests were performed and the required torque was protocolled. Subsequently, pull-out-tests were executed to determine the retention forces. The artificial bone substitute material showed significantly higher retention forces than real bone samples. The self-drilling screws achieved the significantly highest retention values in the synthetic bone substitute material. Cancellous screws achieved the highest retention in the fibular transplants, while self-drilling and cancellous screws demonstrated better retention than cortical screws in the iliac crest. In the scapular graft, no significant differences were found between the screw types. In comparison to the human transplant types, the cortical screws showed the significantly highest values in the fibula and the lowest values in the iliac crest. The best retention was found in the combination of cancellous screws with fibular graft (514.8 N + -252.3 N). For the flat bones (i.e., scapular and illiac crest) we recommend the cancellous screws. Copyright © 2016 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.

  10. The influence of bone substitute materials on the bone volume after maxillary sinus augmentation: a microcomputerized tomography study.

    PubMed

    Kühl, Sebastian; Brochhausen, Christoph; Götz, Hermann; Filippi, Andreas; Payer, Michael; d'Hoedt, Bernd; Kreisler, Matthias

    2013-03-01

    This study aims to evaluate the effect of adding bone substitute materials (BSM) to particulated autogenous bone (PAB) on the volume fraction (Vf) of newly formed bone after maxillary sinus augmentation. Thirty healthy patients undergoing maxillary sinus augmentation were included. PAB (N = 10), mixtures of PAB and beta-tricalciumphosphate (PAB/β-TCP) (N = 10), as well as PAB and β-TCP and hydroxyapatite (PAB/HA/β-TCP) (N = 10) were randomly used for sinus augmentation. A sample of the graft material was maintained from each patient at time of maxillary sinus augmentation, and Vfs of the PAB and/or BSM in the samples were determined by means of microcomputerized tomography (μ-CT). Five months later, samples of the grafted areas were harvested during implantation using a trephine bur. μ-CT analysis of these samples was performed, and the Vf of bone and BSM were compared with the data obtained 5 months earlier from the original material. The mean Vf of the bone showed a statistically significant increase (p < 0.05) in all groups after a healing period of 5 months without statistically significant difference between the groups. With regard to the increase of bone volume, it is not relevant if PAB is used alone or combined with β-TCP or HA/β-TCP. The amount of PAB and associated donor site morbidity may be reduced by adding BSM for maxillary sinus augmentation.

  11. Does PRP enhance bone integration with grafts, graft substitutes, or implants? A systematic review

    PubMed Central

    2013-01-01

    Background Several bone implants are applied in clinical practice, but none meets the requirements of an ideal implant. Platelet-rich plasma (PRP) is an easy and inexpensive way to obtain growth factors in physiologic proportions that might favour the regenerative process. The aim of this review is to analyse clinical studies in order to investigate the role of PRP in favouring bone integration of graft, graft substitutes, or implants, and to identify the materials for which the additional use of PRP might be associated with superior osseo- and soft tissues integration. Methods A search on PubMed database was performed considering the literature from 2000 to 2012, using the following string: ("Bone Substitutes"[Mesh] OR "Bone Transplantation"[Mesh] OR "Bone Regeneration"[Mesh] OR "Osseointegration"[Mesh]) AND ("Blood Platelets"[Mesh] OR "Platelet-Rich Plasma"[Mesh]). After abstracts screening, the full-texts of selected papers were analyzed and the papers found from the reference lists were also considered. The search focused on clinical applications documented in studies in the English language: levels of evidence included in the literature analysis were I, II and III. Results Literature analysis showed 83 papers that fulfilled the inclusion criteria: 26 randomized controlled trials (RCT), 14 comparative studies, 29 case series, and 14 case reports. Several implant materials were identified: 24 papers on autologous bone, 6 on freeze-dried bone allograft (FDBA), 16 on bovine porous bone mineral (BPBM), 9 on β-tricalcium phosphate (β-TCP), 4 on hydroxyapatite (HA), 2 on titanium (Ti), 1 on natural coral, 1 on collagen sponge, 1 on medical-grade calcium sulphate hemihydrate (MGCSH), 1 on bioactive glass (BG) and 18 on a combination of biomaterials. Only 4 papers were related to the orthopaedic field, whereas the majority belonged to clinical applications in oral/maxillofacial surgery. Conclusions The systematic research showed a growing interest in this approach for bone implant integration, with an increasing number of studies published over time. However, knowledge on this topic is still preliminary, with the presence mainly of low quality studies. Many aspects still have to be understood, such as the biomaterials that can benefit most from PRP and the best protocol for PRP both for production and application. PMID:24261343

  12. Embroidered and surface modified polycaprolactone-co-lactide scaffolds as bone substitute: in vitro characterization.

    PubMed

    Rentsch, Barbe; Hofmann, Andre; Breier, Annette; Rentsch, Claudia; Scharnweber, Dieter

    2009-10-01

    The aim of this study was to evaluate an embroidered polycaprolactone-co-lactide (trade name PCL) scaffold for the application in bone tissue engineering. The surface of the PCL scaffolds was hydrolyzed with NaOH and coated with collagen I (coll I) and chondroitin sulfate (CS). It was investigated if a change of the surface properties and the application of coll I and CS could promote cell adhesion, proliferation, and osteogenic differentiation of human mesenchymal stem cells (hMSC). The porosity (80%) and pore size (0.2-1 mm) of the scaffold could be controlled by embroidery technique and should be suitable for bone ingrowth. The treatment with NaOH made the polymer surface more hydrophilic (water contact angle dropped to 25%), enhanced the coll I adsorption (up to 15%) and the cell attachment (two times). The coll I coated scaffold improved cell attachment and proliferation (three times). CS, as part of the artificial matrix, could induce the osteogenic differentiation of hMSC without other differentiation additives. The investigated scaffolds could act not just as temporary matrix for cell migration, proliferation, and differentiation in bone tissue engineering but also have a great potential as bioartificial bone substitute.

  13. Kinetics of photo-activated charge carriers in Sn:CdS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patidar, Manju Mishra, E-mail: manjumishra.iuc@gmail.com; Gorli, V. R.; Gangrade, Mohan

    2016-05-23

    Kinetics of the photo-activated charge carriers has been investigated in Tin substituted Cadmium Sulphide, Cd{sub 1-x}Sn{sub x}S (x=0, 0.05, 0.10 and 0.15), thin films prepared by spray pyrolysis. X-Ray Diffraction shows an increase in strain that resulted in the decreased crystallite size upon Sn substitution. At the first sight, the photo current characteristics show a quenching effect on Sn substitution. However, survival of persistent photocurrents is seen even up to 15% of Sn substitution. Transient photo current decay could be explained with a 2τ relaxation model. CdS normally has an n-type character and the Sn doping expected to inject holemore » carriers. The two fold increase in τ{sub 1}, increase in activation energy and the decrease in photocurrents upon Sn substitution point towards a band gap cleaning scenario that include compensation and associated carrier injection dynamics. In addition Atomic Force Microscopy shows a drastic change in microstructure that modulates the carrier dynamics as a whole.« less

  14. Engineered, axially-vascularized osteogenic grafts from human adipose-derived cells to treat avascular necrosis of bone in a rat model.

    PubMed

    Ismail, Tarek; Osinga, Rik; Todorov, Atanas; Haumer, Alexander; Tchang, Laurent A; Epple, Christian; Allafi, Nima; Menzi, Nadia; Largo, René D; Kaempfen, Alexandre; Martin, Ivan; Schaefer, Dirk J; Scherberich, Arnaud

    2017-11-01

    Avascular necrosis of bone (AVN) leads to sclerosis and collapse of bone and joints. The standard of care, vascularized bone grafts, is limited by donor site morbidity and restricted availability. The aim of this study was to generate and test engineered, axially vascularized SVF cells-based bone substitutes in a rat model of AVN. SVF cells were isolated from lipoaspirates and cultured onto porous hydroxyapatite scaffolds within a perfusion-based bioreactor system for 5days. The resulting constructs were inserted into devitalized bone cylinders mimicking AVN-affected bone. A ligated vascular bundle was inserted upon subcutaneous implantation of constructs in nude rats. After 1 and 8weeks in vivo, bone formation and vascularization were analyzed. Newly-formed bone was found in 80% of SVF-seeded scaffolds after 8weeks but not in unseeded controls. Human ALU+cells in the bone structures evidenced a direct contribution of SVF cells to bone formation. A higher density of regenerative, M2 macrophages was observed in SVF-seeded constructs. In both experimental groups, devitalized bone was revitalized by vascularized tissue after 8 weeks. SVF cells-based osteogenic constructs revitalized fully necrotic bone in a challenging AVN rat model of clinically-relevant size. SVF cells contributed to accelerated initial vascularization, to bone formation and to recruitment of pro-regenerative endogenous cells. Avascular necrosis (AVN) of bone often requires surgical treatment with autologous bone grafts, which is surgically demanding and restricted by significant donor site morbidity and limited availability. This paper describes a de novo engineered axially-vascularized bone graft substitute and tests the potential to revitalize dead bone and provide efficient new bone formation in a rat model. The engineering of an osteogenic/vasculogenic construct of clinically-relevant size with stromal vascular fraction of human adipose, combined to an arteriovenous bundle is described. This construct revitalized and generated new bone tissue. This successful approach proposes a novel paradigm in the treatment of AVN, in which an engineered, vascularized osteogenic graft would be used as a germ to revitalize large volumes of necrotic bone. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  15. Role of Prostaglandin Pathway and Alendronate-Based Carriers to Enhance Statin-induced Bone

    PubMed Central

    Lee, Yeonju; Liu, Xinming; Nawshad, Ali; Marx, David B.; Wang, Dong; Reinhardt, Richard A.

    2011-01-01

    Objective This study investigated the role of the prostaglandin (PG) pathway in locally-applied, simvastatin-induced oral bone growth. The possibility of enhancing long-term bone augmentation with an alendronate-based carrier was initiated. Methods Mandibles of 44 mature female rats were treated bilaterally with the following combinations: 2 mg simvastatin in ethanol (SIM-EtOH), EtOH, 2 mg simvastatin acid complexed with alendronate-beta-cyclodextrin conjugate (SIM/ALN-CD), ALN-CD, or ALN. Bone wash technology (injection of PBS and recollection by suction) was used to sample injection sites at baseline (day 0), and 3, 7, 14 and 21 days post-treatment. After 21-24 or 48 days, histomorphometric analysis was done. The amount of PGE2 in bone wash fluid was measured by ELISA, normalized by total protein, and compared between high and low bone growth groups (ANOVA) and correlated with subsequent bone histology at 21 days (Spearman). SIM-stimulated PGE2 synthase and EP4 receptor mRNA in murine osteoblast and fibroblast cell lines were evaluated with real-time PCR. Results Single injections of 2 mg SIM-EtOH induced significantly more new bone than control side after 21 days. PGE2/protein ratios peaked at day 7 and were correlated with the subsequent 21-day new bone width. The correlations at day 14 between PGE2 and new bone width changed to a negative relationship in the test group. SIM-stimulated osteoblasts expressed increased mRNA levels of PGE receptor EP4, while SIM activated PGE synthesis in fibroblasts. SIM/ALN-CD tended to preserve bone long-term. Conclusion Findings suggest that PGE pathway activation and higher levels of PGE2 during the first week following SIM-induced bone growth are desirable, and alendronate-beta-cyclodextrin conjugates not only act as tissue-specific carriers, but preserve new bone. PMID:21438610

  16. Blockade of epidermal growth factor receptor signaling in tumor cells and tumor-associated endothelial cells for therapy of androgen-independent human prostate cancer growing in the bone of nude mice.

    PubMed

    Kim, Sun-Jin; Uehara, Hisanori; Karashima, Takashi; Shepherd, David L; Killion, Jerald J; Fidler, Isaiah J

    2003-03-01

    We determined whether blockade of the epidermal growth factor receptor (EGF-R) signaling pathway by oral administration of the EGF-R tyrosine kinase inhibitor (PKI 166) alone or in combination with injectable Taxol inhibits the growth of PC-3MM2 human prostate cancer cells in the bone of nude mice. Male nude mice implanted with PC-3MM2 cells in the tibia were treated with oral administrations of PKI 166 or PKI 166 plus injectable Taxol beginning 3 days after implantation. The incidence and size of bone tumors and destruction of bone were determined by digitalized radiography. Expression of epidermal growth factor (EGF), EGF-R, and activated EGF-R in tumor cells and tumor-associated endothelial cells was determined by immunohistochemistry. Oral administration of PKI 166 or PKI 166 plus injectable Taxol reduced the incidence and size of bone tumors and destruction of bone. Immunohistochemical analysis revealed that PC-3MM2 cells growing adjacent to the bone expressed high levels of EGF and activated EGF-R, whereas tumor cells in the adjacent musculature did not. Moreover, endothelial cells within the bone tumor lesions, but not in uninvolved bone or tumors in the muscle, expressed high levels of activated EGF-R. Treatment with PKI 166 and more so with PKI 166 plus Taxol significantly inhibited phosphorylation of EGF-R on tumor and endothelial cells and induced significant apoptosis and endothelial cells within tumor lesions. These data indicate that endothelial cells exposed to EGF produced by tumor cells express activated EGF-R and that targeting EGF-R can produce significant therapeutic effects against prostate cancer bone metastasis.

  17. Comparing membranes and bone substitutes in a one-stage procedure for horizontal bone augmentation. A double-blind randomised controlled trial.

    PubMed

    Merli, Mauro; Moscatelli, Marco; Mariotti, Giorgia; Pagliaro, Umberto; Raffaelli, Eugenia; Nieri, Michele

    2015-01-01

    The objective of this parallel randomised controlled trial is to compare two bone substitutes and collagen membranes in a one-stage procedure for horizontal bone augmentation: anorganic bovine bone (Bio-Oss) and collagen porcine membranes (Bio-Gide) (BB group) versus a synthetic resorbable bone graft substitute made of pure β-tricalcium phosphate (Ceros TCP) and porcine pericardium collagen membranes (Jason) (CJ group). Patients in need of implant treatment having at least one site with horizontal osseous defects at a private clinic in Rimini (Italy) were included in this study. Patients were randomised to receive either the BB or CJ treatment. Randomisation was computer-generated with allocation concealment by opaque sequentially numbered sealed envelopes. Patients and the outcome assessor were blinded to group assignment. The main outcome measures were implant failure, complications, clinical bone gain at augmented sites, and complete filling of the bone defect. Secondary outcome measures were chair-time, postoperative pain and peri-implant marginal bone level changes. Twenty-five patients with 32 implants were allocated to the BB group and 25 patients with 29 implants to the CJ group. All 50 randomised patients received the treatment as allocated and there were no dropouts up to 6-months post-loading (12 months post-surgery). There were no failures and there were three complications in the BB group and three complications in the CJ group (relative risk: 1.00, 95% CI from 0.22 to 4.49, P = 1.00). The estimated difference between treatments in the vertical defect bone gain was -0.15 mm (95% CI from -0.65 to 0.35, P = 0.5504) favouring the BB group, and the estimated difference between treatments in the horizontal defect bone gain was -0.27 mm (95%CI from -0.73 to 0.19, P = 0.3851) favouring the BB group. There was no difference in the complete filling of the defect (relative risk: 0.88, 95%CI from 0.58 to 1.34, P = 0.7688). No significant differences were detected for chair-time (P = 0.3524), for VAS pain immediately after surgery (P = 0.5644), VAS pain after 1 week (P = 0.5074) and VAS pain after 2 weeks (P = 0.6950). A slight difference (0.24 mm, 95%CI from 0.0004 to 0.47, P = 0.0464) was detected in radiographic peri-implant bone loss favouring the CJ group. No significant differences, except for radiographic bone loss, were observed in this randomised controlled trial comparing anorganic bovine bone with collagen porcine membranes versus synthetic resorbable bone made of pure β-tricalcium phosphate with pericardium collagen membranes for horizontal augmentation.

  18. Intraligamentary--intraosseous anesthesia. A radiographic demonstration.

    PubMed

    Garfunkel, A A; Kaufman, E; Marmary, Y; Galili, D

    1983-10-01

    Intraligamentary dental anesthesia has become a widely accepted technique. The periodontal ligament seems to provide easy access to the tooth apex. In the present study, radiopaque material was injected into baboon monkeys. Serial radiographs during incremental injections showed clouding of the crestal bone. The material was seen gradually advancing through the alveolar bone crest, apically. The spread was noticed through the marrow spaces, unexpectedly avoiding the PDL route.

  19. Correcting (18)F-fluoride PET static scan measurements of skeletal plasma clearance for tracer efflux from bone.

    PubMed

    Siddique, Musib; Frost, Michelle L; Moore, Amelia E B; Fogelman, Ignac; Blake, Glen M

    2014-03-01

    The aim of the study was to examine whether (18)F-fluoride PET ((18)F-PET) static scan measurements of bone plasma clearance (Ki) can be corrected for tracer efflux from bone from the time of injection. The efflux of tracer from bone mineral to plasma was described by a first-order rate constant kloss. A modified Patlak analysis was applied to 60-min dynamic (18)F-PET scans of the spine and hip acquired during trials on the bone anabolic agent teriparatide to find the best-fit values of kloss at the lumbar spine, total hip and femoral shaft. The resulting values of kloss were used to extrapolate the modified Patlak plots to 120 min after injection and derive a sequence of static scan estimates of Ki at 4-min intervals that were compared with the Patlak Ki values from the 60-min dynamic scans. A comparison was made with the results of the standard static scan analysis, which assumes kloss=0. The best-fit values of kloss for the spine and hip regions of interest averaged 0.006/min and did not change when patients were treated with teriparatide. Static scan values of Ki calculated using the modified analysis with kloss=0.006/min were independent of time between 10 and 120 min after injection and were in close agreement with findings from the dynamic scans. In contrast, by 2 h after injection the static scan Ki values calculated using the standard analysis underestimated the dynamic scan results by 20%. Using a modified analysis that corrects for F efflux from bone, estimates of Ki from static PET scans can be corrected for time up to 2 h after injection. This simplified approach may obviate the need to perform dynamic scans and hence shorten the scanning procedure for the patient and reduce the cost of studies. It also enables reliable estimates of Ki to be obtained from multiple skeletal sites with a single injection of tracer.

  20. The Effects of Tissue-Nonspecific Alkaline Phosphatase Gene Therapy on Craniosynostosis and Craniofacial Morphology in the FGFR2C342Y/+ Mouse Model of Crouzon Craniosynostosis

    PubMed Central

    Wang, E; Nam, HK; Liu, J; Hatch, NE

    2015-01-01

    Objectives Craniosynostosis, the premature fusion of cranial bones, has traditionally been described as a disease of increased bone mineralization. However, multiple mouse models of craniosynostosis display craniosynostosis simultaneously with diminished cranial bone volume and/or density. We propose an alternative hypothesis that craniosynostosis results from abnormal tissue mineralization through the downregulation of tissue-nonspecific alkaline phosphatase (TNAP) enzyme downstream of activating mutations in FGFRs. Material & Methods Neonatal Crouzon (FGFRC342Y/+) and wild type (FGFR+/+) mice were injected with lentivirus to deliver a recombinant form of TNAP. Mice were sacrificed at four weeks post-natal. Serum was collected to test for alkaline phosphatase (AP), phosphorus, and calcium levels. Craniofacial bone fusion and morphology was assessed by micro-computed tomography. Results Injection with the TNAP lentivirus significantly increased serum AP levels (increased serum AP levels are indicative of efficient transduction and production of the recombinant protein), but results were variable and dependent upon viral lot and the litter of mice injected. Morphologic analysis revealed craniofacial form differences for inferior surface (p=.023) and cranial height (p=.014) regions between TNAP lentivirus injected and vehicle-injected Crouzon mice. With each unit increase in AP level, the odds of lambdoid suture fusion decreased by 84.2% and these results came close to statistical significance (p=.068). Conclusion These results suggest that TNAP deficiency may mediate FGFR2-associated craniosynostosis. Future studies should incorporate injection of recombinant TNAP protein, to avoid potential side effects and variable efficacy of lentiviral gene delivery. PMID:25865549

  1. Sustained and localized in vitro release of BMP-2/7, RANKL, and tetracycline from FlexBone, an elastomeric osteoconductive bone substitute.

    PubMed

    Xu, Jianwen; Li, Xinning; Lian, Jane B; Ayers, David C; Song, Jie

    2009-10-01

    We tested the hypothesis that synthetic composites containing a high percentage of osteoconductive biominerals well-integrated with a hydrophilic polymer matrix can be engineered to provide both the structural and biochemical framework of a viable synthetic bone substitute. FlexBone, an elastic hydrogel-mineral composite exhibiting excellent structural integration was prepared by crosslinking poly(2-hydroxyethyl methacrylate) hydrogel in the presence of 25 wt% nanocrystalline hydroxyapatite and 25 wt% tricalcium phosphate. Biologically active factors tetracycline, BMP-2/7, and RANKL that stimulate bone formation and remodeling were encapsulated into FlexBone during polymerization or via postpolymerization adsorption. SEM and dynamic mechanical analyses showed that the encapsulation of tetracycline (5.0 wt%) did not compromise the structural integrity and compressive behavior of FlexBone, which could withstand repetitive megapascal-compressive loadings and be securely press-fitted into critical femoral defects. Dose-dependent, sustained in vitro release of tetracycline was characterized by spectroscopy and bacterial inhibition. A single dose of 40 ng BMP-2/7 or 10 ng RANKL pre-encapsulated with 50 mg FlexBone, released over 1 week, was able to induce local osteogenic differentiation of myoblast C2C12 cells and osteoclastogenesis of macrophage RAW264.7 cells, respectively. With a bonelike structural composition, useful surgical handling characteristics, and tunable biochemical microenvironment, FlexBone provides an exciting opportunity for the treatment of hard-to-heal skeletal defects with minimal systemic side effects. (c) 2009 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  2. [Naringin reduced polymethylmethacrylate-induced osteolysis in the mouse air sacs model].

    PubMed

    Li, Nian-Hu; Xu, Zhan-wang

    2015-04-01

    To evaluate the influence of naringin on PMMA-induced osteoclastic bone resorption using the mouse air sacs model. Total 48 female Balb/c mices with the age of 8 to 10 weeks were chosen in the study. Air were injected into the back in 32 mices and formed the air sacs, 6 d later, the skulls (originated from other 16 mices) were implanted to the air sacs. Thirty-two animals were divided into naringin treatment group (with 2 concentrations of 150 mg/kg and 30 mg/ kg) , DMSO group and PBS blank group, 8 animals in each group. Polymethylmethacrylate (PMMA) particles were injected into the air sacs in naringin treatment groups and DMSO group so as to irritate inflammatory reaction. Naringin with 2 concentrations of 150 mg/kg and 30 mg/kg were dissolved in DMSO of 0.2 ml, and were injected into air sacs, respectively. In PBS black group, no stimulation with PMMA particles, only injected PBS, and in DMSO group, injected DMSO without naringin. Tartrate resistant acid phosphatase (TRAP), Ca2+ release, modified Masson stain and histological analysis were performed on the 7th day after stimulation. Compared with DMSO group, naringin treatment group's cellular infiltration decreased (P < 0.01); concentration of 150 mg/kg was better than that of concentrations of 30 mg/kg (8.90 ± 1.75 vs 15.23 ± 1.86). Naringin can decrease calcium release in the lavage of the air sacs bone resorption model, especially obvious in naringin with concentration of 150 mg/kg. Naringin can ameliorate the inflammatory reaction and the subsequent bone resorption (including bone collagen loss, TRAP positive cells amount and so on) in air sacs with bone implant and PMMA particles. Naringin with concentration of 150 mg/kg appeared to be an optimal dosage to deliver the therapeutic effects. Naringin inhibits PMMA-induced osteoclastogenesis and ameliorates the PMMA-associated inflammatory reaction and the subsequent bone resorption.

