Sample records for injectable hydrogels based

  1. Self-healing polysaccharide-based hydrogels as injectable carriers for neural stem cells

    PubMed Central

    Wei, Zhao; Zhao, Jingyi; Chen, Yong Mei; Zhang, Pengbo; Zhang, Qiqing

    2016-01-01

    Self-healing injectable hydrogels can be formulated as three-dimensional carriers for the treatment of neurological diseases with desirable advantages, such as avoiding the potential risks of cell loss during injection, protecting cells from the shearing force of injection. However, the demands for biocompatible self-healing injectable hydrogels to meet above requirements and to promote the differentiation of neural stem cells (NSCs) into neurons remain a challenge. Herein, we developed a biocompatible self-healing polysaccharide-based hydrogel system as a novel injectable carrier for the delivery of NSCs. N-carboxyethyl chitosan (CEC) and oxidized sodium alginate (OSA) are the main backbones of the hydrogel networks, denoted as CEC-l-OSA hydrogel (“l” means “linked-by”). Owing to the dynamic imine cross-links formed by a Schiff reaction between amino groups on CEC and aldehyde groups on OSA, the hydrogel possesses the ability to self-heal into a integrity after being injected from needles under physiological conditions. The CEC-l-OSA hydrogel in which the stiffness mimicking nature brain tissues (100~1000 Pa) can be finely tuned to support the proliferation and neuronal differentiation of NSCs. The multi-functional, injectable, and self-healing CEC-l-OSA hydrogels hold great promises for NSC transplantation and further treatment of neurological diseases. PMID:27897217

  2. Self-healing polysaccharide-based hydrogels as injectable carriers for neural stem cells

    NASA Astrophysics Data System (ADS)

    Wei, Zhao; Zhao, Jingyi; Chen, Yong Mei; Zhang, Pengbo; Zhang, Qiqing

    2016-11-01

    Self-healing injectable hydrogels can be formulated as three-dimensional carriers for the treatment of neurological diseases with desirable advantages, such as avoiding the potential risks of cell loss during injection, protecting cells from the shearing force of injection. However, the demands for biocompatible self-healing injectable hydrogels to meet above requirements and to promote the differentiation of neural stem cells (NSCs) into neurons remain a challenge. Herein, we developed a biocompatible self-healing polysaccharide-based hydrogel system as a novel injectable carrier for the delivery of NSCs. N-carboxyethyl chitosan (CEC) and oxidized sodium alginate (OSA) are the main backbones of the hydrogel networks, denoted as CEC-l-OSA hydrogel (“l” means “linked-by”). Owing to the dynamic imine cross-links formed by a Schiff reaction between amino groups on CEC and aldehyde groups on OSA, the hydrogel possesses the ability to self-heal into a integrity after being injected from needles under physiological conditions. The CEC-l-OSA hydrogel in which the stiffness mimicking nature brain tissues (100~1000 Pa) can be finely tuned to support the proliferation and neuronal differentiation of NSCs. The multi-functional, injectable, and self-healing CEC-l-OSA hydrogels hold great promises for NSC transplantation and further treatment of neurological diseases.

  3. pH-responsive self-healing injectable hydrogel based on N-carboxyethyl chitosan for hepatocellular carcinoma therapy.

    PubMed

    Qu, Jin; Zhao, Xin; Ma, Peter X; Guo, Baolin

    2017-08-01

    Injectable hydrogels with pH-responsiveness and self-healing ability have great potential for anti-cancer drug delivery. Herein, we developed a series of polysaccharide-based self-healing hydrogels with pH-sensitivity as drug delivery vehicles for hepatocellular carcinoma therapy. The hydrogels were prepared by using N-carboxyethyl chitosan (CEC) synthesized via Michael reaction in aqueous solution and dibenzaldehyde-terminated poly(ethylene glycol) (PEGDA). Doxorubicin (Dox), as a model of water-soluble small molecule anti-cancer drug was encapsulated into the hydrogel in situ. Self-healing behavior of the hydrogels was investigated at microscopic and macroscopic levels, and the hydrogels showed rapid self-healing performance without any external stimulus owing to the dynamic covalent Schiff-base linkage between amine groups from CEC and benzaldehyde groups from PEGDA. The chemical structures, rheological property, in vitro gel degradation, morphology, gelation time and in vitro Dox release behavior from the hydrogels were characterized. Injectability was verified by in vitro injection and in vivo subcutaneous injection in a rat. pH-responsive behavior was verified by in vitro Dox release from hydrogels in PBS solutions with different pH values. Furthermore, the activity of Dox released from hydrogel matrix was evaluated by employing human hepatocellular liver carcinoma (HepG2). Cytotoxicity test of the hydrogels using L929 cells confirmed their good cytocompatibility. Together, these pH-responsive self-healing injectable hydrogels are excellent candidates as drug delivery vehicles for liver cancer treatment. STATEMENT OF SIGNIFICANCE: pH-responsive drug delivery system could release drug efficiently in targeted acid environment and minimalize the amount of drug release in normal physiological environment. pH-sensitive injectable hydrogels as smart anti-cancer drug delivery carriers show great potential application for cancer therapy. The hydrogels with self-healing property could prolong their lifetime during implantation and provide the advantage of minimally invasive surgery and high drug-loading ratio. This work reported the design of a series of pH-responsive self-healing injectable hydrogels based on N-carboxyethyl chitosan synthesized in aqueous solution and dibenzaldehyde-terminated poly(ethylene glycol) via a green approach, and demonstrated their potential as intelligent delivery vehicle of doxorubicin for hepatocellular carcinoma therapy via the pH-responsive nature of dynamic Schiff base. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  4. Design of a Coupled Thermoresponsive Hydrogel and Robotic System for Postinfarct Biomaterial Injection Therapy

    PubMed Central

    Fok, Kevin; Yoshizumi, Tomo; Park, Daewoo; Jiang, Hongbin; Schwartzman, David S.; Zenati, Marco A.; Uchibori, Takafumi

    2016-01-01

    Background In preclinical testing, ventricular wall injection of hydrogels has been shown to be effective in modulating ventricular remodeling and preserving cardiac function. For some approaches, early-stage clinical trials are under way. The hydrogel delivery method varies, with minimally invasive approaches being preferred. Endocardial injections carry a risk of hydrogel regurgitation into the circulation, and precise injection patterning is a challenge. An epicardial approach with a thermally gelling hydrogel through the subxiphoid pathway overcomes these disadvantages. Methods A relatively stiff, thermally responsive, injectable hydrogel based on N-isopropylacrylamide and N-vinylpyrrolidone (VP gel) was synthesized and characterized. VP gel thermal behavior was tuned to couple with a transepicardial injection robot, incorporating a cooling feature to achieve injectability. Ventricular wall injections of the optimized VP gel have been performed ex vivo and on beating porcine hearts. Results Thermal transition temperature, viscosity, and gelling time for the VP gel were manipulated by altering N-vinylpyrrolidone content. The target parameters for cooling in the robotic system were chosen by thermal modeling to support smooth, repeated injections on an ex vivo heart. Injections at predefined locations and depth were confirmed in an infarcted porcine model. Conclusions A coupled thermoresponsive hydrogel and robotic injection system incorporating a temperature-controlled injectate line was capable of targeted injections and amenable to use with a subxiphoid transepicardial approach for hydrogel injection after myocardial infarction. The confirmation of precise location and depth injections would facilitate a patient-specific planning strategy to optimize injection patterning to maximize the mechanical benefits of hydrogel placement. PMID:27154150

  5. Injectable hydrogels for delivering biotherapeutic molecules.

    PubMed

    Mathew, Ansuja Pulickal; Uthaman, Saji; Cho, Ki-Hyun; Cho, Chong-Su; Park, In-Kyu

    2018-04-15

    To date, numerous delivery systems based on either organic or inorganic material have been developed to achieve efficient and sustained delivery of therapeutics. Hydrogels, which are three dimensional networks of crosslinked hydrophilic polymers, have a significant role in solving the clinical and pharmacological limitations of present systems because of their biocompatibility, ease of preparation and unique physical properties such as a tunable porous nature and affinity for biological fluids. Development of an in situ forming injectable hydrogel system has allowed excellent spatial and temporal control, unlike systemically administered therapeutics. Injectable hydrogel systems can offset difficulties with conventional hydrogel-based drug delivery systems in the clinic by forming a drug/gene delivery or cell-growing depot in the body with a single injection, thereby enabling patient compliance and comfort. Carbohydrate polymers are widely used for the synthesis of injectable in situ-forming hydrogels because of ready availability, presence of modifiable functional groups, biocompatibility and other physiochemical properties. In this review, we discuss different aspects of injectable hydrogels, such as bulk hydrogels/macrogels, microgels, and nanogels derived from natural polymers, and their importance in the delivery of therapeutics such as genes, drugs, cells or other biomolecules and how these revolutionary systems can complement existing therapeutic delivery systems. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Design of a Coupled Thermoresponsive Hydrogel and Robotic System for Postinfarct Biomaterial Injection Therapy.

    PubMed

    Zhu, Yang; Wood, Nathan A; Fok, Kevin; Yoshizumi, Tomo; Park, Dae Woo; Jiang, Hongbin; Schwartzman, David S; Zenati, Marco A; Uchibori, Takafumi; Wagner, William R; Riviere, Cameron N

    2016-09-01

    In preclinical testing, ventricular wall injection of hydrogels has been shown to be effective in modulating ventricular remodeling and preserving cardiac function. For some approaches, early-stage clinical trials are under way. The hydrogel delivery method varies, with minimally invasive approaches being preferred. Endocardial injections carry a risk of hydrogel regurgitation into the circulation, and precise injection patterning is a challenge. An epicardial approach with a thermally gelling hydrogel through the subxiphoid pathway overcomes these disadvantages. A relatively stiff, thermally responsive, injectable hydrogel based on N-isopropylacrylamide and N-vinylpyrrolidone (VP gel) was synthesized and characterized. VP gel thermal behavior was tuned to couple with a transepicardial injection robot, incorporating a cooling feature to achieve injectability. Ventricular wall injections of the optimized VP gel have been performed ex vivo and on beating porcine hearts. Thermal transition temperature, viscosity, and gelling time for the VP gel were manipulated by altering N-vinylpyrrolidone content. The target parameters for cooling in the robotic system were chosen by thermal modeling to support smooth, repeated injections on an ex vivo heart. Injections at predefined locations and depth were confirmed in an infarcted porcine model. A coupled thermoresponsive hydrogel and robotic injection system incorporating a temperature-controlled injectate line was capable of targeted injections and amenable to use with a subxiphoid transepicardial approach for hydrogel injection after myocardial infarction. The confirmation of precise location and depth injections would facilitate a patient-specific planning strategy to optimize injection patterning to maximize the mechanical benefits of hydrogel placement. Copyright © 2016 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights reserved.

  7. Preparation of Chitosan-based Injectable Hydrogels and Its Application in 3D Cell Culture.

    PubMed

    Li, Yongsan; Zhang, Yaling; Wei, Yen; Tao, Lei

    2017-09-29

    The protocol presents a facile, efficient, and versatile method to prepare chitosan-based hydrogels using dynamic imine chemistry. The hydrogel is prepared by mixing solutions of glycol chitosan with a synthesized benzaldehyde terminated polymer gelator, and hydrogels are efficiently obtained in several minutes at room temperature. By varying ratios between glycol chitosan, polymer gelator, and water contents, versatile hydrogels with different gelation times and stiffness are obtained. When damaged, the hydrogel can recover its appearances and modulus, due to the reversibility of the dynamic imine bonds as crosslinkages. This self-healable property enables the hydrogel to be injectable since it can be self-healed from squeezed pieces to an integral bulk hydrogel after the injection process. The hydrogel is also multi-responsive to many bio-active stimuli due to different equilibration statuses of the dynamic imine bonds. This hydrogel was confirmed as bio-compatible, and L929 mouse fibroblast cells were embedded following standard procedures and the cell proliferation was easily assessed by a 3D cell cultivation process. The hydrogel can offer an adjustable platform for different research where a physiological mimic of a 3D environment for cells is profited. Along with its multi-responsive, self-healable, and injectable properties, the hydrogels can potentially be applied as multiple carriers for drugs and cells in future bio-medical applications.

  8. Injectable In Situ Forming Biodegradable Chitosan-Hyaluronic acid Based Hydrogels for Cartilage Tissue Engineering

    PubMed Central

    Tan, Huaping; Chu, Constance R.; Payne, Karin; Marra, Kacey G.

    2009-01-01

    Injectable, biodegradable scaffolds are important biomaterials for tissue engineering and drug delivery. Hydrogels derived from natural polysaccharides are ideal scaffolds as they resemble the extracellular matrices of tissues comprised of various glycosaminoglycans (GAG). Here, we report a new class of biocompatible and biodegradable composite hydrogels derived from water-soluble chitosan and oxidized hyaluronic acid upon mixing, without the addition of a chemical crosslinking agent. The gelation is attributed to the Schiff-base reaction between amino and aldehyde groups of polysaccharide derivatives. In the current work, N-succinyl-chitosan (S-CS) and aldehyde hyaluronic acid (A-HA) were synthesized for preparation of the composite hydrogels. The polysaccharide derivatives and composite hydrogels were characterized by FTIR spectroscopy. The effect of the ratio of S-CS and A-HA on the gelation time, microstructure, surface morphology, equilibrium swelling, compressive modulus, and in vitro degradation of composite hydrogels was examined. The potential of the composite hydrogel as an injectable scaffold was demonstrated by encapsulation of bovine articular chondrocytes within the composite hydrogel matrix in vitro. The results demonstrated that the composite hydrogel supported cell survival and the cells retained chondrocytic morphology. These characteristics provide a potential opportunity to use the injectable, composite hydrogels in tissue engineering applications. PMID:19167750

  9. The effects of cross-linked thermo-responsive PNIPAAm-based hydrogel injection on retinal function.

    PubMed

    Turturro, Sanja B; Guthrie, Micah J; Appel, Alyssa A; Drapala, Pawel W; Brey, Eric M; Pérez-Luna, Victor H; Mieler, William F; Kang-Mieler, Jennifer J

    2011-05-01

    There is significant interest in biomaterials that provide sustained release of therapeutic molecules to the retina. Poly(N-isopropylacrylamide) (PNIPAAm)-based materials have received significant attention as injectable drug delivery platforms due to PNIPAAm's thermo-responsive properties at approximately 32 °C. While the drug delivery properties of PNIPAAm materials have been studied extensively, there is a need to evaluate the safety effects of hydrogel injection on retinal function. The purpose of this study was to examine the effect of poly(ethylene glycol) diacrylate (PEG-DA) crosslinked PNIPAAm hydrogel injection on retinal function. Utilizing scanning laser ophthalmoscopy (SLO), optical coherent tomography (OCT), and electroretinography (ERG), retinal function was assessed following hydrogel injection. In region near the hydrogel, there was a significant decrease in arterial and venous diameters (∼4%) and an increase in venous blood velocity (∼8%) 1 week post-injection. Retinal thickness decreased (∼6%) at 1 week and the maximum a- and b-wave amplitudes of ERG decreased (∼15%). All data returned to baseline values after week 1. These data suggest that the injection of PEG-DA crosslinked PNIPAAm hydrogel results in a small transient effect on retinal function without any long-term effects. These results further support the potential of PNIPAAm-based materials as an ocular drug delivery platform. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. Injectable Solid Peptide Hydrogel as Cell Carrier: Effects of Shear Flow on Hydrogel and Cell Payload

    PubMed Central

    Yan, Congqi; Mackay, Michael E.; Czymmek, Kirk; Nagarkar, Radhika P.; Schneider, Joel P.; Pochan, Darrin J.

    2012-01-01

    β-hairpin peptide-based hydrogels are a class of injectable solid hydrogels that can deliver encapsulated cells or molecular therapies to a target site via syringe or catheter injection as a carrier material. These physical hydrogels can shear-thin and consequently flow as a low-viscosity material under a sufficient shear stress but immediately recover back into a solid upon removal of the stress, allowing them to be injected as preformed gel solids. Hydrogel behavior during flow was studied in a cylindrical capillary geometry that mimicked the actual situation of injection through a syringe needle in order to quantify effects of shear-thin injection delivery on hydrogel flow behavior and encapsulated cell payloads. It was observed that all β-hairpin peptide hydrogels investigated displayed a promising flow profile for injectable cell delivery: a central wide plug flow region where gel material and cell payloads experienced little or no shear rate and a narrow shear zone close to the capillary wall where gel and cells were subject to shear deformation. The width of the plug flow region was found to be weakly dependent on hydrogel rigidity and flow rate. Live-dead assays were performed on encapsulated MG63 cells three hours after injection flow and revealed that shear-thin delivery through the capillary had little impact on cell viability and the spatial distribution of encapsulated cell payloads. These observations help us to fundamentally understand how the gels flow during injection through a thin catheter and how they immediately restore mechanically and morphologically relative to pre-flow, static gels. PMID:22390812

  11. Injectable and body temperature sensitive hydrogels based on chitosan and hyaluronic acid for pH sensitive drug release.

    PubMed

    Zhang, Wei; Jin, Xin; Li, Heng; Zhang, Run-Run; Wu, Cheng-Wei

    2018-04-15

    Hydrogels based on chitosan/hyaluronic acid/β-sodium glycerophosphate demonstrate injectability, body temperature sensitivity, pH sensitive drug release and adhesion to cancer cell. The drug (doxorubicin) loaded hydrogel precursor solutions are injectable and turn to hydrogels when the temperature is increased to body temperature. The acidic condition (pH 4.00) can trigger the release of drug and the cancer cell (Hela) can adhere to the surface of the hydrogels, which will be beneficial for tumor site-specific administration of drug. The mechanical strength, the gelation temperature, and the drug release behavior can be tuned by varying hyaluronic acid content. The mechanisms were characterized using dynamic mechanical analysis, Fourier transform infrared spectroscopy, scanning electron microscopy and fluorescence microscopy. The carboxyl group in hyaluronic acid can form the hydrogen bondings with the protonated amine in chitosan, which promotes the increase of mechanical strength of the hydrogels and depresses the initial burst release of drug from the hydrogel. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Injectable dextran hydrogels fabricated by metal-free click chemistry for cartilage tissue engineering.

    PubMed

    Wang, Xiaoyu; Li, Zihan; Shi, Ting; Zhao, Peng; An, Kangkang; Lin, Chao; Liu, Hongwei

    2017-04-01

    Injectable dextran-based hydrogels were prepared for the first time by bioorthogonal click chemistry for cartilage tissue engineering. Click-crosslinked injectable hydrogels based on cyto-compatible dextran (Mw=10kDa) were successfully fabricated under physiological conditions by metal-free alkyne-azide cycloaddition (click) reaction between azadibenzocyclooctyne-modified dextran (Dex-ADIBO) and azide-modified dextran (Dex-N 3 ). Gelation time of these dextran hydrogels could be regulated in the range of approximately 1.1 to 10.2min, depending on the polymer concentrations (5% or 10%) and ADIBO substitution degree (DS, 5 or 10) of Dex-ADIBO. Rheological analysis indicated that the dextran hydrogels were elastic and had storage moduli from 2.1 to 6.0kPa with increasing DS of ADIBO from 5 to 10. The in vitro tests revealed that the dextran hydrogel crosslinked from Dex-ADIBO DS 10 and Dex-N 3 DS 10 at a polymer concentration of 10% could support high viability of individual rabbit chondrocytes and the chondrocyte spheroids encapsulated in the hydrogel over 21days. Individual chondrocytes and chondrocyte spheroids in the hydrogel could produce cartilage matrices such as collagen and glycosaminoglycans. However, the chondrocyte spheroids produced a higher content of matrices than individual chondrocytes. This study indicates that metal-free click chemistry is effective to produce injectable dextran hydrogels for cartilage tissue engineering. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. In Vivo Imaging of the Stability and Sustained Cargo Release of an Injectable Amphipathic Peptide-Based Hydrogel.

    PubMed

    Oyen, Edith; Martin, Charlotte; Caveliers, Vicky; Madder, Annemieke; Van Mele, Bruno; Hoogenboom, Richard; Hernot, Sophie; Ballet, Steven

    2017-03-13

    Hydrogels are promising materials for biomedical applications such as tissue engineering and controlled drug release. In the past two decades, the peptide hydrogel subclass has attracted an increasing level of interest from the scientific community because of its numerous advantages, such as biocompatibility, biodegradability, and, most importantly, injectability. Here, we report on a hydrogel consisting of the amphipathic hexapeptide H-FEFQFK-NH 2 , which has previously shown promising in vivo properties in terms of releasing morphine. In this study, the release of a small molecule, a peptide, and a protein cargo as representatives of the three major drug classes is directly visualized by in vivo fluorescence and nuclear imaging. In addition, the in vivo stability of the peptide hydrogel system is investigated through the use of a radiolabeled hydrogelator sequence. Although it is shown that the hydrogel remains present for several days, the largest decrease in volume takes place within the first 12 h of subcutaneous injection, which is also the time frame wherein the cargos are released. Compared to the situation in which the cargos are injected in solution, a prolonged release profile is observed up to 12 h, showing the potential of our hydrogel system as a scaffold for controlled drug delivery. Importantly, this study elucidates the release mechanism of the peptide hydrogel system that seems to be based on erosion of the hydrogel providing a generally applicable controlled release platform for small molecule, peptide, and protein drugs.

  14. Injectable Anisotropic Nanocomposite Hydrogels Direct in Situ Growth and Alignment of Myotubes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    De France, Kevin J.; Yager, Kevin G.; Chan, Katelyn J. W.

    Here, while injectable in situ cross-linking hydrogels have attracted increasing attention as minimally invasive tissue scaffolds and controlled delivery systems, their inherently disorganized and isotropic network structure limits their utility in engineering oriented biological tissues. Traditional methods to prepare anisotropic hydrogels are not easily translatable to injectable systems given the need for external equipment to direct anisotropic gel fabrication and/or the required use of temperatures or solvents incompatible with biological systems. Herein, we report a new class of injectable nanocomposite hydrogels based on hydrazone cross-linked poly(oligoethylene glycol methacrylate) and magnetically aligned cellulose nanocrystals (CNCs) capable of encapsulating skeletal muscle myoblastsmore » and promoting their differentiation into highly oriented myotubes in situ. CNC alignment occurs on the same time scale as network gelation and remains fixed after the removal of the magnetic field, enabling concurrent CNC orientation and hydrogel injection. The aligned hydrogels show mechanical and swelling profiles that can be rationally modulated by the degree of CNC alignment and can direct myotube alignment both in two- and three-dimensions following coinjection of the myoblasts with the gel precursor components. As such, these hydrogels represent a critical advancement in anisotropic biomimetic scaffolds that can be generated noninvasively in vivo following simple injection.« less

  15. Injectable Anisotropic Nanocomposite Hydrogels Direct in Situ Growth and Alignment of Myotubes

    DOE PAGES

    De France, Kevin J.; Yager, Kevin G.; Chan, Katelyn J. W.; ...

    2017-09-28

    Here, while injectable in situ cross-linking hydrogels have attracted increasing attention as minimally invasive tissue scaffolds and controlled delivery systems, their inherently disorganized and isotropic network structure limits their utility in engineering oriented biological tissues. Traditional methods to prepare anisotropic hydrogels are not easily translatable to injectable systems given the need for external equipment to direct anisotropic gel fabrication and/or the required use of temperatures or solvents incompatible with biological systems. Herein, we report a new class of injectable nanocomposite hydrogels based on hydrazone cross-linked poly(oligoethylene glycol methacrylate) and magnetically aligned cellulose nanocrystals (CNCs) capable of encapsulating skeletal muscle myoblastsmore » and promoting their differentiation into highly oriented myotubes in situ. CNC alignment occurs on the same time scale as network gelation and remains fixed after the removal of the magnetic field, enabling concurrent CNC orientation and hydrogel injection. The aligned hydrogels show mechanical and swelling profiles that can be rationally modulated by the degree of CNC alignment and can direct myotube alignment both in two- and three-dimensions following coinjection of the myoblasts with the gel precursor components. As such, these hydrogels represent a critical advancement in anisotropic biomimetic scaffolds that can be generated noninvasively in vivo following simple injection.« less

  16. Structure-Property Evaluation of Thermally and Chemically Gelling Injectable Hydrogels for Tissue Engineering

    PubMed Central

    Ekenseair, Adam K.; Boere, Kristel W. M.; Tzouanas, Stephanie N.; Vo, Tiffany N.; Kasper, F. Kurtis; Mikos, Antonios G.

    2012-01-01

    The impact of synthesis and solution formulation parameters on the swelling and mechanical properties of a novel class of thermally and chemically gelling hydrogels combining poly(N-isopropylacrylamide)-based thermogelling macromers containing pendant epoxy rings with polyamidoamine-based hydrophilic and degradable diamine crosslinking macromers was evaluated. Through variation of network hydrophilicity and capacity for chain rearrangement, the often problematic tendency of thermogelling hydrogels to undergo significant syneresis was addressed. The demonstrated ability to easily tune post-formation dimensional stability at both the synthesis and formulation stages represents a significant novel contribution towards efforts to utilize poly(N-isopropylacrylamide)-based polymers as injectable biomaterials. Furthermore, the cytocompatibility of the hydrogel system under relevant conditions was established, while demonstrating time- and dose-dependent cytotoxicity at high solution osmolality. Such injectable in situ forming degradable hydrogels with tunable water content are promising candidates for many tissue engineering applications, particularly for cell delivery to promote rapid tissue regeneration in non-load-bearing defects. PMID:22881074

  17. An injectable particle-hydrogel hybrid system for glucose-regulatory insulin delivery.

    PubMed

    Zhao, Fuli; Wu, Di; Yao, Dan; Guo, Ruiwei; Wang, Weiwei; Dong, Anjie; Kong, Deling; Zhang, Jianhua

    2017-12-01

    Long-term and daily subcutaneous injections of insulin for the treatment of insulin-dependent diabetic patients often lead to poor patient compliance and undesired complications. Phenylboronic acid (PBA)-based polymeric hydrogels have been widely considered as one of the most promising insulin delivery system to replace the frequent insulin injections. However, their applications are limited by clinically irrelevant glucose-responsive range, slow response rate, low tissue-adhesiveness and poor biodegradability, undesirable leakage at normoglycemic state. Herein, we report a novel implantable insulin hydrogel for glucose-regulated delivery of insulin based on a unique particle-hydrogel hybrid platform featuring fast glucose responsiveness at physiological pH, shear-thinning behavior for injection, tissue-adhesive function for long-lasting adherence, and full biodegradability for safe use. The system was thoroughly characterized both in vitro and in vivo and was demonstrated to hold these unique functions. Using streptozotocin-induced diabetic mice as a model, it was shown that a single subcutaneous injection of the insulin-loaded particle-hydrogel formulation led to quasi-steady-state blood glucose levels within the normal range for about two weeks. In addition, the preparation of the formulation only involved simple mixing and self-assembling processes, and thus it had great scalability and reproducibility for practical use. The highly feasible preparation, excellent performance, inherent biocompatibility and biodegradability make this novel composite hydrogel promising platform for diabetes therapy. Phenylboronic acid (PBA)-based polymeric hydrogels have been widely considered as one of the most promising insulin delivery system to replace the frequent insulin injections. However, these hydrogels, mostly based on a variety of PBA-containing acrylamide monomers, are still far from clinical reality. Building upon a unique particle-hydrogel hybrid platform, herein we report a novel implantable insulin storage and delivery system with multifunctionalities including fast glucose-sensitiveness at physiological pH, shear-thinning behavior for injection, tissue-adhesive function for long-lasting adherence, biodegradable materials for safe use and well-controlled insulin release. These unique functions were demonstrated through research both in vitro and in vivo. In addition, the preparation of the formulation was simple, and thus it had great scalability and reproducibility for practical use. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  18. A radiopaque polymer hydrogel used as a fiducial marker in gynecologic-cancer patients receiving brachytherapy

    PubMed Central

    Bair, Ryan J.; Bair, Eric; Viswanathan, Akila N.

    2016-01-01

    PURPOSE We assessed a novel Food and Drug Administration–approved hydrogel, synthesized as absorbable iodinated particles, in gynecologic-cancer patients undergoing computed tomography (CT) or magnetic resonance (MR) based brachytherapy after external beam radiation. METHODS AND MATERIALS Nineteen patients underwent CT-guided (n = 13) or MR-guided (n = 6) brachytherapy for gynecologic cancers. Seventy-seven hydrogel injections were placed. The hydrogel material was injected into gross residual disease and/or key anatomic landmarks in amounts ranging from 0.1 to 0.4 mL. The visibility of the tracer was scored on CT and on MR images using a 5-point scoring scale. A Cohen’s kappa statistic was calculated to assess interobserver agreement. To assess the unadjusted effects of baseline parameters on hydrogel visibility, we modeled visibility using a linear mixed-effect model. RESULTS Injections were without complication. The kappa statistic was 0.77 (95% confidence interval [CI], 0.68–0.87). The volume of hydrogel injected was significantly associated with visibility on both CT (p = 0.032) and magnetic resonance imaging (p = 0.016). We analyzed visibility by location, controlling for amount. A 0.1-cc increase in volume injected was associated with increases of 0.54 (95% CI = 0.05–1.03) in the CT visibility score and 0.83 (95% CI = 0.17–1.49) in the MR visibility score. Injection of 0.4 cc or more was required for unequivocal visibility on CT or MR. No statistically significant correlation was found between tumor type, tumor location, or anatomical location of injection and visibility on either CT or magnetic resonance imaging. CONCLUSIONS In this first report of an injectable radiopaque hydrogel, targets were visualized to assist with three-dimensional–based brachytherapy in gynecologic malignancies. This marker has potential for several applications, is easy to inject and visualize, and caused no acute complications. PMID:26481393

  19. Sericin/Dextran Injectable Hydrogel as an Optically Trackable Drug Delivery System for Malignant Melanoma Treatment.

    PubMed

    Liu, Jia; Qi, Chao; Tao, Kaixiong; Zhang, Jinxiang; Zhang, Jian; Xu, Luming; Jiang, Xulin; Zhang, Yunti; Huang, Lei; Li, Qilin; Xie, Hongjian; Gao, Jinbo; Shuai, Xiaoming; Wang, Guobin; Wang, Zheng; Wang, Lin

    2016-03-01

    Severe side effects of cancer chemotherapy prompt developing better drug delivery systems. Injectable hydrogels are an effective site-target system. For most of injectable hydrogels, once delivered in vivo, some properties including drug release and degradation, which are critical to chemotherapeutic effects and safety, are challenging to monitor. Developing a drug delivery system for effective cancer therapy with in vivo real-time noninvasive trackability is highly desired. Although fluorescence dyes are used for imaging hydrogels, the cytotoxicity limits their applications. By using sericin, a natural photoluminescent protein from silk, we successfully synthesized a hydrazone cross-linked sericin/dextran injectable hydrogel. This hydrogel is biodegradable and biocompatible. It achieves efficient drug loading and controlled release of both macromolecular and small molecular drugs. Notably, sericin's photoluminescence from this hydrogel is directly and stably correlated with its degradation, enabling long-term in vivo imaging and real-time monitoring of the remaining drug. The hydrogel loaded with Doxorubicin significantly suppresses tumor growth. Together, the work demonstrates the efficacy of this drug delivery system, and the in vivo effectiveness of this sericin-based optical monitoring strategy, providing a potential approach for improving hydrogel design toward optimal efficiency and safety of chemotherapies, which may be widely applicable to other drug delivery systems.

  20. Injectable Polyethylene Glycol Hydrogel for Islet Encapsulation: an in vitro and in vivo Characterization

    PubMed Central

    Knobeloch, Tracy; Abadi, Sakineh Esmaeili Mohsen; Bruns, Joseph; Zustiak, Silviya Petrova; Kwon, Guim

    2017-01-01

    An injection of hydrogel-encapsulated islets that controls blood glucose levels over long term would provide a much needed alternative treatment for type 1 diabetes mellitus (T1DM). To this end, we tested the feasibility of using an injectable polyethylene glycol (PEG) hydrogel as a scaffold for islet encapsulation. Encapsulated islets cultured in vitro for 6 days showed excellent cell viability and released insulin with higher basal and stimulated insulin secretion than control islets. Host responses to PEG hydrogels were studied by injecting PEG hydrogels (no treatment and vehicle controls used) into the peritoneal cavities of B6D2F1 mice and monitoring alterations in body weight, food and water intake, and blood glucose levels. After 2 weeks, peritoneal cavity cells were harvested, followed by hydrogel retrieval, and extraction of spleens. Body weights, food and water intake, and blood glucose levels were unaltered in mice injected with hydrogels compared to no treatment and vehicle-injected control mice. Frozen sections of a hydrogel showed the presence of tissues and small number of immune cells surrounding the hydrogel but no cell infiltration into the hydrogel bulk. Spleen sizes were not significantly different under the experimental conditions. Peritoneal cavity cells were slightly higher in mice injected with hydrogels compared to control mice but no statistical difference between vehicle- and hydrogel-injected mice was noted. As an in vivo feasibility study, streptozotocin-induced diabetic mice were injected with vehicle or hydrogels containing 50 islets each into two sites, the peritoneal cavity and a subcutaneous site on the back. Transient control of blood glucose levels were observed in mice injected with hydrogels containing islets. In summary, we developed an injectable PEG hydrogel that supported islet function and survival in vitro and in vivo and elicited only a mild host response. Our work illustrates the feasibility of using injectable PEG hydrogels for islet encapsulation. PMID:29527325

  1. Elastin Based Cell-laden Injectable Hydrogels with Tunable Gelation, Mechanical and Biodegradation Properties

    PubMed Central

    Fathi, Ali; Mithieux, Suzanne M.; Wei, Hua; Chrzanowski, Wojciech; Valtchev, Peter; Weiss, Anthony S.; Dehghani, Fariba

    2015-01-01

    Injectable hydrogels made from extracellular matrix proteins such as elastin show great promise for various biomedical applications. Use of cytotoxic reagents, fixed gelling behavior, and lack of mechanical strength in these hydrogels are the main associated drawbacks. The aim of this study was to develop highly cytocompatible and injectable elastin-based hydrogels with alterable gelation characteristics, favorable mechanical properties and structural stability for load bearing applications. A thermoresponsive copolymer, poly(N-isopropylacrylamide-co-polylactide-2-hydroxyethyl methacrylate-co-oligo(ethylene glycol)monomethyl ether methacrylate, was functionalized with succinimide ester groups by incorporating N-acryloxysuccinimide monomer. These ester groups were exploited to covalently bond this polymer, denoted as PNPHO, to different proteins with primary amine groups such as α-elastin in aqueous media. The incorporation of elastin through covalent bond formation with PNPHO promotes the structural stability, mechanical properties and live cell proliferation within the structure of hydrogels. Our results demonstrated that elastin-co-PNPHO solutions were injectable through fine gauge needles and converted to hydrogels in situ at 37 °C in the absence of any crosslinking reagent. By altering PNPHO content, the gelling time of these hydrogels can be finely tuned within the range of 2 to 15 min to ensure compatibility with surgical requirements. In addition, these hydrogels exhibited compression moduli in the range of 40 to 145 kPa, which are substantially higher than those of previously developed elastin-based hydrogels. These hydrogels were highly stable in the physiological environment with the evidence of 10 wt% mass loss in 30 days of incubation in a simulated environment. This class of hydrogels is in vivo bioabsorbable due to the gradual increase of the lower critical solution temperature of the copolymer to above 37 °C due to the cleavage of polylactide from the PNPHO copolymer. Moreover, our results demonstrated that more than 80% of cells encapsulated in these hydrogels remained viable, and the number of encapsulated cells increased for at least 5 days. These unique properties mark elastin-co-PNHPO hydrogels as favorable candidates for a broad range of tissue engineering applications. PMID:24731705

  2. Development and characterization of novel alginate-based hydrogels as vehicles for bone substitutes.

    PubMed

    Morais, D S; Rodrigues, M A; Silva, T I; Lopes, M A; Santos, M; Santos, J D; Botelho, C M

    2013-06-05

    In this work three different hydrogels were developed to associate, as vehicles, with the synthetic bone substitute GR-HAP. One based on an alginate matrix (Alg); a second on a mixture of alginate and chitosan (Alg/Ch); and a third on alginate and hyaluronate (Alg/HA), using Ca(2+) ions as cross-linking agents. The hydrogels, as well as the respective injectable bone substitutes (IBSs), were fully characterized from the physical-chemical point of view. Weight change studies proved that all hydrogels were able to swell and degrade within 72 h at pH 7.4 and 4.0, being Alg/HA the hydrogel with the highest degradation rate (80%). Rheology studies demonstrated that all hydrogels are non-Newtonian viscoelastic fluids, and injectability tests showed that IBSs presented low maximum extrusion forces, as well as quite stable average forces. In conclusion, the studied hydrogels present the necessary features to be successfully used as vehicles of GR-HAP, particularly the hydrogel Alg/HA. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. An Injectable Hydrogel Prepared Using a PEG/Vitamin E Copolymer Facilitating Aqueous-Driven Gelation.

    PubMed

    Zhang, Jianfeng; Muirhead, Ben; Dodd, Megan; Liu, Lina; Xu, Fei; Mangiacotte, Nicole; Hoare, Todd; Sheardown, Heather

    2016-11-14

    Hydrogels have been widely explored for biomedical applications, with injectable hydrogels being of particular interest for their ability to precisely deliver drugs and cells to targets. Although these hydrogels have demonstrated satisfactory properties in many cases, challenges still remain for commercialization. In this paper, we describe a simple injectable hydrogel based on poly(ethylene glycol) (PEG) and a vitamin E (Ve) methacrylate copolymer prepared via simple free radical polymerization and delivered in a solution of low molecular weight PEG and Ve as the solvent instead of water. The hydrogel formed immediately in an aqueous environment with a controllable gelation time. The driving force for gelation is attributed to the self-assembly of hydrophobic Ve residues upon exposure to water to form a physically cross-linked polymer network via polymer chain rearrangement and subsequent phase separation, a spontaneous process with water uptake. The hydrogels can be customized to give the desired water content, mechanical strength, and drug release kinetics simply by formulating the PEGMA-co-Ve polymer with an appropriate solvent mixture or by varying the molecular weight of the polymer. The hydrogels exhibited no significant cytotoxicity in vitro using fibroblasts and good tissue compatibility in the eye and when injected subcutaneously. These polymers thus have the potential to be used in a variety of applications where injection of a drug or cell containing depot would be desirable.

  4. Visual in vivo degradation of injectable hydrogel by real-time and non-invasive tracking using carbon nanodots as fluorescent indicator.

    PubMed

    Wang, Lei; Li, Baoqiang; Xu, Feng; Li, Ying; Xu, Zheheng; Wei, Daqing; Feng, Yujie; Wang, Yaming; Jia, Dechang; Zhou, Yu

    2017-11-01

    Visual in vivo degradation of hydrogel by fluorescence-related tracking and monitoring is crucial for quantitatively depicting the degradation profile of hydrogel in a real-time and non-invasive manner. However, the commonly used fluorescent imaging usually encounters limitations, such as intrinsic photobleaching of organic fluorophores and uncertain perturbation of degradation induced by the change in molecular structure of hydrogel. To address these problems, we employed photoluminescent carbon nanodots (CNDs) with low photobleaching, red emission and good biocompatibility as fluorescent indicator for real-time and non-invasive visual in vitro/in vivo degradation of injectable hydrogels that are mixed with CNDs. The in vitro/in vivo toxicity results suggested that CNDs were nontoxic. The embedded CNDs in hydrogels did not diffuse outside in the absence of hydrogel degradation. We had acquired similar degradation kinetics (PBS-Enzyme) between gravimetric and visual determination, and established mathematical equation to quantitatively depict in vitro degradation profile of hydrogels for the predication of in vivo hydrogel degradation. Based on the in vitro data, we developed a visual platform that could quantitatively depict in vivo degradation behavior of new injectable biomaterials by real-time and non-invasive fluorescence tracking. This fluorescence-related visual imaging methodology could be applied to subcutaneous degradation of injectable hydrogel with down to 7 mm depth in small animal trials so far. This fluorescence-related visual imaging methodology holds great potentials for rational design and convenient in vivo screening of biocompatible and biodegradable injectable hydrogels in tissue engineering. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. A novel vehicle for local protein delivery to the inner ear: injectable and biodegradable thermosensitive hydrogel loaded with PLGA nanoparticles.

    PubMed

    Dai, Juan; Long, Wei; Liang, Zhongping; Wen, Lu; Yang, Fan; Chen, Gang

    2018-01-01

    Delivery of biomacromolecular drugs into the inner ear is challenging, mainly because of their inherent instability as well as physiological and anatomical barriers. Therefore, protein-friendly, hydrogel-based delivery systems following local administration are being developed for inner ear therapy. Herein, biodegradable poly(lactic-co-glycolic acid) (PLGA) nanoparticles (NPs) containing interferon α-2 b (IFN α-2 b) were loaded in chitosan/glycerophosphate (CS/GP)-based thermosensitive hydrogel for IFN delivery by intratympanic injection. The injectable hydrogel possessed a physiological pH and formed semi-solid gel at 37 °C, with good swelling and deswelling properties. The CS/GP hydrogel could slowly degrade as visualized by scanning electron microscopy (SEM). The presence of NPs in CS/GP gel largely influenced in vitro drug release. In the guinea pig cochlea, a 1.5- to 3-fold increase in the drug exposure time of NPs-CS/GP was found than those of the solution, NPs and IFN-loaded hydrogel. Most importantly, a prolonged residence time was attained without obvious histological changes in the inner ear. This biodegradable, injectable, and thermosensitive NPs-CS/GP system may allow longer delivery of protein drugs to the inner ear, thus may be a potential novel vehicle for inner ear therapy.

  6. Weak Bond-Based Injectable and Stimuli Responsive Hydrogels for Biomedical Applications

    PubMed Central

    Ding, Xiaochu; Wang, Yadong

    2017-01-01

    Here we define hydrogels crosslinked by weak bonds as physical hydrogels. They possess unique features including reversible bonding, shear thinning and stimuli-responsiveness. Unlike covalently crosslinked hydrogels, physical hydrogels do not require triggers to initiate chemical reactions for in situ gelation. The drug can be fully loaded in a pre-formed hydrogel for delivery with minimal cargo leakage during injection. These benefits make physical hydrogels useful as delivery vehicles for applications in biomedical engineering. This review focuses on recent advances of physical hydrogels crosslinked by weak bonds: hydrogen bonds, ionic interactions, host-guest chemistry, hydrophobic interactions, coordination bonds and π-π stacking interactions. Understanding the principles and the state of the art of gels with these dynamic bonds may give rise to breakthroughs in many biomedical research areas including drug delivery and tissue engineering. PMID:29062484

  7. Methods To Assess Shear-Thinning Hydrogels for Application As Injectable Biomaterials

    PubMed Central

    2017-01-01

    Injectable hydrogels have gained popularity as a vehicle for the delivery of cells, growth factors, and other molecules to localize and improve their retention at the injection site, as well as for the mechanical bulking of tissues. However, there are many factors, such as viscosity, storage and loss moduli, and injection force, to consider when evaluating hydrogels for such applications. There are now numerous tools that can be used to quantitatively assess these factors, including for shear-thinning hydrogels because their properties change under mechanical load. Here, we describe relevant rheological tests and ways to measure injection force using a force sensor or a mechanical testing machine toward the evaluation of injectable hydrogels. Injectable, shear-thinning hydrogels can be used in a variety of clinical applications, and as an example we focus on methods for injection into the heart, where an understanding of injection properties and mechanical forces is imperative for consistent hydrogel delivery and retention. We discuss methods for delivery of hydrogels to mouse, rat, and pig hearts in models of myocardial infarction, and compare methods of tissue postprocessing for hydrogel preservation. Our intent is that the methods described herein can be helpful in the design and assessment of shear-thinning hydrogels for widespread biomedical applications. PMID:29250593

  8. Spatiotemporal Programing for the On-Demand Release of Bupivacaine Based on an Injectable Composite Hydrogel.

    PubMed

    Dinh, Van Vuong; Suh, Yun-Suhk; Yang, Han-Kwang; Lim, Yong Taik

    2016-12-01

    We report a programed drug delivery system that can tailor the release of anesthetic bupivacaine in a spatiotemporally controlled manner. The drug delivery system was developed through the combination of a collagen-based injectable hydrogel and 2 types of poly(lactic-co-glycolic acid) (PLGA) particles. As a rapid-release platform (90% release after 24 h), bupivacaine hydrochloride was incorporated into collagen/poly(γ-glutamic acid) hydrogel, which exhibited gel formation at body temperature. PLGA microparticles (diameter 1-3 μm) containing bupivacaine base showed a very slow release of bupivacaine (95% after 240 h), whereas PLGA nanoparticles (124 ± 30 nm) containing bupivacaine base demonstrated an intermediate release rate (95% after 160 h). By changing the relative composition ratio between the 3 components in these injectable composite hydrogels, the release of bupivacaine could be easily controlled from very rapid (within 1 day) to very delayed (up to 9 days). The experimental results on the release data (cumulative release, time point release, average release rate) were coincident with the release profile generated by computer simulation. These injectable composite hydrogels with systematically tunable mixing ratios are expected to serve as a promising technology for the on-demand release of bupivacaine in pain management. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  9. An Injectable, Self-Healing Hydrogel to Repair the Central Nervous System.

    PubMed

    Tseng, Ting-Chen; Tao, Lei; Hsieh, Fu-Yu; Wei, Yen; Chiu, Ing-Ming; Hsu, Shan-hui

    2015-06-17

    An injectable, self-healing hydrogel (≈1.5 kPa) is developed for healing nerve-system deficits. Neurosphere-like progenitors proliferate in the hydrogel and differentiate into neuron-like cells. In the zebrafish injury model, the central nervous system function is partially rescued by injection of the hydrogel and significantly rescued by injection of the neurosphere-laden hydrogel. The self-healing hydrogel may thus potentially repair the central nervous system. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Thermo-sensitive injectable glycol chitosan-based hydrogel for treatment of degenerative disc disease.

    PubMed

    Li, Zhengzheng; Shim, Hyeeun; Cho, Myeong Ok; Cho, Ik Sung; Lee, Jin Hyun; Kang, Sun-Woong; Kwon, Bosun; Huh, Kang Moo

    2018-03-15

    The use of injectable hydrogel formulations have been suggested as a promising strategy for the treatment of degenerative disc disease to both restore the biomechanical function and reduce low back pain. In this work, a new thermo-sensitive injectable hydrogels with tunable thermo-sensitivity and enhanced stability were developed with N-hexanoylation of glycol chitosan (GC) for treatment of degenerative disc disease, and their physico-chemical and biological properties were evaluated. The sol-gel transition temperature of the hydrogels was controlled in a range of 23-56 °С, depending on the degree of hexanoylation and the polymer concentration. In vitro and in vivo tests showed no cytotoxicity and no adverse effects in a rat model. The hydrogel filling of the defective IVD site in an ex vivo porcine model maintained its stability for longer than 28 days. These results suggest that the hydrogel can be used as an alternative material for treatment of disc herniation. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. Injectable graphene oxide/hydrogel-based angiogenic gene delivery system for vasculogenesis and cardiac repair.

    PubMed

    Paul, Arghya; Hasan, Anwarul; Kindi, Hamood Al; Gaharwar, Akhilesh K; Rao, Vijayaraghava T S; Nikkhah, Mehdi; Shin, Su Ryon; Krafft, Dorothee; Dokmeci, Mehmet R; Shum-Tim, Dominique; Khademhosseini, Ali

    2014-08-26

    The objective of this study was to develop an injectable and biocompatible hydrogel which can efficiently deliver a nanocomplex of graphene oxide (GO) and vascular endothelial growth factor-165 (VEGF) pro-angiogenic gene for myocardial therapy. For the study, an efficient nonviral gene delivery system using polyethylenimine (PEI) functionalized GO nanosheets (fGO) complexed with DNAVEGF was formulated and incorporated in the low-modulus methacrylated gelatin (GelMA) hydrogel to promote controlled and localized gene therapy. It was hypothesized that the fGOVEGF/GelMA nanocomposite hydrogels can efficiently transfect myocardial tissues and induce favorable therapeutic effects without invoking cytotoxic effects. To evaluate this hypothesis, a rat model with acute myocardial infarction was used, and the therapeutic hydrogels were injected intramyocardially in the peri-infarct regions. The secreted VEGF from in vitro transfected cardiomyocytes demonstrated profound mitotic activities on endothelial cells. A significant increase in myocardial capillary density at the injected peri-infarct region and reduction in scar area were noted in the infarcted hearts with fGOVEGF/GelMA treatment compared to infarcted hearts treated with untreated sham, GelMA and DNAVEGF/GelMA groups. Furthermore, the fGOVEGF/GelMA group showed significantly higher (p < 0.05, n = 7) cardiac performance in echocardiography compared to other groups, 14 days postinjection. In addition, no significant differences were noticed between GO/GelMA and non-GO groups in the serum cytokine levels and quantitative PCR based inflammatory microRNA (miRNA) marker expressions at the injected sites. Collectively, the current findings suggest the feasibility of a combined hydrogel-based gene therapy system for ischemic heart diseases using nonviral hybrid complex of fGO and DNA.

  12. Nanodiamond-based injectable hydrogel for sustained growth factor release: Preparation, characterization and in vitro analysis.

    PubMed

    Pacelli, Settimio; Acosta, Francisca; Chakravarti, Aparna R; Samanta, Saheli G; Whitlow, Jonathan; Modaresi, Saman; Ahmed, Rafeeq P H; Rajasingh, Johnson; Paul, Arghya

    2017-08-01

    Nanodiamonds (NDs) represent an emerging class of carbon nanomaterials that possess favorable physical and chemical properties to be used as multifunctional carriers for a variety of bioactive molecules. Here we report the synthesis and characterization of a new injectable ND-based nanocomposite hydrogel which facilitates a controlled release of therapeutic molecules for regenerative applications. In particular, we have formulated a thermosensitive hydrogel using gelatin, chitosan and NDs that provides a sustained release of exogenous human vascular endothelial growth factor (VEGF) for wound healing applications. Addition of NDs improved the mechanical properties of the injectable hydrogels without affecting its thermosensitive gelation properties. Biocompatibility of the generated hydrogel was verified by in vitro assessment of apoptotic gene expressions and anti-inflammatory interleukin productions. NDs were complexed with VEGF and the inclusion of this complex in the hydrogel network enabled the sustained release of the angiogenic growth factor. These results suggest for the first time that NDs can be used to formulate a biocompatible, thermosensitive and multifunctional hydrogel platform that can function both as a filling agent to modulate hydrogel properties, as well as a delivery platform for the controlled release of bioactive molecules and growth factors. One of the major drawbacks associated with the use of conventional hydrogels as carriers of growth factors is their inability to control the release kinetics of the loaded molecules. In fact, in most cases, a burst release is inevitable leading to diminished therapeutic effects and unsuccessful therapies. As a potential solution to this issue, we hereby propose a strategy of incorporating ND complexes within an injectable hydrogel matrix. The functional groups on the surface of the NDs can establish interactions with the model growth factor VEGF and promote a prolonged release from the polymer network, therefore, providing a longer therapeutic effect. Our strategy demonstrates the efficacy of using NDs as an essential component for the design of a novel injectable nanocomposite system with improved release capabilities. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  13. pH and Glucose Dual-Responsive Injectable Hydrogels with Insulin and Fibroblasts as Bioactive Dressings for Diabetic Wound Healing.

    PubMed

    Zhao, Lingling; Niu, Lijing; Liang, Hongze; Tan, Hui; Liu, Chaozong; Zhu, Feiyan

    2017-11-01

    pH and glucose dual-responsive injectable hydrogels were prepared through the cross-linking of Schiff's base and phenylboronate ester using phenylboronic-modified chitosan, poly(vinyl alcohol) and benzaldehyde-capped poly(ethylene glycol). Protein drugs and live cells could be incorporated into the hydrogels during the in situ cross-linking, displaying sustained and pH/glucose-triggered drug release from the hydrogels and cell viability and proliferation in the three-dimensional hydrogel matrix as well. Hence, the hydrogels with insulin and fibroblasts were considered as bioactive dressings for diabetic wound healing. A streptozotocin-induced diabetic rat model was used to evaluate the efficacy of hydrogel dressings in wound repair. The results revealed that the incorporation of insulin and L929 in the hydrogels could promote neovascularization and collagen deposition and enhance the wound-healing process of diabetic wounds. Thus, the drug- and cell-loaded hydrogels have promising potential in wound healing as a medicated system for various therapeutic proteins and live cells.

  14. Micro-structurally detailed model of a therapeutic hydrogel injectate in a rat biventricular cardiac geometry for computational simulations

    PubMed Central

    Sirry, Mazin S.; Davies, Neil H.; Kadner, Karen; Dubuis, Laura; Saleh, Muhammad G.; Meintjes, Ernesta M.; Spottiswoode, Bruce S.; Zilla, Peter; Franz, Thomas

    2013-01-01

    Biomaterial injection based therapies have showed cautious success in restoration of cardiac function and prevention of adverse remodelling into heart failure after myocardial infarction (MI). However, the underlying mechanisms are not well understood. Computational studies utilised simplified representations of the therapeutic myocardial injectates. Wistar rats underwent experimental infarction followed by immediate injection of polyethylene glycol hydrogel in the infarct region. Hearts were explanted, cryo-sectioned and the region with the injectate histologically analysed. Histological micrographs were used to reconstruct the dispersed hydrogel injectate. Cardiac magnetic resonance imaging (CMRI) data from a healthy rat were used to obtain an end-diastolic biventricular geometry which was subsequently adjusted and combined with the injectate model. The computational geometry of the injectate exhibited microscopic structural details found the in situ. The combination of injectate and cardiac geometry provides realistic geometries for multiscale computational studies of intra-myocardial injectate therapies for the rat model that has been widely used for MI research. PMID:23682845

  15. Injectable Hydrogels for Cardiac Tissue Repair after Myocardial Infarction

    PubMed Central

    Khattab, Ahmad; Islam, Mohammad Ariful; Hweij, Khaled Abou; Zeitouny, Joya; Waters, Renae; Sayegh, Malek; Hossain, Md Monowar; Paul, Arghya

    2015-01-01

    Cardiac tissue damage due to myocardial infarction (MI) is one of the leading causes of mortality worldwide. The available treatments of MI include pharmaceutical therapy, medical device implants, and organ transplants, all of which have severe limitations including high invasiveness, scarcity of donor organs, thrombosis or stenosis of devices, immune rejection, and prolonged hospitalization time. Injectable hydrogels have emerged as a promising solution for in situ cardiac tissue repair in infarcted hearts after MI. In this review, an overview of various natural and synthetic hydrogels for potential application as injectable hydrogels in cardiac tissue repair and regeneration is presented. The review starts with brief discussions about the pathology of MI, its current clinical treatments and their limitations, and the emergence of injectable hydrogels as a potential solution for post MI cardiac regeneration. It then summarizes various hydrogels, their compositions, structures and properties for potential application in post MI cardiac repair, and recent advancements in the application of injectable hydrogels in treatment of MI. Finally, the current challenges associated with the clinical application of injectable hydrogels to MI and their potential solutions are discussed to help guide the future research on injectable hydrogels for translational therapeutic applications in regeneration of cardiac tissue after MI. PMID:27668147

  16. Novel Injectable Pentablock Copolymer Based Thermoresponsive Hydrogels for Sustained Release Vaccines.

    PubMed

    Bobbala, Sharan; Tamboli, Viral; McDowell, Arlene; Mitra, Ashim K; Hook, Sarah

    2016-01-01

    The need for multiple vaccinations to enhance the immunogenicity of subunit vaccines may be reduced by delivering the vaccine over an extended period of time. Here, we report two novel injectable pentablock copolymer based thermoresponsive hydrogels made of polyethyleneglycol-polycaprolactone-polylactide-polycaprolactone-polyethyleneglycol (PEG-PCL-PLA-PCL-PEG) with varying ratios of polycaprolactone (PCL) and polylactide (PLA), as single shot sustained release vaccines. Pentablock copolymer hydrogels were loaded with vaccine-encapsulated poly lactic-co-glycolic acid nanoparticles (PLGA-NP) or with the soluble vaccine components. Incorporation of PLGA-NP into the thermoresponsive hydrogels increased the complex viscosity of the gels, lowered the gelation temperature, and minimized the burst release of antigen and adjuvants. The two pentablock hydrogels stimulated both cellular and humoral responses. The addition of PLGA-NP to the hydrogels sustained immune responses for up to 49 days. The polymer with a higher ratio of PCL to PLA formed a more rigid gel, induced stronger immune responses, and stimulated effective anti-tumor responses in a prophylactic melanoma tumor model.

  17. PNIPAAm-based biohybrid injectable hydrogel for cardiac tissue engineering.

    PubMed

    Navaei, Ali; Truong, Danh; Heffernan, John; Cutts, Josh; Brafman, David; Sirianni, Rachael W; Vernon, Brent; Nikkhah, Mehdi

    2016-03-01

    Injectable biomaterials offer a non-invasive approach to deliver cells into the myocardial infarct region to maintain a high level of cell retention and viability and initiate the regeneration process. However, previously developed injectable matrices often suffer from low bioactivity or poor mechanical properties. To address this need, we introduced a biohybrid temperature-responsive poly(N-isopropylacrylamide) PNIPAAm-Gelatin-based injectable hydrogel with excellent bioactivity as well as mechanical robustness for cardiac tissue engineering. A unique feature of our work was that we performed extensive in vitro biological analyses to assess the functionalities of cardiomyocytes (CMs) alone and in co-culture with cardiac fibroblasts (CFs) (2:1 ratio) within the hydrogel matrix. The synthesized hydrogel exhibited viscoelastic behavior (storage modulus: 1260 Pa) and necessary water content (75%) to properly accommodate the cardiac cells. The encapsulated cells demonstrated a high level of cell survival (90% for co-culture condition, day 7) and spreading throughout the hydrogel matrix in both culture conditions. A dense network of stained F-actin fibers (∼ 6 × 10(4) μm(2) area coverage, co-culture condition) illustrated the formation of an intact and three dimensional (3D) cell-embedded matrix. Furthermore, immunostaining and gene expression analyses revealed mature phenotypic characteristics of cardiac cells. Notably, the co-culture group exhibited superior structural organization and cell-cell coupling, as well as beating behavior (average ∼ 45 beats per min, co-culture condition, day 7). The outcome of this study is envisioned to open a new avenue for extensive in vitro characterization of injectable matrices embedded with 3D mono- and co-culture of cardiac cells prior to in vivo experiments. In this work, we synthesized a new class of biohybrid temperature-responsive poly(N-isopropylacrylamide) PNIPAAm-Gelatin-based injectable hydrogel with suitable bioactivity and mechanical properties for cardiac tissue engineering. A significant aspect of our work was that we performed extensive in vitro biological analyses to assess the functionality of cardiomyocytes alone and in co-culture with cardiac fibroblasts encapsulated within the 3D hydrogel matrix. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  18. In vitro study of electroactive tetraaniline-containing thermosensitive hydrogels for cardiac tissue engineering.

    PubMed

    Cui, Haitao; Liu, Yadong; Cheng, Yilong; Zhang, Zhe; Zhang, Peibiao; Chen, Xuesi; Wei, Yen

    2014-04-14

    Injectable hydrogels made of degradable biomaterials can function as both physical support and cell scaffold in preventing infarct expansion and promoting cardiac repair in myocardial infarction therapy. Here, we report in situ hydrogels consisting of thermosensitive PolyNIPAM-based copolymers and electroactive tetraaniline (TA). Studies showed that the addition of 2-methylene-1,3-dioxepane (MDO) provided the PolyNIPAM-based gel with biodegradability, and the introduction of tetraaniline endowed these copolymers with desirable electrical properties and antioxidant activities. The encapsulated H9c2 cells (rat cardiac myoblast) remained highly viable in the gel matrices. In vivo gel formation and histological analyses were performed in rats by subcutaneous injection and excellent biocompatibility was observed. Furthermore, the proliferation and intracellular calcium transients of H9c2 cells were also studied with (and without) electrical stimuli. Both in vitro and in vivo results demonstrated that electroactive hydrogel may be used as a promising injectable biomaterial for cardiac tissue engineering.

  19. Antibacterial anti-oxidant electroactive injectable hydrogel as self-healing wound dressing with hemostasis and adhesiveness for cutaneous wound healing.

    PubMed

    Zhao, Xin; Wu, Hao; Guo, Baolin; Dong, Ruonan; Qiu, Yusheng; Ma, Peter X

    2017-04-01

    Injectable self-healing hydrogel dressing with multifunctional properties including anti-infection, anti-oxidative and conductivity promoting wound healing process will be highly desired in wound healing application and its design is still a challenge. We developed a series of injectable conductive self-healed hydrogels based on quaternized chitosan-g-polyaniline (QCSP) and benzaldehyde group functionalized poly(ethylene glycol)-co-poly(glycerol sebacate) (PEGS-FA) as antibacterial, anti-oxidant and electroactive dressing for cutaneous wound healing. These hydrogels presented good self-healing, electroactivity, free radical scavenging capacity, antibacterial activity, adhesiveness, conductivity, swelling ratio, and biocompatibility. Interestingly, the hydrogel with an optimal crosslinker concentration of 1.5 wt% PEGS-FA showed excellent in vivo blood clotting capacity, and it significantly enhanced in vivo wound healing process in a full-thickness skin defect model than quaternized chitosan/PEGS-FA hydrogel and commercial dressing (Tegaderm™ film) by upregulating the gene expression of growth factors including VEGF, EGF and TGF-β and then promoting granulation tissue thickness and collagen deposition. Taken together, the antibacterial electroactive injectable hydrogel dressing prolonged the lifespan of dressing relying on self-healing ability and significantly promoted the in vivo wound healing process attributed to its multifunctional properties, meaning that they are excellent candidates for full-thickness skin wound healing. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Injectable antibacterial conductive hydrogels with dual response to an electric field and pH for localized "smart" drug release.

    PubMed

    Qu, Jin; Zhao, Xin; Ma, Peter X; Guo, Baolin

    2018-05-01

    Injectable hydrogels with multistimuli responsiveness to electrical field and pH as a drug delivery system have been rarely reported. Herein, we developed a series of injectable conductive hydrogels as "smart" drug carrier with the properties of electro-responsiveness, pH-sensitivity, and inherent antibacterial activity. The hydrogels were prepared by mixing chitosan-graft-polyaniline (CP) copolymer and oxidized dextran (OD) as a cross-linker. The chemical structures, morphologies, electrochemical property, swelling ratio, conductivity, rheological property, in vitro and in vivo biodegradation, and gelation time of hydrogels were characterized. The pH-responsive behavior was verified by drug release from hydrogels in PBS solutions with different pH values (pH = 7.4 or 5.5) in an in vitro model. As drug carriers with electric-driven release, the release rate of the model drugs amoxicillin and ibuprofen loaded within CP/OD hydrogels dramatically increased when an increase in voltage was applied. Both chitosan and polyaniline with inherent antibacterial properties endowed the hydrogels with excellent antibacterial properties. Furthermore, cytotoxicity tests of the hydrogels using L929 cells confirmed their good cytocompatibility. The in vivo biocompatibility of the hydrogels was verified by H&E staining. Together, all these results suggest that these injectable pH-sensitive conductive hydrogels with antibacterial activity could be ideal candidates as smart drug delivery vehicles for precise doses of medicine to meet practical demand. Stimuli-responsive or "smart" hydrogels have attracted great attention in the field of biotechnology and biomedicine, especially on designing novel drug delivery systems. Compared with traditional implantable electronic delivery devices, the injectable hydrogels with electrical stimuli not only are easy to generate and control electrical field but also could avoid frequent invasive surgeries that offer a new avenue for chronic diseases. In addition, designing a drug carrier with pH-sensitive property could release drug efficiently in targeted acid environment, and it could reinforce the precise doses of medicine. Furthermore, caused by opportunistic microorganisms and rapid spread of antibiotic-resistant microbes, infection is still a serious threat for many clinical utilities. To overcome these barriers, we designed a series of injectable antibacterial conductive hydrogels based on chitosan-graft-polyaniline (CP) copolymer and oxidized dextran (OD), and we demonstrated their potential as "smart" delivery vehicles with electro-responsiveness and pH-responsive properties for triggered and localized release of drugs. Copyright © 2018 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  1. Injectable dual redox responsive diselenide-containing poly(ethylene glycol) hydrogel.

    PubMed

    Gong, Chu; Shan, Meng; Li, Bingqiang; Wu, Guolin

    2017-09-01

    An injectable dual redox responsive diselenide-containing poly(ethylene glycol) (PEG) hydrogel was successfully developed by combining the conceptions of injectable hydrogels and dual redox responsive diselenides. In the first step, four-armed PEG was modified with N-hydroxysuccinimide (NHS)-activated esters and thereafter, crosslinked by selenocystamine crosslinkers to form injectable hydrogels via the rapid reaction between NHS-activated esters and amino groups. The cross-sectional morphology, mechanical properties, and crosslinking modes of hydrogels were well characterized via scanning electron microscope (SEM), rheological measurements, and Fourier transform infrared spectra, respectively. In addition, the oxidation- and reduction-responsive degradation behaviors of hydrogels were observed and analyzed. The model drug, rhodamine B, was encapsulated in the hydrogel. The drug-loaded hydrogel exhibited a dual redox responsive release profile, which was consistent with the degradation experiments. The results of all experiments indicated that the formulated injectable dual redox responsive diselenide-containing PEG hydrogel can have potential applications in various biomedical fields such as drug delivery and stimuli-responsive drug release. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 2451-2460, 2017. © 2017 Wiley Periodicals, Inc.

  2. Injectable Absorbable Ocular Inserts for Controlled Drug Delivery

    DTIC Science & Technology

    1997-07-01

    conjunctiva for prolonged delivery of drugs to the anterior region of the eye (Gwon & Meadows, 1992). The dosage system was an elliptically shaped unit...1979) have reviewed many other gel formers which are available for preparing pharmaceutical gels. A.3.4.1. Hydrogels -- Hydrogels are materials which...denoted as hydrogels (or aquagels). Hydrogels based on crosslinked polymeric chains of methoxy poly(ethylene glycol) monomethacrylate having variable

  3. Free radical scavenging injectable hydrogels for regenerative therapy.

    PubMed

    Komeri, Remya; Thankam, Finosh Gnanaprakasam; Muthu, Jayabalan

    2017-02-01

    Pathological free radicals generated from inflamed and infarcted cardiac tissues interferes natural tissue repair mechanisms. Hypoxic microenvironment at the injured zone of non-regenerating cardiac tissues hinders the therapeutic attempts including cell therapy. Here we report an injectable, cytocompatible, free radical scavenging synthetic hydrogel formulation for regenerative therapy. New hydrogel (PEAX-P) is prepared with D-xylitol-co-fumarate-co-poly ethylene adipate-co-PEG comaromer (PEAX) and PEGDiacrylate. PEAX-P hydrogel swells 4.9 times the initial weight and retains 100.07kPa Young modulus at equilibrium swelling, which is suitable for cardiac applications. PEAX-P hydrogel retains elastic nature even at 60% compressive strain, which is favorable to fit with the dynamic and elastic natural tissue counterparts. PEAX-P hydrogel scavenges 51% DPPH radical, 40% hydroxyl radicals 41% nitrate radicals with 31% reducing power. The presence of hydrogel protects 62% cardiomyoblast cells treated with stress inducing media at LD 50 concentration. The free hydroxyl groups in sugar alcohols of the comacromer influence the free radical scavenging. Comparatively, PEAX-P hydrogel based on xylitol evinces slightly lower scavenging characteristics than with previously reported PEAM-P hydrogel containing mannitol having more hydroxyl groups. The possible free radical scavenging mechanism of the present hydrogel relies on the free π electrons associated with uncrosslinked fumarate bonds, hydrogen atoms associated with sugar alcohols/PEG and radical dilution by free water in the matrix. Briefly, the present PEAX-P hydrogel is a potential injectable system for combined antioxidant and regenerative therapy. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Visual and portable strategy for copper(II) detection based on a striplike poly(thymine)-caged and microwell-printed hydrogel.

    PubMed

    Qing, Zhihe; Mao, Zhengui; Qing, Taiping; He, Xiaoxiao; Zou, Zhen; He, Dinggeng; Shi, Hui; Huang, Jin; Liu, Jianbo; Wang, Kemin

    2014-11-18

    Due to its importance to develop strategies for copper(II) (Cu(2+)) detection, we here report a visual and portable strategy for Cu(2+) detection based on designing and using a strip-like hydrogel. The hydrogel is functionalized through caging poly(thymine) as probes, which can effectively template the formation of fluorescent copper nanoparticles (CuNPs) in the presence of the reductant (ascorbate) and Cu(2+). On the hydrogel's surface, uniform wells of microliter volume (microwells) are printed for sample-injection. When the injected sample is stained by Cu(2+), fluorescent CuNPs will be in situ templated by poly T in the hydrogel. With ultraviolet (UV) irradiation, the red fluorescence of CuNPs can be observed by naked-eye and recorded by a common camera without complicated instruments. Thus, the strategy integrates sample-injection, reaction and indication with fast signal response, providing an add-and-read manner for visual and portable detection of Cu(2+), as well as a strip-like strategy. Detection ability with a detectable minimum concentration of 20 μM and practically applicable properties have been demonstrated, such as resistance to environmental interference and good constancy, indicating that the strategy holds great potential and significance for popular detection of Cu(2+), especially in remote regions. We believe that the strip-like hydrogel-based methodology is also applicable to other targets by virtue of altering probes.

  5. Photothermal-modulated drug delivery and magnetic relaxation based on collagen/poly(γ-glutamic acid) hydrogel.

    PubMed

    Cho, Sun-Hee; Kim, Ahreum; Shin, Woojung; Heo, Min Beom; Noh, Hyun Jong; Hong, Kwan Soo; Cho, Jee-Hyun; Lim, Yong Taik

    2017-01-01

    Injectable and stimuli-responsive hydrogels have attracted attention in molecular imaging and drug delivery because encapsulated diagnostic or therapeutic components in the hydrogel can be used to image or change the microenvironment of the injection site by controlling various stimuli such as enzymes, temperature, pH, and photonic energy. In this study, we developed a novel injectable and photoresponsive composite hydrogel composed of anticancer drugs, imaging contrast agents, bio-derived collagen, and multifaceted anionic polypeptide, poly (γ-glutamic acid) (γ-PGA). By the introduction of γ-PGA, the intrinsic temperature-dependent phase transition behavior of collagen was modified to a low viscous sol state at room temperature and nonflowing gel state around body temperature. The modified temperature-dependent phase transition behavior of collagen/γ-PGA hydrogels was also evaluated after loading of near-infrared (NIR) fluorophore, indocyanine green (ICG), which could transform absorbed NIR photonic energy into thermal energy. By taking advantage of the abundant carboxylate groups in γ-PGA, cationic-charged doxorubicin (Dox) and hydrophobic MnFe 2 O 4 magnetic nanoparticles were also incorporated successfully into the collagen/γ-PGA hydrogels. By illumination of NIR light on the collagen/γ-PGA/Dox/ICG/MnFe 2 O 4 hydrogels, the release kinetics of Dox and magnetic relaxation of MnFe 2 O 4 nanoparticles could be modulated. The experimental results suggest that the novel injectable and NIR-responsive collagen/γ-PGA hydrogels developed in this study can be used as a theranostic platform after loading of various molecular imaging probes and therapeutic components.

  6. Retention of Human-Induced Pluripotent Stem Cells (hiPS) With Injectable HA Hydrogels for Vocal Fold Engineering.

    PubMed

    Imaizumi, Mitsuyoshi; Li-Jessen, Nicole Y K; Sato, Yuka; Yang, David T; Thibeault, Susan L

    2017-04-01

    One prospective treatment option for vocal fold scarring is regeneration with an engineered scaffold containing induced pluripotent stem cells (iPS). In the present study, we investigated the feasibility of utilizing an injectable hyaluronic acid (HA) scaffold encapsulated with human-iPS cell (hiPS) for regeneration of vocal folds. Thirty athymic nude rats underwent unilateral vocal fold injury. Contralateral vocal folds served as uninjured controls. Hyaluronic acid hydrogel scaffold, HA hydrogel scaffold containing hiPS, and HA hydrogel scaffold containing hiPS with epidermal growth factor (EGF) were injected in both vocal folds immediately after surgery. One and 2 weeks after injection, larynges were excised for histology, immunohistochemistry, and fluorescence in situ hybridization (FISH). Presence of HA hydrogel was confirmed in vocal folds 1 and 2 weeks post injection. The FISH analysis confirmed the presence and viability of hiPS in the injected vocal folds. Histological results demonstrated that vocal folds injected with HA hydrogel scaffold containing EGF demonstrated less fibrosis than those with HA hydrogel only. Human-iPS survived in injured rat vocal folds. The HA hydrogel with hiPS and EGF ameliorated the fibrotic response. Additional work is necessary to optimize hiPS differentiation and further confirm the safety of hiPS for clinical applications.

  7. Crosslinking method of hyaluronic-based hydrogel for biomedical applications

    PubMed Central

    Khunmanee, Sureerat; Jeong, Younghyen; Park, Hansoo

    2017-01-01

    In the field of tissue engineering, there is a need for advancement beyond conventional scaffolds and preformed hydrogels. Injectable hydrogels have gained wider admiration among researchers as they can be used in minimally invasive surgical procedures. Injectable gels completely fill the defect area and have good permeability and hence are promising biomaterials. The technique can be effectively applied to deliver a wide range of bioactive agents, such as drugs, proteins, growth factors, and even living cells. Hyaluronic acid is a promising candidate for the tissue engineering field because of its unique physicochemical and biological properties. Thus, this review provides an overview of various methods of chemical and physical crosslinking using different linkers that have been investigated to develop the mechanical properties, biodegradation, and biocompatibility of hyaluronic acid as an injectable hydrogel in cell scaffolds, drug delivery systems, and wound healing applications. PMID:28912946

  8. Silk hydrogels for sustained ocular delivery of anti-vascular endothelial growth factor (anti-VEGF) therapeutics.

    PubMed

    Lovett, Michael L; Wang, Xiaoqin; Yucel, Tuna; York, Lyndsey; Keirstead, Marc; Haggerty, Linda; Kaplan, David L

    2015-09-01

    Silk hydrogels were formulated with anti-vascular endothelial growth factor (anti-VEGF) therapeutics for sustained ocular drug delivery. Using silk fibroin as a vehicle for delivery, bevacizumab-loaded hydrogel formulations demonstrated sustained release of 3 months or greater in experiments in vitro as well as in vivo using an intravitreal injection model in Dutch-belted rabbits. Using both standard dose (1.25mg bevacizumab/50 μL injection) and high dose (5.0mg bevacizumab/50 μL injection) hydrogel formulations, release concentrations were achieved at day 90 that were equivalent or greater than those achieved at day 30 with the positive standard dose control (single injection (50 μL) of 1.25mg bevacizumab solution), which is estimated to be the therapeutic threshold based on the current dosage administration schedule of 1 injection/month. These gels also demonstrated signs of biodegradation after 3 months, suggesting that repeated injections may be possible (e.g., one injection every 3-6 months or longer). Due to its pharmacokinetic and biodegradation profiles, this delivery system may be used to reduce the frequency of dosing for patients currently enduring treatment using bevacizumab or other anti-VEGF therapeutics. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Injectable polypeptide hydrogels via methionine modification for neural stem cell delivery.

    PubMed

    Wollenberg, A L; O'Shea, T M; Kim, J H; Czechanski, A; Reinholdt, L G; Sofroniew, M V; Deming, T J

    2018-04-05

    Injectable hydrogels with tunable physiochemical and biological properties are potential tools for improving neural stem/progenitor cell (NSPC) transplantation to treat central nervous system (CNS) injury and disease. Here, we developed injectable diblock copolypeptide hydrogels (DCH) for NSPC transplantation that contain hydrophilic segments of modified l-methionine (Met). Multiple Met-based DCH were fabricated by post-polymerization modification of Met to various functional derivatives, and incorporation of different amino acid comonomers into hydrophilic segments. Met-based DCH assembled into self-healing hydrogels with concentration and composition dependent mechanical properties. Mechanical properties of non-ionic Met-sulfoxide formulations (DCH MO ) were stable across diverse aqueous media while cationic formulations showed salt ion dependent stiffness reduction. Murine NSPC survival in DCH MO was equivalent to that of standard culture conditions, and sulfoxide functionality imparted cell non-fouling character. Within serum rich environments in vitro, DCH MO was superior at preserving NSPC stemness and multipotency compared to cell adhesive materials. NSPC in DCH MO injected into uninjured forebrain remained local and, after 4 weeks, exhibited an immature astroglial phenotype that integrated with host neural tissue and acted as cellular substrates that supported growth of host-derived axons. These findings demonstrate that Met-based DCH are suitable vehicles for further study of NSPC transplantation in CNS injury and disease models. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Nanoceria-loaded injectable hydrogels for potential age-related macular degeneration treatment.

    PubMed

    Wang, Kai; Mitra, Rajendra Narayan; Zheng, Min; Han, Zongchao

    2018-05-12

    The major purpose of this article is to evaluate oligochitosan coated cerium oxide nanoparticles (OCCNPs) alginate laden injectable hydrogels and their potential treatment for age-related macular degeneration (AMD). The water soluble OCCNPs were loaded within injectable hydrogels as antioxidative agents. The release of OCCNPs from hydrogel, radical scavenging properties, and biocompatibility were evaluated and calculated in vitro. The effects of OCCNP laden hydrogel downregulating expression of angiogenic proteins and pro-inflammatory cytokines were quantified in human retinal pigment epithlium-19 (ARPE-19) and umbilical endothelium cell lines. The hydrogels behaved with moderate swelling and controllable degradation. The laden OCCNPs were released in a controlled manner in vitro during two months of testing. The OCCNP loaded hydrogels exhibited robust antioxidative properties in oxygen radical absorbance capacity tests and reduced apoptosis in H 2 O 2 -induced ARPE-19 cells. Furthermore, OCCNP loaded injectable hydrogels are biocompatible and suppressed the LPS-induced inflammation response in ARPE-19 cells, and inhibited expression of vascular endothelium growth factor in human ARPE-19 and umbilical endothelium cell lines. The alginate-gelatin injectable hydrogel loaded OCCNPs are biocompatible and have high potential in protecting cells from apoptosis, angiogenesis, and production of pro-inflammatory cytokines in AMD cellular models. This article is protected by copyright. All rights reserved. © 2018 Wiley Periodicals, Inc.

  11. Peritoneal adhesion prevention with a biodegradable and injectable N,O-carboxymethyl chitosan-aldehyde hyaluronic acid hydrogel in a rat repeated-injury model

    PubMed Central

    Song, Linjiang; Li, Ling; He, Tao; Wang, Ning; Yang, Suleixin; Yang, Xi; Zeng, Yan; Zhang, Wenli; Yang, Li; Wu, Qinjie; Gong, Changyang

    2016-01-01

    Postoperative peritoneal adhesion is one of the serious issues because it induces severe clinical disorders. In this study, we prepared biodegradable and injectable hydrogel composed of N,O-carboxymethyl chitosan (NOCC) and aldehyde hyaluronic acid (AHA), and assessed its anti-adhesion effect in a rigorous and severe recurrent adhesion model which is closer to clinical conditions. The flexible hydrogel, which gelated in 66 seconds at 37 °C, was cross-linked by the schiff base derived from the amino groups of NOCC and aldehyde groups in AHA. In vitro cytotoxicity test showed the hydrogel was non-toxic. In vitro and in vivo degradation examinations demonstrated the biodegradable and biocompatibility properties of the hydrogel. The hydrogel discs could prevent the invasion of fibroblasts, whereas fibroblasts encapsulated in the porous 3-dimensional hydrogels could grow and proliferate well. Furthermore, the hydrogel was applied to evaluate the anti-adhesion efficacy in a more rigorous recurrent adhesion model. Compared with normal saline group and commercial hyaluronic acid (HA) hydrogel, the NOCC-AHA hydrogel exhibited significant reduction of peritoneal adhesion. Compared to control group, the blood and abdominal lavage level of tPA was increased in NOCC-AHA hydrogel group. These findings suggested that NOCC-AHA hydrogel had a great potential to serve as an anti-adhesion candidate. PMID:27869192

  12. Peritoneal adhesion prevention with a biodegradable and injectable N,O-carboxymethyl chitosan-aldehyde hyaluronic acid hydrogel in a rat repeated-injury model

    NASA Astrophysics Data System (ADS)

    Song, Linjiang; Li, Ling; He, Tao; Wang, Ning; Yang, Suleixin; Yang, Xi; Zeng, Yan; Zhang, Wenli; Yang, Li; Wu, Qinjie; Gong, Changyang

    2016-11-01

    Postoperative peritoneal adhesion is one of the serious issues because it induces severe clinical disorders. In this study, we prepared biodegradable and injectable hydrogel composed of N,O-carboxymethyl chitosan (NOCC) and aldehyde hyaluronic acid (AHA), and assessed its anti-adhesion effect in a rigorous and severe recurrent adhesion model which is closer to clinical conditions. The flexible hydrogel, which gelated in 66 seconds at 37 °C, was cross-linked by the schiff base derived from the amino groups of NOCC and aldehyde groups in AHA. In vitro cytotoxicity test showed the hydrogel was non-toxic. In vitro and in vivo degradation examinations demonstrated the biodegradable and biocompatibility properties of the hydrogel. The hydrogel discs could prevent the invasion of fibroblasts, whereas fibroblasts encapsulated in the porous 3-dimensional hydrogels could grow and proliferate well. Furthermore, the hydrogel was applied to evaluate the anti-adhesion efficacy in a more rigorous recurrent adhesion model. Compared with normal saline group and commercial hyaluronic acid (HA) hydrogel, the NOCC-AHA hydrogel exhibited significant reduction of peritoneal adhesion. Compared to control group, the blood and abdominal lavage level of tPA was increased in NOCC-AHA hydrogel group. These findings suggested that NOCC-AHA hydrogel had a great potential to serve as an anti-adhesion candidate.

  13. Targeted Drug Delivery in the Suprachoroidal Space by Swollen Hydrogel Pushing.

    PubMed

    Jung, Jae Hwan; Desit, Patcharin; Prausnitz, Mark R

    2018-04-01

    The purpose is to target model drug particles to the posterior region of the suprachoroidal space (SCS) of the eye controlled via pushing by hydrogel swelling. A particle formulation containing 1% hyaluronic acid (HA) with fluorescent polymer particles and a hydrogel formulation containing 4% HA were introduced in a single syringe as two layers without mixing, and injected sequentially into the SCS of the rabbit eye ex vivo and in vivo using a microneedle. Distribution of particles in the eye was determined by microscopy. During injection, the particle formulation was pushed toward the middle of the SCS by the viscous hydrogel formulation, but less than 12% of particles reached the posterior SCS. After injection, the particle formulation was pushed further toward the macula and optic nerve in the posterior SCS by hydrogel swelling and spreading. Heating the eye to 37°C, or injecting in vivo decreased viscosity and mechanical strength of the hydrogel, thereby allowing it to swell and flow further in the SCS. A high salt concentration (9% NaCl) in the hydrogel formulation further increased hydrogel swelling due to osmotic flow into the hydrogel. In this way, up to 76% of particles were delivered to the posterior SCS from an injection made near the limbus. This study shows that model drug particles can be targeted to the posterior SCS by HA hydrogel swelling and pushing without particle functionalization or administering external driving forces.

  14. A new injectable biphasic hydrogel based on partially hydrolyzed polyacrylamide and nano hydroxyapatite, crosslinked with chromium acetate, as scaffold for cartilage regeneration

    NASA Astrophysics Data System (ADS)

    Koushki, N.; Tavassoli, H.; Katbab, A. A.; Katbab, P.; Bonakdar, S.

    2015-05-01

    Polymer scaffolds are applied in the field of tissue engineering as three dimensional structures to organize cells and present stimuli to direct generation of a desired damaged tissue. In situ gelling scaffolds have attracted great attentions, as they are structurally similar to the extra cellular matrix (ECM). In the present work, attempts have been made to design and fabricate a new injectable and crosslinkable biphasic hydrogel based on partially hydrolyzed polyacrylamide (HPAM), chromium acetate as crosslink agent and nanocrystalline hydroxyapatite (nHAp) as reinforcing and bioactive agent for repair and regeneration of damaged cartilage. The distinct characteristic of HPAM is the presence of carboxylate anion groups on its backbone which allows to engineer the structure of the hydrogel for the desired bioactivity with appropriate cells differentiation towards both soft and hard (bone) tissues. The synthesized hydrogel exhibited bifunctional behavior which was derived by its biphasic structure in which one phase was loaded with nano hydroxyapatite to provide integration capability by subchondral bones and fix the hydrogel at cartilage defect without a need for suturing. The other phase differentiates the rabbit adipogenic mesenchymal stem cells (MSCs) towards soft tissue. Rheomechanical spectrometry (RMS) was employed to study the kinetic of the gelation including induction time and rate, as well as to measure the ultimate elastic modulus of the optimum crosslinked hydrogel. Surface tension measurement was also performed to tailor the surface characteristics of the gels. In vitro culturing of the cells inside the crosslinked hydrogel revealed high viability and high differentiation of the encapsulated rabbit stem cells, providing that the chromium acetate level was kept below 0.2 wt%. Based on the obtained results, the designed and fabricated biphasic hydrogel exhibited high potential as carrier for the stem cells for cartilage tissue engineering application with excellent injectability.

  15. Development of crosslinked methylcellulose hydrogels for soft tissue augmentation using an ammonium persulfate-ascorbic acid redox system.

    PubMed

    Gold, Gittel T; Varma, Devika M; Taub, Peter J; Nicoll, Steven B

    2015-12-10

    Hydrogels composed of methylcellulose are candidate materials for soft tissue reconstruction. Although photocrosslinked methylcellulose hydrogels have shown promise for such applications, gels crosslinked using reduction-oxidation (redox) initiators may be more clinically viable. In this study, methylcellulose modified with functional methacrylate groups was polymerized using an ammonium persulfate (APS)-ascorbic acid (AA) redox initiation system to produce injectable hydrogels with tunable properties. By varying macromer concentration from 2% to 4% (w/v), the equilibrium moduli of the hydrogels ranged from 1.47 ± 0.33 to 5.31 ± 0.71 kPa, on par with human adipose tissue. Gelation time was found to conform to the ISO standard for injectable materials. Cellulase treatment resulted in complete degradation of the hydrogels within 24h, providing a reversible corrective feature. Co-culture with human dermal fibroblasts confirmed the cytocompatibility of the gels based on DNA measurements and Live/Dead imaging. Taken together, this evidence indicates that APS-AA redox-polymerized methylcellulose hydrogels possess properties beneficial for use as soft tissue fillers. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Injectable hyperbranched poly(β-amino ester) hydrogels with on-demand degradation profiles to match wound healing processes.

    PubMed

    Xu, Qian; Guo, Linru; A, Sigen; Gao, Yongsheng; Zhou, Dezhong; Greiser, Udo; Creagh-Flynn, Jack; Zhang, Hong; Dong, Yixiao; Cutlar, Lara; Wang, Fagang; Liu, Wenguang; Wang, Wei; Wang, Wenxin

    2018-02-28

    Adjusting biomaterial degradation profiles to match tissue regeneration is a challenging issue. Herein, biodegradable hyperbranched poly(β-amino ester)s (HP-PBAEs) were designed and synthesized via "A2 + B4" Michael addition polymerization, and displayed fast gelation with thiolated hyaluronic acid (HA-SH) via a "click" thiol-ene reaction. HP-PBAE/HA-SH hydrogels showed tunable degradation profiles both in vitro and in vivo using diamines with different alkyl chain lengths and poly(ethylene glycol) diacrylates with varied PEG spacers. The hydrogels with optimized degradation profiles encapsulating ADSCs were used as injectable hydrogels to treat two different types of humanized excisional wounds - acute wounds with faster healing rates and diabetic wounds with slower healing and neo-tissue formation. The fast-degrading hydrogel showed accelerated wound closure in acute wounds, while the slow-degrading hydrogel showed better wound healing for diabetic wounds. The results demonstrate that the new HP-PBAE-based hydrogel in combination with ADSCs can be used as a well-controlled biodegradable skin substitute, which demonstrates a promising approach in the treatment of various types of skin wounds.

  17. Interleukin-15 and cisplatin co-encapsulated thermosensitive polypeptide hydrogels for combined immuno-chemotherapy.

    PubMed

    Wu, Xilong; Wu, Yundi; Ye, Hongbo; Yu, Shuangjiang; He, Chaoliang; Chen, Xuesi

    2017-06-10

    In situ-forming thermosensitive hydrogels based on poly(ethylene glycol)-poly(γ-ethyl-l-glutamate) diblock copolymers (mPEG-b-PELG) were prepared for the co-delivery of interleukin-15 (IL-15) and cisplatin (CDDP). The polypeptide-based hydrogels as local drug delivery carriers could reduce the systemic toxicity, degrade thoroughly within 3weeks after subcutaneous injection into rats and display an acceptable biocompatibility. When incubated with mouse melanoma B16 cells, only the CDDP-treated groups had significant effects on the S phase cell-cycle arrest in melanoma cells. After a single peritumoral injection of the hydrogel containing IL-15/CDDP in C57BL/6 mice inoculated with B16F0-RFP melanoma cells, the dual drug-loaded hydrogels displayed synergistic anticancer efficacy, which was resulted from a combination of CDDP-mediated S arrest and IL-15/CDDP-induced recovery of CD8 + T cell and NK cell populations to reduce immunosuppression and enhance antitumor immunity. Hence, the as-prepared thermosensitive polypeptide hydrogels for localized and sustained co-delivery of IL-15 and CDDP may have potential for efficient treatment of melanoma. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. The osteogenic differentiation of dog bone marrow mesenchymal stem cells in a thermo-sensitive injectable chitosan/collagen/β-glycerophosphate hydrogel: in vitro and in vivo.

    PubMed

    Sun, Bin; Ma, Wei; Su, Fang; Wang, Yi; Liu, Jiaqiang; Wang, Dongshen; Liu, Hongchen

    2011-09-01

    Type I collagen was added to the composite chitosan solution in a ratio of 1:2 to build a physical cross-linked self-forming chitosan/collagen/β-GP hydrogel. Osteogenic properties of this novel injectable hydrogel were evaluated. Gelation time was about 8 min which offered enough time for handling a mixture containing cells and the subsequent injection. Scanning electronic microscopy (SEM) observations indicated good spreading of bone marrow mesenchymal stem cells (BMSCs) in this hydrogel scaffold. Mineral nodules were found in the dog-BMSCs inoculated hydrogel by SEM after 28 days. After subcutaneous injection into nude mouse dorsum for 4 weeks, partial bone formation was observed in the chitosan/collagen/β-GP hydrogel loaded with pre-osteodifferentiated dog-BMSCs, which indicated that chitosan/collagen/β-GP hydrogel composite could induce osteodifferentiation in BMSCs without exposure to a continual supply of external osteogenic factors. In conclusion, the novel chitosan/collagen/β-GP hydrogel composite should prove useful as a bone regeneration scaffold.

  19. Injectable dopamine-modified poly(α,β-aspartic acid) nanocomposite hydrogel as bioadhesive drug delivery system.

    PubMed

    Gong, Chu; Lu, Caicai; Li, Bingqiang; Shan, Meng; Wu, Guolin

    2017-04-01

    Hydrogel systems based on cross-linked polymeric materials with adhesive properties in wet environments have been considered as promising candidates for tissue adhesives. The 3,4-dihydroxyphenylalanine (DOPA) is believed to be responsible for the water-resistant adhesive characteristics of mussel adhesive proteins. Under the inspiration of DOPA containing adhesive proteins, a dopamine-modified poly(α,β-aspartic acid) derivative (PDAEA) was successfully synthesized by successive ring-opening reactions of polysuccinimide (PSI) with dopamine and ethanolamine, and an injectable bioadhesive hydrogel was prepared via simply mixing PDAEA and FeCl 3 solutions. The formation mechanism of the hydrogel was investigated by ultraviolet-visible (UV-vis) spectroscopic, Fourier transformation infrared (FT-IR) spectroscopic, visual colorimetric measurements and EDTA immersion methods. The study demonstrated that the PDAEA-Fe 3+ hydrogel is a dual cross-linking system composed of covalent and coordination crosslinks. The PDAEA-Fe 3+ hydrogel is suitable to serve as a bioadhesive agent according to the rheological behaviors and the observed significant shear adhesive strength. The slow and sustained release of the model drug curcumin from the hydrogel in vitro demonstrated the hydrogel could also be potentially used for drug delivery. Moreover, the cytotoxicity tests in vitro suggested the prepared polymer and hydrogel possessed excellent cytocompatibility. All the results indicated that the dopamine modified poly(α,β-aspartic acid) derivative based hydrogel was a promising candidate for bioadhesive drug delivery system. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 1000-1008, 2017. © 2017 Wiley Periodicals, Inc.

  20. An Injectable Enzymatically Crosslinked Carboxymethylated Pullulan/Chondroitin Sulfate Hydrogel for Cartilage Tissue Engineering

    PubMed Central

    Chen, Feng; Yu, Songrui; Liu, Bing; Ni, Yunzhou; Yu, Chunyang; Su, Yue; Zhu, Xinyuan; Yu, Xiaowei; Zhou, Yongfeng; Yan, Deyue

    2016-01-01

    In this study, an enzymatically cross-linked injectable and biodegradable hydrogel system comprising carboxymethyl pullulan-tyramine (CMP-TA) and chondroitin sulfate-tyramine (CS-TA) conjugates was successfully developed under physiological conditions in the presence of both horseradish peroxidase (HRP) and hydrogen peroxide (H2O2) for cartilage tissue engineering (CTTE). The HRP crosslinking method makes this injectable system feasible, minimally invasive and easily translatable for regenerative medicine applications. The physicochemical properties of the mechanically stable hydrogel system can be modulated by varying the weight ratio and concentration of polymer as well as the concentrations of crosslinking reagents. Additionally, the cellular behaviour of porcine auricular chondrocytes encapsulated into CMP-TA/CS-TA hydrogels demonstrates that the hydrogel system has a good cyto-compatibility. Specifically, compared to the CMP-TA hydrogel, these CMP-TA/CS-TA composite hydrogels have enhanced cell proliferation and increased cartilaginous ECM deposition, which significantly facilitate chondrogenesis. Furthermore, histological analysis indicates that the hydrogel system exhibits acceptable tissue compatibility by using a mouse subcutaneous implantation model. Overall, the novel injectable pullulan/chondroitin sulfate composite hydrogels presented here are expected to be useful biomaterial scaffold for regenerating cartilage tissue. PMID:26817622

  1. An Injectable Enzymatically Crosslinked Carboxymethylated Pullulan/Chondroitin Sulfate Hydrogel for Cartilage Tissue Engineering

    NASA Astrophysics Data System (ADS)

    Chen, Feng; Yu, Songrui; Liu, Bing; Ni, Yunzhou; Yu, Chunyang; Su, Yue; Zhu, Xinyuan; Yu, Xiaowei; Zhou, Yongfeng; Yan, Deyue

    2016-01-01

    In this study, an enzymatically cross-linked injectable and biodegradable hydrogel system comprising carboxymethyl pullulan-tyramine (CMP-TA) and chondroitin sulfate-tyramine (CS-TA) conjugates was successfully developed under physiological conditions in the presence of both horseradish peroxidase (HRP) and hydrogen peroxide (H2O2) for cartilage tissue engineering (CTTE). The HRP crosslinking method makes this injectable system feasible, minimally invasive and easily translatable for regenerative medicine applications. The physicochemical properties of the mechanically stable hydrogel system can be modulated by varying the weight ratio and concentration of polymer as well as the concentrations of crosslinking reagents. Additionally, the cellular behaviour of porcine auricular chondrocytes encapsulated into CMP-TA/CS-TA hydrogels demonstrates that the hydrogel system has a good cyto-compatibility. Specifically, compared to the CMP-TA hydrogel, these CMP-TA/CS-TA composite hydrogels have enhanced cell proliferation and increased cartilaginous ECM deposition, which significantly facilitate chondrogenesis. Furthermore, histological analysis indicates that the hydrogel system exhibits acceptable tissue compatibility by using a mouse subcutaneous implantation model. Overall, the novel injectable pullulan/chondroitin sulfate composite hydrogels presented here are expected to be useful biomaterial scaffold for regenerating cartilage tissue.

  2. Evaluation of an injectable hydrogel and polymethyl methacrylate in restoring mechanics to compressively fractured spine motion segments.

    PubMed

    Balkovec, Christian; Vernengo, Andrea J; Stevenson, Peter; McGill, Stuart M

    2016-11-01

    Compressive fracture can produce profound changes to the mechanical profile of a spine segment. Minimally invasive repair has the potential to restore both function and structural integrity to an injured spine. Use of both hydrogels to address changes to the disc, combined with polymethyl methacrylate (PMMA) to address changes to the vertebral body, has the potential to facilitate repair. The purpose of this investigation was to determine if the combined use of hydrogel injection and PMMA could restore the mechanical profile of an axially injured spinal motion segment. This is a basic science study evaluating a combination of hydrogel injection and vertebroplasty on restoring mechanics to compressively injured porcine spine motion segments. Fourteen porcine spine motion segments were subject to axial compression until fracture using a dynamic servohydraulic testing apparatus. Rotational and compressive stiffness was measured for each specimen under the following conditions: initial undamaged, fractured, fatigue loading under compression, hydrogel injection, PMMA injection, and fatigue loading under compression. Group 1 received hydrogel injection followed by PMMA injection, whereas Group 2 received PMMA injection followed by hydrogel injection. This study was funded under a Natural Sciences and Engineering Research Council of Canada discovery grant. PMMA injection was found to alter the compressive stiffness properties of axially injured spine motion segments, restoring values from Groups 1 and 2 to 89.3%±29.3% and 81%±27.9% of initial values respectively. Hydrogel injection was found to alter the rotational stiffness properties, restoring specimens in Groups 1 and 2 to 151.5%±81% and 177.2%±54.9% of initial values respectively. Prolonged restoration of function was not possible, however, after further fatigue loading. Using this repair technique, replication of the mechanism of injury appears to cause a rapid deterioration in function of the motion segments. Containment of the hydrogel appears to be an issue with large breaches in the end plate, as it is posited to migrate into the cancellous bone of the vertebral body. Future work should attempt to evaluate methods in fully sealing the disc space. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Targeted Drug Delivery in the Suprachoroidal Space by Swollen Hydrogel Pushing

    PubMed Central

    Jung, Jae Hwan; Desit, Patcharin; Prausnitz, Mark R.

