40 CFR Table 9 to Subpart Wwww of... - Initial Compliance With Work Practice Standards
Code of Federal Regulations, 2014 CFR
2014-07-01
... compression/injection molding uncover, unwrap or expose only one charge per mold cycle per compression/injection molding machine. For machines with multiple molds, one charge means sufficient material to fill... cycle per compression/injection molding machine, or prior to the loader, hoppers are closed except when...
Micro-optical fabrication by ultraprecision diamond machining and precision molding
NASA Astrophysics Data System (ADS)
Li, Hui; Li, Likai; Naples, Neil J.; Roblee, Jeffrey W.; Yi, Allen Y.
2017-06-01
Ultraprecision diamond machining and high volume molding for affordable high precision high performance optical elements are becoming a viable process in optical industry for low cost high quality microoptical component manufacturing. In this process, first high precision microoptical molds are fabricated using ultraprecision single point diamond machining followed by high volume production methods such as compression or injection molding. In the last two decades, there have been steady improvements in ultraprecision machine design and performance, particularly with the introduction of both slow tool and fast tool servo. Today optical molds, including freeform surfaces and microlens arrays, are routinely diamond machined to final finish without post machining polishing. For consumers, compression molding or injection molding provide efficient and high quality optics at extremely low cost. In this paper, first ultraprecision machine design and machining processes such as slow tool and fast too servo are described then both compression molding and injection molding of polymer optics are discussed. To implement precision optical manufacturing by molding, numerical modeling can be included in the future as a critical part of the manufacturing process to ensure high product quality.
Precision injection molding of freeform optics
NASA Astrophysics Data System (ADS)
Fang, Fengzhou; Zhang, Nan; Zhang, Xiaodong
2016-08-01
Precision injection molding is the most efficient mass production technology for manufacturing plastic optics. Applications of plastic optics in field of imaging, illumination, and concentration demonstrate a variety of complex surface forms, developing from conventional plano and spherical surfaces to aspheric and freeform surfaces. It requires high optical quality with high form accuracy and lower residual stresses, which challenges both optical tool inserts machining and precision injection molding process. The present paper reviews recent progress in mold tool machining and precision injection molding, with more emphasis on precision injection molding. The challenges and future development trend are also discussed.
Low Cost Injection Mold Creation via Hybrid Additive and Conventional Manufacturing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dehoff, Ryan R.; Watkins, Thomas R.; List, III, Frederick Alyious
2015-12-01
The purpose of the proposed project between Cummins and ORNL is to significantly reduce the cost of the tooling (machining and materials) required to create injection molds to make plastic components. Presently, the high cost of this tooling forces the design decision to make cast aluminum parts because Cummins typical production volumes are too low to allow injection molded plastic parts to be cost effective with the amortized cost of the injection molding tooling. In addition to reducing the weight of components, polymer injection molding allows the opportunity for the alternative cooling methods, via nitrogen gas. Nitrogen gas cooling offersmore » an environmentally and economically attractive cooling option, if the mold can be manufactured economically. In this project, a current injection molding design was optimized for cooling using nitrogen gas. The various components of the injection mold tooling were fabricated using the Renishaw powder bed laser additive manufacturing technology. Subsequent machining was performed on the as deposited components to form a working assembly. The injection mold is scheduled to be tested in a projection setting at a commercial vendor selected by Cummins.« less
Micro Machining of Injection Mold Inserts for Fluidic Channel of Polymeric Biochips
Jung, Woo-Chul; Heo, Young-Moo; Yoon, Gil-Sang; Shin, Kwang-Ho; Chang, Sung-Ho; Kim, Gun-Hee; Cho, Myeong-Woo
2007-01-01
Recently, the polymeric micro-fluidic biochip, often called LOC (lab-on-a-chip), has been focused as a cheap, rapid and simplified method to replace the existing biochemical laboratory works. It becomes possible to form miniaturized lab functionalities on a chip with the development of MEMS technologies. The micro-fluidic chips contain many micro-channels for the flow of sample and reagents, mixing, and detection tasks. Typical substrate materials for the chip are glass and polymers. Typical techniques for microfluidic chip fabrication are utilizing various micro pattern forming methods, such as wet-etching, micro-contact printing, and hot-embossing, micro injection molding, LIGA, and micro powder blasting processes, etc. In this study, to establish the basis of the micro pattern fabrication and mass production of polymeric micro-fluidic chips using injection molding process, micro machining method was applied to form micro-channels on the LOC molds. In the research, a series of machining experiments using micro end-mills were performed to determine optimum machining conditions to improve surface roughness and shape accuracy of designed simplified micro-channels. Obtained conditions were used to machine required mold inserts for micro-channels using micro end-mills. Test injection processes using machined molds and COC polymer were performed, and then the results were investigated.
NASA Astrophysics Data System (ADS)
Kameda, Takao; Sugino, Naoto; Takei, Satoshi
2016-10-01
Shear viscosity measurement device was produced to evaluate the injection molding workability for high-performance resins. Observation was possible in shear rate from 10 to 10000 [1/sec] that were higher than rotary rheometer by measuring with a plasticization cylinder of the injection molding machine. The result of measurements extrapolated result of a measurement of the rotary rheometer.
Study of injection molded microcellular polyamide-6 nanocomposites
Mingjun Yuan; Lih-Sheng Turng; Shaoqin Gong; Daniel Caulfield; Chris Hunt; Rick Spindler
2004-01-01
This study aims to explore the processing benefits and property improvements of combining nanocomposites with microcellular injection molding. The microcellular nanocomposite processing was performed on an injection-molding machine equipped with a commercially available supercritical fluid (SCF) system. The molded samples produced based on the Design of Experiments (...
Fabrication of robust tooling for mass production of polymeric microfluidic devices
NASA Astrophysics Data System (ADS)
Fu, G.; Tor, S. B.; Loh, N. H.; Hardt, D. E.
2010-08-01
Polymer microfluidic devices are gaining popularity for bio-applications. In both commonly used methods for the fabrication of polymer microfluidic devices, i.e. injection molding and hot-embossing, the quality of a mold insert is of high importance. Micro powder injection molding (μPIM) provides a suitable option for metal mold insert fabrication. In this paper, two mold inserts with micro-features of different patterns and sizes were produced using 316L stainless steel powder and an in-house binder system. The mold inserts were successfully used to produce cyclic olefin copolymer (COC, trade name TOPAS) micromixer plates with micro-channels of widths 100 µm and 50 µm. Compared with CNC-machined hot work steel mold inserts, the quality of the micro-channels is better as far as geometrical quality and dimensional tolerance are concerned. However, surface finish and flatness of the μPIM mold inserts are inferior to those of CNC-machined mold inserts.
Graf, Neil J; Bowser, Michael T
2013-10-07
Two different fabrication methods were employed to fabricate micropumps with different cross-sectional channel geometries. The first was to fabricate rectangular cross-sectional microchannel geometries using the well known fabrication method of replica molding (REM). The second, and far less utilized fabrication technique, was to create microchannel molds using an in-house fabricated handheld micro injection molding apparatus. The injection mold apparatus was designed for use with elastomeric room temperature vulcanization (RTV) polymers, as opposed to most other injection molding machines, which are designed for use with thermoplastic polymers. The injection mold's bottom plate was used as a microchannel molding template. The molding template was created by threading a small-diameter wire (150 μm or less) through the injection mold's bottom plate, with subsequent adhesion and smoothing of a thin piece of aluminum foil over the wire-raised injection mold template. When molded against, the template produced a rounded/Gaussian-shaped PDMS microchannel. The design of the injection mold will be presented, along with a direct comparison for micropump performance metrics such as flow rate, valving characteristics, and maximum backpressures attainable for each of the respective micropump channel geometries.
Park, Young-Seok; Chung, Shin-Hye; Shon, Won-Jun
2013-05-01
To evaluate osseointegration in rabbit tibiae and to investigate surface characteristics of novel zirconia implants made by powder injection molding (PIM) technique, using molds with and without roughened inner surfaces. A total of 20 rabbits received three types of external hex implants with identical geometry on the tibiae: machined titanium implants, PIM zirconia implants without mold etching, and PIM zirconia implants with mold etching. Surface characteristics of the three types of implant were evaluated. Removal torque tests and histomorphometric analyses were performed. The roughness of PIM zirconia implants was higher than that of machined titanium implants. The PIM zirconia implants exhibited significantly higher bone-implant contact and removal torque values than the machined titanium implants (P < 0.001). The PIM zirconia implants using roughened mold showed significantly higher removal torque values than PIM zirconia implants without using roughened mold (P < 0.001). It is concluded that the osseointegration of PIM zirconia implant is promising and PIM using roughened mold etching technique can produce substantially rough surfaces on zirconia implants. © 2012 John Wiley & Sons A/S.
Use of acrylic sheet molds for elastomeric products
NASA Technical Reports Server (NTRS)
Heisman, R. M.; Koerner, A. E.; Messineo, S. M.
1970-01-01
Molds constructed of acrylic sheet are more easily machined than metal, are transparent to ensure complete filling during injection, and have smooth surfaces free of contamination. Technique eliminates flashing on molded parts and mold release agents.
Processing study of injection molding of silicon nitride for engine applications
NASA Technical Reports Server (NTRS)
Rorabaugh, M. E.; Yeh, H. C.
1985-01-01
The high hardness of silicon nitride, which is currently under consideration as a structural material for such hot engine components as turbine blades, renders machining of the material prohibitively costly; the near net shape forming technique of injection molding is accordingly favored as a means for component fabrication. Attention is presently given to the relationships between injection molding processing parameters and the resulting microstructural and mechanical properties of the resulting engine parts. An experimental program has been conducted under NASA sponsorship which tests the quality of injection molded bars of silicon nitride at various stages of processing.
Graf, Neil J.
2013-01-01
Two different fabrication methods were employed to fabricate micropumps with different cross-sectional channel geometries. The first was to fabricate rectangular cross-sectional microchannel geometries using the well known fabrication method of replica molding (REM).1 The second, and far less utilized fabrication technique, was to create microchannel molds using an in-house fabricated handheld micro injection molding apparatus. The injection mold apparatus was designed for use with elastomeric room temperature vulcanization (RTV) polymers, as opposed to most other injection molding machines, which are designed for use with thermoplastic polymers. The injection mold’s bottom plate was used as a microchannel molding template. The molding template was created by threading a small-diameter wire (150 μm or less) through the injection mold’s bottom plate, with subsequent adhesion and smoothing of a thin piece of aluminum foil over the wire-raised injection mold template. When molded against, the template produced a rounded/Gaussian-shaped PDMS microchannel. The design of the injection mold will be presented, along with a direct comparison for micropump performance metrics such as flow rate, valving characteristics, and maximum backpressures attainable for each of the respective micropump channel geometries. PMID:23917263
Micro Dot Patterning on the Light Guide Panel Using Powder Blasting
Jang, Ho Su; Cho, Myeong Woo; Park, Dong Sam
2008-01-01
This study is to develop a micromachining technology for a light guide panel(LGP) mold, whereby micro dot patterns are formed on a LGP surface by a single injection process instead of existing screen printing processes. The micro powder blasting technique is applied to form micro dot patterns on the LGP mold surface. The optimal conditions for masking, laminating, exposure, and developing processes to form the micro dot patterns are first experimentally investigated. A LGP mold with masked micro patterns is then machined using the micro powder blasting method and the machinability of the micro dot patterns is verified. A prototype LGP is test- injected using the developed LGP mold and a shape analysis of the patterns and performance testing of the injected LGP are carried out. As an additional approach, matte finishing, a special surface treatment method, is applied to the mold surface to improve the light diffusion characteristics, uniformity and brightness of the LGP. The results of this study show that the applied powder blasting method can be successfully used to manufacture LGPs with micro patterns by just single injection using the developed mold and thereby replace existing screen printing methods. PMID:27879740
Research study demonstrates computer simulation can predict warpage and assist in its elimination
NASA Astrophysics Data System (ADS)
Glozer, G.; Post, S.; Ishii, K.
1994-10-01
Programs for predicting warpage in injection molded parts are relatively new. Commercial software for simulating the flow and cooling stages of injection molding have steadily gained acceptance; however, warpage software is not yet as readily accepted. This study focused on gaining an understanding of the predictive capabilities of the warpage software. The following aspects of this study were unique. (1) Quantitative results were found using a statistically designed set of experiments. (2) Comparisons between experimental and simulation results were made with parts produced in a well-instrumented and controlled injection molding machine. (3) The experimental parts were accurately measured on a coordinate measuring machine with a non-contact laser probe. (4) The effect of part geometry on warpage was investigated.
Transferability of glass lens molding
NASA Astrophysics Data System (ADS)
Katsuki, Masahide
2006-02-01
Sphere lenses have been used for long time. But it is well known that sphere lenses theoretically have spherical aberration, coma and so on. And, aspheric lenses attract attention recently. Plastic lenses are molded easily with injection machines, and are relatively low cost. They are suitable for mass production. On the other hand, glass lenses have several excellent features such as high refractive index, heat resistance and so on. Many aspheric glass lenses came to be used for the latest digital camera and mobile phone camera module. It is very difficult to produce aspheric glass lenses by conventional process of curve generating and polishing. For the solution of this problem, Glass Molding Machine was developed and is spreading through the market. High precision mold is necessary to mold glass lenses with Glass Molding Machine. The mold core is ground or turned by high precision NC aspheric generator. To obtain higher transferability of the mold core, the function of the molding machine and the conditions of molding are very important. But because of high molding temperature, there are factors of thermal expansion and contraction of the mold and glass material. And it is hard to avoid the factors. In this session, I introduce following items. [1] Technology of glass molding and the machine is introduced. [2] The transferability of glass molding is analyzed with some data of glass lenses molded. [3] Compensation of molding shape error is discussed with examples.
Kim, Hong-Kyun; Woo, Kyung mi; Shon, Won-Jun; Ahn, Jin-Soo; Cha, Seunghee; Park, Young-Seok
2017-01-01
The aim of this study was to compare osseointegration and surface characteristics of zirconia implants made by the powder injection molding (PIM) technique and made by the conventional milling procedure in rabbit tibiae. Surface characteristics of 2 types of implant were evaluated. Sixteeen rabbits received 2 types of external hex implants with similar geometry, machined zirconia implants and PIM zirconia implants, in the tibiae. Removal torque tests and histomorphometric analyses were performed. The roughness of PIM zirconia implants was higher than that of machined zirconia implants. The PIM zirconia implants exhibited significantly higher bone-implant contact and removal torque values than the machined zirconia implants (P < 0.001). The osseointegration of the PIM zirconia implant is promising, and PIM, using the roughened mold etching technique, can produce substantially rough surfaces on zirconia implants. PMID:26235717
DOE Office of Scientific and Technical Information (OSTI.GOV)
Duty, Chad E; Groh, Bill
2014-10-31
ORNL collaborated with Radio Systems Corporation to investigate additive manufacturing (AM) of mold plates for plastic injection molding by direct metal deposition. The team s modelling effort identified a 100% improvement in heat transfer through use of conformal cooling lines that could be built into the mold using a revolutionary design enabled by additive manufacturing. Using the newly installed laser deposition system at the ORNL Manufacturing Demonstration Facility (MDF) a stainless steel mold core was printed.
ERIC Educational Resources Information Center
Society of the Plastics Industry, Inc., Washington, DC.
Designed to guide training and curriculum development to prepare machine operators for the national certification exam, this publication identifies the important knowledge required for productive performance by a plastics machine operator. Introductory material discusses the rationale for a national standard, uses of the Body of Knowledge,…
Organic materials for ceramic molding processes
NASA Technical Reports Server (NTRS)
Saito, K.
1984-01-01
Ceramic molding processes are examined. Binders, wetting agents, lubricants, plasticizers, surface active agents, dispersants, etc., for pressing, rubber pressing, sip casting, injection casting, taping, extrusion, etc., are described, together with forming machines.
Optimization of injection molding process parameters for a plastic cell phone housing component
NASA Astrophysics Data System (ADS)
Rajalingam, Sokkalingam; Vasant, Pandian; Khe, Cheng Seong; Merican, Zulkifli; Oo, Zeya
2016-11-01
To produce thin-walled plastic items, injection molding process is one of the most widely used application tools. However, to set optimal process parameters is difficult as it may cause to produce faulty items on injected mold like shrinkage. This study aims at to determine such an optimum injection molding process parameters which can reduce the fault of shrinkage on a plastic cell phone cover items. Currently used setting of machines process produced shrinkage and mis-specified length and with dimensions below the limit. Thus, for identification of optimum process parameters, maintaining closer targeted length and width setting magnitudes with minimal variations, more experiments are needed. The mold temperature, injection pressure and screw rotation speed are used as process parameters in this research. For optimal molding process parameters the Response Surface Methods (RSM) is applied. The major contributing factors influencing the responses were identified from analysis of variance (ANOVA) technique. Through verification runs it was found that the shrinkage defect can be minimized with the optimal setting found by RSM.
An apparatus for in situ x-ray scattering measurements during polymer injection molding.
Rendon, Stanley; Fang, Jun; Burghardt, Wesley R; Bubeck, Robert A
2009-04-01
We report a novel instrument for synchrotron-based in situ x-ray scattering measurements during injection molding processing. It allows direct, real-time monitoring of molecular-scale structural evolution in polymer materials undergoing a complex processing operation. The instrument is based on a laboratory-scale injection molding machine, and employs customized mold tools designed to allow x-ray access during mold filling and subsequent solidification, while providing sufficient robustness to withstand high injection pressures. The use of high energy, high flux synchrotron radiation, and a fast detector allows sufficiently rapid data acquisition to resolve time-dependent orientation dynamics in this transient process. Simultaneous monitoring of temperature and pressure signals allows transient scattering data to be referenced to various stages of the injection molding cycle. Representative data on a commercial liquid crystalline polymer, Vectra(R) B950, are presented to demonstrate the features of this apparatus; however, it may find application in a wide range of polymeric materials such as nanocomposites, semicrystalline polymers and fiber-reinforced thermoplastics.
Demonstration of pharmaceutical tablet coating process by injection molding technology.
Puri, Vibha; Brancazio, David; Harinath, Eranda; Martinez, Alexander R; Desai, Parind M; Jensen, Keith D; Chun, Jung-Hoon; Braatz, Richard D; Myerson, Allan S; Trout, Bernhardt L
2018-01-15
We demonstrate the coating of tablets using an injection molding (IM) process that has advantage of being solvent free and can provide precision coat features. The selected core tablets comprising 10% w/w griseofulvin were prepared by an integrated hot melt extrusion-injection molding (HME-IM) process. Coating trials were conducted on a vertical injection mold machine. Polyethylene glycol and polyethylene oxide based hot melt extruded coat compositions were used. Tablet coating process feasibility was successfully demonstrated using different coating mold designs (with both overlapping and non-overlapping coatings at the weld) and coat thicknesses of 150 and 300 μm. The resultant coated tablets had acceptable appearance, seal at the weld, and immediate drug release profile (with an acceptable lag time). Since IM is a continuous process, this study opens opportunities to develop HME-IM continuous processes for transforming powder to coated tablets. Copyright © 2017 Elsevier B.V. All rights reserved.
Electron-Beam Vapor Deposition of Mold Inserts Final Report CRADA No. TSB-777-94
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shepp, T.; Feeley, T.
Lawrence Livermore National Laboratory and H.G.G. Laser Fare, Inc. studied the application of electron-beam vapor deposition technology to the production of mold inserts for use in an injection molding machine by Laser Fare. Laser Fare provided LLNL with the requirements of the mold inserts as well as sample inserts. LLNL replicated the mold insert(s) to Laser Fare for testing by Laser Fare.
FPGA-based multiprocessor system for injection molding control.
Muñoz-Barron, Benigno; Morales-Velazquez, Luis; Romero-Troncoso, Rene J; Rodriguez-Donate, Carlos; Trejo-Hernandez, Miguel; Benitez-Rangel, Juan P; Osornio-Rios, Roque A
2012-10-18
The plastic industry is a very important manufacturing sector and injection molding is a widely used forming method in that industry. The contribution of this work is the development of a strategy to retrofit control of an injection molding machine based on an embedded system microprocessors sensor network on a field programmable gate array (FPGA) device. Six types of embedded processors are included in the system: a smart-sensor processor, a micro fuzzy logic controller, a programmable logic controller, a system manager, an IO processor and a communication processor. Temperature, pressure and position are controlled by the proposed system and experimentation results show its feasibility and robustness. As validation of the present work, a particular sample was successfully injected.
Material flow data for numerical simulation of powder injection molding
NASA Astrophysics Data System (ADS)
Duretek, I.; Holzer, C.
2017-01-01
The powder injection molding (PIM) process is a cost efficient and important net-shape manufacturing process that is not completely understood. For the application of simulation programs for the powder injection molding process, apart from suitable physical models, exact material data and in particular knowledge of the flow behavior are essential in order to get precise numerical results. The flow processes of highly filled polymers are complex. Occurring effects are very hard to separate, like shear flow with yield stress, wall slip, elastic effects, etc. Furthermore, the occurrence of phase separation due to the multi-phase composition of compounds is quite probable. In this work, the flow behavior of a 316L stainless steel feedstock for powder injection molding was investigated. Additionally, the influence of pre-shearing on the flow behavior of PIM-feedstocks under practical conditions was examined and evaluated by a special PIM injection molding machine rheometer. In order to have a better understanding of key factors of PIM during the injection step, 3D non-isothermal numerical simulations were conducted with a commercial injection molding simulation software using experimental feedstock properties. The simulation results were compared with the experimental results. The mold filling studies amply illustrate the effect of mold temperature on the filling behavior during the mold filling stage. Moreover, the rheological measurements showed that at low shear rates no zero shear viscosity was observed, but instead the viscosity further increased strongly. This flow behavior could be described with the Cross-WLF approach with Herschel-Bulkley extension very well.
Mold Heating and Cooling Pump Package Operator Interface Controls Upgrade
DOE Office of Scientific and Technical Information (OSTI.GOV)
Josh A. Salmond
2009-08-07
The modernization of the Mold Heating and Cooling Pump Package Operator Interface (MHC PP OI) consisted of upgrading the antiquated single board computer with a proprietary operating system to off-the-shelf hardware and off-the-shelf software with customizable software options. The pump package is the machine interface between a central heating and cooling system that pumps heat transfer fluid through an injection or compression mold base on a local plastic molding machine. The operator interface provides the intelligent means of controlling this pumping process. Strict temperature control of a mold allows the production of high quality parts with tight tolerances and lowmore » residual stresses. The products fabricated are used on multiple programs.« less
FPGA-Based Multiprocessor System for Injection Molding Control
Muñoz-Barron, Benigno; Morales-Velazquez, Luis; Romero-Troncoso, Rene J.; Rodriguez-Donate, Carlos; Trejo-Hernandez, Miguel; Benitez-Rangel, Juan P.; Osornio-Rios, Roque A.
2012-01-01
The plastic industry is a very important manufacturing sector and injection molding is a widely used forming method in that industry. The contribution of this work is the development of a strategy to retrofit control of an injection molding machine based on an embedded system microprocessors sensor network on a field programmable gate array (FPGA) device. Six types of embedded processors are included in the system: a smart-sensor processor, a micro fuzzy logic controller, a programmable logic controller, a system manager, an IO processor and a communication processor. Temperature, pressure and position are controlled by the proposed system and experimentation results show its feasibility and robustness. As validation of the present work, a particular sample was successfully injected. PMID:23202036
Micro Dot Patterning on the Light Guide Panel Using Powder Blasting.
Jang, Ho Su; Cho, Myeong Woo; Park, Dong Sam
2008-02-08
This study is to develop a micromachining technology for a light guidepanel(LGP) mold, whereby micro dot patterns are formed on a LGP surface by a singleinjection process instead of existing screen printing processes. The micro powder blastingtechnique is applied to form micro dot patterns on the LGP mold surface. The optimalconditions for masking, laminating, exposure, and developing processes to form the microdot patterns are first experimentally investigated. A LGP mold with masked micro patternsis then machined using the micro powder blasting method and the machinability of themicro dot patterns is verified. A prototype LGP is test- injected using the developed LGPmold and a shape analysis of the patterns and performance testing of the injected LGP arecarried out. As an additional approach, matte finishing, a special surface treatment method,is applied to the mold surface to improve the light diffusion characteristics, uniformity andbrightness of the LGP. The results of this study show that the applied powder blastingmethod can be successfully used to manufacture LGPs with micro patterns by just singleinjection using the developed mold and thereby replace existing screen printing methods.
Design and fabrication of optical homogenizer with micro structure by injection molding process
NASA Astrophysics Data System (ADS)
Chen, C.-C. A.; Chang, S.-W.; Weng, C.-J.
2008-08-01
This paper is to design and fabricate an optical homogenizer with hybrid design of collimator, toroidal lens array, and projection lens for beam shaping of Gaussian beam into uniform cylindrical beam. TracePro software was used to design the geometry of homogenizer and simulation of injection molding was preceded by Moldflow MPI to evaluate the mold design for injection molding process. The optical homogenizer is a cylindrical part with thickness 8.03 mm and diameter 5 mm. The micro structure of toroidal array has groove height designed from 12 μm to 99 μm. An electrical injection molding machine and PMMA (n= 1.4747) were selected to perform the experiment. Experimental results show that the optics homogenizer has achieved the transfer ratio of grooves (TRG) as 88.98% and also the optical uniformity as 68% with optical efficiency as 91.88%. Future study focuses on development of an optical homogenizer for LED light source.
Foam injection molding of poly(lactic acid) with physical blowing agents
NASA Astrophysics Data System (ADS)
Pantani, R.; Sorrentino, A.; Volpe, V.; Titomanlio, G.
2014-05-01
Foam injection molding uses environmental friendly blowing agents under high pressure and temperature to produce parts having a cellular core and a compact solid skin (the so-called "structural foam"). The addition of a supercritical gas reduces the part weight and at the same time improves some physical properties of the material through the promotion of a faster crystallization; it also leads to the reduction of both the viscosity and the glass transition temperature of the polymer melt, which therefore can be injection molded adopting lower temperatures and pressures. These aspects are of extreme interest for biodegradable polymers, which often present a very narrow processing window, with the suitable processing temperatures close to the degradation conditions. In this work, foam injection molding was carried out by an instrumented molding machine, able to measure the pressure evolution in different positions along the flow-path. The material adopted was a biodegradable polymer, namely the Poly(lactic acid), PLA. The effect of a physical blowing agent (PBA) on the viscosity was measured. The density reduction and the morphology of parts obtained by different molding conditions was assessed.
An investigation into the injection molding of PMR-15 polyimide
NASA Technical Reports Server (NTRS)
Colaluca, M. A.
1984-01-01
The chemorheological behavior of the PRM-15 molding compounds were characterized, the range of suitable processing parameters for injection molding in a reciprocating screw injection molding machine was determined, and the effects of the injection molding processing parameters on the mechanical properties of molded PMR-15 parts were studied. The apparatus and procedures for measuring viscosity and for determining the physical response of the material during heating are described. Results show that capillary rheometry can be effectively used with thermosets if the equipment is designed to overcome some of the inherent problems of these materials. A uniform temperature was provided in the barrel by using a circulating hot oil system. Standard capillary rheometry methods can provide the dependence of thermoset apparent viscosity on shear rate, temperature, and time. Process conditions resulting in complete imidization should be carefully defined. Specification of controlled oven temperature is inadequate and can result in incomplete imidization. For completely imidized PMR-15 heat at 15 C/min melt flow without gas evolution occurs in the temperature range of 325 C to 400 C.
Real-time parameter optimization based on neural network for smart injection molding
NASA Astrophysics Data System (ADS)
Lee, H.; Liau, Y.; Ryu, K.
2018-03-01
The manufacturing industry has been facing several challenges, including sustainability, performance and quality of production. Manufacturers attempt to enhance the competitiveness of companies by implementing CPS (Cyber-Physical Systems) through the convergence of IoT(Internet of Things) and ICT(Information & Communication Technology) in the manufacturing process level. Injection molding process has a short cycle time and high productivity. This features have been making it suitable for mass production. In addition, this process is used to produce precise parts in various industry fields such as automobiles, optics and medical devices. Injection molding process has a mixture of discrete and continuous variables. In order to optimized the quality, variables that is generated in the injection molding process must be considered. Furthermore, Optimal parameter setting is time-consuming work to predict the optimum quality of the product. Since the process parameter cannot be easily corrected during the process execution. In this research, we propose a neural network based real-time process parameter optimization methodology that sets optimal process parameters by using mold data, molding machine data, and response data. This paper is expected to have academic contribution as a novel study of parameter optimization during production compare with pre - production parameter optimization in typical studies.
Data characterizing tensile behavior of cenosphere/HDPE syntactic foam.
Kumar, B R Bharath; Doddamani, Mrityunjay; Zeltmann, Steven E; Gupta, Nikhil; Ramakrishna, Seeram
2016-03-01
The data set presented is related to the tensile behavior of cenosphere reinforced high density polyethylene syntactic foam composites "Processing of cenosphere/HDPE syntactic foams using an industrial scale polymer injection molding machine" (Bharath et al., 2016) [1]. The focus of the work is on determining the feasibility of using an industrial scale polymer injection molding (PIM) machine for fabricating syntactic foams. The fabricated syntactic foams are investigated for microstructure and tensile properties. The data presented in this article is related to optimization of the PIM process for syntactic foam manufacture, equations and procedures to develop theoretical estimates for properties of cenospheres, and microstructure of syntactic foams before and after failure. Included dataset contains values obtained from the theoretical model.
Testing single point incremental forming molds for thermoforming operations
NASA Astrophysics Data System (ADS)
Afonso, Daniel; de Sousa, Ricardo Alves; Torcato, Ricardo
2016-10-01
Low pressure polymer processing processes as thermoforming or rotational molding use much simpler molds then high pressure processes like injection. However, despite the low forces involved with the process, molds manufacturing for this operations is still a very material, energy and time consuming operation. The goal of the research is to develop and validate a method for manufacturing plastically formed sheets metal molds by single point incremental forming (SPIF) operation for thermoforming operation. Stewart platform based SPIF machines allow the forming of thick metal sheets, granting the required structural stiffness for the mold surface, and keeping the short lead time manufacture and low thermal inertia.
NASA Technical Reports Server (NTRS)
Waterman, A. W.; Huxford, R. L.; Nelson, W. G.
1976-01-01
Molded high temperature plastic first and second stage rod seal elements were evaluated in seal assemblies to determine performance characteristics. These characteristics were compared with the performance of machined seal elements. The 6.35 cm second stage Chevron seal assembly was tested using molded Chevrons fabricated from five molding materials. Impulse screening tests conducted over a range of 311 K to 478 K revealed thermal setting deficiencies in the aromatic polyimide molding materials. Seal elements fabricated from aromatic copolyester materials structurally failed during impulse cycle calibration. Endurance testing of 3.85 million cycles at 450 K using MIL-H-83283 fluid showed poorer seal performance with the unfilled aromatic polyimide material than had been attained with seals machined from Vespel SP-21 material. The 6.35 cm first stage step-cut compression loaded seal ring fabricated from copolyester injection molding material failed structurally during impulse cycle calibration. Molding of complex shape rod seals was shown to be a potentially controllable technique, but additional molding material property testing is recommended.
Electroforming of optical tooling in high-strength Ni-Co alloy
NASA Astrophysics Data System (ADS)
Stein, Berl
2003-05-01
Plastic optics are often mass produced by injection, compression or injection-compression molding. Optical quality molds can be directly machined in appropriate materials (tool steels, electroless nickel, aluminum, etc.), but much greater cost efficiency can be achieved with electroformed modl inserts. Traditionally, electroforming of optical quality mold inserts has been carried out in nickel, a material much softer than tool steels which, when hardened to 45 - 50 HRc usually exhibit high wear resistance and long service life (hundreds of thousands of impressions per mold). Because of their low hardness (< 20 HRc), nickel molds can produce only tens of thousands of parts before they are scrapped due to wear or accidental damage. This drawback prevented their wider usage in general plastic and optical mold making. Recently, NiCoForm has developed a proprietary Ni-CO electroforming bath combining the high strength and wear resistance of the alloy with the low stress and high replication fidelity typical of pure nickel electroforming. This paper will outline the approach to electroforming of optical quality tooling in low stress, high strength Ni-Co alloy and present several examples of electroformed NiColoy mold inserts.
Höll, S; Haupt, M; Fischer, U H P
2013-06-20
Optical simulation software based on the ray-tracing method offers easy and fast results in imaging optics. This method can also be applied in other fields of light propagation. For short distance communications, polymer optical fibers (POFs) are gradually gaining importance. This kind of fiber offers a larger core diameter, e.g., the step index POF features a core diameter of 980 μm. Consequently, POFs have a large number of modes (>3 million modes) in the visible range, and ray tracing could be used to simulate the propagation of light. This simulation method is applicable not only for the fiber itself but also for the key components of a complete POF network, e.g., couplers or other key elements of the transmission line. In this paper a demultiplexer designed and developed by means of ray tracing is presented. Compared to the classical optical design, requirements for optimal design differ particularly with regard to minimizing the insertion loss (IL). The basis of the presented key element is a WDM device using a Rowland spectrometer setup. In this approach the input fiber carries multiple wavelengths, which will be divided into multiple output fibers that transmit only one wavelength. To adapt the basic setup to POF, the guidance of light in this element has to be changed fundamentally. Here, a monolithic approach is presented with a blazed grating using an aspheric mirror to minimize most of the aberrations. In the simulations the POF is represented by an area light source, while the grating is analyzed for different orders and the highest possible efficiency. In general, the element should be designed in a way that it can be produced with a mass production technology like injection molding in order to offer a reasonable price. However, designing the elements with regard to injection molding leads to some inherent challenges. The microstructure of an optical grating and the thick-walled 3D molded parts both result in high demands on the injection molding process. This also requires complex machining of the molding tool. Therefore, different experiments are done to optimize the process parameter, find the best molding material, and find a suitable machining method for the molding tool. The paper will describe the development of the demultiplexer by means of ray-tracing simulations step by step. Also, the process steps and the realized solutions for the injection molding are described.
Pellet to Part Manufacturing System for CNCs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roschli, Alex C.; Love, Lonnie J.; Post, Brian K.
Oak Ridge National Laboratory’s Manufacturing Demonstration Facility worked with Hybrid Manufacturing Technologies to develop a compact prototype composite additive manufacturing head that can effectively extrude injection molding pellets. The head interfaces with conventional CNC machine tools enabling rapid conversion of conventional machine tools to additive manufacturing tools. The intent was to enable wider adoption of Big Area Additive Manufacturing (BAAM) technology and combine BAAM technology with conventional machining systems.
Ultrasonically-assisted Polymer Molding: An Evaluation
NASA Astrophysics Data System (ADS)
Moles, Matthew; Roy, Anish; Silberschmidt, Vadim
Energy reduction in extrusion and injection molding processes can be achieved by the introduction of ultrasonic energy. Polymer flow can be enhanced on application of ultrasonic vibration, which can reduce the thermal and pressure input requirements to produce the same molding; higher productivity may also be achieved. In this paper, a design of an ultrasound-assisted injection mold machine is explored. An extrusion-die design was augmented with a commercial 1.5 kW ultrasonic transducer and sonotrode designed to resonate close to 20 kHz with up to 100 μm vibration amplitude. The design was evaluated with modal and thermal analysis using finite-element analysis software. The use of numerical techniques, including computational fluid dynamics, fluid-structure interaction and coupled Lagrangian-Eulerian method, to predict the effect of ultrasound on polymer flow was considered. A sonotrode design utilizing ceramic to enhance thermal isolation was also explored.
An in-mold packaging process for plastic fluidic devices.
Yoo, Y E; Lee, K H; Je, T J; Choi, D S; Kim, S K
2011-01-01
Micro or nanofluidic devices have many channel shapes to deliver chemical solutions, body fluids or any fluids. The channels in these devices should be covered to prevent the fluids from overflowing or leaking. A typical method to fabricate an enclosed channel is to bond or weld a cover plate to a channel plate. This solid-to-solid bonding process, however, takes a considerable amount of time for mass production. In this study, a new process for molding a cover layer that can enclose open micro or nanochannels without solid-to-solid bonding is proposed and its feasibility is estimated. First, based on the design of a model microchannel, a brass microchannel master core was machined and a plastic microchannel platform was injection-molded. Using this molded platform, a series of experiments was performed for four process or mold design parameters. Some feasible conditions were successfully found to enclosed channels without filling the microchannels for the injection molding of a cover layer over the plastic microchannel platform. In addition, the bond strength and seal performance were estimated in a comparison with those done by conventional bonding or welding processes.
NASA Astrophysics Data System (ADS)
Bloß, P.; Böhme, A.; Müller, J.; Krajewsky, P.; Michaelis, J.
2014-05-01
A complete equipment for injection molding (IM) of a thermoplastic (TP) carrier and reaction injection molding (RIM) of polyurethane (PUR) coatings including IM and RIM machines, a color module for PUR, and a robot was built up. A modularly composed sliding split mold was constructed and manufactured allowing different parts including thicker (2 mm thickness) soft touch and thin (0.4 mm) lacquer PUR coatings. As TP PC/ABS and PA6 GF15 compounds were used, and aromatic and aliphatic PUR systems as well. From the parts made by IM+RIM, test specimens for peel force measurements were cut. These investigations were performed prior and after ageing under climatic conditions @ 50 % RH and temperature changes between -30 °C and 90 °C. By varying IM processing parameters, we have found that mold and TP temperatures are particularly important for the adhesion strength between TP and PUR. The waiting time between the end of TP cooling and PUR injection has a minor influence on its mean value. However, to short waiting times may result in inhomogeneous adhesion. It was surprising that surface defects of the TP carrier leads also to inhomogeneous adhesion. We have observed that ageing may cause an increase and decrease of adhesions strength depending on the TP+PUR system used. We have found that the results are valid only for the actual TP and PUR combination. A generalization seems to be inappropriate, hence, the actual combination should be investigated to prevent unwanted surprises when the coated TP part is in its application.
Optimization and Simulation of Plastic Injection Process using Genetic Algorithm and Moldflow
NASA Astrophysics Data System (ADS)
Martowibowo, Sigit Yoewono; Kaswadi, Agung
2017-03-01
The use of plastic-based products is continuously increasing. The increasing demands for thinner products, lower production costs, yet higher product quality has triggered an increase in the number of research projects on plastic molding processes. An important branch of such research is focused on mold cooling system. Conventional cooling systems are most widely used because they are easy to make by using conventional machining processes. However, the non-uniform cooling processes are considered as one of their weaknesses. Apart from the conventional systems, there are also conformal cooling systems that are designed for faster and more uniform plastic mold cooling. In this study, the conformal cooling system is applied for the production of bowl-shaped product made of PP AZ564. Optimization is conducted to initiate machine setup parameters, namely, the melting temperature, injection pressure, holding pressure and holding time. The genetic algorithm method and Moldflow were used to optimize the injection process parameters at a minimum cycle time. It is found that, an optimum injection molding processes could be obtained by setting the parameters to the following values: T M = 180 °C; P inj = 20 MPa; P hold = 16 MPa and t hold = 8 s, with a cycle time of 14.11 s. Experiments using the conformal cooling system yielded an average cycle time of 14.19 s. The studied conformal cooling system yielded a volumetric shrinkage of 5.61% and the wall shear stress was found at 0.17 MPa. The difference between the cycle time obtained through simulations and experiments using the conformal cooling system was insignificant (below 1%). Thus, combining process parameters optimization and simulations by using genetic algorithm method with Moldflow can be considered as valid.
NASA Astrophysics Data System (ADS)
Suharno, Bambang; Suharno, Lingga Pradinda; Saputro, Hantoro Restucondro; Irawan, Bambang; Prasetyadi, Tjokro; Ferdian, Deni; Supriyadi, Sugeng
2018-02-01
Surface roughness and microstructure play important role on orthodontic bracket quality. Therefore, orthodontic brackets need to have smooth surface roughness to reduce the friction and bacterial adhesion. Microstructure of orthodontic brackets also determine the mechanical properties and corrosion resistance. There are two methods to produce orthodontic bracket, investment casting and metal injection molding. The purpose of this study is to observe the surface roughness and microstructure of orthodontic bracket which were made from two different fabrication methods. To produce orthodontic bracket with metal injection molding method, 17-4 PH stainless steel feedstock was injected to the orthodontic bracket mold using injection molding machine. After injection, the binder was eliminated with solvent and thermal debinding. Solvent debinding process was conducted with hexane at 50 °C on magnetic stirrer for 1.5 hours. Thermal debinding process was conducted at 510 °C with 0.5 °C/min heat rate and 120 min holding time. Hereafter, sintering process were performed with vacuum tube furnace at 1360 °C with heat rate 5 °C/min and 90 min holding time in low vacuum atmosphere. To produce orthodontic bracket with investment casting method, the wax was injected into the mold then the wax pattern was arranged into the tree form. The tree form was then dipped into ceramic slurry and allowed to harden, the ceramic slurry has a thickness in the region of 10 mm. The ceramic mold was then heated at a temperature of over than 1100°C to strengthen the ceramic mold and to remove the remaining wax. After that, the molten 17-4 PH stainless steel was poured into the ceramic mold at a temperature of over 1600°C. The natural cooling process was carried out at temperature of 25°C, after which the ceramic mold was broken away. Then, the orthodontic bracket was cut from the tree form. The results show that the orthodontic bracket which were made with investment casting fabrication method have low porosity, high density, and there is no indication of secondary phase on the microstructure. However, it has rough brackets surface. Whereas, the production of orthodontic brackets using metal injection molding method resulted in better surface roughness. But, it has relatively high porosity, presence of another phase on the microstructure, and low density.
Deflectometric analysis of high volume injection molds for production of occupational eye wear.
Speck, Alexis; Zelzer, Benedikt; Speich, Marco; Börret, Rainer; Langenbucher, Achim; Eppig, Timo
2013-12-01
Most of the protective eye wear devices currently on the market are manufactured on simple polycarbonate shields, produced by injection molding techniques. Despite high importance of optical quality, injection molds are rarely inspected for surface quality before or during the manufacturing process. Quality degradation is mainly monitored by optical testing of the molded parts. The purpose of this work was to validate a non-contact deflectometric measurement technique for surface and shape analysis of injection molds to facilitate deterministic surface quality control and to monitor minor conformity of the injection mold with the design data. The system is based on phase-measuring deflectometry with a operating measurement field of 80×80 mm(2) (±18° slope), a lateral resolution of 60μm and a local sensitivity of some nanometers. The calibration was tested with a calibration normal and a reference sphere. The results were crosschecked against a measurement of the same object with a tactile coordinate measuring machine. Eight injection molds for production of safety goggles with radii of +58mm (convex) and -60mm (concave) were measured in this study. The molds were separated into two groups (cavity 1 and 2 of the tool with different polishing techniques) and measured to test whether the measurement tool could extract differences. The analysis was performed on difference height between the measured surface and the spherical model. The device could derive the surface change due to polishing and discriminate between both polishing techniques, on the basis of the measured data. The concave nozzle sides of the first group (cavity 1) showed good shape conformity. In comparison, the nozzle sides of the second group (cavity 2) showed local deviations from design data up to 14.4μm. Local form variations of about 5μm occurred in the field of view. All convex ejector sides of both groups (cavity 1 and 2) showed rotational symmetric errors and the molds were measured in general flatter than design data. We applied a deflectometric system for measuring and evaluating specular reflective injection molding tools to optimize the production process of occupational eye wear. The surface quality could be inline monitored in the production processes for actual spectacle models. Copyright © 2013. Published by Elsevier GmbH.
A study on the development of engineering plastic piston used in the shock absorber
NASA Astrophysics Data System (ADS)
Kim, Young-Ho; Bae, Won-Byong; Lim, Dong-Ju; Suh, Yun-Soo
1998-08-01
A piston is an important component of the shock absorber which determines comfortable riding and handling. Conventional piston is made of metal powder that is pressed in a mold, and then sintered at high temperatures below the melting point before machining processes such as drilling, sizing and teflon banding. This study aims at cutting down cost and weight, and improving the process by replacing the traditional sintering process used for manufacturing the shock absorber with the injection molding process adopting engineering plastics as raw material. To analyze the injection molding process, we used the commercial program, MOLDFLOW, and obtained an optimal combination of the process parameters. In addition, by comparing the engineering plastic piston with the metal powder piston through the formability and the performance experiments, we confirmed the availability of this alternative process suggested.
Strategies to improve electrode positioning and safety in cochlear implants.
Rebscher, S J; Heilmann, M; Bruszewski, W; Talbot, N H; Snyder, R L; Merzenich, M M
1999-03-01
An injection-molded internal supporting rib has been produced to control the flexibility of silicone rubber encapsulated electrodes designed to electrically stimulate the auditory nerve in human subjects with severe to profound hearing loss. The rib molding dies, and molds for silicone rubber encapsulation of the electrode, were designed and machined using AutoCad and MasterCam software packages in a PC environment. After molding, the prototype plastic ribs were iteratively modified based on observations of the performance of the rib/silicone composite insert in a clear plastic model of the human scala tympani cavity. The rib-based electrodes were reliably inserted farther into these models, required less insertion force and were positioned closer to the target auditory neural elements than currently available cochlear implant electrodes. With further design improvements the injection-molded rib may also function to accurately support metal stimulating contacts and wire leads during assembly to significantly increase the manufacturing efficiency of these devices. This method to reliably control the mechanical properties of miniature implantable devices with multiple electrical leads may be valuable in other areas of biomedical device design.
Wu, Linbo; Jing, Dianying; Ding, Jiandong
2006-01-01
A "room-temperature" injection molding approach combined with particulate leaching (RTIM/PL) has been, for the first time, developed in this work to fabricate three-dimensional porous scaffolds composed of biodegradable polyesters for tissue engineering. In this approach, a "wet" composite of particulate/polymer/solvent was used in processing, and thus the injection was not performed at melting state. Appropriate viscosity and flowability were facilely obtained at a certain solvent content so that the composite was able to be injected into a mould under low pressure at room temperature, which was very beneficial for avoiding thermal degradation of polyesters. As a demonstration, tubular and ear-shaped porous scaffolds were fabricated from biodegradable poly(D,L-lactide-co-glycolide) (PLGA) by this technology. Porosities of the resulting scaffolds were as high as 94%. The pores were well interconnected. Besides the well-known characteristics of injection molding to be suitable for automatization of a fabrication process with high repeatability and precision, this RTIM/PL approach is much suitable for tailoring highly porous foams with its advantages flexible for shaping complicated scaffolds, free of thermal degradation and high-pressure machine, etc.
Injection molded polymer optics in the 21st Century
NASA Astrophysics Data System (ADS)
Beich, William S.
2005-08-01
Precision polymer optics, manufactured by injection molding techniques, has been a key enabling technology for several decades now. The technology, which can be thought of as a subset of the wider field of precision optics manufacturing, was pioneered in the United States by companies such as Eastman Kodak, US Precision Lens, and Polaroid. In addition to suppliers in the U.S. there are several companies worldwide that design and manufacture precision polymer optics, for example Philips High Tech Plastics in Europe and Fujinon in Japan. Designers who are considering using polymer optics need a fundamental understanding of exactly how the optics are created. This paper will survey the technology and processes that are employed in the successful implementation of a polymer optic solution from a manufacturer's perspective. Special emphasis will be paid to the unique relationship between the molds and the optics that they produce. We will discuss the key elements of production: molding resins, molds and molding equipment, and metrology. Finally we will offer a case study to illustrate just how the optics designer carries a design concept through to production. The underlying theme throughout the discussion of polymer optics is the need for the design team to work closely with an experienced polymer optics manufacturer with a solid track record of success in molded optics. As will be seen shortly, the complex interaction between thermoplastics, molds, and molding machines dictates the need for working closely with a supplier who has the critical knowledge needed to manage all aspects of the program.
Exploratory development of foams from liquid crystal polymers
NASA Technical Reports Server (NTRS)
Chung, T. S.
1985-01-01
Two types of liquid crystal polymer (LCP) compositions were studied and evaluated as structural foam materials. One is a copolymer of 6-hydroxy-2-naphthoic acid, terephthalic acid, and p-acetoxyacetanilide (designed HNA/TA/AAA), and the other is a copolymer of p-hydroxybenzoic acid and 6-hydroxy-2-naphthoic acid (designated HBA/HNA). Experimental results showed that the extruded HNA/TA/AA foams have better mechanical quality and appearance than HBA/HNA foams. Heat treatment improved foam tensile strength and break elongation, but reduced their modulus. The injection molding results indicated that nitrogen foaming agents with a low-pressure process gave better void distribution in the injection molded LCP foams than those made by the conventional injection-molding machine and chemical blowing agents. However, in comparing LCP foams with other conventional plastic foams, HBA/HNA foams have better mechanical properties than foamed ABS and PS, but are comparable to PBT and inferior to polycarbonate foams, especially in heat-deflection temperature and impact resistance energy. These deficiencies are due to LCP molecules not having been fully oriented during the Union-Carbide low-pressure foaming process.
Data characterizing tensile behavior of cenosphere/HDPE syntactic foam
Kumar, B.R. Bharath; Doddamani, Mrityunjay; Zeltmann, Steven E.; Gupta, Nikhil; Ramakrishna, Seeram
2016-01-01
The data set presented is related to the tensile behavior of cenosphere reinforced high density polyethylene syntactic foam composites “Processing of cenosphere/HDPE syntactic foams using an industrial scale polymer injection molding machine” (Bharath et al., 2016) [1]. The focus of the work is on determining the feasibility of using an industrial scale polymer injection molding (PIM) machine for fabricating syntactic foams. The fabricated syntactic foams are investigated for microstructure and tensile properties. The data presented in this article is related to optimization of the PIM process for syntactic foam manufacture, equations and procedures to develop theoretical estimates for properties of cenospheres, and microstructure of syntactic foams before and after failure. Included dataset contains values obtained from the theoretical model. PMID:26937472
NASA Technical Reports Server (NTRS)
1981-01-01
Manufacturer of the Model 2210 copying machine was looking for a plastic valve bushing material that could be produced by a low-cost injection molding process to replace the unsuitable valve bushing they were using. NERAC conducted a computer search of the NASA database and was able to supply Nashua Corporation with several technical reports in their area of interest. Information aided the company's development of a urethane valve bushing which solved the problem and created a dramatic reduction in unit cost.
Research on mechanical properties of carbon fiber /polyamide reinforced PP composites
NASA Astrophysics Data System (ADS)
Chen, Xinghui; Yu, Qiang; Liu, Lixia; Ji, Wenhua; Yang, Li; Fan, Dongli
2017-10-01
The polyamide composites reinforced by carbon fiber/polypropylene are produced by injection molding processing. The flow abilities and mechanical properties of the CF/PA/PP composite materials are studied by the fusion index instrument and the universal testing machine. The results show that with the content of carbon fiber/polyamide increase, the impact breaking strength and the tensile property of the composite materials increase, which is instructive to the actual injection production of polypropylene products.
Factors influencing microinjection molding replication quality
NASA Astrophysics Data System (ADS)
Vera, Julie; Brulez, Anne-Catherine; Contraires, Elise; Larochette, Mathieu; Trannoy-Orban, Nathalie; Pignon, Maxime; Mauclair, Cyril; Valette, Stéphane; Benayoun, Stéphane
2018-01-01
In recent years, there has been increased interest in producing and providing high-precision plastic parts that can be manufactured by microinjection molding: gears, pumps, optical grating elements, and so on. For all of these applications, the replication quality is essential. This study has two goals: (1) fabrication of high-precision parts using the conventional injection molding machine; (2) identification of robust parameters that ensure production quality. Thus, different technological solutions have been used: cavity vacuuming and the use of a mold coated with DLC or CrN deposits. AFM and SEM analyses were carried out to characterize the replication profile. The replication quality was studied in terms of the process parameters, coated and uncoated molds and crystallinity of the polymer. Specific studies were processed to quantify the replicability of injection molded parts (ABS, PC and PP). Analysis of the Taguchi experimental designs permits prioritization of the impact of each parameter on the replication quality. A discussion taking into account these new parameters and the thermal and spreading properties on the coatings is proposed. It appeared that, in general, increasing the mold temperature improves the molten polymer fill in submicron features except for the steel insert (for which the presence of a vacuum is the most important factor). Moreover, the DLC coating was the best coating to increase the quality of the replication. This result could be explained by the lower thermal diffusivity of this coating. We noted that the viscosity of the polymers is not a primordial factor of the replication quality.
Low-Cost Production of Composite Bushings for Jet Engine Applications
NASA Technical Reports Server (NTRS)
Gray, Robert A.
1998-01-01
The objectives of this research program were to reduce the manufacturing costs of variable stator vane bushings by 1) eliminating the expensive carbon fiber braiding operation, 2) replacing the batch mode impregnation, B-stage, and cutting operations with a continuous process, and 3) reducing the molding cycle and machining operations with injection molding to achieve near-net shapes. Braided bushings were successfully fabricated with both AMB-17XLD and AMB-TPD resin systems. The composite bushings achieved high glass transition temperature after post-cure (+300 C) and comparable weight loss to the PNM-15 bushings. ANM-17XLD bushings made with "batch-mode" molding compound (at 0.5 in. fiber length) achieved a +300 lb-force flange break strength which was superior to the continuous braided-fiber reinforced bushing. The non-MDA resin technology developed in this contract appears attractive for bushing applications that do not exceed a 300 C use temperature. Two thermoplastic polyimide resins were synthesized in order to generate injection molding compound powders. Excellent processing results were obtained at injection temperatures in excess of 300 C. Micro-tensile specimens were produced from each resin type and the Tg measurements (by TMA) for these samples were equivalent to AURUM(R). Thermal Gravimetric Analysis (TGA) conducted at 10 C/min showed that the non-MDA AMB-type polyimide thermoplastics had comparable weight loss to PMR-15 up to 500 C.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nguyen, Ba Nghiep; Sanborn, Scott E.; Mathur, Raj N.
2014-08-15
This report describes the technical progresses made during the third quarter of FY 2014: 1) Autodesk introduced the options for fiber inlet condition to the 3D solver. These options are already available in the mid-plane/dual domain solver. 2) Autodesk improved the accuracy of 3D fiber orientation calculation around the gate. 3) Autodesk received consultant services from Prof. C.L. Tucker at the University of Illinois on the implementation of the reduced order model for fiber length, and discussed with Prof. Tucker the methods to reduce memory usage. 4) PlastiComp delivered to PNNL center-gated and edge-fan-gated 20-wt% to 30-wt% LCF/PP and LCF/PA66more » (7”x7”x1/8”) plaques molded by the in-line direct injection molding (D-LFT) process. 5) PlastiComp molded ASTM tensile, flexural and impact bars under the same D-LFT processing conditions used for plaques for Certification of Assessment and ascertaining the resultant mechanical properties. 6) Purdue developed a new polishing routine, utilizing the automated polishing machine, to reduce fiber damage during surface preparation. 7) Purdue used a marker-based watershed segmentation routine, in conjunction with a hysteresis thresholding technique, for fiber segmentation during fiber orientation measurement. 8) Purdue validated Purdue’s fiber orientation measurement method using the previous fiber orientation data obtained from the Leeds machine and manually measured data by the University of Illinois. 9) PNNL conducted ASMI mid-plane analyses for a 30wt% LCF/PP plaque and compared the predicted fiber orientations with the measured data provided by Purdue University at the selected locations on this plaque. 10) PNNL put together the DOE 2014 Annual Merit Review (AMR) presentation with the team and presented it at the AMR meetings on June 17, 2014. 11) PNNL built ASMI dual domain models for the Toyota complex part and commenced mold filling analyses of the complex part with different wall thicknesses in order to support part molding. 12) Toyota and Magna discussed with PNNL on tool modification for molding the complex part. Toyota sent the CAD files of the complex part to PNNL to build ASMI models of the part for mold filling analysis to provide guidance to tooling and part molding.« less
NASA Astrophysics Data System (ADS)
Hafizzal, Y.; Nurulhuda, A.; Izman, S.; Khadir, AZA
2017-08-01
POM-copolymer bond breaking leads to change depending with respect to processing methodology and material geometries. This paper present the oversights effect on the material integrity due to different geometries and processing methodology. Thermo-analytical methods with reference were used to examine the degradation of thermomechanical while Thermogravimetric Analysis (TGA) was used to judge the thermal stability of sample from its major decomposition temperature. Differential Scanning Calorimetry (DSC) investigation performed to identify the thermal behaviour and thermal properties of materials. The result shown that plastic gear geometries with injection molding at higher tonnage machine more stable thermally rather than resin geometries. Injection plastic gear geometries at low tonnage machine faced major decomposition temperatures at 313.61°C, 305.76 °C and 307.91 °C while higher tonnage processing method are fully decomposed at 890°C, significantly higher compared to low tonnage condition and resin geometries specimen at 398°C. Chemical composition of plastic gear geometries with injection molding at higher and lower tonnage are compare based on their moisture and Volatile Organic Compound (VOC) content, polymeric material content and the absence of filler. Results of higher moisture and Volatile Organic Compound (VOC) content are report in resin geometries (0.120%) compared to higher tonnage of injection plastic gear geometries which is 1.264%. The higher tonnage of injection plastic gear geometry are less sensitive to thermo-mechanical degradation due to polymer chain length and molecular weight of material properties such as tensile strength, flexural strength, fatigue strength and creep resistance.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bloß, P., E-mail: bloss@kuz-leipzig.de, E-mail: juettner@kuz-leipzig.de, E-mail: jacob@kuz-leipzig.de, E-mail: loeser@kuz-leipzig.de, E-mail: michaelis@kuz-leipzig.de, E-mail: krajewsky@kuz-leipzig.de; Jüttner, G., E-mail: bloss@kuz-leipzig.de, E-mail: juettner@kuz-leipzig.de, E-mail: jacob@kuz-leipzig.de, E-mail: loeser@kuz-leipzig.de, E-mail: michaelis@kuz-leipzig.de, E-mail: krajewsky@kuz-leipzig.de; Jacob, S., E-mail: bloss@kuz-leipzig.de, E-mail: juettner@kuz-leipzig.de, E-mail: jacob@kuz-leipzig.de, E-mail: loeser@kuz-leipzig.de, E-mail: michaelis@kuz-leipzig.de, E-mail: krajewsky@kuz-leipzig.de
2014-05-15
Micro plastic parts open new fields for application, e. g., to electronics, sensor technologies, optics, and medical engineering. Before micro parts can go to mass production, there is a strong need of having the possibility for testing different designs and materials including material combinations. Hence, flexible individual technical and technological solutions for processing are necessary. To manufacture high quality micro parts, a micro injection moulding machine named formicaPlast based on a two-step plunger injection technology was developed. Resulting from its design, the residence time and the accuracy problems for managing small shot volumes with reproducible high accuracy are uncompromisingly solved.more » Due to their simple geometry possessing smooth transitions and non adherent inner surfaces, the plunger units allow to process 'all' thermoplastics from polyolefines to high performance polymers, optical clear polymers, thermally sensitive bioresorbables, highly filled systems (the so-called powder injection molding PIM), and liquid silicon rubber (LSR, here with a special kit). The applied platform strategy in the 1K and 2K version allows integrating automation for assembling, handling and packaging. A perpendicular arrangement allows encapsulation of inserts, also partially, and integration of this machine into process chains. Considering a wide variety of different parts consisting of different materials, the high potential of the technology is demonstrated. Based on challenging industrial parts from electronic applications (2K micro MID and bump mat, where both are highly structured parts), the technological solutions are presented in more detail.« less
Desai, Parind M; Puri, Vibha; Brancazio, David; Halkude, Bhakti S; Hartman, Jeremy E; Wahane, Aniket V; Martinez, Alexander R; Jensen, Keith D; Harinath, Eranda; Braatz, Richard D; Chun, Jung-Hoon; Trout, Bernhardt L
2018-01-01
We developed and evaluated a solvent-free injection molding (IM) coating technology that could be suitable for continuous manufacturing via incorporation with IM tableting. Coating formulations (coating polymers and plasticizers) were prepared using hot-melt extrusion and screened via stress-strain analysis employing a universal testing machine. Selected coating formulations were studied for their melt flow characteristics. Tablets were coated using a vertical injection molding unit. Process parameters like softening temperature, injection pressure, and cooling temperature played a very important role in IM coating processing. IM coating employing polyethylene oxide (PEO) based formulations required sufficient room humidity (>30% RH) to avoid immediate cracks, whereas other formulations were insensitive to the room humidity. Tested formulations based on Eudrajit E PO and Kollicoat IR had unsuitable mechanical properties. Three coating formulations based on hydroxypropyl pea starch, PEO 1,000,000 and Opadry had favorable mechanical (<700MPa Young's modulus, >35% elongation, >95×10 4 J/m 3 toughness) and melt flow (>0.4g/min) characteristics, that rendered acceptable IM coats. These three formulations increased the dissolution time by 10, 15 and 35min, respectively (75% drug release), compared to the uncoated tablets (15min). Coated tablets stored in several environmental conditions remained stable to cracking for the evaluated 8-week time period. Copyright © 2017 Elsevier B.V. All rights reserved.
ERIC Educational Resources Information Center
Manpower Administration (DOL), Washington, DC. U.S. Training and Employment Service.
The United States Training and Employment Service General Aptitude Test Battery (GATB), first published in 1947, has been included in a continuing program of research to validate the tests against success in many different occupations. The GATB consists of 12 tests which measure nine aptitudes: General Learning Ability; Verbal Aptitude; Numerical…
Federal Register 2010, 2011, 2012, 2013, 2014
2013-05-15
... Kimball, NE 69145. electrical components and parts for alarms and security systems. AGY Aiken, LLC 2556... 28451. machine components and various injection molded parts. L.E.F., Inc 9401 E. 54th Street, 5/9/2013..., and electrical apparatus. Any party having a substantial interest in these proceedings may request a...
TRUFLO GONDOLA, USED WITH THE HUNTER 10 MOLDING MACHINE, OPERATES ...
TRUFLO GONDOLA, USED WITH THE HUNTER 10 MOLDING MACHINE, OPERATES THE SAME AS THE TWO LARGER TRUFLOS USED IN CONJUNCTION WITH THE TWO HUNTER 20S. EACH GONDOLA IS CONNECTED TO THE NEXT AND RIDES ON A SINGLE TRACK RAIL FROM MOLDING MACHINES THROUGH POURING AREAS CARRYING A MOLD AROUND TWICE BEFORE THE MOLD IS PUSHED OFF ONTO A VIBRATING SHAKEOUT CONVEYOR. - Southern Ductile Casting Company, Casting, 2217 Carolina Avenue, Bessemer, Jefferson County, AL
NASA Technical Reports Server (NTRS)
Wiesner, Valerie L.; Youngblood, Jeffrey; Trice, Rodney
2014-01-01
Room-temperature injection molding is proposed as a novel, low-cost and more energy efficient manufacturing process capable of forming complex-shaped zirconium diboride (ZrB2) parts. This innovative processing method utilized aqueous suspensions with high powder loading and a minimal amount (5 vol.) of water-soluble polyvinylpyrrolidone (PVP), which was used as a viscosity modifier. Rheological characterization was performed to evaluate the room-temperature flow properties of ZrB2-PVP suspensions. ZrB2 specimens were fabricated with high green body strength and were machinable prior to binder removal despite their low polymer content. After binder burnout and pressureless sintering, the bulk density and microstructure of specimens were characterized using Archimedes technique and scanning electron microscopy. X-Ray Diffraction was used to determine the phase compositions present in sintered specimens. Ultimate strength of sintered specimens will be determined using ASTM C1323-10 compressive C-ring test.
Remelt Ingot Production Technology
NASA Astrophysics Data System (ADS)
Grandfield, J. F.
The technology related to the production of remelt ingots (small ingots, sows and T-Bar) is reviewed. Open mold conveyors, sow casting, wheel and belt casting and VDC and HDC casting are described and compared. Process economics, capacity, product quality and process problems are listed. Trends in casting machine technology such as longer open mold conveyor lines are highlighted. Safety issues related to the operation of these processes are discussed. The advantages and disadvantages of the various machine configurations and options e.g. such as dry filling with the mold out of water and wet filling with the mold in water for open mould conveyors are discussed. The effect of mold design on machine productivity, mold cracking and mold life is also examined.
Porous media heat transfer for injection molding
Beer, Neil Reginald
2016-05-31
The cooling of injection molded plastic is targeted. Coolant flows into a porous medium disposed within an injection molding component via a porous medium inlet. The porous medium is thermally coupled to a mold cavity configured to receive injected liquid plastic. The porous medium beneficially allows for an increased rate of heat transfer from the injected liquid plastic to the coolant and provides additional structural support over a hollow cooling well. When the temperature of the injected liquid plastic falls below a solidifying temperature threshold, the molded component is ejected and collected.
Investigation of micro-injection molding based on longitudinal ultrasonic vibration core.
Qiu, Zhongjun; Yang, Xue; Zheng, Hui; Gao, Shan; Fang, Fengzhou
2015-10-01
An ultrasound-assisted micro-injection molding method is proposed to improve the rheological behavior of the polymer melt radically, and a micro-injection molding system based on a longitudinal ultrasonic vibration core is developed and employed in the micro-injection molding process of Fresnel lenses. The verification experiments show that the filling mold area of the polymer melt is increased by 6.08% to 19.12%, and the symmetric deviation of the Fresnel lens is improved 15.62% on average. This method improved the filling performance and replication quality of the polymer melt in the injection molding process effectively.
VIEW OF INTERIOR OF SOUTHERN DUCTILE CASTING COMPANY, CENTERVILLE FOUNDRY ...