  3. Correlating the nanoscale mechanical and chemical properties of knockout mice bones

    NASA Astrophysics Data System (ADS)

    Kavukcuoglu, Nadire Beril

    Bone is a mineral-organic composite where the organic matrix is mainly type I collagen plus small amounts of non-collagenous proteins including osteopontin (OPN), osteocalcin (OC) and fibrillin 2 (Fbn2). Mature bone undergoes remodeling continually so new bone is formed and old bone resorbed. Uncoupling between the bone resorption and bone formation causes an overall loss of bone mass and leads to diseases like osteoporosis and osteopenia. These are characterized by structural deterioration of the bone tissue and an increased risk of fracture. The non-collagenous bone proteins are known to have a role in regulating bone turnover and to affect the structural integrity of bone. OPN and OC play a key role in bone resorption and formation, while absence of Fbn-2 causes a connective tissue disorder (congenital contractural arachnodactyly) and has been associated with decreased bone mass. In this thesis nanoindentation and Raman-microspectroscopy techniques were used to investigate and correlate the mechanical and chemical properties of cortical femoral bones from OPN deficient (OPN-/-), OC deficient (OC-/-) and Fbn-2 deficient (Fbn2-/-) mice and their age, sex and background matched wild-type controls (OPN+/+, OC+/+ and Fbn2+/+). For OPN the hardness (H) and elastic modulus (E) of under 12 week OPN-/- bones were significantly lower than for OPN+/+ bones, but Raman showed no significant difference. Mechanical properties of bones from mice older than 12 weeks were not significantly different with genotype. However, mineralization and crystallinity from >50 week OPN-/- bones were significantly higher than for OPN+/+ bones. Mechanical properties of OPN-/- bones showed no variation with age, but mineralization, crystallinity and type-B carbonate substitution increased for both genotypes. For OC-/- intra-bone analyses showed that the hardness and crystallinity of the bones were significantly higher, especially in the mid-cortical sections, compared to OC+/+ bones. Fbn2-/- bones had significantly lower hardness and elastic modulus compared to Fbn2+/+ bones, but the crystallinity was higher. Type-B carbonate substitution decreased significantly in OC-/- and Fbn2-/- bones compared to their wild-type controls. The thesis has provided new insight into how non-collagenous proteins affect the nanomechanics and chemistry of bone tissue. This information will assist in the development of new treatments for osteopenia/osteoporosis.

  4. Primary Stability of Zirconium vs Titanium Implants: An In Vitro Comparison

    DTIC Science & Technology

    2015-06-05

    Zirconia implant and 4x11.5 Titanium implant placed in artificial bone ( polyurethane foam ) at .08 rotations /sec…………………………………28   viii...measurements as they relate to primary Implant Stability. Artificial Bone made of solid ridged polyurethane foam was used as an alternative test...30 pound per cubic foot solid rigid polyurethane blocks used to substitute human cancellous bone

  5. The influence of age at time of exposure to sup 226 Ra or sup 239 Pu on distribution, retention, postinjection survival, and tumor induction in beagle dogs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bruenger, F.W.; Lloyd, R.D.; Miller, S.C.

    The influence of age at injection of 226Ra or 239Pu on skeletal deposition and local distribution, the pattern of bone tumor formation, and postinjection survival was assessed in parallel short-term studies of mechanisms and lifetime toxicity. Beagles received a single intravenous injection of 226Ra or 239Pu at 3 months (juveniles), 17-19 months (young adults) or 60 months (mature). Data from short-term studies of mechanisms and dosimetry and from one dosage level of each of the toxicity experiments were compared. Skeletal growth and turnover produced differential initial deposition and distribution patterns typical for each age group. At 1 week after injection,more » skeletal retention of 226Ra or 239Pu was 68 and 68%, respectively, in the juveniles, 32 and 46% in the young adults, and 31 and 43% in the mature dogs. Comparing individual bones in the juveniles, gradients in the concentration of 239Pu were small since all bones were actively growing, but substantial gradients, corresponding to centers of ossification, were present within individual bones. In other age groups, local concentration gradients were less pronounced, but much larger differences were present among the various bones. In the toxicity study all animals injected with either 41 kBq 226Ra/kg or 11 kBq 239Pu/kg have died. The cumulative average skeletal doses to the presumed time of start of tumor growth (1 year before death) were 25 and 4 Gy, respectively, for the juveniles, 22 and 5 Gy for the young adults, and 15 and 4 Gy for the mature dogs. The highest bone tumor incidence was seen in the young adult groups. Differences were observed in location of bone tumors between dogs in the same age group given radium or plutonium and among age groups injected with either radionuclide, some of which could be explained by differences in local dose distributions.« less

  6. NELL-1 Injection Maintains Long-Bone Quantity and Quality in an Ovariectomy-Induced Osteoporotic Senile Rat Model

    PubMed Central

    Kwak, Jinny; Zara, Janette N.; Chiang, Michael; Ngo, Richard; Shen, Jia; James, Aaron W.; Le, Khoi M.; Moon, Crystal; Zhang, Xinli; Gou, Zhongru; Ting, Kang

    2013-01-01

    Over 10 million Americans have osteoporosis, and is the predominant cause of fractures in the elderly. Treatment of fractures in the setting of osteoporosis is complicated by a suboptimal bone regenerative response due to a decline in the number of osteoblasts, their function, and survival. Consequently, an osteogenic therapeutic to prevent and treat fractures in patients with osteoporosis is needed. Nel-like molecule-1 (NELL-1), a novel osteoinductive growth factor, has been shown to promote bone regeneration. In this study, we aim to demonstrate the capacity of recombinant NELL-1 to prevent ovariectomy (OVX)-induced osteoporosis in a senile rat model. Ten-month-old female Sprague-Dawley rats underwent either sham surgery or OVX. Subsequently, 50 μL of 600 μg/mL NELL-1 lyophilized onto a 0–50-μm tricalcium phosphate (TCP) carrier was injected into the femoral bone marrow cavity while phosphate-buffered saline (PBS) control was injected into the contralateral femur. Our microcomputed tomography results showed that OVX+PBS/TCP control femurs showed a continuous decrease in the bone volume (BV) and bone mineral density (BMD) from 2 to 8 weeks post-OVX. In contrast, OVX+NELL-1/TCP femurs showed resistance to OVX-induced bone resorption showing BV and BMD levels similar to that of SHAM femurs at 8 weeks post-OVX. Histology showed increased endosteal-woven bone, as well as decreased adipocytes in the bone marrow of NELL-1-treated femurs compared to control. NELL-1-treated femurs also showed increased immunostaining for bone differentiation markers osteopontin and osteocalcin. These findings were validated in vitro, in which addition of NELL-1 in OVX bone marrow stem cells resulted in increased osteogenic differentiation. Thus, NELL-1 effectively enhances in situ osteogenesis in the bone marrow, making it potentially useful in the prevention and treatment of osteoporotic fractures. PMID:23083222

  7. Study on 41Ca-AMS for diagnosis and assessment of cancer bone metastasis in rats

    NASA Astrophysics Data System (ADS)

    Shen, Hongtao; Pang, Fangfang; Jiang, Shan; He, Ming; Dong, Kejun; Dou, Liang; Pang, Yijun; Yang, Xianlin; Ruan, Xiangdong; Liu, Manjun; Xia, Chunbo

    2015-10-01

    The annual incidence of new cancer patients in China is about 2 million, 30-40% of which will end up with bone metastasis. Profound study on the preclinical model and early diagnosis of cancer bone metastasis in rats are very significant for the drug development, better understanding and treatment of bone metastases. In order to monitor the process of bone metabolism and early detection of bone metastasis of cancer cells, a technique of 41Ca isotope tracer combined with AMS has been developed and applied in the study on the bone metastasis of cancer cells by rat model. In this work, 3-month-old female Sprague-Dawley (SD) rats were randomly divided into different groups, and tumor cells injected respectively into the tail vein, femoral artery, femoral cavity and the thigh muscle to establish the rat models for bone metastases. The most appropriate model, i.e., the thigh muscle group, was finally adopted in our real metastases experiment. Each rat in this group was intramuscularly (i.m.) injected with 250 μl CaCl2 solution (containing 1.4 mg Ca and 5nCi 41Ca). About 40 days later, the rat mammary gland carcinoma cells (Walker 256) were injected into these rats following the established protocol. After bone metastasis, medicine interventions were performed. The sequential urine and blood samples were collected and analyzed for 41Ca (by AMS) and N-terminal telopeptide (Ntx), respectively. Bone Mineral Density (BMD) values in the femur and the tibia were measured by CT scan. The results of 41Ca/Ca in longitudinal urinary samples can sensitively reveal the skeletal perturbations caused by bone metastasis of rats, suggests that 41Ca might be similarly developed for human use and improve clinical management through the assessment of the curative effect and non-invasive detection of the earliest stages of cancer growth in bone.

  8. Experimental model of bone response to collagenized xenografts of porcine origin (OsteoBiol® mp3): a radiological and histomorphometric study.

    PubMed

    Calvo Guirado, Jose Luis; Ramírez Fernández, Maria Piedad; Negri, Bruno; Delgado Ruiz, Rafael Arcesio; Maté Sánchez de-Val, José Eduardo; Gómez-Moreno, Gerardo

    2013-02-01

    Adequate alveolar ridges are fundamental to successful rehabilitation with implants. There are diverse techniques for reconstructing atrophied ridges, of which bone substitute grafts is one possibility. The aim of this study was to carry out radiological and histomorphometric evaluations of bone response to collagenized porcine bone xenografts over a 4-month period following their insertion in rabbits' tibiae. Twenty New Zealand rabbits were used. Twenty collagenized porcine bone xenografts (Osteobiol® mp3, Tecnoss Dental s.r.l., Torino, Italy), in granulated form of 600 to 1,000 µm, were inserted in the proximal metaphyseal area of the animals' tibiae and 20 control areas were created. Following implantation, the animals were sacrificed in four groups of five, after 1, 2, 3, and 4 months, respectively. Radiological and histomorphometric studies were made. After 4 months, radiological images revealed bone defects with a decrease in graft volume and the complete repair of the osseous defect. No healed or residual bone alterations attributable to the presence of the implants were observed. Histomorphometric analysis at 4 months found mean values for newly formed bone, residual graft material, and non-mineralized connective tissue of 25.4 ± 1.8%, 36.37 ± 3.0%, and 38.22 ± 2.5%, respectively. There were no statistical differences in the length of cortical formation with collagenized porcine xenograft (98.9 ± 1.1%) compared with the control samples (99.1 ± 0.7%) at the end of the study period. The biomaterial used proved to be biocompatible, bioabsorbable, and osteoconductive and as such, a possible bone substitute that did not interfere with the bone's normal reparative processes. © 2011 Wiley Periodicals, Inc.

  9. Biocompatibility property of 100% strontium-substituted SiO2 -Al2 O3 -P2 O5 -CaO-CaF2 glass ceramics over 26 weeks implantation in rabbit model: Histology and micro-Computed Tomography analysis.

    PubMed

    Basu, Bikramjit; Sabareeswaran, A; Shenoy, S J

    2015-08-01

    One of the desired properties for any new biomaterial composition is its long-term stability in a suitable animal model and such property cannot be appropriately assessed by performing short-term implantation studies. While hydroxyapatite (HA) or bioglass coated metallic biomaterials are being investigated for in vivo biocompatibility properties, such study is not extensively being pursued for bulk glass ceramics. In view of their inherent brittle nature, the implant stability as well as impact of long-term release of metallic ions on bone regeneration have been a major concern. In this perspective, the present article reports the results of the in vivo implantation experiments carried out using 100% strontium (Sr)-substituted glass ceramics with the nominal composition of 4.5 SiO2 -3Al2 O3 -1.5P2 O5 -3SrO-2SrF2 for 26 weeks in cylindrical bone defects in rabbit model. The combination of histological and micro-computed tomography analysis provided a qualitative and quantitative understanding of the bone regeneration around the glass ceramic implants in comparison to the highly bioactive HA bioglass implants (control). The sequential polychrome labeling of bone during in vivo osseointegration using three fluorochromes followed by fluorescence microscopy observation confirmed homogeneous bone formation around the test implants. The results of the present study unequivocally confirm the long-term implant stability as well as osteoconductive property of 100% Sr-substituted glass ceramics, which is comparable to that of a known bioactive implant, that is, HA-based bioglass. © 2014 Wiley Periodicals, Inc.

  10. In vitro and in vivo evaluation of strontium-containing nanostructured carbonated hydroxyapatite/sodium alginate for sinus lift in rabbits.

    PubMed

    Valiense, Helder; Barreto, Mauricio; Resende, Rodrigo F; Alves, Adriana T; Rossi, Alexandre M; Mavropoulos, Elena; Granjeiro, José M; Calasans-Maia, Mônica D

    2016-02-01

    Various synthetic bone substitutes have been developed to reconstruct bone defects. One of the most prevalent ceramics in bone treatment is hydroxyapatite (HA) that is a useful material as bone substitute, however, with a low rate of biodegradation. Its structure allows isomorphic cationic and anionic substitutions to be easily introduced, which can alter the crystallinity, morphology, biocompatibility, and osteoconductivity. The objective of this study was to investigate the in vitro and in vivo biological responses to strontium-containing nanostructured carbonated HA/sodium alginate (SrCHA) spheres (425<ϕ <600 μm) that were used for sinus lifts in rabbits using nanostructured carbonated HA/sodium alginate (CHA) as a reference. Cytocompatibility was determined using a multiparametric assay after exposing murine preosteoblasts to the extracts of these materials. Twelve male and female rabbits underwent bilateral sinus lift procedures and were divided into two groups (CHA or SrCHA) and in two experimental periods (4 and 12 weeks), for microscopic and histomorphometric analyses. The in vitro test revealed the overall viability of the cells exposed to the CHA and SrCHA extracts; thus, these extracts were considered cytocompatible, which was confirmed by three different parameters in the in vitro tests. The histological analysis showed chronic inflammation with a prevalence of macrophages around the CHA spheres after 4 weeks, and this inflammation decreased after 12 weeks. Bone formation was observed in both groups, and smaller quantities of SrCHA spheres were observed after 12 weeks, indicating greater bioresorption of SrCHA than CHA. SrCHA spheres are biocompatible and osteoconductive and undergo bioresorption earlier than CHA spheres. © 2015 Wiley Periodicals, Inc.

  11. Development of multisubstituted hydroxyapatite nanopowders as biomedical materials for bone tissue engineering applications.

    PubMed

    Baba Ismail, Yanny M; Wimpenny, Ian; Bretcanu, Oana; Dalgarno, Kenneth; El Haj, Alicia J

    2017-06-01

    Ionic substitutions have been proposed as a tool to control the functional behavior of synthetic hydroxyapatite (HA), particularly for Bone Tissue Engineering applications. The effect of simultaneous substitution of different levels of carbonate (CO 3 ) and silicon (Si) ions in the HA lattice was investigated. Furthermore, human bone marrow-derived mesenchymal stem cells (hMSCs) were cultured on multi-substituted HA (SiCHA) to determine if biomimetic chemical compositions were osteoconductive. Of the four different compositions investigates, SiCHA-1 (0.58 wt % Si) and SiCHA-2 (0.45 wt % Si) showed missing bands for CO 3 and Si using FTIR analysis, indicating competition for occupation of the phosphate site in the HA lattice; 500°C was considered the most favorable calcination temperature as: (i) the powders produced possessed a similar amount of CO 3 (2-8 wt %) and Si (<1.0 wt %) as present in native bone; and (ii) there was a minimal loss of CO 3 and Si from the HA structure to the surroundings during calcination. Higher Si content in SiCHA-1 led to lower cell viability and at most hindered proliferation, but no toxicity effect occurred. While, lower Si content in SiCHA-2 showed the highest ALP/DNA ratio after 21 days culture with hMSCs, indicating that the powder may stimulate osteogenic behavior to a greater extent than other powders. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 1775-1785, 2017. © 2017 Wiley Periodicals, Inc.

  12. In Vivo Performance of Bilayer Hydroxyapatite Scaffolds for Bone Tissue Regeneration in the Rabbit Radius

    DTIC Science & Technology

    2011-02-02

    no treatments and the pres- ence of periosteal callus-like layer surrounding defects with scaffold implantation were observed after 8 weeks post...vivo evaluation of resorbable bone graft substitutes in a rabbit tibial defect model. Biomaterials. 2004; 25(20):5037–44. 20. Lu JX, Gallur A, Flautre

  13. The use of osteochondral allograft with bone marrow-derived mesenchymal cells and hinge joint distraction in the treatment of post-collapse stage of osteonecrosis of the femoral head.

    PubMed

    Gagala, J; Tarczynska, M; Gaweda, K; Matuszewski, L

    2014-09-01

    Osteonecrosis of the femoral head is an entity which occurs mainly in young and active patients aged between 20 and 50. The success of hip joint preserving treatments ranges from 15% to 50% depending on the stage and amount of osteonecrotic lesion. Total hip replacement is indicated in late post-collapse hips but it has unsatisfactory survival because of the wear and osteolysis in young and active patients. Osteochondral allografts have been reported in the treatment of large articular lesions with defects in underlying bone in knee, talus and shoulder. By combining osteoconductive properties of osteochondral allograft with osteogenic abilities of bone marrow-derived mesenchymal cells it has a potential to be an alternative to an autologous graft. The adjunct of hinged joint distraction should minimize stresses in subchondral bone to promote creeping substitution and prevent femoral head collapse. Unlike current treatment modalities, it would provide both structural support and allow bony and articular substitution. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. [Osteostimulating effect of bone xenograft on bone tissue regeneration].

    PubMed

    Balin, V N; Balin, D V; Iordanishvili, A K; Musikin, M I

    2015-01-01

    The aim of experimental case-control study performed in 28 dogs divided in 2 groups was to assess local tissue reactions on bone xenograft transplantation; dynamics of bone remodeling and formation at the site of bone defect wall contacting with bone xenograft; dynamics and mechanisms of xenograft remodeling. Transplantation of xenograft in conventional bone defects did not cause inflammatory of destructive reactions because of high biocompatibility of the material. At transplantation site active fibrous bone trabeculae formation filling the spaces between xenograft participles was observed. On the 90th day newly formed bone showed lammelar structure. Simultaneously from the 42d day the invasion of cell elements from recipient bed into the material was seen leading to xenograft resorption. The observed dynamics may be assessed as gradual substitution of xenograft with newly formed host bone structures.

  15. Effects of in ovo injection of organic trace minerals and post-hatch holding time on broiler performance and bone characteristics

    USDA-ARS?s Scientific Manuscript database

    Effects of the in ovo injection of organic Mn, Zn, and Cu in association with post-hatch (POH) feed and water restriction on the performance and physical-chemical bone parameters of male Ross × Ross 708 broilers were examined. On 17 d of incubation, a total of 1,872 eggs were subjected to in ovo inj...

  16. Impaired Endothelial Progenitor Cell Mobilization and Dysfunctional Bone Marrow Stroma in Diabetes Mellitus

    PubMed Central

    Rafii, Shahin; Jaspers, Janneke E.; White, Ian A.; Hooper, Andrea T.; Doevendans, Pieter A.; Verhaar, Marianne C.

    2013-01-01

    Background Circulating Endothelial Progenitor Cell (EPC) levels are reduced in diabetes mellitus. This may be a consequence of impaired mobilization of EPC from the bone marrow. We hypothesized that under diabetic conditions, mobilization of EPC from the bone marrow to the circulation is impaired –at least partly– due to dysfunction of the bone marrow stromal compartment. Methods Diabetes was induced in mice by streptozotocin injection. Circulating Sca-1+Flk-1+ EPC were characterized and quantified by flow cytometry at baseline and after mobilization with G-CSF/SCF injections. In vivo hemangiogenic recovery was tested by 5-FU challenge. Interaction within the bone marrow environment between CD34+ hematopoietic progenitor cells (HPC) and supporting stroma was assessed by co-cultures. To study progenitor cell–endothelial cell interaction under normoglycemic and hyperglycemic conditions, a co-culture model using E4Orf1-transfected human endothelial cells was employed. Results In diabetic mice, bone marrow EPC levels were unaffected. However, circulating EPC levels in blood were lower at baseline and mobilization was attenuated. Diabetic mice failed to recover and repopulate from 5-FU injection. In vitro, primary cultured bone marrow stroma from diabetic mice was impaired in its capacity to support human CFU-forming HPC. Finally, hyperglycemia hampered the HPC supportive function of endothelial cells in vitro. Conclusion EPC mobilization is impaired under experimental diabetic conditions and our data suggest that diabetes induces alterations in the progenitor cell supportive capacity of the bone marrow stroma, which could be partially responsible for the attenuated EPC mobilization and reduced EPC levels observed in diabetic patients. PMID:23555959

  17. Impaired endothelial progenitor cell mobilization and dysfunctional bone marrow stroma in diabetes mellitus.

    PubMed

    Westerweel, Peter E; Teraa, Martin; Rafii, Shahin; Jaspers, Janneke E; White, Ian A; Hooper, Andrea T; Doevendans, Pieter A; Verhaar, Marianne C

    2013-01-01

    Circulating Endothelial Progenitor Cell (EPC) levels are reduced in diabetes mellitus. This may be a consequence of impaired mobilization of EPC from the bone marrow. We hypothesized that under diabetic conditions, mobilization of EPC from the bone marrow to the circulation is impaired -at least partly- due to dysfunction of the bone marrow stromal compartment. Diabetes was induced in mice by streptozotocin injection. Circulating Sca-1(+)Flk-1(+) EPC were characterized and quantified by flow cytometry at baseline and after mobilization with G-CSF/SCF injections. In vivo hemangiogenic recovery was tested by 5-FU challenge. Interaction within the bone marrow environment between CD34(+) hematopoietic progenitor cells (HPC) and supporting stroma was assessed by co-cultures. To study progenitor cell-endothelial cell interaction under normoglycemic and hyperglycemic conditions, a co-culture model using E4Orf1-transfected human endothelial cells was employed. In diabetic mice, bone marrow EPC levels were unaffected. However, circulating EPC levels in blood were lower at baseline and mobilization was attenuated. Diabetic mice failed to recover and repopulate from 5-FU injection. In vitro, primary cultured bone marrow stroma from diabetic mice was impaired in its capacity to support human CFU-forming HPC. Finally, hyperglycemia hampered the HPC supportive function of endothelial cells in vitro. EPC mobilization is impaired under experimental diabetic conditions and our data suggest that diabetes induces alterations in the progenitor cell supportive capacity of the bone marrow stroma, which could be partially responsible for the attenuated EPC mobilization and reduced EPC levels observed in diabetic patients.

  18. A Novel Vitreous Substitute of Using a Foldable Capsular Vitreous Body Injected with Polyvinylalcohol Hydrogel

    PubMed Central

    Feng, Songfu; Chen, Han; Liu, Yaqin; Huang, Zhen; Sun, Xuyuan; Zhou, Lian; Lu, Xiaohe; Gao, Qianying

    2013-01-01

    Hydrogels may be the ideal vitreous substitutes due to their wonderful physical features and biocompatibility. However, their drawbacks, short residence time, and biodegradation in vivo, have led to the fact that none of them have been approved for clinical use. In this study, we developed a novel approach of using a foldable capsular vitreous body (FCVB) injected with polyvinylalcohol (PVA) hydrogel as a vitreous substitute for long-term tamponade. The 3% PVA hydrogel that was cross-linked by gamma irradiation showed good rheological and physical properties and had no toxicity in vitro. After 180 days retention, the 3% PVA hydrogel inside FCVB remained transparent and showed good viscoelasticity without biodegradation and showed good biocompatibility and retina support. This new approach may develop into a valuable tool to improve the stability performance of PVA hydrogel as a vitreous substitute and to extend the application function of FCVB for long-term implantation in vitreous cavity. PMID:23670585

  19. A novel vitreous substitute of using a foldable capsular vitreous body injected with polyvinylalcohol hydrogel.

    PubMed

    Feng, Songfu; Chen, Han; Liu, Yaqin; Huang, Zhen; Sun, Xuyuan; Zhou, Lian; Lu, Xiaohe; Gao, Qianying

    2013-01-01

    Hydrogels may be the ideal vitreous substitutes due to their wonderful physical features and biocompatibility. However, their drawbacks, short residence time, and biodegradation in vivo, have led to the fact that none of them have been approved for clinical use. In this study, we developed a novel approach of using a foldable capsular vitreous body (FCVB) injected with polyvinylalcohol (PVA) hydrogel as a vitreous substitute for long-term tamponade. The 3% PVA hydrogel that was cross-linked by gamma irradiation showed good rheological and physical properties and had no toxicity in vitro. After 180 days retention, the 3% PVA hydrogel inside FCVB remained transparent and showed good viscoelasticity without biodegradation and showed good biocompatibility and retina support. This new approach may develop into a valuable tool to improve the stability performance of PVA hydrogel as a vitreous substitute and to extend the application function of FCVB for long-term implantation in vitreous cavity.