    2018-01-01

    Purpose The purpose is to target model drug particles to the posterior region of the suprachoroidal space (SCS) of the eye controlled via pushing by hydrogel swelling. Methods A particle formulation containing 1% hyaluronic acid (HA) with fluorescent polymer particles and a hydrogel formulation containing 4% HA were introduced in a single syringe as two layers without mixing, and injected sequentially into the SCS of the rabbit eye ex vivo and in vivo using a microneedle. Distribution of particles in the eye was determined by microscopy. Results During injection, the particle formulation was pushed toward the middle of the SCS by the viscous hydrogel formulation, but less than 12% of particles reached the posterior SCS. After injection, the particle formulation was pushed further toward the macula and optic nerve in the posterior SCS by hydrogel swelling and spreading. Heating the eye to 37°C, or injecting in vivo decreased viscosity and mechanical strength of the hydrogel, thereby allowing it to swell and flow further in the SCS. A high salt concentration (9% NaCl) in the hydrogel formulation further increased hydrogel swelling due to osmotic flow into the hydrogel. In this way, up to 76% of particles were delivered to the posterior SCS from an injection made near the limbus. Conclusions This study shows that model drug particles can be targeted to the posterior SCS by HA hydrogel swelling and pushing without particle functionalization or administering external driving forces. PMID:29677369

  4. Alginate nanobeads interspersed fibrin network as in situ forming hydrogel for soft tissue engineering.

    PubMed

    Deepthi, S; Jayakumar, R

    2018-06-01

    Hydrogels are a class of materials that has the property of injectability and in situ gel formation. This property of hydrogels is manipulated in this study to develop a biomimetic bioresorbable injectable system of alginate nanobeads interspersed in fibrin network. Alginate nanobeads developed by calcium cross-linking yielded a size of 200-500 nm. The alginate nanobeads fibrin hydrogel was formed using dual syringe apparatus. Characterization of the in situ injectable hydrogel was done by SEM, FTIR and Rheometer. The developed hydrogel showed mechanical strength of 19 kPa which provides the suitable compliance for soft tissue engineering. Cytocompatibility studies using human umbilical cord blood derived mesenchymal stem cells showed good attachment, proliferation and infiltration within the hydrogel similar to fibrin gel. The developed in situ forming hydrogel could be a suitable delivery carrier of stem cells for soft tissue regeneration.

  5. Evaluation of RGD peptide hydrogel in the posterior segment of the rabbit eye.

    PubMed

    Wang, Xing-Hua; Li, Shuang; Liang, Liang; Xu, Xiao-Ding; Zhang, Xian-Zheng; Jiang, Fa-Gang

    2013-01-01

    The aim of this study was to evaluate the biocompatibility and biodegradability of RGD peptide hydrogel in the posterior segment of the eye as a biomaterial potentially useful for sustained drug delivery systems. RGD peptide hydrogel was injected into the vitreous cavity and suprachoroidal space of rabbit eyes. Clinical follow-up and histological observation were performed up to four weeks. The biodegradability was also evaluated by the lifetime of the hydrogel which was defined by ophthalmoscopic observation or ultrasonography. The results showed that RGD peptide hydrogel was well tolerated in the vitreous cavity and suprachoroidal space, and disappeared from the injection sites progressively. As for suprachoroidal injection, the hydrogel was clearly identified by ultrasound echography and was confirmed innoxious to the retinal vessels by fluorescein angiography. Histological observations showed that the structures of retina, choroid and other tissues around the injection site remained normal after the injection. The lifetime of the hydrogel was 25.7 ± 2.65 days and 14.3 ± 3.3 days in the vitreous cavity and suprachoroidal space, respectively. The results obtained demonstrated that RGD peptide hydrogel, which showed excellent biocompatibility and favorable biodegradability in the posterior segment of rabbit eyes, appears to be a promising biomaterial to deliver drugs focally to the choroid and the retina.

  6. Injectable self-healing carboxymethyl chitosan-zinc supramolecular hydrogels and their antibacterial activity.

    PubMed

    Wahid, Fazli; Zhou, Ya-Ning; Wang, Hai-Song; Wan, Tong; Zhong, Cheng; Chu, Li-Qiang

    2018-04-07

    Injectable and self-healing hydrogels have found numerous applications in drug delivery, tissue engineering and 3D cell culture. Herein, we report an injectable self-healing carboxymethyl chitosan (CMCh) supramolecular hydrogels cross-linked by zinc ions (Zn 2+ ). Supramolecular hydrogels were obtained by simple addition of metal ions solution to CMCh solution at an appropriate pH value. The mechanical properties of these hydrogels were adjustable by the concentration of Zn 2+ . For example, the hydrogel with the highest concentration of Zn 2+ (CMCh-Zn4) showed strongest mechanical properties (storage modulus~11,000Pa) while hydrogel with the lowest concentration of Zn 2+ (CMCh-Zn1) showed weakest mechanical properties (storage modulus~220Pa). As observed visually and confirmed rheologically, the CMCh-Zn1 hydrogel with the lowest Zn 2+ concentration showed thixotropic property. CMCh-Zn1 hydrogel also presented injectable property. Moreover, the antibacterial properties of the prepared supramolecular hydrogels were studied against Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli) by agar well diffusion method. The results revealed Zn 2+ dependent antibacterial properties against both kinds of strains. The inhibition zones were ranging from ~11-24mm and ~10-22mm against S. aureus and E. coli, respectively. We believe that the prepared supramolecular hydrogels could be used as a potential candidate in biomedical fields. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Thermosensitive injectable in-situ forming carboxymethyl chitin hydrogel for three-dimensional cell culture.

    PubMed

    Liu, Hui; Liu, Jia; Qi, Chao; Fang, Yapeng; Zhang, Lina; Zhuo, Renxi; Jiang, Xulin

    2016-04-15

    Injectable hydrogels have gained great attentions for cell therapy and tissue regeneration as a result of the applications in minimally invasive surgical procedures with the ease of handling and complete filling of the defect area. Here, a novel biodegradable, thermosensitive and injectable carboxymethyl chitin (CMCH) hydrogel was developed for three-dimensional (3D) cell culture. The obtained CMCH solution remained transparent liquid flowing easily at low temperatures and gelled rapidly at 37°C. The gelation time of CMCH hydrogels could be easily tuned by varying temperature and the degree of carboxymethylation, which facilitates the cell encapsulation process at room temperature and in-situ forming hydrogel at body temperature. Moreover, the CMCH-14 hydrogels in PBS buffer remained stable and continuous porous structure and could be degraded in the presence of lysozyme or hyaluronidase. HeLa cells proliferated sustainably and self-assembled to form 3D multicellular spheroids with high cell activity on the surface of CMCH-14 hydrogel. Encapsulation of COS-7 cells within the in-situ forming CMCH hydrogel demonstrated that CMCH hydrogels promoted cell survival and proliferation. In vivo mouse study of the CMCH hydrogels showed good in-situ gel formation and tissue biocompatibility. Thus, the biodegradable thermosensitive injectable CMCH hydrogels hold potential for 3D cell culture and biomedical applications. Biodegradable hydrogels have been widely studied for cell therapy and tissue regeneration. Herein, we report a novel thermosensitive injectable carboxymethyl chitin (CMCH) hydrogel for 3D cell culture, which was synthesized homogeneously from the bioactive natural chitin through the "green" process avoiding using organic solvent. The CMCH solutions exhibited rapid thermoresponsive sol-to-gel phase transition behavior at 37°C with controllable gelation times, which facilitates the cell encapsulation process at room temperature and in-situ forming hydrogel at body temperature. Importantly, in vitro 3D cell culture and in vivo mouse study of the CMCH hydrogel showed promotion of cell survival and proliferation, good in-situ gel formation and biocompatibility. We believe that such thermosensitive injectable CMCH hydrogels would be very useful for biomedical applications, such as tumor model for cancer research, post-operative adhesion prevention, the regeneration of cartilage and central nervous system and so on. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  8. In vitro proliferation and osteogenic differentiation of human dental pulp stem cells in injectable thermo-sensitive chitosan/β-glycerophosphate/hydroxyapatite hydrogel.

    PubMed

    Chen, Yantian; Zhang, Fengli; Fu, Qiang; Liu, Yong; Wang, Zejian; Qi, Nianmin

    2016-09-01

    Injectable thermo-sensitive hydrogels have a potential application in bone tissue engineering for their sensitivities and minimal invasive properties. Human dental pulp stem cells have been considered a promising tool for tissue reconstruction. The objective of this study was to investigate the proliferation and osteogenic differentiation of dental pulp stem cells in injectable thermo-sensitive chitosan/β-glycerophosphate/hydroxyapatite hydrogel in vitro. The chitosan /β-glycerophosphate hydrogel and chitosan/β-glycerophosphate/hydroxyapatite hydrogel were prepared using the sol-gel method. The injectability of chitosan /β-glycerophosphate hydrogel and chitosan/β-glycerophosphate/hydroxyapatite hydrogel was measured using a commercial disposable syringe. Scanning electron microscopy was used to observe the inner structure of hydrogels. Then dental pulp stem cells were seeded in chitosan /β-glycerophosphate hydrogel and chitosan/β-glycerophosphate/hydroxyapatite hydrogel, respectively. The growth of dental pulp stem cells was periodically observed under an inverted microscope. The proliferation of dental pulp stem cells was detected by using an Alamar Blue kit, while cell apoptosis was determined by using a Live/Dead Viability/Cytotoxicity kit. The osteogenic differentiations of dental pulp stem cells in chitosan /β-glycerophosphate hydrogel and chitosan/β-glycerophosphate/hydroxyapatite hydrogel were evaluated by alkaline phosphatase activity assay and mRNA expression of osteogenesis gene for 21 days in osteogenic medium. The results indicated that there was no significant difference between chitosan /β-glycerophosphate hydrogel and chitosan/β-glycerophosphate/hydroxyapatite hydrogel in injectability. Cells within the chitosan/β-glycerophosphate/hydroxyapatite hydrogel displayed a typical adherent cell morphology and rapid proliferation with high cellular viability after 14 days of culture. Dental pulp stem cells seeded in chitosan/β-glycerophosphate/hydroxyapatite hydrogels had a higher alkaline phosphatase activity and better up-regulation of gene expression levels of Runx-2, Collagen I, alkaline phosphatase and osteocalcin than in chitosan /β-glycerophosphate hydrogels after osteogenic differentiation. These results demonstrated that the chitosan/β-glycerophosphate/hydroxyapatite hydrogel had excellent cellular compatibility and the superiority in promoting dental pulp stem cells osteogenic differentiation in vitro, showing that the combination of dental pulp stem cells and chitosan/β-glycerophosphate/hydroxyapatite hydrogel has the potential to be used for bone tissue engineering. © The Author(s) 2016.

  9. A fast pH-switchable and self-healing supramolecular hydrogel carrier for guided, local catheter injection in the infarcted myocardium.

    PubMed

    Bastings, Maartje M C; Koudstaal, Stefan; Kieltyka, Roxanne E; Nakano, Yoko; Pape, A C H; Feyen, Dries A M; van Slochteren, Frebus J; Doevendans, Pieter A; Sluijter, Joost P G; Meijer, E W; Chamuleau, Steven A J; Dankers, Patricia Y W

    2014-01-01

    Minimally invasive intervention strategies after myocardial infarction use state-of-the-art catheter systems that are able to combine mapping of the infarcted area with precise, local injection of drugs. To this end, catheter delivery of drugs that are not immediately pumped out of the heart is still challenging, and requires a carrier matrix that in the solution state can be injected through a long catheter, and instantaneously gelates at the site of injection. To address this unmet need, a pH-switchable supramolecular hydrogel is developed. The supramolecular hydrogel is switched into a liquid at pH > 8.5, with a viscosity low enough to enable passage through a 1-m long catheter while rapidly forming a hydrogel in contact with tissue. The hydrogel has self-healing properties taking care of adjustment to the injection site. Growth factors are delivered from the hydrogel thereby clearly showing a reduction of infarct scar in a pig myocardial infarction model. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. An injectable and biodegradable hydrogel based on poly(α,β-aspartic acid) derivatives for localized drug delivery.

    PubMed

    Lu, Caicai; Wang, Xiaojuan; Wu, Guolin; Wang, Jingjing; Wang, Yinong; Gao, Hui; Ma, Jianbiao

    2014-03-01

    An injectable hydrogel via hydrazone cross-linking was prepared under mild conditions without addition of cross-linker or catalyst. Hydrazine and aldehyde modified poly(aspartic acid)s were used as two gel precursors. Both of them are water-soluble and biodegradable polymers with a protein-like structure, and obtained by aminolysis reaction of polysuccinimide. The latter can be prepared by thermal polycondensation of aspartic acid. Hydrogels were prepared in PBS solution and characterized by different methods including gel content and swelling, Fourier transformed-infrared spectroscopy, and in vitro degradation experiment. A scanning electron microscope viewed the interior morphology of the obtained hydrogels, which showed porous three-dimensional structures. Different porous sizes were present, which could be well controlled by the degree of aldehyde substitution in precursor poly(aspartic acid) derivatives. The doxorubicin-loaded hydrogels were prepared and showed a pH-sensitive release profile. The release rate can be accelerated by decreasing the environmental pH from a physiological to a weak acidic condition. Moreover, the cell adhesion and growth behaviors on the hydrogel were studied and the polymeric hydrogel showed good biocompatibility. Copyright © 2013 Wiley Periodicals, Inc.

  11. Injectable shear-thinning nanoengineered hydrogels for stem cell delivery

    NASA Astrophysics Data System (ADS)

    Thakur, Ashish; Jaiswal, Manish K.; Peak, Charles W.; Carrow, James K.; Gentry, James; Dolatshahi-Pirouz, Alireza; Gaharwar, Akhilesh K.

    2016-06-01

    Injectable hydrogels are investigated for cell encapsulation and delivery as they can shield cells from high shear forces. One of the approaches to obtain injectable hydrogels is to reinforce polymeric networks with high aspect ratio nanoparticles such as two-dimensional (2D) nanomaterials. 2D nanomaterials are an emerging class of ultrathin materials with a high degree of anisotropy and they strongly interact with polymers resulting in the formation of shear-thinning hydrogels. Here, we present 2D nanosilicate reinforced kappa-carrageenan (κCA) hydrogels for cellular delivery. κCA is a natural polysaccharide that resembles native glycosaminoglycans and can form brittle hydrogels via ionic crosslinking. The chemical modification of κCA with photocrosslinkable methacrylate groups renders the formation of a covalently crosslinked network (MκCA). Reinforcing the MκCA with 2D nanosilicates results in shear-thinning characteristics, and enhanced mechanical stiffness, elastomeric properties, and physiological stability. The shear-thinning characteristics of nanocomposite hydrogels are investigated for human mesenchymal stem cell (hMSC) delivery. The hMSCs showed high cell viability after injection and encapsulated cells showed a circular morphology. The proposed shear-thinning nanoengineered hydrogels can be used for cell delivery for cartilage tissue regeneration and 3D bioprinting.

  12. Injectable nanocomposite cryogels for versatile protein drug delivery.

    PubMed

    Koshy, Sandeep T; Zhang, David K Y; Grolman, Joshua M; Stafford, Alexander G; Mooney, David J

    2018-01-01

    Sustained, localized protein delivery can enhance the safety and activity of protein drugs in diverse disease settings. While hydrogel systems are widely studied as vehicles for protein delivery, they often suffer from rapid release of encapsulated cargo, leading to a narrow duration of therapy, and protein cargo can be denatured by incompatibility with the hydrogel crosslinking chemistry. In this work, we describe injectable nanocomposite hydrogels that are capable of sustained, bioactive, release of a variety of encapsulated proteins. Injectable and porous cryogels were formed by bio-orthogonal crosslinking of alginate using tetrazine-norbornene coupling. To provide sustained release from these hydrogels, protein cargo was pre-adsorbed to charged Laponite nanoparticles that were incorporated within the walls of the cryogels. The presence of Laponite particles substantially hindered the release of a number of proteins that otherwise showed burst release from these hydrogels. By modifying the Laponite content within the hydrogels, the kinetics of protein release could be precisely tuned. This versatile strategy to control protein release simplifies the design of hydrogel drug delivery systems. Here we present an injectable nanocomposite hydrogel for simple and versatile controlled release of therapeutic proteins. Protein release from hydrogels often requires first entrapping the protein in particles and embedding these particles within the hydrogel to allow controlled protein release. This pre-encapsulation process can be cumbersome, can damage the protein's activity, and must be optimized for each protein of interest. The strategy presented in this work simply premixes the protein with charged nanoparticles that bind strongly with the protein. These protein-laden particles are then placed within a hydrogel and slowly release the protein into the surrounding environment. Using this method, tunable release from an injectable hydrogel can be achieved for a variety of proteins. This strategy greatly simplifies the design of hydrogel systems for therapeutic protein release applications. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  13. Thermo-responsive in-situ forming hydrogels as barriers to prevent post-operative peritendinous adhesion.

    PubMed

    Chou, Pang-Yun; Chen, Shih-Heng; Chen, Chih-Hao; Chen, Shih-Hsien; Fong, Yi Teng; Chen, Jyh-Ping

    2017-11-01

    In this study, we aimed to assess whether thermo-responsive in-situ forming hydrogels based on poly(N-isopropylacrylamide) (PNIPAM) could prevent post-operative peritendinous adhesion. The clinical advantages of the thermo-responsive hydrogels are acting as barrier material to block penetration of fibroblasts, providing mobility and flexibility during application and enabling injection through a small opening to fill spaces of any shape after surgery. The thermo-responsiveness of hydrogels was determined to ensure their clinic uses. By grafting hydrophilic biopolymers chitosan (CS) and hyaluronic acid (HA) to PNIPAM, the copolymer hydrogels show enhanced water retention and lubrication, while reduced volume shrinkage during phase transition. In cell culture experiments, the thermo-responsive hydrogel has good biocompatibility and reduces fibroblast penetration. In animal experiments, the effectiveness of preventing post-operative peritendinous adhesion was studied in a rabbit deep flexor tendon model. From gross examination, histology, bending angles of joints, tendon gliding excursion and pull-out force, HA-CS-PNIPAM (HACPN) was confirmed to be the best barrier material to prevent post-operative peritendinous adhesion compared to PNIPAM and CS-PNIPAM (CPN) hydrogels and a commercial barrier film Seprafilm®. There was no significant difference in the breaking strength of HACPN-treated tendons and spontaneously healed ones, indicating HACPN hydrogel application did not interfere with normal tendon healing. We conclude that HACPN hydrogel can provide the best functional outcomes to significantly prevent post-operative tendon adhesion in vivo. We prepared thermo-responsive in-situ forming hydrogels based on poly(N-isopropylacrylamide) (PNIPAM) to prevent post-operative peritendinous adhesion. The injectable barrier hydrogel could have better anti-adhesive properties than current commercial products by acting as barrier material to block penetration of fibroblasts, providing mobility and flexibility during application and enabling injection through a small opening to fill spaces of any shape after surgery. The effectiveness of preventing post-operative peritendinous adhesion was studied in a rabbit deep flexor tendon model. From gross examination, histology, bending angles of joints, tendon gliding excursion and pull-out force, HA-CS-PNIPAM (HACPN) was confirmed to be the best barrier material to prevent post-operative peritendinous adhesion compared to PNIPAM and CS-PNIPAM (CPN) hydrogels and a commercial barrier film Seprafilm®. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  14. Effects of bevacizumab loaded PEG-PCL-PEG hydrogel intracameral application on intraocular pressure after glaucoma filtration surgery.

    PubMed

    Han, Qian; Wang, Yuqi; Li, Xiabin; Peng, Ribo; Li, Ailing; Qian, Zhiyong; Yu, Ling

    2015-08-01

    PEG-PCL-PEG (PECE) hydrogel for intracameral injection as a sustained delivery system can get a stable release of the medication and achieve an effective local concentration. The injectable PECE hydrogel is thermosensitive nano-material which is flowing sol at low temperature and can shift to nonflowing gel at body temperature. This study evaluated the intracameral injection of bevacizumab combined with a PECE hydrogel drug release system on postoperative scarring and bleb survival after experimental glaucoma filtration surgery. The best result was achieved in the bevacizumab loaded PECE hydrogels group, which presented the lowest IOP values after surgery. And the blebs were significantly more persistent in this group. Histology, Massion trichrome staining and immunohistochemistry further demonstrated that glaucoma filtration surgery in combination with bevacizumab loaded PECE hydrogel resulted in good bleb survival due to scar formation inhibition. In conclusions, this study demonstrated that bevacizumab-loaded PECE hydrogel for intracameral injection as a sustained delivery system provide a great opportunity to increase the therapeutic efficacy of glaucoma filtration surgery.

  15. Injectable Hydrogels for Spinal Cord Repair: A Focus on Swelling and Intraspinal Pressure.

    PubMed

    Khaing, Zin Z; Ehsanipour, Arshia; Hofstetter, Christoph P; Seidlits, Stephanie K

    Spinal cord injury (SCI) is a devastating condition that leaves patients with limited motor and sensory function at and below the injury site, with little to no hope of a meaningful recovery. Because of their ability to mimic multiple features of central nervous system (CNS) tissues, injectable hydrogels are being developed that can participate as therapeutic agents in reducing secondary injury and in the regeneration of spinal cord tissue. Injectable biomaterials can provide a supportive substrate for tissue regeneration, deliver therapeutic factors, and regulate local tissue physiology. Recent reports of increasing intraspinal pressure after SCI suggest that this physiological change can contribute to injury expansion, also known as secondary injury. Hydrogels contain high water content similar to native tissue, and many hydrogels absorb water and swell after formation. In the case of injectable hydrogels for the spinal cord, this process often occurs in or around the spinal cord tissue, and thus may affect intraspinal pressure. In the future, predictable swelling properties of hydrogels may be leveraged to control intraspinal pressure after injury. Here, we review the physiology of SCI, with special attention to the current clinical and experimental literature, underscoring the importance of controlling intraspinal pressure after SCI. We then discuss how hydrogel fabrication, injection, and swelling can impact intraspinal pressure in the context of developing injectable biomaterials for SCI treatment. © 2016 S. Karger AG, Basel.

  16. Injectable supramolecular hydrogel formed from α-cyclodextrin and PEGylated arginine-functionalized poly(l-lysine) dendron for sustained MMP-9 shRNA plasmid delivery.

    PubMed

    Lin, Qianming; Yang, Yumeng; Hu, Qian; Guo, Zhong; Liu, Tao; Xu, Jiake; Wu, Jianping; Kirk, Thomas Brett; Ma, Dong; Xue, Wei

    2017-02-01

    Hydrogels have attracted much attention in cancer therapy and tissue engineering due to their sustained gene delivery ability. To obtain an injectable and high-efficiency gene delivery hydrogel, methoxypolyethylene glycol (MPEG) was used to conjugate with the arginine-functionalized poly(l-lysine) dendron (PLLD-Arg) by click reaction, and then the synthesized MPEG-PLLD-Arg interacted with α-cyclodextrin (α-CD) to form the supramolecular hydrogel by the host-guest interaction. The gelation dynamics, hydrogel strength and shear viscosity could be modulated by α-CD content in the hydrogel. MPEG-PLLD-Arg was confirmed to bind and deliver gene effectively, and its gene transfection efficiency was significantly higher than PEI-25k under its optimized condition. After gelation, MMP-9 shRNA plasmid (pMMP-9) could be encapsulated into the hydrogel matrix in situ and be released from the hydrogels sustainedly, as the release rate was dependent on α-CD content. The released MPEG-PLLD-Arg/pMMP-9 complex still showed better transfection efficiency than PEI-25k and induced sustained tumor cell apoptosis. Also, in vivo assays indicated that this pMMP-9-loaded supramolecular hydrogel could result in the sustained tumor growth inhibition meanwhile showed good biocompatibility. As an injectable, sustained and high-efficiency gene delivery system, this supramolecular hydrogel is a promising candidate for long-term gene therapy. To realize the sustained gene delivery for gene therapy, a supramolecular hydrogel with high-efficiency gene delivery ability was prepared through the host-guest interaction between α-cyclodextrin and PEGylated arginine-functionalized poly(l-lysine) dendron. The obtained hydrogel was injectable and biocompatible with adjustable physicochemical property. More importantly, the hydrogel showed the high-efficiency and sustained gene transfection to our used cells, better than PEI-25k. The supramolecular hydrogel resulted in the sustained tumor growth inhibition meanwhile keep good biocompatibility. As an injectable, sustained and high-efficiency gene delivery system, this supramolecular hydrogel is a promising candidate in long-term gene therapy and tissue engineering. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  17. Structural design approaches for creating fat droplet and starch granule mimetics.

    PubMed

    McClements, David Julian; Chung, Cheryl; Wu, Bi-Cheng

    2017-02-22

    This article focuses on hydrogel-based strategies for creating reduced calorie foods with desirable physicochemical, sensory, and nutritional properties. Initially, the role of fat droplets and starch granules in foods is discussed, and then different methods for fabricating hydrogel beads are reviewed, including phase separation, antisolvent precipitation, injection, and emulsion template methods. Finally, the potential application of hydrogel beads as fat droplet and starch granule replacements is discussed. There is still a need for large-scale, high-throughout, and economical methods of fabricating hydrogel beads suitable for utilization within the food industry.

  18. Timing effect of intramyocardial hydrogel injection for positively impacting left ventricular remodeling after myocardial infarction

    PubMed Central

    Yoshizumi, Tomo; Zhu, Yang; Jiang, Hongbin; D’Amore, Antonio; Sakaguchi, Hirokazu; Tchao, Jason; Tobita, Kimimasa; Wagner, William R.

    2016-01-01

    Intramyocardial injection of various injectable hydrogel materials has shown benefit in positively impacting the course of left ventricular (LV) remodeling after myocardial infarction (MI). However, since LV remodeling is a complex, time dependent process, the most efficacious time of hydrogel injection is not clear. In this study, we injected a relatively stiff, thermoresponsive and bioabsorbable hydrogel in rat hearts at 3 different time points - immediately after MI (IM), 3 d post-MI (3D), and 2 w post-MI (2W), corresponding to the beginnings of the necrotic, fibrotic and chronic remodeling phases. The employed left anterior descending coronary artery ligation model showed expected infarction responses including functional loss, inflammation and fibrosis with distinct time dependent patterns. Changes in LV geometry and contractile function were followed by longitudinal echocardiography for 10 w post-MI. While all injection times positively affected LV function and wall thickness, the 3D group gave better functional outcomes than the other injection times and also exhibited more local vascularization and less inflammatory markers than the earlier injection time. The results indicate an important role for injection timing in the increasingly explored concept of post-MI biomaterial injection therapy and suggest that for hydrogels with mechanical support as primary function, injection at the beginning of the fibrotic phase may provide improved outcomes. PMID:26774561

  19. Timing effect of intramyocardial hydrogel injection for positively impacting left ventricular remodeling after myocardial infarction.

    PubMed

    Yoshizumi, Tomo; Zhu, Yang; Jiang, Hongbin; D'Amore, Antonio; Sakaguchi, Hirokazu; Tchao, Jason; Tobita, Kimimasa; Wagner, William R

    2016-03-01

    Intramyocardial injection of various injectable hydrogel materials has shown benefit in positively impacting the course of left ventricular (LV) remodeling after myocardial infarction (MI). However, since LV remodeling is a complex, time dependent process, the most efficacious time of hydrogel injection is not clear. In this study, we injected a relatively stiff, thermoresponsive and bioabsorbable hydrogel in rat hearts at 3 different time points - immediately after MI (IM), 3 d post-MI (3D), and 2 w post-MI (2W), corresponding to the beginnings of the necrotic, fibrotic and chronic remodeling phases. The employed left anterior descending coronary artery ligation model showed expected infarction responses including functional loss, inflammation and fibrosis with distinct time dependent patterns. Changes in LV geometry and contractile function were followed by longitudinal echocardiography for 10 w post-MI. While all injection times positively affected LV function and wall thickness, the 3D group gave better functional outcomes than the other injection times and also exhibited more local vascularization and less inflammatory markers than the earlier injection time. The results indicate an important role for injection timing in the increasingly explored concept of post-MI biomaterial injection therapy and suggest that for hydrogels with mechanical support as primary function, injection at the beginning of the fibrotic phase may provide improved outcomes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. An in vitro investigation to assess procedure parameters for injecting therapeutic hydrogels into the myocardium.

    PubMed

    Curley, Clive J; Dolan, Eimear B; Cavanagh, Brenton; O'Sullivan, Janice; Duffy, Garry P; Murphy, Bruce P

    2017-11-01

    Localized delivery of stem cells is potentially a promising therapeutic strategy for regenerating damaged myocardium. Many studies focus on limiting the biologic component of cell loss, but few address the contribution of mechanical factors. This study investigates optimal parameters for retaining the largest volume of cell loaded hydrogels post intramyocardial injection, without compromising cell viability. In vitro, hydrogel was injected into porcine hearts using various needle designs. Hydrogel retention and distribution pattern was then determined. The two most promising needles were then investigated to understand the effect of needle geometry on stem cell viability. The needle to best impact cell viability was then used to investigate the effect of differing hydrogels on retention and distribution. Three-dimensional experimental modeling revealed needles with smaller diameter's to have greater poloxamer 407 hydrogel retention. No difference in retention existed among various needle designs of similar gauge, despite differences in bolus geometries. When hMSC's, embedded in fibrin hydrogel, were injected through helical and 26G bevel needles no difference in the percent of live cells was seen at 48 h. However, the helical group had almost half the metabolic activity of the 26G bevel group at both time points, and had a significant decline in the percent of live cells from 24 to 48 h. Varying gel type resulted in significantly more alginate being retained in the tissue in comparison to fibrin or poloxamer hydrogels. In conclusion, mechanical properties of injected hydrogels, and the diameter of the needle used, highly influences the volume of hydrogel retained. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 2618-2629, 2017. © 2016 Wiley Periodicals, Inc.

  1. In Situ Modulation of Dendritic Cells by Injectable Thermosensitive Hydrogels for Cancer Vaccines in Mice

    PubMed Central

    2014-01-01

    Attempts to develop cell-based cancer vaccines have shown limited efficacy, partly because transplanted dendritic cells (DCs) do not survive long enough to reach the lymph nodes. The development of biomaterials capable of modulating DCs in situ to enhance antigen uptake and presentation has emerged as a novel method toward developing more efficient cancer vaccines. Here, we propose a two-step hybrid strategy to produce a more robust cell-based cancer vaccine in situ. First, a significant number of DCs are recruited to an injectable thermosensitive mPEG–PLGA hydrogel through sustained release of chemoattractants, in particular, granulocyte-macrophage colony-stimulating factor (GM-CSF). Then, these resident DCs can be loaded with cancer antigens through the use of viral or nonviral vectors. We demonstrate that GM-CSF-releasing mPEG–PLGA hydrogels successfully recruit and house DCs and macrophages, allowing the subsequent introduction of antigens by vectors to activate the resident cells, thus, initiating antigen presentation and triggering immune response. Moreover, this two-step hybrid strategy generates a high level of tumor-specific immunity, as demonstrated in both prophylactic and therapeutic models of murine melanoma. This injectable thermosensitive hydrogel shows great promise as an adjuvant for cancer vaccines, potentially providing a new approach for cell therapies through in situ modulation of cells. PMID:25207465

  2. Fibrin hydrogels functionalized with cartilage extracellular matrix and incorporating freshly isolated stromal cells as an injectable for cartilage regeneration.

    PubMed

    Almeida, H V; Eswaramoorthy, R; Cunniffe, G M; Buckley, C T; O'Brien, F J; Kelly, D J

    2016-05-01

    Freshly isolated stromal cells can potentially be used as an alternative to in vitro expanded cells in regenerative medicine. Their use requires the development of bioactive hydrogels or scaffolds which provide an environment to enhance their proliferation and tissue-specific differentiation in vivo. The goal of the current study was to develop an injectable fibrin hydrogel functionalized with cartilage ECM microparticles and transforming growth factor (TGF)-β3 as a putative therapeutic for articular cartilage regeneration. ECM microparticles were produced by cryomilling and freeze-drying porcine articular cartilage. Up to 2% (w/v) ECM could be incorporated into fibrin without detrimentally affecting its capacity to form stable hydrogels. To access the chondroinductivity of cartilage ECM, we compared chondrogenesis of infrapatellar fat pad-derived stem cells in fibrin hydrogels functionalized with either particulated ECM or control gelatin microspheres. Cartilage ECM particles could be used to control the delivery of TGF-β3 to IFP-derived stem cells within fibrin hydrogels in vitro, and furthermore, led to higher levels of sulphated glycosaminoglycan (sGAG) and collagen accumulation compared to control constructs loaded with gelatin microspheres. In vivo, freshly isolated stromal cells generated a more cartilage-like tissue within fibrin hydrogels functionalized with cartilage ECM particles compared to the control gelatin loaded constructs. These tissues stained strongly for type II collagen and contained higher levels of sGAGs. These results support the use of fibrin hydrogels functionalized with cartilage ECM components in single-stage, cell-based therapies for joint regeneration. An alternative to the use of in vitro expanded cells in regenerative medicine is the use of freshly isolated stromal cells, where a bioactive scaffold or hydrogel is used to provide an environment that enhances their proliferation and tissue-specific differentiation in vivo. The objective of this study was to develop an injectable fibrin hydrogel functionalized with cartilage ECM micro-particles and the growth factor TGF-β3 as a therapeutic for articular cartilage regeneration. This study demonstrates that freshly isolated stromal cells generate cartilage tissue in vivo when incorporated into such a fibrin hydrogels functionalized with cartilage ECM particles. These findings open up new possibilities for in-theatre, single-stage, cell-based therapies for joint regeneration. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  3. Evaluation of an in situ chemically crosslinked hydrogel as a long-term vitreous substitute material.

    PubMed

    Tao, Yong; Tong, Xinming; Zhang, Yan; Lai, Jingjing; Huang, Yanbin; Jiang, Yan-Rong; Guo, Bao-Hua

    2013-02-01

    Currently there is no material that can be used as a long-term vitreous substitute, and this remains an unmet clinical need in ophthalmology. In this study, we developed an injectable, in situ chemically crosslinked hydrogel system and evaluated it in a rabbit model. The system consisted of two components, both based on multi-functional poly(ethylene glycol) (PEG) but with complementarily reactive end groups of thiol and active vinyl groups, respectively. The two components are mixed and injected as a solution mixture, react in vivo via the Michael addition route and form a chemically crosslinked hydrogel in situ. The linkages between the end groups and the backbone PEG chains are specially designed to ensure that the final network structure is hydrolysis-resistant. In the rabbit study and with an optimized operation protocol, we demonstrated that the hydrogel indeed formed in situ after injection, and remained transparent and stable during the study period of 9 months without significant adverse reactions. In addition, the hydrogel formed in situ showed rheological properties very similar to the natural vitreous. Therefore, our study demonstrated that this in situ chemically crosslinked PEG gel system is suitable as a potential long-term vitreous substitute. Crown Copyright © 2012. Published by Elsevier Ltd. All rights reserved.

  4. A Review of Injectable Polymeric Hydrogel Systems for Application in Bone Tissue Engineering.

    PubMed

    Kondiah, Pariksha J; Choonara, Yahya E; Kondiah, Pierre P D; Marimuthu, Thashree; Kumar, Pradeep; du Toit, Lisa C; Pillay, Viness

    2016-11-21

    Biodegradable, stimuli-responsive polymers are essential platforms in the field of drug delivery and injectable biomaterials for application of bone tissue engineering. Various thermo-responsive hydrogels display water-based homogenous properties to encapsulate, manipulate and transfer its contents to the surrounding tissue, in the least invasive manner. The success of bioengineered injectable tissue modified delivery systems depends significantly on their chemical, physical and biological properties. Irrespective of shape and defect geometry, injectable therapy has an unparalleled advantage in which intricate therapy sites can be effortlessly targeted with minimally invasive procedures. Using material testing, it was found that properties of stimuli-responsive hydrogel systems enhance cellular responses and cell distribution at any site prior to the transitional phase leading to gelation. The substantially hydrated nature allows significant simulation of the extracellular matrix (ECM), due to its similar structural properties. Significant current research strategies have been identified and reported to date by various institutions, with particular attention to thermo-responsive hydrogel delivery systems, and their pertinent focus for bone tissue engineering. Research on future perspective studies which have been proposed for evaluation, have also been reported in this review, directing considerable attention to the modification of delivering natural and synthetic polymers, to improve their biocompatibility and mechanical properties.

  5. Injectable hydrogels for cartilage and bone tissue engineering

    PubMed Central

    Liu, Mei; Zeng, Xin; Ma, Chao; Yi, Huan; Ali, Zeeshan; Mou, Xianbo; Li, Song; Deng, Yan; He, Nongyue

    2017-01-01

    Tissue engineering has become a promising strategy for repairing damaged cartilage and bone tissue. Among the scaffolds for tissue-engineering applications, injectable hydrogels have demonstrated great potential for use as three-dimensional cell culture scaffolds in cartilage and bone tissue engineering, owing to their high water content, similarity to the natural extracellular matrix (ECM), porous framework for cell transplantation and proliferation, minimal invasive properties, and ability to match irregular defects. In this review, we describe the selection of appropriate biomaterials and fabrication methods to prepare novel injectable hydrogels for cartilage and bone tissue engineering. In addition, the biology of cartilage and the bony ECM is also summarized. Finally, future perspectives for injectable hydrogels in cartilage and bone tissue engineering are discussed. PMID:28584674

  6. Hydrogel fibers encapsulating hiPSC-MSCs, hESC-MSCs and hUCMSCs in injectable calcium phosphate scaffold for bone tissue engineering

    PubMed Central

    Wang, Lin; Wang, Ping; Weir, Michael D.; Reynolds, Mark A.; Zhao, Liang; Xu, Hockin H. K.

    2016-01-01

    Human induced pluripotent stem cells (hiPSCs), human embryonic stem cells (hESCs) and human umbilical cord MSCs (hUCMSCs) are exciting cell sources for use in regenerative medicine. There has been no report on long hydrogel fibers encapsulating stem cells inside injectable calcium phosphate cement (CPC) scaffold for bone tissue engineering. The objectives of this study were to: (1) develop a novel injectable CPC construct containing hydrogel fibers encapsulating cells for bone engineering, and (2) investigate and compare cell viability, proliferation and osteogenic differentiation of hiPSC-MSCs, hESC-MSCs and hUCMSCs in injectable CPC. The stem cell-encapsulating pastes were fully injectable under a small injection force, and the injection did not harm the cells, compared to cells without injection (p > 0.1). Mechanical properties of stem cell-CPC construct were much higher than previous injectable polymers and hydrogels for cell delivery. hiPSC-MSCs, hESC-MSCs and hUCMSCs in hydrogel fibers in CPC had excellent proliferation and osteogenic differentiation. All three cells yielded high alkaline phosphatase, runt-related transcription factor, collagen I, and osteocalcin expressions (mean ± sd; n = 6). Cell-synthesized minerals increased substantially with time (p < 0.05), with no significant difference among the three types of cells (p > 0.1). Mineralization by hiPSC-MSCs, hESC-MSCs and hUCMSCs in CPC at 14 d was 13-fold that at 1 d. In conclusion, all three types of cells (hiPSC-MSCs, hESC-MSCs and hUCMSCs) in CPC scaffold showed high potential for bone tissue engineering, and the novel injectable CPC construct with cell-encapsulating hydrogel fibers is promising to enhance bone regeneration in dental, craniofacial and orthopedic applications. PMID:27811389

  7. Injectable hyperbranched poly(β-amino ester) hydrogels with on-demand degradation profiles to match wound healing processes† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c7sc03913a

    PubMed Central

    Xu, Qian; Guo, Linru; A, Sigen; Gao, Yongsheng; Zhou, Dezhong; Greiser, Udo; Creagh-Flynn, Jack; Zhang, Hong; Dong, Yixiao; Cutlar, Lara; Wang, Fagang; Liu, Wenguang

    2018-01-01

    Adjusting biomaterial degradation profiles to match tissue regeneration is a challenging issue. Herein, biodegradable hyperbranched poly(β-amino ester)s (HP-PBAEs) were designed and synthesized via “A2 + B4” Michael addition polymerization, and displayed fast gelation with thiolated hyaluronic acid (HA-SH) via a “click” thiol–ene reaction. HP-PBAE/HA-SH hydrogels showed tunable degradation profiles both in vitro and in vivo using diamines with different alkyl chain lengths and poly(ethylene glycol) diacrylates with varied PEG spacers. The hydrogels with optimized degradation profiles encapsulating ADSCs were used as injectable hydrogels to treat two different types of humanized excisional wounds – acute wounds with faster healing rates and diabetic wounds with slower healing and neo-tissue formation. The fast-degrading hydrogel showed accelerated wound closure in acute wounds, while the slow-degrading hydrogel showed better wound healing for diabetic wounds. The results demonstrate that the new HP-PBAE-based hydrogel in combination with ADSCs can be used as a well-controlled biodegradable skin substitute, which demonstrates a promising approach in the treatment of various types of skin wounds. PMID:29719691

  8. Therapeutic application of injectable thermosensitive hydrogel in preventing local breast cancer recurrence and improving incision wound healing in a mouse model

    NASA Astrophysics Data System (ADS)

    Lei, Na; Gong, Changyang; Qian, Zhiyong; Luo, Feng; Wang, Cheng; Wang, Helan; Wei, Yuquan

    2012-08-01

    Many drug delivery systems (DDSs) have been investigated for local targeting of malignant disease with the intention of increasing anti-tumor activity and minimizing systemic toxicity. An injectable thermosensitive hydrogel was applied to prevent locoregional recurrence of 4T1 breast cancer in a mouse model. The presented hydrogel, which is based on poly(ethyleneglycol)-poly(ε-caprolactone)-poly(ethylene glycol) (PEG-PCL-PEG, PECE), flows freely at normal temperature, forms a gel within seconds in situ at body temperature, and eventually releases the drug in a consistent and sustained fashion as it gradually biodegrades. Locoregional recurrence after primary tumor removal was significantly inhibited in mice treated with the paclitaxel (PTX)-loaded PECE hydrogel subcutaneously (9.1%) administered, compared with the blank hydrogel (80.0%), systemic (77.8%) and locally (75.0%) administered PTX, and the control group (100%) (P < 0.01). In addition, tensile strength measurements of the surgical incisions showed that the PECE hydrogel accelerates wound healing at postoperative day 7 (P < 0.05), and days 4 and 14 (P > 0.05), in agreement with histopathological examinations. This novel DDSs represents a promising approach for local adjuvant therapy in malignant disease.

  9. A novel thermoresponsive hydrogel based on chitosan.

    PubMed

    Schuetz, Yannic B; Gurny, Robert; Jordan, Olivier

    2008-01-01

    Injectable thermosetting chitosan hydrogels are attractive systems for drug delivery and tissue engineering that combine biodegradability, biocompatibility and the ability to form in situ gel-like implants. Thermally-induced gelation relies advantageously on biopolymer secondary interactions, avoiding potentially toxic polymerization reactions that may occur with in situ polymerizing formulations. In view of a biomedical use, such formulations have to be sterilizable and storable on extended periods without losing their thermosetting properties. These two key features have been studied in the present paper. Chitosans from two different sources were added with several phosphate-free polyols or polyoses as gelling agents. Despite a reduction in chitosan molecular weight following autoclaving, the hydrogels prepared with autoclaved chitosan showed the desired thermosetting properties. Hence, chitosan steam sterilization combined with aseptic preparation of the hydrogel allows a sterile formulation to be obtained. Whereas thermosetting hydrogels were shown to be unstable when refrigerated, freezing was shown to be conceivable as a storage method. When trehalose or mannitol was used as stabilizing agent, the formulation reconstituted from a lyophilizate displayed thermosetting properties and was still injectable, paving the way to the development of a clinically utilizable, novel chitosan thermosetting hydrogel.

  10. In situ spray deposition of cell-loaded, thermally and chemically gelling hydrogel coatings for tissue regeneration.

    PubMed

    Pehlivaner Kara, Meryem O; Ekenseair, Adam K

    2016-10-01

    In this study, the efficacy of creating cellular hydrogel coatings on warm tissue surfaces through the minimally invasive, sprayable delivery of thermoresponsive liquid solutions was investigated. Poly(N-isopropylacrylamide)-based (pNiPAAm) thermogelling macromers with or without addition of crosslinking polyamidoamine (PAMAM) macromers were synthesized and used to produce in situ forming thermally and chemically gelling hydrogel systems. The effect of solution and process parameters on hydrogel physical properties and morphology was evaluated and compared to poly(ethylene glycol) and injection controls. Smooth, fast, and conformal hydrogel coatings were obtained when pNiPAAm thermogelling macromers were sprayed with high PAMAM concentration at low pressure. Cellular hydrogel coatings were further fabricated by different spraying techniques: single-stream, layer-by-layer, and dual stream methods. The impact of spray technique, solution formulation, pressure, and spray solution viscosity on the viability of fibroblast and osteoblast cells encapsulated in hydrogels was elucidated. In particular, the early formation of chemically crosslinked micronetworks during bulk liquid flow was shown to significantly affect cell viability under turbulent conditions compared to injectable controls. The results demonstrated that sprayable, in situ forming hydrogels capable of delivering cell populations in a homogeneous therapeutic coating on diseased tissue surfaces offer promise as novel therapies for applications in regenerative medicine. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 2383-2393, 2016. © 2016 Wiley Periodicals, Inc.

  11. Denonvilliers' space expansion by transperineal injection of hydrogel: implications for focal therapy of prostate cancer.

    PubMed

    de Castro Abreu, Andre Luis; Ma, Yanling; Shoji, Sunao; Marien, Arnaud; Leslie, Scott; Gill, Inderbir; Ukimura, Osamu

    2014-04-01

    We developed and assessed a technique of: (i) expanding Denonvilliers' space by hydrogel (polyethylene glycol) during focal cryoabation; and (ii) temperature mapping to ensure protection of the rectal wall. In a fresh cadaver, 20 cc of hydrogel was injected transperineally into Denonvilliers' space under transrectal ultrasound guidance. Successful expansion of Denonvilliers' space was achieved with a range of 9-11 mm thickness covering the entire posterior prostate surface. Two freeze-thaw cycles were used to expand the iceball reaching the rectal wall as an end-point. Intraoperative transrectal ultrasound monitoring and temperature mapping in Denonvilliers' space by multiple thermocouples documented real-time iceball expansion up to 10 mm beyond the prostate, and safety in protecting the rectal wall from thermal injury. The lowest temperatures of the thermocouples with a distance of 0 mm, 5 mm and 10 mm from the prostate were: -35°C, -18°C and 0°C (P < 0.001), respectively. In gross and microscopic examination, the hydrogel mass measured 11 × 40 × 34 mm, which was identical to the intraoperative transrectal ultrasound measurements, there was no infiltration of the hydrogel into the rectal wall or prostate and no injury to the pelvic organs. In conclusion, the expansion of Denonvilliers' space by transperineal injection of hydrogel is feasible and a promising technique to facilitate energy-based focal therapy of prostate cancer. © 2013 The Japanese Urological Association.

  12. An injectable thermosensitive polymeric hydrogel for sustained release of Avastin® to treat posterior segment disease.

    PubMed

    Xie, Binbin; Jin, Ling; Luo, Zichao; Yu, Jing; Shi, Shuai; Zhang, Zhaoliang; Shen, Meixiao; Chen, Hao; Li, Xingyi; Song, Zongming

    2015-07-25

    Delivery of drugs, especially bioactive macromolecules such as proteins and nucleic acids, to the posterior segment is still a significant challenge for pharmaceutical scientists. In the present study, we developed an injectable thermosensitive polymeric hydrogel for sustained release of Avastin(®) to treat posterior segment disorders. The payload of Avastin(®) to poly(lactic acid-co-glycolic acid)-poly(ethylene glycol)-poly(lactic acid-co-glycolic acid) (PLGA-PEG-PLGA) hydrogel did not influence its inherent sol-gel transition behavior, but shifted the sol-gel transition to a lower temperature. The resulting Avastin(®)/PLGA-PEG-PLGA hydrogels had a porous structure (pore size, 100 ∼ 150 μm) as determined by scanning electron microcopy (SEM), facilitating sustained Avastin(®) release over a period of up to 14 days in vitro. The PLGA-PEG-PLGA hydrogel was immediately formed in the vitreous humor after intravitreal injection, followed by slow clearance over an 8 week study period. The PLGA-PEG-PLGA hydrogel exhibited no apparent toxicity against retinal tissue, as indicated by the absence of inflammation, retinal necrosis, and stress responses, using optical coherence tomography (OCT) and histological/immunochemical analyses. Electrophysiology (ERG) examination also showed that the PLGA-PEG-PLGA hydrogel did not affect retinal function. In vivo pharmacokinetic studies indicated that the use of the PLGA-PEG-PLGA hydrogel greatly extended the release of Avastin(®) over time in the vitreous humor and retina after intravitreal injection. Together, these results demonstrated that the PLGA-PEG-PLGA hydrogel was a promising candidate for ocular drug delivery of Avastin(®)via intravitreal injection. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Injectable, degradable, electroactive nanocomposite hydrogels containing conductive polymer nanoparticles for biomedical applications

    PubMed Central

    Wang, Qinmei; Wang, Qiong; Teng, Wei

    2016-01-01

    Injectable electroactive hydrogels (eGels) are promising in regenerative medicine and drug delivery, however, it is still a challenge to obtain such hydrogels simultaneously possessing other properties including uniform structure, degradability, robustness, and biocompatibility. An emerging strategy to endow hydrogels with desirable properties is to incorporate functional nanoparticles in their network. Herein, we report the synthesis and characterization of an injectable hydrogel based on oxidized alginate (OA) crosslinking gelatin reinforced by electroactive tetraaniline-graft-OA nanoparticles (nEOAs), where nEOAs are expected to impart electroactivity besides reinforcement without significantly degrading the other properties of hydrogels. Assays of transmission electron microscopy, 1H nuclear magnetic resonance, and dynamic light scattering reveal that EOA can spontaneously and quickly self-assemble into robust nanoparticles in water, and this nanoparticle structure can be kept at pH 3~9. Measurement of the gel time by rheometer and the stir bar method confirms the formation of the eGels, and their gel time is dependent on the weight content of nEOAs. As expected, adding nEOAs to hydrogels does not cause the phase separation (scanning electron microscopy observation), but it improves mechanical strength up to ~8 kPa and conductivity up to ~10−6 S/cm in our studied range. Incubating eGels in phosphate-buffered saline leads to their further swelling with an increase of water content <6% and gradual degradation. When growing mesenchymal stem cells on eGels with nEOA content ≤14%, the growth curves and morphology of cells were found to be similar to that on tissue culture plastic; when implanting these eGels on a chick chorioallantoic membrane for 1 week, mild inflammation response appeared without any other structural changes, indicating their good in vitro and in vivo biocompatibility. With injectability, uniformity, degradability, electroactivity, relative robustness, and biocompatibility, these eGels may have a huge potential as scaffolds for tissue regeneration and matrix for stimuli responsive drug release. PMID:26792990

  14. Injectable Hydrogel Scaffold from Decellularized Human Lipoaspirate

    PubMed Central

    Young, D. Adam; Ibrahim, Dina O.; Hu, Diane; Christman, Karen L.

    2010-01-01

    Soft tissue fillers are rapidly gaining popularity for aesthetic improvements or repair of adipose tissue deficits. Several injectable biopolymers have been investigated for this purpose but often face rapid resorption or limited adipogenesis, and do not mimic the native adipose extracellular matrix (ECM). We have generated an injectable adipose matrix scaffold by efficiently removing both the cellular and lipid contents of human lipoaspirate. The decellularized material retained a complex composition of peptides and glycosaminoglycans found in native adipose ECM. This matrix can be further processed by solubilizing the extracted ECM to generate a thermally-responsive hydrogel that self-assembles upon subcutaneous injection. This hydrogel also supports the growth and survival of patient matched adipose - derived stem cells in vitro. The development of an injectable hydrogel from human lipoaspirate represents a minimally-invasive option for adipose tissue engineering in terms of both the collection of source material and delivery of the scaffold. PMID:20932943

  15. An injectable oxidated hyaluronic acid/adipic acid dihydrazide hydrogel as a vitreous substitute.

    PubMed

    Su, Wen-Yu; Chen, Ko-Hua; Chen, Yu-Chun; Lee, Yen-Hsien; Tseng, Ching-Li; Lin, Feng-Huei

    2011-01-01

    Vitrectomy is a common procedure for treating ocular-related diseases. The surgery involves removing the vitreous humor from the center of the eye, and vitreous substitutes are needed to replace the vitreous humor after vitrectomy. In the present study, we developed a colorless, transparent and injectable hydrogel with appropriate refractive index as a vitreous substitute. The hydrogel is formed by oxidated hyaluronic acid (oxi-HA) cross-linked with adipic acid dihydrazide (ADH). Hyaluronic acid (HA) was oxidized by sodium periodate to create aldehyde functional groups, which could be cross-linked by ADH. The refractive index of this hydrogel ranged between 1.3420 and 1.3442, which is quite similar to human vitreous humor (1.3345). The degradation tests demonstrated that the hydrogel could maintain the gel matrix over 35 days, depending on the ADH concentration. In addition, the cytotoxicity was evaluated on retina pigmented epithelium (RPE) cells cultivated following the ISO standard (tests for in vitro cytotoxicity), and the hydrogel was found to be non-toxic. In a preliminary animal study, the oxi-HA/ADH hydrogel was injected into the vitreous cavity of rabbit eyes. The evaluations of slit-lamp observation, intraocular pressure, cornea thickness and histological examination showed no significant abnormal biological reactions for 3 weeks. This study suggests that the injectable oxi-HA/ADH hydrogel should be a potential vitreous substitute. Koninklijke Brill NV, Leiden, 2011

  16. Biocompatibility and intradiscal application of a thermoreversible celecoxib-loaded poly-N-isopropylacrylamide MgFe-layered double hydroxide hydrogel in a canine model.

    PubMed

    Willems, Nicole; Yang, Hsiao-Yin; Langelaan, Marloes L P; Tellegen, Anna R; Grinwis, Guy C M; Kranenburg, Hendrik-Jan C; Riemers, Frank M; Plomp, Saskia G M; Craenmehr, Eric G M; Dhert, Wouter J A; Papen-Botterhuis, Nicole E; Meij, Björn P; Creemers, Laura B; Tryfonidou, Marianna A

    2015-08-20

    Chronic low back pain due to intervertebral disc (IVD) degeneration is associated with increased levels of inflammatory mediators. Current medical treatment consists of oral anti-inflammatory drugs to alleviate pain. In this study, the efficacy and safety of a novel thermoreversible poly-N-isopropylacrylamide MgFe-layered double hydroxide (pNIPAAM MgFe-LDH) hydrogel was evaluated for intradiscal controlled delivery of the selective cyclooxygenase (COX) 2 inhibitor and anti-inflammatory drug celecoxib (CXB). Degradation, release behavior, and the ability of a CXB-loaded pNIPAAM MgFe-LDH hydrogel to suppress prostaglandin E2 (PGE2) levels in a controlled manner in the presence of a proinflammatory stimulus (TNF-α) were evaluated in vitro. Biocompatibility was evaluated histologically after subcutaneous injection in mice. Safety of intradiscal application of the loaded and unloaded hydrogels was studied in a canine model of spontaneous mild IVD degeneration by histological, biomolecular, and biochemical evaluation. After the hydrogel was shown to be biocompatible and safe, an in vivo dose-response study was performed in order to determine safety and efficacy of the pNIPAAM MgFe-LDH hydrogel for intradiscal controlled delivery of CXB. CXB release correlated to hydrogel degradation in vitro. Furthermore, controlled release from CXB-loaded hydrogels was demonstrated to suppress PGE2 levels in the presence of TNF-α. The hydrogel was shown to exhibit a good biocompatibility upon subcutaneous injection in mice. Upon intradiscal injection in a canine model, the hydrogel exhibited excellent biocompatibility based on histological evaluation of the treated IVDs. Gene expression and biochemical analyses supported the finding that no substantial negative effects of the hydrogel were observed. Safety of application was further confirmed by the absence of clinical symptoms, IVD herniation or progression of degeneration. Controlled release of CXB resulted in a nonsignificant maximal inhibition (approximately 35 %) of PGE2 levels in the mildly degenerated canine IVDs. In conclusion, this study showed biocompatibility and safe intradiscal application of an MgFe LDH-pNIPAAM hydrogel. Controlled release of CXB resulted in only limited inhibition of PGE2 in this model with mild IVD degeneration, and further studies should concentrate on application of controlled release from this type of hydrogel in animal models with more severe IVD degeneration.

  17. 25th Anniversary Article: Rational Design and Applications of Hydrogels in Regenerative Medicine

    PubMed Central

    Annabi, Nasim; Tamayol, Ali; Uquillas, Jorge Alfredo; Akbari, Mohsen; Bertassoni, Luiz E.; Cha, Chaenyung; Camci-Unal, Gulden; Dokmeci, Mehmet R.

    2014-01-01

    Hydrogels are hydrophilic polymer-based materials with high water content and physical characteristics that resemble the native extracellular matrix. Because of their remarkable properties, hydrogel systems are used for a wide range of biomedical applications, such as three-dimensional (3D) matrices for tissue engineering, drug-delivery vehicles, composite biomaterials, and as injectable fillers in minimally invasive surgeries. In addition, the rational design of hydrogels with controlled physical and biological properties can be used to modulate cellular functionality and tissue morphogenesis. Here, the development of advanced hydrogels with tunable physiochemical properties is highlighted, with particular emphasis on elastomeric, light-sensitive, composite, and shape-memory hydrogels. Emerging technologies developed over the past decade to control hydrogel architecture are also discussed and a number of potential applications and challenges in the utilization of hydrogels in regenerative medicine are reviewed. It is anticipated that the continued development of sophisticated hydrogels will result in clinical applications that will improve patient care and quality of life. PMID:24741694

  18. Hydrophobic Drug Encapsulation Mechanisms of an Injectable Self-Assembling Peptide Hydrogel

    NASA Astrophysics Data System (ADS)

    Sun, Jessie E. P.; Schneider, Joel P.; Pochan, Darrin J.

    2012-02-01

    We examined a beta-hairpin peptide network that is a shear thinning injectable solid with immediate rehealing behavior. These rheological properties result from the entangled and branched fibrillar nanostructure of the hydrogel networks. The fibrils are formed by the intramolecular folding and subsequent intermolecular assembly of the self-assembling peptides. Taking advantage of the nanofibrillar peptide structures, the hydrogel can be used to encapsulate curcumin, a hydrophobic, natural anticancer agent and indian spice. The hydrogel shields curcumin from the environment while depositing it exactly where it is intended through syringe injection, taking advantage of the hydrogel shear thinning and rehealing behavior. How the network envelopes and interacts with the curcumin is examined using fluoresence and electron microscopy methods to better understand the exact mechanisms and behaviors of the gel itself and the gel-curcumin construct.

  19. A novel injectable temperature-sensitive zinc doped chitosan/β-glycerophosphate hydrogel for bone tissue engineering.

    PubMed

    Niranjan, Ramesh; Koushik, Chandru; Saravanan, Sekaran; Moorthi, Ambigapathi; Vairamani, Mariappanadar; Selvamurugan, Nagarajan

    2013-03-01

    Hydrogels are hydrophilic polymers that have a wide range of biomedical applications including bone tissue engineering. In this study we report preparation and characterization of a thermosensitive hydrogel (Zn-CS/β-GP) containing zinc (Zn), chitosan (CS) and beta-glycerophosphate (β-GP) for bone tissue engineering. The prepared hydrogel exhibited a liquid state at room temperature and turned into a gel at body temperature. The hydrogel was characterized by SEM, EDX, XRD, FT-IR and swelling studies. The hydrogel enhanced antibacterial activity and promoted osteoblast differentiation. Thus, we suggest that the Zn-CS/β-GP hydrogel could have potential impact as an injectable in situ forming scaffold for bone tissue engineering applications. Copyright © 2012 Elsevier B.V. All rights reserved.

  20. Injectable alginate-O-carboxymethyl chitosan/nano fibrin composite hydrogels for adipose tissue engineering.

    PubMed

    Jaikumar, Dhanya; Sajesh, K M; Soumya, S; Nimal, T R; Chennazhi, K P; Nair, Shantikumar V; Jayakumar, R

    2015-03-01

    Injectable, biodegradable scaffolds are required for soft tissue reconstruction owing to its minimally invasive approach. Such a scaffold can mimic the native extracellular matrix (ECM), provide uniform distribution of cells and overcome limitations like donor site morbidity, volume loss, etc. So, here we report two classes of biocompatible and biodegradable hydrogel blend systems namely, Alginate/O-carboxymethyl chitosan (O-CMC) and Alginate/poly (vinyl alcohol) (PVA) with the inclusion of fibrin nanoparticles in each. The hydrogels were prepared by ionic cross-linking method. The developed hydrogels were compared in terms of its swelling ratio, degradation profile, compressive strength and elastic moduli. From these preliminary findings, it was concluded that Alginate/O-CMC formed a better blend for tissue engineering applications. The potential of the formed hydrogel as an injectable scaffold was revealed by the survival of adipose derived stem cells (ADSCs) on the scaffold by its adhesion, proliferation and differentiation into adipocytes. Cell differentiation studies of fibrin incorporated hydrogel scaffolds showed better differentiation was confirmed by Oil Red O staining technique. These injectable gels have potential in soft tissue regeneration. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Injectable nanoengineered stimuli-responsive hydrogels for on-demand and localized therapeutic delivery.

    PubMed

    Jalili, Nima A; Jaiswal, Manish K; Peak, Charles W; Cross, Lauren M; Gaharwar, Akhilesh K

    2017-10-19

    "Smart" hydrogels are an emerging class of biomaterials that respond to external stimuli and have been investigated for a range of biomedical applications, including therapeutic delivery and regenerative engineering. Stimuli-responsive nanogels constructed of thermoresponsive polymers such as poly(N-isopropylacrylamide-co-acrylamide) (poly(NIPAM-co-AM)) and magnetic nanoparticles (MNPs) have been developed as "smart carriers" for on-demand delivery of therapeutic biomolecules via magneto-thermal activation. However, due to their small size and systemic introduction, these poly(NIPAM-co-AM)/MNP nanogels result in limited control over long-term, localized therapeutic delivery. Here, we developed an injectable nanoengineered hydrogel loaded with poly(NIPAM-co-AM)/MNPs for localized, on-demand delivery of therapeutics (doxorubicin (DOX)). We have engineered shear-thinning and self-recoverable hydrogels by modulating the crosslinking density of a gelatin methacrylate (GelMA) network. Poly(NIPAM-co-AM)/MNP nanogels loaded with DOX were entrapped within a GelMA pre-polymer solution prior to crosslinking. The temperature and magnetic field dependent release of loaded DOX was observed from the nanoengineered hydrogels (GelMA/(poly(NIPAM-co-AM)/MNPs)). Finally, the in vitro efficacy of DOX released from injectable nanoengineered hydrogels was investigated using preosteoblast and osteosarcoma cells. Overall, these results demonstrated that the injectable nanoengineered hydrogels could be used for on-demand and localized therapeutic delivery for biomedical applications.

  2. Three-dimensional culture and differentiation of human osteogenic cells in an injectable hydroxypropylmethylcellulose hydrogel.

    PubMed

    Trojani, Christophe; Weiss, Pierre; Michiels, Jean-François; Vinatier, Claire; Guicheux, Jérôme; Daculsi, Guy; Gaudray, Patrick; Carle, Georges F; Rochet, Nathalie

    2005-09-01

    The present work evaluates a newly developed silated hydroxypropylmethylcellulose (Si-HPMC)-based hydrogel as a scaffold for 3D culture of osteogenic cells. The pH variation at room temperature catalyzes the reticulation and self-hardening of the viscous polymer solution into a gelatine state. We designed reticulation time, final consistency and pH in order to obtain an easy handling matrice, suitable for in vitro culture and in vivo injection. Three human osteogenic cell lines and normal human osteogenic (HOST) cells were cultured in 3D inside this Si-HPMC hydrogel. We show here that osteosarcoma cells proliferate as clonogenic spheroids and that HOST colonies survive for at least 3 weeks. Mineralization assay and gene expression analysis of osteoblastic markers and cytokines, indicate that all the cells cultured in 3D into this hydrogel, exhibited a more mature differentiation status than cells cultured in monolayer on plastic. This study demonstrates that this Si-HPMC hydrogel is well suited to support osteoblastic survival, proliferation and differentiation when used as a new scaffold for 3D culture and represents also a potential basis for an innovative bone repair material.

  3. Biofunctionalized peptide-based hydrogels provide permissive scaffolds to attract neurite outgrowth from spiral ganglion neurons.

    PubMed

    Frick, Claudia; Müller, Marcus; Wank, Ute; Tropitzsch, Anke; Kramer, Benedikt; Senn, Pascal; Rask-Andersen, Helge; Wiesmüller, Karl-Heinz; Löwenheim, Hubert

    2017-01-01

    Cochlear implants (CI) allow for hearing rehabilitation in patients with sensorineural hearing loss or deafness. Restricted CI performance results from the spatial gap between spiral ganglion neurons and the CI, causing current spread that limits spatially restricted stimulation and impairs frequency resolution. This may be substantially improved by guiding peripheral processes of spiral ganglion neurons towards and onto the CI electrode contacts. An injectable, peptide-based hydrogel was developed which may provide a permissive scaffold to facilitate neurite growth towards the CI. To test hydrogel capacity to attract spiral ganglion neurites, neurite outgrowth was quantified in an in vitro model using a custom-designed hydrogel scaffold and PuraMatrix ® . Neurite attachment to native hydrogels is poor, but significantly improved by incorporation of brain-derived neurotrophic factor (BDNF), covalent coupling of the bioactive laminin epitope IKVAV and the incorporation a full length laminin to hydrogel scaffolds. Incorporation of full length laminin protein into a novel custom-designed biofunctionalized hydrogel (IKVAV-GGG-SIINFEKL) allows for neurite outgrowth into the hydrogel scaffold. The study demonstrates that peptide-based hydrogels can be specifically biofunctionalized to provide a permissive scaffold to attract neurite outgrowth from spiral ganglion neurons. Such biomaterials appear suitable to bridge the spatial gap between neurons and the CI. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. The inhibition of postinfarct ventricle remodeling without polycythaemia following local sustained intramyocardial delivery of erythropoietin within a supramolecular hydrogel.

    PubMed

    Wang, Tao; Jiang, Xue-Jun; Lin, Tao; Ren, Shan; Li, Xiao-Yan; Zhang, Xian-Zheng; Tang, Qi-zhu

    2009-09-01

    Erythropoietin (EPO) can protect myocardium from ischemic injury, but it also plays an important role in promoting polycythaemia, the potential for thrombo-embolic complications. Local sustained delivery of bioactive agents directly to impaired tissues using biomaterials is an approach to limit systemic toxicity and improve the efficacy of therapies. The present study was performed to investigate whether local intramyocardial injection of EPO with hydrogel could enhance cardioprotective effect without causing polycythaemia after myocardial infarction (MI). To test the hypothesis, phosphate buffered solution (PBS), alpha-cyclodextrin/MPEG-PCL-MPEG hydrogel, recombined human erythropoietin (rhEPO) in PBS, or rhEPO in hydrogel were injected into the infarcted area immediately after MI in rats. The hydrogel allowed a sustained release of EPO, which inhibited cell apoptosis and increased neovasculature formation, and subsequently reduced infarct size and improved cardiac function compared with other groups. Notably, there was no evidence of polycythaemia from this therapy, with no differences in erythrocyte count and hematocrit compared with the animals received PBS or hydrogel blank injection. In conclusion, intramyocardial delivery of rhEPO with alpha-cyclodextrin/MPEG-PCL-MPEG hydrogel may lead to cardiac performance improvement after MI without apparent adverse effect.

  5. Injectable thermosensitive chitosan/glycerophosphate-based hydrogels for tissue engineering and drug delivery applications: a review.

    PubMed

    Tahrir, Farzaneh G; Ganji, Fariba; Ahooyi, Taha M

    2015-01-01

    Recently, great attention has been paid to in situ gel-forming chitosan/glycerophosphate (CS/Gp) formulation due to its high biocompatibility with incorporated cells and medical agents, biodegradability and sharp thermosensitive gelation. CS/Gp is in liquid state at room temperature and after minimally invasive administration into the desired tissue, it forms a solid-like gel as a response to temperature increase. The overview of various recently patented strategies on injectable delivery systems indicates the significance of this formulation in biomedical applications. This thermosensitive hydrogel has a great potential as scaffold material in tissue engineering, due to its good biocompatibility, minimal immune reaction, high antibacterial nature, good adhesion to cells and the ability to be molded in various geometries. Moreover, CS/Gp hydrogel has been utilized as a smart drug delivery system to increase patient compliance by maintaining the drug level in the therapeutic window for a long time while avoiding the need for frequent injections of the therapeutic agent. This review paper highlights the recent patents and investigations on different formulations of CS/Gp hydrogels as tissue engineering scaffolds and carriers for therapeutic agents. Additionally, the dominant mechanism of sol-gel transition in those systems as well as their physicochemical properties and biocompatibility are discussed in detail.

  6. Hyaluronic acid-based scaffolds for tissue engineering.

    PubMed

    Chircov, Cristina; Grumezescu, Alexandru Mihai; Bejenaru, Ludovic Everard

    2018-01-01

    Hyaluronic acid (HA) is a natural glycosaminoglycan found in the extracellular matrix of most connective tissues. Due to its chemical structure, HA is a hydrophilic polymer and it is characterized by a fast degradation rate. HA-based scaffolds for tissue engineering are intensively studied due to their increased biocompatibility, biodegradability and chemical modification. Depending on the processing technique, scaffolds can be prepared in the form of hydrogels, sponges, cryogels, and injectable hydrogels, all discussed in this review.

  7. A pH- and temperature-responsive bioresorbable injectable hydrogel based on polypeptide block copolymers for the sustained delivery of proteins in vivo.

    PubMed

    Turabee, Md Hasan; Thambi, Thavasyappan; Duong, Huu Thuy Trang; Jeong, Ji Hoon; Lee, Doo Sung

    2018-02-27

    Sustained delivery of protein therapeutics is limited owing to the fragile nature of proteins. Despite its great potential, delivery of proteins without any loss of bioactivity remains a challenge in the use of protein therapeutics in the clinic. To surmount this shortcoming, we report a pH- and temperature-responsive in situ-forming injectable hydrogel based on comb-type polypeptide block copolymers for the controlled delivery of proteins. Polypeptide block copolymers, composed of hydrophilic polyethylene glycol (PEG), temperature-responsive poly(γ-benzyl-l-glutamate) (PBLG), and pH-responsive oligo(sulfamethazine) (OSM), exhibit pH- and temperature-induced sol-to-gel transition behavior in aqueous solutions. Polypeptide block copolymers were synthesized by combining N-carboxyanhydride-based ring-opening polymerization and post-functionalization of the chain-end using N-hydroxy succinimide ester activated OSM. The physical properties of polypeptide-based hydrogels were tuned by varying the composition of temperature- and pH-responsive PBLG and OSM in block copolymers. Polypeptide block copolymers were non-toxic to human embryonic kidney cells at high concentrations (2000 μg mL -1 ). Subcutaneous administration of polypeptide block copolymer sols formed viscoelastic gel instantly at the back of Sprague-Dawley (SD) rats. The in vivo gels exhibited sustained degradation and were found to be bioresorbable in 6 weeks without any noticeable inflammation at the injection site. Anionic characteristics of hydrogels allow efficient loading of a cationic model protein, lysozyme, through electrostatic interaction. Lysozyme-loaded polypeptide block copolymer sols readily formed a viscoelastic gel in vivo and sustained lysozyme release for at least a week. Overall, the results demonstrate an elegant approach to control the release of certain charged proteins and open a myriad of therapeutic possibilities in protein therapeutics.

  8. Injection and adhesion palatoplasty: a preliminary study in a canine model.

    PubMed

    Martínez-Álvarez, Concepción; González-Meli, Beatriz; Berenguer-Froehner, Beatriz; Paradas-Lara, Irene; López-Gordillo, Yamila; Rodríguez-Bobada, Cruz; González, Pablo; Chamorro, Manuel; Arias, Pablo; Hilborn, Jöns; Casado-Gómez, Inmaculada; Martínez-Sanz, Elena

    2013-08-01

    Raising mucoperiosteal flaps in traditional palatoplasty impairs mid-facial growth. Hyaluronic acid-based hydrogels have been successfully tested for minimally invasive craniofacial bone generation in vivo as carriers of bone morphogenetic protein-2 (BMP-2). We aimed to develop a novel flapless technique for cleft palate repair by injecting a BMP-2 containing hydrogel. Dog pups with congenital cleft palate were either non-treated (n=4) or treated with two-flap palatoplasty (n=6) or with the proposed injection/adhesion technique (n=5). The experimental approach was to inject a hyaluronic acid-based hydrogel containing hydroxyapatite and BMP-2 subperiosteally at the cleft palate margins of pups aged six weeks. At week ten, a thin strip of the medial edge mucosa was removed and the margins were closed directly. Occlusal photographs and computed tomography (CT) scans were obtained up to week 20. Four weeks after the gel injection the cleft palate margins had reached the midline and engineered bone had enlarged the palatal bones. Removal of the medial edge mucosa and suturing allowed complete closure of the cleft. Compared to traditional palatoplasty, the injection/adhesion technique was easier, and the post-surgical recovery was faster. CT on week 20 revealed some overlapping or "bending" of palatal shelves in the two-flap repair group, which was not observed in the experimental nor control groups. A minimally invasive technique for cleft palate repair upon injectable scaffolds in a dog model of congenital cleft palate is feasible. Results suggest better growth of palatal bones. This represents an attractive clinical alternative to traditional palatoplasty for cleft palate patients. Copyright © 2013 Elsevier Inc. All rights reserved.

  9. Supramolecular Hydrogels Based on DNA Self-Assembly.

    PubMed

    Shao, Yu; Jia, Haoyang; Cao, Tianyang; Liu, Dongsheng

    2017-04-18

    Extracellular matrix (ECM) provides essential supports three dimensionally to the cells in living organs, including mechanical support and signal, nutrition, oxygen, and waste transportation. Thus, using hydrogels to mimic its function has attracted much attention in recent years, especially in tissue engineering, cell biology, and drug screening. However, a hydrogel system that can merit all parameters of the natural ECM is still a challenge. In the past decade, deoxyribonucleic acid (DNA) has arisen as an outstanding building material for the hydrogels, as it has unique properties compared to most synthetic or natural polymers, such as sequence designability, precise recognition, structural rigidity, and minimal toxicity. By simple attachment to polymers as a side chain, DNA has been widely used as cross-links in hydrogel preparation. The formed secondary structures could confer on the hydrogel designable responsiveness, such as response to temperature, pH, metal ions, proteins, DNA, RNA, and small signal molecules like ATP. Moreover, single or multiple DNA restriction enzyme sites could be incorporated into the hydrogels by sequence design and greatly expand the latitude of their responses. Compared with most supramolecular hydrogels, these DNA cross-linked hydrogels could be relatively strong and easily adjustable via sequence variation, but it is noteworthy that these hydrogels still have excellent thixotropic properties and could be easily injected through a needle. In addition, the quick formation of duplex has also enabled the multilayer three-dimensional injection printing of living cells with the hydrogel as matrix. When the matrix is built purely by DNA assembly structures, the hydrogel inherits all the previously described characteristics; however, the long persistence length of DNA structures excluded the small size meshes of the network and made the hydrogel permeable to nutrition for cell proliferation. This unique property greatly expands the cell viability in the three-dimensional matrix to several weeks and also provides an easy way to prepare interpenetrating double network materials. In this Account, we outline the stream of hydrogels based on DNA self-assembly and discuss the mechanism that brings outstanding properties to the materials. Unlike most reported hydrogel systems, the all-in-one character of the DNA hydrogel avoids the "cask effect" in the properties. We believe the hydrogel will greatly benefit cell behavior studies especially in the following aspects: (1) stem cell differentiation can be studied with solely tunable mechanical strength of the matrix; (2) the dynamic nature of the network can allow cell migration through the hydrogel, which will help to build a more realistic model to observe the migration of cancer cells in vivo; (3) combination with rapidly developing three-dimension printing technology, the hydrogel will boost the construction of three-dimensional tissues and artificial organs.

  10. Development of injectable hydrogels for nucleus pulposus replacement

    NASA Astrophysics Data System (ADS)

    Thomas, Jonathan D.

    Intervertebral disc degeneration has been reported as the underlying cause for 75% of cases of lower back pain and is marked by dehydration of the nucleus pulposus within the intervertebral disc. There have been many implant designs to replace the nucleus pulposus. Some researchers have proposed the replacement of the nucleus pulposus with hydrogel materials. The insertion of devices made from these materials further compromises the annulus of the disc. An ideal nucleus replacement could be injected into the disc space and form a solid in vivo. However, injectable replacements using curing elastomers and thermoplastic materials are not ideal because of the potentially harmful exothermic heat evolved from their reactions and the toxicity of the reactants used. We propose a hydrogel system that can be injected as a liquid at 25°C and solidified to yield a hydrogel within the intervertebral disc at 37°C. In aqueous solutions, these polymers have Lower Critical Solution Temperatures (LCST) between 25-37°C, making them unique candidate materials for this application. Poly(N-isopropylacrylamide) (PNIPAAm) is the most widely studied LCST polymer due to its drastic transition near body temperature. However, by itself, pure PNIPAAm forms a hydrogel that has low water content and can readily undergo plastic deformation. To increase the water content and impart elasticity to PNIPAAm hydrogels, grafted and branched hydrogel systems were created that incorporated the thermogelling PNIPAAm and hydrophilic poly(ethylene glycol) (PEG). In this research, the effects of polymer composition and monomer to initiator ratio, which controls polymer MW, on the in vitro swelling properties (mass, chemical, and compressive mechanical stability) of hydrogels formed from aqueous solutions of these polymers were evaluated. Immersion studies were also conducted in solutions to simulate the osmotic environment of the nucleus pulposus. The effects of repeated compression and unloading cycles on the water content and dimensional recovery of hydrogels made from three candidate polymer formulations were also determined. Unlike PNIPAAm and PEG grafted PNIPAAm hydrogels, PEG branched hydrogels have covalently linked networks. Addition of 7 mol% PEG branches to PNIPAAm resulted in a hydrogel with a higher water content and better elastic recovery than hydrogels made from pure PNIPAAm. PEG branched PNIPAAm hydrogels were shown to have mass, chemical, and compressive mechanical stability in vitro. Furthermore, these hydrogels showed superior dimensional recovery after compressive cycling than pure PNIPAAm and PEG grafted PNIPAAm hydrogels. The 7 mol% PEG branched PNIPAAm hydrogels have suitable swelling and mechanical properties to potentially serve as a nucleus pulposus replacement.

  11. Fabrication of injectable high strength hydrogel based on 4-arm star PEG for cartilage tissue engineering.

    PubMed

    Wang, Jianqi; Zhang, Fengjie; Tsang, Wing Pui; Wan, Chao; Wu, Chi

    2017-03-01

    Hydrogels prepared from poly(ethylene glycol) (PEG) are widely applied in tissue engineering, especially those derived from a combination of functional multi-arm star PEG and linear crosslinker, with an expectation to form a structurally ideal network. However, the poor mechanical strength still renders their further applications. Here we examined the relationship between the dynamics of the pre-gel solution and the mechanical property of the resultant hydrogel in a system consisting of 4-arm star PEG functionalized with vinyl sulfone and short dithiol crosslinker. A method to prepare mechanically strong hydrogel for cartilage tissue engineering is proposed. It is found that when gelation takes place at the overlap concentration, at which a slow relaxation mode just appears in dynamic light scattering (DLS), the resultant hydrogel has a local maximum compressive strength ∼20 MPa, while still keeps ultralow mass concentration and Young's modulus. Chondrocyte-laden hydrogel constructed under this condition was transplanted into the subcutaneous pocket and an osteochondral defect model in SCID mice. The in vivo results show that chondrocytes can proliferate and maintain their phenotypes in the hydrogel, with the production of abundant extracellular matrix (ECM) components, formation of typical chondrocyte lacunae structure and increase in Young's modulus over 12 weeks, as indicated by histological, immunohistochemistry, gene expression analyses and mechanical test. Moreover, newly formed hyaline cartilage was observed to be integrated with the host articular cartilage tissue in the defects injected with chondrocytes/hydrogel constructs. The results suggest that this hydrogel is a promising candidate scaffold for cartilage tissue engineering. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Enlargement and sculpturing of a small and deformed glans.

    PubMed

    Perovic, Savra; Radojicic, Zoran I; Djordjevic, Miroslav Lj; Vukadinovic, Vojkan V

    2003-10-01

    We present 2 techniques of enhancement and sculpturing of a small and/or deformed glans. The small glans in primary or re-do hypospadias repair was enhanced by longitudinal double-faced island flaps incorporated onto the ventral side of the glans between the glans wings. The deformed glans, of small or normal size (with normal urethra or well functioning neourethra), was enlarged and sculptured by injection of hydrogel. Between May 1997 and March 2002, 27 patients underwent glans enhancement and sculpturing. Small deformed glans occurred after failed hypospadias repair in 10 patients, penile trauma in 3, hemangioma sclerozation in 2, primary hypospadias in 8 and normally developed penile body in 4. A double-faced island flap was performed in 14 patients, glans was enhanced by hydrogel injection in 9 and both procedures were performed in 4. Mean followup was 34 months for the double-faced flap technique 17 months for hydrogel injection. Satisfactory enlargement and esthetic appearance were achieved in 13 of the 14 patients who underwent the double-faced flap technique and 1 required surgical correction. Of the 9 patients who underwent either single or multistage hydrogel injection 8 had good results and 1 required partial removal of hydrogel after hypercorrection. The combination of these 2 techniques provided satisfactory results in all 4 cases. Enlargement and sculpturing of a small deformed glans are challenging and difficult. A double-faced island flap and/or injection of hydrogel resolves this problem satisfactorily.

  13. Orbital volume augmentation using expandable hydrogel implants in acquired anophthalmia and phthisis bulbi.

    PubMed

    Kim, Esther Lee; Bernardino, Carlo Rob; Levin, Flora

    2016-01-01

    The purpose of this study is to describe our experience using expandable spherical hydrogel implants and injectable hydrogel pellets for orbital volume augmentation in cases of post-enucleation socket syndrome after acquired anophthalmia or phthisis bulbi. We retrospectively reviewed the clinical records of all adult patients who received an expandable hydrogel implant for orbital volume loss following enucleation or phthisis bulbi at the Emory Eye Center between 2004 and January 2007 and the Yale Eye Center between 2009 and 2011. The study included 9 women and 5 men with a mean age of 51.2 years old (range 35-76 years old). Follow-up spanned 6 to 71 months (median of 18.5 months). Four patients received spherical hydrogel implants and 10 patients received hydrogel pellet injections. On average, nine pellets (range 5-16) were placed in each patient over an average of 1.7 injections (range 1-3). Most commonly, five pellets were injected per session, as was the case for 13 of the 17 treatment sessions. Post-operative complications included 2 cases of pellet migration, one subcutaneously and one anteriorly due to insufficiently posterior implant placement, and 1 hospital admission for pain after injection of 10 pellets in one visit. All patients experienced an overall subjective improvement in cosmesis. Self-expandable hydrogel implants appear to offer several advantages over other existing options for orbital volume augmentation, as they are easy to place, generally well-tolerated, volume-titratable, and to the extent that our follow-up shows, may be a safe and durable means of treating orbital volume loss in patients with acquired anophthalmia and phthisis bulbi.

  14. Elastic, silk-cardiac extracellular matrix hydrogels exhibit time-dependent stiffening that modulates cardiac fibroblast response

    PubMed Central

    Stoppel, Whitney L.; Gao, Albert E.; Greaney, Allison M.; Partlow, Benjamin P.; Bretherton, Ross C.; Kaplan, David L.; Black, Lauren D.

    2018-01-01

    Heart failure is the leading cause of death in the United States and rapidly becoming the leading cause of death worldwide. While pharmacological treatments can reduce progression to heart failure following myocardial infarction, there still exists a need for new therapies that promote better healing post injury for a more functional cardiac repair and methods to understand how the changes to tissue mechanical properties influence cell phenotype and function following injury. To address this need, we have optimized a silk-based hydrogel platform containing cardiac tissue-derived extracellular matrix (cECM). These silk-cECM hydrogels have tunable mechanical properties, as well as rate-controllable hydrogel stiffening over time. In vitro, silk-cECM scaffolds led to enhanced cardiac fibroblast (CF) cell growth and viability with culture time. cECM incorporation improved expression of integrin an focal adhesion proteins, suggesting that CFs were able to interact with the cECM in the hydrogel. Subcutaneous injection of silk hydrogels in rats demonstrated that addition of the cECM led to endogenous cell infiltration and promoted endothelial cell ingrowth after 4 weeks in vivo. This naturally derived silk fibroin platform is applicable to the development of more physiologically relevant constructs that replicate healthy and diseased tissue in vitro and has the potential to be used as an injectable therapeutic for cardiac repair. PMID:27480328

  15. Exploring natural silk protein sericin for regenerative medicine: an injectable, photoluminescent, cell-adhesive 3D hydrogel.

    PubMed

    Wang, Zheng; Zhang, Yeshun; Zhang, Jinxiang; Huang, Lei; Liu, Jia; Li, Yongkui; Zhang, Guozheng; Kundu, Subhas C; Wang, Lin

    2014-11-20

    Sericin, a major component of silk, has a long history of being discarded as a waste during silk processing. The value of sericin for tissue engineering is underestimated and its potential application in regenerative medicine has just begun to be explored. Here we report the successful fabrication and characterization of a covalently-crosslinked 3D pure sericin hydrogel for delivery of cells and drugs. This hydrogel is injectable, permitting its implantation through minimally invasive approaches. Notably, this hydrogel is found to exhibit photoluminescence, enabling bioimaging and in vivo tracking. Moreover, this hydrogel system possesses excellent cell-adhesive capability, effectively promoting cell attachment, proliferation and long-term survival of various types of cells. Further, the sericin hydrogel releases bioactive reagents in a sustained manner. Additionally, this hydrogel demonstrates good elasticity, high porosity, and pH-dependent degradation dynamics, which are advantageous for this sericin hydrogel to serve as a delivery vehicle for cells and therapeutic drugs. With all these unique features, it is expected that this sericin hydrogel will have wide utility in the areas of tissue engineering and regenerative medicine.

  16. Exploring natural silk protein sericin for regenerative medicine: an injectable, photoluminescent, cell-adhesive 3D hydrogel

    PubMed Central

    Wang, Zheng; Zhang, Yeshun; Zhang, Jinxiang; Huang, Lei; Liu, Jia; Li, Yongkui; Zhang, Guozheng; Kundu, Subhas C.; Wang, Lin

    2014-01-01

    Sericin, a major component of silk, has a long history of being discarded as a waste during silk processing. The value of sericin for tissue engineering is underestimated and its potential application in regenerative medicine has just begun to be explored. Here we report the successful fabrication and characterization of a covalently-crosslinked 3D pure sericin hydrogel for delivery of cells and drugs. This hydrogel is injectable, permitting its implantation through minimally invasive approaches. Notably, this hydrogel is found to exhibit photoluminescence, enabling bioimaging and in vivo tracking. Moreover, this hydrogel system possesses excellent cell-adhesive capability, effectively promoting cell attachment, proliferation and long-term survival of various types of cells. Further, the sericin hydrogel releases bioactive reagents in a sustained manner. Additionally, this hydrogel demonstrates good elasticity, high porosity, and pH-dependent degradation dynamics, which are advantageous for this sericin hydrogel to serve as a delivery vehicle for cells and therapeutic drugs. With all these unique features, it is expected that this sericin hydrogel will have wide utility in the areas of tissue engineering and regenerative medicine. PMID:25412301

  17. Exploring natural silk protein sericin for regenerative medicine: an injectable, photoluminescent, cell-adhesive 3D hydrogel

    NASA Astrophysics Data System (ADS)

    Wang, Zheng; Zhang, Yeshun; Zhang, Jinxiang; Huang, Lei; Liu, Jia; Li, Yongkui; Zhang, Guozheng; Kundu, Subhas C.; Wang, Lin

    2014-11-01

    Sericin, a major component of silk, has a long history of being discarded as a waste during silk processing. The value of sericin for tissue engineering is underestimated and its potential application in regenerative medicine has just begun to be explored. Here we report the successful fabrication and characterization of a covalently-crosslinked 3D pure sericin hydrogel for delivery of cells and drugs. This hydrogel is injectable, permitting its implantation through minimally invasive approaches. Notably, this hydrogel is found to exhibit photoluminescence, enabling bioimaging and in vivo tracking. Moreover, this hydrogel system possesses excellent cell-adhesive capability, effectively promoting cell attachment, proliferation and long-term survival of various types of cells. Further, the sericin hydrogel releases bioactive reagents in a sustained manner. Additionally, this hydrogel demonstrates good elasticity, high porosity, and pH-dependent degradation dynamics, which are advantageous for this sericin hydrogel to serve as a delivery vehicle for cells and therapeutic drugs. With all these unique features, it is expected that this sericin hydrogel will have wide utility in the areas of tissue engineering and regenerative medicine.

  18. Rapidly responsive silk fibroin hydrogels as an artificial matrix for the programmed tumor cells death.

    PubMed

    Ribeiro, Viviana P; Silva-Correia, Joana; Gonçalves, Cristiana; Pina, Sandra; Radhouani, Hajer; Montonen, Toni; Hyttinen, Jari; Roy, Anirban; Oliveira, Ana L; Reis, Rui L; Oliveira, Joaquim M

    2018-01-01

    Timely and spatially-regulated injectable hydrogels, able to suppress growing tumors in response to conformational transitions of proteins, are of great interest in cancer research and treatment. Herein, we report rapidly responsive silk fibroin (SF) hydrogels formed by a horseradish peroxidase (HRP) crosslinking reaction at physiological conditions, and demonstrate their use as an artificial biomimetic three-dimensional (3D) matrix. The proposed SF hydrogels presented a viscoelastic nature of injectable hydrogels and spontaneous conformational changes from random coil to β-sheet conformation under physiological conditions. A human neuronal glioblastoma (U251) cell line was used for screening cell encapsulation and in vitro evaluation within the SF hydrogels. The transparent random coil SF hydrogels promoted cell viability and proliferation up to 10 days of culturing, while the crystalline SF hydrogels converted into β-sheet structure induced the formation of TUNEL-positive apoptotic cells. Therefore, this work provides a powerful tool for the investigation of the microenvironment on the programed tumor cells death, by using rapidly responsive SF hydrogels as 3D in vitro tumor models.

  19. Hyaluronic Acid Hydrogels for Biomedical Applications

    PubMed Central

    Burdick, Jason A.; Prestwich, Glenn D.

    2013-01-01

    Hyaluronic acid (HA), an immunoneutral polysaccharide that is ubiquitous in the human body, is crucial for many cellular and tissue functions and has been in clinical use for over thirty years. When chemically modified, HA can be transformed into many physical forms -- viscoelastic solutions, soft or stiff hydrogels, electrospun fibers, non-woven meshes, macroporous and fibrillar sponges, flexible sheets, and nanoparticulate fluids -- for use in a range of preclinical and clinical settings. Many of these forms are derived from the chemical crosslinking of pendant reactive groups by addition/condensation chemistry or by radical polymerization. Clinical products for cell therapy and regenerative medicine require crosslinking chemistry that is compatible with the encapsulation of cells and injection into tissues. Moreover, an injectable clinical biomaterial must meet marketing, regulatory, and financial constraints to provide affordable products that can be approved, deployed to the clinic, and used by physicians. Many HA-derived hydrogels meet these criteria, and can deliver cells and therapeutic agents for tissue repair and regeneration. This progress report covers both basic concepts and recent advances in the development of HA-based hydrogels for biomedical applications. PMID:21394792

  20. Construction of Injectable Double-Network Hydrogels for Cell Delivery.

    PubMed

    Yan, Yan; Li, Mengnan; Yang, Di; Wang, Qian; Liang, Fuxin; Qu, Xiaozhong; Qiu, Dong; Yang, Zhenzhong

    2017-07-10

    Herein we present a unique method of using dynamic cross-links, which are dynamic covalent bonding and ionic interaction, for the construction of injectable double-network (DN) hydrogels, with the objective of cell delivery for cartilage repair. Glycol chitosan and dibenzaldhyde capped poly(ethylene oxide) formed the first network, while calcium alginate formed the second one, and in the resultant DN hydrogel, either of the networks could be selectively removed. The moduli of the DN hydrogel were significantly improved compared to that of the parent single-network hydrogels and were tunable by changing the chemical components. In situ 3D cell encapsulation could be easily performed by mixing cell suspension to the polymer solutions and transferred through a syringe needle before sol-gel transition. Cell proliferation and mediated differentiation of mouse chondrogenic cells were achieved in the DN hydrogel extracellular matrix.

  1. Design of multimodal degradable hydrogels for controlled therapeutic delivery

    NASA Astrophysics Data System (ADS)

    Kharkar, Prathamesh Madhav

    Hydrogels are of growing interest for the delivery of therapeutics to specific sites in the body. For localized drug delivery, hydrophilic polymeric precursors often are laden with bioactive moieties and then directly injected to the site of interest for in situ gel formation. The release of physically entrapped cargo is dictated by Fickian diffusion, degradation of the drug carrier, or a combination of both. The goal of this work was to design and characterize degradable hydrogel formulations that are responsive to multiple biologically relevant stimuli for degradation-mediated delivery of cargo molecules such as therapeutic proteins, growth factors, and immunomodulatory agents. We began by demonstrating the use of cleavable click linkages formed by Michael-type addition reactions in conjunction with hydrolytically cleavable functionalities for the degradation of injectable hydrogels by endogenous stimuli for controlled protein release. Specifically, the reaction between maleimides and thiols was utilized for hydrogel formation, where thiol selection dictates the degradability of the resulting linkage under thiol-rich reducing conditions. Relevant microenvironments where degradation would occur in vivo include those rich in glutathione (GSH), a tripeptide that is found at elevated concentrations in carcinoma tissues. Degradation of the hydrogels was monitored with rheometry and volumetric swelling measurements. Arylthiol-based thioether succinimide linkages underwent degradation via click cleavage and thiol exchange reaction in the presence of GSH and via ester hydrolysis, whereas alkylthiol-based thioether succinimide linkages only undergo degradation by only ester hydrolysis. The resulting control over the degradation rate within a reducing microenvironment resulted in 2.5 fold differences in the release profile of the model protein, a fluorescently-labeled bovine serum albumin, from dually degradable hydrogels compared to non-degradable hydrogels, where the thiol exchange reaction facilitated rapid and responsive protein release in the presence of GSH. A photolabile o-nitrobenzyl ether group (o-NB) was subsequently incorporated within the PEG-based, gel-forming monomers to demonstrate cargo release triggered by exogenous stimuli for patient-specific therapies. Upon the application of cytocompatible doses of light, the photolabile o-NB linkage underwent irreversible cleavage yielding ketone and carboxylic acid-based cleavage products. Hydrogel degradation kinetics was characterized in response to externally applied cytocompatible light or GSH in aqueous microenvironments. By incorporating a photodegradable o-nitrobenzyl ether group, a thiol-sensitive succinimide thioether linkage, and ester linkages within the hydrogels, we demonstrated unique control over degradation via surface erosion or bulk degradation mechanisms, respectively, with degradation rate constants ranging from 10-1 min-1 to 10-4 min-1. As a proof of concept, the controlled release of nanobeads from the hydrogel was demonstrated in a preprogrammed and stimuli-responsive fashion. The multimodal degradable hydrogels were then investigated for the local controlled release of small molecular weight proteins, which are of interest for regulating various cellular functions and fates in vivo. Low molecular weight heparin, a highly sulfated polysaccharide was incorporated within the hydrogel network by Michael-type reaction due to its affinity with biologics such as growth factors and immunomodulatory proteins. Incorporation of reduction-sensitive linkages resulted in 2.3 fold differences in the release profile of fibroblast growth factor-2 (FGF-2) in the presence of GSH compared to non-reducing microenvironment. Bioactivity of released FGF-2 was comparable to pristine FGF-2, indicating the ability of the hydrogel to retain bioactivity of cargo molecules during encapsulation and release. Further, preliminary in vivo studies demonstrated control over hydrogel degradation by varying % degradable contents. Collectively, this research developed injectable hydrogels that are responsive to various endogenous and exogenous stimuli, establishing a platform for stimuli-responsive drug delivery carriers.

  2. Hydrogel based cartilaginous tissue regeneration: recent insights and technologies.

    PubMed

    Chuah, Yon Jin; Peck, Yvonne; Lau, Jia En Josias; Hee, Hwan Tak; Wang, Dong-An

    2017-03-28

    Hydrogels have been extensively employed as an attractive biomaterial to address numerous existing challenges in the fields of regenerative medicine and research because of their unique properties such as the capability to encapsulate cells, high water content, ease of modification, low toxicity, injectability, in situ spatial fit and biocompatibility. These inherent properties have created many opportunities for hydrogels as a scaffold or a cell/drug carrier in tissue regeneration, especially in the field of cartilaginous tissue such as articular cartilage and intervertebral discs. A concise overview of the anatomy/physiology of these cartilaginous tissues and their pathophysiology, epidemiology and existing clinical treatments will be briefly described. This review article will discuss the current state-of-the-art of various polymers and developing strategies that are explored in establishing different technologies for cartilaginous tissue regeneration. In particular, an innovative approach to generate scaffold-free cartilaginous tissue via a transient hydrogel scaffolding system for disease modeling to pre-clinical trials will be examined. Following that, the article reviews numerous hydrogel-based medical implants used in clinical treatment of osteoarthritis and degenerated discs. Last but not least, the challenges and future directions of hydrogel based medical implants in the regeneration of cartilaginous tissue are also discussed.

  3. Novel injectable, self-gelling hydrogel-microparticle composites for bone regeneration consisting of gellan gum and calcium and magnesium carbonate microparticles.

    PubMed

    Douglas, Timothy E L; Łapa, Agata; Reczyńska, Katarzyna; Krok-Borkowicz, Małgorzata; Pietryga, Krzysztof; Samal, Sangram Keshari; Declercq, Heidi A; Schaubroeck, David; Boone, Marijn; Van der Voort, Pascal; De Schamphelaere, Karel; Stevens, Christian V; Bliznuk, Vitaliy; Balcaen, Lieve; Parakhonskiy, Bogdan V; Vanhaecke, Frank; Cnudde, Veerle; Pamuła, Elżbieta; Skirtach, Andre G

    2016-11-21

    The suitability of hydrogel biomaterials for bone regeneration can be improved by incorporation of an inorganic phase in particle form, thus maintaining hydrogel injectability. In this study, carbonate microparticles containing different amounts of calcium (Ca) and magnesium (Mg) were added to solutions of the anionic polysaccharide gellan gum (GG) to crosslink GG by release of Ca 2+ and Mg 2+ from microparticles and thereby induce formation of hydrogel-microparticle composites. It was hypothesized that increasing Mg content of microparticles would promote GG hydrogel formation. The effect of Mg incorporation on cytocompatibility and cell growth was also studied. Microparticles were formed by mixing Ca 2+ and Mg 2+ and [Formula: see text] ions in varying concentrations. Microparticles were characterized physiochemically and subsequently mixed with GG solution to form hydrogel-microparticle composites. The elemental Ca:Mg ratio in the mineral formed was similar to the Ca:Mg ratio of the ions added. In the absence of Mg, vaterite was formed. At low Mg content, magnesian calcite was formed. Increasing the Mg content further caused formation of amorphous mineral. Microparticles of vaterite and magnesium calcite did not induce GG hydrogel formation, but addition of Mg-richer amorphous microparticles induced gelation within 20 min. Microparticles were dispersed homogeneously in hydrogels. MG-63 osteoblast-like cells were cultured in eluate from hydrogel-microparticle composites and on the composites themselves. All composites were cytocompatible. Cell growth was highest on composites containing particles with an equimolar Ca:Mg ratio. In summary, carbonate microparticles containing a sufficient amount of Mg induced GG hydrogel formation, resulting in injectable, cytocompatible hydrogel-microparticle composites.