VIEW OF INTERIOR OF SOUTHERN DUCTILE CASTING COMPANY, CENTERVILLE FOUNDRY SHOWING MOLD MAKING WITH PNEWMATIC JOLT SQUEEZE COPE AND DRAG MOLDING MACHINES THAT INDIVIDUALLY MADE EITHER A COPE OR DRAG AND A SMALL WHEELED MATCHPLATE JOLT-SQUEEZE MACHINE THAT COMPRESSED AN ENTIRE MOLD AT A SINGLE TIME USING A DOUBLE-SIDED PATTERN (MATCHPLATE). ALSO SHOWN ARE RAILED PALLET CAR CONVEYORS THAT CARRIED COMPLETED MOLDS FROM MOLDING MACHINES TO POURING AREAS WHERE WORKERS USED SMALL OVERHEAD CRANE TO LIFT JACKETS AND WEIGHTS ONTO THE MOLDS TO HOLD THEM TOGETHER WHILE POURING. - Southern Ductile Casting Company, Centerville Foundry, 101 Airport Road, Centreville, Bibb County, AL
NASA Astrophysics Data System (ADS)
Wibowo, Y. T.; Baskoro, S. Y.; Manurung, V. A. T.
2018-02-01
Plastic based products spread all over the world in many aspects of life. The ability to substitute other materials is getting stronger and wider. The use of plastic materials increases and become unavoidable. Plastic based mass production requires injection process as well Mold. The milling process of plastic mold steel material was done using HSS End Mill cutting tool that is widely used in a small and medium enterprise for the reason of its ability to be re sharpened and relatively inexpensive. Study on the effect of the geometry tool states that it has an important effect on the quality improvement. Cutting speed, feed rate, depth of cut and radii are input parameters beside to the tool path strategy. This paper aims to investigate input parameter and cutting tools behaviors within some different tool path strategy. For the reason of experiments efficiency Taguchi method and ANOVA were used. Response studied is surface roughness and cutting behaviors. By achieving the expected quality, no more additional process is required. Finally, the optimal combination of machining parameters will deliver the expected roughness and of course totally reduced cutting time. However actually, SMEs do not optimally use this data for cost reduction.
Chung, Philip; Heller, J Alex; Etemadi, Mozziyar; Ottoson, Paige E; Liu, Jonathan A; Rand, Larry; Roy, Shuvo
2014-06-27
Biologically inert elastomers such as silicone are favorable materials for medical device fabrication, but forming and curing these elastomers using traditional liquid injection molding processes can be an expensive process due to tooling and equipment costs. As a result, it has traditionally been impractical to use liquid injection molding for low-cost, rapid prototyping applications. We have devised a method for rapid and low-cost production of liquid elastomer injection molded devices that utilizes fused deposition modeling 3D printers for mold design and a modified desiccator as an injection system. Low costs and rapid turnaround time in this technique lower the barrier to iteratively designing and prototyping complex elastomer devices. Furthermore, CAD models developed in this process can be later adapted for metal mold tooling design, enabling an easy transition to a traditional injection molding process. We have used this technique to manufacture intravaginal probes involving complex geometries, as well as overmolding over metal parts, using tools commonly available within an academic research laboratory. However, this technique can be easily adapted to create liquid injection molded devices for many other applications.
Fundamentals of rapid injection molding for microfluidic cell-based assays.
Lee, Ulri N; Su, Xiaojing; Guckenberger, David J; Dostie, Ashley M; Zhang, Tianzi; Berthier, Erwin; Theberge, Ashleigh B
2018-01-30
Microscale cell-based assays have demonstrated unique capabilities in reproducing important cellular behaviors for diagnostics and basic biological research. As these assays move beyond the prototyping stage and into biological and clinical research environments, there is a need to produce microscale culture platforms more rapidly, cost-effectively, and reproducibly. 'Rapid' injection molding is poised to meet this need as it enables some of the benefits of traditional high volume injection molding at a fraction of the cost. However, rapid injection molding has limitations due to the material and methods used for mold fabrication. Here, we characterize advantages and limitations of rapid injection molding for microfluidic device fabrication through measurement of key features for cell culture applications including channel geometry, feature consistency, floor thickness, and surface polishing. We demonstrate phase contrast and fluorescence imaging of cells grown in rapid injection molded devices and provide design recommendations to successfully utilize rapid injection molding methods for microscale cell-based assay development in academic laboratory settings.
Prosthetics & Orthotics Manufacturing Initiative (POMI)
2012-12-21
the two materials. The rod was then put onto a lathe machine, allowing a thin sheet, with stripes of alternating materials, to be cut from the rod...tooling from. Mentis determined a method to use Aquacore, which involved machining blanks via CNC , followed by coating the mold to prevent resin...infusion into the mold. Mentis also attempted to use plaster combined with CNC machining, however, these molds did not survive the machining process
Injection molding of iPP samples in controlled conditions and resulting morphology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sessa, Nino, E-mail: ninosessa.ns@gmail.com; De Santis, Felice, E-mail: fedesantis@unisa.it; Pantani, Roberto, E-mail: rpantani@unisa.it
2015-12-17
Injection molded parts are driven down in size and weight especially for electronic applications. In this work, an investigation was carried out on the process of injection molding of thin iPP samples and on the morphology of these parts. Melt flow in the mold cavity was analyzed and described with a mathematical model. Influence of mold temperature and injection pressure was analyzed. Samples orientation was studied using optical microscopy.
Injection molding ceramics to high green densities
NASA Technical Reports Server (NTRS)
Mangels, J. A.; Williams, R. M.
1983-01-01
The injection molding behavior of a concentrated suspension of Si powder in wax was studied. It was found that the injection molding behavior was a function of the processing techniques used to generate the powder. Dry ball-milled powders had the best molding behavior, while air classified and impact-milled powders demonstrated poorer injection moldability. The relative viscosity of these molding batches was studied as a function of powder properties: distribution shape, surface area, packing density, and particle morphology. The experimental behavior, in all cases, followed existing theories. The relative viscosity of an injection molding composition composed of dry ball-milled powders could be expressed using Farris' relation.
Design and Checking Analysis of Injection Mold for a Plastic Cup
NASA Astrophysics Data System (ADS)
Li, Xuebing
2018-03-01
A special injection mold was designed for the structural characteristics of a plastic cup part. The mold was simulated by Moldflow software and verified by calculating the stripping force, the pulling force and the clamping force of the mold so that to determine the appropriate injection parameters. It has been proved that the injection mold is effective and practical in the actual producing and can meet the quality requirements during the course of using it, which solved some problems for injection molding of this kind of parts and can provide some reference for the production of other products in the same industry.
Effects of process parameters in plastic, metal, and ceramic injection molding processes
NASA Astrophysics Data System (ADS)
Lee, Shi W.; Ahn, Seokyoung; Whang, Chul Jin; Park, Seong Jin; Atre, Sundar V.; Kim, Jookwon; German, Randall M.
2011-09-01
Plastic injection molding has been widely used in the past and is a dominant forming approach today. As the customer demands require materials with better engineering properties that were not feasible with polymers, powder injection molding with metal and ceramic powders has received considerable attention in recent decades. To better understand the differences in the plastic injection molding, metal injection molding, and ceramic injection molding, the effects of the core process parameters on the process performances has been studied using the state-of-the-art computer-aided engineering (CAE) design tool, PIMSolver® The design of experiments has been conducted using the Taguchi method to obtain the relative contributions of various process parameters onto the successful operations.
Chung, Philip; Heller, J. Alex; Etemadi, Mozziyar; Ottoson, Paige E.; Liu, Jonathan A.; Rand, Larry; Roy, Shuvo
2014-01-01
Biologically inert elastomers such as silicone are favorable materials for medical device fabrication, but forming and curing these elastomers using traditional liquid injection molding processes can be an expensive process due to tooling and equipment costs. As a result, it has traditionally been impractical to use liquid injection molding for low-cost, rapid prototyping applications. We have devised a method for rapid and low-cost production of liquid elastomer injection molded devices that utilizes fused deposition modeling 3D printers for mold design and a modified desiccator as an injection system. Low costs and rapid turnaround time in this technique lower the barrier to iteratively designing and prototyping complex elastomer devices. Furthermore, CAD models developed in this process can be later adapted for metal mold tooling design, enabling an easy transition to a traditional injection molding process. We have used this technique to manufacture intravaginal probes involving complex geometries, as well as overmolding over metal parts, using tools commonly available within an academic research laboratory. However, this technique can be easily adapted to create liquid injection molded devices for many other applications. PMID:24998993
Digital Twin concept for smart injection molding
NASA Astrophysics Data System (ADS)
Liau, Y.; Lee, H.; Ryu, K.
2018-03-01
Injection molding industry has evolved over decades and became the most common method to manufacture plastic parts. Monitoring and improvement in the injection molding industry are usually performed separately in each stage, i.e. mold design, mold making and injection molding process. However, in order to make a breakthrough and survive in the industrial revolution, all the stages in injection molding need to be linked and communicated with each other. Any changes in one stage will cause a certain effect in other stage because there is a correlation between each other. Hence, the simulation should not only based on the input of historical data, but it also needs to include the current condition of equipment and prediction of future events in other stages to make the responsive decision. This can be achieved by implementing the concept of Digital Twin that models the entire process as a virtual model and enables bidirectional control with the physical process. This paper presented types of data and technology required to build the Digital Twin for the injection molding industry. The concept includes Digital Twin of each stage and integration of these Digital Twin model as a thoroughgoing model of the injection molding industry.
The effect of cycling deflection on the injection-molded thermoplastic denture base resins.
Hamanaka, Ippei; Iwamoto, Misa; Lassila, Lippo Vj; Vallittu, Pekka K; Shimizu, Hiroshi; Takahashi, Yutaka
2016-01-01
The aim of this study was to evaluate the effect of cycling deflection on the flexural behavior of injection-molded thermoplastic resins. Six injection-molded thermoplastic resins (two polyamides, two polyesters, one polycarbonate, one polymethyl methacrylate) and, as a control, a conventional heat-polymerized denture based polymer of polymethyl methacrylate (PMMA) were used in this study. The cyclic constant magnitude (1.0 mm) of 5000 cycles was applied using a universal testing machine to demonstrate plasticization of the polymer. Loading was carried out in water at 23ºC with eight specimens per group (n = 8). Cycling load (N) and deformation (mm) were measured. Force required to deflect the specimens during the first loading cycle and final loading cycle was statistically significantly different (p < 0.05) with one polyamide based polymer (Valplast) and PMMA based polymers (Acrytone and Acron). The other polyamide based polymer (LucitoneFRS), polyester based polymers (EstheShot and EstheShotBright) and polycarbonate based polymer (ReigningN) did not show significant differences (p > 0.05). None of the materials fractured during the loading test. One polyamide based polymer (Valplast) displayed the highest deformation and PMMA based polymers (Acrytone and Acron) exhibited the second highest deformation among the denture base materials. It can be concluded that there were considerable differences in the flexural behavior of denture base polymers. This may contribute to the fatigue resistance of the materials.
Melocchi, Alice; Loreti, Giulia; Del Curto, Maria Dorly; Maroni, Alessandra; Gazzaniga, Andrea; Zema, Lucia
2015-06-01
The exploitation of hot-melt extrusion and injection molding for the manufacturing of immediate-release (IR) tablets was preliminarily investigated in view of their special suitability for continuous manufacturing, which represents a current goal of pharmaceutical production because of its possible advantages in terms of improved sustainability. Tablet-forming agents were initially screened based on processability by single-screw extruder and micromolding machine as well as disintegration/dissolution behavior of extruded/molded prototypes. Various polymers, such as low-viscosity hydroxypropylcellulose, polyvinyl alcohol, polyvinyl alcohol-polyethylene glycol graft copolymer, various sodium starch glycolate grades (e.g., Explotab(®) CLV) that could be processed with no need for technological aids, except for a plasticizer, were identified. Furthermore, the feasibility of both extruded and molded IR tablets from low-viscosity hydroxypropylcellulose or Explotab(®) CLV was assessed. Explotab(®) CLV, in particular, showed thermoplastic properties and a very good aptitude as a tablet-forming agent, starting from which disintegrating tablets were successfully obtained by either techniques. Prototypes containing a poorly soluble model drug (furosemide), based on both a simple formulation (Explotab(®) CLV and water/glycerol as plasticizers) and formulations including dissolution/disintegration adjuvants (soluble and effervescent excipients) were shown to fulfill the USP 37 dissolution requirements for furosemide tablets. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.
Puri, Vibha; Brancazio, Dave; Desai, Parind M; Jensen, Keith D; Chun, Jung-Hoon; Myerson, Allan S; Trout, Bernhardt L
2017-11-01
The combination of hot-melt extrusion and injection molding (HME-IM) is a promising process technology for continuous manufacturing of tablets. However, there has been limited research on its application to formulate crystalline drug-containing immediate-release tablets. Furthermore, studies that have applied the HME-IM process to molded tablets have used a noncontinuous 2-step approach. The present study develops maltodextrin (MDX)-based extrusion-molded immediate-release tablets for a crystalline drug (griseofulvin) using an integrated twin-screw HME-IM continuous process. At 10% w/w drug loading, MDX was selected as the tablet matrix former based on a preliminary screen. Furthermore, liquid and solid polyols were evaluated for melt processing of MDX and for impact on tablet performance. Smooth-surfaced tablets, comprising crystalline griseofulvin solid suspension in the amorphous MDX-xylitol matrix, were produced by a continuous process on a twin-screw extruder coupled to a horizontally opening IM machine. Real-time HME process profiles were used to develop automated HME-IM cycles. Formulation adjustments overcame process challenges and improved tablet strength. The developed MDX tablets exhibited adequate strength and a fast-dissolving matrix (85% drug release in 20 min), and maintained performance on accelerated stability conditions. Copyright © 2017 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nguyen, Ba Nghiep; Fifield, Leonard S.; Mathur, Raj N.
2014-09-30
During the last quarter of FY 2014, the following technical progress has been made toward project milestones: 1) Autodesk, Inc. (Autodesk) has implemented a new fiber length distribution (FLD) model based on an unbreakable length assumption with Reduced Order Modeling (ROM) by the Proper Orthogonal Decomposition (POD) approach in the mid-plane, dual-domain and 3D solvers. 2) Autodesk improved the ASMI 3D solver for fiber orientation prediction using the anisotropic rotary diffusion (ARD) – reduced strain closure (RSC) model. 3) Autodesk received consultant services from Prof. C.L. Tucker at the University of Illinois on numerical simulation of fiber orientation and fibermore » length. 4) PlastiComp, Inc. (PlastiComp) suggested to Purdue University a procedure for fiber separation using an inert-gas atmosphere in the burn-off furnace. 5) Purdue University (Purdue) hosted a face-to-face project review meeting at Purdue University on August 6-7, 2014. 6) Purdue conducted fiber orientation measurements for 3 PlastiComp plaques: fast-fill 30wt% LCF/PP edged-gated, slow-fill 50wt% LCF/PP edge-gated, and slow-fill 50wt% LCF/PP center-gated plaques, and delivered the orientation data for these plaques at the selected locations (named A, B, and C) to PNNL. 7) PNNL conducted ASMI mid-plane analyses for the above PlastiComp plaques and compared the predicted fiber orientations with the measured data provided by Purdue at Locations A, B, and C on these plaques. 8) PNNL planned the project review meeting (August 6-7, 2014) with Purdue. 9) PNNL performed ASMI analyses for the Toyota complex parts with and without ribs, having different wall thicknesses, and using the PlastiComp 50wt% LCF/PP, 50wt% LCF/PA66, 30wt% LCF/PP, and 30wt% LCF/PA66 materials to provide guidance for tool design and modifications needed for molding these parts. 10) Magna Exteriors and Interiors Corp. (Magna) molded plaques from the 50% LCF/PP and 50% LCF/PA66 materials received from Plasticomp in order to extract machine purgings (purge materials) from Magna’s 200-Ton Injection Molding machine targeted to mold the complex part. 11) Toyota and Magna discussed with PNNL tool modification for molding the complex part.« less
NASA Astrophysics Data System (ADS)
Yu, Yishan
The influence of various fillers, nucleating agents and ethylene propylene diene terpolymer (EPDM) additive on crystalline modification (alpha-, beta- and smectic forms) and crystalline orientation of polypropylene in die extrudates, melt spun filaments, thick rods, blow molded bottles and injection molded parts of isotactic polypropylene (PP), its blends/compounds and dynamically vulcanized polypropylene thermoplastic elastomers (TPEs) were experimentally studied under a range of cooling and processing conditions. The phenomena of crystallization, polymorphism and orientation in processing of both thin and thick samples (filaments, rods, bottles and injection molded parts) were simulated through transport laws incorporating polymer crystallization kinetics. Continuous cooling transformation (CCT) curves for the various material systems investigated were developed under quiescent and uniaxial stress conditions. We applied experimental data on polymorphism of thin sections to predict crystalline structure variation in thick parts. The predictions were consistent with experiments. For filaments, the polypropylene crystalline orientation-spinline stress relationship is generally similar for the neat PP, blends/compounds and TPEs. However, the blends and TPEs have much lower birefringence apparently due to a lack of orientation in the rubber phase. It was shown that the polypropylene contribution to the birefringence for the neat PP and its blends is the same at the same spinline stress. For bottles, the inflation pressures used have little effect on orientation of either polypropylene crystals or disc-shaped talc filler. The talc discs are highly oriented parallel to the bottle surface. For the bottles without talc, the orientation of polypropylene crystallographic axes are low. The polypropylene crystallographic b-axes in the talc filled bottles are more highly oriented. For injection molded parts, it was found that a low orientation layer exists between the part surface and an intermediate highly oriented layer in the parts of neat PP and its blends/compounds. The thickness of this layer increases as the injection pressure decreases. This layer was not formed in the TPE parts. This would seem to be associated with the TPEs exhibiting a yield stress in shear flow and not exhibiting fountain flow in mold filling. For all parts studied, the orientation characteristics of polypropylene crystallographic axes in the highly oriented layer are similar from sample to sample. The strong orientation of the c-axis parallel to the machine direction and the b-axis perpendicular to the machine direction are observed in the highly oriented layer. The talc discs in both the highly oriented layer and the intermediate position are highly oriented parallel to the part face due to melt flow. At intermediate position in the talc-filled parts, the polypropylene crystallographic (040) planes prefer to align themselves parallel to the part surface but are not so well oriented when the talc is absent.
Development of integrated control system for smart factory in the injection molding process
NASA Astrophysics Data System (ADS)
Chung, M. J.; Kim, C. Y.
2018-03-01
In this study, we proposed integrated control system for automation of injection molding process required for construction of smart factory. The injection molding process consists of heating, tool close, injection, cooling, tool open, and take-out. Take-out robot controller, image processing module, and process data acquisition interface module are developed and assembled to integrated control system. By adoption of integrated control system, the injection molding process can be simplified and the cost for construction of smart factory can be inexpensive.
Interface conditions of two-shot molded parts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kisslinger, Thomas, E-mail: thomas.kisslinger@pccl.at; Bruckmoser, Katharina, E-mail: katharina.bruckmoser@unileoben.ac.at; Resch, Katharina, E-mail: katharina.resch@unileoben.ac.at
2014-05-15
The focus of this work is on interfaces of two-shot molded parts. It is well known that e.g. material combination, process parameters and contact area structures show significant effects on the bond strength of multi-component injection molded parts. To get information about the bond strength at various process parameter settings and material combinations a test mold with core back technology was used to produce two-component injection molded tensile test specimens. At the core back process the different materials are injected consecutively, so each component runs through the whole injection molding cycle (two-shot process). Due to this consecutive injection molding processes,more » a cold interface is generated. This is defined as overmolding of a second melt to a solidified polymer preform. Strong interest lies in the way the interface conditions change during the adhesion formation between the individual components. Hence the interface conditions were investigated by computed tomography and Raman spectroscopy. By analyzing these conditions the understanding of the adhesion development during the multi-component injection molding was improved.« less
NASA Astrophysics Data System (ADS)
Park, Keun; Lee, Sang-Ik
2010-03-01
High-frequency induction is an efficient, non-contact means of heating the surface of an injection mold through electromagnetic induction. Because the procedure allows for the rapid heating and cooling of mold surfaces, it has been recently applied to the injection molding of thin-walled parts or micro/nano-structures. The present study proposes a localized heating method involving the selective use of mold materials to enhance the heating efficiency of high-frequency induction heating. For localized induction heating, a composite injection mold of ferromagnetic material and paramagnetic material is used. The feasibility of the proposed heating method is investigated through numerical analyses in terms of its heating efficiency for localized mold surfaces and in terms of the structural safety of the composite mold. The moldability of high aspect ratio micro-features is then experimentally compared under a variety of induction heating conditions.
Investigation of the adhesion interface obtained through two-component injection molding
NASA Astrophysics Data System (ADS)
Fetecau, Catalin; Stan, Felicia; Dobrea, Daniel
2011-01-01
In this paper we study the interface strength obtained through two-component (2C) injection molding of LDPE-HDPE polymers. First, numerical simulation of the over-molding process is carried out using Moldflow technology. Second, butt-joint specimens were produced by over-molding under different process condition, and tested. Two injection sequences were considered, injection of LDPE on HDPE polymer, and HDLE on LDPE, respectively. To investigate the effects of the mold surface roughness on the polymers adhesion at interface, different inserts with different roughness are employed.
Elevated-temperature Deformation Mechanisms in Ta2C: An Experimental Study
2013-01-01
result, tan- talum carbides have found uses in a variety of wear- resis - tant applications including machine tooling, coatings for injection molding...HIP billet. In addition , the near surface of the bil- let was mechanically ground to remove any possible inter- diffusion reaction zone between the...mounted in a conductive epoxy for handling. TEM foils were prepared by ultrasonically drilling 3 mm discs from the cross-sections using a Fischione
Three-dimensional numerical simulation for plastic injection-compression molding
NASA Astrophysics Data System (ADS)
Zhang, Yun; Yu, Wenjie; Liang, Junjie; Lang, Jianlin; Li, Dequn
2018-03-01
Compared with conventional injection molding, injection-compression molding can mold optical parts with higher precision and lower flow residual stress. However, the melt flow process in a closed cavity becomes more complex because of the moving cavity boundary during compression and the nonlinear problems caused by non-Newtonian polymer melt. In this study, a 3D simulation method was developed for injection-compression molding. In this method, arbitrary Lagrangian- Eulerian was introduced to model the moving-boundary flow problem in the compression stage. The non-Newtonian characteristics and compressibility of the polymer melt were considered. The melt flow and pressure distribution in the cavity were investigated by using the proposed simulation method and compared with those of injection molding. Results reveal that the fountain flow effect becomes significant when the cavity thickness increases during compression. The back flow also plays an important role in the flow pattern and redistribution of cavity pressure. The discrepancy in pressures at different points along the flow path is complicated rather than monotonically decreased in injection molding.
NASA Astrophysics Data System (ADS)
Shahbudin, S. N. A.; Othman, M. H.; Amin, Sri Yulis M.; Ibrahim, M. H. I.
2017-08-01
This article is about a review of optimization of metal injection molding and microwave sintering process on tungsten cemented carbide produce by metal injection molding process. In this study, the process parameters for the metal injection molding were optimized using Taguchi method. Taguchi methods have been used widely in engineering analysis to optimize the performance characteristics through the setting of design parameters. Microwave sintering is a process generally being used in powder metallurgy over the conventional method. It has typical characteristics such as accelerated heating rate, shortened processing cycle, high energy efficiency, fine and homogeneous microstructure, and enhanced mechanical performance, which is beneficial to prepare nanostructured cemented carbides in metal injection molding. Besides that, with an advanced and promising technology, metal injection molding has proven that can produce cemented carbides. Cemented tungsten carbide hard metal has been used widely in various applications due to its desirable combination of mechanical, physical, and chemical properties. Moreover, areas of study include common defects in metal injection molding and application of microwave sintering itself has been discussed in this paper.
Injection molding lens metrology using software configurable optical test system
NASA Astrophysics Data System (ADS)
Zhan, Cheng; Cheng, Dewen; Wang, Shanshan; Wang, Yongtian
2016-10-01
Optical plastic lens produced by injection molding machine possesses numerous advantages of light quality, impact resistance, low cost, etc. The measuring methods in the optical shop are mainly interferometry, profile meter. However, these instruments are not only expensive, but also difficult to alignment. The software configurable optical test system (SCOTS) is based on the geometry of the fringe refection and phase measuring deflectometry method (PMD), which can be used to measure large diameter mirror, aspheric and freeform surface rapidly, robustly, and accurately. In addition to the conventional phase shifting method, we propose another data collection method called as dots matrix projection. We also use the Zernike polynomials to correct the camera distortion. This polynomials fitting mapping distortion method has not only simple operation, but also high conversion precision. We simulate this test system to measure the concave surface using CODE V and MATLAB. The simulation results show that the dots matrix projection method has high accuracy and SCOTS has important significance for on-line detection in optical shop.
Processing of sintered alpha SiC
NASA Technical Reports Server (NTRS)
Storm, R. S.
1984-01-01
Processing methods of sintered alpha SiC for engine applications are developed in a cost effective manner, using a submicron sized powder blended with sintering aids (boron and carbon). The processes for forming a green powder compact, such as dry pressing, cold isostatic pressing and green machining, slip casting, aqueous extrusion, plastic extrusion, and injection molding, are described. Dry pressing is the simplest route to component fabrication, and is carried out at approximately 10,000 psi pressure, while in the cold isostatic method the pressure could go as high as 20,000 psi. Surfactants are added to control settling rates and casting characteristics in the slip casting. The aqueous extrusion process is accomplished by a hydraulic ram forcing the aqueous mixture through a die. The plastic forming processes of extrusion and injection molding offer the potential of greater diversity in shape capacity. The physical properties of sintered alpha SiC (hardness, Young's modulus, shear modulus, and thermal diffusivity) are extensively tested. Corrosion resistance test results of silicon carbide are included.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peters, E.M.; Masso, J.D.
This project involved the manufacturing of curved-faceted, injection-molded, four-element Fresnel lens parquets for concentrating photovoltaic arrays. Previous efforts showed that high-efficiency (greater than 82%) Fresnel concentrators could be injection molded. This report encompasses the mold design, molding, and physical testing of a four-lens parquet for a solar photovoltaic concentrator system.
Robison, Nathan E; Tantbirojn, Daranee; Versluis, Antheunis; Cagna, David R
2016-08-01
Denture tooth fracture or debonding remains a common problem in removable prosthodontics. The purpose of this in vitro study was to explore factors determining failure strengths for combinations of different denture tooth designs (shape, materials) and injection or compression molded denture base resins. Three central incisor denture tooth designs were tested: nanohybrid composite (NHC; Ivoclar Phonares II), interpenetrating network (IPN; Dentsply Portrait), and microfiller reinforced polyacrylic (MRP; VITA Physiodens). Denture teeth of each type were processed on an injection molded resin (IvoBase HI; Ivoclar Vivadent AG) or a compression molded resin (Lucitone 199; Dentsply Intl) (n=11 or 12). The denture teeth were loaded at 45 degrees on the incisal edge. The failure load was recorded and analyzed with 2-way ANOVA (α=.05), and the fracture mode was categorized from observed fracture surfaces as cohesive, adhesive, or mixed failure. The following failure loads (mean ±SD) were recorded: NHC/injection molded 280 ±52 N; IPN/injection molded 331 ±41 N; MRP/injection molded 247 ±23 N; NHC/compression molded 204 ±31 N; IPN/compression molded 184 ±17 N; MRP/compression molded 201 ±16 N. Injection molded resin yielded significantly higher failure strength for all denture teeth (P<.001), among which IPN had the highest strength. Failure was predominantly cohesive in the teeth, with the exception of mixed mode for the IPN/compression group. When good bonding was achieved, the strength of the structure (denture tooth/base resin combination) was determined by the strength of the denture teeth, which may be affected by the processing technique. Copyright © 2016 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.
Herman Winata; Lih-Sheng Turng; Daniel F. Caulfield; Tom Kuster; Rick Spindler; Rod Jacobson
2003-01-01
In this study, a cellulose-fiber-reinforced Polyamide-6 (PA-6) composite, a hybrid composite (PA-6/cellulose/Wollastonite), and the neat PA-6 resin were injection molded into ASTM testâbar samples with conventional and microcellular injection molding. The impact and tensile strengths of molded samples were measured and the Scanning Electron Microscopy (SEM) images were...
Analysis of roll-stamped light guide plate fabricated with laser-ablated stamper
NASA Astrophysics Data System (ADS)
Na, Hyunjun; Hong, Seokkwan; Kim, Jongsun; Hwang, Jeongho; Joo, Byungyun; Yoon, Kyunghwan; Kang, Jeongjin
2017-12-01
LGP (light guide plate) is one of the major components of LCD (liquid crystal display), and it makes surface illumination for LCD backlit. LGP is a transparent plastic plate usually produced by injection molding process. On the back of LGP there are micron size patterns for extraction of light. Recently a roll-stamping process has achieved the high mass productivity of thinner LGPs. In order to fabricate optical patterns on LGPs, a fabricating tool called as a stamper is used. Micro patterns on metallic stampers are made by several micro machining processes such as chemical etching, LIGA-reflow, and laser ablation. In this study, a roll-stamping process by using a laser ablated metallic stamper was dealt with in consideration of the compatibility with the roll-stamping process. LGP fabricating tests were performed using a roll-stamping process with four different roll pressures. Pattern shapes on the stamper fabricated by laser ablation and transcription ratios of the roll-stamping process were analyzed, and LGP luminance was evaluated. Based on the evaluation, optical simulation model for LGP was made and simulation accuracy was evaluated. Simulation results showed good agreements with optical performance of LGPs in the brightness and uniformity. It was also shown that the roll-stamped LGP has the possibility of better optical performance than the conventional injection molded LGP. It was also shown that the roll-stamped LGP with the laser ablated stamper is potential to have better optical performance than the conventional injection molded LGP.
Wilson, S E; Brubaker, R F
1987-01-01
The possibility that injection-molded intraocular lenses (IOLs) with imperfections called iridescent clefts could have a decreased threshold to neodymium: YAG (Nd:YAG) laser-induced damage was investigated. Thresholds for Nd:YAG laser-induced damage were determined for injection-molded and lathe-cut polymethylmethacrylate lenses. When aimed at a membrane in contact with a posterior convex surface, the average thresholds were 0.96 +/- 0.18 mJ (Standard deviation [SD]) and 1.80 +/- 0.55 mJ, respectively. The difference was significant at P = 0.001. When injection-molding polymethylmethacrylate was used to make lathe-cut IOLs, very few iridescent clefts were present, and the threshold to Nd:YAG laser-induced damage was 0.94 +/- 0.25 mJ. Iridescent clefts are therefore produced during the injection-molding process but they do not lower the threshold to Nd:YAG laser-induced damage. Rather, the reduced threshold in injection-molded lenses is most probably a result of the polymethylmethacrylate used in their manufacture. Clinically, iridescent clefts in a lens suggest that it has been manufactured by an injection-molding process and that Nd:YAG laser posterior capsulotomy must be performed at the lowest possible energy level to avoid damage.
The erosion resistance of tool alloys in foundry melt the Zamak 4 - 1
NASA Astrophysics Data System (ADS)
Muhametzyanova, GF; Kolesnikov, M. S.; Muhametzyanov, I. R.
2016-06-01
The paper considers the resistance against erosion dissolution in the melt of foundry Zamak 4 - 1 die steels used for press machine parts manufacturing for injection molding, and hard alloys system WC - Co. It is established that the solubility in the melt Zamak - 4 - 1 steel of 4H5MFS and DI - 22 are promising for the parts fabrication of metal-wire casting machines of CLT and IDRA types. A significant reserve to increase the resistance of metal wires is the use of cast steel, as well as in electroslag and electro-beam remelting options. Metal-ceramic alloy doped with chromium VK25H may be recommended for reinforcement of heavily loaded parts of the press-nodes of hot casting machines under pressure.
Cho, E; Kim, B; Choi, S; Han, J; Jin, J; Han, J; Lim, J; Heo, Y; Kim, S; Sung, G Y; Kang, S
2011-01-01
This paper introduces technology to fabricate a guided mode resonance filter biochip using injection molding. Of the various nanofabrication processes that exist, injection molding is the most suitable for the mass production of polymer nanostructures. Fabrication of a nanograting pattern for guided mode resonance filters by injection molding requires a durable metal stamp, because of the high injection temperature and pressure. Careful consideration of the optimized process parameters is also required to achieve uniform sub-wavelength gratings with high fidelity. In this study, a metallic nanostructure pattern to be used as the stamp for the injection molding process was fabricated using electron beam lithography, a UV nanoimprinting process, and an electroforming process. A one-dimensional nanograting substrate was replicated by injection molding, during which the process parameters were controlled. To evaluate the geometric quality of the injection molded nanograting patterns, the surface profile of the fabricated nanograting for different processing conditions was analyzed using an atomic force microscope and a scanning electron microscope. Finally, to demonstrate the feasibility of the proposed process for fabricating guided mode resonance filter biochips, a high-refractive-index material was deposited on the polymer nanograting and its guided mode resonance characteristics were analyzed.
Effects of mold geometry on fiber orientation of powder injection molded metal matrix composites
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ahmad, Faiz, E-mail: faizahmad@petronas.com.my; Aslam, Muhammad, E-mail: klaira73@gmail.com; Altaf, Khurram, E-mail: khurram.altaf@petronas.com.my
2015-07-22
Fiber orientations in metal matrix composites have significant effect on improving tensile properties. Control of fiber orientations in metal injection molded metal composites is a difficult task. In this study, two mold cavities of dimensions 6x6x90 mm and 10x20x180 mm were used for comparison of fiber orientation in injection molded metal composites test parts. In both mold cavities, convergent and divergent flows were developed by modifying the sprue dimensions. Scanning electron microscope (SEM) was used to examine the fiber orientations within the test samples. The results showed highly aligned fiber in injection molded test bars developed from the convergent melt flow. Randommore » orientation of fibers was noted in the composites test bars produced from divergent melt flow.« less
NASA Astrophysics Data System (ADS)
Weng, Can; Wang, Fei; Zhou, Mingyong; Yang, Dongjiao; Jiang, Bingyan
2018-04-01
A comparison of processes and wettability characteristics was presented for injection molded superhydrophobic polypropylene surfaces from two fabricating strategies. One is the biomimetic replication of patterns from indocalamus leaf in nature. The contact angle of water sitting on this PP surface was measured as 152 ± 2°, with comparable wetting behavior to natural indocalamus leaf surface. The other strategy is the fabrication of superhydrophobic structure by combining methods that produce structures at different length scales. Regarding both the machinability of mold inserts and function-oriented design, three micro-quadrangular arrays and one hierarchical micro-nano cylinder array were designed with the goal of superhydrophobicity. Particularly, a simple approach to the fabrication of hierarchical structures was proposed by combining the anodized plate and the punching plate. The function-oriented design targets as superhydrophobicity were all reached for the designed four structures. The measured contact angles of droplet for these structures were almost consistent with the calculated equilibrium contact angles from thermodynamic analysis. Among them, the contact angle of droplet on the surface of designed hierarchical structure reached about 163° with the sliding angle of 5°, resulting in self-cleaning characteristic. The superhydrophobicity of function-oriented designed polymer surfaces could be modified and controlled, which is exactly the limitation of replicating from natural organisms.
Static Mixer for Heat Transfer Enhancement for Mold Cooling Application
NASA Astrophysics Data System (ADS)
Becerra, Rodolfo; Barbosa, Raul; Lee, Kye-Hwan; Park, Younggil
Injection molding is the process by which a material is melted in a barrel and then it is injected through a nozzle in the mold cavity. When it cools down, the material solidifies into the shape of the cavity. Typical injection mold has cooling channels to maintain constant mold temperature during injection molding process. Even and constant temperature throughout the mold are very critical for a part quality and productivity. Conformal cooling improves the quality and productivity of injection molding process through the implementation of cooling channels that ``conform'' to the shape of the molded part. Recent years, the use of conformal cooling increases with advance of 3D printing technology such as Selective Laser Melting (SLM). Although it maximizes cooling, material and dimension limitations make SLM methods highly expensive. An alternative is the addition of static mixers in the molds with integrated cooling channels. A static mixer is a motionless mixing device that enhances heat transfer by producing improved flow mixing in the pipeline. In this study, the performance of the cooling channels will be evaluated with and without static mixers, by measuring temperature, pressure drop, and flow rate. The following question is addressed: Can a static mixer effectively enhance heat transfer for mold cooling application processes? This will provide insight on the development of design methods and guidelines that can be used to increase cooling efficiency at a lower cost.
Injection Molding Parameters Calculations by Using Visual Basic (VB) Programming
NASA Astrophysics Data System (ADS)
Tony, B. Jain A. R.; Karthikeyen, S.; Alex, B. Jeslin A. R.; Hasan, Z. Jahid Ali
2018-03-01
Now a day’s manufacturing industry plays a vital role in production sectors. To fabricate a component lot of design calculation has to be done. There is a chance of human errors occurs during design calculations. The aim of this project is to create a special module using visual basic (VB) programming to calculate injection molding parameters to avoid human errors. To create an injection mold for a spur gear component the following parameters have to be calculated such as Cooling Capacity, Cooling Channel Diameter, and Cooling Channel Length, Runner Length and Runner Diameter, Gate Diameter and Gate Pressure. To calculate the above injection molding parameters a separate module has been created using Visual Basic (VB) Programming to reduce the human errors. The outcome of the module dimensions is the injection molding components such as mold cavity and core design, ejector plate design.
NASA Astrophysics Data System (ADS)
Steiner, Matthias
A statistically proven, series injection molding technique for ceramic components was developed for the construction of engines and gas turbines. The flow behavior of silicon injection-molding materials was characterized and improved. Hot-isostatic-pressing reaction bonded silicon nitride (HIPRBSN) was developed. A nondestructive component evaluation method was developed. An injection molding line for HIPRBSN engine components precombustion chamber, flame spreader, and valve guide was developed. This line allows the production of small series for engine tests.
NASA Astrophysics Data System (ADS)
Ellingham, Thomas; Kharbas, Hrishikesh; Manitiu, Mihai; Scholz, Guenter; Turng, Lih-Sheng
2018-03-01
A three-stage molding process involving microcellular injection molding with core retraction and an "out-of-mold" expansion was developed to manufacture thermoplastic polyurethane into lightweight foams of varying local densities, microstructures, and mechanical properties in the same microcellular injection molded part. Two stages of cavity expansion through sequential core retractions and a third expansion in a separate mold at an elevated temperature were carried out. The densities varied from 0.25 to 0.42 g/cm3 (77% to 62% weight reduction). The mechanical properties varied as well. Cyclic compressive strengths and hysteresis loss ratios, together with the microstructures, were characterized and reported.
Computer-aided injection molding system
NASA Astrophysics Data System (ADS)
Wang, K. K.; Shen, S. F.; Cohen, C.; Hieber, C. A.; Isayev, A. I.
1982-10-01
Achievements are reported in cavity-filling simulation, modeling viscoelastic effects, measuring and predicting frozen-in birefringence in molded parts, measuring residual stresses and associated mechanical properties of molded parts, and developing an interactive mold-assembly design program and an automatic NC maching data generation and verification program. The Cornell Injection Molding Program (CIMP) consortium is discussed as are computer user manuals that have been published by the consortium. Major tasks which should be addressed in future efforts are listed, including: (1) predict and experimentally determine the post-fillin behavior of thermoplastics; (2) simulate and experimentally investigate the injection molding of thermosets and filled materials; and (3) further investigate residual stresses, orientation and mechanical properties.
NASA Astrophysics Data System (ADS)
1981-01-01
The heat pipe, a sealed chamber whose walls are lined with a "wick," a thin capillary network containing a working fluid in liquid form was developed for a heat distribution system for non-rotating satellites. Use of the heat pipe provides a continuous heat transfer mechanism. "Heat tubes" that improve temperature control in plastics manufacturing equipment incorporated the heat pipe technology. James M. Stewart, an independent consultant, patented the heat tubes he developed and granted a license to Kona Corporation. The Kona Nozzle for heaterless injection molding gets heat for its operation from an external source and has no internal heating bands, reducing machine maintenance and also eliminating electrical hazards associated with heater bands. The nozzles are used by Eastman Kodak, Bic Pen Corporation, Polaroid, Tupperware, Ford Motor Company, RCA, and Western Electric in the molding of their products.
Fabrication of injection molded sintered alpha SiC turbine components
NASA Technical Reports Server (NTRS)
Storm, R. S.; Ohnsorg, R. W.; Frechette, F. J.
1981-01-01
Fabrication of a sintered alpha silicon carbide turbine blade by injection molding is described. An extensive process variation matrix was carried out to define the optimum fabrication conditions. Variation of molding parameters had a significant impact on yield. Turbine blades were produced in a reasonable yield which met a rigid quality and dimensional specification. Application of injection molding technology to more complex components such as integral rotors is also described.
Mathematical modeling of the process of filling a mold during injection molding of ceramic products
NASA Astrophysics Data System (ADS)
Kulkov, S. N.; Korobenkov, M. V.; Bragin, N. A.
2015-10-01
Using the software package Fluent it have been predicted of the filling of a mold in injection molding of ceramic products is of great importance, because the strength of the final product is directly related to the presence of voids in the molding, making possible early prediction of inaccuracies in the mold prior to manufacturing. The calculations were performed in the formulation of mathematical modeling of hydrodynamic turbulent process of filling a predetermined volume of a viscous liquid. The model used to determine the filling forms evaluated the influence of density and viscosity of the feedstock, and the injection pressure on the mold filling process to predict the formation of voids in the area caused by the shape defect geometry.
Quick-connect threaded attachment joint
NASA Technical Reports Server (NTRS)
Lucy, M. H.; Messick, W. R.; Vasquez, P.
1979-01-01
Joint is self-aligning and tightens with only sixty-five degrees of rotation for quick connects and disconnects. Made of injection-molded plastics or cast or machined aluminum, joint can carry wires, tubes, liquids, or gases. When two parts of joint are brought together, their shapes align them. Small projections on male section and slots on female section further aid alignment; slight rotation of male form engages projections in slots. At this point, threads engage and male section is rotated until joint is fully engaged.
Comparison of Fit of Dentures Fabricated by Traditional Techniques Versus CAD/CAM Technology.
McLaughlin, J Bryan; Ramos, Van; Dickinson, Douglas P
2017-11-14
To compare the shrinkage of denture bases fabricated by three methods: CAD/CAM, compression molding, and injection molding. The effect of arch form and palate depth was also tested. Nine titanium casts, representing combinations of tapered, ovoid, and square arch forms and shallow, medium, and deep palate depths, were fabricated using electron beam melting (EBM) technology. For each base fabrication method, three poly(vinyl siloxane) impressions were made from each cast, 27 dentures for each method. Compression-molded dentures were fabricated using Lucitone 199 poly methyl methacrylate (PMMA), and injection molded dentures with Ivobase's Hybrid Pink PMMA. For CAD/CAM, denture bases were designed and milled by Avadent using their Light PMMA. To quantify the space between the denture and the master cast, silicone duplicating material was placed in the intaglio of the dentures, the titanium master cast was seated under pressure, and the silicone was then trimmed and recovered. Three silicone measurements per denture were recorded, for a total of 243 measurements. Each silicone measurement was weighed and adjusted to the surface area of the respective arch, giving an average and standard deviation for each denture. Comparison of manufacturing methods showed a statistically significant difference (p = 0.0001). Using a ratio of the means, compression molding had on average 41% to 47% more space than injection molding and CAD/CAM. Comparison of arch/palate forms showed a statistically significant difference (p = 0.023), with shallow palate forms having more space with compression molding. The ovoid shallow form showed CAD/CAM and compression molding had more space than injection molding. Overall, injection molding and CAD/CAM fabrication methods produced equally well-fitting dentures, with both having a better fit than compression molding. Shallow palates appear to be more affected by shrinkage than medium or deep palates. Shallow ovoid arch forms appear to benefit from the use of injection molding compared to CAD/CAM and compression molding. © 2017 by the American College of Prosthodontists.
Applications of nanocomposites and woodfiber plastics for microcellular injection molding
Lih-Sheng Turng; Mingjun Yuan; Hrishikesh Kharbas; Herman Winata; Daniel F. Caulfield
2003-01-01
The paper reviews the processing advantages and challenges of microcellular injection molding and presents recent research results on applications of nanocomposites and woodfiber-plastic composites as well as new process develop for the microcellular injection molding process. In particular, two types of polyamide (PA-6) neat resins and their filled counterparts, such...
Slimeware: engineering devices with slime mold.
Adamatzky, Andrew
2013-01-01
The plasmodium of the acellular slime mold Physarum polycephalum is a gigantic single cell visible to the unaided eye. The cell shows a rich spectrum of behavioral patterns in response to environmental conditions. In a series of simple experiments we demonstrate how to make computing, sensing, and actuating devices from the slime mold. We show how to program living slime mold machines by configurations of repelling and attracting gradients and demonstrate the workability of the living machines on tasks of computational geometry, logic, and arithmetic.
Parameter Optimization Of Natural Hydroxyapatite/SS316l Via Metal Injection Molding (MIM)
NASA Astrophysics Data System (ADS)
Mustafa, N.; Ibrahim1, M. H. I.; Amin, A. M.; Asmawi, R.
2017-01-01
Metal injection molding (MIM) are well known as a worldwide application of powder injection molding (PIM) where as applied the shaping concept and the beneficial of plastic injection molding but develops the applications to various high performance metals and alloys, plus metal matrix composites and ceramics. This study investigates the strength of green part by using stainless steel 316L/ Natural hydroxyapatite composite as a feedstock. Stainless steel 316L (SS316L) was mixed with Natural hydroxyapatite (NHAP) by adding 40 wt. % Low Density Polyethylene and 60 %wt. Palm Stearin as a binder system at 63 wt. % powder loading consist of 90 % wt. of SS316 L and 10 wt. % NHAP prepared thru critical powder volume percentage (CPVC). Taguchi method was functional as a tool in determining the optimum green strength for Metal Injection Molding (MIM) parameters. The green strength was optimized with 4 significant injection parameter such as Injection temperature (A), Mold temperature (B), Pressure (C) and Speed (D) were selected throughout screening process. An orthogonal array of L9 (3)4 was conducted. The optimum injection parameters for highest green strength were established at A1, B2, C0 and D1 and where as calculated based on Signal to Noise Ratio.
Fabrication of sinterable silicon nitride by injection molding
NASA Technical Reports Server (NTRS)
Quackenbush, C. L.; French, K.; Neil, J. T.
1982-01-01
Transformation of structural ceramics from the laboratory to production requires development of near net shape fabrication techniques which minimize finish grinding. One potential technique for producing large quantities of complex-shaped parts at a low cost, and microstructure of sintered silicon nitride fabricated by injection molding is discussed and compared to data generated from isostatically dry-pressed material. Binder selection methodology, compounding of ceramic and binder components, injection molding techniques, and problems in binder removal are discussed. Strength, oxidation resistance, and microstructure of sintered silicon nitride fabricated by injection molding is discussed and compared to data generated from isostatically dry-pressed material.
Improved silicon carbide for advanced heat engines. I - Process development for injection molding
NASA Technical Reports Server (NTRS)
Whalen, Thomas J.; Trela, Walter
1989-01-01
Alternate processing methods have been investigated as a means of improving the mechanical properties of injection-molded SiC. Various mixing processes (dry, high-sheer, and fluid) were evaluated along with the morphology and particle size of the starting beta-SiC powder. Statistically-designed experiments were used to determine significant effects and interactions of variables in the mixing, injection molding, and binder removal process steps. Improvements in mechanical strength can be correlated with the reduction in flaw size observed in the injection molded green bodies obtained with improved processing methods.
Numerical prediction of flow induced fibers orientation in injection molded polymer composites
NASA Astrophysics Data System (ADS)
Oumer, A. N.; Hamidi, N. M.; Mat Sahat, I.
2015-12-01
Since the filling stage of injection molding process has important effect on the determination of the orientation state of the fibers, accurate analysis of the flow field for the mold filling stage becomes a necessity. The aim of the paper is to characterize the flow induced orientation state of short fibers in injection molding cavities. A dog-bone shaped model is considered for the simulation and experiment. The numerical model for determination of the fibers orientation during mold-filling stage of injection molding process was solved using Computational Fluid Dynamics (CFD) software called MoldFlow. Both the simulation and experimental results showed that two different regions (or three layers of orientation structures) across the thickness of the specimen could be found: a shell region which is near to the mold cavity wall, and a core region at the middle of the cross section. The simulation results support the experimental observations that for thin plates the probability of fiber alignment to the flow direction near the mold cavity walls is high but low at the core region. It is apparent that the results of this study could assist in decisions regarding short fiber reinforced polymer composites.
Study on In-mold Punching during PPS/GF Injection Molding
NASA Astrophysics Data System (ADS)
Inuzuka, Takayuki; Fujita, Akihiro; Nakai, Asami; Hamada, Hiroyuki
The influence of the punching condition on strength and the amount of shear droop was investigated to optimize the processing condition for punching in the mold during glass fiber reinforced polyphenylenesulfide (PPS/GF) injection molding. For in-mold punching part during cooling process, the tensile strength was constant because the pressure loss by the punch did not occur. The amount of the shear droop decreased in line with the increase in delay time because the rigidity of injection molded part in the mold increased when the resin was cooled. Moreover, when the resin temperature lowered more than the glass transition temperature, the amount of the shear droop was constant because the rigidity became constant. It is necessary to begin punching when the resin temperature lowers more than the glass transition temperature after holding pressure process is completed, to secure high strength and to assume 0.05 mm or less, at which level the shear droop cannot be visually recognized. The shortest delay time for PPS/GF is 8 sec. The delay time to minimize the amount of the shear droop can be guessed by analyzing the temperature change of the resin in the mold by injection molding CAE.
Cicala, Gianluca; Latteri, Alberta; Del Curto, Barbara; Lo Russo, Alessio; Recca, Giuseppe; Farè, Silvia
2017-01-28
Among additive manufacturing techniques, the filament-based technique involves what is referred to as fused deposition modeling (FDM). FDM materials are currently limited to a selected number of polymers. The present study focused on investigating the potential of using high-end engineering polymers in FDM. In addition, a critical review of the materials available on the market compared with those studied here was completed. Different engineering thermoplastics, ranging from industrial grade polycarbonates to novel polyetheretherketones (PEEKs), were processed by FDM. Prior to this, for innovative filaments based on PEEK, extrusion processing was carried out. Mechanical properties (i.e., tensile and flexural) were investigated for each extruded material. An industrial-type FDM machine (Stratasys Fortus® 400 mc) was used to fully characterize the effect of printing parameters on the mechanical properties of polycarbonate. The obtained properties were compared with samples obtained by injection molding. Finally, FDM samples made of PEEK were also characterized and compared with those obtained by injection molding. The effect of raster to raster air gap and raster angle on tensile and flexural properties of printed PC was evidenced; the potential of PEEK filaments, as novel FDM material, was highlighted in comparison to state of the art materials. Comparison with injection molded parts allowed to better understand FDM potential for functional applications. The study discussed pros and cons of the different materials. Finally, the development of novel PEEK filaments achieved important results offering a novel solution to the market when high mechanical and thermal properties are required.
NASA Astrophysics Data System (ADS)
Lin, Dongguo; Kang, Tae Gon; Han, Jun Sae; Park, Seong Jin; Chung, Seong Taek; Kwon, Young-Sam
2018-02-01
Both experimental and numerical analysis of powder injection molding (PIM) of Ti-6Al-4V alloy were performed to prepare a defect-free high-performance Ti-6Al-4V part with low carbon/oxygen contents. The prepared feedstock was characterized with specific experiments to identify its viscosity, pressure-volume-temperature and thermal properties to simulate its injection molding process. A finite-element-based numerical scheme was employed to simulate the thermomechanical process during the injection molding. In addition, the injection molding, debinding, sintering and hot isostatic pressing processes were performed in sequence to prepare the PIMed parts. With optimized processing conditions, the PIMed Ti-6Al-4V part exhibits excellent physical and mechanical properties, showing a final density of 99.8%, tensile strength of 973 MPa and elongation of 16%.
Brittle Materials Design, High Temperature Gas Turbine
1975-04-01
was directed toward fabricating flaw- free one-piece first stage stators using a silicon metal powder injection molding composition yielding reaction...process was used because this composition utilizes thermoset polymers which cannot be handled on available injection molding equipment. Silicon...molded of several compositions incorporating slight variations. Some of the components molded had completely filled the die cavity and appeared
NASA Astrophysics Data System (ADS)
Scantamburlo, Andrea; Gazzola, Luca; Sorgato, Marco; Lucchetta, Giovanni
2018-05-01
In parts manufactured by injection molding of long glass fiber reinforced polypropylene, the local fiber orientation, fiber concentration and fiber length distribution varies along both the thickness direction and the flow path. This heterogeneous microstructure significantly influences the mechanical properties variability in the molded parts. The aim of this work is to investigate the influence of the matrix viscosity, the injection speed and the mold geometry on the fiber concentration distribution. In particular, the factors involved in fiber-matrix separation and fiber pull-out during the injection phases were analyzed in order to understand the phenomenon.
NASA Astrophysics Data System (ADS)
Kuhn, Sascha; Burr, August; Kübler, Michael; Deckert, Matthias; Bleesen, Christoph
2011-02-01
In this paper the replication qualities of periodically and randomly arranged micro-features molded in the injection molding process and their effects on surface properties are studied. The features are molded in PC, PMMA and PP at different mold wall temperatures in order to point out the necessity and profitability of a variotherm mold wall temperature control system. A one-dimensional heat conduction model is proposed to predict the cycle times of the variotherm injection molding processes. With regard to these processes, the molding results are compared to the molded surface feature heights using an atomic force microscope. In addition, the effects of the molded surface features on macroscopic surfaces are characterized in terms of light reflection using a spectrometer and in terms of water wettability by measuring the static contact angle. Furthermore, due to the sensitivity of the surface features on the molded parts, their durability is compared in a scratch test with a diamond tip. This leads to successful implementation in applications in which the optical appearance, in terms of gloss and reflection, and the water repellence, in terms of drag flow and adhesion, are of importance.
Nayak, Rabindra S; Shafiuddin, Bareera; Pasha, Azam; Vinay, K; Narayan, Anjali; Shetty, Smitha V
2015-07-01
Technological advances in wire selection and bracket design have led to improved treatment efficiency and allowed longer time intervals between appliance adjustments. The wires remain in the mouth for a longer duration and are subjected to electrochemical reactions, mechanical forces of mastication and generalized wear. These cause different types of corrosion. This study was done to compare the galvanic currents generated between different combinations of brackets and archwires commonly used in orthodontic practices. The materials used for the study included different commercially available orthodontic archwires and brackets. The galvanic current generated by individual materials and different combinations of these materials was tested and compared. The orthodontic archwires used were 0.019″ × 0.025″ heat-activated nickel-titanium (3M Unitek), 0.019″ × 0.025″ beta-titanium (3M Unitek) and 0.019″ × 0.025″ stainless steel (3M Unitek). The orthodontic brackets used were 0.022″ MBT laser-cut (Victory Series, 3M Unitek) and metal-injection molded (Leone Company) maxillary central incisor brackets respectively. The ligature wire used for ligation was 0.009″ stainless steel ligature (HP Company). The galvanic current for individual archwires, brackets, and the different bracket-archwire-ligature combinations was measured by using a Potentiostat machine. The data were generated using the Linear Sweep Voltammetry and OriginPro 8.5 Graphing and Data Analysis Softwares. The study was conducted in two phases. Phase I comprised of five groups for open circuit potential (OCP) and galvanic current (I), whereas Phase II comprised of six groups for galvanic current alone. Mean, standard deviation and range were computed for the OCP and galvanic current (I) values obtained. Results were subjected to statistical analysis through ANOVA. In Phase I, higher mean OCP was recorded in stainless steel archwire, followed by beta-titanium archwire, heat-activated nickel titanium archwire, laser-cut bracket and metal-injection molded bracket, respectively. The difference in mean OCP recorded among the groups was found to be statistically significant in aerated phosphate buffered saline solution. The galvanic current (I) for metal-injection molded stainless steel brackets showed significantly higher values than all the other materials. Phase II results suggested that, in the couples formed by the archwire-bracket-ligature combinations, the bracket had more important contribution to the total galvanic current generated, since there were significant differences between galvanic current among the 2 brackets tested but not among the 3 wires. The galvanic current of the metal-injection molded bracket was significantly higher than that of laser-cut bracket. Highest mean current (I) was recorded in metal-injection molded bracket when used with heat-activated nickel titanium archwire while lowest mean current (I) was recorded in laser-cut bracket when used with beta-titanium archwire. The present study concluded that the bracket emerged to be the most important factor in determining the galvanic current (I). Higher mean current (I) was recorded in metal-injection molded bracket compared to laser-cut bracket. Among the three archwires, higher mean current (I) was recorded in heat-activated nickel-titanium, followed by stainless-steel and beta-titanium respectively. When coupled together; highest mean current (I) was recorded in metal-injection molded bracket when used with heat-activated nickel titanium archwire while lowest mean current (I) was recorded in laser-cut bracket when used with beta-titanium archwire.
Particle Image Velocimetry During Injection Molding
NASA Astrophysics Data System (ADS)
Bress, Thomas; Dowling, David
2012-11-01
Injection molding involves the unsteady non-isothermal flow of a non-Newtonian polymer melt. An optical-access mold has been used to perform particle image velocimetry (PIV) on molten polystyrene during injection molding. Velocimetry data of the mold-filling flow will be presented. Statistical assessments of the velocimetry data and scaled residuals of the continuity equation suggest that PIV can be conducted in molten plastics with an uncertainty of +/-2 percent. Simulations are often used to model polymer flow during injection molding to design molds and select processing parameters but it is difficult to determine the accuracy of these simulations due to a lack of in-mold velocimetry and melt-front progression data. Moldflow was used to simulate the filling of the optical-access mold, and these simulated results are compared to the appropriately-averaged time-varying velocity field measurements. Simulated results for melt-front progression are also compared with the experimentally observed flow fronts. The ratio of the experimentally measured average velocity magnitudes to the simulation magnitudes was found on average to be 0.99 with a standard deviation of 0.25, and the difference in velocity orientations was found to be 0.9 degree with a standard deviation of 3.2 degrees. formerly at the University of Michigan.
Process influences and correction possibilities for high precision injection molded freeform optics
NASA Astrophysics Data System (ADS)
Dick, Lars; Risse, Stefan; Tünnermann, Andreas
2016-08-01
Modern injection molding processes offer a cost-efficient method for manufacturing high precision plastic optics for high volume applications. Besides form deviation of molded freeform optics, internal material stress is a relevant influencing factor for the functionality of a freeform optics in an optical system. This paper illustrates dominant influence parameters of an injection molding process relating to form deviation and internal material stress based on a freeform demonstrator geometry. Furthermore, a deterministic and efficient way for 3D mold correcting of systematic, asymmetrical shrinkage errors is shown to reach micrometer range shape accuracy at diameters up to 40 mm. In a second case, a stress-optimized parameter combination using unusual molding conditions was 3D corrected to reach high precision and low stress freeform polymer optics.
NASA Astrophysics Data System (ADS)
Yousef, Samy; Osman, T. A.; Abdalla, Abdelrahman H.; Zohdy, Gamal A.
2015-12-01
Although the applications of nanotechnologies are increasing, there remains a significant barrier between nanotechnology and machine element applications. This work aims to remove this barrier by blending carbon nanotubes (CNT) with common types of acetal polymer gears (spur, helical, bevel and worm). This was done by using adhesive oil (paraffin) during injection molding to synthesize a flange and short bars containing 0.02% CNT by weight. The flanges and short bars were machined using hobbing and milling machines to produce nanocomposite polymer gears. Some defects that surfaced in previous work, such as the appearance of bubbles and unmelted pellets during the injection process, were avoided to produce an excellent dispersion of CNT in the acetal. The wear resistances of the gears were measured by using a TS universal test rig using constant parameters for all of the gears that were fabricated. The tests were run at a speed of 1420 rpm and a torque of 4 Nm. The results showed that the wear resistances of the CNT/acetal gears were increased due to the addition of CNT, especially the helical, bevel and worm gears.
Manufacturing plastic injection optical molds
NASA Astrophysics Data System (ADS)
Bourque, David
2008-08-01
ABCO Tool & Die, Inc. is a mold manufacturer specializing in the manufacturing of plastic injection molds for molded optical parts. The purpose of this presentation is to explain the concepts and procedures required to build a mold that produces precision optical parts. Optical molds can produce a variety of molded parts ranging from safety eyewear to sophisticated military lens parts, which must meet precise optical specifications. The manufacturing of these molds begins with the design engineering of precision optical components. The mold design and the related optical inserts are determined based upon the specific optical criteria and optical surface geometry. The mold manufacturing techniques will be based upon the optical surface geometry requirements and specific details. Manufacturing processes used will be specific to prescribed geometrical surface requirements of the molded part. The combined efforts result in a robust optical mold which can produce molded parts that meet the most precise optical specifications.
Cheaper Custom Shielding Cups For Arc Welding
NASA Technical Reports Server (NTRS)
Morgan, Gene E.
1992-01-01
New way of making special-purpose shielding cups for gas/tungsten arc welding from hobby ceramic greatly reduces cost. Pattern machined in plastic. Plaster-of-paris mold made, and liquid ceramic poured into mold. Cost 90 percent less than cup machined from lava rock.
Microcellular nanocomposite injection molding process
Mingjun Yuan; Lih-Sheng Turng; Rick Spindler; Daniel Caulfield; Chris Hunt
2003-01-01
This study aims to explore the processing benefits and property improvements of combining nanocomposites with microcellular injection molding. The molded parts produced based on the Design of Experiments (DOE) matrices were subjected to tensile testing, impact testing, and Scanning Electron Microscope (SEM), Transmission Electron Microscope (TEM), Dynamic Mechanical...
Residual stresses in injection molded shape memory polymer parts
NASA Astrophysics Data System (ADS)
Katmer, Sukran; Esen, Huseyin; Karatas, Cetin
2016-03-01
Shape memory polymers (SMPs) are materials which have shape memory effect (SME). SME is a property which has the ability to change shape when induced by a stimulator such as temperature, moisture, pH, electric current, magnetic field, light, etc. A process, known as programming, is applied to SMP parts in order to alter them from their permanent shape to their temporary shape. In this study we investigated effects of injection molding and programming processes on residual stresses in molded thermoplastic polyurethane shape memory polymer, experimentally. The residual stresses were measured by layer removal method. The study shows that injection molding and programming process conditions have significantly influence on residual stresses in molded shape memory polyurethane parts.
Modeling and flow analysis of pure nylon polymer for injection molding process
NASA Astrophysics Data System (ADS)
Nuruzzaman, D. M.; Kusaseh, N.; Basri, S.; Oumer, A. N.; Hamedon, Z.
2016-02-01
In the production of complex plastic parts, injection molding is one of the most popular industrial processes. This paper addresses the modeling and analysis of the flow process of the nylon (polyamide) polymer for injection molding process. To determine the best molding conditions, a series of simulations are carried out using Autodesk Moldflow Insight software and the processing parameters are adjusted. This mold filling commercial software simulates the cavity filling pattern along with temperature and pressure distributions in the mold cavity. In the modeling, during the plastics flow inside the mold cavity, different flow parameters such as fill time, pressure, temperature, shear rate and warp at different locations in the cavity are analyzed. Overall, this Moldflow is able to perform a relatively sophisticated analysis of the flow process of pure nylon. Thus the prediction of the filling of a mold cavity is very important and it becomes useful before a nylon plastic part to be manufactured.
NASA Astrophysics Data System (ADS)
Chen, Shun-Tong; Chang, Chih-Hsien
2013-12-01
This study presents a novel approach to the fabrication of a biomedical-mold for producing convex platform PMMA (poly-methyl-meth-acrylate) slides for counting cells. These slides allow for the microscopic examination of urine sediment cells. Manufacturing of such slides incorporates three important procedures: (1) the development of a tabletop high-precision dual-spindle CNC (computerized numerical control) machine tool; (2) the formation of a boron-doped polycrystalline composite diamond (BD-PCD) wheel-tool on the machine tool developed in procedure (1); and (3) the cutting of a multi-groove-biomedical-mold array using the formed diamond wheel-tool in situ on the developed machine. The machine incorporates a hybrid working platform providing wheel-tool thinning using spark erosion to cut, polish, and deburr microgrooves on NAK80 steel directly. With consideration given for the electrical conductive properties of BD-PCD, the diamond wheel-tool is thinned to a thickness of 5 µm by rotary wire electrical discharge machining. The thinned wheel-tool can grind microgrooves 10 µm wide. An embedded design, which inserts a close fitting precision core into the biomedical-mold to create step-difference (concave inward) of 50 µm in height between the core and the mold, is also proposed and realized. The perpendicular dual-spindles and precision rotary stage are features that allow for biomedical-mold machining without the necessity of uploading and repositioning materials until all tasks are completed. A PMMA biomedical-slide with a plurality of juxtaposed counting chambers is formed and its usefulness verified.
Powder Injection Molding of Ceramic Engine Components for Transportation
NASA Astrophysics Data System (ADS)
Lenz, Juergen; Enneti, Ravi K.; Onbattuvelli, Valmikanathan; Kate, Kunal; Martin, Renee; Atre, Sundar
2012-03-01
Silicon nitride has been the favored material for manufacturing high-efficiency engine components for transportation due to its high temperature stability, good wear resistance, excellent corrosion resistance, thermal shock resistance, and low density. The use of silicon nitride in engine components greatly depends on the ability to fabricate near net-shape components economically. The absence of a material database for design and simulation has further restricted the engineering community in developing parts from silicon nitride. In this paper, the design and manufacturability of silicon nitride engine rotors for unmanned aerial vehicles by the injection molding process are discussed. The feedstock material property data obtained from experiments were used to simulate the flow of the material during injection molding. The areas susceptible to the formation of defects during the injection molding process of the engine component were identified from the simulations. A test sample was successfully injection molded using the feedstock and sintered to 99% density without formation of significant observable defects.