  20. A single intraperitoneal injection of bovine fetuin-A attenuates bone resorption in a murine calvarial model of particle-induced osteolysis.

    PubMed

    Jablonski, Heidrun; Polan, Christina; Wedemeyer, Christian; Hilken, Gero; Schlepper, Rüdiger; Bachmann, Hagen Sjard; Grabellus, Florian; Dudda, Marcel; Jäger, Marcus; Kauther, Max Daniel

    2017-12-01

    Particle-induced osteolysis, which by definition is an aseptic inflammatory reaction to implant-derived wear debris eventually leading to local bone destruction, remains the major reason for long-term failure of orthopedic endoprostheses. Fetuin-A, a 66kDa glycoprotein with diverse functions, is found to be enriched in bone. Besides being an important inhibitor of ectopic calcification, it has been described to influence the production of mediators of inflammation. Furthermore, a regulatory role in bone metabolism has been assigned. In the present study, the influence of a single dose of bovine fetuin-A, intraperitoneally injected in mice subjected to particle-induced osteolysis of the calvaria, was analyzed. Twenty-eight male C57BL/6 mice, twelve weeks of age, were randomly divided into four groups. Groups 2 and 4 were subjected to ultra-high molecular weight polyethylene (UHMWPE) particles placed on their calvariae while groups 1 and 3 were sham-operated. Furthermore, groups 3 and 4 received a single intraperitoneal injection of 20mg bovine fetuin-A while groups 1 and 2 were treated with physiologic saline. After 14days calvarial bone was qualitatively and quantitatively assessed using microcomputed tomography (μCT) and histomorphometrical approaches. Application of fetuin-A led to a reduction of particle-induced osteolysis in terms of visible osteolytic lesions and eroded bone surface. The reduction of bone thickness and bone volume, as elicited by UHMWPE, was alleviated by fetuin-A. In conclusion, fetuin-A was found to exert an anti-resorptive effect on particle-induced osteolysis in-vivo. Thus, fetuin-A could play a potentially osteoprotective role in the treatment of bone metabolic disorders. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. The Effects of Annatto Tocotrienol on Bone Biomechanical Strength and Bone Calcium Content in an Animal Model of Osteoporosis Due to Testosterone Deficiency

    PubMed Central

    Chin, Kok-Yong; Gengatharan, Dhivakaran; Mohd Nasru, Fadlin Sakina; Khairussam, Rehan Amalia; Ern, Sherlyn Lai Hui; Aminuddin, Siti Aina Wahidah; Ima-Nirwana, Soelaiman

    2016-01-01

    Osteoporosis reduces the skeletal strength and increases the risk for fracture. It is an underdiagnosed disease in men. Annatto tocotrienol has been shown to improve bone structural indices and increase expression of bone formation genes in orchidectomized rats. This study aimed to evaluate the effects of annatto tocotrienol on biomechanical strength and calcium content of the bone in orchidectomized rats. Thirty three-month-old male Sprague-Dawley rats were randomly assigned to five groups. The baseline control (BC) group was sacrificed at the onset of the study. The sham-operated group (SHAM) received olive oil (the vehicle of tocotrienol) orally daily and peanut oil (the vehicle of testosterone) intramuscularly weekly. The remaining rats were orchidectomized and treated with three different regimens, i.e., (1) daily oral olive oil plus weekly intramuscular peanut oil injection; (2) daily oral annatto tocotrienol at 60 mg/kg plus weekly intramuscular peanut oil injection; (3) daily oral olive oil plus weekly intramuscular testosterone enanthate injection at 7 mg/kg. Blood, femur and tibia of the rats were harvested at the end of the two-month treatment period for the evaluation of serum total calcium and inorganic phosphate levels, bone biomechanical strength test and bone calcium content. Annatto-tocotrienol treatment improved serum calcium level and tibial calcium content (p < 0.05) but it did not affect femoral biomechanical strength (p > 0.05). In conclusion, annatto-tocotrienol at 60 mg/kg augments bone calcium level by preventing calcium mobilization into the circulation. A longer treatment period is needed for annatto tocotrienol to exert its effects on bone strength. PMID:27983628

  2. The Effects of Annatto Tocotrienol on Bone Biomechanical Strength and Bone Calcium Content in an Animal Model of Osteoporosis Due to Testosterone Deficiency.

    PubMed

    Chin, Kok-Yong; Gengatharan, Dhivakaran; Mohd Nasru, Fadlin Sakina; Khairussam, Rehan Amalia; Ern, Sherlyn Lai Hui; Aminuddin, Siti Aina Wahidah; Ima-Nirwana, Soelaiman

    2016-12-14

    Osteoporosis reduces the skeletal strength and increases the risk for fracture. It is an underdiagnosed disease in men. Annatto tocotrienol has been shown to improve bone structural indices and increase expression of bone formation genes in orchidectomized rats. This study aimed to evaluate the effects of annatto tocotrienol on biomechanical strength and calcium content of the bone in orchidectomized rats. Thirty three-month-old male Sprague-Dawley rats were randomly assigned to five groups. The baseline control (BC) group was sacrificed at the onset of the study. The sham-operated group (SHAM) received olive oil (the vehicle of tocotrienol) orally daily and peanut oil (the vehicle of testosterone) intramuscularly weekly. The remaining rats were orchidectomized and treated with three different regimens, i.e., (1) daily oral olive oil plus weekly intramuscular peanut oil injection; (2) daily oral annatto tocotrienol at 60 mg/kg plus weekly intramuscular peanut oil injection; (3) daily oral olive oil plus weekly intramuscular testosterone enanthate injection at 7 mg/kg. Blood, femur and tibia of the rats were harvested at the end of the two-month treatment period for the evaluation of serum total calcium and inorganic phosphate levels, bone biomechanical strength test and bone calcium content. Annatto-tocotrienol treatment improved serum calcium level and tibial calcium content ( p < 0.05) but it did not affect femoral biomechanical strength ( p > 0.05). In conclusion, annatto-tocotrienol at 60 mg/kg augments bone calcium level by preventing calcium mobilization into the circulation. A longer treatment period is needed for annatto tocotrienol to exert its effects on bone strength.

  3. Operative Technique and Clinical Outcome in Endoscopic Core Decompression of Osteochondral Lesions of the Talus: A Pilot Study.

    PubMed

    Beck, Sascha; Claßen, Tim; Haversath, Marcel; Jäger, Marcus; Landgraeber, Stefan

    2016-06-30

    BACKGROUND Revitalizing the necrotic subchondral bone and preserving the intact cartilage layer by retrograde drilling is the preferred option for treatment of undetached osteochondral lesions of the talus (OLT). We assessed the effectiveness of Endoscopic Core Decompression (ECD) in treatment of OLT. MATERIAL AND METHODS Seven patients with an undetached OLT of the medial talar dome underwent surgical treatment using an arthroscopically-guided transtalar drill meatus for core decompression of the lesion. Under endoscopic visualization the OLT was completely debrided while preserving the cartilage layer covering the defect. The drill tunnel and debrided OLT were filled using an injectable bone graft substitute. Various clinical scores, radiographic imaging, and MRI were evaluated after a mean follow-up of 24.1 months. RESULTS The American Orthopedic Foot and Ankle Society Score significantly improved from 71.0±2.4 to 90.3±5.9, and the Foot and Ankle Disability Index improved from 71.8±11.1 to 91.7±4.8. Radiographically, we observed good bone remodelling of the medial talar dome contour within 3 months. In MRI, an alteration of the bony signal of the drill tunnel and the excised OLT remained for more than 12 months. CONCLUSIONS First follow-up results for the surgical technique described in this study are highly promising for treatment of undetached stable OLT grade II or transitional stage II-III according to the Pritsch classification. Even lesions larger than 150 mm2 showed good clinical scores, with full restoration of the medial talar dome contour in radiographic imaging.

  4. Operative Technique and Clinical Outcome in Endoscopic Core Decompression of Osteochondral Lesions of the Talus: A Pilot Study

    PubMed Central

    Beck, Sascha; Claßen, Tim; Haversath, Marcel; Jäger, Marcus; Landgraeber, Stefan

    2016-01-01

    Background Revitalizing the necrotic subchondral bone and preserving the intact cartilage layer by retrograde drilling is the preferred option for treatment of undetached osteochondral lesions of the talus (OLT). We assessed the effectiveness of Endoscopic Core Decompression (ECD) in treatment of OLT. Material/Methods Seven patients with an undetached OLT of the medial talar dome underwent surgical treatment using an arthroscopically-guided transtalar drill meatus for core decompression of the lesion. Under endoscopic visualization the OLT was completely debrided while preserving the cartilage layer covering the defect. The drill tunnel and debrided OLT were filled using an injectable bone graft substitute. Various clinical scores, radiographic imaging, and MRI were evaluated after a mean follow-up of 24.1 months. Results The American Orthopedic Foot and Ankle Society Score significantly improved from 71.0±2.4 to 90.3±5.9, and the Foot and Ankle Disability Index improved from 71.8±11.1 to 91.7±4.8. Radiographically, we observed good bone remodelling of the medial talar dome contour within 3 months. In MRI, an alteration of the bony signal of the drill tunnel and the excised OLT remained for more than 12 months. Conclusions First follow-up results for the surgical technique described in this study are highly promising for treatment of undetached stable OLT grade II or transitional stage II–III according to the Pritsch classification. Even lesions larger than 150 mm2 showed good clinical scores, with full restoration of the medial talar dome contour in radiographic imaging. PMID:27362485

  5. Management of an endo perio lesion in a maxillary canine using platelet-rich plasma concentrate and an alloplastic bone substitute.

    PubMed

    Singh, Sangeeta

    2009-05-01

    To evaluate the efficacy of platelet-rich plasma concentrate in the management of a cirumferential, infrabony defect associated with an endoperio lesion in a maxillary canine. A 45 year-old male patient with an endoperio lesion in the left maxillary canine was initially treated with endodontic therapy. Following the endodontic treatment, the circumferential, infrabony defect was treated using platelet-rich plasma and an alloplastic bone substitute. At the end of three months, there was a gain in the clinical attachment level and reduction in probing depth. Radiographic evidence showed that there was significant bony fill. The results were maintained at the time of recall nine months later.

  6. Hydrogel-embedded nanocrystalline hydroxyapatite granules (elastic blocks) based on a cross-linked polyvinylpyrrolidone as bone grafting substitute in a rat tibia model.

    PubMed

    Dau, Michael; Ganz, Cornelia; Zaage, Franziska; Frerich, Bernhard; Gerber, Thomas

    2017-01-01

    The aim of this study was to examine the in vivo characteristics and levels of integration and degradation of a ready-to-use bone grafting block with elastic properties (elastic block) for the use in surgery. Thirty-six male Wistar rats underwent surgical creation of a well-defined bone defect in the tibia. All created defects - one per animal - were filled with an unsintered nanocrystalline hydroxyapatite embedded either with a non-cross-linked hydrogel carrier (CONT, n=18) or a cross-linked hydrogel carrier (elastic block [EB], n=18) based on polyvinylpyrrolidone (PVP) and silica sol, respectively. The animals were killed after 12 (n=12), 21 (n=12) and 63 days (n=12). The bone formation and defect healing were quantified by histomorphometric measurements made in paraffin sections. Additionally, immunohistochemical (tartrate-resistant acid phosphatase [TRAP] and alkaline phosphatase [aP]), antibody-based examinations (CD68) and energy-dispersive x-ray scattering measurements of silica atom concentration were carried out. A larger remaining bone defect area overall was observed in EB after 12 days and 21 days. After 63 days, similar areas of remaining bone defects were found. The amount of the remaining carrier material in EB overall was higher at all times. In CONT no residual carrier material was found at 12 days and later. CD68 analyses showed significantly lower level of CD68-positive marked cells after 21 days in CONT, and nonsignificant differences at 12 and 63 days, respectively. Additionally, a significantly higher level of aP-positive marked cells was observed in CONT after 12 days. Later on, the levels of aP-positive marked cells were slightly higher in EB (21 and 63 days). Furthermore, no significant differences regarding the level of TRAP-positive marked cells in each group were observed. The bone substitute (EB) with the cross-linked PVP-based hydrogel carrier leads at the beginning to a higher amount of remaining carrier material and remaining bone substitute. This delayed degradation is supposed to be the reason for the observed lower level of bone remodeling and is caused by the irradiation changes (cross links) in the structure in PVP.

  7. Hydrogel-embedded nanocrystalline hydroxyapatite granules (elastic blocks) based on a cross-linked polyvinylpyrrolidone as bone grafting substitute in a rat tibia model

    PubMed Central

    Dau, Michael; Ganz, Cornelia; Zaage, Franziska; Frerich, Bernhard; Gerber, Thomas

    2017-01-01

    Purpose The aim of this study was to examine the in vivo characteristics and levels of integration and degradation of a ready-to-use bone grafting block with elastic properties (elastic block) for the use in surgery. Materials and methods Thirty-six male Wistar rats underwent surgical creation of a well-defined bone defect in the tibia. All created defects – one per animal – were filled with an unsintered nanocrystalline hydroxyapatite embedded either with a non-cross-linked hydrogel carrier (CONT, n=18) or a cross-linked hydrogel carrier (elastic block [EB], n=18) based on polyvinylpyrrolidone (PVP) and silica sol, respectively. The animals were killed after 12 (n=12), 21 (n=12) and 63 days (n=12). The bone formation and defect healing were quantified by histomorphometric measurements made in paraffin sections. Additionally, immunohistochemical (tartrate-resistant acid phosphatase [TRAP] and alkaline phosphatase [aP]), antibody-based examinations (CD68) and energy-dispersive x-ray scattering measurements of silica atom concentration were carried out. Results A larger remaining bone defect area overall was observed in EB after 12 days and 21 days. After 63 days, similar areas of remaining bone defects were found. The amount of the remaining carrier material in EB overall was higher at all times. In CONT no residual carrier material was found at 12 days and later. CD68 analyses showed significantly lower level of CD68-positive marked cells after 21 days in CONT, and nonsignificant differences at 12 and 63 days, respectively. Additionally, a significantly higher level of aP-positive marked cells was observed in CONT after 12 days. Later on, the levels of aP-positive marked cells were slightly higher in EB (21 and 63 days). Furthermore, no significant differences regarding the level of TRAP-positive marked cells in each group were observed. Conclusion The bone substitute (EB) with the cross-linked PVP-based hydrogel carrier leads at the beginning to a higher amount of remaining carrier material and remaining bone substitute. This delayed degradation is supposed to be the reason for the observed lower level of bone remodeling and is caused by the irradiation changes (cross links) in the structure in PVP. PMID:29066890

  8. Harnessing the power of macrophages/monocytes for enhanced bone tissue engineering.

    PubMed

    Dong, Lei; Wang, Chunming

    2013-06-01

    Bone tissue engineering has attracted considerable attention as a promising treatment modality for severe bone degeneration. The pressing need for more sophisticated and fully functional bone substitutes has spurred a refocus on the development of bone constructs in a way more comparable to the physiological process. Current research is increasingly revealing the central roles of macrophages/monocytes in regulating bone development and repair, so we propose that these immunocytes can play a similar pivotal role in directing engineered bone regeneration. Accordingly, we discuss two possible strategies to exemplify how the distinctive power of macrophages/monocytes--particularly their cytokine-secretion ability and chemotactic response to foreign materials--can be harnessed to enhance the performance of bone tissue engineering applications. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Toxicity of injected radium-226 in immature dogs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muggenburg, B.A.; Hahn, F.F.; Griffith, W.C.

    1995-12-01

    This study was conducted to determine the toxicity of injected {sup 226}Ra in immature dogs and to compare the results with those from studies of injected {sup 226}Ra in young adult dogs. An historic objective of these studies, initiated at the University of Utah and continued at ITRI, was to compare the results in dogs to the population of dial painters who ingested {sup 226}Ra as young adults. Age at the time of exposure is considered to be an important factor in dosimetry and risk of developing radiation-induced disease, particularly bone cancer. In summary, dogs injected with {sup 226}Ra whenmore » immature had increased occurrences of bone tumors in a dose-related fashion.« less

  10. Medium-Term Function of a 3D Printed TCP/HA Structure as a New Osteoconductive Scaffold for Vertical Bone Augmentation: A Simulation by BMP-2 Activation

    PubMed Central

    Moussa, Mira; Carrel, Jean-Pierre; Scherrer, Susanne; Cattani-Lorente, Maria; Wiskott, Anselm; Durual, Stéphane

    2015-01-01

    Introduction: A 3D-printed construct made of orthogonally layered strands of tricalcium phosphate (TCP) and hydroxyapatite has recently become available. The material provides excellent osteoconductivity. We simulated a medium-term experiment in a sheep calvarial model by priming the blocks with BMP-2. Vertical bone growth/maturation and material resorption were evaluated. Materials and methods: Titanium hemispherical caps were filled with either bare- or BMP-2 primed constructs and placed onto the calvaria of adult sheep (n = 8). Histomorphometry was performed after 8 and 16 weeks. Results: After 8 weeks, relative to bare constructs, BMP-2 stimulation led to a two-fold increase in bone volume (Bare: 22% ± 2.1%; BMP-2 primed: 50% ± 3%) and a 3-fold decrease in substitute volume (Bare: 47% ± 5%; BMP-2 primed: 18% ± 2%). These rates were still observed at 16 weeks. The new bone grew and matured to a haversian-like structure while the substitute material resorbed via cell- and chemical-mediation. Conclusion: By priming the 3D construct with BMP-2, bone metabolism was physiologically accelerated, that is, enhancing vertical bone growth and maturation as well as material bioresorption. The scaffolding function of the block was maintained, leaving time for the bone to grow and mature to a haversian-like structure. In parallel, the material resorbed via cell-mediated and chemical processes. These promising results must be confirmed in clinical tests.

  11. In vivo performance of novel soybean/gelatin-based bioactive and injectable hydroxyapatite foams

    PubMed Central

    Kovtun, Anna; Goeckelmann, Melanie J.; Niclas, Antje A.; Montufar, Edgar B.; Ginebra, Maria-Pau; Planell, Josep A.; Santin, Matteo; Ignatius, Anita

    2015-01-01

    Major limitations of calcium phosphate cements (CPCs) are their relatively slow degradation rate and the lack of macropores allowing the ingrowth of bone tissue. The development of self-setting cement foams has been proposed as a suitable strategy to overcome these limitations. In previous work we developed a gelatine-based hydroxyapatite foam (G-foam), which exhibited good injectability and cohesion, interconnected porosity and good biocompatibility in vitro. In the present study we evaluated the in vivo performance of the G-foam. Furthermore, we investigated whether enrichment of the foam with soybean extract (SG-foam) increased its bioactivity. G-foam, SG-foam and non-foamed CPC were implanted in a critical-size bone defect in the distal femoral condyle of New Zealand white rabbits. Bone formation and degradation of the materials were investigated after 4, 12 and 20 weeks using histological and biomechanical methods. The foams maintained their macroporosity after injection and setting in vivo. Compared to non-foamed CPC, cellular degradation of the foams was considerably increased and accompanied by new bone formation. The additional functionalization with soybean extract in the SG-foam slightly reduced the degradation rate and positively influenced bone formation in the defect. Furthermore, both foams exhibited excellent biocompatibility, implying that these novel materials may be promising for clinical application in non-loaded bone defects. PMID:25448348

  12. In vivo performance of novel soybean/gelatin-based bioactive and injectable hydroxyapatite foams.

    PubMed

    Kovtun, Anna; Goeckelmann, Melanie J; Niclas, Antje A; Montufar, Edgar B; Ginebra, Maria-Pau; Planell, Josep A; Santin, Matteo; Ignatius, Anita

    2015-01-01

    Major limitations of calcium phosphate cements (CPCs) are their relatively slow degradation rate and the lack of macropores allowing the ingrowth of bone tissue. The development of self-setting cement foams has been proposed as a suitable strategy to overcome these limitations. In previous work we developed a gelatine-based hydroxyapatite foam (G-foam), which exhibited good injectability and cohesion, interconnected porosity and good biocompatibility in vitro. In the present study we evaluated the in vivo performance of the G-foam. Furthermore, we investigated whether enrichment of the foam with soybean extract (SG-foam) increased its bioactivity. G-foam, SG-foam and non-foamed CPC were implanted in a critical-size bone defect in the distal femoral condyle of New Zealand white rabbits. Bone formation and degradation of the materials were investigated after 4, 12 and 20weeks using histological and biomechanical methods. The foams maintained their macroporosity after injection and setting in vivo. Compared to non-foamed CPC, cellular degradation of the foams was considerably increased and accompanied by new bone formation. The additional functionalization with soybean extract in the SG-foam slightly reduced the degradation rate and positively influenced bone formation in the defect. Furthermore, both foams exhibited excellent biocompatibility, implying that these novel materials may be promising for clinical application in non-loaded bone defects. Copyright © 2014 Acta Materialia Inc. All rights reserved.

  13. Low-intensity pulsed ultrasound stimulation for mandibular condyle osteoarthritis lesions in rats.

    PubMed

    Kanaguchi Arita, A; Yonemitsu, I; Ikeda, Y; Miyazaki, M; Ono, T

    2018-05-01

    This study evaluated low-intensity pulsed ultrasound effects for temporomandibular joint osteoarthritis in adult rats. Osteoarthritis-like lesions were induced in 24 adult rats' temporomandibular joints with low-dose mono-iodoacetate injections. The rats were divided into four groups: control and mono-iodoacetate groups, injected with contrast media and mono-iodoacetate, respectively, at 12 weeks and observed until 20 weeks; and low-intensity pulsed ultrasound and mono-iodoacetate + low-intensity pulsed ultrasound groups, injected with contrast media and mono-iodoacetate, respectively, at 12 weeks with low-intensity pulsed ultrasound performed from 16 to 20 weeks. Condylar bone mineral density, bone mineral content and bone volume were evaluated weekly with microcomputed tomography. Histological and immunohistochemical staining for matrix metalloproteinases-13 was performed at 20 weeks. At 20 weeks, the mono-iodoacetate + low-intensity pulsed ultrasound group showed significantly higher bone mineral density, bone mineral content and bone volume than the mono-iodoacetate group; however, these values remained lower than those in the other two groups. On histological and immunohistochemical analysis, the chondrocytes were increased, and fewer matrix metalloproteinases-13 immunopositive cells were identified in the mono-iodoacetate + low-intensity pulsed ultrasound group than mono-iodoacetate group. Low-intensity pulsed ultrasound for 2 weeks may have therapeutic potential for treating temporomandibular joint osteoarthritis lesions. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  14. Fabrication of porous calcite using chopped nylon fiber and its evaluation using rats.

    PubMed

    Ishikawa, Kunio; Tram, Nguyen Xuan Thanh; Tsuru, Kanji; Toita, Riki

    2015-02-01

    Although porous calcite has attracted attention as bone substitutes, limited studies have been made so far. In the present study, porous calcite block was fabricated by introducing chopped nylon fiber as porogen. Ca(OH)2 powder containing 10 wt% chopped nylon fiber was compacted at 150 MPa, and sintered to burn out the fiber and to carbonate the Ca(OH)2 under stream of 1:2 O2-CO2. Sintering of Ca(OH)2 at 750 °C or lower temperature resulted in incomplete burning out of the fiber whereas sintering at 800 °C or higher temperature resulted in the formation of CaO due to the thermal decomposition of Ca(OH)2. However, sintering at 770 °C resulted in complete burning out of the fiber and complete carbonation of Ca(OH)2 to calcite without forming CaO. Macro- and micro-porosities of the porous calcite were approximately 23 and 16%, respectively. Diameter of the macropores was approximately 100 μm which is suitable for bone tissue penetration. Porous calcite block fabricated by this method exhibited good tissue response when implanted in the bone defect in femur of 12-weeks-old rat. Four weeks after implantation, bone bonded on the surface of calcite. Furthermore, bone tissue penetrated interior to the macropore at 8 weeks. These results demonstrated the good potential value of porous calcite as artificial bone substitutes.