  4. Construction and characterization of a pure protein hydrogel for drug delivery application.

    PubMed

    Xu, Xu; Xu, ZhaoKang; Yang, XiaoFeng; He, YanHao; Lin, Rong

    2017-02-01

    Injectable hydrogels have a variety of applications, including regenerative medicine, tissue engineering and controlled drug delivery. In this paper, we reported on a pure protein hydrogel based on tetrameric recombinant proteins for the potential drug delivery application. This protein hydrogel was formed instantly by simply mixing two recombinant proteins (ULD-TIP1 and ULD-GGGWRESAI) through the specific protein-peptide interaction. The protein hydrogel was characterized by rheology and scanning electron microscopy (SEM). In vitro cytotoxicity test indicated that the developed protein hydrogel had no apparent cytotoxicity against L-929 cells and HCEC cells after 48h incubation. The formed protein hydrogels was gradually degraded after incubation in phosphate buffered solution (PBS, pH=7.4) for a period of 144h study, as indicated by in vitro degradation test. Encapsulation of model drug (sodium diclofenac; DIC) were achieved by simple mixing of drugs with hydrogelator and the entrapped drugs was almost completely released from hydrogels within 24h via a diffusion manner. As a conclusion, the simple and mild preparation procedure and good biocompatibility of protein hydrogel would render its good promising candidate for drug delivery applications. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Injectable glycosaminoglycan-protein nano-complex in semi-interpenetrating networks: A biphasic hydrogel for hyaline cartilage regeneration.

    PubMed

    Radhakrishnan, Janani; Subramanian, Anuradha; Sethuraman, Swaminathan

    2017-11-01

    Articular hyaline cartilage regeneration remains challenging due to its less intrinsic reparability. The study develops injectable biphasic semi-interpenetrating polymer networks (SIPN) hydrogel impregnated with chondroitin sulfate (ChS) nanoparticles for functional cartilage restoration. ChS loaded zein nanoparticles (∼150nm) prepared by polyelectrolyte-protein complexation were interspersed into injectable SIPNs developed by blending alginate with poly(vinyl alcohol) and calcium crosslinking. The hydrogel exhibited interconnected porous microstructure (39.9±5.8μm pore diameter, 57.7±5.9% porosity), 92% swellability and >350Pa elastic modulus. Primary chondrocytes compatibility, chondrocyte-matrix interaction with cell-cell clustering and spheroidal morphology was demonstrated in ChS loaded hydrogel and long-term (42days) proliferation was also determined. Higher fold expression of cartilage-specific genes sox9, aggrecan and collagen-II was observed in ChS loaded hydrogel while exhibiting poor expression of collagen-I. Immunoblotting of aggregan and collagen II demonstrate favorable positive influence of ChS on chondrocytes. Thus, the injectable biphasic SIPNs could be promising composition-mimetic substitute for cartilage restoration at irregular defects. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Multiphoton imaging of myogenic differentiation in gelatin-based hydrogels as tissue engineering scaffolds.

    PubMed

    Kim, Min Jeong; Shin, Yong Cheol; Lee, Jong Ho; Jun, Seung Won; Kim, Chang-Seok; Lee, Yunki; Park, Jong-Chul; Lee, Soo-Hong; Park, Ki Dong; Han, Dong-Wook

    2016-01-01

    Hydrogels can serve as three-dimensional (3D) scaffolds for cell culture and be readily injected into the body. Recent advances in the image technology for 3D scaffolds like hydrogels have attracted considerable attention to overcome the drawbacks of ordinary imaging technologies such as optical and fluorescence microscopy. Multiphoton microscopy (MPM) is an effective method based on the excitation of two-photons. In the present study, C2C12 myoblasts differentiated in 3D gelatin hydroxyphenylpropionic acid (GHPA) hydrogels were imaged by using a custom-built multiphoton excitation fluorescence microscopy to compare the difference in the imaging capacity between conventional microscopy and MPM. The physicochemical properties of GHPA hydrogels were characterized by using scanning electron microscopy and Fourier-transform infrared spectroscopy. In addition, the cell viability and proliferation of C2C12 myoblasts cultured in the GHPA hydrogels were analyzed by using Live/Dead Cell and CCK-8 assays, respectively. It was found that C2C12 cells were well grown and normally proliferated in the hydrogels. Furthermore, the hydrogels were shown to be suitable to facilitate the myogenic differentiation of C2C12 cells incubated in differentiation media, which had been corroborated by MPM. It was very hard to get clear images from a fluorescence microscope. Our findings suggest that the gelatin-based hydrogels can be beneficially utilized as 3D scaffolds for skeletal muscle engineering and that MPM can be effectively applied to imaging technology for tissue regeneration.

  7. Hydrogel based approaches for cardiac tissue engineering.

    PubMed

    Saludas, Laura; Pascual-Gil, Simon; Prósper, Felipe; Garbayo, Elisa; Blanco-Prieto, María

    2017-05-25

    Heart failure still represents the leading cause of death worldwide. Novel strategies using stem cells and growth factors have been investigated for effective cardiac tissue regeneration and heart function recovery. However, some major challenges limit their translation to the clinic. Recently, biomaterials have emerged as a promising approach to improve delivery and viability of therapeutic cells and proteins for the regeneration of the damaged heart. In particular, hydrogels are considered one of the most promising vehicles. They can be administered through minimally invasive techniques while maintaining all the desirable characteristics of drug delivery systems. This review discusses recent advances made in the field of hydrogels for cardiac tissue regeneration in detail, focusing on the type of hydrogel (conventional, injectable, smart or nano- and micro-gel), the biomaterials used for its manufacture (natural, synthetic or hybrid) and the therapeutic agent encapsulated (stem cells or proteins). We expect that these novel hydrogel-based approaches will open up new possibilities in drug delivery and cell therapies. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Hyaluronic Acid (HA)-Polyethylene glycol (PEG) as injectable hydrogel for intervertebral disc degeneration patients therapy

    NASA Astrophysics Data System (ADS)

    Putri Kwarta, Cityta; Widiyanti, Prihartini; Siswanto

    2017-05-01

    Chronic Low Back Pain (CLBP) is one health problem that is often encountered in a community. Inject-able hydrogels are the newest way to restore the disc thickness and hydration caused by disc degeneration by means of minimally invasive surgery. Thus, polymers can be combined to improve the characteristic properties of inject-able hydrogels, leading to use of Hyaluronic Acid (a natural polymer) and Polyethylene glycol (PEG) with Horse Radish Peroxide (HRP) cross linker enzymes. The swelling test results, which approaches were the ideal disc values, were sampled with variation of enzyme concentrations of 0.25 µmol/min/mL. The enzyme concentrations were 33.95%. The degradation test proved that the sample degradation increased along with the decrease of the HRP enzyme concentration. The results of the cytotoxicity assay with MTT assay method showed that all samples resulted in the 90% of living cells are not toxic. In vitro injection, models demonstrated that higher concentration of the enzymes was less state of gel which would rupture when released from the agarose gel. The functional group characterization shows the cross linking bonding in sample with enzyme adding. The conclusion of this study is PEG-HA-HRP enzyme are safe polymer composites which have a potential to be applied as an injectable hydrogel for intervertebral disc degeneration.

  9. A Microparticle/Hydrogel Combination Drug-Delivery System for Sustained Release of Retinoids

    PubMed Central

    Gao, Song-Qi; Maeda, Tadao; Okano, Kiichiro; Palczewski, Krzysztof

    2012-01-01

    Purpose. To design and develop a drug-delivery system containing a combination of poly(d,l-lactide-co-glycolide) (PLGA) microparticles and alginate hydrogel for sustained release of retinoids to treat retinal blinding diseases that result from an inadequate supply of retinol and generation of 11-cis-retinal. Methods. To study drug release in vivo, either the drug-loaded microparticle–hydrogel combination was injected subcutaneously or drug-loaded microparticles were injected intravitreally into Lrat−/− mice. Orally administered 9-cis-retinoids were used for comparison and drug concentrations in plasma were determined by HPLC. Electroretinography (ERG) and both chemical and histologic analyses were used to evaluate drug effects on visual function and morphology. Results. Lrat−/− mice demonstrated sustained drug release from the microparticle/hydrogel combination that lasted 4 weeks after subcutaneous injection. Drug concentrations in plasma of the control group treated with the same oral dose rose to higher levels for 6−7 hours but then dropped markedly by 24 hours. Significantly increased ERG responses and a markedly improved retinal pigmented epithelium (RPE)–rod outer segment (ROS) interface were observed after subcutaneous injection of the drug-loaded delivery combination. Intravitreal injection of just 2% of the systemic dose of drug-loaded microparticles provided comparable therapeutic efficacy. Conclusions. Sustained release of therapeutic levels of 9-cis-retinoids was achieved in Lrat−/− mice by subcutaneous injection in a microparticle/hydrogel drug-delivery system. Both subcutaneous and intravitreal injections of drug-loaded microparticles into Lrat−/− mice improved visual function and retinal structure. PMID:22918645

  10. Regulating cancer associated fibroblasts with losartan-loaded injectable peptide hydrogel to potentiate chemotherapy in inhibiting growth and lung metastasis of triple negative breast cancer.

    PubMed

    Hu, Chunhua; Liu, Xiaoyu; Ran, Wei; Meng, Jia; Zhai, Yihui; Zhang, Pengcheng; Yin, Qi; Yu, Haijun; Zhang, Zhiwen; Li, Yaping

    2017-11-01

    Preoperative chemotherapy is effective in improving the prognosis of patients, but its efficacy is impeded by cancer associated fibroblasts (CAFs) that enhance the survival, growth, and metastasis of cancer cells. To inhibit the activity of CAFs, prolonged and localized drug exposure is necessary. Here, we report on the rational design, screening, and evaluation of an injectable peptide hydrogel as a local losartan depot aiming to inhibit CAFs and potentiate chemotherapy. We synthesized a set of peptide derivatives and found that C 16 -GNNQQNYKD-OH (C 16 -N) surpassed the others in hydrogel formation and drug encapsulation, due to its flexible hydrocarbon tail and interpeptide hydrogen bonding that allowed supramolecular self-assembly into long filaments with hydrophobic cores. C 16 -N co-assembled with losartan to form hydrogel from which losartan was sustainably released over 9 days. After intratumoral injection, the hydrogel could be retained in the tumor for more than 9 days, significantly inhibited the CAFs and collagen synthesis in orthotopic 4T1 tumors, and enhanced the efficacy of PEGylated doxorubicin-loaded liposomes (Dox-L) in inhibiting the tumor growth (64% vs. Dox-L alone) and lung metastasis (80% vs. Dox-L alone). These results provide important guiding principles for the rational design of injectable peptide hydrogels aiming to regulate CAFs and improve chemotherapy. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Cytotoxicity and biocompatibility evaluation of N,O-carboxymethyl chitosan/oxidized alginate hydrogel for drug delivery application.

    PubMed

    Li, Xingyi; Kong, Xiangye; Zhang, Zhaoliang; Nan, Kaihui; Li, LingLi; Wang, XianHou; Chen, Hao

    2012-06-01

    In this paper, covalently cross-linked hydrogel composed of N,O-carboxymethyl chitosan and oxidized alginate was developed intending for drug delivery application. In vitro/vivo cytocompatibility and biocompatibility of the developed hydrogel were preliminary evaluated. In vitro cytocompatibility test showed that the developed hydrogel exhibited good cytocompatibility against NH3T3 cells after 3-day incubation. According to the results of acute toxicity test, there was no obvious cytotoxicity for major organs during the period of 21-day intraperitoneal administration. Meanwhile, the developed hydrogel did not induce any cutaneous reaction within 72 h of subcutaneous injection followed by slow degradation and adsorption with the time evolution. Moreover, the extraction of developed hydrogel had nearly 0% of hemolysis ratio, which indicated the good hemocompatibility of hydrogel. Based on the above results, it may be concluded that the developed N,O-carboxymethyl chitosan/oxidized alginate hydrogel with non-cytotoxicity and good biocompatibility might suitable for the various drug delivery applications. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. Retardation of Antigen Release from DNA Hydrogel Using Cholesterol-Modified DNA for Increased Antigen-Specific Immune Response.

    PubMed

    Umeki, Yuka; Saito, Masaaki; Takahashi, Yuki; Takakura, Yoshinobu; Nishikawa, Makiya

    2017-10-01

    Our previous study indicates that cationization of an antigen is effective for sustained release of both immunostimulatory DNA containing unmethylated cytosine-phosphate-guanine (CpG) dinucleotides, or CpG DNA, and antigen from a DNA hydrogel. Another approach to sustained antigen release would increase the applicability and versatility of the system. In this study, a hydrophobic interaction-based sustained release system of ovalbumin (OVA), a model antigen, from immunostimulatory CpG DNA hydrogel is developed by the use of cholesterol-modified DNA and urea-denatured OVA (udOVA). Cholesterol-modified DNA forms a hydrogel, Dgel(chol), and induces IL-6 mRNA expression in mouse skin after intradermal injection, as DNA without cholesterol does. Cholesterol-modified DNA associated with OVA and denaturation of OVA using urea increases the interaction. The release of udOVA from Dgel(chol) is significantly slower than that from DNA hydrogel with no cholesterol, Dgel. Moreover, intratumoral injections of udOVA/Dgel(chol) significantly inhibit the growth of EG7-OVA tumors in mice. These results indicate that sustained release of antigen from Dgel can be achieved by the combination of urea denaturation and cholesterol modification, and retardation of antigen release is effective to induce antigen-specific cancer immunity. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Hydrogel delivery of lysostaphin eliminates orthopedic implant infection by Staphylococcus aureus and supports fracture healing

    PubMed Central

    Johnson, Christopher T.; Wroe, James A.; Agarwal, Rachit; Martin, Karen E.; Guldberg, Robert E.; Donlan, Rodney M.; Westblade, Lars F.; García, Andrés J.

    2018-01-01

    Orthopedic implant infections are a significant clinical problem, with current therapies limited to surgical debridement and systemic antibiotic regimens. Lysostaphin is a bacteriolytic enzyme with high antistaphylococcal activity. We engineered a lysostaphin-delivering injectable PEG hydrogel to treat Staphylococcus aureus infections in bone fractures. The injectable hydrogel formulation adheres to exposed tissue and fracture surfaces, ensuring efficient, local delivery of lysostaphin. Lysostaphin encapsulation within this synthetic hydrogel maintained enzyme stability and activity. Lysostaphin-delivering hydrogels exhibited enhanced antibiofilm activity compared with soluble lysostaphin. Lysostaphin-delivering hydrogels eradicated S. aureus infection and outperformed prophylactic antibiotic and soluble lysostaphin therapy in a murine model of femur fracture. Analysis of the local inflammatory response to infections treated with lysostaphin-delivering hydrogels revealed indistinguishable differences in cytokine secretion profiles compared with uninfected fractures, demonstrating clearance of bacteria and associated inflammation. Importantly, infected fractures treated with lysostaphin-delivering hydrogels fully healed by 5 wk with bone formation and mechanical properties equivalent to those of uninfected fractures, whereas fractures treated without the hydrogel carrier were equivalent to untreated infections. Finally, lysostaphin-delivering hydrogels eliminate methicillin-resistant S. aureus infections, supporting this therapy as an alternative to antibiotics. These results indicate that lysostaphin-delivering hydrogels effectively eliminate orthopedic S. aureus infections while simultaneously supporting fracture repair. PMID:29760099

  14. Injectable Self-Healing Hydrogel with Antimicrobial and Antifouling Properties.

    PubMed

    Li, Lin; Yan, Bin; Yang, Jingqi; Huang, Weijuan; Chen, Lingyun; Zeng, Hongbo

    2017-03-22

    Microbial adhesion, biofilm formation and associated microbial infection are common challenges faced by implanted biomaterials (e.g., hydrogels) in bioengineering applications. In this work, an injectable self-healing hydrogel with antimicrobial and antifouling properties was prepared through self-assembly of an ABA triblock copolymer employing catechol functionalized polyethylene glycol (PEG) as A block and poly{[2-(methacryloyloxy)-ethyl] trimethylammonium iodide}(PMETA) as B block. This hydrogel exhibits excellent thermosensitivity, and can effectively inhibit the growth of E. coli (>99.8% killing efficiency) and prevent cell attachment. It can also heal autonomously from repeated damage, through mussel-inspired catechol-mediated hydrogen bonding and aromatic interactions, exhibiting great potential in bioengineering applications.

  15. Magnetic hyaluronate hydrogels: preparation and characterization

    NASA Astrophysics Data System (ADS)

    Tóth, Ildikó Y.; Veress, Gábor; Szekeres, Márta; Illés, Erzsébet; Tombácz, Etelka

    2015-04-01

    A novel soft way of hyaluronate (HyA) based magnetic hydrogel preparation was revealed. Magnetite nanoparticles (MNPs) were prepared by co-precipitation. Since the naked MNPs cannot be dispersed homogenously in HyA-gel, their surface was modified with natural and biocompatible chondroitin-sulfate-A (CSA) to obtain CSA-coated MNPs (CSA@MNPs). The aggregation state of MNPs and that loaded with increasing amount of CSA up to 1 mmol/g was measured by dynamic light scattering at pH~6. Only CSA@MNP with ≥0.2 mmol/g CSA content was suitable for magnetic HyA-gel preparation. Rheological studies showed that the presence of CSA@MNP with up to 2 g/L did not affect the hydrogel's rheological behavior significantly. The results suggest that the HyA-based magnetic hydrogels may be promising formulations for future biomedical applications, e.g. as intra-articular injections in the treatment of osteoarthritis.

  16. Feasibility of hydrogel fiducial markers for in vivo proton range verification using PET

    NASA Astrophysics Data System (ADS)

    Cho, Jongmin; Campbell, Patrick; Wang, Min; Alqathami, Mamdooh; Mawlawi, Osama; Kerr, Matthew; Cho, Sang Hyun

    2016-03-01

    Biocompatible/biodegradable hydrogel polymers were immersed in 18O-enriched water and 16O-water to create 18O-water hydrogels and 16O-water hydrogels. In both cases, the hydrogels were made of ~91 wt% water and ~9 wt% polymer. In addition, 5-8 μm Zn powder was suspended in 16O-water and 18O-enriched water and cross-linked with hydrogel polymers to create Zn/16O-water hydrogels (30/70 wt%, ~9 wt% polymer) and Zn/18O-water hydrogels (10/90 wt%), respectively. A block of extra-firm ‘wet’ tofu (12.3  ×  8.8  ×  4.9 cm, ρ  ≈  1.05 g cm-3) immersed in water was injected with Zn/16O-water hydrogels (0.9 ml each) at four different depths using an 18-gauge needle. Similarly, Zn/18O-water hydrogels (0.9 ml) were injected into a second tofu phantom. As a reference, both 16O-water hydrogels (1.8 ml) and 18O-water hydrogels (0.9 ml) in Petri dishes were irradiated in a ‘dry’ environment. The hydrogels in the wet tofu phantoms and dry Petri dishes were scanned via CT and images were used for treatment planning. Then, they were positioned at the proton distal dose fall-off region and irradiated (2 Gy) followed by PET/CT imaging. Notably high PET signals were observed only in 18O-water hydrogels in the dry environment. The visibility of the Zn/16O-water hydrogels injected into the tofu phantom was outstanding in CT images, but these hydrogels provided no noticeable PET signals. The visibility of the Zn/18O-water hydrogels in the wet tofu were excellent on CT and moderate on PET; however, the PET signals were weaker than those in the dry environment, possibly owing to 18O-water leaching out. The hydrogel markers studied here could be used to develop universal PET/CT fiducial markers. Their PET visibility (attributed more to activated 18O-water than Zn) after proton irradiation can be used for proton therapy/range verification. More investigation is needed to slow down the leaching of 18O-water.

  17. Enzymatically cross-linked injectable alginate-g-pyrrole hydrogels for neovascularization.

    PubMed

    Devolder, Ross; Antoniadou, Eleni; Kong, Hyunjoon

    2013-11-28

    Microparticles capable of releasing protein drugs are often incorporated into injectable hydrogels to minimize their displacement at an implantation site, reduce initial drug burst, and further control drug release rates over a broader range. However, there is still a need to develop methods for releasing drug molecules over extended periods of time, in order to sustain the bioactivity of drug molecules at an implantation site. In this study, we hypothesized that a hydrogel formed through the cross-linking of pyrrole units linked to a hydrophilic polymer would release protein drugs in a more sustained manner, because of an enhanced association between cross-linked pyrrole groups and the drug molecules. To examine this hypothesis, we prepared hydrogels of alginate substituted with pyrrole groups, alginate-g-pyrrole, through a horse-radish peroxidase (HRP)-activated cross-linking of the pyrrole groups. The hydrogels were encapsulated with poly(lactic-co-glycolic acid) (PLGA) microparticles loaded with vascular endothelial growth factor (VEGF). The resulting hydrogel system released VEGF in a more sustained manner than Ca(2+) alginate or Ca(2+) alginate-g-pyrrole gel systems. Finally, implantations of the VEGF-releasing HRP-activated alginate-g-pyrrole hydrogel system on chicken chorioallantoic membranes resulted in the formation of blood vessels in higher densities and with larger diameters, compared to other control conditions. Overall, the drug releasing system developed in this study will be broadly useful for regulating release rates of a wide array of protein drugs, and further enhance the quality of protein drug-based therapies. © 2013 Elsevier B.V. All rights reserved.

  18. Preparation, characterization and in vivo evaluation of a combination delivery system based on hyaluronic acid/jeffamine hydrogel loaded with PHBV/PLGA blend nanoparticles for prolonged delivery of Teriparatide.

    PubMed

    Bahari Javan, Nika; Montazeri, Hamed; Rezaie Shirmard, Leila; Jafary Omid, Nersi; Barbari, Ghullam Reza; Amini, Mohsen; Ghahremani, Mohammad Hossein; Rafiee-Tehrani, Morteza; Abedin Dorkoosh, Farid

    2017-04-01

    In the current study, biodegradable PHBV/PLGA blend nanoparticles (NPs) containing Teriparatide were loaded in hyaluronic acid/jeffamine (HA-JEF ED-600) hydrogel to prepare a combination delivery system (CDS) for prolonged delivery of Teriparatide. The principal purpose of the present study was to formulate an effective and prolonged Teriparatide delivery system in order to reduce the frequency of injection and thus enhance patient's compliance. Morphological properties, swelling behaviour, crosslinking efficiency and rheological characterization of HA-JEF ED-600 hydrogel were evaluated. The CDS was acquired by adding PHBV/PLGA NPs to HA-JEF ED-600 hydrogel simultaneously with crosslinking reaction. The percentage of NPs incorporation within the hydrogel as well as the loading capacity and morphology of Teriparatide loaded CDS were examined. Intrinsic fluorescence and circular dichroism spectroscopy proved that Teriparatide remains stable after processing. The release profile represented 63% Teriparatide release from CDS within 50days with lower burst release compared to NPs and hydrogel. MTT assay was conducted by using NIH3T3 cell line and no sign of reduction in cell viability was observed. Based on Miller and Tainter method, LD 50 of Teriparatide loaded CDS was 131.8mg/kg. In vivo studies demonstrated that Teriparatide loaded CDS could effectively increase serum calcium level after subcutaneous injection in mice. Favourable results in the current study introduced CDS as a promising candidate for controlled delivery of Teriparatide and pave the way for future investigations in the field of designing prolonged delivery systems for other peptides and proteins. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Injectible candidate sealants for fetal membrane repair: Bonding and toxicity in vitro

    PubMed Central

    Bilic, Grozdana; Brubaker, Carrie; Messersmith, Phillip B.; Mallik, Ajit S.; Quinn, Thomas M.; Haller, Claudia; Done, Elisa; Gucciardo, Leonardo; Zeisberger, Steffen M.; Zimmermann, Roland; Deprest, Jan; Zisch, Andreas H.

    2010-01-01

    Objective This study was undertaken to test injectible surgical sealants that are biocompatible with fetal membranes, eventually for closure of iatrogenic membrane defects. Study Design Dermabond, Histoacryl, Tissucol fibrin glue, and three types of in situ forming poly(ethylene glycol)-based polymer hydrogels were tested for acute toxicity upon direct contact with fetal membranes for 24h. For determination of elution toxicity, extracts of sealants were incubated on amnion cell cultures for 72h. Bonding and toxicity was assessed through morphological and/or biochemical analysis. Results Extracts of all adhesives were non-toxic for cultured cells. However, only Tissucol and one type of poly(ethylene glycol)-based hydrogel, mussel-mimetic tissue adhesive, showed efficient, non-disruptive, non-toxic bonding to fetal membranes. Mussel-mimetic tissue adhesive applied over membrane defects created with a 3.5 mm trocar accomplished leak-proof closure that withstood membrane stretch in an in vitro model. Conclusion A synthetic hydrogel-type tissue adhesive emerged as potential sealing modality for iatrogenic membrane defects that merits further evaluation in vivo. PMID:20096254

  20. Characterization of human adipose tissue-derived stem cells in vitro culture and in vivo differentiation in a temperature-sensitive chitosan/β- glycerophosphate/collagen hybrid hydrogel.

    PubMed

    Song, Kedong; Li, Liying; Yan, Xinyu; Zhang, Wen; Zhang, Yu; Wang, Yiwei; Liu, Tianqing

    2017-01-01

    In this study, the interaction of human adipose tissue-derived stem cells (ADSCs) with chitosan/β-glycerophosphate/collagen (C/GP/Co) hybrid hydrogel was test, followed by investigating the capability of engineered adipose tissue formation using this ADSCs seeded hydrogel. The ADSCs were harvested and mixed with a C/GP/Co hydrogel followed by a gelation at 37°C and an in vitro culture. The results showed that the ADSCs within C/GP/Co hydrogels achieved a 30% of expansion over 7days in culture medium and encapsulated cell in C/GP/Co hydrogel demonstrated a characteristic morphology with high viability over 5days. C/GP/Co hydrogel were subcutaneous injected into SD-rats to assess the biocompatibility. The induced ADSCs-C/GP/Co hydrogel and non-induced ADSCs-C/GP/Co hydrogel were subcutaneously injected into nude mice for detecting potential of adipogenic differentiation. It has shown that C/GP/Co hydrogel were well tolerated in SD rats where they had persisted over 4weeks post implantation. Histology analysis indicated that induced ADSCs-C/GP/Co hydrogel has a greater number of adipocytes and vascularized adipose tissues compared with non-induced ADSCs-C/GP/Co hydrogel. Crown Copyright © 2016. Published by Elsevier B.V. All rights reserved.

  1. Ca:Mg:Zn:CO3 and Ca:Mg:CO3-tri- and bi-elemental carbonate microparticles for novel injectable self-gelling hydrogel-microparticle composites for tissue regeneration.

    PubMed

    Douglas, Timothy E L; Sobczyk, Katarzyna; Łapa, Agata; Włodarczyk, Katarzyna; Brackman, Gilles; Vidiasheva, Irina; Reczyńska, Katarzyna; Pietryga, Krzysztof; Schaubroeck, David; Bliznuk, Vitaliy; Voort, Pascal Van Der; Declercq, Heidi A; Bulcke, Jan Van den; Samal, Sangram Keshari; Khalenkow, Dmitry; Parakhonskiy, Bogdan V; Van Acker, Joris; Coenye, Tom; Lewandowska-Szumieł, Małgorzata; Pamuła, Elżbieta; Skirtach, Andre G

    2017-03-24

    Injectable composites for tissue regeneration can be developed by dispersion of inorganic microparticles and cells in a hydrogel phase. In this study, multifunctional carbonate microparticles containing different amounts of calcium, magnesium and zinc were mixed with solutions of gellan gum (GG), an anionic polysaccharide, to form injectable hydrogel-microparticle composites, containing Zn, Ca and Mg. Zn and Ca were incorporated into microparticle preparations to a greater extent than Mg. Microparticle groups were heterogeneous and contained microparticles of differing shape and elemental composition. Zn-rich microparticles were 'star shaped' and appeared to consist of small crystallites, while Zn-poor, Ca- and Mg-rich microparticles were irregular in shape and appeared to contain lager crystallites. Zn-free microparticle groups exhibited the best cytocompatibility and, unexpectedly, Zn-free composites showed the highest antibacterial activity towards methicilin-resistant Staphylococcus aureus. Composites containing Zn-free microparticles were cytocompatible and therefore appear most suitable for applications as an injectable biomaterial. This study proves the principle of creating bi- and tri-elemental microparticles to induce the gelation of GG to create injectable hydrogel-microparticle composites.

  2. Biodegradable and thermosensitive monomethoxy poly(ethylene glycol)-poly(lactic acid) hydrogel as a barrier for prevention of post-operative abdominal adhesion.

    PubMed

    Fu, Shao Zhi; Li, Zhi; Fan, Jun Ming; Meng, Xiao Hang; Shi, Kun; Qu, Ying; Yang, Ling Lin; Wu, Jing Bo; Fan, Juan; Luot, Feng; Qian, Zhi Yong

    2014-03-01

    Post-operative peritoneal adhesions are serious consequences of abdominal or pelvic surgery and cause severe bowel obstruction, chronic pelvic pain and infertility. In this study, a novel nano-hydrogel system based on a monomethoxy poly(ethylene glycol)-poly(lactic acid) (MPEG-PLA) di-block copolymer was studied for its ability to prevent abdominal adhesion in rats. The MPEG-PLA hydrogel at a concentration of 40% (w/v) was injected and was able to adhere to defect sites at body temperature. The ability of the hydrogel to inhibit adhesion of post-operative tissues was evaluated by utilizing a rat model of abdominal sidewall-cecum abrasion. It was possible to heal wounded tissue through regeneration of neo-peritoneal tissues ten days after surgery. Our data showed that this hydrogel system is equally as effective as current commercialized anti-adhesive products.

  3. Synthesis, characterization, and application of reversible PDLLA-PEG-PDLLA copolymer thermogels in vitro and in vivo

    PubMed Central

    Shi, Kun; Wang, Ya-Li; Qu, Ying; Liao, Jin-Feng; Chu, Bing-Yang; Zhang, Hua-Ping; Luo, Feng; Qian, Zhi-Yong

    2016-01-01

    In this study, a series of injectable thermoreversible and thermogelling PDLLA-PEG-PDLLA copolymers were developed and a systematic evaluation of the thermogelling system both in vitro and in vivo was performed. The aqueous PDLLA-PEG-PDLLA solutions above a critical gel concentration could transform into hydrogel spontaneously within 2 minutes around the body temperature in vitro or in vivo. Modulating the molecular weight, block length and polymer concentration could adjust the sol-gel transition behavior and the mechanical properties of the hydrogels. The gelation was thermally reversible due to the physical interaction of copolymer micelles and no crystallization formed during the gelation. Little cytotoxicity and hemolysis of this polymer was found, and the inflammatory response after injecting the hydrogel to small-animal was acceptable. In vitro and in vivo degradation experiments illustrated that the physical hydrogel could retain its integrity as long as several weeks and eventually be degraded by hydrolysis. A rat model of sidewall defect-bowel abrasion was employed, and a significant reduction of post-operative adhesion has been found in the group of PDLLA-PEG-PDLLA hydrogel-treated, compared with untreated control group and commercial hyaluronic acid (HA) anti-adhesion hydrogel group. As such, this PDLLA-PEG-PDLLA hydrogel might be a promising candidate of injectable biomaterial for medical applications. PMID:26752008

  4. Human Adipose Tissue Derived Extracellular Matrix and Methylcellulose Hydrogels Augments and Regenerates the Paralyzed Vocal Fold

    PubMed Central

    Kim, Eun Na; Sung, Myung Whun; Kwon, Tack-Kyun; Cho, Yong Woo; Kwon, Seong Keun

    2016-01-01

    Vocal fold paralysis results from various etiologies and can induce voice changes, swallowing complications, and issues with aspiration. Vocal fold paralysis is typically managed using injection laryngoplasty with fat or synthetic polymers. Injection with autologous fat has shown excellent biocompatibility. However, it has several disadvantages such as unpredictable resorption rate, morbidities associated with liposuction procedure which has to be done in operating room under general anesthesia. Human adipose-derived extracellular matrix (ECM) grafts have been reported to form new adipose tissue and have greater biostability than autologous fat graft. Here, we present an injectable hydrogel that is constructed from adipose tissue derived soluble extracellular matrix (sECM) and methylcellulose (MC) for use in vocal fold augmentation. Human sECM derived from adipose tissue was extracted using two major steps—ECM was isolated from human adipose tissue and was subsequently solubilized. Injectable sECM/MC hydrogels were prepared by blending of sECM and MC. Sustained vocal fold augmentation and symmetric vocal fold vibration were accomplished by the sECM/MC hydrogel in paralyzed vocal fold which were confirmed by laryngoscope, histology and a high-speed imaging system. There were increased number of collagen fibers and fatty granules at the injection site without significant inflammation or fibrosis. Overall, these results indicate that the sECM/MC hydrogel can enhance vocal function in paralyzed vocal folds without early resorption and has potential as a promising material for injection laryngoplasty for stable vocal fold augmentation which can overcome the shortcomings of autologous fat such as unpredictable duration and morbidity associated with the fat harvest. PMID:27768757

  5. Intradiscal application of a PCLA-PEG-PCLA hydrogel loaded with celecoxib for the treatment of back pain in canines: What's in it for humans?

    PubMed

    Tellegen, Anna R; Willems, Nicole; Beukers, Martijn; Grinwis, Guy C M; Plomp, Saskia G M; Bos, Clemens; van Dijk, Maarten; de Leeuw, Mike; Creemers, Laura B; Tryfonidou, Marianna A; Meij, Björn P

    2018-03-01

    Chronic low back pain is a common clinical problem in both the human and canine population. Current pharmaceutical treatment often consists of oral anti-inflammatory drugs to alleviate pain. Novel treatments for degenerative disc disease focus on local application of sustained released drug formulations. The aim of this study was to determine safety and feasibility of intradiscal application of a poly(ε-caprolactone-co-lactide)-b-poly(ethylene glycol)-bpoly(ε-caprolactone-co-lactide) PCLA-PEG-PCLA hydrogel releasing celecoxib, a COX-2 inhibitor. Biocompatibility was evaluated after subcutaneous injection in mice, and safety of intradiscal injection of the hydrogel was evaluated in experimental dogs with early spontaneous intervertebral disc (IVD) degeneration. COX-2 expression was increased in IVD samples surgically obtained from canine patients, indicating a role of COX-2 in clinical IVD disease. Ten client-owned dogs with chronic low back pain related to IVD degeneration received an intradiscal injection with the celecoxib-loaded hydrogel. None of the dogs showed adverse reactions after intradiscal injection. The hydrogel did not influence magnetic resonance imaging signal at long-term follow-up. Clinical improvement was achieved by reduction of back pain in 9 of 10 dogs, as was shown by clinical examination and owner questionnaires. In 3 of 10 dogs, back pain recurred after 3 months. This study showed the safety and effectiveness of intradiscal injections in vivo with a thermoresponsive PCLA-PEG-PCLA hydrogel loaded with celecoxib. In this set-up, the dog can be used as a model for the development of novel treatment modalities in both canine and human patients with chronic low back pain. Copyright © 2017 John Wiley & Sons, Ltd.

  6. Bioactive factor delivery strategies from engineered polymer hydrogels for therapeutic medicine

    PubMed Central

    Nguyen, Minh Khanh; Alsberg, Eben

    2014-01-01

    Polymer hydrogels have been widely explored as therapeutic delivery matrices because of their ability to present sustained, localized and controlled release of bioactive factors. Bioactive factor delivery from injectable biopolymer hydrogels provides a versatile approach to treat a wide variety of diseases, to direct cell function and to enhance tissue regeneration. The innovative development and modification of both natural-(e.g., alginate (ALG), chitosan, hyaluronic acid (HA), gelatin, heparin (HEP), etc.) and synthetic-(e.g., polyesters, polyethyleneimine (PEI), etc.) based polymers has resulted in a variety of approaches to design drug delivery hydrogel systems from which loaded therapeutics are released. This review presents the state-of-the-art in a wide range of hydrogels that are formed though self-assembly of polymers and peptides, chemical crosslinking, ionic crosslinking and biomolecule recognition. Hydrogel design for bioactive factor delivery is the focus of the first section. The second section then thoroughly discusses release strategies of payloads from hydrogels for therapeutic medicine, such as physical incorporation, covalent tethering, affinity interactions, on demand release and/or use of hybrid polymer scaffolds, with an emphasis on the last 5 years. PMID:25242831

  7. Sustained Local Release of Methylprednisolone From a Thiol-Acrylate Poly(Ethylene Glycol) Hydrogel for Treating Chronic Compressive Radicular Pain.

    PubMed

    Slotkin, Jonathan R; Ness, Jennifer K; Snyder, Kristin M; Skiles, Amanda A; Woodard, Eric J; OʼShea, Timothy; Layer, Rick T; Aimetti, Alex A; Toms, Steven A; Langer, Robert; Tapinos, Nikos

    2016-04-01

    A preclinical animal model of chronic ligation of the sciatic nerve was used to compare the effectiveness of a slow-release hydrogel carrying methylprednisolone to methylprednisolone injection alone, which simulates the current standard of care for chronic compressive radiculopathy (CR). To extend the short-term benefits of steroid injections by using a nonswelling, biodegradable hydrogel as carrier to locally release methylprednisolone in a regulated and sustained way at the site of nerve compression. CR affects millions worldwide annually, and is a cause of costly disability with significant societal impact. Currently, a leading nonsurgical therapy involves epidural injection of steroids to temporarily alleviate the pain associated with CR. However, an effective way to extend the short-term effect of steroid treatment to address the chronic component of CR does not exist. We induced chronic compression injury of the sciatic nerves of rats by permanent ligation. Forty-eight hours later we injected our methylprednisolone infused hydrogel and assessed the effectiveness of our treatment for 4 weeks. We quantified mechanical hyperalgesia using a Dynamic Plantar Aesthesiometer (Ugo Basile, Stoelting Co., IL, USA), whereas gait analysis was conducted using the Catwalk automated gait analysis platform (Noldus, Leesburg, VA, USA). Macrophage staining was performed with immunohistochemistry and quantification of monocyte chemoattractant protein-1 in sciatic nerve lysates was performed with multiplex immunoassay using a SECTOR Imager 2400A (Meso Scale Discovery, Rockville, MA, USA). We demonstrate that using the hydrogel to deliver methylprednisolone results in significant (P < 0.05) reduction of hyperalgesia and improvement in the gait pattern of animals with chronic lesions as compared with animals treated with steroid alone. In addition, animals treated with hydrogel plus steroid showed significant reduction in the number of infiltrating macrophages at the sciatic nerve and reduced expression of the neuroinflammatory chemokine monocyte chemoattractant protein-1 (P < 0.05). Use of hydrogels as carriers for sustained local release of steroids provides significantly better control of pain in an animal model of chronic CR. Our steroid-infused hydrogel could be an effective extender of the short-term benefits of epidural steroid injections for patients with chronic compression-induced radicular pain. N/A.

  8. Hydrogel delivery of lysostaphin eliminates orthopedic implant infection by Staphylococcus aureus and supports fracture healing.

    PubMed

    Johnson, Christopher T; Wroe, James A; Agarwal, Rachit; Martin, Karen E; Guldberg, Robert E; Donlan, Rodney M; Westblade, Lars F; García, Andrés J

    2018-05-29

    Orthopedic implant infections are a significant clinical problem, with current therapies limited to surgical debridement and systemic antibiotic regimens. Lysostaphin is a bacteriolytic enzyme with high antistaphylococcal activity. We engineered a lysostaphin-delivering injectable PEG hydrogel to treat Staphylococcus aureus infections in bone fractures. The injectable hydrogel formulation adheres to exposed tissue and fracture surfaces, ensuring efficient, local delivery of lysostaphin. Lysostaphin encapsulation within this synthetic hydrogel maintained enzyme stability and activity. Lysostaphin-delivering hydrogels exhibited enhanced antibiofilm activity compared with soluble lysostaphin. Lysostaphin-delivering hydrogels eradicated S. aureus infection and outperformed prophylactic antibiotic and soluble lysostaphin therapy in a murine model of femur fracture. Analysis of the local inflammatory response to infections treated with lysostaphin-delivering hydrogels revealed indistinguishable differences in cytokine secretion profiles compared with uninfected fractures, demonstrating clearance of bacteria and associated inflammation. Importantly, infected fractures treated with lysostaphin-delivering hydrogels fully healed by 5 wk with bone formation and mechanical properties equivalent to those of uninfected fractures, whereas fractures treated without the hydrogel carrier were equivalent to untreated infections. Finally, lysostaphin-delivering hydrogels eliminate methicillin-resistant S. aureus infections, supporting this therapy as an alternative to antibiotics. These results indicate that lysostaphin-delivering hydrogels effectively eliminate orthopedic S. aureus infections while simultaneously supporting fracture repair. Copyright © 2018 the Author(s). Published by PNAS.

  9. Injectable TEMPO-oxidized nanofibrillated cellulose/biphasic calcium phosphate hydrogel for bone regeneration.

    PubMed

    Safwat, Engie; Hassan, Mohammad L; Saniour, Sayed; Zaki, Dalia Yehia; Eldeftar, Mervat; Saba, Dalia; Zazou, Mohamed

    2018-05-01

    Nanofibrillated cellulose, obtained from rice straw agricultural wastes was used as a substrate for the preparation of a new injectable and mineralized hydrogel for bone regeneration. Tetramethyl pyridine oxyl (TEMPO) oxidized nanofibrillated cellulose, was mineralized through the incorporation of a prepared and characterized biphasic calcium phosphate at a fixed ratio of 50 wt%. The TEMPO-oxidized rice straw nanofibrillated cellulose was characterized using transmission electron microscopy, Fourier transform infrared, and carboxylic content determination. The injectability and viscosity of the prepared hydrogel were evaluated using universal testing machine and rheometer testing, respectively. Cytotoxicity and alkaline phosphatase level tests on osteoblast like-cells for in vitro assessment of the biocompatibility were investigated. Results revealed that the isolated rice straw nanofibrillated cellulose is a nanocomposite of the cellulose nanofibers and silica nanoparticles. Rheological properties of the tested materials are suitable for use as injectable material and of nontoxic effect on osteoblast-like cells, as revealed by the positive alkaline phosphate assay. However, nanofibrillated cellulose/ biphasic calcium phosphate hydrogel showed higher cytotoxicity and lower bioactivity test results when compared to that of nanofibrillated cellulose.

  10. Enzymatic regulation of functional vascular networks using gelatin hydrogels

    PubMed Central

    Chuang, Chia-Hui; Lin, Ruei-Zeng; Tien, Han-Wen; Chu, Ya-Chun; Li, Yen-Cheng; Melero-Martin, Juan M.; Chen, Ying-Chieh

    2015-01-01

    To manufacture tissue engineering-based functional tissues, scaffold materials that can be sufficiently vascularized to mimic the functionality and complexity of native tissues are needed. Currently, vascular network bioengineering is largely carried out using natural hydrogels as embedding scaffolds, but most natural hydrogels have poor mechanical stability and durability, factors that critically limit their widespread use. In this study, we examined the suitability of gelatin-phenolic hydroxyl (gelatin-Ph) hydrogels that can be enzymatically crosslinked, allowing tuning of the storage modulus and the proteolytic degradation rate, for use as injectable hydrogels to support the human progenitor cell-based formation of a stable and mature vascular network. Porcine gelatin-Ph hydrogels were found to be cytocompatible with human blood-derived endothelial colony-forming cells and white adipose tissue-derived mesenchymal stem cells, resulting in >87% viability, and cell proliferation and spreading could be modulated by using hydrogels with different proteolytic degradability and stiffness. In addition, gelatin was extracted from mouse dermis and murine gelatin-Ph hydrogels were prepared. Importantly, implantation of human cell-laden porcine or murine gelatin-Ph hydrogels into immunodeficient mice resulted in the rapid formation of functional anastomoses between the bioengineered human vascular network and the mouse vasculature. Furthermore, the degree of enzymatic crosslinking of the gelatin-Ph hydrogels could be used to modulate cell behavior and the extent of vascular network formation in vivo. Our report details a technique for the synthesis of gelatin-Ph hydrogels from allogeneic or xenogeneic dermal skin and suggests that these hydrogels can be used for biomedical applications that require the formation of microvascular networks, including the development of complex engineered tissues. PMID:25749296

  11. Novel self-gelling injectable hydrogel/alpha-tricalcium phosphate composites for bone regeneration: Physiochemical and microcomputer tomographical characterization.

    PubMed

    Douglas, Timothy E L; Schietse, Josefien; Zima, Aneta; Gorodzha, Svetlana; Parakhonskiy, Bogdan V; KhaleNkow, Dmitry; Shkarin, Roman; Ivanova, Anna; Baumbach, Tilo; Weinhardt, Venera; Stevens, Christian V; Vanhoorne, Valérie; Vervaet, Chris; Balcaen, Lieve; Vanhaecke, Frank; Slośarczyk, Anna; Surmeneva, Maria A; Surmenev, Roman A; Skirtach, Andre G

    2018-03-01

    Mineralized hydrogels are increasingly gaining attention as biomaterials for bone regeneration. The most common mineralization strategy has been addition of preformed inorganic particles during hydrogel formation. This maintains injectability. One common form of bone cement is formed by mixing particles of the highly reactive calcium phosphate alpha-tricalcium phosphate (α-TCP) with water to form hydroxyapatite (HA). The calcium ions released during this reaction can be exploited to crosslink anionic, calcium-binding polymers such as the polysaccharide gellan gum (GG) to induce hydrogel formation. In this study, three different amounts of α-TCP particles were added to GG polymer solution to generate novel, injectable hydrogel-inorganic composites. Distribution of the inorganic phase in the hydrogel was studied by high resolution microcomputer tomography (µCT). Gelation occurred within 30 min. α-TCP converted to HA. µCT revealed inhomogeneous distribution of the inorganic phase in the composites. These results demonstrate the potential of the composites as alternatives to traditional α-TCP bone cement and pave the way for incorporation of biologically active substances and in vitro and in vivo testing. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 822-828, 2018. © 2017 Wiley Periodicals, Inc.

  12. Biocompatibility of two model elastin-like recombinamer-based hydrogels formed through physical or chemical cross-linking for various applications in tissue engineering and regenerative medicine.

    PubMed

    Ibáñez-Fonseca, Arturo; Ramos, Teresa L; González de Torre, Israel; Sánchez-Abarca, Luis Ignacio; Muntión, Sandra; Arias, Francisco Javier; Del Cañizo, María Consuelo; Alonso, Matilde; Sánchez-Guijo, Fermín; Rodríguez-Cabello, José Carlos

    2018-03-01

    Biocompatibility studies, especially innate immunity induction, in vitro and in vivo cytotoxicity, and fibrosis, are often lacking for many novel biomaterials including recombinant protein-based ones, such as elastin-like recombinamers (ELRs), and has not been extensively explored in the scientific literature, in contrast to traditional biomaterials. Herein, we present the results from a set of experiments designed to elucidate the preliminary biocompatibility of 2 types of ELRs that are able to form extracellular matrix-like hydrogels through either physical or chemical cross-linking both of which are intended for different applications in tissue engineering and regenerative medicine. Initially, we present in vitro cytocompatibility results obtained upon culturing human umbilical vein endothelial cells on ELR substrates, showing optimal proliferation up to 9 days. Regarding in vivo cytocompatibility, luciferase-expressing hMSCs were viable for at least 4 weeks in terms of bioluminescence emission when embedded in ELR hydrogels and injected subcutaneously into immunosuppressed mice. Furthermore, both types of ELR-based hydrogels were injected subcutaneously in immunocompetent mice and serum TNFα, IL-1β, IL-4, IL-6, and IL-10 concentrations were measured by enzyme-linked immunosorbent assay, confirming the lack of inflammatory response, as also observed upon macroscopic and histological evaluation. All these findings suggest that both types of ELRs possess broad biocompatibility, thus making them very promising for tissue engineering and regenerative medicine-related applications. Copyright © 2017 John Wiley & Sons, Ltd.

  13. Encapsulation of Curcumin in Self-Assembling Peptide Hydrogels as Injectable Drug Delivery Vehicles

    PubMed Central

    Altunbas, Aysegul; Lee, Seung Joon; Rajasekaran, Sigrid A.; Schneider, Joel P.; Pochan, Darrin J.

    2011-01-01

    Curcumin, a hydrophobic polyphenol, is an extract of turmeric root with antioxidant, anti-inflammatory and anti-tumorigenic properties. Its lack of water solubility and relatively low bioavailability set major limitations for its therapeutic use. In this study, a self-assembling peptide hydrogel is demonstrated to be an effective vehicle for the localized delivery of curcumin over sustained periods of time. The curcumin-hydrogel is prepared in-situ where curcumin encapsulation within the hydrogel network is accomplished concurrently with peptide self-assembly. Physical and in vitro biological studies were used to demonstrate the effectiveness of curcumin-loaded β-hairpin hydrogels as injectable agents for localized curcumin delivery. Notably, rheological characterization of the curcumin loaded hydrogel before and after shear flow have indicated solid-like properties even at high curcumin payloads. In vitro experiments with a medulloblastoma cell line confirm that the encapsulation of the curcumin within the hydrogel does not have an adverse effect on its bioactivity. Most importantly, the rate of curcumin release and its consequent therapeutic efficacy can be conveniently modulated as a function of the concentration of the MAX8 peptide. PMID:21601921

  14. Injectable Dopamine-Modified Poly(ethylene glycol) Nanocomposite Hydrogel with Enhanced Adhesive Property and Bioactivity

    PubMed Central

    2015-01-01

    A synthetic mimic of mussel adhesive protein, dopamine-modified four-armed poly(ethylene glycol) (PEG-D4), was combined with a synthetic nanosilicate, Laponite (Na0.7+(Mg5.5Li0.3Si8)O20(OH)4)0.7–), to form an injectable naoncomposite tissue adhesive hydrogel. Incorporation of up to 2 wt % Laponite significantly reduced the cure time while enhancing the bulk mechanical and adhesive properties of the adhesive due to strong interfacial binding between dopamine and Laponite. The addition of Laponite did not alter the degradation rate and cytocompatibility of PEG-D4 adhesive. On the basis of subcutaneous implantation in rat, PEG-D4 nanocomposite hydrogels elicited minimal inflammatory response and exhibited an enhanced level of cellular infiltration as compared to Laponite-free samples. The addition of Laponite is potentially a simple and effective method for promoting bioactivity in a bioinert, synthetic PEG-based adhesive while simultaneously enhancing its mechanical and adhesive properties. PMID:25222290

  15. Mineral-Enhanced Polyacrylic Acid Hydrogel as an Oyster-Inspired Organic-Inorganic Hybrid Adhesive.

    PubMed

    Li, Ang; Jia, Yunfei; Sun, Shengtong; Xu, Yisheng; Minsky, Burcu Baykal; Stuart, M A Cohen; Cölfen, Helmut; von Klitzing, Regine; Guo, Xuhong

    2018-03-28

    Underwater adhesion is crucial to many marine life forms living a sedentary lifestyle. Amongst them, mussel adhesion has been mostly studied, which inspires numerous investigations of 3,4-dihydroxyphenylalanine (DOPA)-based organic adhesives. In contrast, reef-building oysters represent another important "inorganic" strategy of marine molluscs for adhesion by generating biomineralized organic-inorganic adhesives, which is still rarely studied and no synthetic analogues have ever been reported so far. Here, a novel type of oyster-inspired organic-inorganic adhesive based on a biomineralized polyelectrolyte hydrogel is reported, which consists of polyacrylic acid physically cross-linked by very small amorphous calcium carbonate nanoparticles (<3 nm). The mineral-enhanced polyelectrolyte hydrogel adhesive is shown to be injectable, reusable, and optically clear upon curing in air. Moreover, comparable adhesion performance to DOPA-based adhesives is found for the hydrogel adhesive in both dry and wet conditions, which can even be further enhanced by introducing a small amount of second large cross-linker such as negatively charged nanoparticles. The present mineral hydrogel represents a new type of bio-inspired organic-inorganic adhesive that may find a variety of potential applications in adhesive chemistry.

  16. A Novel Vitreous Substitute of Using a Foldable Capsular Vitreous Body Injected with Polyvinylalcohol Hydrogel

    PubMed Central

    Feng, Songfu; Chen, Han; Liu, Yaqin; Huang, Zhen; Sun, Xuyuan; Zhou, Lian; Lu, Xiaohe; Gao, Qianying

    2013-01-01

    Hydrogels may be the ideal vitreous substitutes due to their wonderful physical features and biocompatibility. However, their drawbacks, short residence time, and biodegradation in vivo, have led to the fact that none of them have been approved for clinical use. In this study, we developed a novel approach of using a foldable capsular vitreous body (FCVB) injected with polyvinylalcohol (PVA) hydrogel as a vitreous substitute for long-term tamponade. The 3% PVA hydrogel that was cross-linked by gamma irradiation showed good rheological and physical properties and had no toxicity in vitro. After 180 days retention, the 3% PVA hydrogel inside FCVB remained transparent and showed good viscoelasticity without biodegradation and showed good biocompatibility and retina support. This new approach may develop into a valuable tool to improve the stability performance of PVA hydrogel as a vitreous substitute and to extend the application function of FCVB for long-term implantation in vitreous cavity. PMID:23670585

  17. A novel vitreous substitute of using a foldable capsular vitreous body injected with polyvinylalcohol hydrogel.

    PubMed

    Feng, Songfu; Chen, Han; Liu, Yaqin; Huang, Zhen; Sun, Xuyuan; Zhou, Lian; Lu, Xiaohe; Gao, Qianying

    2013-01-01

    Hydrogels may be the ideal vitreous substitutes due to their wonderful physical features and biocompatibility. However, their drawbacks, short residence time, and biodegradation in vivo, have led to the fact that none of them have been approved for clinical use. In this study, we developed a novel approach of using a foldable capsular vitreous body (FCVB) injected with polyvinylalcohol (PVA) hydrogel as a vitreous substitute for long-term tamponade. The 3% PVA hydrogel that was cross-linked by gamma irradiation showed good rheological and physical properties and had no toxicity in vitro. After 180 days retention, the 3% PVA hydrogel inside FCVB remained transparent and showed good viscoelasticity without biodegradation and showed good biocompatibility and retina support. This new approach may develop into a valuable tool to improve the stability performance of PVA hydrogel as a vitreous substitute and to extend the application function of FCVB for long-term implantation in vitreous cavity.

  18. Thiol–ene click hydrogels for therapeutic delivery

    PubMed Central

    Kharkar, Prathamesh M.; Rehmann, Matthew S.; Skeens, Kelsi M.; Maverakis, Emanual; Kloxin, April M.

    2016-01-01

    Hydrogels are of growing interest for the delivery of therapeutics to specific sites in the body. For use as a delivery vehicle, hydrophilic precursors are usually laden with bioactive moieties and then directly injected to the site of interest for in situ gel formation and controlled release dictated by precursor design. Hydrogels formed by thiol–ene click reactions are attractive for local controlled release of therapeutics owing to their rapid reaction rate and efficiency under mild aqueous conditions, enabling in situ formation of gels with tunable properties often responsive to environmental cues. Herein, we will review the wide range of applications for thiol–ene hydrogels, from the prolonged release of anti-inflammatory drugs in the spine to the release of protein-based therapeutics in response to cell-secreted enzymes, with a focus on their clinical relevance. We will also provide a brief overview of thiol–ene click chemistry and discuss the available alkene chemistries pertinent to macromolecule functionalization and hydrogel formation. These chemistries include functional groups susceptible to Michael type reactions relevant for injection and radically-mediated reactions for greater temporal control of formation at sites of interest using light. Additionally, mechanisms for the encapsulation and controlled release of therapeutic cargoes are reviewed, including i) tuning the mesh size of the hydrogel initially and temporally for cargo entrapment and release and ii) covalent tethering of the cargo with degradable linkers or affinity binding sequences to mediate release. Finally, myriad thiol–ene hydrogels and their specific applications also are discussed to give a sampling of the current and future utilization of this chemistry for delivery of therapeutics, such as small molecule drugs, peptides, and biologics. PMID:28361125

  19. Bioactive hydrogel-nanosilica hybrid materials: a potential injectable scaffold for bone tissue engineering.

    PubMed

    Lewandowska-Łańcucka, Joanna; Fiejdasz, Sylwia; Rodzik, Łucja; Kozieł, Marcin; Nowakowska, Maria

    2015-02-10

    Novel bioactive organic-inorganic hybrid materials that can serve as injectable hydrogel systems for bone tissue regeneration were obtained. The silica nanoparticles (SiNP) prepared in situ by the Stöber method were dispersed in collagen, collagen-chitosan or chitosan sols, which were then subsequently crosslinked. Laser scanning confocal microscopy studies, in which fluorescent SiNP were applied, and SEM images indicated that the nanosilica particles were distributed in the whole volume of the hydrogel matrix. In vitro studies on fibroblast cell viability indicated that the hybrid materials are biocompatible. The silica nanoparticles dispersed in the biopolymer matrix had a positive effect on cell viability. Studies on the mineralization process under simulated body fluid (SBF) conditions confirmed the bioactivity of prepared materials. SEM images revealed mineral phase formation in the majority of the hybrid materials developed. EDS analysis indicated that these mineral phases are mainly composed of calcium and phosphorus. The XRD studies confirmed that mineral phases formed during SBF incubation of hybrid materials based on collagen are bone-like apatite minerals. The silica nanoparticles added to the hydrogel at the stage of synthesis induced the occurrence of mineralization. This process occurs not only at the surface of the material but in its entire volume, which is important for the preparation of scaffolds for bone tissue engineering. The ability of these materials to undergo in situ gelation under physiological temperature and their bioactivity as well as biocompatibility make them interesting candidates for bioactive injectable systems.

  20. Analgesic Effect of Intra-Articular Injection of Temperature-Responsive Hydrogel Containing Bupivacaine on Osteoarthritic Pain in Rats

    PubMed Central

    Kim, Taemin; Seol, Dong Rim; Hahm, Suk-Chan; Ko, Cheolwoong; Kim, Eun-Hye; Chun, Keyoungjin; Kim, Junesun; Lim, Tae-Hong

    2015-01-01

    The present study examined the analgesic effects of slow-releasing bupivacaine from hydrogel on chronic arthritic pain in rats. Osteoarthritis (OA) was induced by monosodium iodoacetate (MIA) injection into the right knee joint. Hydrogel (HG: 20, 30, and 50 μL) and temperature-sensitive hydrogel containing bupivacaine (T-gel: 20, 30, and 50 μL) were injected intra-articularly 14 days after MIA injection. Behavioral tests were conducted. The rats showed a significant decrease in weight load and paw withdrawal threshold (PWT). Intra-articular 0.5% bupivacaine (10 and 20 μL) significantly reversed MIA-induced decreased PWT, with no effect on weight load. In normal rats, hydrogel did not produce significant changes in PWT but at 30 and 50 μL slightly decreased weight bearing; T-gel did not cause any changes in both the weight load and PWT. In OA rats, T-gel at 20 μL had a significant analgesic effect for 2 days, even though T-gel at 50 μL further reduced the weight load, demonstrating that intra-articular T-gel (20 μL) has long-lasting analgesic effects in OA rats. Thus, T-gel designed to deliver analgesics into the joint cavity could be an effective therapeutic tool in the clinical setting. PMID:26881207

  1. Elastin-like Protein-Hyaluronic acid (ELP-HA) Hydrogels with Decoupled Mechanical and Biochemical cues for Cartilage Regeneration

    PubMed Central

    Zhu, Danqing; Wang, Huiyuan; Trinh, Pavin; Heilshorn, Sarah C.; Yang, Fan

    2018-01-01

    Hyaluronic acid (HA) is a major component of cartilage extracellular matrix and is an attractive material for use as 3D injectable matrices for cartilage regeneration. While previous studies have shown the promise of HA-based hydrogels to support cell-based cartilage formation, varying HA concentration generally led to simultaneous changes in both biochemical cues and stiffness. How cells respond to the change of biochemical content of HA remains largely unknown. Here we report an adaptable elastin-like protein-hyaluronic acid (ELP-HA) hydrogel platform using dynamic covalent chemistry, which allows varyiation of HA concentration without affecting matrix stiffness. ELP-HA hydrogels were created through dynamic hydrazone bonds via the reaction between hydrazine-modified ELP (ELP-HYD) and aldehyde-modified HA (HA-ALD). By tuning the stoichiometric ratio of aldehyde groups to hydrazine groups while maintaining ELP-HYD concentration constant, hydrogels with variable HA concentration (1.5%, 3%, or 5%) (w/v) were fabricated with comparable stiffness. To evaluate the effects of HA concentration on cell-based cartilage regeneration, chondrocytes were encapsulated within ELP-HA hydrogels with varying HA concentration. Increasing HA concentration led to a dose-dependent increase in cartilage-marker gene expression and enhanced sGAG deposition while minimizing undesirable fibrocartilage phenotype. The use of adaptable protein hydrogels formed via dynamic covalent chemistry may be broadly applicable as 3D scaffolds with decoupled niche properties to guide other desirable cell fates and tissue repair. PMID:28268018

  2. Elastin-like protein-hyaluronic acid (ELP-HA) hydrogels with decoupled mechanical and biochemical cues for cartilage regeneration.

    PubMed

    Zhu, Danqing; Wang, Huiyuan; Trinh, Pavin; Heilshorn, Sarah C; Yang, Fan

    2017-05-01

    Hyaluronic acid (HA) is a major component of cartilage extracellular matrix and is an attractive material for use as 3D injectable matrices for cartilage regeneration. While previous studies have shown the promise of HA-based hydrogels to support cell-based cartilage formation, varying HA concentration generally led to simultaneous changes in both biochemical cues and stiffness. How cells respond to the change of biochemical content of HA remains largely unknown. Here we report an adaptable elastin-like protein-hyaluronic acid (ELP-HA) hydrogel platform using dynamic covalent chemistry, which allows variation of HA concentration without affecting matrix stiffness. ELP-HA hydrogels were created through dynamic hydrazone bonds via the reaction between hydrazine-modified ELP (ELP-HYD) and aldehyde-modified HA (HA-ALD). By tuning the stoichiometric ratio of aldehyde groups to hydrazine groups while maintaining ELP-HYD concentration constant, hydrogels with variable HA concentration (1.5%, 3%, or 5%) (w/v) were fabricated with comparable stiffness. To evaluate the effects of HA concentration on cell-based cartilage regeneration, chondrocytes were encapsulated within ELP-HA hydrogels with varying HA concentration. Increasing HA concentration led to a dose-dependent increase in cartilage-marker gene expression and enhanced sGAG deposition while minimizing undesirable fibrocartilage phenotype. The use of adaptable protein hydrogels formed via dynamic covalent chemistry may be broadly applicable as 3D scaffolds with decoupled niche properties to guide other desirable cell fates and tissue repair. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. The effect of matrix stiffness of injectable hydrogels on the preservation of cardiac function after a heart attack.

    PubMed

    Plotkin, Marian; Vaibavi, Srirangam Ramanujam; Rufaihah, Abdul Jalil; Nithya, Venkateswaran; Wang, Jing; Shachaf, Yonatan; Kofidis, Theo; Seliktar, Dror

    2014-02-01

    This study compares the effect of four injectable hydrogels with different mechanical properties on the post-myocardial infarction left ventricle (LV) remodeling process. The bioactive hydrogels were synthesized from Tetronic-fibrinogen (TF) and PEG-fibrinogen (PF) conjugates; each hydrogel was supplemented with two levels of additional cross-linker to increase the matrix stiffness as measured by the shear storage modulus (G'). Infarcts created by ligating the left anterior descending coronary artery in a rodent model were treated with the hydrogels, and all four treatment groups showed an increase in wall thickness, arterial density, and viable cardiac tissue in the peri-infarct areas of the LV. Echocardiography and hemodynamics data of the PF/TF treated groups showed significant improvement of heart function associated with the attenuated effects of the remodeling process. Multi-factorial regression analysis indicated that the group with the highest modulus exhibited the best rescue of heart function and highest neovascularization. The results of this study demonstrate that multiple properties of an injectable bioactive biomaterial, and notably the matrix stiffness, provide the multifaceted stimulation necessary to preserve cardiac function and prevent adverse remodeling following a heart attack. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Dual Cross-Linked Biofunctional and Self-Healing Networks to Generate User-Defined Modular Gradient Hydrogel Constructs.

    PubMed

    Wei, Zhao; Lewis, Daniel M; Xu, Yu; Gerecht, Sharon

    2017-08-01

    Gradient hydrogels have been developed to mimic the spatiotemporal differences of multiple gradient cues in tissues. Current approaches used to generate such hydrogels are restricted to a single gradient shape and distribution. Here, a hydrogel is designed that includes two chemical cross-linking networks, biofunctional, and self-healing networks, enabling the customizable formation of modular gradient hydrogel construct with various gradient distributions and flexible shapes. The biofunctional networks are formed via Michael addition between the acrylates of oxidized acrylated hyaluronic acid (OAHA) and the dithiol of matrix metalloproteinase (MMP)-sensitive cross-linker and RGD peptides. The self-healing networks are formed via dynamic Schiff base reaction between N-carboxyethyl chitosan (CEC) and OAHA, which drives the modular gradient units to self-heal into an integral modular gradient hydrogel. The CEC-OAHA-MMP hydrogel exhibits excellent flowability at 37 °C under shear stress, enabling its injection to generate gradient distributions and shapes. Furthermore, encapsulated sarcoma cells respond to the gradient cues of RGD peptides and MMP-sensitive cross-linkers in the hydrogel. With these superior properties, the dual cross-linked CEC-OAHA-MMP hydrogel holds significant potential for generating customizable gradient hydrogel constructs, to study and guide cellular responses to their microenvironment such as in tumor mimicking, tissue engineering, and stem cell differentiation and morphogenesis. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Hydrogel Nanoparticles from Supercritical Technology for Pharmaceutical and Seismological Applications

    NASA Astrophysics Data System (ADS)

    Hemingway, Melinda Graham

    This research focuses on hydrogel nanoparticle formation using miniemulsion polymerization and supercritical carbon dioxide. Hydrogel nanopowder is produced by a novel combination of inverse miniemulsion polymerization and supercritical drying (MPSD) methods. Three drying methods of miniemulsions are examined: (1) a conventional freeze drying technique, and (2) two supercritical drying techniques: (2a) supercritical fluid injection into miniemulsions, and (2b) the polymerized miniemulsion injection into supercritical fluid. Method 2b can produce non-agglomerated hydrogel nanoparticles that are free of solvent or surfactant (Chapter 2). The optimized MPSD method was applied for producing an extended release drug formulation with mucoadhesive properties. Drug nanoparticles of mesalamine, were produced using supercritical antisolvent technology and encapsulation within two hydrogels, polyacrylamide and poly(acrylic acid-co-acrylamide). The encapsulation efficiency and release profile of drug nanoparticles is compared with commercial ground mesalamine particles. The loading efficiency is influenced by morphological compatibility (Chapter 3). The MPSD method was extended for encapsulation of zinc oxide nanoparticles for UV protection in sunscreens (Chapter 4). ZnO was incorporated into the inverse miniemulsion during polymerization. The effect of process parameters are examined on absorbency of ultraviolet light and transparency of visible light. For use of hydrogel nanoparticles in a seismological application, delayed hydration is needed. Supercritical methods extend MPSD so that a hydrophobic coating can be applied on the particle surface (Chapter 5). Multiple analysis methods and coating materials were investigated to elucidate compatibility of coating material to polyacrylamide hydrogel. Coating materials of poly(lactide), poly(sulphone), poly(vinyl acetate), poly(hydroxybutyrate), Geluice 50-13, Span 80, octadecyltrichlorosilane, and perfluorobutane sulfate (PFBS) were tested, out of which Gelucire, perfluorobutane sulfate, and poly(vinyl acetate) materials were able to provide some coating and perfluorobutane sulfate, poly(lactide), poly(vinyl acetate) delayed hydration of hydrogel particles, but not to a sufficient extent. The interactions of the different materials with the hydrogel are examined based on phenomena observed during the production processes and characterization of the particles generated. This work provides understanding into the interactions of polyacrylamide hydrogel particles both internally by encapsulation and externally by coating.

  6. Sulfated hyaluronic acid hydrogels with retarded degradation and enhanced growth factor retention promote hMSC chondrogenesis and articular cartilage integrity with reduced hypertrophy.

    PubMed

    Feng, Qian; Lin, Sien; Zhang, Kunyu; Dong, Chaoqun; Wu, Tianyi; Huang, Heqin; Yan, Xiaohui; Zhang, Li; Li, Gang; Bian, Liming

    2017-04-15

    Recently, hyaluronic acid (HA) hydrogels have been extensively researched for delivering cells and drugs to repair damaged tissues, particularly articular cartilage. However, the in vivo degradation of HA is fast, thus limiting the clinical translation of HA hydrogels. Furthermore, HA cannot bind proteins with high affinity because of the lack of negatively charged sulfate groups. In this study, we conjugated tunable amount of sulfate groups to HA. The sulfated HA exhibits significantly slower degradation by hyaluronidase compared to the wild type HA. We hypothesize that the sulfation reduces the available HA octasaccharide substrate needed for the effective catalytic action of hyaluronidase. Moreover, the sulfated HA hydrogels significantly improve the protein sequestration, thereby effectively extending the availability of the proteinaceous drugs in the hydrogels. In the following in vitro study, we demonstrate that the HA hydrogel sulfation exerts no negative effect on the viability of encapsulated human mesenchymal stem cells (hMSCs). Furthermore, the sulfated HA hydrogels promote the chondrogenesis and suppresses the hypertrophy of encapsulated hMSCs both in vitro and in vivo. Moreover, intra-articular injections of the sulfated HA hydrogels avert the cartilage abrasion and hypertrophy in the animal osteoarthritic joints. Collectively, our findings demonstrate that the sulfated HA is a promising biomaterial for the delivery of therapeutic agents to aid the regeneration of injured or diseased tissues and organs. In this paper, we conjugated sulfate groups to hyaluronic acid (HA) and demonstrated the slow degradation and growth factor delivery of sulfated HA. Furthermore, the in vitro and in vivo culture of hMSCs laden HA hydrogels proved that the sulfation of HA hydrogels not only promotes the chondrogenesis of hMSCs but also suppresses hypertrophic differentiation of the chondrogenically induced hMSCs. The animal OA model study showed that the injected sulfated HA hydrogels significantly reduced the cartilage abrasion and hypertrophy in the animal OA joints. We believe that this study will provide important insights into the design and optimization of the HA-based hydrogels as the scaffold materials for cartilage regeneration and OA treatment in clinical setting. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  7. Biological performance of cell-encapsulated methacrylated gellan gum-based hydrogels for nucleus pulposus regeneration.

    PubMed

    Tsaryk, Roman; Silva-Correia, Joana; Oliveira, Joaquim Miguel; Unger, Ronald E; Landes, Constantin; Brochhausen, Christoph; Ghanaati, Shahram; Reis, Rui L; Kirkpatrick, C James

    2017-03-01

    Limitations of current treatments for intervertebral disc (IVD) degeneration have promoted interest in the development of tissue-engineering approaches. Injectable hydrogels loaded with cells can be used as a substitute material for the inner IVD part, the nucleus pulposus (NP), and provide an opportunity for minimally invasive treatment of IVD degeneration. The NP is populated by chondrocyte-like cells; therefore, chondrocytes and mesenchymal stem cells (MSCs), stimulated to differentiate along the chondrogenic lineage, could be used to promote NP regeneration. In this study, the in vitro and in vivo response of human bone marrow-derived MSCs and nasal chondrocytes (NCs) to modified gellan gum-based hydrogels was investigated. Both ionic- (iGG-MA) and photo-crosslinked (phGG-MA) methacrylated gellan gum hydrogels show no cytotoxicity in extraction assays with MSCs and NCs. Furthermore, the materials do not induce pro-inflammatory responses in endothelial cells. Moreover, MSCs and NCs can be encapsulated into the hydrogels and remain viable for at least 2 weeks, although apoptosis is observed in phGG-MA. Importantly, encapsulated MSCs and NCs show signs of in vivo chondrogenesis in a subcutaneous implantation of iGG-MA. Altogether, the data endorse the potential use of modified gellan gum-based hydrogel as a suitable material in NP tissue engineering. Copyright © 2014 John Wiley & Sons, Ltd. Copyright © 2014 John Wiley & Sons, Ltd.

  8. Cell-specific and pH-sensitive nanostructure hydrogel based on chitosan as a photosensitizer carrier for selective photodynamic therapy.

    PubMed

    Belali, Simin; Karimi, Ali Reza; Hadizadeh, Mahnaz

    2018-04-15

    The major problems of porphyrins as promising materials for photodynamic therapy (PDT) are their low solubility, subsequently aggregation in biological environments, and a lack of tumor selectivity. With this in mind, a chitosan-based hydrogel conjugated with tetrakis(4-aminophenyl)porphyrin (NH 2 -TPP) and 2,4,6-tris(p-formylphenoxy)-1,3,5-triazine (TRIPOD) via Schiff base linkage, functionalized with folate was designed and synthesized as a pH-sensitive, self-healable and injectable targeted PS delivery system. This new hydrogel was characterized by FT-IR, 1 H NMR, SEM, UV-vis, fluorescence spectroscopy and zeta potential. Formation of imine bonds with the aldehyde group of TRIPOD and amine group of NH 2 -TPP and chitosan, as a dynamic connection, was approved by rheological analysis. Spectroscopic characterizations revealed that aggregation of porphyrin in aqueous media was eliminated due to diminished π stacking interaction of porphyrin in 3D cross-linked hydrogel structure. Hydrogel 3D microporous structure efficiently transfers the excitation energy to the porphyrin unit, yielding improvement singlet oxygen releases. Cytotoxicity and phototoxicity analysis of the CS/NH 2 -TPP/FA hydrogels indicating an excellent capability to kill cancer cells selectively and prevent damage to normal cells. This work presents a new and efficient model for the preparation of highly efficient and targeting photosensitizer delivery system. Copyright © 2018. Published by Elsevier B.V.

  9. Phase separation of in situ forming poly (lactide-co-glycolide acid) implants investigated using a hydrogel-based subcutaneous tissue surrogate and UV-vis imaging.

    PubMed

    Sun, Yu; Jensen, Henrik; Petersen, Nickolaj J; Larsen, Susan W; Østergaard, Jesper

    2017-10-25

    Phase separation of in situ forming poly (lactide-co-glycolide acid) (PLGA) implants with agarose hydrogels as the provider of nonsolvent (water) mimicking subcutaneous tissue was investigated using a novel UV-vis imaging-based analytical platform. In situ forming implants of PLGA-1-methyl-2-pyrrolidinone and PLGA-triacetin representing fast and slow phase separating systems, respectively, were evaluated using this platform. Upon contact with the agarose hydrogel, the phase separation of the systems was followed by the study of changes in light transmission and absorbance as a function of time and position. For the PLGA-1-methyl-2-pyrrolidinone system, the rate of spatial phase separation was determined and found to decrease with increasing the PLGA concentration from 20% to 40% (w/w). Hydrogels with different agarose concentrations (1% and 10% (w/v)) were prepared for providing the nonsolvent, water, to the in situ forming PLGA implants simulating the injection site environment. The resulting implant morphology depended on the stiffness of hydrogel matrix, indicating that the matrix in which implants are formed is of importance. Overall, the work showed that the UV-vis imaging-based platform with an agarose hydrogel mimicking the subcutaneous tissue holds potential in providing bio-relevant and mechanistic information on the phase separation processes of in situ forming implants. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. A new strategy to sustained release of ocular drugs by one-step drug-loaded microcapsule manufacturing in hydrogel punctal plugs.

    PubMed

    Xie, Jiajun; Wang, Changjun; Ning, Qingyao; Gao, Qi; Gao, Changyou; Gou, Zhongru; Ye, Juan

    2017-11-01

    To design an injectable hyaluronate (HA)-based hydrogel system that contains drug-loaded microcapsules as resorbable plugs to deliver ocular drugs. In-situ drug-loaded, core-shell-structured chitosan (CS)@HA microcapsules were fabricated via HA hydrosol collecting in electrospun bead-rich CS fibers under continuous stirring. An injectable and cytocompatible hydrogel system with different degrees of chemical crosslinking maintained viscoelastic and sustained drug release for a long-term period of time at body temperature in vitro. With the addition of adipic dihydrazide (ADH) or 1-Ethyl-3-(3-dimethyllaminopropyl) carbodiimide hydrochloride (EDCI), HA hydrosols transited from liquid to solid state at the gel point, with the G'/G″ ratio varying between 1.43 and 5.32 as a function of crosslinker concentration in the hydrogel phase. Ofloxacin (OFL) release from the mechanically mixed hydrosol system (CS-HA-A0-E0) and the micro-encapsulated hydrosol formulation (CS@HA-A0-E0) were respectively over 80% and 51% of the total drug load leaching out within 24 h. As for the drug-mixed hydrogel systems with low (CS-HA-A0.06-E0.15) and high (CS-HA-A0.06-E0.30) crosslinking density, the OFL release rate reached 38.5 and 46.6% respectively, while the micro-encapsulated hydrogel systems with low (CS@HA-A0.06-E0.15) and high (CS@HA-A0.6-E0.30) showed only (11.9 ± 2.7)% and (17.4 ± 3.5)% drug release respectively. A one-step in-situ drug-capsulizing method is developed to fabricate a resorbable hydrogel punctal plug with extended drug release. The chemistry of the crosslinking reaction involves the formation of highly biocompatible HA derivatives. Thus, the hydrogel can be used directly in the tear drainage canalicular system.

  11. Silver nanoparticles-containing dual-function hydrogels based on a guar gum-sodium borohydride system

    PubMed Central

    Dai, Lei; Nadeau, Ben; An, Xingye; Cheng, Dong; Long, Zhu; Ni, Yonghao

    2016-01-01

    Dual-function hydrogels, possessing both stimuli-responsive and self-healing properties, have recently attracted attention of both chemists and materials scientists. Here we report a new paradigm using natural polymer (guar gum, GG) and sodium borohydride (NaBH4), for the preparation of silver nanoparticles (AgNPs)-containing smart hydrogels in a simple, fast and economical way. NaBH4 performs as a reducing agent for AgNPs synthesis using silver nitrate (AgNO3) as the precursor. Meanwhile, sodium metaborate (NaBO2) (from NaBH4) behaves as a cross-linking agent between GG molecular chains. The AgNPs/GG hydrogels with excellent viscoelastic properties can be obtained within 3 min at room temperature without the addition of other cross-linkers. The resultant AgNPs/GG hydrogels are flowable and injectable, and they possess excellent pH/thermal responsive properties. Additionally, they exhibit rapid self-healing capacity. This work introduces a facile and scale-up way to prepare a class of hydrogels that can have great potential to biomedical and other industrial applications. PMID:27819289

  12. An injectable silk sericin hydrogel promotes cardiac functional recovery after ischemic myocardial infarction.

    PubMed

    Song, Yu; Zhang, Cheng; Zhang, Jinxiang; Sun, Ning; Huang, Kun; Li, Huili; Wang, Zheng; Huang, Kai; Wang, Lin

    2016-09-01

    Acute myocardial infarction (MI) leads to morbidity and mortality due to cardiac dysfunction. Here we identify sericin, a silk-derived protein, as an injectable therapeutic biomaterial for the minimally invasive MI repair. For the first time, sericin prepared in the form of an injectable hydrogel has been utilized for cardiac tissue engineering and its therapeutical outcomes evaluated in a mouse MI model. The injection of this sericin hydrogel into MI area reduces scar formation and infarct size, increases wall thickness and neovascularization, and inhibits the MI-induced inflammatory responses and apoptosis, thereby leading to a significant functional improvement. The potential therapeutical mechanisms have been further analyzed in vitro. Our results indicate that sericin downregulates pro-inflammatory cytokines (TNF-α and IL-18) and chemokine (CCL2) and reduces TNF-α expression by suppressing the TLR4-MAPK/NF-κB pathways. Moreover, sericin exhibits angiogenic activity by promoting migration and tubular formation of human umbilical vessel endothelial cells (HUVECs). Also, sericin stimulates VEGFa expression via activating ERK phosphorylation. Further, sericin protects endothelial cells and cardiomyocytes from apoptosis by inhibiting the activation of caspase 3. Together, these diverse biochemical activities of sericin protein lead to a significant recovery of cardiac function. This work represents the first study reporting sericin as an effective therapeutic biomaterial for ischemic myocardial repair in vivo. Intramyocardial biomaterial injection is thought to be a potential therapeutic approach to improve cardiac performance after ischemic myocardial infarction. In this study, we report the successful fabrication and in vivo application of an injectable sericin hydrogel for ischemic heart disease. We for the first time show that the injection of in situ forming crosslinked sericin hydrogel promotes heart functional recovery accompanied with reduced inflammatory responses, attenuated apoptosis and increased microvessel density in the infarcted hearts. Further, we reveal that the improvement in those aspects is ascribed to sericin protein's functional bioactivities that are comprehensively uncovered in this study. Thus, we identify sericin, a natural protein, as a biomaterial suitable for myocardial repair and demonstrate that the in vivo application of this injectable sericin hydrogel can be an effective strategy for treating MI. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  13. Sustained release of intravitreal flurbiprofen from a novel drug-in-liposome-in-hydrogel formulation.

    PubMed

    Pachis, K; Blazaki, S; Tzatzarakis, M; Klepetsanis, P; Naoumidi, E; Tsilimbaris, M; Antimisiaris, S G

    2017-11-15

    A novel Flurbiprofen (FLB)-in-liposome-in-hydrogel formulation was developed, as a method to sustain the release and increase the ocular bioavailability of FLB following intravitreal injection. For this, FLB loading into liposomes was optimized and liposomes were entrapped in thermosensitive hydrogels consisted of Pluronic F-127 (P). FLB solution, liposomes, and FLB dissolved in hydrogel were also used as control formulations. Actively loaded liposomes were found to be optimal for high FLB loading and small size, while in vitro studies revealed that P concentration of 18% (w/v) was best to retain the integrity of the hydrogel-dispersed liposome, compared to a 20% concentration. The in vitro release of FLB was significantly sustained when FLB-liposomes were dispersed in the hydrogel compared to hydrogel dissolved FLB, as well as the other control formulations. In vivo studies were carried out in pigmented rabbits which were injected through a 27G needle with 1mg/mL FLB in the different formulation-types. Ophthalmic examinations after intravitreal injection of all FLB formulations, revealed no evidence of inflammation, hemorrhage, uveitis or endophthalmitis. Pharmacokinetic analysis results confirm that the hybrid drug delivery system increases the bioavailability (by 1.9 times compared to solution), and extends the presence of the drug in the vitreous cavity, while liposome and hydrogel formulations demonstrate intermediate performance. Furthermore the hybrid system increases MRT of FLB in aqueous humor and retina/choroid tissues, compared to all the control formulations. Currently the potential therapeutic advances of FLB sustained release formulations for IVT administration are being evaluated. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Carbon nanotube-incorporated collagen hydrogels improve cell alignment and the performance of cardiac constructs

    PubMed Central

    Sun, Hongyu; Zhou, Jing; Huang, Zhu; Qu, Linlin; Lin, Ning; Liang, Chengxiao; Dai, Ruiwu; Tang, Lijun; Tian, Fuzhou

    2017-01-01

    Carbon nanotubes (CNTs) provide an essential 2-D microenvironment for cardiomyocyte growth and function. However, it remains to be elucidated whether CNT nanostructures can promote cell–cell integrity and facilitate the formation of functional tissues in 3-D hydrogels. Here, single-walled CNTs were incorporated into collagen hydrogels to fabricate (CNT/Col) hydrogels, which improved mechanical and electrical properties. The incorporation of CNTs (up to 1 wt%) exhibited no toxicity to cardiomyocytes and enhanced cell adhesion and elongation. Through the use of immunohistochemical staining, transmission electron microscopy, and intracellular calcium-transient measurement, the incorporation of CNTs was found to improve cell alignment and assembly remarkably, which led to the formation of engineered cardiac tissues with stronger contraction potential. Importantly, cardiac tissues based on CNT/Col hydrogels were noted to have better functionality. Collectively, the incorporation of CNTs into the Col hydrogels improved cell alignment and the performance of cardiac constructs. Our study suggests that CNT/Col hydrogels offer a promising tissue scaffold for cardiac constructs, and might serve as injectable biomaterials to deliver cell or drug molecules for cardiac regeneration following myocardial infarction in the near future. PMID:28450785

  15. In vitro and in vivo acute response towards injectable thermosensitive chitosan/TEMPO-oxidized cellulose nanofiber hydrogel.

    PubMed

    Nguyen, Trang Ho Minh; Abueva, Celine; Ho, Hai Van; Lee, Sun-Young; Lee, Byong-Taek

    2018-01-15

    TEMPO-oxidized cellulose nanofiber (TOCNF) is a natural material with many promising properties, including biocompatibility and degradability. In this study, we integrated TOCNF at different concentrations (0.2, 0.4, 0.6, 0.8% w/v) with chitosan (CS) and created a thermosensitive injectable hydrogel intended for biomedical applications. These hydrogels can undergo sol-gel transition at body temperature through interactions between chitosan and β-glycerophosphate. The addition of TOCNF resulted in faster gelation time and increased porosity. These hydrogels with TOCNF showed improved biocompatibility both in vitro and in vivo compared to CS hydrogel. Both MC3T3-E1 pre-osteoblast cells and L929 fibroblast cells showed biocompatibility towards CS/TOCNF 0.4. After 7days of implantation, initial inflammatory response to CS/TOCNF 0.4 was found. Such response was significantly subsided within 14days. Cell infiltration within the hydrogel was also prominent, showing anti-inflammatory or wound healing (M2) macrophage at 14days after implantation. These results showed that the addition of TOCNF could significantly improve the biocompatibility of CS hydrogel as a biomaterial for biomedical application. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Rheological and mechanical properties of acellular and cell-laden methacrylated gellan gum hydrogels.

    PubMed

    Silva-Correia, Joana; Gloria, Antonio; Oliveira, Mariana B; Mano, João F; Oliveira, Joaquim M; Ambrosio, Luigi; Reis, Rui L

    2013-12-01

    Tissue engineered hydrogels hold great potential as nucleus pulposus substitutes (NP), as they promote intervertebral disc (IVD) regeneration and re-establish its original function. But, the key to their success in future clinical applications greatly depends on its ability to replicate the native 3D micro-environment and circumvent their limitation in terms of mechanical performance. In the present study, we investigated the rheological/mechanical properties of both ionic- (iGG-MA) and photo-crosslinked methacrylated gellan gum (phGG-MA) hydrogels. Steady shear analysis, injectability and confined compression stress-relaxation tests were carried out. The injectability of the reactive solutions employed for the preparation of iGG-MA and phGG-MA hydrogels was first studied, then the zero-strain compressive modulus and permeability of the acellular hydrogels were evaluated. In addition, human intervertebral disc (hIVD) cells encapsulated in both iGG-MA and phGG-MA hydrogels were cultured in vitro, and its mechanical properties also investigated under dynamic mechanical analysis at 37°C and pH 7.4. After 21 days of culturing, hIVD cells were alive (Calcein AM) and the E' of ionic-crosslinked hydrogels and photo-crosslinked was higher than that observed for acellular hydrogels. Our study suggests that methacrylated gellan gum hydrogels present promising mechanical and biological performance as hIVD cells were producing extracellular matrix. Copyright © 2013 Wiley Periodicals, Inc., a Wiley Company.

  17. Functionalized graphene oxide-based thermosensitive hydrogel for magnetic hyperthermia therapy on tumors

    NASA Astrophysics Data System (ADS)

    Zhu, Xiali; Zhang, Huijuan; Huang, Heqing; Zhang, Yingjie; Hou, Lin; Zhang, Zhenzhong

    2015-09-01

    A novel locally injectable, biodegradable, and thermo-sensitive hydrogel made from chitosan and β-glycerophosphate salt was prepared. It incorporated polyethylenimine (PEI)-modified super-paramagnetic graphene oxide (GO/IONP/PEI) as a form of minimally invasive treatment of cancer lesions by magnetically induced local hyperthermia. Doxorubicin (DOX) was mixed into the hydrogel which was pre-loaded on GO/IONP/PEI to create a drug delivery system DOX-GO/IONP/PEI-gel. In addition to the evaluation of in vitro and in vivo antitumor activities, the physicochemical properties, magnetic properties and DOX release profile of the DOX-GO/IONP/PEI-gel were determined. The aqueous solution of the hydrogel showed a sol-gel transition behavior depending on temperature changes. Magnetization loops indicated the super-paramagnetic properties of GO/IONP/PEI. Compared with free DOX, DOX-GO/IONP/PEI could efficiently pass through cell membranes, leading to more apoptosis and demonstrating higher antitumor efficacy on MCF-7 cells in vitro. Furthermore, DOX-GO/IONP/PEI-gel intratumorally injected (i.t.) showed high antitumor efficacy on tumor-bearing mice in vivo, with no obvious toxicity. The antitumor efficacy was higher when combined with an alternating magnetic field (AMF), showing that DOX-GO/IONP/PEI-gel under AMF has great potential for cancer magnetic hyperthermia therapy.

  18. Design of a shear-thinning recoverable peptide hydrogel from native sequences and application for influenza H1N1 vaccine adjuvant

    USDA-ARS?s Scientific Manuscript database

    Peptide hydrogels are considered injectable materials for drug delivery and tissue engineering applications. Most published hydrogel-forming sequences contain either alternating-charged and noncharged residues or amphiphilic blocks. Here, we report a self-assembling peptide, h9e (FLIVIGSIIGPGGDGPGGD...

  19. Hydrogels for central nervous system therapeutic strategies.

    PubMed

    Russo, Teresa; Tunesi, Marta; Giordano, Carmen; Gloria, Antonio; Ambrosio, Luigi

    2015-12-01

    The central nervous system shows a limited regenerative capacity, and injuries or diseases, such as those in the spinal, brain and retina, are a great problem since current therapies seem to be unable to achieve good results in terms of significant functional recovery. Different promising therapies have been suggested, the aim being to restore at least some of the lost functions. The current review deals with the use of hydrogels in developing advanced devices for central nervous system therapeutic strategies. Several approaches, involving cell-based therapy, delivery of bioactive molecules and nanoparticle-based drug delivery, will be first reviewed. Finally, some examples of injectable hydrogels for the delivery of bioactive molecules in central nervous system will be reported, and the key features as well as the basic principles in designing multifunctional devices will be described. © IMechE 2015.

  20. Injectable biodegradable hydrogels for embryonic stem cell transplantation: improved cardiac remodelling and function of myocardial infarction

    PubMed Central

    Wang, Haibin; Liu, Zhiqiang; Li, Dexue; Guo, Xuan; Kasper, F Kurtis; Duan, Cuimi; Zhou, Jin; Mikos, Antonios G; Wang, Changyong

    2012-01-01

    Abstract In this study, an injectable, biodegradable hydrogel composite of oligo[poly(ethylene glycol) fumarate] (OPF) was investigated as a carrier of mouse embryonic stem cells (mESCs) for the treatment of myocardial infarction (MI). The OPF hydrogels were used to encapsulate mESCs. The cell differentiation in vitro over 14 days was determined via immunohistochemical examination. Then, mESCs encapsulated in OPF hydrogels were injected into the LV wall of a rat MI model. Detailed histological analysis and echocardiography were used to determine the structural and functional consequences after 4 weeks of transplantation. With ascorbic acid induction, mESCs could differentiate into cardiomyocytes and other cell types in all three lineages in the OPF hydrogel. After transplantation, both the 24-hr cell retention and 4-week graft size were significantly greater in the OPF + ESC group than that of the PBS + ESC group (P < 0.01). Four weeks after transplantation, OPF hydrogel alone significantly reduced the infarct size and collagen deposition and improved the cardiac function. The heart function and revascularization improved significantly, while the infarct size and fibrotic area decreased significantly in the OPF + ESC group compared with that of the PBS + ESC, OPF and PBS groups (P < 0.01). All treatments had significantly reduced MMP2 and MMP9 protein levels compared to the PBS control group, and the OPF + ESC group decreased most by Western blotting. Transplanted mESCs expressed cardiovascular markers. This study suggests the potential of a method for heart regeneration involving OPF hydrogels for stem cell encapsulation and transplantation. PMID:21838774

  1. Visible Light Crosslinking of Methacrylated Hyaluronan Hydrogels for Injectable Tissue Repair

    PubMed Central

    Fenn, Spencer L.; Oldinski, Rachael A.

    2015-01-01

    Tissue engineering hydrogels are primarily cured in situ using ultraviolet (UV) radiation which limits the use of hydrogels as drug or cell carriers. Visible green light activated crosslinking systems are presented as a safe alternative to UV photocrosslinked hydrogels, without compromising material properties such as viscosity and stiffness. The objective of this study was to fabricate and characterize photocrosslinked hydrogels with well-regulated gelation kinetics and mechanical properties for the repair or replacement of soft tissue. An anhydrous methacrylation of hyaluronan (HA) was performed to control the degree of modification (DOM) of HA, verified by 1H-NMR spectroscopy. UV activated crosslinking was compared to visible green light activated crosslinking. While the different photocrosslinking techniques resulted in varied crosslinking times, comparable mechanical properties of UV and green light activated crosslinked hydrogels were achieved using each photocrosslinking method by adjusting time of light exposure. Methacrylated HA (HA-MA) hydrogels of varying molecular weight, DOM and concentration exhibited compressive moduli ranging from 1 kPa to 116 kPa, for UV crosslinking, and 3 kPa to 146 kPa, for green light crosslinking. HA-MA molecular weight and concentration were found to significantly influence moduli values. HA-MA hydrogels did not exhibit any significant cytotoxic affects towards human mesenchymal stem cells. Green light activated crosslinking systems are presented as a viable method to form natural-based hydrogels in situ. PMID:26097172

  2. Supramolecular Hydrogels Based on Minimalist Amphiphilic Squaramide-Squaramates for Controlled Release of Zwitterionic Biomolecules.

    PubMed

    López, Carlos; Ximenis, Marta; Orvay, Francisca; Rotger, Carmen; Costa, Antonio

    2017-06-01

    Supramolecular hydrogels with tunable properties have innovative applications in biomedicine, catalysis, and materials chemistry. Minimalist low-molecular-weight hydrogelators based on squaramide and squaramic acid motifs have been designed. This approach benefits from the high acidity of squaramic acids and the aromaticity of squaramides. Moreover, substituents on the aryl ring tune the π density of the arylsquaramide motif. Thus, materials featuring distinct thermal and mechanical properties have been successfully prepared. The hydrogel (G'≈400 Pa, G''≈57 Pa; at 1.0 % w/v; 1 Hz) obtained from 4-nitrophenylsquaramide motif 1 is thermoreversible (T=57 °C at 0.2 % w/v), thixotropic, self-healable, and undergoes irreversible shrinking in response to saline stress. Furthermore, the hydrogel is injectable and can be loaded with substantial amounts (5:1 excess molar ratio) of zwitterionic biomolecules, such as l-carnitine, γ-aminobutyric acid (GABA), or d,l-Ala-d,l-Ala, without any loss of structural integrity. Then, the release of these molecules can be modulated by saline solutions. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Myocardial matrix-polyethylene glycol hybrid hydrogels for tissue engineering

    NASA Astrophysics Data System (ADS)

    Grover, Gregory N.; Rao, Nikhil; Christman, Karen L.

    2014-01-01

    Similar to other protein-based hydrogels, extracellular matrix (ECM) based hydrogels, derived from decellularized tissues, have a narrow range of mechanical properties and are rapidly degraded. These hydrogels contain natural cellular adhesion sites, form nanofibrous networks similar to native ECM, and are biodegradable. In this study, we expand the properties of these types of materials by incorporating poly(ethylene glycol) (PEG) into the ECM network. We use decellularized myocardial matrix as an example of a tissue specific ECM derived hydrogel. Myocardial matrix-PEG hybrids were synthesized by two different methods, cross-linking the proteins with an amine-reactive PEG-star and photo-induced radical polymerization of two different multi-armed PEG-acrylates. We show that both methods allow for conjugation of PEG to the myocardial matrix by gel electrophoresis and infrared spectroscopy. Scanning electron microscopy demonstrated that the hybrid materials still contain a nanofibrous network similar to unmodified myocardial matrix and that the fiber diameter is changed by the method of PEG incorporation and PEG molecular weight. PEG conjugation also decreased the rate of enzymatic degradation in vitro, and increased material stiffness. Hybrids synthesized with amine-reactive PEG had gelation rates of 30 min, similar to the unmodified myocardial matrix, and incorporation of PEG did not prevent cell adhesion and migration through the hydrogels, thus offering the possibility to have an injectable ECM hydrogel that degrades more slowly in vivo. The photo-polymerized radical systems gelled in 4 min upon irradiation, allowing 3D encapsulation and culture of cells, unlike the soft unmodified myocardial matrix. This work demonstrates that PEG incorporation into ECM-based hydrogels can expand material properties, thereby opening up new possibilities for in vitro and in vivo applications.