Kraff, M C; Sanders, D R; Lieberman, H L
1983-01-01
We compared endothelial cell loss of patients implanted with lathe-cut posterior chamber lenses and those implanted with injection-molded lenses over a three-year postoperative period. Results were based on more than 2,500 measurements of corneal endothelial density. Although the technique of cataract extraction (anterior chamber phacoemulsification, posterior chamber phacoemulsification, or planned extracapsular extraction) significantly affected cell loss (P less than .01), the type of implant (lathe-cut or injection-molded) did not. Significant continuing endothelial cell loss did not occur during the first three postoperative years with injection-molded lenses. There was, however, a statistically significant 7% to 15% additional cell loss after surgery over the first two to three postoperative years with lathe-cut implants. There have been no cases of corneal endothelial decompensation developing after implantation of injection-molded or lathe-cut lenses. Because a standard field clinical specular microscope was used in this study, cell counting errors cannot be ruled out as a cause of these findings.
Dimensional Precision Research of Wax Molding Rapid Prototyping based on Droplet Injection
NASA Astrophysics Data System (ADS)
Mingji, Huang; Geng, Wu; yan, Shan
2017-11-01
The traditional casting process is complex, the mold is essential products, mold quality directly affect the quality of the product. With the method of rapid prototyping 3D printing to produce mold prototype. The utility wax model has the advantages of high speed, low cost and complex structure. Using the orthogonal experiment as the main method, analysis each factors of size precision. The purpose is to obtain the optimal process parameters, to improve the dimensional accuracy of production based on droplet injection molding.
Dimensional changes of acrylic resin denture bases: conventional versus injection-molding technique.
Gharechahi, Jafar; Asadzadeh, Nafiseh; Shahabian, Foad; Gharechahi, Maryam
2014-07-01
Acrylic resin denture bases undergo dimensional changes during polymerization. Injection molding techniques are reported to reduce these changes and thereby improve physical properties of denture bases. The aim of this study was to compare dimensional changes of specimens processed by conventional and injection-molding techniques. SR-Ivocap Triplex Hot resin was used for conventional pressure-packed and SR-Ivocap High Impact was used for injection-molding techniques. After processing, all the specimens were stored in distilled water at room temperature until measured. For dimensional accuracy evaluation, measurements were recorded at 24-hour, 48-hour and 12-day intervals using a digital caliper with an accuracy of 0.01 mm. Statistical analysis was carried out by SPSS (SPSS Inc., Chicago, IL, USA) using t-test and repeated-measures ANOVA. Statistical significance was defined at P<0.05. After each water storage period, the acrylic specimens produced by injection exhibited less dimensional changes compared to those produced by the conventional technique. Curing shrinkage was compensated by water sorption with an increase in water storage time decreasing dimensional changes. Within the limitations of this study, dimensional changes of acrylic resin specimens were influenced by the molding technique used and SR-Ivocap injection procedure exhibited higher dimensional accuracy compared to conventional molding.
Dimensional Changes of Acrylic Resin Denture Bases: Conventional Versus Injection-Molding Technique
Gharechahi, Jafar; Asadzadeh, Nafiseh; Shahabian, Foad; Gharechahi, Maryam
2014-01-01
Objective: Acrylic resin denture bases undergo dimensional changes during polymerization. Injection molding techniques are reported to reduce these changes and thereby improve physical properties of denture bases. The aim of this study was to compare dimensional changes of specimens processed by conventional and injection-molding techniques. Materials and Methods: SR-Ivocap Triplex Hot resin was used for conventional pressure-packed and SR-Ivocap High Impact was used for injection-molding techniques. After processing, all the specimens were stored in distilled water at room temperature until measured. For dimensional accuracy evaluation, measurements were recorded at 24-hour, 48-hour and 12-day intervals using a digital caliper with an accuracy of 0.01 mm. Statistical analysis was carried out by SPSS (SPSS Inc., Chicago, IL, USA) using t-test and repeated-measures ANOVA. Statistical significance was defined at P<0.05. Results: After each water storage period, the acrylic specimens produced by injection exhibited less dimensional changes compared to those produced by the conventional technique. Curing shrinkage was compensated by water sorption with an increase in water storage time decreasing dimensional changes. Conclusion: Within the limitations of this study, dimensional changes of acrylic resin specimens were influenced by the molding technique used and SR-Ivocap injection procedure exhibited higher dimensional accuracy compared to conventional molding. PMID:25584050
Brightness field distributions of microlens arrays using micro molding.
Cheng, Hsin-Chung; Huang, Chiung-Fang; Lin, Yi; Shen, Yung-Kang
2010-12-20
This study describes the brightness field distributions of microlens arrays fabricated by micro injection molding (μIM) and micro injection-compression molding (μICM). The process for fabricating microlens arrays used room-temperature imprint lithography, photoresist reflow, electroforming, μIM, μICM, and optical properties measurement. Analytical results indicate that the brightness field distribution of the molded microlens arrays generated by μICM is better than those made using μIM. Our results further demonstrate that mold temperature is the most important processing parameter for brightness field distribution of molded microlens arrays made by μIM or μICM.
Production application of injection-molded diffractive elements
NASA Astrophysics Data System (ADS)
Clark, Peter P.; Chao, Yvonne Y.; Hines, Kevin P.
1995-12-01
We demonstrate that transmission kinoforms for visible light applications can be injection molded in acrylic in production volumes. A camera is described that employs molded Fresnel lenses to change the convergence of a projection ranging system. Kinoform surfaces are used in the projection system to achromatize the Fresnel lenses.
NASA Astrophysics Data System (ADS)
Keey, Tony Tiew Chun; Azuddin, M.
2017-06-01
Injection molding process appears to be one of the most suitable mass and cost efficiency manufacturing processes for polymeric parts nowadays due to its high efficiency of large scale production. When down-scaling the products and components, the limits of conventional injection molding process are reached. These constraints had initiated the development of conventional injection molding process into a new era of micro injection molding technology. In this study, fiberglass reinforced polypropylenes (PP) with various glass fiber percentage materials were used. The study start with fabrication of micro tensile specimens at three different injection temperature, 260°C, 270°C and 280°C for different percentage by weight of fiberglass reinforced PP. Then evaluate the effects of various injection temperatures on the tensile properties of micro tensile specimens. Different percentage by weight of fiberglass reinforced PP were tested as well and it was found that 20% fiberglass reinforced PP possessed the greatest percentage increase of tensile strength with increasing temperatures.
Miikkulainen, Ville; Rasilainen, Tiina; Puukilainen, Esa; Suvanto, Mika; Pakkanen, Tapani A
2008-05-06
The wetting properties of polypropylene (PP) surfaces were modified by adjusting the dimensions of the surface nanostructure. The nanostructures were generated by injection molding with nanoporous anodized aluminum oxide (AAO) as the mold insert. Atomic layer deposition (ALD) of molybdenum nitride film was used to control the pore diameters of the AAO inserts. The original 50-nm pore diameter of AAO was adjusted by depositing films of thickness 5, 10, and 15 nm on AAO. Bis(tert-butylimido)-bis(dimethylamido)molybdenum and ammonia were used as precursors in deposition. The resulting pore diameters in the nitride-coated AAO inserts were 40, 30, and 20 nm, respectively. Injection molding of PP was conducted with the coated inserts, as well as with the non-coated insert. Besides the pore diameter, the injection mold temperature was varied with temperatures of 50, 70, and 90 degrees C tested. Water contact angles of PP casts were measured and compared with theoretical contact angles calculated from Wenzel and Cassie-Baxter theories. The highest contact angle, 140 degrees , was observed for PP molded with the AAO mold insert with 30-nm pore diameter. The Cassie-Baxter theory showed better fit than the Wenzel theory to the experimental values. With the optimal AAO mask, the nanofeatures in the molded PP pieces were 100 nm high. In explanation of this finding, it is suggested that some sticking and stretching of the nanofeatures occurs during the molding. Increase in the mold temperature increased the contact angle.
31. PETIBONE SAND THROWING MACHINE BOX FLOOR GREY IRON FOUNDRY ...
31. PETIBONE SAND THROWING MACHINE BOX FLOOR GREY IRON FOUNDRY FORCES CONDITIONED MOLDING SAND, AT HIGH VELOCITY, INTO MOLDS TOO BIG TO BE MADE ON ONE OF THE CONVEYOR SYSTEMS. - Stockham Pipe & Fittings Company, Grey Iron Foundry, 4000 Tenth Avenue North, Birmingham, Jefferson County, AL
Metal Injection Molding of Thin-Walled Titanium Glasses Arms: A Case Study
NASA Astrophysics Data System (ADS)
Ye, Shulong; Mo, Wei; Lv, Yonghu; Li, Xia; Kwok, Chi Tat; Yu, Peng
2018-02-01
Commercially pure titanium (CP Ti) and Ti-6Al-4V arms for a new brand of augmented reality smart glasses, which are over 170 mm in length, with thin wall structures and extremely complex surfaces, have been successfully fabricated via metal injection molding. After sintering, both the metal injection-molded (MIMed) CP Ti and Ti-6Al-4V can reach relative densities of over 95% with an oxygen content 2200 ppm, thus imparting mechanical properties comparable to cast alloys. The ductility of the MIMed CP Ti and Ti-6Al-4V are about 15% and 8%, respectively. This is a good example of applying metal injection molding to mass production of precise Ti alloy parts with complicated shapes.
Modeling injection molding of net-shape active ceramic components.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baer, Tomas; Cote, Raymond O.; Grillet, Anne Mary
2006-11-01
To reduce costs and hazardous wastes associated with the production of lead-based active ceramic components, an injection molding process is being investigated to replace the current machining process. Here, lead zirconate titanate (PZT) ceramic particles are suspended in a thermoplastic resin and are injected into a mold and allowed to cool. The part is then bisque fired and sintered to complete the densification process. To help design this new process we use a finite element model to describe the injection molding of the ceramic paste. Flow solutions are obtained using a coupled, finite-element based, Newton-Raphson numerical method based on themore » GOMA/ARIA suite of Sandia flow solvers. The evolution of the free surface is solved with an advanced level set algorithm. This approach incorporates novel methods for representing surface tension and wetting forces that affect the evolution of the free surface. Thermal, rheological, and wetting properties of the PZT paste are measured for use as input to the model. The viscosity of the PZT is highly dependent both on temperature and shear rate. One challenge in modeling the injection process is coming up with appropriate constitutive equations that capture relevant phenomenology without being too computationally complex. For this reason we model the material as a Carreau fluid and a WLF temperature dependence. Two-dimensional (2D) modeling is performed to explore the effects of the shear in isothermal conditions. Results indicate that very low viscosity regions exist near walls and that these results look similar in terms of meniscus shape and fill times to a simple Newtonian constitutive equation at the shear-thinned viscosity for the paste. These results allow us to pick a representative viscosity to use in fully three-dimensional (3D) simulation, which because of numerical complexities are restricted to using a Newtonian constitutive equation. Further 2D modeling at nonisothermal conditions shows that the choice of representative Newtonian viscosity is dependent on the amount of heating of the initially room temperature mold. An early 3D transient model shows that the initial design of the distributor is sub-optimal. However, these simulations take several months to run on 4 processors of an HP workstation using a preconditioner/solver combination of ILUT/GMRES with fill factors of 3 and PSPG stabilization. Therefore, several modifications to the distributor geometry and orientations of the vents and molds have been investigated using much faster 3D steady-state simulations. The pressure distribution for these steady-state calculations is examined for three different distributor designs to see if this can indicate which geometry has the superior design. The second modification, with a longer distributor, is shown to have flatter, more monotonic isobars perpendicular to the flow direction indicating a better filling process. The effects of the distributor modifications, as well as effects of the mold orientation, have also been examined with laboratory experiments in which the flow of a viscous Newtonian oil entering transparent molds is recorded visually. Here, the flow front is flatter and voids are reduced for the second geometry compared to the original geometry. A horizontal orientation, as opposed to the planned vertical orientation, results in fewer voids. Recently, the Navier-Stokes equations have been stabilized with the Dohrman-Bochev PSPP stabilization method, allowing us to calculate transient 3D simulations with computational times on the order of days instead of months. Validation simulations are performed and compared to the experiments. Many of the trends of the experiments are captured by the level set modeling, though quantitative agreement is lacking mainly due to the high value of the gas phase viscosity necessary for numerical stability, though physically unrealistic. More correct trends are predicted for the vertical model than the horizontal model, which is serendipitous as the actual mold is held in a vertical geometry. The full, transient mold filling calculations indicate that the flow front is flatter and voids may be reduced for the second geometry compared to the original geometry. The validated model is used to predict mold filling for the actual process with the material properties for the PZT paste, the original distributor geometry, and the mold in a vertical orientation. This calculation shows that voids may be trapped at the four corners of the mold opposite the distributor.« less
Properties of high density polyethylene – Paulownia wood flour composites via injection molding
USDA-ARS?s Scientific Manuscript database
Paulownia wood (PW) flour is evaluated as a bio-based fiber reinforcement. Composites of high density polyethylene (HDPE), 25% by weight of PW, and either 0% or 5% by weight of maleated polyethylene (MAPE) were produced by twin screw compounding followed by injection molding. Molded test composite...
EQUIPMENT FOR SPARK-ASSISTED MACHINING (OBORUDOVANIE DLYA ELEKTROISKROVOI OBRABOTKI),
MACHINE TOOLS, * ELECTROEROSIVE MACHINING), MACHINE TOOL INDUSTRY, ELECTROFORMING, ELECTRODES, ELECTROLYTIC CAPACITORS, ELECTRIC DISCHARGES, TOLERANCES(MECHANICS), SURFACE ROUGHNESS, DIES, MOLDINGS, SYNTHETIC FIBERS, USSR
NASA Astrophysics Data System (ADS)
Huang, Chien-Yao; Chang, Chun-Ming; Ho, Cheng-Fong; Lee, Tai-Wen; Lin, Ping-Hung; Hsu, Wei-Yao
2017-06-01
The advantage of 3D printing technique is flexible in design and fabrication. Using 3D printing technique, the traditional manufacturing limitations are not considered. The optical lens is the key component in an optical system. The traditional process to manufacture optical plastic lens is injection molding. However injection molding is only suitable for plastics lens, it cannot fabricate optical and mechanical components at same time. The assembly error of optical system can be reduced effectively with fabricating optical and mechanical components at same time. The process of printing optical and mechanical components simultaneously is proposed in previous papers, but the optical surface of printing components is not transparent. If we increase the transmittance of the optical surface, the printing components which fabricated by 3D printing process could be high transmission. Therefore, precise diamond turning technique has been used to turning the surface of 3D printing optical lens in this paper. The precise diamond turning techniques could process surfaces of components to meet the requirements of optical system. A 3D printing machine, Stratasys Connex 500, and a precise diamond turning machine, Precitech Freeform705XG, have been used in this paper, respectively. The dimension, roughness, transmission and printing types of 3D printing components have been discussed in this paper. After turning and polishing process, the roughness of 3D printing component is below 0.05 μm and the transmittance increase above 80 %. This optical module can be used in hand-held telescope and other system which need lens and special mechanical structure fabricated simultaneously.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ameli, A.; Nofar, M.; Saniei, M.
A combination of high dielectric permittivity (ε′) and low dielectric loss (tan δ) is required for charge storage applications. In percolative systems such as conductive polymer composites, however, obtaining high ε′ and low tan δ is very challenging due to the sharp insulation-conduction transition near the threshold region. Due to the particular arrangement of conductive fillers induced by both foaming and injection molding processes, they may address this issue. Therefore, this work evaluates the application of foam injection molding process in fabricating polymer nanocomposites for energy storage. Polypropylene-multiwalled carbon nanotubes (PP-MWCNT) composites were prepared by melt mixing and foamed inmore » an injection molding process. Electrical conductivity (σ), ε′ and tan δ were then characterized. Also, scanning and transmission electron microscopy (SEM and TEM) was used to investigate the carbon nanotube’s arrangement as well as cellular morphology. The results showed that foam injection-molded composites exhibited highly superior dielectric properties to those of solid counterparts. For instance, foamed samples had ε′=68.3 and tan δ =0.05 (at 1.25 vol.% MWCNT), as opposed to ε′=17.8 and tan δ=0.04 in solid samples (at 2.56 vol.% MWCNT). The results of this work reveal that high performance dielectric nanocomposites can be developed using foam injection molding technologies for charge storage applications.« less
Evaluation of Three Different Processing Techniques in the Fabrication of Complete Dentures
Chintalacheruvu, Vamsi Krishna; Balraj, Rajasekaran Uttukuli; Putchala, Lavanya Sireesha; Pachalla, Sreelekha
2017-01-01
Aims and Objectives: The objective of the present study is to compare the effectiveness of three different processing techniques and to find out the accuracy of processing techniques through number of occlusal interferences and increase in vertical dimension after denture processing. Materials and Methods: A cross-sectional study was conducted on a sample of 18 patients indicated for complete denture fabrication was selected for the study and they were divided into three subgroups. Three processing techniques, compression molding and injection molding using prepolymerized resin and unpolymerized resin, were used to fabricate dentures for each of the groups. After processing, laboratory-remounted dentures were evaluated for number of occlusal interferences in centric and eccentric relations and change in vertical dimension through vertical pin rise in articulator. Data were analyzed using statistical test ANOVA and SPSS software version 19.0 by IBM was used. Results: Data obtained from three groups were subjected to one-way ANOVA test. After ANOVA test, results with significant variations were subjected to post hoc test. Number of occlusal interferences with compression molding technique was reported to be more in both centric and eccentric positions as compared to the two injection molding techniques with statistical significance in centric, protrusive, right lateral nonworking, and left lateral working positions (P < 0.05). Mean vertical pin rise (0.52 mm) was reported to more in compression molding technique as compared to injection molding techniques, which is statistically significant (P < 0.001). Conclusions: Within the limitations of this study, injection molding techniques exhibited less processing errors as compared to compression molding technique with statistical significance. There was no statistically significant difference in processing errors reported within two injection molding systems. PMID:28713763
Evaluation of Three Different Processing Techniques in the Fabrication of Complete Dentures.
Chintalacheruvu, Vamsi Krishna; Balraj, Rajasekaran Uttukuli; Putchala, Lavanya Sireesha; Pachalla, Sreelekha
2017-06-01
The objective of the present study is to compare the effectiveness of three different processing techniques and to find out the accuracy of processing techniques through number of occlusal interferences and increase in vertical dimension after denture processing. A cross-sectional study was conducted on a sample of 18 patients indicated for complete denture fabrication was selected for the study and they were divided into three subgroups. Three processing techniques, compression molding and injection molding using prepolymerized resin and unpolymerized resin, were used to fabricate dentures for each of the groups. After processing, laboratory-remounted dentures were evaluated for number of occlusal interferences in centric and eccentric relations and change in vertical dimension through vertical pin rise in articulator. Data were analyzed using statistical test ANOVA and SPSS software version 19.0 by IBM was used. Data obtained from three groups were subjected to one-way ANOVA test. After ANOVA test, results with significant variations were subjected to post hoc test. Number of occlusal interferences with compression molding technique was reported to be more in both centric and eccentric positions as compared to the two injection molding techniques with statistical significance in centric, protrusive, right lateral nonworking, and left lateral working positions ( P < 0.05). Mean vertical pin rise (0.52 mm) was reported to more in compression molding technique as compared to injection molding techniques, which is statistically significant ( P < 0.001). Within the limitations of this study, injection molding techniques exhibited less processing errors as compared to compression molding technique with statistical significance. There was no statistically significant difference in processing errors reported within two injection molding systems.
DAMAGE MODELING OF INJECTION-MOLDED SHORT- AND LONG-FIBER THERMOPLASTICS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nguyen, Ba Nghiep; Kunc, Vlastimil; Bapanapalli, Satish K.
2009-10-30
This article applies the recent anisotropic rotary diffusion – reduced strain closure (ARD-RSC) model for predicting fiber orientation and a new damage model for injection-molded long-fiber thermoplastics (LFTs) to analyze progressive damage leading to total failure of injection-molded long-glass-fiber/polypropylene (PP) specimens. The ARD-RSC model was implemented in a research version of the Autodesk Moldflow Plastics Insight (MPI) processing code, and it has been used to simulate injection-molding of a long-glass-fiber/PP plaque. The damage model combines micromechanical modeling with a continuum damage mechanics description to predict the nonlinear behavior due to plasticity coupled with damage in LFTs. This model has beenmore » implemented in the ABAQUS finite element code via user-subroutines and has been used in the damage analyses of tensile specimens removed from the injection-molded long-glass-fiber/PP plaques. Experimental characterization and mechanical testing were performed to provide input data to support and validate both process modeling and damage analyses. The predictions are in agreement with the experimental results.« less
Progress in Titanium Metal Powder Injection Molding.
German, Randall M
2013-08-20
Metal powder injection molding is a shaping technology that has achieved solid scientific underpinnings. It is from this science base that recent progress has occurred in titanium powder injection molding. Much of the progress awaited development of the required particles with specific characteristics of particle size, particle shape, and purity. The production of titanium components by injection molding is stabilized by a good understanding of how each process variable impacts density and impurity level. As summarized here, recent research has isolated the four critical success factors in titanium metal powder injection molding (Ti-MIM) that must be simultaneously satisfied-density, purity, alloying, and microstructure. The critical role of density and impurities, and the inability to remove impurities with sintering, compels attention to starting Ti-MIM with high quality alloy powders. This article addresses the four critical success factors to rationalize Ti-MIM processing conditions to the requirements for demanding applications in aerospace and medical fields. Based on extensive research, a baseline process is identified and reported here with attention to linking mechanical properties to the four critical success factors.
Progress in Titanium Metal Powder Injection Molding
German, Randall M.
2013-01-01
Metal powder injection molding is a shaping technology that has achieved solid scientific underpinnings. It is from this science base that recent progress has occurred in titanium powder injection molding. Much of the progress awaited development of the required particles with specific characteristics of particle size, particle shape, and purity. The production of titanium components by injection molding is stabilized by a good understanding of how each process variable impacts density and impurity level. As summarized here, recent research has isolated the four critical success factors in titanium metal powder injection molding (Ti-MIM) that must be simultaneously satisfied—density, purity, alloying, and microstructure. The critical role of density and impurities, and the inability to remove impurities with sintering, compels attention to starting Ti-MIM with high quality alloy powders. This article addresses the four critical success factors to rationalize Ti-MIM processing conditions to the requirements for demanding applications in aerospace and medical fields. Based on extensive research, a baseline process is identified and reported here with attention to linking mechanical properties to the four critical success factors. PMID:28811458
CAE for Injection Molding — Past, Present and the Future
NASA Astrophysics Data System (ADS)
Wang, Kuo K.
2004-06-01
It is well known that injection molding is the most effective process for mass-producing discrete plastic parts of complex shape to the highest precision at the lowest cost. However, due to the complex property of polymeric materials undergoing a transient non-isothermal process, it is equally well recognized that the quality of final products is often difficult to be assured. This is particularly true when a new mold or material is encountered. As a result, injection molding has often been viewed as an art than a science. During the past few decades, numerical simulation of injection molding process based on analytic models has become feasible for practical use as computers became faster and cheaper continually. A research effort was initiated at the Cornell Injection Molding Program (CIMP) in 1974 under a grant from the National Science Foundation. Over a quarter of the century, CIMP has established some scientific bases ranging from materials characterization, flow analysis, to prediction of part quality. Use of such CAE tools has become common place today in industry. Present effort has been primarily aimed at refinements of many aspects of the process. Computational efficiency and user-interface have been main thrusts by commercial software developers. Extension to 3-dimensional flow analysis for certain parts has drawn some attention. Research activities are continuing on molding of fiber-filled materials and reactive polymers. Expanded molding processes such as gas-assisted, co-injection, micro-molding and many others are continually being investigated. In the future, improvements in simulation accuracy and efficiency will continue. This will include in-depth studies on materials characterization. Intelligent on-line process control may draw more attention in order to achieve higher degree of automation. As Internet technology continues to evolve, Web-based CAE tools for design, production, remote process monitoring and control can come to path. The CAE tools will eventually be integrated into an Enterprise Resources Planning (ERP) system as the trend of enterprise globalization continues.
[Determination of acrylonitrile in injection molding process: data analysis and recommendations].
Zhong, X P; Chen, Z R; Zhu, Z L
2017-07-20
Objective: To investigate whether the identification of acrylonitrile, an occupational hazard factor for the industry of injection molding and plastic products, reported in literature is reasonable, and to put forward some recommendations. Methods: Professional articles published from 1990 to 2016 were searched, and an analysis was performed for the data on the determination of acrylonitrile in the industry of injection molding and plastic products from 2003 to 2016 in Longhua Center for Disease Control and Prevention of Shenzhen. Results: According to the literature, the detection rate of acrylonitrile was 10.7%, and the detection results did not exceed the limit. Conclusion: At present, acrylonitrile may not be used as a routine test item for the industry of injection molding and plastic products, in order to save manpower and material resources.
Design and thermal analysis of a mold used in the injection of elastomers
NASA Astrophysics Data System (ADS)
Fekiri, Nasser; Canto, Cécile; Madec, Yannick; Mousseau, Pierre; Plot, Christophe; Sarda, Alain
2017-10-01
In the process of injection molding of elastomers, improving the energy efficiency of the tools is a current challenge for industry in terms of energy consumption, productivity and product quality. In the rubber industry, 20% of the energy consumed by capital goods comes from heating processes; more than 50% of heat losses are linked to insufficient control and thermal insulation of Molds. The design of the tooling evolves in particular towards the reduction of the heated mass and the thermal insulation of the molds. In this paper, we present a complex tool composed, on one hand, of a multi-cavity mold designed by reducing the heated mass and equipped with independent control zones placed closest to each molding cavity and, on the other hand, of a regulated channel block (RCB) which makes it possible to limit the waste of rubber during the injection. The originality of this tool lies in thermally isolating the regulated channel block from the mold and the cavities between them in order to better control the temperature field in the material which is transformed. We present the design and the instrumentation of the experimental set-up. Experimental measurements allow us to understand the thermal of the tool and to show the thermal heterogeneities on the surface of the mold and in the various cavities. Tests of injection molding of the rubber and a thermal balance on the energy consumption of the tool are carried out.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hausnerova, Berenika; Sanetrnik, Daniel; Paravanova, Gordana
2014-05-15
The paper deals with the rheological behavior of highly filled compounds proceeded via powder injection molding (PIM) and applied in many sectors of industry (automotive, medicine, electronic or military). Online rheometer equipped with slit dies varying in surface roughness and dimensions was applied to investigate the wall-slip as a rheological phenomenon, which can be considered as a parameter indicating the separation of compound components (polymer binder and metallic powder) during high shear rates when injection molded.
Fabrication of turbine components and properties of sintered silicon nitride
NASA Technical Reports Server (NTRS)
Neil, J. T.; French, K. W.; Quackenbush, C. L.; Smith, J. T.
1982-01-01
This paper presents a status report on the injection molding of sinterable silicon nitride at GTE Laboratories. The effort involves fabrication of single axial turbine blades and monolithic radial turbine rotors. The injection molding process is reviewed and the fabrication of the turbine components discussed. Oxidation resistance and strength results of current injection molded sintered silicon nitride as well as dimensional checks on sintered turbine blades demonstrate that this material is a viable candidate for high temperature structural applications.
NASA Astrophysics Data System (ADS)
Hausnerova, Berenika; Sanetrnik, Daniel; Paravanova, Gordana
2014-05-01
The paper deals with the rheological behavior of highly filled compounds proceeded via powder injection molding (PIM) and applied in many sectors of industry (automotive, medicine, electronic or military). Online rheometer equipped with slit dies varying in surface roughness and dimensions was applied to investigate the wall-slip as a rheological phenomenon, which can be considered as a parameter indicating the separation of compound components (polymer binder and metallic powder) during high shear rates when injection molded.
Comparison of glare in YAG-damaged intraocular lenses: injection-molded versus lathe-cut.
Bath, P E; Dang, Y; Martin, W H
1986-11-01
A comparative analysis of YAG laser intraocular lens (IOL) damage was undertaken on injection-molded and lathe-cut IOLs. Damage sites were evaluated with polarized light. A consistent positive polarization was observed in the damage sites of lathe-cut IOLs. A consistent negative polarization was observed in the damage sites of injection-molded IOLs. The presence of positive polarization in IOL damage sites may be correlated with increased potential for glare. Results and clinical implications are discussed.
NASA Astrophysics Data System (ADS)
Shieh, Jen-Yu; Wang, Luke K.; Ke, Shih-Ying
2010-07-01
A computer aided engineering (CAE) tool-assisted technique, using Moldex3D and aspheric analysis utility (AAU) software in a polycarbonate injection molding design, is proposed to manufacture large diameter aspheric plastic lenses. An experiment is conducted to verify the applicability/feasibility of the proposed technique. Using the preceding two software tools, these crucial process parameters associated with the surface profile errors and birefringence of a molded lens can be attainable. The strategy adopted here is to use the actual quantity of shrinkage after an injection molding trial of an aspherical plastic lens as a reference to perform the core shaping job while keeping the coefficients of aspheric surface, radius, and conic constant unchanged. The design philosophy is characterized by using the CAE tool as a guideline to pursue the best symmetry condition, followed by injection molding trials, to accelerate a product’s developmental time. The advantages are less design complexity and shorter developmental time for a product.
Dimensional change in complete dentures fabricated by injection molding and microwave processing.
Keenan, Phillip L J; Radford, David R; Clark, Robert K F
2003-01-01
Acrylic resin complete dentures undergo dimensional changes during polymerization. Techniques with injection molding and polymerization and microwave polymerization are reported to reduce these changes and thereby improve clinical fit. These dimensional changes need to be quantified. The purpose of this study was to compare differences in dimensional changes of simulated maxillary complete dentures during polymerization and storage in water after injection molding and conventional polymerization, or microwave polymerization against a control of conventionally packed and polymerized simulated maxillary complete dentures. Forty identical maxillary denture bases were prepared in dental wax with anatomic teeth. They were invested and the wax eliminated from the molds. Ten specimens each were randomly assigned to 1 of 4 groups. Group 1 was compression molded and conventionally polymerized; group 2 was injection molded and conventionally polymerized (Success); group 3 was injection molded and microwave polymerized (Acron MC); and group 4 was injection molded and microwave polymerized (Microbase). Intermolar width and changes in vertical dimension of occlusion, were determined after polymerization and after storage in water for 28 days. Measurements in triplicate were made between points scribed on the second molar teeth with a traveling microscope (accurate to 0.005 mm). Vertical dimension of occlusion was measured between points scribed on the upper and lower members of an articulator by use of an internal micrometer (accurate to 0.05 mm). Data were analyzed by use of a 1-way analysis of variance with Tukey post-hoc contrasts (P <.05). Polymerization contractions (intermolar widths) for each group were: group 1, -0.24%; group 2, -0.27%; group 3, -0.35%; and group 4, -0.37%. The Microbase specimens had greater shrinkage than conventionally polymerized specimens, but there were no significant differences between the groups. All injection methods had less postpolymerization increase in vertical dimension of occlusion (0.63 to 0.41 mm) than the conventional Trevalon control (0.74 mm), but only group 4 was significantly different (P<.004). After storage in water for 28 days, all specimens increased in vertical dimension of occlusion (0.10% to 0.16%) from polymerization techniques, but there were no significant differences between groups. Within the limitations of this study, injection molding resulted in a slightly less increase of vertical dimension of occlusion than conventional polymerization techniques, the difference being significant for Microbase compared with the conventional Trevalon control.
Applying simulation to optimize plastic molded optical parts
NASA Astrophysics Data System (ADS)
Jaworski, Matthew; Bakharev, Alexander; Costa, Franco; Friedl, Chris
2012-10-01
Optical injection molded parts are used in many different industries including electronics, consumer, medical and automotive due to their cost and performance advantages compared to alternative materials such as glass. The injection molding process, however, induces elastic (residual stress) and viscoelastic (flow orientation stress) deformation into the molded article which alters the material's refractive index to be anisotropic in different directions. Being able to predict and correct optical performance issues associated with birefringence early in the design phase is a huge competitive advantage. This paper reviews how to apply simulation analysis of the entire molding process to optimize manufacturability and part performance.
Design of permanent magnet synchronous motor speed control system based on SVPWM
NASA Astrophysics Data System (ADS)
Wu, Haibo
2017-04-01
The control system is designed to realize TMS320F28335 based on the permanent magnet synchronous motor speed control system, and put it to quoting all electric of injection molding machine. The system of the control method used SVPWM, through the sampling motor current and rotating transformer position information, realize speed, current double closed loop control. Through the TMS320F28335 hardware floating-point processing core, realize the application for permanent magnet synchronous motor in the floating point arithmetic, to replace the past fixed-point algorithm, and improve the efficiency of the code.
Replication fidelity improvement of PMMA microlens array based on weight evaluation and optimization
NASA Astrophysics Data System (ADS)
Jiang, Bing-yan; Shen, Long-jiang; Peng, Hua-jiang; Yin, Xiang-lin
2007-12-01
High replication fidelity is a prerequisite of high quality plastic microlens array in injection molding. But, there's not an economical and practical method to evaluate and improve the replication fidelity until now. Based on part weight evaluation and optimization, this paper presents a new method of replication fidelity improvement. Firstly, a simplified analysis model of PMMA micro columns arrays (5×16) with 200μm diameter was set up. And then, Flow (3D) module of Moldflow MPI6.0 based on Navier-Stokes equations was used to calculate the weight of the micro columns arrays in injection molding. The effects of processing parameters (melt temperature, mold temperature, injection time, packing pressure and packing time) on the part weight were investigated in the simulations. The simulation results showed that the mold temperature and the injection time have important effects on the filling of micro columns; the optimal mold temperature and injection time for better replication fidelity could be determined by the curves of mold temperature vs part weight and injection time vs part weight. At last, the effects of processing parameters on part weight of micro columns array were studied experimentally. The experimental results showed that the increase of melt temperature and mold temperature can make the packing pressure transfer to micro cavity more effectively through runner system, and increase the part weight. From the observation results of the image measuring apparatus, it was discovered that the higher the part weight, the better the filling of the microstructures. In conclusion, part weight can be used to evaluate the replication fidelity of micro-feature structured parts primarily; which is an economical and practical method to improve the replication fidelity of microlens arrays based on weight evaluation and optimization.
Shuck, A.B.
1958-04-01
A device is described that is specifically designed to cast uraniumn fuel rods in a vacuunn, in order to obtain flawless, nonoxidized castings which subsequently require a maximum of machining or wastage of the expensive processed material. A chamber surrounded with heating elements is connected to the molds, and the entire apparatus is housed in an airtight container. A charge of uranium is placed in the chamber, heated, then is allowed to flow into the molds While being rotated. Water circulating through passages in the molds chills the casting to form a fine grained fuel rod in nearly finished form.
Chen, Lei; Kirchberg, Stefan; Jiang, Bing-Yan; Xie, Lei; Jia, Yun-Long; Sun, Lei-Lei
2014-11-01
A uniform plano-convex spherical microlens array with a long focal length was fabricated by combining the micromilling and injection molding processes in this work. This paper presents a quantitative study of the injection molding process parameters on the uniformity of the height of the microlenses. The variation of the injection process parameters, i.e., barrel temperature, mold temperature, injection speed, and packing pressure, was found to have a significant effect on the uniformity of the height of the microlenses, especially the barrel temperature. The filling-to-packing switchover point is also critical to the uniformity of the height of the microlenses. The optimal uniformity was achieved when the polymer melts completely filled the mold cavity, or even a little excessively filled the cavity, during the filling stage. In addition, due to the filling resistance, the practical filling-to-packing switchover point can vary with the change of the filling processing conditions and lead to a non-negligible effect on the uniformity of the height of the microlenses. Furthermore, the effect of injection speed on the uniformity of the height of the microlenses was analyzed in detail. The results indicated that the effect of injection speed on the uniformity of the height of the microlenses is mainly attributed to the two functions of injection speed: transferring the filling-to-packing switchover point and affecting the distribution of residual flow stress in the polymer melt.
Hydrogen silsesquioxane mold coatings for improved replication of nanopatterns by injection molding
NASA Astrophysics Data System (ADS)
Hobæk, Thor Christian; Matschuk, Maria; Kafka, Jan; Pranov, Henrik J.; Larsen, Niels B.
2015-03-01
We demonstrate the replication of nanosized pillars in polymer (cyclic olefin copolymer) by injection molding using nanostructured thermally cured hydrogen silsesquioxane (HSQ) ceramic coatings on stainless steel mold inserts with mold nanostructures produced by a simple embossing process. At isothermal mold conditions, the average pillar height increases by up to 100% and a more uniform height distribution is observed compared to a traditional metal mold insert. Thermal heat transfer simulations predict that the HSQ film retards the cooling of the polymer melt during the initial stages of replication, thus allowing more time to fill the nanoscale cavities compared to standard metal molds. A monolayer of a fluorinated silane (heptadecafluorotrichlorosilane) deposited on the mold surface reduces the mold/polymer interfacial energy to support demolding of the polymer replica. The mechanical stability of thermally cured HSQ makes it a promising material for nanopattern replication on an industrial scale without the need for slow and energy intensive variotherm processes.
All plastic ultra-small size imaging lens unit fabrication and evaluation for endoscope
NASA Astrophysics Data System (ADS)
Ishii, Kenta; Okamoto, Dai; Ushio, Makoto; Tai, Hidetoshi; Nishihara, Atsuhiko; Tokuda, Kimio; Kawai, Shinsuke; Kitagawa, Seiichiro
2017-02-01
There is demand for small-size lens units for endoscope and industrial applications. Polished glass lenses with a diameter of 1 - 2mm exist, however plastic lenses similar in size are not commonplace. For low-cost, light-weight, and mass production, plastic lens fabrication is extremely beneficial. Especially, in the medical field, there is strong demand for disposable lens unit for endoscopes which prevent contamination due to reuse of the lens. Therefore, high mass producible and low cost becomes increasingly important. This paper reports our findings on injection-molded ultra-small size plastic lens units with a diameter of 1.3mm and total thickness of 1.4mm. We performed optical design, injection molding, and lens unit assembly for injection moldable, high imaging performance ultra-small sized lens units. We prioritize a robust product design, considering injection molding properties and lens unit assembly, with feedback from molding simulations reflected into the optical design. A mold capable of high precision lens positioning is used to fabricate the lenses and decrease the variability of the assembly. The geometric dimensions of the resulting lenses, are measured and used in the optical simulation to validate the optical performance, and a high agreement is reported. The injection molding of the lens and the assembly of the lens unit is performed with high precision, and results in high optical performance.
Study of the injection molding of a polarizing beam splitter.
Jose de Carvalho, Edson; Braga, Edmundo da Silva; Cescato, Lucila H
2006-01-01
We describe the replication of a relief grating that behaves like a polarizing beam splitter by injection molding. Measurements of the grating master, nickel shim, and replica, performed by atomic force microscopy, allow establishing a limit for the injection molding technique (currently used in CD fabrication) to aspect ratios of approximately 0.15. Although this limit strongly reduces the diffraction efficiency of the elements as well as their polarizing properties, extinction ratios of approximately 10:1 were measured for the replicas in a large range of wavelengths.
FIBER ORIENTATION IN INJECTION MOLDED LONG CARBON FIBER THERMOPLASTIC COMPOSITES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Jin; Nguyen, Ba Nghiep; Mathur, Raj N.
2015-03-23
A set of edge-gated and center-gated plaques were injection molded with long carbon fiber-reinforced thermoplastic composites, and the fiber orientation was measured at different locations of the plaques. Autodesk Simulation Moldflow Insight (ASMI) software was used to simulate the injection molding of these plaques and to predict the fiber orientation, using the anisotropic rotary diffusion and the reduced strain closure models. The phenomenological parameters of the orientation models were carefully identified by fitting to the measured orientation data. The fiber orientation predictions show very good agreement with the experimental data.
The design and improvement of radial tire molding machine
NASA Astrophysics Data System (ADS)
Wang, Wenhao; Zhang, Tao
2018-04-01
This paper presented that the high accuracy semisteel meridian tire molding machine structure configurations, combining tyre high precision characteristics, the original structure and parameter optimization, technology improvement innovation design period of opening and closing machine rotary shaping drum institutions. This way out of the shaft from the structure to the push-pull type movable shaping drum of thinking limit, compared with the specifications and shaping drum can smaller contraction, is conducive to forming the tire and reduce the tire deformation.
NASA Astrophysics Data System (ADS)
Martinez Mateo, Isidoro Jose
Mould materials for injection moulding of polymers and polymer-matrix composites represent a relevant industrial economic sector due to the large quantity of pieces and components processed. The material selection for mould manufacturing, its composition and heat treatment, the hardening procedures and machining and finishing processes determine the service performance and life of the mould. In the first part of the present study, the relationship between the hardness and microstructure and the wear resistance of mould steels from large blocks has been studied by pin-on-disc tests, studying the main wear mechanisms. In order to determine the surface damage on mould steels under real injection conditions, different commercial steels have been studied by measuring the variation of surface roughness with the number of injected pieces with different reinforcement percentages and different mould geometries, by using optical profilometry and scanning electron microscopy techniques. It was important to determine the variation of surface roughness of the moulded pieces with the number of injection operations. The materials used were polybutyleneterephthalate pure and reinforced with either 20% or 50% glass fibre. For the different mould designs, the evolution of the glass fibre orientation with injection flow has been determined by image analysis and related to roughness changes and surface damage, both of the composite parts and of the mould steel surface. Finally, the abrasion resistance of the composite parts has been studied by scratch tests as a function of the number of injected parts and of the scratch direction with respect to injection flow and glass fibre orientation. Los materiales para moldes de inyeccion de polimeros y materiales compuestos representan un sector economicamente muy relevante debido al gran aumento del numero de componentes fabricados a partir de materiales polimericos obtenidos mediante moldeo por inyeccion. La seleccion del material para la fabricacion del molde, tienen una gran influencia sobre su comportamiento en servicio a lo largo de la vida util del molde. En la primera parte del presente estudio, a partir de ensayos punzon sobre disco, se ha determinado la relacion entre la resistencia al desgaste y la dureza de aceros para moldes obtenidos a partir de bloques de gran espesor, estudiando los principales mecanismos de desgaste que tienen lugar. A continuacion, con el fin de determinar el dano superficial que sufren los aceros para moldes en condiciones reales de inyeccion, se han estudiado distintos tipos de aceros utilizados comercialmente en moldes de inyeccion de polimeros y materiales compuestos, seleccionando las condiciones de operacion para determinar la variacion de la rugosidad superficial del acero en funcion del material inyectado, del numero de operaciones sucesivas de inyeccion y de la orientacion del flujo de inyeccion, mediante tecnicas de perfilometria optica y microscopia electronica de barrido. Ademas del dano superficial sufrido por el acero con el numero de piezas inyectadas, tambien se ha determinado la evolucion de la rugosidad superficial de los materiales inyectados, polibutilentereftalato (PBT) puro y materiales compuestos derivados de PBT por adicion de un 20 o un 50% en peso de fibra de vidrio. En el caso de las piezas inyectadas, se ha caracterizado su microestructura en funcion del flujo de inyeccion y de la densidad de fibra, se han determinado sus propiedades termicas y dinamico-mecanicas, asi como la variacion de la rugosidad superficial de las piezas inyectadas con el numero de operaciones de inyeccion y con la geometria de las distintas secciones de las piezas. Finalmente, se ha evaluado la resistencia a la abrasion de PBT reforzado con un 50% de fibra, en funcion del numero de piezas inyectadas y de la direccion de rayado con respecto a la orientacion del flujo de inyeccion.
de Melo, Liliane Pimenta; Salmoria, Gean Vitor; Fancello, Eduardo Alberto; Roesler, Carlos Rodrigo de Mello
2017-01-01
The purpose of this article is to present mechanical and physicochemical properties during in vitro degradation of PLGA material as craniofacial plates based on different values of injection molded temperatures. Injection molded plates were submitted to in vitro degradation in a thermostat bath at 37 ± 1°C by 16 weeks. The material was removed after 15, 30, 60, and 120 days; then bending stiffness, crystallinity, molecular weights, and viscoelasticity were studied. A significant decrease of molecular weight and mechanical properties over time and a difference in FT-IR after 60 days showed faster degradation of the material in the geometry studied. DSC analysis confirmed that the crystallization occurred, especially in higher melt temperature condition. DMA analysis suggests a greater contribution of the viscous component of higher temperature than lower temperature in thermomechanical behavior. The results suggest that physical-mechanical properties of PLGA plates among degradation differ per injection molding temperatures.
Bio-inspired piezoelectric artificial hair cell sensor fabricated by powder injection molding
NASA Astrophysics Data System (ADS)
Han, Jun Sae; Oh, Keun Ha; Moon, Won Kyu; Kim, Kyungseop; Joh, Cheeyoung; Seo, Hee Seon; Bollina, Ravi; Park, Seong Jin
2015-12-01
A piezoelectric artificial hair cell sensor was fabricated by the powder injection molding process in order to make an acoustic vector hydrophone. The entire process of powder injection molding was developed and optimized for PMN-PZT ceramic powder. The artificial hair cell sensor, which consists of high aspect ratio hair cell and three rectangular mechanoreceptors, was precisely fabricated through the developed powder injection molding process. The density and the dielectric property of the fabricated sensor shows 98% of the theoretical density and 85% of reference dielectric property of PMN-PZT ceramic powder. With regard to homogeneity, three rectangular mechanoreceptors have the same dimensions, with 3 μm of tolerance with 8% of deviation of dielectric property. Packaged vector hydrophones measure the underwater acoustic signals from 500 to 800 Hz with -212 dB of sensitivity. Directivity of vector hydrophone was acquired at 600 Hz as analyzing phase differences of electric signals.
Effect of processing method on the mechanical and thermal of Silvergrass/HDPE composites
NASA Astrophysics Data System (ADS)
Liu, Bing; Jin, Yueqiang; Wang, Shuying
2017-05-01
This paper investigates the effect of compression and injection molding methods on properties of Silvergrass-HDPE (High Density Polyethylene) composites, with respect to mechanical behaviors. Maleated polyethylene (MAPE) was added in the composite and improved the mechanical property of the composite. The research founds MAPE can improve the mechanical property because it improved the interfacial compatibility as a coupling agent. When added a content of 8% of MAPE, Silvergrass-HDPE composites made from compression molding shows a better mechanical performance in tensile strength and flexural strength than that made from injection molding, with increasing Silvergrass fiber content from 30% to 50%. However, the WPCs (wood plastics composites) made from injection molding had a lower degree of crystallinity with or without MAPE treatment.
Tsai, Kuo-Ming; Wang, He-Yi
2014-08-20
This study focuses on injection molding process window determination for obtaining optimal imaging optical properties, astigmatism, coma, and spherical aberration using plastic lenses. The Taguchi experimental method was first used to identify the optimized combination of parameters and significant factors affecting the imaging optical properties of the lens. Full factorial experiments were then implemented based on the significant factors to build the response surface models. The injection molding process windows for lenses with optimized optical properties were determined based on the surface models, and confirmation experiments were performed to verify their validity. The results indicated that the significant factors affecting the optical properties of lenses are mold temperature, melt temperature, and cooling time. According to experimental data for the significant factors, the oblique ovals for different optical properties on the injection molding process windows based on melt temperature and cooling time can be obtained using the curve fitting approach. The confirmation experiments revealed that the average errors for astigmatism, coma, and spherical aberration are 3.44%, 5.62%, and 5.69%, respectively. The results indicated that the process windows proposed are highly reliable.
NASA Astrophysics Data System (ADS)
Fang, Jun
Thermotropic liquid crystalline polymers (TLCPs) are a class of promising engineering materials for high-demanding structural applications. Their excellent mechanical properties are highly correlated to the underlying molecular orientation states, which may be affected by complex flow fields during melt processing. Thus, understanding and eventually predicting how processing flows impact molecular orientation is a critical step towards rational design work in order to achieve favorable, balanced physical properties in finished products. This thesis aims to develop deeper understanding of orientation development in commercial TLCPs during processing by coordinating extensive experimental measurements with numerical computations. In situ measurements of orientation development of LCPs during processing are a focal point of this thesis. An x-ray capable injection molding apparatus is enhanced and utilized for time-resolved measurements of orientation development in multiple commercial TLCPs during injection molding. Ex situ wide angle x-ray scattering is also employed for more thorough characterization of molecular orientation distributions in molded plaques. Incompletely injection molded plaques ("short shots") are studied to gain further insights into the intermediate orientation states during mold filling. Finally, two surface orientation characterization techniques, near edge x-ray absorption fine structure (NEXAFS) and infrared attenuated total reflectance (FTIR-ATR) are combined to investigate the surface orientation distribution of injection molded plaques. Surface orientation states are found to be vastly different from their bulk counterparts due to different kinematics involved in mold filling. In general, complex distributions of orientation in molded plaques reflect the spatially varying competition between shear and extension during mold filling. To complement these experimental measurements, numerical calculations based on the Larson-Doi polydomain model are performed. The implementation of the Larson-Doi in complex processing flows is performed using a commercial process modeling software suite (MOLDFLOWRTM), exploiting a nearly exact analogy between the Larson-Doi model and a fiber orientation model that has been widely used in composites processing simulations. The modeling scheme is first verified by predicting many qualitative and quantitative features of molecular orientation distributions in isothermal extrusion-fed channel flows. In coordination with experiments, the model predictions are found to capture many qualitative features observed in injection molded plaques (including short shots). The final, stringent test of Larson-Doi model performance is prediction of in situ transient orientation data collected during mold filling. The model yields satisfactory results, though certain numerical approximations limit performance near the mold front.
Simulation of cracking cores when molding piston components
NASA Astrophysics Data System (ADS)
Petrenko, Alena; Soukup, Josef
2014-08-01
The article deals with pistons casting made from aluminum alloy. Pistons are casting at steel mold with steel core. The casting is provided by gravity casting machine. The each machine is equipped by two metal molds, which are preheated above temperature 160 °C before use. The steel core is also preheated by flame. The metal molds and cores are heated up within the casting process. The temperature of the metal mold raise up to 200 °C and temperature of core is higher. The surface of the core is treated by nitration. The mold and core are cooled down by water during casting process. The core is overheated and its top part is finally cracked despite its intensive water-cooling. The life time cycle of the core is decreased to approximately 5 to 15 thousands casting, which is only 15 % of life time cycle of core for production of other pistons. The article presents the temperature analysis of the core.
RTM simulations and experiments for fiber-reinforced turbine blades forming
NASA Astrophysics Data System (ADS)
Nguyen, Tuan Linh; Marchand, Christophe
2018-05-01
The one-shot (full part) forming of tidal turbine blades by RTM (Resin Transfer Molding) process is a complex process due to the complexity of reinforcements and geometry of blades. In this work, beside the experimental tests which have been realized using IRT JV high capacity machines, the RTM simulations using Moldex3D RTM software have been carried out. First of all, simulations have been done on a 1/7th scale part in order to determine the best injection strategy. Different tested strategies vary by the disposition of injection points (Inlet)/vacuum points (Outlet). Then, the chosen strategy has been applied on the full scale part (˜ 7m length) of high thickness with more complex reinforcement draping. In both cases, the stage of meshing is important to take into account the draping plan with different fiber orientation and fiber types. Attention should be paid on the neck of the blade as the structure of reinforcement changes. A sensitivity study of different parameters (permeability, pressure, temperature) has been then done to understand their influence on the injection time. The permeability which lies to the choice of reinforcement type and fiber volume fraction plays an important role. As the thickness of the part is high, an experimental campaign for measuring the 3D permeability is required. Among the process controllable parameters, the pressure seems the fastest way to reduce the injection time. However, increasing the injection pressure (or the vacuum) could deform the reinforcement. Moreover, the maximal pressure depends on the machine capacity. The influence of temperature shows the thermo-dependence of resin viscosity, the injection time thus decreases as the temperature increases. Nevertheless, the gel time is more limited for injection stage if the resin is heated too much.
A Model for Fiber Length Attrition in Injection-Molded Long-Fiber Composites
DOE Office of Scientific and Technical Information (OSTI.GOV)
TuckerIII, Charles L.; Phelps, Jay H; El-Rahman, Ahmed Abd
2013-01-01
Long-fiber thermoplastic (LFT) composites consist of an engineering thermoplastic matrix with glass or carbon reinforcing fibers that are initially 10 to 13 mm long. When an LFT is injection molded, flow during mold filling orients the fibers and degrades the fiber length. Fiber orientation models for injection molding are well developed, and special orientation models for LFTs have been developed. Here we present a detailed quantitative model for fiber length attrition in a flowing fiber suspension. The model tracks a discrete fiber length distribution (FLD) at each spatial node. Key equations are a conservation equation for total fiber length, andmore » a breakage rate equation. The breakage rate is based on buckling of fibers due to hydrodynamic forces, when the fibers are in unfavorable orientations. The FLD model is combined with a mold filling simulation to predict spatial and temporal variations in fiber length distribution in a mold cavity during filling. The predictions compare well to experiments on a glassfiber/ PP LFT molding. Fiber length distributions predicted by the model are easily incorporated into micromechanics models to predict the stress-strain behavior of molded LFT materials. Author to whom correspondence should be addressed; electronic mail: ctucker@illinois.edu 1« less
Characterization of curing behavior of UV-curable LSR for LED embedded injection mold
NASA Astrophysics Data System (ADS)
Tae, Joon-Sung; Yim, Kyung-Gyu; Rhee, Byung-Ohk; Kwak, Jae B.
2016-11-01
For many applications, liquid silicone rubber (LSR) injection molding is widely used for their great design flexibility and high productivity. In particular, a sealing part for a mobile device such as smartphone and watch has been produced by injection molding. While thermally curable LSR causes deformation problem due to a high mold temperature, UV-curable LSR can be molded at room temperature, which has advantages for over-molding with inserts of temperature-sensitive materials. Ultraviolet light-emitting diodes (UV LEDs) have advantages such as a longer service life, a lower heat dissipation, and smaller size to equip into the mold than conventional halogen or mercury UV lamps. In this work, rheological behavior of UV-curable LSR during curing process was analyzed by UV LEDs available in the market. UV-LEDs of various wave lengths and intensities were tested. The steady shear test was applied to find the starting time of curing and the SAOS was applied to find the ending time of curing to estimate processing time. In addition, the hardness change with irradiation energy was compared with the rheological data to confirm the reliability of the rheological test.
NASA Astrophysics Data System (ADS)
Jin, Chul Kyu; Kang, Chung Gil
2011-10-01
There are various methods for the fabrication of bipolar plates, but these are still limited to machining and stamping processes. High-pressure die casting (HPDC) is an ideal process for the manufacture of bipolar plates This study aims to investigate the formability of bipolar plates for polymer electrolyte membrane fuel cells (PEMFCs) fabricated by vacuum HPDC of an Al-Mg alloy (ALDC6). The cavity of the mold consisted of a thin-walled plate (200 mm × 200 mm × 0.8 mm) with a layer of serpentine channel (50 mm × 50 mm). The location and direction of the channel in the final mold design was determined by computational simulation (MAGMA soft). In addition, simulation results for different conditions of plunger stroke control were compared to those from actual die-casting experiments. Under a vacuum pressure of 35 kPa and for injection speeds of 0.3 and 2.5 m s-1 in the low and high speed regions, respectively, the samples had few casting defects. In addition, the hardness was higher and porosity in microstructure was less than those of the samples made under other injection speed conditions. In case of thin-walled plates, vacuum die casting is beneficial in terms of formability compared to conventional die casting.
Liu, Shih-Jung; Chiang, Fu-Jun; Hsiao, Chao-Ying; Kau, Yi-Chuan; Liu, Kuo-Sheng
2010-10-01
The purpose of this report was to develop novel balloon-expandable self-lock drug-eluting poly(ε-caprolactone) stents. To fabricate the biodegradable stents, polycaprolactone (PCL) components were first fabricated by a lab-scale micro-injection molded machine. They were then assembled and hot-spot welded into mesh-like stents of 3 and 5 mm in diameters. A special geometry of the components was designed to self-lock the assembled stents and to resist the external pressure of the blood vessels after being expanded by balloons. Characterization of the biodegradable PCL stents was carried out. PCL stents exhibited comparable mechanical property to that of metallic stents. No significant collapse pressure reduction and weight loss of the stents were observed after being submerged in PBS for 12 weeks. In addition, the developed stent was coated with paclitaxel by a spray coating technique and the release characteristic of the drug was determined by an in vitro elution method. The high-performance liquid chromatography analysis showed that the biodegradable stents could release a high concentration of paclitaxel for more than 60 days. By adopting the novel techniques, we will be able to fabricate biodegradable drug-eluting PCL stents of different sizes for various cardiovascular applications.
Enhancement of low power CO2 laser cutting process for injection molded polycarbonate
NASA Astrophysics Data System (ADS)
Moradi, Mahmoud; Mehrabi, Omid; Azdast, Taher; Benyounis, Khaled Y.
2017-11-01
Laser cutting technology is a non-contact process that typically is used for industrial manufacturing applications. Laser cut quality is strongly influenced by the cutting processing parameters. In this research, CO2 laser cutting specifications have been investigated by using design of experiments (DOE) with considering laser cutting speed, laser power and focal plane position as process input parameters and kerf geometry dimensions (i.e. top and bottom kerf width, ratio of the upper kerf to lower kerf, upper heat affected zone (HAZ)) and surface roughness of the kerf wall as process output responses. A 60 Watts CO2 laser cutting machine is used for cutting the injection molded samples of polycarbonate sheet with the thickness of 3.2 mm. Results reveal that by decreasing the laser focal plane position and laser power, the bottom kerf width will be decreased. Also the bottom kerf width decreases by increasing the cutting speed. As a general result, locating the laser spot point in the depth of the workpiece the laser cutting quality increases. Minimum value of the responses (top kerf, heat affected zone, ratio of the upper kerf to lower kerf, and surface roughness) are considered as optimization criteria. Validating the theoretical results using the experimental tests is carried out in order to analyze the results obtained via software.
NASA Astrophysics Data System (ADS)
Pongs, Guido; Bresseler, Bernd; Bergs, Thomas; Menke, Gert
2012-10-01
Today isothermal precision molding of imaging glass optics has become a widely applied and integrated production technology in the optical industry. Especially in consumer electronics (e.g. digital cameras, mobile phones, Blu-ray) a lot of optical systems contain rotationally symmetrical aspherical lenses produced by precision glass molding. But due to higher demands on complexity and miniaturization of optical elements the established process chain for precision glass molding is not sufficient enough. Wafer based molding processes for glass optics manufacturing become more and more interesting for mobile phone applications. Also cylindrical lens arrays can be used in high power laser systems. The usage of unsymmetrical free-form optics allows an increase of efficiency in optical laser systems. Aixtooling is working on different aspects in the fields of mold manufacturing technologies and molding processes for extremely high complex optical components. In terms of array molding technologies, Aixtooling has developed a manufacturing technology for the ultra-precision machining of carbide molds together with European partners. The development covers the machining of multi lens arrays as well as cylindrical lens arrays. The biggest challenge is the molding of complex free-form optics having no symmetrical axis. A comprehensive CAD/CAM data management along the entire process chain is essential to reach high accuracies on the molded lenses. Within a national funded project Aixtooling is working on a consistent data handling procedure in the process chain for precision molding of free-form optics.
Intelligent methods for the process parameter determination of plastic injection molding
NASA Astrophysics Data System (ADS)
Gao, Huang; Zhang, Yun; Zhou, Xundao; Li, Dequn
2018-03-01
Injection molding is one of the most widely used material processing methods in producing plastic products with complex geometries and high precision. The determination of process parameters is important in obtaining qualified products and maintaining product quality. This article reviews the recent studies and developments of the intelligent methods applied in the process parameter determination of injection molding. These intelligent methods are classified into three categories: Case-based reasoning methods, expert system- based methods, and data fitting and optimization methods. A framework of process parameter determination is proposed after comprehensive discussions. Finally, the conclusions and future research topics are discussed.
Shin, Kwangho; Heo, Youngmoo; Park, Hyungpil; Chang, Sungho; Rhee, Byungohk
2013-12-12
In this study, we focus on making a double-sided metal plate with an internal structure, such as honeycomb. The stainless steel powder was used in the metal injection molding (MIM) process. The preliminary studies were carried out for the measurement of the viscosity of the stainless steel feedstock and for the prediction of the filling behavior through Computer Aided Engineering (CAE) simulation. PE (high density polyethylene (HDPE) and low density polyethylene (LDPE)) and polypropylene (PP) resins were used to make the sacrificed insert with a honeycomb structure using a plastic injection molding process. Additionally, these sacrificed insert parts were inserted in the metal injection mold, and the metal injection molding process was carried out to build a green part with rectangular shape. Subsequently, debinding and sintering processes were adopted to remove the sacrificed polymer insert. The insert had a suitable rigidity that was able to endure the filling pressure. The core shift analysis was conducted to predict the deformation of the insert part. The 17-4PH feedstock with a low melting temperature was applied. The glass transition temperature of the sacrificed polymer insert would be of a high grade, and this insert should be maintained during the MIM process. Through these processes, a square metal plate with a honeycomb structure was made.
Shin, Kwangho; Heo, Youngmoo; Park, Hyungpil; Chang, Sungho; Rhee, Byungohk
2013-01-01
In this study, we focus on making a double-sided metal plate with an internal structure, such as honeycomb. The stainless steel powder was used in the metal injection molding (MIM) process. The preliminary studies were carried out for the measurement of the viscosity of the stainless steel feedstock and for the prediction of the filling behavior through Computer Aided Engineering (CAE) simulation. PE (high density polyethylene (HDPE) and low density polyethylene (LDPE)) and polypropylene (PP) resins were used to make the sacrificed insert with a honeycomb structure using a plastic injection molding process. Additionally, these sacrificed insert parts were inserted in the metal injection mold, and the metal injection molding process was carried out to build a green part with rectangular shape. Subsequently, debinding and sintering processes were adopted to remove the sacrificed polymer insert. The insert had a suitable rigidity that was able to endure the filling pressure. The core shift analysis was conducted to predict the deformation of the insert part. The 17-4PH feedstock with a low melting temperature was applied. The glass transition temperature of the sacrificed polymer insert would be of a high grade, and this insert should be maintained during the MIM process. Through these processes, a square metal plate with a honeycomb structure was made. PMID:28788427
Characterization of Ni-Cr alloys using different casting techniques and molds.
Chen, Wen-Cheng; Teng, Fu-Yuan; Hung, Chun-Cheng
2014-02-01
This study differentiated the mechanical properties of nickel-chromium (Ni-Cr) alloys under various casting techniques (different casting molds and casting atmospheres). These techniques were sampled by a sand mold using a centrifugal machine in ambient air (group I) and electromagnetic induction in an automatic argon castimatic casting machine (group II). The specimen casting used a graphite mold by a castimatic casting machine (group III). The characteristics of the Ni-Cr alloys, yield and ultimate tensile strength, bending modulus, microhardness, diffraction phase, grindability, ability to spring back, as well as ground microstructure and pattern under different casting conditions were evaluated. The group III specimens exhibited the highest values in terms of strength, modulus, hardness, and grindability at a grind rate of 500 rpm. Moreover, group III alloys exhibited smaller grain sizes, higher ability to spring back, and greater ductility than those casted by sand investment (groups I and II). The main factor, "casting mold," significantly influenced all mechanical properties. The graphite mold casting of the Ni-Cr dental alloys in a controlled atmosphere argon casting system provided an excellent combination of high mechanical properties and good ability to spring back, and preserved the ductile properties for application in Ni-Cr porcelain-fused system. The results can offer recommendations to assist a prosthetic technician in selecting the appropriate casting techniques to obtain the desired alloy properties. Copyright © 2013 Elsevier B.V. All rights reserved.
Gaaz, Tayser Sumer; Sulong, Abu Bakar; Kadhum, Abdul Amir H.; Nassir, Mohamed H.; Al-Amiery, Ahmed A.