  15. A New Bone Substitute Developed from 3D-Prints of Polylactide (PLA) Loaded with Collagen I: An In Vitro Study.

    PubMed

    Ritz, Ulrike; Gerke, Rebekka; Götz, Hermann; Stein, Stefan; Rommens, Pol Maria

    2017-11-29

    Although a lot of research has been performed, large segmental bone defects caused by trauma, infection, bone tumors or revision surgeries still represent big challenges for trauma surgeons. New and innovative bone substitutes are needed. Three-dimensional (3D) printing is a novel procedure to create 3D porous scaffolds that can be used for bone tissue engineering. In the present study, solid discs as well as porous cage-like 3D prints made of polylactide (PLA) are coated or filled with collagen, respectively, and tested for biocompatibility and endotoxin contamination. Microscopic analyses as well as proliferation assays were performed using various cell types on PLA discs. Stromal-derived factor (SDF-1) release from cages filled with collagen was analyzed and the effect on endothelial cells tested. This study confirms the biocompatibility of PLA and demonstrates an endotoxin contamination clearly below the FDA (Food and Drug Administration) limit. Cells of various cell types (osteoblasts, osteoblast-like cells, fibroblasts and endothelial cells) grow, spread and proliferate on PLA-printed discs. PLA cages loaded with SDF-1 collagen display a steady SDF-1 release, support cell growth of endothelial cells and induce neo-vessel formation. These results demonstrate the potential for PLA scaffolds printed with an inexpensive desktop printer in medical applications, for example, in bone tissue engineering.

  16. Three dimensional printed macroporous polylactic acid/hydroxyapatite composite scaffolds for promoting bone formation in a critical-size rat calvarial defect model

    NASA Astrophysics Data System (ADS)

    Zhang, Haifeng; Mao, Xiyuan; Du, Zijing; Jiang, Wenbo; Han, Xiuguo; Zhao, Danyang; Han, Dong; Li, Qingfeng

    2016-01-01

    We have explored the applicability of printed scaffold by comparing osteogenic ability and biodegradation property of three resorbable biomaterials. A polylactic acid/hydroxyapatite (PLA/HA) composite with a pore size of 500 μm and 60% porosity was fabricated by three-dimensional printing. Three-dimensional printed PLA/HA, β-tricalcium phosphate (β-TCP) and partially demineralized bone matrix (DBM) seeded with bone marrow stromal cells (BMSCs) were evaluated by cell adhesion, proliferation, alkaline phosphatase activity and osteogenic gene expression of osteopontin (OPN) and collagen type I (COL-1). Moreover, the biocompatibility, bone repairing capacity and degradation in three different bone substitute materials were estimated using a critical-size rat calvarial defect model in vivo. The defects were evaluated by micro-computed tomography and histological analysis at four and eight weeks after surgery, respectively. The results showed that each of the studied scaffolds had its own specific merits and drawbacks. Three-dimensional printed PLA/HA scaffolds possessed good biocompatibility and stimulated BMSC cell proliferation and differentiation to osteogenic cells. The outcomes in vivo revealed that 3D printed PLA/HA scaffolds had good osteogenic capability and biodegradation activity with no difference in inflammation reaction. Therefore, 3D printed PLA/HA scaffolds have potential applications in bone tissue engineering and may be used as graft substitutes in reconstructive surgery.

  17. Three dimensional printed macroporous polylactic acid/hydroxyapatite composite scaffolds for promoting bone formation in a critical-size rat calvarial defect model.

    PubMed

    Zhang, Haifeng; Mao, Xiyuan; Du, Zijing; Jiang, Wenbo; Han, Xiuguo; Zhao, Danyang; Han, Dong; Li, Qingfeng

    2016-01-01

    We have explored the applicability of printed scaffold by comparing osteogenic ability and biodegradation property of three resorbable biomaterials. A polylactic acid/hydroxyapatite (PLA/HA) composite with a pore size of 500 μm and 60% porosity was fabricated by three-dimensional printing. Three-dimensional printed PLA/HA, β-tricalcium phosphate (β-TCP) and partially demineralized bone matrix (DBM) seeded with bone marrow stromal cells (BMSCs) were evaluated by cell adhesion, proliferation, alkaline phosphatase activity and osteogenic gene expression of osteopontin (OPN) and collagen type I (COL-1). Moreover, the biocompatibility, bone repairing capacity and degradation in three different bone substitute materials were estimated using a critical-size rat calvarial defect model in vivo . The defects were evaluated by micro-computed tomography and histological analysis at four and eight weeks after surgery, respectively. The results showed that each of the studied scaffolds had its own specific merits and drawbacks. Three-dimensional printed PLA/HA scaffolds possessed good biocompatibility and stimulated BMSC cell proliferation and differentiation to osteogenic cells. The outcomes in vivo revealed that 3D printed PLA/HA scaffolds had good osteogenic capability and biodegradation activity with no difference in inflammation reaction. Therefore, 3D printed PLA/HA scaffolds have potential applications in bone tissue engineering and may be used as graft substitutes in reconstructive surgery.

  18. Biological and medical significance of calcium phosphates.

    PubMed

    Dorozhkin, Sergey V; Epple, Matthias

    2002-09-02

    The inorganic part of hard tissues (bones and teeth) of mammals consists of calcium phosphate, mainly of apatitic structure. Similarly, most undesired calcifications (i.e. those appearing as a result of various diseases) of mammals also contain calcium phosphate. For example, atherosclerosis results in blood-vessel blockage caused by a solid composite of cholesterol with calcium phosphate. Dental caries result in a replacement of less soluble and hard apatite by more soluble and softer calcium hydrogenphosphates. Osteoporosis is a demineralization of bone. Therefore, from a chemical point of view, processes of normal (bone and teeth formation and growth) and pathological (atherosclerosis and dental calculus) calcifications are just an in vivo crystallization of calcium phosphate. Similarly, dental caries and osteoporosis can be considered to be in vivo dissolution of calcium phosphates. On the other hand, because of the chemical similarity with biological calcified tissues, all calcium phosphates are remarkably biocompatible. This property is widely used in medicine for biomaterials that are either entirely made of or coated with calcium phosphate. For example, self-setting bone cements made of calcium phosphates are helpful in bone repair and titanium substitutes covered with a surface layer of calcium phosphates are used for hip-joint endoprostheses and tooth substitutes, to facilitate the growth of bone and thereby raise the mechanical stability. Calcium phosphates have a great biological and medical significance and in this review we give an overview of the current knowledge in this subject.

  19. A New Bone Substitute Developed from 3D-Prints of Polylactide (PLA) Loaded with Collagen I: An In Vitro Study

    PubMed Central

    Gerke, Rebekka; Götz, Hermann; Rommens, Pol Maria

    2017-01-01

    Although a lot of research has been performed, large segmental bone defects caused by trauma, infection, bone tumors or revision surgeries still represent big challenges for trauma surgeons. New and innovative bone substitutes are needed. Three-dimensional (3D) printing is a novel procedure to create 3D porous scaffolds that can be used for bone tissue engineering. In the present study, solid discs as well as porous cage-like 3D prints made of polylactide (PLA) are coated or filled with collagen, respectively, and tested for biocompatibility and endotoxin contamination. Microscopic analyses as well as proliferation assays were performed using various cell types on PLA discs. Stromal-derived factor (SDF-1) release from cages filled with collagen was analyzed and the effect on endothelial cells tested. This study confirms the biocompatibility of PLA and demonstrates an endotoxin contamination clearly below the FDA (Food and Drug Administration) limit. Cells of various cell types (osteoblasts, osteoblast-like cells, fibroblasts and endothelial cells) grow, spread and proliferate on PLA-printed discs. PLA cages loaded with SDF-1 collagen display a steady SDF-1 release, support cell growth of endothelial cells and induce neo-vessel formation. These results demonstrate the potential for PLA scaffolds printed with an inexpensive desktop printer in medical applications, for example, in bone tissue engineering. PMID:29186036

  20. Development of a Preclinical Orthotopic Xenograft Model of Ewing Sarcoma and Other Human Malignant Bone Disease Using Advanced In Vivo Imaging

    PubMed Central

    Batey, Michael A.; Almeida, Gilberto S.; Wilson, Ian; Dildey, Petra; Sharma, Abhishek; Blair, Helen; Hide, I. Geoff; Heidenreich, Olaf; Vormoor, Josef; Maxwell, Ross J.; Bacon, Chris M.

    2014-01-01

    Ewing sarcoma and osteosarcoma represent the two most common primary bone tumours in childhood and adolescence, with bone metastases being the most adverse prognostic factor. In prostate cancer, osseous metastasis poses a major clinical challenge. We developed a preclinical orthotopic model of Ewing sarcoma, reflecting the biology of the tumour-bone interactions in human disease and allowing in vivo monitoring of disease progression, and compared this with models of osteosarcoma and prostate carcinoma. Human tumour cell lines were transplanted into non-obese diabetic/severe combined immunodeficient (NSG) and Rag2−/−/γc−/− mice by intrafemoral injection. For Ewing sarcoma, minimal cell numbers (1000–5000) injected in small volumes were able to induce orthotopic tumour growth. Tumour progression was studied using positron emission tomography, computed tomography, magnetic resonance imaging and bioluminescent imaging. Tumours and their interactions with bones were examined by histology. Each tumour induced bone destruction and outgrowth of extramedullary tumour masses, together with characteristic changes in bone that were well visualised by computed tomography, which correlated with post-mortem histology. Ewing sarcoma and, to a lesser extent, osteosarcoma cells induced prominent reactive new bone formation. Osteosarcoma cells produced osteoid and mineralised “malignant” bone within the tumour mass itself. Injection of prostate carcinoma cells led to osteoclast-driven osteolytic lesions. Bioluminescent imaging of Ewing sarcoma xenografts allowed easy and rapid monitoring of tumour growth and detection of tumour dissemination to lungs, liver and bone. Magnetic resonance imaging proved useful for monitoring soft tissue tumour growth and volume. Positron emission tomography proved to be of limited use in this model. Overall, we have developed an orthotopic in vivo model for Ewing sarcoma and other primary and secondary human bone malignancies, which resemble the human disease. We have shown the utility of small animal bioimaging for tracking disease progression, making this model a useful assay for preclinical drug testing. PMID:24409320

  1. Vertebroplasty

    MedlinePlus

    ... to the correct area in your lower back. Cement is then injected into the broken spine bone ... general anesthesia Nerve injuries Leakage of the bone cement into surrounding areas (this can cause pain if ...

  2. Phosphoserine-modified calcium phosphate cements: bioresorption and substitution.

    PubMed

    Offer, Liliana; Veigel, Bastian; Pavlidis, Theodoros; Heiss, Christian; Gelinsky, Michael; Reinstorf, Antje; Wenisch, Sabine; Lips, Katrin Susanne; Schnettler, Reinhard

    2011-01-01

    This work reports the effects of phosphoserine addition on the biodegradability of calcium phosphate cements. The characteristics of a phosphoserine-modified calcium phosphate cement without collagen in a large animal model are presented here for the first time. Critical size bone defects in the proximal tibia of 10 sheep were filled with the bone cement, and five sheep with empty defects were included as controls. The sheep were sacrificed after either 10 days or 12 weeks, and bones were processed for histological, histomorphometric and enzyme histochemical analyses as well as transmission electron microscopic examination. After 12 weeks, there was no significant reduction in either the implant or the bone defect cross-sectional area. Different amounts of fibrous tissue were observed around the implant and in the bone defect after 12 weeks. The direct bone-implant contact decreased after 12 weeks (p = 0.034). Although the implanted material properly filled the defect and promoted an initial activation of macrophages and osteoblasts, the resorption and simultaneous substitution did not reach expected levels during the experimental time course. Although other studies have shown that the addition of phosphoserine to calcium phosphate cements that have already been modified with collagen I resulted in an acceleration of cement resorption and bone regeneration, this study demonstrates that phosphoserine-modified calcium phosphate cements without collagen perform poorly in the treatment of bone defects. Efforts to use phosphoserine in the development of new composites should take into consideration the need to improve osteoconduction simultaneously via other means. Copyright © 2010 John Wiley & Sons, Ltd.

  3. Ex vivo and in vitro synchrotron-based micro-imaging of biocompatible materials applied in dental surgery

    NASA Astrophysics Data System (ADS)

    Rack, A.; Stiller, M.; Nelson, K.; Knabe, C.; Rack, T.; Zabler, S.; Dalügge, O.; Riesemeier, H.; Cecilia, A.; Goebbels, J.

    2010-09-01

    Biocompatible materials such as porous bioactive calcium phosphate ceramics or titanium are regularly applied in dental surgery: ceramics are used to support the local bone regeneration in a given defect, afterwards titanium implants replace lost teeth. The current gold standard for bone reconstruction in implant dentistry is the use of autogenous bone grafts. But the concept of guided bone regeneration (GBR) has become a predictable and well documented surgical approach using biomaterials (bioactive calcium phosphate ceramics) which qualify as bone substitutes for this kind of application as well. We applied high resolution synchrotron microtomography and subsequent 3d image analysis in order to investigate bone formation and degradation of the bone substitute material in a three-dimensional manner, extending the knowledge beyond the limits of classical histology. Following the bone regeneration, titanium-based implants to replace lost teeth call for high mechanical precision, especially when two-piece concepts are used in order to guaranty leak tightness. Here, synchrotron-based radiography in comparison with classical laboratory radiography yields high spatial resolution in combination with high contrast even when exploiting micro-sized features in these kind of highly attenuating objects. Therefore, we could study micro-gap formation at interfaces in two-piece dental implants with the specimen under different mechanical load. We could prove the existence of micro-gaps for implants with conical connections as well as to study the micromechanical behavior of the mating zone of conical implants during loading. The micro-gap is a potential issue of failure, i. e. bacterial leakage which can induce an inflammatory process.

  4. Effects of directly autotransplanted tibial bone marrow aspirates on bone regeneration and osseointegration of dental implants.

    PubMed

    Payer, Michael; Lohberger, Birgit; Strunk, Dirk; Reich, Karoline M; Acham, Stephan; Jakse, Norbert

    2014-04-01

    Aim of the pilot trial was to evaluate applicability and effects of directly autotransplanted tibial bone marrow (BM) aspirates on the incorporation of porous bovine bone mineral in a sinus lift model and on the osseointegration of dental implants. Six edentulous patients with bilaterally severely resorbed maxillae requiring sinus augmentation and implant treatment were included. During surgery, tibial BM was harvested and added to bone substitute material (Bio-Oss(®) ) at the randomly selected test site. At control sites, augmentation was performed with Bio-Oss(®) alone. The cellular content of each BM aspirate was checked for multipotency and surface antigen expression as quality control. Histomorphometric analysis of biopsies from the augmented sites after 3 and 6 months (during implantation) was used to evaluate effects on bone regeneration. Osseointegration of implants was evaluated with Periotest(®) and radiographic means. Multipotent cellular content in tibial BM aspirates was comparable to that in punctures from the iliac crest. No significant difference in amount of new bone formation and the integration of bone substitute particles was detected histomorphometrically. Periotest(®) values and radiographs showed successful osseointegration of inserted implants at all sites. Directly autotransplanted tibial BM aspirates did not show beneficial regenerative effects in the small study population (N = 6) of the present pilot trial. However, the proximal tibia proved to be a potential donor site for small quantities of BM. Future trials should clarify whether concentration of tibial BM aspirates could effect higher regenerative potency. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  5. The effects of tissue-non-specific alkaline phosphatase gene therapy on craniosynostosis and craniofacial morphology in the FGFR2C342Y/+ mouse model of Crouzon craniosynostosis.

    PubMed

    Wang, E; Nam, H K; Liu, J; Hatch, N E

    2015-04-01

    Craniosynostosis, the premature fusion of cranial bones, has traditionally been described as a disease of increased bone mineralization. However, multiple mouse models of craniosynostosis display craniosynostosis simultaneously with diminished cranial bone volume and/or density. We propose an alternative hypothesis that craniosynostosis results from abnormal tissue mineralization through the downregulation of tissue-non-specific alkaline phosphatase (TNAP) enzyme downstream of activating mutations in FGFRs. Neonatal Crouzon (FGFRC342Y/+) and wild-type (FGFR+/+) mice were injected with lentivirus to deliver a recombinant form of TNAP. Mice were sacrificed at 4 weeks postnatal. Serum was collected to test for alkaline phosphatase (AP), phosphorus, and calcium levels. Craniofacial bone fusion and morphology were assessed by micro-computed tomography. Injection with the TNAP lentivirus significantly increased serum AP levels (increased serum AP levels are indicative of efficient transduction and production of the recombinant protein), but results were variable and dependent upon viral lot and the litter of mice injected. Morphological analysis revealed craniofacial form differences for inferior surface (p=0.023) and cranial height (p=0.014) regions between TNAP lentivirus-injected and vehicle-injected Crouzon mice. With each unit increase in AP level, the odds of lambdoid suture fusion decreased by 84.2% and these results came close to statistical significance (p=0.068). These results suggest that TNAP deficiency may mediate FGFR2-associated craniosynostosis. Future studies should incorporate injection of recombinant TNAP protein, to avoid potential side effects and variable efficacy of lentiviral gene delivery. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  6. Treatment of unicameral bone cysts in pediatric patients with an injectable regenerative graft: a preliminary report.

    PubMed

    Gentile, John V; Weinert, Carl R; Schlechter, John A

    2013-01-01

    Multiple treatment modalities exist for unicameral bone cysts (UBC), including steroid injection, autologous bone marrow injection, mechanical decompression, intramedullary fixation, curettage, and bone grafting. All have their own potential limitations such as high recurrence rates, cyst persistence, need for multiple procedures, and prolonged immobilization. A minimally invasive regimen consisting of curettage, decompression, and injection of a calcium sulfate-calcium phosphate (CaSO4-CaPO4) composite has been utilized at our institution in an attempt to obtain optimal results for the treatment of UBCs in the pediatric population. We retrospectively evaluated 16 patients with pathologically confirmed UBC who were treated with curettage, decompression, and injection of a calcium sulfate-calcium phosphate composite between April 2006 and August 2010 at a single institution. The average age of the patients at time of surgical intervention was 9.4 years of age (range, 3 to 16 y). Average follow-up was 16 months (range, 6 to 36 mo). Radiographic healing, clinical outcomes, and complications were evaluated. Final follow-up radiographs demonstrated healing in 93.7% (15 of 16) of patients after a single procedure. Complete healing was observed in 14 of 16 patients and partially healed with a defect in 1 of 16 patients. One patient had a persistent cyst but did not wish to receive further treatment. All patients returned to full activities including sports on average at 3.1 months (range, 1 to 6 mo) and were asymptomatic on most recent follow-up. No postoperative complications, including refracture, were observed. Curettage, decompression, and injection of a calcium sulfate-calcium phosphate composite for UBC in the pediatric population demonstrates encouraging results with low recurrence rates and complications compared with conventional methods. Case series, Level of Evidence IV.

  7. Ceftazidime Injection

    MedlinePlus

    ... skin, blood, bone, joint, female genital tract, and urinary tract infections. Ceftazidime injection is in a class of medications ... prescribed for other uses; ask your doctor or pharmacist for more information.

  8. Cefuroxime Injection

    MedlinePlus

    ... transmitted disease); and skin, blood, bone, joint, and urinary tract infections. Cefuroxime injection may also be used before, during, ... prescribed for other uses; ask your doctor or pharmacist for more information.

  9. Cefotaxime Injection

    MedlinePlus

    ... female reproductive organs, skin, blood, bone, joint, and urinary tract infections. Cefotaxime injection may also be used before surgery, ... prescribed for other uses; ask your doctor or pharmacist for more information.

  10. Regulation of bone remodeling by vasopressin explains the bone loss in hyponatremia

    PubMed Central

    Tamma, Roberto; Sun, Li; Cuscito, Concetta; Lu, Ping; Corcelli, Michelangelo; Li, Jianhua; Colaianni, Graziana; Moonga, Surinder S.; Di Benedetto, Adriana; Grano, Maria; Colucci, Silvia; Yuen, Tony; New, Maria I.; Zallone, Alberta; Zaidi, Mone

    2013-01-01

    Although hyponatremia is known to be associated with osteoporosis and a high fracture risk, the mechanism through which bone loss ensues has remained unclear. As hyponatremic patients have elevated circulating arginine-vasopressin (AVP) levels, we examined whether AVP can affect the skeleton directly as yet another component of the pituitary-bone axis. Here, we report that the two Avp receptors, Avpr1α and Avpr2, coupled to Erk activation, are expressed in osteoblasts and osteoclasts. AVP injected into wild-type mice enhanced and reduced, respectively, the formation of bone-resorbing osteoclasts and bone-forming osteoblasts. Conversely, the exposure of osteoblast precursors to Avpr1α or Avpr2 antagonists, namely SR49059 or ADAM, increased osteoblastogenesis, as did the genetic deletion of Avpr1α. In contrast, osteoclast formation and bone resorption were both reduced in Avpr1α−/− cultures. This process increased bone formation and reduced resorption resulted in a profound enhancement of bone mass in Avpr1α−/− mice and in wild-type mice injected with SR49059. Collectively, the data not only establish a primary role for Avp signaling in bone mass regulation, but also call for further studies on the skeletal actions of Avpr inhibitors used commonly in hyponatremic patients. PMID:24167258

  11. Uranium in bone: metabolic and autoradiographic studies in the rat.

    PubMed

    Priest, N D; Howells, G R; Green, D; Haines, J W

    1982-03-01

    The distribution and retention of intravenously injected hexavalent uranium-233 in the skeleton of the female rat has been investigated using a variety of autoradiographic and radiochemical techniques. These showed that approximately one third of the injected uranium is deposited in the skeleton where it is retained with an initial biological half-time of approximately 40 days. The studies also showed that: 1 Uranium is initially deposited onto all types of bone surface, but preferentially onto those that are accreting. 2 Uranium is deposited in the calcifying zones of skeletal cartilage. 3 Bone accretion results in the burial of surface deposits of uranium. 4 Bone resorption causes the removal of uranium from surfaces. 5 Resorbed uranium is not retained by osteoclasts and macrophages in the bone marrow. 6 Uranium removed from bone surfaces enters the bloodstream where most is either redeposited in bone or excreted via the kidneys. 7 The recycling of resorbed uranium within the skeleton tends to produce a uniform level of uranium contamination throughout mineralized bone. These results are taken to indicate that uranium deposition in bone shares characteristics in common with both the 'volume-seeking radionuclides' typified by the alkaline earth elements and with the 'bone surface-seeking radionuclides' typified by plutonium.

  12. Efficacy of a small cell-binding peptide coated hydroxyapatite substitute on bone formation and implant fixation in sheep.

    PubMed

    Ding, Ming; Andreasen, Christina M; Dencker, Mads L; Jensen, Anders E; Theilgaard, Naseem; Overgaard, Søren

    2015-04-01

    Cylindrical critical size defects were created at the distal femoral condyles bilaterally of eight female adult sheep. Titanium implants with 2-mm concentric gaps were inserted and the gaps were filled with one of the four materials: allograft; a synthetic 15-amino acid cell-binding peptide coated hydroxyapatite (ABM/P-15); hydroxyapatite + βtricalciumphosphate+ Poly-Lactic-Acid (HA/βTCP-PDLLA); or ABM/P-15+HA/βTCP-PDLLA. After nine weeks, bone-implant blocks were harvested and sectioned for micro-CT scanning, push-out test, and histomorphometry. Significant bone formation and implant fixation could be observed in all four groups. Interestingly, the microarchitecture of the ABM/P-15 group was significantly different from the control group. Tissue volume fraction and thickness were significantly greater in the ABM/P-15 group than in the allograft group. Bone formation and bone ingrowth to porous titanium implant were not significantly different among the four groups. The ABM/P-15 group had similar shear mechanical properties on implant fixation as the allograft group. Adding HA/βTCP-PDLLA to ABM/P-15 did not significantly change these parameters. This study revealed that ABM/P-15 had significantly bone formation in concentric gap, and its enhancements on bone formation and implant fixation were at least as good as allograft. It is suggested that ABM/P-15 might be a good alternative biomaterial for bone implant fixation in this well-validated critical-size defect gap model in sheep. Nevertheless, future clinical researches should focus on prospective, randomized, controlled trials in order to fully elucidate whether ABM/P-15 could be a feasible candidate for bone substitute material in orthopedic practices. © 2014 Wiley Periodicals, Inc.

  13. Influence of two barrier membranes on staged guided bone regeneration and osseointegration of titanium implants in dogs: part 1. Augmentation using bone graft substitutes and autogenous bone.