  4. Degradable Bone Graft Substitute for Effective Delivery of Multiple Growth Factors in the Treatment of Nonunion Fractures

    DTIC Science & Technology

    2011-10-01

    During this reporting period, a more general set of hydrogel synthesis steps were defined which enables the incorporation of chitosan from multiple...sources and suppliers and still produce a consistent material. Functional behavior of the hydrogel was confirmed with a new source of chitosan ...inducing tissue ingrowth into a subcutaneously injected scaffold loaded with the composite xylan/ chitosan hydrogel. Delivery of new hydrogel treatment for

  5. The self-crosslinking smart hyaluronic acid hydrogels as injectable three-dimensional scaffolds for cells culture.

    PubMed

    Bian, Shaoquan; He, Mengmeng; Sui, Junhui; Cai, Hanxu; Sun, Yong; Liang, Jie; Fan, Yujiang; Zhang, Xingdong

    2016-04-01

    Although the disulfide bond crosslinked hyaluronic acid hydrogels have been reported by many research groups, the major researches were focused on effectively forming hydrogels. However, few researchers paid attention to the potential significance of controlling the hydrogel formation and degradation, improving biocompatibility, reducing the toxicity of exogenous and providing convenience to the clinical operations later on. In this research, the novel controllable self-crosslinking smart hydrogels with in-situ gelation property was prepared by a single component, the thiolated hyaluronic acid derivative (HA-SH), and applied as a three-dimensional scaffold to mimic native extracellular matrix (ECM) for the culture of fibroblasts cells (L929) and chondrocytes. A series of HA-SH hydrogels were prepared depending on different degrees of thiol substitution (ranging from 10 to 60%) and molecule weights of HA (0.1, 0.3 and 1.0 MDa). The gelation time, swelling property and smart degradation behavior of HA-SH hydrogel were evaluated. The results showed that the gelation and degradation time of hydrogels could be controlled by adjusting the component of HA-SH polymers. The storage modulus of HA-SH hydrogels obtained by dynamic modulus analysis (DMA) could be up to 44.6 kPa. In addition, HA-SH hydrogels were investigated as a three-dimensional scaffold for the culture of fibroblasts cells (L929) and chondrocytes cells in vitro and as an injectable hydrogel for delivering chondrocytes cells in vivo. These results illustrated that HA-SH hydrogels with controllable gelation process, intelligent degradation behavior, excellent biocompatibility and convenient operational characteristics supplied potential clinical application capacity for tissue engineering and regenerative medicine. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Regeneration of hyaline cartilage promoted by xenogeneic mesenchymal stromal cells embedded within elastin-like recombinamer-based bioactive hydrogels.

    PubMed

    Pescador, David; Ibáñez-Fonseca, Arturo; Sánchez-Guijo, Fermín; Briñón, Jesús G; Arias, Francisco Javier; Muntión, Sandra; Hernández, Cristina; Girotti, Alessandra; Alonso, Matilde; Del Cañizo, María Consuelo; Rodríguez-Cabello, José Carlos; Blanco, Juan Francisco

    2017-08-01

    Over the last decades, novel therapeutic tools for osteochondral regeneration have arisen from the combination of mesenchymal stromal cells (MSCs) and highly specialized smart biomaterials, such as hydrogel-forming elastin-like recombinamers (ELRs), which could serve as cell-carriers. Herein, we evaluate the delivery of xenogeneic human MSCs (hMSCs) within an injectable ELR-based hydrogel carrier for osteochondral regeneration in rabbits. First, a critical-size osteochondral defect was created in the femora of the animals and subsequently filled with the ELR-based hydrogel alone or with embedded hMSCs. Regeneration outcomes were evaluated after three months by gross assessment, magnetic resonance imaging and computed tomography, showing complete filling of the defect and the de novo formation of hyaline-like cartilage and subchondral bone in the hMSC-treated knees. Furthermore, histological sectioning and staining of every sample confirmed regeneration of the full cartilage thickness and early subchondral bone repair, which was more similar to the native cartilage in the case of the cell-loaded ELR-based hydrogel. Overall histological differences between the two groups were assessed semi-quantitatively using the Wakitani scale and found to be statistically significant (p < 0.05). Immunofluorescence against a human mitochondrial antibody three months post-implantation showed that the hMSCs were integrated into the de novo formed tissue, thus suggesting their ability to overcome the interspecies barrier. Hence, we conclude that the use of xenogeneic MSCs embedded in an ELR-based hydrogel leads to the successful regeneration of hyaline cartilage in osteochondral lesions.

  7. In Vivo Efficacy of an Injectable Microsphere-Hydrogel Ocular Drug Delivery System.

    PubMed

    Osswald, Christian R; Guthrie, Micah J; Avila, Abigail; Valio, Joseph A; Mieler, William F; Kang-Mieler, Jennifer J

    2017-09-01

    Demonstrate in vivo that controlled and extended release of a low dose of anti-vascular endothelial growth factor (anti-VEGF) from a microsphere-hydrogel drug delivery system (DDS) has a therapeutic effect in a laser-induced rat model of choroidal neovascularization (CNV). Anti-VEGF (ranibizumab or aflibercept) was loaded into poly(lactic-co-glycolic acid) microspheres that were then suspended within an injectable poly(N-isopropylacrylamide)-based thermo-responsive hydrogel DDS.The DDS was shown previously to release bioactive anti-VEGF for ~200 days. CNV was induced using an Ar-green laser. The four experimental groups were as follows: (i) non-treated, (ii) drug-free DDS, (iii) anti-VEGF-loaded DDS, and (iv) bolus injection of anti-VEGF. CNV lesion areas were measured based on fluorescein angiograms and quantified using a multi-Otsu thresholding technique. Intraocular pressure (IOP) and dark-adapted electroretinogram (ERG) were also obtained pre- and post-treatment (1, 2, 4, 8, and 12 weeks). The anti-VEGF-loaded DDS group had significantly smaller (60%) CNV lesion areas than non-treated animals throughout the study. A small transient increase in IOP was seen immediately after injection; however, all IOP measurements at all time points were within the normal range. There were no significant changes in ERG maximal response compared to pre-treatment measurements for the drug-loaded DDS, which suggests no adverse effects on retinal cellular function. The current study demonstrates that the DDS can effectively decrease laser-induced CNV lesions in a murine model. Controlled and extended release from our DDS achieved greater treatment efficacy using an order of magnitude less drug than what is required with bolus administration. This suggests that our DDS may provide a significant advantage in the treatment of posterior segment eye diseases.

  8. Strengthening injectable thermo-sensitive NIPAAm-g-chitosan hydrogels using chemical cross-linking of disulfide bonds as scaffolds for tissue engineering.

    PubMed

    Wu, Shu-Wei; Liu, Xifeng; Miller, A Lee; Cheng, Yu-Shiuan; Yeh, Ming-Long; Lu, Lichun

    2018-07-15

    In the present study, we fabricated non-toxic, injectable, and thermo-sensitive NIPAAm-g-chitosan (NC) hydrogels with thiol modification for introduction of disulfide cross-linking strategy. Previously, NIPAAm and chitosan copolymer has been proven to have excellent biocompatibility, biodegradability and rapid phase transition after injection, suitable to serve as cell carriers or implanted scaffolds. However, weak mechanical properties significantly limit their potential for biomedical fields. In order to overcome this issue, we incorporated thiol side chains into chitosan by covalently conjugating N-acetyl-cysteine (NAC) with carbodiimide chemistry to strengthen mechanical properties. After oxidation of thiols into disulfide bonds, modified NC hydrogels did improve the compressive modulus over 9 folds (11.4 kPa). Oscillatory frequency sweep showed a positive correlation between storage modulus and cross-liking density as well. Additionally, there was no cytotoxicity observed to mesenchymal stem cells, fibroblasts and osteoblasts. We suggested that the thiol-modified thermo-sensitive polysaccharide hydrogels are promising to be a cell-laden biomaterial for tissue regeneration. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Structural and biological properties of thermosensitive chitosan-graphene hybrid hydrogels for sustained drug delivery applications.

    PubMed

    Saeednia, Leyla; Yao, Li; Berndt, Marcus; Cluff, Kim; Asmatulu, Ramazan

    2017-09-01

    Chitosan has the ability to make injectable thermosensitive hydrogels which has been highly investigated for drug delivery applications. The addition of nanoparticles is one way to increase the mechanical strength of thermosensitive chitosan hydrogel and subsequently and control the burst release of drug. Graphene nanoparticles have shown unique mechanical, optical and electrical properties which can be exploited for biomedical applications, especially in drug delivery. This study, have focused on the mechanical properties of a thermosensitive and injectable hybrid chitosan hydrogel incorporated with graphene nanoparticles. Scanning electron microscope (SEM), Fourier transform infrared (FTIR) spectroscopy, Raman spectroscopy, and X-ray diffraction (XRD) have been used for morphological and chemical characterization of graphene infused chitosan hydrogels. The cell viability and cytotoxicity of graphene-contained hydrogels were analyzed using the alamarBlue ® technique. In-vitro methotrexate (MTX) release was investigated from MTX-loaded hybrid hydrogels as well. As a last step, to evaluate their efficiency as a cancer treatment delivery system, an in vitro anti-tumor test was also carried out using MCF-7 breast cancer cell lines. Results confirmed that a thermosensitive chitosan-graphene hybrid hydrogel can be used as a potential breast cancer therapy system for controlled delivery of methotrexate. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 2381-2390, 2017. © 2017 Wiley Periodicals, Inc.

  10. Extracellular Matrix Hydrogel Derived from Human Umbilical Cord as a Scaffold for Neural Tissue Repair and Its Comparison with Extracellular Matrix from Porcine Tissues.

    PubMed

    Kočí, Zuzana; Výborný, Karel; Dubišová, Jana; Vacková, Irena; Jäger, Aleš; Lunov, Oleg; Jiráková, Klára; Kubinová, Šárka

    2017-06-01

    Extracellular matrix (ECM) hydrogels prepared by tissue decellularization have been reported as natural injectable materials suitable for neural tissue repair. In this study, we prepared ECM hydrogel derived from human umbilical cord (UC) and evaluated its composition and mechanical and biological properties in comparison with the previously described ECM hydrogels derived from porcine urinary bladder (UB), brain, and spinal cord. The ECM hydrogels did not differ from each other in the concentration of collagen, while the highest content of glycosaminoglycans as well as the shortest gelation time was found for UC-ECM. The elastic modulus was then found to be the highest for UB-ECM. In spite of a different origin, topography, and composition, all ECM hydrogels similarly promoted the migration of human mesenchymal stem cells (MSCs) and differentiation of neural stem cells, as well as axonal outgrowth in vitro. However, only UC-ECM significantly improved proliferation of tissue-specific UC-derived MSCs when compared with the other ECMs. Injection of UC-ECM hydrogels into a photothrombotic cortical ischemic lesion in rats proved its in vivo gelation and infiltration with host macrophages. In summary, this study proposes UC-ECM hydrogel as an easily accessible biomaterial of human origin, which has the potential for neural as well as other soft tissue reconstruction.

  11. Cytocompatible in situ forming chitosan/hyaluronan hydrogels via a metal-free click chemistry for soft tissue engineering.

    PubMed

    Fan, Ming; Ma, Ye; Mao, Jiahui; Zhang, Ziwei; Tan, Huaping

    2015-07-01

    Injectable hydrogels are important cell scaffolding materials for tissue engineering and regenerative medicine. Here, we report a new class of biocompatible and biodegradable polysaccharide hydrogels derived from chitosan and hyaluronan via a metal-free click chemistry, without the addition of copper catalyst. For the metal-free click reaction, chitosan and hyaluronan were modified with oxanorbornadiene (OB) and 11-azido-3,6,9-trioxaundecan-1-amine (AA), respectively. The gelation is attributed to the triazole ring formation between OB and azido groups of polysaccharide derivatives. The molecular structures were verified by FT-IR spectroscopy and elemental analysis, giving substitution degrees of 58% and 47% for chitosan-OB and hyaluronan-AA, respectively. The in vitro gelation, morphologies, equilibrium swelling, compressive modulus and degradation of the composite hydrogels were examined. The potential of the metal-free hydrogel as a cell scaffold was demonstrated by encapsulation of human adipose-derived stem cells (ASCs) within the gel matrix in vitro. Cell culture showed that this metal-free hydrogel could support survival and proliferation of ASCs. A preliminary in vivo study demonstrated the usefulness of the hydrogel as an injectable scaffold for adipose tissue engineering. These characteristics provide a potential opportunity to use the metal-free click chemistry in preparation of biocompatible hydrogels for soft tissue engineering applications. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  12. Thiolated hyaluronan-based hydrogels crosslinked using oxidized glutathione: an injectable matrix designed for ophthalmic applications.

    PubMed

    Zarembinski, Thomas I; Doty, Nathaniel J; Erickson, Isaac E; Srinivas, Ramya; Wirostko, Barbara M; Tew, William P

    2014-01-01

    Future ophthalmic therapeutics will require the sustained delivery of bioactive proteins and nucleic acid-based macromolecules and/or provide a suitable microenvironment for the localization and sustenance of reparative progenitor cells after transplantation into or onto the eye. Water-rich hydrogels are ideal vehicles for such cargo, but few have all the qualities desired for novel ophthalmic use, namely in situ gelation speed, cytocompatibility, biocompatibility and capacity to functionalize. We describe here the development of an ophthalmic-compatible crosslinking system using oxidized glutathione (GSSG), a physiologically relevant molecule with a history of safe use in humans. When GSSG is used in conjunction with an existing hyaluronate-based, in situ crosslinkable hydrogel platform, gels form in less than 5 min using the thiol-disulfide exchange reaction. This GSSG hydrogel supports the 3-D culture of adipose-derived stem cells in vitro and shows biocompatibility in preliminary intracutaneous and subconjunctival experiments in vivo. In addition, the thiol-disulfide exchange reaction can also be used in conjunction with other thiol-compatible chemistries to covalently link peptides for more complex formulations. These data suggest that this hydrogel could be well suited for local ocular delivery, focusing initially on front of the eye therapies. Subsequent uses of the hydrogel include delivery of back of the eye treatments and eventually into other soft, hyaluronan-rich tissues such as those from the liver and brain. Copyright © 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  13. Controlled release of paclitaxel from a self-assembling peptide hydrogel formed in situ and antitumor study in vitro

    PubMed Central

    Liu, Jingping; Zhang, Lanlan; Yang, Zehong; Zhao, Xiaojun

    2011-01-01

    Background A nanoscale injectable in situ-forming hydrogel drug delivery system was developed in this study. The system was based on a self-assembling peptide RADA16 solution, which can spontaneously form a hydrogel rapidly under physiological conditions. We used the RADA16 hydrogel for the controlled release of paclitaxel (PTX), a hydrophobic antitumor drug. Methods The RADA16-PTX suspension was prepared simply by magnetic stirring, followed by atomic force microscopy, circular dichroism analysis, dynamic light scattering, rheological analysis, an in vitro release assay, and a cell viability test. Results The results indicated that RADA16 and PTX can interact with each other and that the amphiphilic peptide was able to stabilize hydrophobic drugs in aqueous solution. The particle size of PTX was markedly decreased in the RADA16 solution compared with its size in water. The RADA16-PTX suspension could form a hydrogel in culture medium, and the elasticity of the hydrogel showed a positive correlation with peptide concentration. In vitro release measurements indicated that hydrogels with a higher peptide concentration had a longer half-release time. The RADA16-PTX hydrogel could effectively inhibit the growth of the breast cancer cell line, MDA-MB-435S, in vitro, and hydrogels with higher peptide concentrations were more effective at inhibiting tumor cell proliferation. The RADA16-PTX hydrogel was effective at controlling the release of PTX and inhibiting tumor cell growth in vitro. Conclusion Self-assembling peptide hydrogels may work well as a system for drug delivery. PMID:22114478

  14. A Bioengineering Approach to Myopia Control Tested in a Guinea Pig Model

    PubMed Central

    Garcia, Mariana B.; Jha, Amit K.; Healy, Kevin E.; Wildsoet, Christine F.

    2017-01-01

    Purpose To investigate the biocompatibility of an injectable hydrogel and its ability to control myopia progression in guinea pigs. Methods The study used a hydrogel synthesized from acrylated hyaluronic acid with a conjugated cell-binding peptide and enzymatically degradable crosslinker. Seven-day-old guinea pigs were first form deprived (FD) with diffusers for 1 week. One group was kept as an FD-only control; two groups received a sub-Tenon's capsule injection of either hydrogel or buffer (sham surgery) at the posterior pole of the eye. Form deprivation treatments were then continued for 3 additional weeks. Treatment effects were evaluated in terms of ocular axial length and refractive error. Safety was evaluated via intraocular pressure (IOP), visual acuity, flash electroretinograms (ERG), and histology. Results Both hydrogel and sham surgery groups showed significantly reduced axial elongation and myopia progression compared to the FD-only group. For axial lengths, net changes in interocular difference (treated minus control) were 0.04 ± 0.06, 0.02 ± 0.09, and 0.24 ± 0.08 mm for hydrogel, sham, and FD-only groups, respectively (P = 0.0006). Intraocular pressures, visual acuities, and ERGs of treated eyes were not significantly different from contralateral controls. Extensive cell migration into the implants was evident. Both surgery groups showed noticeable Tenon's capsule thickening. Conclusions Sub-Tenon's capsule injections of both hydrogel and buffer inhibited myopia progression, with no adverse effects on ocular health. The latter unexpected effect warrants further investigation as a potential novel myopia control therapy. That the hydrogel implant supported significant cell infiltration offers further proof of its biocompatibility, with potential application as a tool for drug and cell delivery. PMID:28358959

  15. Transanal submucosal polyacrylamide gel injection treatment of anal incontinence: a randomized controlled trial.

    PubMed

    Altman, Daniel; Hjern, Fredrik; Zetterström, Jan

    2016-05-01

    The efficacious and safe use of transurethral injections of polyacrylamide hydrogel (Bulkamid(®)) in women with stress urinary incontinence suggests that it may be suitable also for treatment of anal incontinence. We aimed to determine the effectiveness and safety of polyacrylamide hydrogel when used as a transanal submucosal bulking agent in women with anal incontinence. Thirty women with a diagnosis of anal incontinence and a Cleveland Clinic Incontinence Score (CCIS) >10 were randomized to three different techniques of transanal submucosal injections using polyacrylamide hydrogel. Follow up was performed at 2, 6 and 12 months using CCIS and the Fecal Incontinence Quality of Life scale (FIQL). In all, 29 of the 30 women completed the follow up. Approximately half of the women requested a re-injection at the 6-month visit. The overall CCIS improved significantly from baseline (14.7. SD 2.5) to 1 year (12.4. SD 3.1) (p = 0.003). There was a significant improvement with regard to the occurrence of loose fecal incontinence (p = 0.014) but not for solid fecal incontinence (p = 0.28). At 1 year the FIQL domains of coping-behavior, depression, and embarrassment showed significant improvements (p = 0.012, p = 0.007 and p = 0.007, respectively). We recorded no adverse events related either to the injection technique or the biomaterial. There were no significant differences between the treatment groups in either CCIS or FIQL scores. Transanal submucosal injection of polyacrylamide hydrogel resulted in a modest although significant overall improvement in anal incontinence symptom scores with corresponding improvements in several domains of quality of life, regardless of injection volume. © 2016 Nordic Federation of Societies of Obstetrics and Gynecology.

  16. Design and synthesis of nonionic copolypeptide hydrogels with reversible thermoresponsive and tunable physical properties.

    PubMed

    Zhang, Shanshan; Alvarez, Daniel J; Sofroniew, Michael V; Deming, Timothy J

    2015-04-13

    Polypeptide-based formulations that undergo liquid to hydrogel transitions upon change in temperature have become desirable targets since they can be mixed with cells or injected into tissues as liquids, and subsequently transform into rigid scaffolds or depots. Such materials have been challenging to prepare using synthetic polypeptides, especially when reversible gelation and tunable physical properties are desired. Here, we designed and prepared new nonionic diblock copolypeptide hydrogels (DCH) containing hydrophilic poly(γ-[2-(2-methoxyethoxy)ethyl]-rac-glutamate) and hydrophobic poly(l-leucine) segments, named DCHEO, and also further incorporated copolypeptide domains into DCHEO to yield unprecedented thermoresponsive DCH, named DCHT. Although previous attempts to prepare nonionic hydrogels composed solely of synthetic polypeptides have been unsuccessful, our designs yielded materials with highly reversible thermal transitions and tunable properties. Nonionic, thermoresponsive DCHT were found to support the viability of suspended mesenchymal stem cells in vitro and were able to dissolve and provide prolonged release of both hydrophilic and hydrophobic molecules. The versatility of these materials was further demonstrated by the independent molecular tuning of DCHT liquid viscosity at room temperature and DCHT hydrogel stiffness at elevated temperature, as well as the DCHT liquid to hydrogel transition temperature itself.

  17. Viability and neuronal differentiation of neural stem cells encapsulated in silk fibroin hydrogel functionalized with an IKVAV peptide.

    PubMed

    Sun, Wei; Incitti, Tania; Migliaresi, Claudio; Quattrone, Alessandro; Casarosa, Simona; Motta, Antonella

    2017-05-01

    Three-dimensional (3D) porous scaffolds combined with therapeutic stem cells play vital roles in tissue engineering. The adult brain has very limited regeneration ability after injuries such as trauma and stroke. In this study, injectable 3D silk fibroin-based hydrogel scaffolds with encapsulated neural stem cells were developed, aiming at supporting brain regeneration. To improve the function of the hydrogel towards neural stem cells, silk fibroin was modified by an IKVAV peptide through covalent binding. Both unmodified and modified silk fibroin hydrogels were obtained, through sonication, with mechanical stiffness comparable to that of brain tissue. Human neural stem cells were encapsulated in both hydrogels and the effects of IKVAV peptide conjugation on cell viability and neural differentiation were assessed. The silk fibroin hydrogel modified by IKVAV peptide showed increased cell viability and an enhanced neuronal differentiation capability, which contributed to understanding the effects of IKVAV peptide on the behaviour of neural stem cells. For these reasons, IKVAV-modified silk fibroin is a promising material for brain tissue engineering. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.

  18. The effect of platelet lysate supplementation of a dextran-based hydrogel on cartilage formation.

    PubMed

    Moreira Teixeira, Liliana S; Leijten, Jeroen C H; Wennink, Jos W H; Chatterjea, Anindita G; Feijen, Jan; van Blitterswijk, Clemens A; Dijkstra, Pieter J; Karperien, Marcel

    2012-05-01

    In situ gelating dextran-tyramine (Dex-TA) injectable hydrogels have previously shown promising features for cartilage repair. Yet, despite suitable mechanical properties, this system lacks intrinsic biological signals. In contrast, platelet lysate-derived hydrogels are rich in growth factors and anti-inflammatory cytokines, but mechanically unstable. We hypothesized that the advantages of these systems may be combined in one hydrogel, which can be easily translated into clinical settings. Platelet lysate was successfully incorporated into Dex-TA polymer solution prior to gelation. After enzymatic crosslinking, rheological and morphological evaluations were performed. Subsequently, the effect of platelet lysate on cell migration, adhesion, proliferation and multi-lineage differentiation was determined. Finally, we evaluated the integration potential of this gel onto osteoarthritis-affected cartilage. The mechanical properties and covalent attachment of Dex-TA to cartilage tissue during in situ gel formation were successfully combined with the advantages of platelet lysate, revealing the potential of this enhanced hydrogel as a cell-free approach. The addition of platelet lysate did not affect the mechanical properties and porosity of Dex-TA hydrogels. Furthermore, platelet lysate derived anabolic growth factors promoted proliferation and triggered chondrogenic differentiation of mesenchymal stromal cells. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. The Diverse Roles of Hydrogel Mechanics in Injectable Stem Cell Transplantation.

    PubMed

    Foster, Abbygail A; Marquardt, Laura M; Heilshorn, Sarah C

    2017-02-01

    Stem cell delivery by local injection has tremendous potential as a regenerative therapy but has seen limited clinical success. Several mechanical challenges hinder therapeutic efficacy throughout all stages of cell transplantation, including mechanical forces during injection and loss of mechanical support post-injection. Recent studies have begun exploring the use of biomaterials, in particular hydrogels, to enhance stem cell transplantation by addressing the often-conflicting mechanical requirements associated with each stage of the transplantation process. This review explores recent biomaterial approaches to improve the therapeutic efficacy of stem cells delivered through local injection, with a focus on strategies that specifically address the mechanical challenges that result in cell death and/or limit therapeutic function throughout the stages of transplantation.

  20. Nanocomposite Hydrogels: 3D Polymer-Nanoparticle Synergies for On-Demand Drug Delivery.

    PubMed

    Merino, Sonia; Martín, Cristina; Kostarelos, Kostas; Prato, Maurizio; Vázquez, Ester

    2015-05-26

    Considerable progress in the synthesis and technology of hydrogels makes these materials attractive structures for designing controlled-release drug delivery systems. In particular, this review highlights the latest advances in nanocomposite hydrogels as drug delivery vehicles. The inclusion/incorporation of nanoparticles in three-dimensional polymeric structures is an innovative means for obtaining multicomponent systems with diverse functionality within a hybrid hydrogel network. Nanoparticle-hydrogel combinations add synergistic benefits to the new 3D structures. Nanogels as carriers for cancer therapy and injectable gels with improved self-healing properties have also been described as new nanocomposite systems.

  1. Efficacy of two different thiol-modified crosslinked hyaluronate formulations as vitreous replacement compared to silicone oil in a model of retinal detachment

    PubMed Central

    Schnichels, Sven; Schneider, Nele; Hohenadl, Christine; Hurst, José; Schatz, Andreas; Januschowski, Kai; Spitzer, Martin S.

    2017-01-01

    The efficacy of two novel artificial vitreous body substitutes (VBS) consisting of highly biocompatible thiolated cross-linked hyaluronic acid (HA)-based hydrogels in comparison to silicone oil in a model of retinal detachment was investigated. Pars plana vitrectomy (23G) was performed in the right eye of 24 pigmented rabbits. Retinal detachment of two quadrants was induced by creating a small retinotomy near the vascular arcade and injecting balanced salt solution (BSS) subretinally. The retina was reattached by injecting air, which was followed by increasing the infusion pressure, and the retinal tear was treated by endolaser photocoagulation. At the end of the procedure, the eye was filled either with 5000-cs silicone oil (after fluid air exchange) or the respective hydrogel (with two different viscosities). Follow-up examination included slit lamp examination, funduscopy, intraocular pressure measurements (IOP), optical coherence tomography (OCT) and electroretinogram (ERG) measurements. After a maximum follow-up of four weeks both eyes were removed, examined macroscopically, photographed, and prepared for histology. Of the eight rabbits that received silicone oil, seven (87.5%) developed a recurrent retinal detachment with pronounced proliferative vitreoretinopathy within the first two weeks after surgery. In contrast, in the hydrogel treated eyes, the retina stayed attached in the majority of the cases (73.3%). IOP and retinal morphology were normal as long as the retina remained re-attached. In conclusions, this model of retinal detachment, both thiolated crosslinked hyaluronate hydrogels showed superior efficacy when compared to silicone oil. These hydrogels have a promising potential as novel vitreous body substitutes. PMID:28248989

  2. DNA nanotechnology-based composite-type gold nanoparticle-immunostimulatory DNA hydrogel for tumor photothermal immunotherapy.

    PubMed

    Yata, Tomoya; Takahashi, Yuki; Tan, Mengmeng; Nakatsuji, Hirotaka; Ohtsuki, Shozo; Murakami, Tatsuya; Imahori, Hiroshi; Umeki, Yuka; Shiomi, Tomoki; Takakura, Yoshinobu; Nishikawa, Makiya

    2017-11-01

    Success of tumor photothermal immunotherapy requires a system that induces heat stress in cancer cells and enhances strong anti-tumor immune responses. Here, we designed a composite-type immunostimulatory DNA hydrogel consisting of a hexapod-like structured DNA (hexapodna) with CpG sequences and gold nanoparticles. Mixing of the properly designed hexapodna and oligodeoxynucleotide-modified gold nanoparticles resulted in the formation of composite-type gold nanoparticle-DNA hydrogels. Laser irradiation of the hydrogel resulted in the release of hexapodna, which efficiently stimulated immune cells to release proinflammatory cytokines. Then, EG7-OVA tumor-bearing mice received an intratumoral injection of a gold nanoparticle-DNA hydrogel, followed by laser irradiation at 780 nm. This treatment increased the local temperature and the mRNA expression of heat shock protein 70 in the tumor tissue, increased tumor-associated antigen-specific IgG levels in the serum, and induced tumor-associated antigen-specific interferon-γ production from splenocytes. Moreover, the treatment significantly retarded the tumor growth and extended the survival of the tumor-bearing mice. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Polyvinyl alcohol hydrogels for iontohporesis

    NASA Astrophysics Data System (ADS)

    Bera, Prasanta; Alam, Asif Ali; Arora, Neha; Tibarewala, Dewaki Nandan; Basak, Piyali

    2013-06-01

    Transdermal therapeutic systems propound controlled release of active ingredients through the skin into the systemic circulation in a predictive manner. Drugs administered through these systems escape first-pass metabolism and maintain a steady state scenario similar to a continuous intravenous infusion for up to several days. The iontophoresis deal with the systemic delivery of the bioactive agents (drug) by applying an electric current. It is basically an injection without the needle. The iontophoretic system requires a gel-based matrix to accommodate the bioactive agent. Hydrogels have been used by many investigators in controlled-release drug delivery systems because of their good tissue compatibility and easy manipulation of swelling level and, thereby, solute permeability. In this work we have prepared polyvinyl alcohol (PVA) hydrogel. We have cross linked polyvinyl alcohol chemically with Glutaraldehyde with different wt%. FTIR study reveals the chemical changes during cross linking. Swelling in water, is done to have an idea about drug loading and drug release from the membrane. After drug loading to the hydrogels, we have studied the drug release property of the hydrogels using salicylic acid as a model drug.

  4. Reactive hydroxyapatite fillers for pectin biocomposites.

    PubMed

    Munarin, Fabiola; Petrini, Paola; Barcellona, Giulia; Roversi, Tommaso; Piazza, Laura; Visai, Livia; Tanzi, Maria Cristina

    2014-12-01

    In this work, a novel injectable biocomposite hydrogel is produced by internal gelation, using pectin as organic matrix and hydroxyapatite either as crosslinking agent and inorganic reinforcement. Tunable gelling kinetics and rheological properties are obtained varying the hydrogels' composition, with the final aim of developing systems for cell immobilization. The reversibility by dissolution of pectin-hydroxyapatite hydrogels is achieved with saline solutions, to possibly accelerate the release of the cells or active agents immobilized. Texture analysis confirms the possibility of extruding the biocomposites from needles with diameters from 20 G to 30 G, indicating that they can be implanted with minimally-invasive approaches, minimizing the pain during injection and the side effects of the open surgery. L929 fibroblasts entrapped in the hydrogels survive to the immobilization procedure and exhibit high cell viability. On the overall, these systems result to be suitable supports for the immobilization of cells for tissue regeneration applications. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Co-micellized Pluronic mixture with thermo-sensitivity and residence stability as an injectable tissue adhesion barrier hydrogel.

    PubMed

    Oh, Se Heang; Kang, Jun Goo; Lee, Jin Ho

    2018-01-01

    Although the tissue adhesion which leads to various complications frequently occurs after surgery, the development of an ideal tissue adhesion barrier is still a challenge. In this study, a thermo-sensitive hydrogel, which can fulfill the essential requirements of tissue adhesion barrier (that is, ease of handling for surgeon, flowing down prevention after application, stable residence on the injury during wound healing, and no use of toxic additives), was developed using biocompatible polyethylene glycol-polypropylene glycol copolymers (Pluronic F127/F68/P123 mixture). From the in vitro cell culture and in vivo animal study, it was observed that the Pluronic mixtures showed sol-gel transition at approximately body temperature (for easy injection or coating on the injury site and flowing down prevention after application) and prolonged residence stability in aqueous environment (> ∼7 days for stable protection of injury tissues/organs during wound healing), and thus was highly effective for the prevention of tissue adhesion without adverse tissue responses. Based on these results, the Pluronic F127/F68/P123 mixture itself (without any additives) can be a good candidate as an injectable or coatable tissue adhesion barrier hydrogel applicable to various injury tissues in terms of ease of use, effectiveness, and safety. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 172-182, 2018. © 2016 Wiley Periodicals, Inc.

  6. Angiogenic effect of platelet-rich plasma combined with gelatin hydrogel granules injected into murine subcutis.

    PubMed

    Kakudo, Natsuko; Morimoto, Naoki; Ogawa, Takeshi; Hihara, Masakatsu; Notodihardjo, Priscilla Valentin; Matsui, Makoto; Tabata, Yasuhiko; Kusumoto, Kenji

    2017-07-01

    Platelet-rich plasma (PRP), which contains highly concentrated platelets, is produced by centrifuging whole blood. It is a safe and readily available source of a wide range of growth factors necessary for angiogenesis. Gelatin hydrogel granules have been designed and prepared for the controlled release of many growth factors. The angiogenic effect of human PRP was examined in vitro, and the effect of its subcutaneous injection with gelatin hydrogel granules into murine subcutis was evaluated. Human PRP was prepared using a double-spin method. The concentration of growth factors and the platelet count were examined in PRP and in vitro, and the angiogenic activity of human umbilical vein endothelial cells (HUVECs) in co-culture with human dermal fibroblast cells (NHDFs) in the presence and absence of PRP was evaluated. Then, in vivo, PRP, either free or with gelatin hydrogel granules, was injected subcutaneously into tiebacks on mice. Using a microscope and Kurabo angiogenesis image analyser software, the area containing newly formed capillaries was evaluated histologically and the microvascular network score was calculated. PRP was shown to contain high concentrations of PDGF, VEGF and TGFβ and had an angiogenic effect on the co-culture system. PRP with gelatin hydrogel granules significantly enlarged the area containing newly formed capillaries and promoted the microvascular network in murine subcutaneous tissue. PRP encapsulated in gelatin hydrogel microspheres shows promise for enhancing angiogenic effects in murine subcutis and could represent a potential therapeutic combination for the treatment of ischaemic disorders. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.

  7. Thermo-responsive hydrogels for intravitreal injection and biomolecule release

    NASA Astrophysics Data System (ADS)

    Drapala, Pawel

    In this dissertation, we develop an injectable polymer system to enable localized and prolonged release of therapeutic biomolecules for improved treatment of Age-Related Macular Degeneration (AMD). Thermo-responsive hydrogels derived from N-isopropylacrylamide (NIPAAm) and cross-linked with poly(ethylene glycol) (PEG) poly(L-Lactic acid) (PLLA) copolymer were synthesized via free-radical polymerization. These materials were investigated for (a) phase change behavior, (b) in-vitro degradation, (c) capacity for controlled drug delivery, and (d) biocompatibility. The volume-phase transition temperature (VPTT) of the PNIPAAm- co-PEG-b-PLLA hydrogels was adjusted using hydrophilic and hydrophobic moieties so that it is ca. 33°C. These hydrogels did not initially show evidence of degradation at 37°C due to physical cross-links of collapsed PNIPAAm. Only after addition of glutathione chain transfer agents (CTA)s to the precursor did the collapsed hydrogels become fully soluble at 37°C. CTAs significantly affected the release kinetics of biomolecules; addition of 1.0 mg/mL glutathione to 3 mM cross-linker accelerated hydrogel degradation, resulting in 100% release in less than 2 days. This work also explored the effect of PEGylation in order to tether biomolecules to the polymer matrix. It was demonstrated that non-site-specific PEGylation can postpone the burst release of solutes (up to 10 days in hydrogels with 0.5 mg/mL glutathione). Cell viability assays showed that at least two 20-minute buffer extraction steps were needed to remove cytotoxic elements from the hydrogels. Clinically-used therapeutic biomolecules LucentisRTM and AvastinRTM were demonstrated to be both stable and bioactive after release form PNIPAAm-co-PEG-b-PLLA hydrogels. The thermo-responsive hydrogels presented here offer a promising platform for the localized delivery of proteins such as recombinant antibodies.

  8. Bioengineering vascularized tissue constructs using an injectable cell-laden enzymatically crosslinked collagen hydrogel derived from dermal extracellular matrix.

    PubMed

    Kuo, Kuan-Chih; Lin, Ruei-Zeng; Tien, Han-Wen; Wu, Pei-Yun; Li, Yen-Cheng; Melero-Martin, Juan M; Chen, Ying-Chieh

    2015-11-01

    Tissue engineering promises to restore or replace diseased or damaged tissue by creating functional and transplantable artificial tissues. The development of artificial tissues with large dimensions that exceed the diffusion limitation will require nutrients and oxygen to be delivered via perfusion instead of diffusion alone over a short time period. One approach to perfusion is to vascularize engineered tissues, creating a de novo three-dimensional (3D) microvascular network within the tissue construct. This significantly shortens the time of in vivo anastomosis, perfusion and graft integration with the host. In this study, we aimed to develop injectable allogeneic collagen-phenolic hydroxyl (collagen-Ph) hydrogels that are capable of controlling a wide range of physicochemical properties, including stiffness, water absorption and degradability. We tested whether collagen-Ph hydrogels could support the formation of vascularized engineered tissue graft by human blood-derived endothelial colony-forming cells (ECFCs) and bone marrow-derived mesenchymal stem cells (MSC) in vivo. First, we studied the growth of adherent ECFCs and MSCs on or in the hydrogels. To examine the potential formation of functional vascular networks in vivo, a liquid pre-polymer solution of collagen-Ph containing human ECFCs and MSCs, horseradish peroxidase and hydrogen peroxide was injected into the subcutaneous space or abdominal muscle defect of an immunodeficient mouse before gelation, to form a 3D cell-laden polymerized construct. These results showed that extensive human ECFC-lined vascular networks can be generated within 7 days, the engineered vascular density inside collagen-Ph hydrogel constructs can be manipulated through refinable mechanical properties and proteolytic degradability, and these networks can form functional anastomoses with the existing vasculature to further support the survival of host muscle tissues. Finally, optimized conditions of the cell-laden collagen-Ph hydrogel resulted in not only improving the long-term differentiation of transplanted MSCs into mineralized osteoblasts, but the collagen-Ph hydrogel also improved an increased of adipocytes within the vascularized bioengineered tissue in a mouse after 1 month of implantation. We reported a method for preparing autologous extracellular matrix scaffolds, murine collagen-Ph hydrogels, and demonstrated its suitability for use in supporting human progenitor cell-based formation of 3D vascular networks in vitro and in vivo. Results showed extensive human vascular networks can be generated within 7 days, engineered vascular density inside collagen-Ph constructs can be manipulated through refinable mechanical properties and proteolytic degradability, and these networks can form functional anastomoses with existing vasculature to further support the survival of host muscle tissues. Moreover, optimized conditions of cell-laden collagen-Ph hydrogel resulted in not only improving the long-term differentiation of transplanted MSCs into mineralized osteoblasts, but the collagen-Ph hydrogel also improved an increased of adipocytes within the vascularized bioengineered tissue in a mouse. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  9. Injectable MMP-sensitive alginate hydrogels as hMSC delivery systems.

    PubMed

    Fonseca, Keila B; Gomes, David B; Lee, Kangwon; Santos, Susana G; Sousa, Aureliana; Silva, Eduardo A; Mooney, David J; Granja, Pedro L; Barrias, Cristina C

    2014-01-13

    Hydrogels with the potential to provide minimally invasive cell delivery represent a powerful tool for tissue-regeneration therapies. In this context, entrapped cells should be able to escape the matrix becoming more available to actively participate in the healing process. Here, we analyzed the performance of proteolytically degradable alginate hydrogels as vehicles for human mesenchymal stem cells (hMSC) transplantation. Alginate was modified with the matrix metalloproteinase (MMP)-sensitive peptide Pro-Val-Gly-Leu-Iso-Gly (PVGLIG), which did not promote dendritic cell maturation in vitro, neither free nor conjugated to alginate chains, indicating low immunogenicity. hMSC were entrapped within MMP-sensitive and MMP-insensitive alginate hydrogels, both containing cell-adhesion RGD peptides. Softer (2 wt % alginate) and stiffer (4 wt % alginate) matrices were tested. When embedded in a Matrigel layer, hMSC-laden MMP-sensitive alginate hydrogels promoted more extensive outward cell migration and invasion into the tissue mimic. In vivo, after 4 weeks of subcutaneous implantation in a xenograft mouse model, hMSC-laden MMP-sensitive alginate hydrogels showed higher degradation and host tissue invasion than their MMP-insensitive equivalents. In both cases, softer matrices degraded faster than stiffer ones. The transplanted hMSC were able to produce their own collagenous extracellular matrix, and were located not only inside the hydrogels, but also outside, integrated in the host tissue. In summary, injectable MMP-sensitive alginate hydrogels can act as localized depots of cells and confer protection to transplanted cells while facilitating tissue regeneration.

  10. Hyaluronic Acid Hydrogel Functionalized with Self-Assembled Micelles of Amphiphilic PEGylated Kartogenin for the Treatment of Osteoarthritis.

    PubMed

    Kang, Mi-Lan; Jeong, Se-Young; Im, Gun-Il

    2017-07-01

    Synthetic hyaluronic acid (HA) containing a covalently integrated drug is capable of releasing therapeutic molecules and is an attractive candidate for the intra-articular treatment of osteoarthritis (OA). Herein, self-assembled PEGylated kartogenin (PEG/KGN) micelles consisting of hydrophilic polyethylene glycol (PEG) and hydrophobic KGN, which has been shown to induce chondrogenesis in human mesenchymal stem cells, were prepared by covalent crosslinking. HA hydrogels containing PEG/KGN micelles (HA/PEG/KGN) were prepared by covalently bonding PEG chains to HA. The physicochemical properties of the HA/PEG/KGN conjugate gels were investigated using Fourier transform infrared spectroscopy, 1 H NMR, dynamic light scattering (DLS), and scanning electron microscopy (SEM). HA/PEG/KGN gels exhibited larger micelles in aqueous solution than PEG/KGN. SEM images of PEG/KGN micelles showed a dark core and a bright shell, whereas PEG/KGN micelles covalently integrated into HA had an irregular oval shape. Covalent integration of PEG/KGN micelles in HA hydrogels significantly reduced drug release rates and provided sustained release over a prolonged period of time. HA/PEG/KGN hydrogels were degradable enzymatically by collagenase and hyaluronidase in vitro. Injection of HA/PEG/KGN hydrogels into articular cartilage significantly suppressed the progression of OA in rats compared with free-HA hydrogel injection. These results suggest that the HA/PEG/KGN hydrogels have greater potency than free-HA hydrogels against OA as biodegradable synthetic therapeutics.

  11. Injectable Shear-Thinning CaSO4/FGF-18-Incorporated Chitin-PLGA Hydrogel Enhances Bone Regeneration in Mice Cranial Bone Defect Model.

    PubMed

    Sivashanmugam, A; Charoenlarp, Pornkawee; Deepthi, S; Rajendran, Arunkumar; Nair, Shantikumar V; Iseki, Sachiko; Jayakumar, R

    2017-12-13

    For craniofacial bone regeneration, shear-thinning injectable hydrogels are favored over conventional scaffolds because of their improved defect margin adaptability, easier handling, and ability to be injected manually into deeper tissues. The most accepted method, after autografting, is the use of recombinant human bone morphogenetic protein-2 (BMP-2); however, complications such as interindividual variations, edema, and poor cost-efficiency in supraphysiological doses have been reported. The endogenous synthesis of BMP-2 is desirable, and a molecule which induces this is fibroblast growth factor-18 (FGF-18) because it can upregulate the BMP-2 expression  by supressing noggin. We developed a chitin-poly(lactide-co-glycolide) (PLGA) composite hydrogel by regeneration chemistry and then incorporated CaSO 4 and FGF-18 for this purpose. Rheologically, a 7-fold increase in the elastic modulus was observed in the CaSO 4 -incorporated chitin-PLGA hydrogels as compared to the chitin-PLGA hydrogel. Shear-thinning Herschel-Bulkley fluid nature was observed for both hydrogels. Chitin-PLGA/CaSO 4 gel showed sustained release of FGF-18. In vitro osteogenic differentiation showed an enhanced alkaline phosphatase (ALP) expression in the FGF-18-containing chitin-PLGA/CaSO 4 gel when compared to cells alone. Further, it was confirmed by studying the expression of osteogenic genes [RUNX2, ALP, BMP-2, osteocalcin (OCN), and osteopontin (OPN)], immunofluorescence staining of BMP-2, OCN, and OPN, and alizarin red S staining. Incorporation of FGF-18 in the hydrogel increased the endothelial cell migration. Further, the regeneration potential of the prepared hydrogels was tested in vivo, and longitudinal live animal μ-CT was performed. FGF-18-loaded chitin-PLGA/CaSO 4 showed early and almost complete bone healing in comparison with chitin-PLGA/CaSO 4 , chitin-PLGA/FGF-18, chitin-PLGA, and sham control systems, as confirmed by hematoxylin and eosin and osteoid tetrachrome stainings. This shows that the CaSO 4 and FGF-18-incorporated hydrogel is a potential candidate for craniofacial bone defect regeneration.

  12. Locally targeted delivery of a micron-size radiation therapy source using temperature-sensitive hydrogel.

    PubMed

    Kim, Yusung; Seol, Dong Rim; Mohapatra, Sucheta; Sunderland, John J; Schultz, Michael K; Domann, Frederick E; Lim, Tae-Hong

    2014-04-01

    To propose a novel radiation therapy (RT) delivery modality: locally targeted delivery of micron-size RT sources by using temperature-sensitive hydrogel (RT-GEL) as an injectable vehicle. Hydrogel is a water-like liquid at room temperature but gels at body temperature. Two US Food and Drug Administration-approved polymers were synthesized. Indium-111 (In-111) was used as the radioactive RT-GEL source. The release characteristics of In-111 from polymerized RT-GEL were evaluated. The injectability and efficacy of RT-GEL delivery to human breast tumor were tested using animal models with control datasets of RT-saline injection. As proof-of-concept studies, a total of 6 nude mice were tested by injecting 4 million tumor cells into their upper backs after a week of acclimatization. Three mice were injected with RT-GEL and 3 with RT-saline. Single-photon emission computed tomography (SPECT) and CT scans were performed on each mouse at 0, 24, and 48 h after injection. The efficacy of RT-GEL was determined by comparison with that of the control datasets by measuring kidney In-111 accumulation (mean nCi/cc), representing the distant diffusion of In-111. RT-GEL was successfully injected into the tumor by using a 30-gauge needle. No difficulties due to polymerization of hydrogel during injection and intratumoral pressure were observed during RT-GEL injection. No back flow occurred for either RT-GEL or RT-saline. The residual tumor activities of In-111 were 49% at 24 h (44% at 48 h, respectively) for RT-GEL and 29% (22%, respectively) for RT-saline. Fused SPECT-CT images of RT-saline showed considerable kidney accumulation of In-111 (2886%, 261%, and 262% of RT-GEL at 0, 24, and 48 h, respectively). RT-GEL was successfully injected and showed much higher residual tumor activity: 170% (200%, respectively), than that of RT-saline at 24 h (48 h, respectively) after injection with a minimal accumulation of In-111 to the kidneys. Preliminary data of RT-GEL as a delivery modality of a radiation source to a local tumor are promising. Published by Elsevier Inc.

  13. Development of an injectable PHBV microparticles-GG hydrogel hybrid system for regenerative medicine.

    PubMed

    Pacheco, Daniela P; Amaral, Maria H; Reis, Rui L; Marques, Alexandra P; Correlo, Vítor M

    2015-01-15

    Uncontrollable displacements that greatly affect the concentration of active agents at the target tissues are among a major limitation of the use of microparticulate drug delivery systems (DDS). Under this context a biphasic injectable DDS combining poly(hydroxybutyrate-co-hydroxyvalerate) (PHBV) microparticles (MPs) and a gellan gum (GG) injectable hydrogel is herein proposed for the localized delivery and long-term retention of MPs carrying hydrophilic and hydrophobic model active agents. A double emulsion-solvent evaporation method was adopted to develop the PHBV MPs, carrying bovine serum albumin (BSA) or dexamethasone (Dex) as hydrophilic and hydrophobic active agents' models, respectively. Moreover, this method was modified, together with the properties of the hydrogel to tailor the delivery profile of the active agents. Variations of the composition of the organic phase during the process allowed tuning surface topography, particle size distribution and core porosity of the PHBV MPs and, thus, the in vitro release profile of Dex but not of BSA. Besides, after embedding hydrogels of higher GG concentration led to a slower and more sustained release of both active agents, independently of the processing conditions of the microparticulate system. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Cell recruiting chemokine-loaded sprayable gelatin hydrogel dressings for diabetic wound healing.

    PubMed

    Yoon, Dong Suk; Lee, Yunki; Ryu, Hyun Aae; Jang, Yeonsue; Lee, Kyoung-Mi; Choi, Yoorim; Choi, Woo Jin; Lee, Moses; Park, Kyung Min; Park, Ki Dong; Lee, Jin Woo

    2016-07-01

    In this study, we developed horseradish peroxidase (HRP)-catalyzed sprayable gelatin hydrogels (GH) as a bioactive wound dressing that can deliver cell-attracting chemotactic cytokines to the injured tissues for diabetic wound healing. We hypothesized that topical administration of chemokines using GH hydrogels might improve wound healing by inducing recruitment of the endogenous cells. Two types of chemokines (interleukin-8; IL-8, macrophage inflammatory protein-3α; MIP-3α) were simply loaded into GH hydrogels during in situ cross-linking, and then their wound-healing effects were evaluated in streptozotocin-induced diabetic mice. The incorporation of chemokines did not affect hydrogels properties including swelling ratio and mechanical stiffness, and the bioactivities of IL-8 and MIP-3α released from hydrogel matrices were stably maintained. In vivo transplantation of chemokine-loaded GH hydrogels facilitated cell infiltration into the wound area, and promoted wound healing with enhanced re-epithelialization/neovascularization and increased collagen deposition, compared with no treatment or the GH hydrogel alone. Based on our results, we suggest that cell-recruiting chemokine-loaded GH hydrogel dressing can serve as a delivery platform of various therapeutic proteins for wound healing applications. Despite development of materials combined with therapeutic agents for diabetic wound treatment, impaired wound healing by insufficient chemotactic responses still remain as a significant problem. In this study, we have developed enzyme-catalyzed gelatin (GH) hydrogels as a sprayable dressing material that can deliver cell-attracting chemokines for diabetic wound healing. The chemotactic cytokines (IL-8 and MIP-3α) were simply loaded within hydrogel during in situ gelling, and wound healing efficacy of chemokine-loaded GH hydrogels was investigated in STZ-induced diabetic mouse model. These hydrogels significantly promoted wound-healing efficacy with faster wound closure, neovascularization, and thicker granulation. Therefore, we expect that HRP-catalyzed in situ forming GH hydrogels can serve as an injectable/sprayable carrier of various therapeutic agents for wound healing applications. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  15. Injectable calcium phosphate with hydrogel fibers encapsulating induced pluripotent, dental pulp and bone marrow stem cells for bone repair

    PubMed Central

    Wang, Lin; Zhang, Chi; Li, Chunyan; Weir, Michael D.; Wang, Ping; Reynolds, Mark A.; Zhao, Liang; Xu, Hockin H.K.

    2017-01-01

    Human induced pluripotent stem cell-derived mesenchymal stem cells (hiPSC-MSCs), dental pulp stem cells (hDPSCs) and bone marrow MSCs (hBMSCs) are exciting cell sources in regenerative medicine. However, there has been no report comparing hDPSCs, hBMSCs and hiPSC-MSCs for bone engineering in an injectable calcium phosphate cement (CPC) scaffold. The objectives of this study were to: (1) develop a novel injectable CPC containing hydrogel fibers encapsulating stem cells for bone engineering, and (2) compare cell viability, proliferation and osteogenic differentiation of hDPSCs, hiPSC-MSCs from bone marrow (BM-hiPSC-MSCs) and from foreskin (FS-hiPSC-MSCs), and hBMSCs in CPC for the first time. The results showed that the injection did not harm cell viability. The porosity of injectable CPC was 62%. All four types of cells proliferated and differentiated down the osteogenic lineage inside hydrogel fibers in CPC. hDPSCs, BM-hiPSC-MSCs, and hBMSCs exhibited high alkaline phosphatase, runt-related transcription factor, collagen I, and osteocalcin gene expressions. Cell-synthesized minerals increased with time (p < 0.05), with no significant difference among hDPSCs, BM-hiPSC-MSCs and hBMSCs (p > 0.1). Mineralization by hDPSCs, BM-hiPSC-MSCs, and hBMSCs inside CPC at 14 d was 14-fold that at 1 d. FS-hiPSC-MSCs were inferior in osteogenic differentiation compared to the other cells. In conclusion, hDPSCs, BM-hiPSC-MSCs and hBMSCs are similarly and highly promising for bone tissue engineering; however, FS-hiPSC-MSCs were relatively inferior in osteogenesis. The novel injectable CPC with cell-encapsulating hydrogel fibers may enhance bone regeneration in dental, craniofacial and orthopedic applications. PMID:27612810

  16. Facile preparation of mussel-inspired polyurethane hydrogel and its rapid curing behavior.

    PubMed

    Sun, Peiyu; Wang, Jing; Yao, Xiong; Peng, Ying; Tu, Xiaoxiong; Du, Pengfei; Zheng, Zhen; Wang, Xinling

    2014-08-13

    A facile method was found to incorporate a mussel-inspired adhesive moiety into synthetic polymers, and mussel mimetic polyurethanes were developed as adhesive hydrogels. In these polymers, a urethane backbone was substituted for the polyamide chain of mussel adhesive proteins, and dopamine was appended to mimic the adhesive moiety of adhesive proteins. A series of mussel mimetic polyurethanes were created through a step-growth polymerization based on hexamethylene diisocyanate as a hard segment, PEG having different molecular weights as a soft segment, and lysine-dopamine as a chain extender. Upon a treatment with Fe(3+), the aqueous mussel mimetic polyurethane solutions can be triggered by pH adjustment to form adhesive hydrogels instantaneously; these materials can be used as injectable adhesive hydrogels. Upon a treatment with NaIO4, the mussel mimetic polyurethane solutions can be cured in a controllable period of time. The successful combination of the unique mussel-inspired adhesive moiety with a tunable polyurethane structure can result in a new kind of mussel-inspired adhesive polymers.

  17. Physical gelation of a microfiber suspension.

    NASA Astrophysics Data System (ADS)

    Perazzo, Antonio; Nunes, Janine K.; Guido, Stefano; Stone, Howard A.

    2015-11-01

    Hydrogels are among the most exploited materials in tissue engineering and there is growing interest in injectable hydrogels, especially as applied to surgical adhesives and bioprinting materials. Here we report a method to produce a hydrogel in a desired location by simply extruding a suspension of high aspect ratio and flexible microfibers from a syringe. The mechanism of gel formation is purely physical and based on irreversible entanglements formed by the microfibers under the action of flow. The single microfibers have been produced and finely tailored by microfluidic methods. Shear rheology has been performed in order to get insights on the entanglements, and results show that the formation of entanglements is related to a shear thickening behavior of the suspension, which in turn depends on shear rate and concentration of fibers. When shearing the suspension, highly non-linear viscoelastic behavior is observed and probed by a highly positive first normal stress difference. We also report the hydrogel swelling behavior and its linear viscoelastic properties as obtained by imposing small oscillatory stress to the material.

  18. Calcium ion coordinated dexamethasone supramolecular hydrogel as therapeutic alternative for control of non-infectious uveitis.

    PubMed

    Wu, Wei; Zhang, Zhaoliang; Xiong, Taotao; Zhao, Wenguang; Jiang, Rou; Chen, Hao; Li, Xingyi

    2017-10-01

    Supramolecular hydrogels formed by the self-assembly of therapeutic agents have received considerable attention due to their high drug payload and carrier-free features. Herein, we constructed a dexamethasone sodium phosphate (Dex) supramolecular hydrogel in combination with Dex and calcium ion (Ca 2+ ) and further demonstrated its therapeutic efficacy in the control of ocular inflammation. The developed supramolecular hydrogel was thoroughly characterized by rheology, TEM, FTIR and XRD. Calcium ions and Dex concentration had a marked influence on the sol-gel transition behaviour of hydrogel and the proposed Dex supramolecular hydrogel displayed thixotropic properties. The drug release rate from Dex supramolecular hydrogel was dependent on the Ca 2+ concentration. In comparison with Dex aqueous solution, single intravitreal injections of Dex supramolecular hydrogel up to 30μg/eye were well tolerated without causing undesirable complications of fundus blood vessel tortuosity and lens opacity, as indicated by electroretinograms (ERGs), fundus photography and histopathology. Moreover, the administration by Dex supramolecular hydrogel exhibited a comparable anti-inflammatory efficacy to native Dex solution on an experimental autoimmune uveitis (EAU) model induced in Lewis rats with IRBP peptide and the therapeutic efficacy had in a dosage-dependent manner. Histological observation and cytokines measurements indicated that both Dex solution and Dex supramolecular hydrogel (30μg/eye) treatment could significantly attenuate the inflammatory response in both anterior and posterior chambers via the downregulation of Th1 and Th17 effector responses. All these data suggested that the developed Dex supramolecular hydrogel might be a therapeutic alternative for non-infectious uveitis with minimal risk of the induction of lens opacity and fundus blood vessel tortuosity. A facile ionic cross-linking strategy was exploited to construct a dexamethasone sodium phosphate (Dex) supramolecular hydrogel composed of Dex and calcium ion. Intravitreal injection of Dex hydrogel displayed excellent intraocular biocompatibility without causing the complications of fundus blood vessel tortuosity and lens opacity. More importantly, the proposed Dex hydrogel exhibited a comparative anti-inflammatory response to native Dex formulation on an experimental autoimmune uveitis (EAU) model via the downregulation of Th1 and Th17 effector responses. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  19. Biocompatibility and in vivo degradation of chitosan based hydrogels as potential drug carrier.

    PubMed

    Su, Feng; Wang, Yuandou; Liu, Xue; Shen, Xin; Zhang, Xingjian; Xing, Quansheng; Wang, Lihong; Chen, Yangsheng

    2018-06-07

    Carboxymethyl chitosan-graft-polylactide (CMCS-PLA) and carboxymethyl chitosan (CMCS) hydrogels were prepared by using 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride/N-hydroxysuccinimide (EDC/NHS) as crosslinking agent and catalyst at room temperature. The biocompatibility of the hydrogels was evaluated with the aim of assessing their potential as drug carrier. Various aspects of biocompatibility were considered, including MTT assay, agar diffusion test, release of lactate dehydrogenase (LDH), hemolytic test, plasma recalcification time (PRT), and dynamic clotting time. MTT assay showed that the cytotoxicity level of both hydrogels to L-929 cells was 0 or 1. The LDH release of CMCS and CMCS-PLA was 26 and 29%, respectively, which is slightly higher than that of the negative control (21%) and much lower than that of the negative control (87%). The hemolysis ratio of CMCS and CMCS-PLA was 1.4 and 1.7%, respectively, suggesting outstanding anti-hemolysis properties of both materials. The PRT value of CMCS and CMCS-PLA was higher by 77 and 99% than the value of the positive control. All the results revealed that the hydrogels present good cytocompatibility and hemocompatibility in vitro. In vivo degradation and tissue compatibility were evaluated by subcutaneous injection in the dorsal area of rats. CMCS and CMCS-PLA hydrogels were completely degraded and the inflammatory response also completely disappeared around hydrogels after 19 days in vivo. It is thus concluded that hydrogels formed of CMCS and CMCS-PLA with outstanding biocompatibility are promising as potential drug carrier.

  20. Exploration of the nature of a unique natural polymer-based thermosensitive hydrogel.

    PubMed

    Lu, Shanling; Yang, Yuhong; Yao, Jinrong; Shao, Zhengzhong; Chen, Xin

    2016-01-14

    The chitosan (CS)/β-glycerol phosphate (GP) system is a heat induced gelling system with a promising potential application, such as an injectable biomedical material. Unlike most thermosensitive gelling systems, the CS/GP system is only partially reversible. That is once the hydrogel is fully matured, it only softens but cannot go back to its initial liquid state when cooled down. Here, we perform both the small and large amplitude oscillatory shear (SAOS and LAOS) tests on the fully matured CS/GP hydrogel samples at a variety of temperatures within the cooling process. The purpose of such tests is to investigate the structural change of the hydrogel network and thus to understand the possible gelation mechanism of this unique thermosensitive hydrogel. From the LAOS results and the further analysis with the Chebyshev expansion method, it shows that the CS/GP hydrogel is composed of a colloidal network dominated by hydrophobic interactions at high temperature, and gradually turns into a flexible network dominated by hydrogen bonding when the temperature goes down. Therefore, we may conclude that LOAS is a powerful tool to study the nonlinear behaviour of a polymer system that is closely related to its structure, and as a practical example, we achieve a clearer vision on the gelation mechanism of the unique CS/GP thermosensitive hydrogel on the basis of considerable previous studies and assumptions in this laboratory and other research groups.

  1. Molecular imprinted hydrogel polymer (MIHP) as microbial immobilization media in artificial produced water treatment

    NASA Astrophysics Data System (ADS)

    Kardena, E.; Ridhati, S. L.; Helmy, Q.

    2018-01-01

    Produced water generated during oil and gas exploration and drilling, consists of many chemicals which used in drilling process. The production of produced water is over three fold of the oil production. The water-cut has increased over time and continues to do so because the fraction of oil in the reservoir decreases and it is more difficult to get the oil out from an old oil-field. It therefore requires more sea water to be injected in order to force the oil out; hence more produced water is generated. Produced water can pollute the environment if it is not treated properly. In this research, produced water will be treated biologically using bacterial consortium which is isolated from petroleum processing facility with Molecular Imprinted Hydrogel Polymer (MIHP) for microbial immobilization media. Microbial growth rate is determined by measuring the MLVSS and hydrogel mass, also by SEM-EDS analysis. SEM-EDS analysis is an analysis to evidence the presence of microbe trapped in hydrogel, and also to determine the types and weight of the molecules of hydrogel. From this research, suspended microbial growth rate was found at 0.1532/days and attached microbial growth rate was 0.3322/days. Furthermore, based on SEM analysis, microbe is entrapped inside the hydrogel. Effectiveness of microbial degradation activity was determined by measuring organic materials as COD. Based on COD measurement, degradation rate of organic materials in wastewater is 0.3089/days, with maximum COD removal efficiency of 76.67%.

  2. Effects of local application of methylprednisolone delivered by the C/GP-hydrogel on the recovery of facial nerves.

    PubMed

    Chao, Xiuhua; Fan, Zhaomin; Han, Yuechen; Wang, Yan; Li, Jianfeng; Chai, Renjie; Xu, Lei; Wang, Haibo

    2015-01-01

    Local administration of MP delivered by the C/GP-MP-hydrogel can improve the recovery of facial nerve following crush injury. The findings suggested that locally injected MP delivered by C/GP-hydrogel might be a promising treatment for facial nerve damage. In this study, the aim is to assess the effectiveness of locally administrating methylprednisolone(MP) loaded by chitosan-β-glycerophosphate hydrogel (C/GP-hydrogel) on the regeneration of facial nerve crush injury. After the crush of left facial nerves, Wistar rats were randomly divided into four different groups. Then, four different therapies were used to treat the damaged facial nerves. At the 1(st), 2(nd), 3(rd), and 4(th) week after injury, the functional recovery of facial nerves and the morphological changes of facial nerves were assessed. The expression of growth associated protein-43 (GAP-43) protein in the facial nucleus were also evaluated. Locally injected MP delivered by C/GP-hydrogel effectively accelerated the facial functional recovery. In addition, the regenerated facial nerves in the C/GP-MP group were more mature than those in the other groups. The expression of GAP-43 protein was also improved by the MP, especially in the C/GP-MP group.

  3. Injectable bioadhesive hydrogels with innate antibacterial properties

    NASA Astrophysics Data System (ADS)

    Giano, Michael C.; Ibrahim, Zuhaib; Medina, Scott H.; Sarhane, Karim A.; Christensen, Joani M.; Yamada, Yuji; Brandacher, Gerald; Schneider, Joel P.

    2014-06-01

    Surgical site infections cause significant postoperative morbidity and increased healthcare costs. Bioadhesives used to fill surgical voids and support wound healing are typically devoid of antibacterial activity. Here we report novel syringe-injectable bioadhesive hydrogels with inherent antibacterial properties prepared from mixing polydextran aldehyde and branched polyethylenimine. These adhesives kill both Gram-negative and Gram-positive bacteria, while sparing human erythrocytes. An optimal composition of 2.5 wt% oxidized dextran and 6.9 wt% polyethylenimine sets within seconds forming a mechanically rigid (~\

  4. Thermosensitive hydrogels deliver bioactive protein to the vaginal wall

    PubMed Central

    Good, Meadow M.; Montoya, T. Ignacio; Shi, Haolin; Zhou, Jun; Huang, YiHui; Tang, Liping; Acevedo, Jesus F.

    2017-01-01

    The pathophysiology and natural history of pelvic organ prolapse (POP) are poorly understood. Consequently, our approaches to treatment of POP are limited. Alterations in the extracellular matrix components of pelvic support ligaments and vaginal tissue, including collagen and elastin, have been associated with the development of POP in animals and women. Prior studies have shown the protease MMP-9, a key player of ECM degradation, is upregulated in vaginal tissues from both mice and women with POP. On the other hand, fibulin-5, an elastogenic organizer, has been found to inhibit MMP-9 in the vaginal wall. Hence, we hypothesized that prolonged release of fibulin-5 may delay progression of POP. To test the hypothesis, oligo (ethylene glycol)-based thermosensitive hydrogels were fabricated, characterized and then used to deliver fibulin-5 to the vaginal wall and inhibit MMP-9 activity. The results indicate that hydrogels are cell and tissue compatible. The hydrogels also prolong the ½ life of fibulin-5 in cultured vaginal fibroblasts and in the vaginal wall in vivo. Finally, fibulin-5-containing hydrogels resulted in incorporation of fibulin-5 into the vaginal matrix and inhibition of MMP-9 for several weeks after injection. These results support the idea of fibulin-5 releasing hydrogel being developed as a new treatment for POP. PMID:29073153

  5. Application of the HeartLander Crawling Robot for Injection of a Thermally Sensitive Anti-Remodeling Agent for Myocardial Infarction Therapy

    PubMed Central

    Chapman, Michael P.; López González, Jose L.; Goyette, Brina E.; Fujimoto, Kazuro L.; Ma, Zuwei; Wagner, William R.; Zenati, Marco A.; Riviere, Cameron N.

    2011-01-01

    The injection of a mechanical bulking agent into the left ventricular (LV) wall of the heart has shown promise as a therapy for maladaptive remodeling of the myocardium after myocardial infarct (MI). The HeartLander robotic crawler presented itself as an ideal vehicle for minimally-invasive, highly accurate epicardial injection of such an agent. Use of the optimal bulking agent, a thermosetting hydrogel developed by our group, presents a number of engineering obstacles, including cooling of the miniaturized injection system while the robot is navigating in the warm environment of a living patient. We present herein a demonstration of an integrated miniature cooling and injection system in the HeartLander crawling robot, that is fully biocompatible and capable of multiple injections of a thermosetting hydrogel into dense animal tissue while the entire system is immersed in a 37°C water bath. PMID:21096276

  6. Evaluation of an Injectable Thermosensitive Hydrogel As Drug Delivery Implant for Ocular Glaucoma Surgery

    PubMed Central

    Zhao, Feng; Zheng, Qiongjuan; Li, Xiaoning; Luo, Jing; Liu, Ji; Quan, Daping; Ge, Jian

    2014-01-01

    In this study, a biodegradable thermo-sensitive hydrogel from poly(trimethylene carbonate)15-F127-poly(trimethylene carbonate)15 (PTMC15-F127-PTMC15) was designed and evaluated as an injectable implant during ocular glaucoma filtration surgery in vivo and in vitro. Mitomycin C (MMC) was loaded into this hydrogel for controlled released to prolong the efficacy and to reduce the long-term toxicity. The properties of the hydrogel were confirmed using 1H NMR and gel permeation chromatography (GPC). Compared to the Pluronic F127 hydrogel, the PTMC15-F127-PTMC15 hydrogel showed a good solution-gel transition temperature at 37°C, a lower work concentration of 5% w/v and a longer mass loss time of more than 2 weeks. The in vitro study showed that the drug could be released from PTMC15-F127-PTMC15 (5% w/v) hydrogel for up to 16 days with only 57% of drug released in the first day. Moreover, the cell toxicity, which was tested via LDH and ANNEXIN V/PI, decreased within 72 h in human tenon's fibroblast cells (HTFs). The in vivo behavior in a rabbit glaucoma filtration surgery model indicated that this hydrogel loaded with 0.1 mg/ml MMC led to a better functional bleb with a prolonged mean bleb survival time (25.5±2.9 days). The scar tissue formation, new collagen deposition and myofibroblast generation appeared to be reduced upon histological and immunohistochemistry examinations, with no obvious side effects and inflammatory reactions. The in vitro and in vivo results demonstrated that this novel hydrogel is a safe and effective drug delivery candidate in ocular glaucoma surgery. PMID:24950176

  7. Evaluation of an injectable thermosensitive hydrogel as drug delivery implant for ocular glaucoma surgery.

    PubMed

    Xi, Lei; Wang, Tao; Zhao, Feng; Zheng, Qiongjuan; Li, Xiaoning; Luo, Jing; Liu, Ji; Quan, Daping; Ge, Jian

    2014-01-01

    In this study, a biodegradable thermo-sensitive hydrogel from poly(trimethylene carbonate)15-F127-poly(trimethylene carbonate)15 (PTMC15-F127-PTMC15) was designed and evaluated as an injectable implant during ocular glaucoma filtration surgery in vivo and in vitro. Mitomycin C (MMC) was loaded into this hydrogel for controlled released to prolong the efficacy and to reduce the long-term toxicity. The properties of the hydrogel were confirmed using 1H NMR and gel permeation chromatography (GPC). Compared to the Pluronic F127 hydrogel, the PTMC15-F127-PTMC15 hydrogel showed a good solution-gel transition temperature at 37°C, a lower work concentration of 5% w/v and a longer mass loss time of more than 2 weeks. The in vitro study showed that the drug could be released from PTMC15-F127-PTMC15 (5% w/v) hydrogel for up to 16 days with only 57% of drug released in the first day. Moreover, the cell toxicity, which was tested via LDH and ANNEXIN V/PI, decreased within 72 h in human tenon's fibroblast cells (HTFs). The in vivo behavior in a rabbit glaucoma filtration surgery model indicated that this hydrogel loaded with 0.1 mg/ml MMC led to a better functional bleb with a prolonged mean bleb survival time (25.5±2.9 days). The scar tissue formation, new collagen deposition and myofibroblast generation appeared to be reduced upon histological and immunohistochemistry examinations, with no obvious side effects and inflammatory reactions. The in vitro and in vivo results demonstrated that this novel hydrogel is a safe and effective drug delivery candidate in ocular glaucoma surgery.

  8. Preparation, fabrication and biocompatibility of novel injectable temperature-sensitive chitosan/glycerophosphate/collagen hydrogels.

    PubMed

    Song, Kedong; Qiao, Mo; Liu, Tianqing; Jiang, Bo; Macedo, Hugo M; Ma, Xuehu; Cui, Zhanfeng

    2010-10-01

    This paper introduces a novel type of injectable temperature-sensitive chitosan/glycerophosphate/collagen (C/GP/Co) hydrogel that possesses great biocompatibility for the culture of adipose tissue-derived stem cells. The C/GP/Co hydrogel is prepared by mixing 2.2% (v/v) chitosan with 50% (w/w) β-glycerophosphate at different proportions and afterwards adding 2 mg/ml of collagen. The gelation time of the prepared solution at 37°C was found to be of around 12 min. The inner structure of the hydrogel presented a porous spongy structure, as observed by scanning electron microscopy. Moreover, the osmolality of the medium in contact with the hydrogel was in the range of 310-330 mmol kg(-1). These analyses have shown that the C/GP/Co hydrogels are structurally feasible for cell culture, while their biocompatibility was further examined. Human adipose tissue-derived stem cells (ADSCs) were seeded into the developed C/GP and C/GP/Co hydrogels (The ratios of C/GP and C/GP/Co were 5:1 and 5:1:6, respectively), and the cellular growth was periodically observed under an inverted microscope. The proliferation of ADSCs was detected using cck-8 kits, while cell apoptosis was determined by a Live/Dead Viability/Cytotoxicity kit. After 7 days of culture, cells within the C/GP/Co hydrogels displayed a typical adherent cell morphology and good proliferation with very high cellular viability. It was thus demonstrated that the novel C/GP/Co hydrogel herein described possess excellent cellular compatibility, representing a new alternative as a scaffold for tissue engineering, with the added advantage of being a gel at the body's temperature that turns liquid at room temperature.

  9. Foamed oligo(poly(ethylene glycol)fumarate) hydrogels as versatile prefabricated scaffolds for tissue engineering.

    PubMed

    Henke, Matthias; Baumer, Julia; Blunk, Torsten; Tessmar, Joerg

    2014-03-01

    Radically cross-linked hydrogels are frequently used as cell carriers due to their excellent biocompatibility and their tissue-like mechanical properties. Through frequent investigation, PEG-based polymers such as oligo(poly(ethylene glycol)fumarate [OPF] have proven to be especially suitable as cell carriers by encapsulating cells during hydrogel formation. In some cases, NaCl or biodegradable gelatin microparticles were added prior to cross-linking in order to provide space for the proliferating cells, which would otherwise stay embedded in the hydrogel matrix. However, all of these immediate cross-linking procedures involve time consuming sample preparation and sterilization directly before cell culture and often show notable swelling after their preparation. In this study, ready to use OPF-hydrogel scaffolds were prepared by gas foaming, freeze drying, individual packing into bags and subsequent γ-sterilization. The scaffolds could be stored and used "off-the-shelf" without any need for further processing prior to cell culture. Thus the handling was simplified and the sterility of the cell carrier was assured. Further improvement of the gel system was achieved using a two component injectable system, which may be used for homogenous injection molding in order to create individually shaped three dimensional scaffolds. In order to evaluate the suitability of the scaffolds for tissue engineering, constructs were seeded with juvenile bovine chondrocytes and cultured for 28 days. Cross-sections of the respective constructs showed an intense and homogenous red staining of GAG with safranin O, indicating a homogenous cell distribution within the scaffolds and the production of substantial amounts of GAG-rich matrix. Copyright © 2012 John Wiley & Sons, Ltd.

  10. Tailoring the degradation rates of thermally responsive hydrogels designed for soft tissue injection by varying the autocatalytic potential.

    PubMed

    Zhu, Yang; Jiang, Hongbin; Ye, Sang-Ho; Yoshizumi, Tomo; Wagner, William R

    2015-01-01

    The ability to modulate the degradation properties of biomaterials such as thermally responsive hydrogels is desirable when exploring new therapeutic strategies that rely on the temporary presence of a placed scaffold or gel. Here we report a method of manipulating the absorption rate of a poly(N-isopropylacrylamide) ((poly(NIPAAm)) based hydrogel across a wide range (from 1 d to 5 mo) by small alterations in the composition. Relying upon the autocatalytic effect, the degradation of poly(NIPAAm-co-HEMA-co-MAPLA), (HEMA = 2-hydroxyethyl methacrylate; MAPLA = methacrylate-polylactide) was greatly accelerated by adding a fourth monomer methacrylic acid (MAA) at no more than 2 mol% to obtain poly(NIPAAm-co-HEMA-co-MAPLA-co-MAA) (pNHMMj) where j reflects the MAA molar % in the reactant mixture. MAA residue introduction decreased the pH inside the hydrogels and in surrounding buffered solutions. Accelerated degradation positively correlated with MAA content in pNHMMj polymers, putatively by the accelerated cleavage of MAPLA residues to raise the transition temperature of the polymer above body temperature. Physical properties including thermal transition behavior and initial mechanical strength did not vary significantly with MAA content. A rat hindlimb injection model generally reflected the in vitro observation that higher MAA content resulted in more rapid degradation and cellular infiltration. The strategy of tuning the degradation of thermally responsive hydrogels where degradation or solubilization is determined by their polyester components might be applied to other tissue engineering and regenerative medicine applications where designed biomaterial degradation behavior is needed. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Novel injectable gellan gum hydrogel composites incorporating Zn- and Sr-enriched bioactive glass microparticles: High-resolution X-ray microcomputed tomography, antibacterial and in vitro testing.

    PubMed

    Douglas, Timothy E L; Dziadek, Michal; Gorodzha, Svetlana; Lišková, Jana; Brackman, Gilles; Vanhoorne, Valérie; Vervaet, Chris; Balcaen, Lieve; Del Rosario Florez Garcia, Maria; Boccaccini, Aldo R; Weinhardt, Venera; Baumbach, Tilo; Vanhaecke, Frank; Coenye, Tom; Bačáková, Lucie; Surmeneva, Maria A; Surmenev, Roman A; Cholewa-Kowalska, Katarzyna; Skirtach, Andre G

    2018-06-01

    Mineralization of hydrogel biomaterials is desirable to improve their suitability as materials for bone regeneration. In this study, gellan gum (GG) hydrogels were formed by simple mixing of GG solution with bioactive glass microparticles of 45S5 composition, leading to hydrogel formation by ion release from the amorphous bioactive glass microparticles. This resulted in novel injectable, self-gelling composites of GG hydrogels containing 20% bioactive glass. Gelation occurred within 20 min. Composites containing the standard 45S5 bioactive glass preparation were markedly less stiff. X-ray microcomputed tomography proved to be a highly sensitive technique capable of detecting microparticles of diameter approximately 8 μm, that is, individual microparticles, and accurately visualizing the size distribution of bioactive glass microparticles and their aggregates, and their distribution in GG hydrogels. The widely used melt-derived 45S5 preparation served as a standard and was compared with a calcium-rich, sol-gel derived preparation (A2), as well as A2 enriched with zinc (A2Zn5) and strontium (A2Sr5). A2, A2Zn, and A2Sr bioactive glass particles were more homogeneously dispersed in GG hydrogels than 45S5. Composites containing all four bioactive glass preparations exhibited antibacterial activity against methicillin-resistant Staphylococcus aureus. Composites containing A2Zn5 and A2Sr5 bioactive glasses supported the adhesion and growth of osteoblast-like cells and were considerably more cytocompatible than 45S5. All composites underwent mineralization with calcium-deficient hydroxyapatite upon incubation in simulated body fluid. The extent of mineralization appeared to be greatest for composites containing A2Zn5 and 45S5. The results underline the importance of the choice of bioactive glass when preparing injectable, self-gelling composites. Copyright © 2018 John Wiley & Sons, Ltd.

  12. Cooperative Assembly of a Peptide Gelator and Silk Fibroin Afford an Injectable Hydrogel for Tissue Engineering.

    PubMed

    Cheng, Baochang; Yan, Yufei; Qi, Jingjing; Deng, Lianfu; Shao, Zeng-Wu; Zhang, Ke-Qin; Li, Bin; Sun, Ziling; Li, Xinming

    2018-04-18

    Silk fibroin (SF) from Bombyx mori has received increasing interest in biomedical fields, because of its slow biodegradability, good biocompatibility, and low immunogenicity. Although SF-based hydrogels have been studied intensively as a potential matrix for tissue engineering, weak gelation performance and low mechanical strength are major limitations that hamper their widespread applicability. Therefore, searching for new strategies to improve the SF gelation property is highly desirable in tissue engineering research. Herein, we report a facile approach to induce rapid gelation of SF by a small peptide gelator (e.g., NapFF). Following the simple mixing of SF and NapFF in water, a stable hydrogel of SF was obtained in a short time period at physiological pH, and the minimum gelation concentration of SF can reach as low as 0.1%. In this process of gelation, NapFF not only can behave itself as a gelator for supramolecular self-assembly, but also can trigger the conformational transition of the SF molecule from random coil to β-sheet structure via hydrophobic and hydrogen-bonding interactions. More importantly, for the generation of a scaffold with favorable cell-surface interactions, a new peptide gelator (NapFFRGD) with Arg-Gly-Asp (RGD) domain was applied to functionalize SF hydrogel with improved bioactivity for cell adhesion and growth. Following encapsulating the vascular endothelial growth factor (VEGF), the SF gel was subcutaneously injected in mice, and served as an effective matrix to trigger the generation of new blood capillaries in vivo.

  13. High-resolution synchrotron X-ray analysis of bioglass-enriched hydrogels.

    PubMed

    Gorodzha, Svetlana; Douglas, Timothy E L; Samal, Sangram K; Detsch, Rainer; Cholewa-Kowalska, Katarzyna; Braeckmans, Kevin; Boccaccini, Aldo R; Skirtach, Andre G; Weinhardt, Venera; Baumbach, Tilo; Surmeneva, Maria A; Surmenev, Roman A

    2016-05-01

    Enrichment of hydrogels with inorganic particles improves their suitability for bone regeneration by enhancing their mechanical properties, mineralizability, and bioactivity as well as adhesion, proliferation, and differentiation of bone-forming cells, while maintaining injectability. Low aggregation and homogeneous distribution maximize particle surface area, promoting mineralization, cell-particle interactions, and homogenous tissue regeneration. Hence, determination of the size and distribution of particles/particle agglomerates in the hydrogel is desirable. Commonly used techniques have drawbacks. High-resolution techniques (e.g., SEM) require drying. Distribution in the dry state is not representative of the wet state. Techniques in the wet state (histology, µCT) are of lower resolution. Here, self-gelling, injectable composites of Gellan Gum (GG) hydrogel and two different types of sol-gel-derived bioactive glass (bioglass) particles were analyzed in the wet state using Synchrotron X-ray radiation, enabling high-resolution determination of particle size and spatial distribution. The lower detection limit volume was 9 × 10(-5) mm(3) . Bioglass particle suspensions were also studied using zeta potential measurements and Coulter analysis. Aggregation of bioglass particles in the GG hydrogels occurred and aggregate distribution was inhomogeneous. Bioglass promoted attachment of rat mesenchymal stem cells (rMSC) and mineralization. © 2016 Wiley Periodicals, Inc.

  14. Enhanced antitumor effects by docetaxel/LL37-loaded thermosensitive hydrogel nanoparticles in peritoneal carcinomatosis of colorectal cancer

    PubMed Central

    Fan, Rangrang; Tong, Aiping; Li, Xiaoling; Gao, Xiang; Mei, Lan; Zhou, Liangxue; Zhang, Xiaoning; You, Chao; Guo, Gang

    2015-01-01

    Intraperitoneal chemotherapy was explored in clinical trials as a promising strategy to improve the therapeutic effects of chemotherapy. In this work, we developed a biodegradable and injectable drug-delivery system by coencapsulation of docetaxel (Doc) and LL37 peptide polymeric nanoparticles (Doc+LL37 NPs) in a thermosensitive hydrogel system for colorectal peritoneal carcinoma therapy. Firstly, polylactic acid (PLA)-Pluronic L35-PLA (PLA-L35-PLA) was explored to prepare the biodegradable Doc+LL37 NPs using a water-in-oil-in-water double-emulsion solvent-evaporation method. Then, biodegradable and injectable thermosensitive PLA-L64-PLA hydrogel with lower sol–gel transition temperature at around body temperature was also prepared. Transmission electron microscopy revealed that the Doc+LL37 NPs formed with the PLA-L35-PLA copolymer were spherical. Fourier-transform infrared spectra certified that Doc and LL37 were encapsulated successfully. X-ray diffraction diagrams indicated that Doc was encapsulated amorphously. Intraperitoneal administration of Doc+LL37 NPs–hydrogel significantly suppressed the growth of HCT116 peritoneal carcinomatosis in vivo and prolonged the survival of tumor-bearing mice. Our results suggested that Doc+LL37 NPs–hydrogel may have potential clinical applications. PMID:26664119

  15. Chitosan-doxycycline hydrogel: An MMP inhibitor/sclerosing embolizing agent as a new approach to endoleak prevention and treatment after endovascular aneurysm repair.

    PubMed

    Zehtabi, Fatemeh; Ispas-Szabo, Pompilia; Djerir, Djahida; Sivakumaran, Lojan; Annabi, Borhane; Soulez, Gilles; Mateescu, Mircea Alexandru; Lerouge, Sophie

    2017-12-01

    The success of endovascular repair of abdominal aortic aneurysms remains limited due to the development of endoleaks. Sac embolization has been proposed to manage endoleaks, but current embolizing materials are associated with frequent recurrence. An injectable agent that combines vascular occlusion and sclerosing properties has demonstrated promise for the treatment of endoleaks. Moreover, the inhibition of aneurysmal wall degradation via matrix metalloproteinases (MMPs) may further prevent aneurysm progression. Thus, an embolization agent that promotes occlusion, MMP inhibition and endothelial ablation was hypothesized to provide a multi-faceted approach for endoleak treatment. In this study, an injectable, occlusive chitosan (CH) hydrogel containing doxycycline (DOX)-a sclerosant and MMP inhibitor-was developed. Several CH-DOX hydrogel formulations were characterized for their mechanical and sclerosing properties, injectability, DOX release rate, and MMP inhibition. An optimized formulation was assessed for its short-term ability to occlude blood vessels in vivo. All formulations were injectable and gelled rapidly at body temperature. Only hydrogels prepared with 0.075M sodium bicarbonate and 0.08M phosphate buffer as the gelling agent presented sufficient mechanical properties to immediately impede physiological flow. DOX release from this gel was in a two-stage pattern: a burst release followed by a slow continuous release. Released DOX was bioactive and able to inhibit MMP-2 activity in human glioblastoma cells. Preliminary in vivo testing in pig renal arteries showed immediate and delayed embolization success of 96% and 86%, respectively. Altogether, CH-DOX hydrogels appear to be promising new multifunctional embolic agents for the treatment of endoleaks. An injectable embolizing chitosan hydrogel releasing doxycycline (DOX) was developed as the first multi-faceted approach for the occlusion of blood vessels. It combines occlusive properties with DOX sclerosing and MMP inhibition properties, respectively known to prevent recanalization process and to counteract the underlying pathophysiology of vessel wall degradation and aneurysm progression. After drug release, the biocompatible scaffold can be invaded by cells and slowly degrade. Local DOX delivery requires lower drug amount and decreases risks of side effects compared to systemic administration. This new gel could be used for the prevention or treatment of endoleaks after endovascular aneurysm repair, but also for the embolization of other blood vessels such as venous or vascular malformations. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  16. Autonomous osteogenic differentiation of hASCs encapsulated in methacrylated gellan-gum hydrogels.

    PubMed

    Oliveira, Mariana B; Custódio, Catarina A; Gasperini, Luca; Reis, Rui L; Mano, João F

    2016-09-01

    Methacrylated gellan-gum (GG-MA) alone and combined with collagen type I (Coll) is suggested here for the first time as a cell-laden injectable biomaterial for bone regeneration. On-chip high-throughput studies allowed rapidly assessing the suitability of 15 biomaterials/media combinations for the osteodifferentiation of human adipose stem cells (hASCs). Hydrogels composed solely of GG-MA (GG100:0Coll) led hASCs from three different donors into the osteogenic lineage after 21days of cell culture, in the absence of any osteogenic or osteoconductive factors. Hydrogels containing more than 30% of Coll promoted increased cellular proliferation and led hASCs into osteogenic differentiation under basal conditions. Studies using isolated individual hydrogels - excluding eventual on-chip crosstalk - and standard biochemical assays corroborated such findings. The formation of focal adhesions of hASCs on GG100:0Coll hydrogels was verified. We hypothesize that the hydrogels osteogenic effect could be guided by mechanotransduction phenomena. Indeed, the hydrogels showed elastic modulus in ranges previously reported as osteoinductive and the inhibition of the actin-myosin contractility pathway impaired hASCs' osteodifferentiation. GG-MA hydrogels also did not promote hASCs' adipogenesis while used in basal conditions. Overall, GG-MA showed promising properties as an innovative and off-the shelf self-inducing osteogenic injectable biomaterial. Methacrylated gellan gum (GG-MA) is here suggested for the first time as a widely available polysaccharide to easily prepare hydrogels with cell adhesion properties and capability of inducing the autonomous osteogenic differentiation of human adipose-derived stem cells (hASCs). GG-MA was processed as stand-alone hydrogels or in different combinations with collage type I. All hydrogel formulations elicited the osteogenic differentiation of hASCs, independently of the addition of any osteoconductive or osteogenic stimuli, i.e. in basal/growth medium. Effective cellular adhesion to methacrylated gellan gum hydrogels in the absence of any cell-ligand peptide/protein was here proved for the first time. Moreover, we showed that the encapsulated hASCs underwent osteogenic differentiation due to a mechanotransduction phenomenon dependent on the actin-myosin contractility pathway. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  17. In Vitro Characterization of a Stem-Cell-Seeded Triple-Interpenetrating-Network Hydrogel for Functional Regeneration of the Nucleus Pulposus

    PubMed Central

    Smith, Lachlan J.; Gorth, Deborah J.; Showalter, Brent L.; Chiaro, Joseph A.; Beattie, Elizabeth E.; Elliott, Dawn M.; Mauck, Robert L.; Chen, Weiliam

    2014-01-01

    Intervertebral disc degeneration is implicated as a major cause of low-back pain. There is a pressing need for new regenerative therapies for disc degeneration that restore native tissue structure and mechanical function. To that end we investigated the therapeutic potential of an injectable, triple-interpenetrating-network hydrogel comprised of dextran, chitosan, and teleostean, for functional regeneration of the nucleus pulposus (NP) of the intervertebral disc in a series of biomechanical, cytotoxicity, and tissue engineering studies. Biomechanical properties were evaluated as a function of gelation time, with the hydrogel reaching ∼90% of steady-state aggregate modulus within 10 h. Hydrogel mechanical properties evaluated in confined and unconfined compression were comparable to native human NP properties. To confirm containment within the disc under physiological loading, toluidine-blue-labeled hydrogel was injected into human cadaveric spine segments after creation of a nucleotomy defect, and the segments were subjected to 10,000 cycles of loading. Gross analysis demonstrated no implant extrusion, and further, that the hydrogel interdigitated well with native NP. Constructs were next surface-seeded with NP cells and cultured for 14 days, confirming lack of hydrogel cytotoxicity, with the hydrogel maintaining NP cell viability and promoting proliferation. Next, to evaluate the potential of the hydrogel to support cell-mediated matrix production, constructs were seeded with mesenchymal stem cells (MSCs) and cultured under prochondrogenic conditions for up to 42 days. Importantly, the hydrogel maintained MSC viability and promoted proliferation, as evidenced by increasing DNA content with culture duration. MSCs differentiated along a chondrogenic lineage, evidenced by upregulation of aggrecan and collagen II mRNA, and increased GAG and collagen content, and mechanical properties with increasing culture duration. Collectively, these results establish the therapeutic potential of this novel hydrogel for functional regeneration of the NP. Future work will confirm the ability of this hydrogel to normalize the mechanical stability of cadaveric human motion segments, and advance the material toward human translation using preclinical large-animal models. PMID:24410394

  18. Thermoresponsive Copolypeptide Hydrogel Vehicles for Central Nervous System Cell Delivery.

    PubMed

    Zhang, Shanshan; Burda, Joshua E; Anderson, Mark A; Zhao, Ziru; Ao, Yan; Cheng, Yin; Sun, Yi; Deming, Timothy J; Sofroniew, Michael V

    2015-08-10

    Biomaterial vehicles have the potential to facilitate cell transplantation in the central nervous system (CNS). We have previously shown that highly tunable ionic diblock copolypeptide hydrogels (DCH) can provide sustained release of hydrophilic and hydrophobic molecules in the CNS. Here, we show that recently developed non-ionic and thermoresponsive DCH called DCH T exhibit excellent cytocompatibility. Neural stem cell (NSC) suspensions in DCH T were easily injected as liquids at room temperature. DCH T with a viscosity tuned to prevent cell sedimentation and clumping significantly increased the survival of NSC passed through injection cannulae. At body temperature, DCH T self-assembled into hydrogels with a stiffness tuned to that of CNS tissue. After injection in vivo , DCH T significantly increased by three-fold the survival of NSC grafted into healthy CNS. In injured CNS, NSC injected as suspensions in DCH T distributed well in non-neural lesion cores, integrated with healthy neural cells at lesion perimeters and supported regrowing host nerve fibers. Our findings show that non-ionic DCH T have numerous advantageous properties that make them useful tools for in vivo delivery of cells and molecules in the CNS for experimental investigations and potential therapeutic strategies.

  19. Drug depot-anchoring hydrogel: A self-assembling scaffold for localized drug release and enhanced stem cell differentiation.

    PubMed

    Li, Ruixiang; Pang, Zhiqing; He, Huining; Lee, Seungjin; Qin, Jing; Wu, Jian; Pang, Liang; Wang, Jianxin; Yang, Victor C

    2017-09-10

    Localized and long-term delivery of growth factors has been a long-standing challenge for stem cell-based tissue engineering. In the current study, a polymeric drug depot-anchoring hydrogel scaffold was developed for the sustained release of macromolecules to enhance the differentiation of stem cells. Self-assembling peptide (RADA16)-modified drug depots (RDDs) were prepared and anchored to a RADA16 hydrogel. The anchoring effect of RADA16 modification on the RDDs was tested both in vitro and in vivo. It was shown that the in vitro leakage of RDDs from the RADA16 hydrogel was significantly less than that of the unmodified drug depots (DDs). In addition, the in vivo retention of injected hydrogel-incorporated RDDs was significantly longer than that of hydrogel-incorporated unmodified DDs. A model drug, vascular endothelial growth factor (VEGF), was encapsulated in RDDs (V-RDDs) as drug depot that was then anchored to the hydrogel. The release of VEGF could be sustained for 4weeks. Endothelial progenitor cells (EPCs) were cultured on the V-RDDs-anchoring scaffold and enhanced cell proliferation and differentiation were observed, compared with a VEGF-loaded scaffold. Furthermore, this scaffold laden with EPCs promoted neovascularization in an animal model of hind limb ischemia. These results demonstrate that self-assembling hydrogel-anchored drug-loaded RDDs are promising for localized and sustained drug release, and can effectively enhance the proliferation and differentiation of resident stem cells, thus lead to successful tissue regeneration. Copyright © 2017. Published by Elsevier B.V.

  20. Self-Healing Gelatin Hydrogels Cross-Linked by Combining Multiple Hydrogen Bonding and Ionic Coordination.

    PubMed

    Zhang, Guangzhao; Lv, Lei; Deng, Yonghong; Wang, Chaoyang

    2017-06-01

    Self-healing hydrogels have been studied by many researchers via multiple cross-linking approaches including physical and chemical interactions. It is an interesting project in multifunctional hydrogel exploration that a water soluble polymer matrix is cross-linked by combining the ionic coordination and the multiple hydrogen bonds to fabricate self-healing hydrogels with injectable property. This study introduces a general procedure of preparing the hydrogels (termed gelatin-UPy-Fe) cross-linked by both ionic coordination of Fe 3+ and carboxyl group from the gelatin and the quadruple hydrogen bonding interaction from the ureido-pyrimidinone (UPy) dimers. The gelatin-UPy-Fe hydrogels possess an excellent self-healing property. The effects of the ionic coordination of Fe 3+ and quadruple hydrogen bonding of UPy on the formation and mechanical behavior of the prepared hydrogels are investigated. In vitro drug release of the gelatin-UPy-Fe hydrogels is also observed, giving an intriguing glimpse into possible biological applications. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Facilitation of facial nerve regeneration using chitosan-β-glycerophosphate-nerve growth factor hydrogel.

    PubMed

    Chao, Xiuhua; Xu, Lei; Li, Jianfeng; Han, Yuechen; Li, Xiaofei; Mao, YanYan; Shang, Haiqiong; Fan, Zhaomin; Wang, Haibo

    2016-06-01

    Conclusion C/GP hydrogel was demonstrated to be an ideal drug delivery vehicle and scaffold in the vein conduit. Combined use autologous vein and NGF continuously delivered by C/GP-NGF hydrogel can improve the recovery of facial nerve defects. Objective This study investigated the effects of chitosan-β-glycerophosphate-nerve growth factor (C/GP-NGF) hydrogel combined with autologous vein conduit on the recovery of damaged facial nerve in a rat model. Methods A 5 mm gap in the buccal branch of a rat facial nerve was reconstructed with an autologous vein. Next, C/GP-NGF hydrogel was injected into the vein conduit. In negative control groups, NGF solution or phosphate-buffered saline (PBS) was injected into the vein conduits, respectively. Autologous implantation was used as a positive control group. Vibrissae movement, electrophysiological assessment, and morphological analysis of regenerated nerves were performed to assess nerve regeneration. Results NGF continuously released from C/GP-NGF hydrogel in vitro. The recovery rate of vibrissae movement and the compound muscle action potentials of regenerated facial nerve in the C/GP-NGF group were similar to those in the Auto group, and significantly better than those in the NGF group. Furthermore, larger regenerated axons and thicker myelin sheaths were obtained in the C/GP-NGF group than those in the NGF group.

  2. Phonation threshold pressure predictions using viscoelastic properties up to 1,400 Hz of injectables intended for Reinke's space.

    PubMed

    Klemuk, Sarah A; Lu, Xiaoying; Hoffman, Henry T; Titze, Ingo R

    2010-05-01

    Viscoelastic properties of numerous vocal fold injectables have been reported but not at speaking frequencies. For materials intended for Reinke's space, ramifications of property values are of great concern because of their impact on ease of voice onset. Our objectives were: 1) to measure viscoelastic properties of a new nonresorbing carbomer and well-known vocal fold injectables at vocalization frequencies using established and new instrumentation, and 2) to predict phonation threshold pressures using a computer model with intended placement in Reinke's space. Rheology and phonation threshold pressure calculations. Injectables were evaluated with a traditional rotational rheometer and a new piezo-rotary vibrator. Using these data at vocalization frequencies, phonation threshold pressures (PTP) were calculated for each biomaterial, assuming a low dimensional model with supraglottic coupling and adjusted vocal fold length and thickness at each frequency. Results were normalized to a nominal PTP value. Viscoelastic data were acquired at vocalization frequencies as high as 363 to 1,400 Hz for six new carbomer hydrogels, Hylan B, and Extracel intended for vocal fold Reinke's space injection and for Cymetra (lateral injection). Reliability was confirmed with good data overlap when measuring with either rheometer. PTP predictions ranged from 0.001 to 16 times the nominal PTP value of 0.283 kPa. Accurate viscoelastic measurements of vocal fold injectables are now possible at physiologic frequencies. Hylan B, Extracel, and the new carbomer hydrogels should generate easy vocal onset and sustainable vocalization based on their rheologic properties if injected into Reinke's space. Applications may vary depending on desired longevity of implant. Laryngoscope, 2010.

  3. Hydrogels in acellular and cellular strategies for intervertebral disc regeneration.

    PubMed

    Pereira, D R; Silva-Correia, J; Oliveira, J M; Reis, R L

    2013-02-01

    Low back pain is an extremely common illness syndrome that causes patient suffering and disability and requires urgent solutions to improve the quality of life of these patients. Treatment options aimed to regenerate the intervertebral disc (IVD) are still under development. The cellular complexity of IVD, and consequently its fine regulatory system, makes it a challenge to the scientific community. Biomaterials-based therapies are the most interesting solutions to date, whereby tissue engineering and regenerative medicine (TE&RM) strategies are included. By using such strategies, i.e., combining biomaterials, cells, and biomolecules, the ultimate goal of reaching a complete integration between native and neo-tissue can be achieved. Hydrogels are promising materials for restoring IVD, mainly nucleus pulposus (NP). This study presents an overview of the use of hydrogels in acellular and cellular strategies for intervertebral disc regeneration. To better understand IVD and its functioning, this study will focus on several aspects: anatomy, pathophysiology, cellular and biomolecular performance, intrinsic healing processes, and current therapies. In addition, the application of hydrogels as NP substitutes will be addressed due to their similarities to NP mechanical properties and extracellular matrix. These hydrogels can be used in cellular strategies when combined with cells from different sources, or in acellular strategies by performing the functionalization of the hydrogels with biomolecules. In addition, a brief summary of therapies based on simple injection for primary biological repair will be examined. Finally, special emphasis will focus on reviewing original studies reporting on the use of autologous cells and biomolecules such as platelet-rich plasma and their potential clinical applications. Copyright © 2011 John Wiley & Sons, Ltd.