2016-01-01
Halloysite nanotubes-thermoplastic polyurethane (HNTs-TPU) nanocomposites are attractive products due to increasing demands for specialized materials. This study attempts to optimize the parameters for injection just before marketing. The study shows the importance of the preparation of the samples and how well these parameters play their roles in the injection. The control parameters for injection are carefully determined to examine the mechanical properties and the density of the HNTs-TPU nanocomposites. Three types of modified HNTs were used as untreated HNTs (uHNTs), sulfuric acid treated (aHNTs) and a combined treatment of polyvinyl alcohol (PVA)-sodium dodecyl sulfate (SDS)-malonic acid (MA) (treatment (mHNTs)). It was found that mHNTs have the most influential effect of producing HNTs-TPU nanocomposites with the best qualities. One possible reason for this extraordinary result is the effect of SDS as a disperser and MA as a crosslinker between HNTs and PVA. For the highest tensile strength, the control parameters are demonstrated at 150 °C (injection temperature), 8 bar (injection pressure), 30 °C (mold temperature), 8 min (injection time), 2 wt % (HNTs loading) and mHNT (HNTs type). Meanwhile, the optimized combination of the levels for all six control parameters that provide the highest Young’s modulus and highest density was found to be 150 °C (injection temperature), 8 bar (injection pressure), 32 °C (mold temperature), 8 min (injection time), 3 wt % (HNTs loading) and mHNT (HNTs type). For the best tensile strain, the six control parameters are found to be 160 °C (injection temperature), 8 bar (injection pressure), 32 °C (mold temperature), 8 min (injection time), 2 wt % (HNTs loading) and mHNT (HNTs type). For the highest hardness, the best parameters are 140 °C (injection temperature), 6 bar (injection pressure), 30 °C (mold temperature), 8 min (injection time), 2 wt % (HNTs loading) and mHNT (HNTs type). The analyses are carried out by coordinating Taguchi and ANOVA approaches. Seemingly, mHNTs has shown its very important role in the resulting product. PMID:28774069
Gaaz, Tayser Sumer; Sulong, Abu Bakar; Kadhum, Abdul Amir H; Nassir, Mohamed H; Al-Amiery, Ahmed A
2016-11-22
Halloysite nanotubes-thermoplastic polyurethane (HNTs-TPU) nanocomposites are attractive products due to increasing demands for specialized materials. This study attempts to optimize the parameters for injection just before marketing. The study shows the importance of the preparation of the samples and how well these parameters play their roles in the injection. The control parameters for injection are carefully determined to examine the mechanical properties and the density of the HNTs-TPU nanocomposites. Three types of modified HNTs were used as untreated HNTs ( u HNTs), sulfuric acid treated ( a HNTs) and a combined treatment of polyvinyl alcohol (PVA)-sodium dodecyl sulfate (SDS)-malonic acid (MA) (treatment ( m HNTs)). It was found that m HNTs have the most influential effect of producing HNTs-TPU nanocomposites with the best qualities. One possible reason for this extraordinary result is the effect of SDS as a disperser and MA as a crosslinker between HNTs and PVA. For the highest tensile strength, the control parameters are demonstrated at 150 °C (injection temperature), 8 bar (injection pressure), 30 °C (mold temperature), 8 min (injection time), 2 wt % (HNTs loading) and m HNT (HNTs type). Meanwhile, the optimized combination of the levels for all six control parameters that provide the highest Young's modulus and highest density was found to be 150 °C (injection temperature), 8 bar (injection pressure), 32 °C (mold temperature), 8 min (injection time), 3 wt % (HNTs loading) and m HNT (HNTs type). For the best tensile strain, the six control parameters are found to be 160 °C (injection temperature), 8 bar (injection pressure), 32 °C (mold temperature), 8 min (injection time), 2 wt % (HNTs loading) and m HNT (HNTs type). For the highest hardness, the best parameters are 140 °C (injection temperature), 6 bar (injection pressure), 30 °C (mold temperature), 8 min (injection time), 2 wt % (HNTs loading) and m HNT (HNTs type). The analyses are carried out by coordinating Taguchi and ANOVA approaches. Seemingly, m HNTs has shown its very important role in the resulting product.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nguyen, Ba Nghiep; Jin, Xiaoshi; Wang, Jin
2012-02-23
This report describes the work conducted under the CRADA Nr. PNNL/304 between Battelle PNNL and Autodesk whose objective is to validate the new process models developed under the previous CRADA for large injection-molded LFT composite structures. To this end, the ARD-RSC and fiber length attrition models implemented in the 2013 research version of Moldflow was used to simulate the injection molding of 600-mm x 600-mm x 3-mm plaques from 40% glass/polypropylene (Dow Chemical DLGF9411.00) and 40% glass/polyamide 6,6 (DuPont Zytel 75LG40HSL BK031) materials. The injection molding was performed by Injection Technologies, Inc. at Windsor, Ontario (under a subcontract by Oakmore » Ridge National Laboratory, ORNL) using the mold offered by the Automotive Composite Consortium (ACC). Two fill speeds under the same back pressure were used to produce plaques under slow-fill and fast-fill conditions. Also, two gating options were used to achieve the following desired flow patterns: flows in edge-gated plaques and in center-gated plaques. After molding, ORNL performed measurements of fiber orientation and length distributions for process model validations. The structure of this report is as follows. After the Introduction (Section 1), Section 2 provides a summary of the ARD-RSC and fiber length attrition models. A summary of model implementations in the latest research version of Moldflow is given in Section 3. Section 4 provides the key processing conditions and parameters for molding of the ACC plaques. The validations of the ARD-RSC and fiber length attrition models are presented and discussed in Section 5. The conclusions will be drawn in Section 6.« less
Simmons, Blake [San Francisco, CA; Domeier, Linda [Danville, CA; Woo, Noble [San Gabriet, CA; Shepodd, Timothy [Livermore, CA; Renzi, Ronald F [Tracy, CA
2008-04-01
Injection molding is used to form microfluidic devices with integrated functional components. One or more functional components are placed in a mold cavity which is then closed. Molten thermoplastic resin is injected into the mold and then cooled, thereby forming a solid substrate including the functional component(s). The solid substrate including the functional component(s) is then bonded to a second substrate which may include microchannels or other features.
Methods for integrating a functional component into a microfluidic device
Simmons, Blake; Domeier, Linda; Woo, Noble; Shepodd, Timothy; Renzi, Ronald F.
2014-08-19
Injection molding is used to form microfluidic devices with integrated functional components. One or more functional components are placed in a mold cavity, which is then closed. Molten thermoplastic resin is injected into the mold and then cooled, thereby forming a solid substrate including the functional component(s). The solid substrate including the functional component(s) is then bonded to a second substrate, which may include microchannels or other features.
Development of fire resistant, nontoxic aircraft interior materials
NASA Technical Reports Server (NTRS)
Haley, G.; Silverman, B.; Tajima, Y.
1976-01-01
All available newly developed nonmetallic polymers were examined for possible usage in developing fire resistant, nontoxic nonmetallic parts or assemblies for aircraft interiors. Specifically, feasibility for the development of clear films for new decorative laminates, compression moldings, injection molded parts, thermoformed plastic parts, and flexible foams were given primary considerations. Preliminary data on the flame resistant characteristics of the materials were obtained. Preliminary toxicity data were generated from samples of materials submitted from the contractor. Preliminary data on the physical characteristics of various thermoplastic materials to be considered for either compression molded, injection molded, or thermoformed parts were obtained.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thi, Thanh Binh Nguyen; Morioka, Mizuki; Yokoyama, Atsushi
Numerical prediction of the fiber orientation in the short-glass fiber (GF) reinforced polyamide 6 (PA6) composites with the fiber weight concentration of 30%, 50%, and 70% manufactured by the injection molding process is presented. And the fiber orientation was also directly observed and measured through X-ray computed tomography. During the injection molding process of the short-fiber/thermoplastic composite, the fiber orientation is produced by the flow states and the fiber-fiber interaction. Folgar and Tucker equation is the well known for modeling the fiber orientation in a concentrated suspension. They included into Jeffrey’s equation a diffusive type of term by introducing amore » phenomenological coefficient to account for the fiber-fiber interaction. Our developed model for the fiber-fiber interaction was proposed by modifying the rotary diffusion term of the Folgar-Tucker equation. This model was presented in a conference paper of the 29{sup th} International Conference of the Polymer Processing Society published by AIP conference proceeding. For modeling fiber interaction, the fiber dynamic simulation was introduced in order to obtain a global fiber interaction coefficient, which is sum function of the fiber concentration, aspect ratio, and angular velocity. The fiber orientation is predicted by using the proposed fiber interaction model incorporated into a computer aided engineering simulation package C-Mold. An experimental program has been carried out in which the fiber orientation distribution has been measured in 100 x 100 x 2 mm injection-molded plate and 100 x 80 x 2 mm injection-molded weld by analyzed with a high resolution 3D X-ray computed tomography system XVA-160α, and calculated by X-ray computed tomography imaging. The numerical prediction shows a good agreement with experimental validation. And the complex fiber orientation in the injection-molded weld was investigated.« less
NASA Astrophysics Data System (ADS)
Thi, Thanh Binh Nguyen; Morioka, Mizuki; Yokoyama, Atsushi; Hamanaka, Senji; Yamashita, Katsuhisa; Nonomura, Chisato
2015-05-01
Numerical prediction of the fiber orientation in the short-glass fiber (GF) reinforced polyamide 6 (PA6) composites with the fiber weight concentration of 30%, 50%, and 70% manufactured by the injection molding process is presented. And the fiber orientation was also directly observed and measured through X-ray computed tomography. During the injection molding process of the short-fiber/thermoplastic composite, the fiber orientation is produced by the flow states and the fiber-fiber interaction. Folgar and Tucker equation is the well known for modeling the fiber orientation in a concentrated suspension. They included into Jeffrey's equation a diffusive type of term by introducing a phenomenological coefficient to account for the fiber-fiber interaction. Our developed model for the fiber-fiber interaction was proposed by modifying the rotary diffusion term of the Folgar-Tucker equation. This model was presented in a conference paper of the 29th International Conference of the Polymer Processing Society published by AIP conference proceeding. For modeling fiber interaction, the fiber dynamic simulation was introduced in order to obtain a global fiber interaction coefficient, which is sum function of the fiber concentration, aspect ratio, and angular velocity. The fiber orientation is predicted by using the proposed fiber interaction model incorporated into a computer aided engineering simulation package C-Mold. An experimental program has been carried out in which the fiber orientation distribution has been measured in 100 x 100 x 2 mm injection-molded plate and 100 x 80 x 2 mm injection-molded weld by analyzed with a high resolution 3D X-ray computed tomography system XVA-160α, and calculated by X-ray computed tomography imaging. The numerical prediction shows a good agreement with experimental validation. And the complex fiber orientation in the injection-molded weld was investigated.
Rapid control of mold temperature during injection molding process
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liparoti, Sara; Titomanlio, Giuseppe; Hunag, Tsang Min
2015-05-22
The control of mold surface temperature is an important factor that determines surface morphology and its dimension in thickness direction. It can also affect the frozen molecular orientation and the mold surface replicability in injection molded products. In this work, thin thermally active films were used to quickly control the mold surface temperature. In particular, an active high electrical conductivity carbon black loaded polyimide composites sandwiched between two insulating thin polymeric layers was used to condition the mold surface. By controlling the heating time, it was possible to control precisely the temporal variation of the mold temperature surface during themore » entire cycle. The surface heating rate was about 40°C/s and upon contact with the polymer the surface temperature decreased back to 40°C within about 5 s; the overall cycle time increased only slightly. The effect on cross section sample morphology of samples of iPP were analyzed and discussed on the basis of the recorded temperature evolution.« less
Antifriction basalt-plastics based on polypropylene
NASA Astrophysics Data System (ADS)
Bashtannik, P. I.; Ovcharenko, V. G.
1997-05-01
A study is made of the dependence of the mechanical and friction-engineering properties of polypropylene reinforced with basalt fibers on the viscosity of the polymer matrix. It is established that the main factors that determine the mechanical properties of the plastics are the quality of impregnation of the fibers by the binder and the residual length of the reinforcing filler in the composite after extrusion and injection molding. The material that was developed has a low friction coefficient and low rate of wear within a relatively brood range of friction conditions. The basalt-plastics can be used in the rubbing parts of machines and mechanisms subjected to dry friction.
Fancello, Eduardo Alberto
2017-01-01
The purpose of this article is to present mechanical and physicochemical properties during in vitro degradation of PLGA material as craniofacial plates based on different values of injection molded temperatures. Injection molded plates were submitted to in vitro degradation in a thermostat bath at 37 ± 1°C by 16 weeks. The material was removed after 15, 30, 60, and 120 days; then bending stiffness, crystallinity, molecular weights, and viscoelasticity were studied. A significant decrease of molecular weight and mechanical properties over time and a difference in FT-IR after 60 days showed faster degradation of the material in the geometry studied. DSC analysis confirmed that the crystallization occurred, especially in higher melt temperature condition. DMA analysis suggests a greater contribution of the viscous component of higher temperature than lower temperature in thermomechanical behavior. The results suggest that physical-mechanical properties of PLGA plates among degradation differ per injection molding temperatures. PMID:29056968
Mathematical modeling of the in-mold coating process for injection-molded thermoplastic parts
NASA Astrophysics Data System (ADS)
Chen, Xu
In-Mold Coating (IMC) has been successfully used for many years for exterior body panels made from compression molded Sheet Molding Compound (SMC). The coating material is a single component reactive fluid, designed to improve the surface quality of SMC moldings in terms of functional and cosmetic properties. When injected onto a cured SMC part, IMC cures and bonds to provide a pain-like surface. Because of its distinct advantages, IMC is being considered for application to injection molded thermoplastic parts. For a successful in mold coating operation, there are two key issues related to the flow of the coating. First, the injection nozzle should be located such that the thermoplastic substrate is totally covered and the potential for air trapping is minimized. The selected location should be cosmetically acceptable since it most likely will leave a mark on the coated surface. The nozzle location also needs to be accessible for easy of maintenance. Secondly, the hydraulic force generated by the coating injection pressure should not exceed the available clamping tonnage. If the clamping force is exceeded, coating leakage will occur. In this study, mathematical models for IMC flow on the compressible thermoplastic substrate have been developed. Finite Difference Method (FDM) is first used to solve the 1 dimensional (1D) IMC flow problem. In order to investigate the application of Control Volume based Finite Element Method (CV/FEM) to more complicated two dimensional IMC flow, that method is first evaluated by solving the 1D IMC flow problem. An analytical solution, which can be obtained when a linear relationship between the coating thickness and coating injection pressure is assumed, is used to verify the numerical results. The mathematical models for the 2 dimensional (2D) IMC flow are based on the generalized Hele-Shaw approximation. It has been found experimentally that the power law viscosity model adequately predicts the rheological behavior of the coating. The compressibility of the substrate is modeled by the 2-domain Tait PVT equation. CV/FEM is used to solve the discretized governing equations. A computer code has been developed to predict the fill pattern of the coating and the injection pressure. A number of experiments have been conducted to verify the numerical predictions of the computer code. It has been found both numerically and experimentally that the substrate thickness plays a significant role on the IMC fill pattern.
NASA Astrophysics Data System (ADS)
De Jesus Vega, Marisely
Devices containing micro and nanostructured surfaces are developing and constantly finding new applications, especially for medical diagnostics, point-of-care applications, and microneedles. They are also employed in the functionalization of surfaces for superhydrophobicity, drag reduction, or reversible adhesion by mimicking bio-inspired surfaces. This research provides a thorough investigation on the effects of different polymeric materials and processing conditions on the replication of micro and nanostructured surfaces via injection molding. In addition, this dissertation also presents a novel approach for the production of durable microstructured metal tooling to be used for the production of surfaces with microchannels via injection molding. Materials such as thermoplastic vulcanizates are substituting regular thermoplastic materials and vulcanized elastomers in many applications due to their outstanding properties and ease of processability. These material properties broaden the scope of applications for microstructured surfaces. However, there is a need for understanding how these materials behave in microinjection molding since thermoplastic elastomers' behavior during injection molding have been shown to differ from that of the widely understood behavior of thermoplastics. Replication of microstructured surfaces using thermoplastic vulcanizates (TPV) was studied in the first part of this thesis. TPVs with different hardness's were molded using microinjection molding with various processing conditions and the replication and surface details of 20 microm pillars (aspect ratio of 1:1) were characterized. In the second part of this research liquid silicone rubber (LSR) was studied as a material for the production of micro and nanostructured surfaces. LSR is a silicone based material such as polydimethylsiloxane (PDMS), which is widely used for research and development of micro and nanostructured devices, and thus provides all the benefits of PDMS but can be rapidly processed via liquid injection molding. LSR with its excellent mechanical properties, transparency, non-toxicity and rapid molding capabilities can bring the production of micro and nanostructured surfaces from laboratory research facilities to high-rate manufacturing. However, previous research on microstructured surfaces made off LSR does not focus on the processing aspect of this material. Therefore, there is a lack of understanding of how different processing conditions affect the replication of microstructures. Additionally, there are no reports molding nanostructures of LSR. Features between 115 microm and 0.250 microm were molded in this work and the effect of different processing conditions and features sizes were studied. For the last part of this work, a novel metal additive manufacturing technique was used for the production of microstructured surfaces to be used as tooling for injection molding. The printing method consists of metal pastes printed through a tip onto a steel substrate. Prior work has shown spreading and swelling of features when metal pastes extrude out of the printing tip. PDMS was studied as a binder material to minimize spreading and swelling of the features by curing right after printing. In addition, prior work has shown durability of this metal printed tool up to 5000 injection molding cycles. This work compares this durability to durability of commercially available selective laser sintering metal tools. Furthermore, surface roughness was studied as this is one of the most important things to consider when molding microchannels for certain applications.
The Influence of Injection Molding Parameter on Properties of Thermally Conductive Plastic
NASA Astrophysics Data System (ADS)
Hafizah Azis, N.; Zulafif Rahim, M.; Sa'ude, Nasuha; Rafai, N.; Yusof, M. S.; Tobi, ALM; Sharif, ZM; Rasidi Ibrahim, M.; Ismail, A. E.
2017-05-01
Thermally conductive plastic is the composite between metal-plastic material that is becoming popular because if it special characteristic. Injection moulding was regarded as the best process for mass manufacturing of the plastic composite due to its low production cost. The objective of this research is to find the best combination of the injection parameter setting and to find the most significant factor that effect the strength and thermal conductivity of the composite. Several parameter such as the volume percentage of copper powder, nozzle temperature and injection pressure of injection moulding machine were investigated. The analysis was done using Design Expert Software by implementing design of experiment method. From the analysis, the significant effects were determined and mathematical models of only significant effect were established. In order to ensure the validity of the model, confirmation run was done and percentage errors were calculated. It was found that the best combination parameter setting to maximize the value of tensile strength is volume percentage of copper powder of 3.00%, the nozzle temperature of 195°C and the injection pressure of 65%, and the best combination parameter settings to maximize the value of thermal conductivity is volume percentage of copper powder of 7.00%, the nozzle temperature of 195°C and the injection pressure of 65% as recommended..
Thermal and mechanical properties of 3D printed boron nitride - ABS composites
NASA Astrophysics Data System (ADS)
Quill, Tyler J.; Smith, Matthew K.; Zhou, Tony; Baioumy, Mohamed Gamal Shafik; Berenguer, Joao Paulo; Cola, Baratunde A.; Kalaitzidou, Kyriaki; Bougher, Thomas L.
2017-11-01
The current work investigates the thermal conductivity and mechanical properties of Boron Nitride (BN)-Acrylonitrile Butadiene Styrene (ABS) composites prepared using both 3D printing and injection molding. The thermally conductive, yet electrically insulating composite material provides a unique combination of properties that make it desirable for heat dissipation and packaging applications in electronics. Materials were fabricated via melt mixing on a twin-screw compounder, then injection molded or extruded into filament for fused deposition modeling (FDM) 3D printing. Compositions of up to 35 wt.% BN in ABS were prepared, and the infill orientation of the 3D printed composites was varied to investigate the effect on properties. Injection molding produced a maximum in-plane conductivity of 1.45 W/m-K at 35 wt.% BN, whereas 3D printed samples of 35 wt.% BN showed a value of 0.93 W/m-K, over 5 times the conductivity of pure ABS. The resulting thermal conductivity is anisotropic; with the through-plane thermal conductivity lower by a factor of 3 for injection molding and 4 for 3D printing. Adding BN flakes caused a modest increase in the flexural modulus, but resulted in a large decrease in the flexural strength and impact toughness. It is shown that although injection molding produces parts with superior thermal and mechanical properties, BN shows much potential as a filler material for rapid prototyping of thermally conductive composites.
Heidari, Behzad Shiroud; Oliaei, Erfan; Shayesteh, Hadi; Davachi, Seyed Mohammad; Hejazi, Iman; Seyfi, Javad; Bahrami, Mozhgan; Rashedi, Hamid
2017-01-01
In this study, injection molding of three poly lactic acid (PLA) based bone screws was simulated and optimized through minimizing the shrinkage and warpage of the bone screws. The optimization was carried out by investigating the process factors such as coolant temperature, mold temperature, melt temperature, packing time, injection time, and packing pressure. A response surface methodology (RSM), based on the central composite design (CCD), was used to determine the effects of the process factors on the PLA based bone screws. Upon applying the method of maximizing the desirability function, optimization of the factors gave the lowest warpage and shrinkage for nanocomposite PLA bone screw (PLA9). Moreover, PLA9 has the greatest desirability among the selected materials for bone screw injection molding. Meanwhile, a finite element analysis (FE analysis) was also performed to determine the force values and concentration points which cause yielding of the screws under certain conditions. The Von-Mises stress distribution showed that PLA9 screw is more resistant against the highest loads as compared to the other ones. Finally, according to the results of injection molding simulations, the design of experiments (DOE) and structural analysis, PLA9 screw is recommended as the best candidate for the production of biomedical materials among all the three types of screws. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Daso, Endwell O. (Inventor); Pritchett, II, Victor E. (Inventor); Wang, Ten-See (Inventor); Farr, Rebecca Ann (Inventor)
2012-01-01
The upstream flowfield of a vehicle traveling in supersonic or hypersonic atmospheric flight is actively controlled using attribute(s) experienced by the vehicle. Sensed attribute(s) include pressure along the vehicle's outer mold line, temperature along the vehicle's outer mold line, heat flux along the vehicle's outer mold line, and/or local acceleration response of the vehicle. A non-heated, non-plasma-producing gas is injected into an upstream flowfield of the vehicle from at least one surface location along the vehicle's outer mold line. The pressure of the gas so-injected is adjusted based on the attribute(s) so-sensed.
NASA Astrophysics Data System (ADS)
Zhou, Mingyong; Xiong, Xiang; Jiang, Bingyan; Weng, Can
2018-01-01
Polymer products with micro/nano-structures have excellent mechanical and optical properties, chemical resistance, and other advantages. Injection molding is one of the most potential techniques to fabricate polymer products with micro/nano-structures artificially in large numbers. In this study, a surface approach to fabricate high aspect ratio nanopillars and micro/nano combined structures was presented. Mold insert with micropillar arrays and nanopillars on its surface was prepared by combing anodic aluminum oxide (AAO) template and etched plate. Anti-sticking modification was done on the template to realize a better demolding quality. The influences of mold temperature and polymer material on the final replication quality were investigated. The results showed that the final replication quality of high aspect ratio nanopillars was greatly improved as compared with the unprocessed template. Polymer with low elongation at break was not suitable to fabricate structures with high aspect ratio via injection molding. For polypropylene surface, the experimental results of static contact angles were almost consistent with Cassie-Baxter equation. When the mold temperature reached 178 °C, hair-like polycarbonate nanopillars were observed, resulting in an excellent hydrophobic characteristic.
NASA Astrophysics Data System (ADS)
Katahira, Yu; Fukuta, Masahiko; Katsuki, Masahide; Momochi, Takeshi; Yamamoto, Yoshihiro
2016-09-01
Recently, it has been required to improve qualities of aspherical lenses mounted on camera units. Optical lenses in highvolume production generally are applied with molding process using cemented carbide or Ni-P coated steel, which can be selected from lens material such as glass and plastic. Additionally it can be obtained high quality of the cut or ground surface on mold due to developments of different mold product technologies. As results, it can be less than 100nmPV as form-error and 1nmRa as surface roughness in molds. Furthermore it comes to need higher quality, not only formerror( PV) and surface roughness(Ra) but also other surface characteristics. For instance, it can be caused distorted shapes at imaging by middle spatial frequency undulations on the lens surface. In this study, we made focus on several types of sinuous structures, which can be classified into form errors for designed surface and deteriorate optical system performances. And it was obtained mold product processes minimalizing undulations on the surface. In the report, it was mentioned about the analyzing process by using PSD so as to evaluate micro undulations on the machined surface quantitatively. In addition, it was mentioned that the grinding process with circumferential velocity control was effective for large aperture lenses fabrication and could minimalize undulations appeared on outer area of the machined surface, and mentioned about the optical glass lens molding process by using the high precision press machine.
Biocomposites from co-polypropylene and distillers' grains
NASA Astrophysics Data System (ADS)
Zarrinbakhsh, Nima; Mohanty, Amar K.; Misra, Manjusri
2015-05-01
In the present work, we have explored the polymeric composites of distillers' grains with co-polypropylene (co-PP). The effect of maleated-PP compatibilizer on mechanical, thermomechanical and physical properties was evaluated. The composite materials were produced by melt extrusion in a micro-compounder followed by injection molding in a micro-injection machine. The composites were characterized for their tensile, flexural and impact properties. Also, melt flow index and heat deflection temperature were measured. The results showed more than 30 % improvement in modulus when comparing the compatibilized biocomposite with neat co-PP. Also, the strength of the compatibilized biocomposite measured in tensile and flexural tests was comparable to or even better than that of the neat matrix. On the other hand, the reduced flexibility and toughness as a result of compatibilization were in an acceptable range. The biocomposites showed more rigidity at elevated temperatures. The produced distillers' grain biocomposites showed promises for industrial applications.
NASA Astrophysics Data System (ADS)
Chailly, M.; Charmeau, J.-Y.; Bereaux, Y.; Monasse, B.
2007-04-01
Due to increasing expectations from the market, the aspect of molded parts has to be improved constantly. Some of the defects observed on these parts such as weldlines are related to the filling stage. To limit this, we investigated the influence on weldlines using various surface deposits on the mold surface, mainly PVD and PACVD deposits : Chromium nitride (CrN), Titanium nitride (TiN), Diamond like Carbon (DLC), Chromium and polished steel (PG) on an instrumented plate mold. Injection campaign was led on three polymers which differ in terms of nature (amorphous, semi-crystalline, copolymers). We studied the evolution of the dimensions of weldlines appearing on the plate using the same injection parameters for a given polymer, but with various deposits and thicknesses. Another aspect that had been investigated is the morphology of the weldline through the thickness of the part, depending on polymer nature. Adhesion of polymer at the flow front with the mold surface proved to change. The modification of the initial contact in the filling stage and thus the thermal resistance at the mold implied a change in the process, increasing or reducing the pressure loss in the flow and differential shrinkage in the final part. The induced impact on dimensions of the weldlines allowed to distinguish which surface treatments were able to reduce the defect. A complementary study was led on both polymers in molten state and deposits in terms of wetting using a sessile drop method to confirm the adhesion at the polymer/mold interface. This study proved the influence of the use of surface treatments has clearly an impact on the filling stage of the injection molding process, and it is necessary to get a better knowledge of the interactions between physical adhesion, tribology of polymer/mold contact, and thermal properties of the coatings and their impact on solidification of the polymer.
Injection Molding and its application to drug delivery.
Zema, Lucia; Loreti, Giulia; Melocchi, Alice; Maroni, Alessandra; Gazzaniga, Andrea
2012-05-10
Injection Molding (IM) consists in the injection, under high pressure conditions, of heat-induced softened materials into a mold cavity where they are shaped. The advantages the technique may offer in the development of drug products concern both production costs (no need for water or other solvents, continuous manufacturing, scalability, patentability) and technological/biopharmaceutical characteristics of the molded items (versatility of the design and composition, possibility of obtaining solid molecular dispersions/solutions of the active ingredient). In this article, process steps and formulation aspects relevant to IM are discussed, with emphasis on the issues and advantages connected with the transfer of this technique from the plastics industry to the production of conventional and controlled-release dosage forms. Moreover, its pharmaceutical applications thus far proposed in the primary literature, intended as either alternative manufacturing strategies for existing products or innovative systems with improved design and performance characteristics, are critically reviewed. Copyright © 2012 Elsevier B.V. All rights reserved.
Retention of denture bases fabricated by three different processing techniques – An in vivo study
Chalapathi Kumar, V. H.; Surapaneni, Hemchand; Ravikiran, V.; Chandra, B. Sarat; Balusu, Srilatha; Reddy, V. Naveen
2016-01-01
Aim: Distortion due to Polymerization shrinkage compromises the retention. To evaluate the amount of retention of denture bases fabricated by conventional, anchorized, and injection molding polymerization techniques. Materials and Methods: Ten completely edentulous patients were selected, impressions were made, and master cast obtained was duplicated to fabricate denture bases by three polymerization techniques. Loop was attached to the finished denture bases to estimate the force required to dislodge them by retention apparatus. Readings were subjected to nonparametric Friedman two-way analysis of variance followed by Bonferroni correction methods and Wilcoxon matched-pairs signed-ranks test. Results: Denture bases fabricated by injection molding (3740 g), anchorized techniques (2913 g) recorded greater retention values than conventional technique (2468 g). Significant difference was seen between these techniques. Conclusions: Denture bases obtained by injection molding polymerization technique exhibited maximum retention, followed by anchorized technique, and least retention was seen in conventional molding technique. PMID:27382542
Molten metal injector system and method
Meyer, Thomas N.; Kinosz, Michael J.; Bigler, Nicolas; Arnaud, Guy
2003-04-01
Disclosed is a molten metal injector system including a holder furnace, a casting mold supported above the holder furnace, and a molten metal injector supported from a bottom side of the mold. The holder furnace contains a supply of molten metal having a metal oxide film surface. The bottom side of the mold faces the holder furnace. The mold defines a mold cavity for receiving the molten metal from the holder furnace. The injector projects into the holder furnace and is in fluid communication with the mold cavity. The injector includes a piston positioned within a piston cavity defined by a cylinder for pumping the molten metal upward from the holder furnace and injecting the molten metal into the mold cavity under pressure. The piston and cylinder are at least partially submerged in the molten metal when the holder furnace contains the molten metal. The cylinder further includes a molten metal intake for receiving the molten metal into the piston cavity. The molten metal intake is located below the metal oxide film surface of the molten metal when the holder furnace contains the molten metal. A method of injecting molten metal into a mold cavity of a casting mold is also disclosed.
Gulsoy, H Ozkan; Pazarlioglu, Serdar; Gulsoy, Nagihan; Gundede, Busra; Mutlu, Ozal
2015-11-01
The research investigated the effect of Zr, Nb and Ti additions on mechanical, electrochemical properties and biocompatibility of injection molded 316L stainless steel. Addition of elemental powder is promoted to get high performance of sintered 316L stainless steels. The amount of additive powder plays a role in determining the sintered microstructure and all properties. In this study, 316L stainless steel powders used with the elemental Zr, Nb and Ti powders. A feedstock containing 62.5 wt% powders loading was molded at different injection molded temperature. The binders were completely removed from molded components by solvent and thermal debinding at different temperatures. The debinded samples were sintered at 1350°C for 60 min. Mechanical, electrochemical property and biocompatibility of the sintered samples were performed mechanical, electrochemical, SBF immersion tests and cell culture experiments. Results of study showed that sintered 316L and 316L with additives samples exhibited high corrosion properties and biocompatibility in a physiological environment. Copyright © 2015 Elsevier Ltd. All rights reserved.
2010-01-01
School of Enviromental and Biological Sciences New Brunswick, NJ 08903 FTR 214 Defense Logistics Agency 8725 John J. Kingsman Rd Fort Belvoir, VA...Precision Automation X Injection Mold 1100 Rack Stock America X Injection Mold 1400 Rack AllPax X Enviromental Chamber Model: 11-679-25C Fisher
USDA-ARS?s Scientific Manuscript database
Extruded/injection-molded composites were produced from plantain flour blended with ethylene vinyl-alcohol (EVA) and glycerol. Scanning electron microscopy showed composites had a smooth surface and excellent compatibility between plantain flour, EVA and glycerol. The impact of increased plantain fl...
Development of bio-sourced binder to metal injection moulding
NASA Astrophysics Data System (ADS)
Royer, Alexandre; Barrière, Thierry; Gelin, Jean-Claude
2016-10-01
In the MIM process the binder play the most important role. It provides fluidity of the feedstock mixture for injection molding and adhesion of the powder to keep the molded shape. The binder must provide strength and cohesion for the molded part, must be easy to be removed from the molded part, and must be the recyclable, environmentally friendly and economical ones. The goal of this study is to develop a binder environmentally friendly. For this, a study of formulation based on polyethylene glycol, because of is water debinding properties, was made. Polylactic acid and Polyhydroxyalkanoates were investigated as bio sourced polymers. The chemical, miscibility and rheological behavior of the binder formulation were investigated.
Apparatus for injection casting metallic nuclear energy fuel rods
Seidel, Bobby R.; Tracy, Donald B.; Griffiths, Vernon
1991-01-01
Molds for making metallic nuclear fuel rods are provided which present reduced risks to the environment by reducing radioactive waste. In one embodiment, the mold is consumable with the fuel rod, and in another embodiment, part of the mold can be re-used. Several molds can be arranged together in a cascaded manner, if desired, or several long cavities can be integrated in a monolithic multiple cavity re-usable mold.
Grinding aspheric and freeform micro-optical molds
NASA Astrophysics Data System (ADS)
Tohme, Yazid E.
2007-02-01
Fueled by the need for better performing optics, glass optics are now replacing plastic optics in many industrial and consumer electronic devices. One of these devices is the mobile phone camera. The optical sub-assembly in a mobile phone includes several micro lenses that are spherical and/or aspherical in shape and require form tolerances in the submicron range. These micro glass lenses are mass produced by a replication process known as glass press molding. The process entails the compression of a glass gob between two precise optical quality molds at an elevated temperature, usually near the transition temperature of the glass material. The elevated forces and temperatures required in the glass molding process limits the materials of the molds to very tough materials such as tungsten carbide or silicon carbide. These materials can withstand large pressing forces at high temperatures without any significant deformation. These materials offer great mechanical properties for glass press molding but they are also a challenge to machine to submicron accuracy. The work in this paper discusses a deterministic micro grinding manufacturing process referred to as wheel normal grinding, which is utilized to produce these optical quality molds. Wheel normal grinding is more accurate and more deterministic than most other grinding techniques and can produce molds to the form and finish tolerances required for optical molding. This method relies on the ability to recognize and compensate for grinding wheel wear and machine repeatable errors. Results will be presented to illustrate the accuracy of this micro grinding technique.
Thermoplastics for aircraft interiors
NASA Technical Reports Server (NTRS)
Silverman, B.
1978-01-01
The goal for this contract is the development of processes and techniques for molding thermally stable, fire retardant, low smoke emitting polymeric materials. Outlined in this presentation are: (1) the typical molding types; (2) a program schedule; (3) physical properties of molding types with the test methods to be used; (4) general properties of injection molding materials; and (5) preliminary materials selection.
NASA Technical Reports Server (NTRS)
Silverman, B.
1979-01-01
All available newly developed nonmetallic thermally stable polymers were examined for the development of processes and techniques by compression molding, injection molding, or thermoforming cabin interior parts. Efforts were directed toward developing molding techniques of new polymers to economically produce usable nonmetallic molded parts. Data on the flame resistant characteristics of the materials were generated from pilot plant batches. Preliminary information on the molding characteristics of the various thermoplastic materials was obtained by producing actual parts.
Automatic design of conformal cooling channels in injection molding tooling
NASA Astrophysics Data System (ADS)
Zhang, Yingming; Hou, Binkui; Wang, Qian; Li, Yang; Huang, Zhigao
2018-02-01
The generation of cooling system plays an important role in injection molding design. A conformal cooling system can effectively improve molding efficiency and product quality. This paper provides a generic approach for building conformal cooling channels. The centrelines of these channels are generated in two steps. First, we extract conformal loops based on geometric information of product. Second, centrelines in spiral shape are built by blending these loops. We devise algorithms to implement the entire design process. A case study verifies the feasibility of this approach.
29 CFR 570.62 - Occupations involved in the operation of bakery machines (Order 11).
Code of Federal Regulations, 2013 CFR
2013-07-01
..., or cleaning any horizontal or vertical dough mixer; batter mixer; bread dividing, rounding, or molding machine; dough brake; dough sheeter; combination bread slicing and wrapping machine; or cake cutting band saw. (2) The occupation of setting up or adjusting a cookie or cracker machine. (b...
29 CFR 570.62 - Occupations involved in the operation of bakery machines (Order 11).
Code of Federal Regulations, 2014 CFR
2014-07-01
..., or cleaning any horizontal or vertical dough mixer; batter mixer; bread dividing, rounding, or molding machine; dough brake; dough sheeter; combination bread slicing and wrapping machine; or cake cutting band saw. (2) The occupation of setting up or adjusting a cookie or cracker machine. (b...
29 CFR 570.62 - Occupations involved in the operation of bakery machines (Order 11).
Code of Federal Regulations, 2011 CFR
2011-07-01
..., or cleaning any horizontal or vertical dough mixer; batter mixer; bread dividing, rounding, or molding machine; dough brake; dough sheeter; combination bread slicing and wrapping machine; or cake cutting band saw. (2) The occupation of setting up or adjusting a cookie or cracker machine. (b...
29 CFR 570.62 - Occupations involved in the operation of bakery machines (Order 11).
Code of Federal Regulations, 2012 CFR
2012-07-01
..., or cleaning any horizontal or vertical dough mixer; batter mixer; bread dividing, rounding, or molding machine; dough brake; dough sheeter; combination bread slicing and wrapping machine; or cake cutting band saw. (2) The occupation of setting up or adjusting a cookie or cracker machine. (b...
Precision lens molding of asphero diffractive surfaces in chalcogenide materials
NASA Astrophysics Data System (ADS)
Nelson, J.; Scordato, M.; Schwertz, K.; Bagwell, J.
2015-10-01
Finished lens molding, and the similar process of precision lens molding, have long been practiced for high volume, accurate replication of optical surfaces on oxide glass. The physics surrounding these processes are well understood, and the processes are capable of producing high quality optics with great fidelity. However, several limitations exist due to properties inherent with oxide glasses. Tooling materials that can withstand the severe environmental conditions of oxide glass molding cannot easily be machined to produce complex geometries such as diffractive surfaces, lens arrays, and off axis features. Current machining technologies coupled with a limited selection of tool materials greatly limits the type of structures that can be molded into the finished optic. Tooling for chalcogenide glasses are not bound by these restrictions since the molding temperatures required are much lower than for oxide glasses. Innovations in tooling materials and manufacturing techniques have enabled the production of complex geometries to optical quality specifications and have demonstrated the viability of creating tools for molding diffractive surfaces, off axis features, datums, and arrays. Applications for optics having these features are found in automotive, defense, security, medical, and industrial domains. This paper will discuss results achieved in the study of various molding techniques for the formation of positive diffractive features on a concave spherical surface molded from As2Se3 chalcogenide glass. Examples and results of molding with tools having CTE match with the glass and non CTE match will be reviewed. The formation of stress within the glass during molding will be discussed, and methods of stress management will also be demonstrated and discussed. Results of process development methods and production of good diffractive surfaces will be shown.
Injection molding plants are large consumers of electricity. At its current level of operations, Harbec Plastics (Ontario, NY) uses about 2,000,000 kilowatt-hours of electricity per year. Based on the US average fuel mix, approximately 1.5 pounds of CO2
Structural Reorganization of CNC in Injection-Molded CNC/PBAT Materials under Thermal Annealing.
Mariano, Marcos; El Kissi, Nadia; Dufresne, Alain
2016-10-04
Composite materials were prepared by extrusion and injection molding from polybutyrate adipate terephthalate (PBAT) and high aspect ratio cellulose nanocrystals (CNCs) extracted from capim dourado fibers. Three CNC contents were used, corresponding to 0.5, 1, and 2 times the theoretical percolation threshold. Small-amplitude oscillary shear (SAOS) experiments show that as the CNC content increases, a more elastic behavior is observed but no percolating network can form within the polymeric matrix as a result of the high shear rates involved during the injection-molding process. Annealing of the samples at 170 °C was performed, and the possible reorganization of the nanofiller was investigated. This reorganization was further elucidated using 2D-SAOS and creep experiments.
Investigation of compression behavior of PE/EVA foam injection molded parts
NASA Astrophysics Data System (ADS)
Spina, Roberto
2017-10-01
The main objective of the presented work is to evaluate the compression behavior of a polymeric foam blend by using a robust framework for the testing sequence of foaming injection molded parts, with the aim of establishing a standard testing cycle for the evaluation of new matrix material. The research purpose is to assess parameters influencing compression behavior and give useful suggestions for the implementation of a finite element analysis. The polymeric blend consisted of a mixture of low density polyethylenes (LDPEs), a high-density polyethylene (HDPE), an ethylene-vinyl acetate (EVA) and an azodicarbonamide (ADC). The thermal, rheological and compression properties of the blend are fully described, as well as the injection molding process for two specimen types.
Numerical-experimental investigation of PE/EVA foam injection molded parts
NASA Astrophysics Data System (ADS)
Spina, Roberto
The main objective of the presented work is to propose a robust framework to test foaming injection molded parts, with the aim of establishing a standard testing cycle for the evaluation of a new foam material based on numerical and experimental results. The research purpose is to assess parameters influencing several aspects, such as foam morphology and compression behavior, using useful suggestions from finite element analysis. The investigated polymeric blend consisted of a mixture of low density polyethylenes (LDPEs), a high-density polyethylene (HDPE), an ethylene-vinyl acetate (EVA) and an azodicarbonamide (ADC). The thermal, rheological and compression properties of the blend are fully described, as well as the numerical models and the parameters of the injection molding process.
Numerical study on injection parameters optimization of thin wall and biodegradable polymers parts
NASA Astrophysics Data System (ADS)
Santos, C.; Mendes, A.; Carreira, P.; Mateus, A.; Malça, C.
2017-07-01
Nowadays, the molds industry searches new markets, with diversified and added value products. The concept associated to the production of thin walled and biodegradable parts mostly manufactured by injection process has assumed a relevant importance due to environmental and economic factors. The growth of a global consciousness about the harmful effects of the conventional polymers in our life quality associated with the legislation imposed, become key factors for the choice of a particular product by the consumer. The target of this work is to provide an integrated solution for the injection of parts with thin walls and manufactured using biodegradable materials. This integrated solution includes the design and manufacture processes of the mold as well as to find the optimum values for the injection parameters in order to become the process effective and competitive. For this, the Moldflow software was used. It was demonstrated that this computational tool provides an effective responsiveness and it can constitute an important tool in supporting the injection molding of thin-walled and biodegradable parts.
NASA Astrophysics Data System (ADS)
Öktem, H.
2012-01-01
Plastic injection molding plays a key role in the production of high-quality plastic parts. Shrinkage is one of the most significant problems of a plastic part in terms of quality in the plastic injection molding. This article focuses on the study of the modeling and analysis of the effects of process parameters on the shrinkage by evaluating the quality of the plastic part of a DVD-ROM cover made with Acrylonitrile Butadiene Styrene (ABS) polymer material. An effective regression model was developed to determine the mathematical relationship between the process parameters (mold temperature, melt temperature, injection pressure, injection time, and cooling time) and the volumetric shrinkage by utilizing the analysis data. Finite element (FE) analyses designed by Taguchi (L27) orthogonal arrays were run in the Moldflow simulation program. Analysis of variance (ANOVA) was then performed to check the adequacy of the regression model and to determine the effect of the process parameters on the shrinkage. Experiments were conducted to control the accuracy of the regression model with the FE analyses obtained from Moldflow. The results show that the regression model agrees very well with the FE analyses and the experiments. From this, it can be concluded that this study succeeded in modeling the shrinkage problem in our application.
Conductivity fuel cell collector plate and method of fabrication
Braun, James C.
2002-01-01
An improved method of manufacturing a PEM fuel cell collector plate is disclosed. During molding a highly conductive polymer composite is formed having a relatively high polymer concentration along its external surfaces. After molding the polymer rich layer is removed from the land areas by machining, grinding or similar process. This layer removal results in increased overall conductivity of the molded collector plate. The polymer rich surface remains in the collector plate channels, providing increased mechanical strength and other benefits to the channels. The improved method also permits greater mold cavity thickness providing a number of advantages during the molding process.
Dynamic Feed Control For Injection Molding
Kazmer, David O.
1996-09-17
The invention provides methods and apparatus in which mold material flows through a gate into a mold cavity that defines the shape of a desired part. An adjustable valve is provided that is operable to change dynamically the effective size of the gate to control the flow of mold material through the gate. The valve is adjustable while the mold material is flowing through the gate into the mold cavity. A sensor is provided for sensing a process condition while the part is being molded. During molding, the valve is adjusted based at least in part on information from the sensor. In the preferred embodiment, the adjustable valve is controlled by a digital computer, which includes circuitry for acquiring data from the sensor, processing circuitry for computing a desired position of the valve based on the data from the sensor and a control data file containing target process conditions, and control circuitry for generating signals to control a valve driver to adjust the position of the valve. More complex embodiments include a plurality of gates, sensors, and controllable valves. Each valve is individually controllable so that process conditions corresponding to each gate can be adjusted independently. This allows for great flexibility in the control of injection molding to produce complex, high-quality parts.
Influence of melt mixer on injection molding of thermoset elastomers
NASA Astrophysics Data System (ADS)
Rochman, Arif; Zahra, Keith
2016-10-01
One of the drawbacks in injection molding is that the plasticizing screw is short such that polymers having high concentrations of additives, such as thermoset elastomers, might not mix homogeneously within the short period of time during the plasticizing stage. In this study, various melt mixers inside the nozzle chamber, together forming a mixing nozzle, were developed. Three different materials were investigated, namely nitrile butadiene rubber (NBR), ethylene propylene-diene monomer (EPDM) and fluorocarbon (FKM). The use of these melt mixers resulted in better homogeneity and properties of the molded parts despite a curing time reduction of 10 s. This was due to the increase in mixing and shearing introduced a higher rate of crosslinking formation in the molded parts.
Effects of mold design of aspheric projector lens for head up display
NASA Astrophysics Data System (ADS)
Chen, Chao-Chang A.; Tang, Jyun-Cing; Teng, Lin-Ming
2010-08-01
This paper investigates the mold design and related effects on an aspheric projector lens for Head Up Display (HUD) with injection molding process. Injection flow analysis with a commercial software, Moldex3D has been used to simulate this projector lens for filling, packing, shrinkage, and flow-induced residual stress. This projector lens contains of variant thickness due to different aspheric design on both surfaces. Defects may be induced as the melt front from the gate into the cavity with jet-flow phenomenon, short shot, weld line, and even shrinkage. Thus, this paper performs a gate design to find the significant parameters including injection velocity, melt temperature, and mold temperature. After simulation by the Moldex3D, gate design for the final assembly of Head Up Display (HUD) has been obtained and then experimental tests have been proceeded for verification of short-shot, weight variation, and flow-induced stress. Moreover, warpage analysis of the Head Up Display (HUD) can be integrated with the optical design specification in future work.
Fancello, Eduardo Alberto
2017-01-01
Two groups of PLGA specimens with different geometries (notched and unnotched) were injection molded under two melting temperatures and flow rates. The mechanical properties, morphology at the fracture surface, and residual stresses were evaluated for both processing conditions. The morphology of the fractured surfaces for both specimens showed brittle and smooth fracture features for the majority of the specimens. Fracture images of the notched specimens suggest that the surface failure mechanisms are different from the core failure. Polarized light techniques indicated birefringence in all specimens, especially those molded with lower temperature, which suggests residual stress due to rapid solidification. DSC analysis confirmed the existence of residual stress in all PLGA specimens. The specimens molded using the lower injection temperature and the low flow rate presented lower loss tangent values according to the DMA and higher residual stress as shown by DSC, and the photoelastic analysis showed extensive birefringence. PMID:28848605
Ballyns, Jeffery J; Gleghorn, Jason P; Niebrzydowski, Vicki; Rawlinson, Jeremy J; Potter, Hollis G; Maher, Suzanne A; Wright, Timothy M; Bonassar, Lawrence J
2008-07-01
This study demonstrates for the first time the development of engineered tissues based on anatomic geometries derived from widely used medical imaging modalities such as computed tomography (CT) and magnetic resonance imaging (MRI). Computer-aided design and tissue injection molding techniques have demonstrated the ability to generate living implants of complex geometry. Due to its complex geometry, the meniscus of the knee was used as an example of this technique's capabilities. MRI and microcomputed tomography (microCT) were used to design custom-printed molds that enabled the generation of anatomically shaped constructs that retained shape throughout 8 weeks of culture. Engineered constructs showed progressive tissue formation indicated by increases in extracellular matrix content and mechanical properties. The paradigm of interfacing tissue injection molding technology can be applied to other medical imaging techniques that render 3D models of anatomy, demonstrating the potential to apply the current technique to engineering of many tissues and organs.
NASA Astrophysics Data System (ADS)
Pignon, Baptiste; Sobotka, Vincent; Boyard, Nicolas; Delaunay, Didier
2017-10-01
Two different analytical models were presented to determine cycle parameters of thermoplastics injection process. The aim of these models was to provide quickly a first set of data for mold temperature and cooling time. The first model is specific to amorphous polymers and the second one is dedicated to semi-crystalline polymers taking the crystallization into account. In both cases, the nature of the contact between the polymer and the mold could be considered as perfect or not (thermal contact resistance was considered). Results from models are compared with experimental data obtained with an instrumented mold for an acrylonitrile butadiene styrene (ABS) and a polypropylene (PP). Good agreements were obtained for mold temperature variation and for heat flux. In the case of the PP, the analytical crystallization times were compared with those given by a coupled model between heat transfer and crystallization kinetics.
Ultrasound - Aided ejection in micro injection molding
NASA Astrophysics Data System (ADS)
Masato, D.; Sorgato, M.; Lucchetta, G.
2018-05-01
In this work, an ultrasound-aided ejection system was designed and tested for different polymers (PS, COC and POM) and mold topographies. The proposed solution aims at reducing the ejection friction by decreasing the adhesion component of the frictional force, which is controlled by the contact area developed during the filling stage of the injection molding process. The experimental results indicate a positive effect of ultrasound vibration on the friction force values, with a maximum reduction of 16. Moreover, it is demonstrated that the ultrasound effect is strictly related to both polymer selection and mold roughness. The combined effect on the ejection force of mold surface roughness, melt viscosity during filling and polymer elastic modulus at ejection was modeled to the experimental data, in order to demonstrate that the effect of ultrasound vibration on the ejection friction reduction is due to the heating of the contact interface and the consequent reduction of the polymer elastic modulus.
METHODS OF TREATMENT OF COMPLEX SURFACES ON METAL CUTTING MACHINES (CHAPTERS 1 AND 12),
FORGING, MOLDINGS, MANDRELS, MARINE PROPELLERS, AERIAL PROPELLERS, TURBINE BLADES, ABRASIVES, IMPELLERS, AIRCRAFT PANELS, METAL PLATES, CAMS, ELECTROEROSIVE MACHINING, CHEMICAL MILLING, MAGNETOSTRICTIVE ELEMENTS, USSR.
Forehead augmentation with a methyl methacrylate onlay implant using an injection-molding technique.
Park, Dong Kwon; Song, Ingook; Lee, Jin Hyo; You, Young June
2013-09-01
The forehead, which occupies about one third of the face, is one of the major determinants of a feminine or masculine look. Various methods have been used for the augmentation of the forehead using autologous fat grafts or alloplastic materials. Methylmethacrylate (MMA) is the most appropriate material for augmentation of the forehead, and we have used an injection-molding technique with MMA to achieve satisfactory results. Under local anesthesia with intravenous (IV) sedation, an incision was made on the scalp and a meticulous and delicate subperiosteal dissection was then performed. MMA monomers and polymers were mixed, the dough was injected into the space created, and manual molding was performed along with direct inspection. This surgery was indicated for patients who wanted to correct an unattractive appearance by forehead augmentation. Every patient in this study visited our clinics 3 months after surgery to evaluate the results. We judged the postoperative results in terms of re-operation rates caused by the dissatisfaction of the patients and complications. During a 13-year period, 516 patients underwent forehead augmentation with MMA. With the injection-molding technique, the inner surface of the MMA implant is positioned close to the underlying frontal bone, which minimizes the gap between the implant and bone. The borders of the implant should be tapered sufficiently until no longer palpable or visible. Only 28 patients (5.4%) underwent a re-operation due to an undesirable postoperative appearance. The injection-molding technique using MMA is a simple, safe, and ideal method for the augmentation of the forehead.
Forehead Augmentation with a Methyl Methacrylate Onlay Implant Using an Injection-Molding Technique
Park, Dong Kwon; Song, Ingook; Lee, Jin Hyo
2013-01-01
Background The forehead, which occupies about one third of the face, is one of the major determinants of a feminine or masculine look. Various methods have been used for the augmentation of the forehead using autologous fat grafts or alloplastic materials. Methylmethacrylate (MMA) is the most appropriate material for augmentation of the forehead, and we have used an injection-molding technique with MMA to achieve satisfactory results. Methods Under local anesthesia with intravenous (IV) sedation, an incision was made on the scalp and a meticulous and delicate subperiosteal dissection was then performed. MMA monomers and polymers were mixed, the dough was injected into the space created, and manual molding was performed along with direct inspection. This surgery was indicated for patients who wanted to correct an unattractive appearance by forehead augmentation. Every patient in this study visited our clinics 3 months after surgery to evaluate the results. We judged the postoperative results in terms of re-operation rates caused by the dissatisfaction of the patients and complications. Results During a 13-year period, 516 patients underwent forehead augmentation with MMA. With the injection-molding technique, the inner surface of the MMA implant is positioned close to the underlying frontal bone, which minimizes the gap between the implant and bone. The borders of the implant should be tapered sufficiently until no longer palpable or visible. Only 28 patients (5.4%) underwent a re-operation due to an undesirable postoperative appearance. Conclusions The injection-molding technique using MMA is a simple, safe, and ideal method for the augmentation of the forehead. PMID:24086816
In mold laser welding for high precision polymer based optical components
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oliveira, N., E-mail: id2694@alunos.uminho.pt, E-mail: pontes@dep.uminho.pt; Pontes, A. J., E-mail: id2694@alunos.uminho.pt, E-mail: pontes@dep.uminho.pt
2014-05-15
To assemble a complete subsystem as a rear lamp, is necessary to have different machines and to perform several tasks. This necessity obliges the companies to have large structures to support all the assembling process. These huge structures are very costly and have as a consequence the reduction of the competitiveness of the companies. The process presented in this document has the intention of reducing the number of tasks needed to produce the final subsystem/product. To achieve this goal were combined several technologies, as in-mould assembling, laser welding and LEDs (light-emitting diode). One of the advantages of this process wasmore » the utilization of only one injection molding machine with three injection units to do all the assembling process. To achieve the main objective, firstly, the rear lamp was designed according to with the legislation of UNECE Vehicle Regulations - 1958 Agreements; Regulation No. 50 -Rev.2 - Position lamps, stop lamps, direction indicators for motorcycles. Posterior several polymeric materials were studied at different levels. Initial were studied several concentrations of carbon nanotubes mixed with PC (polycarbonate). This had the objective of determine, if these materials are suitable to conduct the necessary electric current to turn on the different LEDs. One of the main advantages of this process is the use of the laser transmission welded process. Since, with this welding technology is possible reduce the complexity of the final part. To understand the potentialities of this technology a combination of two materials was studied. The studied showed that all materials presented a high transparency to the laser beam. In terms of weld process, the study showed that the best welding conditions are the lowest velocity, diameter and power. With these studies was possible conclude that this new process is suitable to be implemented at the industrial level.« less
Eggenreich, K; Windhab, S; Schrank, S; Treffer, D; Juster, H; Steinbichler, G; Laske, S; Koscher, G; Roblegg, E; Khinast, J G
2016-05-30
The objective of the present study was to develop a one-step process for the production of tablets directly from primary powder by means of injection molding (IM), to create solid-dispersion based tablets. Fenofibrate was used as the model API, a polyvinyl caprolactame-polyvinyl acetate-polyethylene glycol graft co-polymer served as a matrix system. Formulations were injection-molded into tablets using state-of-the-art IM equipment. The resulting tablets were physico-chemically characterized and the drug release kinetics and mechanism were determined. Comparison tablets were produced, either directly from powder or from pre-processed pellets prepared via hot melt extrusion (HME). The content of the model drug in the formulations was 10% (w/w), 20% (w/w) and 30% (w/w), respectively. After 120min, both powder-based and pellet-based injection-molded tablets exhibited a drug release of 60% independent of the processing route. Content uniformity analysis demonstrated that the model drug was homogeneously distributed. Moreover, analysis of single dose uniformity also revealed geometric drug homogeneity between tablets of one shot. Copyright © 2016 Elsevier B.V. All rights reserved.
Polylactide-based renewable green composites from agricultural residues and their hybrids.
Nyambo, Calistor; Mohanty, Amar K; Misra, Manjusri
2010-06-14
Agricultural natural fibers like jute, kenaf, sisal, flax, and industrial hemp have been extensively studied in green composites. The continuous supply of biofibers in high volumes to automotive part makers has raised concerns. Because extrusion followed by injection molding drastically reduces the aspect ratio of biofibers, the mechanical performance of injection molded agricultural residue and agricultural fiber-based composites are comparable. Here, the use of inexpensive agricultural residues and their hybrids that are 8-10 times cheaper than agricultural fibers is demonstrated to be a better way of getting sustainable materials with better performance. Green renewable composites from polylactide (PLA), agricultural residues (wheat straw, corn stover, soy stalks, and their hybrids) were successfully prepared through twin-screw extrusion, followed by injection molding. The effect on mechanical properties of varying the wheat straw amount from 10 to 40 wt % in PLA-wheat straw composites was studied. Tensile moduli were compared with theoretical calculations from the rule of mixture (ROM). Combination of agricultural residues as hybrids is proved to reduce the supply chain concerns for injection molded green composites. Densities of the green composites were found to be lower than those of conventional glass fiber composites.
Rodríguez-Yáñez, Alicia Berenice; Méndez-Vázquez, Yaileen
2014-01-01
Process windows in injection molding are habitually built with only one performance measure in mind. In reality, a more realistic picture can be obtained when considering multiple performance measures at a time, especially in the presence of conflict. In this work, the construction of process windows for injection molding (IM) is undertaken considering two and three performance measures in conflict simultaneously. The best compromises between the criteria involved are identified through the direct application of the concept of Pareto-dominance in multiple criteria optimization. The aim is to provide a formal and realistic strategy to set processing conditions in IM operations. The resulting optimization approach is easily implementable in MS Excel. The solutions are presented graphically to facilitate their use in manufacturing plants. PMID:25530927
Rodríguez-Yáñez, Alicia Berenice; Méndez-Vázquez, Yaileen; Cabrera-Ríos, Mauricio
2014-01-01
Process windows in injection molding are habitually built with only one performance measure in mind. In reality, a more realistic picture can be obtained when considering multiple performance measures at a time, especially in the presence of conflict. In this work, the construction of process windows for injection molding (IM) is undertaken considering two and three performance measures in conflict simultaneously. The best compromises between the criteria involved are identified through the direct application of the concept of Pareto-dominance in multiple criteria optimization. The aim is to provide a formal and realistic strategy to set processing conditions in IM operations. The resulting optimization approach is easily implementable in MS Excel. The solutions are presented graphically to facilitate their use in manufacturing plants.
Development and Demonstration of Adanced Tooling Alloys for Molds and Dies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kevin M. McHugh; Enrique J. Lavernia
2006-01-01
This report summarizes research results in the project Development and Demonstration of Advanced Tooling Alloys for Molds and Dies. Molds, dies and related tooling are used to manufacture most of the plastic and metal products we use every day. Conventional fabrication of molds and dies involves a multiplicity of machining, benching and heat treatment unit operations. This approach is very expensive and time consuming. Rapid Solidifcation Process (RSP) Tooling is a spray-forming technology tailored for producing molds and dies. The appraoch combines rapid solidifcation processing and net-shape materials processing in a single step. An atomized spray of a tool-forming alloy,more » typically a tool steel, is deposited onto an easy-to-form tool pattern to replicate the pattern's shape and surface features. By so doing, the approach eliminates many machining operations in conventional mold making, significantly reducing cost, lead time and energy. Moreover, rapid solidification creates unique microstructural features by suppressing carbide precipitation and growth, and creating metastable phases. This can result in unique material properties following heat treatment. Spray-formed and aged tool steel dies have exhibited extended life compared to conventional dies in many forming operations such as forging, extrusion and die casting. RSP Tooling technolocy was commercialized with the formation of RSP Tooling, LLC in Solon, Oh.« less
Fuel cell collector plate and method of fabrication
Braun, James C.; Zabriskie, Jr., John E.; Neutzler, Jay K.; Fuchs, Michel; Gustafson, Robert C.
2001-01-01
An improved molding composition is provided for compression molding or injection molding a current collector plate for a polymer electrolyte membrane fuel cell. The molding composition is comprised of a polymer resin combined with a low surface area, highly-conductive carbon and/or graphite powder filler. The low viscosity of the thermoplastic resin combined with the reduced filler particle surface area provide a moldable composition which can be fabricated into a current collector plate having improved current collecting capacity vis-a-vis comparable fluoropolymer molding compositions.
NASA Astrophysics Data System (ADS)
Bickerton, Simon
Liquid Composite Molding (LCM) encompasses a growing list of composite material manufacturing techniques. These processes have provided the promise for complex fiber reinforced plastics parts, manufactured from a single molding step. In recent years a significant research effort has been invested in development of process simulations, providing tools that have advanced current LCM technology and broadened the range of applications. The requirement for manufacture of larger, more complex parts has motivated investigation of active control of LCM processes. Due to the unlimited variety of part geometries that can be produced, finite element based process simulations will be used to some extent in design of actively controlled processes. Ongoing efforts are being made to improve material parameter specification for process simulations, increasing their value as design tools. Several phenomena occurring during mold filling have been addressed through flow visualization experimentation and analysis of manufactured composite parts. The influence of well defined air channels within a mold cavity is investigated, incorporating their effects within existing filling simulations. Three different flow configurations have been addressed, testing the application of 'equivalent permeabilities', effectively approximating air channels as representative porous media. LCM parts having doubly curved regions require preform fabrics to undergo significant, and varying deformation throughout a mold cavity. Existing methods for predicting preform deformation, and the resulting permeability distribution have been applied to a conical mold geometry. Comparisons between experiment and simulation are promising, while the geometry studied has required large deformation over much of the part, shearing the preform fabric beyond the scope of the models applied. An investigational study was performed to determine the magnitude of effect, if any, on mold filling caused by corners within LCM mold cavities. The molds applied in this study have required careful consideration of cavity thickness variations. Any effects on mold filling due to corner radii have been overshadowed by those due to preform compression. While numerical tools are available to study actively controlled mold filling in a virtual environment, some development is required for the physical equipment to implement this in practice. A versatile, multiple line fluid injection system is developed here. The equipment and control algorithms employed have provided servo control of flow rate, or injection pressure, and have been tested under very challenging conditions. The single injection line developed is expanded to a multiple line system, and shows great potential for application to actual resin systems. A case study is presented, demonstrating design and implementation of a simple actively controlled injection scheme. The experimental facility developed provides an excellent testbed for application of actively controlled mold filling concepts, an area that is providing great promise for the advancement of LCM processes.
Mondrinos, Mark J; Dembzynski, Robert; Lu, Lin; Byrapogu, Venkata K C; Wootton, David M; Lelkes, Peter I; Zhou, Jack
2006-09-01
Drop on demand printing (DDP) is a solid freeform fabrication (SFF) technique capable of generating microscale physical features required for tissue engineering scaffolds. Here, we report results toward the development of a reproducible manufacturing process for tissue engineering scaffolds based on injectable porogens fabricated by DDP. Thermoplastic porogens were designed using Pro/Engineer and fabricated with a commercially available DDP machine. Scaffolds composed of either pure polycaprolactone (PCL) or homogeneous composites of PCL and calcium phosphate (CaP, 10% or 20% w/w) were subsequently fabricated by injection molding of molten polymer-ceramic composites, followed by porogen dissolution with ethanol. Scaffold pore sizes, as small as 200 microm, were attainable using the indirect (porogen-based) method. Scaffold structure and porosity were analyzed by scanning electron microscopy (SEM) and microcomputed tomography, respectively. We characterized the compressive strength of 90:10 and 80:20 PCL-CaP composite materials (19.5+/-1.4 and 24.8+/-1.3 Mpa, respectively) according to ASTM standards, as well as pure PCL scaffolds (2.77+/-0.26 MPa) fabricated using our process. Human embryonic palatal mesenchymal (HEPM) cells attached and proliferated on all scaffolds, as evidenced by fluorescent nuclear staining with Hoechst 33258 and the Alamar Blue assay, with increased proliferation observed on 80:20 PCL-CaP scaffolds. SEM revealed multilayer assembly of HEPM cells on 80:20 PCL-CaP composite, but not pure PCL, scaffolds. In summary, we have developed an SFF-based injection molding process for the fabrication of PCL and PCL-CaP scaffolds that display in vitro cytocompatibility and suitable mechanical properties for hard tissue repair.
Yilmaz, Burak; Alp, Gülce; Seidt, Jeremy; Johnston, William M; Vitter, Roger; McGlumphy, Edwin A
2018-01-06
The load-to-fracture performance of computer-assisted design and computer-assisted manufacturing (CAD-CAM) high-density polymer (HDP) materials in cantilevers is unknown. The purposes of this in vitro study were to evaluate the load-to-fracture performance of CAD-CAM-fabricated HDPs and to compare that with performance of autopolymerized and injection-molded acrylic resins. Specimens from 8 different brands of CAD-CAM HDPs, including Brylic Solid (BS); Brylic Gradient (BG); AnaxCAD Temp EZ (AE); AnaxCAD Temp Plus (AP); Zirkonzahn Temp Basic (Z); GDS Tempo-CAD (GD); Polident (Po); Merz M-PM-Disc (MAT); an autopolymerized acrylic resin, Imident (Conv) and an injection-molded acrylic resin, SR-IvoBase High Impact (Inj) were evaluated for load-to-fracture analysis (n=5). CAD-CAM specimens were milled from poly(methyl methacrylate) (PMMA) blocks measuring 7 mm in buccolingual width, 8 mm in occlusocervical thickness, and 30 mm in length. A wax pattern was prepared in the same dimensions used for CAD-CAM specimens, flasked, and boiled out. Autopolymerizing acrylic resin was packed and polymerized in a pressure container for 30 minutes. An identical wax pattern was flasked and boiled out, and premeasured capsules were injected (SR-IvoBase) and polymerized under hydraulic pressure for 35 minutes for the injection-molded PMMA. Specimens were thermocycled 5000 times (5°C to 55°C) and fixed to a universal testing machine to receive static loads on the 10-mm cantilever, vertically at a 1 mm/min crosshead speed until fracture occurred. Maximum load-to-fracture values were recorded. ANOVA was used to analyze the maximum force values. Significant differences among materials were analyzed by using the Ryan-Einot-Gabriel-Welsch multiple range test (α=.05). Statistically significant differences were found among load-to-fracture values of different HDPs (P<.001). GD and Po materials had significantly higher load-to-fracture values than other materials (P<.001), and no statistically significant differences were found between GD and Po. The lowest load-to-fracture values were observed for autopolymerized and BG materials, which were significantly lower than those of GD, Po, AE, AP, Z, MAT, Inj, and BS. The load-to-fracture value of autopolymerized acrylic resin was not significantly different from that of BG CAD-CAM polymer. GD and Po CAD-CAM materials had the highest load-to-fracture values. AE, AP, Z, MAT, and BS CAD-CAM polymers and injection-molded acrylic resin had similar load-to-fracture values, which were higher than those of BG and autopolymerized acrylic resin. Autopolymerized acrylic resin load-to-fracture value was similar to that of BG CAD-CAM polymer, which is colored in a gradient pattern. Copyright © 2017 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.