    PubMed

    Schwarz, Frank; Mihatovic, Ilja; Golubovic, Vladimir; Hegewald, Andrea; Becker, Jürgen

    2012-01-01

    To assess the influence of two barrier membranes and two bone graft substitutes mixed with autogenous bone (AB) on staged guided bone regeneration and osseointegration of titanium implants in dogs. Four saddle-type defects each were prepared in the upper jaw of six fox hounds and randomly filled with a natural bone mineral (NBM)+AB and a biphasic calcium phosphate (SBC)+AB and allocated to either an in situ gelling polyethylene glycol (PEG) or a collagen membrane (CM). At 8 weeks, modSLA titanium implants were inserted and left to heal in a submerged position. At 8+2 weeks, dissected blocks were processed for histomorphometrical analysis (e.g., treated area [TA], bone-to-implant contact [BIC]). The mean TA values (mm(2) ) and BIC values (%) tended to be higher in the PEG groups(TA: NBM+AB [10.4 ± 2.5]; SBC+AB [10.4 ± 5.8]/BIC: NBM+AB [86.4 ± 20.1]; SBC+AB [80.1 ± 21.5]) when compared with the corresponding CM groups (TA: NBM+AB [9.7 ± 4.8]; SBC+AB [7.8 ± 4.3]/BIC: NBM+AB [71.3 ± 20.8]; SBC+AB [72.4 ± 20.3]). A significant difference was observed for the mean TA values in the SBC+AB groups. It was concluded that all augmentation procedures investigated supported bone regeneration and staged osseointegration of modSLA titanium implants. However, the application of PEG may be associated with increased TA values. © 2011 John Wiley & Sons A/S.

  14. Pamidronate Injection

    MedlinePlus

    ... also used along with cancer chemotherapy to treat bone damage caused by multiple myeloma (cancer that begins ... by breast cancer that has spread to the bones. Pamidronate is also used to treat Paget's disease ( ...

  15. Tin-117m-labeled stannic (Sn/sup 4 +/) chelate of diethylenetriamine pentaacetic acid (DTPA) for application in diagnosis and therapy

    DOEpatents

    Srivastava, S.C.; Meinken, G.E.; Richards, P.

    1983-08-25

    The radiopharmaceutical reagents of this invention and the class of Tin-117m radiopharmaceuticals are therapeutic and diagnostic agents that incorporate gamma-emitting nuclides that localize in bone after intravenous injection in mammals (mice, rats, dogs, and rabbits). Images reflecting bone structure or function can then be obtained by a scintillation camera that detects the distribution of ionizing radiation emitted by the radioactive agent. Tin-117m-labeled chelates of stannic tin localize almost exclusively in cortical bone. Upon intravenous injection of the reagent, the preferred chelates are phosphonate compounds, preferable, PYP, MDP, EHDP, and DTPA. This class of reagents is therapeutically and diagnostically useful in skeletal scintigraphy and for the radiotherapy of bone tumors and other disorders.

  16. A novel injectable temperature-sensitive zinc doped chitosan/β-glycerophosphate hydrogel for bone tissue engineering.

    PubMed

    Niranjan, Ramesh; Koushik, Chandru; Saravanan, Sekaran; Moorthi, Ambigapathi; Vairamani, Mariappanadar; Selvamurugan, Nagarajan

    2013-03-01

    Hydrogels are hydrophilic polymers that have a wide range of biomedical applications including bone tissue engineering. In this study we report preparation and characterization of a thermosensitive hydrogel (Zn-CS/β-GP) containing zinc (Zn), chitosan (CS) and beta-glycerophosphate (β-GP) for bone tissue engineering. The prepared hydrogel exhibited a liquid state at room temperature and turned into a gel at body temperature. The hydrogel was characterized by SEM, EDX, XRD, FT-IR and swelling studies. The hydrogel enhanced antibacterial activity and promoted osteoblast differentiation. Thus, we suggest that the Zn-CS/β-GP hydrogel could have potential impact as an injectable in situ forming scaffold for bone tissue engineering applications. Copyright © 2012 Elsevier B.V. All rights reserved.

  17. Just a drop of cement: a case of cervical spine bone aneurysmal cyst successfully treated by percutaneous injection of a small amount of polymethyl-methacrylate cement.

    PubMed

    Fahed, Robert; Clarençon, Frédéric; Riouallon, Guillaume; Cormier, Evelyne; Bonaccorsi, Raphael; Pascal-Mousselard, Hugues; Chiras, Jacques

    2016-01-01

    Aneurysmal bone cyst (ABC) is a benign hemorrhagic tumor, commonly revealed by local pain. The best treatment for this lesion is still controversial. We report the case of a patient with chronic neck pain revealing an ABC of the third cervical vertebra. After percutaneous injection of a small amount of polymethyl-methacrylate bone cement, the patient experienced significant clinical and radiological improvement. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  18. Bioactive glass granules: a suitable bone substitute material in the operative treatment of depressed lateral tibial plateau fractures: a prospective, randomized 1 year follow-up study.

    PubMed

    Heikkilä, Jouni T; Kukkonen, Juha; Aho, Allan J; Moisander, Susanna; Kyyrönen, Timo; Mattila, Kimmo

    2011-04-01

    Purpose of this study was to compare bioactive glass and autogenous bone as a bone substitute material in tibial plateau fractures. We designed a prospective, randomized study consisting of 25 consecutive operatively treated patients with depressed unilateral tibial comminuted plateau fracture (AO classification 41 B2 and B3).14 patients (7 females, 7 males, mean age 57 years, range 25-82) were randomized in the bioglass group (BG) and 11 patients (6 females, 5 males, mean age 50 years, range 31-82) served as autogenous bone control group (AB). Clinical examination of the patients was performed at 3 and 12 months, patients' subjective and functional results were evaluated at 12 months. Radiological analysis was performed preoperatively, immediately postoperatively and at 3 and 12 months. The postoperative redepression for both studied groups was 1 mm until 3 months and remained unchanged at 12 months. No differences were identified in the subjective evaluation, functional tests and clinical examination between the two groups during 1 year follow-up. We conclude that bioactive glass granules can be clinically used as filler material instead of autogenous bone in the lateral tibial plateau compression fractures.

  19. Online assay of bone specific alkaline phosphatase with a flow injection-bead injection system.

    PubMed

    Hartwell, Supaporn Kradtap; Somprayoon, Duangporn; Kongtawelert, Prachya; Ongchai, Siriwan; Arppornchayanon, Olarn; Ganranoo, Lucksagoon; Lapanantnoppakhun, Somchai; Grudpan, Kate

    2007-09-26

    Alkaline phosphatase (ALP) has been used as one of the biomarkers for bone resorption and liver diseases. Normally, total alkaline phosphatase is quantified along with other symptoms to determine the releasing source of the alkaline phosphatase. A semi-automated flow injection-bead injection system was proposed to conveniently and selectively assay bone alkaline phosphatase (BALP) based on its specific binding to wheat germ coated beads. Amount of BALP in serum was determined from the intensity of the yellow product produced from bound BALP on the retained beads and its substrate pNPP. The used beads were discarded and the fresh ones were introduced for the next analysis. The reaction cell was designed to be opened and closed using a computer controlled solenoid valve for a precise incubation time. The performance of the proposed system was evaluated by using it to assay BALP in human serum. The results were compared to those obtained by using a commercial ELISA kit. The system is proposed to be an easy and cost effective system for quantification of BALP as an alternative to batch wise wheat germ specific binding technique.

  20. [Effects of intrathecal injection PI3K antagonist on inflammatory cytokines in spinal cord of bone cancer pain model in rats].

    PubMed

    Xu, Shijie; Yao, Ming; Xu, Longsheng; Wang, Hanqi; Li, Hongbo; Huang, Bing; Zhou, Xuyan

    2016-01-26

    To investigate the roles of PI3K in bone cancer pain, the present study was performed to demonstrate the changes of pain-related behavior and the production of IL-1β, IL-6 and TNF-α after intrathecal injection of wortmannin (antagonist of PI3K receptors) in rat model. A total of 44 SD rats were randomly divided into 4 groups, sham group (group S), sham + wormannin group (group SW), cancer group (group A), cancer + wortmannin group (group AW). Group S and group W were injected with 10 μl Hank's solution into left tibial medullary cavity; group A and group AW received injections of Walker 256 mammary cancer cells(10 μl, 2×10 cells/ml) into the same place to establish the model of bone cancer pain. In the meantime intratheacal catheterization was performed between L3 and L4 vertrbra on the rats of every group. Nine days after the operation, group S and group A received a single intratheacal injection of saline (0.9%, 10 μl), group SW and group AW received intratheacal wortmannin 0.5 μg/10 μl. Mechanical withdrawal thresholds were measured on the left hind paw before and every 10 min after intrathecal injection. Then the L4-L6 sections of spinal cord 30 min after injection were collected to determine the expression of IL-1β, IL-6 and TNF-α. At 30 min post-injection, mechanical withdrawal thresholds of groups S, SW, A and AW were (30.1±4.3), (31.7±1.3), (17.2±2.0), (24.8±2.3) g respectively at Day 9 postinoculation (F=22.403, P<0.01), the mechanical withdrawal thresholds in group AW increased obviously versus group A. The expressions of TNF-α in groups S, SW, A and AW were (84.5±6.3), (78.7±12.5), (110.5±7.3), (57.8±4.6) pg/ml. Compared with groups S and W, the expression of TNF-α in group A showed a significant upregulation (F=28.119, P<0.01). An intrathecal injection of wortmannin may alleviate hyperalgesia, and inhibit the up-regulated expression of spinal cord inflammatory cytokines TNF-α in rats with bone cancer. PI3K may be involved in the development of bone cancer pain by regulating the expressions of TNF-α.

  1. 40 CFR 148.3 - Dilution prohibited as a substitute for treatment.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... for treatment. 148.3 Section 148.3 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED) HAZARDOUS WASTE INJECTION RESTRICTIONS General § 148.3 Dilution prohibited as a substitute for treatment. The prohibition of § 268.3 shall apply to owners or operators of...

  2. 40 CFR 148.3 - Dilution prohibited as a substitute for treatment.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... for treatment. 148.3 Section 148.3 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED) HAZARDOUS WASTE INJECTION RESTRICTIONS General § 148.3 Dilution prohibited as a substitute for treatment. The prohibition of § 268.3 shall apply to owners or operators of...

  3. Irradiation Sterilized Gelatin-Water-Glycerol Ternary Gel as an Injectable Carrier for Bone Tissue Engineering.

    PubMed

    Zhao, Yantao; Han, Liwei; Yan, Jun; Li, Zhonghai; Wang, Fuli; Xia, Yang; Hou, Shuxun; Zhong, Hongbin; Zhang, Feimin; Gu, Ning

    2017-01-01

    Injectable gelatin gels offer an attractive option for filling bone defects. The challenge is to fabricate gelatin gels with optimal gelation properties, which can be irradiation sterilized. Here, a gelatin-water-glycerol (GWG) gel is reported for use as a broad-spectrum injectable carrier. This ternary gel is high in glycerol and low in water, and remains stable after gamma irradiation at doses (25 kGy). As an injectable gel, it remains a viscous solution at gelatin concentrations ≤2.0%, at room temperature. Its storage modulus increases dramatically and eventually exceeds the loss modulus around 46-50 °C, indicating a transition from a liquid-like state to an elastic gel-like state. This ternary gel ranges significantly in terms of storage modulus (12-1700 Pa) while demonstrating a narrow pH range (5.58-5.66), depending on the gelatin concentration. Therefore, it can be loaded with a variety of materials. It is highly cytocompatible compared with saline in vivo and culture media in vitro. When loaded with demineralized bone matrix, the composites show favorable injectability, and excellent osteogenesis performance, after irradiation. These features can be attributed to high hydrophilicity and fast degradability. These findings justify that this ternary gel is promising as an irradiation-sterilized and universal injectable delivery system. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. [Effect of vascular endothelial growth factor and tumor necrosis factor receptor for treatment of avascular necrosis of the femoral head in rabbits].

    PubMed

    Hu, Zhi-ming; Zhou, Ming-qian; Gao, Ji-min

    2008-12-01

    To evaluate the therapeutic effect of vascular endothelial growth factor (VEGF) and tumor necrosis factor receptor (TNFR) on avascular necrosis of the femoral head in rabbits. Avascular necrosis of the femoral head was induced in 26 New Zealand white rabbits by injections of horse serum and prednisolone. The rabbits were then divided into VEGF/TNFR treatment group, VEGF treatment group, and untreated model group, with another 4 normal rabbits as the normal control group. In the two treatment groups, the therapeutic agents were injected percutaneously into the femoral head. Enzyme-linked immunosorbent assay was performed to determine the concentration of TNF-alpha in rabbit serum followed by pathological examination of the changes in the bone tissues, bone marrow hematopoietic tissue and the blood vessels in the femoral head. Compared with the model group, the rabbits with both VEGF and TNFR treatment showed decreased serum concentration of TNF-alpha with obvious new vessel formation, decreased empty bone lacunae in the femoral head and hematopoietic tissue proliferation in the bone marrow cavity. Percutaneous injection of VEGF and TNFR into the femoral head can significantly enhance bone tissue angiogenesis and ameliorate osteonecrosis in rabbits with experimental femoral head necrosis.

  5. A novel injectable borate bioactive glass cement for local delivery of vancomycin to cure osteomyelitis and regenerate bone.

    PubMed

    Cui, Xu; Zhao, Cunju; Gu, Yifei; Li, Le; Wang, Hui; Huang, Wenhai; Zhou, Nai; Wang, Deping; Zhu, Yi; Xu, Jun; Luo, Shihua; Zhang, Changqing; Rahaman, Mohamed N

    2014-03-01

    Osteomyelitis (bone infection) is often difficult to cure. The commonly-used treatment of surgical debridement to remove the infected bone combined with prolonged systemic and local antibiotic treatment has limitations. In the present study, an injectable borate bioactive glass cement was developed as a carrier for the antibiotic vancomycin, characterized in vitro, and evaluated for its capacity to cure osteomyelitis in a rabbit tibial model. The cement (initial setting time = 5.8 ± 0.6 min; compressive strength = 25.6 ± 0.3 MPa) released vancomycin over ~25 days in phosphate-buffered saline, during which time the borate glass converted to hydroxyapatite (HA). When implanted in rabbit tibial defects infected with methicillin-resistant Staphylococcus aureus (MRSA)-induced osteomyelitis, the vancomycin-loaded cement converted to HA and supported new bone formation in the defects within 8 weeks. Osteomyelitis was cured in 87 % of the defects implanted with the vancomycin-loaded borate glass cement, compared to 71 % for the defects implanted with vancomycin-loaded calcium sulfate cement. The injectable borate bioactive glass cement developed in this study is a promising treatment for curing osteomyelitis and for regenerating bone in the defects following cure of the infection.

  6. Carmustine

    MedlinePlus

    ... injection is used to treat certain types of brain tumors. Carmustine injection is also used along with prednisone to treat multiple myeloma (a type of cancer of the bone marrow). It is also used ...

  7. The use of injectable sonication-induced silk hydrogel for VEGF165 and BMP-2 delivery for elevation of the maxillary sinus floor

    PubMed Central

    Zhang, Wenjie; Wang, Xiuli; Wang, Shaoyi; Zhao, Jun; Xu, Lianyi; Zhu, Chao; Zeng, Deliang; Chen, Jake; Zhang, Zhiyuan; Kaplan, David L.; Jiang, Xinquan

    2011-01-01

    Sonication-induced silk hydrogels were previously prepared as an injectable bone replacement biomaterial, with a need to improve osteogenic features. Vascular endothelial growth factor (VEGF165) and bone morphogenic protein-2 (BMP-2) are key regulators of angiogenesis and osteogenesis, respectively, during bone regeneration. Therefore, the present study aimed at evaluating in situ forming silk hydrogels as a vehicle to encapsulate dual factors for rabbit maxillary sinus floor augmentation. Sonication-induced silk hydrogels were prepared in vitro and the slow release of VEGF165 and BMP-2 from these silk gels was evaluated by ELISA. For in vivo studies for each time point (4 and 12 weeks), 24 sinus floors elevation surgeries were made bilaterally in 12 rabbits for the following four treatment groups: silk gel (group Silk gel), silk gel/VEGF165 (group VEGF), silk gel/BMP-2 (group BMP-2), silk gel/VEGF165/BMP-2 (group V+B) (n=6 per group). Sequential florescent labeling and radiographic observations were used to record new bone formation and mineralization, along with histological and histomorphometric analysis. At week 4, VEGF165 promoted more tissue infiltration into the gel and accelerated the degradation of the gel material. At this time point, the bone area in group V+B was significantly larger than those in the other three groups. At week 12, elevated sinus floor heights of groups BMP-2 and V+B were larger than those of the Silk gel and VEGF groups, and the V+B group had the largest new bone area among all groups. In addition, a larger blood vessel area formed in the remaining gel areas in groups VEGF and V+B. In conclusion, VEGF165 and BMP-2 released from injectable and biodegradable silk gels promoted angiogenesis and new bone formation, with the two factors demonstrating an additive effect on bone regeneration. These results indicate that silk hydrogels can be used as an injectable vehicle to deliver multiple growth factors in a minimally invasive approach to regenerate irregular bony cavities. PMID:21889205

  8. [The injection of acrylic bone cement prevents bone collapse in the intercalar bones lacking bony support: an experimental sheep semilunar bone model].

    PubMed

    Unsal, Murat; Tetik, Cihangir; Erol, Bülent; Cabukoğlu, Cengiz

    2003-01-01

    In a sheep semilunar bone model, we investigated whether collapse in the intercalar bones lacking bony support could be prevented by the injection of acrylic bone cement. The study included 16 limbs of eight sheep. Preoperatively, anteroposterior and lateral views of the carpal joints in the fore limbs were obtained. The animals were divided into four groups. In group 1 (n=3) no surgical procedure was performed in the right semilunar bones, whereas the periosteum on the contralateral side was elevated (group 2; n=3). The first two groups were left as controls. In Group 3 (n=5) the left semilunar bones were filled with acrylic bone cement following decancellation of the bone, while the right semilunar bones were left decancellated (group 4; n=5). The sheep were monitored for three months. Radiographs of the carpal joints were obtained to evaluate collapse occurrence in the semilunar bones. Thereafter, the animals were sacrificed and the semilunar bones were excised for biomechanical and histological examinations. Osteonecrosis and cartilage damage were sought and resistance to compressive forces was investigated. Radiologically, the extent of collapse was statistically significant in the semilunar bones in group 4 (p<0.05). The use of acrylic bone cement was found to prevent collapse in group 3, with no significant difference being noted between preoperative and postoperative semilunar bone heights (p>0.05). Biomechanically, the least resistance to compressive forces was measured in group 4 (p<0.05). Histologically, cartilage damage and osteonecrosis were only seen in group 4. Our data suggest that the use of acrylic bone cement prevents collapse in the semilunar bones, without inducing any cartilage damage or osteonecrosis.

  9. In vitro degradation and cell response of calcium carbonate composite ceramic in comparison with other synthetic bone substitute materials.

    PubMed

    He, Fupo; Zhang, Jing; Yang, Fanwen; Zhu, Jixiang; Tian, Xiumei; Chen, Xiaoming

    2015-05-01

    The robust calcium carbonate composite ceramics (CC/PG) can be acquired by fast sintering calcium carbonate at a low temperature (650 °C) using a biocompatible, degradable phosphate-based glass (PG) as sintering agent. In the present study, the in vitro degradation and cell response of CC/PG were assessed and compared with 4 synthetic bone substitute materials, calcium carbonate ceramic (CC), PG, hydroxyapatite (HA) and β-tricalcium phosphate (β-TCP) ceramics. The degradation rates in decreasing order were as follows: PG, CC, CC/PG, β-TCP, and HA. The proliferation of rat bone mesenchymal stem cells (rMSCs) cultured on the CC/PG was comparable with that on CC and PG, but inferior to HA and β-TCP. The alkaline phosphatase (ALP) activity of rMSCs on CC/PG was lower than PG, comparable with β-TCP, but higher than HA. The rMSCs on CC/PG and PG had enhanced gene expression in specific osteogenic markers, respectively. Compared to HA and β-TCP, the rMSCs on the CC/PG expressed relatively lower level of collagen I and runt-related transcription factor 2, but showed more considerable expression of osteopontin. Although CC, PG, HA, and β-TCP possessed impressive performances in some specific aspects, they faced extant intrinsic drawbacks in either degradation rate or mechanical strength. Based on considerable compressive strength, moderate degradation rate, good cell response, and being free of obvious shortcoming, the CC/PG is promising as another choice for bone substitute materials. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Substitute CT generation from a single ultra short time echo MRI sequence: preliminary study

    NASA Astrophysics Data System (ADS)

    Ghose, Soumya; Dowling, Jason A.; Rai, Robba; Liney, Gary P.

    2017-04-01

    In MR guided radiation therapy planning both MR and CT images for a patient are acquired and co-registered to obtain a tissue specific HU map. Generation of the HU map directly from the MRI would eliminate the CT acquisition and may improve radiation therapy planning. In this preliminary study of substitute CT (sCT) generation, two porcine leg phantoms were scanned using a 3D ultrashort echo time (PETRA) sequence and co-registered to corresponding CT images to build tissue specific regression models. The model was created from one co-registered CT-PETRA pair to generate the sCT for the other PETRA image. An expectation maximization based clustering was performed on the co-registered PETRA image to identify the soft tissues, dense bone and air class membership probabilities. A tissue specific non linear regression model was built from one registered CT-PETRA pair dataset to predict the sCT of the second PETRA image in a two-fold cross validation schema. A complete substitute CT is generated in 3 min. The mean absolute HU error for air was 0.3 HU, bone was 95 HU, fat was 30 HU and for muscle it was 10 HU. The mean surface reconstruction error for the bone was 1.3 mm. The PETRA sequence enabled a low mean absolute surface distance for the bone and a low HU error for other classes. The sCT generated from a single PETRA sequence shows promise for the generation of fast sCT for MRI based radiation therapy planning.