  4. Synthetic Hydrogels for Human Intestinal Organoid Generation and Colonic Wound Repair

    PubMed Central

    Cruz-Acuña, Ricardo; Quirós, Miguel; Farkas, Attila E.; Dedhia, Priya H.; Huang, Sha; Siuda, Dorothée; García-Hernández, Vicky; Miller, Alyssa J.; Spence, Jason R.; Nusrat, Asma; García, Andrés J.

    2017-01-01

    In vitro differentiation of human intestinal organoids (HIOs) from pluripotent stem cells is an unparalleled system for creating complex, multi-cellular 3D structures capable of giving rise to tissue analogous to native human tissue. Current methods for generating HIOs rely on growth in an undefined tumor-derived extracellular matrix (ECM), which severely limits use of organoid technologies for regenerative and translational medicine. Here, we developed a fully defined, synthetic hydrogel based on a four-armed, maleimide-terminated poly(ethylene glycol) macromer that supports robust and highly reproducible in vitro growth and expansion of HIOs such that 3D structures are never embedded in tumor-derived ECM. We also demonstrate that the hydrogel serves as an injectable HIO vehicle that can be delivered into injured intestinal mucosa resulting in HIO engraftment and improved colonic wound repair. Together, these studies show proof-of-concept that HIOs may be used therapeutically to treat intestinal injury. PMID:29058719

  5. Dynamic Coordination of Eu-Iminodiacetate to Control Fluorochromic Response of Polymer Hydrogels to Multistimuli.

    PubMed

    Weng, Gengsheng; Thanneeru, Srinivas; He, Jie

    2018-03-01

    New fluorochromic materials that reversibly change their emission properties in response to their environment are of interest for the development of sensors and light-emitting materials. A new design of Eu-containing polymer hydrogels showing fast self-healing and tunable fluorochromic properties in response to five different stimuli, including pH, temperature, metal ions, sonication, and force, is reported. The polymer hydrogels are fabricated using Eu-iminodiacetate (IDA) coordination in a hydrophilic poly(N,N-dimethylacrylamide) matrix. Dynamic metal-ligand coordination allows reversible formation and disruption of hydrogel networks under various stimuli which makes hydrogels self-healable and injectable. Such hydrogels show interesting switchable ON/OFF luminescence along with the sol-gel transition through the reversible formation and dissociation of Eu-IDA complexes upon various stimuli. It is demonstrated that Eu-containing hydrogels display fast and reversible mechanochromic response as well in hydrogels having interpenetrating polymer network. Those multistimuli responsive fluorochromic hydrogels illustrate a new pathway to make smart optical materials, particularly for biological sensors where multistimuli response is required. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Additive manufacturing of hierarchical injectable scaffolds for tissue engineering.

    PubMed

    Béduer, A; Piacentini, N; Aeberli, L; Da Silva, A; Verheyen, C A; Bonini, F; Rochat, A; Filippova, A; Serex, L; Renaud, P; Braschler, T

    2018-06-05

    We present a 3D-printing technology allowing free-form fabrication of centimetre-scale injectable structures for minimally invasive delivery. They result from the combination of 3D printing onto a cryogenic substrate and optimisation of carboxymethylcellulose-based cryogel inks. The resulting highly porous and elastic cryogels are biocompatible, and allow for protection of cell viability during compression for injection. Implanted into the murine subcutaneous space, they are colonized with a loose fibrovascular tissue with minimal signs of inflammation and remain encapsulation-free at three months. Finally, we vary local pore size through control of the substrate temperature during cryogenic printing. This enables control over local cell seeding density in vitro and over vascularization density in cell-free scaffolds in vivo. In sum, we address the need for 3D-bioprinting of large, yet injectable and highly biocompatible scaffolds and show modulation of the local response through control over local pore size. This work combines the power of 3D additive manufacturing with clinically advantageous minimally invasive delivery. We obtain porous, highly compressible and mechanically rugged structures by optimizing a cryogenic 3D printing process. Only a basic commercial 3D printer and elementary control over reaction rate and freezing are required. The porous hydrogels obtained are capable of withstanding delivery through capillaries up to 50 times smaller than their largest linear dimension, an as yet unprecedented compression ratio. Cells seeded onto the hydrogels are protected during compression. The hydrogel structures further exhibit excellent biocompatibility 3 months after subcutaneous injection into mice. We finally demonstrate that local modulation of pore size grants control over vascularization density in vivo. This provides proof-of-principle that meaningful biological information can be encoded during the 3D printing process, deploying its effect after minimally invasive implantation. Copyright © 2018 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  7. In Situ Forming, Cytocompatible, and Self-Recoverable Tough Hydrogels Based on Dual Ionic and Click Cross-Linked Alginate.

    PubMed

    Ghanian, Mohammad Hossein; Mirzadeh, Hamid; Baharvand, Hossein

    2018-05-14

    A dual cross-linking strategy was developed to answer the urgent need for fatigue-resistant, cytocompatible, and in situ forming tough hydrogels. Clickable, yet calcium-binding derivatives of alginate were synthesized by partial substitution of its carboxyl functionalities with furan, which could come into Diels-Alder click reaction with maleimide end groups of a four arm poly(ethylene glycol) cross-linker. Tuning the cooperative viscoelastic action of transient ionic and permanent click cross-links within the single network of alginate provided a soft tough hydrogel with a set of interesting features: (i) immediate self-recovery under cyclic loading, (ii) highly efficient and autonomous self-healing upon fracture, (iii) in situ forming ability for molding and minimally invasive injection, (iv) capability for viable cell encapsulation, and (v) reactivity for on-demand biomolecule conjugation. The facile strategy is applicable to a wide range of natural and synthetic polymers by introducing the calcium binding and click reacting functional groups and can broaden the use of tough hydrogels in load-bearing, cell-laden applications such as soft tissue engineering and bioactuators.

  8. Functionalizable hydrogel microparticles of tunable size and stiffness for soft-tissue filler applications

    PubMed Central

    Chan, Ka Man Carmen; Li, Randolph H.; Chapman, Joseph W.; Trac, Eric M.; Kobler, James B.; Zeitels, Steven M.; Langer, Robert; Karajanagi, Sandeep S.

    2014-01-01

    Particle size, stiffness and surface functionality are important in determining the injection site, safety and efficacy of injectable soft-tissue fillers. Methods to produce soft injectable biomaterials with controlled particle characteristics are therefore desirable. Here we report a method based on suspension photopolymerization and semi-interpenetrating network (semi-IPN) to synthesize soft, functionalizable, spherical hydrogel microparticles (MP) of independently tunable size and stiffness. MP were prepared using acrylated forms of polyethylene glycol (PEG), gelatin and hyaluronic acid. Semi-IPN MP of PEG-diacrylate and PEG were used to study the effect of process parameters on particle characteristics. The process parameters were systematically varied to produce MP with size ranging from 115 to 515 μm and stiffness ranging from 190 to 1600 Pa. In vitro studies showed that the MP thus prepared were cytocompatible. The ratio and identity of the polymers used to make the semi-IPN MP were varied to control their stiffness and to introduce amine groups for potential functionalization. Slow-release polymeric particles loaded with Rhodamine or dexamethasone were incorporated in the MP as a proof-of-principle of drug incorporation and release from the MP. This work has implications in preparing injectable biomaterials of natural or synthetic polymers for applications as soft-tissue fillers. PMID:24561708

  9. Injectable self inflating hydrogel pellet expanders for the treatment of orbital volume deficiency in congenital microphthalmos: preliminary results with a new therapeutic approach

    PubMed Central

    Schittkowski, M P; Guthoff, R F

    2006-01-01

    Background/aim Children with congenital microphthalmos are usually able to wear an eye prosthesis but the cosmetic aspect is determined by the size of the orbital volume deficiency. Instead of using a ball shaped standard hydrogel expander or a regular orbital implant, which would necessitate enucleation of the microphthalmic eye, this study investigates the feasibility of volume augmentation with injectable pellet expanders, as formerly suggested for acquired anophthalmos in adults only. Method The pellet expander is made from a self inflating hydrogel that takes up water by osmosis (dry state: length 8 mm, diameter 2 mm, volume 0.025 ml; in vitro hydrated state after around 1 day: length 15 mm, diameter 4 mm, volume 0.24 ml; swelling capacity: 9.6‐fold). This report concerns six patients (two girls and four boys) aged between 4 months and 42 months with unilateral microphthalmos who were treated by injection of 4–14 pellet expanders into the retrobulbar orbital tissue. Volume augmentation was 1–3.5 ml. The pellets were injected using a customised trocar and placed behind the microphthalmos directed into the intraconal space. Results The increasing orbital volume was noticeable within 2 days and was confirmed by ultrasonography and magnetic resonance imaging. The final result can be anticipated by the volume augmentation effect produced by the amount of saline solution injected in the orbital apex region. All patients were fitted with an artificial eye, which was subsequently enlarged every 3–5 months. Anophthalmic enophthalmos was fully compensated with this technique. No complications have been encountered to date. Conclusions Orbital volume augmentation with injectable self inflating hydrogel expander pellets is apparently a safe, quick, and minimally invasive technique for various indications in orbital reconstructive surgery—for example, to treat an enophthalmic appearance in microphthalmos and congenital or acquired anophthalmos. PMID:16707526

  10. New perspectives in cell delivery systems for tissue regeneration: natural-derived injectable hydrogels.

    PubMed

    Munarin, Fabiola; Petrini, Paola; Bozzini, Sabrina; Tanzi, Maria Cristina

    2012-09-27

    Natural polymers, because of their biocompatibility, availability, and physico-chemical properties have been the materials of choice for the fabrication of injectable hydrogels for regenerative medicine. In particular, they are appealing materials for delivery systems and provide sustained and controlled release of drugs, proteins, gene, cells, and other active biomolecules immobilized.In this work, the use of hydrogels obtained from natural source polymers as cell delivery systems is discussed. These materials were investigated for the repair of cartilage, bone, adipose tissue, intervertebral disc, neural, and cardiac tissue. Papers from the last ten years were considered, with a particular focus on the advances of the last five years. A critical discussion is centered on new perspectives and challenges in the regeneration of specific tissues, with the aim of highlighting the limits of current systems and possible future advancements.

  11. Evisceration With Injectable Hydrogel Implant in a Rabbit Model.

    PubMed

    Koreen, Irina V; McClintic, Elysa A; Mott, Ryan T; Stanton, Constance; Yeatts, R Patrick

    To determine the safety, durability, and biocompatibility of 2.5% polyacrylamide hydrogel (Aquamid, Specialty European Pharma, Ltd., London, UK) as an injectable viscoelastic implant following evisceration in a rabbit model. The protocol was reviewed and approved by the Wake Forest Institutional Animal Care and Use Committee. Adult New Zealand rabbits underwent cornea-sparing evisceration of the right eye with injection of 2.5% polyacrylamide hydrogel implant. The rabbits were sacrificed after 2 weeks (n = 1), 5 weeks (n = 2), 12 weeks (n = 3), 25 weeks (n = 3), and 1 year (n = 3) to evaluate the implant volume and host reaction to the implant. Both eyes were enucleated and their diameters were measured. The eviscerated eyes were fixed in formalin and processed using routine histopathologic methods to assess inflammatory reaction and vascularization. The implant material was well tolerated with a moderate giant cell reaction seen at 6 weeks that improved over time. Extensive vascularization of the implant was noted starting at 6 weeks. There was excellent maintenance of globe volume that did not diminish over time. The relative diameters of the eviscerated eyes compared with control were 89 ± 6% (mean% ± SD) at 12 weeks (n = 3), 94 ± 2% at 25 weeks (n = 3), and 93 ± 4% at 1 year (n = 3). With further study, injectable 2.5% polyacrylamide hydrogel may provide an excellent alternative to solid orbital implants. The implant material was universally well tolerated and maintained appropriate volume in the orbit for the study period of 1 year. Extensive vascularization of the implant was noted indicating biointegration.

  12. Quality of life after periurethral injection with polyacrylamide hydrogel for stress urinary incontinence.

    PubMed

    Trutnovsky, Gerda; Tamussino, Karl; Greimel, Elfriede; Bjelic-Radisic, Vesna

    2011-03-01

    The purpose of this observational study was to examine the effect of periurethral injections with polyacrylamide hydrogel (PAHG) on quality of life (QoL) in selected patients with stress urinary incontinence (SUI). Fifty-four women with comorbidities or other reasons precluding other surgery received PAHG for SUI. Patient-reported outcomes were assessed with the "Incontinence Outcome Questionnaire" (IOQ) 9 months postoperatively. The IOQ is a 27-item, condition-specific instrument that assesses patient-reported outcomes after incontinence surgery. Forty-two women (78%) completed the questionnaire. Responses ranged from considerable (40%) and slight improvement (21%) to no change (29%) and worsening of symptoms (10%). Periurethral injections with PAHG are likely to provide relief of symptoms and improvement in QoL.

  13. Bioengineering vascularized tissue constructs using an injectable cell-laden enzymatically crosslinked collagen hydrogel derived from dermal extracellular matrix

    PubMed Central

    Kuo, Kuan-Chih; Lin, Ruei-Zeng; Tien, Han-Wen; Wu, Pei-Yun; Li, Yen-Cheng; Melero-Martin, Juan M.; Chen, Ying-Chieh

    2015-01-01

    Tissue engineering promises to restore or replace diseased or damaged tissue by creating functional and transplantable artificial tissues. The development of artificial tissues with large dimensions that exceed the diffusion limitation will require nutrients and oxygen to be delivered via perfusion instead of diffusion alone over a short time period. One approach to perfusion is to vascularize engineered tissues, creating a de novo three-dimensional (3D) microvascular network within the tissue construct. This significantly shortens the time of in vivo anastomosis, perfusion and graft integration with the host. In this study, we aimed to develop injectable allogeneic collagen-phenolic hydroxyl (collagen-Ph) hydrogels that are capable of controlling a wide range of physicochemical properties, including stiffness, water absorption and degradability. We tested whether collagen-Ph hydrogels could support the formation of vascularized engineered tissue graft by human blood-derived endothelial colony-forming cells (ECFCs) and bone marrow-derived mesenchymal stem cells (MSC) in vivo. First, we studied the growth of adherent ECFCs and MSCs on or in the hydrogels. To examine the potential formation of functional vascular networks in vivo, a liquid pre-polymer solution of collagen-Ph containing human ECFCs and MSCs, horseradish peroxidase and hydrogen peroxide was injected into the subcutaneous space or abdominal muscle defect of an immunodeficient mouse before gelation, to form a 3D cell-laden polymerized construct. These results showed that extensive human ECFC-lined vascular networks can be generated within 7 days, the engineered vascular density inside collagen-Ph hydrogel constructs can be manipulated through refinable mechanical properties and proteolytic degradability, and these networks can form functional anastomoses with the existing vasculature to further support the survival of host muscle tissues. Finally, optimized conditions of the cell-laden collagen-Ph hydrogel resulted in not only improving the long-term differentiation of transplanted MSCs into mineralized osteoblasts, but the collagen-Ph hydrogel also improved an increased of adipocytes within the vascularized bioengineered tissue in a mouse after 1 month of implantation. PMID:26348142

  14. A Hyaluronan-Based Injectable Hydrogel Improves the Survival and Integration of Stem Cell Progeny following Transplantation.

    PubMed

    Ballios, Brian G; Cooke, Michael J; Donaldson, Laura; Coles, Brenda L K; Morshead, Cindi M; van der Kooy, Derek; Shoichet, Molly S

    2015-06-09

    The utility of stem cells and their progeny in adult transplantation models has been limited by poor survival and integration. We designed an injectable and bioresorbable hydrogel blend of hyaluronan and methylcellulose (HAMC) and tested it with two cell types in two animal models, thereby gaining an understanding of its general applicability for enhanced cell distribution, survival, integration, and functional repair relative to conventional cell delivery in saline. HAMC improves cell survival and integration of retinal stem cell (RSC)-derived rods in the retina. The pro-survival mechanism of HAMC is ascribed to the interaction of the CD44 receptor with HA. Transient disruption of the retinal outer limiting membrane, combined with HAMC delivery, results in significantly improved rod survival and visual function. HAMC also improves the distribution, viability, and functional repair of neural stem and progenitor cells (NSCs). The HAMC delivery system improves cell transplantation efficacy in two CNS models, suggesting broad applicability. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  15. A Multi-institutional Clinical Trial of Rectal Dose Reduction via Injected Polyethylene-Glycol Hydrogel During Intensity Modulated Radiation Therapy for Prostate Cancer: Analysis of Dosimetric Outcomes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Song, Danny Y., E-mail: dsong2@jhmi.edu; Herfarth, Klaus K.; Uhl, Matthias

    2013-09-01

    Purpose: To characterize the effect of a prostate-rectum spacer on dose to rectum during external beam radiation therapy for prostate cancer and to assess for factors correlated with rectal dose reduction. Methods and Materials: Fifty-two patients at 4 institutions were enrolled into a prospective pilot clinical trial. Patients underwent baseline scans and then were injected with perirectal spacing hydrogel and rescanned. Intensity modulated radiation therapy plans were created on both scans for comparison. The objectives were to establish rates of creation of ≥7.5 mm of prostate-rectal separation, and decrease in rectal V70 of ≥25%. Multiple regression analysis was performed tomore » evaluate the associations between preinjection and postinjection changes in rectal V70 and changes in plan conformity, rectal volume, bladder volume, bladder V70, planning target volume (PTV), and postinjection midgland separation, gel volume, gel thickness, length of PTV/gel contact, and gel left-to-right symmetry. Results: Hydrogel resulted in ≥7.5-mm prostate-rectal separation in 95.8% of patients; 95.7% had decreased rectal V70 of ≥25%, with a mean reduction of 8.0 Gy. There were no significant differences in preinjection and postinjection prostate, PTV, rectal, and bladder volumes. Plan conformities were significantly different before versus after injection (P=.02); plans with worse conformity indexes after injection compared with before injection (n=13) still had improvements in rectal V70. In multiple regression analysis, greater postinjection reduction in V70 was associated with decreased relative postinjection plan conformity (P=.01). Reductions in V70 did not significantly vary by institution, despite significant interinstitutional variations in plan conformity. There were no significant relationships between reduction in V70 and the other characteristics analyzed. Conclusions: Injection of hydrogel into the prostate-rectal interface resulted in dose reductions to rectum for >90% of patients treated. Rectal sparing was statistically significant across a range of 10 to 75 Gy and was demonstrated within the presence of significant interinstitutional variability in plan conformity, target definitions, and injection results.« less

  16. Temperature-responsive in situ nanoparticle hydrogels based on hydrophilic pendant cyclic ether modified PEG-PCL-PEG.

    PubMed

    Feng, Zujian; Zhao, Junqiang; Li, Yin; Xu, Shuxin; Zhou, Junhui; Zhang, Jianhua; Deng, Liandong; Dong, Anjie

    2016-10-20

    Thermo-sensitive injectable hydrogels based on poly(ε-caprolactone)/poly(ethylene glycol) (PCL/PEG) block copolymers have attracted considerable attention for sustained drug release and tissue engineering applications. Previously, we have reported a thermo-sensitive hydrogel of P(CL-co-TOSUO)-PEG-P(CL-co-TOSUO) (PECT) triblock copolymers modified by hydrophilic cyclic ether pendant groups 1,4,8-trioxa-[4.6]spiro-9-undecanone (TOSUO). Unfortunately, the low gel modulus of PECT (only 50-70 Pa) may limit its applications. Herein, another kind of thermogelling triblock copolymer of a pendant cyclic ether-modified caprolactonic poloxamer analog, PEG-P(CL-co-TOSUO)-PEG (PECTE), was successfully prepared by control of the hydrophilicity/hydrophobicity balance and chemical compositions of the copolymers. PECTE powder could directly disperse in water to form a stable nanoparticle (NP) aqueous dispersion and underwent sol-gel-sol transition behavior at a higher concentration with the temperature increasing from ambient or lower temperatures. Significantly, the microstructure parameters (e.g., different chemical compositions of the hydrophobic block and topology) played a critical role in the phase transition behavior. Furthermore, comparison studies on PECTE and PEG-PCL-PEG (PECE) showed that the introduction of pendant cyclic ether groups into PCL blocks could avoid unexpected ahead-of-time gelling of the PECE aqueous solution. In addition, the rheological analysis of PECTE and PECT indicated that the storage modulus of the PECTE hydrogel could be 100 times greater than that of the PECT hydrogel under the same mole ratios of TOSUO/CL and lower molecular weight. Consequently, PECTE thermal hydrogel systems are believed to be promising as in situ gel-forming biomaterials for drug delivery and tissue engineering.

  17. Stimuli-sensitive hydrogels: an excellent carrier for drug and cell delivery.

    PubMed

    Garg, Tarun; Singh, Simranjit; Goyal, Amit Kumar

    2013-01-01

    The stimuli-sensitive hydrogel is an injectable formulation that is used to deliver drugs, cells, and genes into the body. Hydrogels are available in various physical forms such as solid molded, pressed powder matrix, microparticle, coating, or membrane forms. The network structure of hydrogels can be macroporous, microporous, or nonporous. Different categories of biomaterials, such as natural, synthetic, and combinations (e.g., semisynthetic such as natural-natural, natural-synthetic, and synthetic-synthetic polymers), are commonly used in hydrogel preparation. Classification of hydrogels mainly depends upon physical stimuli (temperature, electric fields, solvent composition, light, pressure, sound, and magnetic fields) and chemical or biochemical stimuli (pH, ions, and specific molecular recognition events). Several approaches for the synthesis of hydrogels have been reported, including emulsification, micromolding, photolithography, isostatic ultra high pressure, and microfluidic techniques. Hydrogels provide structural integrity and cellular organization, serve as tissue barriers, act as bioadhesive and drug depots, deliver bioactive agents and cells, and possess unique swelling properties and structures. This review provides a detailed account of the need for development of hydrogels, along with the materials used and techniques adopted to manufacture scaffolds for tissue engineering and for prolonged drug, cell, and gene delivery.

  18. Nerve Cells Decide to Orient inside an Injectable Hydrogel with Minimal Structural Guidance.

    PubMed

    Rose, Jonas C; Cámara-Torres, María; Rahimi, Khosrow; Köhler, Jens; Möller, Martin; De Laporte, Laura

    2017-06-14

    Injectable biomaterials provide the advantage of a minimally invasive application but mostly lack the required structural complexity to regenerate aligned tissues. Here, we report a new class of tissue regenerative materials that can be injected and form an anisotropic matrix with controlled dimensions using rod-shaped, magnetoceptive microgel objects. Microgels are doped with small quantities of superparamagnetic iron oxide nanoparticles (0.0046 vol %), allowing alignment by external magnetic fields in the millitesla order. The microgels are dispersed in a biocompatible gel precursor and after injection and orientation are fixed inside the matrix hydrogel. Regardless of the low volume concentration of the microgels below 3%, at which the geometrical constrain for orientation is still minimum, the generated macroscopic unidirectional orientation is strongly sensed by the cells resulting in parallel nerve extension. This finding opens a new, minimal invasive route for therapy after spinal cord injury.

  19. Assessment of canine vocal fold function after injection of a new biomaterial designed to treat phonatory mucosal scarring.

    PubMed

    Karajanagi, Sandeep S; Lopez-Guerra, Gerardo; Park, Hyoungshin; Kobler, James B; Galindo, Marilyn; Aanestad, Jon; Mehta, Daryush D; Kumai, Yoshihiko; Giordano, Nicholas; d'Almeida, Anthony; Heaton, James T; Langer, Robert; Herrera, Victoria L M; Faquin, William; Hillman, Robert E; Zeitels, Steven M

    2011-03-01

    Most cases of irresolvable hoarseness are due to deficiencies in the pliability and volume of the superficial lamina propria of the phonatory mucosa. By using a US Food and Drug Administration-approved polymer, polyethylene glycol (PEG), we created a novel hydrogel (PEG30) and investigated its effects on multiple vocal fold structural and functional parameters. We injected PEG30 unilaterally into 16 normal canine vocal folds with survival times of 1 to 4 months. High-speed videos of vocal fold vibration, induced by intratracheal airflow, and phonation threshold pressures were recorded at 4 time points per subject. Three-dimensional reconstruction analysis of 11.7 T magnetic resonance images and histologic analysis identified 3 cases wherein PEG30 injections were the most superficial, so as to maximally impact vibratory function. These cases were subjected to in-depth analyses. High-speed video analysis of the 3 selected cases showed minimal to no reduction in the maximum vibratory amplitudes of vocal folds injected with PEG30 compared to the non-injected, contralateral vocal fold. All PEG30-injected vocal folds displayed mucosal wave activity with low average phonation threshold pressures. No significant inflammation was observed on microlaryngoscopic examination. Magnetic resonance imaging and histologic analyses revealed time-dependent resorption of the PEG30 hydrogel by phagocytosis with minimal tissue reaction or fibrosis. The PEG30 hydrogel is a promising biocompatible candidate biomaterial to restore form and function to deficient phonatory mucosa, while not mechanically impeding residual endogenous superficial lamina propria.

  20. Development of thermosensitive chitosan/glicerophospate injectable in situ gelling solutions for potential application in intraoperative fluorescence imaging and local therapy of hepatocellular carcinoma: a preliminary study.

    PubMed

    Salis, Andrea; Rassu, Giovanna; Budai-Szűcs, Maria; Benzoni, Ilaria; Csányi, Erzsébet; Berkó, Szilvia; Maestri, Marcello; Dionigi, Paolo; Porcu, Elena P; Gavini, Elisabetta; Giunchedi, Paolo

    2015-01-01

    Thermosensitive chitosan/glycerophosphate (C/GP) solutions exhibiting sol-gel transition around body temperature were prepared to develop a class of injectable hydrogel platforms for the imaging and loco-regional treatment of hepatocellular carcinoma (HCC). Indocyanine green (ICG) was loaded in the thermosensitive solutions in order to assess their potential for the detection of tumor nodules by fluorescence. The gel formation of these formulations as well as their gelling time, injectability, compactness and resistance of gel structure, gelling temperature, storage conditions, biodegradability, and in vitro dye release behavior were investigated. Ex vivo studies were carried out for preliminary evaluation using an isolated bovine liver. Gel strengths and gelation rates increased with the cross-link density between C and GP. These behaviors are more evident for C/GP solutions, which displayed a gel-like precipitation at 4°C. Furthermore, formulations with the lowest cross-link density between C and GP exhibited the best injectability due to a lower resistance to flow. The loading of the dye did not influence the gelation rate. ICG was not released from the hydrogels because of a strong electrostatic interaction between C and ICG. Ex vivo preliminary studies revealed that these injectable formulations remain in correspondence of the injected site. The developed ICG-loaded hydrogels have the potential for intraoperative fluorescence imaging and local therapy of HCC as embolic agents. They form in situ compact gels and have a good potential for filling vessels and/or body cavities.

  1. Biomimetic hydrogel with tunable mechanical properties for vitreous substitutes.

    PubMed

    Santhanam, Sruthi; Liang, Jue; Struckhoff, Jessica; Hamilton, Paul D; Ravi, Nathan

    2016-10-01

    The vitreous humor of the eye is a biological hydrogel principally composed of collagen fibers interspersed with hyaluronic acid. Certain pathological conditions necessitate its removal and replacement. Current substitutes, like silicone oils and perfluorocarbons, are not biomimetic and have known complications. In this study, we have developed an in situ forming two-component biomimetic hydrogel with tunable mechanical and osmotic properties. The components are gellan, an analogue of collagen, and poly(methacrylamide-co-methacrylate), an analogue of hyaluronic acid; both endowed with thiol side groups. We used response surface methodology to consider seventeen possible hydrogels to determine how each component affects the optical, mechanical, sol-gel transition temperature and swelling properties. The optical and physical properties of the hydrogels were similar to vitreous. The shear storage moduli ranged from 3 to 358Pa at 1Hz and sol-gel transition temperatures from 35.5 to 43°C. The hydrogel had the ability to remain swollen without degradation for four weeks in vitro. Three hydrogels were tested for biocompatibility on primary porcine retinal pigment epithelial cells, human retinal pigment epithelial cells, and fibroblast (3T3/NIH) cells, by electric cell-substrate impedance sensing system. The two-component hydrogels allowed for the tuning and optimizing of mechanical, swelling, and transition temperature to obtain three biocompatible hydrogels with properties similar to the vitreous. Future studies include testing of the optimized hydrogels in animal models for use as a long-term substitute, whose preliminary results are mentioned. Although hydrogels are researched as long-term vitreous substitute, none have advanced sufficiently to reach clinical application. Our work focuses on the development of a novel two component in situ forming hydrogel that bio-mimic the natural vitreous. Our thiol-containing copolymers can be injected as an aqueous solution into the vitreous cavity wherein, at physiological temperature, the rigid component will instantaneously form a physical gel imbedding the random coil copolymer. Upon subsequent oxidation, the two components will form disulfide cross-links and a stable reversible hydrogel capable of providing osmotic pressure to reattach the retina. It may be left in the eye permanently or easily removed by injection of a simple reducing agent to cleave the disulfide bonds, rather than surgery. This contribution is significant because it is expected to provide patients with a much better quality of life by improving surgical outcomes, creating much less post-operative burden, and reducing the need for secondary surgeries. Published by Elsevier Ltd.

  2. Doxorubicin-induced co-assembling nanomedicines with temperature-sensitive acidic polymer and their in-situ-forming hydrogels for intratumoral administration.

    PubMed

    Wan, Jiangshan; Geng, Shinan; Zhao, Hao; Peng, Xiaole; Zhou, Qing; Li, Han; He, Ming; Zhao, Yanbing; Yang, Xiangliang; Xu, Huibi

    2016-08-10

    Doxorubicin (DOX)-induced co-assembling nanomedicines (D-PNAx) with temperature-sensitive PNAx triblock polymers have been developed for regional chemotherapy against liver cancer via intratumoral administration in the present work. Owing to the formation of insoluble DOX carboxylate, D-PNAx nanomedicines showed high drug-loading and entrapment efficacy via a simple mixing of doxorubicin hydrochloride and PNAx polymers. The sustained releasing profile of D-PNA100 nanomedicines indicated that only 9.4% of DOX was released within 1day, and 60% was released during 10days. Based on DOX-induced co-assembling behavior and their temperature sensitive in-situ-forming hydrogels, D-PNA100 nanomedicines showed excellent antitumor activity against H22 tumor using intratumoral administration. In contrast to that by free DOX solution (1.13±0.04 times at 9days) and blank PNA100 (2.11±0.34 times), the tumor volume treated by D-PNA100 had been falling to only 0.77±0.13 times of original tumor volume throughout the experimental period. In vivo biodistribution of DOX indicated that D-PNA100 nanomedicines exhibited much stronger DOX retention in tumor tissues than free DOX solution via intratumoral injection. D-PNA100 nanomedicines were hopeful to be developed as new temperature sensitive in-situ-forming hydrogels via i.t. injection for regional chemotherapy. Copyright © 2016. Published by Elsevier B.V.

  3. Injectable hydrogels for treatment of osteoarthritis - A rheological study.

    PubMed

    von Lospichl, Benjamin; Hemmati-Sadeghi, Shabnam; Dey, Pradip; Dehne, Tilo; Haag, Rainer; Sittinger, Michael; Ringe, Jochen; Gradzielski, Michael

    2017-11-01

    Osteoarthritis (OA) is a disabling condition especially in the elderly population. The current therapeutic approaches do not halt the OA progression or reverse joint damage. In order to overcome the problem of rapid clearance of hyaluronic acid (HA), a standard viscosupplement for OA, we investigated the rheological properties of a relatively non-degradable dendritic polyglycerol sulfate (dPGS) hydrogel to determine a suitable concentration for intra articular injections that mimics HA in terms of its viscoelastic and mechanical properties. To do so, the concentration range from 3.6 to 4.8wt% of dPGS and, as a reference, blends of commercially available HAs (Ostenil ® , GO-ON ® , Synocrom ® Forte and Synvisc ® ), were investigated by means of oscillating and flow rheology, thereby yielding storage (G') and loss modulus (G"), as well as yield stress and shear viscosity. In our rheological experiments we observe a pronounced coupling of the molecular weight and the rheological properties for the HAs. Furthermore, we find the dPGS hydrogel to form more compact networks with increasing concentration. From a broader comparison the current findings suggest that an overall polymer concentration of 4.0wt% dPGS has viscoelastic properties that are comparable to hyaluronic acid in the medically relevant frequency range, where for medical application the dPGS hydrogel has the advantage of being much less easily displaced from its injection place than HA. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Meta-analysis of the ocular biocompatibility of a new multipurpose lens care system.

    PubMed

    Reindel, William; Merchea, Mohinder M; Rah, Marjorie J; Zhang, Lening

    2013-01-01

    The purpose of this paper is to evaluate the biocompatibility of a novel multipurpose solution (MPS) with a dual disinfectant system containing polyaminopropyl biguanide and polyquaternium-1 (Biotrue®) by analysis of biomicroscopy signs and adverse events in six large clinical trials. Data from six consecutive, prospective clinical trials conducted from February 2008 to March 2010 were combined for meta-analysis. Subjects used the new MPS daily for periods of 2 weeks to 6 months. Slit-lamp signs were graded at each follow-up visit using an ordinal scale (0, one; 1, trace; 2, mild; 3, moderate; 4, severe). Analysis for biocompatibility included tracking of greater than grade 2 slit-lamp findings and number of adverse events. A total of 1,567 subjects (3,134 eyes) and 81 clinical investigators participated in the six studies, with 1,499 subjects completing the studies. Based on subject days in the studies, there were 72,904 exposures to the MPS and 7,212 biomicroscopy examinations. The completion rate for the studies was 96.3%. Per observation incidence of any finding greater than grade 2 at the follow-up visits were: corneal staining 0.08%, limbal injection 0.04%, bulbar injection 0.04%, tarsal conjunctiva abnormality 0.09%, and neovascularization 0.01%. There were no other slit-lamp signs greater than grade 2 and no statistically significant difference between hydrogels and silicone hydrogels for any finding. There were no reports of adverse events during the trials. Analysis of over 72,000 daily exposures and 7,212 eye examinations showed that the novel MPS exhibited excellent biocompatibility in subjects using daily wear hydrogel or silicone hydrogel lenses.

  5. Injectable biodegradable temperature-responsive PLGA-PEG-PLGA copolymers: synthesis and effect of copolymer composition on the drug release from the copolymer-based hydrogels.

    PubMed

    Qiao, Mingxi; Chen, Dawei; Ma, Xichen; Liu, Yanjun

    2005-04-27

    Injectable biodegradable temperature-responsive poly(DL-lactide-co-glycolide-b-ethylene glycol-b-DL-lactide-co-glycolide) (PLGA-PEG-PLGA) triblock copolymers with DL-lactide/glycolide molar ratio ranging from 6/1 to 15/l were synthesized from monomers of DL-lactide, glycolide and polyethylene glycol and characterized by 1H NMR. The resulting copolymers are soluble in water to form free flowing fluid at room temperature but become hydrogels at body temperature. The hydrophobicity of the copolymer increased with the increasing of DL-lactide/glycolide molar ratio. In vitro dissolution studies with two different hydrophobic drugs (5-fluorouracil and indomethacin) were performed to study the effect of DL-lactide/glycolide molar ratio on drug release and to elucidate drug release mechanism. The release mechanism for hydrophilic 5-fluorouracil was diffusion-controlled, while hydrophobic indomethacin showed an biphasic profile comprising of an initial diffusion-controlled stage followed by the hydrogel erosion-dominated stage. The effect of DL-lactide/glycolide molar ratio on drug release seemed to be dependent on the drug release mechanism. It has less effect on the drug release during the diffusion-controlled stage, but significantly affected drug release during the hydrogel erosion-controlled stage. Compared with ReGel system, the synthesized copolymers showed a higher gelation temperature and longer period of drug release. The copolymers can solubilize the hydrophobic indomethacin and the solubility (13.7 mg/ml) was increased 3425-fold compared to that in water (4 microg/ml, 25 degrees C). Two methods of physical mixing method and solvent evaporation method were used for drug solubilization and the latter method showed higher solubilization efficiency.

  6. Concentration-dependent rheological properties of ECM hydrogel for intracerebral delivery to a stroke cavity

    PubMed Central

    Massensini, Andre R.; Ghuman, Harmanvir; Saldin, Lindsey T.; Medberry, Christopher J.; Keane, Timothy J.; Nicholls, Francesca J.; Velankar, Sachin S.; Badylak, Stephen F.; Modo, Michel

    2015-01-01

    Biomaterials composed of mammalian extracellular matrix (ECM) promote constructive tissue remodeling with minimal scar tissue formation in many anatomical sites. However, the optimal shape and form of ECM scaffold for each clinical application can vary markedly. ECM hydrogels have been shown to promote chemotaxis and differentiation of neuronal stem cells, but minimally invasive delivery of such scaffold materials to the central nervous system (CNS) would require an injectable form. These ECM materials can be manufactured to exist in fluid phase at room temperature, while forming hydrogels at body temperature in a concentration-dependent fashion. Implantation into the lesion cavity after a stroke could hence provide a means to support endogenous repair mechanisms. Herein, we characterize the rheological properties of an ECM hydrogel composed of urinary bladder matrix (UBM) that influence its delivery and in vivo interaction with host tissue. There was a notable concentration-dependence in viscosity, stiffness, and elasticity; all characteristics important for minimally invasive intracerebral delivery. An efficient MRI-guided injection with drainage of fluid from the cavity is described to assess in situ hydrogel formation and ECM retention at different concentrations (0, 1, 2, 3, 4, and 8 mg/mL). Only ECM concentrations >3 mg/mL gelled within the stroke cavity. Lower concentrations were not retained within the cavity, but extensive permeation of the liquid phase ECM into the peri-infarct area was evident. The concentration of ECM hydrogel is hence an important factor affecting gelation, host-biomaterial interface, as well intra-lesion distribution. PMID:26318805

  7. Humanized mouse model for assessing the human immune response to xenogeneic and allogeneic decellularized biomaterials.

    PubMed

    Wang, Raymond M; Johnson, Todd D; He, Jingjin; Rong, Zhili; Wong, Michelle; Nigam, Vishal; Behfar, Atta; Xu, Yang; Christman, Karen L

    2017-06-01

    Current assessment of biomaterial biocompatibility is typically implemented in wild type rodent models. Unfortunately, different characteristics of the immune systems in rodents versus humans limit the capability of these models to mimic the human immune response to naturally derived biomaterials. Here we investigated the utility of humanized mice as an improved model for testing naturally derived biomaterials. Two injectable hydrogels derived from decellularized porcine or human cadaveric myocardium were compared. Three days and one week after subcutaneous injection, the hydrogels were analyzed for early and mid-phase immune responses, respectively. Immune cells in the humanized mouse model, particularly T-helper cells, responded distinctly between the xenogeneic and allogeneic biomaterials. The allogeneic extracellular matrix derived hydrogels elicited significantly reduced total, human specific, and CD4 + T-helper cell infiltration in humanized mice compared to xenogeneic extracellular matrix hydrogels, which was not recapitulated in wild type mice. T-helper cells, in response to the allogeneic hydrogel material, were also less polarized towards a pro-remodeling Th2 phenotype compared to xenogeneic extracellular matrix hydrogels in humanized mice. In both models, both biomaterials induced the infiltration of macrophages polarized towards a M2 phenotype and T-helper cells polarized towards a Th2 phenotype. In conclusion, these studies showed the importance of testing naturally derived biomaterials in immune competent animals and the potential of utilizing this humanized mouse model for further studying human immune cell responses to biomaterials in an in vivo environment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Supramolecular Hydrogel from Nanoparticles and Cyclodextrins for Local and Sustained Nanoparticle Delivery.

    PubMed

    Xu, Shuxin; Yin, Li; Xiang, Yuzhang; Deng, Hongzhang; Deng, Liandong; Fan, Hongxia; Tang, Hua; Zhang, Jianhua; Dong, Anjie

    2016-08-01

    Injectable and biodegradable supramolecular hydrogel mPECT NP/α-CD(gel) composed of high-concentration nanoparticle dispersion (≤20% W/V) and α-cyclodextrins (α-CD) are prepared by a two-level physical cross-linking using amphiphilic block polymer methoxy poly(ethylene glycol)-b-poly(ε-caprolactone-co-1,4,8-trioxa[4.6]spiro-9-undecanone) (mPECT) and α-CD. The gelation behavior depends on the concentration of nanoparticles and α-CD. The viscoelasticity and shear thinning of mPECT NP/α-CD(gel) are confirmed. In vitro hydrogel erosion is demonstrated to be mainly a concentration-dependent dissociation process with general release of discrete mPECT nanoparticles about 50 nm that can be easily taken up by cells. The in vitro release behavior can be modulated by changing the concentration of nanoparticles or α-CD. In vitro and in vivo cytotoxicity study demonstrates its biocompatibility and biosafety. Gel formation after subcutaneous injection is also confirmed and mPECT NP/α-CD(gel) shows about 2 weeks retention time. This work validates the potential application for this supramolecular hydrogel in local and sustained delivery of nanoparticles. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Co-delivery of vascular endothelial growth factor and angiopoietin-1 using injectable microsphere/hydrogel hybrid systems for therapeutic angiogenesis.

    PubMed

    Shin, Seung-Hwa; Lee, Jangwook; Ahn, Dong-Gyun; Lee, Kuen Yong

    2013-08-01

    We hypothesized that combined delivery of vascular endothelial growth factor (VEGF) and angiopoietin-1 (Ang-1) using microsphere/hydrogel hybrid systems could enhance mature vessel formation compared with administration of each factor alone. Hybrid delivery systems composed of alginate hydrogels and poly(D,L-lactic-co-glycolic acid) (PLGA) microspheres containing angiogenic factors were prepared. The release behavior of angiogenic factors from hybrid systems was monitored in vitro. The hybrid systems were injected into an ischemic rodent model, and blood vessel formation at the ischemic site was evaluated. The sustained release over 4 weeks of both VEGF and Ang-1 from hybrid systems was achieved in vitro. Co-delivery of VEGF and Ang-1 was advantageous to retain muscle tissues and significantly induced vessel enlargement at the ischemic site, compared to mice treated with either VEGF or Ang-1 alone. Sustained and combined delivery of VEGF and Ang-1 significantly enhances vessel enlargement at the ischemic site, compared with sustained delivery of either factor alone. Microsphere/hydrogel hybrid systems may be a promising vehicle for delivery of multiple drugs for many therapeutic applications.

  10. Noninvasive Assessment of Glycosaminoglycan Production in Injectable Tissue-Engineered Cartilage Constructs Using Magnetic Resonance Imaging

    PubMed Central

    Ramaswamy, Sharan; Uluer, Mehmet C.; Leen, Stephanie; Bajaj, Preeti; Fishbein, Kenneth W.

    2008-01-01

    Abstract The glycosaminoglycan (GAG) content of engineered cartilage is a determinant of biochemical and mechanical quality. The ability to measure the degree to which GAG content is maintained or increases in an implant is therefore of importance in cartilage repair procedures. The gadolinium exclusion magnetic resonance imaging (MRI) method for estimating matrix fixed charge density (FCD) is ideally suited to this. One promising approach to cartilage repair is use of seeded injectable hydrogels. Accordingly, we assess the reliability of measuring GAG content in such a system ex vivo using MRI. Samples of the photo-polymerizable hydrogel, poly(ethylene oxide) diacrylate, were seeded with bovine chondrocytes (∼2.4 million cells/sample). The FCD of the constructs was determined using MRI after 9, 16, 29, 36, 43, and 50 days of incubation. Values were correlated with the results of biochemical determination of GAG from the same samples. FCD and GAG were found to be statistically significantly correlated (R2 = 0.91, p <0.01). We conclude that MRI-derived FCD measurements of FCD in injectable hydrogels reflect tissue GAG content and that this methodology therefore has potential for in vivo monitoring of such constructs. PMID:18620483

  11. Sodium alginate hydrogel-based bioprinting using a novel multinozzle bioprinting system.

    PubMed

    Song, Seung-Joon; Choi, Jaesoon; Park, Yong-Doo; Hong, Soyoung; Lee, Jung Joo; Ahn, Chi Bum; Choi, Hyuk; Sun, Kyung

    2011-11-01

    Bioprinting is a technology for constructing bioartificial tissue or organs of complex three-dimensional (3-D) structure with high-precision spatial shape forming ability in larger scale than conventional tissue engineering methods and simultaneous multiple components composition ability. It utilizes computer-controlled 3-D printer mechanism or solid free-form fabrication technologies. In this study, sodium alginate hydrogel that can be utilized for large-dimension tissue fabrication with its fast gelation property was studied regarding material-specific printing technique and printing parameters using a multinozzle bioprinting system developed by the authors. A sodium alginate solution was prepared with a concentration of 1% (wt/vol), and 1% CaCl(2) solution was used as cross-linker for the gelation. The two materials were loaded in each of two nozzles in the multinozzle bioprinting system that has a total of four nozzles of which the injection speed can be independently controlled. A 3-D alginate structure was fabricated through layer-by-layer printing. Each layer was formed through two phases of printing, the first phase with the sodium alginate solution and the second phase with the calcium chloride solution, in identical printing pattern and speed condition. The target patterns were lattice shaped with 2-mm spacing and two different line widths. The nozzle moving speed was 6.67 mm/s, and the injection head speed was 10 µm/s. For the two different line widths, two injection needles with inner diameters of 260 and 410 µm were used. The number of layers accumulated was five in this experiment. By varying the nozzle moving speed and the injection speed, various pattern widths could be achieved. The feasibility of sodium alginate hydrogel free-form formation by alternate printing of alginate solution and sodium chloride solution was confirmed in the developed multinozzle bioprinting system. © 2011, Copyright the Authors. Artificial Organs © 2011, International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  12. Cartilaginous extracellular matrix-modified chitosan hydrogels for cartilage tissue engineering.

    PubMed

    Choi, Bogyu; Kim, Soyon; Lin, Brian; Wu, Benjamin M; Lee, Min

    2014-11-26

    Cartilaginous extracellular matrix (ECM) components such as type-II collagen (Col II) and chondroitin sulfate (CS) play a crucial role in chondrogenesis. However, direct clinical use of natural Col II or CS as scaffolds for cartilage tissue engineering is limited by their instability and rapid enzymatic degradation. Here, we investigate the incorporation of Col II and CS into injectable chitosan hydrogels designed to gel upon initiation by exposure to visible blue light (VBL) in the presence of riboflavin. Unmodified chitosan hydrogel supported proliferation and deposition of cartilaginous ECM by encapsulated chondrocytes and mesenchymal stem cells. The incorporation of native Col II or CS into chitosan hydrogels further increased chondrogenesis. The incorporation of Col II, in particular, was found to be responsible for the enhanced cellular condensation and chondrogenesis observed in modified hydrogels. This was mediated by integrin α10 binding to Col II, increasing cell-matrix adhesion. These findings demonstrate the potential of cartilage ECM-modified chitosan hydrogels as biomaterials to promote cartilage regeneration.

  13. A thermo- and pH-sensitive hydrogel composed of quaternized chitosan/glycerophosphate.

    PubMed

    Wu, Jie; Su, Zhi-Guo; Ma, Guang-Hui

    2006-06-06

    The quaternized chitosan was synthesized by the reaction of chitosan and glycidyltrimethylammonium chloride (GTMAC) and named as N-[(2-hydroxy-3-trimethylammonium) propyl] chitosan chloride (HTCC). A novel hydrogel system composed of HTCC/glycerophosphate (HTCC/GP) with thermo- and pH-sensitivity was synthesized and used as an intelligent drug carrier. The formulation was solution below or at room temperature, which allowed it injectable and to incorporate living cells, proteins, enzymes or other therapeutic drugs easily. Once the surrounding temperature was up to 37 degrees C, the system was transformed to a non-flowing hydrogel, and the formed hydrogel can release the trapped drug as a function of pH values. The swelling behavior of the system and the release profiles of doxorubicin hydrochloride (DX) as a model drug at different pH values were investigated. At acidic condition the hydrogel dissolved and released drug quickly, while it absorbed water and released drug slowly at neutral or basic conditions. Hydrogel composed of chitosan hydrochloride and glycerophosphate (CS/GP) was also prepared to compare with HTCC/GP hydrogel. The HTCC/GP hydrogel in this study was transparent which made it suitable for some specific uses such as ocular drug formulation.

  14. Injectable hydrogels with high fixed charge density and swelling pressure for nucleus pulposus repair: biomimetic glycosaminoglycan analogues.

    PubMed

    Sivan, S S; Roberts, S; Urban, J P G; Menage, J; Bramhill, J; Campbell, D; Franklin, V J; Lydon, F; Merkher, Y; Maroudas, A; Tighe, B J

    2014-03-01

    The load-bearing biomechanical role of the intervertebral disc is governed by the composition and organization of its major macromolecular components, collagen and aggrecan. The major function of aggrecan is to maintain tissue hydration, and hence disc height, under the high loads imposed by muscle activity and body weight. Key to this role is the high negative fixed charge of its glycosaminoglycan side chains, which impart a high osmotic pressure to the tissue, thus regulating and maintaining tissue hydration and hence disc height under load. In degenerate discs, aggrecan degrades and is lost from the disc, particularly centrally from the nucleus pulposus. This loss of fixed charge results in reduced hydration and loss of disc height; such changes are closely associated with low back pain. The present authors developed biomimetic glycosaminoglycan analogues based on sulphonate-containing polymers. These biomimetics are deliverable via injection into the disc where they polymerize in situ, forming a non-degradable, nuclear "implant" aimed at restoring disc height to degenerate discs, thereby relieving back pain. In vitro, these glycosaminoglycan analogues possess appropriate fixed charge density, hydration and osmotic responsiveness, thereby displaying the capacity to restore disc height and function. Preliminary biomechanical tests using a degenerate explant model showed that the implant adapts to the space into which it is injected and restores stiffness. These hydrogels mimic the role taken by glycosaminoglycans in vivo and, unlike other hydrogels, provide an intrinsic swelling pressure, which can maintain disc hydration and height under the high and variable compressive loads encountered in vivo. Copyright © 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  15. Biofunctionalized aligned microgels provide 3D cell guidance to mimic complex tissue matrices.

    PubMed

    Rose, Jonas C; Gehlen, David B; Haraszti, Tamás; Köhler, Jens; Licht, Christopher J; De Laporte, Laura

    2018-05-01

    Natural healing is based on highly orchestrated processes, in which the extracellular matrix plays a key role. To resemble the native cell environment, we introduce an artificial extracellular matrix (aECM) with the capability to template hierarchical and anisotropic structures in situ, allowing a minimally-invasive application via injection. Synthetic, magnetically responsive, rod-shaped microgels are locally aligned and fixed by a biocompatible surrounding hydrogel, creating a hybrid anisotropic hydrogel (Anisogel), of which the physical, mechanical, and chemical properties can be tailored. The microgels are rendered cell-adhesive with GRGDS and incorporated either inside a cell-adhesive fibrin or bioinert poly(ethylene glycol) hydrogel to strongly interact with fibroblasts. GRGDS-modified microgels inside a fibrin-based Anisogel enhance fibroblast alignment and lead to a reduction in fibronectin production, indicating successful replacement of structural proteins. In addition, YAP-translocation to the nucleus increases with the concentration of microgels, indicating cellular sensing of the overall anisotropic mechanical properties of the Anisogel. For bioinert surrounding PEG hydrogels, GRGDS-microgels are required to support cell proliferation and fibronectin production. In contrast to fibroblasts, primary nerve growth is not significantly affected by the biomodification of the microgels. In conclusion, this approach opens new opportunities towards advanced and complex aECMs for tissue regeneration. Copyright © 2018 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  16. Cell laden hydrogel construct on-a-chip for mimicry of cardiac tissue in-vitro study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghiaseddin, Ali; Pouri, Hossein; Soleimani, Masoud

    Since the leading cause of death are cardiac diseases, engineered heart tissue (EHT) is one of the most appealing topics defined in tissue engineering and regenerative medicine fields. The importance of EHT is not only for heart regeneration but also for in vitro developing of cardiology. Cardiomyocytes could grow and commit more naturally in their microenvironment rather than traditional cultivation. Thus, this research tried to develop a set up on-a-chip to produce EHT based on chitosan hydrogel. Micro-bioreactor was hydrodynamically designed and simulated by COMSOL and produced via soft lithography process. Chitosan hydrogel was also prepared, adjusted, and assessed by XRD,more » FTIR and also its degradation rate and swelling ratio were determined. Finally, hydrogels in which mice cardiac progenitor cells (CPC) were loaded were injected into the micro-device chambers and cultured. Each EHT in every chamber was evaluated separately. Prepared EHTs showed promising results that expanded in them CPCs and work as an integrated syncytium. High cell density culture was the main accomplishment of this study. - Highlights: • An engineered heart tissue in its microenvironment at a perfused micro-bioreactor is proposed. • Cell proliferation of cardiac cells in high cell density is achievable in setup while sacrificing hydrogel is degrading. • 16 distinct heart tissue constructs in each run reduce the time and cost and increase the test results accuracy.« less

  17. Drug delivery systems based on biocompatible imino-chitosan hydrogels for local anticancer therapy.

    PubMed

    Ailincai, Daniela; Tartau Mititelu, Liliana; Marin, Luminita

    2018-11-01

    A series of drug delivery systems were prepared by chitosan hydrogelation with citral in the presence of an antineoplastic drug: 5-fluorouracil. The dynamic covalent chemistry of the imine linkage allowed the obtaining of supramolecular tridimensional architectures in which the drug has been homogenously dispersed. Fourier-transform infrared spectroscopy (FTIR), wide-angle X-ray diffraction (WXRD) and polarized light microscopy (POM) measurements were used in order to follow the hydrogelation and drug encapsulation processes. The ability of the prepared systems to release the drug has been investigated by UV-Vis spectroscopy using a calibration curve and by fitting the results with different mathematic models. To mimic the behavior of the hydrogel matrix in bio-environmental conditions in view of applications, their enzymatic degradability was monitored in the presence of lysozyme. The in vivo side effects of the systems, in terms of their influence on the blood elements, biochemical and immune parameters were monitored on white Swiss mice by intraperitoneal administration of the injectable obtained hydrogels. All the characteristics of the obtained systems, such as micro-porous morphology, uniform drug encapsulation, enzymatic degradability, lack of side effects, other than the one of the drug itself, along with their ability to release the drug in a sustained manner proved that these material meet the requirements for the development of drug delivery systems, making them suitable for being applied in intraperitoneal chemotherapy.

  18. Injectable foams for regenerative medicine.

    PubMed

    Prieto, Edna M; Page, Jonathan M; Harmata, Andrew J; Guelcher, Scott A

    2014-01-01

    The design of injectable biomaterials has attracted considerable attention in recent years. Many injectable biomaterials, such as hydrogels and calcium phosphate cements (CPCs), have nanoscale pores that limit the rate of cellular migration and proliferation. While introduction of macroporosity has been suggested to increase cellular infiltration and tissue healing, many conventional methods for generating macropores often require harsh processing conditions that preclude their use in injectable foams. In recent years, processes such as porogen leaching, gas foaming, and emulsion-templating have been adapted to generate macroporosity in injectable CPCs, hydrogels, and hydrophobic polymers. While some of the more mature injectable foam technologies have been evaluated in clinical trials, there are challenges remaining to be addressed, such as the biocompatibility and ultimate fate of the sacrificial phase used to generate pores within the foam after it sets in situ. Furthermore, while implantable scaffolds can be washed extensively to remove undesirable impurities, all of the components required to synthesize injectable foams must be injected into the defect. Thus, every compound in the foam must be biocompatible and noncytotoxic at the concentrations utilized. As future research addresses these critical challenges, injectable macroporous foams are anticipated to have an increasingly significant impact on improving patient outcomes for a number of clinical procedures. © 2013 Wiley Periodicals, Inc.

  19. Injectable Foams for Regenerative Medicine

    PubMed Central

    Prieto, Edna M.; Page, Jonathan M.; Harmata, Andrew J.

    2013-01-01

    The design of injectable biomaterials has attracted considerable attention in recent years. Many injectable biomaterials, such as hydrogels and calcium phosphate cements, have nanoscale pores that limit the rate of cellular migration and proliferation. While introduction of macroporosity has been suggested to increase cellular infiltration and tissue healing, many conventional methods for generating macropores often require harsh processing conditions that preclude their use in injectable foams. In recent years, processes such as porogen leaching, gas foaming, and emulsion-templating have been adapted to generate macroporosity in injectable calcium phosphate cements, hydrogels, and hydrophobic polymers. While some of the more mature injectable foam technologies have been evaluated in clinical trials, there are challenges remaining to be addressed, such as the biocompatibility and ultimate fate of the sacrificial phase used to generate pores within the foam after it sets in situ. Furthermore, while implantable scaffolds can be washed extensively to remove undesirable impurities, all of the components required to synthesize injectable foams must be injected into the defect. Thus, every compound in the foam must be biocompatible and non-cytotoxic at the concentrations utilized. As future research addresses these critical challenges, injectable macroporous foams are anticipated to have an increasingly significant impact on improving patient outcomes for a number of clinical procedures. PMID:24127230

  20. Thermo-responsive hydroxybutyl chitosan hydrogel as artery intervention embolic agent for hemorrhage control.

    PubMed

    Sun, Guohui; Feng, Chao; Jiang, Changqing; Zhang, Tingting; Bao, Zixian; Zuo, Yajun; Kong, Ming; Cheng, Xiaojie; Liu, Ya; Chen, Xiguang

    2017-12-01

    This work targeted to investigate the potential of thermo-responsive hydroxybutyl chitosan (HBC) hydrogel using as an embolic material for occlusion of selective blood vessels. HBC hydrogel was prepared via an etherification reaction between chitosan (CS) and 1, 2-butene oxide. The hydroxybutyl groups were introduced into CS backbone, which endowed HBC hydrogel with properties of porous structure, favorable hydrophilia and rapid sol-gel interconvertibility. The gelation temperatures and gelation time respectively decreased from 30.7°C to 11.5°C and 79.60±3.19s to 7.70±1.42s at 37°C, with HBC solutions viscoelasticity increased from 3.0% to 7.0%. HBC hydrogel exhibited noncytotoxic to mouse embryo fibroblasts (MEFs) and excellent hemocompatibility with red blood cells (RBCs). After injection HBC solution into rat renal arteries, HBC solution transformed into hydrogel and attached onto blood vessel inner wall tightly, giving immediate blood vessels embolization. Meanwhile, RBCs could aggregate around HBC hydrogel to form moderate coagulation, which was beneficial to avoid hydrogel migration with blood flow. Above results suggested that HBC hydrogel could be applied as a promising embolic agent for hemorrage in the interventional vascular embolization field. Copyright © 2017. Published by Elsevier B.V.

  1. Extracellular matrix hydrogels from decellularized tissues: Structure and function.

    PubMed

    Saldin, Lindsey T; Cramer, Madeline C; Velankar, Sachin S; White, Lisa J; Badylak, Stephen F

    2017-02-01

    Extracellular matrix (ECM) bioscaffolds prepared from decellularized tissues have been used to facilitate constructive and functional tissue remodeling in a variety of clinical applications. The discovery that these ECM materials could be solubilized and subsequently manipulated to form hydrogels expanded their potential in vitro and in vivo utility; i.e. as culture substrates comparable to collagen or Matrigel, and as injectable materials that fill irregularly-shaped defects. The mechanisms by which ECM hydrogels direct cell behavior and influence remodeling outcomes are only partially understood, but likely include structural and biological signals retained from the native source tissue. The present review describes the utility, formation, and physical and biological characterization of ECM hydrogels. Two examples of clinical application are presented to demonstrate in vivo utility of ECM hydrogels in different organ systems. Finally, new research directions and clinical translation of ECM hydrogels are discussed. More than 70 papers have been published on extracellular matrix (ECM) hydrogels created from source tissue in almost every organ system. The present manuscript represents a review of ECM hydrogels and attempts to identify structure-function relationships that influence the tissue remodeling outcomes and gaps in the understanding thereof. There is a Phase 1 clinical trial now in progress for an ECM hydrogel. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  2. The use of injectable sonication-induced silk hydrogel for VEGF165 and BMP-2 delivery for elevation of the maxillary sinus floor

    PubMed Central

    Zhang, Wenjie; Wang, Xiuli; Wang, Shaoyi; Zhao, Jun; Xu, Lianyi; Zhu, Chao; Zeng, Deliang; Chen, Jake; Zhang, Zhiyuan; Kaplan, David L.; Jiang, Xinquan

    2011-01-01

    Sonication-induced silk hydrogels were previously prepared as an injectable bone replacement biomaterial, with a need to improve osteogenic features. Vascular endothelial growth factor (VEGF165) and bone morphogenic protein-2 (BMP-2) are key regulators of angiogenesis and osteogenesis, respectively, during bone regeneration. Therefore, the present study aimed at evaluating in situ forming silk hydrogels as a vehicle to encapsulate dual factors for rabbit maxillary sinus floor augmentation. Sonication-induced silk hydrogels were prepared in vitro and the slow release of VEGF165 and BMP-2 from these silk gels was evaluated by ELISA. For in vivo studies for each time point (4 and 12 weeks), 24 sinus floors elevation surgeries were made bilaterally in 12 rabbits for the following four treatment groups: silk gel (group Silk gel), silk gel/VEGF165 (group VEGF), silk gel/BMP-2 (group BMP-2), silk gel/VEGF165/BMP-2 (group V+B) (n=6 per group). Sequential florescent labeling and radiographic observations were used to record new bone formation and mineralization, along with histological and histomorphometric analysis. At week 4, VEGF165 promoted more tissue infiltration into the gel and accelerated the degradation of the gel material. At this time point, the bone area in group V+B was significantly larger than those in the other three groups. At week 12, elevated sinus floor heights of groups BMP-2 and V+B were larger than those of the Silk gel and VEGF groups, and the V+B group had the largest new bone area among all groups. In addition, a larger blood vessel area formed in the remaining gel areas in groups VEGF and V+B. In conclusion, VEGF165 and BMP-2 released from injectable and biodegradable silk gels promoted angiogenesis and new bone formation, with the two factors demonstrating an additive effect on bone regeneration. These results indicate that silk hydrogels can be used as an injectable vehicle to deliver multiple growth factors in a minimally invasive approach to regenerate irregular bony cavities. PMID:21889205

  3. Soft Contact Lens Wear at Altitude: Effects of Hypoxia

    DTIC Science & Technology

    1988-01-01

    conjunctiva (2). If the edema is severe, breakdown of some and aircraft with cabin pressures equivalent to lower altitudes, of the epithelial cells from...debris, conjunctival injection, and corneal epithelial of hydrogel lenses. International Contact Lens Clinic. 1983. staining, showed heightened...cornea may be severe enough to affect vision stnae accompanying the wearing of hydrogel lenses. Am. J. and preclude wearing soft contact lenses during

  4. Neural stem cells encapsulated in a functionalized self-assembling peptide hydrogel for brain tissue engineering.

    PubMed

    Cheng, Tzu-Yun; Chen, Ming-Hong; Chang, Wen-Han; Huang, Ming-Yuan; Wang, Tzu-Wei

    2013-03-01

    Brain injury is almost irreparable due to the poor regenerative capability of neural tissue. Nowadays, new therapeutic strategies have been focused on stem cell therapy and supplying an appropriate three dimensional (3D) matrix for the repair of injured brain tissue. In this study, we specifically linked laminin-derived IKVAV motif on the C-terminal to enrich self-assembling peptide RADA(16) as a functional peptide-based scaffold. Our purpose is providing a functional self-assembling peptide 3D hydrogel with encapsulated neural stem cells to enhance the reconstruction of the injured brain. The physiochemical properties reported that RADA(16)-IKVAV can self-assemble into nanofibrous morphology with bilayer β-sheet structure and become gelationed hydrogel with mechanical stiffness similar to brain tissue. The in vitro results showed that the extended IKVAV sequence can serve as a signal or guiding cue to direct the encapsulated neural stem cells (NSCs) adhesion and then towards neuronal differentiation. Animal study was conducted in a rat brain surgery model to demonstrate the damage in cerebral neocortex/neopallium loss. The results showed that the injected peptide solution immediately in situ formed the 3D hydrogel filling up the cavity and bridging the gaps. The histological analyses revealed the RADA(16)-IKVAV self-assembling peptide hydrogel not only enhanced survival of encapsulated NSCs but also reduced the formation of glial astrocytes. The peptide hydrogel with IKVAV extended motifs also showed the support of encapsulated NSCs in neuronal differentiation and the improvement in brain tissue regeneration after 6 weeks post-transplantation. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. 3D bioprinting of neural stem cell-laden thermoresponsive biodegradable polyurethane hydrogel and potential in central nervous system repair.

    PubMed

    Hsieh, Fu-Yu; Lin, Hsin-Hua; Hsu, Shan-Hui

    2015-12-01

    The 3D bioprinting technology serves as a powerful tool for building tissue in the field of tissue engineering. Traditional 3D printing methods involve the use of heat, toxic organic solvents, or toxic photoinitiators for fabrication of synthetic scaffolds. In this study, two thermoresponsive water-based biodegradable polyurethane dispersions (PU1 and PU2) were synthesized which may form gel near 37 °C without any crosslinker. The stiffness of the hydrogel could be easily fine-tuned by the solid content of the dispersion. Neural stem cells (NSCs) were embedded into the polyurethane dispersions before gelation. The dispersions containing NSCs were subsequently printed and maintained at 37 °C. The NSCs in 25-30% PU2 hydrogels (∼680-2400 Pa) had excellent proliferation and differentiation but not in 25-30% PU1 hydrogels. Moreover, NSC-laden 25-30% PU2 hydrogels injected into the zebrafish embryo neural injury model could rescue the function of impaired nervous system. However, NSC-laden 25-30% PU1 hydrogels only showed a minor repair effect in the zebrafish model. In addition, the function of adult zebrafish with traumatic brain injury was rescued after implantation of the 3D-printed NSC-laden 25% PU2 constructs. Therefore, the newly developed 3D bioprinting technique involving NSCs embedded in the thermoresponsive biodegradable polyurethane ink offers new possibilities for future applications of 3D bioprinting in neural tissue engineering. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. [The application of cross-linked hyaluronate hydrogel to trabeculectomy].

    PubMed

    Shoji, Nobuyuki; Shimizu, Kimiya; Takahashi, Katsuya; Nemoto, Rika; Kawai, Hiromi; Tomioka, Toshiya

    2004-05-01

    We investigated the possibility of applying cross-linked hyaluronate hydrogel (HA gel) during trabeculectomy in rabbit eyes. 1. We injected 0.9% salt solution (n = 3), Opegan-HI (n = 3), or HA gel (n = 3) into the subconjunctiva to make a follicle, and investigated its size. 2. After making a limbal-based conjunctival flap and a scleral flap, we injected HA gel or 0.9% salt solution into the subconjunctiva of rabbit eyes and sutured each flap (n = 4 each). Three weeks after the operation, we incised the conjunctiva and investigated the case of peeling away the conjunctival flap or the scleral flap. 3. We performed trabeculectomy with and without subconjunctival HA gel (n = 7 and 6, respectively), and compared the reduction of intraocular pressure between the two groups. The results showed that the formation of the follicle was excellent and it was easy to peel away the adhesion. The reduction of intraocular pressure was statistically significant 4 weeks after the operation in which the HA gel was used. It could be useful to apply HA gel in trabeculectomy to prevent adhesion.

  7. Biocompatibility of poloxamer hydrogel as an injectable intraocular lens: a pilot study.

    PubMed

    Kwon, Ji Won; Han, Young Keun; Lee, Woo Jin; Cho, Chong Su; Paik, Seung Joon; Cho, Dong Il; Lee, Jin Hak; Wee, Won Ryang

    2005-03-01

    To induce irreversible gelation of poloxamer, a thermosensitive polymer hydrogel, by using a photoinitiator and ultraviolet (UV) irradiation and to verify the biocompatibility and use of poloxamer as an injectable intraocular lens (IOL) material. Department of Ophthalmology, Seoul National University College of Medicine, Seoul Artificial Eye Center, Clinical Research Institute, Seoul National University Hospital, Seoul, Korea. In 10 rabbits, endocapsular phacoemulsification was performed and a poloxamer-photoinitiator mixture was injected into the capsular bag through a small capsulorhexis site. In 1 eye, the capsulorhexis site was closed with a small plug and the entire eye was irradiated with UV light for 5 minutes. Postoperatively, poloxamer transparency and effect on the conjunctiva, cornea, iris, vitreous, and retina were observed. A mixture comprising 25% poloxamer and 0.01% photoinitiator produced a poloxamer that remained transparent in the lens capsule for up to 6 months. No inflammatory response or toxicity was observed in the conjunctiva, cornea, iris, vitreous, or retina. Poloxamer is a potentially suitable material for an injectable IOL. Further study is needed.

  8. Protein-engineered block-copolymers as stem cell delivery vehicles

    NASA Astrophysics Data System (ADS)

    Heilshorn, Sarah

    2015-03-01

    Stem cell transplantation is a promising therapy for a myriad of debilitating diseases and injuries; however, current delivery protocols are inadequate. Transplantation by direct injection, which is clinically preferred for its minimal invasiveness, commonly results in less than 5% cell viability, greatly inhibiting clinical outcomes. We demonstrate that mechanical membrane disruption results in significant acute loss of viability at clinically relevant injection rates. As a strategy to protect cells from these damaging forces, we show that cell encapsulation within hydrogels of specific mechanical properties will significantly improve viability. Building on these fundamental studies, we have designed a reproducible, bio-resorbable, customizable hydrogel using protein-engineering technology. In our Mixing-Induced Two-Component Hydrogel (MITCH), network assembly is driven by specific and stoichiometric peptide-peptide binding interactions. By integrating protein science methodologies with simple polymer physics models, we manipulate the polypeptide chain interactions and demonstrate the direct ability to tune the network crosslinking density, sol-gel phase behavior, and gel mechanics. This is in contrast to many other physical hydrogels, where predictable tuning of bulk mechanics from the molecular level remains elusive due to the reliance on non-specific and non-stoichiometric chain interactions for network formation. Furthermore, the hydrogel network can be easily modified to deliver a variety of bioactive payloads including growth factors, peptide drugs, and hydroxyapatite nanoparticles. Through a series of in vitro and in vivo studies, we demonstrate that these materials may significantly improve transplanted stem cell retention and function.

  9. Injectable collagen/RGD systems for bone tissue engineering applications.

    PubMed

    Kung, Fu-Chen

    2018-01-01

    Imbalance crosslink density and polymer concentration gradient is formed within the traditional alginate hydrogel using calcium chloride as a crosslinking agent in external gelation for instantaneously process. In this studying, type I collagen (Col I) blended calcium salt form of poly(γ-glutamic acid) (γCaPGA) was mixing with RGD-modified alginate with convenient gelation process and suitable for practical use. The hydrophilicity of the resulting hydrogels was evaluated through swelling tests, water retention capacity tests, and water vapor permeation tests. Mineralization was qualitatively evaluated by alizarin red dyeing at day 14, verifying the deposition of calcium. The in vitro osteogenic differentiation is monitored by determining the early and late osteocalcin (OCN) and osteopontin (OPN) markers with MG63 cells. Obtained results demonstrated that no extremely changes in mechanical properties. After 14 days of culture, hydrogels significantly stimulated OCN/OPN gene expressions and MG63 cell proliferation. Unusually, γCaPGA with RGD-modified alginate appeared better calcium deposition in 14 days than the other. However, addition of Col I can counterpoise RGD effect in blood coagulation and platelet adhesion made the hydrogel more flexibility and selectively in use. This studying provided that non-covalently crosslinked hydrogel by γCaPGA with alginate can be upgrading by RGD and Col I in water uptake capability, obviously effective for MG63 cells and are remarkably biocompatible and exhibited no cytotoxicity. Moreover, results also displayed the injectable process without complicated procedure, have high cost/performance ratio and have great potential for bone regeneration.

  10. Supramolecular gelation of a polymeric prodrug for its encapsulation and sustained release.

    PubMed

    Ma, Dong; Zhang, Li-Ming

    2011-09-12

    A polymeric prodrug, PEGylated indomethacin (MPEG-indo), was prepared and then used to interact with α-cyclodextrin (α-CD) in their aqueous mixed system. This process could lead to the formation of supramolecular hydrogel under mild conditions and simultaneous encapsulation of MPEG-indo in the hydrogel matrix. For the formed supramolecular hydrogel, its gelation kinetics, mechanical strength, shear-thinning behavior and thixotropic response were investigated with respect to the effects of MPEG-indo and α-CD amounts by dynamic and steady rheological tests. Meanwhile, the possibility of using this hydrogel matrix as injectable drug delivery system was also explored. By in vitro release and cell viability tests, it was found that the encapsulated MPEG-indo could exhibit a controlled and sustained release behavior as well as maintain its biological activity.

  11. A new viscosupplement based on partially hydrophobic hyaluronic acid: a comparative study.

    PubMed

    Finelli, Ivana; Chiessi, Ester; Galesso, Devis; Renier, Davide; Paradossi, Gaio

    2011-01-01

    A novel partially hydrophobized derivative of hyaluronic acid (HYADD® 4), containing a low number of C16 side-chains per polysaccharide backbone, provides injectable hydrogels stabilized by side-chain hydrophobic interactions. The rheological properties of Hymovis®, a physical hydrogel based on the hyaluronic acid derivative HYADD® 4, were evaluated using as reference a solution of the parent natural polysaccharide, hyaluronic acid. The rheological measurements were performed both in flow and oscillation regimes at the physiological frequency values of the knee, typically spanning the range from 0.5 Hz (walking frequency) to 3 Hz (running frequency). Moreover, the viscoelastic features of Hymovis® were compared with the market-available viscosupplementation products in view of its use in joint diseases.The different behavior of the investigated materials in crossover frequency measurements and in structure recovery experiments can be explained on the basis of the structural and dynamic properties of the polymeric systems.

  12. Scalable manufacturing of biomimetic moldable hydrogels for industrial applications.

    PubMed

    Yu, Anthony C; Chen, Haoxuan; Chan, Doreen; Agmon, Gillie; Stapleton, Lyndsay M; Sevit, Alex M; Tibbitt, Mark W; Acosta, Jesse D; Zhang, Tony; Franzia, Paul W; Langer, Robert; Appel, Eric A

    2016-12-13

    Hydrogels are a class of soft material that is exploited in many, often completely disparate, industrial applications, on account of their unique and tunable properties. Advances in soft material design are yielding next-generation moldable hydrogels that address engineering criteria in several industrial settings such as complex viscosity modifiers, hydraulic or injection fluids, and sprayable carriers. Industrial implementation of these viscoelastic materials requires extreme volumes of material, upwards of several hundred million gallons per year. Here, we demonstrate a paradigm for the scalable fabrication of self-assembled moldable hydrogels using rationally engineered, biomimetic polymer-nanoparticle interactions. Cellulose derivatives are linked together by selective adsorption to silica nanoparticles via dynamic and multivalent interactions. We show that the self-assembly process for gel formation is easily scaled in a linear fashion from 0.5 mL to over 15 L without alteration of the mechanical properties of the resultant materials. The facile and scalable preparation of these materials leveraging self-assembly of inexpensive, renewable, and environmentally benign starting materials, coupled with the tunability of their properties, make them amenable to a range of industrial applications. In particular, we demonstrate their utility as injectable materials for pipeline maintenance and product recovery in industrial food manufacturing as well as their use as sprayable carriers for robust application of fire retardants in preventing wildland fires.

  13. Scalable manufacturing of biomimetic moldable hydrogels for industrial applications

    NASA Astrophysics Data System (ADS)

    Yu, Anthony C.; Chen, Haoxuan; Chan, Doreen; Agmon, Gillie; Stapleton, Lyndsay M.; Sevit, Alex M.; Tibbitt, Mark W.; Acosta, Jesse D.; Zhang, Tony; Franzia, Paul W.; Langer, Robert; Appel, Eric A.

    2016-12-01

    Hydrogels are a class of soft material that is exploited in many, often completely disparate, industrial applications, on account of their unique and tunable properties. Advances in soft material design are yielding next-generation moldable hydrogels that address engineering criteria in several industrial settings such as complex viscosity modifiers, hydraulic or injection fluids, and sprayable carriers. Industrial implementation of these viscoelastic materials requires extreme volumes of material, upwards of several hundred million gallons per year. Here, we demonstrate a paradigm for the scalable fabrication of self-assembled moldable hydrogels using rationally engineered, biomimetic polymer-nanoparticle interactions. Cellulose derivatives are linked together by selective adsorption to silica nanoparticles via dynamic and multivalent interactions. We show that the self-assembly process for gel formation is easily scaled in a linear fashion from 0.5 mL to over 15 L without alteration of the mechanical properties of the resultant materials. The facile and scalable preparation of these materials leveraging self-assembly of inexpensive, renewable, and environmentally benign starting materials, coupled with the tunability of their properties, make them amenable to a range of industrial applications. In particular, we demonstrate their utility as injectable materials for pipeline maintenance and product recovery in industrial food manufacturing as well as their use as sprayable carriers for robust application of fire retardants in preventing wildland fires.

  14. Scalable manufacturing of biomimetic moldable hydrogels for industrial applications

    PubMed Central

    Yu, Anthony C.; Chen, Haoxuan; Chan, Doreen; Agmon, Gillie; Stapleton, Lyndsay M.; Sevit, Alex M.; Tibbitt, Mark W.; Acosta, Jesse D.; Zhang, Tony; Franzia, Paul W.; Langer, Robert

    2016-01-01

    Hydrogels are a class of soft material that is exploited in many, often completely disparate, industrial applications, on account of their unique and tunable properties. Advances in soft material design are yielding next-generation moldable hydrogels that address engineering criteria in several industrial settings such as complex viscosity modifiers, hydraulic or injection fluids, and sprayable carriers. Industrial implementation of these viscoelastic materials requires extreme volumes of material, upwards of several hundred million gallons per year. Here, we demonstrate a paradigm for the scalable fabrication of self-assembled moldable hydrogels using rationally engineered, biomimetic polymer–nanoparticle interactions. Cellulose derivatives are linked together by selective adsorption to silica nanoparticles via dynamic and multivalent interactions. We show that the self-assembly process for gel formation is easily scaled in a linear fashion from 0.5 mL to over 15 L without alteration of the mechanical properties of the resultant materials. The facile and scalable preparation of these materials leveraging self-assembly of inexpensive, renewable, and environmentally benign starting materials, coupled with the tunability of their properties, make them amenable to a range of industrial applications. In particular, we demonstrate their utility as injectable materials for pipeline maintenance and product recovery in industrial food manufacturing as well as their use as sprayable carriers for robust application of fire retardants in preventing wildland fires. PMID:27911849

  15. Injectable magnetic supramolecular hydrogel with magnetocaloric liquid-conformal property prevents the post-operative recurrence in a breast cancer model.

    PubMed

    Wu, Haoan; Song, Lina; Chen, Ling; Zhang, Wei; Chen, Yi; Zang, Fengchao; Chen, Hong; Ma, Ming; Gu, Ning; Zhang, Yu

    2018-05-03

    Locoregional recurrence of breast cancer after tumor resection represents several clinical challenges. Here, we demonstrate that co-delivery of chemotherapy and thermotherapeutic agents by a magnetic supramolecular hydrogel (MSH) following tumor resection prevents tumor recurrence in a breast cancer mouse model. The self-assembled MSH was designed through the partial inclusion complexation associated with the threading of α-CD on the copolymer moieties on the surface of the PEGylated iron oxide (Fe 3 O 4 ) nanoparticles, which enables shear-thinning injection and controllable thermoreversible gel-sol transition. MSH was injected to the postoperative wound uniformly, which became mobile and perfect match with irregular cavity without blind angle due to the magnetocaloric gel-sol transition when exposed to alternating current magnetic field (ACMF). The magnetic nanoparticle-mediated induction heat during the gel-sol transition process caused the triggered release of dual-encapsulated chemotherapeutic drugs and provided an effect of thermally induced cell damage. The hierarchical structure of the MSH ensured that both hydrophobic and hydrophilic drugs can be loaded and consecutively delivered with different release curves. The hydrogel nanocomposite might provide a potential locally therapeutic approach for the precise treatment of locoregional recurrence of cancer. Tumor recurrence after resection represents several clinical challenges. In this study, we prepared shear-thinning injectable magnetic supramolecular hydrogel (MSH) and demonstrated their therapeutic applications in preventing the post-operative recurrence of breast cancer with facile synthesis and minimally invasive implantation in vivo. MSH was injected to the postoperative wound uniformly, which become mobile and perfect match with irregular cavity without blind angle through magnetocaloric gel-sol transition when exposed to ACMF. The magnetic nanoparticles mediated induction heat during the gel-sol transition process caused the triggered release of dual-encapsulated chemotherapeutic drugs as well as thermally induced cell damage. This study demonstrates that MSH with the controlled administration of combined thermo-chemotherapy exhibit great superiority in terms of preventing post-operation cancer relapse. Copyright © 2018 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  16. Adipose-derived stem cells seeded in Pluronic F-127 hydrogel promotes diabetic wound healing.

    PubMed

    Kaisang, Lin; Siyu, Wang; Lijun, Fan; Daoyan, Pan; Xian, Cory J; Jie, Shen

    2017-09-01

    Chronic nonhealing wound is a multifactorial complication of diabetes that results specifically as a consequence of impaired angiogenesis and currently lacks in effective treatments. Although a stem cell-based therapy may provide a novel treatment to augment diabetic wound healing, inferior cell survival at the diabetic skin wound is one of the key causes that are responsible for the low efficacy of the stem cell therapy. In this work, we used an injectable, biocompatible, and thermosensitive hydrogel Pluronic F-127 to encapsulate allogeneic nondiabetic adipose-derived stem cells (ADSCs) and topically applied the cells to a full-thickness cutaneous wound in the streptozotocin-induced diabetic model in rats. The cells seeded in the hydrogel enhanced angiogenesis (CD31 marker) and promoted the cell proliferation (Ki67 marker) at the wound site and significantly accelerated wound closure, which was accompanied by facilitated regeneration of granulation tissue. Consistently, levels of the messenger RNA expression of key angiogenesis growth factor, vascular endothelial growth factor, and key wound healing growth factor, transforming growth factor beta 1, were also upregulated in the cell-treated wounds when compared with untreated wounds. The results indicated that the transplantation of allogeneic ADSCs via the hydrogel improves the efficiency of cell delivery and optimizes the performance of ADSCs for augmenting diabetic wound healing. In conclusion, this ADSC-based therapy may provide a novel therapeutic strategy for the treatment of nonhealing diabetic foot ulcers. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. An In Vivo Study of Composite Microgels Based on Hyaluronic Acid and Gelatin for the Reconstruction of Surgically Injured Rat Vocal Folds

    ERIC Educational Resources Information Center

    Coppoolse, Jiska M. S.; Van Kooten, T. G.; Heris, Hossein K.; Mongeau, Luc; Li, Nicole Y. K.; Thibeault, Susan L.; Pitaro, Jacob; Akinpelu, Olubunm; Daniel, Sam J.

    2014-01-01

    Purpose: The objective of this study was to investigate local injection with a hierarchically microstructured hyaluronic acid-gelatin (HA-Ge) hydrogel for the treatment of acute vocal fold injury using a rat model. Method: Vocal fold stripping was performed unilaterally in 108 Sprague-Dawley rats. A volume of 25 µl saline (placebo controls),…

  18. Electrochemical immunoassay for tumor markers based on hydrogels.

    PubMed

    Yin, Shuang; Ma, Zhanfang

    2018-05-08

    Hydrogel-based electrochemical immunoassays exhibit a large surface-to-volume ratio, excellent biocompatibility, unique stimuli-responsive behavior, high permeability and hydrophilicity and, thus, have shown great potential in the sensitive and accurate detection of tumor markers. Electrochemical immunosensing techniques for tumor markers based on hydrogels have greatly progressed in recent years. Areas covered: In this review, the authors describe the recent advances of hydrogel-based electrochemical immunosensing interface of tumor markers based on the different functions of hydrogels including conductive, catalytic, redox, stimuli-responsive and antifouling hydrogels. Expert commentary: Hydrogels have been successfully employed in electrochemical immunoassay of tumor markers, which is accountable to their unique properties. For further exploitation of hydrogel-based electrochemical biosensors, more variety of hydrogels need be fabricated with improved functionality.

  19. Transdermal thiol-acrylate polyethylene glycol hydrogel synthesis using near infrared light

    NASA Astrophysics Data System (ADS)

    Chung, Solchan; Lee, Hwangjae; Kim, Hyung-Seok; Kim, Min-Gon; Lee, Luke P.; Lee, Jae Young

    2016-07-01

    Light-induced polymerization has been widely applied for hydrogel synthesis, which conventionally involves the use of ultraviolet or visible light to activate a photoinitiator for polymerization. However, with these light sources, transdermal gelation is not efficient and feasible due to their substantial interactions with biological systems, and thus a high power is required. In this study, we used biocompatible and tissue-penetrating near infrared (NIR) light to remotely trigger a thiol-acrylate reaction for efficient in vivo gelation with good controllability. Our gelation system includes gold nanorods as a photothermal agent, a thermal initiator, diacrylate polyethylene glycol (PEG), and thiolated PEG. Irradiation with a low-power NIR laser (0.3 W cm-2) could induce gelation via a mixed-mode reaction with a small increase in temperature (~5 °C) under the optimized conditions. We also achieved successful transdermal gelation via the NIR-assisted photothermal thiol-acryl reactions. This new type of NIR-assisted thiol-acrylate polymerization provides new opportunities for in situ hydrogel formation for injectable hydrogels and delivery of drugs/cells for various biomedical applications.Light-induced polymerization has been widely applied for hydrogel synthesis, which conventionally involves the use of ultraviolet or visible light to activate a photoinitiator for polymerization. However, with these light sources, transdermal gelation is not efficient and feasible due to their substantial interactions with biological systems, and thus a high power is required. In this study, we used biocompatible and tissue-penetrating near infrared (NIR) light to remotely trigger a thiol-acrylate reaction for efficient in vivo gelation with good controllability. Our gelation system includes gold nanorods as a photothermal agent, a thermal initiator, diacrylate polyethylene glycol (PEG), and thiolated PEG. Irradiation with a low-power NIR laser (0.3 W cm-2) could induce gelation via a mixed-mode reaction with a small increase in temperature (~5 °C) under the optimized conditions. We also achieved successful transdermal gelation via the NIR-assisted photothermal thiol-acryl reactions. This new type of NIR-assisted thiol-acrylate polymerization provides new opportunities for in situ hydrogel formation for injectable hydrogels and delivery of drugs/cells for various biomedical applications. Electronic supplementary information (ESI) available: FE-SEM image of thiol-acrylate hydrogels; UV/Vis spectra of Ellman's assay; the temperature increase during transdermal photothermal hydrogelation. See DOI: 10.1039/c6nr01956k

  20. Matrix Elasticity of Void-Forming Hydrogels Controls Transplanted Stem Cell-Mediated Bone Formation

    PubMed Central

    Huebsch, Nathaniel; Lippens, Evi; Lee, Kangwon; Mehta, Manav; Koshy, Sandeep T; Darnell, Max C; Desai, Rajiv; Madl, Christopher M.; Xu, Maria; Zhao, Xuanhe; Chaudhuri, Ovijit; Verbeke, Catia; Kim, Woo Seob; Alim, Karen; Mammoto, Akiko; Ingber, Donald E.; Duda, Georg N; Mooney, David J.

    2015-01-01

    The effectiveness of stem-cell therapies has been hampered by cell death and limited control over fate1. These problems can be partially circumvented by using macroporous biomaterials that improve the survival of transplanted stem cells and provide molecular cues to direct cell phenotype2–4. Stem cell behavior can also be controlled in vitro by manipulating the elasticity of both porous and non-porous materials5–7, yet translation to therapeutic processes in vivo remains elusive. Here, by developing injectable, void-forming hydrogels that decouple pore formation from elasticity, we show that mesenchymal stem cell (MSC) osteogenesis in vitro, and cell deployment in vitro and in vivo, can be controlled by modifying, respectively, the hydrogel's elastic modulus or its chemistry. When the hydrogels were used to transplant MSCs, the hydrogel's elasticity regulated bone regeneration, with optimal bone formation at 60 kPa. Our findings show that biophysical cues can be harnessed to direct therapeutic stem-cell behaviors in situ. PMID:26366848

  1. Smart Polymeric Hydrogels for Cartilage Tissue Engineering: A Review on the Chemistry and Biological Functions.

    PubMed

    Eslahi, Niloofar; Abdorahim, Marjan; Simchi, Abdolreza

    2016-11-14

    Stimuli responsive hydrogels (SRHs) are attractive bioscaffolds for tissue engineering. The structural similarity of SRHs to the extracellular matrix (ECM) of many tissues offers great advantages for a minimally invasive tissue repair. Among various potential applications of SRHs, cartilage regeneration has attracted significant attention. The repair of cartilage damage is challenging in orthopedics owing to its low repair capacity. Recent advances include development of injectable hydrogels to minimize invasive surgery with nanostructured features and rapid stimuli-responsive characteristics. Nanostructured SRHs with more structural similarity to natural ECM up-regulate cell-material interactions for faster tissue repair and more controlled stimuli-response to environmental changes. This review highlights most recent advances in the development of nanostructured or smart hydrogels for cartilage tissue engineering. Different types of stimuli-responsive hydrogels are introduced and their fabrication processes through physicochemical procedures are reported. The applications and characteristics of natural and synthetic polymers used in SRHs are also reviewed with an outline on clinical considerations and challenges.

  2. Synthesis and characterization of a new photo-crosslinkable glycol chitosan thermogel for biomedical applications.

    PubMed

    Cho, Ik Sung; Cho, Myeong Ok; Li, Zhengzheng; Nurunnabi, Md; Park, Sung Young; Kang, Sun-Woong; Huh, Kang Moo

    2016-06-25

    The major limitations of typical thermogelling polymers for practical applications are low gel stability and weak mechanical properties under physiological conditions. In this study, we have synthesized a new polysaccharide-based thermogelling polymer that can be photo-crosslinked by UV irradiation to form a mechanically resilient and elastic hydrogel. Methacrylated hexanoyl glycol chitosan (M-HGC), was synthesized by a series of chemical modifications, N-hexanoylation and N-methacrylation, of glycol chitosan (GC). Various M-HGC polymers with different methacryl group contents were synthesized and their thermogelling and photo-crosslinkable properties were evaluated. The M-HGCs demonstrated a thermo-reversible sol-gel transition behavior in aqueous solutions. The thermally-induced hydrogels could be chemically crosslinked by UV-triggered photo-crosslinking. From the cytotoxicity studies using MTT and the live/dead assay, the M-HGC hydrogels showed non-cytotoxicity. These photo-crosslinkable thermogelling M-HGC polymers may hold great promises for various biomedical applications, such as an injectable delivery system and 3D cell culture. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Biocompatible Injectable Hydrogel with Potent Wound Healing and Antibacterial Properties.

    PubMed

    Hoque, Jiaul; Prakash, Relekar G; Paramanandham, Krishnamoorthy; Shome, Bibek R; Haldar, Jayanta

    2017-04-03

    Two component injectable hydrogels that cross-link in situ have been used as noninvasive wound-filling devices, i.e., sealants. These materials carry a variety of functions at the wound sites, such as sealing leaks, ceasing unwanted bleeding, binding tissues together, and assisting in wound healing processes. However, commonly used sealants typically lack antibacterial properties. Since bacterial infection at the wound site is very common, bioadhesive materials with intrinsic antibacterial properties are urgently required. Herein, we report a biocompatible injectable hydrogel with inherent bioadhesive, antibacterial, and hemostatic capabilities suitable for wound sealing applications. The hydrogels were developed in situ from an antibacterial polymer, N-(2-hydroxypropyl)-3-trimethylammonium chitosan chloride (HTCC), and a bioadhesive polymer, polydextran aldehyde. The gels were shown to be active against both Gram-positive and Gram-negative bacteria, including drug-resistant ones such as methicillin-resistant Staphylococcus aureus (MRSA), vancomycin-resistant Enterococcus faecium (VRE), and β-lactam-resistant Klebsiela pneumoniae. Mechanistic studies revealed that the gels killed bacteria upon contact by disrupting the membrane integrity of the pathogen. Importantly, the gels were shown to be efficacious in preventing sepsis in a cecum ligation and puncture (CLP) model in mice. While only 12.5% of animals survived in the case of mice with punctured cecam but with no gel on the punctured area (control), 62.5% mice survived when the adhesive gel was applied to the punctured area. Furthermore, the gels were also shown to be effective in facilitating wound healing in rats and ceasing bleeding from a damaged liver in mice. Notably, the gel showed negligible toxicity toward human red blood cells (only 2-3% hemolysis) and no inflammation to the surrounding tissue upon subcutaneous implantation in mice, thus proving it as a safe and effective antibacterial sealant.

  4. Genipin cross-linked type II collagen/chondroitin sulfate composite hydrogel-like cell delivery system induces differentiation of adipose-derived stem cells and regenerates degenerated nucleus pulposus.

    PubMed

    Zhou, Xiaopeng; Wang, Jingkai; Fang, Weijing; Tao, Yiqing; Zhao, Tengfei; Xia, Kaishun; Liang, Chengzhen; Hua, Jianming; Li, Fangcai; Chen, Qixin

    2018-04-15

    Nucleus pulposus (NP) degeneration is usually the origin of intervertebral disc degeneration and consequent lower back pain. Although adipose-derived stem cell (ADSC)-based therapy is regarded to be promising for the treatment of degenerated NP, there is a lack of viable cell carriers to transplant ADSCs into the NP while maintaining cell function. In this study, we developed a type II collagen/chondroitin sulfate (CS) composite hydrogel-like ADSC (CCSA) delivery system with genipin as the cross-linking agent. The induction effect of the scaffold on ADSC differentiation was studied in vitro, and a rat coccygeal vertebrae degeneration model was used to investigate the regenerative effect of the CCSA system on the degenerated NP in vivo. The results showed that the CCSA delivery system cross-linked with 0.02% genipin was biocompatible and promoted the expressions of NP-specific genes. After the injection of the CCSA system, the disc height, water content, extracellular matrix synthesis, and structure of the degenerated NP were partly restored. Our CCSA delivery system uses minimally invasive approaches to promote the regeneration of degenerated NP and provides an exciting new avenue for the treatment of degenerative disc disease. Nucleus pulposus (NP) degeneration is usually the origin of intervertebral disc degeneration and consequent lower back pain. Stem cell-based tissue engineering is a promising method in NP regeneration, but there is a lack of viable cell carriers to transplant ADSCs into the NP while maintaining cell function. In this study, we developed a type II collagen/chondroitin sulfate (CS) composite hydrogel-like ADSC (CCSA) delivery system with genipin as the cross-linking agent. Although several research groups have studied the fabrication of injectable hydrogel with biological matrix, our study differs from other works. We chose type II collagen and CS, the two primary native components in the NP, as the main materials and combined them according to the natural ratio of collagen and sGAG in the NP. The delivery system is preloaded with ADSCs and can be injected into the NP with a needle, followed by in situ gelation. Genipin is used as a cross-linker to improve the bio-stability of the scaffold, with low cytotoxicity. We investigated the stimulatory effects of our scaffold on the differentiation of ADSCs in vitro and the regenerative effect of the CCSA delivery system on degenerated NP in vivo. Copyright © 2018 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  5. Using injectable hydrogel markers to assess resimulation for boost target volume definition in a patient undergoing whole-breast radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patel, Henal; Goyal, Sharad; Kim, Leonard, E-mail: kimlh@rutgers.edu

    Several publications have recommended that patients undergoing whole-breast radiotherapy be resimulated for boost planning. The rationale for this is that the seroma may be smaller when compared with the initial simulation. However, the decision remains whether to use the earlier or later images to define an appropriate boost target volume. A patient undergoing whole-breast radiotherapy had new, injectable, temporary hydrogel fiducial markers placed 1 to 3 cm from the seroma at the time of initial simulation. The patient was resimulated 4.5 weeks later for conformal photon boost planning. Computed tomography (CT) scans acquired at the beginning and the end ofmore » whole-breast radiotherapy showed that shrinkage of the lumpectomy cavity was not matched by a corresponding reduction in the surrounding tissue volume, as demarcated by hydrogel markers. This observation called into question the usual interpretation of cavity shrinkage for boost target definition. For this patient, it was decided to define the boost target volume on the initial planning CT instead of the new CT.« less

  6. Biologically Inspired Electronic, Photovoltaic and Microfluidic Devices Based on Aqueous Soft Matter

    NASA Astrophysics Data System (ADS)

    Koo, Hyung Jun

    Hydrogels are a water-based soft material where three dimensional networks of hydrophilic polymer retain large amounts of water. We developed hydrogel based devices with new functionalities inspired by materials, structures and processes in nature. The advantages, such as softness, biocompatibility and high ionic conductivity, could enable hydrogels to be novel materials for biomimetic devices operated by ionic current. Moreover, microfluidic patterns are easily embedded in moldable hydrogels and allow for unique convective/diffusive transport mechanism in porous gel to be used for uniform delivery of reagent solution. We first developed and characterized a device with unidirectional ionic current flow across a SiO2/Gel junction, which showed highly efficient rectification of the ionic current by non-linear conductivity of SiO2 films. Addition of polyelectrolytes and salt to the gel layer significantly improved the performance of the new diode device because of the enhanced gel conductance. A soft matter based diode composed of hydrogel and liquid metal (eutectic gallium indium, EGaIn) was also presented. The ability to control the thickness, and thus resistivity, of an insulating oxide skin on the metal enables the current rectification. The effect of ionic conductivity and pH on the formation of the insulating oxide was investigated in a simple model system with liquid metal/electrolyte solution or hydrogel/Pt interfaces. Finally, we present a diode composed entirely of soft materials by replacing the platinum electrode with a second liquid metal electrode. A new type of hydrogel-based photovoltaic systems (HGPVs) was constructed. Two photosensitive ionized molecules embedded in aqueous gel served as photoactive species. The HGPVs showed performance comparable with or higher than those of some other biomimetic or ionic photovoltaic systems reported recently. We suggest a provisional mechanism of the device operation, based on a synergetic effect of the two dye molecules. To reduce the fabrication cost without efficiency loss, we found an inexpensive replacement of the expensive Pt counter-electrode with copper coated with carbon materials. Biologically derived photoactive molecules, such as Chlorophyll and Photosystem II, were successfully operated in the aqueous gel of such HGPVs. As a proof of demonstration of biomimetic structures, a light driven biomimetic reactor was developed by using hydrogel media with embedded photocatalytic TiO2 nanoparticles. Uniform supply of the reactants and extraction of the products was accomplished via a microfluidic channel network, broadly similar to the vein structure of live leaves. The dyes were transported in the gel between the microchannels and degraded by photocatalytic oxidation by the illuminated TiO2 particles. Quantitative analysis of the photocatalytic degradation rate of the injected dyes revealed that the microvascular reactor has high quantum efficiency per catalyst mass. Numerical modeling was performed to explore how a soluble reagent could be supplied rapidly and efficiently through microfluidic channel networks embedded in hydrogels. The computational model takes into account the fluid transport in porous media and the solute convection and diffusion, to simulate the solute distribution and outflux with time in microfluidic hydrogel media. The effect of the channel dimensions and shapes on mass transport rapidity and efficiency was quantitatively evaluated. Experimental data proved the validity of the time dependent concentration profile calculated by the simulation. Lastly, a microfluidic hydrogel solar cell with biomimetic regeneration functionality was demonstrated as a result of the above experimental and modeling studies. A new concept of open and replenishable photovoltaics was constructed on the basis of dye-sensitized solar cells. Photovoltaic reagents, dyes and redox electrolytes, were uniformly delivered via microfluidic networks embedded in a hydrogel, resulting in increase of photocurrent generation. The regeneration process was established, based on the pH dependence of adsorption/desorption kinetics of the dye molecules on a TiO2 photoanode. Complete and reliable recovery of the photocurrent after an accelerated photodegradation in the biomimetic photovoltaics was demonstrated.