Effects of powder characteristics on injection molding and burnout cracking
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bandyopadhyay, G.; French, K.W.
Silicon nitride particle size and size distributions were varied widely to determine their effects on burnout cracking of injection-molded test parts containing thick and thin sections. Elimination of internal cracking required significant burnout shrinkage, which did not occur by changes of particle size and size distribution. However, isopressing of test parts after burnout provided the dimensional shrinkage necessary for producing crack-free components.
Molding of strength testing samples using modern PDCPD material for purpose of automotive industry
NASA Astrophysics Data System (ADS)
Grabowski, L.; Baier, A.; Sobek, M.
2017-08-01
The casting of metal materials is widely known but the molding of composite polymer materials is not well-known method still. The initial choice of method for producing composite bodies was the method of casting of PDCPD material. For purpose of performing casting of polymer composite material, a special mold was made. Firstly, the 3D printed, using PLA material, mold was used. After several attempts of casting PDCPD many problems were encountered. The second step was to use mold milled from a firm and dense isocyanate foam. After several attempts research shown that this solution is more resistant to high-temperature peak, but this material is too fragile to use it several times. This solution also prevents mold from using external heating, which can be necessary for performing correct molding process. The last process was to use the aluminum mold, which is dedicated to PDCPD polymer composite, because of low adhesiveness. This solution leads to perform correct PDCPD polymer composite material injection. After performing casting operation every PDCPD testing samples were tested. These results were compared together. The result of performed work was to archive correct properties of injection of composite material. Research and results were described in detail in this paper.
Compound cast product and method for producing a compound cast product
Meyer, Thomas N.; Viswanathan, Srinath
2002-09-17
A compound cast product is formed in a casting mold (14) having a mold cavity (16) sized and shaped to form the cast product. A plurality of injectors (24) is supported from a bottom side (26) of the casting mold (14). The injectors (24) are in fluid communication with the mold cavity (16) through the bottom side (26) of the casting mold (14). A molten material holder furnace (12) is located beneath the casting mold (14). The holder furnace (12) defines molten material receiving chambers (36) configured to separately contain supplies of two different molten materials (37, 38). The holder furnace (12) is positioned such that the injectors (24) extend downward into the receiving chamber (36). The receiving chamber (36) is separated into at least two different flow circuits (51, 52). A first molten material (37) is received in a first flow circuit (51), and a second molten material (38) is received into a second flow circuit (52). The first and second molten materials (37, 38) are injected into the mold cavity (16) by the injectors (24) acting against the force of gravity. The injectors (24) are positioned such that the first and second molten materials (37, 38) are injected into different areas of the mold cavity (16). The molten materials (37, 38) are allowed to solidify and the resulting compound cast product is removed from the mold cavity (16).
Composite materials molding simulation for purpose of automotive industry
NASA Astrophysics Data System (ADS)
Grabowski, Ł.; Baier, A.; Majzner, M.; Sobek, M.
2016-08-01
Composite materials loom large increasingly important role in the overall industry. Composite material have a special role in the ever-evolving automotive industry. Every year the composite materials are used in a growing number of elements included in the cars construction. Development requires the search for ever new applications of composite materials in areas where previously were used only metal materials. Requirements for modern solutions, such as reducing the weight of vehicles, the required strength and vibration damping characteristics go hand in hand with the properties of modern composite materials. The designers faced the challenge of the use of modern composite materials in the construction of bodies of power steering systems in vehicles. The initial choice of method for producing composite bodies was the method of molding injection of composite material. Molding injection of polymeric materials is a widely known and used for many years, but the molding injection of composite materials is a relatively new issue, innovative, it is not very common and is characterized by different conditions, parameters and properties in relation to the classical method. Therefore, for the purpose of selecting the appropriate composite material for injection for the body of power steering system computer analysis using Siemens NX 10.0 environment, including Moldex 3d and EasyFill Advanced tool to simulate the injection of materials from the group of possible solutions were carried out. Analyses were carried out on a model of a modernized wheel case of power steering system. During analysis, input parameters, such as temperature, pressure injectors, temperature charts have been analysed. An important part of the analysis was to analyse the propagation of material inside the mold during injection, so that allowed to determine the shape formability and the existence of possible imperfections of shapes and locations air traps. A very important parameter received from computer analysis was to determine the occurrence of the shrinkage of the material, which significantly affects the behaviour of the assumed geometry of the tested component. It also allowed the prediction of existence of shrincage of material during the process of modelling the shape of body. The next step was to analyse the numerical analysis results received from Siemens NX 10 and Moldex 3D EasyFlow Advanced environment. The process of injection were subjected to shape of prototype body of power steering. The material used in process of injection was similar to one of excepted material to be used in process of molding. Nextly, the results were analysed in purpose of geometry, where samples has aberrations in comparison to a given shape of mold. The samples were also analysed in terms of shrinkage. Research and results were described in detail in this paper.
Rheometry of polymer melts using processing machines
NASA Astrophysics Data System (ADS)
Friesenbichler, Walter; Neunhäuserer, Andreas; Duretek, Ivica
2016-08-01
The technology of slit-die rheometry came into practice in the early 1960s. This technique enables engineers to measure the pressure drop very precisely along the slit die. Furthermore, slit-die rheometry widens up the measurable shear rate range and it is possible to characterize rheological properties of complicated materials such as wall slipping PVCs and high-filled compounds like long fiber reinforced thermoplastics and PIM-Feedstocks. With the use of slit-die systems in polymer processing machines e.g., Rauwendaal extrusion rheometer, by-pass extrusion rheometer, injection molding machine rheometers, new possibilities regarding rheological characterization of thermoplastics and elastomers at processing conditions near to practice opened up. Special slit-die systems allow the examination of the pressure-dependent viscosity and the characterization of cross-linking elastomers because of melt preparation and reachable shear rates comparable to typical processing conditions. As a result of the viscous dissipation in shear and elongational flows, when performing rheological measurements for high-viscous elastomers, temperature-correction of the apparent values has to be made. This technique was refined over the last years at Montanuniversitaet. Nowadays it is possible to characterize all sorts of rheological complicated polymeric materials under process- relevant conditions with viscosity values fully temperature corrected.
Optimization of Micro Metal Injection Molding By Using Grey Relational Grade
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ibrahim, M. H. I.; Precision Process Research Group, Dept. of Mechanical and Materials Engineering, Faculty of Engineering, Universiti Kebangsaan Malaysia; Muhamad, N.
2011-01-17
Micro metal injection molding ({mu}MIM) which is a variant of MIM process is a promising method towards near net-shape of metallic micro components of complex geometry. In this paper, {mu}MIM is applied to produce 316L stainless steel micro components. Due to highly stringent characteristic of {mu}MIM properties, the study has been emphasized on optimization of process parameter where Taguchi method associated with Grey Relational Analysis (GRA) will be implemented as it represents novel approach towards investigation of multiple performance characteristics. Basic idea of GRA is to find a grey relational grade (GRG) which can be used for the optimization conversionmore » from multi objectives case which are density and strength to a single objective case. After considering the form 'the larger the better', results show that the injection time(D) is the most significant followed by injection pressure(A), holding time(E), mold temperature(C) and injection temperature(B). Analysis of variance (ANOVA) is also employed to strengthen the significant of each parameter involved in this study.« less
Gülsoy, H Özkan; Gülsoy, Nagihan; Calışıcı, Rahmi
2014-01-01
Titanium and Titanium alloys exhibits properties that are excellent for various bio-applications. Metal injection molding is a processing route that offers reduction in costs, with the added advantage of near net-shape components. Different physical properties of Titanium alloy powders, shaped and processed via injection molding can achieve high complexity of part geometry with mechanical and bioactivity properties, similar or superior to wrought material. This study describes that the effect of particle morphology on the microstructural, mechanical and biocompatibility properties of injection molded Ti-6Al-4V (Ti64) alloy powder for biomaterials applications. Ti64 powders irregular and spherical in shape were injection molded with wax based binder. Binder debinding was performed in solvent and thermal method. After debinding the samples were sintered under high vacuum. Metallographic studies were determined to densification and the corresponding microstructural changes. Sintered samples were immersed in a simulated body fluid (SBF) with elemental concentrations that were comparable to those of human blood plasma for a total period of 15 days. Both materials were implanted in fibroblast culture for biocompatibility evaluations were carried out. The results show that spherical and irregular powder could be sintered to a maximum theoretical density. Maximum tensile strength was obtained for spherical shape powder sintered. The tensile strength of the irregular shape powder sintered at the same temperature was lower due to higher porosity. Finally, mechanical tests show that the irregular shape powder has lower mechanical properties than spherical shape powder. The sintered irregular Ti64 powder exhibited better biocompatibility than sintered spherical Ti64 powder. Results of study showed that sintered spherical and irregular Ti64 powders exhibited high mechanical properties and good biocompatibility properties.
Evaluation of Additive Manufacturing for Composite Part Molds
DOE Office of Scientific and Technical Information (OSTI.GOV)
Duty, Chad E.; Springfield, Robert M.
2015-02-01
The ORNL Manufacturing Demonstration Facility (MDF) collaborated with Tru-Design to test the quality and durability of molds used for making fiber reinforced composites using additive manufacturing. The partners developed surface treatment techniques including epoxy coatings and machining to improve the quality of the surface finish. Test samples made using the printed and surface finished molds demonstrated life spans suitable for one-of-a-kind and low-volume applications, meeting the project objective.
NASA Astrophysics Data System (ADS)
Awang, M.; Mohd, W. R. Wan
2018-04-01
Arising global environmental issues have triggered the search of new products and processes that are compatible with the environment while maintaining novel properties of materials. In this work, green composites containing rice husk (RH), polypropylene (PP), and incorporated with two different fillers namely titanium dioxide (TiO2) and zinc oxide (ZnO) were prepared using an internal mixer and were injected into desired specimen by using an injection molding method. Mechanical properties of the composite were studied using Instron universal testing machine with load cell of 30kN capacity. Morphological of tensile fractured surface of composites was observed using scanning electron microscopy (SEM). The results show that the composites with the addition of TiO2 gave an excellent mechanical properties than the composites filled with ZnO. Furthermore, morphological image of PP/RH/TiO2 also shows a good interaction occurred between polymer matrix and RH particles as compared to that of PP/RH/ZnO.
NASA Astrophysics Data System (ADS)
Rupetsov, Velko; Mishev, Georgi; Dishliev, Stefan; Kopanov, Viktor; Chitanov, Vassiliy; Kolaklieva, Lilyana; Pashinski, Chavdar
2017-02-01
Injection molds used in production of plastic components are subject of heavy abrasion wear. The increase of their wear resistance significantly reduces the production cost. In the current work are presented research results of the wear resistance of injection molds made of steel 1.2343, coated with Ti/TiN/TiCN/nc-TiCN: a-C/nc-TiC:a -C/a-C. The study of the wear rate was done using the volumetric method and the influence of the trace length was investigated. The coating thickness, nanohardness, elastic modulus and adhesion were also tested. The coating was applied on unhardened ground specimens, hardened ground specimens and hardened polished specimens.
NASA Astrophysics Data System (ADS)
He, Liping; Lu, Gang; Chen, Dachuan; Li, Wenjun; Lu, Chunsheng
2017-07-01
This paper investigates the three-dimensional (3D) injection molding flow of short fiber-reinforced polymer composites using a smoothed particle hydrodynamics (SPH) simulation method. The polymer melt was modeled as a power law fluid and the fibers were considered as rigid cylindrical bodies. The filling details and fiber orientation in the injection-molding process were studied. The results indicated that the SPH method could effectively predict the order of filling, fiber accumulation, and heterogeneous distribution of fibers. The SPH simulation also showed that fibers were mainly aligned to the flow direction in the skin layer and inclined to the flow direction in the core layer. Additionally, the fiber-orientation state in the simulation was quantitatively analyzed and found to be consistent with the results calculated by conventional tensor methods.
NASA Technical Reports Server (NTRS)
Pritchett, Victor E., II (Inventor); Wang, Ten-See (Inventor); Blankson, Isaiah M. (Inventor); Daso, Endwell O. (Inventor); Farr, Rebecca Ann (Inventor); Auslender, Aaron Howard (Inventor); Plotkin, Kenneth J. (Inventor)
2015-01-01
A method and system are provided to weaken shock wave strength at leading edge surfaces of a vehicle in atmospheric flight. One or more flight-related attribute sensed along a vehicle's outer mold line are used to control the injection of a non-heated, non-plasma-producing gas into a local external flowfield of the vehicle from at least one leading-edge surface location along the vehicle's outer mold line. Pressure and/or mass flow rate of the gas so-injected is adjusted in order to cause a Rankine-Hugoniot Jump Condition along the vehicle's outer mold line to be violated.
Stout, Norman D.; Newkirk, Herbert W.
1991-01-01
An inventive method is described for chemically machining rhenium, rhenium and tungsten alloy, and group 5b and 6b crucibles or molds from included ingots and castings comprised of oxide crystals including YAG and YAG based crystals, garnets, corundum crystals, and ceramic oxides. A mixture of potassium hydroxide and 15 to 90 weight percent of potassium nitrate is prepared and maintained at a temperature above melting and below the lower of 500 degrees centigrade or the temperature of decomposition of the mixture. The enveloping metal container together with its included oxide crystal object is rotated within the heated KOH-KNO.sub.3 mixture, until the container is safely chemically machined away from the included oxide crystal object.
Physarum machines: encapsulating reaction-diffusion to compute spanning tree
NASA Astrophysics Data System (ADS)
Adamatzky, Andrew
2007-12-01
The Physarum machine is a biological computing device, which employs plasmodium of Physarum polycephalum as an unconventional computing substrate. A reaction-diffusion computer is a chemical computing device that computes by propagating diffusive or excitation wave fronts. Reaction-diffusion computers, despite being computationally universal machines, are unable to construct certain classes of proximity graphs without the assistance of an external computing device. I demonstrate that the problem can be solved if the reaction-diffusion system is enclosed in a membrane with few ‘growth points’, sites guiding the pattern propagation. Experimental approximation of spanning trees by P. polycephalum slime mold demonstrates the feasibility of the approach. Findings provided advance theory of reaction-diffusion computation by enriching it with ideas of slime mold computation.
Sadeghi-Avalshahr, Ali Reza; Khorsand-Ghayeni, Mohammad; Nokhasteh, Samira; Molavi, Amir Mahdi; Sadeghi-Avalshahr, Mohammad
2016-12-01
The purpose of this study was to produce and evaluate different mechanical, physical and in vitro cell culture characteristics of poly(L-lactic) acid (PLLA) interference screws. This work will focus on evaluating the effect of two important parameters on operation of these screws, first the tunnel diameter which is one of the most important parameters during the operation and second the thermal behavior, the main effective characteristic in production process. In this work, PLLA screws were produced by a two-stage injection molding machine. For mechanical assessment of the produced screws, Polyurethane rigid foam was used as cancellous bone and polypropylene rope as synthetic graft to simulate bone and ligament in real situation. Different tunnel diameters including 7-10 mm were evaluated for fixation strength. When the tunnel diameter was changed from 10 to 9 mm, the pull-out force has increased to about 12 %, which is probably due to the aforementioned frictional forces, however, by reducing the tunnel diameter to 8 and 7 mm, the pull-out force reduced to 16 and 50 % for 8 and 7 mm tunnel diameter, respectively. The minimum and maximum pull-out force was obtained 160.57 and 506.86 N for 7 and 9 mm tunnel diameters, respectively. For physicochemical assay, Fourier transform infrared spectroscopy (FTIR), degradation test and differential scanning calorimetry (DSC) were carried out. The crystallinity (Xc) of samples were decreased considerably from 64.3 % before injection to 32.95 % after injection with two different crystallographic forms α' and α. probably due to the fast cooling rate at room temperature. In addition, MTT and cell attachment assays were utilized by MG63 osteoblast cell line, to evaluate the cytotoxicity of the produced screws. The results revealed no cytotoxicity effect.
Local mechanical properties of LFT injection molded parts: Numerical simulations versus experiments
NASA Astrophysics Data System (ADS)
Desplentere, F.; Soete, K.; Bonte, H.; Debrabandere, E.
2014-05-01
In predictive engineering for polymer processes, the proper prediction of material microstructure from known processing conditions and constituent material properties is a critical step forward properly predicting bulk properties in the finished composite. Operating within the context of long-fiber thermoplastics (LFT, length < 15mm) this investigation concentrates on the prediction of the local mechanical properties of an injection molded part. To realize this, the Autodesk Simulation Moldflow Insight 2014 software has been used. In this software, a fiber breakage algorithm for the polymer flow inside the mold is available. Using well known micro mechanic formulas allow to combine the local fiber length with the local orientation into local mechanical properties. Different experiments were performed using a commercially available glass fiber filled compound to compare the measured data with the numerical simulation results. In this investigation, tensile tests and 3 point bending tests are considered. To characterize the fiber length distribution of the polymer melt entering the mold (necessary for the numerical simulations), air shots were performed. For those air shots, similar homogenization conditions were used as during the injection molding tests. The fiber length distribution is characterized using automated optical method on samples for which the matrix material is burned away. Using the appropriate settings for the different experiments, good predictions of the local mechanical properties are obtained.
Investigation of injection molding of orthogonal fluidic connector for microfluidic devices
NASA Astrophysics Data System (ADS)
Xu, Zheng; Cao, Dong; Zhao, Wei; Song, Man-cang; Liu, Jun-shan
2017-02-01
Orthogonal fluidic connections are essential for developing multilayered microfluidic devices. At present, most orthogonal connectors are realized by a horizontal channel and a vertical channel in different plates. Therefore, some extra alignment and adhesion processes for precise plate assembly are required. In this paper, the method of injection molding is proposed to make a one-body-type orthogonal connector in a single plastic plate. The connector was composed of a cantilevered tube and the other in the substrate. An injection mold was developed in which a side core-pulling mechanism and an ejection mechanism of push-pipes were combined to form the mold for an orthogonal connector. Both the type and the location of gate were optimized for the mold. The results showed that the fan gate in the middle position of the plate was the most suitable in term of both defect control and practicability. The effect of melt temperature was numerically investigated and then verified experimentally. With the optimized parameters, the relative length and the relative wall thickness of a cantilevered tube in the plastic part can reach 98.89% and 99.80%, respectively. Furthermore, using the plastic part as a cover plate, a three-layer plastic microfluidic device was conveniently fabricated for electrochemical detection.
Liquid Crystalline Thermosets from Ester, Ester-Imide, and Ester-Amide Oligomers
NASA Technical Reports Server (NTRS)
Dingemans, Theodornus J. (Inventor); Weiser, Erik S. (Inventor); SaintClair, Terry L. (Inventor)
2005-01-01
Main chain thermotropic liquid crystal esters, ester-imides, and ester-amides were prepared from AA, BB, and AB type monomeric materials and were end-capped with phenylacetylene, phenylmaleimide, or nadimide reactive end-groups. The resulting reactive end-capped liquid crystal oligomers exhibit a variety of improved and preferred physical properties. The end-capped liquid crystal oligomers are thermotropic and have, preferably, molecular weights in the range of approximately 1000-15,OOO grams per mole. The end-capped liquid crystal oligomers have broad liquid crystalline melting ranges and exhibit high melt stability and very low melt viscosities at accessible temperatures. The end-capped liquid crystal oligomers are stable for up to an hour in the melt phase. These properties make the end-capped liquid crystal oligomers highly processable by a variety of melt process shape forming and blending techniques including film extrusion, fiber spinning, reactive injection molding (RIM), resin transfer molding (RTM), resin film injection (RFI), powder molding, pultrusion, injection molding, blow molding, plasma spraying and thermo-forming. Once processed and shaped, the end- capped liquid crystal oligomers were heated to further polymerize and form liquid crystalline thermosets (LCT). The fully cured products are rubbers above their glass transition temperatures. The resulting thermosets display many properties that are superior to their non-end-capped high molecular weight analogs.
Hott, Morgan E; Megerian, Cliff A; Beane, Rich; Bonassar, Lawrence J
2004-07-01
The goal of the current study was to use computer-aided design and injection molding technologies to tissue engineer precisely shaped cartilage in the shape of butterfly tympanic membrane patches out of chondrocyte-seeded calcium alginate gels. Molds were designed on SolidWorks 2000 and built out of acrylonitrile butadiene styrene (ABS) using fused deposition modeling (FDM). Tympanic membrane patches were fabricated using bovine articular chondrocytes seeded at 50 x 10 cells/mL in 2% calcium alginate gels. Molded patches were cultured in vitro for up to 10 weeks and assessed biochemically, morphologically, and histologically. Unmolded patches demonstrated outstanding dimensional fidelity, with a volumetric precision of at least 3 microL, and maintained their shape well for up to 10 weeks of in vitro culture. Glycosaminoglycan and collagen content increased steadily over 10 weeks in culture, demonstrating continual deposition of new extracellular matrix consistent with new tissue development. The use of computer-aided design and injection molding technologies allows for the fabrication of very small, precisely shaped chondrocyte-seeded calcium alginate structures that faithfully maintain their shape during in vitro culture. In vitro fabrication of tympanic membrane patches with a precisely controlled geometry may have the potential to provide a minimally invasive alternative to traditional methods for the repair of chronic tympanic membrane perforations.
Liquid crystalline thermosets from ester, ester-imide, and ester-amide oligomers
NASA Technical Reports Server (NTRS)
Dingemans, Theodorous J. (Inventor); Weiser, Erik S. (Inventor); St. Clair, Terry L. (Inventor)
2005-01-01
Main chain thermotropic liquid crystal esters, ester-imides, and ester-amides were prepared from AA, BB, and AB type monomeric materials and were end-capped with phenylacetylene, phenylmaleimide, or nadimide reactive end-groups. The resulting reactive end-capped liquid crystal oligomers exhibit a variety of improved and preferred physical properties. The end-capped liquid crystal oligomers are thermotropic and have, preferably, molecular weights in the range of approximately 1000-15,000 grams per mole. The end-capped liquid crystal oligomers have broad liquid crystalline melting ranges and exhibit high melt stability and very low melt viscosities at accessible temperatures. The end-capped liquid crystal oligomers are stable for up to an hour in the melt phase. These properties make the end-capped liquid crystal oligomers highly processable by a variety of melt process shape forming and blending techniques including film extrusion, fiber spinning, reactive injection molding (RIM), resin transfer molding (RTM), resin film injection (RFI), powder molding, pultrusion, injection molding, blow molding, plasma spraying and thermo-forming. Once processed and shaped, the end-capped liquid crystal oligomers were heated to further polymerize and form liquid crystalline thermosets (LCT). The fully cured products are rubbers above their glass transition temperatures. The resulting thermosets display many properties that are superior to their non-end-capped high molecular weight analogs.
Flow Kills Conductivity of Single Wall Carbon Nanotubes (SWNT) Composites
NASA Astrophysics Data System (ADS)
Bhatt, Sanjiv; Macosko, Christopher
2006-03-01
Most composites of polymer and single wall carbon nanotubes (SWNT) reported in the literature are made by solvent casting or simple compression molding. Commercial utility of these composites requires use of precision injection molding. We have observed a unique behavior wherein the SWNT composites made by injection molding or by extrusion are insulators but upon heating become electrically conductive. This behavior appears to be the result of a relaxation phenomenon in the SWNT composite. During flow into an injection mold or through an extrusion die the well-dispersed SWNT in the polymer matrix tend to align such that they are not in contact with each other and are farther than the minimum required distance, 5 nm (1), to achieve electrical percolation through electron hopping. Upon heating the SWNT relax and either touch each other or are at a distance less than or equal to 5 nm from each other to create a percolating. [1] Du, F., Scogna, R, C., Zhou, W., Brand, Stijn, Fischer, J. E., and Winey, K. I., Macromolecules 2004, 37, 9048-9055.
Artificial Intelligence/Robotics Applications to Navy Aircraft Maintenance.
1984-06-01
other automatic machinery such as presses, molding machines , and numerically-controlled machine tools, just as people do. A-36...Robotics Technologies 3 B. Relevant AI Technologies 4 1. Expert Systems 4 2. Automatic Planning 4 3. Natural Language 5 4. Machine Vision...building machines that imitate human behavior. Artificial intelligence is concerned with the functions of the brain, whereas robotics include, in
Nadir Ayrilmis; Turgay Akbulut; Turker Dundar; Robert H. White; Fatih Mengeloglu; Zeki Candan; Umit Buyuksari; Erkan Avci
2011-01-01
Physical, mechanical, and fire properties of the injection-molded wood flour/polypropylene composites (WPCs) incorporated with different levels of boron compounds, borax/boric acid (BX/BA) (0.5:0.5 wt %) and zinc borate (ZB) (4, 8, or 12 wt %) were investigated. The effect of the coupling agent loading (2, 4, or 6 wt %), maleic anhydride-grafted PP (MAPP), on the...
Injection molding of silicon carbide capable of being sintered without pressure
NASA Technical Reports Server (NTRS)
Muller-Zell, A.; Schwarzmeier, R.
1984-01-01
The most suitable SiC mass for injection molding of SiC articles (for subsequent pressureless sintering) consisted of beta SiC 84, a wax mixture 8, and polyethylene or polystyrene 8 parts. The most effective method for adding the binders was by dissolving them in a solvent and subsequent evaporation. The sequence of component addition was significant, and all parameters were optimized together rather than individually.
Tensile Characterization of Injection-Molded Fuzzy Glass Fiber/Nylon Composite Material
2016-05-01
enhanced reinforcement ( CER ) in a nylon matrix. A majority of the masterbatch CER material research is focused on electromagnetic shielding applications...however, the CER system, with the CNT network fixed to the host fiber, provides a novel approach of minimizing CNT agglomeration. Tensile specimens are...injection molded with varying weight percentages of CER to evaluate effect of the reinforcement on the mechanical properties. Tension testing showed
Cruz, Heidy; Son, Younggon
2018-02-01
Since the discovery of carbon nanotubes (CNT), significant research works have focused on the application of CNT as conductive filler to polymer nanocomposites which can be used in several fields such as electrostatic dissipation (ESD), electrostatic painting and electromagnetic interference shielding (EMI-shielding). However, the main challenge in the large-scale manufacturing of this technology is the poor electrical conductivity of polymer nanocomposites produced by injection molding process. This study aims to investigate the effect of CNT aspect ratio in improving the electrical conductivity of injection molded nanocomposites. In this work, three types of multiwall carbon nanotubes with different lengths were melt-mixed with polycarbonate in a twin screw extruder followed by injection and compression molding. Results show that nanocomposites with higher CNT aspect ratio exhibit higher electrical conductivity. Longer nanotubes form a stronger conductive network during secondary agglomeration which can withstand the high shear forces during injection molding. Higher melt viscosity and storage modulus were observed in nanocomposites with higher CNT aspect ratio which is attributed to the effective constriction of polymer chains by longer nanotubes. It was also found that Tg of the composites increased with nanotube aspect ratio and the addition of CNT causes degradation which leads to the general Tg depression of polycarbonate.
Mechanical properties of injection-molded thermoplastic denture base resins.
Hamanaka, Ippei; Takahashi, Yutaka; Shimizu, Hiroshi
2011-03-01
To investigate the mechanical properties of injection-molded thermoplastic denture base resins. Four injection-molded thermoplastic resins (two polyamides, one polyethylene terephthalate, one polycarbonate) and, as a control, a conventional heat-polymerized polymethyl methacrylate (PMMA), were used in this study. The flexural strength at the proportional limit (FS-PL), the elastic modulus, and the Charpy impact strength of the denture base resins were measured according to International Organization for Standardization (ISO) 1567 and ISO 1567:1999/Amd 1:2003. The descending order of the FS-PL was: conventional PMMA > polyethylene terephthalate, polycarbonate > two polyamides. The descending order of the elastic moduli was: conventional PMMA > polycarbonate > polyethylene terephthalate > two polyamides. The descending order of the Charpy impact strength was: polyamide (Nylon PACM12) > polycarbonate > polyamide (Nylon 12), polyethylene terephthalate > conventional PMMA. All of the injection-molded thermoplastic resins had significantly lower FS-PL, lower elastic moduli, and higher or similar impact strength compared to the conventional PMMA. The polyamide denture base resins had low FS-PL and low elastic moduli; one of them possessed very high impact strength, and the other had low impact strength. The polyethylene terephthalate denture base resin showed a moderately high FS-PL, moderate elastic modulus, and low impact strength. The polycarbonate denture base resin had a moderately high FS-PL, moderately high elastic modulus, and moderate impact strength.
NASA Astrophysics Data System (ADS)
Han, Jun Sae; Gal, Chang Woo; Park, Jae Man; Kim, Jong Hyun; Park, Seong Jin
2018-04-01
Aspect ratio effects in the micro-powder injection molding process were experimentally analyzed for fabrication of high-aspect-ratio piezoelectric ceramic structure. The mechanisms of critical defects have been studied according to individual manufacturing steps. In the molding process, incomplete filling phenomenon determines the critical aspect ratios of a micro pattern. According to mold temperature, an incomplete filling phenomenon has been analyzed with respect to different pattern sizes and aspect ratio. In demolding and drying process, the capillary behavior of sacrificial polymeric mold insert determines the critical aspect ratio of a micro pattern. With respect to pattern dimensions, slumping behavior has been analyzed. Based on our current systems, micro PZT feature has stability when it has lower aspect ratio than 5. Under optimized processing conditions, 20 μm and 40 μm ceramic rod array feature which has 5 of aspect ratio were successfully fabricated by the developed process. Further modification points to fabricate the smaller and higher feature were specifically addressed.
Advancing three-dimensional MEMS by complimentary laser micro manufacturing
NASA Astrophysics Data System (ADS)
Palmer, Jeremy A.; Williams, John D.; Lemp, Tom; Lehecka, Tom M.; Medina, Francisco; Wicker, Ryan B.
2006-01-01
This paper describes improvements that enable engineers to create three-dimensional MEMS in a variety of materials. It also provides a means for selectively adding three-dimensional, high aspect ratio features to pre-existing PMMA micro molds for subsequent LIGA processing. This complimentary method involves in situ construction of three-dimensional micro molds in a stand-alone configuration or directly adjacent to features formed by x-ray lithography. Three-dimensional micro molds are created by micro stereolithography (MSL), an additive rapid prototyping technology. Alternatively, three-dimensional features may be added by direct femtosecond laser micro machining. Parameters for optimal femtosecond laser micro machining of PMMA at 800 nanometers are presented. The technical discussion also includes strategies for enhancements in the context of material selection and post-process surface finish. This approach may lead to practical, cost-effective 3-D MEMS with the surface finish and throughput advantages of x-ray lithography. Accurate three-dimensional metal microstructures are demonstrated. Challenges remain in process planning for micro stereolithography and development of buried features following femtosecond laser micro machining.
Rapid manufacturing of metallic Molds for parts in Automobile
NASA Astrophysics Data System (ADS)
Zhang, Renji; Xu, Da; Liu, Yuan; Yan, Xudong; Yan, Yongnian
1998-03-01
The recent research of RPM (Rapid Prototyping Manufacturing) in our lab has been focused on the rapid creation of alloyed cast iron (ACI) molds. There are a lot of machinery parts in an automobile, so a lot of mettallic molds are needed in automobile industry. A new mold manufacturing technology has been proposed. A new large scale RP machine has been set up in our lab now. Then rapid prototypes could be manufactured by means of laminated object manufacturing (LOM) technology. The molds for parts in automobile have been produced by ceramic shell precision casting. An example is a drawing mold for cover parts in automobile. Sufficient precision and surface roughness have been obtained. Itis proved that this is a vew kind of technology. Work supported by the Mational Science Foundation of China.
Effects of process parameters on the molding quality of the micro-needle array
NASA Astrophysics Data System (ADS)
Qiu, Z. J.; Ma, Z.; Gao, S.
2016-07-01
Micro-needle array, which is used in medical applications, is a kind of typical injection molded products with microstructures. Due to its tiny micro-features size and high aspect ratios, it is more likely to produce short shots defects, leading to poor molding quality. The injection molding process of the micro-needle array was studied in this paper to find the effects of the process parameters on the molding quality of the micro-needle array and to provide theoretical guidance for practical production of high-quality products. With the shrinkage ratio and warpage of micro needles as the evaluation indices of the molding quality, the orthogonal experiment was conducted and the analysis of variance was carried out. According to the results, the contribution rates were calculated to determine the influence of various process parameters on molding quality. The single parameter method was used to analyse the main process parameter. It was found that the contribution rate of the holding pressure on shrinkage ratio and warpage reached 83.55% and 94.71% respectively, far higher than that of the other parameters. The study revealed that the holding pressure is the main factor which affects the molding quality of micro-needle array so that it should be focused on in order to obtain plastic parts with high quality in the practical production.
Zhang, Lin; Zhou, Wenchen; Naples, Neil J; Yi, Allen Y
2018-05-01
A novel fabrication method by combining high-speed single-point diamond milling and precision compression molding processes for fabrication of discontinuous freeform microlens arrays was proposed. Compared with slow tool servo diamond broaching, high-speed single-point diamond milling was selected for its flexibility in the fabrication of true 3D optical surfaces with discontinuous features. The advantage of single-point diamond milling is that the surface features can be constructed sequentially by spacing the axes of a virtual spindle at arbitrary positions based on the combination of rotational and translational motions of both the high-speed spindle and linear slides. By employing this method, each micro-lenslet was regarded as a microstructure cell by passing the axis of the virtual spindle through the vertex of each cell. An optimization arithmetic based on minimum-area fabrication was introduced to the machining process to further increase the machining efficiency. After the mold insert was machined, it was employed to replicate the microlens array onto chalcogenide glass. In the ensuing optical measurement, the self-built Shack-Hartmann wavefront sensor was proven to be accurate in detecting an infrared wavefront by both experiments and numerical simulation. The combined results showed that precision compression molding of chalcogenide glasses could be an economic and precision optical fabrication technology for high-volume production of infrared optics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fang, Jun; Burghardt, Wesley R.; Bubeck, Robert A.
The development of molecular orientation in thermotropic liquid crystalline polymers (TLCPs) during injection molding has been investigated using two-dimensional wide-angle X-ray scattering coordinated with numerical computations employing the Larson-Doi polydomain model. Orientation distributions were measured in 'short shot' moldings to characterize structural evolution prior to completion of mold filling, in both thin and thick rectangular plaques. Distinct orientation patterns are observed near the filling front. In particular, strong extension at the melt front results in nearly transverse molecular alignment. Far away from the flow front shear competes with extension to produce complex spatial distributions of orientation. The relative influence ofmore » shear is stronger in the thin plaque, producing orientation along the filling direction. Exploiting an analogy between the Larson-Doi model and a fiber orientation model, we test the ability of process simulation tools to predict TLCP orientation distributions during molding. Substantial discrepancies between model predictions and experimental measurements are found near the flow front in partially filled short shots, attributed to the limits of the Hele-Shaw approximation used in the computations. Much of the flow front effect is however 'washed out' by subsequent shear flow as mold filling progresses, leading to improved agreement between experiment and corresponding numerical predictions.« less
NASA Astrophysics Data System (ADS)
Garcia, Jose Luis
2000-10-01
In injection molding processes, computer aided engineering (CAE) allows processors to evaluate different process parameters in order to achieve complete filling of a cavity and, in some cases, it predicts shrinkage and warpage. However, because commercial computational packages are used to design complex geometries, detail in the thickness direction is limited. Approximations in the thickness direction lead to the solution of a 2½-D problem instead of a 3-D problem. These simplifications drastically reduce computational times and memory requirements. However, these approximations hinder the ability to predict thermal and/or mechanical degradation. The goal of this study was to determine the degree of degradation during PVC injection molding and to compare the results with a computational model. Instead of analyzing degradation in complex geometries, the computational analysis and injection molding trials were performed on typical sections found in complex geometries, such as flow in a tube, flow in a rectangular channel, and radial flow. This simplification reduces the flow problem to a 1-D problem and allows one to develop a computational model with a higher level of detail in the thickness direction, essential for the determination of degradation. Two different geometries were examined in this study: a spiral mold, in order to approximate the rectangular channel, and a center gated plate for the radial flow. Injection speed, melt temperature, and shot size were varied. Parts varying in degree of degradation, from no to severe degradation, were produced to determine possible transition points. Furthermore, two different PVC materials were used, low and high viscosity, M3800 and M4200, respectively (The Geon Company, Avon Lake, OH), to correlate the degree of degradation with the viscous heating observed during injection. It was found that a good agreement between experimental and computational results was obtained only if the reaction was assumed to be more thermally sensitive than found in literature. The results from this study show that, during injection, the activation energy for degradation was 65 kcal/mol, compared to 17--30 kcal/mol found in literature for quiescent systems.
Three Dimensional Orientation Measurements in Liquid-Crystalline Polymers by FT-IR ATR Dichroism.
1987-07-24
dimension on an injection molded liquid crystalline copolyester plaque. This copolymer contains 75% of hydroxybenzoic acid (HBA) and 25% of 2,6...hydroxynaphthoic acid (HNA). Orientation functions were estimated averaging about a 10 u thick layer as a function of the location from the gate as well as the...molecular orientation in three dimension on an injection molded liquid crystalline copolyester plaque. This copolymer contains 75% of hydroxybenzoic acid
Modeling of magnetic particle orientation in magnetic powder injection molding
NASA Astrophysics Data System (ADS)
Doo Jung, Im; Kang, Tae Gon; Seul Shin, Da; Park, Seong Jin
2018-03-01
The magnetic micro powder orientation under viscous shear flow has been analytically understood and characterized into a new analytical orientation model for a powder injection molding process. The effects of hydrodynamic force from the viscous flow, external magnetic force and internal dipole-dipole interaction were considered to predict the orientation under given process conditions. Comparative studies with a finite element method proved the calculation validity with a partial differential form of the model. The angular motion, agglomeration and magnetic chain formation have been simulated, which shows that the effect of dipole-dipole interaction among powders on the orientation state becomes negligible at a high Mason number condition and at a low λ condition (the ratio of external magnetic field strength and internal magnetic moment of powder). Our developed model can be very usefully employed in the process analysis and design of magnetic powder injection molding.
Svečko, Rajko; Kusić, Dragan; Kek, Tomaž; Sarjaš, Andrej; Hančič, Aleš; Grum, Janez
2013-05-14
This paper presents an improved monitoring system for the failure detection of engraving tool steel inserts during the injection molding cycle. This system uses acoustic emission PZT sensors mounted through acoustic waveguides on the engraving insert. We were thus able to clearly distinguish the defect through measured AE signals. Two engraving tool steel inserts were tested during the production of standard test specimens, each under the same processing conditions. By closely comparing the captured AE signals on both engraving inserts during the filling and packing stages, we were able to detect the presence of macro-cracks on one engraving insert. Gabor wavelet analysis was used for closer examination of the captured AE signals' peak amplitudes during the filling and packing stages. The obtained results revealed that such a system could be used successfully as an improved tool for monitoring the integrity of an injection molding process.
Svečko, Rajko; Kusić, Dragan; Kek, Tomaž; Sarjaš, Andrej; Hančič, Aleš; Grum, Janez
2013-01-01
This paper presents an improved monitoring system for the failure detection of engraving tool steel inserts during the injection molding cycle. This system uses acoustic emission PZT sensors mounted through acoustic waveguides on the engraving insert. We were thus able to clearly distinguish the defect through measured AE signals. Two engraving tool steel inserts were tested during the production of standard test specimens, each under the same processing conditions. By closely comparing the captured AE signals on both engraving inserts during the filling and packing stages, we were able to detect the presence of macro-cracks on one engraving insert. Gabor wavelet analysis was used for closer examination of the captured AE signals' peak amplitudes during the filling and packing stages. The obtained results revealed that such a system could be used successfully as an improved tool for monitoring the integrity of an injection molding process. PMID:23673677
Investigation of interfacial fracture behavior on injection molded parts
NASA Astrophysics Data System (ADS)
Fischer, Matthieu; Ausias, Gilles; Kuehnert, Ines
2016-03-01
In this study the interfacial morphology of different polymers joined by various assembly injection molding (AIM) technologies were discussed. Melt streams were injected successively using tools with core-back or rotation techniques. To compare bulk specimen strength and weld line strength, the fracture behavior of different specimen scales and thin sections were investigated. An in-situ SEM tensile test and a new thin section testing device which is used in polarized (transmitted) light microscopy were used to observe specimen failure. The effects of processing on spherulitic structures were linked to bonding strength and mechanical properties.
Structural characterization and mechanical properties of polypropylene reinforced natural fibers
NASA Astrophysics Data System (ADS)
Karim, M. A. A.; Zaman, I.; Rozlan, S. A. M.; Berhanuddin, N. I. C.; Manshoor, B.; Mustapha, M. S.; Khalid, A.; Chan, S. W.
2017-10-01
Recently the development of natural fiber composite instead of synthetics fiber has lead to eco-friendly product manufacturing to meet various applications in the field of automotive, construction and manufacturing. The use of natural fibers offer an alternative to the reinforcing fibers because of their good mechanical properties, low density, renewability, and biodegradability. In this present research, the effects of maleic anhydride polypropylene (MAPP) on the mechanical properties and material characterization behaviour of kenaf fiber and coir fiber reinforced polypropylene were investigated. Different fractions of composites with 10wt%, 20wt% and 30wt% fiber content were prepared by using brabender mixer at 190°C. The 3wt% MAPP was added during the mixing. The composites were subsequently molded with injection molding to prepare the test specimens. The mechanical properties of the samples were investigated according to ISO 527 to determine the tensile strength and modulus. These results were also confirmed by the SEM machine observations of fracture surface of composites and FTIR analysis of the chemical structure. As the results, the presence of MAPP helps increasing the mechanical properties of both fibers and 30wt% kenaf fiber with 3wt% MAPP gives the best result compare to others.
NASA Astrophysics Data System (ADS)
Roch, A.; Kehret, L.; Huber, T.; Henning, F.; Elsner, P.
2015-05-01
Investigations on PA6-GF50 integral foams have been carried out using different material systems: longfiber- and shortfiber-reinforced PA6 as well as unreinforced PA6 as a reference material. Both chemical and physical blowing agents were applied. Breathing mold technology (decompression of the mold) was selected for the foaming process. The integral foam design, which can be conceived as a sandwich structure, helps to save material in the neutral axis area and maintains a distance between load-bearing, unfoamed skin layers. For all test series an initial mold gap of 2.5 mm was chosen and the same amount of material was injected. In order to realize different density reductions, the mold opening stroke was varied. The experiments showed that, at a constant mass per unit area, integral polyamide 6 foams have a significantly higher bending stiffness than compact components, due to their higher area moment of inertia after foaming. At a constant surface weight the bending stiffness in these experiments could be increased by up to 600 %. Both shortfiber- and longfiber-reinforced polyamide 6 showed an increase in energy absorption during foaming.
The use of image analysis in evaluation of the fibers orientation in Wood-polymer composites (WPC)
NASA Astrophysics Data System (ADS)
Bednarz, Arkadiusz; Frącz, Wiesław; Janowski, Grzegorz
2016-12-01
In this paper a novel way of a digital analysis of fibers orientation with a five-step algorithmwas presented. In the study, a molded piece with a dumbbell shape prepared from wood-polymer composite was used. The injection molding process was examined in experimental and numerical way. Based on the developed mathematical algorithm, a significant compliance of fiber orientation in different areas of the molded piece was obtained. The main aim of thisworkwas fiber orientation analysis of wood-polymer composites. An additional goal of thiswork was the comparison of the results reached in numerical analysis with results obtained from an experiment. The results of this research were important for the scientific and also from the practical point of view. In future works the prepared algorithm could be used to reach optimal parameters of the injection molding process.
A novel tool to standardize rheology testing of molten polymers for pharmaceutical applications.
Treffer, Daniel; Troiss, Alexander; Khinast, Johannes
2015-11-10
Melt rheology provides information about material properties that are of great importance for equipment design and simulations, especially for novel pharmaceutical manufacturing operations, including extrusion, injection molding or 3d printing. To that end, homogeneous samples must be prepared, most commonly via compression or injection molding, both of which require costly equipment and might not be applicable for shear- and heat-sensitive pharmaceutical materials. Our study introduces a novel vacuum compression molding (VCM) tool for simple preparation of thermoplastic specimens using standard laboratory equipment: a hot plate and a vacuum source. Sticking is eliminated by applying polytetrafluoroethylene (PTFE) coated separation foils. The evacuation of the tool leads to compression of the sample chamber, which is cost-efficient compared to conventional methods, such as compression molding or injection molding that require special equipment. In addition, this compact design reduces the preparation time and the heat load. The VCM tool was used to prepare samples for a rheological study of three pharmaceutical polymers (Soluplus(®), Eudragit(®)E, EVA Rowalit(®) 300-1/28). The prepared samples were without any air inclusions or voids, and the measurements had a high reproducibility. All relative standard deviations were below 3%. The obtained data were fitted to the Carreau-Yasuda model and time-temperature superposition was applied. Copyright © 2015 Elsevier B.V. All rights reserved.
Bayraktaroglu, Esra; Gulsoy, H Ozkan; Gulsoy, Nagihan; Er, Ozay; Kilic, Hasan
2012-01-01
The research was investigated the effect of boron additions on sintering characteristics, mechanical, corrosion properties and biocompatibility of injection molded austenitic grade 316L stainless steel. Addition of boron is promoted to get high density of sintered 316L stainless steels. The amount of boron plays a role in determining the sintered microstructure and all properties. In this study, 316L stainless steel powders have been used with the elemental NiB powders. A feedstock containing 62.5 wt% powders loading was molded at different injection molded temperature. The binders were completely removed from molded components by solvent and thermal debinding at different temperature. The debinded samples were sintered at different temperature for 60 min. Mechanical property, microstructural characterization and electrochemical property of the sintered samples were performed using tensile testing, hardness, optical, scanning electron microscopy and electrochemical corrosion experiments. Sintered samples were immersed in a simulated body fluid (SBF) with elemental concentrations that were comparable to those of human blood plasma for a total period of 15 days. Both materials were implanted in fibroblast culture for biocompatibility evaluations were carried out. Results of study showed that sintered 316L and 316L with NiB addition samples exhibited high mechanical and corrosion properties in a physiological environment. Especially, 316L with NiB addition can be used in some bioapplications.
29 CFR 570.62 - Occupations involved in the operation of bakery machines (Order 11).
Code of Federal Regulations, 2010 CFR
2010-07-01
... dough mixer; batter mixer; bread dividing, rounding, or molding machine; dough brake; dough sheeter... cookie or cracker machine. (b) Exceptions. (1) This section shall not apply to the operation, including... as prohibited by § 570.61(a)(4). (2) This section shall not apply to the operation of pizza-dough...
Metal Injection Molding for Superalloy Jet Engine Components
2006-05-01
single vanes. The vanes are subject to high vibration stresses and thus require reliable fatigue strength. Therefore the quality of the material must meet...Injection Molding for Superalloy Jet Engine Components 9 - 12 RTO-MP-AVT-139 UNCLASSIFIED/UNLIMITED UNCLASSIFIED/UNLIMITED MTU AeroEngines copyright...Sikorski Max Kraus Dr. Claus Müller MTU Aero Engines GmbH Munich, Germany 15.05. - 17.05.2006 MTU AeroEngines copyright ©2 AVT – 139 on “Cost Effective
NASA Astrophysics Data System (ADS)
Botos, J.; Murail, N.; Heidemeyer, P.; Kretschmer, K.; Ulmer, B.; Zentgraf, T.; Bastian, M.; Hochrein, T.
2014-05-01
The typical offline color measurement on injection molded or pressed specimens is a very expensive and time-consuming process. In order to optimize the productivity and quality, it is desirable to measure the color already during the production. Therefore several systems have been developed to monitor the color e.g. on melts, strands, pellets, the extrudate or injection molded part already during the process. Different kinds of inline, online and atline methods with their respective advantages and disadvantages will be compared. The criteria are e.g. the testing time, which ranges from real-time to some minutes, the required calibration procedure, the spectral resolution and the final measuring precision. The latter ranges between 0.05 to 0.5 in the CIE L*a*b* system depending on the particular measurement system. Due to the high temperatures in typical plastics processes thermochromism of polymers and dyes has to be taken into account. This effect can influence the color value in the magnitude of some 10% and is barely understood so far. Different suitable methods to compensate thermochromic effects during compounding or injection molding by using calibration curves or artificial neural networks are presented. Furthermore it is even possible to control the color during extrusion and compounding almost in real-time. The goal is a specific developed software for adjusting the color recipe automatically with the final objective of a closed-loop control.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nguyen, Ba Nghiep; Holbery, Jim; Smith, Mark T.
2006-11-30
This report describes the status of the current process modeling approaches to predict the behavior and flow of fiber-filled thermoplastics under injection molding conditions. Previously, models have been developed to simulate the injection molding of short-fiber thermoplastics, and an as-formed composite part or component can then be predicted that contains a microstructure resulting from the constituents’ material properties and characteristics as well as the processing parameters. Our objective is to assess these models in order to determine their capabilities and limitations, and the developments needed for long-fiber injection-molded thermoplastics (LFTs). First, the concentration regimes are summarized to facilitate the understandingmore » of different types of fiber-fiber interaction that can occur for a given fiber volume fraction. After the formulation of the fiber suspension flow problem and the simplification leading to the Hele-Shaw approach, the interaction mechanisms are discussed. Next, the establishment of the rheological constitutive equation is presented that reflects the coupled flow/orientation nature. The decoupled flow/orientation approach is also discussed which constitutes a good simplification for many applications involving flows in thin cavities. Finally, before outlining the necessary developments for LFTs, some applications of the current orientation model and the so-called modified Folgar-Tucker model are illustrated through the fiber orientation predictions for selected LFT samples.« less
Ghosh, Satyabrata; Viana, Júlio C; Reis, Rui L; Mano, João F
2008-07-01
A novel fabrication technique is proposed for the preparation of unidirectionally oriented, porous scaffolds by selective polymer leaching from lamellar structures created by conventional injection molding. The proof of the concept is implemented using a 50/50 wt.% poly(L-lactic acid)/poly(ethylene oxide) (PLLA/PEO) blend. With this composition, the PLLA and PEO blend is biphasic, containing a homogeneous PLLA/PEO phase and a PEO-rich phase. The two phases were structured using injection molding into well-defined alternating layers of homogeneous PLLA/PEO phase and PEO-rich phase. Leaching of water-soluble PEO from the PEO-rich phase produces macropores, and leaching of phase-separated PEO from the initially homogeneous PLLA/PEO phase produces micropores in the lamellae. Thus, scaffolds with a macroporous lamellar architecture with microporous walls can be produced. The lamellae are continuous along the flow direction, and a continuous lamellar thickness of less than 1 microm could be achieved. Porosities of 57-74% and pore sizes of around 50-100 microm can be obtained using this process. The tensile elastic moduli of the porous constructs were between 580 and 800 MPa. We propose that this organic-solvent-free method of preparing lamellar scaffolds with good mechanical properties, and the reproducibility associated with the injection molding technique, holds promise for a wide range of guided tissue engineering applications.
Interfacial crystalline structures in injection over-molded polypropylene and bond strength.
Yan, Bowen; Wu, Hong; Jiang, Genjie; Guo, Shaoyun; Huang, Jian
2010-11-01
This paper describes interfacial crystalline structures found in injection overmolded polypropylene components and the relationship of these structures to bond strength between the components. The combined effects of the development of hierarchical gradient structures and the particular thermomechanical environment near the interface on the interfacial crystalline structures were investigated in detail by PLM, SEM, DSC, WAXD, and infrared dichroism spectroscopy. The experimental results showed that during molding there was competitive formation of interfacial crystalline structures consisted of "shish-kebab" layer (SKL) and a transcrystalline layers (TCL). Variation in shear stress (controlled by injection pressure and injection speed) plays an important role in the formation of the SKL. The formation of TCL is influenced by the thermal environment, namely melt temperature and mold temperature. Increasing within certain limits, interfacial temperature and the thermal gradient near the interface promotes β-iPP growth. The relationship between interfacial crystalline structures and interfacial bond strength was established by lap shear measurement. The interfacial bond strength is improved by enhancing the formation of TCL, but reduced if SKL predominates.
APPARATUS AND METHOD FOR INJECTION CASTING
Shuck, A.B.
1960-09-13
S>A single-chamber metal casting apparatus is described wherein molten metal in a vertically movable container can be brought directly into contact with molds. By increasing the gas pressure within the chamber the metal is forced upward into the molds.
NASA Astrophysics Data System (ADS)
Liu, Lin; Wang, Xin-da; Li, Xiang; Qi, Xiao-tong; Qu, Xuan-hui
2017-09-01
The fabrication of 17-4PH micro spool mandrils by micro metal injection molding was described here. The effects of size reduction on deformation, microstructure and surface roughness were studied by comparing a ϕ500 μm micro post and a ϕ1.7 mm cylinder after debinding and sintering. Experimental results show that slumping of the micro posts occurred due to a dramatic increase in outlet vapor pressure initiated at the thermal degradation onset temperature and the moment of gravity. Asymmetrical stress distribution within the micro component formed during the cooling stage may cause warping. Prior solvent debinding and adjustment in a thermal debinding scheme were useful for preventing the deformation of the micro components. Smaller grain size and higher micro hardness due to impeded grain growth were observed for the micro posts compared with the ϕ1.7 mm cylinder. Surface roughness increased with distance from the gate of the micro spool mandril due to melt front advancement during mold filling and the ensuing pressure distribution. At each position, surface roughness was dictated by injection molding and increased slightly after sintering.
Development and manufacture of visor for helmet-mounted display
NASA Astrophysics Data System (ADS)
Krevor, David H.; McNelly, Gregg; Skubon, John; Speirs, Robert
2004-01-01
The manufacturing design and process development for the Visor for the JHMCS (Joint Helmet Mounted Cueing System) are discussed. The JHMCS system is a Helmet Mounted Display (HMD) system currently flying on the F-15, F-16 and F/A-18 aircraft. The Visor manufacturing processes are essential to both system performance and economy. The Visor functions both as the system optical combiner and personal protective equipment for the pilot. The Visor material is optical polycarbonate. For a military HMD system, the mechanical and environmental properties of the Visor are as necessary as the optical properties. The visor must meet stringent dimensional requirements to assure adequate system optical performance. Injection molding can provide dimensional fidelity to the requirements, if done properly. Concurrent design of the visor and the tool (i.e., the injection mold) is essential. The concurrent design necessarily considers manufacturing operations and the use environment of the Visor. Computer modeling of the molding process is a necessary input to the mold design. With proper attention to product design and tool development, it is possible to improve upon published standard dimensional tolerances for molded polycarbonate articles.
Amorphous Metals and Composites as Mirrors and Mirror Assemblies
NASA Technical Reports Server (NTRS)
Hofmann, Douglas C. (Inventor); Davis, Gregory L. (Inventor); Agnes, Gregory S. (Inventor); Shapiro, Andrew A. (Inventor)
2016-01-01
A mirror or mirror assembly fabricated by molding, pressing, assembling, or depositing one or more bulk metal glass (BMG), bulk metal glass composite (BMGMC), or amorphous metal (AM) parts and where the optical surface and backing of the mirror can be fabricated without machining or polishing by utilizing the unique molding capabilities of this class of materials.
Faster, Less Expensive Dies Using RSP Tooling
NASA Astrophysics Data System (ADS)
Knirsch, James R.
2007-08-01
RSP Tooling is an indirect spray form additive process that can produce production tooling for virtually any forming process and from virtually any metal. In the past 24 months a significant amount of research and development has been performed. This resulted in an increase in the basic metallurgical understanding of what transpires during the rapid solidification of the metal, significant improvements in the production machine up time, ceramic developments that have improved finish, process changes that have resulted in a shorter lead time for tool delivery, and the testing of many new alloys. RSP stands for Rapid Solidification Process and is the key to the superior metallurgical properties that result from the technology. Most metals that are sprayed in the process leave the machine with the same physical properties as the same metal normally achieves through heat treatment and in some cases the properties are superior. Many new applications are being pursued including INVAR tools for aerospace composite materials, and bimetallic tools made from tool steel and beryllium copper for die casting and plastic injection molding. Recent feasibility studies have been performed with tremendous success.
Tensile strength of various nylon PA6 specimen modes
NASA Astrophysics Data System (ADS)
Raz, Karel; Zahalka, Martin
2017-05-01
This article explores the influence of production technique on the strength of nylon parts. Identical specimens were manufactured by various techniques. The material of specimens was nylon PA6. 3D printing and injection molding were used, with various orientations of printed layers, and various orientations of specimens in the working space of the 3D printer. The variants are described in detail. A special mold was used for the injection molding process in order to make specimens with and without a weld line. The effect of this weld line was evaluated. All specimens were tested using the standard tensile test configuration. The strength was compared. It was found that the same plastic material has very different mechanical properties depending on the production process.
Integrally cored ceramic investment casting mold fabricated by ceramic stereolithography
NASA Astrophysics Data System (ADS)
Bae, Chang-Jun
Superalloy airfoils are produced by investment casting (IC), which uses ceramic cores and wax patterns with ceramic shell molds. Hollow cored superalloy airfoils in a gas turbine engine are an example of complex IC parts. The complex internal hollow cavities of the airfoil are designed to conduct cooling air through one or more passageways. These complex internal passageways have been fabricated by a lost wax process requiring several processing steps; core preparation, injection molding for wax pattern, and dipping process for ceramic shell molds. Several steps generate problems such as high cost and decreased accuracy of the ceramic mold. For example, costly tooling and production delay are required to produce mold dies for complex cores and wax patterns used in injection molding, resulting in a big obstacle for prototypes and smaller production runs. Rather than using separate cores, patterns, and shell molds, it would be advantageous to directly produce a mold that has the casting cavity and the ceramic core by one process. Ceramic stereolithography (CerSLA) can be used to directly fabricate the integrally cored ceramic casting mold (ICCM). CerSLA builds ceramic green objects from CAD files from many thin liquid layers of powder in monomer, which are solidified by polymerization with a UV laser, thereby "writing" the design for each slice. This dissertation addresses the integrally cored casting ceramic mold (ICCM), the ceramic core with a ceramic mold shell in a single patternless construction, fabricated by ceramic stereolithography (CerSLA). CerSLA is considered as an alternative method to replace lost wax processes, for small production runs or designs too complex for conventional cores and patterns. The main topic is the development of methods to successfully fabricate an ICCM by CerSLA from refractory silica, as well as related issues. The related issues are the segregation of coarse fused silica powders in a layer, the degree of segregation parameter to prevent segregation, and sintering and cristobalite transformation in fused silica compacts.
Topology optimization applied to the design of cooling channels for plastic injection
NASA Astrophysics Data System (ADS)
Muñoz, D. A.; Arango, J. P.; González, C.; Puerto, E.; Garzón, M.
2018-04-01
In this paper, topology optimization is applied to design cooling channels in a mold of structural steel. The problem was implemented in COMSOL multiphysics, where two physics were coupled, heat transfer and solid mechanics. The optimization objective is to maximize the conduction heat flux in the mold and minimize the deformations when the plastic is injected. In order to find an optimal geometry for this objective, a density-based method was implemented into the nonlinear program (NLP) for which feasible results were found.
Battiste, Richard L.
2007-12-25
Methods and apparatus are described for characterizing the temporal-spatial properties of a dynamic fluid front within a mold space while the mold space is being filled with fluid. A method includes providing a mold defining a mold space and having one or more openings into the mold space; heating a plurality of temperature sensors that extend into the mold space; injecting a fluid into the mold space through the openings, the fluid experiencing a dynamic fluid front while filling the mold space with the fluid; and characterizing temporal-spatial properties of the dynamic fluid front by monitoring a temperature of each of the plurality of heated temperature sensors while the mold space is being filled with the fluid. An apparatus includes a mold defining a mold space; one or more openings for introducing a fluid into the mold space and filling the mold space with the fluid, the fluid experiencing a dynamic fluid front while filling the mold space; a plurality of heated temperature sensors extending into the mold space; and a computer coupled to the plurality of heated temperature sensors for characterizing the temporal-spatial properties of the dynamic fluid front.
Chaudhry, Anil R [Xenia, OH; Dzugan, Robert [Cincinnati, OH; Harrington, Richard M [Cincinnati, OH; Neece, Faurice D [Lyndurst, OH; Singh, Nipendra P [Pepper Pike, OH
2011-06-14
A foam material comprises a liquid polymer and a liquid isocyanate which is mixed to make a solution that is poured, injected or otherwise deposited into a corresponding mold. A reaction from the mixture of the liquid polymer and liquid isocyanate inside the mold forms a thermally collapsible foam structure having a shape that corresponds to the inside surface configuration of the mold and a skin that is continuous and unbroken. Once the reaction is complete, the foam pattern is removed from the mold and may be used as a pattern in any number of conventional casting processes.
Challenges in mold manufacturing for high precision molded diffractive optical elements
NASA Astrophysics Data System (ADS)
Pongs, Guido; Bresseler, Bernd; Schweizer, Klaus; Bergs, Thomas
2016-09-01
Isothermal precision glass molding of imaging optics is the key technology for mass production of precise optical elements. Especially for numerous consumer applications (e.g. digital cameras, smart phones, …), high precision glass molding is applied for the manufacturing of aspherical lenses. The usage of diffractive optical elements (DOEs) can help to further reduce the number of lenses in the optical systems which will lead to a reduced weight of hand-held optical devices. But today the application of molded glass DOEs is limited due to the technological challenges in structuring the mold surfaces. Depending on the application submicrometer structures are required on the mold surface. Furthermore these structures have to be replicated very precisely to the glass lens surface. Especially the micro structuring of hard and brittle mold materials such as Tungsten Carbide is very difficult and not established. Thus a multitude of innovative approaches using diffractive optical elements cannot be realized. Aixtooling has investigated in different mold materials and different suitable machining technologies for the micro- and sub-micrometer structuring of mold surfaces. The focus of the work lays on ultra-precision grinding to generate the diffractive pattern on the mold surfaces. This paper presents the latest achievements in diffractive structuring of Tungsten Carbide mold surfaces by ultra-precision grinding.
Inexpensive 3dB coupler for POF communication by injection-molding production
NASA Astrophysics Data System (ADS)
Haupt, M.; Fischer, U. H. P.
2011-01-01
POFs (polymer optical fibers) gradually replace traditional communication media such as copper and glass within short distance communication systems. Primarily, this is due to their cost-effectiveness and easy handling. POFs are used in various fields of optical communication, e.g. the automotive sector or in-house communication. So far, however, only a few key components for a POF communication network are available. Even basic components, such as splices and couplers, are fabricated manually. Therefore, these circumstances result in high costs and fluctuations in components' performance. Available couplers have high insertion losses due to their manufacturing method. This can only be compensated by higher power budgets. In order to produce couplers with higher performances new fabrication methods are indispensable. A cheap and effective way to produce couplers for POF communication systems is injection molding. The paper gives an overview of couplers available on market, compares their performances, and shows a way to produce couplers by means of injection molding.
Rheological and thermal performance of newly developed binder systems for ceramic injection molding
NASA Astrophysics Data System (ADS)
Hausnerova, Berenika; Kasparkova, Vera; Hnatkova, Eva
2016-05-01
In a novel binder system, carnauba wax was considered to replace the synthetic backbone polymers (polyolefins) enhancing the environmental sustainability of Ceramic Injection Molding (CIM) technology. The paper presents comparison of the rheological performance and thermal behavior of the aluminum oxide CIM feedstocks based on a binder containing carnauba wax with those consisting of a commercial binder. Further, acrawax (N, N'-Ethylene Bis-stearamide) has been considered as another possible substitute of polyolefins. For both proposed substitutes there is a significant reduction in viscosity, and in case of carnauba wax based feedstock also in processing temperature, which is essential for injection molding of reactive powders. Thermal characterization comprised analyses of single neat binders, their mixtures and mixtures with aluminum oxide. The presence of powder lowered melting temperatures of all tested binders except of polyolefin. Further depression in melting point of poly(ethylene glycol) is observed in combination with polyolefin in the presence of powder, and it is related to changes in size of the crystalline domains.