  11. Enhanced osteoporotic bone regeneration by strontium-substituted calcium silicate bioactive ceramics.

    PubMed

    Lin, Kaili; Xia, Lunguo; Li, Haiyan; Jiang, Xinquan; Pan, Haobo; Xu, Yuanjin; Lu, William W; Zhang, Zhiyuan; Chang, Jiang

    2013-12-01

    The regeneration capacity of the osteoporotic bones is generally lower than that of the normal bones. Current methods of bone defect treatment for osteoporosis are not always satisfactory. Recent studies have shown that the silicate based biomaterials can stimulate osteogenesis and angiogenesis due to the silicon (Si) ions released from the materials, and enhance bone regeneration in vivo. Other studies showed that strontium (Sr) plays a distinct role on inhibiting bone resorption. Based on the hypothesis that the combination of Si and Sr may have synergetic effects on osteoporotic bone regeneration, the porous Sr-substituted calcium silicate (SrCS) ceramic scaffolds combining the functions of Sr and Si elements were developed with the goals to promote osteoporotic bone defect repair. The effects of the ionic extract from SrCS on osteogenic differentiation of bone marrow mesenchymal stem cells derived from ovariectomized rats (rBMSCs-OVX), angiogenic differentiation of human umbilical vein endothelial cells (HUVECs) were investigated. The in vitro results showed that Sr and Si ions released from SrCS enhanced cell viability, alkaline phosphatase (ALP) activity, and mRNA expression levels of osteoblast-related genes of rBMSCs-OVX and expression of vascular endothelial growth factor (VEGF) without addition of extra osteogenic and angiogenic reagents. The activation in extracellular signal-related kinases (ERK) and p38 signaling pathways were observed in rBMSCs-OVX cultured in the extract of SrCS, and these effects could be blocked by ERK inhibitor PD98059, and P38 inhibitor SB203580, respectively. Furthermore, the ionic extract of SrCS stimulated HUVECs proliferation, differentiation and angiogenesis process. The in vivo experiments revealed that SrCS dramatically stimulated bone regeneration and angiogenesis in a critical sized OVX calvarial defect model, and the enhanced bone regeneration might be attributed to the modulation of osteogenic differentiation of endogenous mesenchymal stem cells (MSCs) and the inhibition of osteoclastogenesis, accompanying with the promotion of the angiogenic activity of endothelial cells (ECs). Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Directly auto-transplanted mesenchymal stem cells induce bone formation in a ceramic bone substitute in an ectopic sheep model

    PubMed Central

    Boos, Anja M; Loew, Johanna S; Deschler, Gloria; Arkudas, Andreas; Bleiziffer, Oliver; Gulle, Heinz; Dragu, Adrian; Kneser, Ulrich; Horch, Raymund E; Beier, Justus P

    2011-01-01

    Abstract Bone tissue engineering approaches increasingly focus on the use of mesenchymal stem cells (MSC). In most animal transplantation models MSC are isolated and expanded before auto cell transplantation which might be critical for clinical application in the future. Hence this study compares the potential of directly auto-transplanted versus in vitro expanded MSC with or without bone morphogenetic protein-2 (BMP-2) to induce bone formation in a large volume ceramic bone substitute in the sheep model. MSC were isolated from bone marrow aspirates and directly auto-transplanted or expanded in vitro and characterized using fluorescence activated cell sorting (FACS) and RT-PCR analysis before subcutaneous implantation in combination with BMP-2 and β-tricalcium phosphate/hydroxyapatite (β-TCP/HA) granules. Constructs were explanted after 1 to 12 weeks followed by histological and RT-PCR evaluation. Sheep MSC were CD29+, CD44+ and CD166+ after selection by Ficoll gradient centrifugation, while directly auto-transplanted MSC-populations expressed CD29 and CD166 at lower levels. Both, directly auto-transplanted and expanded MSC, were constantly proliferating and had a decreasing apoptosis over time in vivo. Directly auto-transplanted MSC led to de novo bone formation in a heterotopic sheep model using a β-TCP/HA matrix comparable to the application of 60 μg/ml BMP-2 only or implantation of expanded MSC. Bone matrix proteins were up-regulated in constructs following direct auto-transplantation and in expanded MSC as well as in BMP-2 constructs. Up-regulation was detected using immunohistology methods and RT-PCR. Dense vascularization was demonstrated by CD31 immunohistology staining in all three groups. Ectopic bone could be generated using directly auto-transplanted or expanded MSC with β-TCP/HA granules alone. Hence BMP-2 stimulation might become dispensable in the future, thus providing an attractive, clinically feasible approach to bone tissue engineering. PMID:20636333

  13. Fire and ice: percutaneous ablative therapies and cement injection in management of metastatic disease of the spine.

    PubMed

    Munk, Peter L; Murphy, Kieran J; Gangi, Afshin; Liu, David M

    2011-04-01

    Oncology intervention is actively moving beyond simple bone cement injection. Archimedes taught us that a volume displaces its volume. Where does the tumor we displace with our cement injection go? It is no longer acceptable that we displace tumor into the venous system with our cement injections. We must kill the tumor first. Different image-guided percutaneous techniques can be used for treatment in patients with primary or secondary bone tumors. Curative ablation can be applied for the treatment of specific benign or in selected cases of malignant localized spinal tumors. Pain palliation therapy of primary and secondary bone tumors can be achieved with safe, fast, effective, and tolerable percutaneous methods. Ablation (chemical, thermal, mechanical), cavitation (radiofrequency ionization), and consolidation (cementoplasty) techniques can be used separately or in combination. Each technique has its indications, with both advantages and drawbacks. To prevent pathological fractures, a consolidation is necessary. In spinal or acetabular tumors, a percutaneous cementoplasty should be associated with cryoablation to avoid a compression fracture. The cement is injected after complete thawing of the ice ball or the day after the cryotherapy. A syndrome of multiorgan failure, severe coagulopathy, and disseminated intravascular coagulation following hepatic cryoablation has been described and is referred to as the cryoshock phenomenon. © Thieme Medical Publishers.

  14. Identification of the active components in Bone Marrow Soup: a mitigator against irradiation-injury to salivary glands.

    PubMed

    Fang, Dongdong; Hu, Shen; Liu, Younan; Quan, Vu-Hung; Seuntjens, Jan; Tran, Simon D

    2015-11-03

    In separate studies, an extract of soluble intracellular contents from whole bone marrow cells, named "Bone Marrow (BM) Soup", was reported to either improve cardiac or salivary functions post-myocardial infarction or irradiation (IR), respectively. However, the active components in BM Soup are unknown. To demonstrate that proteins were the active ingredients, we devised a method using proteinase K followed by heating to deactivate proteins and for safe injections into mice. BM Soup and "deactivated BM Soup" were injected into mice that had their salivary glands injured with 15Gy IR. Control mice received either injections of saline or were not IR. Results at week 8 post-IR showed the 'deactivated BM Soup' was no better than injections of saline, while injections of native BM Soup restored saliva flow, protected salivary cells and blood vessels from IR-damage. Protein arrays detected several angiogenesis-related factors (CD26, FGF, HGF, MMP-8, MMP-9, OPN, PF4, SDF-1) and cytokines (IL-1ra, IL-16) in BM Soup. In conclusion, the native proteins (but not the nucleic acids, lipids or carbohydrates) were the therapeutic ingredients in BM Soup for functional salivary restoration following IR. This molecular therapy approach has clinical potential because it is theoretically less tumorigenic and immunogenic than cell therapies.

  15. Management of an endo perio lesion in a maxillary canine using platelet-rich plasma concentrate and an alloplastic bone substitute

    PubMed Central

    Singh, Sangeeta

    2009-01-01

    To evaluate the efficacy of platelet-rich plasma concentrate in the management of a cirumferential, infrabony defect associated with an endoperio lesion in a maxillary canine. A 45 year-old male patient with an endoperio lesion in the left maxillary canine was initially treated with endodontic therapy. Following the endodontic treatment, the circumferential, infrabony defect was treated using platelet-rich plasma and an alloplastic bone substitute. At the end of three months, there was a gain in the clinical attachment level and reduction in probing depth. Radiographic evidence showed that there was significant bony fill. The results were maintained at the time of recall nine months later. PMID:20407658

  16. Detachment strength of human osteoblasts cultured on hydroxyapatite with various surface roughness. Contribution of integrin subunits.

    PubMed

    Kokkinos, Petros A; Koutsoukos, Petros G; Deligianni, Despina D

    2012-06-01

    Hydroxyapatite (HA) has been widely used as a bone substitute in dental, maxillofacial and orthopaedic surgery and as osteoconductive bone substitute or precoating of pedicle screws and cages in spine surgery. The aim of the present study was to investigate the osteoblastic adhesion strength on HA substrata with different surface topography and biochemistry (pre-adsorption of fibronectin) after blocking of specific integrin subunits with monoclonal antibodies. Stoichiometric HA was prepared by precipitation followed by ageing and characterized by SEM, EDX, powder XRD, Raman spectroscopy, TGA, and specific surface area analysis. Human bone marrow derived osteoblasts were cultured on HA disc-shaped substrata which were sintered and polished resulting in two surface roughness grades. For attachment evaluation, cells were incubated with monoclonal antibodies and seeded for 2 h on the substrata. Cell detachment strength was determined using a rotating disc device. Cell detachment strength was surface roughness, fibronectin preadsorption and intergin subunit sensitive.

  17. A process for the development of strontium hydroxyapatite

    NASA Astrophysics Data System (ADS)

    Zahra, N.; Fayyaz, M.; Iqbal, W.; Irfan, M.; Alam, S.

    2014-06-01

    A procedure for the preparation of Strontium Hydroxyapatite is adapted to produce high purity and better homogeneity ceramic with good Crystallinity. The strontium substituted bone cement has potential for use in orthopedic surgeries. Ionic Strontium (Sr) in humans shares the same physiological pathway as calcium and can be deposited in the mineral structure of the bone. In the present study, a novel concept of preparing Sr-contained Hydroxyapatite bone cement by using a precipitation method is proposed to get an ideal biomaterial that possesses potential degradability and more excellent pharmacological effect. Chemical analysis, Fourier Transform Infra Red analysis and Thermogravimetric/ Differential Scanning Calorimetric studies were conducted on prepared Strontium Hydroxyapatite sample to characterize the incorporation of 15% Sr2+ into the crystal lattice of Hydroxyapatite. Strontium was quantitatively incorporated into Hydroxyapatite where its substitution for calcium provoked a linear shift of the infrared absorption bands of the hydroxyl and phosphate groups. Thus, the formation of Sr-HAp was confirmed by Chemical Analysis, FT-IR and TGA/DSC results.

  18. Treatment of experimental staphylococcal osteomyelitis with rifampin and trimethoprim, alone and in combination.

    PubMed Central

    Norden, C W; Keleti, E

    1980-01-01

    Rifampin and trimethoprim were used alone and in combination in the treatment of chronic osteomyelitis due to Staphylococcus aureus in rabbits. Rifampicin levels in infected bone were well above the minimum inhibitory concentration of the infecting strain of S. aureus for at least 4 h after injection. In contrast, trimethoprim levels in diseased bone were below the minimum inhibitory concentration as early as 1 h after injection. Trimethoprim or rifampin, administered alone for 14 days, were ineffective in sterilizing infected rabbit bones. The combination of rifampin plus trimethoprim was significantly more effective (P less than 0.005) than either agents given alone for a comparable duration of time. Staphylococci isolated from the bones of rabbits treated with rifampin alone or rifampin plus trimethoprim were uniformly resistant to rifampin, but retained their susceptibility to trimethoprim. PMID:7396451

  19. In vitro culture of large bone substitutes in a new bioreactor: importance of the flow direction.

    PubMed

    Olivier, V; Hivart, Ph; Descamps, M; Hardouin, P

    2007-09-01

    New biomaterials combined with osteogenic cells are now being developed as an alternative to autogeneous bone grafts when the skeletal defect reaches a critical size. Yet, the size issue appears to be a key obstacle in the development of bone tissue engineering. Bioreactors are needed to allow the in vitro expansion of cells inside large bulk materials under appropriate conditions. However, no bioreactor has yet been designed for large-scale 3D structures and custom-made scaffolds. In this study, we evaluate the efficiency of a new bioreactor for the in vitro development of large bone substitutes, ensuring the perfusion of large ceramic scaffolds by the nutritive medium. The survival and proliferation of cells inside the scaffolds after 7 and 28 days in this dynamic culture system and the impact of the direction of the flow circulation are evaluated. The follow-up of glucose consumption, DNA quantification and microscopic evaluation all confirmed cell survival and proliferation for a sample under dynamic culture conditions, whereas static culture leads to the death of cells inside the scaffolds. Two directions of flow perfusion were assayed; the convergent direction leads to enhanced results compared to divergent flow.

  20. Characterisation of β-tricalcium phosphate-based bone substitute materials by electron paramagnetic resonance spectroscopy

    NASA Astrophysics Data System (ADS)

    Matković, Ivo; Maltar-Strmečki, Nadica; Babić-Ivančić, Vesna; Dutour Sikirić, Maja; Noethig-Laslo, Vesna

    2012-10-01

    β-TCP based materials are frequently used as dental implants. Due to their resorption in the body and direct contact with tissues, in order to inactivate bacteria, fungal spores and viruses, they are usually sterilized by γ-irradiation. However, the current literature provides little information about effects of the γ-irradiation on the formation and stability of the free radicals in the bone graft materials during and after sterilization procedure. In this work five different bone graft substitution materials, composed of synthetic beta tricalcium phosphate (β-TCP) and hydroxyapatite (HAP) present in the market were characterized by electron paramagnetic resonance (EPR) spectroscopy, X-ray powder diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and thermogravimetric analysis (TGA). Paramagnetic species Mn2+, Fe3+, trapped H-atoms and CO2- radicals were detected in the biphasic material (60% HAP, 40% β-TCP), while in β-TCP materials only Mn2+ andor trapped hydrogen atoms were detected. EPR analysis revealed the details of the structure of these materials at the atomic level. The results have shown that EPR spectroscopy is a method which can be used to improve the quality control of bone graft materials after syntering, processing and sterilization procedure.

  1. Protein-free formation of bone-like apatite: New insights into the key role of carbonation

    PubMed Central

    Deymier, Alix C.; Nair, Arun K.; Depalle, Baptiste; Qin, Zhao; Arcot, Kashyap; Drouet, Christophe; Yoder, Claude H.; Buehler, Markus J.; Thomopoulos, Stavros; Genin, Guy M.; Pasteris, Jill D.

    2017-01-01

    The nanometer-sized plate-like morphology of bone mineral is necessary for proper bone mechanics and physiology. However, mechanisms regulating the morphology of these mineral nanocrystals remain unclear. The dominant hypothesis attributes the size and shape regulation to organic-mineral interactions. Here, we present data supporting the hypothesis that physicochemical effects of carbonate integration within the apatite lattice control the morphology, size, and mechanics of bioapatite mineral crystals. Carbonated apatites synthesized in the absence of organic molecules presented plate-like morphologies and nanoscale crystallite dimensions. Experimentally-determined crystallite size, lattice spacing, solubility and atomic order were modified by carbonate concentration. Molecular dynamics (MD) simulations and density functional theory (DFT) calculations predicted changes in surface energy and elastic moduli with carbonate concentration. Combining these results with a scaling law predicted the experimentally observed scaling of size and energetics with carbonate concentration. The experiments and models describe a clear mechanism by which crystal dimensions are controlled by carbonate substitution. Furthermore, the results demonstrate that carbonate substitution is sufficient to drive the formation of bone-like crystallites. This new understanding points to pathways for biomimetic synthesis of novel, nanostructured biomaterials. PMID:28279923

  2. Synthesis of bioactive organic-inorganic nanohybrid for bone repair through sol-gel processing.

    PubMed

    Miyazaki, Toshiki; Ohtsuki, Chikara; Tanihara, Masao

    2003-12-01

    So-called bioactive ceramics have been attractive because they form bone-like apatite on their surfaces to bond directly to living bone when implanted in bony defects. However, they are much more brittle and much less flexible than natural bone. Organic-inorganic hybrids consisting of flexible organic polymers and the essential constituents of the bioactive ceramics (i.e., Si-OH groups and Ca2+ ions) are useful as novel bone substitutes, because of their bioactivity and mechanical properties analogous to those of natural bone. In the present study, organic-inorganic nanohybrids were synthesized from hydroxyethylmethacrylate (HEMA) and methacryloxypropyltrimethoxysilane (MPS), as well as various calcium salts. Bioactivity of the synthesized hybrids was assessed in vitro by examining their acceptance of apatite deposition in simulated body fluid (Kokubo solution). The prepared hybrids formed apatite in Kokubo solution when they were modified with calcium chloride (CaCl2) at 5 or 10 mol% of the total of MPS and HEMA. Deposition of a kind of calcium phosphate was observed for the hybrids modified with calcium acetate (Ca(CH3COO)2), although it could not be identified with apatite. The addition of glycerol up to 10 mol% of the total of MPS and HEMA or water up to 20 mol% as plasticizers did not appreciably decrease the acceptance of apatite formation of the hybrids. These findings allow wide selectivity in the design of bioactive nanohybrids developed by organic modification of the Si-OH group and calcium ion through sol-gel processing. Such nanohybrids have potential as novel bone substitutes with both high bioactivity and high flexibility.

  3. Rapid prototyped porous nickel–titanium scaffolds as bone substitutes

    PubMed Central

    Hoffmann, Waldemar; Bormann, Therese; Rossi, Antonella; Müller, Bert; Schumacher, Ralf; Martin, Ivan; Wendt, David

    2014-01-01

    While calcium phosphate–based ceramics are currently the most widely used materials in bone repair, they generally lack tensile strength for initial load bearing. Bulk titanium is the gold standard of metallic implant materials, but does not match the mechanical properties of the surrounding bone, potentially leading to problems of fixation and bone resorption. As an alternative, nickel–titanium alloys possess a unique combination of mechanical properties including a relatively low elastic modulus, pseudoelasticity, and high damping capacity, matching the properties of bone better than any other metallic material. With the ultimate goal of fabricating porous implants for spinal, orthopedic and dental applications, nickel–titanium substrates were fabricated by means of selective laser melting. The response of human mesenchymal stromal cells to the nickel–titanium substrates was compared to mesenchymal stromal cells cultured on clinically used titanium. Selective laser melted titanium as well as surface-treated nickel–titanium and titanium served as controls. Mesenchymal stromal cells had similar proliferation rates when cultured on selective laser melted nickel–titanium, clinically used titanium, or controls. Osteogenic differentiation was similar for mesenchymal stromal cells cultured on the selected materials, as indicated by similar gene expression levels of bone sialoprotein and osteocalcin. Mesenchymal stromal cells seeded and cultured on porous three-dimensional selective laser melted nickel–titanium scaffolds homogeneously colonized the scaffold, and following osteogenic induction, filled the scaffold’s pore volume with extracellular matrix. The combination of bone-related mechanical properties of selective laser melted nickel–titanium with its cytocompatibility and support of osteogenic differentiation of mesenchymal stromal cells highlights its potential as a superior bone substitute as compared to clinically used titanium. PMID:25383165

  4. Novel bone substitute material in alveolar bone healing following tooth extraction: an experimental study in sheep.

    PubMed

    Liu, Jinyi; Schmidlin, Patrick R; Philipp, Alexander; Hild, Nora; Tawse-Smith, Andrew; Duncan, Warwick

    2016-07-01

    Electrospun cotton wool-like nanocomposite (ECWN) is a novel synthetic bone substitute that incorporates amorphous calcium phosphate nanoparticles into a biodegradable synthetic copolymer poly(lactide-co-glycolide). The objectives of this study were to develop a tooth extraction socket model in sheep for bone graft research and to compare ECWN and bovine-derived xenograft (BX) in this model. Sixteen cross-bred female sheep were used. Bilateral mandibular premolars were extracted atraumatically. Second and third premolar sockets were filled (Latin-square allocation) with BX, ECWN or left unfilled. Resorbable collagen membranes were placed over BX and selected ECWN grafted sockets. Eight sheep per time period were sacrificed after 8 and 16 weeks. Resin-embedded undemineralised sections were analysed for descriptive histology and histomorphometric analyses. At 8 weeks, there were with no distinct differences in healing among the different sites. At 16 weeks, osseous healing followed a fine trabecular pattern in ECWN sites. Non-grafted sites showed thick trabeculae separated by large areas of fibrovascular connective tissue. In BX grafted sites, xenograft particles were surrounded by newly formed bone or fibrovascular connective tissue. There were no statistically significant differences in bone formation across the four groups. However, ECWN sites had significantly less residual graft material than BX sites at 16 weeks (P = 0.048). This first description of a tooth extraction socket model in sheep supports the utility of this model for bone graft research. The results of this study suggested that the novel material ECWN did not impede bone ingrowth into sockets and showed evidence of material resorption. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  5. 97% accuracy of intra-articular glenohumeral injection with a modified (Delaware) posterior bone touch technique.

    PubMed

    Axe, Jeremie M; Axe, Michael J

    2013-10-01

    Unguided approaches have not demonstrated evidence of highly accurate intra-articular glenohumeral injections. The purpose of this study was to assess the accuracy of a posterior approach bone touch technique in conscious subjects without shoulder pathology as a first step in developing an accurate, reliable technique for use in patients. Twenty-six young subjects (age 22-26) without shoulder pathology (BMI 24 +/- 3), had bilateral shoulders injected while awake and seated. A 20 gauge 3.5-inch needle was introduced 1.5 cm below the scapular spine mid-way between the posterior lateral acromial corner and the posterior axillary crease. In Trial I, 20 shoulders were injected. After touching the humerus, the arm was oscillated. The needle advanced to 4-5 cm and 10 mL of dye injected. Pop and ease of flow were recorded. Immediate room change, spot fluoroscopy, and independent experienced radiology reading followed. In Trial II, 32 shoulders were injected. The technique was modified to touching the humerus, externally rotating the arm 25 degrees, and while remaining in bone contact, delivering 10 mL of dye. The same data as Trial I was recorded. In Trial I, 14/20 (70 percent) had dye within the glenohumeral joint. Five of seven failures were too anterior showing dye around the subscapularis muscle and all were associated with a pop. In Trial II, 31/32 (97 percent) had dye within glenohumeral joint. Twenty-three of 32 (72 percent) had a "pop," including the failure. Overall, 45/52 (87 percent) had dye within glenohumeral joint. Thirty-one of 52 (71 percent) of all shoulders had a "pop." Twenty-three of 52 (44 percent) shoulders had pain, resolving within 24 hours. A modified (Delaware) posterior bone touch technique for glenohumeral joint injection is 97 percent accurate in conscious healthy young subjects. Pop and ease of flow are not always indicative of correct needle placement. This study serves as an important first step in determining an optimum approach for injecting pathologic glenohumeral joints with corticosteroids or hyaluronic acid. IV Case Series.

  6. Efficacy of different bone volume expanders for augmenting lumbar fusions.

    PubMed

    Epstein, Nancy E

    2008-01-01

    A wide variety of bone volume expanders are being used in performing posterolateral lumbar noninstrumented and instrumented lumbar fusions. This article presents a review of their efficacy based on fusion rates, complications, and outcomes. Lumbar noninstrumented and instrumented fusions frequently use laminar autografts and different bone graft expanders. This review presents the utility of multiple forms/ratios of DBMs containing allografts. It also discusses the efficacy of artificial bone graft substitutes, including HA and B-TCP. Dynamic x-ray and/or CT examinations were used to document fusion in most series. Outcomes were variously assessed using Odom's criteria or different outcome questionnaires (Oswestry Questionnaire, SF-36, Dallas Pain Questionnaire, and/or Low Back Pain Rating Scale). Performing noninstrumented and instrumented lumbar posterolateral fusions resulted in comparable fusion rates in many series. Similar outcomes were also documented based on Odom's criteria or the multiple patient-based questionnaires. However, in some studies, the addition of spinal instrumentation increased the reoperation rate, operative time, blood loss, and cost. Various forms of DBMs, applied in different ratios to autografts, effectively supplemented spinal fusions in animal models and patient series. beta-Tricalcium phosphate, which is used to augment autograft fusions addressing idiopathic scoliosis or lumbar disease, also proved to be effective. Different types of bone volume expanders, including various forms of allograft-based DBMs, and artificial bone graft substitutes (HA and B-TCP) effectively promote posterolateral lumbar noninstrumented and instrumented fusions when added to autografts.

  7. Long-term stability of contour augmentation in the esthetic zone: histologic and histomorphometric evaluation of 12 human biopsies 14 to 80 months after augmentation.

    PubMed

    Jensen, Simon S; Bosshardt, Dieter D; Gruber, Reinhard; Buser, Daniel

    2014-11-01

    Contour augmentation around early-placed implants (Type 2 placement) using autogenous bone chips combined with deproteinized bovine bone mineral (DBBM) and a collagen barrier membrane has been documented to predictably provide esthetically satisfactory clinical outcomes. In addition, recent data from cone beam computed tomography studies have shown the augmented volume to be stable long-term. However, no human histologic data are available to document the tissue reactions to this bone augmentation procedure. Over an 8-year period, 12 biopsies were harvested 14 to 80 months after implant placement with simultaneous contour augmentation in 10 patients. The biopsies were subjected to histologic and histomorphometric analysis. The biopsies consisted of 32.0% ± 9.6% DBBM particles and 40.6% ± 14.6% mature bone. 70.3% ± 14.5% of the DBBM particle surfaces were covered with bone. On the remaining surface, multinucleated giant cells with varying intensity of tartrate-resistant acid phosphatase staining were regularly present. No signs of inflammation were visible, and no tendency toward a decreasing volume fraction of DBBM over time was observed. The present study confirms previous findings that osseointegrated DBBM particles do not tend to undergo substitution over time. This low substitution rate may be the reason behind the clinically and radiographically documented long-term stability of contour augmentation using a combination of autogenous bone chips, DBBM particles, and a collagen membrane.

  8. Treatment for hepatitis C virus infection among people who inject drugs attending opioid substitution treatment and community health clinics: the ETHOS Study.

    PubMed

    Grebely, Jason; Alavi, Maryam; Micallef, Michelle; Dunlop, Adrian J; Balcomb, Anne C; Phung, Nghi; Weltman, Martin D; Day, Carolyn A; Treloar, Carla; Bath, Nicky; Haber, Paul S; Dore, Gregory J

    2016-02-01

    To estimate adherence and response to therapy for chronic hepatitis C virus (HCV) infection among people with a history of injecting drug use. A secondary aim was to identify predictors of HCV treatment response. Prospective cohort recruited between 2009 and 2012. Participants were treated with peg-interferon alfa-2a/ribavirin for 24 (genotypes 2/3, G2/3) or 48 weeks (genotype 1, G1). Six opioid substitution treatment (OST) clinics, two community health centres and one Aboriginal community-controlled health organization providing drug treatment services in New South Wales, Australia. Among 415 people with a history of injecting drug use and chronic HCV assessed by a nurse, 101 were assessed for treatment outcomes (21% female). Study outcomes were treatment adherence and sustained virological response (SVR, undetectable HCV RNA >24 weeks post-treatment). Among 101 treated, 37% (n = 37) had recently injected drugs (past 6 months) and 62% (n = 63) were receiving OST. Adherence ≥ 80% was 86% (n = 87). SVR was 74% (75 of 101), with no difference observed by sex (males: 76%, females: 67%, P = 0.662). In adjusted analysis, age < 35 (versus ≥ 45 years) [adjusted odds ratio (aOR) = 5.06, 95% confidence interval (CI) = 1.47, 17.40] and on-treatment adherence ≥ 80% independently predicted SVR (aOR = 19.41, 95% CI = 3.61, 104.26]. Recent injecting drug use at baseline was not associated with SVR. People with a history of injecting drug use and chronic hepatitis C virus attending opioid substitution treatment and community health clinics can achieve adherence and responses to interferon-based therapy similar to other populations, despite injecting drugs at baseline. Younger age and adherence are predictive of improved response to hepatitis C virus therapy. © 2015 Society for the Study of Addiction.