  7. An In Vivo Study of Composite Microgels Based on Hyaluronic Acid and Gelatin for the Reconstruction of Surgically Injured Rat Vocal Folds

    PubMed Central

    Coppoolse, Jiska M. S.; Van Kooten, T. G.; Heris, Hossein K.; Mongeau, Luc; Li, Nicole Y. K.; Thibeault, Susan L.; Pitaro, Jacob; Akinpelu, Olubunmi; Daniel, Sam J.

    2016-01-01

    Purpose The objective of this study was to investigate local injection with a hierarchically microstructured hyaluronic acid–gelatin (HA-Ge) hydrogel for the treatment of acute vocal fold injury using a rat model. Method Vocal fold stripping was performed unilaterally in 108 Sprague-Dawley rats. A volume of 25 ml saline (placebo controls), HA-bulk, or HA-Ge hydrogel was injected into the lamina propria (LP) 5 days after surgery. The vocal folds were harvested at 3, 14, and 28 days after injection and analyzed using hematoxylin and eosin staining and immunohistochemistry staining for macrophages, myofibroblasts, elastin, collagen type I, and collagen type III. Results The macrophage count was statistically significantly lower in the HA-Ge group than in the saline group (p < .05) at Day 28. Results suggested that the HA-Ge injection did not induce inflammatory or rejection response. Myofibroblast counts and elastin were statistically insignificant across treatment groups at all time points. Increased elastin deposition was qualitatively observed in both HA groups from Day 3 to Day 28, and not in the saline group. Significantly more elastin was observed in the HA-bulk group than in the uninjured group at Day 28. Significantly more collagen type I was observed in the HA-bulk and HA-Ge groups than in the saline group (p < .05) at Day 28. The collagen type I concentration in the HA-Ge and saline groups was found to be comparable to that in the uninjured controls at Day 28. The concentration of collagen type III in all treatment groups was similar to that in uninjured controls at Day 28. Conclusion Local HA-Ge and HA-bulk injections for acute injured vocal folds were biocompatible and did not induce adverse response. PMID:24687141

  8. Hydrogels Derived from Central Nervous System Extracellular Matrix

    PubMed Central

    Medberry, Christopher J.; Crapo, Peter M.; Siu, Bernard F.; Carruthers, Christopher A.; Wolf, Matthew T.; Nagarkar, Shailesh P.; Agrawal, Vineet; Jones, Kristen E.; Kelly, Jeremy; Johnson, Scott A.; Velankar, Sachin S.; Watkins, Simon C.; Modo, Michel

    2012-01-01

    Biologic scaffolds composed of extracellular matrix (ECM) are commonly used repair devices in preclinical and clinical settings; however the use of these scaffolds for peripheral and central nervous system (CNS) repair has been limited. Biologic scaffolds developed from brain and spinal cord tissue have recently been described, yet the conformation of the harvested ECM limits therapeutic utility. An injectable CNS-ECM derived hydrogel capable of in vivo polymerization and conformation to irregular lesion geometries may aid in tissue reconstruction efforts following complex neurologic trauma. The objectives of the present study were to develop hydrogel forms of brain and spinal cord ECM and compare the resulting biochemical composition, mechanical properties, and neurotrophic potential of a brain derived cell line to a non-CNS-ECM hydrogel, urinary bladder matrix. Results showed distinct differences between compositions of brain ECM, spinal cord ECM, and urinary bladder matrix. The rheologic modulus of spinal cord ECM hydrogel was greater than that of brain ECM and urinary bladder matrix. All ECMs increased the number of cells expressing neurites, but only brain ECM increased neurite length, suggesting a possible tissue-specific effect. All hydrogels promoted three-dimensional uni- or bi-polar neurite outgrowth following 7 days in culture. These results suggest that CNS-ECM hydrogels may provide supportive scaffolding to promote in vivo axonal repair. PMID:23158935

  9. Hypoxia-induced angiogenesis is increased by the controlled release of deferoxiamine from gelatin hydrogels.

    PubMed

    Saito, Takashi; Tabata, Yasuhiko

    2014-08-01

    The objective of this study is to design biodegradable hydrogels for the controlled release of deferoxiamine (DFO) and evaluate their biological activity. When the DFO was added to human umbilical vein endothelial cells cultured in 5.0% O2, the level of hypoxia-inducible factor-1α and vascular endothelial growth factor significantly increased compared with that without DFO. The expression of angiogenesis-related genes was accordingly increased by the DFO addition. An aqueous solution of mixed gelatin and DFO was freeze-dried, and dehydrothermally treated at 140°C for 24h to prepare a gelatin hydrogel incorporating DFO. In the release test with phosphate-buffered saline solution (PBS) at 37°C, an initial DFO release of 60% was observed, followed by no release. When placed in PBS containing collagenase, the hydrogel was enzymatically degraded with time, and consequently released DFO in a degradation-dependent manner. After the hydrogel incorporating DFO was injected intramuscularly into a mouse model of hind limb ischemia, the number of new blood vessels formed was significantly higher than that with free DFO and DFO-free hydrogel. It is concluded that the DFO-containing hydrogel shows promising for inducing angiogenesis locally. Copyright © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  10. Vaginal delivery of carboplatin-loaded thermosensitive hydrogel to prevent local cervical cancer recurrence in mice.

    PubMed

    Wang, Xue; Wang, Jin; Wu, Wenbin; Li, Hongjun

    2016-11-01

    Local tumor recurrence after cervical cancer surgery remains a clinical problem. Vaginal delivery of thermosensitive hydrogel may be suited to reduce tumor relapse rate with more efficacy and safety. A pilot study was carried out to evaluate the efficacy of carboplatin-loaded poloxamer hydrogel to prevent local recurrence of cervical cancer after surgery. In vivo vaginal retention evaluation of 27% poloxamer hydrogel in mice was proven to be a suitable vaginal drug delivery formulation due to its low gelation temperature. A mimic orthotopic cervical/vaginal cancer recurrence model after surgery was established by injecting murine cervical cancer cell line U14 into the vaginal submucosa to simulate the residual tumor cells infiltrated in the surgical site, followed by drug administration 24 h later to interfere with the formation/recurrence of the tumor. By infusing fluorescein sodium-loaded hydrogel into the vagina of mice, a maximized accumulation of fluorescein sodium (Flu) in the vagina was achieved and few signals were observed in other organs. When used in the prevention of the cervical cancer formation/recurrence in mice, the carboplatin-loaded poloxamer hydrogel exhibited great efficacy and systemic safety. In conclusion, thermosensitive hydrogel presents a simple, practical approach for the local drug delivery via vagina against cervical cancer recurrence.

  11. Intradiscal injection of simvastatin results in radiologic, histologic, and genetic evidence of disc regeneration in a rat model of degenerative disc disease

    PubMed Central

    Than, Khoi D.; Rahman, Shayan U.; Wang, Lin; Khan, Adam; Kyere, Kwaku A.; Than, Tracey T.; Miyata, Yoshinari; Park, Yoon-Shin; La Marca, Frank; Kim, Hyungjin M.; Zhang, Huina; Park, Paul; Lin, Chia-Ying

    2014-01-01

    BACKGROUND CONTEXT A large percentage of back pain can be attributed to degeneration of the intervertebral disc (IVD). Bone morphogenetic protein-2 (BMP-2) is known to play an important role in chondrogenesis of the IVD. Simvastatin is known to up-regulate expression of BMP-2. Thus, we hypothesized that intradiscal injection of simvastatin in a rat model of degenerative disc disease (DDD) would result in retardation of DDD. PURPOSE To develop a novel conservative treatment for DDD and related discogenic back pain. STUDY DESIGN/SETTING Laboratory investigation. METHODS Disc injury was induced in 272 rats via 21-gauge needle puncture. After 6 weeks, injured discs were treated with simvastatin in a saline or hydrogel carrier. Rats were sacrificed at predetermined time points. Outcome measures assessed were radiologic, histologic, and genetic. Radiologically, the MRI index (number of pixels multiplied by corresponding image densities) was determined. Histologically, disc spaces were read by 3 blinded scorers employing a previously described histological grading scale. Genetically, nuclei pulposi were harvested and polymerase chain reaction was run to determine relative levels of aggrecan, collagen type II, and BMP-2 gene expression. This project was supported by Grant No. R01 AR056649 from NIAMS/NIH. There are no other financial conflicts of interest to report. RESULTS Radiologically, discs treated with 5 mg/mL simvastatin in hydrogel or saline demonstrated MRI indices that were normal through 8 weeks post-treatment, although this was more sustained when delivered in hydrogel. Histologically, discs treated with 5 mg/mL simvastatin in hydrogel demonstrated improved grades in comparison to discs treated at higher doses. Genetically, discs treated with 5 mg/mL of simvastatin in hydrogel demonstrated higher gene expression of aggrecan and collagen type II than control. CONCLUSIONS Degenerate discs treated with 5 mg/mL simvastatin in a hydrogel carrier demonstrated radiographic and histologic features resembling normal, non-injured IVDs. In addition, gene expression of aggrecan and collagen type II (important constituents of the IVD extracellular matrix) was up-regulated in treated discs. Injection of simvastatin into degenerate IVDs may result in retardation of disc degeneration and represents a promising investigational therapy for conservative treatment of DDD. PMID:24291703

  12. In Vivo Engineering of the Vocal Fold ECM with Injectable HA Hydrogels -- Late Effects on Tissue Repair and Biomechanics in a Rabbit Model

    PubMed Central

    Klemuk, Sarah A.; Chen, Xia; Quinchia Johnson, Beatriz H.

    2009-01-01

    Objectives To determine if the utilization of injectable chemically-modified hyaluronan (HA) derivative at the time of intentional vocal fold resection may facilitate wound repair and preserve the unique viscoelastic properties of the extracellular matrix and lamina propria 6 months after treatment. Study Design Prospective, controlled animal study. Methods Twelve rabbit vocal folds were biopsied bilaterally, and the left side of vocal fold was treated with Extracel, an injectable, chemically-modified HA derivative, and the right side of vocal fold was injected with saline as control at the time of resection. Animals were sacrificed six months after biopsy and injection. Outcomes measured include transcription levels for procollagen, fibronectin, fibromodulin, TGF-β1, hyaluronan synthase and hyaluronidase and tissue biomechanics -- viscosity and elasticity. Results Extracel treated vocal folds were found to have significantly less fibrosis than saline treated controls. Extracel treated vocal folds had significantly improved biomechanical properties of elasticity and viscosity. Significantly decreased levels of fibronectin, fibromodulin, TGF-β1, procollagen I and hyaluronan synthase were measured. Conclusions Prophylactic in vivo manipulation of the extracellular matrix with an injectable HA hydrogel appears to induce vocal fold tissue regeneration to yield improved tissue composition and biomechanical properties at 6 months. PMID:20456912

  13. Hierarchical structures based on self-assembling beta-hairpin peptides and their application as biomaterials and hybrid materials

    NASA Astrophysics Data System (ADS)

    Altunbas, Aysegul

    Self-assembly represents a robust and powerful paradigm for the bottom-up construction of nanostructures. Self-assembled peptide hydrogels are emerging as promising routes to novel multifunctional materials. The 20 amino acid MAX1and MAX8 peptides self-assemble into a three dimensional network of entangled, branched fibrils rich in beta-sheet secondary structure with a high density of lysine groups exposed on the fibril-surfaces. These hydrogels form self-supporting structures that shear thin upon application of shear and then immediately recover to a solid hydrogel upon cessation of shear which facilitates the local delivery of the hydrogel into a site in vivo. Templated condensation of silica precursors on self-assembled nanoscale peptide fibrils with various surface functionalities can be used to mimic biosilicification. This template-defined approach towards biomineralization was utilized for the controlled fabrication of 3D hybrid nanostructures. We report a study on the structure-property relationship of self-assembled peptide hydrogels where mineralization of individual fibrils through sol-gel chemistry was achieved. The nanostructure and consequent mechanical characteristics of these hybrid networks can be modulated by changing the stoichiometric parameters of the sol-gel process. Construction of such organic-inorganic hybrid networks by sol-gel processing of self-assembled peptide hydrogels has improved mechanical properties and resulted in materials with ˜ 3 orders of magnitude higher stiffness. The physical characterization of the hybrid networks via electron microscopy and small angle scattering is detailed and correlated with changes in the network mechanical behavior. The resultant high fidelity templating process suggests that the peptide substrate can be used to template the coating of other functional inorganic materials. Self-assembling peptide hydrogels encapsulating an anti-tumorigenic drug, curcumin, have been prepared and demonstrated to be an effective vehicle for the localized delivery of curcumin over sustained periods of time in vitro. The curcumin-hydrogel is prepared in-situ where curcumin encapsulation within the hydrogel network is accomplished concurrently with peptide self-assembly. Physical characterization methods and in vitro biological studies were used to demonstrate the effectiveness of curcumin-loaded beta-hairpin hydrogels as injectable agents for localized curcumin delivery. Notably, rheological characterization of the curcumin loaded hydrogel before and after shear flow have indicated solid-like properties even at high curcumin payloads. In vitro experiments with a medulloblastoma cell line confirm that the encapsulation of the curcumin within the hydrogel does not have an adverse effect on its bioactivity. Most importantly, the rate of curcumin release and its consequent therapeutic efficacy can be conveniently modulated by changing the morphological characteristics of the peptide hydrogel network. Lastly, MAX8 hydrogel cytocompatibility and biocompatibility was assessed with the future aim of utilizing this hydrogel as a scaffold in liver regeneration studies in rats. MAX8 hydrogel cytotoxity was evaluated using MC3T3-E1 and MG63 cell lines. Encapsulation, syringe delivery and subsequent viability of MG63 cells in hydrogels was also assessed to study the feasibility of using hydrogel/cell constructs as minimally invasive cell delivery vehicles. Biocompatibility was evaluated by monitoring inflammatory response induced by the MAX8 hydrogel via a subcutaneous mice model. Biocompatibility of MAX8 hydrogels at sites other than the subcutaneous region was also investigated using a cylindrical punch resection model in rat liver. The preliminary biocompatibility studies provide an elemental understanding of MAX8 hydrogel behavior in vivo.

  14. Controlled Delivery of a Focal Adhesion Kinase Inhibitor Results in Accelerated Wound Closure with Decreased Scar Formation.

    PubMed

    Ma, Kun; Kwon, Sun Hyung; Padmanabhan, Jagannath; Duscher, Dominik; Trotsyuk, Artem A; Dong, Yixiao; Inayathullah, Mohammed; Rajadas, Jayakumar; Gurtner, Geoffrey C

    2018-05-15

    Formation of scars following wounding or trauma represents a significant healthcare burden costing the economy billions of dollars every year. Activation of focal adhesion kinase (FAK) has been shown to play a pivotal role in transducing mechanical signals to elicit fibrotic responses and scar formation during wound repair. We have previously shown that inhibition of FAK using local injections of a small molecule FAK inhibitor (FAKI) can attenuate scar development in a hypertrophic scar model. Clinical translation of FAKI therapy has been challenging, however, due to the lack of an effective drug delivery system for extensive burn injuries, blast injuries, and large excisional injuries. To address this issue, we have developed a pullulan collagen-based hydrogel to deliver FAKI to excisional and burn wounds in mice. Specifically, two distinct drug-laden hydrogels were developed for rapid or sustained release of FAKI for treatment of burn wounds and excisional wounds, respectively. Controlled delivery of FAKI via pullulan collagen hydrogels accelerated wound healing, reduced collagen deposition and activation of scar forming myofibroblasts in both wound healing models. Our study highlights a biomaterial-based drug delivery approach for wound and scar management that has significant translational implications. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  15. 3D Cell Culture in Alginate Hydrogels

    PubMed Central

    Andersen, Therese; Auk-Emblem, Pia; Dornish, Michael

    2015-01-01

    This review compiles information regarding the use of alginate, and in particular alginate hydrogels, in culturing cells in 3D. Knowledge of alginate chemical structure and functionality are shown to be important parameters in design of alginate-based matrices for cell culture. Gel elasticity as well as hydrogel stability can be impacted by the type of alginate used, its concentration, the choice of gelation technique (ionic or covalent), and divalent cation chosen as the gel inducing ion. The use of peptide-coupled alginate can control cell–matrix interactions. Gelation of alginate with concomitant immobilization of cells can take various forms. Droplets or beads have been utilized since the 1980s for immobilizing cells. Newer matrices such as macroporous scaffolds are now entering the 3D cell culture product market. Finally, delayed gelling, injectable, alginate systems show utility in the translation of in vitro cell culture to in vivo tissue engineering applications. Alginate has a history and a future in 3D cell culture. Historically, cells were encapsulated in alginate droplets cross-linked with calcium for the development of artificial organs. Now, several commercial products based on alginate are being used as 3D cell culture systems that also demonstrate the possibility of replacing or regenerating tissue. PMID:27600217

  16. Controlled release of functional proteins through designer self-assembling peptide nanofiber hydrogel scaffold

    PubMed Central

    Koutsopoulos, Sotirios; Unsworth, Larry D.; Nagai, Yusuke; Zhang, Shuguang

    2009-01-01

    The release kinetics for a variety of proteins of a wide range of molecular mass, hydrodynamic radii, and isoelectric points through a nanofiber hydrogel scaffold consisting of designer self-assembling peptides were studied by using single-molecule fluorescence correlation spectroscopy (FCS). In contrast to classical diffusion experiments, the single-molecule approach allowed for the direct determination of diffusion coefficients for lysozyme, trypsin inhibitor, BSA, and IgG both inside the hydrogel and after being released into the solution. The results of the FCS analyses and the calculated pristine in-gel diffusion coefficients were compared with the values obtained from the Stokes–Einstein equation, Fickian diffusion models, and the literature. The release kinetics suggested that protein diffusion through nanofiber hydrogels depended primarily on the size of the protein. Protein diffusivities decreased, with increasing hydrogel nanofiber density providing a means of controlling the release kinetics. Secondary and tertiary structure analyses and biological assays of the released proteins showed that encapsulation and release did not affect the protein conformation and functionality. Our results show that this biocompatible and injectable designer self-assembling peptide hydrogel system may be useful as a carrier for therapeutic proteins for sustained release applications. PMID:19273853

  17. A biomaterial-assisted mesenchymal stromal cell therapy alleviates colonic radiation-induced damage.

    PubMed

    Moussa, Lara; Pattappa, Girish; Doix, Bastien; Benselama, Sarra-Louiza; Demarquay, Christelle; Benderitter, Marc; Sémont, Alexandra; Tamarat, Radia; Guicheux, Jérôme; Weiss, Pierre; Réthoré, Gildas; Mathieu, Noëlle

    2017-01-01

    Healthy tissues surrounding abdomino-pelvic tumours can be impaired by radiotherapy, leading to chronic gastrointestinal complications with substantial mortality. Adipose-derived Mesenchymal Stromal Cells (Ad-MSCs) represent a promising strategy to reduce intestinal lesions. However, systemic administration of Ad-MSCs results in low cell engraftment within the injured tissue. Biomaterials, able to encapsulate and withstand Ad-MSCs, can overcome these limitations. A silanized hydroxypropylmethyl cellulose (Si-HPMC) hydrogel has been designed and characterized for injectable cell delivery using the operative catheter of a colonoscope. We demonstrated that hydrogel loaded-Ad-MSCs were viable, able to secrete trophic factors and responsive to the inflammatory environment. In a rat model of radiation-induced severe colonic damage, Ad-MSC + Si-HPMC improve colonic epithelial structure and hyperpermeability compared with Ad-MSCs injected intravenously or locally. This therapeutic benefit is associated with greater engraftment of Si-HPMC-embedded Ad-MSCs in the irradiated colonic mucosa. Moreover, macrophage infiltration near the injection site was less pronounced when Ad-MSCs were embedded in the hydrogel. Si-HPMC induces modulation of chemoattractant secretion by Ad-MSCs that could contribute to the decrease in macrophage infiltrate. Si-HPMC is suitable for cell delivery by colonoscopy and induces protection of Ad-MSCs in the tissue potentiating their therapeutic effect and could be proposed to patients suffering from colon diseases. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  18. About the Sterilization of Chitosan Hydrogel Nanoparticles

    PubMed Central

    Galante, Raquel; Rediguieri, Carolina F.; Kikuchi, Irene Satiko; Vasquez, Pablo A. S.; Colaço, Rogério; Pinto, Terezinha J. A.

    2016-01-01

    In the last years, nanostructured biomaterials have raised a great interest as platforms for delivery of drugs, genes, imaging agents and for tissue engineering applications. In particular, hydrogel nanoparticles (HNP) associate the distinctive features of hydrogels (high water uptake capacity, biocompatibility) with the advantages of being possible to tailor its physicochemical properties at nano-scale to increase solubility, immunocompatibility and cellular uptake. In order to be safe, HNP for biomedical applications, such as injectable or ophthalmic formulations, must be sterile. Literature is very scarce with respect to sterilization effects on nanostructured systems, and even more in what concerns HNP. This work aims to evaluate the effect and effectiveness of different sterilization methods on chitosan (CS) hydrogel nanoparticles. In addition to conventional methods (steam autoclave and gamma irradiation), a recent ozone-based method of sterilization was also tested. A model chitosan-tripolyphosphate (TPP) hydrogel nanoparticles (CS-HNP), with a broad spectrum of possible applications was produced and sterilized in the absence and in the presence of protective sugars (glucose and mannitol). Properties like size, zeta potential, absorbance, morphology, chemical structure and cytotoxicity were evaluated. It was found that the CS-HNP degrade by autoclaving and that sugars have no protective effect. Concerning gamma irradiation, the formation of agglomerates was observed, compromising the suspension stability. However, the nanoparticles resistance increases considerably in the presence of the sugars. Ozone sterilization did not lead to significant physical adverse effects, however, slight toxicity signs were observed, contrarily to gamma irradiation where no detectable changes on cells were found. Ozonation in the presence of sugars avoided cytotoxicity. Nevertheless, some chemical alterations were observed in the nanoparticles. PMID:28002493

  19. Functional nucleic acid-based hydrogels for bioanalytical and biomedical applications

    PubMed Central

    Mo, Liuting; Lu, Chun-Hua; Fu, Ting

    2016-01-01

    Hydrogels are crosslinked hydrophilic polymers that can absorb a large amount of water. By their hydrophilic, biocompatible and highly tunable nature, hydrogels can be tailored for applications in bioanalysis and biomedicine. Of particular interest are DNA-based hydrogels owing to the unique features of nucleic acids. Since the discovery of DNA double helical structure, interest in DNA has expanded beyond its genetic role to applications in nanotechnology and materials science. In particular, DNA-based hydrogels present such remarkable features as stability, flexibility, precise programmability, stimuli-responsive DNA conformations, facile synthesis and modification. Moreover, functional nucleic acids (FNAs) have allowed the construction of hydrogels based on aptamers, DNAzymes, i-motif nanostructures, siRNAs and CpG oligodeoxynucleotides to provide additional molecular recognition, catalytic activities and therapeutic potential, making them key players in biological analysis and biomedical applications. To date, a variety of applications have been demonstrated with FNA-based hydrogels, including biosensing, environmental analysis, controlled drug release, cell adhesion and targeted cancer therapy. In this review, we focus on advances in the development of FNA-based hydrogels, which have fully incorporated both the unique features of FNAs and DNA-based hydrogels. We first introduce different strategies for constructing DNA-based hydrogels. Subsequently, various types of FNAs and the most recent developments of FNA-based hydrogels for bioanalytical and biomedical applications are described with some selected examples. Finally, the review provides an insight into the remaining challenges and future perspectives of FNA-based hydrogels. PMID:26758955

  20. [Construction of injectable tissue engineered nucleus pulposus in vitro].

    PubMed

    Tian, Huake; Wang, Jian; Chen, Chao; Liu, Jie; Zhou, Yue

    2009-02-01

    To investigate the feasibility of using thermo-sensitive chitosan hydrogen as a scaffold to construct tissue engineered injectable nucleus pulposus (NP). Three-month-old neonatal New Zealand rabbits (male or female) weighing 150-200 g were selected to isolate and culture NP cells. The thermo-sensitive chitosan hydrogel scaffold was made of chitosan, disodium beta-glycerophosphate and hydroxyethyl cellulose. Its physical properties and gross condition were observed. The tissue engineered NP was constructed by compounding the scaffold and rabbit NP cells. Then, the viability of NP cells in the chitosan hydrogel was observed 2 days after compound culture and the growth condition of NP cells on the scaffold was observed by SEM 7 days after compound culture. NP cells went through histology and immunohistochemistry detection and their secretion of aggrecan and expression of Col II mRNA were analyzed by RT-PCR 21 days after compound culture. The thermo-sensitive chitosan hydrogel was liquid at room temperature and solidified into gel at 37 degrees C (15 minutes) due to crosslinking reaction. Acridine orange-propidium iodide staining showed that the viability rate of NP cells in chitosan hydrogel was above 90%. Scanning electron microscope observation demonstrated that the NP cells were distributed in the reticulate scaffold, with ECM on their surfaces. The results of HE, toluidine blue, safranin O and histology and immunohistochemistry staining confirmed that the NP cells in chitosan hydrogel were capable of producing ECM. RT-PCR results showed that the secretion of Col II and aggrecan mRNA in NP cells cultured three-dimensionally by chitosan hydrogen scaffold were 0.631 +/- 0.064 and 0.832 +/- 0.052, respectively, showing more strengths of producing matrix than that of monolayer culture (0.528 +/- 0.039, 0.773 +/- 0.046) with a significant difference (P < 0.05). With good cellular compatibilities, the thermo-sensitive chitosan hydrogel makes it possible for NP cells to maintain their normal morphology and secretion after compound culture, and may be a potential NP cells carrier for tissue engineered NP.

  1. SU-E-T-284: Dose Plan Optimization When Using Hydrogel Prostate-Rectum Spacer: A Single Institution Experience

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rajecki, M; Thurber, A; Catalfamo, F

    2015-06-15

    Purpose: To describe rectal dose reduction achieved and techniques used to take advantage of the increased peri-rectal spacing provided by injected polyethylene-glycol. Methods: Thirty prostate cancer patents were 2:1 randomized during a clinical trial to evaluate the effectiveness of injected poly-ethylene glycol hydrogel (SpaceOAR System) in creating space between the prostate and the anterior rectal wall. All patients received a baseline CT/MR scan and baseline IMRT treatment plan. Patients were randomized to receive hydrogel injection (n=20) or Control (n=10), followed by another CT/MR scan and treatment plan (single arc VMAT, 6 MV photons, 79.2 Gy, 44 fractions). Additional optimization structuresmore » were employed to constrain the dose to the rectum; specifically an avoidance structure to limit V75 <15%, and a control structure to limit the maximum relative dose <105% in the interface region of the anterior rectal wall and the prostate planning target volume. Dose volumetric data was analyzed for rectal volumes receiving 60 through 80 Gy. Results: Rectal dose reduction was observed in all patients who received the hydrogel. Volumetric analysis indicates a median rectal volume and (reduction from baseline plan) following spacer application of 4.9% (8.9%) at V60Gy, 3.8% (8.1%) at V65Gy, 2.5% (7.2%) at V70Gy, 1.6% (5.8%) at V75Gy, and 0.5% (2.5%) at V80Gy. Conclusion: Relative to planning without spacers, rectal dose constraints of 5%, 4%, 3%, 2%, 1% for V60, V65, V70, V75, and V80, should be obtainable when peri-rectal spacers are used. The combined effect of increased peri-rectal space provided by the hydrogel, with strict optimization objectives, resulted in reduced dose to the rectum. To maximize benefit, strict optimization objectives and reduced rectal dose constraints should be employed when creating plans for patients with perirectal spacers. Clinical Trial for SpaceOAR product conducted by Augmenix,Inc. The research site was paid to be a participating site.« less

  2. Automated 3D bioassembly of micro-tissues for biofabrication of hybrid tissue engineered constructs.

    PubMed

    Mekhileri, N V; Lim, K S; Brown, G C J; Mutreja, I; Schon, B S; Hooper, G J; Woodfield, T B F

    2018-01-12

    Bottom-up biofabrication approaches combining micro-tissue fabrication techniques with extrusion-based 3D printing of thermoplastic polymer scaffolds are emerging strategies in tissue engineering. These biofabrication strategies support native self-assembly mechanisms observed in developmental stages of tissue or organoid growth as well as promoting cell-cell interactions and cell differentiation capacity. Few technologies have been developed to automate the precise assembly of micro-tissues or tissue modules into structural scaffolds. We describe an automated 3D bioassembly platform capable of fabricating simple hybrid constructs via a two-step bottom-up bioassembly strategy, as well as complex hybrid hierarchical constructs via a multistep bottom-up bioassembly strategy. The bioassembly system consisted of a fluidic-based singularisation and injection module incorporated into a commercial 3D bioprinter. The singularisation module delivers individual micro-tissues to an injection module, for insertion into precise locations within a 3D plotted scaffold. To demonstrate applicability for cartilage tissue engineering, human chondrocytes were isolated and micro-tissues of 1 mm diameter were generated utilising a high throughput 96-well plate format. Micro-tissues were singularised with an efficiency of 96.0 ± 5.1%. There was no significant difference in size, shape or viability of micro-tissues before and after automated singularisation and injection. A layer-by-layer approach or aforementioned bottom-up bioassembly strategy was employed to fabricate a bilayered construct by alternatively 3D plotting a thermoplastic (PEGT/PBT) polymer scaffold and inserting pre-differentiated chondrogenic micro-tissues or cell-laden gelatin-based (GelMA) hydrogel micro-spheres, both formed via high-throughput fabrication techniques. No significant difference in viability between the construct assembled utilising the automated bioassembly system and manually assembled construct was observed. Bioassembly of pre-differentiated micro-tissues as well as chondrocyte-laden hydrogel micro-spheres demonstrated the flexibility of the platform while supporting tissue fusion, long-term cell viability, and deposition of cartilage-specific extracellular matrix proteins. This technology provides an automated and scalable pathway for bioassembly of both simple and complex 3D tissue constructs of clinically relevant shape and size, with demonstrated capability to facilitate direct spatial organisation and hierarchical 3D assembly of micro-tissue modules, ranging from biomaterial free cell pellets to cell-laden hydrogel formulations.

  3. Photo-crosslinked alginate hydrogels support enhanced matrix accumulation by nucleus pulposus cells in vivo.

    PubMed

    Chou, A I; Akintoye, S O; Nicoll, S B

    2009-10-01

    Intervertebral disc (IVD) degeneration is a major health concern in the United States. Replacement of the nucleus pulposus (NP) with injectable biomaterials represents a potential treatment strategy for IVD degeneration. The objective of this study was to characterize the extracellular matrix (ECM) assembly and functional properties of NP cell-encapsulated, photo-crosslinked alginate hydrogels in comparison to ionically crosslinked alginate constructs. Methacrylated alginate was synthesized by esterification of hydroxyl groups with methacrylic anhydride. Bovine NP cells were encapsulated in alginate hydrogels by ionic crosslinking using CaCl(2) or through photo-crosslinking upon exposure to long-wave UV light in the presence of a photoinitiator. The hydrogels were evaluated in vitro by gross and histological analysis and in vivo using a murine subcutaneous pouch model. In vivo samples were analyzed for gene expression, ECM localization and accumulation, and equilibrium mechanical properties. Ionically crosslinked hydrogels exhibited inferior proteoglycan accumulation in vitro and were unable to maintain structural integrity in vivo. In further studies, photo-crosslinked alginate hydrogels were implanted for up to 8 weeks to examine NP tissue formation. Photo-crosslinked hydrogels displayed temporal increases in gene expression and assembly of type II collagen and proteoglycans. Additionally, hydrogels remained intact over the duration of the study and the equilibrium Young's modulus increased from 1.24+/-0.09 kPa to 4.31+/-1.39 kPa, indicating the formation of functional matrix with properties comparable to those of the native NP. These findings support the use of photo-crosslinked alginate hydrogels as biomaterial scaffolds for NP replacement.

  4. Reinforcement Strategies for Load-Bearing Calcium Phosphate Biocements

    PubMed Central

    Geffers, Martha; Groll, Jürgen; Gbureck, Uwe

    2015-01-01

    Calcium phosphate biocements based on calcium phosphate chemistry are well-established biomaterials for the repair of non-load bearing bone defects due to the brittle nature and low flexural strength of such cements. This article features reinforcement strategies of biocements based on various intrinsic or extrinsic material modifications to improve their strength and toughness. Altering particle size distribution in conjunction with using liquefiers reduces the amount of cement liquid necessary for cement paste preparation. This in turn decreases cement porosity and increases the mechanical performance, but does not change the brittle nature of the cements. The use of fibers may lead to a reinforcement of the matrix with a toughness increase of up to two orders of magnitude, but restricts at the same time cement injection for minimal invasive application techniques. A novel promising approach is the concept of dual-setting cements, in which a second hydrogel phase is simultaneously formed during setting, leading to more ductile cement–hydrogel composites with largely unaffected application properties.

  5. Effects of Aviation Altitudes on Soft Contact Lens Wear.

    DTIC Science & Technology

    1986-08-01

    with corneal edema may complain of foggy or hazy vision, discomfort, and injection of the conjunctiva (3). If the edema is severe, breakdown of some of...13 L-.. 𔃾 , 4 .F -A % ,Z;: Z’,-1,’ 15. Brennan, N. A. A simple instrument for measuring the water content of hydrogel lenses. International Contact...vertical striae accompanying the wearing of hydrogel lenses. Am J Op tor & Physiol Optics 52(3):185-191 (1975). 23. Hill, R. H. Oxygen demand: The

  6. Biodegradable and photocrosslinkable polyphosphoester hydrogel

    PubMed Central

    Li, Qiang; Wang, Jun; Shahani, Shilpa; Sun, Danny D.N.; Sharma, Blanka; Elisseeff, Jennifer H.; Leong, Kam W.

    2008-01-01

    A new biodegradable, photocrosslinkable and multifunctional macromer, poly(6-aminohexyl propylene phosphate) (PPE-HA)-ACRL, was synthesized by conjugation of acrylate groups to the side chains of PPE-HA. By controlling the synthetic conditions, different weight fractions of acrylate in the macromers were achieved as confirmed by 1H NMR. The hydrogels obtained from PPE-HA-ACRL through photocrosslinking were dominantly elastic. With increasing acrylate contents in the macromers, the hydrogels exhibited a lower swelling ratio and higher mechanical strength. The hydrogels with different crosslinking densities lost between 4.3% and 37.4% of their mass in 84 days when incubated in phosphate-buffered saline at 37 °C. No significant cytotoxicity of the macromers against bone marrow-derived mesenchymal stem cells from goat (GMSC) was observed at a concentration up to 10 mg/ml. Finally, GMSCs encapsulated in the photopolymerized gel maintained their viability when cultured in osteogenic medium for three weeks. Clear mineralization in the hydrogel scaffold was revealed by Von Kossa staining. This study suggests the potential of these biodegradable and photocrosslinkable as injectable tissue engineering scaffolds. PMID:16125222

  7. Photo-crosslinked HAMA hydrogel with cordycepin encapsulated chitosan microspheres for osteoarthritis treatment.

    PubMed

    Xia, Chen; Chen, Pengfei; Mei, Sheng; Ning, Lei; Lei, Chenyang; Wang, Jiying; Zhang, Jianfeng; Ma, Jianjun; Fan, Shunwu

    2017-01-10

    Autophagy is a protective mechanism in normal cartilage. The present study aimed to investigate the synergistic therapeutic effect of promotion of chondrocyte autophagy via exposure to cordycepin encapsulated by chitosan microspheres (CM-cordycepin) and photo-crosslinked hyaluronic acid methacrylate (HAMA) hydrogel, with the goal of evaluating CM-cordycepin as a treatment for patients with osteoarthritis. First, we developed and evaluated the characteristics of HAMA hydrogels and chitosan microspheres. Next, we measured the effect of cordycepin on cartilage matrix degradation induced by IL1-β in chondrocytes and an ex vivo model. Cordycepin protects cartilage from degradation partly by activation of autophagy. Moreover, we surgically induced osteoarthritis in mice, which were injected intra-articularly with CM-cordycepin and HAMA. The combination of CM-cordycepin and HAMA hydrogel retarded the progression of surgically induced OA. Cordycepin ameliorated cartilage matrix degradation at least partially by inducing autophagy in vivo. Our results demonstrate that the combination of cordycepin encapsulated by CMs and photo-crosslinked HAMA hydrogel could be a promising strategy for treating patients with osteoarthritis.

  8. Antagonistic Enzymes in a Biocatalytic pH Feedback System Program Autonomous DNA Hydrogel Life Cycles.

    PubMed

    Heinen, Laura; Heuser, Thomas; Steinschulte, Alexander; Walther, Andreas

    2017-08-09

    Enzymes regulate complex functions and active behavior in natural systems and have shown increasing prospect for developing self-regulating soft matter systems. Striving for advanced autonomous hydrogel materials with fully programmable, self-regulated life cycles, we combine two enzymes with an antagonistic pH-modulating effect in a feedback-controlled biocatalytic reaction network (BRN) and couple it to pH-responsive DNA hydrogels to realize hydrogel systems with distinct preprogrammable lag times and lifetimes in closed systems. The BRN enables precise and orthogonal internal temporal control of the "ON" and "OFF" switching times of the temporary gel state by modulation of programmable, nonlinear pH changes. The time scales are tunable by variation of the enzyme concentrations and additional buffer substances. The resulting material system operates in full autonomy after injection of the chemical fuels driving the BRN. The concept may open new applications inherent to DNA hydrogels, for instance, autonomous shape memory behavior for soft robotics. We further foresee general applicability to achieve autonomous life cycles in other pH switchable systems.

  9. Silk protein-based hydrogels: Promising advanced materials for biomedical applications.

    PubMed

    Kapoor, Sonia; Kundu, Subhas C

    2016-02-01

    Hydrogels are a class of advanced material forms that closely mimic properties of the soft biological tissues. Several polymers have been explored for preparing hydrogels with structural and functional features resembling that of the extracellular matrix. Favourable material properties, biocompatibility and easy processing of silk protein fibers into several forms make it a suitable material for biomedical applications. Hydrogels made from silk proteins have shown a potential in overcoming limitations of hydrogels prepared from conventional polymers. A great deal of effort has been made to control the properties and to integrate novel topographical and functional characteristics in the hydrogel composed from silk proteins. This review provides overview of the advances in silk protein-based hydrogels with a primary emphasis on hydrogels of fibroin. It describes the approaches used to fabricate fibroin hydrogels. Attempts to improve the existing properties or to incorporate new features in the hydrogels by making composites and by improving fibroin properties by genetic engineering approaches are also described. Applications of the fibroin hydrogels in the realms of tissue engineering and controlled release are reviewed and their future potentials are discussed. This review describes the potentiality of silk fibroin hydrogel. Silk Fibroin has been widely recognized as an interesting biomaterial. Due to its properties including high mechanical strength and excellent biocompatibility, it has gained wide attention. Several groups are exploring silk-based materials including films, hydrogels, nanofibers and nanoparticles for different biomedical applications. Although there is a good amount of literature available on general properties and applications of silk based biomaterials, there is an inadequacy of extensive review articles that specifically focus on silk based hydrogels. Silk-based hydrogels have a strong potential to be utilized in biomedical applications. Our work is an effort to highlight the research that has been done in the area of silk-based hydrogels. It aims to provide an overview of the advances that have been made and the future course available. It will provide an overview of the silk-based hydrogels as well as may direct the readers to the specific areas of application. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  10. In vivo engineering of the vocal fold extracellular matrix with injectable hyaluronic acid hydrogels: early effects on tissue repair and biomechanics in a rabbit model.

    PubMed

    Hansen, Jennifer K; Thibeault, Susan L; Walsh, Jennifer F; Shu, Xiao Zheng; Prestwich, Glenn D

    2005-09-01

    A prospective, controlled animal study was performed to determine whether the use of injectable, chemically modified hyaluronic acid (HA) derivatives at the time of intentional vocal fold resection might facilitate wound repair and preserve the unique viscoelastic properties of the vocal fold extracellular matrix. We performed bilateral vocal fold biopsies on 33 rabbits. Two groups of rabbits were unilaterally treated with 2 different HA derivatives--Carbylan-SX and HA-DTPH-PEGDA--at the time of resection. Saline was injected as a control into the contralateral fold. The animals were painlessly sacrificed 3 weeks after biopsy and injection. The outcomes measured included histologic fibrosis level, tissue HA level, and tissue viscosity and elasticity. The Carbylan-SX-treated vocal folds were found to have significantly less fibrosis than the saline-treated controls. The levels of HA in the treated vocal folds were not significantly different from those in the controls at 3 weeks as measured by enzyme-linked immunosorbent assay. The Carbylan-SX-treated vocal folds had significantly improved biomechanical properties of elasticity and viscosity. The HA-DTPH-PEGDA injections yielded significantly improved viscosity, but not elasticity. Prophylactic in vivo manipulation of the extracellular matrix with an injectable Carbylan-SX hydrogel appears to induce vocal fold tissue regeneration to yield optimal tissue composition and biomechanical properties favorable for phonation.

  11. In Vivo engineering of the vocal fold ECM with injectable HA hydrogels-late effects on tissue repair and biomechanics in a rabbit model.

    PubMed

    Thibeault, Susan L; Klemuk, Sarah A; Chen, Xia; Quinchia Johnson, Beatriz H

    2011-03-01

    To determine if the utilization of injectable chemically modified hyaluronan (HA) derivative at the time of intentional vocal fold resection may facilitate wound repair and preserve the unique viscoelastic properties of the extracellular matrix (ECM) and lamina propria 6 months after treatment. Prospective, controlled animal study. Twelve rabbit vocal folds were biopsied bilaterally, and the left side of vocal fold was treated with Extracel, an injectable, chemically modified HA derivative, and the right side of vocal fold was injected with saline as control at the time of resection. Animals were sacrificed 6 months after biopsy and injection. Outcomes measured include transcription levels for procollagen, fibronectin, fibromodulin, transforming growth factor beta one (TGF-β1), HA synthase, and hyaluronidase, and tissue biomechanics-viscosity and elasticity. Extracel-treated vocal folds were found to have significantly less fibrosis than saline-treated controls. Extracel-treated vocal folds had significantly improved biomechanical properties of elasticity and viscosity. Significantly decreased levels of fibronectin, fibromodulin, TGF-β1, procollagen I, and HA synthase were measured. Prophylactic in vivo manipulation of the ECM with an injectable HA hydrogel appears to induce vocal fold tissue regeneration to yield improved tissue composition and biomechanical properties at 6 months. Copyright © 2011 The Voice Foundation. Published by Mosby, Inc. All rights reserved.

  12. Design of self-assembling beta-hairpin pepide-based hydrogels for tissue engineering applications

    NASA Astrophysics Data System (ADS)

    Butterick, Lisa Ann

    The field of tissue engineering aims to repair damaged tissues and organs with diminished function. One approach used in tissue engineering is to introduce cells and/or growth factors to the damaged tissue in either one of two ways. The first method is an invasive procedure where cells are introduced to a preformed scaffold and cultured in vitro. The scaffold is then inserted into the host by making an incision at the site of interest, which must be as large as the preformed scaffold. The second method is a minimally invasive procedure where cells are suspended in a polymeric solution and injected via syringe. After leaving the syringe, the material undergoes a phase transition to form a hydrogel at the site of introduction. Regardless of the delivery mechanism employed, development of an appropriate scaffold conducive to cellular proliferation and extracellular matrix production is critical to the success of the implanted material in persuading the body to repair itself. In working toward this goal, we have developed a family of beta-hairpin peptides, based on the design MAX1, that undergoes intramolecular folding and self-assembly to form rigid hydrogels in response to changes in pH, ionic strength, and temperature. From a molecular design standpoint of view, site specific N-methylation of MAX1 was performed to determine the importance of forming hydrogen bonds during the self-assembly event and its effect on hydrogelation. The remainder of this thesis is dedicated to the development of materials and minimally methodologies to deliver gel/cell constructs via syringe to target sites to aid in tissue repair. A peptide, MAX7CNB was designed that undergoes folding and assembly in response to ultraviolet light to form hydrogel material. In addition, MAX8 was rationally designed to display the appropriate hydrogelation kinetics to achieve homogenous cellular encapsulation throughout the gel matrix. MAX8 gel/cell scaffolds can be easily delivered via syringe to secondary target sites while maintaining cellular homogeneity, viability and remain fixed at the site of introduction. Additionally, preliminary in vitro based studies employing mouse peritoneal macrophages suggest the MAX8 gels are non-inflammatory in nature and may not elicit an in vivo immune response upon implantation. It has been demonstrated throughout this thesis that by employing amino acids as fundamental building blocks, peptide sequences can be designed to undergo molecular recognition, resulting in hydrogel material for use in tissue engineering applications.

  13. Rheological, mechanical and degradable properties of injectable chitosan/silk fibroin/hydroxyapatite/glycerophosphate hydrogels.

    PubMed

    Wu, Jingjing; Liu, Jiaoyan; Shi, Yanmei; Wan, Ying

    2016-12-01

    Silk fibroin (SF) and hydroxyapatite (HA) were incorporated into chitosan/glycerophosphate (GP) system to prepare new types of hydrogels. The formulated chitosan/SF/GP and chitosan/SF/HA/GP solutions were found to be injectable at room temperature, and able to form into hydrogels at near-physiological temperature and pH. Rheological measurements showed that elastic modulus of certain chitosan/SF/GP and chitosan/SF/HA/GP gels could reach around 1.8 and 15kPa, respectively, and was much higher than their respective viscous modulus. Compressive measurements revealed that some chitosan/SF/GP and chitosan/SF/HA/GP gels had 8 and 20-fold modulus and strength higher than the chitosan/GP gel, respectively, confirming that compressive properties of these gels were greatly improved. Results obtained from in vivo degradation demonstrated that degradation endurance of the optimized chitosan/SF/GP and chitosan/SF/HA/GP gels was significantly enhanced as compared to the chitosan/GP gel, and the degradation rate of the gels could be regulated by the SF component alone or by the combination of SF and HA components. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Mesenchymal stromal cell injection promotes vocal fold scar repair without long-term engraftment

    PubMed Central

    BARTLETT, R.S.; GUILLE, J.T.; CHEN, X.; CHRISTENSEN, M.B.; WANG, S.F.; THIBEAULT, S.L.

    2016-01-01

    Background Regenerative medicine holds promise for restoring voice in patients with vocal fold scarring. As experimental treatments approach clinical translation, several considerations remain. Our objective was to evaluate efficacy and biocompatibility of four bone marrow mesenchymal stromal cell (BM-MSC) and tunable hyaluronic acid based hydrogel (HyStem-VF) treatments for vocal fold scar using clinically acceptable materials, a preclinical sample size and a dosing comparison. Methods Vocal folds of 84 rabbits were injured and injected with four treatment variations (BM-MSC, HyStem-VF, and BM-MSC in HyStem-VF at two concentrations) 6 weeks later. Efficacy was assessed with rheometry, real-time polymerase chain reaction (PCR) and histology at 2, 4 and 10 weeks following treatment. Lung, liver, kidney, spleen and vocal folds were screened for biocompatibility by a pathologist. Results and discussion Persistent inflammation was identified in all hydrogel-injected groups. The BM-MSC alone treatment appeared to be the most efficacious and safe, providing an early resolution of viscoelasticity, gene expression consistent with desirable extracellular matrix remodeling (less fibronectin, collagen 1α2, collagen 3, procollagen, transforming growth factor [TGF]β1, alpha smooth muscle actin, interleukin-1β, interleukin-17β and tumor necrosis factor [TNF] than injured controls) and minimal inflammation. Human beta actin expression in BM-MSC–treated vocal folds was minimal after 2 weeks, suggesting that paracrine signaling from the BM-MSCs may have facilitated tissue repair. PMID:27637759

  15. Mesenchymal stromal cell injection promotes vocal fold scar repair without long-term engraftment.

    PubMed

    Bartlett, R S; Guille, J T; Chen, X; Christensen, M B; Wang, S F; Thibeault, S L

    2016-10-01

    Regenerative medicine holds promise for restoring voice in patients with vocal fold scarring. As experimental treatments approach clinical translation, several considerations remain. Our objective was to evaluate efficacy and biocompatibility of four bone marrow mesenchymal stromal cell (BM-MSC) and tunable hyaluronic acid based hydrogel (HyStem-VF) treatments for vocal fold scar using clinically acceptable materials, a preclinical sample size and a dosing comparison. Vocal folds of 84 rabbits were injured and injected with four treatment variations (BM-MSC, HyStem-VF, and BM-MSC in HyStem-VF at two concentrations) 6 weeks later. Efficacy was assessed with rheometry, real-time polymerase chain reaction (RT-PCR) and histology at 2, 4 and 10 weeks following treatment. Lung, liver, kidney, spleen and vocal folds were screened for biocompatibility by a pathologist. Persistent inflammation was identified in all hydrogel-injected groups. The BM-MSC alone treatment appeared to be the most efficacious and safe, providing an early resolution of viscoelasticity, gene expression consistent with desirable extracellular matrix remodeling (less fibronectin, collagen 1α2, collagen 3, procollagen, transforming growth factor [TGF]β1, alpha smooth muscle actin, interleukin-1β, interleukin-17β and tumor necrosis factor [TNF] than injured controls) and minimal inflammation. Human beta actin expression in BM-MSC-treated vocal folds was minimal after 2 weeks, suggesting that paracrine signaling from the BM-MSCs may have facilitated tissue repair. Copyright © 2016 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  16. Stemness of spermatogonial stem cells encapsulated in alginate hydrogel during cryopreservation.

    PubMed

    Pirnia, A; Parivar, K; Hemadi, M; Yaghmaei, P; Gholami, M

    2017-06-01

    This study investigated the effect of spermatogonial stem cell encapsulated in alginate hydrogel during cryopreservation, as cells were protected against damage during cryopreservation within the hydrogel. Spermatogonial stem cells were isolated from the testes of Balb/c mice pups (6 days old), purified in laminin-coated dishes and CD90.1 microbeads, encapsulated in alginate hydrogel and then cryopreserved. After thawing, cell viability and Spermatogonial stem cell (SSC) colony diameter were evaluated. After RNA was isolated and cDNA was synthesised, the expression of stemness genes was considered using RT real-time PCR. Finally, spermatogonial stem cells labelled with BrdU were transplanted to busulfan azoospermic mouse models. Lin28a and Sall4 genes were significantly upregulated after cryopreservation in alginate hydrogel. However, cell viability was significantly decreased. The diameter of colonies consisting of spermatogonial stem cells freeze-thawed in alginate microbeads showed no significant difference with fresh spermatogonial stem cells and the control group. The injection of freeze-thawed spermatogonial stem cells encapsulated in alginate hydrogel resulted in spermatogenesis recovery. Alginate mimics the extracellular matrices (ECM) for spermatogonial stem cells; therefore, it can support stemness potential during the cell cryopreservation process and restart spermatogenesis after transplantation. © 2016 Blackwell Verlag GmbH.

  17. An Injectable Hydrogel as Bone Graft Material with Added Antimicrobial Properties.

    PubMed

    Tommasi, Giacomo; Perni, Stefano; Prokopovich, Polina

    2016-06-01

    Currently, the technique which provides the best chances for a successful bone graft, is the use of bone tissue from the same patient receiving it (autograft); the main limitations are the limited availability and the risks involved in removing living bone tissue, for example, explant site pain and morbidity. Allografts and xenografts may overcome these limitations; however, they increase the risk of rejection. For all these reasons the development of an artificial bone graft material is particularly important and hydrogels are a promising alternative for bone regeneration. Gels were prepared using 1,4-butanediol diacrylate as crosslinker and alpha tricalciumphosphate; ZnCl2 and SrCl2 were added to the aqueous phase. MTT results demonstrated that the addition of strontium had a beneficial effect on the osteoblast cells density on hydrogels, and zinc instead did not increase osteoblast proliferation. The amount of calcium produced by the osteoblast cells quantified through the Alizarin Red protocol revealed that both strontium and zinc positively influenced the formation of calcium; furthermore, their effect was synergistic. Rheology properties were used to mechanically characterize the hydrogels and especially the influence of crosslinker's concentration on them, showing the hydrogels presented had extremely good mechanical properties. Furthermore, the antimicrobial activity of strontium and zinc in the hydrogels against methicillin-resistant Staphylococcus aureus and Staphylococcus epidermidis was determined.

  18. Hydrogel Biomaterials: A Smart Future?

    PubMed Central

    Kopeček, Jindřich

    2007-01-01

    Hydrogels were the first biomaterials developed for human use. The state-of-the-art and potential for the future are discussed. Recently, new designs have produced mechanically strong synthetic hydrogels. Protein based hydrogels and hybrid hydrogels containing protein domains present a novel advance; such biomaterials may self-assemble from block or graft copolymers containing biorecognition domains. One of the domains, the coiled-coil, ubiquitously found in nature, has been used as an example to demonstrate the developments in the design of smart hydrogels. The application potential of synthetic, protein-based, DNA-based, and hybrid hydrogels bodes well for the future of this class of biomaterials. PMID:17697712

  19. Component effect of stem cell-loaded thermosensitive polypeptide hydrogels on cartilage repair.

    PubMed

    Liu, He; Cheng, Yilong; Chen, Jinjin; Chang, Fei; Wang, Jincheng; Ding, Jianxun; Chen, Xuesi

    2018-06-01

    Biophysical properties of the desired biomimetic scaffolds, such as porosity and elasticity, have been proven associated with the efficacy of cartilage regeneration. In this work, the copolymers of poly(l-alanine)-block-poly(ethylene glycol)-block-poly(l-alanine) (PA-PEG-PA) and poly(l-alanine-co-l-phenylalanine)-block-poly(ethylene glycol)-block-poly(l-alanine-co-l-phenylalanine) (PAF-PEG-PAF) with different ratios of alanine to phenylalanine were synthesized. The introduction of a hydrophobic amino acid, i.e., phenylalanine, into polyalanine-based thermosensitive hydrogel led to the enhanced gelation behaviors and upregulated mechanical properties. Moreover, the increase of phenylalanine content resulted in the enlarged pore size and enhanced mechanical strength of PAF-PEG-PAF thermogel, followed by the regeneration of hyaline-like cartilage with reduced fibrous tissue formation in vivo. The findings indicated the great potential of thermosensitive polypeptide hydrogels in cartilage tissue engineering. Articular cartilage defect has limited self-repair ability due to the lack of blood supply and innervation, which may lead to knee osteoarthritis afterwards. Injectable hydrogels are demonstrated possessing outstanding properties as biomimetic scaffolds in cartilage tissue engineering, while the effect of biophysical properties on the efficacy of cartilage regeneration has not been revealed. Herein, the poly(ethylene glycol)-polypeptide triblock copolymers with different ratios of alanine to phenylalanine were synthesized. The sol-to-gel transition temperature and the critical gelation concentration decreased as the increased amount of phenylalanine unit, resulting in the enlarged pore size and enhanced mechanical strength. These features lead to better regeneration of hyaline-like cartilage with reduced fibrous tissue formation, indicating great potential of thermosensitive polypeptide hydrogels for efficient cartilage repair. Copyright © 2018 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  20. Functionalized graphene oxide-based thermosensitive hydrogel for near-infrared chemo-photothermal therapy on tumor.

    PubMed

    Zhu, Xiali; Zhang, Yingjie; Huang, Heqing; Zhang, Huijuan; Hou, Lin; Zhang, Zhenzhong

    2016-03-01

    A functionalized graphene oxide-based thermosensitive hydrogel loaded with docetaxel for intratumoral delivery was designed to enhance therapeutic efficacy and alleviate system toxicity. First, graphene oxide was functionalized with chitosan to acquire high stability in physiological solutions. And then docetaxel-graphene oxide/chitosan gel was formed by mixed docetaxel-graphene oxide/chitosan suspension with hydrogel which was made from Poloxamer 407 and Poloxamer 188. Cellular uptake, antitumor effect in vitro and in vivo, cell apoptosis, and biodistribution of docetaxel-graphene oxide/chitosan gel were investigated, compared with the docetaxel solution. Graphene oxide/chitosan was stable in physiological solution, and docetaxel released much slower from docetaxel-graphene oxide/chitosan gel with a pH-responsive feature. Compared with free docetaxel, docetaxel-graphene oxide/chitosan could afford higher antitumor efficacy in Michigan Cancer Foundation-7 (MCF-7) cells in vitro. Furthermore, docetaxel-grapheme oxide/chitosan gel which was injected within tumor could afford higher concentration and longer resident time in tumor tissues of mice in vivo, without obvious toxic effects to normal organs. Meanwhile, the combination of near-infrared laser irradiation at 808 nm significantly enhanced tumor inhibition in vitro and in vivo. Docetaxel-graphene oxide/chitosan gel in combination with 808 nm near-infrared laser irradiation had great potential for cancer chemo-photothermal therapy. © The Author(s) 2016.

  1. Polymeric hydrogels for novel contact lens-based ophthalmic drug delivery systems: a review.

    PubMed

    Xinming, Li; Yingde, Cui; Lloyd, Andrew W; Mikhalovsky, Sergey V; Sandeman, Susan R; Howel, Carol A; Liewen, Liao

    2008-04-01

    Only about 5% of drugs administrated by eye drops are bioavailable, and currently eye drops account for more than 90% of all ophthalmic formulations. The bioavailability of ophthalmic drugs can be improved by a soft contact lens-based ophthalmic drug delivery system. Several polymeric hydrogels have been investigated for soft contact lens-based ophthalmic drug delivery systems: (i) polymeric hydrogels for conventional contact lens to absorb and release ophthalmic drugs; (ii) polymeric hydrogels for piggyback contact lens combining with a drug plate or drug solution; (iii) surface-modified polymeric hydrogels to immobilize drugs on the surface of contact lenses; (iv) polymeric hydrogels for inclusion of drugs in a colloidal structure dispersed in the lens; (v) ion ligand-containing polymeric hydrogels; (vi) molecularly imprinted polymeric hydrogels which provide the contact lens with a high affinity and selectivity for a given drug. Polymeric hydrogels for these contact lens-based ophthalmic drug delivery systems, their advantages and drawbacks are critically analyzed in this review.

  2. Photo-Modulated Therapeutic Protein Release from a Hydrogel Depot Using Visible Light.

    PubMed

    Basuki, Johan S; Qie, Fengxiang; Mulet, Xavier; Suryadinata, Randy; Vashi, Aditya V; Peng, Yong Y; Li, Lingli; Hao, Xiaojuan; Tan, Tianwei; Hughes, Timothy C

    2017-01-19

    The use of biomacromolecular therapeutics has revolutionized disease treatment, but frequent injections are required owing to their short half-life in vivo. Thus there is a need for a drug delivery system that acts as a reservoir and releases the drug remotely "on demand". Here we demonstrate a simple light-triggered local drug delivery system through photo-thermal interactions of polymer-coated gold nanoparticles (AuNPs) inside an agarose hydrogel as therapeutic depot. Localized temperature increase induced by the visible light exposure caused reversible softening of the hydrogel matrix to release the pre-loaded therapeutics. The release profile can be adjusted by AuNPs and agarose concentrations, light intensity and exposure time. Importantly, the biological activity of the released bevacizumab was highly retained. In this study we demonstrate the potential application of this facile AuNPs/hydrogel system for ocular therapeutics delivery through its versatility to release multiple biologics, compatibility to ocular cells and spatiotemporal control using visible light. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Ophthalmic gels: Past, present and future.

    PubMed

    Al-Kinani, Ali A; Zidan, Ghada; Elsaid, Naba; Seyfoddin, Ali; Alani, Adam W G; Alany, Raid G

    2018-02-15

    Aqueous gels formulated using hydrophilic polymers (hydrogels) along with those based on stimuli responsive polymers (in situ gelling or gel forming systems) continue to attract increasing interest for various eye health-related applications. They allow the incorporation of a variety of ophthalmic pharmaceuticals to achieve therapeutic levels of drugs and bioactives at target ocular sites. The integration of sophisticated drug delivery technologies such as nanotechnology-based ones with intelligent and environment responsive systems can extend current treatment duration to provide more clinically relevant time courses (weeks and months instead of hours and days) which will inevitably reduce dose frequency, increase patient compliance and improve clinical outcomes. Novel applications and design of contact lenses and intracanalicular delivery devices along with the move towards integrating gels into various drug delivery devices like intraocular pumps, injections and implants has the potential to reduce comorbidities caused by glaucoma, corneal keratopathy, cataract, diabetic retinopathies and age-related macular degeneration. This review describes ophthalmic gelling systems with emphasis on mechanism of gel formation and application in ophthalmology. It provides a critical appraisal of the techniques and methods used in the characterization of ophthalmic preformed gels and in situ gelling systems along with a thorough insight into the safety and biocompatibility of these systems. Newly developed ophthalmic gels, hydrogels, preformed gels and in situ gelling systems including the latest in the area of stimuli responsive gels, molecularly imprinted gels, nanogels, 3D printed hydrogels; 3D printed devices comprising ophthalmic gels are covered. Finally, new applications of gels in the production of artificial corneas, corneal wound healing and hydrogel contact lenses are described. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Injectable visible light-cured glycol chitosan hydrogels with controlled release of anticancer drugs for local cancer therapy in vivo: a feasible study.

    PubMed

    Hyun, Hoon; Park, Min Ho; Lim, Wonbong; Kim, So Yeon; Jo, Danbi; Jung, Jin Seok; Jo, Gayoung; Um, Sewook; Lee, Deok-Won; Yang, Dae Hyeok

    2018-05-11

    Currently available chemotherapy is associated with serious side effects, and therefore novel drug delivery systems (DDSs) are required to specifically deliver anticancer drugs to targeted sites. In this study, we evaluated the feasibility of visible light-cured glycol chitosan (GC) hydrogels with controlled release of doxorubicin⋅hydrochloride (DOX⋅HCl) as local DDSs for effective cancer therapy in vivo. The storage modulus of the hydrogel precursor solutions was increased as a function of visible light irradiation time. In addition, the swelling ratio of the hydrogel irradiated for 10 s (GC 10 /DOX) was greater than in 60 s (GC 60 /DOX). In vitro release test showed that DOX was rapidly released in GC 10 /DOX compared with GC 60 /DOX due to the density of cross-linking. In vitro and in vivo tests including cell viability and measurement of tumor volume showed that the local treatment of GC 10 /DOX yielded substantially greater antitumor effect compared with that of GC 60 /DOX. Therefore, the visible light-cured GC hydrogel system may exhibit clinical potential as a local DDS of anticancer drugs with controlled release, by modulating cross-linking density.

  5. A Novel Absorbable Radiopaque Hydrogel Spacer to Separate the Head of the Pancreas and Duodenum in Radiation Therapy for Pancreatic Cancer.

    PubMed

    Rao, Avani D; Feng, Ziwei; Shin, Eun Ji; He, Jin; Waters, Kevin M; Coquia, Stephanie; DeJong, Robert; Rosati, Lauren M; Su, Lin; Li, Dengwang; Jackson, Juan; Clark, Stephen; Schultz, Jeffrey; Hutchings, Danielle; Kim, Seong-Hun; Hruban, Ralph H; DeWeese, Theodore L; Wong, John; Narang, Amol; Herman, Joseph M; Ding, Kai

    2017-12-01

    We assessed the feasibility and theoretical dosimetric advantages of an injectable hydrogel to increase the space between the head of the pancreas (HOP) and duodenum in a human cadaveric model. Using 3 human cadaveric specimens, an absorbable radiopaque hydrogel was injected between the HOP and duodenum by way of open laparotomy in 1 case and endoscopic ultrasound (EUS) guidance in 2 cases. The cadavers were subsequently imaged using computed tomography and dissected for histologic confirmation of hydrogel placement. The duodenal dose reduction and planning target volume (PTV) coverage were characterized using pre- and postspacer injection stereotactic body radiation therapy (SBRT) plans for the 2 cadavers with EUS-guided placement, the delivery method that appeared the most clinically desirable. Modeling studies were performed using 60 SBRT plans consisting of 10 previously treated patients with unresectable pancreatic cancer, each with 6 different HOP-duodenum separation distances. The duodenal volume receiving 15 Gy (V15), 20 Gy (V20), and 33 Gy (V33) was assessed for each iteration. In the 3 cadaveric studies, an average of 0.9 cm, 1.1 cm, and 0.9 cm HOP-duodenum separation was achieved. In the 2 EUS cases, the V20 decreased from 3.86 cm 3 to 0.36 cm 3 and 3.75 cm 3 to 1.08 cm 3 (treatment constraint <3 cm 3 ), and the V15 decreased from 7.07 cm 3 to 2.02 cm 3 and 9.12 cm 3 to 3.91 cm 3 (treatment constraint <9 cm 3 ). The PTV coverage improved or was comparable between the pre- and postinjection studies. Modeling studies demonstrated that a separation of 8 mm was sufficient to consistently reduce the V15, V20, and V33 to acceptable clinical constraints. Currently, dose escalation has been limited owing to radiosensitive structures adjacent to the pancreas. We demonstrated the feasibility of hydrogel separation of the HOP and duodenum. Future studies will evaluate the safety and efficacy of this technique with the potential for more effective dose escalation using SBRT or intensity-modulated radiation therapy to improve the outcomes in patients with unresectable pancreatic cancer. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  6. Corneal repair by human corneal keratocyte-reprogrammed iPSCs and amphiphatic carboxymethyl-hexanoyl chitosan hydrogel.

    PubMed

    Chien, Yueh; Liao, Yi-Wen; Liu, Dean-Mo; Lin, Heng-Liang; Chen, Shih-Jen; Chen, Hen-Li; Peng, Chi-Hsien; Liang, Chang-Min; Mou, Chung-Yuan; Chiou, Shih-Hwa

    2012-11-01

    Induced pluripotent stem cells (iPSCs) have promising potential in regenerative medicine, but whether iPSCs can promote corneal reconstruction remains undetermined. In this study, we successfully reprogrammed human corneal keratocytes into iPSCs. To prevent feeder cell contamination, these iPSCs were cultured onto a serum- and feeder-free system in which they remained stable through 30 passages and showed ESC-like pluripotent property. To investigate the availability of iPSCs as bioengineered substitutes in corneal repair, we developed a thermo-gelling injectable amphiphatic carboxymethyl-hexanoyl chitosan (CHC) nanoscale hydrogel and found that such gel increased the viability and CD44+proportion of iPSCs, and maintained their stem-cell like gene expression, in the presence of culture media. Combined treatment of iPSC with CHC hydrogel (iPSC/CHC hydrogel) facilitated wound healing in surgical abrasion-injured corneas. In severe corneal damage induced by alkaline, iPSC/CHC hydrogel enhanced corneal reconstruction by downregulating oxidative stress and recruiting endogenous epithelial cells to restore corneal epithelial thickness. Therefore, we demonstrated that these human keratocyte-reprogrammed iPSCs, when combined with CHC hydrogel, can be used as a rapid delivery system to efficiently enhance corneal wound healing. In addition, iPSCs reprogrammed from corneal surgical residues may serve as an alternative cell source for personalized therapies for human corneal damage. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. An Injectable Hydrogel as Bone Graft Material with Added Antimicrobial Properties

    PubMed Central

    Tommasi, Giacomo; Perni, Stefano

    2016-01-01

    Currently, the technique which provides the best chances for a successful bone graft, is the use of bone tissue from the same patient receiving it (autograft); the main limitations are the limited availability and the risks involved in removing living bone tissue, for example, explant site pain and morbidity. Allografts and xenografts may overcome these limitations; however, they increase the risk of rejection. For all these reasons the development of an artificial bone graft material is particularly important and hydrogels are a promising alternative for bone regeneration. Gels were prepared using 1,4-butanediol diacrylate as crosslinker and alpha tricalciumphosphate; ZnCl2 and SrCl2 were added to the aqueous phase. MTT results demonstrated that the addition of strontium had a beneficial effect on the osteoblast cells density on hydrogels, and zinc instead did not increase osteoblast proliferation. The amount of calcium produced by the osteoblast cells quantified through the Alizarin Red protocol revealed that both strontium and zinc positively influenced the formation of calcium; furthermore, their effect was synergistic. Rheology properties were used to mechanically characterize the hydrogels and especially the influence of crosslinker's concentration on them, showing the hydrogels presented had extremely good mechanical properties. Furthermore, the antimicrobial activity of strontium and zinc in the hydrogels against methicillin-resistant Staphylococcus aureus and Staphylococcus epidermidis was determined. PMID:27174392

  8. Transdermal gelation of methacrylated macromers with near-infrared light and gold nanorods

    NASA Astrophysics Data System (ADS)

    Gramlich, William M.; Holloway, Julianne L.; Rai, Reena; Burdick, Jason A.

    2014-01-01

    Injectable hydrogels provide locally controlled tissue bulking and a means to deliver drugs and cells to the body. The formation of hydrogels in vivo may involve the delivery of two solutions that spontaneously crosslink when mixed, with pH or temperature changes, or with light (e.g., visible or ultraviolet). With these approaches, control over the kinetics of gelation, introduction of the initiation trigger (e.g., limited penetration of ultraviolet light through tissues), or alteration of the material physical properties (e.g., mechanics) may be difficult to achieve. To overcome these limitations, we used the interaction of near-infrared (NIR) light with gold nanorods (AuNRs) to generate heat through the photothermal effect. NIR light penetrates tissues to a greater extent than other wavelengths and provides a means to indirectly initiate radical polymerization. Specifically, this heating coupled with a thermal initiator (VA-044) produced radicals that polymerized methacrylated hyaluronic acid (MeHA) and generated hydrogels. A range of VA-044 concentrations changed the gelation time, yielding a system stable at 37 ° C for 22 min that gels quickly (˜3 min) when heated to 55 ° C. With a constant irradiation time (10 min) and laser power (0.3 W), different VA-044 and AuNR concentrations tuned the compressive modulus of the hydrogel. By changing the NIR irradiation time we attained a wide range of moduli at a set solution composition. In vivo mouse studies confirmed that NIR laser irradiation through tissue could gel an injected precursor solution transdermally.

  9. Xylan-Modified-Based Hydrogels with Temperature/pH Dual Sensitivity and Controllable Drug Delivery Behavior

    PubMed Central

    Kong, Wei-Qing; Gao, Cun-Dian; Hu, Shu-Feng; Ren, Jun-Li; Zhao, Li-Hong; Sun, Run-Cang

    2017-01-01

    Among the natural macromolecules potentially used as the scaffold material in hydrogels, xylan has aroused great interest in many fields because of its biocompatibility, low toxicity, and biodegradability. In this work, new pH and thermoresponsive hydrogels were prepared by the cross-linking polymerization of maleic anhydride-modified xylan (MAHX) with N-isopropylacrylamide (NIPAm) and acrylic acid (AA) under UV irradiation to form MAHX-g-P(NIPAm-co-AA) hydrogels. The pore volume, the mechanical properties, and the release rate for drugs of hydrogels could be controlled by the degree of substitution of MAHX. These hydrogels were characterized by swelling ability, lower critical solution temperature (LCST), Fourier-transform infrared (FTIR), and SEM. Furthermore, the cumulative release rate was investigated for acetylsalicylic acid and theophylline, as well as the cytocompatibility MAHX-based hydrogels. Results showed that MAHX-based hydrogels exhibited excellent swelling–deswelling properties, uniform porous structure, and the temperature/pH dual sensitivity. In vitro, the cumulative release rate of acetylsalicylic acid for MAHX-based hydrogels was higher than that for theophylline, and in the gastrointestinal sustained drug release study, the acetylsalicylic acid release rate was extremely slow during the initial 3 h in the gastric fluid (24.26%), and then the cumulative release rate reached to 90.5% after sustained release for 5 h in simulated intestinal fluid. The cytotoxicity experiment demonstrated that MAHX-based hydrogels could promote cell proliferation and had satisfactory biocompatibility with NIH3T3 cells. These results indicated that MAHX-based hydrogels, as new drug carriers, had favorable behavior for intestinal-targeted drug delivery. PMID:28772664

  10. Preparing neural stem/progenitor cells in PuraMatrix hydrogel for transplantation after brain injury in rats: A comparative methodological study.

    PubMed

    Aligholi, Hadi; Rezayat, Seyed Mahdi; Azari, Hassan; Ejtemaei Mehr, Shahram; Akbari, Mohammad; Modarres Mousavi, Seyed Mostafa; Attari, Fatemeh; Alipour, Fatemeh; Hassanzadeh, Gholamreza; Gorji, Ali

    2016-07-01

    Cultivation of neural stem/progenitor cells (NS/PCs) in PuraMatrix (PM) hydrogel is an option for stem cell transplantation. The efficacy of a novel method for placing adult rat NS/PCs in PM (injection method) was compared to encapsulation and surface plating approaches. In addition, the efficacy of injection method for transplantation of autologous NS/PCs was studied in a rat model of brain injury. NS/PCs were obtained from the subventricular zone (SVZ) and cultivated without (control) or with scaffold (three-dimensional cultures; 3D). The effect of different approaches on survival, proliferation, and differentiation of NS/PCs were investigated. In in vivo study, brain injury was induced 45 days after NS/PCs were harvested from the SVZ and phosphate buffered saline, PM, NS/PCs, or PM+NS/PCs were injected into the brain lesion. There was an increase in cell viability and proliferation after injection and surface plating of NS/PCs compared to encapsulation and neural differentiation markers were expressed seven days after culturing the cells. Using injection method, transplantation of NS/PCs cultured in PM resulted in significant reduction of lesion volume, improvement of neurological deficits, and enhancement of surviving cells. In addition, the transplanted cells could differentiate in to neurons, astrocytes, or oligodendrocytes. Our results indicate that the injection and surface plating methods enhanced cell survival and proliferation of NS/PCs and suggest the injection method as a promising approach for transplantation of NS/PCs in brain injury. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Gradient nano-engineered in situ forming composite hydrogel for osteochondral regeneration.

    PubMed

    Radhakrishnan, Janani; Manigandan, Amrutha; Chinnaswamy, Prabu; Subramanian, Anuradha; Sethuraman, Swaminathan

    2018-04-01

    Fabrication of anisotropic osteochondral-mimetic scaffold with mineralized subchondral zone and gradient interface remains challenging. We have developed an injectable semi-interpenetrating network hydrogel construct with chondroitin sulfate nanoparticles (ChS-NPs) and nanohydroxyapatite (nHA) (∼30-90 nm) in chondral and subchondral hydrogel zones respectively. Mineralized subchondral hydrogel exhibited significantly higher osteoblast proliferation and alkaline phosphatase activity (p < 0.05). Osteochondral hydrogel exhibited interconnected porous structure and spatial variation with gradient interface of nHA and ChS-NPs. Microcomputed tomography (μCT) demonstrated nHA gradation while rheology showed predominant elastic modulus (∼930 Pa) at the interface. Co-culture of osteoblasts and chondrocytes in gradient hydrogels showed layer-specific retention of cells and cell-cell interaction at the interface. In vivo osteochondral regeneration by biphasic (nHA or ChS) and gradient (nHA + ChS) hydrogels was compared with control using rabbit osteochondral defect after 3 and 8 weeks. Complete closure of defect was observed in gradient (8 weeks) while defect remained in other groups. Histology demonstrated collagen and glycosaminoglycan deposition in neo-matrix and presence of hyaline cartilage-characteristic matrix, chondrocytes and osteoblasts. μCT showed mineralized neo-tissue formation, which was confined within the defect with higher bone mineral density in gradient (chondral: 0.42 ± 0.07 g/cc, osteal: 0.64 ± 0.08 g/cc) group. Further, biomechanical push-out studies showed significantly higher load for gradient group (378 ± 56 N) compared to others. Thus, the developed nano-engineered gradient hydrogel enhanced hyaline cartilage regeneration with subchondral bone formation and lateral host-tissue integration. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. An in situ formed biodegradable hydrogel for reconstruction of the corneal endothelium.

    PubMed

    Liang, Ye; Liu, Wanshun; Han, Baoqin; Yang, Chaozhong; Ma, Qun; Song, Fulai; Bi, Qingqing

    2011-01-01

    Biodegradable hydrogels are important biomaterials for tissue engineering and drug delivery. For the purpose of corneal regenerative medicine, we describe an in situ formed hydrogel based on a water-soluble derivative of chitosan, hydroxypropyl chitosan (HPCTS), and sodium alginate dialdehyde (SAD). Periodate oxidized alginate rapidly cross-links HPCTS due to Schiff's base formation between the available aldehyde and amino groups. Hydrogel cytotoxicity, degradability and histocompatibility in vivo were examined. The potential of the composite hydrogel for corneal endothelium reconstruction was demonstrated by encapsulating corneal endothelial cells (CECs) to grow on Descemet's membranes. The results demonstrate that the composite hydrogel was both non-toxic and biodegradable and that CECs transplanted by the composite hydrogel could survive and retain normal morphology. These results provide an opportunity for corneal endothelium reconstruction based on tissue engineering by the in situ formed composite hydrogel. Copyright © 2010 Elsevier B.V. All rights reserved.

  13. Hybrid Protein–Glycosaminoglycan Hydrogels Promote Chondrogenic Stem Cell Differentiation

    PubMed Central

    2017-01-01

    Gelatin–hyaluronic acid (Gel–HA) hybrid hydrogels have been proposed as matrices for tissue engineering because of their ability to mimic the architecture of the extracellular matrix. Our aim was to explore whether tyramine conjugates of Gel and HA, producing injectable hydrogels, are able to induce a particular phenotype of encapsulated human mesenchymal stem cells without the need for growth factors. While pure Gel allowed good cell adhesion without remarkable differentiation and pure HA triggered chondrogenic differentiation without cell spreading, the hybrids, especially those rich in HA, promoted chondrogenic differentiation as well as cell proliferation and adhesion. Secretion of chondrogenic markers such as aggrecan, SOX-9, collagen type II, and glycosaminoglycans was observed, whereas osteogenic, myogenic, and adipogenic markers (RUNX2, sarcomeric myosin, and lipoproteinlipase, respectively) were not present after 2 weeks in the growth medium. The most promising matrix for chondrogenesis seems to be a mixture containing 70% HA and 30% Gel as it is the material with the best mechanical properties from all compositions tested here, and at the same time, it provides an environment suitable for balanced cell adhesion and chondrogenic differentiation. Thus, it represents a system that has a high potential to be used as the injectable material for cartilage regeneration therapies. PMID:29214232

  14. The enhanced anti-tissue adhesive effect of injectable pluronic-HA hydrogel by poly(γ-glutamic acid).

    PubMed

    Kim, Manse; Hwang, Youngmin; Tae, Giyoong

    2016-12-01

    The stability of tissue barrier in physiological condition is a key factor to isolate the damaged site from adjacent tissue for anti-tissue adhesion. Although pluronic or pluronic-hyaluronic acid (HA) hydrogel as an injectable formulation can prevent tissue adhesion at the injection site, the anti-tissue adhesion effect is limited due to its poor stability. Herein, we prepared tissue barrier formulations composed of pluronic F127 (F127) and HA mixture (F127-HA) and the effect of the addition of poly(γ-glutamic acid) (PGA) was characterized. All of F127, HA, and F127-HA mixture showed the poor in vitro residence stability less than 3 days. However, by adding PGA into F127-HA mixture, their stability was significantly enhanced by the control of the molecular weight and concentration of PGA. Thus, F127-HA with 10wt% PGA (2000kDa) showed the long-term stability over 10 days. Similarly, the enhanced stability of F127-HA with PGA resulted in the enhanced and excellent in vivo anti-tissue adhesion effect, evidenced by histological analysis and grading of tissue adhesion. Therefore, F127-HA containing PGA could be applied as an efficient injectable tissue barrier for anti-tissue adhesion. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Protease-modulating polyacrylate-based hydrogel stimulates wound bed preparation in venous leg ulcers – a randomized controlled trial

    PubMed Central

    Humbert, P; Faivre, B; Véran, Y; Debure, C; Truchetet, F; Bécherel, P-A; Plantin, P; Kerihuel, J-C; Eming, SA; Dissemond, J; Weyandt, G; Kaspar, D; Smola, H; Zöllner, P

    2014-01-01

    Background Stringent control of proteolytic activity represents a major therapeutic approach for wound-bed preparation. Objectives We tested whether a protease-modulating polyacrylate- (PA-) containing hydrogel resulted in a more efficient wound-bed preparation of venous leg ulcers when compared to an amorphous hydrogel without known protease-modulating properties. Methods Patients were randomized to the polyacrylate-based hydrogel (n = 34) or to an amorphous hydrogel (n = 41). Wound beds were evaluated by three blinded experts using photographs taken on days 0, 7 and 14. Results After 14 days of treatment there was an absolute decrease in fibrin and necrotic tissue of 37.6 ± 29.9 percentage points in the PA-based hydrogel group and by 16.8 ± 23.0 percentage points in the amorphous hydrogel group. The absolute increase in the proportion of ulcer area covered by granulation tissue was 36.0 ± 27.4 percentage points in the PA-based hydrogel group and 14.5 ± 22.0 percentage points in the control group. The differences between the groups were significant (decrease in fibrin and necrotic tissue P = 0.004 and increase in granulation tissue P = 0.0005, respectively). Conclusion In particular, long-standing wounds profited from the treatment with the PA-based hydrogel. These data suggest that PA-based hydrogel dressings can stimulate normalization of the wound environment, particularly in hard-to-heal ulcers. PMID:24612304

  16. [Efficacy of periurethral injections of polyacrylamide hydrogel (Bulkamid(®)) and quality of life of patients with urinary incontinence due to sphincter deficiency (IUE-IS)].

    PubMed

    Beraru, A; Droupy, S; Wagner, L; Soustelle, L; Muyschondt, C; Ben Naoum, K; Grés, P; Boukaram, M; Costa, P

    2014-06-01

    This study was carried out to evaluate the efficacy of periurethral injection of polyacrylamide hydrogel (PAHG, Bulkamid(®), Ethicon) for the treatment of female stress urinary incontinence (SUI). Single-center prospective study: periurethral injection of Bulkamid(®) was performed in 80 patients with severe urinary incontinence between June 2010 and October 2011. The evaluation of the impact on quality of life was carried out using the Patient Global Impression of Severity (PGI-S), the International Consultation on Incontinence Questionnaire - Short Form (ICIQ-SF) and Patient Global Impression of Improvement (PGI-I) before and after treatment. With a mean follow-up of 18.6 ± 5.3 months, 60% of patients had improved. For 30/74 (40%) there was no improvement and no patient had worsening of PGI-I after injection. Before surgery, 55.4% of patients considered their condition as severe (PGI-S). After injecting 21/74 (28%) and 11/74 (15%) considered it normal and severe (zero leakage). The ICIQ -SF score increased from 17 ± 2.84 before injection to 13 ± 5.52 after surgery, with a significant 30% decrease (P<0.00001). The reinjection rate was 29%. The complication rate was 16% (17/108): 11 cases of transient postoperative retention, 2 cases of cystitis, dysuria four episodes. No abscess or infection at the injection site, no specific complication to the product used. With an (PGI-I) improvement rate of 60 and 15% of patients without leakage (PGI-S/ICIQ), periurethral injection of Bulkamid(®) is an effective and safe treatment option for women with a severe urinary incontinence especially in therapeutic failure. 4. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  17. Glow discharge electrolysis plasma initiated preparation of temperature/pH dual sensitivity reed hemicellulose-based hydrogels.

    PubMed

    Zhang, Wenming; Zhu, Sha; Bai, Yunping; Xi, Ning; Wang, Shaoyang; Bian, Yang; Li, Xiaowei; Zhang, Yucang

    2015-05-20

    The temperature/pH dual sensitivity reed hemicellulose-based hydrogels have been prepared through glow discharge electrolysis plasma (GDEP). The effect of different discharge voltages on the temperature and pH response performance of reed hemicellulose-based hydrogels was inspected, and the formation mechanism, deswelling behaviors of reed hemicellulose-based hydrogels were also discussed. At the same time, infrared spectroscopy (FT-IR), scanning differential thermal analysis (DSC) and scanning electron microscope (SEM) were adopted to characterize the structure, phase transformation behaviors and microstructure of hydrogels. It turned out to be that all reed hemicellulose-based hydrogels had a double sensitivity to temperature and pH, and their phase transition temperatures were all approximately 33 °C, as well as the deswelling dynamics met the first model. In addition, the hydrogel (TPRH-3), under discharge voltage 600 V, was more sensitive to temperature and pH and had higher deswelling ratio. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Angiogenic potential of gellan-gum-based hydrogels for application in nucleus pulposus regeneration: in vivo study.

    PubMed

    Silva-Correia, Joana; Miranda-Gonçalves, Vera; Salgado, António J; Sousa, Nuno; Oliveira, Joaquim M; Reis, Rui M; Reis, Rui L

    2012-06-01

    Hydrogels for nucleus pulposus (NP) regeneration should be able to comprise a nonangiogenic or even antiangiogenic feature. Gellan gum (GG)-based hydrogels have been reported to possess adequate properties for being used as NP substitutes in acellular and cellular strategies, due to its ability to support cell encapsulation, adequate mechanical properties, and noncytotoxicity. In this study, the angiogenic response of GG-based hydrogels was investigated by performing the chorioallantoic membrane assay. The convergence of macroscopic blood vessels toward the GG, ionic-crosslinked methacrylated GG (iGG-MA), and photo-crosslinked methacrylated GG (phGG-MA) hydrogel discs was quantified. Gelatin sponge (GSp) and filter paper (FP) alone and with vascular endothelial growth factor were used as controls of angiogenesis. The images obtained were digitally processed and analyzed by three independent observers. The macroscopic blood vessel quantification demonstrated that the GG-based hydrogels are not angiogenic as compared with FP controls. No statistical differences between the GG-based hydrogels tested in respect to its angiogenic ability were observed. Hematoxylin and eosin staining and SNA-lectin immunohistochemistry assay indicated that the iGG-MA and phGG-MA hydrogels do not allow the ingrowth of chick endothelial cells, following 4 days of implantation. On the contrary, GG, GSp, and FP controls allowed cell infiltration. The histological data also indicated that the GG-based hydrogels do not elicit any acute inflammatory response. The results showed that the GG, iGG-MA, and phGG-MA hydrogels present different permeability to cells but functioned as a physical barrier for vascular invasion. These hydrogels present promising and tunable properties for being used as NP substitutes in the treatment of degenerative intervertebral disc.

  19. 3D-Hydrogel Based Polymeric Nanoreactors for Silver Nano-Antimicrobial Composites Generation.

    PubMed

    Soto-Quintero, Albanelly; Romo-Uribe, Ángel; Bermúdez-Morales, Víctor H; Quijada-Garrido, Isabel; Guarrotxena, Nekane

    2017-08-01

    This study underscores the development of Ag hydrogel nanocomposites, as smart substrates for antibacterial uses, via innovative in situ reactive and reduction pathways. To this end, two different synthetic strategies were used. Firstly thiol-acrylate (PSA) based hydrogels were attained via thiol-ene and radical polymerization of polyethylene glycol (PEG) and polycaprolactone (PCL). As a second approach, polyurethane (PU) based hydrogels were achieved by condensation polymerization from diisocyanates and PCL and PEG diols. In fact, these syntheses rendered active three-dimensional (3D) hydrogel matrices which were used as nanoreactors for in situ reduction of AgNO₃ to silver nanoparticles. A redox chemistry of stannous catalyst in PU hydrogel yielded spherical AgNPs formation, even at 4 °C in the absence of external reductant; and an appropriate thiol-functionalized polymeric network promoted spherical AgNPs well dispersed through PSA hydrogel network, after heating up the swollen hydrogel at 103 °C in the presence of citrate-reductant. Optical and swelling behaviors of both series of hydrogel nanocomposites were investigated as key factors involved in their antimicrobial efficacy over time. Lastly, in vitro antibacterial activity of Ag loaded hydrogels exposed to Pseudomona aeruginosa and Escherichia coli strains indicated a noticeable sustained inhibitory effect, especially for Ag-PU hydrogel nanocomposites with bacterial inhibition growth capabilities up to 120 h cultivation.

  20. Protein-based hydrogels for tissue engineering

    PubMed Central

    Schloss, Ashley C.; Williams, Danielle M.; Regan, Lynne J.

    2017-01-01

    The tunable mechanical and structural properties of protein-based hydrogels make them excellent scaffolds for tissue engineering and repair. Moreover, using protein-based components provides the option to insert sequences associated with the promoting both cellular adhesion to the substrate and overall cell growth. Protein-based hydrogel components are appealing for their structural designability, specific biological functionality, and stimuli-responsiveness. Here we present highlights in the field of protein-based hydrogels for tissue engineering applications including design requirements, components, and gel types. PMID:27677513

  1. Synthesis of Acylated Xylan-Based Magnetic Fe3O4 Hydrogels and Their Application for H2O2 Detection

    PubMed Central

    Dai, Qing-Qing; Ren, Jun-Li; Peng, Feng; Chen, Xiao-Feng; Gao, Cun-Dian; Sun, Run-Cang

    2016-01-01

    Acylated xylan-based magnetic Fe3O4 nanocomposite hydrogels (ACX-MNP-gels) were prepared by fabricating Fe3O4 nanoctahedra in situ within a hydrogel matrix which was synthesized by the copolymerization of acylated xylan (ACX) with acrylamide and N-isopropylacrylamide under ultraviolet irradiation. The size of the Fe3O4 fabricated within the hydrogel matrix could be adjusted through controlling the crosslinking concentrations (C). The magnetic hydrogels showed desirable magnetic and mechanical properties, which were confirmed by XRD, Raman spectroscopy, physical property measurement system, SEM, TGA, and compression test. Moreover, the catalytic performance of the magnetic hydrogels was explored. The magnetic hydrogels (C = 7.5 wt %) presented excellent catalytic activity and provided a sensitive response to H2O2 detection even at a concentration level of 5 × 10−6 mol·L−1. This approach to preparing magnetic hydrogels loaded with Fe3O4 nanoparticles endows xylan-based hydrogels with new promising applications in biotechnology and environmental chemistry. PMID:28773811

  2. Reversible Modulation of DNA-Based Hydrogel Shapes by Internal Stress Interactions.

    PubMed

    Hu, Yuwei; Kahn, Jason S; Guo, Weiwei; Huang, Fujian; Fadeev, Michael; Harries, Daniel; Willner, Itamar

    2016-12-14

    We present the assembly of asymmetric two-layer hybrid DNA-based hydrogels revealing stimuli-triggered reversibly modulated shape transitions. Asymmetric, linear hydrogels that include layer-selective switchable stimuli-responsive elements that control the hydrogel stiffness are designed. Trigger-induced stress in one of the layers results in the bending of the linear hybrid structure, thereby minimizing the elastic free energy of the systems. The removal of the stress by a counter-trigger restores the original linear bilayer hydrogel. The stiffness of the DNA hydrogel layers is controlled by thermal, pH (i-motif), K + ion/crown ether (G-quadruplexes), chemical (pH-doped polyaniline), or biocatalytic (glucose oxidase/urease) triggers. A theoretical model relating the experimental bending radius of curvatures of the hydrogels with the Young's moduli and geometrical parameters of the hydrogels is provided. Promising applications of shape-regulated stimuli-responsive asymmetric hydrogels include their use as valves, actuators, sensors, and drug delivery devices.

  3. Biodegradation and Osteosarcoma Cell Cultivation on Poly(aspartic acid) Based Hydrogels.

    PubMed

    Juriga, Dávid; Nagy, Krisztina; Jedlovszky-Hajdú, Angéla; Perczel-Kovách, Katalin; Chen, Yong Mei; Varga, Gábor; Zrínyi, Miklós

    2016-09-14

    Development of novel biodegradable and biocompatible scaffold materials with optimal characteristics is important for both preclinical and clinical applications. The aim of the present study was to analyze the biodegradability of poly(aspartic acid)-based hydrogels, and to test their usability as scaffolds for MG-63 osteoblast-like cells. Poly(aspartic acid) was fabricated from poly(succinimide) and hydrogels were prepared using natural amines as cross-linkers (diaminobutane and cystamine). Disulfide bridges were cleaved to thiol groups and the polymer backbone was further modified with RGD sequence. Biodegradability of the hydrogels was evaluated by experiments on the base of enzymes and cell culture medium. Poly(aspartic acid) hydrogels possessing only disulfide bridges as cross-links proved to be degradable by collagenase I. The MG-63 cells showed healthy, fibroblast-like morphology on the double cross-linked and RGD modified hydrogels. Thiolated poly(aspartic acid) based hydrogels provide ideal conditions for adhesion, survival, proliferation, and migration of osteoblast-like cells. The highest viability was found on the thiolated PASP gels while the RGD motif had influence on compacted cluster formation of the cells. These biodegradable and biocompatible poly(aspartic acid)-based hydrogels are promising scaffolds for cell cultivation.

  4. Live imaging flow bioreactor for the simulation of articular cartilage regeneration after treatment with bioactive hydrogel.

    PubMed

    Bar, Assaf; Ruvinov, Emil; Cohen, Smadar

    2018-06-05

    Osteochondral defects (OCDs) are conditions affecting both cartilage and the underlying bone. Since cartilage is not spontaneously regenerated, our group has recently developed a strategy of injecting bioactive alginate hydrogel into the defect for promoting endogenous regeneration of cartilage via presentation of affinity-bound transforming growth factor β1 (TGF-β1). As in vivo model systems often provide only limited insights as for the mechanism behind regeneration processes, here we describe a novel flow bioreactor for the in vitro modeling of the OCD microenvironment, designed to promote cell recruitment from the simulated bone marrow compartment into the hydrogel, under physiological flow conditions. Computational fluid dynamics modeling confirmed that the bioreactor operates in a relevant slow-flowing regime. Using a chemotaxis assay, it was shown that TGF-β1 does not affect human mesenchymal stem cell (hMSC) chemotaxis in 2D culture. Accessible through live imaging, the bioreactor enabled monitoring and discrimination between erosion rates and profiles of different alginate hydrogel compositions, using green fluorescent protein-expressing cells. Mathematical modeling of the erosion front progress kinetics predicted the erosion rate in the bioreactor up to 7 days postoperation. Using quantitative real-time polymerase chain reaction of early chondrogenic markers, the onset of chondrogenic differentiation in hMSCs was detected after 7 days in the bioreactor. In conclusion, the designed bioreactor presents multiple attributes, making it an optimal device for mechanistical studies, serving as an investigational tool for the screening of other biomaterial-based, tissue engineering strategies. © 2018 Wiley Periodicals, Inc.

  5. Carbon nanotubes play an important role in the spatial arrangement of calcium deposits in hydrogels for bone regeneration.

    PubMed

    Cancian, Giulia; Tozzi, Gianluca; Hussain, Amirul Ashraf Bin; De Mori, Arianna; Roldo, Marta

    2016-08-01

    Age related bone diseases such as osteoporosis are considered among the main causes of reduced bone mechanical stability and bone fractures. In order to restore both biological and mechanical function of diseased/fractured bones, novel bioactive scaffolds that mimic the bone structure are constantly under development in tissue engineering applications. Among the possible candidates, chitosan-based thermosensitive hydrogel scaffolds represent ideal systems due to their biocompatibility, biodegradability, enhanced antibacterial properties, promotion of osteoblast formation and ease of injection, which makes them suitable for less invasive surgical procedures. As a main drawback, these chitosan systems present poor mechanical performance that could not support load-bearing applications. In order to produce more mechanically-competent biomaterials, the combined addition of hydroxyapatite and carbon nanotubes (CNTs) is proposed in this study. Specifically, the aim of this work is to develop thermosensitive chitosan hydrogels containing stabilised single-walled and multi-walled CNTs, where their effect on the mechanical/physiochemical properties, calcium deposition patterns and ability to provide a platform for the controlled release of protein drugs was investigated. It was found that the addition of CNTs had a significant effect on the sol-gel transition time and significantly increased the resistance to compression for the hydrogels. Moreover, in vitro calcification studies revealed that CNTs played a major role in the spatial arrangements of newly formed calcium deposits in the composite materials studied, suggesting that they may have a role in the way the repair of fragile and/or fractured bones occurs in vivo.

  6. Chitosan based hydrogels: characteristics and pharmaceutical applications

    PubMed Central

    Ahmadi, F.; Oveisi, Z.; Samani, S. Mohammadi; Amoozgar, Z.

    2015-01-01

    Hydrogel scaffolds serve as semi synthetic or synthetic extra cellular matrix to provide an amenable environment for cellular adherence and cellular remodeling in three dimensional structures mimicking that of natural cellular environment. Additionally, hydrogels have the capacity to carry small molecule drugs and/or proteins, growth factors and other necessary components for cell growth and differentiation. In the context of drug delivery, hydrogels can be utilized to localize drugs, increase drugs concentration at the site of action and consequently reduce off-targeted side effects. The current review aims to describe and classify hydrogels and their methods of production. The main highlight is chitosan-based hydrogels as biocompatible and medically relevant hydrogels for drug delivery. PMID:26430453

  7. Controlled Thermoresponsive Hydrogels by Stereocomplexed PLA-PEG-PLA Prepared via Hybrid Micelles of Pre-Mixed Copolymers with Different PEG Lengths

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abebe, Daniel G.; Fujiwara, Tomoko

    2012-09-05

    The stereocomplexed hydrogels derived from the micelle mixture of two enantiomeric triblock copolymers, PLLA-PEG-PLLA and PDLA-PEG-PDLA, reported in 2001 exhibited sol-to-gel transition at approximately body temperature upon heating. However, the showed poor storage modulus (ca. 1000 Pa) determined their insufficiency as injectable implant biomaterials for many applications. In this study, the mechanical property of these hydrogels was significantly improved by the modifications of molecular weights and micelle structure. Co-micelles composed of block copolymers with two sizes of PEG block length were shown to possess unique and dissimilar properties from the micelles composed of single-sized block copolymers. The stereomixture of PLA-PEG-PLAmore » comicelles showed a controllable sol-to-gel transition at a wide temperature range of 4 and 80 C. The sol-gel phase diagram displays a linear relationship of temperature versus copolymer composition; hence, a transition at body temperature can be readily achieved by adjusting the mixed copolymer ratio. The resulting thermoresponsive hydrogels exhibit a storage modulus notably higher (ca. 6000 Pa) than that of previously reported hydrogels. As a physical network solely governed by self-reorganization of micelles, followed by stereocomplexation, this unique system offers practical, safe, and simple implantable biomaterials.« less

  8. [Proliferation and osteogenic differentiation of mesenchymal stem cells in hydrogels of human blood plasma].