Nagakura, Manamu; Tanimoto, Yasuhiro; Nishiyama, Norihiro
2017-07-26
The use of non-metal clasp denture (NMCD) materials may seriously affect the remaining tissues because of the low rigidity of NMCD materials such as polyamides. The purpose of this study was to develop a high-rigidity glass fiber-reinforced thermoplastic (GFRTP) composed of E-glass fiber and polyamide-6 for NMCDs using an injection molding. The reinforcing effects of fiber on the flexural properties of GFRTPs were investigated using glass fiber content ranging from 0 to 50 mass%. Three-point bending tests indicated that the flexural strength and elastic modulus of a GFRTP with a fiber content of 50 mass% were 5.4 and 4.7 times higher than those of unreinforced polyamide-6, respectively. The result showed that the physical characteristics of GFRTPs were greatly improved by increasing the fiber content, and the beneficial effects of fiber reinforcement were evident. The findings suggest that the injection-molded GFRTPs are adaptable to NMCDs because of their excellent mechanical properties.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thi, Thanh Binh Nguyen, E-mail: nttbinh@kit.ac.jp; Yokoyama, Atsushi, E-mail: yokoyama@kit.ac.jp; Hamanaka, Senji
The theoretical fiber-interaction model for calculating the fiber orientation in the injection molded short fiber/thermoplastic composite parts was proposed. The proposed model included the fiber dynamics simulation in order to obtain an equation of the global interaction coefficient and accurate estimate of the fiber interacts at all orientation states. The steps to derive the equation for this coefficient in short fiber suspension as a function of the fiber aspect ratio, volume fraction and general shear rate are delineated. Simultaneously, the high-resolution 3D X-ray computed tomography system XVA-160α was used to observe fiber distribution of short-glass-fiber-reinforced polyamide specimens using different cavitymore » geometries. The fiber orientation tensor components are then calculated. Experimental orientation measurements of short-glass-fiber-reinforced polyamide is used to check the ability of present theory for predicting orientation. The experiments and predictions show a quantitative agreement and confirm the basic understanding of fiber orientation in injection-molded composites.« less
Development and Design of Binder Systems for Titanium Metal Injection Molding: An Overview
NASA Astrophysics Data System (ADS)
Wen, Guian; Cao, Peng; Gabbitas, Brian; Zhang, Deliang; Edmonds, Neil
2013-03-01
Titanium metal injection molding (Ti-MIM) has been practiced since the late 1980s. Logically, the Ti-MIM practice follows the similar processes developed for the antecedent materials such as stainless steel and ceramics. Although Ti-MIM is a favorite research topic today, the issue of convincing the designers to use Ti injection-molded parts still exists. This is mainly because of the concern about contamination which seems unavoidable during the Ti-MIM process. Much information about the binder formulation, powder requirements, debinding, and sintering is available in the literature. There are several powder vendors and feedstock suppliers. However, most of the binders in the feedstock are proprietarily protected. The disclosed information on the binders used for formulating powder feedstock is very limited, which in turn discourages their adoption by engineering designers. This overview intends to discuss some of major binder systems for Ti-MIM available in the literature. It serves to provide a guideline for the Ti-MIM practitioners to choose a suitable powder feedstock.
NASA Astrophysics Data System (ADS)
Thi, Thanh Binh Nguyen; Yokoyama, Atsushi; Hamanaka, Senji; Yamashita, Katsuhisa; Nonomura, Chisato
2016-03-01
The theoretical fiber-interaction model for calculating the fiber orientation in the injection molded short fiber/thermoplastic composite parts was proposed. The proposed model included the fiber dynamics simulation in order to obtain an equation of the global interaction coefficient and accurate estimate of the fiber interacts at all orientation states. The steps to derive the equation for this coefficient in short fiber suspension as a function of the fiber aspect ratio, volume fraction and general shear rate are delineated. Simultaneously, the high-resolution 3D X-ray computed tomography system XVA-160α was used to observe fiber distribution of short-glass-fiber-reinforced polyamide specimens using different cavity geometries. The fiber orientation tensor components are then calculated. Experimental orientation measurements of short-glass-fiber-reinforced polyamide is used to check the ability of present theory for predicting orientation. The experiments and predictions show a quantitative agreement and confirm the basic understanding of fiber orientation in injection-molded composites.
NASA Astrophysics Data System (ADS)
Daldoul, Wafa; Toulorge, Thomas; Vincent, Michel
2017-10-01
The cost and quality of complex parts manufactured by thermoplastic injection is traditionally limited by design constraints on the cooling system of the mold. A possible solution is to create the mold by additive manufacturing, which makes it possible to freely design the cooling channels. Such molds normally contain hollow parts (alveoli) in order to decrease their cost. However, the complex geometry of the cooling channels and the alveoli makes it difficult to predict the performance of the cooling system. This work aims to compute the heat exchanges between the polymer, the mold and the cooling channels with complex geometries. An Immersed Volume approach is taken, where the different parts of the domain (i.e. the polymer, the cooling channels, the alveoli and the mold) are represented by level-sets and the thermo-mechanical properties of the materials vary smoothly at the interface between the parts. The energy and momentum equations are solved by a stabilized Finite Element method. In order to accurately resolve the large variations of material properties and the steep temperature gradients at interfaces, state-of-the art anisotropic mesh refinement techniques are employed. The filling stage of the process is neglected. In a first step, only the heat equation is solved, so that the packing stage is also disregarded. In a second step, thermo-mechanical effects occurring in the polymer during the packing stage are taken into account, which results in the injection of an additional amount of polymer that significantly influences the temperature evolution. The method is validated on the simple geometry of a center-gated disk and compared with experimental measurements. The agreement is very good. Simulations are performed on an industrial case which illustrates the ability of the method to deal with complex geometries.
Low-cost conformable storage to maximize vehicle range
DOE Office of Scientific and Technical Information (OSTI.GOV)
Graham, R.P.
Liquefied petroleum gas (LPG) and compressed natural gas (CNG) are currently the leading fuel contenders for converting vehicles from gasoline and diesel to alternative fuels. Two factors that inhibit conversion are additional vehicle costs and reduced range compared to gasoline. In overcoming these barriers, a key element of the alternative fuel system becomes the storage tank for these pressurized fuels. Using cylindrical pressure vessels is the conventional approach, but they do not package well in the available vehicle volume. Thiokol Corporation has developed and is now producing a conformable (non-cylindrical) aluminum storage system for LPG vans. This system increases fuelmore » storage in a given rectangular envelope. The goal of this project was to develop the technology for a lower cost conformable tank made of injection-molded plastic. Much of the cost of the aluminum conformable tank is in the fabrication because several weld seams are required. The injection-molding process has the potential to greatly reduce the fabrication costs. The requirements of a pressurized fuel tank on a vehicle necessitate the proper combination of material properties. Material selection and tank design must be optimized for maximum internal volume and minimum material use to be competitive with other technologies. The material and the design must also facilitate the injection-molding process. Prototype tanks must be fabricated to reveal molding problems, prove solutions, and measure results. In production, efficient fabrication will be key to making these tanks cost competitive. The work accomplished during this project has demonstrated that conformable LPG tanks can be molded with thermoplastics. However, to achieve a competitive tank, improvements are needed in the effective material strength. If these improvements can be made, molded plastics should produce a lower cost tank that can store more LPG on a vehicle than conventional cylinders.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nguyen, Ba Nghiep; Jin, Xiaoshi; Wang, Jin
2010-02-23
This report describes the work conducted under the Cooperative Research and Development Agreement (CRADA) (Nr. 260) between the Pacific Northwest National Laboratory (PNNL) and Autodesk, Inc. to develop and implement process models for injection-molded long-fiber thermoplastics (LFTs) in processing software packages. The structure of this report is organized as follows. After the Introduction Section (Section 1), Section 2 summarizes the current fiber orientation models developed for injection-molded short-fiber thermoplastics (SFTs). Section 3 provides an assessment of these models to determine their capabilities and limitations, and the developments needed for injection-molded LFTs. Section 4 then focuses on the development of amore » new fiber orientation model for LFTs. This model is termed the anisotropic rotary diffusion - reduced strain closure (ARD-RSC) model as it explores the concept of anisotropic rotary diffusion to capture the fiber-fiber interaction in long-fiber suspensions and uses the reduced strain closure method of Wang et al. to slow down the orientation kinetics in concentrated suspensions. In contrast to fiber orientation modeling, before this project, no standard model was developed to predict the fiber length distribution in molded fiber composites. Section 5 is therefore devoted to the development of a fiber length attrition model in the mold. Sections 6 and 7 address the implementations of the models in AMI, and the conclusions drawn from this work is presented in Section 8.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumar, A.; Ghoshdastidar, P.S.
1999-07-01
In this paper, numerical simulation of injection mold-filling during the production of a cylindrical object under isothermal and non-isothermal conditions is presented. The material of the object is low density polyethylene (LDPE) following power-law viscosity model for non-zero shear rate zone. However, where shear rate becomes zero, zero-shear viscosity value has been used. Three cases have been considered, namely (1) Isothermal filling at constant injection pressure, (2) Isothermal filling at constant flow rate, and (3) Non-isothermal filling at constant flow rate. For the case-(3), the viscosity of LDPE is also a function of temperature. The material of the mold ismore » steel. For the non-isothermal filling, the concept of melt-mold thermal contact resistance coefficient has been incorporated in the model. The length and diameter of the body in all three cases have been taken as 0.254 m and 0.00508 m respectively. The finite-difference method has been used to solve the governing differential equations for the processes. The results show excellent agreement with the corresponding equations for the processes. The results show excellent agreement with the corresponding analytical solutions for the first two cases showing the correctness of the numerical method. The simulation results for non-isothermal filling show physically realistic trends and lend insight into various important aspects of mold-filling including frozen skin layer.« less
NASA Astrophysics Data System (ADS)
Ries, S.; Spoerrer, A.; Altstaedt, V.
2014-05-01
Polymer foams play an important role caused by the steadily increasing demand to light weight design. In case of soft polymers, like thermoplastic elastomers (TPE), the haptic feeling of the surface is affected by the inner foam structure. Foam injection molding of TPEs leads to so called structural foam, consisting of two compact skin layers and a cellular core. The properties of soft structural foams like soft-touch, elastic and plastic behavior are affected by the resulting foam structure, e.g. thickness of the compact skins and the foam core or density. This inner structure can considerably be influenced by different processing parameters and the chosen blowing agent. This paper is focused on the selection and characterization of suitable blowing agents for foam injection molding of a TPE-blend. The aim was a high density reduction and a decent inner structure. Therefore DSC and TGA measurements were performed on different blowing agents to find out which one is appropriate for the used TPE. Moreover a new analyzing method for the description of processing characteristics by temperature dependent expansion measurements was developed. After choosing suitable blowing agents structural foams were molded with different types of blowing agents and combinations and with the breathing mold technology in order to get lower densities. The foam structure was analyzed to show the influence of the different blowing agents and combinations. Finally compression tests were performed to estimate the influence of the used blowing agent and the density reduction on the compression modulus.
1997-10-01
This king-size copper disk, manufactured at the Space Optics Manufacturing and Technology Center (SOMTC) at the Marshall Space Flight Center (MSFC), is a special mold for making high resolution monitor screens. This master mold will be used to make several other molds, each capable of forming hundreds of screens that have a type of lens called a Fresnel lens. Weighing much less than conventional optics, Fresnel lenses have multiple concentric grooves, each formed to a precise angle, that together create the curvature needed to focus and project images. MSFC leads NASA's space optics manufacturing technology development as a technology leader for diamond turning. The machine used to manufacture this mold is among many one-of-a-kind pieces of equipment of MSFC's SOMTC.
ERIC Educational Resources Information Center
Texas State Technical Coll. System, Waco.
This package consists of a course syllabi, an instructor's handbook, and a student laboratory manual for a 2-year vocational training program to prepare students for entry-level employment as mold makers. The program was developed through a modification of the DACUM (Developing a Curriculum) technique. The course syllabi volume begins with the…
NASA Astrophysics Data System (ADS)
Bazhin, V. Yu; Danilov, I. V.; Petrov, P. A.
2018-05-01
During the casting of light alloys and ligatures based on aluminum and magnesium, problems of the qualitative distribution of the metal and its crystallization in the mold arise. To monitor the defects of molds on the casting conveyor, a camera with a resolution of 780 x 580 pixels and a shooting rate of 75 frames per second was selected. Images of molds from casting machines were used as input data for neural network algorithm. On the preparation of a digital database and its analytical evaluation stage, the architecture of the convolutional neural network was chosen for the algorithm. The information flow from the local controller is transferred to the OPC server and then to the SCADA system of foundry. After the training, accuracy of neural network defect recognition was about 95.1% on a validation split. After the training, weight coefficients of the neural network were used on testing split and algorithm had identical accuracy with validation images. The proposed technical solutions make it possible to increase the efficiency of the automated process control system in the foundry by expanding the digital database.
Ion channel recordings on an injection-molded polymer chip.
Tanzi, Simone; Matteucci, Marco; Christiansen, Thomas Lehrmann; Friis, Søren; Christensen, Mette Thylstrup; Garnaes, Joergen; Wilson, Sandra; Kutchinsky, Jonatan; Taboryski, Rafael
2013-12-21
In this paper, we demonstrate recordings of the ion channel activity across the cell membrane in a biological cell by employing the so-called patch clamping technique on an injection-molded polymer microfluidic device. The findings will allow direct recordings of ion channel activity to be made using the cheapest materials and production platform to date and with the potential for very high throughput. The employment of cornered apertures for cell capture allowed the fabrication of devices without through holes and via a scheme comprising master origination by dry etching in a silicon substrate, electroplating in nickel and injection molding of the final part. The most critical device parameters were identified as the length of the patching capillary and the very low surface roughness on the inside of the capillary. The cross-sectional shape of the orifice was found to be less critical, as both rectangular and semicircular profiles seemed to have almost the same ability to form tight seals with cells with negligible leak currents. The devices were functionally tested using human embryonic kidney cells expressing voltage-gated sodium channels (Nav1.7) and benchmarked against a commercial state-of-the-art system for automated ion channel recordings. These experiments considered current-voltage (IV) relationships for activation and inactivation of the Nav1.7 channels and their sensitivity to a local anesthetic, lidocaine. Both IVs and lidocaine dose-response curves obtained from the injection-molded polymer device were in good agreement with data obtained from the commercial system.
Kobayashi, Masanori; Oka, Masanori
2004-01-01
We have developed a hip hemi-arthroplasty using polyvinyl alcohol-hydrogel (PVA-H) as the treatment for hip joint disorders in which the lesion is limited to the joint surface. In previous studies, we characterized the biocompatibility and the mechanical properties of PVA-H as an arthroplasty material. To fix PVA-H firmly to the bone, we have devised an implant composed of PVA-H and porous titanium fiber mesh (TFM). However, because of poor infiltration of the PVA solution into the pores of the TFM when using the low temperature crystallization method, the strength of the PVA-H-TFM interface was insufficient. Consequently, the infiltration method was improved by adopting high-pressure injection molding. With this improved method, the bonding strength of the interface increased remarkably. However, as this injection molding requires high temperature, various mechanical properties of the PVA-H might change with this treatment in comparison with the previous method. The purpose of this study was to investigate the effect of high temperature treatment on the mechanical properties of PVA-H as artificial articular cartilage, the tensile test and friction test were performed about new PVA-H. The results showed no significant mechanical deterioration of the PVA-H. This certified that the injection-molding method did not induce the change of the mechanical properties of PVA-H and indicated the potential of hemi-arthroplasty using PVA-H by this method in the future.
Quality Control of Injection Molded Eyewear by Non-Contact Deflectometry
NASA Astrophysics Data System (ADS)
Speck, A.; Zelzer, B.; Langenbucher, A.; Eppig, T.
2014-07-01
Occupational eye wear such as safety spectacles are manufactured by injection molding techniques. Testing of the assembled safety spectacle lenses in transmission is state of the art, but there is a lack of surface measurement systems for occupational safety lenses. The purpose of this work was to validate a deflectometric setup for topography measurement, detection of defects and visualization of the polishing quality, e.g. casting indentations or impressions, for the production process of safety spectacles. The setup is based on a customized stereo phase measuring deflectometer (PMD), equipped with 3 cameras with f'1,2 = 16 mm and f'3 = 8.5 mm and a specified measurement uncertainty of ± 3 μm. Sixteen plastic lenses and 8 corresponding injection molds from 4 parallel cavities were used for validation of the deflectometer. For comparison an interferometric method and a reference standard (< λ/10 super polished) was used. The accuracy and bias with a spherical safety spectacle sample was below 1 μm, according to DIN ISO 5725-2.2002-12. The repeatability was 2.1 μm and 35.7 μm for a blind radius fit. In conclusion, the PMD technique is an appropriate tool for characterizing occupational safety spectacle and injections mold surfaces. With the presented setup we were able to quantify the surface quality. This can be useful and may optimize the quality of the end product, in addition to standardized measuring systems in transmission.
Anisotropic mechanical behavior of an injection molded short fiber reinforced thermoplastic
NASA Astrophysics Data System (ADS)
Lopez, Delphine; Thuillier, Sandrine; Bessières, Nicolas; Grohens, Yves
2016-10-01
A short fiber reinforced thermoplastic was injected into a rectangular mold, in order to prepare samples to characterize the mechanical behavior of the material. The injection process was simulated with Moldflow and a cutting pattern was deduced from the predicted fiber orientation, leading to samples with several well-defined orientations with respect to the injection direction. Monotonic tensile tests up to rupture, as well as complex cycles made of loading steps followed by relaxation steps at different strain levels were performed, in order to check the reproducibility for a given orientation. Moreover, the fiber orientation in the central part of the tensile samples was also analyzed with X-ray tomography. The results show that the mechanical behavior for each orientation (among 6) was rather reproducible, thus validating the cutting pattern.
NASA Astrophysics Data System (ADS)
Ayad, G.; Song, J.; Barriere, T.; Liu, B.; Gelin, J. C.
2007-05-01
The paper is concerned with optimization and parametric identification of Powder Injection Molding process that consists first in injection of powder mixture with polymer binder and then to the sintering of the resulting powders parts by solid state diffusion. In the first part, one describes an original methodology to optimize the injection stage based on the combination of Design Of Experiments and an adaptive Response Surface Modeling. Then the second part of the paper describes the identification strategy that one proposes for the sintering stage, using the identification of sintering parameters from dilatometer curves followed by the optimization of the sintering process. The proposed approaches are applied to the optimization for manufacturing of a ceramic femoral implant. One demonstrates that the proposed approach give satisfactory results.
In-line characterization of nanostructured mass-produced polymer components using scatterometry
NASA Astrophysics Data System (ADS)
Skovlund Madsen, Jonas; Højlund Thamdrup, Lasse; Czolkos, Ilja; Hansen, Poul Erik; Johansson, Alicia; Garnaes, Jørgen; Nygård, Jesper; Hannibal Madsen, Morten
2017-08-01
Scatterometry is used as an in-line metrology solution for injection molded nanostructures to evaluate the pattern replication fidelity. The method is used to give direct feedback to an operator when testing new molding parameters and for continuous quality control. A compact scatterometer has been built and tested at a fabrication facility. The scatterometry measurements, including data analysis and handling of the samples, are much faster than the injection molding cycle time, and thus, characterization does not slow down the production rate. Fabrication and characterization of 160 plastic parts with line gratings are presented here, and the optimal molding temperatures for replication of nanostructures are found for two polymers. Scatterometry results are compared to state of the art metrology solutions: atomic force and scanning electron microscopy. It is demonstrated that the scatterometer can determine the structural parameters of the samples with an accuracy of a few nanometers in less than a second, thereby enabling in-line characterization.
Modeling of short fiber reinforced injection moulded composite
NASA Astrophysics Data System (ADS)
Kulkarni, A.; Aswini, N.; Dandekar, C. R.; Makhe, S.
2012-09-01
A micromechanics based finite element model (FEM) is developed to facilitate the design of a new production quality fiber reinforced plastic injection molded part. The composite part under study is composed of a polyetheretherketone (PEEK) matrix reinforced with 30% by volume fraction of short carbon fibers. The constitutive material models are obtained by using micromechanics based homogenization theories. The analysis is carried out by successfully coupling two commercial codes, Moldflow and ANSYS. Moldflow software is used to predict the fiber orientation by considering the flow kinetics and molding parameters. Material models are inputted into the commercial software ANSYS as per the predicted fiber orientation and the structural analysis is carried out. Thus in the present approach a coupling between two commercial codes namely Moldflow and ANSYS has been established to enable the analysis of the short fiber reinforced injection moulded composite parts. The load-deflection curve is obtained based on three constitutive material model namely an isotropy, transversely isotropy and orthotropy. Average values of the predicted quantities are compared to experimental results, obtaining a good correlation. In this manner, the coupled Moldflow-ANSYS model successfully predicts the load deflection curve of a composite injection molded part.
Aslanimehr, Masoomeh; Rezvani, Shirin; Mahmoudi, Ali; Moosavi, Najmeh
2017-01-01
Statement of the Problem: Candida species are believed to play an important role in initiation and progression of denture stomatitis. The type of the denture material also influences the adhesion of candida and development of stomatitis. Purpose: The aim of this study was comparing the adherence of candida albicans to the conventional and injection molding acrylic denture base materials. Materials and Method: Twenty injection molding and 20 conventional pressure pack acrylic discs (10×10×2 mm) were prepared according to their manufacturer’s instructions. Immediately before the study, samples were placed in sterile water for 3 days to remove residual monomers. The samples were then sterilized using an ultraviolet light unit for 10 minutes. 1×108 Cfu/ml suspension of candida albicans ATCC-10231 was prepared from 48 h cultured organism on sabouraud dextrose agar plates incubated at 37oC. 100 μL of this suspension was placed on the surface of each disk. After being incubated at 37oC for 1 hour, the samples were washed with normal saline to remove non-adherent cells. Attached cells were counted using the colony count method after shaking at 3000 rmp for 20 seconds. Finally, each group was tested for 108 times and the data were statistically analyzed by t-test. Results: Quantitative analysis revealed that differences in colony count average of candida albicans adherence to conventional acrylic materials (8.3×103) comparing to injection molding acrylic resins (6×103) were statistically significant (p<0.001). Conclusion: Significant reduction of candida albicans adherence to the injection acrylic resin materials makes them valuable for patients with high risk of denture stomatitis. PMID:28280761
Aslanimehr, Masoomeh; Rezvani, Shirin; Mahmoudi, Ali; Moosavi, Najmeh
2017-03-01
Candida species are believed to play an important role in initiation and progression of denture stomatitis. The type of the denture material also influences the adhesion of candida and development of stomatitis. The aim of this study was comparing the adherence of candida albicans to the conventional and injection molding acrylic denture base materials. Twenty injection molding and 20 conventional pressure pack acrylic discs (10×10×2 mm) were prepared according to their manufacturer's instructions. Immediately before the study, samples were placed in sterile water for 3 days to remove residual monomers. The samples were then sterilized using an ultraviolet light unit for 10 minutes. 1×10 8 Cfu/ml suspension of candida albicans ATCC-10231 was prepared from 48 h cultured organism on sabouraud dextrose agar plates incubated at 37oC. 100 μL of this suspension was placed on the surface of each disk. After being incubated at 37oC for 1 hour, the samples were washed with normal saline to remove non-adherent cells. Attached cells were counted using the colony count method after shaking at 3000 rmp for 20 seconds. Finally, each group was tested for 108 times and the data were statistically analyzed by t-test. Quantitative analysis revealed that differences in colony count average of candida albicans adherence to conventional acrylic materials (8.3×10 3 ) comparing to injection molding acrylic resins (6×10 3 ) were statistically significant ( p <0.001). Significant reduction of candida albicans adherence to the injection acrylic resin materials makes them valuable for patients with high risk of denture stomatitis.
Determination of Machining Parameters of Corn Byproduct Filled Plastics
USDA-ARS?s Scientific Manuscript database
In a collaborative project between the USDA and Northern Illinois University, the use of ethanol corn processing by-products as bio-filler materials in the compression molding of phenolic plastics has been studied. This paper reports on the results of a machinability study in the milling of various ...
Determining Machining Parameters of Corn Byproduct Filled Plastics
USDA-ARS?s Scientific Manuscript database
In a collaborative project between the USDA and Northern Illinois University, the use of corn ethanol processing byproducts (i.e., DDGS) as bio-filler materials in the compression molding of phenolic plastics has been studied. This paper reports on the results of a machinability study in the milling...
Battiste, Richard L
2013-12-31
Methods and apparatus are described for characterizing the temporal-spatial properties of a dynamic fluid front within a mold space while the mold space is being filled with fluid. A method includes providing a mold defining a mold space and having one or more openings into the mold space; heating a plurality of temperature sensors that extend into the mold space; injecting a fluid into th emold space through the openings, the fluid experiencing a dynamic fluid front while filling the mold space with a fluid; and characterizing temporal-spatial properties of the dynamic fluid front by monitoring a termperature of each of the plurality of heated temperature sensors while the mold space is being filled with the fluid. An apparatus includes a mold defining a mold space; one or more openings for introducing a fluid into th emold space and filling the mold space with the fluid, the fluid experiencing a dynamic fluid front while filling the mold space; a plurality of heated temperature sensors extending into the mold space; and a computer coupled to the plurality of heated temperature sensors for characterizing the temporal-spatial properties of the dynamic fluid front.
Preparation and Characterization of PETI-330/Multiwalled Carbon Nanotube
NASA Technical Reports Server (NTRS)
Ghose, Sayata; Watson, Kent A.; Working, Dennis C.; Criss, Jim M.; Siochi, Emilie J.; Connell, John W.
2005-01-01
As part of an ongoing effort to incorporate multifunctionality into advanced composites, blends of PETI-330 and multi-walled carbon nanotubes (MWCNTs) were prepared, characterized and fabricated into moldings. The PETI-330/MWCNT mixtures were prepared at concentrations ranging from 3 to 25 weight percent by dry mixing the components in a ball mill. The resulting powders were characterized for degree of mixing, thermal and rheological properties. Based on the characterization results, PETI-330/MWCNT samples were scaled up to 300 g and used to fabricate moldings 10.2 cm x 15.2 cm x 0.32 cm thick. The moldings were made by injecting the mixtures at 260-280 C into an Invar tool followed by curing for 1 h at 371 C. The tool was designed to impart shear during the injection process in an attempt to achieve some alignment of the MWCNTs in the flow direction. Good quality moldings were obtained that were subsequently characterized for thermal, mechanical and electrical properties. The degree of dispersion and alignment of the MWCNTs were investigated using high-resolution scanning electron microscopy. The preparation and preliminary characterization of PETI-330/MWCNT composites will be discussed. Keywords: phenylethynyl terminated imides, high temperature polymers, nanocomposites, moldings
Factors that affect micro-tooling features created by direct printing approach
NASA Astrophysics Data System (ADS)
Kumbhani, Mayur N.
Current market required faster pace production of smaller, better, and improved products in shorter amount of time. Traditional high-rate manufacturing process such as hot embossing, injection molding, compression molding, etc. use tooling to replicate feature on a products. Miniaturization of many product in the field of biomedical, electronics, optical, and microfluidic is occurring on a daily bases. There is a constant need to produce cheaper, and faster tooling, which can be utilize by existing manufacturing processes. Traditionally, in order to manufacture micron size tooling features processes such as micro-machining, Electrical Discharge Machining (EDM), etc. are utilized. Due to a higher difficulty to produce smaller size features, and longer production cycle time, various additive manufacturing approaches are proposed, e.g. selective laser sintering (SLS), inkjet printing (3DP), fused deposition modeling (FDM), etc. were proposed. Most of these approaches can produce net shaped products from different materials such as metal, ceramic, or polymers. Several attempts were made to produce tooling features using additive manufacturing approaches. Most of these produced tooling were not cost effective, and the life cycle of these tooling was reported short. In this research, a method to produce tooling features using direct printing approach, where highly filled feedstock was dispensed on a substrate. This research evaluated different natural binders, such as guar gum, xanthan gum, and sodium carboxymethyl cellulose (NaCMC) and their combinations were evaluated. The best binder combination was then use to evaluate effect of different metal (316L stainless steel (3 mum), 316 stainless steel (45 mum), and 304 stainless steel (45 mum)) particle size on feature quality. Finally, the effect of direct printing process variables such as dispensing tip internal diameter (500 mum, and 333 mum) at different printing speeds were evaluated.
Precision Casting via Advanced Simulation and Manufacturing
NASA Technical Reports Server (NTRS)
1997-01-01
A two-year program was conducted to develop and commercially implement selected casting manufacturing technologies to enable significant reductions in the costs of castings, increase the complexity and dimensional accuracy of castings, and reduce the development times for delivery of high quality castings. The industry-led R&D project was cost shared with NASA's Aerospace Industry Technology Program (AITP). The Rocketdyne Division of Boeing North American, Inc. served as the team lead with participation from Lockheed Martin, Ford Motor Company, Howmet Corporation, PCC Airfoils, General Electric, UES, Inc., University of Alabama, Auburn University, Robinson, Inc., Aracor, and NASA-LeRC. The technical effort was organized into four distinct tasks. The accomplishments reported herein. Task 1.0 developed advanced simulation technology for core molding. Ford headed up this task. On this program, a specialized core machine was designed and built. Task 2.0 focused on intelligent process control for precision core molding. Howmet led this effort. The primary focus of these experimental efforts was to characterize the process parameters that have a strong impact on dimensional control issues of injection molded cores during their fabrication. Task 3.0 developed and applied rapid prototyping to produce near net shape castings. Rocketdyne was responsible for this task. CAD files were generated using reverse engineering, rapid prototype patterns were fabricated using SLS and SLA, and castings produced and evaluated. Task 4.0 was aimed at developing technology transfer. Rocketdyne coordinated this task. Casting related technology, explored and evaluated in the first three tasks of this program, was implemented into manufacturing processes.
Design and fabrication of a multi-focusing artificial compound eyes with negative meniscus substrate
NASA Astrophysics Data System (ADS)
Luo, Jiasai; Guo, Yongcai; Wang, Xin; Fan, Fenglian
2017-04-01
Miniaturized artificial compound eyes with a large field of view (FOV) have potential application in the area of micro-optical-electro-mechanical-system (MOEMS). A new non-uniform microlens array (MLA) on a negative meniscus substrate, fabricated by the melting photoresist method, was proposed in this paper. The multi-focusing MLA reduced the defocus effectively, which was caused by the uniform array on a spherical substrate. Moreover, like most ommatidia in compound eyes, each microlens of the multi-focusing MLA was arranged in one of the eleven concentric circles. In order to match with the multi-focusing MLA and avoid the total reflection, the negative meniscus substrate was fabricated by a homebuilt mold with a micro-hole array and polydimethylsiloxane coelomic compartment attached. The coelomic compartment is capable of offering an excellent injection environment without bubbles and impurities. Due to the direct 3D implementation of the MLA, rich available materials can be used by this method without substrate reshaping. As the molding material, the ultraviolet curing adhesive NOA81 can be cured within ten few seconds under ultraviolet which relieve intensive labor and protect the stereolithography apparatus effectively. The experimental results show that this new MLA has a better imaging performance, higher light usage efficiency and larger FOV because of the negative meniscus and multi-focusing MLA. Moreover, due to the homebuilt mold, more accurate geometrical parameters and shorter processing cycle were realized. Accordingly, together with an appropriate hardware, this MLA has diverse potential applications in medical imaging, military and machine vision.
NASA Technical Reports Server (NTRS)
Bharwani, S. S.; Walls, J. T.; Jackson, M. E.
1987-01-01
A knowledge based system to assist process engineers in evaluating the processability and moldability of poly-isocyanurate (PIR) formulations for the thermal protection system of the Space Shuttle external tank (ET) is discussed. The Reaction Injection Molding- Process Development Advisor (RIM-PDA) is a coupled system which takes advantage of both symbolic and numeric processing techniques. This system will aid the process engineer in identifying a startup set of mold schedules and in refining the mold schedules to remedy specific process problems diagnosed by the system.
Thermodynamic analysis of resources used in manufacturing processes.
Gutowski, Timothy G; Branham, Matthew S; Dahmus, Jeffrey B; Jones, Alissa J; Thiriez, Alexandre
2009-03-01
In this study we use a thermodynamic framework to characterize the material and energy resources used in manufacturing processes. The analysis and data span a wide range of processes from "conventional" processes such as machining, casting, and injection molding, to the so-called "advanced machining" processes such as electrical discharge machining and abrasive waterjet machining, and to the vapor-phase processes used in semiconductor and nanomaterials fabrication. In all, 20 processes are analyzed. The results show that the intensity of materials and energy used per unit of mass of material processed (measured either as specific energy or exergy) has increased by at least 6 orders of magnitude over the past several decades. The increase of material/energy intensity use has been primarily a consequence of the introduction of new manufacturing processes, rather than changes in traditional technologies. This phenomenon has been driven by the desire for precise small-scale devices and product features and enabled by stable and declining material and energy prices over this period. We illustrate the relevance of thermodynamics (including exergy analysis) for all processes in spite of the fact that long-lasting focus in manufacturing has been on product quality--not necessarily energy/material conversion efficiency. We promote the use of thermodynamics tools for analysis of manufacturing processes within the context of rapidly increasing relevance of sustainable human enterprises. We confirm that exergy analysis can be used to identify where resources are lost in these processes, which is the first step in proposing and/or redesigning new more efficient processes.
Shaping-lathe headrig yields solid and molded-flake hardwood products.
P. Koch; R.A. Caughey
1978-01-01
A shaping-lathe headrig, operated one shift daily, can be used to manufacture hardwood cants to be resawed into pallet shook, one-piece and dowel-laminated crossties, posts and rail, and other solid wood products in lengths from 6 to 9 feet. Residual flakes machined by the headrig supply a three-shift operation in which molded pallets and 4- by 8-foot sheets of...
shaping-lathe headrig yields solid and molded-flake hardwood products
Peter Koch; R.A. Caughey
1978-01-01
A shaping-lathe headrig, operated one shift daily, can be used to manufacture hardwood cants to be resawed into pallet shook, one-piece and dowel-laminated crossties, posts and rails, and other solid wood products in lengths from 6 to 9 feet. Residual flakes machined by the headrig supply a three-shift operation in which molded pallets and 4- by 8-foot sheets of...
BRASS FOUNDRY ROOM SHOWING GATE CUTTERS USED TO REMOVE RUNNERS ...
BRASS FOUNDRY ROOM SHOWING GATE CUTTERS USED TO REMOVE RUNNERS AND SPRUES FROM BRONZE CASTINGS TOO SOFT TO BE CLEANED IN TUMBLING MILLS. ALSO SHOWN ARE MOLD MACHINES AND THE SAND DELIVERY SYSTEM USED TO CREATE GREEN SAND MOLDS, POURED AT THE OTHER END OF THE GRAVITY CONVEYORS. - Stockham Pipe & Fittings Company, Brass Foundry, 4000 Tenth Avenue North, Birmingham, Jefferson County, AL
Engineering specification and system design for CAD/CAM of custom shoes: UMC project effort
NASA Technical Reports Server (NTRS)
Bao, Han P.
1990-01-01
Further experimentations were made to improve the design and fabrication techniques of the integrated sole. The sole design is shown to be related to the foot position requirements and the actual shape of the foot including presence of neurotropic ulcers or other infections. Factors for consideration were: heel pitch, balance line, and rigidity conditions of the foot. Machining considerations were also part of the design problem. Among these considerations, widths of each contour, tool motion, tool feed rate, depths of cut, and slopes of cut at the boundary were the key elements. The essential fabrication techniques evolved around the idea of machining a mold then, using quick-firm latex material, casting the sole through the mold. Two main mold materials were experimented with: plaster and wood. Plaster was very easy to machine and shape but could barely support the pressure in the hydraulic press required by the casting process. Wood was found to be quite effective in terms of relative cost, strength, and surface smoothness except for the problem of cutting against the fibers which could generate ragged surfaces. The programming efforts to convert the original dBase programs into C programs so that they could be executed on the SUN Computer at North Carolina State University are discussed.
Structure/property development in aPET during large strain, solid phase polymer processing
NASA Astrophysics Data System (ADS)
Martin, Peter; Mohamed, Raja Roslan Raja
2015-12-01
Amorphous Polyethylene terephthalate (aPET) is increasingly of interest for the polymer packaging industry due to its blend of excellent mechanical properties and most importantly its ease of recyclability. Among the major commercial polymers it is almost unique in the degree of improvement in mechanical properties that can be obtained through process-induced strain. For many years these unique properties have been very successfully exploited in the injection stretch blow molding process, where it is deliberately stretched to very large strains using extremely high pressures. However, the material is now also being used in much lower pressure processes such as thermoforming where its properties are often not fully exploited. In this work the change in structure and properties of aPET with strain is systematically investigated using a high speed biaxial stretching machine. The aim was to demonstrate how the properties of the material could be controlled by large strain, high temperature biaxial stretching processes such as thermoforming and blow molding. The results show that property changes in the material are driven by orientation and the onset of rapid strain hardening at large strains. This in turn is shown to vary strongly with process-induced parameters such as the strain rate and the mode and magnitude of biaxial deformation.
40 CFR Table 8 to Subpart Wwww of... - Initial Compliance With Organic HAP Emissions Limits
Code of Federal Regulations, 2011 CFR
2011-07-01
... organic HAP emissions limit . . . You have demonstrated initial complianceif . . . 1. open molding and... contents. 2. open molding centrifugal casting, continuous lamination/casting, SMC and BMC manufacturing... die injection, and/or wet-area enclosures that meet the criteria of § 63.5830. 6. pultrusion...
40 CFR Table 4 to Subpart Wwww of... - Work Practice Standards
Code of Federal Regulations, 2010 CFR
2010-07-01
.... a new or existing closed molding operation using compression/injection molding uncover, unwrap or... new or existing cleaning operation not use cleaning solvents that contain HAP, except that styrene may... contacts resin. 3. a new or existing materials HAP-containing materials storage operation keep containers...
NASA Astrophysics Data System (ADS)
Mertus, Lou; Symmons, Alan
2012-10-01
In recent years, the trend within the molded optics community has been an overall advancement in the capability to diamond grind molds using a variety of grinding techniques. Improvements in grinding equipment, materials and tooling have enabled higher quality ceramic and carbide molds and thereby lenses. Diamond turned molds from ductile metals are still used prevalently throughout the molding industry. Each technology presents a unique set of advantages and disadvantages whether used for precision injection molding of plastic optics or precision glass molding. This paper reviews the manufacturing techniques for each approach and applicable molding process. The advantages and disadvantages of each are compared and analyzed. The subtle differences that exist in optics molded from each technique and the impact they have on the performance in various applications is reviewed. Differences stemming from tooling material properties, material-specific minor defects, as well as cutting and grinding process-induced artifacts are described in detail as well as their influence on the roughness, waviness, and form errors present on the molded surface. A comparison with results between similar surfaces for both diamond grinding and diamond turning is presented.
ERIC Educational Resources Information Center
Texas State Technical Coll., Waco.
This document is intended to help education and training institutions deliver the Machine Tool Advanced Skills Technology (MAST) curriculum to a variety of individuals and organizations. MAST consists of industry-specific skill standards and model curricula for 15 occupational speciality areas within the U.S. machine tool and metals-related…
Copper Disk Manufactured at the Space Optics Manufacturing and Technology Center
NASA Technical Reports Server (NTRS)
1997-01-01
This king-size copper disk, manufactured at the Space Optics Manufacturing and Technology Center (SOMTC) at the Marshall Space Flight Center (MSFC), is a special mold for making high resolution monitor screens. This master mold will be used to make several other molds, each capable of forming hundreds of screens that have a type of lens called a Fresnel lens. Weighing much less than conventional optics, Fresnel lenses have multiple concentric grooves, each formed to a precise angle, that together create the curvature needed to focus and project images. MSFC leads NASA's space optics manufacturing technology development as a technology leader for diamond turning. The machine used to manufacture this mold is among many one-of-a-kind pieces of equipment of MSFC's SOMTC.
Foam injection molding of elastomers with iron microparticles
NASA Astrophysics Data System (ADS)
Volpe, Valentina; D'Auria, Marco; Sorrentino, Luigi; Davino, Daniele; Pantani, Roberto
2015-12-01
In this work, a preliminary study of foam injection molding of a thermoplastic elastomer, Engage 8445, and its microcomposite loaded with iron particles was carried out, in order to evaluate the effect of the iron microparticles on the foaming process. In particular, reinforced samples have been prepared by using nanoparticles at 2% by volume. Nitrogen has been used as physical blowing agent. Foamed specimens consisting of neat and filled elastomer were characterized by density measurements and morphological analysis. While neat Engage has shown a well developed cellular morphology far from the injection point, the addition of iron microparticles considerably increased the homogeneity of the cellular morphology. Engage/iron foamed samples exhibited a reduction in density greater than 32%, with a good and homogeneous cellular morphology, both in the transition and in the core zones, starting from small distances from the injection point.
Optimal Design of Material and Process Parameters in Powder Injection Molding
NASA Astrophysics Data System (ADS)
Ayad, G.; Barriere, T.; Gelin, J. C.; Song, J.; Liu, B.
2007-04-01
The paper is concerned with optimization and parametric identification for the different stages in Powder Injection Molding process that consists first in injection of powder mixture with polymer binder and then to the sintering of the resulting powders part by solid state diffusion. In the first part, one describes an original methodology to optimize the process and geometry parameters in injection stage based on the combination of design of experiments and an adaptive Response Surface Modeling. Then the second part of the paper describes the identification strategy that one proposes for the sintering stage, using the identification of sintering parameters from dilatometeric curves followed by the optimization of the sintering process. The proposed approaches are applied to the optimization of material and process parameters for manufacturing a ceramic femoral implant. One demonstrates that the proposed approach give satisfactory results.
Desai, Parind M; Hogan, Rachael C; Brancazio, David; Puri, Vibha; Jensen, Keith D; Chun, Jung-Hoon; Myerson, Allan S; Trout, Bernhardt L
2017-10-05
This study provides a framework for robust tablet development using an integrated hot-melt extrusion-injection molding (IM) continuous manufacturing platform. Griseofulvin, maltodextrin, xylitol and lactose were employed as drug, carrier, plasticizer and reinforcing agent respectively. A pre-blended drug-excipient mixture was fed from a loss-in-weight feeder to a twin-screw extruder. The extrudate was subsequently injected directly into the integrated IM unit and molded into tablets. Tablets were stored in different storage conditions up to 20 weeks to monitor physical stability and were evaluated by polarized light microscopy, DSC, SEM, XRD and dissolution analysis. Optimized injection pressure provided robust tablet formulations. Tablets manufactured at low and high injection pressures exhibited the flaws of sink marks and flashing respectively. Higher solidification temperature during IM process reduced the thermal induced residual stress and prevented chipping and cracking issues. Polarized light microscopy revealed a homogeneous dispersion of crystalline griseofulvin in an amorphous matrix. DSC underpinned the effect of high tablet residual moisture on maltodextrin-xylitol phase separation that resulted in dimensional instability. Tablets with low residual moisture demonstrated long term dimensional stability. This study serves as a model for IM tablet formulations for mechanistic understanding of critical process parameters and formulation attributes required for optimal product performance. Copyright © 2017 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Özgün, Özgür, E-mail: oozgun@bingol.edu.tr; Yılmaz, Ramazan; Özkan Gülsoy, H.
In this study, the effect of aging heat treatment on fracture toughness and impact strength of Ni-625 superalloy fabricated by using powder injection molding (PIM) method was examined. After a feedstock was prepared by mixing the prealloyed Ni-625 superalloy powder, which was fabricated by gas atomisation, with a polymeric binder system and then it was granulated, it was shaped through the use of injection. The molded specimens were sintered at 1300 °C for 3 h after a two-stage debinding process. Once the sintered specimens were treated in the solution at 1150 °C for 2 h, they were quenched. Aging treatmentmore » was performed by keeping specimens at 745 °C for 22 h. Fracture toughness and impact tests were performed on sintered and aged specimens. Microstructure examinations were performed by using optical microscope, scanning electron microscope, and transmission electron microscope. The results revealed that aging heat treatment led to the formation of some carbides and intermetallic phases in the microstructure. While the hardness of the aged specimens increased due to these phases, their fracture toughness and impact strength values decreased. - Highlights: • Ni-625 superalloy components were produced by means of powder injection molding. • The produced components were subjected to aging treatment. • Aging process provided approximately 50% increase in the hardness of components. • Intermetallic precipitates, carbides and TCP phases occurred within the aged parts. • Fracture toughness and impact strength values decreased due to the hard phases.« less
Predicting shrinkage and warpage in injection molding: Towards automatized mold design
NASA Astrophysics Data System (ADS)
Zwicke, Florian; Behr, Marek; Elgeti, Stefanie
2017-10-01
It is an inevitable part of any plastics molding process that the material undergoes some shrinkage during solidification. Mainly due to unavoidable inhomogeneities in the cooling process, the overall shrinkage cannot be assumed as homogeneous in all volumetric directions. The direct consequence is warpage. The accurate prediction of such shrinkage and warpage effects has been the subject of a considerable amount of research, but it is important to note that this behavior depends greatly on the type of material that is used as well as the process details. Without limiting ourselves to any specific properties of certain materials or process designs, we aim to develop a method for the automatized design of a mold cavity that will produce correctly shaped moldings after solidification. Essentially, this can be stated as a shape optimization problem, where the cavity shape is optimized to fulfill some objective function that measures defects in the molding shape. In order to be able to develop and evaluate such a method, we first require simulation methods for the diffierent steps involved in the injection molding process that can represent the phenomena responsible for shrinkage and warpage ina sufficiently accurate manner. As a starting point, we consider the solidification of purely amorphous materials. In this case, the material slowly transitions from fluid-like to solid-like behavior as it cools down. This behavior is modeled using adjusted viscoelastic material models. Once the material has passed a certain temperature threshold during cooling, any viscous effects are neglected and the behavior is assumed to be fully elastic. Non-linear elastic laws are used to predict shrinkage and warpage that occur after this point. We will present the current state of these simulation methods and show some first approaches towards optimizing the mold cavity shape based on these methods.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nguyen, Ba Nghiep; Kunc, Vlastimil; Jin, Xiaoshi
2013-12-18
This article illustrates the predictive capabilities for long-fiber thermoplastic (LFT) composites that first simulate the injection molding of LFT structures by Autodesk® Simulation Moldflow® Insight (ASMI) to accurately predict fiber orientation and length distributions in these structures. After validating fiber orientation and length predictions against the experimental data, the predicted results are used by ASMI to compute distributions of elastic properties in the molded structures. In addition, local stress-strain responses and damage accumulation under tensile loading are predicted by an elastic-plastic damage model of EMTA-NLA, a nonlinear analysis tool implemented in ABAQUS® via user-subroutines using an incremental Eshelby-Mori-Tanaka approach. Predictedmore » stress-strain responses up to failure and damage accumulations are compared to the experimental results to validate the model.« less
Rheological study of copper and copper grapheme feedstock for powder injection molding
NASA Astrophysics Data System (ADS)
Azaman, N. Emira Binti; Rafi Raza, M.; Muhamad, N.; Niaz Akhtar, M.; Bakar Sulong, A.
2017-01-01
Heatsink is one of the solution to optimize the performance of smart electronic devices. Copper and its composites are helping the electronic industry to solve the heating problem. Copper-graphene heat sink material with enhanced thermal conductivity is the ultimate goal.Powder injection molding (PIM) has advantages of high precision and production rate, complex shape, low cost and suitabality for metal and cremics.PIM consists of four sub sequential steps; feedstock preparation, molding, debinding and sintering. Feedstock preparation is a critical step in PIM process. Any deficiency at this stage cannot be recovered at latter stages. Therefore, this research was carried out to investigate the injectability of copper and copper graphene composite using PIM. PEG based multicomponent binder system was used and the powder loading was upto 7vol.% less than the critical powder loading was used to provide the wettability of the copper powder and graphene nanoplatelets (GNps). Corpper-graphene feedstock contained 0.5vol.% of GNps . To ensure the homogeneity of GNps within feedstock a unique technique was addopted. The microscopic results showed that the feedstock is homogeneous and ready for injection. The viscosity-shear rate relationship was determined and results showed that the addition of 0.5vol.% of GNps in copper has increased the viscosity upto 64.9% at 140˚C than that of pure copper feedstock. This attribute may be due to the large surface area of GNps. On the other hand, by increasing the temperature, viscosity of the feedstock was decreased, which was recommended for PIM. The overall viscosity and share rate lies within the range recommended for PIM process. It is clear that both feedstocks showed pseudo plastic behaviour which is suitable for PIM process. In the pseudo plastic behaviour, the viscosity decreases with the shear rate. It may be due to change in the structure of the solid particles or the binder. The molding results showed that both copper feedstocks were successfully molded and free from the physical defects.
NASA Astrophysics Data System (ADS)
Ogila, K. O.; Yang, W.; Shao, M.; Tan, J.
2017-05-01
Unsaturated Polyester Resin is a versatile and cost efficient thermosetting plastic whose application in rotational molding is currently limited by its relatively high initial viscosity and heat of reaction. These material characteristics result in uneven material distribution, poor surface finish and imperfections in the moldings especially when large wall thicknesses are required. The current work attempts to remedy these shortcomings through the development of a continuous multi-shot system which adds predetermined loads of unsaturated polyester resin into a rotating mold at various intervals. As part of this system, a laboratory-scale uniaxial rotational molding machine was used to produce Unsaturated Polyester Resin moldings in single and double shots. Optimal processing conditions were determined through visual studies, three dimensional microscopic studies, thickness distribution analysis and Fourier Transform Infrared spectroscopy. Volume filling fractions of 0.049-0.065, second shot volumes of 0.5-0.75 from the first shot, rotational speeds of 15-20 rpm and temperatures of 30-50 °C resulted in moldings of suitable quality on both the inner and outer surfaces.
Wang, Hsuan-Wen; Chang, Yen-Hsiang; Lin, Chun-Li
2017-01-01
This study evaluates the fracture resistance in an endodontically treated tooth using circular fiber-reinforced composite (FRC) and innovated anatomical short glass fiber reinforced (SGFR) posts under fatigue testing, monitored using the acoustic emission (AE) technique. An anatomical SGFR fiber post with an oval shape and slot/notch design was manufactured using an injection-molding machine. Crown/core maxillary second premolar restorations were executed using the anatomical SGFR and commercial cylindrical fiber posts under fatigue test to understand the mechanical resistances. The load versus AE signals in the fracture and fatigue tests were recorded to evaluate the restored tooth failure resistance. The static fracture resistance results showed that teeth restored using the anatomical SGFR post presented higher resistance than teeth restored using the commercial FRC post. The fatigue test endurance limitation (1.2×10 6 cycles) was 207.1N for the anatomical SGFR fiber post, higher than the 185.3N found with the commercial FRC post. The average accumulated number of AE signals and corresponding micro cracks for the anatomical SGFR fiber post (153.0 hits and 2.44 cracks) were significantly lower than those for the commercial FRC post (194.7 hits and 4.78 cracks) under 40% of the static maximum resistance fatigue test load (pass 1.2×10 6 cycles). This study concluded that the anatomical SGFR fiber post with surface slot/notch design made using precise injection molding presented superior static fracture resistance and fatigue endurance limitation than those for the commercial FRC post in an endodontically treated premolar. Copyright © 2016 Elsevier Ltd. All rights reserved.
2001-05-01
This photograph shows Wes Brown, Marshall Space Flight Center's (MSFC's) lead diamond tuner, an expert in the science of using diamond-tipped tools to cut metal, inspecting the mold's physical characteristics to ensure the uniformity of its more than 6,000 grooves. This king-size copper disk, manufactured at the Space Optics Manufacturing and Technology Center (SOMTC) at MSFC, is a special mold for making high resolution monitor screens. This master mold will be used to make several other molds, each capable of forming hundreds of screens that have a type of lens called a fresnel lens. Weighing much less than conventional optics, fresnel lenses have multiple concentric grooves, each formed to a precise angle, that together create the curvature needed to focus and project images. The MSFC leads NASA's space optics manufacturing technology development as a technology leader for diamond turning. The machine used to manufacture this mold is among many one-of-a-kind pieces of equipment of MSFC's SOMTC.
Takahashi, Yutaka; Hamanaka, Ippei; Shimizu, Hiroshi
2012-07-01
This study investigated the effect of thermal shock on the mechanical properties of injection-molded thermoplastic denture base resins. Four thermoplastic resins (two polyamides, one polyethylene terephthalate, one polycarbonate) and, as a control, a conventional heat-polymerized polymethyl methacrylate (PMMA), were tested. Specimens of each denture base material were fabricated according to ISO 1567 and were either thermocycled or not thermocycled (n = 10). The flexural strength at the proportional limit (FS-PL), the elastic modulus and the Charpy impact strength of the denture base materials were estimated. Thermocycling significantly decreased the FS-PL of one of the polyamides and the PMMA and it significantly increased the FS-PL of one of the polyamides. In addition, thermocycling significantly decreased the elastic modulus of one of the polyamides and significantly increased the elastic moduli of one of the polyamides, the polyethylene terephthalate, polycarbonate and PMMA. Thermocycling significantly decreased the impact strength of one of the polyamides and the polycarbonate. The mechanical properties of injection-molded thermoplastic denture base resins changed after themocycling.
Magnesium Powder Injection Molding (MIM) of Orthopedic Implants for Biomedical Applications
NASA Astrophysics Data System (ADS)
Wolff, M.; Schaper, J. G.; Suckert, M. R.; Dahms, M.; Ebel, T.; Willumeit-Römer, R.; Klassen, T.
2016-04-01
Metal injection molding (MIM) has a high potential for the economic near-net-shape mass production of small-sized and complex-shaped parts. The motivation for launching Mg into the MIM processing chain for manufacturing biodegradable medical implants is related to its compatibility with human bone and its degradation in a non-toxic matter. It has been recognized that the load-bearing capacity of MIM Mg parts is superior to that of biodegradable polymeric components. However, the choice of appropriate polymeric binder components and alloying elements enabling defect-free injection molding and sintering is a major challenge for the use of MIM Mg parts. This study considered the full processing chain for MIM of Mg-Ca alloys to achieve ultimate tensile strength of up to 141 MPa with tensile yield strength of 73 MPa, elongation at fracture Af of 7% and a Young's modulus of 38 GPa. To achieve these mechanical properties, a thermal debinding study was performed to determine optimal furnace and atmosphere conditions, sintering temperature, heating rates, sintering time and pressure.
Solid Lubricated Rolling Element Bearings
1979-02-15
lubricant into uneven patches of varnish . This varnish , along with the file-like action of the exposed ball carbides on the relatively softer races, can...its structure. Fluorine , one of the most reactive elements, reacts with graphite without combustion from about 790’F to 1022°F, forming a grey-colored...to allow for molding and machining after molding. 0 Method 2 (Hughes) Impregnating these dense weaves with a Thermid 600 polyimide varnish
NASA Astrophysics Data System (ADS)
Nakagawa, K.; Tanaka, T.; Suzuki, T.
2015-10-01
This paper presents the fabrication of a new energy harvesting module that uses a thermoelectric device (TED) by using molding technology. Through molding technology, the TED and circuit board can be properly protected and a heat-radiating fin structure can be simultaneously constructed. The output voltage per heater temperature of the TED module at 20 °C ambient temperature is 8 mV K-1, similar to the result with the aluminum heat sink which is almost the same fin size as the TED module. The accelerated environmental tests are performed on a damp heat test, which is an aging test under high temperature and high humidity, highly accelerated temperature, and humidity stress test (HAST) for the purpose of evaluating the electrical reliability in harsh environments, cold test and thermal cycle test to evaluate degrading characteristics by cycling through two temperatures. All test results indicate that the TED and circuit board can be properly protected from harsh temperature and humidity by using molding technology because the output voltage of after-tested modules is reduced by less than 5%. This study presents a novel fabrication method for a high reliability TED-installed module appropriate for Machine to Machine wireless sensor networks.
Gazzaniga, Andrea; Cerea, Matteo; Cozzi, Alberto; Foppoli, Anastasia; Maroni, Alessandra; Zema, Lucia
2011-03-01
The feasibility of injection molding was explored in the preparation of a novel capsular device for oral pulsatile/delayed delivery based on swellable/erodible polymers. For this purpose, a mold intended to be coupled with a bench-top injection-molding press was designed. This was expected to enable the preparation of matching capsule cap and body items within a single manufacturing cycle and the selection of differing shell thicknesses (300, 600, and 900 μm). Hydroxypropylcellulose (Klucel(®) EF, LF, and GF) was employed as the release-controlling polymer in admixture with polyethylene glycol 1500 (10%, w/w) as the plasticizer. After preliminary trials aimed at the setup of operating conditions, Klucel(®) EF and LF capsule shells with satisfactory technological properties were manufactured. The performance of capsular devices filled with a tracer drug powder was studied by means of a modified USP31 disintegration apparatus. Typical in vitro delayed release patterns were thereby obtained, with lag time increasing as a function of the wall thickness. A good correlation was found between the latter parameter and t (10%), i.e., the time to 10% release, for both polymer grades employed. On the basis of the overall results, the investigated technique was proven suitable for the manufacturing of an innovative pulsatile release platform. © 2011 American Association of Pharmaceutical Scientists
NASA Astrophysics Data System (ADS)
Nguyen Thi, T. B.; Yokoyama, A.; Ota, K.; Kodama, K.; Yamashita, K.; Isogai, Y.; Furuichi, K.; Nonomura, C.
2014-05-01
One of the most important challenges in the injection molding process of the short-glass fiber/thermoplastic composite parts is being able to predict the fiber orientation, since it controls the mechanical and the physical properties of the final parts. Folgar and Tucker included into the Jeffery equation a diffusive type of term, which introduces a phenomenological coefficient for modeling the randomizing effect of the mechanical interactions between the fibers, to predict the fiber orientation in concentrated suspensions. Their experiments indicated that this coefficient depends on the fiber volume fraction and aspect ratio. However, a definition of the fiber interaction coefficient, which is very necessary in the fiber orientation simulations, hasn't still been proven yet. Consequently, this study proposed a developed fiber interaction model that has been introduced a fiber dynamics simulation in order to obtain a global fiber interaction coefficient. This supposed that the coefficient is a sum function of the fiber concentration, aspect ratio, and angular velocity. The proposed model was incorporated into a computer aided engineering simulation package C-Mold. Short-glass fiber/polyamide-6 composites were produced in the injection molding with the fiber weight concentration of 30 wt.%, 50 wt.%, and 70 wt.%. The physical properties of these composites were examined, and their fiber orientation distributions were measured by micro-computed-tomography equipment μ-CT. The simulation results showed a good agreement with experiment results.
40 CFR Table 8 to Subpart Wwww of... - Initial Compliance With Organic HAP Emissions Limits
Code of Federal Regulations, 2014 CFR
2014-07-01
.... open molding and centrifugal casting operations a. an organic HAP emissions limit shown in Tables 3 or... method meet the appropriate organic HAP contents. 2. open molding centrifugal casting, continuous... reduction is being claimed, are using direct die injection, and/or wet-area enclosures that meet the...
40 CFR Table 8 to Subpart Wwww of... - Initial Compliance With Organic HAP Emissions Limits
Code of Federal Regulations, 2013 CFR
2013-07-01
.... open molding and centrifugal casting operations a. an organic HAP emissions limit shown in Tables 3 or... method meet the appropriate organic HAP contents. 2. open molding centrifugal casting, continuous... reduction is being claimed, are using direct die injection, and/or wet-area enclosures that meet the...
40 CFR Table 8 to Subpart Wwww of... - Initial Compliance With Organic HAP Emissions Limits
Code of Federal Regulations, 2012 CFR
2012-07-01
.... open molding and centrifugal casting operations a. an organic HAP emissions limit shown in Tables 3 or... method meet the appropriate organic HAP contents. 2. open molding centrifugal casting, continuous... reduction is being claimed, are using direct die injection, and/or wet-area enclosures that meet the...
Fabrication of Composite Material Using Gettou Fiber by Injection Molding
NASA Astrophysics Data System (ADS)
Setsuda, Roy; Fukumoto, Isao; Kanda, Yasuyuki
This study investigated the mechanical properties of composite using gettou (shell ginger) fiber as reinforcement fabricated from injection molding. Gettou fiber is a natural fiber made from gettou, a subtropical plant that is largely abundant in Okinawa, Japan. We used the stem part of gettou plant and made the gettou fiber by crushing the stem. The composite using gettou fiber contributed to low shrinkage ratio, high bending strength and high flexural modulus. The mechanical strength of composite using long gettou fiber showed higher value than composite using short gettou fiber. Next, because gettou is particularly known for its anti-mold characteristic, we investigated the characteristic in gettou plastic composite. The composite was tested against two molds: aspergillius niger and penicillium funiculosum. The 60% gettou fiber plastic composite was found to satisfy the JISZ2801 criterion. Finally, in order to predict the flexural modulus of composite using gettou fiber by Halpin-Tsai equation, the tensile elastic modulus of single gettou fiber was measured. The tendency of the experimental results of composite using gettou fiber was in good agreement with Halpin-Tsai equation.
Dang, Fuquan; Tabata, Osamu; Kurokawa, Masaya; Ewis, Ashraf A; Zhang, Lihua; Yamaoka, Yoshihisa; Shinohara, Shouji; Shinohara, Yasuo; Ishikawa, Mitsuru; Baba, Yoshinobu
2005-04-01
We have developed a novel technique for mass production of microfabricated capillary array electrophoresis (mu-CAE) plastic chips for high-speed, high-throughput genetic analysis. The mu-CAE chips, containing 10 individual separation channels of 50-microm width, 50-microm depth, and a 100-microm lane-to-lane spacing at the detection region and a sacrificial channel network, were fabricated on a poly(methyl methacrylate) substrate by injection molding and then bonded manually using a pressure-sensitive sealing tape within several seconds at room temperature. The conditions for injection molding and bonding were carefully characterized to yield mu-CAE chips with well-defined channel and injection structures. A CCD camera equipped with an image intensifier was used to monitor simultaneously the separation in a 10-channel array with laser-induced fluorescence detection. High-performance electrophoretic separations of phiX174 HaeIII DNA restriction fragments and PCR products related to the human beta-globin gene and SP-B gene (the surfactant protein B) have been demonstrated on mu-CAE plastic chips using a methylcellulose sieving matrix in individual channels. The current work demonstrated greatly simplified the fabrication process as well as a detection scheme for mu-CAE chips and will bring the low-cost mass production and application of mu-CAE plastic chips for genetic analysis.
Design and fabrication of the progressive addition lenses
NASA Astrophysics Data System (ADS)
Qin, Linling; Qian, Lin; Yu, Jingchi
2011-11-01
The use of progressive addition lenses (PALs) for the correction of presbyopia has increased dramatically in recent years. These lenses are now being used as the preferred alternative to bifocal and trifocal lenses in many parts of the world. Progressive addition lenses are a kind of opthalmic lenses with freeform surface. The surface curvature of the Progressive addition lenses varies gradually from a minimum value in the upper area, to a maximum value in the lower area. Thus a PAL has a surface with three zones which have very small astigmatism: far-view zone, near-view zone, and intermediate zone. The far view zone and near view zone have relatively constant powers and connected by the intermediate zone with power varies progressively. The design and fabrication technologies of progressive addition lenses have fast progresses because of the massive development of the optical simulation software, multi-axis ultraprecision machining technologies and CNC machining technologies. The design principles of progressive addition lenses are discussed in a historic review. Several kinds of design methods are illustrated, and their advantages and disadvantages are also represented. In the current study, it is shown that the optical characteristics of the different progressive addition lenses designs are significantly different from one another. The different fabrication technologies of Progressive addition lenses are also discussed in the paper. Plastic injection molding and precision-machine turning are the common fabrication technologies for exterior PALs and Interior PALs respectively.
Feasibility of using Big Area Additive Manufacturing to Directly Manufacture Boat Molds
DOE Office of Scientific and Technical Information (OSTI.GOV)
Post, Brian K.; Chesser, Phillip C.; Lind, Randall F.
The goal of this project was to explore the feasibility of using Big Area Additive Manufacturing (BAAM) to directly manufacture a boat mold without the need for coatings. All prior tooling projects with BAAM required the use to thick coatings to overcome the surface finish limitations of the BAAM process. While the BAAM process significantly lowers the cost of building the mold, the high cost element rapidly became the coatings (cost of the material, labor on coating, and finishing). As an example, the time and cost to manufacture the molds for the Wind Turbine project with TPI Composites Inc. andmore » the molds for the submarine project with Carderock Naval Warfare Systems was a fraction of the time and cost of the coatings. For this project, a catamaran boat hull mold was designed, manufactured, and assembled with an additional 0.15” thickness of material on all mold surfaces. After printing, the mold was immediately machined and assembled. Alliance MG, LLC (AMG), the industry partner of this project, experimented with mold release agents on the carbon-fiber reinforced acrylonitrile butadiene styrene (CF ABS) to verify that the material can be directly used as a mold (rather than needing a coating). In addition, for large molds (such as the wind turbine mold with TPI Composites Inc.), the mold only provided the target surface. A steel subframe had to be manufactured to provide structural integrity. If successful, this will significantly reduce the time and cost necessary for manufacturing large resin infusion molds using the BAAM process.« less
Effect of rheological parameters on curing rate during NBR injection molding
NASA Astrophysics Data System (ADS)
Kyas, Kamil; Stanek, Michal; Manas, David; Skrobak, Adam
2013-04-01
In this work, non-isothermal injection molding process for NBR rubber mixture considering Isayev-Deng curing kinetic model, generalized Newtonian model with Carreau-WLF viscosity was modeled by using finite element method in order to understand the effect of volume flow rate, index of non-Newtonian behavior and relaxation time on the temperature profile and curing rate. It was found that for specific geometry and processing conditions, increase in relaxation time or in the index of non-Newtonian behavior increases the curing rate due to viscous dissipation taking place at the flow domain walls.
Compact surface plasmon resonance biosensor utilizing an injection-molded prism
NASA Astrophysics Data System (ADS)
Chen, How-Foo; Chen, Chih-Han; Chang, Yun-Hsiang; Chuang, Hsin-Yuan
2016-05-01
Targeting at a low cost and accessible diagnostic device in clinical practice, a compact surface plasmon resonance (SPR) biosensor with a large dynamic range in high sensitivity is designed to satisfy commercial needs in food safety, environmental bio-pollution monitoring, and fast clinical diagnosis. The core component integrates an optical coupler, a sample-loading plate, and angle-tuning reflectors is injection-molded as a free-from prism made of plastic optics. This design makes a matching-oil-free operation during operation. The disposability of this low-cost component ensures testing or diagnosis without cross contamination in bio-samples.