  9. Polyolefin backbone substitution in binders for low temperature powder injection moulding feedstocks.

    PubMed

    Hausnerova, Berenika; Kuritka, Ivo; Bleyan, Davit

    2014-02-27

    This paper reports the substitution of polyolefin backbone binder components with low melting temperature carnauba wax for powder injection moulding applications. The effect of various binder compositions of Al₂O₃ feedstock on thermal degradation parameters is investigated by thermogravimetric analysis. Within the experimental framework 29 original feedstock compositions were prepared and the superiority of carnauba wax over the polyethylene binder backbone was demonstrated in compositions containing polyethylene glycol as the initial opening agent and governing the proper mechanism of the degradation process. Moreover, the replacement of synthetic polymer by the natural wax contributes to an increase of environmental sustainability of modern industrial technologies.

  10. Adipose Stem Cell-Based Therapeutic Targeting of Residual Androgens in African Americans with Bone-Metastatic Prostate Cancer

    DTIC Science & Technology

    2015-11-01

    points post xenograft . We demonstrated that ADMSCs derived from African American with PC (ADMSCAA) promote LNCaP cell tumor growth in gonad-intact...Task-7: Compare the ability of ADMSCCont and ADMSCSel cells to colocalize to bone tumor xenografts in vivo. 7.1. Inject CaP cells, alone or with...construct expressing GFP (pLV-GFP). Nude mice (n=5) bearing LNCaP xenografts ( 8weeks) were injected with 2 x 105 transduced GFP-expressing ADMSCs and

  11. [Postmenopausal osteoporosis treated with acupoint injection of salmon calcitonin:a randomized controlled trial].

    PubMed

    Zhou, Zhihua; Wang, Naiquan; Ding, Chaoer; Zhou, Xinguo; Zhou, Jiawei

    2016-07-12

    To verify the clinical efficacy on postmenopausal osteoporosis treated with acupoint injection of salmon calcitonin. Ninety patients of postmenopausal osteoporosis were randomized into three groups, 30 cases in each one. In the acupoint injection group, Shenshu (BL 23) and Zusanli (ST 36) were selected bilaterally. The injection 4 mL was prepared with salmon calcitonin 100 U (1 mL) and 0.9% sodium chloride injection. Each acupoint was stimulated with the injection, 1 mL. In the blank group, 0.9% sodium chloride injection was applied to bilateral Shenshu (BL 23) and Zusanli (ST 36), 1 mL at each acupoint. In the intramuscular injection group, salmon calcitonin 100 U was injected at gluteus maximus. The treatment was given once every two days in the patients of the three groups and lasted for 2 months. The levels of bone mineral density (BMD), bone alkaline phosphatase (NBAP), C-terminal telopeptides of typeⅠcollagen (CTX), urine calcium/creatinine (Ca/Cr) and the symptom score of osteoporosis were detected in the patients of the three groups before and after treatment. In the patients of the three groups, NBAP and BMD in lumbar vertebra after treatment were higher than those before treatment (all P <0.05); CTX, Ca/Cr and symptom score were lower than those before treatment (all P <0.05). After treatment, NBAP was (32.7±2.5) μg/L in the acupoint injection group, higher than those in the blank group and the intramuscular injection group (both P <0.05). In the acupoint injection group, CTX was reduced to (239.7±63.6) μmmol/L and Ca/Cr was reduced to 0.525±0.274, apparently lower than those in the blank group and intramuscular injection group (both P <0.05). After treatment, in the acupoint injection group, BMD of lumbar vertebra was (0.731±0.062) g/m 2 , higher than the level of the rest two groups (both P <0.05). After treatment, the symptom score was 5.2±0.6 in the acupoint injection group, lower than those in the blank group and intramuscular injection group (both P <0.05). Salmon calcitonin injec-tion at Zusanli (ST 36) and Shenshu (BL 23) achieves significant efficacy on postmenopausal osteoporosis, stimulating osteoblast activity and inhibiting bone absorption of osteoclast.

  12. Roles of FGFR3 during morphogenesis of Meckel's cartilage and mandibular bones

    PubMed Central

    Havens, Bruce A.; Velonis, Dimitris; Kronenberg, Mark S.; Lichtler, Alex C.; Oliver, Bonnie; Mina, Mina

    2008-01-01

    To address the functions of FGFR2 and FGFR3 signaling during mandibular skeletogenesis, we over-expressed in the developing chick mandible, replication-competent retroviruses carrying truncated FGFR2c or FGFR3c that function as dominant negative receptors (RCAS-dnFGFR2 and RCAS-dnFGFR3). Injection of RCAS-dnFGFR3 between HH15−20 led to reduced proliferation, increased apoptosis, and decreased differentiation of chondroblasts in Meckel's cartilage. These changes resulted in the formation of a hypoplastic mandibular process and truncated Meckel's cartilage. This treatment also affected the proliferation and survival of osteoprogenitor cells in osteogenic condensations, leading to the absence of five mandibular bones on the injected side. Injection of RCAS-dnFGFR2 between HH15−20 or RCAS-dnFGFR3 at HH26 did not affect the morphogenesis of Meckel's cartilage but resulted in truncations of the mandibular bones. RCAS-dnFGFR3 affected the proliferation and survival of the cells within the periosteum and osteoblasts. Together these results demonstrate that FGFR3 signaling is required for the elongation of Meckel's cartilage and FGFR2 and FGFR3 have roles during intramembranous ossification of mandibular bones. PMID:18339367

  13. Axillary lymph node uptake of technetium-99m-MDP

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ongseng, F.; Goldfarb, C.R.; Finestone, H.

    We sought to determine the frequency and significance of axillary lymph node visualization on bone scans performed with diphosphonates. Consecutive {sup 99m}Tc-methylene diphosphonate ({sup 99m}Tc-MDP) bone scans (2435) were inspected for axillary soft-tissue uptake. In positive cases, the results of physical examination, correlative imaging studies and serial bone scans were recorded, as was the site of venipuncture. Forty-eight studies (2%) showed axillary uptake ipsilateral to the injection site. Extravasation of tracer, documented by focal activity near the injection site, was present in every case. There was no association with axillary adenopathy, mass, induration of radiographically visible calcification. On some images,more » foci adjacent to the axilla were superimposed on the rib, scapula, or humerus. The bone-to-background ratio was frequently reduced; repeat imaging after 1-2 hr usually improved osseous detail. Ipsilateral axillary lymph node visualization due to extravasation of {sup 99m}Tc-MDP is frequently associated with additional foci superimposed on osseous structures simulating pathology. Delayed skeletal uptake is common in such cases and necessitates a greater time interval between injection and imaging. 7 refs., 3 figs.« less

  14. Direct evidence of macrophage differentiation from bone marrow cells in the liver: a possible origin of Kupffer cells.

    PubMed

    Takezawa, R; Watanabe, Y; Akaike, T

    1995-12-01

    Controversy has surrounded origin and differentiation of tissue macrophages. We directly demonstrate the differentiation of bone marrow cells into macrophages in the liver in vivo using a cell-labeling fluorescence dye, PKH-26. Bone marrow cells labeled with PKH26 were intravenously injected into syngenic mice, and these cells were tracked by flow cytometric analysis. The majority of the labeled cells were detected only in the liver after 4 days. Interestingly, antigens specific for macrophage lineage cells (F4/80, Fc gamma RII, and CD14) were detected on the liver-accumulated cells only 4 h after the injection. The pattern of the antigen expression changed to that of Kupffer cells (F4/80+, Fc gamma RII+, Mac-1-) after 4 days and remained so thereafter. These labeled cells in the liver were esterase staining-positive and showed phagocytic activity at day 7. The number of labeled cells among the Kupffer cells in the liver increased with days after injection. This indicates that bone marrow cells accumulate in the liver and differentiate into liver macrophages on site. Roles of factors secreted from hepatocytes are also discussed.

  15. Biomaterial strategies for engineering implants for enhanced osseointegration and bone repair

    PubMed Central

    Agarwal, Rachit; García, Andrés J.

    2015-01-01

    Bone tissue has a remarkable ability to regenerate and heal itself. However, large bone defects and complex fractures still present a significant challenge to the medical community. Current treatments center on metal implants for structural and mechanical support and auto- or allo-grafts to substitute long bone defects. Metal implants are associated with several complications such as implant loosening and infections. Bone grafts suffer from donor site morbidity, reduced bioactivity, and risk of pathogen transmission. Surgical implants can be modified to provide vital biological cues, growth factors and cells in order to improve osseointegration and repair of bone defects. Here we review strategies and technologies to engineer metal surfaces to promote osseointegration with the host tissue. We also discuss strategies for modifying implants for cell adhesion and bone growth via integrin signaling and growth factor and cytokine delivery for bone defect repair. PMID:25861724

  16. Growth, sexual and bone development in a boy with bilateral anorchia under testosterone treatment guided by the development of his monozygotic twin.

    PubMed

    Vandewalle, Sara; Van Caenegem, Eva; Craen, Margarita; Taes, Youri; Kaufman, Jean-Marc; T'Sjoen, Guy

    2018-03-28

    Sex steroids are essential for sexual maturation, linear growth and bone development. However, there is no consensus on the optimal timing, dosage and dosage interval of testosterone therapy to induce pubertal development and achieve a normal adult height and bone mass in children with hypogonadism. A monozygotic monochorial male twin pair, of which one boy was diagnosed with anorchia at birth due to testicular regression syndrome was followed from the age of 3 until the age of 18 years. Low dose testosterone substitution (testosterone esters 25 mg/2 weeks) was initiated in the affected twin based on the start of pubertal development in the healthy twin and then gradually increased accordingly. Both boys were followed until age 18 and were compared as regards to linear growth, sexual maturation, bone maturation and bone development. Before puberty induction both boys had a similar weight and height. During puberty, a slightly faster weight and height gain was observed in the affected twin. Both boys ended up however, with a similar and normal (near) adult height and weight and experienced a normal development of secondary sex characteristics. At the age of 17 and 18 years, bone mineral density, body composition and volumetric bone parameters at the forearm and calf were evaluated in both boys. The affected boy had a higher lean mass and muscle cross-sectional area. The bone mineral density at the lumbar spine and whole body was similar. Trabecular and cortical volumetric bone parameters were comparable. At one cortical site (proximal radius), however, the affected twin had a smaller periosteal and endosteal circumference with a thicker cortex. In conclusion, a low dose testosterone substitution in bilateral anorchia led to a normal onset of pubertal development and (near) adult height. Furthermore, there was no difference in bone mineral density at the age of 17 and 18 years.

  17. Fabrication and evaluation of interconnected porous carbonate apatite from alpha tricalcium phosphate spheres.

    PubMed

    Ishikawa, Kunio; Arifta, Tya Indah; Hayashi, Koichiro; Tsuru, Kanji

    2018-03-26

    Carbonate apatite (CO 3 Ap) blocks have attracted considerable attention as an artificial bone substitute material because CO 3 Ap is a component of and shares properties with bone, including high osteoconductivity and replacement by bone similar to autografts. In this study, we fabricated an interconnected porous CO 3 Ap block using α-tricalcium phosphate (TCP) spheres and evaluated the tissue response to this material in a rabbit tibial bone defect model. Interconnected porous α-TCP, the precursor of interconnected porous CO 3 Ap, could not be fabricated directly by sintering α-TCP spheres. It was therefore made via a setting reaction with α-TCP spheres, yielding interconnected porous calcium-deficient hydroxyapatite that was subjected to heat treatment. Immersing the interconnected porous α-TCP in Na-CO 3 -PO 4 solution produced CO 3 Ap, which retained the interconnected porous structure after the dissolution-precipitation reaction. The diametral tensile strength and porosity of the porous CO 3 Ap were 1.8 ± 0.4 MPa and 55% ± 3.2%, respectively. Both porous and dense (control) CO 3 Ap showed excellent tissue response and good osteoconductivity. At 4 weeks after surgery, approximately 15% ± 4.9% of the tibial bone defect was filled with new bone when reconstruction was performed using porous CO 3 Ap; this amount was five times greater than that obtained with dense CO 3 Ap. At 12 weeks after surgery, for porous CO 3 Ap, approximately 47% of the defect was filled with new bone as compared to 16% for dense CO 3 Ap. Thus, the interconnected porous CO 3 Ap block is a promising artificial bone substitute material for the treatment of bone defects caused by large fractures or bone tumor resection. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 2018. © 2018 Wiley Periodicals, Inc.

  18. In vitro gentamicin release from commercially available calcium-phosphate bone substitutes influence of carrier type on duration of the release profile

    PubMed Central

    Stallmann, Hein P; Faber, Chris; Bronckers, Antonius LJJ; Nieuw Amerongen, Arie V; Wuisman, Paul IJM

    2006-01-01

    Background Polymethyl-methacrylate (PMMA) beads releasing antibiotics are used extensively to treat osteomyelitis, but require surgical removal afterwards because they do not degrade. Methods As an alternative option, this report compares the in vitro gentamicin release profile from clinically used, biodegradable carrier-materials: six injectable cements and six granule-types. Cement cylinders and coated granules containing 3% gentamicin were submerged in dH2O and placed in a 48-sample parallel drug-release system. At regular intervals (30, 90, 180 min. and then every 24 h, for 21 days), the release fluid was exchanged and the gentamicin concentration was measured. The activity of released gentamicin was tested on Staphylococcus aureus. Results All combinations showed initial burst-release of active gentamicin, two cements had continuous-release (17 days). The relative release of all cements (36–85%) and granules (30–62%) was higher than previously reported for injectable PMMA-cements (up to 17%) and comparable to other biodegradable carriers. From the cements residual gentamicin could be extracted, whereas the granules released all gentamicin that had adhered to the surface. Conclusion The high release achieved shows great promise for clinical application of these biodegradable drug-carriers. Using the appropriate combination, the required release profile (burst or sustained) may be achieved. PMID:16504140

  19. Zinc-substituted hydroxyapatite: a biomaterial with enhanced bioactivity and antibacterial properties.

    PubMed

    Thian, E S; Konishi, T; Kawanobe, Y; Lim, P N; Choong, C; Ho, B; Aizawa, M

    2013-02-01

    Hydroxyapatite (HA) is a synthetic biomaterial and has been found to promote new bone formation when implanted in a bone defect site. However, its use is often limited due to its slow osteointegration rate and low antibacterial activity, particularly where HA has to be used for long term biomedical applications. This work will describe the synthesis and detailed characterization of zinc-substituted HA (ZnHA) as an alternative biomaterial to HA. ZnHA containing 1.6 wt% Zn was synthesized via a co-precipitation reaction between calcium hydroxide, orthophosphoric acid and zinc nitrate hexahydrate. Single-phase ZnHA particles with a rod-like morphology measuring ~50 nm in length and ~15 nm in width, were obtained and characterized using transmission electron microscopy and X-ray diffraction. The substitution of Zn into HA resulted in a decrease in both the a- and c-axes of the unit cell parameters, thereby causing the HA crystal structure to alter. In vitro cell culture work showed that ZnHA possessed enhanced bioactivity since an increase in the growth of human adipose-derived mesenchymal stem cells along with the bone cell differentiation markers, were observed. In addition, antibacterial work demonstrated that ZnHA exhibited antimicrobial capability since there was a significant decrease in the number of viable Staphylococcus aureus bacteria after in contact with ZnHA.

  20. Local injection of autologous bone marrow cells to regenerate muscle in patients with traumatic brachial plexus injury: a pilot study.

    PubMed

    Hogendoorn, S; Duijnisveld, B J; van Duinen, S G; Stoel, B C; van Dijk, J G; Fibbe, W E; Nelissen, R G H H

    2014-01-01

    Traumatic brachial plexus injury causes severe functional impairment of the arm. Elbow flexion is often affected. Nerve surgery or tendon transfers provide the only means to obtain improved elbow flexion. Unfortunately, the functionality of the arm often remains insufficient. Stem cell therapy could potentially improve muscle strength and avoid muscle-tendon transfer. This pilot study assesses the safety and regenerative potential of autologous bone marrow-derived mononuclear cell injection in partially denervated biceps. Nine brachial plexus patients with insufficient elbow flexion (i.e., partial denervation) received intramuscular escalating doses of autologous bone marrow-derived mononuclear cells, combined with tendon transfers. Effect parameters included biceps biopsies, motor unit analysis on needle electromyography and computerised muscle tomography, before and after cell therapy. No adverse effects in vital signs, bone marrow aspiration sites, injection sites, or surgical wound were seen. After cell therapy there was a 52% decrease in muscle fibrosis (p = 0.01), an 80% increase in myofibre diameter (p = 0.007), a 50% increase in satellite cells (p = 0.045) and an 83% increase in capillary-to-myofibre ratio (p < 0.001) was shown. CT analysis demonstrated a 48% decrease in mean muscle density (p = 0.009). Motor unit analysis showed a mean increase of 36% in motor unit amplitude (p = 0.045), 22% increase in duration (p = 0.005) and 29% increase in number of phases (p = 0.002). Mononuclear cell injection in partly denervated muscle of brachial plexus patients is safe. The results suggest enhanced muscle reinnervation and regeneration. Cite this article: Bone Joint Res 2014;3:38-47.

  1. Treatment of unicameral bone cyst: systematic review and meta analysis.

    PubMed

    Kadhim, Muayad; Thacker, Mihir; Kadhim, Amjed; Holmes, Laurens

    2014-03-01

    Different treatment modalities have been utilized to treat unicameral bone cyst (UBC), but evidence has not been fully described to support one treatment over another and the optimal treatment is controversial. The aim of this quantitative systematic review was to assess the effectiveness of different UBC treatment modalities. We utilized Pubmed to isolate retrospective studies on patients with UBC who received any kind of treatment. The included studies needed to have a minimum sample size of 15 patients, and have provided data on radiographic healing outcome. Sixty-two articles were selected for the meta-analysis from a total of 463 articles. The cumulative sample size was 3,211 patients with 3,217 UBC, and male to female ratio was 2.2:1. The summary or pool estimate of methylprednisolone acetate (MPA) injection resulted in a healing rate of (77.4 %) that was comparable to bone marrow injection (77.9 %). A higher healing rate was observed with MPA injection when inner wall disruption was performed. The pool estimate of bone marrow with demineralized bone matrix injection was high (98.7 %). UBC healing rate after surgical curettage was comparable whether autograft or allograft was utilized (90 %). UBC treatment with flexible intramedullary nails without curettage provided almost 100% healing rate, while continuous decompression with cannulated screws provided 89 % healing rate. Conservative treatment indicated a healing rate of 64.2, 95 % CI (26.7-101.8). Active treatment for UBC provided variable healing rates and the outcomes were favorable relative to conservative treatment. Due to the heterogeneity of the studies and reporting bias, the interpretation of these findings should be handled with caution.

  2. The osteogenic response of mesenchymal stem cells to an injectable PLGA bone regeneration system.

    PubMed

    Curran, Judith M; Fawcett, Sandra; Hamilton, Lloyd; Rhodes, Nicholas P; Rahman, Cheryl V; Alexander, Morgan; Shakesheff, Kevin; Hunt, John A

    2013-12-01

    The enrichment of substrates/surfaces with selected functional groups, methyl (-CH3), allyl amine (-NH2), allyl alcohol (-OH) and acrylic acid (-COOH), can be used to trigger mesenchymal stem (MSC) cell differentiation into specified lineages, minimising the need for exogenous biological supplementation. We present the successful translation of this research phenomenon to an injectable two phase injectable PLGA system, utilising plasma techniques, for the repair of bone defects. Modified microspheres were characterised using water contact angel (WCA), X-ray Photon Spectroscopy (XPS) and scanning electron microscopy (SEM). When cultured in contact with MSCs in vitro, the ability of the modified particles, within the 2 phase system, to induce differentiation was characterised using quantitative assays for cell viability and histological analysis for key markers of differentiation throughout the entirety of the three dimensional scaffold. Biological analysis proved that selected modified microspheres have the ability to induce MSC osteogenic (-NH2 modified scaffolds) and chondrogenic (-OH modified scaffolds) differentiation throughout the entirety of the formed scaffold. Therefore optimised plasma modification of microspheres is an effective tool for the production of injectable systems for the repair of bone and cartilage defects. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. The effects of injectable calcium silicate-based composites with the Chinese herb on an osteogenic accelerator in vitro.

    PubMed

    Chang, Nai-Jen; Chen, Yi-Wen; Shieh, Den-En; Fang, Hsin-Yuan; Shie, Ming-You

    2015-09-11

    We aimed to investigate the physicochemical and biological effects of calcium silicate (CS)-based cements together with the Chinese medicine Xu Duan (XD) after seeding with human adipose-derived stem cells (hADSCs). Here, we fabricated CS-based substrates with different ratios of XD (0%, 5% and 10%) as bioactive and biodegradable biocomposites, subsequent to examining their respective effectiveness for bone repair. The setting time, the injectability, the mechanical properties measured by diametral tensile strength (DTS), the in vitro degradation determined by changes in the weight loss of the composites, the characteristic formation of bone-like apatite, and cell growth as well as osteogenesis protein and bone mineralization were comprehensively evaluated before and after immersion in simulated body fluid (SBF), respectively. At the end of testing, with regard to physicochemical effects, the CS-based substrate mixed with the 10% XD group showed significantly sound mechanical properties, an applicable setting time and injectability and the formation of a dense bone-like apatite layer. In terms of biological effects, the CS-based substrate with the 10% XD group showed a significant development of osteogenic activities with sound cell proliferation and higher alkaline phosphatase (ALP) activity, as well as indicating osteogenic differentiation, greater osteocalcin (OC) protein secretion and clearly calcified tissue mineralization. The present drug-release strategy with CS-based cements may pave the way for future alternative bone repair therapy.

  4. Acceleration of hard and soft tissue healing in the oral cavity by a single transmucosal injection of fluvastatin-impregnated poly (lactic-co-glycolic acid) microspheres. An in vitro and rodent in vivo study.

    PubMed

    Yasunami, Noriyuki; Ayukawa, Yasunori; Furuhashi, Akihiro; Atsuta, Ikiru; Rakhmatia, Yunia Dwi; Moriyama, Yasuko; Masuzaki, Tomohiro; Koyano, Kiyoshi

    2015-12-23

    Antihyperlipidemic drug statins reportedly promote both bone formation and soft tissue healing. We examined the effect of sustained-release, fluvastatin-impregnated poly(lactic-co-glycolic acid) (PLGA) microspheres on the promotion of bone and gingival healing at an extraction socket in vivo, and the effect of fluvastatin on epithelial cells and fibroblasts in vitro. The maxillary right first molar was extracted in rats, then one of the following was immediately injected, as a single dose, into the gingivobuccal fold: control (no administration), PLGA microspheres without a statin (active control), or PLGA microspheres containing 20 or 40 μg kg(-1) of fluvastatin. At days 1, 3, 7, 14, and 28 after injection, bone and soft tissue healing were histologically evaluated. Cell proliferation was measured under the effect of fluvastatin at dosages of 0, 0.01, 0.1, 1.0, 10, and 50 μM. Cell migration and morphology were observed at dosages of 0 and 0.1 μM. Following tooth extraction, the statin significantly enhanced bone volume and density, connective tissue volume, and epithelial wound healing. In the in vitro study, it promoted significant proliferation and migration of epithelial cells and fibroblasts. A single dose of topically administered fluvastatin-impregnated PLGA microspheres promoted bone and soft tissue healing at the extraction site.