    PubMed

    Linero, Itali M; Doncel, Adriana; Chaparro, Orlando

    2014-01-01

    The use of mesenchymal stem cells in clinical practice has increased considerably in the last decade because they play a supporting role in the processes of tissue repair and regeneration, becoming the main tool of cell therapy for the treatment of diseases functionally affecting bone and cartilage tissue . To evaluate in vitro the proliferative and osteogenic differentiation ability of mesenchymal stem cells derived from human adipose tissue in a blood plasma hydrogel. Mesenchymal stem cells were obtained from human adipose tissue explants and characterized by flow cytometry. Their multipotentiality was demonstrated by their ability to differentiate to adipogenic and osteogenic lineages. Cell proliferation and osteogenic differentiation ability of the cells cultured in blood plasma hydrogels were also evaluated. Mesenchymal stem cells derived from human adipose tissue growing in human blood plasma hydrogels showed a pattern of proliferation similar to that of the cells cultured in monolayer and also maintained their ability to differentiate to osteogenic lineage. Human blood plasma hydrogels are a suitable support for proliferation and osteogenic differentiation of mesenchymal stem cells derived from human adipose tissue and provides a substrate that is autologous, biocompatible, reabsorbable, easy to use, potentially injectable and economic, which could be used as a successful strategy for the management and clinical application of cell therapy in regenerative medicine.

  9. A stimuli responsive liposome loaded hydrogel provides flexible on-demand release of therapeutic agents.

    PubMed

    O'Neill, Hugh S; Herron, Caroline C; Hastings, Conn L; Deckers, Roel; Lopez Noriega, Adolfo; Kelly, Helena M; Hennink, Wim E; McDonnell, Ciarán O; O'Brien, Fergal J; Ruiz-Hernández, Eduardo; Duffy, Garry P

    2017-01-15

    Lysolipid-based thermosensitive liposomes (LTSL) embedded in a chitosan-based thermoresponsive hydrogel matrix (denoted Lipogel) represents a novel approach for the spatiotemporal release of therapeutic agents. The entrapment of drug-loaded liposomes in an injectable hydrogel permits local liposome retention, thus providing a prolonged release in target tissues. Moreover, release can be controlled through the use of a minimally invasive external hyperthermic stimulus. Temporal control of release is particularly important for complex multi-step physiological processes, such as angiogenesis, in which different signals are required at different times in order to produce a robust vasculature. In the present work, we demonstrate the ability of Lipogel to provide a flexible, easily modifiable release platform. It is possible to tune the release kinetics of different drugs providing a passive release of one therapeutic agent loaded within the gel and activating the release of a second LTSL encapsulated agent via a hyperthermic stimulus. In addition, it was possible to modify the drug dosage within Lipogel by varying the duration of hyperthermia. This can allow for adaption of drug dosing in real time. As an in vitro proof of concept with this system, we investigated Lipogels ability to recruit stem cells and then elevate their production of vascular endothelial growth factor (VEGF) by controlling the release of a pro-angiogenic drug, desferroxamine (DFO) with an external hyperthermic stimulus. Initial cell recruitment was accomplished by the passive release of hepatocyte growth factor (HGF) from the hydrogel, inducing a migratory response in cells, followed by the delayed release of DFO from thermosensitive liposomes, resulting in a significant increase in VEGF expression. This delayed release could be controlled up to 14days. Moreover, by changing the duration of the hyperthermic pulse, a fine control over the amount of DFO released was achieved. The ability to trigger the release of therapeutic agents at a specific timepoint and control dosing level through changes in duration of hyperthermia enables sequential multi-dose profiles. This paper details the development of a heat responsive liposome loaded hydrogel for the controlled release of pro-angiogenic therapeutics. Lysolipid-based thermosensitive liposomes (LTSLs) embedded in a chitosan-based thermoresponsive hydrogel matrix represents a novel approach for the spatiotemporal release of therapeutic agents. This hydrogel platform demonstrates remarkable flexibility in terms of drug scheduling and sequencing, enabling the release of multiple agents and the ability to control drug dosing in a minimally invasive fashion. The possibility to tune the release kinetics of different drugs independently represents an innovative platform to utilise for a variety of treatments. This approach allows a significant degree of flexibility in achieving a desired release profile via a minimally invasive stimulus, enabling treatments to be tuned in response to changing symptoms and complications. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  10. A comparative study on collagen type I and hyaluronic acid dependent cell behavior for osteochondral tissue bioprinting.

    PubMed

    Park, Ju Young; Choi, Jong-Cheol; Shim, Jin-Hyung; Lee, Jung-Seob; Park, Hyoungjun; Kim, Sung Won; Doh, Junsang; Cho, Dong-Woo

    2014-09-01

    Bioprinting is a promising technique for engineering composite tissues, such as osteochondral tissues. In this study, as a first step toward bioprinting-based osteochondral tissue regeneration, we systematically examined the behavior of chondrocytes and osteoblasts to hyaluronic acid (HA) and type I collagen (Col-1) hydrogels. First, we demonstrated that cells on hydrogels that were comprised of major native tissue extracellular matrix (ECM) components (i.e. chondrocytes on HA hydrogels and osteoblasts on Col-1 hydrogels) exhibited better proliferation and cell function than cells on non-native ECM hydrogels (i.e., chondrocytes on Col-1 hydrogels and osteoblasts on HA hydrogels). In addition, cells located near their native ECM hydrogels migrated towards them. Finally, we bioprinted three-dimensional (3D) osteochondral tissue-mimetic structures composed of two compartments, osteoblast-encapsulated Col-1 hydrogels and chondrocyte-encapsulated HA hydrogels, and found viability and functions of each cell type were well maintained within the 3D structures up to 14 days in vitro. These results suggest that with proper choice of hydrogel materials, bioprinting-based approaches can be successfully applied for osteochondral tissue regeneration.

  11. Synthesis, characterization, and evaluation of poly(aminoethyl) modified chitosan and its hydrogel used as antibacterial wound dressing.

    PubMed

    Zhang, Yubei; Dang, Qifeng; Liu, Chengsheng; Yan, Jingquan; Cha, Dongsu; Liang, Shengnan; Li, Xiaoli; Fan, Bing

    2017-09-01

    This study aims to develop new antibacterial hydrogel wound dressings composed of poly(aminoethyl) modified chitosan (PAEMCS). FTIR, 1 H NMR, and elemental analysis demonstrated that PAEMCS was successfully synthesized via grafting poly(aminoethyl) groups onto hydroxyl groups on chitin first, and removing acetyl groups from the grafted polymer afterward. XRD and TGA implied its well-defined crystallinity and thermostability. Furthermore, a series of hydrogels were fabricated under the participation of dipotassium hydrogen phosphate (DHP). The gelation tests suggested that the higher concentration of PAEMCS or DHP was beneficial to the formation of hydrogels. The pH values of hydrogels at 37°C were all in the range of 7.12-7.50. The rheological tests indicated that PAEMCS-based hydrogels were of lower DHP addition and higher elasticity than CS-based hydrogels to achieve the same gelation temperature under the same polymer's concentration. Additionally, the swelling, anti-bacteria, and cytotoxicity experiments showed that PAEMCS-based hydrogels possessed excellent hygroscopicity, high antibacterial activity against E. coli, S. aureus, or S. epidermidis, and good cytocompatibility toward L929 cells or HUVECs, respectively. All the results implied that PAEMCS-based hydrogels not only maintained inherent multiple properties of chitosan but also possessed excellent antibacterial activity, and might be promising antibacterial hydrogel dressings used in wound therapy. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Safety and efficacy of Intraurethral Mitomycin C Hydrogel for prevention of post-traumatic anterior urethral stricture recurrence after internal urethrotomy.

    PubMed

    Moradi, Mahmoudreza; Derakhshandeh, Katayoun; Karimian, Babak; Fasihi, Mahtab

    2016-07-01

    Evaluation of the safety and efficacy of intraurethral Mitomycin C (MMC) hydrogel for prevention of post-traumatic anterior urethral stricture recurrence after internal urethrotomy. A thermoresponsive hydrogel base consisting of 0.8 mg MMC with 1cc water and propylene glycol to PF-127 poloxamer was used in theater. 40 male patients with short, non-obliterated, urethral stricture were randomized into 2 groups: control and MMC. After internal urethrotomy, the MMC group patients received the MMC-Hydrogel while the others were just catheterized. Both groups had their catheters for at least 1 week. After surgery, they were followed up by means of medical history and physical examination, monitoring voiding patterns and retrograde urethrogram at 1 month, 6 months and 1 year after surgery. 40 male patients between 14 to 89 years old (Mean = 54.15) underwent internal urethrotomy. The average age for the control and MMC group was 54.55±21.25 and 53.75±24.75 respectively. In a comparison of age between the two groups, they were matched (P=0.574). Stricture length was 10.7±5.9 and 9.55±4.15 mm for the control and MMC group respectively. There were no statistically meaningful differences between the two groups (P=0.485). Fifteen patients had a history of one previous internal urethrotomy which in a comparison between the two groups meant there was no meaningful difference (P=0.327). During postoperative follow up, total urethral stricture recurrence happened in 12 patients: 10 patients (50%) in control group and 2 patients (10%) in MMC group. The difference was statistically significant (P=0.001). There were no significant complications associated with the MMC injection in our patients. Based on our results, MMC Hydrogel may have an anti-fibrotic action preventing post-traumatic anterior urethral stricture recurrence with no side effects on pre-urethral tissue. Due to our study limitations, our follow up time and the small number of patients, our results were not conclusive and further studies will be needed with a longer follow up time. © 2016 KUMS, All rights reserved.

  13. Polysaccharide-based hydrogels with tunable composition as 3D cell culture systems.

    PubMed

    Gentilini, Roberta; Munarin, Fabiola; Bloise, Nora; Secchi, Eleonora; Visai, Livia; Tanzi, Maria Cristina; Petrini, Paola

    2018-04-01

    To date, cell cultures have been created either on 2-dimensional (2D) polystyrene surfaces or in 3-dimensional (3D) systems, which do not offer a controlled chemical composition, and which lack the soft environment encountered in vivo and the chemical stimuli that promote cell proliferation and allow complex cellular behavior. In this study, pectin-based hydrogels were developed and are proposed as versatile cell culture systems. Pectin-based hydrogels were produced by internally crosslinking pectin with calcium carbonate at different initial pH, aiming to control crosslinking kinetics and degree. Additionally, glucose and glutamine were added as additives, and their effects on the viscoelastic properties of the hydrogels and on cell viability were investigated. Pectin hydrogels showed in high cell viability and shear-thinning behavior. Independently of hydrogel composition, an initial swelling was observed, followed by a low percentage of weight variation and a steady-state stage. The addition of glucose and glutamine to pectin-based hydrogels rendered higher cell viability up to 90%-98% after 1 hour of incubation, and these hydrogels were maintained for up to 7 days of culture, yet no effect on viscoelastic properties was detected. Pectin-based hydrogels that offer tunable composition were developed successfully. They are envisioned as synthetic extracellular matrix (ECM) either to study complex cellular behaviors or to be applied as tissue engineering substitutes.

  14. Hydrogel-based three-dimensional cell culture for organ-on-a-chip applications.

    PubMed

    Lee, Seung Hwan; Shim, Kyu Young; Kim, Bumsang; Sung, Jong Hwan

    2017-05-01

    Recent studies have reported that three-dimensionally cultured cells have more physiologically relevant functions than two-dimensionally cultured cells. Cells are three-dimensionally surrounded by the extracellular matrix (ECM) in complex in vivo microenvironments and interact with the ECM and neighboring cells. Therefore, replicating the ECM environment is key to the successful cell culture models. Various natural and synthetic hydrogels have been used to mimic ECM environments based on their physical, chemical, and biological characteristics, such as biocompatibility, biodegradability, and biochemical functional groups. Because of these characteristics, hydrogels have been combined with microtechnologies and used in organ-on-a-chip applications to more closely recapitulate the in vivo microenvironment. Therefore, appropriate hydrogels should be selected depending on the cell types and applications. The porosity of the selected hydrogel should be controlled to facilitate the movement of nutrients and oxygen. In this review, we describe various types of hydrogels, external stimulation-based gelation of hydrogels, and control of their porosity. Then, we introduce applications of hydrogels for organ-on-a-chip. Last, we also discuss the challenges of hydrogel-based three-dimensional cell culture techniques and propose future directions. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:580-589, 2017. © 2017 American Institute of Chemical Engineers.

  15. A multiphase transitioning peptide hydrogel for suturing ultrasmall vessels

    NASA Astrophysics Data System (ADS)

    Smith, Daniel J.; Brat, Gabriel A.; Medina, Scott H.; Tong, Dedi; Huang, Yong; Grahammer, Johanna; Furtmüller, Georg J.; Oh, Byoung Chol; Nagy-Smith, Katelyn J.; Walczak, Piotr; Brandacher, Gerald; Schneider, Joel P.

    2016-01-01

    Many surgeries are complicated by the need to anastomose, or reconnect, micrometre-scale vessels. Although suturing remains the gold standard for anastomosing vessels, it is difficult to place sutures correctly through collapsed lumen, making the procedure prone to failure. Here, we report a multiphase transitioning peptide hydrogel that can be injected into the lumen of vessels to facilitate suturing. The peptide, which contains a photocaged glutamic acid, forms a solid-like gel in a syringe and can be shear-thin delivered to the lumen of collapsed vessels (where it distends the vessel) and the space between two vessels (where it is used to approximate the vessel ends). Suturing is performed directly through the gel. Light is used to initiate the final gel-sol phase transition that disrupts the hydrogel network, allowing the gel to be removed and blood flow to resume. This gel adds a new tool to the armamentarium for micro- and supermicrosurgical procedures.

  16. Programmed cell delivery from biodegradable microcapsules for tissue repair.

    PubMed

    Draghi, L; Brunelli, D; Farè, S; Tanzi, M C

    2015-01-01

    Injectable and resorbable hydrogels are an extremely attractive class of biomaterials. They make it possible to fill tissue defects accurately with an undoubtedly minimally invasive approach and to locally deliver cells that support repair or regeneration processes. However, their use as a cell carrier is often hindered by inadequate diffusion in bulk. A possible strategy for overcoming this transport limitation might be represented by injection of rapidly degradable cell-loaded microcapsules, so that maximum material thickness is limited by sphere radius. Here, the possibility of achieving programmable release of viable cells from alginate-based microcapsules was explored in vitro, by evaluating variations in material stability resulting from changes in hydrogel composition and assessing cell viability after encapsulation and in vitro release from microcapsules. Degradation of pure alginate microspheres was varied from a few days to several weeks by varying sodium alginate and calcium chloride concentrations. The addition of poloxamer was also found to accelerate degradation significantly, with capsule breakdown almost complete by two weeks, while chitosan was confirmed to strengthen alginate cross-linking. The presence of viable cells inside microspheres was revealed after encapsulation, and released cells were observed for all the formulations tested after a time interval dependent on bead degradation speed. These findings suggest that it may be possible to fine tune capsule breakdown by means of simple changes in material formulation and regulate, and eventually optimize, cell release for tissue repair.

  17. 3D-Hydrogel Based Polymeric Nanoreactors for Silver Nano-Antimicrobial Composites Generation

    PubMed Central

    Soto-Quintero, Albanelly; Romo-Uribe, Ángel; Bermúdez-Morales, Víctor H.; Quijada-Garrido, Isabel

    2017-01-01

    This study underscores the development of Ag hydrogel nanocomposites, as smart substrates for antibacterial uses, via innovative in situ reactive and reduction pathways. To this end, two different synthetic strategies were used. Firstly thiol-acrylate (PSA) based hydrogels were attained via thiol-ene and radical polymerization of polyethylene glycol (PEG) and polycaprolactone (PCL). As a second approach, polyurethane (PU) based hydrogels were achieved by condensation polymerization from diisocyanates and PCL and PEG diols. In fact, these syntheses rendered active three-dimensional (3D) hydrogel matrices which were used as nanoreactors for in situ reduction of AgNO3 to silver nanoparticles. A redox chemistry of stannous catalyst in PU hydrogel yielded spherical AgNPs formation, even at 4 °C in the absence of external reductant; and an appropriate thiol-functionalized polymeric network promoted spherical AgNPs well dispersed through PSA hydrogel network, after heating up the swollen hydrogel at 103 °C in the presence of citrate-reductant. Optical and swelling behaviors of both series of hydrogel nanocomposites were investigated as key factors involved in their antimicrobial efficacy over time. Lastly, in vitro antibacterial activity of Ag loaded hydrogels exposed to Pseudomona aeruginosa and Escherichia coli strains indicated a noticeable sustained inhibitory effect, especially for Ag–PU hydrogel nanocomposites with bacterial inhibition growth capabilities up to 120 h cultivation. PMID:28763050

  18. Exploiting for medical and biological applications

    NASA Astrophysics Data System (ADS)

    Giano, Michael C.

    Biotherapeutics are an emerging class of drug composed of molecules ranging in sizes from peptides to large proteins. Due to their poor stability and mucosal membrane permeability, biotherapeutics are administered by a parenteral method (i.e., syringe, intravenous or intramuscular). Therapeutics delivered systemically often experience short half-lives. While, local administration may involve invasive surgical procedures and suffer from poor retention at the site of application. To compensate, the patient receives frequent doses of highly concentrated therapeutic. Unfortunately, the off-target side effects and discomfort associated with multiple injections results in poor patient compliance. Therefore, new delivery methods which can improve therapeutic retention, reduce the frequency of administration and may aid in decreasing the off-target side effects is a necessity. Hydrogels are a class of biomaterials that are gaining interests for tissue engineering and drug delivery applications. Hydrogel materials are defined as porous, 3-dimensional networks that are primarily composed of water. Generally, they are mechanically rigid, cytocompatible and easily chemically functionalized. Collectively, these properties make hydrogels fantastic candidates to perform as drug delivery depots. Current hydrogel delivery systems physically entrap the target therapeutic which is then subsequently released over time at the site of administration. The swelling and degradation of the material effect the diffusion of the therapy from the hydrogel, and therefore should be controlled. Although these strategies provide some regulation over therapeutic release, full control of the delivery is not achieved. Newer approaches are focused on designing hydrogels that exploit known interactions, covalently attach the therapy or respond to an external stimulus in an effort to gain improved control over the therapy's release. Unfortunately, the biotherapeutic is typically required to be chemically functionalized which can lead to loss in function. Additionally, cytotoxic crosslinkers are employed to formulate hydrogels, providing another obstacle for their application. Therefore, newer materials that can provide various delivery profiles, remain cytocompatible with little or no loss in therapeutic activity are required. This thesis is focused on controlling material degradation and protein loading to modulate the release and activity of therapeutic proteins. In the first part of this thesis a series of five hydrogels prepared from self-assembling beta-hairpin peptides were designed to be enzymatically degraded by matrix metalloproteinase-13 (MMP-13) at controllable rates with the potential to effect on demand release of biotherapies. Hydrogel degradation products were characterized by high performance liquid chromatography and identified by mass spectrometry. Oscillatory rheology showed that various degradation profiles can be achieved by changing the primary amino acid sequence. An in vitro migration study showed that a model cell line was capable of degrading, invading and migrating through select hydrogels is possible. For applications that require steady delivery of a therapeutic, an alternative approach to controlling hydrogel degradation is to design a material whose degradation is dictated by hydrolysis. In the second part of the dissertation, the design and study of a novel bioadhesive hydrogel formed by mixing solutions of dextran-aldehyde and target protein(s) was studied for its potential use as a localized steady delivery system. The effect of changing the dextran chain length, dextran percent oxidiation, dextran concentration and crosslinking protein concentration on the mechanical and bioadhesive properties was explored with dynamic oscillatory rheology and lap-shear uniaxial tension measurements, respectively. Model degradation and release studies were performed in vitro and in vivo with a model fluorescent protein (eGFP). In addition, a therapeutically relevant recombinant interleukin-2 (rIL-2) was co-crosslinked with BSA and biologic function was assessed upon its release from the hydrogel network to gain insight into the hydrogels ability to delivery biotherapeutics. Lastly, the utility of the dextran-aldehyde crosslinked with polyethylenimine (PEI) bioadhesive hydrogel to prevent surgical site infections was explored. Surgical site infections that occur during the implantation of wound fillers can delay wound healing, resulting in increased antibiotic administration, longer hospital stays and, in the most severe cases, sepsis. To prevent bacterial infection during wound filling a new injectable bioadhesive antibacterial hydrogel was designed exploiting dextran-aldehyde crosslinked networks. Mechanical analysis, mammalian cytocompatibility and antibacterial properties of the material will be discussed.

  19. Hyaluronic Acid-Serum Hydrogels Rapidly Restore Metabolism of Encapsulated Stem Cells and Promote Engraftment

    PubMed Central

    Chan, Angel T.; Karakas, Mehmet F.; Vakrou, Styliani; Afzal, Junaid; Rittenbach, Andrew; Lin, Xiaoping; Wahl, Richard L.; Pomper, Martin G.; Steenbergen, Charles J.; Tsui, Benjamin M.W.; Elisseeff, Jennifer H.; Abraham, M. Roselle

    2015-01-01

    Background Cell death due to anoikis, necrosis and cell egress from transplantation sites limits functional benefits of cellular cardiomyoplasty. Cell dissociation and suspension, which are a pre-requisite for most cell transplantation studies, lead to depression of cellular metabolism and anoikis, which contribute to low engraftment. Objective We tissue engineered scaffolds with the goal of rapidly restoring metabolism, promoting viability, proliferation and engraftment of encapsulated stem cells. Methods The carboxyl groups of HA were functionalized with N-hydroxysuccinimide (NHS) to yield HA succinimidyl succinate (HA-NHS) groups that react with free amine groups to form amide bonds. HA-NHS was cross-linked by serum to generate HA:Serum (HA:Ser) hydrogels. Physical properties of HA:Ser hydrogels were measured. Effect of encapsulating cardiosphere-derived cells (CDCs) in HA:Ser hydrogels on viability, proliferation, glucose uptake and metabolism was assessed in vitro. In vivo acute intra-myocardial cell retention of 18FDG-labeled CDCs encapsulated in HA:Ser hydrogels was quantified. Effect of CDC encapsulation in HA:Ser hydrogels on in vivo metabolism and engraftment at 7 days was assessed by serial, dual isotope SPECT-CT and bioluminescence imaging of CDCs expressing the Na-iodide symporter and firefly luciferase genes respectively. Effect of HA:Ser hydrogels +/− CDCs on cardiac function was assessed at 7 days & 28 days post-infarct. Results HA:Ser hydrogels are highly bio-adhesive, biodegradable, promote rapid cell adhesion, glucose uptake and restore bioenergetics of encapsulated cells within 1 h of encapsulation, both in vitro and in vivo. These metabolic scaffolds can be applied epicardially as a patch to beating hearts or injected intramyocardially. HA:Ser hydrogels markedly increase acute intramyocardial retention (~6 fold), promote in vivo viability, proliferation, engraftment of encapsulated stem cells and angiogenesis. Conclusion HA:Ser hydrogels serve as ‘synthetic stem cell niches’ that rapidly restore metabolism of encapsulated stem cells, promote stem cell engraftment and angiogenesis. These first ever, tissue engineered metabolic scaffolds hold promise for clinical translation in conjunction with CDCs and possibly other stem cell types. PMID:26378976

  20. A novel platelet lysate hydrogel for endothelial cell and mesenchymal stem cell-directed neovascularization.

    PubMed

    Robinson, Scott T; Douglas, Alison M; Chadid, Tatiana; Kuo, Katie; Rajabalan, Ajai; Li, Haiyan; Copland, Ian B; Barker, Thomas H; Galipeau, Jacques; Brewster, Luke P

    2016-05-01

    Mesenchymal stem cells (MSC) hold promise in promoting vascular regeneration of ischemic tissue in conditions like critical limb ischemia of the leg. However, this approach has been limited in part by poor cell retention and survival after delivery. New biomaterials offer an opportunity to localize cells to the desired tissue after delivery, but also to improve cell survival after delivery. Here we characterize the mechanical and microstructural properties of a novel hydrogel composed of pooled human platelet lysate (PL) and test its ability to promote MSC angiogenic activity using clinically relevant in vitro and in vivo models. This PL hydrogel had comparable storage and loss modulus and behaved as a viscoelastic solid similar to fibrin hydrogels despite having 1/4-1/10th the fibrin content of standard fibrin gels. Additionally, PL hydrogels enabled sustained release of endogenous PDGF-BB for up to 20days and were resistant to protease degradation. PL hydrogel stimulated pro-angiogenic activity by promoting human MSC growth and invasion in a 3D environment, and enhancing endothelial cell sprouting alone and in co-culture with MSCs. When delivered in vivo, the combination of PL and human MSCs improved local tissue perfusion after 8days compared to controls when assessed with laser Doppler perfusion imaging in a murine model of hind limb ischemia. These results support the use of a PL hydrogel as a scaffold for MSC delivery to promote vascular regeneration. Innovative strategies for improved retention and viability of mesenchymal stem cells (MSCs) are needed for cellular therapies. Human platelet lysate is a potent serum supplement that improves the expansion of MSCs. Here we characterize our novel PL hydrogel's desirable structural and biologic properties for human MSCs and endothelial cells. PL hydrogel can localize cells for retention in the desired tissue, improves cell viability, and augments MSCs' angiogenic activity. As a result of these unique traits, PL hydrogel is ideally suited to serve as a cell delivery vehicle for MSCs injected into ischemic tissues to promote vascular regeneration, as demonstrated here in a murine model of hindlimb ischemia. Published by Elsevier Ltd.

  1. Nanofiber-structured hydrogel yarns with pH-response capacity and cardiomyocyte-drivability for bio-microactuator application.

    PubMed

    Wu, Shaohua; Duan, Bin; Qin, Xiaohong; Butcher, Jonathan T

    2017-09-15

    Polymeric hydrogels have great potential in soft biological micro-actuator applications. However, inappropriate micro-architecture, non-anisotropy, weak biomechanics, and inferior response behaviors limit their development. In this study, we designed and manufactured novel polyacrylonitrile (PAN)-based hydrogel yarns composed with uniaxially aligned nanofibers. The nanofibrous hydrogel yarns possessed anisotropic architecture and robust mechanical properties with flexibility, and could be assembled into defined scaffold structures by subsequent processes. The as-prepared hydrogel yarns showed excellent pH response behaviors, with around 100% maximum length and 900% maximum diameter changes, and the pH response was completed within several seconds. Moreover, the hydrogel yarns displayed unique cell-responsive abilities to promote the cell adhesion, proliferation, and smooth muscle differentiation of human adipose derived mesenchymal stem cells (HADMSC). Chicken cardiomyocytes were further seeded onto our nanofibrous hydrogel yarns to engineer living cell-based microactuators. Our results demonstrated that the uniaxially aligned nanofibrous networks within the hydrogel yarns were the key characteristics leading to the anisotropic organization of cardiac cells, and improved sarcomere organization, mimicking the cardiomyocyte bundles in the native myocardium. The construct is capable of sustaining spontaneous cardiomyocyte pumping behaviors for 7days. Our PAN-based nanofibrous hydrogel yarns are attractive for creating linear microactuators with pH-response capacity and biological microactuators with cardiomyocyte-drivability. A mechanically robust polyacrylonitrile-based nanofibrous hydrogel yarn is fabricated by using a modified electrospinning setup in combination with chemical modification processes. The as-prepared hydrogel yarn possesses a uniaxially aligned nanofiber microarchitecture and supports a rapid, pH-dependent expansion/contraction response within a few seconds. Embryonic cardiomyocytes-seeded hydrogel yarn improves the sarcomere organization and mimics the cardiomyocyte bundles in the native myocardium, which sustains spontaneous cardiomyocyte pumping behaviors. The nanofibrous hydrogel yarn has several advantages over traditional bulk hydrogel scaffolds in terms of robust biomechanics, anisotropic aligned architecture, and superior pH response behaviors. Our nanofibrous hydrogel yarn holds the potential to be developed into novel linear and biological microactuators for various biomedical applications. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  2. Surface wettability enhancement of silicone hydrogel lenses by processing with polar plastic molds.

    PubMed

    Lai, Y C; Friends, G D

    1997-06-05

    In the quest for hydrogel contact lenses with improved extended wear capability, the use of siloxane moieties in the lens materials was investigated. However, the introduction of hydrophobic siloxane groups gave rise to wettability and lipidlike deposit problems. It was found that when polysiloxane-based compositions for hydrogels were processed with polar plastic molds, such as those fabricated from an acrylonitrile-based polymer, the hydrogel lenses fabricated were wettable, with minimized lipidlike deposits. These findings were supported by the wettability of silicone hydrogel films, silicon, and nitrogen element contents near lens surfaces, as well as the results from clinical assessment of silicone hydrogel lenses.

  3. On the development of multifunctional luminescent supramolecular hydrogel of gold and egg white

    NASA Astrophysics Data System (ADS)

    Patra, Sudeshna; Ravulapalli, Sathyavathi; Hahm, Myung Gwan; Tadi, Kiran Kumar; Narayanan, Tharangattu N.

    2016-10-01

    Highly stable, luminescent, and printable/paintable supramolecular egg white hydrogel-based surface enhanced Raman scattering (SERS) matrix is created by an in situ synthesis of gold clusters inside a luminescent egg white hydrogel (Au-Gel). The synthesis of stable luminescent egg-white-based hydrogel, where the hydrogel can act as a three dimensional (3D) matrix, using a simple cross-linking chemistry, has promising application in the biomedical field including in 3D cell culturing. Furthermore, this functional hydrogel is demonstrated for micromolar-level detection of Rhodamine 6G using the SERS technique, where Au-Gel is painted over a flexible cellulose pad.

  4. Material properties that predict preservative uptake for silicone hydrogel contact lenses.

    PubMed

    Green, J Angelo; Phillips, K Scott; Hitchins, Victoria M; Lucas, Anne D; Shoff, Megan E; Hutter, Joseph C; Rorer, Eva M; Eydelman, Malvina B

    2012-11-01

    To assess material properties that affect preservative uptake by silicone hydrogel lenses. We evaluated the water content (using differential scanning calorimetry), effective pore size (using probe penetration), and preservative uptake (using high-performance liquid chromatography with spectrophotometric detection) of silicone and conventional hydrogel soft contact lenses. Lenses grouped similarly based on freezable water content as they did based on total water content. Evaluation of the effective pore size highlighted potential differences between the surface-treated and non-surface-treated materials. The water content of the lens materials and ionic charge are associated with the degree of preservative uptake. The current grouping system for testing contact lens-solution interactions separates all silicone hydrogels from conventional hydrogel contact lenses. However, not all silicone hydrogel lenses interact similarly with the same contact lens solution. Based upon the results of our research, we propose that the same material characteristics used to group conventional hydrogel lenses, water content and ionic charge, can also be used to predict uptake of hydrophilic preservatives for silicone hydrogel lenses. In addition, the hydrophobicity of silicone hydrogel contact lenses, although not investigated here, is a unique contact lens material property that should be evaluated for the uptake of relatively hydrophobic preservatives and tear components.

  5. A novel smart injectable hydrogel prepared by microbial transglutaminase and human-like collagen: Its characterization and biocompatibility.

    PubMed

    Zhao, Leilei; Li, Xian; Zhao, Jiaqi; Ma, Saijian; Ma, Xiaoxuan; Fan, Daidi; Zhu, Chenhui; Liu, Yannan

    2016-11-01

    Various tissue scaffold materials are increasingly used to repair skin defects by cross-linking because of the ability to fill and implant in any form via operation. However, crosslinker residues cannot be easily removed from scaffold materials prepared by chemical crosslinking methods, limiting their use for skin tissue engineering. Here, microbial transglutaminase (MTGase), a nontoxic crosslinker with high specific activity and reaction rate under mild conditions, was employed crosslinks in human-like collagen (HLC) to yield novel smart MTGase crosslinked with human-like collagen (MTGH) hydrogels, which are sensitive to temperature and/or enzymes. Various ratios of MTGase/HLC were performed, and their physicochemical properties were characterized, including the swelling ratio, the elastic modulus, the morphology and the porosity. The degradation behavior and mechanism of MTGase in concentration-dependent manner involved in formation hydrogels were identifying in vitro. The cell attachment in vitro and biocompatibility in vivo were also investigated. The results demonstrated that the use of different concentrations of MTGase to crosslink HLC produced products with different degradation times and biocompatibilities. The 50U/g MTGase-prepared MTGH hydrogels had a higher density of crosslinks, which made them more resistant to degradation by collagenase I and collagenase II. However, 40U/g MTGase-prepared MTGH hydrogels were more suitable for cell attachment. In addition, compared with the Collagen Implant I® (SUM) used in animal experiments, the 40U/g MTGase-prepared MTGH hydrogels had a lower toxicity and better biocompatibility. Therefore, 40U/g MTGase crosslinked with HLC should be used to prepare MTGH hydrogels for potential application as soft materials for skin tissue engineering. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Acoustically-Responsive Scaffolds: Control of Growth Factor Release for Tissue Regeneration Using Ultrasound

    NASA Astrophysics Data System (ADS)

    Moncion, Alexander

    Administration of exogenous growth factors (GFs) is a proposed method of stimulating tissue regeneration. Conventional administration routes, such as at-site or systemic injections, have yielded problems with efficacy and/or safety, thus hindering the translation of GF-based regenerative techniques. Hydrogel scaffolds are commonly used as biocompatible delivery vehicles for GFs. Yet hydrogels do not afford spatial or temporal control of GF release - two critical parameters for tissue regeneration. Controlled delivery of GFs is critical for angiogenesis, which is a crucial process in tissue engineering that provides oxygen and nutrients to cells within an implanted hydrogel scaffold. Angiogenesis requires multiple GFs that are presented with distinct spatial and temporal profiles. Thus, controlled release of GFs with spatiotemporal modulation would significantly improve tissue regeneration by recapitulating endogenous GF presentation. In order to achieve this goal, we have developed acoustically-responsive scaffolds (ARSs), which are fibrin hydrogels doped with sonosensitive perfluorocarbon (PFC) emulsions capable of encapsulating various payloads. Focused, mega-Hertz range, ultrasound (US) can modulate the release of a payload non-invasively and in an on-demand manner from ARSs via physical mechanisms termed acoustic droplet vaporization (ADV) and inertial cavitation (IC). This work presents the relationship between the ADV/IC thresholds and various US and hydrogel parameters. These physical mechanisms were used for the controlled release of fluorescent dextran in vitro and in vivo to determine the ARS and US parameters that yielded optimal payload release. The optimal ARS and US parameters were used to demonstrate the controlled release of basic fibroblast growth factor from an in vivo subcutaneous implant model - leading to enhanced angiogenesis and perfusion. Additionally, different acoustic parameters and PFCs were tested and optimized to demonstrate the controlled release of two encapsulated payloads within an ARS. Overall, ARSs are a promising platform for GF delivery in tissue regeneration applications.

  7. Prodrugs as self-assembled hydrogels: a new paradigm for biomaterials.

    PubMed

    Vemula, Praveen Kumar; Wiradharma, Nikken; Ankrum, James A; Miranda, Oscar R; John, George; Karp, Jeffrey M

    2013-12-01

    Prodrug-based self-assembled hydrogels represent a new class of active biomaterials that can be harnessed for medical applications, in particular the design of stimuli responsive drug delivery devices. In this approach, a promoiety is chemically conjugated to a known-drug to generate an amphiphilic prodrug that is capable of forming self-assembled hydrogels. Prodrug-based self-assembled hydrogels are advantageous as they alter the solubility of the drug, enhance drug loading, and eliminate the use of harmful excipients. In addition, self-assembled prodrug hydrogels can be designed to undergo controlled drug release or tailored degradation in response to biological cues. Herein we review the development of prodrug-based self-assembled hydrogels as an emerging class of biomaterials that overcome several common limitations encountered in conventional drug delivery. Published by Elsevier Ltd.

  8. Responsive Hydrogel-based Photonic Nanochains for Microenvironment Sensing and Imaging in Real Time and High Resolution.

    PubMed

    Luo, Wei; Cui, Qian; Fang, Kai; Chen, Ke; Ma, Huiru; Guan, Jianguo

    2018-01-17

    Microenvironment sensing and imaging are of importance in microscale zones like microreactors, microfluidic systems, and biological cells. But they are so far implemented only based on chemical colors from dyes or quantum dots, which suffered either from photobleaching, quenching, or photoblinking behaviors, or from limited color gamut. In contrast, structural colors from hydrogel-based photonic crystals (PCs) may be stable and tunable in the whole visible spectrum by diffraction peak shift, facilitating the visual detection with high accuracy. However, the current hydrogel-based PCs are all inappropriate for microscale detection due to the bulk size. Here we demonstrate the smallest hydrogel-based PCs, responsive hydrogel-based photonic nanochains with high-resolution and real-time response, by developing a general hydrogen bond-guided template polymerization method. A variety of mechanically separated stimuli-responsive hydrogel-based photonic nanochains have been obtained in a large scale including those responding to pH, solvent, and temperature. Each of them has a submicrometer diameter and is composed of individual one-dimensional periodic structure of magnetic particles locked by a tens-of-nanometer-thick peapod-like responsive hydrogel shell. Taking the pH-responsive hydrogel-based photonic nanochains, for example, pH-induced hydrogel volume change notably alters the nanochain length, resulting in a significant variation of the structural color. The submicrometer size endows the nanochains with improved resolution and response time by 2-3 orders of magnitude than the previous counterparts. Our results for the first time validate the feasibility of using structural colors for microenvironment sensing and imaging and may further promote the applications of responsive PCs, such as in displays and printing.

  9. A Supramolecular Hydrogel Based on Polyglycerol Dendrimer-Specific Amino Group Recognition.

    PubMed

    Cho, Ik Sung; Ooya, Tooru

    2018-05-24

    Dendrimer-based supramolecular hydrogels have gained attention in biomedical fields. While biocompatible dendrimers were used to prepare hydrogels via physical and/or chemical crosslinking, smart functions such as pH and molecular control remain undeveloped. Here, we present polyglycerol dendrimer-based supramolecular hydrogel formation induced by a specific interaction between the polyglycerol dendrimer and an amino group of glycol chitosan. Gelation was achieved by mixing the two aqueous solutions. Hydrogel formation was controlled by varying the polyglycerol dendrimer generation. The hydrogel showed pH-dependent swelling; strongly acidic conditions induced degradation via dissociation of the specific interaction. It also showed unique L-arginine-responsive degradation capability due to competitive exchange of the amino groups of glycol chitosan and L-arginine. These polyglycerol dendrimer-based supramolecular characteristics allow multimodal application in smart biomaterials. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Biodegradable and injectable cure-on-demand polyurethane scaffolds for regeneration of articular cartilage.

    PubMed

    Werkmeister, J A; Adhikari, R; White, J F; Tebb, T A; Le, T P T; Taing, H C; Mayadunne, R; Gunatillake, P A; Danon, S J; Ramshaw, J A M

    2010-09-01

    This paper describes the synthesis and characterization of an injectable methacrylate functionalized urethane-based photopolymerizable prepolymer to form biodegradable hydrogels. The tetramethacrylate prepolymer was based on the reaction between two synthesized compounds, diisocyanato poly(ethylene glycol) and monohydroxy dimethacrylate poly(epsilon-caprolactone) triol. The final prepolymer was hydrated with phosphate-buffered saline (pH 7.4) to yield a biocompatible hydrogel containing up to 86% water. The methacrylate functionalized prepolymer was polymerized using blue light (450 nm) with an initiator, camphorquinone and a photosensitizer, N,N-dimethylaminoethyl methacrylate. The polymer was stable in vitro in culture media over the 28 days tested (1.9% mass loss); in the presence of lipase, around 56% mass loss occurred over the 28 days in vitro. Very little degradation occurred in vivo in rats over the same time period. The polymer was well tolerated with very little capsule formation and a moderate host tissue response. Human chondrocytes, seeded onto Cultispher-S beads, were viable in the tetramethacrylate prepolymer and remained viable during and after polymerization. Chondrocyte-bead-polymer constructs were maintained in static and spinner culture for 8 weeks. During this time, cells remained viable, proliferated and migrated from the beads through the polymer towards the edge of the polymer. New extracellular matrix (ECM) was visualized with Masson's trichrome (collagen) and Alcian blue (glycosaminoglycan) staining. Further, the composition of the ECM was typical for articular cartilage with prominent collagen type II and type VI and moderate keratin sulphate, particularly for tissue constructs cultured under dynamic conditions. 2010. Published by Elsevier Ltd. All rights reserved.

  11. Investigation of the surface morphology of biocompatible chitosan-based hydrogels and xerogels

    NASA Astrophysics Data System (ADS)

    Zhuravleva, Yulia Yu.; Malinkina, Olga N.; Shipovskaya, Anna B.

    2018-04-01

    Our biocompatible hydrogel systems obtained by the sol-gel technqiue and based on chitosan and silicon polyolates are promising for medical and biological applications. The surface microrelief of these sol-gel materials (hydrogels and xerogels) based on chitosan and silicon tetraglycerolate was explored by AFM and SEM. A significant influence of the component ratio in the mixed system on the morphology and surface profile of the hydrogels and xerogels prepared therefrom was established. An increased content of the structure-forming component (chitosan) in the system was shown to increase the roughness scale of the hydrogel surface and to promote the porosity of the xerogel structure.

  12. Preparation and therapeutic evaluation of (188)Re-thermogelling emulsion in rat model of hepatocellular carcinoma.

    PubMed

    Shih, Ying-Hsia; Lin, Xi-Zhang; Yeh, Chung-Hsin; Peng, Cheng-Liang; Shieh, Ming-Jium; Lin, Wuu-Jyh; Luo, Tsai-Yueh

    2014-01-01

    Radiolabeled Lipiodol(®) (Guerbet, Villepinte, France) is routinely used in hepatoma therapy. The temperature-sensitive hydrogel polyethylene glycol-b-poly-DL-lactic acid-co-glycolic acid-b-polyethylene glycol triblock copolymer is used as an embolic agent and sustained drug release system. This study attempted to combine the polyethylene glycol-b-poly-DL-lactic acid-co-glycolic acid-b-polyethylene glycol hydrogel and radio-labeled Lipiodol to form a new radio-thermogelling emulsion, rhenium-188-N,N'-1,2-ethanediylbis-L-cysteine diethyl-ester dihydrochloride-Lipiodol/hydrogel ((188)Re-ELH). The therapeutic potential of (188)Re-ELH was evaluated in a rodent hepatoma model. Rhenium-188 chelated with N,N'-1,2-ethanediylbis-L-cysteine diethyl-ester dihydrochloride was extracted with Lipiodol to obtain rhenium-188-N,N'-1,2-ethanediylbis-L-cysteine diethyl-ester dihydrochloride-Lipiodol ((188)Re-EL), which was blended with the hydrogel in equal volumes to develop (188)Re-ELH. The (188)Re-ELH phase stability was evaluated at different temperatures. Biodistribution patterns and micro-single-photon emission computed tomography/computed tomography images in Sprague Dawley rats implanted with the rat hepatoma cell line N1-S1 were observed after in situ tumoral injection of ~3.7 MBq (188)Re-ELH. The therapeutic potential of (188)Re-EL (48.58±3.86 MBq/0.1 mL, n=12) was evaluated in a 2-month survival study using the same animal model. The therapeutic effects of (188)Re-ELH (25.52±4.64 MBq/0.1 mL, n=12) were evaluated and compared with those of (188)Re-EL. The responses were assessed by changes in tumor size and survival rates. The (188)Re-ELH emulsion was stable in the gel form at 25°C-35°C for >52 hours. Biodistribution data and micro-single-photon emission computed tomography/computed tomography images of the (188)Re-ELH group indicated that most activity was selectively observed in hepatomas. Long-term (188)Re-ELH studies have demonstrated protracted reductions in tumor volumes and positive effects on the survival rates (75%) of N1-S1 hepatoma-bearing rats. Conversely, the 2-month survival rate was 13% in the control sham group. Therapeutic responses differed significantly between the two groups (P<0.005). Thus, the hydrogel enhanced the injection stability of (188)Re-EL in an animal hepatoma model. Given the synergistic results, direct (188)Re-ELH intratumoral injection is a potential therapeutic alternative for hepatoma treatment.

  13. Preparation and therapeutic evaluation of 188Re-thermogelling emulsion in rat model of hepatocellular carcinoma

    PubMed Central

    Shih, Ying-Hsia; Lin, Xi-Zhang; Yeh, Chung-Hsin; Peng, Cheng-Liang; Shieh, Ming-Jium; Lin, Wuu-Jyh; Luo, Tsai-Yueh

    2014-01-01

    Radiolabeled Lipiodol® (Guerbet, Villepinte, France) is routinely used in hepatoma therapy. The temperature-sensitive hydrogel polyethylene glycol-b-poly-DL-lactic acid-co-glycolic acid-b-polyethylene glycol triblock copolymer is used as an embolic agent and sustained drug release system. This study attempted to combine the polyethylene glycol-b-poly-DL-lactic acid-co-glycolic acid-b-polyethylene glycol hydrogel and radio-labeled Lipiodol to form a new radio-thermogelling emulsion, rhenium-188–N,N’-1,2-ethanediylbis-L-cysteine diethyl-ester dihydrochloride–Lipiodol/hydrogel (188Re-ELH). The therapeutic potential of 188Re-ELH was evaluated in a rodent hepatoma model. Rhenium-188 chelated with N,N’-1,2-ethanediylbis-L-cysteine diethyl-ester dihydrochloride was extracted with Lipiodol to obtain rhenium-188–N,N’-1,2-ethanediylbis-L-cysteine diethyl-ester dihydrochloride–Lipiodol (188Re-EL), which was blended with the hydrogel in equal volumes to develop 188Re-ELH. The 188Re-ELH phase stability was evaluated at different temperatures. Biodistribution patterns and micro-single-photon emission computed tomography/computed tomography images in Sprague Dawley rats implanted with the rat hepatoma cell line N1-S1 were observed after in situ tumoral injection of ~3.7 MBq 188Re-ELH. The therapeutic potential of 188Re-EL (48.58±3.86 MBq/0.1 mL, n=12) was evaluated in a 2-month survival study using the same animal model. The therapeutic effects of 188Re-ELH (25.52±4.64 MBq/0.1 mL, n=12) were evaluated and compared with those of 188Re-EL. The responses were assessed by changes in tumor size and survival rates. The 188Re-ELH emulsion was stable in the gel form at 25°C–35°C for >52 hours. Biodistribution data and micro-single-photon emission computed tomography/computed tomography images of the 188Re-ELH group indicated that most activity was selectively observed in hepatomas. Long-term 188Re-ELH studies have demonstrated protracted reductions in tumor volumes and positive effects on the survival rates (75%) of N1-S1 hepatoma-bearing rats. Conversely, the 2-month survival rate was 13% in the control sham group. Therapeutic responses differed significantly between the two groups (P<0.005). Thus, the hydrogel enhanced the injection stability of 188Re-EL in an animal hepatoma model. Given the synergistic results, direct 188Re-ELH intratumoral injection is a potential therapeutic alternative for hepatoma treatment. PMID:25214783

  14. Hydrogel Based Biosensors for In Vitro Diagnostics of Biochemicals, Proteins, and Genes.

    PubMed

    Jung, Il Young; Kim, Ji Su; Choi, Bo Ram; Lee, Kyuri; Lee, Hyukjin

    2017-06-01

    Hydrogel-based biosensors have drawn considerable attention due to their various advantages over conventional detection systems. Recent studies have shown that hydrogel biosensors can be excellent alternative systems to detect a wide range of biomolecules, including small biochemicals, pathogenic proteins, and disease specific genes. Due to the excellent physical properties of hydrogels such as the high water content and stimuli-responsive behavior of cross-linked network structures, this system can offer substantial improvement for the design of novel detection systems for various diagnostic applications. The other main advantage of hydrogels is the role of biomimetic three-dimensional (3D) matrix immobilizing enzymes and aptamers within the detection systems, which enhances their stability. This provides ideal reaction conditions for enzymes and aptamers to interact with substrates within the aqueous environment of the hydrogel. In this review, we have highlighted various novel detection approaches utilizing the outstanding properties of the hydrogel. This review summarizes the recent progress of hydrogel-based biosensors and discusses their future perspectives and clinical limitations to overcome. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Injectable gellan gum hydrogels with autologous cells for the treatment of rabbit articular cartilage defects.

    PubMed

    Oliveira, João T; Gardel, Leandro S; Rada, Tommaso; Martins, Luís; Gomes, Manuela E; Reis, Rui L

    2010-09-01

    In this work, the ability of gellan gum hydrogels coupled with autologous cells to regenerate rabbit full-thickness articular cartilage defects was tested. Five study groups were defined: (a) gellan gum with encapsulated chondrogenic predifferentiated rabbit adipose stem cells (ASC + GF); (b) gellan gum with encapsulated nonchondrogenic predifferentiated rabbit adipose stem cells (ASC); (c) gellan gum with encapsulated rabbit articular chondrocytes (AC) (standard control); (d) gellan gum alone (control); (e) empty defect (control). Full-thickness articular cartilage defects were created and the gellan gum constructs were injected and left for 8 weeks. The macroscopic aspect of the explants showed a progressive increase of similarity with the lateral native cartilage, stable integration at the defect site, more pronouncedly in the cell-loaded constructs. Tissue scoring showed that ASC + GF exhibited the best results regarding tissue quality progression. Alcian blue retrieved similar results with a better outcome for the cell-loaded constructs. Regarding real-time PCR analyses, ASC + GF had the best progression with an upregulation of collagen type II and aggrecan, and a downregulation of collagen type I. Gellan gum hydrogels combined with autologous cells constitute a promising approach for the treatment of articular cartilage defects, and adipose derived cells may constitute a valid alternative to currently used articular chondrocytes. (c) 2010 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  16. Mechanical characterization and modeling of sponge-reinforced hydrogel composites under compression.

    PubMed

    Wu, Lei; Mao, Guoyong; Nian, Guodong; Xiang, Yuhai; Qian, Jin; Qu, Shaoxing

    2018-05-30

    Load-bearing applications of hydrogels call for materials with excellent mechanical properties. Despite the considerable progress in developing tough hydrogels, there is still a requirement to prepare high-performance hydrogels using simple strategies. In this paper, a sponge-reinforced hydrogel composite is synthesized by combining poly(acrylamide) (PAAm) hydrogel and polyurethane (PU) sponge. Uniaxial compressive testing of the hydrogel composites reveals that both the compressive modulus and the strength of the hydrogel composites are much higher than those of the PAAm hydrogel or sponge. In order to predict the compressive modulus of the hydrogel composite, we develop a theoretical model that is validated by experiments and numerical simulations. The present work may guide the design and manufacture of hydrogel-based composite materials, especially for biomaterial scaffolds and soft transducers.

  17. Biocompatibility of hydrogel-based scaffolds for tissue engineering applications.

    PubMed

    Naahidi, Sheva; Jafari, Mousa; Logan, Megan; Wang, Yujie; Yuan, Yongfang; Bae, Hojae; Dixon, Brian; Chen, P

    2017-09-01

    Recently, understanding of the extracellular matrix (ECM) has expanded rapidly due to the accessibility of cellular and molecular techniques and the growing potential and value for hydrogels in tissue engineering. The fabrication of hydrogel-based cellular scaffolds for the generation of bioengineered tissues has been based on knowledge of the composition and structure of ECM. Attempts at recreating ECM have used either naturally-derived ECM components or synthetic polymers with structural integrity derived from hydrogels. Due to their increasing use, their biocompatibility has been questioned since the use of these biomaterials needs to be effective and safe. It is not surprising then that the evaluation of biocompatibility of these types of biomaterials for regenerative and tissue engineering applications has been expanded from being primarily investigated in a laboratory setting to being applied in the multi-billion dollar medicinal industry. This review will aid in the improvement of design of non-invasive, smart hydrogels that can be utilized for tissue engineering and other biomedical applications. In this review, the biocompatibility of hydrogels and design criteria for fabricating effective scaffolds are examined. Examples of natural and synthetic hydrogels, their biocompatibility and use in tissue engineering are discussed. The merits and clinical complications of hydrogel scaffold use are also reviewed. The article concludes with a future outlook of the field of biocompatibility within the context of hydrogel-based scaffolds. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Chitosan–Sodium Tetradecyl Sulfate Hydrogel: Characterization and Preclinical Evaluation of a Novel Sclerosing Embolizing Agent for the Treatment of Endoleaks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zehtabi, Fatemeh; Dumont-Mackay, Vincent; Fatimi, Ahmed

    PurposeTo compare the efficacy of an embolization agent with sclerosing properties (made of chitosan and sodium tetradecyl sulfate, CH–STS) with a similar embolization agent but without sclerosing properties (made of chitosan, CH) in treating endoleaks in a canine endovascular aneurysm repair model.MethodsTwo chitosan-based radiopaque hydrogels were prepared, one with STS and one without STS. Their rheological, injectability, and embolizing properties were assessed in vitro; afterwards, their efficacy in occluding endoleaks was compared in a canine bilateral aneurysm model reproducing type I endoleaks (n = 9 each). The primary endpoint was endoleak persistence at 3 or 6 months, assessed on a CT scan andmore » macroscopic examination. Secondary endpoints were the occurrence of stent-graft (SG) thrombosis, the evolution of the aneurysm mean diameter, as well as aneurysm healing and inflammation scores in pathology examinations.ResultsIn vitro experiments showed that both products gelled rapidly and presented initial storage moduli greater than 800 Pa, which increased with time. Both gels were compatible with microcatheter injection and occlude flow up to physiological pressure in vitro. In a type I endoleak model, the injection of CH–STS sclerosing gel tended to reduce the risk of occurrence of endoleaks, compared to CH non-sclerosing agent (2/9 vs. 6/9, p = 0.069). No case of SG thrombosis was observed. Moderate inflammation was found around both gels, with a comparable intensity score in both CH and CH–STS groups (2.6 ± 0.9 and 2.7 ± 0.9, respectively; p = 0.789).ConclusionsFlow occlusion combined with chemical endothelial denudation appears promising for the treatment of endoleaks.Level of EvidenceN/A.« less

  19. Polyacrylamide hydrogel (Bulkamid®) for stress urinary incontinence in women: a systematic review of the literature.

    PubMed

    Kasi, Anushuya Devi; Pergialiotis, Vasilios; Perrea, Despina N; Khunda, Azar; Doumouchtsis, Stergios K

    2016-03-01

    Polyacrylamide hydrogel (PAHG, Bulkamid®) is one of several injectable agents currently used for the treatment of women with urinary stress incontinence. Although bulking agents appear to have lower efficacy rates compared to other surgical treatments, current evidence based on large prospective or comparative studies as well as systematic reviews is limited. The purpose of this study was to conduct a systematic review on the efficacy of PAHG in the treatment of female patients with stress urinary incontinence with regard to reproducibility, feasibility, safety and clinical outcome. We searched MEDLINE (1966-2015), Scopus (2004-2015), POPLINE (1974-2015) and ClinicalTrials.gov (2008-2015) along with reference lists of electronically retrieved studies. Observational studies, prospective, retrospective and randomized controlled studies were included. Two reviewers independently selected studies, assessed the risk of bias and tabulated data to structured forms. We included 8 studies, which enrolled a total of 767 patients who received treatment with PAHG. We found that 186 of 767 women (24.3 %, range 12-35 %) required reinjection in order to achieve adequate efficacy. The most frequent adverse effects were pain at the site of injection (4-14 %) and urinary tract infections (3-7 %). Both the number of incontinence episodes/24 h and the number of ml/24 h were significantly reduced 1 year following treatment and the quality of life of patients was significantly improved. PAHG is a safe intervention for treating women with stress urinary incontinence, but repeat injections are often required. Further research is mandated in the field in order to compare its efficacy to other bulking agents.

  20. Extracellular-Matrix-Based and Arg-Gly-Asp–Modified Photopolymerizing Hydrogels for Cartilage Tissue Engineering

    PubMed Central

    Kim, Hwan D.; Heo, Jiseung; Hwang, Yongsung; Kwak, Seon-Yeong; Park, Ok Kyu; Kim, Hyunbum; Varghese, Shyni

    2015-01-01

    Articular cartilage damage is a persistent and increasing problem with the aging population. Strategies to achieve complete repair or functional restoration remain a challenge. Photopolymerizing-based hydrogels have long received an attention in the cartilage tissue engineering, due to their unique bioactivities, flexible method of synthesis, range of constituents, and desirable physical characteristics. In the present study, we have introduced unique bioactivity within the photopolymerizing-based hydrogels by copolymerizing polyethylene glycol (PEG) macromers with methacrylated extracellular matrix (ECM) molecules (hyaluronic acid and chondroitin sulfate [CS]) and integrin binding peptides (RGD peptide). Results indicate that cellular morphology, as observed by the actin cytoskeleton structures, was strongly dependent on the type of ECM component as well as the presence of integrin binding moieties. Further, CS-based hydrogel with integrin binding RGD moieties increased the lubricin (or known as superficial zone protein [SZP]) gene expression of the encapsulated chondrocytes. Additionally, CS-based hydrogel displayed cell-responsive degradation and resulted in increased DNA, GAG, and collagen accumulation compared with other hydrogels. This study demonstrates that integrin-mediated interactions within CS microenvironment provide an optimal hydrogel scaffold for cartilage tissue engineering application. PMID:25266634

  1. Engineering three-dimensional cell mechanical microenvironment with hydrogels.

    PubMed

    Huang, Guoyou; Wang, Lin; Wang, Shuqi; Han, Yulong; Wu, Jinhui; Zhang, Qiancheng; Xu, Feng; Lu, Tian Jian

    2012-12-01

    Cell mechanical microenvironment (CMM) significantly affects cell behaviors such as spreading, migration, proliferation and differentiation. However, most studies on cell response to mechanical stimulation are based on two-dimensional (2D) planar substrates, which cannot mimic native three-dimensional (3D) CMM. Accumulating evidence has shown that there is a significant difference in cell behavior in 2D and 3D microenvironments. Among the materials used for engineering 3D CMM, hydrogels have gained increasing attention due to their tunable properties (e.g. chemical and mechanical properties). In this paper, we provide an overview of recent advances in engineering hydrogel-based 3D CMM. Effects of mechanical cues (e.g. hydrogel stiffness and externally induced stress/strain in hydrogels) on cell behaviors are described. A variety of approaches to load mechanical stimuli in 3D hydrogel-based constructs are also discussed.

  2. Minimally invasive photopolymerization in intervertebral disc tissue cavities

    NASA Astrophysics Data System (ADS)

    Schmocker, Andreas M.; Khoushabi, Azadeh; Gantenbein-Ritter, Benjamin; Chan, Samantha; Bonél, Harald Marcel; Bourban, Pierre-Etienne; Mânson, Jan Anders; Schizas, Constantin; Pioletti, Dominique; Moser, Christophe

    2014-03-01

    Photopolymerized hydrogels are commonly used for a broad range of biomedical applications. As long as the polymer volume is accessible, gels can easily be hardened using light illumination. However, in clinics, especially for minimally invasive surgery, it becomes highly challenging to control photopolymerization. The ratios between polymerizationvolume and radiating-surface-area are several orders of magnitude higher than for ex-vivo settings. Also tissue scattering occurs and influences the reaction. We developed a Monte Carlo model for photopolymerization, which takes into account the solid/liquid phase changes, moving solid/liquid-boundaries and refraction on these boundaries as well as tissue scattering in arbitrarily designable tissue cavities. The model provides a tool to tailor both the light probe and the scattering/absorption properties of the photopolymer for applications such as medical implants or tissue replacements. Based on the simulations, we have previously shown that by adding scattering additives to the liquid monomer, the photopolymerized volume was considerably increased. In this study, we have used bovine intervertebral disc cavities, as a model for spinal degeneration, to study photopolymerization in-vitro. The cavity is created by enzyme digestion. Using a custom designed probe, hydrogels were injected and photopolymerized. Magnetic resonance imaging (MRI) and visual inspection tools were employed to investigate the successful photopolymerization outcomes. The results provide insights for the development of novel endoscopic light-scattering polymerization probes paving the way for a new generation of implantable hydrogels.

  3. A review of integrating electroactive polymers as responsive systems for specialized drug delivery applications.

    PubMed

    Pillay, Viness; Tsai, Tong-Sheng; Choonara, Yahya E; du Toit, Lisa C; Kumar, Pradeep; Modi, Girish; Naidoo, Dinesh; Tomar, Lomas K; Tyagi, Charu; Ndesendo, Valence M K

    2014-06-01

    Electroactive polymers (EAPs) are promising candidate materials for the design of drug delivery technologies, especially in conditions where an "on-off" drug release mechanism is required. To achieve this, EAPs such as polyaniline, polypyrrole, polythiophene, ethylene vinyl acetate, and polyethylene may be blended into responsive hydrogels in conjunction with the desired drug to obtain a patient-controlled drug release system. The "on-off" drug release mechanism can be achieved through the environmental-responsive nature of the interpenetrating hydrogel-EAP complex via (i) charged ions initiated diffusion of drug molecules; (ii) conformational changes that occur during redox switching of EAPs; or (iii) electroerosion. These release mechanisms are not exhaustive and new release mechanisms are still under investigation. Therefore, this review seeks to provide a concise incursion and critical overview of EAPs and responsive hydrogels as a strategy for advanced drug delivery, for example, controlled release of neurotransmitters, sulfosalicyclic acid from cross-linked hydrogel, and vaccine delivery. The review further discusses techniques such as linear sweep voltammetry, cyclic voltammetry, impedance spectroscopy, and chronoamperometry for the determination of the redox capability of EAPs. The future implications of the hydrogel-EAP composites include, but not limited to, application toward biosensors, DNA hybridizations, microsurgical tools, and miniature bioreactors and may be utilized to their full potential in the form of injectable devices as nanorobots or nanobiosensors. Copyright © 2013 Wiley Periodicals, Inc.

  4. Designer bFGF-incorporated d-form self-assembly peptide nanofiber scaffolds to promote bone repair.

    PubMed

    He, Bin; Ou, Yunsheng; Chen, Shuo; Zhao, Weikang; Zhou, Ao; Zhao, Jinqiu; Li, Hong; Jiang, Dianming; Zhu, Yong

    2017-05-01

    d-Form and l-form peptide nanofiber scaffolds can spontaneously form stable β-sheet secondary structures and nanofiber hydrogel scaffolds, and hold some promise in hemostasis and wound healing. We report here on the synthetic self-assembling peptide d-RADA16 and l-RADA16 are both found to produce stable β-sheet secondary structure and nanofiber hydrogel scaffolds based on circular dichroism (CD) spectroscopy, transmission electron microscopy (TEM) and rheology analysis etc. d-RADA16 hydrogel and l-RADA16 hydrogel can enhance obvious bone repair in femoral condyle defects of the Sprague-Dawley (SD) rat model compared to PBS treatment. Based on micro-computed tomography (CT), it was revealed that d-RADA16 hydrogel and l-RADA16 hydrogel were capable to obtain the extensive bone healing. Histological evaluation also found that these two hydrogels facilitate the presence of more mature bone tissue within the femoral condyle defects. Additionally, d-RADA16 hydrogel showed some potential in storing and releasing basic-fibroblast growth factor (bFGF) which was able to further promote bone regeneration based on micro-CT analysis. These results indicate that d-form peptide nanofiber hydrogel have some special capacity for bone repair. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Impact of RGD amount in dextran-based hydrogels for cell delivery.

    PubMed

    Riahi, Nesrine; Liberelle, Benoît; Henry, Olivier; De Crescenzo, Gregory

    2017-04-01

    Dextran is one of the hydrophilic polymers that is used for hydrogel preparation. As any polysaccharide, it presents a high density of hydroxyl groups, which make possible several types of derivatization and crosslinking reactions. Furthermore, dextran is an excellent candidate for hydrogel fabrication with controlled cell/scaffold interactions as it is resistant to protein adsorption and cell adhesion. RGD peptide can be grafted to the dextran in order to promote selected cell adhesion and proliferation. Altogether, we have developed a novel strategy to graft the RGD peptide sequence to dextran-based hydrogel using divinyl sulfone as a linker. The resulting RGD functionalized dextran-based hydrogels were transparent, presented a smooth surface and were easy to handle. The impact of varying RGD peptide amounts, hydrogel porosity and topology upon human umbilical vein endothelial cell (HUVEC) adhesion, proliferation and infiltration was investigated. Our results demonstrated that 0.1% of RGD-modified dextran within the gel was sufficient to support HUVEC cells adhesion to the hydrogel surface. Sodium chloride was added (i) to the original hydrogel mix in order to form a macroporous structure presenting interconnected pores and (ii) to the hydrogel surface to create small orifices essential for cells migration inside the matrix. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Cationic hemicellulose-based hydrogels for arsenic and chromium removal from aqueous solutions.

    PubMed

    Dax, Daniel; Chávez, María Soledad; Xu, Chunlin; Willför, Stefan; Mendonça, Regis Teixeira; Sánchez, Julio

    2014-10-13

    In this work the synthesis of hemicellulose-based hydrogels and their application for the removal of arsenic and chromium ions is described. In a first step O-acetyl galactoglucomannan (GGM) was subjected to a transesterification applying glycidyl methacrylate (GMA) for the synthesis of novel GGM macromonomers. Two distinguished and purified GGM fractions with molar mass of 7.1 and 28 kDa were used as starting materials. The resulting GGM macromonomers (GGM-MA) contained well-defined amounts of methacrylate groups as determined by (1)H NMR spectroscopy. Selected GGM-MA derivatives were consecutively applied as a crosslinker in the synthesis of tailored hydrogels using [2-(methacryloyloxy)ethyl]trimethylammonium chloride (MeDMA) as monomer. The swelling rate of the hydrogels was determined and the coherence between the swelling rate and the hydrogel composition was examined. The morphology of the GGM-based hydrogels was analysed by SEM and the hydrogels revealed a high surface area and were assessed in respect to their ability to remove arsenate and chromate ions from aqueous solutions. The presented bio-based hydrogels are of high interest especially for the mining industries as a sustainable material for the treatment of their highly contaminated wastewaters. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Reduced Graphene Oxide-Based Silver Nanoparticle-Containing Composite Hydrogel as Highly Efficient Dye Catalysts for Wastewater Treatment

    PubMed Central

    Jiao, Tifeng; Guo, Haiying; Zhang, Qingrui; Peng, Qiuming; Tang, Yongfu; Yan, Xuehai; Li, Bingbing

    2015-01-01

    New reduced graphene oxide-based silver nanoparticle-containing composite hydrogels were successfully prepared in situ through the simultaneous reduction of GO and noble metal precursors within the GO gel matrix. The as-formed hydrogels are composed of a network structure of cross-linked nanosheets. The reported method is based on the in situ co-reduction of GO and silver acetate within the hydrogel matrix to form RGO-based composite gel. The stabilization of silver nanoparticles was also achieved simultaneously within the gel composite system. The as-formed silver nanoparticles were found to be homogeneously and uniformly dispersed on the surface of the RGO nanosheets within the composite gel. More importantly, this RGO-based silver nanoparticle-containing composite hydrogel matrix acts as a potential catalyst for removing organic dye pollutants from an aqueous environment. Interestingly, the as-prepared catalytic composite matrix structure can be conveniently separated from an aqueous environment after the reaction, suggesting the potentially large-scale applications of the reduced graphene oxide-based nanoparticle-containing composite hydrogels for organic dye removal and wastewater treatment. PMID:26183266

  8. Cross-Linked Hydrogel for Pharmaceutical Applications: A Review

    PubMed Central

    2017-01-01

    Hydrogels are promising biomaterials because of their important qualities such as biocompatibility, biodegradability, hydrophilicity and non-toxicity. These qualities make hydrogels suitable for application in medical and pharmaceutical field. Recently, a tremendous growth of hydrogel application is seen, especially as gel and patch form, in transdermal drug delivery. This review mainly focuses on the types of hydrogels based on cross-linking and; secondly to describe the possible synthesis methods to design hydrogels for different pharmaceutical applications. The synthesis and chemistry of these hydrogels are discussed using specific pharmaceutical examples. The structure and water content in a typical hydrogel have also been discussed. PMID:29399542

  9. Water-soluble, neutral 3,5-diformyl-BODIPY with extended fluorescence lifetime in a self-healable chitosan hydrogel.

    PubMed

    Belali, Simin; Emandi, Ganapathi; Cafolla, Atillio A; O'Connell, Barry; Haffner, Benjamin; Möbius, Matthias E; Karimi, Alireza; Senge, Mathias O

    2017-11-08

    3,5-Diformyl-4,4-difluoro-4-bora-3a,4a-diaza-s-indacene (3,5-diformyl-BODIPY) can be used as an efficient biofunctional cross-linker to generate a new class of chitosan-based hydrogels with fluorescence resonance energy transfer (FRET) dynamics and good solubility in water. The hydrogel was fully characterized by FT-IR, UV-vis, fluorescence, FE-SEM, AFM, rheology and picosecond time-resolved spectroscopic techniques. The self-healing ability was demonstrated by rheological recovery and macroscopic and microscopic observations. The fluorescence lifetime was found to increase in aqueous solution of the BODIPY-chitosan hydrogel compared to the 3,5-diformyl-BODIPY monomer. Calculations based on experimental results such as red-shift and decreased intensity of the emission spectrum of highly dye-concentrated hydrogel in comparison to dilute hydrogels, together with changes in the fluorescence lifetime of the hydrogel at different concentration of dyes, suggest that the BDP-CS hydrogels fluorescence dynamics obey the Förster resonance energy transfer (FRET). Improvements in mechanical and photochemical properties and the acceptable values of BODIPY fluorescence lifetime in the hydrogel matrix indicate the utility of the newly synthesized hydrogels for biomedical applications.

  10. Thermoresponsive, in situ crosslinkable hydrogels based on N-isopropylacrylamide: Fabrication, characterization and mesenchymal stem cell encapsulation

    PubMed Central

    Klouda, Leda; Perkins, Kevin R.; Watson, Brendan M.; Hacker, Michael C.; Bryant, Stephanie J.; Raphael, Robert M.; Kasper, F. Kurtis; Mikos, Antonios G.

    2011-01-01

    Hydrogels that solidify in response to a dual, physical and chemical, mechanism upon temperature increase were fabricated and characterized. The hydrogels were based on N-isopropylacrylamide, which renders them thermoresponsive, and contained covalently crosslinkable moieties in the macromers. The effects of the macromer end group, namely acrylate or methacrylate, and the fabrication conditions were investigated on the degradative and swelling properties of the hydrogels. The hydrogels exhibited higher swelling below their lower critical solution temperature (LCST). When immersed in cell culture media at physiological temperature, which was above their LCST, hydrogels showed constant swelling and no degradation over eight weeks, with methacrylated hydrogels having higher swelling than their acrylated analogs. In addition, hydrogels immersed in cell culture media under the same conditions showed lower swelling as compared to phosphate buffered saline. The interplay between chemical crosslinking and thermally induced phase separation affected the swelling characteristics of hydrogels in different media. Mesenchymal stem cells encapsulated in the hydrogels in vitro were viable over three weeks and markers of osteogenic differentiation were detected when the cells were cultured with osteogenic supplements. Hydrogel mineralization in the absence of cells was observed in cell culture medium with the addition of fetal bovine serum and β-glycerol phosphate. The results suggest that these hydrogels may be suitable as carriers for cell delivery in tissue engineering. PMID:21187170

  11. Hyaluronic acid hydrogels for vocal fold wound healing

    PubMed Central

    Gaston, Joel; Thibeault, Susan L.

    2013-01-01

    The unique vibrational properties inherent to the human vocal fold have a significant detrimental impact on wound healing and scar formation. Hydrogels have taken prominence as a tissue engineered strategy to restore normal vocal structure and function as cellularity is low. The frequent vibrational and shear forces applied to, and present in this connective tissue make mechanical properties of such hydrogels a priority in this active area of research. Hyaluronic acid has been chemically modified in a variety of ways to address cell function while maintaining desirable tissue mechanical properties. These various modifications have had mixed results when injected in vivo typically resulting in better biomechanical function but not necessarily with a concomitant decrease in tissue fibrosis. Recent work has focused on seeding mesenchymal progenitor cells within 3D architecture of crosslinked hydrogels. The data from these studies demonstrate that this approach has a positive effect on cells in both early and late wound healing, but little work has been done regarding the biomechanical effects of these treatments. This paper provides an overview of the various hyaluronic acid derivatives, their crosslinking agents, and their effect when implanted into the vocal folds of various animal models. PMID:23507923

  12. Hyaluronic acid hydrogels for vocal fold wound healing.

    PubMed

    Gaston, Joel; Thibeault, Susan L

    2013-01-01

    The unique vibrational properties inherent to the human vocal fold have a significant detrimental impact on wound healing and scar formation. Hydrogels have taken prominence as a tissue engineered strategy to restore normal vocal structure and function as cellularity is low. The frequent vibrational and shear forces applied to, and present in this connective tissue make mechanical properties of such hydrogels a priority in this active area of research. Hyaluronic acid has been chemically modified in a variety of ways to address cell function while maintaining desirable tissue mechanical properties. These various modifications have had mixed results when injected in vivo typically resulting in better biomechanical function but not necessarily with a concomitant decrease in tissue fibrosis. Recent work has focused on seeding mesenchymal progenitor cells within 3D architecture of crosslinked hydrogels. The data from these studies demonstrate that this approach has a positive effect on cells in both early and late wound healing, but little work has been done regarding the biomechanical effects of these treatments. This paper provides an overview of the various hyaluronic acid derivatives, their crosslinking agents, and their effect when implanted into the vocal folds of various animal models.

  13. Gelatin- and starch-based hydrogels. Part B: In vitro mesenchymal stem cell behavior on the hydrogels.

    PubMed

    Van Nieuwenhove, Ine; Salamon, Achim; Adam, Stefanie; Dubruel, Peter; Van Vlierberghe, Sandra; Peters, Kirsten

    2017-04-01

    Tissue regeneration often occurs only to a limited extent. By providing a three-dimensional matrix serving as a surrogate extracellular matrix that promotes adult stem cell adhesion, proliferation and differentiation, scaffold-guided tissue regeneration aims at overcoming this limitation. In this study, we applied hydrogels made from crosslinkable gelatin, the hydrolyzed form of collagen, and functionalized starch which were characterized in depth and optimized as described in Van Nieuwenhove et al., 2016. "Gelatin- and Starch-Based Hydrogels. Part A: Hydrogel Development, Characterization and Coating", Carbohydrate Polymers 152:129-39. Collagen is the main structural protein in animal connective tissue and the most abundant protein in mammals. Starch is a carbohydrate consisting of a mixture of amylose and amylopectin. Hydrogels were developed with varying chemical composition (ratio of starch to gelatin applied) and different degrees of methacrylation of the applied gelatin phase. The hydrogels used exhibited no adverse effect on viability of the stem cells cultured on them. Moreover, initial cell adhesion did not differ significantly between them, while the strongest proliferation was observed on the hydrogel with the highest degree of cross-linking. On the least crosslinked and thus most flexible hydrogels, the highest degree of adipogenic differentiation was found, while osteogenic differentiation was the strongest on the most rigid, starch-blended hydrogels. Hydrogel coating with extracellular matrix compounds aggrecan or fibronectin prior to cell seeding exhibited no significant effects. Thus, gelatin-based hydrogels can be optimized regarding maximum promotion of either adipogenic or osteogenic stem cell differentiation in vitro, which makes them promising candidates for in vivo evaluation in clinical studies aiming at either soft or hard tissue regeneration. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Hydrogel microparticles for biosensing

    PubMed Central

    Le Goff, Gaelle C.; Srinivas, Rathi L.; Hill, W. Adam; Doyle, Patrick S.

    2015-01-01

    Due to their hydrophilic, biocompatible, and highly tunable nature, hydrogel materials have attracted strong interest in the recent years for numerous biotechnological applications. In particular, their solution-like environment and non-fouling nature in complex biological samples render hydrogels as ideal substrates for biosensing applications. Hydrogel coatings, and later, gel dot surface microarrays, were successfully used in sensitive nucleic acid assays and immunoassays. More recently, new microfabrication techniques for synthesizing encoded particles from hydrogel materials have enabled the development of hydrogel-based suspension arrays. Lithography processes and droplet-based microfluidic techniques enable generation of libraries of particles with unique spectral or graphical codes, for multiplexed sensing in biological samples. In this review, we discuss the key questions arising when designing hydrogel particles dedicated to biosensing. How can the hydrogel material be engineered in order to tune its properties and immobilize bioprobes inside? What are the strategies to fabricate and encode gel particles, and how can particles be processed and decoded after the assay? Finally, we review the bioassays reported so far in the literature that have used hydrogel particle arrays and give an outlook of further developments of the field. PMID:26594056

  15. Poly(ethylene glycol) (PEG)-lactic acid nanocarrier-based degradable hydrogels for restoring the vaginal microenvironment

    PubMed Central

    Rajan, Sujata Sundara; Turovskiy, Yevgeniy; Singh, Yashveer; Chikindas, Michael L.; Sinko, Patrick J.

    2014-01-01

    Women with bacterial vaginosis (BV) display reduced vaginal acidity, which make them susceptible to associated infections such as HIV. In the current study, poly(ethylene glycol) (PEG) nanocarrier-based degradable hydrogels were developed for the controlled release of lactic acid in the vagina of BV-infected women. PEG-lactic acid (PEG-LA) nanocarriers were prepared by covalently attaching lactic acid to 8-arm PEG-SH via cleavable thioester bonds. PEG-LA nanocarriers with 4 copies of lactic acid per molecule provided controlled release of lactic acid with a maximum release of 23% and 47% bound lactic acid in phosphate buffered saline (PBS, pH 7.4) and acetate buffer (AB, pH 4.3), respectively. The PEG nanocarrier-based hydrogels were formed by cross-linking the PEG-LA nanocarriers with 4-arm PEG-NHS via degradable thioester bonds. The nanocarrier-based hydrogels formed within 20 min under ambient conditions and exhibited an elastic modulus that was 100-fold higher than the viscous modulus. The nanocarrier-based degradable hydrogels provided controlled release of lactic acid for several hours; however, a maximum release of only 10%–14% bound lactic acid was observed possibly due to steric hindrance of the polymer chains in the cross-linked hydrogel. In contrast, hydrogels with passively entrapped lactic acid showed burst release with complete release within 30 min. Lactic acid showed antimicrobial activity against the primary BV pathogen Gardnerella vaginalis with a minimum inhibitory concentration (MIC) of 3.6 mg/ml. In addition, the hydrogels with passively entrapped lactic acid showed retained antimicrobial activity with complete inhibition G. vaginalis growth within 48 h. The results of the current study collectively demonstrate the potential of PEG nanocarrier-based hydrogels for vaginal administration of lactic acid for preventing and treating BV. PMID:25223229

  16. Biodegradation of PVP-CMC hydrogel film: a useful food packaging material.

    PubMed

    Roy, Niladri; Saha, Nabanita; Kitano, Takeshi; Saha, Petr

    2012-06-20

    Hydrogels can offer new opportunities for the design of efficient packaging materials with desirable properties (i.e. durability, biodegradability and mechanical strength). It is a promising and emerging concept, as most of the biopolymer based hydrogels are supposed to be biodegradable, they can be considered as alternative eco-friendly packaging materials. This article reports about synthetic (polyvinylpyrrolidone (PVP)) and biopolymer (carboxymethyl cellulose (CMC)) based a novel hydrogel film and its nature of biodegradability under controlled environmental condition. The dry hydrogel films were prepared by solution casting method and designated as 'PVP-CMC hydrogel films'. The hydrogel film containing PVP and CMC in a ratio of 20:80 shows best mechanical properties among all the test samples (i.e. 10:90, 20:80, 50:50, 80:20 and 90:10). Thus, PVP-CMC hydrogel film of 20:80 was considered as a useful food packaging material and further experiments were carried out with this particular hydrogel film. Biodegradation of the PVP-CMC hydrogel films were studied in liquid state (Czapec-Dox liquid medium+soil extracts) until 8 weeks. Variation in mechanical, viscoelastic properties and weight loss of the hydrogel films with time provide the direct evidence of biodegradation of the hydrogels. About 38% weight loss was observed within 8 weeks. FTIR spectra of the hydrogel films (before and after biodegradation) show shifts of the peaks and also change in the peak intensities, which refer to the physico-chemical change in the hydrogel structure and SEM views of the hydrogels show how internal structure of the PVP-CMC film changes in the course of biodegradation. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. Hydrogel based QCM aptasensor for detection of avian influenza virus.

    PubMed

    Wang, Ronghui; Li, Yanbin

    2013-04-15

    The objective of this study was to develop a quartz crystal microbalance (QCM) aptasensor based on ssDNA crosslinked polymeric hydrogel for rapid, sensitive and specific detection of avian influenza virus (AIV) H5N1. A selected aptamer with high affinity and specificity against AIV H5N1 surface protein was used, and hybridization between the aptamer and ssDNA formed the crosslinker in the polymer hydrogel. The aptamer hydrogel was immobilized on the gold surface of QCM sensor using a self-assembled monolayer method. The hydrogel remained in the state of shrink if no H5N1 virus was present in the sample because of the crosslinking between the aptamer and ssDNA in the polymer network. When it exposed to target virus, the binding reaction between the aptamer and H5N1 virus caused the dissolution of the linkage between the aptamer and ssDNA, resulting in the abrupt swelling of the hydrogel. The swollen hydrogel was monitored by the QCM sensor in terms of decreased frequency. Three polymeric hydrogels with different ratio (100:1 hydrogel I, 10:1 hydrogel II, 1:1 hydrogel III) of acrylamide and the aptamer monomer were synthesized, respectively, and then were used as the QCM sensor coating material. The results showed that the developed hydrogel QCM aptasensor was capable of detecting target H5N1 virus, and among the three developed aptamer hydrogels, hydrogel III coated QCM aptasensor achieved the highest sensitivity with the detection limit of 0.0128 HAU (HA unit). The total detection time from sampling to detection was only 30 min. In comparison with the anti-H5 antibody coated QCM immunosensor, the hydrogel QCM aptasensor lowered the detection limit and reduced the detection time. Copyright © 2012 Elsevier B.V. All rights reserved.

  18. Gelator-polysaccharide hybrid hydrogel for selective and controllable dye release.

    PubMed

    Li, Ping; Dou, Xiao-Qiu; Tang, Yi-Tian; Zhu, Shenmin; Gu, Jiajun; Feng, Chuan-Liang; Zhang, Di

    2012-12-01

    In this paper, 1,4-bi(phenylalanine-diglycol)-benzene (PDB) based Low-Molecular-Weight-Gelator (LMWG) hydrogels are modified using hydrophilic polysaccharide (sodium alginate). A set of techniques including Fourier transform infrared (FT-IR) spectroscopy, (1)H Nuclear Magnetic Resonance ((1)H NMR), X-ray powder diffraction (XRD), Ultraviolet-Visible (UV-Vis), and circular dichroism (CD) had confirmed a β-turn arrangement of PDB gelators and a semi-interpenetrating network (semi-IPN), which was formed through hydrogen bonds between LMWG fibers and polysaccharide chains. The evaluation of physicochemical properties of hydrogels indicates that gelator-polysaccharide hybrid hydrogels possess better mechanical and water retention properties than LMWG hydrogels. The release study of dyes (model drug) from both LMWG and hybrid hydrogels was carried out. Compared with PDB based hydrogels, hybrid hydrogels show a selective and controllable release property for certain dyes. The results suggest LMWG-polysaccharide hybrid gels may find potential applications as promising drug delivery vehicles for drug molecules. Copyright © 2012 Elsevier Inc. All rights reserved.

  19. Introduction to cell–hydrogel mechanosensing

    PubMed Central

    Ahearne, Mark

    2014-01-01

    The development of hydrogel-based biomaterials represents a promising approach to generating new strategies for tissue engineering and regenerative medicine. In order to develop more sophisticated cell-seeded hydrogel constructs, it is important to understand how cells mechanically interact with hydrogels. In this paper, we review the mechanisms by which cells remodel hydrogels, the influence that the hydrogel mechanical and structural properties have on cell behaviour and the role of mechanical stimulation in cell-seeded hydrogels. Cell-mediated remodelling of hydrogels is directed by several cellular processes, including adhesion, migration, contraction, degradation and extracellular matrix deposition. Variations in hydrogel stiffness, density, composition, orientation and viscoelastic characteristics all affect cell activity and phenotype. The application of mechanical force on cells encapsulated in hydrogels can also instigate changes in cell behaviour. By improving our understanding of cell–material mechano-interactions in hydrogels, this should enable a new generation of regenerative medical therapies to be developed. PMID:24748951

  20. Light-guiding hydrogels for cell-based sensing and optogenetic synthesis in vivo

    NASA Astrophysics Data System (ADS)

    Choi, Myunghwan; Choi, Jin Woo; Kim, Seonghoon; Nizamoglu, Sedat; Hahn, Sei Kwang; Yun, Seok Hyun

    2013-12-01

    Polymer hydrogels are widely used as cell scaffolds for biomedical applications. Although the biochemical and biophysical properties of hydrogels have been investigated extensively, little attention has been paid to their potential photonic functionalities. Here, we report cell-integrated polyethylene glycol-based hydrogels for in vivo optical-sensing and therapy applications. Hydrogel patches containing cells were implanted in awake, freely moving mice for several days and shown to offer long-term transparency, biocompatibility, cell viability and light-guiding properties (loss of <1 dB cm-1). Using optogenetic, glucagon-like peptide-1 secreting cells, we conducted light-controlled therapy using the hydrogel in a mouse model with diabetes and obtained improved glucose homeostasis. Furthermore, real-time optical readout of encapsulated heat-shock-protein-coupled fluorescent reporter cells made it possible to measure the nanotoxicity of cadmium-based bare and shelled quantum dots (CdTe; CdSe/ZnS) in vivo.

  1. Thin Hydrogel Films for Optical Biosensor Applications

    PubMed Central

    Mateescu, Anca; Wang, Yi; Dostalek, Jakub; Jonas, Ulrich

    2012-01-01

    Hydrogel materials consisting of water-swollen polymer networks exhibit a large number of specific properties highly attractive for a variety of optical biosensor applications. This properties profile embraces the aqueous swelling medium as the basis of biocompatibility, non-fouling behavior, and being not cell toxic, while providing high optical quality and transparency. The present review focuses on some of the most interesting aspects of surface-attached hydrogel films as active binding matrices in optical biosensors based on surface plasmon resonance and optical waveguide mode spectroscopy. In particular, the chemical nature, specific properties, and applications of such hydrogel surface architectures for highly sensitive affinity biosensors based on evanescent wave optics are discussed. The specific class of responsive hydrogel systems, which can change their physical state in response to externally applied stimuli, have found large interest as sophisticated materials that provide a complex behavior to hydrogel-based sensing devices. PMID:24957962

  2. Hydrogels from Amorphous Calcium Carbonate and Polyacrylic Acid: Bio-Inspired Materials for "Mineral Plastics".

    PubMed

    Sun, Shengtong; Mao, Li-Bo; Lei, Zhouyue; Yu, Shu-Hong; Cölfen, Helmut

    2016-09-19

    Given increasing environmental issues due to the large usage of non-biodegradable plastics based on petroleum, new plastic materials, which are economic, environmentally friendly, and recyclable are in high demand. One feasible strategy is the bio-inspired synthesis of mineral-based hybrid materials. Herein we report a facile route for an amorphous CaCO3 (ACC)-based hydrogel consisting of very small ACC nanoparticles physically cross-linked by poly(acrylic acid). The hydrogel is shapeable, stretchable, and self-healable. Upon drying, the hydrogel forms free-standing, rigid, and transparent objects with remarkable mechanical performance. By swelling in water, the material can completely recover the initial hydrogel state. As a matrix, thermochromism can also be easily introduced. The present hybrid hydrogel may represent a new class of plastic materials, the "mineral plastics". © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Impact of immobilizing of low molecular weight hyaluronic acid within gelatin-based hydrogel through enzymatic reaction on behavior of enclosed endothelial cells.

    PubMed

    Khanmohammadi, Mehdi; Sakai, Shinji; Taya, Masahito

    2017-04-01

    The hydrogels having the ability to promote migration and morphogenesis of endothelial cells (ECs) are useful for fabricating vascularized dense tissues in vitro. The present study explores the immobilization of low molecular weight hyaluronic acid (LMWHA) derivative within gelatin-based hydrogel to stimulate migration of ECs. The LMWHA derivative possessing phenolic hydroxyl moieties (LMWHA-Ph) was bound to gelatin-based derivative hydrogel through the horseradish peroxidase-catalyzed reaction. The motility of ECs was analyzed by scratch migration assay and microparticle-based cell migration assay. The incorporated LMWHA-Ph molecules within hydrogel was found to be preserved stably through covalent bonds during incubation. The free and immobilized LMWHA-Ph did not lose an inherent stimulatory effect on human umbilical vein endothelial cells (HUVECs). The immobilized LMWHA-Ph within gelatin-based hydrogel induced the high motility of HUVECs, accompanied by robust cytoskeleton extension, and cell subpopulation expressing CD44 cell receptor. In the presence of immobilized LMWHA-Ph, the migration distance and the number of existing HUVECs were demonstrated to be encouraged in dose-dependent and time-dependent manners. Based on the results obtained in this work, it was concluded that the enzymatic immobilization of LMWHA-Ph within gelatin-based hydrogel represents a promising approach to promote ECs' motility and further exploitation for vascular tissue engineering applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Effects of poly(2-hydroxyethyl methacrylate) and poly(vinyl-pyrrolidone) hydrogel implants on myopic and normal chick sclera

    PubMed Central

    Su, James; Iomdina, Elena; Tarutta, Elena; Ward, Brian; Song, Jie; Wildsoet, Christine F.

    2008-01-01

    There has been generally little attention paid to the utilization of biomaterials as an anti-myopia treatment. The purpose of this study was to investigate whether polymeric hydrogels, either implanted or injected adjacent to the outer scleral surface, slow ocular elongation. White Leghorn (gallus gallus domesticus) chicks were used at 2 weeks of age. Chicks had either (1) strip of poly(2-hydroxyethyl methacrylate) (pHEMA) implanted monocularly against the outer sclera at the posterior pole, or (2) an in situ polymerizing gel [main ingredient: poly(vinyl-pyrrolidone) (PVP)] injected monocularly at the same location. Some of the eyes injected with the polymer were fitted with a diffuser or a −10D lens. In each experiment, ocular lengths were measured at regular intervals by high frequency A-scan ultrasonography, and chicks were sacrificed for histology at staged intervals. No in vivo signs of either orbital or ocular inflammation were observed. The pHEMA implant significantly increased scleral thickness by the third week, and the implant became encapsulated with fibrous tissue. The PVP-injected eyes left otherwise untreated, showed a significant increase in scleral thickness, due to increased chondrocyte proliferation and extracellular matrix deposition. However, there was no effect of the PVP injection on ocular elongation. In eyes wearing optical devices, there was no effect on either scleral thickness or ocular elongation. These results represent “proof of principle” that scleral growth can be manipulated without adverse inflammatory responses. However, since neither approach slowed ocular elongation, additional factors must influence scleral surface area expansion in the avian eye. PMID:19109950

  5. Gellan gum-based hydrogels for intervertebral disc tissue-engineering applications.

    PubMed

    Silva-Correia, J; Oliveira, J M; Caridade, S G; Oliveira, J T; Sousa, R A; Mano, J F; Reis, R L

    2011-06-01

    Intervertebral disc (IVD) degeneration is a challenging clinical problem that urgently demands viable nucleus pulposus (NP) implant materials. The best suited biomaterial for NP regeneration has yet to be identified, but it is believed that biodegradable hydrogel-based materials are promising candidates. In this work, we have developed ionic- and photo-crosslinked methacrylated gellan gum (GG-MA) hydrogels to be used in acellular and cellular tissue-engineering strategies for the regeneration of IVDs. The physicochemical properties of the developed hydrogels were investigated by Fourier-transform infrared spectroscopy, (1) H nuclear magnetic resonance and differential scanning calorimetry. The swelling ability and degradation rate of hydrogels were also analysed in phosphate-buffered saline solution at physiological pH for a period of 30 days. Additionally, the morphology and mechanical properties of the hydrogels were assessed under a scanning electron microscope and dynamic compression, respectively. An in vitro study was carried out to screen possible cytotoxicity of the gellan gum-based hydrogels by culturing rat lung fibroblasts (L929 cells) with hydrogel leachables up to 7 days. The results demonstrated that gellan gum was successfully methacrylated. We observed that the produced GG-MA hydrogels possess improved mechanical properties and lower water uptake ability and degradation rate as compared to gellan gum. This work also revealed that GG-MA hydrogels are non-cytotoxic in vitro, thus being promising biomaterials to be used in IVD tissue-engineering strategies. Copyright © 2010 John Wiley & Sons, Ltd.

  6. Hydrogels for Hydrophobic Drug Delivery. Classification, Synthesis and Applications

    PubMed Central

    Stewart, Sarah; Ervine, Michael; Al-Kasasbeh, Rehan; Donnelly, Ryan F.

    2018-01-01

    Hydrogels have been shown to be very useful in the field of drug delivery due to their high biocompatibility and ability to sustain delivery. Therefore, the tuning of their properties should be the focus of study to optimise their potential. Hydrogels have been generally limited to the delivery of hydrophilic drugs. However, as many of the new drugs coming to market are hydrophobic in nature, new approaches for integrating hydrophobic drugs into hydrogels should be developed. This article discusses the possible new ways to incorporate hydrophobic drugs within hydrogel structures that have been developed through research. This review describes hydrogel-based systems for hydrophobic compound delivery included in the literature. The section covers all the main types of hydrogels, including physical hydrogels and chemical hydrogels. Additionally, reported applications of these hydrogels are described in the subsequent sections. PMID:29364833

  7. In vitro BMP-2 peptide release from thiolated chitosan based hydrogel.

    PubMed

    Liu, Xujie; Yu, Bo; Huang, Qianli; Liu, Rui; Feng, Qingling; Cai, Qiang; Mi, Shengli

    2016-12-01

    Thiolated chitosan based thermo-sensitive hydrogel is a water soluble system and the existing thiol groups are beneficial for the delivery of cysteine-rich peptides. In the present study, a kind of thiolated chitosan, i.e. chitosan-4-thio-butylamidine (CS-TBA) conjugate was characterized and used to prepare CS-TBA/hydroxyapatite (HA)/beta-glycerophosphate disodium (β-GP) thermo-sensitive hydrogel. The cysteine terminated peptide 24 (P24) containing residues 73-92 of the knuckle epitope of BMP-2 (N→C: KIPKASSVPTELSAISTLYLSGGC) was synthesized and characterized. The release behavior of P24 from CS-TBA based hydrogel was investigated in vitro. The thiol groups in CS-TBA may react with thiol groups in P24, thus decreases the P24 release rate and maintains the peptide release for a longer time compared with unmodified chitosan based hydrogel. Moreover, the bioactivity of P24 is preserved during release process. These results indicate that P24 loaded CS-TBA based thermosensitive hydrogel is a potential material for minimally invasive surgery of bone repair. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Automation of 3D cell culture using chemically defined hydrogels.

    PubMed

    Rimann, Markus; Angres, Brigitte; Patocchi-Tenzer, Isabel; Braum, Susanne; Graf-Hausner, Ursula

    2014-04-01

    Drug development relies on high-throughput screening involving cell-based assays. Most of the assays are still based on cells grown in monolayer rather than in three-dimensional (3D) formats, although cells behave more in vivo-like in 3D. To exemplify the adoption of 3D techniques in drug development, this project investigated the automation of a hydrogel-based 3D cell culture system using a liquid-handling robot. The hydrogel technology used offers high flexibility of gel design due to a modular composition of a polymer network and bioactive components. The cell inert degradation of the gel at the end of the culture period guaranteed the harmless isolation of live cells for further downstream processing. Human colon carcinoma cells HCT-116 were encapsulated and grown in these dextran-based hydrogels, thereby forming 3D multicellular spheroids. Viability and DNA content of the cells were shown to be similar in automated and manually produced hydrogels. Furthermore, cell treatment with toxic Taxol concentrations (100 nM) had the same effect on HCT-116 cell viability in manually and automated hydrogel preparations. Finally, a fully automated dose-response curve with the reference compound Taxol showed the potential of this hydrogel-based 3D cell culture system in advanced drug development.

  9. Hydrogel-Based Drug Delivery Systems for Poorly Water-Soluble Drugs.

    PubMed

    McKenzie, Matthew; Betts, David; Suh, Amy; Bui, Kathryn; Kim, London Doyoung; Cho, Hyunah

    2015-11-13

    Hydrogels are three-dimensional materials that can withstand a great amount of water incorporation while maintaining integrity. This allows hydrogels to be very unique biomedical materials, especially for drug delivery. Much effort has been made to incorporate hydrophilic molecules in hydrogels in the field of drug delivery, while loading of hydrophobic drugs has not been vastly studied. However, in recent years, research has also been conducted on incorporating hydrophobic molecules within hydrogel matrices for achieving a steady release of drugs to treat various ailments. Here, we summarize the types of hydrogels used as drug delivery vehicles, various methods to incorporate hydrophobic molecules in hydrogel matrices, and the potential therapeutic applications of hydrogels in cancer.

  10. Formulation and evaluation of microemulsion-based hydrogel for topical delivery.

    PubMed

    Sabale, Vidya; Vora, Sejal

    2012-07-01

    The purpose of this study was to develop microemulsion-based hydrogel formulation for topical delivery of bifonazole with an objective to increase the solubility and skin permeability of the drug. Oleic acid was screened as the oil phase of microemulsions, due to a good solubilizing capacity of the microemulison systems. The pseudo-ternary phase diagrams for microemulsion regions were constructed using oleic acid as the oil, Tween 80 as the surfactant and isopropyl alcohol (IPA) as the cosurfactant. Various microemulsion formulations were prepared and optimized by 3(2) factorial design on the basis of percentage (%) transmittance, globule size, zeta potential, drug release, and skin permeability. The abilities of various microemulsions to deliver bifonazole through the skin were evaluated ex vivo using Franz diffusion cells fitted with rat skins. The Hydroxy Propyl Methyl Cellulose (HPMC) K100 M as a gel matrix was used to construct the microemulsion-based hydrogel for improving the viscosity of microemulsion for topical administration. The optimized microemulsion-based hydrogel was evaluated for viscosity, spreadability, skin irritancy, skin permeability, stability, and antifungal activity by comparing it with marketed bifonazole cream. The mechanism of drug release from microemulsion-based hydrogel was observed to follow zero order kinetics. The studied optimized microemulsion-based hydrogel showed a good stability over the period of 3 months. Average globule size of optimized microemulsion (F5) was found to be 18.98 nm, zeta potential was found to be -5.56 mv, and permeability of drug from microemulsion within 8 h was observed 84%. The antifungal activity of microemulsion-based hydrogel was found to be comparable with marketed cream. The results indicate that the studied microemulsion-based hydrogel (F5) has a potential for sustained action of drug release and it may act as promising vehicle for topical delivery of ibuprofen.