Mechanical recycling of continuous fiber-reinforced thermoplastic sheets
NASA Astrophysics Data System (ADS)
Moritzer, Elmar; Heiderich, Gilmar
2016-03-01
This contribution examines possible material recycling of offcuts generated during the production of continuous-fiber-reinforced composite sheets. These sheets consist of a polyamide 6 matrix and glass fiber fabric. In the initial step, the offcut is shredded to obtain particles; following that, the particles are processed in a twin-screw process to produce fiber-reinforced plastic pellets with varying fiber contents. These pellets are intended for use in injection molding processes as a substitution for new raw materials. This investigation centers on the mechanical properties which can be achieved with the recycled material after both the twin-screw process and injection molding.
NASA Technical Reports Server (NTRS)
Whalen, Thomas J.; Baer, J. R.
1989-01-01
The influence on density and strength of pressureless sintering in vacuum and argon environments has been evaluated with injection molded SiC materials. Main effects and two factor interactions of sintering (cycle variables temperature, time, heating rate, and atmosphere) were assessed. An improved understanding of the influence of the processing flaws and sintering conditions has been obtained. Strength and density have improved from a baseline level of 299 MPa (43.3 Ksi) and 94 pct of theoretical density to values greater than 483 MPa (70 Ksi) and 97 pct.
NASA Technical Reports Server (NTRS)
Cooper, K. G.
2000-01-01
Rapid prototyping (RP) is a layer-by-layer-based additive manufacturing process for constructing three-dimensional representations of a computer design from a wax, plastic, or similar material. Wire arc spray (WAS) is a metal spray forming technique, which deposits thin layers of metal onto a substrate or pattern. Marshall Space Flight Center currently has both capabilities in-house, and this project proposed merging the two processes into an innovative manufacturing technique, in which intermediate injection molding tool halves were to be fabricated with RP and WAS metal forming.
NASA Astrophysics Data System (ADS)
Liu, Xiaohua; Zhou, Tianfeng; Zhang, Lin; Zhou, Wenchen; Yu, Jianfeng; Lee, L. James; Yi, Allen Y.
2018-07-01
Silicon is a promising mold material for compression molding because of its properties of hardness and abrasion resistance. Silicon wafers with carbide-bonded graphene coating and micro-patterns were evaluated as molds for the fabrication of microlens arrays. This study presents an efficient but flexible manufacturing method for microlens arrays that combines a lapping method and a rapid molding procedure. Unlike conventional processes for microstructures on silicon wafers, such as diamond machining and photolithography, this research demonstrates a unique approach by employing precision steel balls and diamond slurries to create microlenses with accurate geometry. The feasibility of this method was demonstrated by the fabrication of several microlens arrays with different aperture sizes and pitches on silicon molds. The geometrical accuracy and surface roughness of the microlens arrays were measured using an optical profiler. The measurement results indicated good agreement with the optical profile of the design. The silicon molds were then used to copy the microstructures onto polymer substrates. The uniformity and quality of the samples molded through rapid surface molding were also assessed and statistically quantified. To further evaluate the optical functionality of the molded microlens arrays, the focal lengths of the microlens arrays were measured using a simple optical setup. The measurements showed that the microlens arrays molded in this research were compatible with conventional manufacturing methods. This research demonstrated an alternative low-cost and efficient method for microstructure fabrication on silicon wafers, together with the follow-up optical molding processes.
Investigation of sample preparation on the moldability of ceramic injection molding feedstocks
NASA Astrophysics Data System (ADS)
Ide, Jared
Ceramic injection molding is a desirable option for those who are looking to make ceramic parts with complex geometries. Formulating the feedstock needed to produce ideal parts is a difficult process. In this research a series of feedstock blends will be evaluated for moldability. This was done by investigating their viscosity, and how certain components affect the overall ability to flow. These feedstocks varied waxes, surfactants, and solids loading. A capillary rheometer was used to characterize some of the materials, which led to one batch being selected for molding trials. The parts were sintered and further refinements were made to the feedstock. Solids loading was increased from 77.5% to 82%, which required different ratios of organics to flow. Finally, the ceramic powders were treated to lower their specific surface area before being compounded, which resulted in materials that would process easily through an extruder and exhibit properties suitable for CIM.
A versatile approach to vacuum injection casting for materials research and development.
Xu, Donghua; Xu, Yifan
2017-03-01
Vacuum injection casting (VIC) is important for research and development (R&D) of materials that are prone to oxidation at high temperatures, particularly metals and metallic alloys (e.g., metallic glasses and high entropy alloys). VIC in R&D laboratories often involves initial melting/alloying in a prior step, transporting the sample to a dedicated vacuum chamber, re-melting the sample in a quartz tube, and finally injecting the melt with an inert gas to a dedicated mold. Here we present a new approach to laboratory VIC that requires no sample transfer (for a variety of materials), no dedicated vacuum chamber/space nor dedicated mold, and hence provides more versatility and higher efficiency and yet lowers the capital equipment cost. Our approach takes advantage of the exceptional portability, thermal and chemical stability, and thermoplastic processability of quartz glass and uses quartz tubes for all the melting, re-melting, injection casting, and molding. In addition, our approach includes oxygen gettering to remove residual oxygen for all the steps and allows for slow or fast cooling (e.g., water quenching) upon injection. This paper focuses on the design, the procedures, and the versatile features of this new approach while also demonstrating the practical implementation of this approach and computational modeling of the heat transfer and the cooling rates for two exemplary cases. The new approach is expected to bring notable expedition to sample fabrication and materials discovery, as well as wider adoption of vacuum injection casting in materials science and condensed matter physics research laboratories.
A versatile approach to vacuum injection casting for materials research and development
NASA Astrophysics Data System (ADS)
Xu, Donghua; Xu, Yifan
2017-03-01
Vacuum injection casting (VIC) is important for research and development (R&D) of materials that are prone to oxidation at high temperatures, particularly metals and metallic alloys (e.g., metallic glasses and high entropy alloys). VIC in R&D laboratories often involves initial melting/alloying in a prior step, transporting the sample to a dedicated vacuum chamber, re-melting the sample in a quartz tube, and finally injecting the melt with an inert gas to a dedicated mold. Here we present a new approach to laboratory VIC that requires no sample transfer (for a variety of materials), no dedicated vacuum chamber/space nor dedicated mold, and hence provides more versatility and higher efficiency and yet lowers the capital equipment cost. Our approach takes advantage of the exceptional portability, thermal and chemical stability, and thermoplastic processability of quartz glass and uses quartz tubes for all the melting, re-melting, injection casting, and molding. In addition, our approach includes oxygen gettering to remove residual oxygen for all the steps and allows for slow or fast cooling (e.g., water quenching) upon injection. This paper focuses on the design, the procedures, and the versatile features of this new approach while also demonstrating the practical implementation of this approach and computational modeling of the heat transfer and the cooling rates for two exemplary cases. The new approach is expected to bring notable expedition to sample fabrication and materials discovery, as well as wider adoption of vacuum injection casting in materials science and condensed matter physics research laboratories.
Carey, Robert I; Kyle, Christopher C; Carey, Donna L; Leveillee, Raymond J
2008-01-01
To prepare artificial kidney stones of defined shape, size, mass, and material composition via precision injection molding of Ultracal 30 cement slurries into an inexpensive biodegradable mold. A calcium alginate and silica-based mold was used to prepare casts of varying shapes in a reproducible manner. Ultracal 30 cement slurries mixed 1:1 with water were injected into these casts and allowed to harden. The artificial stones were recovered and their physical properties determined. Ex-vivo and in-vivo responses to holmium laser lithotripsy were examined. Spheres, half spheres, cylinders, cubes, tapered conical structures, and flat angulated structures were prepared with high precision without post-molding manipulations. Large spheres of average mass 0.661 g (+/- 0.037), small spheres of average mass 0.046 g (+/- 0.0026), and hexagons of average mass 0.752 g (+/- 0.0180) were found to have densities (1610-1687 kg/m(3)) within the expected range for Ultracal 30 cement stones. Ex-vivo holmium laser lithotripsy of small spheres in saline showed uniformly reproducible efficiencies of comminution. Implantation of a tapered conical stone into the ureter of a porcine model demonstrated stone comminution in vivo consistent with that seen in the ex-vivo models. We present an environmentally safe, technically simple procedure for the formation of artificial kidney stones of predetermined size and shape. The technique does not require the use of hazardous solvents or postprocedural processing of the stones. These stones are intended for use in standardized experiments of lithotripsy efficiency in which the shape of the stone as well as the mass can be predetermined and precisely controlled.
NASA Astrophysics Data System (ADS)
Mohedano, Rubén; Chaves, Julio; Hernández, Maikel
2016-04-01
In many illumination problems, the beam pattern needed and/or some geometrical constraints lead to very asymmetric design conditions. These asymmetries have been solved in the past by means of arrangements of rotationally symmetric or linear lamps aimed in different directions whose patterns overlap to provide the asymmetric prescriptions or by splitting one single lamp into several sections, each one providing a part of the pattern. The development of new design methods yielding smooth continuous free-form optical surfaces to solve these challenging design problems, combined with the proper CAD modeling tools plus the development of multiple axes diamond turn machines, give birth to a new generation of optics. These are able to offer the performance and other advanced features, such as efficiency, compactness, or aesthetical advantages, and can be manufactured at low cost by injection molding. This paper presents two examples of devices with free-form optical surfaces, a camera flash, and a car headlamp.
The Economics of Big Area Addtiive Manufacturing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Post, Brian; Lloyd, Peter D; Lindahl, John
Case studies on the economics of Additive Manufacturing (AM) suggest that processing time is the dominant cost in manufacturing. Most additive processes have similar performance metrics: small part sizes, low production rates and expensive feedstocks. Big Area Additive Manufacturing is based on transitioning polymer extrusion technology from a wire to a pellet feedstock. Utilizing pellets significantly increases deposition speed and lowers material cost by utilizing low cost injection molding feedstock. The use of carbon fiber reinforced polymers eliminates the need for a heated chamber, significantly reducing machine power requirements and size constraints. We hypothesize that the increase in productivity coupledmore » with decrease in feedstock and energy costs will enable AM to become more competitive with conventional manufacturing processes for many applications. As a test case, we compare the cost of using traditional fused deposition modeling (FDM) with BAAM for additively manufacturing composite tooling.« less
INTEGRATION OF COST MODELS AND PROCESS SIMULATION TOOLS FOR OPTIMUM COMPOSITE MANUFACTURING PROCESS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pack, Seongchan; Wilson, Daniel; Aitharaju, Venkat
Manufacturing cost of resin transfer molded composite parts is significantly influenced by the cycle time, which is strongly related to the time for both filling and curing of the resin in the mold. The time for filling can be optimized by various injection strategies, and by suitably reducing the length of the resin flow distance during the injection. The curing time can be reduced by the usage of faster curing resins, but it requires a high pressure injection equipment, which is capital intensive. Predictive manufacturing simulation tools that are being developed recently for composite materials are able to provide variousmore » scenarios of processing conditions virtually well in advance of manufacturing the parts. In the present study, we integrate the cost models with process simulation tools to study the influence of various parameters such as injection strategies, injection pressure, compression control to minimize high pressure injection, resin curing rate, and demold time on the manufacturing cost as affected by the annual part volume. A representative automotive component was selected for the study and the results are presented in this paper« less
NASA Astrophysics Data System (ADS)
Abdurohman, K.; Siahaan, Mabe
2018-04-01
Composite materials made of glass fiber EW-135 with epoxy lycal resin with vacuum infusion method have been performed. The dried glass fiber is arranged in a mold then connected to a vacuum machine and a resin tube. Then, the vacuum machine is turned on and at the same time the resin is sucked and flowed into the mold. This paper reports on the effect of using mesh- peel ply singles on upper-side laminates called A and the effect of using double mesh-peel ply on upper and lower-side laminates call B with glass fiber arrangement is normal and ± 450 in vacuum infusion process. Followed by the manufacture of tensile test specimen and tested its tensile strength with universal test machine 100kN Tensilon RTF 2410, at room temperature with constant crosshead speed. From tensile test results using single and double layers showed that double mesh-peel ply can increase tensile strength 14% and Young modulus 17%.
Electrooptic polymer voltage sensor and method of manufacture thereof
NASA Technical Reports Server (NTRS)
Gottsche, Allan (Inventor); Perry, Joseph W. (Inventor)
1993-01-01
An optical voltage sensor utilizing an electrooptic polymer is disclosed for application to electric power distribution systems. The sensor, which can be manufactured at low cost in accordance with a disclosed method, measures voltages across a greater range than prior art sensors. The electrooptic polymer, which replaces the optical crystal used in prior art sensors, is sandwiched directly between two high voltage electrodes. Voltage is measured by fiber optical means, and no voltage division is required. The sample of electrooptic polymer is fabricated in a special mold and later mounted in a sensor housing. Alternatively, mold and sensor housing may be identical. The sensor housing is made out of a machinable polymeric material and is equipped with two opposing optical windows. The optical windows are mounted in the bottom of machined holes in the wall of the mold. These holes provide for mounting of the polarizing optical components and for mounting of the fiber optic connectors. One connecting fiber is equipped with a light emitting diode as a light source. Another connecting fiber is equipped with a photodiode as a detector.
Chemorheology of in-mold coating for compression molded SMC applications
NASA Astrophysics Data System (ADS)
Ko, Seunghyun; Straus, Elliott J.; Castro, Jose M.
2015-05-01
In-mold coating (IMC) is applied to compression molded sheet molding compound (SMC) exterior automotive or truck body panels as an environmentally friendly alternative to make the surface conductive for subsequent electrostatic painting operations. The coating is a thermosetting liquid that when injected onto the surface of the part cures and bonds to provide a smooth conductive surface. In order to optimize the IMC process, it is essential to predict the time available for flow, that is the time before the thermosetting reaction starts (inhibition time) as well as the time when the coating has enough structural integrity so that the mold can be opened without damaging the part surface (cure time). To predict both the inhibition time and the cure time, it is critical to study the chemorheology of IMC. In this paper, we study the chemorheology for a typical commercial IMC system, and show its relevance to both the flow and cure time for the IMC stage during SMC compression molding.
Linear and volumetric dimensional changes of injection-molded PMMA denture base resins.
El Bahra, Shadi; Ludwig, Klaus; Samran, Abdulaziz; Freitag-Wolf, Sandra; Kern, Matthias
2013-11-01
The aim of this study was to evaluate the linear and volumetric dimensional changes of six denture base resins processed by their corresponding injection-molding systems at 3 time intervals of water storage. Two heat-curing (SR Ivocap Hi Impact and Lucitone 199) and four auto-curing (IvoBase Hybrid, IvoBase Hi Impact, PalaXpress, and Futura Gen) acrylic resins were used with their specific injection-molding technique to fabricate 6 specimens of each material. Linear and volumetric dimensional changes were determined by means of a digital caliper and an electronic hydrostatic balance, respectively, after water storage of 1, 30, or 90 days. Means and standard deviations of linear and volumetric dimensional changes were calculated in percentage (%). Statistical analysis was done using Student's and Welch's t tests with Bonferroni-Holm correction for multiple comparisons (α=0.05). Statistically significant differences in linear dimensional changes between resins were demonstrated at all three time intervals of water immersion (p≤0.05), with exception of the following comparisons which showed no significant difference: IvoBase Hi Impact/SR Ivocap Hi Impact and PalaXpress/Lucitone 199 after 1 day, Futura Gen/PalaXpress and PalaXpress/Lucitone 199 after 30 days, and IvoBase Hybrid/IvoBase Hi Impact after 90 days. Also, statistically significant differences in volumetric dimensional changes between resins were found at all three time intervals of water immersion (p≤0.05), with exception of the comparison between PalaXpress and Futura Gen. Denture base resins (IvoBase Hybrid and IvoBase Hi Impact) processed by the new injection-molding system (IvoBase), revealed superior dimensional precision. Copyright © 2013 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Heidari, Behzad Shiroud; Davachi, Seyed Mohammad; Moghaddam, Amin Hedayati; Seyfi, Javad; Hejazi, Iman; Sahraeian, Razi; Rashedi, Hamid
2018-05-01
In this study, injection molding process of ultrahigh molecular weight polyethylene (UHMWPE) reinforced with nano-hydroxyapatite (nHA) was simulated and optimized through minimizing the shrinkage and warpage of the hip liners as an essential part of a hip prosthesis. Fractional factorial design (FFD) was applied to the design of the experiment, modeling, and optimizing the shrinkage and warpage of UHMWPE/nHA composite liners. The Analysis of variance (ANOVA) was applied to find the importance of operative parameters and their effects. In this experiment, seven input parameters were surveyed, including mold temperature (A), melt temperature (B), injection time (C), packing time (D), packing pressure (E), coolant temperature (F), and type of liner (G). Two models were capable of predicting warpage and volumetric shrinkage (%) in different conditions with R 2 of 0.9949 and 0.9989, respectively. According to the models, the optimized values of warpage and volumetric shrinkage are 0.287222 mm and 13.6613%, respectively. Meanwhile, a finite element analysis (FE analysis) was also carried out to examine the stress distribution in liners under the force values of demanding and daily activities. The Von-Mises stress distribution showed that both of the liners can be applied to all activities with no failure. However, UHMWPE/nHA liner is more resistant to the highest loads than UHMWPE liner due to the effect of nHA in the nanocomposite. Finally, according to the results of injection molding simulations, optimization, structural analysis as well as the tensile strength and wear resistance, UHMWPE/nHA liner is recommended for the production of a hip prosthesis. Copyright © 2018 Elsevier Ltd. All rights reserved.
Huang, Fu-Chun; Chen, Yih-Far; Lee, Gwo-Bin
2007-04-01
This study presents a new packaging method using a polyethylene/thermoplastic elastomer (PE/TPE) film to seal an injection-molded CE chip made of either poly(methyl methacrylate) (PMMA) or polycarbonate (PC) materials. The packaging is performed at atmospheric pressure and at room temperature, which is a fast, easy, and reliable bonding method to form a sealed CE chip for chemical analysis and biomedical applications. The fabrication of PMMA and PC microfluidic channels is accomplished by using an injection-molding process, which could be mass-produced for commercial applications. In addition to microfluidic CE channels, 3-D reservoirs for storing biosamples, and CE buffers are also formed during this injection-molding process. With this approach, a commercial CE chip can be of low cost and disposable. Finally, the functionality of the mass-produced CE chip is demonstrated through its successful separation of phiX174 DNA/HaeIII markers. Experimental data show that the S/N for the CE chips using the PE/TPE film has a value of 5.34, when utilizing DNA markers with a concentration of 2 ng/microL and a CE buffer of 2% hydroxypropyl-methylcellulose (HPMC) in Tris-borate-EDTA (TBE) with 1% YO-PRO-1 fluorescent dye. Thus, the detection limit of the developed chips is improved. Lastly, the developed CE chips are used for the separation and detection of PCR products. A mixture of an amplified antibiotic gene for Streptococcus pneumoniae and phiX174 DNA/HaeIII markers was successfully separated and detected by using the proposed CE chips. Experimental data show that these DNA samples were separated within 2 min. The study proposed a promising method for the development of mass-produced CE chips.
Verification of a three-dimensional resin transfer molding process simulation model
NASA Technical Reports Server (NTRS)
Fingerson, John C.; Loos, Alfred C.; Dexter, H. Benson
1995-01-01
Experimental evidence was obtained to complete the verification of the parameters needed for input to a three-dimensional finite element model simulating the resin flow and cure through an orthotropic fabric preform. The material characterizations completed include resin kinetics and viscosity models, as well as preform permeability and compaction models. The steady-state and advancing front permeability measurement methods are compared. The results indicate that both methods yield similar permeabilities for a plain weave, bi-axial fiberglass fabric. Also, a method to determine principal directions and permeabilities is discussed and results are shown for a multi-axial warp knit preform. The flow of resin through a blade-stiffened preform was modeled and experiments were completed to verify the results. The predicted inlet pressure was approximately 65% of the measured value. A parametric study was performed to explain differences in measured and predicted flow front advancement and inlet pressures. Furthermore, PR-500 epoxy resin/IM7 8HS carbon fabric flat panels were fabricated by the Resin Transfer Molding process. Tests were completed utilizing both perimeter injection and center-port injection as resin inlet boundary conditions. The mold was instrumented with FDEMS sensors, pressure transducers, and thermocouples to monitor the process conditions. Results include a comparison of predicted and measured inlet pressures and flow front position. For the perimeter injection case, the measured inlet pressure and flow front results compared well to the predicted results. The results of the center-port injection case showed that the predicted inlet pressure was approximately 50% of the measured inlet pressure. Also, measured flow front position data did not agree well with the predicted results. Possible reasons for error include fiber deformation at the resin inlet and a lag in FDEMS sensor wet-out due to low mold pressures.
NASA Astrophysics Data System (ADS)
Agne, Aboubakry; Barrière, Thierry
2018-05-01
Metal injection molding (MIM) is a process combining advantages of thermoplastic injection molding and powder metallurgy process in order to manufacture components with complex and near net-shape geometries. The debinding of a green component can be performed in two steps, first by using solvent debinding in order to extract the organic part of the binder and then by thermal degradation of the rest of the binder. A shorter and innovative method for extracting an organic binder involves the use of supercritical fluid instead of a regular solvent. The debinding via a supercritical fluid was recently investigated to extract organic binders contained in components obtained by Metal Injection Molding. It consists to put the component in an enclosure subjected to high pressure and temperature. The supercritical fluid has various properties depending on these two conditions, e.g., density and viscosity. The high-pressure combined with the high temperature during the process affect the component structure. Three mechanisms contributing to the deformation of the component can been differentiated: thermal expansion, binder extraction and supercritical fluid effect on the outer surfaces of the component. If one supposes that, the deformation due to binder extraction is negligible, thermal expansion and the fluid effect are probably the main mechanisms that can produce several stress. A finite-element model, which couples fluid-structures interaction and structural mechanics, has been developed and performed on the Comsol Multiphysics® finite-element software platform allowed to estimate the stress distribution during the supercritical debinding of MIM component composed of Inconel 718 powders, polypropylene, polyethylene glycol and stearic acid as binder. The proposed numerical simulations allow the estimation of the stress distribution with respect to the processing parameters for MIM components during the supercritical debinding process using a stationary solver.
Fatigue-propagation du melange polymere polystyrene/polyethylene
NASA Astrophysics Data System (ADS)
Bureau, Martin N.
The interrelations between the morphology of PS/HDPE and PS/SEBS/HDPE immiscible polymer blends and their mechanical behavior, namely in monotonic loading and in cyclic loading, were studied. As predicted by theory, high shear rates encountered during extrusion blending led to efficient minor phase emulsification in PS/HDPE blends for which the viscosity ratio approaches unity. Consequently, the emulsifying effect of an SEBS triblock copolymer employed as a compatibilizer was found to be negligible. In subsequent molding process, disintegration, shape relaxation and coarsening of the minor phase domains were responsible for the morphological evolution of the blends. In the compression molding process, morphological observations showed that the rate of minor phase coarsening followed the predictions of the Ostwald ripening theory, in agreement with the rheological analysis. In the injection molding process, minor phase coarsening was attributed to shear coalescence. The fatigue crack propagation behavior of injection-molded specimens of pure PS as well as of 95/5, 85/15 and 70/30 PS/HDPE blends and of 95/(0.5/4.5), 85/(1.5/13.5) and 70/(3/27) PS/(SEBS/HDPE) blends was then studied. The fatigue fracture surface features of specimens of pure PS as well as of PS/HDPE and PS/SEBS/HDPE blends were analyzed in detail in order to interpret their fatigue crack propagation behavior. In pure PS specimens, discontinuous growth bands, associated with the fracture of crazes in the plastic zone, formed at low fatigue crack growth rates, large dimple-like features at intermediate fatigue crack growth rates and fatigue striations at high fatigue crack growth rates. The fracture toughness of injection-molded specimens of pure PS as well as of 95/5, 85/15 and 70/30 PS/HDPE blends and of 95/(0.5/4.5) PS/(SEBS/HDPE), 85/(1.5/13.5) and 70/(3/27) PS/(SEBS/HDPE) was finally studied. The results showed that the addition of HDPE to PS led to a reduction of the fracture toughness KQ following ASTM E-399 when compared to that of pure PS. This effect was attributed to the very fine minor phase morphology of the blends obtained after extrusion blending and injection molding. (Abstract shortened by UMI.)
Method of Fabricating Chopped-Fiber Composite Piston
NASA Technical Reports Server (NTRS)
Rivers, H. Kevin (Inventor); Ransone, Philip O. (Inventor); Northam, G. Burton (Inventor)
1999-01-01
A three-dimensional piston molding is fabricated from a mixture of chopped, carbon tow filaments of variable length, which are prepregged with carbonaceous organic resins and/or pitches and molded by conventional molding processes into a near net shape, to form a carbon-fiber reinforced organic-matrix composite part. Continuous reinforcement in the form of carbon-carbon composite tapes or pieces of fabric can be also laid in the mold before or during the charging of the mold with the chopped-fiber mixture, to enhance the strength in the crown and wrist-pin areas. The molded chopped-fiber reinforced organic-matrix composite parts are then pyrolized in an inert atmosphere, to convert the organic matrix materials to carbon. These pyrolized parts are then densified by reimpregnation with resins or pitches, which are subsequently carbonized. Densification is also accomplished by direct infiltration with carbon by vapor deposition processes. Once the desired density has been achieved, the piston molds are machined to final piston dimensions, and piston ring grooves are added. To prevent oxidation and/or to seal the piston surface or near surface, the chopped-fiber piston is coated with ceramic and/or metallic sealants: and/or coated with a catalyst.
NASA Astrophysics Data System (ADS)
Kühr, C.; Spörrer, A.; Altstädt, V.
2014-05-01
The production of hard-soft-combinations via multi injection molding gained more and more importance in the last years. This is attributed to different factors. One principle reason is that the use of two-component injection molding technique has many advantages such as cancelling subsequent and complex steps and shortening the process chain. Furthermore this technique allows the combination of the properties of the single components like the high stiffness of the hard component and the elastic properties of the soft component. Because of the incompatibility of some polymers the adhesion on the interface has to be determined. Thereby adhesion is not only influenced by the applied polymers, but also by the injection molding parameters and the characteristics of the mold. Besides already known combinations of thermoplastics with thermoplastic elastomers (TPE), there consists the possibility to apply liquid silicone rubber (LSR) as soft component. A thermoplastic/LSR combination gains in importance due to the specific advantages of LSR to TPE. The faintly adhesion between LSR and thermoplastics is currently one of the key challenges when dealing with those combinations. So it is coercively necessary to improve adhesion between the two components by adding an adhesion promoter. To determine the promoters influence, it is necessary to develop a suitable testing method to investigate e.g. the peel resistance. The current German standard "VDI Richtlinie 2019', which is actually only employed for thermoplastic/TPE combinations, can serve as a model to determine the adhesion of thermoplastic/LSR combinations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nguyen Thi, T. B., E-mail: thanhbinh.skku@gmail.com, E-mail: yokoyama@kit.ac.jp; Yokoyama, A., E-mail: thanhbinh.skku@gmail.com, E-mail: yokoyama@kit.ac.jp; Ota, K., E-mail: kei-ota@toyobo.jp, E-mail: katsuhiro-kodama@toyobo.jp, E-mail: katsuhisa-yamashita@toyobo.jp, E-mail: yumiko-isogai@toyobo.jp, E-mail: kenji-furuichi@toyobo.jp, E-mail: chisato-nonomura@toyobo.jp
2014-05-15
One of the most important challenges in the injection molding process of the short-glass fiber/thermoplastic composite parts is being able to predict the fiber orientation, since it controls the mechanical and the physical properties of the final parts. Folgar and Tucker included into the Jeffery equation a diffusive type of term, which introduces a phenomenological coefficient for modeling the randomizing effect of the mechanical interactions between the fibers, to predict the fiber orientation in concentrated suspensions. Their experiments indicated that this coefficient depends on the fiber volume fraction and aspect ratio. However, a definition of the fiber interaction coefficient, whichmore » is very necessary in the fiber orientation simulations, hasn't still been proven yet. Consequently, this study proposed a developed fiber interaction model that has been introduced a fiber dynamics simulation in order to obtain a global fiber interaction coefficient. This supposed that the coefficient is a sum function of the fiber concentration, aspect ratio, and angular velocity. The proposed model was incorporated into a computer aided engineering simulation package C-Mold. Short-glass fiber/polyamide-6 composites were produced in the injection molding with the fiber weight concentration of 30 wt.%, 50 wt.%, and 70 wt.%. The physical properties of these composites were examined, and their fiber orientation distributions were measured by micro-computed-tomography equipment μ-CT. The simulation results showed a good agreement with experiment results.« less
Metal injection molding of titanium for medical and aerospace applications
NASA Astrophysics Data System (ADS)
Scharvogel, Matthias; Winkelmueller, Wendelin
2011-02-01
Mixing of titanium powder and thermoplastic binders creates a feedstock that is injection molded similar to plastic, has a chemical and thermal debinding process, and then is sintered to form a net-shape or near-net shape part. TiJet Medizintechnik GmbH (TiJet) developed and uses its own feedstock and powder processing technology to achieve desired mechanical properties. This paper explains the theory of the process and the possibilities that result from the development of this new powder processing technology, such as new alloys, design possibilities, etc. Discussed will be the microstructure, chemical composition, and mechanical properties of the manufactured parts.
NASA Astrophysics Data System (ADS)
Baltes, Henry; Brand, Oliver; Fedder, Gary K.; Hierold, Christofer; Korvink, Jan G.; Tabata, Osamu; Löhe, Detlef; Haußelt, Jürgen
2005-09-01
Microstructures, electronics, nanotechnology - these vast fields of research are growing together as the size gap narrows and many different materials are combined. Current research, engineering sucesses and newly commercialized products hint at the immense innovative potentials and future applications that open up once mankind controls shape and function from the atomic level right up to the visible world without any gaps. In this volume, authors from three major competence centres for microengineering illustrate step by step the process from designing and simulating microcomponents of metallic and ceramic materials to replicating micro-scale components by injection molding.
Carlson, Kristen; Chidley, Matthew; Sung, Kung-Bin; Descour, Michael; Gillenwater, Ann; Follen, Michele; Richards-Kortum, Rebecca
2005-04-01
For in vivo optical diagnostic technologies to be distributed to the developed and developing worlds, optical imaging systems must be constructed of inexpensive components. We present a fiber-optic confocal reflectance microscope with a cost-effective injection-molded plastic miniature objective lens for in vivo imaging of human tissues in near real time. The measured lateral resolution is less than 2.2 microm, and the measured axial resolution is 10 microm. Confocal images of ex vivo cervical tissue biopsies and in vivo human lip taken at 15 frames/s demonstrate the microscope's capability of imaging cell morphology and tissue architecture.
Recent progress in online ultrasonic process monitoring
NASA Astrophysics Data System (ADS)
Wen, Szu-Sheng L.; Chen, Tzu-Fang; Ramos-Franca, Demartonne; Nguyen, Ky T.; Jen, Cheng-Kuei; Ihara, Ikuo; Derdouri, A.; Garcia-Rejon, Andres
1998-03-01
On-line ultrasonic monitoring of polymer co-extrusion and gas-assisted injection molding are presented. During the co- extrusion of high density polyethylene and Santoprene ultrasonic sensors consisting of piezoelectric transducers and clad ultrasonic buffer rods are used to detect the interface between these two polymers and the stability of the extrusion. The same ultrasonic sensor also measures the surface temperature of the extruded polymer. The results indicate that temperature measurements using ultrasound have a faster response time than those obtained by conventional thermocouple. In gas-assisted injection molding the polymer and gas flow front positions are monitored simultaneously. This information may be used to control the plunger movement.
The technology and commercial status of powder-injection molding
NASA Astrophysics Data System (ADS)
Bose, Animesh
1995-08-01
The process of powder-injection molding (PIM) is a viable and competitive commercial technique that is being used to process complex-shaped parts of various materials in moderate to high volumes. The hey advantage of the process is its unique ability to combine materials selection flexibility with the complex shape-forming ability of plastics. Although the PIM process has been discussed in the open literature for more than quarter of a century, it has become a commercial reality only during the last decade or so. Currently, there is a tremendous interest in this unique technology throughout the world. As a result, the PIM industry is poised for significant growth.
Pervez, Hifsa; Mozumder, Mohammad S; Mourad, Abdel-Hamid I
2016-08-22
The current study presents an investigation on the optimization of injection molding parameters of HDPE/TiO₂ nanocomposites using grey relational analysis with the Taguchi method. Four control factors, including filler concentration (i.e., TiO₂), barrel temperature, residence time and holding time, were chosen at three different levels of each. Mechanical properties, such as yield strength, Young's modulus and elongation, were selected as the performance targets. Nine experimental runs were carried out based on the Taguchi L₉ orthogonal array, and the data were processed according to the grey relational steps. The optimal process parameters were found based on the average responses of the grey relational grades, and the ideal operating conditions were found to be a filler concentration of 5 wt % TiO₂, a barrel temperature of 225 °C, a residence time of 30 min and a holding time of 20 s. Moreover, analysis of variance (ANOVA) has also been applied to identify the most significant factor, and the percentage of TiO₂ nanoparticles was found to have the most significant effect on the properties of the HDPE/TiO₂ nanocomposites fabricated through the injection molding process.
NASA Astrophysics Data System (ADS)
Rahim, Tuan Noraihan Azila Tuan; Abdullah, Abdul Manaf; Akil, Hazizan Md; Mohamad, Dasmawati
2016-12-01
The emergence of 3D printing technology known as fused filament fabrication (FFF) has offered the possibility of producing an anatomically accurate, patient specific implant with more affordable prices. The only weakness of this technology is related to incompatibility and lack of properties of current material to be applied in biomedical. Therefore, this study aims to develop a new, polymer composite-based biomaterial that exhibits a high processability using FFF technique, strong enough and shows acceptable biocompatibility, and safe for biomedical use. Polyamide 12 (PA12), which meets all these requirements was incorporated with two bioceramic fillers, zirconia and hydroxyapatite in order to improve the mechanical and bioactivity properties. The obtained mechanical properties were compared with injection-molded specimens and also a commercial biomedical product, HAPEXTM which is composed of hydroxyapatite and polyethylene. The yield strength and modulus of the PA12 composites increased steadily with increasing filler loading. Although the strength of printed PA12 composites were reduced compared with injection molded specimen, but still higher than HAPEXTM material. The higher surface roughness obtained by printed PA12 was expected to enhance the cell adhesion and provide better implant fixation.
Tip Clearance Control Using Plasma Actuators
2007-03-01
Clearance Control Using Plasma Actuators 4 posed by Denton (1993). A number of investigators have used partial shrouds, or " winglet " designs to...main molded blade with a span of 3.42 in., a removable molded blade segment with a span of 0.1875 in., and removable blade tip winglets made of glass...segment and the main blade to vary the distance between the blade end and the front wall of the cascade section. The winglets were machined using a
Syringe vending machines for injection drug users: an experiment in Marseille, France.
Obadia, Y; Feroni, I; Perrin, V; Vlahov, D; Moatti, J P
1999-01-01
OBJECTIVES: This study evaluated the usefulness of vending machines in providing injection drug users with access to sterile syringes in Marseille, France. METHODS: Self-administered questionnaires were offered to 485 injection drug users obtaining syringes from 32 pharmacies, 4 needle exchange programs, and 3 vending machines. RESULTS: Of the 343 respondents (response rate = 70.7%), 21.3% used the vending machines as their primary source of syringes. Primary users of vending machines were more likely than primary users of other sources to be younger than 30 years, to report no history of drug maintenance treatment, and to report no sharing of needles or injection paraphernalia. CONCLUSIONS: Vending machines may be an appropriate strategy for providing access to syringes for younger injection drug users, who have typically avoided needle exchange programs and pharmacies. PMID:10589315
Copper Disk Manufactured at the Space Optics Manufacturing and Technology Center
NASA Technical Reports Server (NTRS)
2001-01-01
This photograph shows Wes Brown, Marshall Space Flight Center's (MSFC's) lead diamond tuner, an expert in the science of using diamond-tipped tools to cut metal, inspecting the mold's physical characteristics to ensure the uniformity of its more than 6,000 grooves. This king-size copper disk, manufactured at the Space Optics Manufacturing and Technology Center (SOMTC) at MSFC, is a special mold for making high resolution monitor screens. This master mold will be used to make several other molds, each capable of forming hundreds of screens that have a type of lens called a fresnel lens. Weighing much less than conventional optics, fresnel lenses have multiple concentric grooves, each formed to a precise angle, that together create the curvature needed to focus and project images. The MSFC leads NASA's space optics manufacturing technology development as a technology leader for diamond turning. The machine used to manufacture this mold is among many one-of-a-kind pieces of equipment of MSFC's SOMTC.
Adaptive temporal refinement in injection molding
NASA Astrophysics Data System (ADS)
Karyofylli, Violeta; Schmitz, Mauritius; Hopmann, Christian; Behr, Marek
2018-05-01
Mold filling is an injection molding stage of great significance, because many defects of the plastic components (e.g. weld lines, burrs or insufficient filling) can occur during this process step. Therefore, it plays an important role in determining the quality of the produced parts. Our goal is the temporal refinement in the vicinity of the evolving melt front, in the context of 4D simplex-type space-time grids [1, 2]. This novel discretization method has an inherent flexibility to employ completely unstructured meshes with varying levels of resolution both in spatial dimensions and in the time dimension, thus allowing the use of local time-stepping during the simulations. This can lead to a higher simulation precision, while preserving calculation efficiency. A 3D benchmark case, which concerns the filling of a plate-shaped geometry, is used for verifying our numerical approach [3]. The simulation results obtained with the fully unstructured space-time discretization are compared to those obtained with the standard space-time method and to Moldflow simulation results. This example also serves for providing reliable timing measurements and the efficiency aspects of the filling simulation of complex 3D molds while applying adaptive temporal refinement.
Zhang, Qiyang; Gong, Maojun
2014-01-01
Integrated microfluidic systems coupled with electrophoretic separations have broad application in biological and chemical analysis. Interfaces for the connection of various functional parts play a major role in the performance of a system. Here we developed a rapid prototyping method to fabricate monolithic poly(dimethylsiloxane) (PDMS) Interfaces for flow-gated injection, online reagent mixing, and tube-to-tube connection in an integrated capillary electrophoresis (CE) system. The basic idea was based on the properties of PDMS: elasticity, transparency, and suitability for prototyping. The molds for these interfaces were prepared by using commercially available stainless steel wires and nylon lines or silica capillaries. A steel wire was inserted through the diameter of a nylon line and a cross format was obtained as the mold for PDMS casting of flow gates and 4-way mixers. These interfaces accommodated tubing connection through PDMS elasticity and provided easy visual trouble shooting. The flow gate used smaller channel diameters thus reducing flow rate by 25 fold for effective gating compared with mechanically machined counterparts. Both PDMS mixers and the tube-to-tube connectors could minimize the sample dead volume by using an appropriate capillary configuration. As a whole, the prototyped PDMS interfaces are reusable, inexpensive, convenient for connection, and robust when integrated with the CE detection system. Therefore, these interfaces could see potential applications in CE and CE-coupled systems. PMID:24331370
Processing-microstructure models for short- and long-fiber thermoplastic composites
NASA Astrophysics Data System (ADS)
Phelps, Jay H.
The research for this thesis has explored the important microstructural variables for injection-molded thermoplastic composites with discontinuous fiber reinforcement. Two variables, the distributions of fiber orientation and fiber length after processing, have proven to be not only important for correct material property prediction but also difficult to predict using currently available modeling and simulation techniques. In this work, we develop new models for the prediction of these two microstructural variables. Previously, the Folgar-Tucker model has been widely used to predict fiber orientation in injection molded SFT composites. This model accounts for the effects of both hydrodynamics and fiber-fiber interactions in order to give a prediction for a tensorial measure of fiber orientation. However, when applied to at least some classes of LFTs, this model does not match all components of experimental fiber orientation tensor data. In order to address this shortcoming of the model, we hypothesize that Folgar and Tucker's phenomenological treatment of the effects of fiber-fiber interactions with an isotropic rotary diffusion contribution to the rate of change of orientation is insufficient for materials with longer fibers. Instead, this work develops a fiber orientation model that incorporates anisotropic rotary diffusion (ARD). From kinetic theory we derive a general family of evolution equations for the second-order orientation tensor, correcting errors in earlier treatments, and identify a specific equation that is useful for predicting orientation in LFTs. The amount of diffusivity in this model used to approximate the effect of fiber-fiber interactions in each direction is assumed to depend on a second-order space tensor, which is taken to be a function of the orientation state and the rate of deformation. Also, concentrated fiber suspensions align more slowly with respect to strain than the Folgar-Tucker model predicts. Here, we borrow the technique of Wang et al. (2008) to incorporate this behavior in an objective fashion in this new model. Model parameters are selected by matching the experimental steady-state orientation in simple shear flow, and by requiring stable steady states and physically realizable solutions. Utilizing two separate techniques, we identify model parameters for three different materials. We then show that once a set of parameters that meets all previously established criteria has been identified, the differences in model behavior are negligible within that set of parameters. The final model with the proper parameter set is suitable for use in mold filling and other flow simulations, and does give improved predictions of fiber orientation for injection molded LFTs. Although significant fiber length degradation in LFTs has been observed both in literature and in this work, there are no quantitative fiber breakage models to predict either fiber length distributions or average fiber length measures. This work reviews the suspected causes of fiber breakage during the processing of discontinuously-reinforced thermoplastics, specifically LFTs, and introduces a phenomenological fiber breakage model based on the buckling force in a hydrodynamically loaded fiber. This breakage model is incorporated into a conservation equation for total fiber length, and a phenomenological model for the evolution of the fiber length distribution is developed. From this model, we also develop separate, approximate models for the evolution of both the number-average and weight-average fiber length measures. By applying these models to both a simple numerical example and a more complex mold-filling simulation, a qualitative agreement between experiment and prediction is observed. Although these results are promising, the breakage models have only been applied to the mold cavity in injection molding simulation. Both a literature review and our experimental data strongly suggest that the majority of fiber length degradation occurs in the earlier stages of injection molding, in the screw nozzle, runners, and gate. A better understanding of the melting and flow conditions upstream of the mold cavity, the simulation of which is beyond the scope of this work, is needed before these breakage models can be properly applied to the entire injection molding process. (Abstract shortened by UMI.)
2013-10-31
plates . Dental stone cement (Coecal™ Type III Dental Stone GC America Inc, Alsip, IL) was mixed with distilled water (3:1 w/v ratio) and shaped into a...mold measured 20 mm in height. At each end of the cementmolds two stainless steel plates , 2 mm thickwere at tached. Each of these platesweremanufactured...using small hole electri cal discharge machining (EDM). Each plate was patterned with 136 holes, each of 700 μm diameter. Fig. 2A C shows the mold
DOE Office of Scientific and Technical Information (OSTI.GOV)
2009-10-14
EMTA-NLA is a computer program for analyzing the nonlinear stiffness, strength, and thermo-elastic properties of discontinuous fiber composite materials. Discontinuous fiber composites are chopped-fiber reinforced polymer materials that are formed by injection molding or compression molding techniques. The fibers tend to align during forming as the composite flows and fills the mold. EMTA-NLA can read the fiber orientation data from the molding software, Autodesk Moldflow Plastics Insight, and calculate the local material properties for accurately analyzing the warpage, stiffness, and strength of the as-formed composite part using the commercial NLA software. Therefore, EMTA-NLA is a unique assembly of mathematical algorithmsmore » that provide a one-of-a-kind composites constitutive model that links these two powerful commercial software packages.« less
On the use of topology optimization for improving heat transfer in molding process
NASA Astrophysics Data System (ADS)
Agazzi, A.; LeGoff, R.; Truc-Vu, C.
2016-10-01
In the plastic industry, one of the key factor is to control heat transfer. One way to achieve that goal is to design an effective cooling system. But in some area of the mold, where it is not possible to design cooling system, the use of a highly conductive material, such as copper pin, is often used. Most of the time, the location, the size and the quantity of the copper pin are made by empirical considerations, without using optimization procedures. In this article, it is proposed to use topology optimization, in order to improve transient conductive heat transfer in an injection/blowing mold. Two methodologies are applied and compared. Finally, the optimal distribution of cooper pin in the mold is given.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nguyen, Ba Nghiep; Fifield, Leonard S.; Wollan, Eric J.
2015-11-13
During the last quarter of FY 2015, the following technical progress has been made toward project milestones: 1) PlastiComp used the PlastiComp direct in-line (D-LFT) Pushtrusion system to injection mold 40 30wt% LCF/PP parts with ribs, 40 30wt% LCF/PP parts without ribs, 10 30wt% LCF/PA66 parts with ribs, and 35 30wt% LCF/PA66 parts without ribs. In addition, purge materials from the injection molding nozzle were obtained for fiber length analysis, and molding parameters were sent to PNNL for process modeling. 2) Magna cut samples at four selected locations (named A, B, C and D) from the non-ribbed Magna-molded parts basedmore » on a plan discussed with PNNL and the team and shipped these samples to Virginia Tech for fiber orientation and length measurements. 3) Virginia Tech started fiber orientation and length measurements for the samples taken from the complex parts using Virginia Tech’s established procedure. 4) PNNL and Autodesk built ASMI models for the complex parts with and without ribs, reviewed process datasheets and performed preliminary analyses of these complex parts using the actual molding parameters received from Magna and PlastiComp to compare predicted to experimental mold filling patterns. 5) Autodesk assisted PNNL in developing the workflow to use Moldflow fiber orientation and length results in ABAQUS® simulations. 6) Autodesk advised the team on the practicality and difficulty of material viscosity characterization from the D-LFT process. 7) PNNL developed a procedure to import fiber orientation and length results from a 3D ASMI analysis to a 3D ABAQUS® model for structural analyses of the complex part for later weight reduction study. 8) In discussion with PNNL and Magna, Toyota developed mechanical test setups and built fixtures for three-point bending and torsion tests of the complex parts. 9) Toyota built a finite element model for the complex parts subjected to torsion loading. 10) PNNL built the 3D ABAQUS® model of the complex ribbed part subjected to 3-point bending. 11) University of Illinois (Prof. C.L. Tucker) advised the team on fiber orientation and fiber length measurement options, modeling issues as well as interpretation of data.« less
Applications of thin carbon coatings and films in injection molding
NASA Astrophysics Data System (ADS)
Cabrera, Eusebio Duarte
In this research, the technical feasibility of two novel applications of thin carbon coatings is demonstrated. The first application consists of using thin carbon coatings on molds for molding ultra-thin plastic parts (<0.5 mm thickness) with lower pressures by promoting wall slip. The second application consists of a new approach to provide electromagnetic interference (EMI) shielding for plastic parts using in mold coated nanoparticle thin films or nanopapers to create a conductive top layer. During this research, the technical feasibility of a new approach was proven which provides injection molding of ultra-thin parts at lower pressures, without the need of fast heating/fast cooling or other expensive mold modification. An in-house developed procedure by other members of our group, was employed for coating the mold surface using chemical vapor deposition (CVD) resulting in a graphene coating with carbide bonding to the mold surface. The coating resulted in a significant decrease of surface friction and consequently easiness of flow when compared to their uncoated counterparts. Thermoplastic polymers and their composites are a very attractive alternative but are hindered by the non-conductive nature of polymers. There are two general approaches used to date to achieve EMI shielding for plastic products. One is to spray a conductive metal coating onto the plastic surface forming a layer that must maintain its shielding effectiveness (SE), and its adhesion to the plastic throughout the expected life of the product. However, metal coatings add undesirable weight and tend to corrode over time. Furthermore, scratching the coating may create shielding failure; therefore, a protective topcoat may be required. The other approach is to use polymer composites filled with conductive fillers such as carbon black (CB), carbon nanofiber (CNF), and carbon nanotube (CNT). While conductive fillers may increase the electrical conductivity of polymer composites, the loading of such fillers often cannot reach a high level (<10 wt. %) due to the dispersion difficulty and exponential increase in viscosity. In this research, the technical feasibility of a new approach to EMI shielding of plastic parts was proven using in mold coated nanoparticle thin films or nanopapers to create a conductive top layer. For many years, in-mold coating (IMC) has been commercially applied to Sheet Molding Compound (SMC) compression molded parts, as an environmentally friendly approach to improve its surface quality and provide the required conductivity for electrostatic painting using carbon black (CB). Such process can also be applied to injection molding for creating a top conductive layer. Increasing the amount of CB will increase the surface conductivity of the coated part, thus improving the paint transfer efficiency. However the CB levels needed to achieve the conductivity levels required for achieving EMI shielding would make the coating viscosity too large for proper coating. Nanopaper based composites are excellent candidates for EMI shielding because of the nanopaper's high concentration of carbon nanofibers (CNFs) (~2 wt% to 10 wt% depending on nanopaper/thermoplastic thickness and 71wt.% to 79wt.% in the nanopaper itself after resin infusion) and high conductivity of the nanopaper. Instead of premixing nanoparticles with IMC coating, nanopapers enable the use of low viscosity IMC without CB coating to impregnate the CNF network in order to reach high electrical conductivity and EMI shielding values. (Abstract shortened by UMI.).
OVERALL VIEW OF SOUTHERN DUCTILE'S PATTERN REPAIR SHOP, SHOWING A ...
OVERALL VIEW OF SOUTHERN DUCTILE'S PATTERN REPAIR SHOP, SHOWING A SPANISH-MADE FORADIA BORING MACHINE IN THE FOREGROUND. - Southern Ductile Casting Company, Mold Making, 2217 Carolina Avenue, Bessemer, Jefferson County, AL
Plastic Injection Quality Controlling Using the Lean Six Sigma and FMEA Method
NASA Astrophysics Data System (ADS)
Mansur, A.; Mu'alim; Sunaryo
2016-01-01
PT. Yogya Presisi Teknikatama Industri (PT. YPTI) is a mold, precision part, and plastic injection maker company. One of the obstacles faced by the company is the high level of nonconformity on its production results. The waste on production process can be identified and classified into four types, i.e.: a). during the process of injection molding machines, b). finishing and cutting processes, c). quality control process and d). the packaging process. The objectives of this research are minimizing the defective goods and reducing the waste using Lean Six Sigma and FMEA approaches, especially for Bush product. From the analysis result, defective types on Bush product can be classified into bubble, speckle, short shoot, sunken, sink mark, over-cut, flashing, and discolor. Based on the attributes data on Bush product, the DPMO score is 988.42 or the sigma level is 4.6, While the DPMO score on the variable data on each dimension i.e.: a). Slit width on the bottom side has DPMO score of 30119 (sigma level 3.37), b). Diameter of the circle on the top side has DPMO score of 392294 (sigma level 1.77), c). Product thickness on the top side has DPMO score of 70474 (sigma level 2.97), d). Product height has DPMO score of 82107 (sigma level 2.89), product thickness on the bottom side has DPMO score of 24448 (sigma level 3.47), and f). Diameter of the circle on the bottom side has DPMO score of 24448 (sigma level 3.47). The highest RPN score on the dominant types of product defects which needs improvement are the defective goods of bubble type has RPN score of 729, flashing and the molten material out on the heating channel has RPN score of 384, over cutting has RPN score of 324 and sink mark has RPN score of 270. The recommendations for improvement that can be given from this research are making checklist for maintenance and production monitoring, enhancing work supervision and inspection, as well as improving the environment and work stations.
Investigation of CFRP in aerospace field and improvement of the molding accuracy by using autoclave
NASA Astrophysics Data System (ADS)
Minamisawa, Takunori
2017-07-01
In recent years, CFRP (Carbon Fiber Reinforced Plastic) has come to be used in a wide range of industries such as sporting goods, fishing tackle and cars because it has a large number of advantages. In this situation, even the passenger aircraft industry also pays attention to the material. CFRP is an ideal material for airplanes because it has a lot of advantages such as light weight and strong, chemical resistance and corrosion resistance. Generally, autoclave is used for molding CFRP in the field of aerospace engineering. Autoclave is a machine that can mold a product by heating and pressurizing material in an evacuated bag. What is examined in this paper is an observation on handmade CFRP by a polarizing microscope. In addition, mechanical characteristics were investigated. Furthermore, an improvement of accuracy in CFRP molding using an autoclave is suggested from viewpoint of thermodynamics.
JPRS Report. Science & Technology: Japan.
1988-12-09
Molding Technology [Takashi Kasai , Akihiko Hirota; KIKAI TO KOGU, May 88] 106 Injection Molding Technology [Toshiyuki Iwahashi; KIKAI TO KOGU, May 88...Development Shu Isa -Planning Office Fumio Sato —Control Office Shizuka Kudo - Patent Office Taro Inoue —Technical Information Office Takeshi...the possibility that a more serious situation could occur. Fumio Kaneko, who is in charge of the marine sector, joined the company in 1971 after
Kramschuster, Adam; Turng, Lih-Sheng
2010-02-01
In this research, injection molding was combined with a novel material combination, supercritical fluid processing, and particulate leaching techniques to produce highly porous and interconnected structures that have the potential to act as scaffolds for tissue engineering applications. The foamed structures, molded with polylactide (PLA) and polyvinyl alcohol (PVOH) with salt as the particulate, were processed without the aid of organic solvents, which can be detrimental to tissue growth. The pore size in the scaffolds is controlled by salt particulates and interconnectivity is achieved by the co-continuous blending morphology of biodegradable PLA matrix with water-soluble PVOH. Carbon dioxide (CO(2)) at the supercritical state is used to serve as a plasticizer, thereby imparting moldability of blends even with an ultra high salt particulate content, and allows the use of low processing temperatures, which are desirable for temperature-sensitive biodegradable polymers. Interconnected pores of approximately 200 microm in diameter and porosities of approximately 75% are reported and discussed.
NASA Astrophysics Data System (ADS)
Koizumi, Koji; Charles, Ted; de Keyser, Hendrik
Phenolic Molding Compounds continue to exhibit well balanced properties such as heat resistance, chemical resistance, dimensional stability, and creep resistance. They are widely applied in electrical, appliance, small engine, commutator, and automotive applications. As the focus of the automotive industry is weight reduction for greater fuel efficiency, phenolic molding compounds become appealing alternatives to metals. Current market volumes and trends, formulation components and its impact on properties, and a review of common manufacturing methods are presented. Molding processes as well as unique advanced techniques such as high temperature molding, live sprue, and injection/compression technique provide additional benefits in improving the performance characterisitics of phenolic molding compounds. Of special interest are descriptions of some of the latest innovations in automotive components, such as the phenolic intake manifold and valve block for dual clutch transmissions. The chapter also characterizes the most recent developments in new materials, including long glass phenolic molding compounds and carbon fiber reinforced phenolic molding compounds exhibiting a 10-20-fold increase in Charpy impact strength when compared to short fiber filled materials. The role of fatigue testing and fatigue fracture behavior presents some insight into long-term reliability and durability of glass-filled phenolic molding compounds. A section on new technology outlines the important factors to consider in modeling phenolic parts by finite element analysis and flow simulation.
Forming of complex-shaped composite tubes using optimized bladder-assisted resin transfer molding
NASA Astrophysics Data System (ADS)
Schillfahrt, Christian; Fauster, Ewald; Schledjewski, Ralf
2018-05-01
This work addresses the manufacturing of tubular composite structures by means of bladder-assisted resin transfer molding using elastomeric bladders. In order to achieve successful processing of such parts, knowledge of the compaction and impregnation behavior of the textile preform is vital. Hence, efficient analytical models that describe the influencing parameters of the preform compaction and filling stage were developed and verified through practical experiments. A process window describing optimal and critical operating conditions during the injection stage was created by evaluating the impact of the relevant process pressures on filling time. Finally, a cascaded injection procedure was investigated that particularly facilitates the manufacturing of long composite tubes.
Boonruksa, Pongsit; Bello, Dhimiter; Zhang, Jinde; Isaacs, Jacqueline A; Mead, Joey L; Woskie, Susan R
2017-07-01
In this study, the characteristics of airborne particles generated during injection molding and grinding processes of carbon nanotube reinforced polycarbonate composites (CNT-PC) were investigated. Particle number concentration, size distribution, and morphology of particles emitted from the processes were determined using real-time particle sizers and transmission electron microscopy. The air samples near the operator's breathing zone were collected on filters and analyzed using scanning electron microscope for particle morphology and respirable fiber count. Processing and grinding during recycling of CNT-PC released airborne nanoparticles (NPs) with a geometric mean (GM) particle concentration from 4.7 × 10 3 to 1.7 × 10 6 particles/cm 3 . The ratios of the GM particle concentration measured during the injection molding process with exhaust ventilation relative to background were up to 1.3 (loading), 1.9 (melting), and 1.4 (molding), and 101.4 for grinding process without exhaust ventilation, suggesting substantial NP exposures during these processes. The estimated mass concentration was in the range of 1.6-95.2 μg/m 3 . Diverse particle morphologies, including NPs, NP agglomerates, particles with embedded or protruding CNTs and fibers, were observed. No free CNTs were found during any of the investigated processes. The breathing zone respirable fiber concentration during the grinding process ranged from non-detectable to 0.13 fiber/cm 3 . No evidence was found that the emissions were affected by the number of recycling cycles. Institution of exposure controls is recommended during these processes to limit exposures to airborne NPs and CNT-containing fibers.
Lobell, G.M.
1958-02-11
This patent is drawn to an injection molding apparatus for producing a tube closed at one end wherein the normally unsupported end of the core located in the cavity during the injection of the molten material to fill the space between the core and cavity wall, which supporting means is automatically removed from operation during the forming of the closed end of the tube. This support means is a plug extending through the end of the core into a recess in the bottom of the cavity where the closed end of the tube is to be formed. The plug is spring pressed into said recess and is forced out of the recess by a slidable bushing at the top of the cavity which is moved against the force of the spring by the molten material when it fills the uppormost open end portion of the cavity, thereby permitting the closed end of the tube to be formed.
Baba, Masayuki; Matsumoto, Keitaro; Yamasaki, Naoya; Shindo, Hisakazu; Yano, Hiroshi; Matsumoto, Megumi; Otsubo, Ryota; John Lawn, Murray; Matsuo, Naoto; Yamamoto, Ikuo; Hidaka, Shigekazu; Nagayasu, Takeshi
Fine-needle aspiration cytology (FNAC) is a challenging and risky procedure for inexperienced clinicians to perform because of the proximity of the thyroid to the jugular veins, carotid arteries, and trachea. A phantom model for transfixion practice would help train clinicians in FNAC. To fabricate a tailored phantom with consideration for authenticity of size, touch, feel, and ultrasonographic (US) characteristics. A three-dimensional (3D) digital model of the human neck was reconstructed from computed tomography data of a subject. This model was used to create 3D-printed templates for various organs that require US visualization. The templates were injected with polymers that provided similar degrees of ultrasound permeability as the corresponding organs. For fabrication of each organ, the respective molds of organs, blood vessels, thyroid gland, and tumor were injected with the material. The fabricated components were then removed from the templates and colored. Individual components were then positioned in the neck mold, and agar gel was poured in. The complete phantom was then removed from the mold. Thereafter, 45 medical doctors and students performed ultrasound-guided FNAC using the phantom, following which they were queried regarding the value of the phantom. The structure, US characteristics, and elasticity of the phantom were similar to those of the human subject. In the survey, all 45 participants replied that they found the phantom useful for FNAC training, and 30 medical students professed increased interest in thyroid diseases after using the phantom. We successfully fabricated a tailored thyroid gland phantom for transfixion practice. As most of the phantom parts are injected in molds fabricated using a 3D printer, they can be easily reproduced once the molds are fabricated. This phantom is expected to serve as an effective and fully tailored training model for practicing thyroid gland transfixion. Copyright © 2017. Published by Elsevier Inc.
Zheng, Yaqi; Zhang, Dapeng; Qin, Tian; Wu, Guofeng
2016-06-01
Presurgical correction of severe nasal deformities before cheiloplasty is often recommended for infants with cleft lip and palate. This article describes an approach for the computer-aided design and fabrication of a nasal molding stent. A 3-dimensional photogrammetric system was used to obtain the shape information of the nosewing that was then built as the nostril support for the nasal molding stent. The stent was fabricated automatically with a rapid prototyping machine. This technique may be an alternative approach to presurgical nasal molding in the clinic. Moreover, the patient's nasal morphology can be saved as clinical data for future study. Copyright © 2016 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.
Pervez, Hifsa; Mozumder, Mohammad S.; Mourad, Abdel-Hamid I.
2016-01-01
The current study presents an investigation on the optimization of injection molding parameters of HDPE/TiO2 nanocomposites using grey relational analysis with the Taguchi method. Four control factors, including filler concentration (i.e., TiO2), barrel temperature, residence time and holding time, were chosen at three different levels of each. Mechanical properties, such as yield strength, Young’s modulus and elongation, were selected as the performance targets. Nine experimental runs were carried out based on the Taguchi L9 orthogonal array, and the data were processed according to the grey relational steps. The optimal process parameters were found based on the average responses of the grey relational grades, and the ideal operating conditions were found to be a filler concentration of 5 wt % TiO2, a barrel temperature of 225 °C, a residence time of 30 min and a holding time of 20 s. Moreover, analysis of variance (ANOVA) has also been applied to identify the most significant factor, and the percentage of TiO2 nanoparticles was found to have the most significant effect on the properties of the HDPE/TiO2 nanocomposites fabricated through the injection molding process. PMID:28773830
Bärwinkel, Stefanie; Seidel, Andreas; Hobeika, Sven; Hufen, Ralf; Mörl, Michaela; Altstädt, Volker
2016-01-01
Morphology formation during compounding, as well as injection molding of blends containing 60 wt % polycarbonate (PC) and 40 wt % polybutadiene rubber-modified styrene-acrylonitrile copolymers (ABS), has been investigated by transmission electron microscopy (TEM). Profiles of the blend morphology have been recorded in injection-molded specimens and significant morphology gradients observed between their skin and core. A <10 µm thick surface layer with strongly dispersed and elongated nano-scale (streak-like) styrene acrylonitrile (SAN) phases and well-dispersed, isolated SAN-grafted polybutadiene rubber particles is followed by a 50–150 µm thick skin layer in which polymer morphology is characterized by lamellar SAN/ABS phases. Thickness of these lamellae increases with the distance from the specimen’s surface. In the core of the specimens the SAN-grafted polybutadiene rubber particles are exclusively present within the SAN phases, which exhibit a much coarser and less oriented, dispersed morphology compared to the skin. The effects of the viscosity of the SAN in the PC/ABS blends on phase morphologies and correlations with fracture mechanics in tensile and impact tests were investigated, including scanning electron microscopy (SEM) assessment of the fracture surfaces. A model explaining the mechanisms of morphology formation during injection molding of PC/ABS blends is discussed. PMID:28773780
NASA Astrophysics Data System (ADS)
Joo, Yeun-Ah; Kim, Young-Kyun; Yoon, Tae-Sik; Lee, Kee-Ahn
2018-03-01
This study investigated the microstructure and high temperature oxidation property of Fe-Cr-B metal/ceramic composite manufactured using powder injection molding process. Observations of initial microstructure showed a unique structure where α-Fe and (Cr, Fe)2B form a continuous three-dimensional network. High temperature oxidation tests were performed at 900, 1000 and 1100 °C, for 24 h, and the oxidation weight gain according to each temperature condition was 0.13, 0.84 and 6.4 mg/cm2, respectively. The oxidation results according to time at 900 and 1000 °C conditions represented parabolic curves, and at 1100 °C condition formed a rectilinear curve. Observation and phase analysis results of the oxides identified Cr2O3 and SiO2 at 900 and 1000 °C. In addition to Cr2O3 and SiO2, CrBO3 and FeCr2O4 formed due to phase decomposition of boride were identified at 1100 °C. Based on the findings above, this study suggested the high temperature oxidation mechanism of Fe-Cr-B metal/ceramic composite manufactured using powder injection molding, and the possibility of its application as a high temperature component material was also discussed.
Durability Characteristics Analysis of Plastic Worm Wheel with Glass Fiber Reinforced Polyamide.
Kim, Gun-Hee; Lee, Jeong-Won; Seo, Tae-Il
2013-05-10
Plastic worm wheel is widely used in the vehicle manufacturing field because it is favorable for weight lightening, vibration and noise reduction, as well as corrosion resistance. However, it is very difficult for general plastics to secure the mechanical properties that are required for vehicle gears. If the plastic resin is reinforced by glass fiber in the fabrication process of plastic worm wheel, it is possible to achieve the mechanical properties of metallic material levels. In this study, the mechanical characteristic analysis of the glass-reinforced plastic worm wheel, according to the contents of glass fiber, is performed by analytic and experimental methods. In the case of the glass fiber-reinforced resin, the orientation and contents of glass fibers can influence the mechanical properties. For the characteristic prediction of plastic worm wheel, computer-aided engineering (CAE) analysis processes such as structural and injection molding analysis were executed with the polyamide resin reinforcement glass fiber (25 wt %, 50 wt %). The injection mold for fabricating the prototype plastic worm wheel was designed and made to reflect the CAE analysis results. Finally, the durability of prototype plastic worm wheel fabricated by the injection molding process was evaluated by the experimental method and the characteristics according to the glass fiber contents.