  5. Nanostructured thick 3D nanofibrous scaffold can induce bone.

    PubMed

    Eap, Sandy; Morand, David; Clauss, François; Huck, Olivier; Stoltz, Jean-François; Lutz, Jean-Christophe; Gottenberg, Jacques-Eric; Benkirane-Jessel, Nadia; Keller, Laetitia; Fioretti, Florence

    2015-01-01

    Designing unique nanostructured biomimetic materials is a new challenge in modern regenerative medicine. In order to develop functional substitutes for damaged organs or tissues, several methods have been used to create implants able to regenerate robust and durable bone. Electrospinning produces nonwoven scaffolds based on polymer nanofibers mimicking the fibrillar organization of bone extracellular matrix. Here, we describe a biomimetic 3D thick nanofibrous scaffold obtained by electrospinning of the biodegradable, bioresorbable and FDA-approved polymer, poly(ε-caprolactone). Such scaffold presents a thickness reaching one centimeter. We report here the demonstration that the designed nanostructured implant is able to induce in vivo bone regeneration.

  6. 3D printed porous ceramic scaffolds for bone tissue engineering: a review.

    PubMed

    Wen, Yu; Xun, Sun; Haoye, Meng; Baichuan, Sun; Peng, Chen; Xuejian, Liu; Kaihong, Zhang; Xuan, Yang; Jiang, Peng; Shibi, Lu

    2017-08-22

    This study summarizes the recent research status and development of three-dimensional (3D)-printed porous ceramic scaffolds in bone tissue engineering. Recent literature on 3D-printed porous ceramic scaffolds was reviewed. Compared with traditional processing and manufacturing technologies, 3D-printed porous ceramic scaffolds have obvious advantages, such as enhancement of the controllability of the structure or improvement of the production efficiency. More sophisticated scaffolds were fabricated by 3D printing technology. 3D printed bioceramics have broad application prospects in bone tissue engineering. Through understanding the advantages and limitations of different 3D-printing approaches, new classes of bone graft substitutes can be developed.

  7. Extraordinary biological properties of a new calcium hydroxyapatite/poly(lactide-co-glycolide)-based scaffold confirmed by in vivo investigation.

    PubMed

    Jokanović, Vukoman; Čolović, Božana; Marković, Dejan; Petrović, Milan; Soldatović, Ivan; Antonijević, Djordje; Milosavljević, Petar; Sjerobabin, Nikola; Sopta, Jelena

    2017-05-24

    This study examined the potential of a new porous calcium hydroxyapatite scaffold covered with poly (lactide-co-glycolide) (PLGA) as a bone substitute, identifying its advantages over Geistlich Bio-Oss®, considered the gold standard, in in vivo biofunctionality investigations. Structural and morphological properties of the new scaffold were analyzed by scanning electron and atomic force microscopy. The biofunctionality assays were performed on New Zealand white rabbits using new scaffold for filling full-thickness defects of critical size. The evaluated parameters were: the presence of macrophages, giant cells, monoocytes, plasma cells, granulocytes, neoangiogenesis, fibroplasia, and the percentage of mineralization. Parallel biofunctionality assays were performed using Geistlich Bio-Oss®. The appearance of bone defects 12 weeks after the new scaffold implantation showed the presence of a small number of typical immune response cells. Furthermore, significantly reduced number of capillary buds, low intensity of fibroplasia and high degree of mineralization in a lamellar pattern indicated that the inflammation process has been almost completely overcome and that the new bone formed was in the final phase of remodeling. All biofunctionality assays proved the new scaffold's suitability as a bone substitute for applications in maxillofacial surgery. It showed numerous biological advantages over Geistlich Bio-Oss® which was reflected mainly as a lower number of giant cells surrounding implanted material and higher degree of mineralization in new formed bone.

  8. In vitro control of human bone marrow stromal cells for bone tissue engineering.

    PubMed

    Anselme, Karine; Broux, Odile; Noel, Benoit; Bouxin, Bertrand; Bascoulergue, Gerard; Dudermel, Anne-France; Bianchi, Fabien; Jeanfils, Joseph; Hardouin, Pierre

    2002-12-01

    For the clinical application of cultured human mesenchymal stem cells (MSCs), cells must have minimal contact with fetal calf serum (FCS) because it might be a potential vector for contamination by adventitious agents. The use of human plasma and serum for clinical applications also continues to give rise to considerable concerns with respect to the transmission of known and unknown human infectious agents. With the objective of clinical applications of cultured human MSCs, we tested the ability of autologous plasma, AB human serum, FCS, and artificial serum substitutes containing animal-derived proteins (Ultroser G) or vegetable-derived proteins (Prolifix S6) to permit their growth and differentiation in vitro. To conserve as much autologous plasma as possible, we attempted to mix it at decreasing concentrations with the serum substitute containing vegetable-derived mitogenic factors. Under control conditions, by day 10 all the fibroblast colony-forming units (CFU-Fs) were alkaline phosphatase (ALP) positive. However, their number and size were highly variable among donors. Better CFU-F formation was obtained with Ultroser G, and with human AB serum and autologous plasma mixed at, respectively, 5 and 1% with Prolifix S6. The effects of these mixtures on CFU-F formation demonstrate synergy, with the human serum or plasma supplying the factors that favor differentiation of MSCs while Prolifix S6 supplies the mitogenic factors. Finally, we demonstrated the possibility of controlling human MSC growth and differentiation in vitro. Notably, by means of a minimal quantity of human serum or human plasma mixed with a new serum substitute containing vegetable-derived proteins, we displayed growth and differentiation of human MSCs comparable to that obtained with FCS or serum substitutes containing animal-derived proteins. These results will have crucial significance for future applications of cultured human MSCs in bone tissue engineering.

  9. pHEMA-nHA encapsulation and delivery of vancomycin and rhBMP-2 enhances its role as a bone graft substitute.

    PubMed

    Li, Xinning; Xu, Jianwen; Filion, Tera M; Ayers, David C; Song, Jie

    2013-08-01

    Bone grafts are widely used in orthopaedic procedures. Autografts are limited by donor site morbidity while allografts are known for considerable infection and failure rates. A synthetic composite bone graft substitute poly(2-hydroxyethyl methacrylate)-nanocrystalline hydroxyapatite (pHEMA-nHA) was previously developed to stably press-fit in and functionally repair critical-sized rat femoral segmental defects when it was preabsorbed with a single low dose of 300 ng recombinant human bone morphogenetic protein-2/7 (rhBMP-2/7). To facilitate clinical translation of pHEMA-nHA as a synthetic structural bone graft substitute, we examined its ability to encapsulate and release rhBMP-2 and the antibiotic vancomycin. We analyzed the compressive behavior and microstructure of pHEMA-nHA as a function of vancomycin incorporation doses using a dynamic mechanical analyzer and a scanning electron microscope. In vitro release of vancomycin was monitored by ultraviolet-visible spectroscopy. Release of rhBMP-2 from pHEMA-nHA-vancomycin was determined by ELISA. Bioactivity of the released vancomycin and rhBMP-2 was examined by bacterial inhibition and osteogenic transdifferentiation capabilities in cell culture, respectively. Up to 4.8 wt% of vancomycin was incorporated into pHEMA-nHA without compromising its structural integrity and compressive modulus. Encapsulated vancomycin was released in a dose-dependent and sustained manner in phosphate-buffered saline over 2 weeks, and the released vancomycin inhibited Escherichia coli culture. The pHEMA-nHA-vancomycin composite released preabsorbed rhBMP-2 in a sustained manner over 8 days and locally induced osteogenic transdifferentiation of C2C12 cells in culture. pHEMA-nHA can encapsulate and deliver vancomycin and rhBMP-2 in a sustained and localized manner with reduced loading doses. The elasticity, osteoconductivity, and rhBMP-2/vancomycin delivery characteristics of pHEMA-nHA may benefit orthopaedic reconstructions or fusions with enhanced safety and efficiency and reduced infection risk.

  10. Bone cancer occurrence among beagles given 239Pu as young adults.

    PubMed

    Lloyd, R D; Taylor, G N; Angus, W; Bruenger, F W; Miller, S C

    1993-01-01

    The occurrence of skeletal malignancies has been documented among 234 young adult beagles given single intravenous injections of monomeric 239Pu citrate. Occurrence has also been documented among 132 comparable control group animals surviving the minimum latent time period of 2.79 y for radiation-induced bone cancer, who were maintained for lifespan observation. Injected amounts ranged from about 0.02-106 kBq kg-1 body mass with factors of 2 or 3 between dose levels. There were 84 radiographically apparent bone tumors in 76 plutonium-injected dogs and one tumor in a control group dog. Most of these were osteosarcomas except for seven chondrosarcomas, one liposarcoma, and one plasma cell myeloma of bone. The relationship between percent of dogs at any dose level with bone malignancy and average skeletal dose at the presumed time of tumor initiation of 1 y before death appeared to be linear below about 1.3 Gy average skeletal dose. The observed data can be approximated by the expression A = 0.76 + 75 D, where A = percent of dogs with bone cancer at any dose level, D = average skeletal dose in Gy (for doses up to 1.3 Gy) at tumor initiation, and 0.76 represents the percent tumor response in the control animals not given plutonium. Similar analysis of our corresponding data for beagles given 226Ra, excluding the two highest dose levels (approximately 100% occurrence), yielded the expression A = 0.76 + 4.7 D, where D = the average skeletal dose in Gy (for doses up to 20 Gy) at 1 y before death. The ratio of coefficients indicates the effectiveness for bone cancer induction of 239Pu relative to 226Ra, or [(75 +/- 22.5)(4.7 +/- 0.47)-1] = 16 +/- 5 for a single, brief intake of either nuclide into blood.

  11. A tissue-engineered humanized xenograft model of human breast cancer metastasis to bone

    PubMed Central

    Thibaudeau, Laure; Taubenberger, Anna V.; Holzapfel, Boris M.; Quent, Verena M.; Fuehrmann, Tobias; Hesami, Parisa; Brown, Toby D.; Dalton, Paul D.; Power, Carl A.; Hollier, Brett G.; Hutmacher, Dietmar W.

    2014-01-01

    ABSTRACT The skeleton is a preferred homing site for breast cancer metastasis. To date, treatment options for patients with bone metastases are mostly palliative and the disease is still incurable. Indeed, key mechanisms involved in breast cancer osteotropism are still only partially understood due to the lack of suitable animal models to mimic metastasis of human tumor cells to a human bone microenvironment. In the presented study, we investigate the use of a human tissue-engineered bone construct to develop a humanized xenograft model of breast cancer-induced bone metastasis in a murine host. Primary human osteoblastic cell-seeded melt electrospun scaffolds in combination with recombinant human bone morphogenetic protein 7 were implanted subcutaneously in non-obese diabetic/severe combined immunodeficient mice. The tissue-engineered constructs led to the formation of a morphologically intact ‘organ’ bone incorporating a high amount of mineralized tissue, live osteocytes and bone marrow spaces. The newly formed bone was largely humanized, as indicated by the incorporation of human bone cells and human-derived matrix proteins. After intracardiac injection, the dissemination of luciferase-expressing human breast cancer cell lines to the humanized bone ossicles was detected by bioluminescent imaging. Histological analysis revealed the presence of metastases with clear osteolysis in the newly formed bone. Thus, human tissue-engineered bone constructs can be applied efficiently as a target tissue for human breast cancer cells injected into the blood circulation and replicate the osteolytic phenotype associated with breast cancer-induced bone lesions. In conclusion, we have developed an appropriate model for investigation of species-specific mechanisms of human breast cancer-related bone metastasis in vivo. PMID:24713276

  12. A cannabinoid 2 receptor agonist attenuates bone cancer-induced pain and bone loss

    PubMed Central

    Lozano, Alysia; Wright, Courtney; Vardanyan, Anna; King, Tamara; Largent-Milnes, Tally M.; Nelson, Mark; Jimenez-Andrade, Juan Miguel; Mantyh, Patrick W; Vanderah, Todd W.

    2010-01-01

    Aims Cannabinoid CB2 agonists have been shown to alleviate behavioral signs of inflammatory and neuropathic pain in animal models. AM1241, a CB2 agonist, does not demonstrate central nervous system side-effects seen with CB1 agonists such as hypothermia and catalepsy. Metastatic bone cancer causes severe pain in patients and is treated with analgesics such as opiates. Recent reports suggest that sustained opiates can produce paradoxical hyperalgesic actions and enhance bone destruction in a murine model of bone cancer. In contrast, CB2 selective agonists have been shown to reduce bone loss associated with a model of osteoporosis. Here we tested whether a CB2 agonist administered over a 7 day period inhibits bone cancer-induced pain as well as attenuates cancer-induced bone degradation. Main Methods A murine bone cancer model was used in which osteolytic sarcoma cells were injected into the intramedullary space of the distal end of the femur. Behavioral and radiographic image analysis was performed at days 7, 10 and 14 after injection of tumor cells into the femur. Key Findings Osteolytic sarcoma within the femur produced spontaneous and touch evoked behavioral signs of pain within the tumor-bearing limb. The systemic administration of AM1241 acutely or for 7 days significantly attenuated spontaneous and evoked pain in the inoculated limb. Sustained AM1241 significantly reduced bone loss and decreased the incidence of cancer-induced bone fractures. Significance These findings suggest a novel therapy for cancer-induced bone pain, bone loss and bone fracture while lacking many unwanted side effects seen with current treatments for bone cancer pain. PMID:20176037

  13. Bone Regeneration of Hydroxyapatite with Granular Form or Porous Scaffold in Canine Alveolar Sockets

    PubMed Central

    JANG, SEOK JIN; KIM, SE EUN; HAN, TAE SUNG; SON, JUN SIK; KANG, SEONG SOO; CHOI, SEOK HWA

    2017-01-01

    This study was undertaken to assess bone regeneration using hydroxyapatite (HA). The primary focus was comparison of bone regeneration between granular HA (gHA) forms and porous HA (pHA) scaffold. The extracted canine alveolar sockets were divided with three groups: control, gHA and pHA. Osteogenic effect in the gHA and pHA groups showed bone-specific surface and bone mineral density to be significantly higher than that of the control group (p<0.01). Bone volume fraction, bone mineral density, and amount of connective tissue related to disturbing osseointegration of the gHA group was higher than in the pHA group. Quantity of new bone formation of the pHA group was higher than that of the gHA group. This study demonstrated that gHA and pHA are potentially good bone substitutes for alveolar socket healing. For new bone formation during 8 weeks' post-implantation, HA with porous scaffold was superior to the granular form of HA. PMID:28438860

  14. Advances in bionanomaterials for bone tissue engineering.

    PubMed

    Scott, Timothy G; Blackburn, Gary; Ashley, Michael; Bayer, Ilker S; Ghosh, Anindya; Biris, Alexandru S; Biswas, Abhijit

    2013-01-01

    Bone is a specialized form of connective tissue that forms the skeleton of the body and is built at the nano and microscale levels as a multi-component composite material consisting of a hard inorganic phase (minerals) in an elastic, dense organic network. Mimicking bone structure and its properties present an important frontier in the fields of nanotechnology, materials science and bone tissue engineering, given the complex morphology of this tissue. There has been a growing interest in developing artificial bone-mimetic nanomaterials with controllable mineral content, nanostructure, chemistry for bone, cartilage tissue engineering and substitutes. This review describes recent advances in bionanomaterials for bone tissue engineering including developments in soft tissue engineering. The significance and basic process of bone tissue engineering along with different bionanomaterial bone scaffolds made of nanocomposites and nanostructured biopolymers/bioceramics and the prerequisite biomechanical functions are described. It also covers latest developments in soft-tissue reconstruction and replacement. Finally, perspectives on the future direction in nanotechnology-enabled bone tissue engineering are presented.

  15. Segmental bone defects: from cellular and molecular pathways to the development of novel biological treatments

    PubMed Central

    Pneumaticos, Spyros G; Triantafyllopoulos, Georgios K; Basdra, Efthimia K; Papavassiliou, Athanasios G

    2010-01-01

    Abstract Several conditions in clinical orthopaedic practice can lead to the development of a diaphyseal segmental bone defect, which cannot heal without intervention. Segmental bone defects have been traditionally treated with bone grafting and/or distraction osteogenesis, methods that have many advantages, but also major drawbacks, such as limited availability, risk of disease transmission and prolonged treatment. In order to overcome such limitations, biological treatments have been developed based on specific pathways of bone physiology and healing. Bone tissue engineering is a dynamic field of research, combining osteogenic cells, osteoinductive factors, such as bone morphogenetic proteins, and scaffolds with osteoconductive and osteoinductive attributes, to produce constructs that could be used as bone graft substitutes for the treatment of segmental bone defects. Scaffolds are usually made of ceramic or polymeric biomaterials, or combinations of both in composite materials. The purpose of the present review is to discuss in detail the molecular and cellular basis for the development of bone tissue engineering constructs. PMID:20345845

  16. Treatment of central giant cell lesions using bisphosphonates with intralesional corticosteroid injections

    PubMed Central

    2012-01-01

    Central giant cell lesions are benign intraosseous proliferative lesions that have considerable local aggressiveness. Nonsurgical treatment methods, such as intralesional corticosteroid injections, systemic calcitonin and interferon have been reported. Recently, bisphosphonates have been used to treat central giant cell lesions. A case of a 36-year-old male with a central giant cell lesion crossing the mandibular midline was treated with intralesional corticosteroids combined with alendronate sodium for the control of systemic bone resorption. The steroid injections and the use of bisphosphonates were stopped after seven months when further needle penetration into the lesion was not possible due to new bone formation. After two years, the bony architecture was near normal, and only minimal radiolucency was present around the root apices of the involved teeth. The patient was followed up for four years, and panoramic radiography showed areas of new bone formation. Thus far, neither recurrence nor side effects of the medication have been detected. PMID:22913518

  17. Advantageous new conic cannula for spine cement injection.

    PubMed

    González, Sergio Gómez; Vlad, María Daniela; López, José López; Aguado, Enrique Fernández

    2014-09-01

    Experimental study to characterize the influence of the cannula geometry on both, the pressure drop and the cement flow velocity established along the cannula. To investigate how the new experimental geometry of cannulas can affect the extravertebral injection pressure and the velocity profiles established along the cannula during the injection process. Vertebroplasty procedure is being used to treat vertebral compression fractures. Vertebra infiltration is favored by the use of suitable: (1) syringes or injector devices; (2) polymer or ceramic bone cements; and (3) cannulas. However, the clinical use of ceramic bone cement has been limited due to press-filtering problems. Thus, new approaches concerning the cannula geometry are needed to minimize the press-filtering of calcium phosphate-based bone cements and thereby broaden its possible applications. Straight, conic, and combined conic-straight new cannulas with different proximal and distal both length and diameter ratios were drawn with computer-assisted design software. The new geometries were theoretically analyzed by: (1) Hagen-Poisseuille law; and (2) computational fluid dynamics. Some experimental models were manufactured and tested for extrusion in order to confirm and further advance the theoretical results. The results confirm that the totally conic cannula model, having proximal to distal diameter ratio equal 2, requires the lowest injection pressure. Furthermore, its velocity profile showed no discontinuity at all along the cannula length, compared with other known combined proximal and distal straight cannulas, where discontinuity was produced at the proximal-distal transition zone. The conclusion is that the conic cannulas: (a) further reduced the extravertebral pressure during the injection process; (b) showed optimum fluid flow velocity profiles to minimize filter-pressing problems, especially when ceramic cements are used; and (c) can be easily manufactured. In this sense, the new conic cannulas should favor the use of calcium phosphate bone cements in the spine. N/A.

  18. Strontium-rich injectable hybrid system for bone regeneration.

    PubMed

    Neves, Nuno; Campos, Bruno B; Almeida, Isabel F; Costa, Paulo C; Cabral, Abel Trigo; Barbosa, Mário A; Ribeiro, Cristina C

    2016-02-01

    Current challenges in the development of scaffolds for bone regeneration include the engineering of materials that can withstand normal dynamic physiological mechanical stresses exerted on the bone and provide a matrix capable of supporting cell migration and tissue ingrowth. The objective of the present work was to develop and characterize a hybrid polymer–ceramic injectable system that consists of an alginate matrix crosslinked in situ in the presence of strontium(Sr), incorporating a ceramic reinforcement in the form of Sr-rich microspheres. The incorporation of Sr in the microspheres and in the vehicle relies on the growing evidence that Sr has beneficial effects in bone remodeling and in the treatment of osteopenic disorders and osteoporosis. Sr-rich porous hydroxyapatite microspheres with a uniform size and a mean diameter of 555 μm were prepared, and their compression strength and friability tested. A 3.5% (w/v) ultrapure sodium alginate solution was used as the vehicle and its in situ gelation was promoted by the addition of calcium (Ca) or Sr carbonate and Glucone-δ-lactone. Gelation times varied with temperature and crosslinking agent, being slower for Sr than for Ca, but adequate for injection in both cases. Injectability was evaluated using a device employed in vertebroplasty surgical procedures, coupled to a texture analyzer in compression mode. Compositions with 35%w of microspheres presented the best compromise between injectability and compression strength of the system, the force required to extrude it being lower than 100 N.Micro CT analysis revealed a homogeneous distribution of the microspheres inside the vehicle, and a mean inter-microspheres space of 220 μm. DMA results showed that elastic behavior of the hybrid is over the viscous one and that the higher storage modulus was obtained for the 3.5%Alg–35%Sr-HAp-Sr formulation.

  19. Low dose PTH improves metaphyseal bone healing more when muscles are paralyzed.

    PubMed

    Sandberg, Olof; Macias, Brandon R; Aspenberg, Per

    2014-06-01

    Stimulation of bone formation by PTH is related to mechanosensitivity. The response to PTH treatment in intact bone could therefore be blunted by unloading. We studied the effects of mechanical loading on the response to PTH treatment in bone healing. Most fractures occur in the metaphyses, therefor we used a model for metaphyseal bone injury. One hind leg of 20 male SD rats was unloaded via intramuscular botulinum toxin injections. Two weeks later, the proximal unloaded tibia had lost 78% of its trabecular contents. At this time-point, the rats received bilateral proximal tibiae screw implants. Ten of the 20 rats were given daily injections of 5 μg/kg PTH (1-34). After two weeks of healing, screw fixation was measured by pull-out, and microCT of the distal femur cancellous compartment was performed. Pull-out force provided an estimate for cancellous bone formation after trauma. PTH more than doubled the pull-out force in the unloaded limbs (from 14 to 30 N), but increased it by less than half in the loaded ones (from 30 to 44 N). In relative terms, PTH had a stronger effect on pull-out force in unloaded bone than in loaded bone (p=0.03). The results suggest that PTH treatment for stimulation of bone healing does not require simultaneous mechanical stimulation. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. Relationship between trabecular texture features of CT images and an amount of bone cement volume injection in percutaneous vertebroplasty

    NASA Astrophysics Data System (ADS)

    Tack, Gye Rae; Choi, Hyung Guen; Shin, Kyu-Chul; Lee, Sung J.

    2001-06-01

    Percutaneous vertebroplasty is a surgical procedure that was introduced for the treatment of compression fracture of the vertebrae. This procedure includes puncturing vertebrae and filling with polymethylmethacrylate (PMMA). Recent studies have shown that the procedure could provide structural reinforcement for the osteoporotic vertebrae while being minimally invasive and safe with immediate pain relief. However, treatment failures due to disproportionate PMMA volume injection have been reported as one of complications in vertebroplasty. It is believed that control of PMMA volume is one of the most critical factors that can reduce the incidence of complications. In this study, appropriate amount of PMMA volume was assessed based on the imaging data of a given patient under the following hypotheses: (1) a relationship can be drawn between the volume of PMMA injection and textural features of the trabecular bone in preoperative CT images and (2) the volume of PMMA injection can be estimated based on 3D reconstruction of postoperative CT images. Gray-level run length analysis was used to determine the textural features of the trabecular bone. The width of trabecular (T-texture) and the width of intertrabecular spaces (I-texture) were calculated. The correlation between PMMA volume and textural features of patient's CT images was also examined to evaluate the appropriate PMMA amount. Results indicated that there was a strong correlation between the actual PMMA injection volume and the area of the intertrabecular space and that of trabecular bone calculated from the CT image (correlation coefficient, requals0.96 and requals-0.95, respectively). T- texture (requals-0.93) did correlate better with the actual PMMA volume more than the I-texture (requals0.57). Therefore, it was demonstrated that appropriate PMMA injection volume could be predicted based on the textural analysis for better clinical management of the osteoporotic spine.

Top