  11. Advances in Carbon Nanotubes-Hydrogel Hybrids in Nanomedicine for Therapeutics.

    PubMed

    Vashist, Arti; Kaushik, Ajeet; Vashist, Atul; Sagar, Vidya; Ghosal, Anujit; Gupta, Y K; Ahmad, Sharif; Nair, Madhavan

    2018-05-01

    In spite of significant advancement in hydrogel technology, low mechanical strength and lack of electrical conductivity have limited their next-level biomedical applications for skeletal muscles, cardiac and neural cells. Host-guest chemistry based hybrid nanocomposites systems have gained attention as they completely overcome these pitfalls and generate bioscaffolds with tunable electrical and mechanical characteristics. In recent years, carbon nanotube (CNT)-based hybrid hydrogels have emerged as innovative candidates with diverse applications in regenerative medicines, tissue engineering, drug delivery devices, implantable devices, biosensing, and biorobotics. This article is an attempt to recapitulate the advancement in synthesis and characterization of hybrid hydrogels and provide deep insights toward their functioning and success as biomedical devices. The improved comparative performance and biocompatibility of CNT-hydrogels hybrids systems developed for targeted biomedical applications are addressed here. Recent updates toward diverse applications and limitations of CNT hybrid hydrogels is the strength of the review. This will provide a holistic approach toward understanding of CNT-based hydrogels and their applications in nanotheranostics. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Transient Dynamic Mechanical Analysis of Resilin-based Elastomeric Hydrogels

    NASA Astrophysics Data System (ADS)

    Li, Linqing; Kiick, Kristi

    2014-04-01

    The outstanding high-frequency properties of emerging resilin-like polypeptides (RLPs) have motivated their development for vocal fold tissue regeneration and other applications. Recombinant RLP hydrogels show efficient gelation, tunable mechanical properties, and display excellent extensibility, but little has been reported about their transient mechanical properties. In this manuscript, we describe the transient mechanical behavior of new RLP hydrogels investigated via both sinusoidal oscillatory shear deformation and uniaxial tensile testing. Oscillatory stress relaxation and creep experiments confirm that RLP-based hydrogels display significantly reduced stress relaxation and improved strain recovery compared to PEG-based control hydrogels. Uniaxial tensile testing confirms the negligible hysteresis, reversible elasticity and superior resilience (up to 98%) of hydrated RLP hydrogels, with Young’s modulus values that compare favorably with those previously reported for resilin and that mimic the tensile properties of the vocal fold ligament at low strain (< 15%). These studies expand our understanding of the properties of these RLP materials under a variety of conditions, and confirm the unique applicability, for mechanically demanding tissue engineering applications, of a range of RLP hydrogels.

  13. Enzymatically Cross-linked Alginic-Hyaluronic acid Composite Hydrogels As Cell Delivery Vehicles

    PubMed Central

    Ganesh, Nitya; Hanna, Craig; Nair, Shantikumar V.; Nair, Lakshmi S.

    2013-01-01

    An injectable composite gel was developed from alginic and hyaluronic acid. The ezymatically cross-linked injectable gels were prepared via the oxidative coupling of tyramine modified sodium algiante and sodium hyaluronate in the presence of horse radish peroxidase (HRP) and hydrogen peroxide (H2O2). The composite gels were prepared by mixing equal parts of the two tryaminated polymer solutions in 10U HRP and treating with 1.0% H2O2. The properties of the alginate gels were significanly affected by the addition of hyaluronic acid. The percentage water absorption and storage modulus of the composite gels were found to be lower than the alginate gels. The alginate and composite gels showed lower protein release compared to hyaluronate gels in the absence of hyaluronidase. Even hyaluronate gels showed only approximately 10% protein release after 14 days incubation in phosphate buffer solution. ATDC-5 cells encapsulated in the injectable gels showed high cell viability. The composite gels showed the presence of enlarged spherical cells with significantly higher metabolic activity compared to cells in hyaluronic and alginic acid gels. The results suggest the potential of the composite approach to develop covalently cross-linked hydrogels with tuneable physical, mechanical, and biological properties. PMID:23357799

  14. Engulfing tumors with synthetic extracellular matrices for cancer immunotherapy.

    PubMed

    Hori, Yuki; Stern, Patrick J; Hynes, Richard O; Irvine, Darrell J

    2009-12-01

    Local immunotherapies are under investigation for the treatment of unresectable tumors and sites of solid tumor resection to prevent local recurrence. Successful local therapy could also theoretically elicit systemic immune responses against cancer. Here we explored the delivery of therapeutic dendritic cells (DCs), cytokines, or other immunostimulatory factors to tumors via the use of 'self-gelling' hydrogels based on the polysaccharide alginate, injected peritumorally around established melanoma lesions. Peritumoral injection of alginate matrices loaded with DCs and/or an interleukin-15 superagonist (IL-15SA) around 14-day established ova-expressing B16F0 murine melanoma tumors promoted immune cell accumulation in the peritumoral matrix, and matrix infiltration correlated with tumor infiltration by leukocytes. Single injections of IL-15SA-carrying gels concentrated the cytokine in the tumor site approximately 40-fold compared to systemic injection and enabled a majority of treated animals to suppress tumor growth for a week or more. Further, we found that single injections of alginate matrices loaded with IL-15SA and the Toll-like receptor ligand CpG or two injections of gels carrying IL-15SA alone could elicit comparable anti-tumor activity without the need for exogenous DCs. Thus, injectable alginate gels offer an attractive platform for local tumor immunotherapy, and facilitate combinatorial treatments designed to promote immune responses locally at a tumor site while limiting systemic exposure to potent immunomodulatory factors.

  15. Programmable Hydrogels for Cell Encapsulation and Neo-Tissue Growth to Enable Personalized Tissue Engineering.

    PubMed

    Bryant, Stephanie J; Vernerey, Franck J

    2018-01-01

    Biomimetic and biodegradable synthetic hydrogels are emerging as a promising platform for cell encapsulation and tissue engineering. Notably, synthetic-based hydrogels offer highly programmable macroscopic properties (e.g., mechanical, swelling and transport properties) and degradation profiles through control over several tunable parameters (e.g., the initial network structure, degradation kinetics and behavior, and polymer properties). One component to success is the ability to maintain structural integrity as the hydrogel transitions to neo-tissue. This seamless transition is complicated by the fact that cellular activity is highly variable among donors. Thus, computational models provide an important tool in tissue engineering due to their unique ability to explore the coupled processes of hydrogel degradation and neo-tissue growth across multiple length scales. In addition, such models provide new opportunities to develop predictive computational tools to overcome the challenges with designing hydrogels for different donors. In this report, programmable properties of synthetic-based hydrogels and their relation to the hydrogel's structural properties and their evolution with degradation are reviewed. This is followed by recent progress on the development of computational models that describe hydrogel degradation with neo-tissue growth when cells are encapsulated in a hydrogel. Finally, the potential for predictive models to enable patient-specific hydrogel designs for personalized tissue engineering is discussed. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Visible light induced electropolymerization of suspended hydrogel bioscaffolds in a microfluidic chip.

    PubMed

    Li, Pan; Yu, Haibo; Liu, Na; Wang, Feifei; Lee, Gwo-Bin; Wang, Yuechao; Liu, Lianqing; Li, Wen Jung

    2018-05-23

    The development of microengineered hydrogels co-cultured with cells in vitro could advance in vivo bio-systems in both structural complexity and functional hierarchy, which holds great promise for applications in regenerative tissues or organs, drug discovery and screening, and bio-sensors or bio-actuators. Traditional hydrogel microfabrication technologies such as ultraviolet (UV) laser or multiphoton laser stereolithography and three-dimensional (3D) printing systems have advanced the development of 3D hydrogel micro-structures but need either expensive and complex equipment, or harsh material selection with limited photoinitiators. Herein, we propose a simple and flexible hydrogel microfabrication method based on a ubiquitous visible-light projection system combined with a custom-designed photosensitive microfluidic chip, to rapidly (typically several to tens of seconds) fabricate various two-dimensional (2D) hydrogel patterns and 3D hydrogel constructs. A theoretical layer-by-layer model that involves continuous polymerizing-delaminating-polymerizing cycles is presented to explain the polymerization and structural formation mechanism of hydrogels. A large area of hydrogel patterns was efficiently fabricated without the usage of costly laser systems or photoinitiators, i.e., a stereoscopic mesh-like hydrogel network with intersecting hydrogel micro-belts was fabricated via a series of dynamic-changing digital light projections. The pores and gaps of the hydrogel network are tunable, which facilitates the supply of nutrients and discharge of waste in the construction of 3D thick bio-models. Cell co-culture experiments showed the effective regulation of cell spreading by hydrogel scaffolds fabricated by the new method presented here. This visible light enabled hydrogel microfabrication method may provide new prospects for designing cell-based units for advanced biomedical studies, e.g., for 3D bio-models or bio-actuators in the future.

  17. Bacterial cellulose based hydrogel (BC-g-AA) and preliminary result of swelling behavior

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hakam, Adil; Lazim, Azwan Mat; Abdul Rahman, I. Irman

    2013-11-27

    In this study, hydrogel based on Bacterial cellulose (BC) or local known as Nata de Coco, which grafted with monomer: Acrylic acid (AA) is synthesis by using gamma radiation technique. These hydrogel (BC-g-AA) has unique characteristic whereby responsive to pH buffer solution.

  18. Synthesis and evaluation on pH- and temperature-responsive chitosan-p(MAA-co-NIPAM) hydrogels.

    PubMed

    Rasib, S Z M; Ahmad, Z; Khan, A; Akil, H M; Othman, M B H; Hamid, Z A A; Ullah, F

    2018-03-01

    In this study, chitosan-poly(methacrylic acid-co-N-isopropylacrylamide) [chitosan-p(MAA-co-NIPAM)] hydrogels were synthesized by emulsion polymerization. In order to be used as a carrier for drug delivery systems, the hydrogels had to be biocompatible, biodegradable and multi-responsive. The polymerization was performed by copolymerize MAA and NIPAM with chitosan polymer to produce a chitosan-based hydrogel. Due to instability during synthesis and complexity of components to produce the hydrogel, further study at different times of reaction is important to observe the synthesis process, the effect of end product on swelling behaviour and the most important is to find the best way to control the hydrogel synthesis in order to have an optimal swelling behaviour for drug release application. Studied by using Fourier transform infra-red (FTIR) spectroscopy found that, the synthesized was successfully produced stable chitosan-based hydrogel with PNIPAM continuously covered the outer surface of hydrogel which influenced much on the stability during synthesis. The chitosan and PMAA increased the zeta potential of the hydrogel and the chitosan capable to control shrinkage above human body temperature. The chitosan-p(MAA-co-NIPAM) hydrogels also responses to pH and temperature thus improved the ability to performance as a drug carrier. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Influence of Different ECM-Like Hydrogels on Neurite Outgrowth Induced by Adipose Tissue-Derived Stem Cells

    PubMed Central

    Oliveira, E.; Assunção-Silva, R. C.; Teixeira, F. G.

    2017-01-01

    Mesenchymal stem cells (MSCs) have been proposed for spinal cord injury (SCI) applications due to their capacity to secrete growth factors and vesicles—secretome—that impacts important phenomena in SCI regeneration. To improve MSC survival into SCI sites, hydrogels have been used as transplantation vehicles. Herein, we hypothesized if different hydrogels could interact differently with adipose tissue-derived MSCs (ASCs). The efficacy of three natural hydrogels, gellan gum (functionalized with a fibronectin peptide), collagen, and a hydrogel rich in laminin epitopes (NVR-gel) in promoting neuritogenesis (alone and cocultured with ASCs), was evaluated in the present study. Their impact on ASC survival, metabolic activity, and gene expression was also evaluated. Our results indicated that all hydrogels supported ASC survival and viability, being this more evident for the functionalized GG hydrogels. Moreover, the presence of different ECM-derived biological cues within the hydrogels appears to differently affect the mRNA levels of growth factors involved in neuronal survival, differentiation, and axonal outgrowth. All the hydrogel-based systems supported axonal growth mediated by ASCs, but this effect was more robust in functionalized GG. The data herein presented highlights the importance of biological cues within hydrogel-based biomaterials as possible modulators of ASC secretome and its effects for SCI applications. PMID:29333166

  20. A glucose-sensitive block glycopolymer hydrogel based on dynamic boronic ester bonds for insulin delivery.

    PubMed

    Cai, Baoqi; Luo, Yanping; Guo, Qianqian; Zhang, Xinge; Wu, Zhongming

    2017-06-05

    Hydrogels are good candidates to satisfy many needs for functional and tunable biomaterials. How to precisely control the gel structure and functions is crucial for the construction of sophisticated soft biomaterials comprising the hydrogels, which facilitates the impact of the surrounding environment on a unique biological function occurring. Here, glucose-responsive hydrogels comprised of 3-acrylamidophenyl boronic acid copolymerized with 2-lactobionamidoethyl methacrylate (p(APBA-b-LAMA)) were synthesized, and further evaluated as carriers for insulin delivery. The formation of (p(APBA-b-LAMA)) hydrogel was based on dynamic covalent bond using the association of boronic acid with diols. P(APBA-b-LAMA) hydrogel with the typical porous structure showed a rapid increase in equilibrium of swelling, which was up to 1856% after incubation with aqueous solution. Using insulin as a model protein therapeutic, p(APBA-b-LAMA) hydrogel exhibited high drug loading capability up to 15.6%, and also displayed glucose-dependent insulin release under physiological conditions. Additionally, the viability of NIH3T3 cells was more than 90% after treated with p(APBA-b-LAMA) hydrogel, indicating that the hydrogel had no cytotoxicity. Consequently, the novel p(APBA-b-LAMA) hydrogel has a practical application for diabetes treatment. Copyright © 2017. Published by Elsevier Ltd.

  1. Biodegradable HEMA-based hydrogels with enhanced mechanical properties.

    PubMed

    Moghadam, Mohamadreza Nassajian; Pioletti, Dominique P

    2016-08-01

    Hydrogels are widely used in the biomedical field. Their main purposes are either to deliver biological active agents or to temporarily fill a defect until they degrade and are followed by new host tissue formation. However, for this latter application, biodegradable hydrogels are usually not capable to sustain any significant load. The development of biodegradable hydrogels presenting load-bearing capabilities would open new possibilities to utilize this class of material in the biomedical field. In this work, an original formulation of biodegradable photo-crosslinked hydrogels based on hydroxyethyl methacrylate (HEMA) is presented. The hydrogels consist of short-length poly(2-hydroxyethyl methacrylate) (PHEMA) chains in a star shape structure, obtained by introducing a tetra-functional chain transfer agent in the backbone of the hydrogels. They are cross-linked with a biodegradable N,O-dimethacryloyl hydroxylamine (DMHA) molecule sensitive to hydrolytic cleavage. We characterized the degradation properties of these hydrogels submitted to mechanical loadings. We showed that the developed hydrogels undergo long-term degradation and specially meet the two essential requirements of a biodegradable hydrogel suitable for load bearing applications: enhanced mechanical properties and low molecular weight degradation products. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 104B: 1161-1169, 2016. © 2015 Wiley Periodicals, Inc.

  2. Derivation of Mesenchymal Stromal Cells from Canine Induced Pluripotent Stem Cells by Inhibition of the TGFβ/Activin Signaling Pathway

    PubMed Central

    Frith, Jessica E.; Frith, Thomas J.R.; Ovchinnikov, Dmitry A.; Cooper-White, Justin J.; Wolvetang, Ernst J.

    2014-01-01

    In this study we have generated canine mesenchymal stromal cells (MSCs), also known as mesenchymal stem cells, from canine induced pluripotent stem cells (ciPSCs) by small-molecule inhibition of the transforming growth factor beta (TGFβ)/activin signaling pathway. These ciPSC-derived MSCs (ciPSC-MSCs) express the MSC markers CD73, CD90, CD105, STRO1, cPDGFRβ and cKDR, in addition to the pluripotency factors OCT4, NANOG and REX1. ciPSC-MSCs lack immunostaining for H3K27me3, suggesting that they possess two active X chromosomes. ciPSC-MSCs are highly proliferative and undergo robust differentiation along the osteo-, chondro- and adipogenic pathways, but do not form teratoma-like tissues in vitro. Of further significance for the translational potential of ciPSC-MSCs, we show that these cells can be encapsulated and maintained within injectable hydrogel matrices that, when functionalized with bound pentosan polysulfate, dramatically enhance chondrogenesis and inhibit osteogenesis. The ability to efficiently derive large numbers of highly proliferative canine MSCs from ciPSCs that can be incorporated into injectable, functionalized hydrogels that enhance their differentiation along a desired lineage constitutes an important milestone towards developing an effective MSC-based therapy for osteoarthritis in dogs, but equally provides a model system for assessing the efficacy and safety of analogous approaches for treating human degenerative joint diseases. PMID:25055193

  3. Matrix elasticity of void-forming hydrogels controls transplanted-stem-cell-mediated bone formation

    NASA Astrophysics Data System (ADS)

    Huebsch, Nathaniel; Lippens, Evi; Lee, Kangwon; Mehta, Manav; Koshy, Sandeep T.; Darnell, Max C.; Desai, Rajiv M.; Madl, Christopher M.; Xu, Maria; Zhao, Xuanhe; Chaudhuri, Ovijit; Verbeke, Catia; Kim, Woo Seob; Alim, Karen; Mammoto, Akiko; Ingber, Donald E.; Duda, Georg N.; Mooney, David J.

    2015-12-01

    The effectiveness of stem cell therapies has been hampered by cell death and limited control over fate. These problems can be partially circumvented by using macroporous biomaterials that improve the survival of transplanted stem cells and provide molecular cues to direct cell phenotype. Stem cell behaviour can also be controlled in vitro by manipulating the elasticity of both porous and non-porous materials, yet translation to therapeutic processes in vivo remains elusive. Here, by developing injectable, void-forming hydrogels that decouple pore formation from elasticity, we show that mesenchymal stem cell (MSC) osteogenesis in vitro, and cell deployment in vitro and in vivo, can be controlled by modifying, respectively, the hydrogel’s elastic modulus or its chemistry. When the hydrogels were used to transplant MSCs, the hydrogel’s elasticity regulated bone regeneration, with optimal bone formation at 60 kPa. Our findings show that biophysical cues can be harnessed to direct therapeutic stem cell behaviours in situ.

  4. Bioinspired Smart Actuator Based on Graphene Oxide-Polymer Hybrid Hydrogels.

    PubMed

    Wang, Tao; Huang, Jiahe; Yang, Yiqing; Zhang, Enzhong; Sun, Weixiang; Tong, Zhen

    2015-10-28

    Rapid response and strong mechanical properties are desired for smart materials used in soft actuators. A bioinspired hybrid hydrogel actuator was designed and prepared by series combination of three trunks of tough polymer-clay hydrogels to accomplish the comprehensive actuation of "extension-grasp-retraction" like a fishing rod. The hydrogels with thermo-creep and thermo-shrinking features were successively irradiated by near-infrared (NIR) to execute extension and retraction, respectively. The GO in the hydrogels absorbed the NIR energy and transformed it into thermo-energy rapidly and effectively. The hydrogel with adhesion or magnetic force was adopted as the "hook" of the hybrid hydrogel actuator for grasping object. The hook of the hybrid hydrogel actuator was replaceable according to applications, even with functional materials other than hydrogels. This study provides an innovative concept to explore new soft actuators through combining response hydrogels and programming the same stimulus.

  5. Superabsorbent hydrogel composite based on copolymer cellulose/poly (vinyl alcohol)/CNT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khoerunnisa, Fitri, E-mail: fitri.khoerunnisa@gmail.com; Hendrawan,; Sonjaya, Yaya

    2016-04-19

    Superabsorbent hydrogels are cross-linked hydrophilic polymers that can absorb and retain a large volume of water, saline solution, or physiological fluids. A distinctive superabsorbent hydrogel composite based on cellulose/ poly (vinyl alcohol)/ carbon nanotubes was successfully synthesized via the graft bio-copolymerization in an aqueous medium with glutaraldehide as a crosslinking agent. The effect of carbon nanotubes (CNT) on water absorption capacity and mechanical properties of superabsorbent composite were particularly investigated. The Fourier transform infrared spectra showed the evidence of copolymerization of hydrogel precursors as well as the interaction of CNT filler with the hydrogel matrices, as indicated by the shiftingmore » of peak intensity and position of several functional groups (O-H, C-H sp{sup 3}, C=O, C-N, C-O). The modification of hydrogel surface morphology and porosity owing to CNT insertion was also confirmed by scanning electron microscopy images. The CNT insertion improved the mechanical strength of superabsorbent hydrogel composites. Moreover, insertion of CNT into hydrogel matrix remarkably increased the swelling capacity of superabsorbent composites up to 840%. This huge water absorption capacity of hydrogel composites offers promising applications in development of superabsorbent polymers.« less

  6. Soft nanocomposites of gelatin and poly(3-hydroxybutyrate) nanoparticles for dual drug release.

    PubMed

    Bini, Rafael A; Silva, Mônica F; Varanda, Laudemir C; da Silva, Marcelo A; Dreiss, Cécile A

    2017-09-01

    We developed a nanocomposite gel composed of gelatin and poly(3-hydroxybutyrate) polymeric nanoparticles (PNP) to be used as an injectable gel for the contemporaneous, dual sustained release of bioactive molecules. The hydrogel matrix was formed by a very simple process, using either the physical gelation of gelatin or the natural enzyme transglutaminase to covalently cross-link the gelatin chains in the presence of embedded PNP. Oscillatory rheological measurements showed that the addition of the PNP induced an increase in the storage modulus compared to pure gelatin gels, for both physical and chemical gels. Micrographs from scanning electron microscopy revealed that the presence of PNP disrupted the native structure of the gelatin chains in the hydrogel matrix. Dual drug encapsulation was achieved with curcumin (CM) in the PNP and naproxen sodium(NS) in the gelatin matrix. In vitro release studies showed that the hydrogel matrix acts both as a physical and chemical barrier, delaying the diffusion of the drugs. An initial burst release was observed in the first hours of the measurement, and around 90% was released on the third day for naproxen sodium. In free PNP, 82% of curcumin was relased after four days, while when PNP were embedded in the gelatin matrix only 40% was released over the same time period. Overall, these simple, sustainable soft nanocomposites show potential as an injectable co-sustained drug release system. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Characterization of a polyvinyl alcohol-hydrogel artificial articular cartilage prepared by injection molding.

    PubMed

    Kobayashi, Masanori; Oka, Masanori

    2004-01-01

    We have developed a hip hemi-arthroplasty using polyvinyl alcohol-hydrogel (PVA-H) as the treatment for hip joint disorders in which the lesion is limited to the joint surface. In previous studies, we characterized the biocompatibility and the mechanical properties of PVA-H as an arthroplasty material. To fix PVA-H firmly to the bone, we have devised an implant composed of PVA-H and porous titanium fiber mesh (TFM). However, because of poor infiltration of the PVA solution into the pores of the TFM when using the low temperature crystallization method, the strength of the PVA-H-TFM interface was insufficient. Consequently, the infiltration method was improved by adopting high-pressure injection molding. With this improved method, the bonding strength of the interface increased remarkably. However, as this injection molding requires high temperature, various mechanical properties of the PVA-H might change with this treatment in comparison with the previous method. The purpose of this study was to investigate the effect of high temperature treatment on the mechanical properties of PVA-H as artificial articular cartilage, the tensile test and friction test were performed about new PVA-H. The results showed no significant mechanical deterioration of the PVA-H. This certified that the injection-molding method did not induce the change of the mechanical properties of PVA-H and indicated the potential of hemi-arthroplasty using PVA-H by this method in the future.

  8. 3D bioprinting: A new insight into the therapeutic strategy of neural tissue regeneration.

    PubMed

    Hsieh, Fu-Yu; Hsu, Shan-hui

    2015-01-01

    Acute traumatic injuries and chronic degenerative diseases represent the world's largest unmet medical need. There are over 50 million people worldwide suffering from neurodegenerative diseases. However, there are only a few treatment options available for acute traumatic injuries and neurodegenerative diseases. Recently, 3D bioprinting is being applied to regenerative medicine to address the need for tissues and organs suitable for transplantation. In this commentary, the newly developed 3D bioprinting technique involving neural stem cells (NSCs) embedded in the thermoresponsive biodegradable polyurethane (PU) bioink is reviewed. The thermoresponsive and biodegradable PU dispersion can form gel near 37 °C without any crosslinker. NSCs embedded within the water-based PU hydrogel with appropriate stiffness showed comparable viability and differentiation after printing. Moreover, in the zebrafish embryo neural deficit model, injection of the NSC-laden PU hydrogels promoted the repair of damaged CNS. In addition, the function of adult zebrafish with traumatic brain injury was rescued after implantation of the 3D-printed NSC-laden constructs. Therefore, the newly developed 3D bioprinting technique may offer new possibilities for future therapeutic strategy of neural tissue regeneration.

  9. Ultrasonication-enhanced gelation properties of a versatile amphiphilic formamidine-based gelator exhibiting both organogelation and hydrogelation abilities.

    PubMed

    Bachl, Jürgen; Sampedro, Diego; Mayr, Judith; Díaz Díaz, David

    2017-08-30

    We describe the preparation of a novel amphiphilic gelator built from a formamidine core, which is able to form a variety of physical organogels and hydrogels at concentrations ranging from 15 to 150 mg mL -1 . Interestingly, ultrasound treatment of isotropic solutions (i.e., gel-precursor) resulted in a remarkable enhancement of the gelation kinetics as well as the gelation scope and characteristic gel properties (e.g., critical gelation concentration, gel-to-sol transition temperature, viscoelastic moduli) in comparison to the heating-cooling protocol typically used to obtain supramolecular gels. Thermoreversibility, thixotropy, injectability and multistimuli responsiveness are some of the most relevant functionalities of these gels. Electron microscopy imaging revealed the formation of entangled networks made of fibers of nanometer diameters and micrometer lengths, with different morphological features depending on the solvent. Insights into the driving forces for molecular aggregations were obtained from FTIR, NMR, PXRD and computational studies. The results suggest a major stabilization of the fibers through additive N-HO hydrogen bonds, in combination with hydrophobic interactions, over π-π stacking interactions.

  10. Development of an ultra high performance liquid chromatography method for determining triamcinolone acetonide in hydrogels using the design of experiments/design space strategy in combination with process capability index.

    PubMed

    Oliva, Alexis; Monzón, Cecilia; Santoveña, Ana; Fariña, José B; Llabrés, Matías

    2016-07-01

    An ultra high performance liquid chromatography method was developed and validated for the quantitation of triamcinolone acetonide in an injectable ophthalmic hydrogel to determine the contribution of analytical method error in the content uniformity measurement. During the development phase, the design of experiments/design space strategy was used. For this, the free R-program was used as a commercial software alternative, a fast efficient tool for data analysis. The process capability index was used to find the permitted level of variation for each factor and to define the design space. All these aspects were analyzed and discussed under different experimental conditions by the Monte Carlo simulation method. Second, a pre-study validation procedure was performed in accordance with the International Conference on Harmonization guidelines. The validated method was applied for the determination of uniformity of dosage units and the reasons for variability (inhomogeneity and the analytical method error) were analyzed based on the overall uncertainty. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Poly(ethylene glycol) hydrogel microstructures encapsulating living cells

    NASA Technical Reports Server (NTRS)

    Koh, Won-Gun; Revzin, Alexander; Pishko, Michael V.

    2002-01-01

    We present an easy and effective method for the encapsulation of cells inside PEG-based hydrogel microstructures fabricated using photolithography. High-density arrays of three-dimensional microstructures were created on substrates using this method. Mammalian cells were encapsulated in cylindrical hydrogel microstructures of 600 and 50 micrometers in diameter or in cubic hydrogel structures in microfluidic channels. Reducing lateral dimension of the individual hydrogel microstructure to 50 micrometers allowed us to isolate 1-3 cells per microstructure. Viability assays demonstrated that cells remained viable inside these hydrogels after encapsulation for up to 7 days.

  12. Preparation and characterisation of a novel hydrogel based on Auricularia polytricha β-glucan and its bio-release property for vitamin B12 delivery.

    PubMed

    Zhu, Kai; Chen, Xiaoyuan; Yu, Da; He, Yue; Song, Guanglei

    2018-05-01

    This study investigates a novel hydrogel synthesis method and its bio-release property. This hydrogel, with a three-dimensional network structure based on Auricularia polytricha β-glucan, was characterised by means of Fourier transform infrared spectroscopy, 1 H NMR and scanning electron microscopy. Vitamin B 12 (VB 12 , cobalamin) as a hydrophilic functional food component was entrapped into these hydrogels. The in vitro release profile of VB 12 was established in simulated gastric fluid (SGF) and simulated intestinal fluid (SIF). The results showed that the hydrogel had medium pore size from 30 to 300 µm, and the swelling ratio increased with the degree of substitution. The hydrogel demonstrated good stability in SGF and bio-release capability in SIF for VB 12 . The accumulated release rate is about 80% in SIF and below 20% in SGF, which indicated the significant different release property in stomach and intestine. The Auricularia polytricha β-glucan-based hydrogel has a good swelling ratio, pepsin stability and pancrelipase-catalysed biodegradation property. The bio-release rate is significantly different in SIF and SGF, which indicated that this hydrogel could be a good intestinal target carrier of VB 12 . © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  13. Microfluidic hydrogels for tissue engineering.

    PubMed

    Huang, Guo You; Zhou, Li Hong; Zhang, Qian Cheng; Chen, Yong Mei; Sun, Wei; Xu, Feng; Lu, Tian Jian

    2011-03-01

    With advanced properties similar to the native extracellular matrix, hydrogels have found widespread applications in tissue engineering. Hydrogel-based cellular constructs have been successfully developed to engineer different tissues such as skin, cartilage and bladder. Whilst significant advances have been made, it is still challenging to fabricate large and complex functional tissues due mainly to the limited diffusion capability of hydrogels. The integration of microfluidic networks and hydrogels can greatly enhance mass transport in hydrogels and spatiotemporally control the chemical microenvironment of cells, mimicking the function of native microvessels. In this review, we present and discuss recent advances in the fabrication of microfluidic hydrogels from the viewpoint of tissue engineering. Further development of new hydrogels and microengineering technologies will have a great impact on tissue engineering.

  14. Preparation and physico-chemical properties of hydrogels from carboxymethyl cassava starch crosslinked with citric acid

    NASA Astrophysics Data System (ADS)

    Boonkham, Sasikan; Sangseethong, Kunruedee; Chatakanon, Pathama; Niamnuy, Chalida; Nakasaki, Kiyohiko; Sriroth, Klanarong

    2014-06-01

    Recently, environmentally friendly hydrogels prepared from renewable bio-based resources have drawn significant attention from both industrial and academic sectors. In this study, chemically crosslinked hydrogels have been developed from cassava starch which is a bio-based polymer using a non-toxic citric acid as a crosslinking agent. Cassava starch was first modified by carboxymethylation to improve its water absorbency property. The carboxymethyl cassava starch (CMCS) obtained was then crosslinked with citric acid at different concentrations and reaction times. The gel fraction of hydrogels increased progressively with increasing citric acid concentration. Free swelling capacity of hydrogels in de-ionized water, saline solution and buffers at various pHs as well as absorption under load were investigated. The results revealed that swelling behavior and mechanical characteristic of hydrogels depended on the citric acid concentration used in reaction. Increasing citric acid concentration resulted in hydrogels with stronger network but lower swelling and absorption capacity. The cassava starch hydrogels developed were sensitive to ionic strength and pH of surrounding medium, showing much reduced swelling capacity in saline salt solution and acidic buffers.

  15. UV-crosslinkable and thermo-responsive chitosan hybrid hydrogel for NIR-triggered localized on-demand drug delivery.

    PubMed

    Wang, Lei; Li, Baoqiang; Xu, Feng; Xu, Zheheng; Wei, Daqing; Feng, Yujie; Wang, Yaming; Jia, Dechang; Zhou, Yu

    2017-10-15

    Innovative drug delivery technologies based on smart hydrogels for localized on-demand drug delivery had aroused great interest. To acquire smart UV-crosslinkable chitosan hydrogel for NIR-triggered localized on-demanded drug release, a novel UV-crosslinkable and thermo-responsive chitosan was first designed and synthesized by grafting with poly N-isopropylacrylamide, acetylation of methacryloyl groups and embedding with photothermal carbon. The UV-crosslinkable unit (methacryloyl groups) endowed chitosan with gelation via UV irradiation. The thermo-responsive unit (poly N-isopropylacrylamide) endowed chitosan hydrogel with temperature-triggered volume shrinkage and reversible swelling/de-swelling behavior. The chitosan hybrid hydrogel embedded with photothermal carbon exhibited distinct NIR-triggered volume shrinkage (∼42% shrinkage) in response to temperature elevation as induced by NIR laser irradiation. As a demonstration, doxorubicin release rate was accelerated and approximately 40 times higher than that from non-irradiated hydrogels. The UV-crosslinkable and thermal-responsive hybrid hydrogel served as in situ forming hydrogel-based drug depot is developed for NIR-triggered localized on-demand release. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. An improved correlation to predict molecular weight between crosslinks based on equilibrium degree of swelling of hydrogel networks.

    PubMed

    Jimenez-Vergara, Andrea C; Lewis, John; Hahn, Mariah S; Munoz-Pinto, Dany J

    2018-04-01

    Accurate characterization of hydrogel diffusional properties is of substantial importance for a range of biotechnological applications. The diffusional capacity of hydrogels has commonly been estimated using the average molecular weight between crosslinks (M c ), which is calculated based on the equilibrium degree of swelling. However, the existing correlation linking M c and equilibrium swelling fails to accurately reflect the diffusional properties of highly crosslinked hydrogel networks. Also, as demonstrated herein, the current model fails to accurately predict the diffusional properties of hydrogels when polymer concentration and molecular weight are varied simultaneously. To address these limitations, we evaluated the diffusional properties of 48 distinct hydrogel formulations using two different photoinitiator systems, employing molecular size exclusion as an alternative methodology to calculate average hydrogel mesh size. The resulting data were then utilized to develop a revised correlation between M c and hydrogel equilibrium swelling that substantially reduces the limitations associated with the current correlation. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 1339-1348, 2018. © 2017 Wiley Periodicals, Inc.

  17. A microfluidic platform for 3-dimensional cell culture and cell-based assays.

    PubMed

    Kim, Minseok S; Yeon, Ju Hun; Park, Je-Kyun

    2007-02-01

    This paper reports a novel microfluidic platform introducing peptide hydrogel to make biocompatible microenvironment as well as realizing in situ cell-based assays. Collagen composite, OPLA and Puramatrix scaffolds are compared to select good environment for human hepatocellular carcinoma cells (HepG2) by albumin measurement. The selected biocompatible self-assembling peptide hydrogel, Puramatrix, is hydrodynamically focused in the middle of main channel of a microfluidic device, and at the same time the cells are 3-dimensionally immobilized and encapsulated without any additional surface treatment. HepG2 cells have been 3-dimensionally cultured in a poly(dimethylsiloxane) (PDMS) microfluidic device for 4 days. The cells cultured in micro peptide scaffold are compared with those cultured by conventional petri dish in morphology and the rate of albumin secretion. By injection of different reagents into either side of the peptide scaffold, the microfluidic device also forms a linear concentration gradient profile across the peptide scaffold due to molecular diffusion. Based on this characteristic, toxicity tests are performed by Triton X-100. As the higher toxicant concentration gradient forms, the wider dead zone of cells in the peptide scaffold represents. This microfluidic platform facilitates in vivo-like 3-dimensional microenvironment, and have a potential for the applications of reliable cell-based screening and assays including cytotoxicity test, real-time cell viability monitoring, and continuous dose-response assay.

  18. Stimuli-Responsive DNA-Based Hydrogels: From Basic Principles to Applications.

    PubMed

    Kahn, Jason S; Hu, Yuwei; Willner, Itamar

    2017-04-18

    The base sequence of nucleic acids encodes structural and functional information into the DNA biopolymer. External stimuli such as metal ions, pH, light, or added nucleic acid fuel strands provide triggers to reversibly switch nucleic acid structures such as metal-ion-bridged duplexes, i-motifs, triplex nucleic acids, G-quadruplexes, or programmed double-stranded hybrids of oligonucleotides (DNA). The signal-triggered oligonucleotide structures have been broadly applied to develop switchable DNA nanostructures and DNA machines, and these stimuli-responsive assemblies provide functional scaffolds for the rapidly developing area of DNA nanotechnology. Stimuli-responsive hydrogels undergoing signal-triggered hydrogel-to-solution transitions or signal-controlled stiffness changes attract substantial interest as functional matrices for controlled drug delivery, materials exhibiting switchable mechanical properties, acting as valves or actuators, and "smart" materials for sensing and information processing. The integration of stimuli-responsive oligonucleotides with hydrogel-forming polymers provides versatile means to exploit the functional information encoded in the nucleic acid sequences to yield stimuli-responsive hydrogels exhibiting switchable physical, structural, and chemical properties. Stimuli-responsive DNA-based nucleic acid structures are integrated in acrylamide polymer chains and reversible, switchable hydrogel-to-solution transitions of the systems are demonstrated by applying external triggers, such as metal ions, pH-responsive strands, G-quadruplex, and appropriate counter triggers that bridge and dissociate the polymer chains. By combining stimuli-responsive nucleic acid bridges with thermosensitive poly(N-isopropylacrylamide) (pNIPAM) chains, systems undergoing reversible solution ↔ hydrogel ↔ solid transitions are demonstrated. Specifically, by bridging acrylamide polymer chains by two nucleic acid functionalities, where one type of bridging unit provides a stimuli-responsive element and the second unit acts as internal "bridging memory", shape-memory hydrogels undergoing reversible and switchable transitions between shaped hydrogels and shapeless quasi-liquid states are demonstrated. By using stimuli-responsive hydrogel cross-linking units that can assemble the bridging units by two different input signals, the orthogonally-triggered functions of the shape-memory were shown. Furthermore, a versatile approach to assemble stimuli-responsive DNA-based acrylamide hydrogel films on surfaces is presented. The method involves the activation of the hybridization chain-reaction (HCR) by a surface-confined promoter strand, in the presence of acrylamide chains modified with two DNA hairpin structures and appropriate stimuli-responsive tethers. The resulting hydrogel-modified surfaces revealed switchable stiffness properties and signal-triggered catalytic functions. By applying the method to assemble the hydrogel microparticles, substrate-loaded, stimuli-responsive microcapsules are prepared. The signal-triggered DNA-based hydrogel microcapsules are applied as drug carriers for controlled release. The different potential applications and future perspectives of stimuli responsive hydrogels are discussed. Specifically, the use of these smart materials and assemblies as carriers for controlled drug release and as shape-memory matrices for information storage and inscription and the use of surface-confined stimuli-responsive hydrogels, exhibiting switchable stiffness properties, for catalysis and controlled growth of cells are discussed.

  19. Functionalized graphene hydrogel-based high-performance supercapacitors.

    PubMed

    Xu, Yuxi; Lin, Zhaoyang; Huang, Xiaoqing; Wang, Yang; Huang, Yu; Duan, Xiangfeng

    2013-10-25

    Functionalized graphene hydrogels are prepared by a one-step low-temperature reduction process and exhibit ultrahigh specific capacitances and excellent cycling stability in the aqueous electrolyte. Flexible solid-state supercapacitors based on functionalized graphene hydrogels are demonstrated with superior capacitive performances and extraordinary mechanical flexibility. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. The effect of hypoxia on thermosensitive poly(N-vinylcaprolactam) hydrogels with tunable mechanical integrity for cartilage tissue engineering.

    PubMed

    Lynch, Brandon; Crawford, Kristopher; Baruti, Omari; Abdulahad, Asem; Webster, Martial; Puetzer, Jennifer; Ryu, Chang; Bonassar, Lawrence J; Mendenhall, Juana

    2017-10-01

    Cartilage repair presents a daunting challenge in tissue engineering applications due to the low oxygen conditions (hypoxia) affiliated in diseased states. Hence, the use of biomaterial scaffolds with unique variability is imperative to treat diseased or damaged cartilage. Thermosensitive hydrogels show promise as injectable materials that can be used as tissue scaffolds for cartilage tissue regeneration. However, uses in clinical applications are limited to due mechanical stability and therapeutic efficacy to treat diseased tissue. In this study, several composite hydrogels containing poly(N-vinylcaprolactam) (PVCL) and methacrylated hyaluronic acid (meHA) were prepared using free radical polymerization to produce PVCL-graft-HA (PVCL-g-HA) and characterized using Fourier transform infrared spectroscopy, nuclear magnetic resonance, and scanning electron microscopy. Lower critical solution temperatures and gelation temperatures were confirmed in the range of 33-34°C and 41-45°C, respectively. Using dynamic sheer rheology, the temperature dependence of elastic (G') and viscous (G″) modulus between 25°C and 45°C, revealed that PVCL-g-HA hydrogels at 5% (w/v) concentration exhibited the moduli of 7 Pa (G') to 4 Pa (G″). After 10 days at 1% oxygen, collagen production on PVCL-g-HA hydrogels was 153 ± 25 μg/mg (20%) and 106 ± 18 μg/mg showing a 10-fold increase compared to meHA controls. These studies show promise in PVCL-g-HA hydrogels for the treatment of diseased or damaged articular cartilage. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 1863-1873, 2017. © 2016 Wiley Periodicals, Inc.

  1. Treatment of neural anosmia by topical application of basic fibroblast growth factor-gelatin hydrogel in the nasal cavity: an experimental study in mice.

    PubMed

    Nota, Jumpei; Takahashi, Hirotaka; Hakuba, Nobuhiro; Hato, Naohito; Gyo, Kiyofumi

    2013-04-01

    A new treatment of neural anosmia. To investigate the effects of basic fibroblast growth factor (bFGF)-gelatin hydrogel on recovery of neural anosmia in mice. Anosmia was induced by intraperitoneal injection of 3-methylindole, 200 mg/kg. One week later, the animals underwent 1 of the following 3 procedures bilaterally: (1) group A: single-shot intranasal drip infusion of phosphate-buffered saline, (2) group B: single-shot intranasal drip infusion of bFGF, and (3) group C: placement of bFGF-gelatin hydrogel in the nasal cavity. The olfactory function of the animal was evaluated by the odor-detection test (ODT) 2 and 4 weeks later. Following the testing, the animal was killed, the thickness of the olfactory epithelium was measured, and the number of olfactory marker protein (OMP)-positive cells was counted. Research installation. Mice. The placement of bFGF-gelatin hydrogel in the nasal cavity. An ODT, thickness of olfactory epithelium, the number of OMP-positive cells The ODT proved that neural anosmia recovered in group C but not in groups A and B. Histologically, olfactory epithelium became thicker and the number of OMP-positive cells increased in group C, while such functional and histologic recovery was poor in groups A and B. These findings suggested that placement of bFGF-gelatin hydrogel in the nasal cavity was an efficient way to facilitate recovery of neural anosmia. As a gelatin hydrogel degrades slowly in the body, bFGF is gradually released around the site of the lesion; thus, it constantly exerts its effects on neural regeneration.

  2. Evaluation of Hydrogel Suppositories for Delivery of 5-Aminolevulinic Acid and Hematoporphyrin Monomethyl Ether to Rectal Tumors.

    PubMed

    Ye, Xuying; Yin, Huijuan; Lu, Yu; Zhang, Haixia; Wang, Han

    2016-10-12

    We evaluated the potential utility of hydrogels for delivery of the photosensitizing agents 5-aminolevulinic acid (ALA) and hematoporphyrin monomethyl ether (HMME) to rectal tumors. Hydrogel suppositories containing ALA or HMME were administered to the rectal cavity of BALB/c mice bearing subcutaneous tumors of SW837 rectal carcinoma cells. For comparison, ALA and HMME were also administered by three common photosensitizer delivery routes; local administration to the skin and intratumoral or intravenous injection. The concentration of ALA-induced protoporphyrin IX or HMME in the rectal wall, skin, and subcutaneous tumor was measured by fluorescence spectrophotometry, and their distribution in vertical sections of the tumor was measured using a fluorescence spectroscopy system. The concentration of ALA-induced protoporphyrin IX in the rectal wall after local administration of suppositories to the rectal cavity was 9.76-fold (1 h) and 5.8-fold (3 h) higher than in the skin after cutaneous administration. The maximal depth of ALA penetration in the tumor was ~3-6 mm at 2 h after cutaneous administration. Much lower levels of HMME were observed in the rectal wall after administration as a hydrogel suppository, and the maximal depth of tumor penetration was <2 mm after cutaneous administration. These data show that ALA more readily penetrates the mucosal barrier than the skin. Administration of ALA as an intrarectal hydrogel suppository is thus a potential delivery route for photodynamic therapy of rectal cancer.

  3. A Triblock Copolymer Design Leads to Robust Hybrid Hydrogels for High-Performance Flexible Supercapacitors.

    PubMed

    Zhang, Guangzhao; Chen, Yunhua; Deng, Yonghong; Wang, Chaoyang

    2017-10-18

    We report here an intriguing hybrid conductive hydrogel as electrode for high-performance flexible supercapacitor. The key is using a rationally designed water-soluble ABA triblock copolymer (termed as IAOAI) containing a central poly(ethylene oxide) block (A) and terminal poly(acrylamide) (PAAm) block with aniline moieties randomly incorporated (B), which was synthesized by reversible additional fragment transfer polymerization. The subsequent copolymerization of aniline monomers with the terminated aniline moieties on the IAOAI polymer generates a three-dimensional cross-linking hybrid network. The hybrid hydrogel electrode demonstrates robust mechanical flexibility, remarkable electrochemical capacitance (919 F/g), and cyclic stability (90% capacitance retention after 1000 cycles). Moreover, the flexible supercapacitor based on this hybrid hydrogel electrode presents a large specific capacitance (187 F/g), superior to most reported conductive hydrogel-based supercapacitors. With the demonstrated additional favorable cyclic stability and excellent capacitive and rate performance, this hybrid hydrogel-based supercapacitor holds great promise for flexible energy-storage device.

  4. Characterization of a Hierarchical Network of Hyaluronic Acid/Gelatin Composite for use as a Smart Injectable Biomaterial

    PubMed Central

    Heris, Hossein K.; Rahmat, Meysam

    2015-01-01

    Hybrid HA/Ge hydrogel particles are embedded in a secondary HA network to improve their structural integrity. The internal microstructure of the particles is imaged through TEM. CSLM is used to identify the location of the Ge molecules in the microgels. Through indentation tests, the Young’s modulus of the individual particles is found to be 22 ± 2.5 kPa. The overall shear modulus of the composite is 75 ± 15 Pa at 1 Hz. The mechanical properties of the substrate are found to be viable for cell adhesion. The particles’ diameter at pH = 8 is twice that at pH = 5. The pH sensitivity is found to be appropriate for smart drug delivery. Based on their mechanical and structural properties, HA–Ge hierarchical materials may be well suited for use as injectable biomaterials for tissue reconstruction. PMID:22147507

  5. Development and characterization of a novel hydrogel adhesive for soft tissue applications

    NASA Astrophysics Data System (ADS)

    Sanders, Lindsey Kennedy

    With laparoscopic and robotic surgical techniques advancing, the need for an injectable surgical adhesive is growing. To be effective, surgical adhesives for internal organs require bulk strength and compliance to avoid rips and tears, and adhesive strength to avoid leakage at the application site, while not hindering the natural healing process. Although a number of tissue adhesives and sealants approved by the FDA for surgical use are currently available, attaining a useful balance in all of these qualities has proven difficult, particularly when considering applications involving highly expandable tissue, such as bladder and lung. The long-term goal of this project is to develop a hydrogel-based tissue adhesive that provides proper mechanical properties to eliminate the need for sutures in various soft tissue applications. Tetronic (BASF), a 4-arm poly(propylene oxide)-poly(ethylene oxide) (PPO-PEO) block copolymer, has been selected as the base material for the adhesive hydrogel system. Solutions of Tetronic T1107 can support reverse thermal gelation at physiological temperatures, which can be combined with covalent crosslinking to achieve a "tandem gelation" process making it ideal for use as a tissue adhesive. The objective of this doctoral thesis research is to improve the performance of the hydrogel based tissue adhesive developed previously by Cho and co-workers by applying a multi-functionalization of Tetronic. Specifically, this research aimed to improve bonding strength of Tetronic tissue adhesive using bi-functional modification, incorporate hemostatic function to the bi-functional Tetronic hydrogel, and evaluate the safety of bi-functional Tetronic tissue adhesive both in vitro and in vivo. In summary, we have developed a fast-curing, mechanically strong hemostatic tissue adhesive that can control blood loss in wet conditions during wound treatment applications (bladder, liver and muscle). Specifically, the bi-functional Tetronic adhesive (TAS) with a proper blend ratio may be used to achieve an accurate balance in bulk and tissue bond strengths, as well as the compliance and durability for expandable organ application, such as the bladder. Incorporation of chitosan expanded the utility of the bi-functional modified T1107 (TAS) adhesive to tissue wounds on highly vascularized organs (e.g., liver, kidney). Further, we demonstrated that the modified Tetronic adhesive is biocompatible and safe for treatment of small soft tissue wounds on rat's muscle using FDA requirements. The current findings helped our understanding of the material and mechanical properties of the modified Tetronic adhesive and ultimately progress the field of surgical adhesives and sealants by providing a tunable adhesive system for various internal soft tissue wound applications.

  6. A postoperative anti-adhesion barrier based on photoinduced imine-crosslinking hydrogel with tissue-adhesive ability.

    PubMed

    Yang, Yunlong; Liu, Xiaolin; Li, Yan; Wang, Yang; Bao, Chunyan; Chen, Yunfeng; Lin, Qiuning; Zhu, Linyong

    2017-10-15

    Postoperative adhesion is a serious complication that can further lead to morbidity and/or mortality. Polymer anti-adhesion barrier material provides an effective precaution to reduce the probability of postoperative adhesion. Clinical application requires these materials to be easily handled, biocompatible, biodegradable, and most importantly tissue adherent to provide target sites with reliable isolation. However, currently there is nearly no polymer barrier material that can fully satisfy these requirements. In this study, based on the photoinduced imine-crosslinking (PIC) reaction, we had developed a photo-crosslinking hydrogel (CNG hydrogel) that composed of o-nitrobenzyl alcohol (NB) modified carboxymethyl cellulose (CMC-NB) and glycol chitosan (GC) as an anti-adhesion barrier material. Under light irradiation, CMC-NB generated aldehyde groups which subsequently reacted with amino groups distributed on GC or tissue surface to form a hydrogel barrier that covalently attached to tissue surface. Rheological analysis demonstrated that CNG hydrogel (30mg/mL polymer content) could be formed in 30s upon light irradiation. Tissue adhesive tests showed that the tissue adhesive strength of CNG hydrogel (30mg/mL) was about 8.32kPa-24.65kPa which increased with increasing CMC-NB content in CNG hydrogel. Toxicity evaluation by L929 cells demonstrated that CNG hydrogel was cytocompatible. Furthermore, sidewall defect-cecum abrasion model of rat was employed to evaluate the postoperative anti-adhesion efficacy of CNG hydrogel. And a significantly reduction of tissue adhesion (20% samples with low score adhesion) was found in CNG hydrogel treated group, compared with control group (100% samples with high score adhesion). In addition, CNG hydrogel could be degraded in nearly 14days and showed no side effect on wound healing. These findings indicated that CNG hydrogel can effectively expanded the clinical treatments of postoperative tissue adhesion. In this study, a tissue adhesive photo-crosslinking hydrogel (CNG) was developed based on photo-induced imine crosslinking reaction (PIC) for postoperative anti-adhesion. CNG hydrogel showed the features of easy and convenient operation, fast and controllable gelation, suitable gel strength, good biocompatibility, and most importantly strong tissue adhesiveness. Therefore, it shows very high performance to prevent postoperative tissue adhesion. Overall, our study provides a more suitable hydrogel barrier material that can overcome the shortcomings of current barriers for clinical postoperative anti-adhesion. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  7. Synergistic anti-tumor activity through combinational intratumoral injection of an in-situ injectable drug depot.

    PubMed

    Kim, Da Yeon; Kwon, Doo Yeon; Kwon, Jin Seon; Park, Ji Hoon; Park, Seung Hun; Oh, Hyun Ju; Kim, Jae Ho; Min, Byoung Hyun; Park, Kinam; Kim, Moon Suk

    2016-04-01

    Here, we describe combinational chemotherapy via intratumoral injection of doxorubicin (Dox) and 5-fluorouracil (Fu) to enhance the efficacy and reduce the toxicity of systemically administered Fu and Dox in cancer patients. As the key concept in this work, mixture formulations of Dox-loaded microcapsules (Dox-M) and Fu-loaded Pluronic(®) hydrogels (Fu-HP) or Fu-loaded diblock copolymer hydrogels (Fu-HC) have been employed as drug depots. The in vitro and in vivo drug depot was designed as a formulation of Dox-M dispersed inside an outer shell of Fu-HP or Fu-HC after injection. The Dox-M/Fu-HP and Dox-M/Fu-HC formulations are free flowing at room temperature, indicating injectability, and formed a structural gelatinous depot in vitro and in vivo at body temperature. The Fu-HP, Fu-HC, Dox-M/Fu-HP, Dox-M/Fu-HC, and Dox-M formulations were easily injected into tumor centers in mice using a needle. Dox-M/Fu-HC produced more significant inhibitory effects against tumor growth than that by Dox-M/Fu-HP, while Fu-HP, Fu-HC and Dox-M had the weakest inhibitory effects of the tested treatments. The in vivo study of Dox and Fu biodistribution showed that high Dox and Fu concentrations were maintained in the target tumor only, while distribution to normal tissues was not observed, indicating that Dox and Fu concentrations below their toxic plasma concentrations should not cause significant systemic toxicity. The Dox-M/Fu-HP and Dox-M/Fu-HC drug depots described in this work showed excellent performance as chemotherapeutic delivery systems. The results reported here indicate that intratumoral injection using combination chemotherapy with Dox-M/Fu-HP or Dox-M/Fu-HC could be of translational research by enhancing the synergistic inhibitory effects of Dox and Fu on tumor growth, while reducing their systemic toxicity in cancer patients. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Synthesis and characterization of psyllium-NVP based drug delivery system through radiation crosslinking polymerization

    NASA Astrophysics Data System (ADS)

    Singh, Baljit; Kumar, S.

    2008-08-01

    In order to develop the hydrogels meant for the drug delivery, we have prepared psyllium- N-vinylpyrrolidone (NVP) based hydrogels by radiation induced crosslinking. Polymers were characterized with SEMs, FTIR and swelling studies. Swelling of the hydrogels was studied as a function of monomer concentration, total radiation dose, temperature, pH and [NaCl] of the swelling medium. The swelling kinetics of the hydrogels and release dynamics of anticancer model drug (5-fluorouracil) from the hydrogels have been carried out for the evaluation of swelling and drug release mechanism. It has been observed that diffusion exponent ' n' have 0.8, 0.9, 0.8 and gel characteristics constant ' k' have 9.22 × 10 -3, 2.06 × 10 -3, 11.72 × 10 -3 values for the release of drug from the drug loaded hydrogels in distilled water, pH 2.2 buffer and pH 7.4 buffer, respectively. The present study shows that the release of drug from the hydrogels occurred through Non-Fickian diffusion mechanism.

  9. Novel vaginal drug delivery system: deformable propylene glycol liposomes-in-hydrogel.

    PubMed

    Vanić, Željka; Hurler, Julia; Ferderber, Kristina; Golja Gašparović, Petra; Škalko-Basnet, Nataša; Filipović-Grčić, Jelena

    2014-03-01

    Deformable propylene glycol-containing liposomes (DPGLs) incorporating metronidazole or clotrimazole were prepared and evaluated as an efficient drug delivery system to improve the treatment of vaginal microbial infections. The liposome formulations were optimized based on sufficient trapping efficiencies for both drugs and membrane elasticity as a prerequisite for successful permeability and therapy. An appropriate viscosity for vaginal administration was achieved by incorporating the liposomes into Carbopol hydrogel. DPGLs were able to penetrate through the hydrogel network more rapidly than conventional liposomes. In vitro studies of drug release from the liposomal hydrogel under conditions simulating human treatment confirmed sustained and diffusion-based drug release. Characterization of the rheological and textural properties of the DPGL-containing liposomal hydrogels demonstrated that the incorporation of DPGLs alone had no significant influence on mechanical properties of hydrogels compared to controls. These results support the great potential of DPGL-in-hydrogel as an efficient delivery system for the controlled and sustained release of antimicrobial drugs in the vagina.

  10. Evaluation of fibrin-gelatin hydrogel as biopaper for application in skin bioprinting: An in-vitro study.

    PubMed

    Hakam, Mohammad Sadjad; Imani, Rana; Abolfathi, Nabiollah; Fakhrzadeh, Hossein; Sharifi, Ali Mohammad

    2016-01-01

    Recent advances in tissue engineering have led to the development of the concept of bioprinting as an interesting alternative to traditional tissue engineering approaches. Biopaper, a biomimetic hydrogel, is an essential component of the bioprinting process. The aim of this work was to synthesize a biopaper made of fibrin-gelatin hybrid hydrogel for application in skin bioprinting. Different composition percentages of the two biopolymer hydrogels, fibrin-gelatin, have been studied for the construction of the biopaper and were examined in terms of water absorption, biodegradability, glucose absorption, mechanical properties and water vapor transmission. Subsequently, tissue fusion study was performed on prepared 3T3 fibroblast cell line pellets embedded into the hydrogel. Based on the obtained results, fibrin-gelatin blend hydrogel with the same proportion of two components provides a natural scaffold for fibroblast-based bioink embedding and culture. The suggested optimized hydrogel was a suitable candidate as a biopaper for skin bioprinting technology.

  11. Biodegradable Cellulose-based Hydrogels: Design and Applications

    PubMed Central

    Sannino, Alessandro; Demitri, Christian; Madaghiele, Marta

    2009-01-01

    Hydrogels are macromolecular networks able to absorb and release water solutions in a reversible manner, in response to specific environmental stimuli. Such stimuli-sensitive behaviour makes hydrogels appealing for the design of ‘smart’ devices, applicable in a variety of technological fields. In particular, in cases where either ecological or biocompatibility issues are concerned, the biodegradability of the hydrogel network, together with the control of the degradation rate, may provide additional value to the developed device. This review surveys the design and the applications of cellulose-based hydrogels, which are extensively investigated due to the large availability of cellulose in nature, the intrinsic degradability of cellulose and the smart behaviour displayed by some cellulose derivatives.

  12. Glutathione-Triggered Formation of a Fmoc-Protected Short Peptide-Based Supramolecular Hydrogel

    PubMed Central

    Shi, Yang; Wang, Jingyu; Wang, Huaimin; Hu, Yanhui; Chen, Xuemei; Yang, Zhimou

    2014-01-01

    A biocompatible method of glutathione (GSH) catalyzed disulfide bond reduction was used to form Fmoc-short peptide-based supramolecular hydrogels. The hydrogels could form in both buffer solution and cell culture medium containing 10% of Fetal Bovine Serum (FBS) within minutes. The hydrogel was characterized by rheology, transmission electron microscopy, and fluorescence emission spectra. Their potential in three dimensional (3D) cell culture was evaluated and the results indicated that the gel with a low concentration of the peptide (0.1 wt%) was suitable for 3D cell culture of 3T3 cells. This study provides an alternative candidate of supramolecular hydrogel for 3D cell culture and cell delivery. PMID:25222132

  13. Sustained release carrier for adenosine triphosphate as signaling molecule.

    PubMed

    Wischke, Christian; Weigel, Judith; Bulavina, Larisa; Lendlein, Andreas

    2014-12-10

    Adenosine triphosphate (ATP) is a molecule with a fascinating variety of intracellular and extracellular biological functions that go far beyond energy metabolism. Due to its limited passive diffusion through biological membranes, controlled release systems may allow to interact with ATP-mediated extracellular processes. In this study, two release systems were explored to evaluate the capacity for either long-term or short-term release: (i) Poly[(rac-lactide)-co-glycolide] (PLGA) implant rods were capable of ATP release over days to weeks, depending on the PLGA molecular weight and end-group capping, but were also associated with partial hydrolytic degradation of ATP to ADP and AMP, but not adenosine. (ii) Thermosensitive methylcellulose hydrogels with a gelation occurring at body temperature allowed combining adjustable loading levels and the capacity for injection, with injection forces less than 50N even for small 27G needles. Finally, a first in vitro study illustrated purinergic-triggered response of primary murine microglia to ATP released from hydrogels, demonstrating the potential relevance for biomedical applications. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Biocompatibility of hyaluronic acid hydrogels prepared by porous hyaluronic acid microbeads

    NASA Astrophysics Data System (ADS)

    Kim, Jin-Tae; Lee, Deuk Yong; Kim, Tae-Hyung; Song, Yo-Seung; Cho, Nam-Ihn

    2014-05-01

    Hyaluronic acid hydrogels (HAHs) were synthesized by immersing HA microbeads crosslinked with divinyl sulfone in a phosphate buffered saline solution to evaluate the biocompatibility of the gels by means of cytotoxicity, genotoxicity ( in vitro chromosome aberration test, reverse mutation assay, and in vivo micronucleus test), skin sensitization, and intradermal reactivity. The HAHs induced no cytotoxicity or genotoxicity. In guinea pigs treated with grafts and prostheses, no animals died and there were no abnormal clinical signs. The sensitization scores were zero in all guinea pigs after 24 h and 48 h challenge, suggesting that the HAHs had no contact allergic sensitization in the guinea pig maximization test. No abnormal signs were found in New Zealand White rabbits during the 72 h observation period after the injection. There was no difference between the HAHs and negative control mean scores because skin reaction such as erythema or oedema was not observed after injection. Experimental results suggest that the HAHs would be suitable for soft tissue augmentation due to the absence of cytotoxicity, genotoxicity, skin sensitization, and intradermal reactivity.

  15. Antibody loaded collapsible hyaluronic acid hydrogels for intraocular delivery.

    PubMed

    Egbu, Raphael; Brocchini, Steve; Khaw, Peng T; Awwad, Sahar

    2018-03-01

    Injectable gels have the potential to encapsulate drugs for sustained release of protein therapeutics for use in the eye. Hyaluronic acid (HA) is a biodegradable clinically used material and poly N-isopropylacrylamide (pNIPAAM) is a stimuli responsive polymer that can display a lower critical solution temperature (LCST) at physiological conditions. Two gel systems incorporating HA were prepared in the presence of the antibody infliximab (INF): i) 1% and 5% tyramine-substituted HA (HA-Tyr) was enzymatically crosslinked in the presence of INF to form HA-Tyr-INF and ii) NIPAAM was chemically crosslinked in the presence of HA and INF with 1 and 3% poly(ethylene glycol) diacrylate (PEGDA) to form PEGDA-pNIPAAM-HA-INF. The PEGDA-pNIPAAM-HA-INF hydrogels displayed LCSTs at temperatures ranging from 31.4 ± 0.2 to 35.7 ± 0.3 °C. Although all the gels prepared were injectable, INF-loaded gels with lower crosslinking density (1% PEGDA-pNIPAAM-HA and 1% HA-Tyr) showed lower elastic (G') and viscous (G″) moduli compared to higher crosslinked gels (3% PEGDA-pNIPAAM-HA-INF and 5% HA-Tyr-INF) resulting in differences in swelling ratio (SR). Moduli may be correlated with overall stiffness of the gel. All hydrogels demonstrated sustained release of INF in a two-compartment in vitro outflow model of the human eye called the PK-Eye. The 1% PEGDA-pNIPAAM-HA-INF hydrogel displayed the slowest release (24.9 ± 0.4% INF release by day 9) in phosphate buffered saline (PBS, pH 7.4), which is a better release profile than the free drug alone (tested under the same conditions). These results suggest that PEGDA-pNIPAAM-HA has potential for the continued development of formulations to prolong the intraocular release of proteins. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Synthesis and Characterization of Poly(Ethylene Glycol) Based Thermo-Responsive Hydrogels for Cell Sheet Engineering.

    PubMed

    Son, Kuk Hui; Lee, Jin Woo

    2016-10-20

    The swelling properties and thermal transition of hydrogels can be tailored by changing the hydrophilic-hydrophobic balance of polymer networks. Especially, poly( N -isopropylacrylamide) (PNIPAm) has received attention as thermo-responsive hydrogels for tissue engineering because its hydrophobicity and swelling property are transited around body temperature (32 °C). In this study, we investigated the potential of poly(ethylene glycol) diacrylate (PEGDA) as a hydrophilic co-monomer and crosslinker of PNIPAm to enhance biological properties of PNIPAm hydrogels. The swelling ratios, lower critical solution temperature (LCST), and internal pore structure of the synthesized p(NIPAm- co -PEGDA) hydrogels could be varied with changes in the molecular weight of PEGDA and the co-monomer ratios (NIPAm to PEGDA). We found that increasing the molecular weight of PEGDA showed an increase of pore sizes and swelling ratios of the hydrogels. In contrast, increasing the weight ratio of PEGDA under the same molecular weight condition increased the crosslinking density and decreased the swelling ratios of the hydrogels. Further, to evaluate the potential of these hydrogels as cell sheets, we seeded bovine chondrocytes on the p(NIPAm- co -PEGDA) hydrogels and observed the proliferation of the seed cells and their detachment as a cell sheet upon a decrease in temperature. Based on our results, we confirmed that p(NIPAm- co -PEGDA) hydrogels could be utilized as cell sheets with enhanced cell proliferation performance.

  17. Soft contact lens biomaterials from bioinspired phospholipid polymers.

    PubMed

    Goda, Tatsuro; Ishihara, Kazuhiko

    2006-03-01

    Soft contact lens (SCL) biomaterials originated from the discovery of a poly(2-hydroxyethyl methacrylate) (poly[HEMA])-based hydrogel in 1960. Incorporation of hydrophilic polymers into poly(HEMA) hydrogels was performed in the 1970-1980s, which brought an increase in the equilibrium water content, leading to an enhancement of the oxygen permeability. Nowadays, the poly(HEMA)-based hydrogels have been applied in disposable SCL. At the same time, high oxygen-permeable silicone hydrogels were produced, which made it possible to continually wear SCL. Recently, numerous trials for improving the water wettability of silicone hydrogels have been performed. However, little attention has been paid to improving their anti-biofouling properties and biocompatibility. Since biomimetic phospholipid polymers possess excellent anti-biofouling properties and biocompatibility they have the potential to play a valuable role in the surface modification of the silicone hydrogel. The representative phospholipid polymers containing a 2-methacryloyloxyethyl phosphorylcholine (MPC) unit suppressed nonspecific protein adsorption, increased cell compatibility and contributed to blood compatible biomaterials. The MPC polymer coating on the silicone hydrogel improved its water wettability and biocompatibility, while maintaining high oxygen permeability compared with the original silicone hydrogel. Furthermore, the newly prepared phospholipid-type intermolecular crosslinker made it possible to synthesize a 100% phospholipid polymer hydrogel that can enhance the anti-biofouling properties and biocompatibility. In this review, the authors discuss how polymer hydrogels should be designed in order to obtain a biocompatible SCL and future perspectives.

  18. pH-sensitive Itaconic acid based polymeric hydrogels for dye removal applications.

    PubMed

    Sakthivel, M; Franklin, D S; Guhanathan, S

    2016-12-01

    A series of Itaconic Acid (IA) based pH-sensitive polymeric hydrogels were synthesized by condensation polymerization of Itaconic Acid (IA) with Ethylene Glycol (EG) in the presence of an acid medium resulted into pre-polymer. Further, pre-polymer were co-polymerized with Acrylic Acid (AA) through free radical polymerization using Potassium persulphate (KPS). The structural and surface morphological characterizations of the synthesized hydrogels were studied using FT-IR spectroscopy and Scanning Electron Microscope (SEM) respectively. The swelling and swelling equilibrium were performed at varies pH (4.0-10.0). Further, the effects of IA, EG and AA on swelling properties have also been investigated. Thermal stability of synthesized hydrogels have been investigated by TGA, DTA and DSC. The synthesized hydrogels have shown good ability to uptake a Cationic dye. The Methylene blue has been chosen as a model cationic dye. The results of dye removal using IA hydrogels found to have excellent dye removal capacity. Such kind of IA based hydrogels may be recommended for eco-friendly environmental application. viz., removal of dyes and metal ions and sewage water treatment, purification of water etc. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. A facile prestrain-stick-release assembly of stretchable supercapacitors based on highly stretchable and sticky hydrogel electrolyte

    NASA Astrophysics Data System (ADS)

    Tang, Qianqiu; Chen, Mingming; Wang, Gengchao; Bao, Hua; Saha, Petr

    2015-06-01

    A facile prestrain-stick-release assembly strategy for the stretchable supercapacitor device is developed based on a novel Na2SO4-aPUA/PAAM hydrogel electrolyte, saving the stretchable rubber base conventionally used. The Na2SO4-aPUA/PAAM hydrogel electrolyte exhibits high stretchability (>1000%), electrical conductivity (0.036 S cm-1) and stickiness. Due to the unique features of the hydrogel electrolyte, the carbon nanotube@MnO2 film electrodes can be firmly stuck to two sides of the prestrained hydrogel electrolyte. Then, by releasing the hydrogel electrolyte, homogenous buckles are formed for the film electrodes to get a full stretchable supercapacitor device. Besides, the high stickiness of the hydrogel electrolyte ensures its strong adhesion with the film electrodes, facilitating ion and electronic transfer of the supercapacitor. As a result, excellent electrochemical performance is achieved with the specific capacitance of 478.6 mF cm-2 at 0.5 mA cm-2 (corresponding to 201.1 F g-1) and capacitance retention of 91.5% after 3000 charging-discharging cycles under 150% strain, which is the best for the stretchable supercapacitors.

  20. 3D Printing of Thermo-Responsive Methylcellulose Hydrogels for Cell-Sheet Engineering.

    PubMed

    Cochis, Andrea; Bonetti, Lorenzo; Sorrentino, Rita; Contessi Negrini, Nicola; Grassi, Federico; Leigheb, Massimiliano; Rimondini, Lia; Farè, Silvia

    2018-04-10

    A possible strategy in regenerative medicine is cell-sheet engineering (CSE), i.e., developing smart cell culture surfaces from which to obtain intact cell sheets (CS). The main goal of this study was to develop 3D printing via extrusion-based bioprinting of methylcellulose (MC)-based hydrogels. Hydrogels were prepared by mixing MC powder in saline solutions (Na₂SO₄ and PBS). MC-based hydrogels were analyzed to investigate the rheological behavior and thus optimize the printing process parameters. Cells were tested in vitro on ring-shaped printed hydrogels; bulk MC hydrogels were used for comparison. In vitro tests used murine embryonic fibroblasts (NIH/3T3) and endothelial murine cells (MS1), and the resulting cell sheets were characterized analyzing cell viability and immunofluorescence. In terms of CS preparation, 3D printing proved to be an optimal approach to obtain ring-shaped CS. Cell orientation was observed for the ring-shaped CS and was confirmed by the degree of circularity of their nuclei: cell nuclei in ring-shaped CS were more elongated than those in sheets detached from bulk hydrogels. The 3D printing process appears adequate for the preparation of cell sheets of different shapes for the regeneration of complex tissues.

  1. Biocompatible and biodegradable dual-drug release system based on silk hydrogel containing silk nanoparticles.

    PubMed

    Numata, Keiji; Yamazaki, Shoya; Naga, Naofumi

    2012-05-14

    We developed a facile and quick ethanol-based method for preparing silk nanoparticles and then fabricated a biodegradable and biocompatible dual-drug release system based on silk nanoparticles and the molecular networks of silk hydrogels. Model drugs incorporated in the silk nanoparticles and silk hydrogels showed fast and constant release, respectively, indicating successful dual-drug release from silk hydrogel containing silk nanoparticles. The release behaviors achieved by this dual-drug release system suggest to be regulated by physical properties (e.g., β-sheet contents and size of the silk nanoparticles and network size of the silk hydrogels), which is an important advantage for biomedical applications. The present silk-based system for dual-drug release also demonstrated no significant cytotoxicity against human mesenchymal stem cells (hMSCs), and thus, this silk-based dual-drug release system has potential as a versatile and useful new platform of polymeric materials for various types of dual delivery of bioactive molecules.

  2. Chitosan-based thermosensitive hydrogel as a promising ocular drug delivery system: preparation, characterization, and in vivo evaluation.

    PubMed

    Chen, Xingwei; Li, Xinru; Zhou, Yanxia; Wang, Xiaoning; Zhang, Yanhui; Fan, Yating; Huang, Yanqing; Liu, Yan

    2012-11-01

    The purpose of this study was to evaluate the feasibility of in situ thermosensitive hydrogel based on chitosan in combination with disodium α-d-Glucose 1-phosphate (DGP) for ocular drug delivery system. Aqueous solution of chitosan/DGP underwent sol-gel transition as temperature increased which was flowing sol at room temperature and then turned into non-flowing hydrogel at physiological temperature. The properties of gels were characterized regarding gelation time, gelation temperature, and morphology. The sol-to-gel phase transition behaviors were affected by the concentrations of chitosan, DGP and the model drug levocetirizine dihydrochloride (LD). The developed hydrogel presented a characteristic of a rapid release at the initial period followed by a sustained release and remarkably enhanced the cornea penetration of LD. The results of ocular irritation demonstrated the excellent ocular tolerance of the hydrogel. The ocular residence time for the hydrogel was significantly prolonged compared with eye drops. The drug-loaded hydrogel produced more effective anti-allergic conjunctivitis effects compared with LD aqueous solution. These results showed that the chitosan/DGP thermosensitive hydrogel could be used as an ideal ocular drug delivery system in terms of the suitable sol-gel transition temperature, mild pH environment in the hydrogel as well as the organic solvent free.

  3. Gene Therapy Vectors with Enhanced Transfection Based on Hydrogels Modified with Affinity Peptides

    PubMed Central

    Shepard, Jaclyn A.; Wesson, Paul J.; Wang, Christine E.; Stevans, Alyson C.; Holland, Samantha J.; Shikanov, Ariella; Grzybowski, Bartosz A.; Shea, Lonnie D.

    2011-01-01

    Regenerative strategies for damaged tissue aim to present biochemical cues that recruit and direct progenitor cell migration and differentiation. Hydrogels capable of localized gene delivery are being developed to provide a support for tissue growth, and as a versatile method to induce the expression of inductive proteins; however, the duration, level, and localization of expression isoften insufficient for regeneration. We thus investigated the modification of hydrogels with affinity peptides to enhance vector retention and increase transfection within the matrix. PEG hydrogels were modified with lysine-based repeats (K4, K8), which retained approximately 25% more vector than control peptides. Transfection increased 5- to 15-fold with K8 and K4 respectively, over the RDG control peptide. K8- and K4-modified hydrogels bound similar quantities of vector, yet the vector dissociation rate was reduced for K8, suggesting excessive binding that limited transfection. These hydrogels were subsequently applied to an in vitro co-culture model to induce NGF expression and promote neurite outgrowth. K4-modified hydrogels promoted maximal neurite outgrowth, likely due to retention of both the vector and the NGF. Thus, hydrogels modified with affinity peptides enhanced vector retention and increased gene delivery, and these hydrogels may provide a versatile scaffold for numerous regenerative medicine applications. PMID:21514659

  4. Facile synthesis of degradable and electrically conductive polysaccharide hydrogels.

    PubMed

    Guo, Baolin; Finne-Wistrand, Anna; Albertsson, Ann-Christine

    2011-07-11

    Degradable and electrically conductive polysaccharide hydrogels (DECPHs) have been synthesized by functionalizing polysaccharide with conductive aniline oligomers. DECPHs based on chitosan (CS), aniline tetramer (AT), and glutaraldehyde were obtained by a facile one-pot reaction by using the amine group of CS and AT under mild conditions, which avoids the multistep reactions and tedious purification involved in the synthesis of degradable conductive hydrogels in our previous work. Interestingly, these one-pot hydrogels possess good film-forming properties, electrical conductivity, and a pH-sensitive swelling behavior. The chemical structure and morphology before and after swelling of the hydrogels were verified by FT-IR, NMR, and SEM. The conductivity of the hydrogels was tuned by adjusting the content of AT. The swelling ratio of the hydrogels was altered by the content of tetraaniline and cross-linker. The hydrogels underwent slow degradation in a buffer solution. The hydrogels obtained by this facile approach provide new possibilities in biomedical applications, for example, biodegradable conductive hydrogels, films, and scaffolds for cardiovascular tissue engineering and controlled drug delivery.

  5. Green synthesis of tea Ag nanocomposite hydrogels via mint leaf extraction for effective antibacterial activity.

    PubMed

    Jayaramudu, Tippabattini; Varaprasad, Kokkarachedu; Raghavendra, Gownolla Malegowd; Sadiku, E R; Mohana Raju, Konduru; Amalraj, John

    2017-10-01

    In this report, we investigated the swelling behavior and antibacterial property of nanosilver composite hydrogels made from tea with polyacrylamide via a free-radical polymerization and green process technique. This is probably for the first time; tea-based nano silver composite hydrogels were developed. The composite hydrogels comprise embedded nano silver particles in the tea hydrogel matrix via a green process with mint leaf extract. The size of the nano silver particles in the hydrogel matrix was found to be < 10 nm. The nano silver composite hydrogels formed and their blank hydrogels from the mint leaf were characterized by using ultraviolet-visible spectroscopy, scanning electron microscopy with energy dispersive spectroscopy, transmission electron microscopy, thermogravimetric analysis and X-ray diffraction studies. The nano silver composite hydrogels developed exhibit eminent antibacterial activity against Escherichia coli and Staphylococcus aureus. This clearly indicates that the nano silver composite hydrogels are potential candidates for antimicrobial applications.

  6. Advancing research in regeneration and repair of the motor circuitry: non-human primate models and imaging scales as the missing links for successfully translating injectable therapeutics to the clinic.

    PubMed

    Tsintou, Magdalini; Dalamagkas, Kyriakos; Makris, Nikos

    2016-01-01

    Regeneration and repair is the ultimate goal of therapeutics in trauma of the central nervous system (CNS). Stroke and spinal cord injury (SCI) are two highly prevalent CNS disorders that remain incurable, despite numerous research studies and the clinical need for effective treatments. Neural engineering is a diverse biomedical field, that addresses these diseases using new approaches. Research in the field involves principally rodent models and biologically active, biodegradable hydrogels. Promising results have been reported in preclinical studies of CNS repair, demonstrating the great potential for the development of new treatments for the brain, spinal cord and peripheral nerve injury. Several obstacles stand in the way of clinical translation of neuroregeneration research. There seems to be a key gap in the translation of research from rodent models to human applications, namely non-human primate models, which constitute a critical bridging step. Applying injectable therapeutics and multimodal neuroimaging in stroke lesions using experimental rhesus monkey models is an avenue that a few research groups have begun to embark on. Understanding and assessing the changes that the injured brain or spinal cord undergoes after an intervention with biodegradable hydrogels in non-human primates seem to represent critical preclinical research steps. Existing innovative models in non-human primates allow us to evaluate the potential of neural engineering and injectable hydrogels. The results of these preliminary studies will pave the way for translating this research into much needed clinical therapeutic approaches. Cutting edge imaging technology using Connectome scanners represents a tremendous advancement, enabling the in vivo, detailed, high-resolution evaluation of these therapeutic interventions in experimental animals. Most importantly, they also allow quantifiable and clinically meaningful correlations with humans, increasing the translatability of these innovations to the bedside.

  7. Formulation and evaluation of microemulsion-based hydrogel for topical delivery

    PubMed Central

    Sabale, Vidya; Vora, Sejal

    2012-01-01

    Background: The purpose of this study was to develop microemulsion-based hydrogel formulation for topical delivery of bifonazole with an objective to increase the solubility and skin permeability of the drug. Materials and Methods: Oleic acid was screened as the oil phase of microemulsions, due to a good solubilizing capacity of the microemulison systems. The pseudo-ternary phase diagrams for microemulsion regions were constructed using oleic acid as the oil, Tween 80 as the surfactant and isopropyl alcohol (IPA) as the cosurfactant. Various microemulsion formulations were prepared and optimized by 32 factorial design on the basis of percentage (%) transmittance, globule size, zeta potential, drug release, and skin permeability. The abilities of various microemulsions to deliver bifonazole through the skin were evaluated ex vivo using Franz diffusion cells fitted with rat skins. The Hydroxy Propyl Methyl Cellulose (HPMC) K100 M as a gel matrix was used to construct the microemulsion-based hydrogel for improving the viscosity of microemulsion for topical administration. The optimized microemulsion-based hydrogel was evaluated for viscosity, spreadability, skin irritancy, skin permeability, stability, and antifungal activity by comparing it with marketed bifonazole cream. Results: The mechanism of drug release from microemulsion-based hydrogel was observed to follow zero order kinetics. The studied optimized microemulsion-based hydrogel showed a good stability over the period of 3 months. Average globule size of optimized microemulsion (F5) was found to be 18.98 nm, zeta potential was found to be -5.56 mv, and permeability of drug from microemulsion within 8 h was observed 84%. The antifungal activity of microemulsion-based hydrogel was found to be comparable with marketed cream. Conclusion: The results indicate that the studied microemulsion-based hydrogel (F5) has a potential for sustained action of drug release and it may act as promising vehicle for topical delivery of ibuprofen. PMID:23373005

  8. Modulation of cultured neural networks using neurotrophin release from hydrogel-coated microelectrode arrays

    NASA Astrophysics Data System (ADS)

    Jun, Sang Beom; Hynd, Matthew R.; Dowell-Mesfin, Natalie M.; Al-Kofahi, Yousef; Roysam, Badrinath; Shain, William; Kim, Sung June

    2008-06-01

    Polyacrylamide and poly(ethylene glycol) diacrylate hydrogels were synthesized and characterized for use as drug release and substrates for neuron cell culture. Protein release kinetics was determined by incorporating bovine serum albumin (BSA) into hydrogels during polymerization. To determine if hydrogel incorporation and release affect bioactivity, alkaline phosphatase was incorporated into hydrogels and a released enzyme activity determined using the fluorescence-based ELF-97 assay. Hydrogels were then used to deliver a brain-derived neurotrophic factor (BDNF) from hydrogels polymerized over planar microelectrode arrays (MEAs). Primary hippocampal neurons were cultured on both control and neurotrophin-containing hydrogel-coated MEAs. The effect of released BDNF on neurite length and process arborization was investigated using automated image analysis. An increased spontaneous activity as a response to the released BDNF was recorded from the neurons cultured on the top of hydrogel layers. These results demonstrate that proteins of biological interest can be incorporated into hydrogels to modulate development and function of cultured neural networks. These results also set the stage for development of hydrogel-coated neural prosthetic devices for local delivery of various biologically active molecules.

  9. Photothermal fabrication of microscale patterned DNA hydrogels

    NASA Astrophysics Data System (ADS)

    Shimomura, Suguru; Nishimura, Takahiro; Ogura, Yusuke; Tanida, Jun

    2018-02-01

    This paper introduces a method for fabricating microscale DNA hydrogels using irradiation with patterned light. Optical fabrication allows for the flexible and tunable formation of DNA hydrogels without changing the environmental conditions. Our scheme is based on local heat generation via the photothermal effect, which is induced by light irradiation on a quenching species. We demonstrate experimentally that, depending on the power and irradiation time, light irradiation enables the creation of local microscale DNA hydrogels, while the shapes of the DNA hydrogels are controlled by the irradiation patterns.

  10. Classification of Hydrogels Based on Their Source: A Review and Application in Stem Cell Regulation

    NASA Astrophysics Data System (ADS)

    Khansari, Maziyar M.; Sorokina, Lioudmila V.; Mukherjee, Prithviraj; Mukhtar, Farrukh; Shirdar, Mostafa Rezazadeh; Shahidi, Mahnaz; Shokuhfar, Tolou

    2017-08-01

    Stem cells are recognized by their self-renewal ability and can give rise to specialized progeny. Hydrogels are an established class of biomaterials with the ability to control stem cell fate via mechanotransduction. They can mimic various physiological conditions to influence the fate of stem cells and are an ideal platform to support stem cell regulation. This review article provides a summary of recent advances in the application of different classes of hydrogels based on their source (e.g., natural, synthetic, or hybrid). This classification is important because the chemistry of substrate affects stem cell differentiation and proliferation. Natural and synthetic hydrogels have been widely used in stem cell regulation. Nevertheless, they have limitations that necessitate a new class of material. Hybrid hydrogels obtained by manipulation of the natural and synthetic ones can potentially overcome these limitations and shape the future of research in application of hydrogels in stem cell regulation.

  11. Xanthan and κ-carrageenan based alkaline hydrogels as electrolytes for Al/air batteries.

    PubMed

    Di Palma, T M; Migliardini, F; Caputo, D; Corbo, P

    2017-02-10

    Xanthan and κ-carrageenan were used to prepare alkaline hydrogels to be used as electrolytes in aluminium air primary batteries. Two pasty gels were obtained starting from xanthan and KOH solutions (1M and 8M), while only the 8M KOH solution permitted the formation of a stable, elastic and gumminess hydrogel with κ-carrageenan. Discharge tests, performed on three Al/air cells assembled with Al anodes, electrolyte gels and Pt based cathodes, evidenced that all hydrogels exhibited appreciable properties of Al ion conductivities, according to the following performance order: xanthan with KOH 1M

  12. Synthesis and Characterization of Cellulose-Based Hydrogels to Be Used as Gel Electrolytes

    PubMed Central

    Navarra, Maria Assunta; Dal Bosco, Chiara; Serra Moreno, Judith; Vitucci, Francesco Maria; Paolone, Annalisa; Panero, Stefania

    2015-01-01

    Cellulose-based hydrogels, obtained by tuned, low-cost synthetic routes, are proposed as convenient gel electrolyte membranes. Hydrogels have been prepared from different types of cellulose by optimized solubilization and crosslinking steps. The obtained gel membranes have been characterized by infrared spectroscopy, scanning electron microscopy, thermogravimetric analysis, and mechanical tests in order to investigate the crosslinking occurrence and modifications of cellulose resulting from the synthetic process, morphology of the hydrogels, their thermal stability, and viscoelastic-extensional properties, respectively. Hydrogels liquid uptake capability and ionic conductivity, derived from absorption of aqueous electrolytic solutions, have been evaluated, to assess the successful applicability of the proposed membranes as gel electrolytes for electrochemical devices. To this purpose, the redox behavior of electroactive species entrapped into the hydrogels has been investigated by cyclic voltammetry tests, revealing very high reversibility and ion diffusivity. PMID:26633528

  13. Glycerophosphate-based chitosan thermosensitive hydrogels and their biomedical applications.

    PubMed

    Zhou, Hui Yun; Jiang, Ling Juan; Cao, Pei Pei; Li, Jun Bo; Chen, Xi Guang

    2015-03-06

    Chitosan is non-toxic, biocompatible and biodegradable polysaccharide composed of glucosamine and derived by deacetylation of chitin. Chitosan thermosensitive hydrogel has been developed to form a gel in situ, precluding the need for surgical implantation. In this review, the recent advances in chitosan thermosensitive hydrogels based on different glycerophosphate are summarized. The hydrogel is prepared with chitosan and β-glycerophosphate or αβ-glycerophosphate which is liquid at room temperature and transits into gel as temperature increases. The gelation mechanism may involve multiple interactions between chitosan, glycerophosphate, and water. The solution behavior, rheological and physicochemical properties, and gelation process of the hydrogel are affected not only by the molecule weight, deacetylation degree, and concentration of chitosan, but also by the kind and concentration of glycerophosphate. The properties and the three-dimensional networks of the hydrogel offer them wide applications in biomedical field including local drug delivery and tissue engineering. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. On the role of hydrogel structure and degradation in controlling the transport of cell-secreted matrix molecules for engineered cartilage.

    PubMed

    Dhote, Valentin; Skaalure, Stacey; Akalp, Umut; Roberts, Justine; Bryant, Stephanie J; Vernerey, Franck J

    2013-03-01

    Damage to cartilage caused by injury or disease can lead to pain and loss of mobility, diminishing one's quality of life. Because cartilage has a limited capacity for self-repair, tissue engineering strategies, such as cells encapsulated in synthetic hydrogels, are being investigated as a means to restore the damaged cartilage. However, strategies to date are suboptimal in part because designing degradable hydrogels is complicated by structural and temporal complexities of the gel and evolving tissue along multiple length scales. To address this problem, this study proposes a multi-scale mechanical model using a triphasic formulation (solid, fluid, unbound matrix molecules) based on a single chondrocyte releasing extracellular matrix molecules within a degrading hydrogel. This model describes the key players (cells, proteoglycans, collagen) of the biological system within the hydrogel encompassing different length scales. Two mechanisms are included: temporal changes of bulk properties due to hydrogel degradation, and matrix transport. Numerical results demonstrate that the temporal change of bulk properties is a decisive factor in the diffusion of unbound matrix molecules through the hydrogel. Transport of matrix molecules in the hydrogel contributes both to the development of the pericellular matrix and the extracellular matrix and is dependent on the relative size of matrix molecules and the hydrogel mesh. The numerical results also demonstrate that osmotic pressure, which leads to changes in mesh size, is a key parameter for achieving a larger diffusivity for matrix molecules in the hydrogel. The numerical model is confirmed with experimental results of matrix synthesis by chondrocytes in biodegradable poly(ethylene glycol)-based hydrogels. This model may ultimately be used to predict key hydrogel design parameters towards achieving optimal cartilage growth. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. On the role of hydrogel structure and degradation in controlling the transport of cell-secreted matrix molecules for engineered cartilage

    PubMed Central

    Dhote, Valentin; Skaalure, Stacey; Akalp, Umut; Roberts, Justine; Bryant, Stephanie J.; Vernerey, Franck J.

    2012-01-01

    Damage to cartilage caused by injury or disease can lead to pain and loss of mobility, diminishing one’s quality of life. Because cartilage has a limited capacity for self-repair, tissue engineering strategies, such as cells encapsulated in synthetic hydrogels, are being investigated as a means to restore the damaged cartilage. However, strategies to date are suboptimal in part because designing degradable hydrogels is complicated by structural and temporal complexities of the gel and evolving tissue along multiple length scales. To address this problem, this study proposes a multi-scale mechanical model using a triphasic formulation (solid, fluid, unbound matrix molecules) based on a single chondrocyte releasing extracellular matrix molecules within a degrading hydrogel. This model describes the key players (cells, proteoglycans, collagen) of the biological system within the hydrogel encompassing different length scales. Two mechanisms are included: temporal changes of bulk properties due to hydrogel degradation, and matrix transport. Numerical results demonstrate that the temporal change of bulk properties is a decisive factor in the diffusion of unbound matrix molecules through the hydrogel. Transport of matrix molecules in the hydrogel contributes both to the development of the pericellular matrix and the extracellular matrix and is dependent on the relative size of matrix molecules and the hydrogel mesh. The numerical results also demonstrate that osmotic pressure, which leads to changes in mesh size, is a key parameter for achieving a larger diffusivity for matrix molecules in the hydrogel. The numerical model is confirmed with experimental results of matrix synthesis by chondrocytes in biodegradable poly(ethylene glycol)-based hydrogels. This model may ultimately be used to predict key hydrogel design parameters towards achieving optimal cartilage growth. PMID:23276516

  16. Co-delivery of evodiamine and rutaecarpine in a microemulsion-based hyaluronic acid hydrogel for enhanced analgesic effects on mouse pain models.

    PubMed

    Zhang, Yong-Tai; Li, Zhe; Zhang, Kai; Zhang, Hong-Yu; He, Ze-Hui; Xia, Qing; Zhao, Ji-Hui; Feng, Nian-Ping

    2017-08-07

    The aim of this study was to improve the analgesic effect of evodiamine and rutaecarpine, using a microemulsion-based hydrogel (ME-Gel) as the transdermal co-delivery vehicle, and to assess hyaluronic acid as a hydrogel matrix for microemulsion entrapment. A microemulsion was formulated with ethyl oleate as the oil core to improve the solubility of the alkaloids and was loaded into a hyaluronic acid-structured hydrogel. Permeation-enhancing effects of the microemulsion enabled evodiamine and rutaecarpine in ME-Gel to achieve 2.60- and 2.59-fold higher transdermal fluxes compared with hydrogel control (p<0.01). The hyaluronic acid hydrogel-containing microemulsion exhibited good skin biocompatibility, whereas effective ME-Gel co-delivery of evodiamine and rutaecarpine through the skin enhanced the analgesic effect in mouse pain models compared with hydrogel. Notably, evodiamine and rutaecarpine administered using ME-Gel effectively down-regulated serum levels of prostaglandin E 2 , interleukin 6, and tumor necrosis factor α in formaldehyde-induced mouse pain models, possibly reflecting the improved transdermal permeability of ME-Gel co-delivered evodiamine and rutaecarpine, particularly with hyaluronic acid as the hydrogel matrix. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Short-peptide-based molecular hydrogels: novel gelation strategies and applications for tissue engineering and drug delivery

    NASA Astrophysics Data System (ADS)

    Wang, Huaimin; Yang, Zhimou

    2012-08-01

    Molecular hydrogels hold big potential for tissue engineering and controlled drug delivery. Our lab focuses on short-peptide-based molecular hydrogels formed by biocompatible methods and their applications in tissue engineering (especially, 3D cell culture) and controlled drug delivery. This feature article firstly describes our recent progresses of the development of novel methods to form hydrogels, including the strategy of disulfide bond reduction and assistance with specific protein-peptide interactions. We then introduce the applications of our hydrogels in fields of controlled stem cell differentiation, cell culture, surface modifications of polyester materials by molecular self-assembly, and anti-degradation of recombinant complex proteins. A novel molecular hydrogel system of hydrophobic compounds that are only formed by hydrolysis processes was also included in this article. The hydrogels of hydrophobic compounds, especially those of hydrophobic therapeutic agents, may be developed into a carrier-free delivery system for long term delivery of therapeutic agents. With the efforts in this field, we believe that molecular hydrogels formed by short peptides and hydrophobic therapeutic agents can be practically applied for 3D cell culture and long term drug delivery in near future, respectively.

  18. Mechanically Robust 3D Nanostructure Chitosan-Based Hydrogels with Autonomic Self-Healing Properties.

    PubMed

    Karimi, Ali Reza; Khodadadi, Azam

    2016-10-12

    Fabrication of hydrogels based on chitosan (CS) with superb self-healing behavior and high mechanical and electrical properties has become a challenging and fascinating topic. Most of the conventional hydrogels lack these properties at the same time. Our objectives in this research were to synthesize, characterize, and evaluate the general properties of chitosan covalently cross-linked with zinc phthalocyanine tetra-aldehyde (ZnPcTa) framework. Our hope was to access an unprecedented self-healable three-dimensional (3D) nanostructure that would harvest the superior mechanical and electrical properties associated with chitosan. The properties of cross-linker such as the structure, steric effect, and rigidity of the molecule played important roles in determining the microstructure and properties of the resulting hydrogels. The tetra-functionalized phthalocyanines favor a dynamic Schiff-base linkage with chitosan to form a 3D porous nanostructure. Based on this strategy, the self-healing ability, as demonstrated by rheological recovery and macroscopic and microscopic observations, is introduced through dynamic covalent Schiff-base linkage between NH 2 groups in CS and benzaldehyde groups at cross-linker ends. The hydrogel was characterized using FT-IR, NMR, UV/vis, and rheological measurements. In addition, cryogenic scanning electron microscopy (cryo-SEM) was employed as a technique to visualize the internal morphology of the hydrogels. Study of the surface morphology of the hydrogel showed a 3D porous nanostructure with uniform morphology. Furthermore, incorporating the conductive nanofillers, such as carbon nanotubes (CNTs), into the structure can modulate the mechanical and electrical properties of the obtained hydrogels. Interestingly, these hydrogel nanocomposites proved to have very good film-forming properties, high modulus and strength, acceptable electrical conductivity, and excellent self-healing properties at neutral pH. Such properties can be finely tuned through variation of the cross-linker and CNT concentration, and as a result these structures are promising candidates for potential applications in various fields of research.

  19. X-ray Phase Contrast Allows Three Dimensional, Quantitative Imaging of Hydrogel Implants

    PubMed Central

    Appel, Alyssa A.; Larson, Jeffery C.; Jiang, Bin; Zhong, Zhong; Anastasio, Mark A.; Brey, Eric M.

    2015-01-01

    Three dimensional imaging techniques are needed for the evaluation and assessment of biomaterials used for tissue engineering and drug delivery applications. Hydrogels are a particularly popular class of materials for medical applications but are difficult to image in tissue using most available imaging modalities. Imaging techniques based on X-ray Phase Contrast (XPC) have shown promise for tissue engineering applications due to their ability to provide image contrast based on multiple X-ray properties. In this manuscript, we investigate the use of XPC for imaging a model hydrogel and soft tissue structure. Porous fibrin loaded poly(ethylene glycol) hydrogels were synthesized and implanted in a rodent subcutaneous model. Samples were explanted and imaged with an analyzer-based XPC technique and processed and stained for histology for comparison. Both hydrogel and soft tissues structures could be identified in XPC images. Structure in skeletal muscle adjacent could be visualized and invading fibrovascular tissue could be quantified. There were no differences between invading tissue measurements from XPC and the gold-standard histology. These results provide evidence of the significant potential of techniques based on XPC for 3D imaging of hydrogel structure and local tissue response. PMID:26487123

  20. Bio-functionalized silk hydrogel microfluidic systems.

    PubMed

    Zhao, Siwei; Chen, Ying; Partlow, Benjamin P; Golding, Anne S; Tseng, Peter; Coburn, Jeannine; Applegate, Matthew B; Moreau, Jodie E; Omenetto, Fiorenzo G; Kaplan, David L

    2016-07-01

    Bio-functionalized microfluidic systems were developed based on a silk protein hydrogel elastomeric materials. A facile multilayer fabrication method using gelatin sacrificial molding and layer-by-layer assembly was implemented to construct interconnected, three dimensional (3D) microchannel networks in silk hydrogels at 100 μm minimum feature resolution. Mechanically activated valves were implemented to demonstrate pneumatic control of microflow. The silk hydrogel microfluidics exhibit controllable mechanical properties, long-term stability in various environmental conditions, tunable in vitro and in vivo degradability in addition to optical transparency, providing unique features for cell/tissue-related applications than conventional polydimethylsiloxane (PDMS) and existing hydrogel-based microfluidic options. As demonstrated in the work here, the all aqueous-based fabrication process at ambient conditions enabled the incorporation of active biological substances in the bulk phase of these new silk microfluidic systems during device fabrication, including enzymes and living cells, which are able to interact with the fluid flow in the microchannels. These silk hydrogel-based microfluidic systems offer new opportunities in engineering active diagnostic devices, tissues and organs that could be integrated in vivo, and for on-chip cell sensing systems. Copyright © 2016 Elsevier Ltd. All rights reserved.

Top