Durability Characteristics Analysis of Plastic Worm Wheel with Glass Fiber Reinforced Polyamide
Kim, Gun-Hee; Lee, Jeong-Won; Seo, Tae-Il
2013-01-01
Plastic worm wheel is widely used in the vehicle manufacturing field because it is favorable for weight lightening, vibration and noise reduction, as well as corrosion resistance. However, it is very difficult for general plastics to secure the mechanical properties that are required for vehicle gears. If the plastic resin is reinforced by glass fiber in the fabrication process of plastic worm wheel, it is possible to achieve the mechanical properties of metallic material levels. In this study, the mechanical characteristic analysis of the glass-reinforced plastic worm wheel, according to the contents of glass fiber, is performed by analytic and experimental methods. In the case of the glass fiber-reinforced resin, the orientation and contents of glass fibers can influence the mechanical properties. For the characteristic prediction of plastic worm wheel, computer-aided engineering (CAE) analysis processes such as structural and injection molding analysis were executed with the polyamide resin reinforcement glass fiber (25 wt %, 50 wt %). The injection mold for fabricating the prototype plastic worm wheel was designed and made to reflect the CAE analysis results. Finally, the durability of prototype plastic worm wheel fabricated by the injection molding process was evaluated by the experimental method and the characteristics according to the glass fiber contents. PMID:28809248
Use of Fiber Reinforced Plastics in the Marine Industry
1990-09-06
surface should be molded or machined into the hull. 129 Design of Detais Marine Composites With single skin laminates, holes are normally drilled...SH), FIre and Toxicity Test Methods and Qualification Procedure for Composite Material Systems Used In Hull, Machinely and Structural Applications...date on the state of the marine composites industry and should for many years serve as an excellent reference and source book for designers and
Feasibility study of custom manufacturing methods of ionic polymer-metal composite sensors
NASA Astrophysics Data System (ADS)
Nelson, Shelby E.
The ability to create an ion exchange membrane with any shape or thickness through custom manufacturing techniques is highly desirable in ionic polymer-metal composite (IPMC) research. This is caused by the poor selection and limited availability of certain thicknesses of commercial ion exchange membranes. The objective of this study is to determine the feasibility of manufacturing custom ion exchange membranes for IPMC sensors. The manufacturing methods used in this study are extrusion, injection molding, and hot pressing. A commercial membrane from Golden Energy Fuel Cells (GEFC) is used as a comparison. After the membranes are fabricated, certain properties of the membranes are tested throughout each processing stage to determine if they are suitable to be developed into IPMCs. The three processing stages are pre-activation, activation (hydrated and dehydrated), and IPMC. It was observed that the stiffness of the membranes increased from pre-activation to activation and decreased from activation to IPMC. A more flexible membrane in an IPMC allows for larger cation displacement within the membrane. The extruded and injection molded membranes showed the most potential with having the lowest stiffness of all the samples; however, they were not able to be made into IPMCs due to repeated membrane failures in the primary plating process. Gas accumulated between the layers that formed in the membranes due to the extrusion and injection molding cooling process during manufacturing. The hot pressed membrane was the only custom manufactured membrane to be fully processed into an IPMC. The hot pressed and GEFC IPMC sensors were operated at 1 Hz, 5 Hz, and 10 Hz frequencies with the GEFC IPMC producing the strongest output voltage signal. While the extruded and injection molded membranes showed potential to become IPMCs with their high water uptake percentage, high ion exchange capacity, and low stiffness, more development is needed within the manufacturing process to make a uniform sample that does not fail during chemical processing.
Flamant, Quentin; Caravaca, Carlos; Meille, Sylvain; Gremillard, Laurent; Chevalier, Jérôme; Biotteau-Deheuvels, Katia; Kuntz, Meinhard; Chandrawati, Rona; Herrmann, Inge K; Spicer, Christopher D; Stevens, Molly M; Anglada, Marc
2016-12-01
Due to their outstanding mechanical properties and excellent biocompatibility, zirconia-toughened alumina (ZTA) ceramics have become the gold standard in orthopedics for the fabrication of ceramic bearing components over the last decade. However, ZTA is bioinert, which hampers its implantation in direct contact with bone. Furthermore, periprosthetic joint infections are now the leading cause of failure for joint arthroplasty prostheses. To address both issues, an improved surface design is required: a controlled micro- and nano-roughness can promote osseointegration and limit bacterial adhesion whereas surface porosity allows loading and delivery of antibacterial compounds. In this work, we developed an integrated strategy aiming to provide both osseointegrative and antibacterial properties to ZTA surfaces. The micro-topography was controlled by injection molding. Meanwhile a novel process involving the selective dissolution of zirconia (selective etching) was used to produce nano-roughness and interconnected nanoporosity. Potential utilization of the porosity for loading and delivery of antibiotic molecules was demonstrated, and the impact of selective etching on mechanical properties and hydrothermal stability was shown to be limited. The combination of injection molding and selective etching thus appears promising for fabricating a new generation of ZTA components implantable in direct contact with bone. Zirconia-toughened alumina (ZTA) is the current gold standard for the fabrication of orthopedic ceramic components. In the present work, we propose an innovative strategy to provide both osseointegrative and antibacterial properties to ZTA surfaces: we demonstrate that injection molding allows a flexible design of surface micro-topography and can be combined with selective etching, a novel process that induces nano-roughness and surface interconnected porosity without the need for coating, avoiding reliability issues. These surface modifications have the potential to improve osseointegration. Furthermore, our results show that the porosity can be used for drug delivery and suggest that the etched surface could reduce bacterial adhesion. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Preparation and Characterization of PETI-330/Multiwalled Carbon Nanotube Composites
NASA Technical Reports Server (NTRS)
Ghose, Sayata; Watson, Kent A.; Working, Dennis C.; Delozier, Donavon M.; Criss, Jim M.; Siochi, Emilie J.; Connell, John W.
2005-01-01
As part of an ongoing effort to incorporate multi-functionality into advanced composites, blends of PETI-330 and multi-walled carbon nanotubes (MWCNTs) were prepared, characterized and fabricated into moldings. The PETI-330/MWCNT mixtures were prepared at concentrations ranging from 3 to 25 weight percent by dry mixing the components in a ball mill. The resulting powders were characterized for degree of mixing, thermal and rheological properties. Based on the characterization results, PETI-330/MWCNT samples were scaled up to approx. 300 g and used to fabricate moldings 10.2 cm x 15.2 cm x 0.32 cm thick. The moldings were fabricated by injecting the mixtures at 260-280 C into a stainless steel tool followed by curing for 1 h at 371 C. The tool was designed to impart high shear during the injection process in an attempt to achieve some alignment of the MWCNTs in the flow direction. Good quality moldings were obtained that were subsequently characterized for thermal, mechanical and electrical properties. The degree of dispersion and alignment of the MWCNTs were investigated using high-resolution scanning electron microscopy and Raman spectroscopy. The preparation and preliminary characterization of PETI-330/MWCNT composites will be discussed. Keywords: phenylethynyl terminated imides, high temperature polymers, nanocomposites,
Gastroresistant capsular device prepared by injection molding.
Zema, Lucia; Loreti, Giulia; Melocchi, Alice; Maroni, Alessandra; Palugan, Luca; Gazzaniga, Andrea
2013-01-20
In the present work, the possibility of manufacturing by injection molding (IM) a gastro-resistant capsular device based on hydroxypropyl methyl cellulose acetate succinate (HPMCAS) was investigated. By performing as an enteric soluble container, such a device may provide a basis for the development of advantageous alternatives to coated dosage forms. Preliminarily, the processability of the selected thermoplastic polymer was evaluated, and the need for a plasticizer (polyethylene glycol 1500) in order to counterbalance the glassy nature of the molded items was assessed. However, some critical issues related to the physical/mechanical stability (shrinkage and warpage) and opening time of the device after the pH change were highlighted. Accordingly, an in-depth formulation study was carried out taking into account differing release modifiers potentially useful for enhancing the dissolution/disintegration rate of the capsular device at intestinal pH values. Capsule prototypes with thickness of 600 and 900 μm containing Kollicoat(®) IR and/or Explotab(®) CLV could be manufactured, and a promising performance was achieved with appropriate gastric resistance in pH 1.2 medium and break-up in pH 6.8 within 1h. These results would support the design of a dedicated mold for the development of a scalable manufacturing process. Copyright © 2012 Elsevier B.V. All rights reserved.
Fast and cheap fabrication of molding tools for polymer replication
NASA Astrophysics Data System (ADS)
Richter, Christiane; Kirschner, Nadine; Worgull, Matthias; Rapp, Bastian E.
2017-02-01
Polymer replication is a prerequisite for low-cost microstructure components for consumer and end user market. The production of cost-effective microstructure in polymers requires metal molding tools which are often fabricated by direct structuring methods like milling or laser machining both of which are time-consuming and cost-intensive. We present an alternative fabrication method based on replication processes which allows the cheap ( 50 €) and fast ( 12 h) replication of complex microstructures into metal. The process comprises three steps: 1. Generation of the microstructure in a photoresist via lithography. 2. Casting of the structure into a high-temperature silicone which serves as original mold for creation of the metal molding tool. 3. Melting of an eutectic alloy of Sn, Ag and Cu under light pressure directly inside of the silicone within an oven. After cooling to room temperature the metal molding tool can be used for polymer replication into conventional thermoplastic polymers. As a first example we structured polymethylmethacrylate (PMMA) foils with a thickness of 1 mm via hot embossing and feature sizes of 100 μm could be replicated with high fidelity.
Qanungo, Anchal; Aras, Meena Ajay; Chitre, Vidya; Coutinho, Ivy; Rajagopal, Praveen; Mysore, Ashwin
2016-01-01
Purpose: The aim of this in vivo study was to compare the single-step border molding technique using injectable heavy viscosity addition silicone with sectional border molding technique using low fusing impression compound by evaluating the retention of heat cure trial denture bases. Materials and Methods: Ten completely edentulous patients in need of prostheses were included in this study. Two border molding techniques, single-step (Group 1) and sectional (Group 2), were compared for retention. Both border molding techniques were performed in each patient. In both techniques, definitive wash impression was made with light viscosity addition silicone. The final results were analyzed using paired t-test to determine whether significant differences existed between the groups. Results: The t-value (3.031) infers that there was a significant difference between Group 1 and Group 2 (P = 0.014). The retention obtained in Group 2 (mean = 9.05 kgf) was significantly higher than that of Group 1 (mean = 8.26 kgf). Conclusion: Sectional border molding technique proved to be more retentive as compared to single-step border molding although clinically the retention appeared comparable. PMID:27746597
Development of New Laser Protective Dyes. Phase 2.
DYE LASERS, PROTECTION, LASERS, DYES , HAZARDS, SYNTHESIS, EYE SAFETY, OPTICAL MATERIALS, PLASTICS, LENSES, THERMAL STABILITY, CYANINE DYES , POLYCARBONATES, INJECTION MOLDING, NEAR INFRARED RADIATION, FLUORENES.
A senior manufacturing laboratory for determining injection molding process capability
NASA Technical Reports Server (NTRS)
Wickman, Jerry L.; Plocinski, David
1992-01-01
The following is a laboratory experiment designed to further understanding of materials science. This subject material is directed at an upper level undergraduate/graduate student in an Engineering or Engineering Technology program. It is assumed that the student has a thorough understanding of the process and quality control. The format of this laboratory does not follow that which is normally recommended because of the nature of process capability and that of the injection molding equipment and tooling. This laboratory is instead developed to be used as a point of departure for determining process capability for any process in either a quality control laboratory or a manufacturing environment where control charts, process capability, and experimental or product design are considered important topics.
Recovery of polypropylene from spent lead-acid batteries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stout, M.E.
1995-12-31
The recovery of the constituent components of spent lead-acid batteries was pioneered in the early 1970`s by M.A. Industries, Inc. M.A.`s main reason for research and development in this area was to recover the polypropylene casings for use as feed stock in their injection molding plants. At that time spent and reject casings were either disposed of or being fed with the lead bearing materials into the smelting process. M.A. has since developed, built and operated a plant for the conversion of scrap casing into reusable copolymer resins. The system is composed of washing, sizing, extrusion and pelletizing the polymermore » into a form which is ready to be injection molded into new products.« less
NASA Astrophysics Data System (ADS)
Mebrahitom, A.; Rizuan, D.; Azmir, M.; Nassif, M.
2016-02-01
High speed milling is one of the recent technologies used to produce mould inserts due to the need for high surface finish. It is a faster machining process where it uses a small side step and a small down step combined with very high spindle speed and feed rate. In order to effectively use the HSM capabilities, optimizing the tool path strategies and machining parameters is an important issue. In this paper, six different tool path strategies have been investigated on the surface finish and machining time of a rectangular cavities of ESR Stavax material. CAD/CAM application of CATIA V5 machining module for pocket milling of the cavities was used for process planning.
NASA Technical Reports Server (NTRS)
1980-01-01
General Magnaplate Corporation's pharmaceutical machine is used in the industry for high speed pressing of pills and capsules. Machine is automatic system for molding glycerine suppositories. These machines are typical of many types of drug production and packaging equipment whose metal parts are treated with space spinoff coatings that promote general machine efficiency and contribute to compliance with stringent federal sanitation codes for pharmaceutical manufacture. Collectively known as "synergistic" coatings, these dry lubricants are bonded to a variety of metals to form an extremely hard slippery surface with long lasting self lubrication. The coatings offer multiple advantages; they cannot chip, peel or be rubbed off. They protect machine parts from corrosion and wear longer, lowering maintenance cost and reduce undesired heat caused by power-robbing friction.
Effect of mold designs on molten metal behaviour in high-pressure die casting
NASA Astrophysics Data System (ADS)
Ibrahim, M. D.; Rahman, M. R. A.; Khan, A. A.; Mohamad, M. R.; Suffian, M. S. Z. M.; Yunos, Y. S.; Wong, L. K.; Mohtar, M. Z.
2017-04-01
This paper presents a research study conducted in a local automotive component manufacturer that produces aluminium alloy steering housing local and global markets. This study is to investigate the effect of design modification of mold in die casting as to improve the production rate. Design modification is carried out on the casting shot of the mold. Computer flow simulation was carried out to study the flow of molten metal in the mold with respect to the mold design modification. The design parameters of injection speed, die temperature and clamping force has been included in the study. The result of the simulation showed that modifications of casting shot give significant impact towards the molten flow behaviour in casting process. The capabilities and limitations of die casting process simulation to conduct defect analysis had been optimized. This research will enhance the efficiency of the mass production of the industry of die casting with the understanding of defect analysis, which lies on the modification of the mold design, a way early in its stages of production.
USDA-ARS?s Scientific Manuscript database
Dried Distillers Grain with Solubles (DDGS) is evaluated as a bio-based fiber reinforcement. Injection molded composites of high density polyethylene (HDPE), 25% by weight of DDGS, and either 5% of 0% by weight of maleated polyethylene (MAPE) were produced by twin screw compounding and injection mo...
Effect of EPDM-g-MAH on properties of HDPE/OBC blends
NASA Astrophysics Data System (ADS)
Li, M.; Yu, L. Y.; Li, P. F.; Bin, Y. H.; Zhang, H. J.
2017-04-01
In this paper, we take the HDPE as the matrix material, OBC as the toughening material, and EDPM-g-MAH as the compatibility agent, HDPE/OBC/EPDM-g-MAH blends were prepared by high speed mixing, melt extrusion, injection molding and so on. The effects of OBC and EPDM-g-MAH on mechanical properties, crystalline properties, fracture surface structure and rheological properties of HDPE were analyzed by universal tensile tester, melt mass flow rate test machine, DSC and SEM. Experimental results show that: with the addition of EPDM-g-MAH, the notched impact strength of the blends increased first and then decreased; HDPE/OBC blend containing 4% EPDM-g-MAH, OBC dispersion in the matrix is more uniform, particle size is significantly refined, melt flow has some improvement, Compared with HDPE/OBC blend materials, notched impact strength and elongation at break increased by 41.07% and 107.28% respectively, the toughness of the blend was greatly improved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nguyen, Ba Nghiep; Fifield, Leonard S.; Wang, Jin
2016-06-01
This project aimed to integrate, optimize, and validate the fiber orientation and length distribution models previously developed and implemented in the Autodesk® Simulation Moldflow® Insight (ASMI) software package for injection-molded long-carbon-fiber (LCF) thermoplastic composite structures. The project was organized into two phases. Phase 1 demonstrated the ability of the advanced ASMI package to predict fiber orientation and length distributions in LCF/polypropylene (PP) and LCF/polyamide-6, 6 (PA66) plaques within 15% of experimental results. Phase 2 validated the advanced ASMI package by predicting fiber orientation and length distributions within 15% of experimental results for a complex three-dimensional (3D) Toyota automotive part injection-moldedmore » from LCF/PP and LCF/PA66 materials. Work under Phase 2 also included estimate of weight savings and cost impacts for a vehicle system using ASMI and structural analyses of the complex part. The present report summarizes the completion of Phases 1 and 2 work activities and accomplishments achieved by the team comprising Pacific Northwest National Laboratory (PNNL); Purdue University (Purdue); Virginia Polytechnic Institute and State University (Virginia Tech); Autodesk, Inc. (Autodesk); PlastiComp, Inc. (PlastiComp); Toyota Research Institute North America (Toyota); Magna Exteriors and Interiors Corp. (Magna); and University of Illinois. Figure 1 illustrates the technical approach adopted in this project that progressed from compounding LCF/PP and LCF/PA66 materials, to process model improvement and implementation, to molding and modeling LCF/PP and LCF/PA66 plaques. The lessons learned from the plaque study and the successful validation of improved process models for fiber orientation and length distributions for these plaques enabled the project to go to Phase 2 to mold, model, and optimize the 3D complex part.« less
Improved silicon carbide for advanced heat engines
NASA Technical Reports Server (NTRS)
Whalen, Thomas J.
1988-01-01
This is the third annual technical report for the program entitled, Improved Silicon Carbide for Advanced Heat Engines, for the period February 16, 1987 to February 15, 1988. The objective of the original program was the development of high strength, high reliability silicon carbide parts with complex shapes suitable for use in advanced heat engines. Injection molding is the forming method selected for the program because it is capable of forming complex parts adaptable for mass production on an economically sound basis. The goals of the revised program are to reach a Weibull characteristic strength of 550 MPa (80 ksi) and a Weibull modulus of 16 for bars tested in 4-point loading. Two tasks are discussed: Task 1 which involves materials and process improvements, and Task 2 which is a MOR bar matrix to improve strength and reliability. Many statistically designed experiments were completed under task 1 which improved the composition of the batches, the mixing of the powders, the sinter and anneal cycles. The best results were obtained by an attritor mixing process which yielded strengths in excess of 550 MPa (80 ksi) and an individual Weibull modulus of 16.8 for a 9-sample group. Strengths measured at 1200 and 1400 C were equal to the room temperature strength. Annealing of machined test bars significantly improved the strength. Molding yields were measured and flaw distributions were observed to follow a Poisson process. The second iteration of the Task 2 matrix experiment is described.
Critical fiber length technique for composite manufacturing processes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sivley, G.N.; Vandiver, T.L.; Dougherty, N.S.
1996-12-31
An improved injection technique for composite structures has been cooperatively developed by the U.S. Army Missile Command (MICOM) and Rockwell International (RI). This process simultaneously injects chopped fiberglass fibers and an epoxy resin matrix into a mold. Four injection techniques: (1){open_quotes}Little Willie{close_quotes} RTM system, (2) Pressure Vat system, (3) Pressure Vat system with vacuum assistance, and (4) Injection gun system, were investigated for use with a 304.8 mm x 304.8 mm x 5.08 mm (12 in x 12 in x 0.2 in) flat plaque mold. The driving factors in the process optimization included: fiber length, fiber weight, matrix viscosity, injectionmore » pressure, flow rate, and tool design. At fiber weights higher than 30 percent, the injection gun appears to have advantages over the other systems investigated. Results of an experimental investigation are reviewed in this paper. The investigation of injection techniques is the initial part of the research involved in a developing process, {open_quotes}Critical Fiber Length Technique{close_quotes}. This process will use the data collected in injection experiment along with mechanical properties derived from coupon test data to be incorporated into a composite material design code. The {open_quotes}Critical Fiber Length Technique{close_quotes} is part of a Cooperative Research and Development Agreement (CRADA) established in 1994 between MICOM and RI.« less
Flow behavior in liquid molding
NASA Technical Reports Server (NTRS)
Hunston, D.; Phelan, F.; Parnas, R.
1992-01-01
The liquid molding (LM) process for manufacturing polymer composites with structural properties has the potential to significantly lower fabrication costs and increase production rates. LM includes both resin transfer molding and structural reaction injection molding. To achieve this potential, however, the underlying science base must be improved to facilitate effective process optimization and implementation of on-line process control. The National Institute of Standards and Technology (NIST) has a major program in LM that includes materials characterization, process simulation models, on-line process monitoring and control, and the fabrication of test specimens. The results of this program are applied to real parts through cooperative projects with industry. The key feature in the effort is a comprehensive and integrated approach to the processing science aspects of LM. This paper briefly outlines the NIST program and uses several examples to illustrate the work.
Raut, Anjana; Rao, Polsani Laxman; Vikas, B V J; Ravindranath, T; Paradkar, Archana; Malakondaiah, G
2013-01-01
Acrylic resins have been in the center stage of Prosthodontics for more than half a century. The flexural fatigue failure of denture base materials is the primary mode of clinical failure. Hence there is a need for superior physical and mechanical properties. This in vitro study compared the transverse strength of specimens of thermopressed injection-molded and conventional compression-molded polymethylmethacrylate polymers and examined the morphology and microstructure of fractured acrylic specimens. The following denture base resins were examined: Brecrystal (Thermopressed injection-molded, modified polymethylmethacrylate) and Pyrax (compression molded, control group). Specimens of each material were tested according to the American Society for Testing and Materials standard D790-03 for flexural strength testing of reinforced plastics and subsequently examined under SEM. The data was analyzed with Student unpaired t test. Flexural strength of Brecrystal (82.08 ± 1.27 MPa) was significantly higher than Pyrax (72.76 ± 0.97 MPa). The tested denture base materials fulfilled the requirements regarding flexural strength (>65 MPa). The scanning electron microscopy image of Brecrystal revealed a ductile fracture with crazing. The fracture pattern of control group specimens exhibited poorly defined crystallographic planes with a high degree of disorganization. Flexural strength of Brecrystal was significantly higher than the control group. Brecrystal showed a higher mean transverse strength value of 82.08 ± 1.27 MPa and a more homogenous pattern at microscopic level. Based on flexural strength properties and handling characteristics, Brecrystal may prove to be an useful alternative to conventional denture base resins.
Fabrication and Characterization of High Temperature Resin/Carbon Nanofiber Composites
NASA Technical Reports Server (NTRS)
Ghose, Sayata; Watson, Kent A.; Working, Dennis C.; Criss, Jim M.; Siochi, Emilie J.; Conell, John W.
2005-01-01
As part of ongoing efforts to develop multifunctional advanced composites, blends of PETI-330 and carbon nanofibers (CNF) were prepared and characterized. Dry mixing techniques were employed and the effect of CNF loading level on melt viscosity was determined. The resulting powders were characterized for degree of mixing, thermal and rheological properties. Based on the characterization results, samples containing 30 and 40 wt% CNF were scaled up to approx.300 g and used to fabricate moldings 10.2 cm x 15.2 cm x 0.32 cm thick. The moldings were fabricated by injecting the mixtures at 260-280 C into a stainless steel tool followed by curing for 1 h at 371 C. The tool was designed to impart high shear during the injection process in an attempt to achieve some alignment of CNFs in the flow direction. Moldings were obtained that were subsequently characterized for thermal, mechanical and electrical properties. The degree of dispersion and alignment of CNFs were investigated using high-resolution scanning electron microscopy. The preparation and preliminary characterization of PETI-330/CNF composites will be discussed.
3D Fiber Orientation Simulation for Plastic Injection Molding
NASA Astrophysics Data System (ADS)
Lin, Baojiu; Jin, Xiaoshi; Zheng, Rong; Costa, Franco S.; Fan, Zhiliang
2004-06-01
Glass fiber reinforced polymer is widely used in the products made using injection molding processing. The distribution of fiber orientation inside plastic parts has direct effects on quality of molded parts. Using computer simulation to predict fiber orientation distribution is one of most efficient ways to assist engineers to do warpage analysis and to find a good design solution to produce high quality plastic parts. Fiber orientation simulation software based on 2-1/2D (midplane /Dual domain mesh) techniques has been used in industry for a decade. However, the 2-1/2D technique is based on the planar Hele-Shaw approximation and it is not suitable when the geometry has complex three-dimensional features which cannot be well approximated by 2D shells. Recently, a full 3D simulation software for fiber orientation has been developed and integrated into Moldflow Plastics Insight 3D simulation software. The theory for this new 3D fiber orientation calculation module is described in this paper. Several examples are also presented to show the benefit in using 3D fiber orientation simulation.
Improved silicon carbide for advanced heat engines
NASA Technical Reports Server (NTRS)
Whalen, Thomas J.; Mangels, J. A.
1986-01-01
The development of silicon carbide materials of high strength was initiated and components of complex shape and high reliability were formed. The approach was to adapt a beta-SiC powder and binder system to the injection molding process and to develop procedures and process parameters capable of providing a sintered silicon carbide material with improved properties. The initial effort was to characterize the baseline precursor materials, develop mixing and injection molding procedures for fabricating test bars, and characterize the properties of the sintered materials. Parallel studies of various mixing, dewaxing, and sintering procedures were performed in order to distinguish process routes for improving material properties. A total of 276 modulus-of-rupture (MOR) bars of the baseline material was molded, and 122 bars were fully processed to a sinter density of approximately 95 percent. Fluid mixing techniques were developed which significantly reduced flaw size and improved the strength of the material. Initial MOR tests indicated that strength of the fluid-mixed material exceeds the baseline property by more than 33 percent. the baseline property by more than 33 percent.
High Temperature Resin/Carbon Nanotube Composite Fabrication
NASA Technical Reports Server (NTRS)
Ghose, Sayata; Watson, Kent A.; Sun, Keun J.; Criss, Jim M.; Siochi, Emilie J.; Connell, John W.
2006-01-01
For the purpose of incorporating multifunctionality into advanced composites, blends of phenylethynyl terminated imides-330 (PETI-330) and multi-walled carbon nanotubes (MWCNTs) were prepared, characterized and fabricated into moldings. PETI-330/MWCNT mixtures were prepared at concentrations ranging from 3 to 25 weight percent by dry mixing the components in a ball mill. The resulting powders were characterized for degree of mixing, thermal and rheological properties. Based on the characterization results, PETI-330/MWCNT samples were scaled up to approximately 300 g and used to fabricate moldings by injecting the mixtures at 260-280 deg C into a stainless steel tool followed by curing for 1 h at 371 deg C. The tool was designed to impart a degree of shear during the injection process in an attempt to achieve some alignment of the MWCNTs in the flow direction. Obtained moldings were subsequently characterized for thermal, mechanical, and electrical properties. The degree of dispersion and alignment of MWCNTs were investigated using high-resolution scanning electron microscopy. The preparation and preliminary characterization of PETI-330/MWCNT composites will be discussed.
NASA Astrophysics Data System (ADS)
Siepmann, Jens P.; Wortberg, Johannes; Heinzler, Felix A.
2016-03-01
The injection molding process is mandatorily influenced by the viscosity of the material. By varying the material batch the viscosity of the polymer changes. For the process and part quality the initial conditions of the material in addition to the processing parameters define the process and product quality. A high percentage of technical polymers processed in injection molding is refined in a follow-up production step, for example electro plating. Processing optimized for electro plating often requires avoiding high shear stresses by using low injection speed and pressure conditions. Therefore differences in the material charges' viscosity occur especially in the quality related low shear rate area. These differences and quality related influences can be investigated by high detail rheological analysis and process simulation based on adapted material describing models. Differences in viscosity between batches can be detected by measurements with high-pressure-capillary-rheometers or oscillatory rheometers for low shear rates. A combination of both measurement techniques is possible by the Cox-Merz-Relation. The detected differences in the rheological behavior of both charges are summarized in two material behavior describing model approaches and added to the simulation. In this paper the results of processing-simulations with standard filling parameters are presented with two ABS charges. Part quality defining quantities such as temperature, pressure and shear stress are investigated and the influence of charge variations is pointed out with respect to electro plating quality demands. Furthermore, the results of simulations with a new quality related process control are presented and compared to the standard processing.
Precision mechatronics based on high-precision measuring and positioning systems and machines
NASA Astrophysics Data System (ADS)
Jäger, Gerd; Manske, Eberhard; Hausotte, Tino; Mastylo, Rostyslav; Dorozhovets, Natalja; Hofmann, Norbert
2007-06-01
Precision mechatronics is defined in the paper as the science and engineering of a new generation of high precision systems and machines. Nanomeasuring and nanopositioning engineering represents important fields of precision mechatronics. The nanometrology is described as the today's limit of the precision engineering. The problem, how to design nanopositioning machines with uncertainties as small as possible will be discussed. The integration of several optical and tactile nanoprobes makes the 3D-nanopositioning machine suitable for various tasks, such as long range scanning probe microscopy, mask and wafer inspection, nanotribology, nanoindentation, free form surface measurement as well as measurement of microoptics, precision molds, microgears, ring gauges and small holes.
View looking to starboard of stem powered refrigeration compressor (ice ...
View looking to starboard of stem powered refrigeration compressor (ice machine); low counter at left center of photograph is a mold for making block ice. (p55) - USS Olympia, Penn's Landing, 211 South Columbus Boulevard, Philadelphia, Philadelphia County, PA
NASA Astrophysics Data System (ADS)
Hünnekens, Benedikt; Avramidis, Georg; Ohms, Gisela; Krause, Andreas; Viöl, Wolfgang; Militz, Holger
2018-05-01
The influence of plasma treatment performed at atmospheric pressure and ambient air as process gas by a dielectric barrier discharge (DBD) on the morphological and chemical surface characteristics of wood-polymer composites (WPC) was investigated by applying several surface-sensitive analytical methods. The surface free energy showed a distinct increase after plasma treatment for all tested materials. The analyzing methods for surface topography-laser scanning microscopy (LSM) and atomic force microscopy (AFM)-revealed a roughening induced by the treatment which is likely due to a degradation of the polymeric surface. This was accompanied by the formation of low-molecular-weight oxidized materials (LMWOMs), appearing as small globular structures. With increasing discharge time, the nodules increase in size and the material degradation proceeds. The surface degradation seems to be more serious for injection-molded samples, whereas the formation of nodules became more apparent and were evenly distributed on extruded surfaces. These phenomena could also be confirmed by scanning electron microscopy (SEM). In addition, differences between extruded and injection-molded surfaces could be observed. Besides the morphological changes, the chemical composition of the substrates' surfaces was affected by the plasma discharge. Infrared spectroscopy (ATR-FTIR) and X-ray photoelectron spectroscopy (XPS) indicated the formation of new oxygen containing polar groups on the modified surfaces.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Runze; Riddle, Matthew E.; Graziano, Diane
Additive manufacturing (AM) holds great potentials in enabling superior engineering functionality, streamlining supply chains, and reducing life cycle impacts compared to conventional manufacturing (CM). This study estimates the net changes in supply-chain lead time, life cycle primary energy consumption, greenhouse gas (GHG) emissions, and life cycle costs (LCC) associated with AM technologies for the case of injection molding, to shed light on the environmental and economic advantages of a shift from international or onshore CM to AM in the United States. A systems modeling framework is developed, with integrations of lead-time analysis, life cycle inventory analysis, LCC model, and scenariosmore » considering design differences, supply-chain options, productions, maintenance, and AM technological developments. AM yields a reduction potential of 3% to 5% primary energy, 4% to 7% GHG emissions, 12% to 60% lead time, and 15% to 35% cost over 1 million cycles of the injection molding production depending on the AM technology advancement in future. The economic advantages indicate the significant role of AM technology in raising global manufacturing competitiveness of local producers, while the relatively small environmental benefits highlight the necessity of considering trade-offs and balance techniques between environmental and economic performances when AM is adopted in the tooling industry. The results also help pinpoint the technological innovations in AM that could lead to broader benefits in future.« less
Huang, Runze; Riddle, Matthew E.; Graziano, Diane; ...
2017-08-26
Additive manufacturing (AM) holds great potentials in enabling superior engineering functionality, streamlining supply chains, and reducing life cycle impacts compared to conventional manufacturing (CM). This study estimates the net changes in supply-chain lead time, life cycle primary energy consumption, greenhouse gas (GHG) emissions, and life cycle costs (LCC) associated with AM technologies for the case of injection molding, to shed light on the environmental and economic advantages of a shift from international or onshore CM to AM in the United States. A systems modeling framework is developed, with integrations of lead-time analysis, life cycle inventory analysis, LCC model, and scenariosmore » considering design differences, supply-chain options, productions, maintenance, and AM technological developments. AM yields a reduction potential of 3% to 5% primary energy, 4% to 7% GHG emissions, 12% to 60% lead time, and 15% to 35% cost over 1 million cycles of the injection molding production depending on the AM technology advancement in future. The economic advantages indicate the significant role of AM technology in raising global manufacturing competitiveness of local producers, while the relatively small environmental benefits highlight the necessity of considering trade-offs and balance techniques between environmental and economic performances when AM is adopted in the tooling industry. The results also help pinpoint the technological innovations in AM that could lead to broader benefits in future.« less
NASA Astrophysics Data System (ADS)
Nuruzzaman, D. M.; Kusaseh, N. M.; Chowdhury, M. A.; Rahman, N. A. N. A.; Oumer, A. N.; Fatchurrohman, N.; Iqbal, A. K. M. A.; Ismail, N. M.
2018-04-01
In this research study, glass fiber (GF) reinforced polypropylene (PP)-nylon 6 (PA6) polymer blend composites were prepared using injection molding process. Specimens of four different compositions such as 80%PP+20%PA6, 80%PP+18%PA6+2%GF, 80%PP+16%PA6+4%GF and 80%PP+14%PA6+6%GF were prepared. In the injection molding process, suitable process parameters were selected depending on the type of composite specimen in producing defects free dog bone shaped specimens. Flexure and impact tests were carried out according to ASTM standard. The important flexure properties such as flexural modulus, flexural yield strength, flexural strength and flexural strain were investigated. The obtained results revealed that flexural modulus of 80%PP+20%PA6 polymer blend is the lowest and the polymer blend composite shows steadily improved modulus as the glass fiber content is increased. Results also showed that flexural strength of pure polymer blend is the lowest but it improves gradually when the glass fiber content is increased. Impact test results revealed that impact strength of 80%PP+20%PA6 polymer blend is the highest whereas all the composites show reduced impact strength or toughness. It is noticed that 80%PP+14%PA6+6%GF composite exhibits the lowest impact strength.
Plastic superconductor bearings any size-any shape: 77 K and up
NASA Technical Reports Server (NTRS)
Reick, Franklin G.
1991-01-01
'Friction free' bearings at 77 K or higher are possible using the high T(sub c) copper oxide ceramic superconductors. The conventional method for making such bearings is to use a sintered ceramic monolith. This puts great restraints on size, shape, and postforming machining. The material is hard and abrasive. It is possible to grind up ceramic superconductors and suspend the granules in a suitable matrix. Mechanical properties improve and are largely dependent on the binder. The Meissner effect is confined to individual grains containing electron vortices. Tracks, rails, levitation areas, and bearings can be made this way with conventional plastic molding and extruding machines or by painting. The parts are easily machined. The sacrifice is in bulk electrical conductivity. A percolating wick feed for LN2 is used to cool remote superconductors and large areas quite effectively. A hollow spheroid or cylinder of superconductor material is molded with the internal surfaces shielded by the Meissner effect. It can be thought of as the DC magnetic analog of the Faraday cage and the inside is the 'Meissner space'. It is selective. The AC fields are transmitted with minor attenuation. Particle size and distribution have a profound effect on final magnetic and electrical characteristics.
Occupational exposure to bisphenol A (BPA) in a plastic injection molding factory in Malaysia.
Kouidhi, Wided; Thannimalay, Letchumi; Soon, Chen Sau; Ali Mohd, Mustafa
2017-07-14
The purpose of this study has been to assess ambient bisphenol A (BPA) levels in workplaces and urine levels of workers and to establish a BPA database for different populations in Malaysia. Urine samples were collected from plastic factory workers and from control subjects after their shift. Air samples were collected using gas analyzers from 5 sampling positions in the injection molding unit work area and from ambient air. The level of BPA in airborne and urine samples was quantified by the gas chromatography mass spectrometry - selected ion monitoring (GCMS-SIM) analysis. Bisphenol A was detected in the median range of 8-28.3 ng/m³ and 2.4-3.59 ng/m³ for the 5 sampling points in the plastic molding factory and in the ambient air respectively. The median urinary BPA concentration was significantly higher in the workers (3.81 ng/ml) than in control subjects (0.73 ng/ml). The urinary BPA concentration was significantly associated with airborne BPA levels (ρ = 0.55, p < 0.01). Our findings provide the first evidence that workers in a molding factory in Malaysia are occupationally exposed to BPA. Int J Occup Med Environ Health 2017;30(5):743-750. This work is available in Open Access model and licensed under a CC BY-NC 3.0 PL license.
Enteric-coating of pulsatile-release HPC capsules prepared by injection molding.
Macchi, E; Zema, L; Maroni, A; Gazzaniga, A; Felton, L A
2015-04-05
Capsular devices based on hydroxypropyl cellulose (Klucel® LF) intended for pulsatile release were prepared by injection molding (IM). In the present work, the possibility of exploiting such capsules for the development of colonic delivery systems based on a time-dependent approach was evaluated. For this purpose, it was necessary to demonstrate the ability of molded cores to undergo a coating process and that coated systems yield the desired performance (gastric resistance). Although no information was available on the coating of IM substrates, some issues relevant to that of commercially-available capsules are known. Thus, preliminary studies were conducted on molded disks for screening purposes prior to the spray-coating of HPC capsular cores with Eudragit® L 30 D 55. The ability of the polymeric suspension to wet the substrate, spread, start penetrating and initiate hydration/swelling, as well as to provide a gastroresistant barrier was demonstrated. The coating of prototype HPC capsules was carried out successfully, leading to coated systems with good technological properties and able to withstand the acidic medium with no need for sealing at the cap/body joint. Such systems maintained the original pulsatile release performance after dissolution of the enteric film in pH 6.8 fluid. Therefore, they appeared potentially suitable for the development of a colon delivery platform based on a time-dependent approach. Copyright © 2015 Elsevier B.V. All rights reserved.
Xu, Ling; Chen, Chen; Zhong, Gan-Ji; Lei, Jun; Xu, Jia-Zhuang; Hsiao, Benjamin S; Li, Zhong-Ming
2012-03-01
An easy approach was reported to achieve high mechanical properties of ultrahigh-molecular-weight polyethylene (UHMWPE)-based polyethylene (PE) blend for artificial joint application without the sacrifice of the original excellent wear and fatigue behavior of UHMWPE. The PE blend with desirable fluidity was obtained by melt mixing UHMWPE and low molecular weight polyethylene (LMWPE), and then was processed by a modified injection molding technology-oscillatory shear injection molding (OSIM). Morphological observation of the OSIM PE blend showed LMWPE contained well-defined interlocking shish-kebab self-reinforced superstructure. Addition of a small amount of long chain polyethylene (2 wt %) to LMWPE greatly induced formation of rich shish-kebabs. The ultimate tensile strength considerably increased from 27.6 MPa for conventional compression molded UHMWPE up to 78.4 MPa for OSIM PE blend along the flow direction and up to 33.5 MPa in its transverse direction. The impact strength of OSIM PE blend was increased by 46% and 7% for OSIM PE blend in the direction parallel and vertical to the shear flow, respectively. Wear and fatigue resistance were comparable to conventional compression molded UHMWPE. The superb performance of the OSIM PE blend was originated from formation of rich interlocking shish-kebab superstructure while maintaining unique properties of UHMWPE. The present results suggested the OSIM PE blend has high potential for artificial joint application. © 2012 American Chemical Society
Batch fabrication of polymer microfluidic cartridges for QCM sensor packaging by direct bonding
NASA Astrophysics Data System (ADS)
Sandström, Niklas; Zandi Shafagh, Reza; Gylfason, Kristinn B.; Haraldsson, Tommy; van der Wijngaart, Wouter
2017-12-01
Quartz crystal microbalance (QCM) sensing is an established technique commonly used in laboratory based life-science applications. However, the relatively complex, multi-part design and multi-step fabrication and assembly of state-of-the-art QCM cartridges make them unsuited for disposable applications such as point-of-care (PoC) diagnostics. In this work, we present the uncomplicated manufacturing of QCMs in polymer microfluidic cartridges. Our novel approach comprises two key innovations: the batch reaction injection molding of microfluidic parts; and the integration of the cartridge components by direct, unassisted bonding. We demonstrate molding of batches of 12 off-stoichiometry thiol-ene epoxy polymer (OSTE+) polymer parts in a single molding cycle using an adapted reaction injection molding process; and the direct bonding of the OSTE+ parts to other OSTE+ substrates, to printed circuit boards, and to QCMs. The microfluidic QCM OSTE+ cartridges were successfully evaluated in terms of liquid sealing as well as electrical properties, and the sensor performance characteristics are on par with those of a commercially available QCM biosensor cartridge. The simplified manufacturing of QCM sensors with maintained performance potentializes novel application areas, e.g. as disposable devices in a point of care setting. Moreover, our results can be extended to simplifying the fabrication of other microfluidic devices with multiple heterogeneously integrated components.
NASA Astrophysics Data System (ADS)
Manas, David; Manas, Miroslav; Gajzlerova, Lenka; Ovsik, Martin; Kratky, Petr; Senkerik, Vojtěch; Skrobak, Adam; Danek, Michal; Manas, Martin
2015-09-01
The influence of beta radiation on the changes in the structure and selected properties (mechanical and thermal) was proved. Using low doses of beta radiation for 25% glass fiber filled polypropylene and its influence on the changes of micromechanical properties of surface layer has not been studied in detail so far. The specimens of 25% glass fiber filled PP were made by injection molding technology and irradiated by low doses of beta radiation (0, 15 and 33 kGy). The changes in the microstructure and micromechanical properties of surface layer were evaluated using FTIR, SEM, WAXS and instrumented microhardness test. The results of the measurements showed considerable increase in micromechanical properties (indentation hardness, indentation elastic modulus) when low doses of beta radiation are used.
Plasmonic gold nanostars as optical nano-additives for injection molded polymer composites
NASA Astrophysics Data System (ADS)
Boyne, Devon A.; Orlicki, Joshua A.; Walck, Scott D.; Savage, Alice M.; Li, Thomas; Griep, Mark H.
2017-10-01
Nanoscale engineering of noble metal particles has provided numerous material configurations to selectively confine and manipulate light across the electromagnetic spectrum. Transitioning these materials to a composite form while maintaining the desired resonance properties has proven challenging. In this work, the successful integration of plasmon-focusing gold nanostars (GNSs) into polymer nanocomposites (PNCs) is demonstrated. Tailored GNSs are produced with over a 90% yield and methods to control the branching structures are shown. A protective silica capping shell is employed on the nanomaterials to facilitate survivability in the high temperate/high shear processing parameters to create optically-tuned injection molded PNCs. The developed GNS PNCs possess dichroic scattering and absorption behavior, opening up potential applications in the fields of holographic imaging, optical filtering and photovoltaics.
Laser micromilling of convex microfluidic channels onto glassy carbon for glass molding dies
NASA Astrophysics Data System (ADS)
Tseng, Shih-Feng; Chen, Ming-Fei; Hsiao, Wen-Tse; Huang, Chien-Yao; Yang, Chung-Heng; Chen, Yu-Sheng
2014-06-01
This study reports the fabrication of convex microfluidic channels on glassy carbon using an ultraviolet laser processing system to produce glass molding dies. The laser processing parameters, including various laser fluences and scanning speeds of galvanometers, were adjusted to mill a convex microchannel on a glassy carbon substrate to identify the effects of material removal. The machined glassy carbon substrate was then applied as a glass molding die to fabricate a glass-based microfluidic biochip. The surface morphology, milled width and depth, and surface roughness of the microchannel die after laser micromilling were examined using a three-dimensional confocal laser scanning microscope. This study also investigates the transcription rate of microchannels after the glass molding process. To produce a 180 μm high microchannel on the GC substrate, the optimal number of milled cycles, laser fluence, and scanning speed were 25, 4.9 J/cm2, and 200 mm/s, respectively. The width, height, and surface roughness of milled convex microchannels were 119.6±0.217 μm, 180.26±0.01 μm, and 0.672±0.08 μm, respectively. These measured values were close to the predicted values and suitable for a glass molding die. After the glass molding process, a typical glass-based microchannel chip was formed at a molding temperature of 660 °C and the molding force of 0.45 kN. The transcription rates of the microchannel width and depth were 100% and 99.6%, respectively. Thus, the proposed approach is suitable for performing in chemical, biochemical, or medical reactions.
American Society of Composites, 32nd Technical Conference
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aitharaju, Venkat; Yu, Hang; Zhao, Selina
Resin transfer molding (RTM) has become increasingly popular for the manufacturing of composite parts. To enable high volume manufacturing and obtain good quality parts at an acceptable cost to automotive industry, accurate process simulation tools are necessary to optimize the process conditions. Towards that goal, General Motors and the ESI-group are involved in developing a state of the art process simulation tool for composite manufacturing in a project supported by the Department of Energy. This paper describes the modeling of various stages in resin transfer molding such as resin injection, resin curing, and part distortion. An instrumented RTM system locatedmore » at the General Motors Research and Development center was used to perform flat plaque molding experiments. The experimental measurements of fill time, in-mold pressure versus time, cure variation with time, and part deformation were compared with the model predictions and very good correlations were observed.« less
A cryogenic thermal source for detector array characterization
NASA Astrophysics Data System (ADS)
Chuss, David T.; Rostem, Karwan; Wollack, Edward J.; Berman, Leah; Colazo, Felipe; DeGeorge, Martin; Helson, Kyle; Sagliocca, Marco
2017-10-01
We describe the design, fabrication, and validation of a cryogenically compatible quasioptical thermal source for characterization of detector arrays. The source is constructed using a graphite-loaded epoxy mixture that is molded into a tiled pyramidal structure. The mold is fabricated using a hardened steel template produced via a wire electron discharge machining process. The absorptive mixture is bonded to a copper backplate enabling thermalization of the entire structure and measurement of the source temperature. Measurements indicate that the reflectance of the source is <0.001 across a spectral band extending from 75 to 330 GHz.
A Cryogenic Thermal Source for Detector Array Characterization
NASA Technical Reports Server (NTRS)
Chuss, David T.; Rostem, Karwan; Wollack, Edward J.; Berman, Leah; Colazo, Felipe; DeGeorge, Martin; Helson, Kyle; Sagliocca, Marco
2017-01-01
We describe the design, fabrication, and validation of a cryogenically compatible quasioptical thermal source for characterization of detector arrays. The source is constructed using a graphite-loaded epoxy mixture that is molded into a tiled pyramidal structure. The mold is fabricated using a hardened steel template produced via a wire electron discharge machining process. The absorptive mixture is bonded to a copper backplate enabling thermalization of the entire structure and measurement of the source temperature. Measurements indicate that the reflectance of the source is less than 0.001 across a spectral band extending from 75 to 330 gigahertz.
Vu, Lien T; Chen, Chao-Chang A; Lee, Chia-Cheng; Yu, Chia-Wei
2018-04-20
This study aims to develop a compensating method to minimize the shrinkage error of the shell mold (SM) in the injection molding (IM) process to obtain uniform optical power in the central optical zone of soft axial symmetric multifocal contact lenses (CL). The Z-shrinkage error along the Z axis or axial axis of the anterior SM corresponding to the anterior surface of a dry contact lens in the IM process can be minimized by optimizing IM process parameters and then by compensating for additional (Add) powers in the central zone of the original lens design. First, the shrinkage error is minimized by optimizing three levels of four IM parameters, including mold temperature, injection velocity, packing pressure, and cooling time in 18 IM simulations based on an orthogonal array L 18 (2 1 ×3 4 ). Then, based on the Z-shrinkage error from IM simulation, three new contact lens designs are obtained by increasing the Add power in the central zone of the original multifocal CL design to compensate for the optical power errors. Results obtained from IM process simulations and the optical simulations show that the new CL design with 0.1 D increasing in Add power has the closest shrinkage profile to the original anterior SM profile with percentage of reduction in absolute Z-shrinkage error of 55% and more uniform power in the central zone than in the other two cases. Moreover, actual experiments of IM of SM for casting soft multifocal CLs have been performed. The final product of wet CLs has been completed for the original design and the new design. Results of the optical performance have verified the improvement of the compensated design of CLs. The feasibility of this compensating method has been proven based on the measurement results of the produced soft multifocal CLs of the new design. Results of this study can be further applied to predict or compensate for the total optical power errors of the soft multifocal CLs.
NASA Astrophysics Data System (ADS)
Das, Ronnie; Burfeind, Chris W.; Lim, Saniel D.; Patle, Shubham; Seibel, Eric J.
2018-02-01
3D pathology is intrinsically dependent on 3D microscopy, or the whole tissue imaging of patient tissue biopsies (TBs). Consequently, unsectioned needle specimens must be processed whole: a procedure which cannot necessarily be accomplished through manual methods, or by retasking automated pathology machines. Thus "millifluidic" devices (for millimeter-scale biopsies) are an ideal solution for tissue handling/preparation. TBs are large, messy and a solid-liquid mixture; they vary in material, geometry and structure based on the organ biopsied, the clinician skill and the needle type used. As a result, traditional microfluidic devices are insufficient to handle such mm-sized samples and their associated fabrication techniques are impractical and costly with respect to time/efficiency. Our research group has devised a simple, rapid fabrication process for millifluidic devices using jointed skeletal molds composed of machined, reusable metal rods, segmented rods and stranded wire as structural cores; these cores are surrounded by Teflon outer housing. We can therefore produce curving, circular-cross-section (CCCS) millifluidic channels in rapid fashion that cannot normally be achieved by microfabrication, micro-/CNC-machining, or 3D printing. The approach has several advantages. CLINICAL: round channels interface coring needles. PROCESSING: CCCS channels permit multi-layer device designs for additional (processing, monitoring, testing) stages. REUSABILITY: for a biopsy/needle diameter, molding (interchangeable) components may be produced one-time then reused for other designs. RAPID: structural cores can be quickly removed due to Teflon®'s ultra-low friction; housing may be released with ethanol; PDMS volumes cure faster since metal skeleton molds conduct additional heat from within the curing elastomer.
Natural Fiber Composite Retting, Preform Manufacture and Molding (Project 18988/Agreement 16313)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Simmons, Kevin L.; Howe, Daniel T.; Laddha, Sachin
2009-12-31
Plant-based natural fibers can be used in place of glass in fiber reinforced automotive composites to reduce weight, cost and provide environmental benefits. Current automotive applications use natural fibers in injection molded thermoplastics for interior, non-structural applications. Compression molded natural fiber reinforced thermosets have the opportunity to extend natural fiber composite applications to structural and semi-structural parts and exterior parts realizing further vehicle weight savings. The development of low cost molding and fiber processing techniques for large volumes of natural fibers has helped in understanding the barriers of non-aqueous retting. The retting process has a significant effect on the fibermore » quality and its processing ability that is related to the natural fiber composite mechanical properties. PNNL has developed a compression molded fiber reinforced composite system of which is the basis for future preforming activities and fiber treatment. We are using this process to develop preforming techniques and to validate fiber treatment methods relative to OEM provided application specifications. It is anticipated for next fiscal year that demonstration of larger quantities of SMC materials and molding of larger, more complex components with a more complete testing regimen in coordination with Tier suppliers under OEM guidance.« less
NASA Astrophysics Data System (ADS)
Didier, Delaunay; Baptiste, Pignon; Nicolas, Boyard; Vincent, Sobotka
2018-05-01
Heat transfer during the cooling of a thermoplastic injected part directly affects the solidification of the polymer and consequently the quality of the part in term of mechanical properties, geometric tolerance and surface aspect. This paper proposes to mold designers a methodology based on analytical models to provide quickly the time to reach the ejection temperature depending of the temperature and the position of cooling channels. The obtained cooling time is the first step of the thermal conception of the mold. The presented methodology is dedicated to the determination of solidification time of a semi-crystalline polymer slab. It allows the calculation of the crystallization time of the part and is based on the analytical solution of the Stefan problem in a semi-infinite medium. The crystallization is then considered as a phase change with an effective crystallization temperature, which is obtained from Fast Scanning Calorimetry (FSC) results. The crystallization time is then corrected to take the finite thickness of the part into account. To check the accuracy of such approach, the solidification time is calculated by solving the heat conduction equation coupled to the crystallization kinetics of the polymer. The impact of the nature of the contact between the polymer and the mold is evaluated. The thermal contact resistance (TCR) appears as significant parameter that needs to be taken into account in the cooling time calculation. The results of the simplified model including or not TCR are compared in the case of a polypropylene (PP) with experiments carried out with an instrumented mold. Then, the methodology is applied for a part made with PolyEtherEtherKetone (PEEK).
3D-glass molds for facile production of complex droplet microfluidic chips.
Tovar, Miguel; Weber, Thomas; Hengoju, Sundar; Lovera, Andrea; Munser, Anne-Sophie; Shvydkiv, Oksana; Roth, Martin
2018-03-01
In order to leverage the immense potential of droplet microfluidics, it is necessary to simplify the process of chip design and fabrication. While polydimethylsiloxane (PDMS) replica molding has greatly revolutionized the chip-production process, its dependence on 2D-limited photolithography has restricted the design possibilities, as well as further dissemination of microfluidics to non-specialized labs. To break free from these restrictions while keeping fabrication straighforward, we introduce an approach to produce complex multi-height (3D) droplet microfluidic glass molds and subsequent chip production by PDMS replica molding. The glass molds are fabricated with sub-micrometric resolution using femtosecond laser machining technology, which allows directly realizing designs with multiple levels or even continuously changing heights. The presented technique significantly expands the experimental capabilities of the droplet microfluidic chip. It allows direct fabrication of multilevel structures such as droplet traps for prolonged observation and optical fiber integration for fluorescence detection. Furthermore, the fabrication of novel structures based on sloped channels (ramps) enables improved droplet reinjection and picoinjection or even a multi-parallelized drop generator based on gradients of confinement. The fabrication of these and other 3D-features is currently only available at such resolution by the presented strategy. Together with the simplicity of PDMS replica molding, this provides an accessible solution for both specialized and non-specialized labs to customize microfluidic experimentation and expand their possibilities.
Gallegos-Lopez, Gabriel
2012-10-02
Methods, system and apparatus are provided for increasing voltage utilization in a five-phase vector controlled machine drive system that employs third harmonic current injection to increase torque and power output by a five-phase machine. To do so, a fundamental current angle of a fundamental current vector is optimized for each particular torque-speed of operating point of the five-phase machine.
Visualization analysis of tiger-striped flow mark generation phenomena in injection molding
NASA Astrophysics Data System (ADS)
Owada, Shigeru; Yokoi, Hidetoshi
2016-03-01
The generation mechanism of tiger-striped flow marks of polypropylene (PP)/rubber/talc blends in injection molding was investigated by dynamic visualization analysis in a glass-inserted mold. The analysis revealed that the behavior of the melt flow front correlates with the flow mark generation. The cloudy part in the tiger-striped flow marks corresponded to the low transcription rate area of the melt diverging near the cavity wall, while the glossy part corresponded to the high transcription rate area of the melt converging toward the cavity wall side. The melt temperature at the high transcription rate area was slightly lower than that at the low transcription rate area. These phenomena resulted due to the difference in the temperature of the melt front that was caused by the asymmetric fountain flow. These results suggest the followings; At the moment when the melt is broken near the one side of cavity wall due to piling the extensional strains up to a certain level, the melt spurts out near the broken side. It results in generating asymmetric fountain flow temporarily to relax the extensional front surface, which moves toward the opposite side to form the high transcription area.
Simulation on Effect of Preform Diameter in Injection Stretch Blow Molding
NASA Astrophysics Data System (ADS)
Tan, Z. Q.; Rosli, Nurrina; Oktaviandri, Muchamad
2018-03-01
Polyethylene terephthalate (PET) is the most common material of resin for manufacturing plastic bottle by injection stretch blow molding due to its excellent properties. As various issues of health and environmental hazards due to the PET use have risen, PET bottle manufacture may be improved by minimizing the wall thickness to reduce the PET use. One of the critical qualifications of the manufacturing process which lead to the wall thickness distribution is the initial preform diameter. In this project, we used the ANSYS Polyflow with aim to evaluate the wall thickness distribution of PET bottle for different diameter of initial preform. As a result, only 4 mm preform diameter presented wall thickness below than 1 mm. On the other hand, at least 6 mm preform diameter can permit the wall thickness 1.3 mm i.e. at the shoulder area.
NASA Astrophysics Data System (ADS)
Albert, Benedikt; Völkl, Rainer; Glatzel, Uwe
2014-09-01
For different high-temperature applications like aero engines or turbochargers, metal injection molding (MIM) of superalloys is an interesting processing alternative. For operation at high temperatures, oxidation behavior of superalloys produced by MIM needs to match the standard of cast or forged material. The oxidation behavior of nickel-based superalloys Inconel 713 and MAR-M247 in the temperature interval from 1073 K to 1373 K (800 °C to 1100 °C) is investigated and compared to cast material. Weight gain is measured discontinuously at different oxidation temperatures and times. Analysis of oxidized samples is done via SEM and EDX-measurements. MIM samples exhibit homogeneous oxide layers with a thickness up to 4 µm. After processing by MIM, Inconel 713 exhibits lower weight gain and thinner oxide layers than MAR-M247.
Claeys, Bart; Vervaeck, Anouk; Vervaet, Chris; Remon, Jean Paul; Hoogenboom, Richard; De Geest, Bruno G
2012-10-15
Here we evaluate poly(2-ethyl-2-oxazoline)s (PEtOx) as a matrix excipient for the production of oral solid dosage forms by hot melt extrusion (HME) followed by injection molding (IM). Using metoprolol tartrate as a good water-soluble model drug we demonstrate that drug release can be delayed by HME/IM, with the release rate controlled by the molecular weight of the PEtOx. Using fenofibrate as a lipophilic model drug we demonstrate that relative to the pure drug the dissolution rate is strongly enhanced by formulation in HME/IM tablets. For both drug molecules we find that solid solutions, i.e. molecularly dissolved drug in a polymeric matrix, are obtained by HME/IM. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Improved silicon nitride for advanced heat engines
NASA Technical Reports Server (NTRS)
Yeh, Harry C.; Fang, Ho T.
1991-01-01
The results of a four year program to improve the strength and reliability of injection-molded silicon nitride are summarized. Statistically designed processing experiments were performed to identify and optimize critical processing parameters and compositions. Process improvements were monitored by strength testing at room and elevated temperatures, and microstructural characterization by optical, scanning electron microscopes, and scanning transmission electron microscope. Processing modifications resulted in a 20 percent strength and 72 percent Weibull slope improvement of the baseline material. Additional sintering aids screening and optimization experiments succeeded in developing a new composition (GN-10) capable of 581.2 MPa at 1399 C. A SiC whisker toughened composite using this material as a matrix achieved a room temperature toughness of 6.9 MPa m(exp .5) by the Chevron notched bar technique. Exploratory experiments were conducted on injection molding of turbocharger rotors.
Lee, Jai-Sung; Choi, Joon-Phil; Lee, Geon-Yong
2013-01-01
This paper provides an overview on our recent investigations on the consolidation of hierarchy-structured nanopowder agglomerates and related applications to net-shaping nanopowder materials. Understanding the nanopowder agglomerate sintering (NAS) process is essential to processing of net-shaped nanopowder materials and components with small and complex shape. The key concept of the NAS process is to enhance material transport through controlling the powder interface volume of nanopowder agglomerates. Based upon this concept, we have suggested a new idea of full density processing for fabricating micro-powder injection molded part using metal nanopowder agglomerates produced by hydrogen reduction of metal oxide powders. Studies on the full density sintering of die compacted- and powder injection molded iron base nano-agglomerate powders are introduced and discussed in terms of densification process and microstructure. PMID:28788317
Design of Revolute Joints for In-Mold Assembly Using Insert Molding.
Ananthanarayanan, Arvind; Ehrlich, Leicester; Desai, Jaydev P; Gupta, Satyandra K
2011-12-01
Creating highly articulated miniature structures requires assembling a large number of small parts. This is a very challenging task and increases cost of mechanical assemblies. Insert molding presents the possibility of creating a highly articulated structure in a single molding step. This can be accomplished by placing multiple metallic bearings in the mold and injecting plastic on top of them. In theory, this idea can generate a multi degree of freedom structures in just one processing step without requiring any post molding assembly operations. However, the polymer material has a tendency to shrink on top of the metal bearings and hence jam the joints. Hence, until now insert molding has not been used to create articulated structures. This paper presents a theoretical model for estimating the extent of joint jamming that occurs due to the shrinkage of the polymer on top of the metal bearings. The level of joint jamming is seen as the effective torque needed to overcome the friction in the revolute joints formed by insert molding. We then use this model to select the optimum design parameters which can be used to fabricate functional, highly articulating assemblies while meeting manufacturing constraints. Our analysis shows that the strength of weld-lines formed during the in-mold assembly process play a significant role in determining the minimum joint dimensions necessary for fabricating functional revolute joints. We have used the models and methods described in this paper to successfully fabricate the structure for a minimally invasive medical robot prototype with potential applications in neurosurgery. To the best of our knowledge, this is the first demonstration of building an articulated structure with multiple degrees of freedom using insert molding.
Yang, Jianjun; Wang, Ke; Liu, Guangyuan; Wang, Dashan
2013-11-01
Zirconia powder in nanometers can be fabricated into inter-joined abutment of dental implant system with the injection shaping technique. This study was to detect the resistance of inter-joined zirconia abutment with different angle loading for clinical applications. The inter-joined abutments were shaped with the technique of injection of zirconia powder in nanometers. Sixty Osstem GSII 5 × 10 mm implants were used with 30 zirconia abutments and 30 Osstem GSII titanium abutments for fixation using 40 N torque force. The loading applications included 90°, 30°, and 0° formed by the long axis of abutments and pressure head of universal test machine. The fracture resistances of zirconia and titanium abutments were documented and analyzed. The inter-joined zirconia abutments were assembled to the Osstem GSII implants successfully. In the 90° loading mode, the fracture resistance of zirconia abutment group and titanium abutment group were 301.5 ± 15.4 N and 736.4 ± 120.1 N, respectively. And those in the 30° groups were 434.7 ± 36.1 N and 1073.1 ± 74 N, correspondingly. Significant difference in the two groups was found using t-test and Wilcoxon test. No damage on the abutments of the two groups but S-shaped bending on the implants was found when the 0° loading was 1300-2000 N. Through the assembly of Zirconia abutments and implants, all the components presented sufficient resistance acquired for the clinical application under loadings with different angle. © 2012 John Wiley & Sons A/S.
DEGATING WORKERS REMOVING SPRUES AND RUNNERS MANUALLY WITH SLEDGEHAMMERS AND ...
DEGATING WORKERS REMOVING SPRUES AND RUNNERS MANUALLY WITH SLEDGEHAMMERS AND POWERED PNEUMATIC SEPARATORS FROM CASTINGS FROM ALL MOLDING MACHINES BEFORE SEPARATING PIECES INTO BINS AND TRANSPORTING THEM TO GRINDING AREAS. - Southern Ductile Casting Company, Shaking, Degating & Sand Systems, 2217 Carolina Avenue, Bessemer, Jefferson County, AL
A semi-automated process for the production of custom-made shoes
NASA Technical Reports Server (NTRS)
Farmer, Franklin H.
1991-01-01
A more efficient, cost-effective and timely way of designing and manufacturing custom footware is needed. A potential solution to this problem lies in the use of computer-aided design and manufacturing (CAD/CAM) techniques in the production of custom shoes. A prototype computer-based system was developed, and the system is primarily a software entity which directs and controls a 3-D scanner, a lathe or milling machine, and a pattern-cutting machine to produce the shoe last and the components to be assembled into a shoe. The steps in this process are: (1) scan the surface of the foot to obtain a 3-D image; (2) thin the foot surface data and create a tiled wire model of the foot; (3) interactively modify the wire model of the foot to produce a model of the shoe last; (4) machine the last; (5) scan the surface of the last and verify that it correctly represents the last model; (6) design cutting patterns for shoe uppers; (7) cut uppers; (8) machine an inverse mold for the shoe innersole/sole combination; (9) mold the innersole/sole; and (10) assemble the shoe. For all its capabilities, this system still requires the direction and assistance of skilled operators, and shoemakers to assemble the shoes. Currently, the system is running on a SUN3/260 workstation with TAAC application accelerator. The software elements of the system are written in either Fortran or C and run under a UNIX operator system.
Plastic superconductor bearings any size, any shape, 77 k and up
NASA Technical Reports Server (NTRS)
Reick, Franklin G.
1990-01-01
Friction free bearings at 77 k or higher are possible using the high T(sub c) copper oxide ceramic superconductors. The conventional method for making such bearings is to use a sintered ceramic monolith. This puts great restraints on size, shape and postforming machining. The material is hard and abrasive. It's possible to grind up ceramic superconductors and suspend the granules in a suitable matrix. Mechanical properties improve and are largely dependent on the binder. The Meissner effect is confined to individual grains containing electron vortices. Tracks, rails, levitation areas and bearings can be made this way with conventional plastic molding and extruding machines or by painting. The parts are easily machined. The sacrifice is in bulk electrical conductivity. A percolating wick feel for LN2 can be used to cool remote superconductors and large areas quite effectively. A hollow spheroid or cylinder of superconductor material can be molded with the internal surfaces shielded by the Meissner effect. It might be thought of as the dc magnetic analogue of the Faraday cage and the inside can be called the Meissner space. It's selective. The ac fields are transmitted with minor attenuation. Particle size and distribution have a profound effect on final magnetic and electrical characteristics.
Analysis of the possibilities and limits of the Moldflow method
NASA Astrophysics Data System (ADS)
Brierre, M.
1982-01-01
The Moldflow information and computation service is presented. Moldflow is a computer program and data bank available as a computer aid to dimensioning thermoplastic injection molding equipment and processes. It is based on the simultaneous solution of thermal and rheological equations and is intended to completely simulate the injection process. The Moldflow system is described and algorithms are discussed, based on Moldflow listings.