NASA Astrophysics Data System (ADS)
Pan, Honggang; Zhang, Ailing; Tong, Zhengrong; Zhang, Yue; Song, Hongyun; Yao, Yuan
2018-03-01
A width-tunable pulse laser via an optical injection induced gain modulation of a semiconductor optical amplifier (SOA) is demonstrated. When the pump current of the SOA is 330 mA or 400 mA and a continuous wave is injected into the laser cavity with different powers, bright or dark pulses with different pulse widths and frequency repetition rates are obtained. The bright and dark pulses are formed by the effect of gain dispersion and cross-gain modulation of the SOA.
Broadband supercontinuum generation with femtosecond pulse width in erbium-doped fiber laser (EDFL)
NASA Astrophysics Data System (ADS)
Rifin, S. N. M.; Zulkifli, M. Z.; Hassan, S. N. M.; Munajat, Y.; Ahmad, H.
2016-11-01
We demonstrate two flat plateaus and the low-noise spectrum of supercontinuum generation (SCG) in a highly nonlinear fiber (HNLF), injected by an amplified picosecond pulse seed of a carbon nanotube-based passively mode locked erbium-doped fiber laser. A broad spectrum of width approximately 1090 nm spanning the range 1130-2220 nm is obtained and the pulse width is compressed to the shorter duration of 70 fs. Variations of the injected peak power up to 33.78 kW into the HNLF are compared and the broad spectrum SCG profiles slightly expand for each of the injected peak powers. This straightforward configuration of SCG offers low output power and ultra-narrow femtosecond pulse width. The results facilitate the development of all fiber time-domain spectroscopy systems based on the photoconductive antenna technique.
Shu-Jiang, Liu; Zhan-Ying, Chen; Yin-Zhong, Chang; Shi-Lian, Wang; Qi, Li; Yuan-Qing, Fan
2013-10-11
Multidimensional gas chromatography is widely applied to atmospheric xenon monitoring for the Comprehensive Nuclear-Test-Ban Treaty (CTBT). To improve the capability for xenon sampling from the atmosphere, sampling techniques have been investigated in detail. The sampling techniques are designed by xenon outflow curves which are influenced by many factors, and the injecting condition is one of the key factors that could influence the xenon outflow curves. In this paper, the xenon outflow curves of single-pulse injection in two-dimensional gas chromatography has been tested and fitted as a function of exponential modified Gaussian distribution. An inference formula of the xenon outflow curve for six-pulse injection is derived, and the inference formula is also tested to compare with its fitting formula of the xenon outflow curve. As a result, the curves of both the one-pulse and six-pulse injections obey the exponential modified Gaussian distribution when the temperature of the activated carbon column's temperature is 26°C and the flow rate of the carrier gas is 35.6mLmin(-1). The retention time of the xenon peak for one-pulse injection is 215min, and the peak width is 138min. For the six-pulse injection, however, the retention time is delayed to 255min, and the peak width broadens to 222min. According to the inferred formula of the xenon outflow curve for the six-pulse injection, the inferred retention time is 243min, the relative deviation of the retention time is 4.7%, and the inferred peak width is 225min, with a relative deviation of 1.3%. Copyright © 2013 Elsevier B.V. All rights reserved.
1645-nm single-frequency, injection-seeded Q-switched Er:YAG master oscillator and power amplifier
NASA Astrophysics Data System (ADS)
Wang, Shuo; Gao, Chunqing; Shi, Yang; Song, Rui; Na, Quanxin; Gao, Mingwei; Wang, Qing
2018-02-01
A 1645-nm injection-seeded Q-switched Er:YAG master oscillator and power amplifier system is reported. The master oscillator generates single-frequency pulse energy of 11.10 mJ with a pulse width of 188.8 ns at 200 Hz. An Er:YAG monolithic nonplanar ring oscillator is employed as a seed laser. The output pulse from the master oscillator is amplified to 14.33-mJ pulse energy through an Er:YAG amplifier, with a pulse width of 183.3 ns. The M2-factors behind the amplifier are 1.14 and 1.23 in x- and y-directions, respectively. The full width at half maximum of the fast Fourier transformation spectrum of the heterodyne beating signal is 2.84 MHz.
NASA Astrophysics Data System (ADS)
Song, Enzhe; Fan, Liyun; Chen, Chao; Dong, Quan; Ma, Xiuzhen; Bai, Yun
2013-09-01
A simulation model of an electronically controlled two solenoid valve fuel injection system for a diesel engine is established in the AMESim environment. The accuracy of the model is validated through comparison with experimental data. The influence of pre-injection control parameters on main-injection quantity under different control modes is analyzed. In the spill control valve mode, main-injection fuel quantity decreases gradually and then reaches a stable level because of the increase in multi-injection dwell time. In the needle control valve mode, main-injection fuel quantity increases with rising multi-injection dwell time; this effect becomes more obvious at high-speed revolutions and large main-injection pulse widths. Pre-injection pulse width has no obvious influence on main-injection quantity under the two control modes; the variation in main-injection quantity is in the range of 1 mm3.
15 mJ single-frequency Ho:YAG laser resonantly pumped by a 1.9 µm laser diode
NASA Astrophysics Data System (ADS)
Na, Q. X.; Gao, C. Q.; Wang, Q.; Zhang, Y. X.; Gao, M. W.; Ye, Q.; Li, Y.
2016-09-01
A 2.09 µm injection-seeded single-frequency Ho:YAG laser resonantly pumped by a 1.91 µm laser diode is demonstrated for the first time. The seed laser is a continuous wave (CW) Ho:YAG non-planar ring oscillator. 15.15 mJ single-frequency output energy is obtained from the injection-seeded Q-switched Ho:YAG laser, with a pulse repetition rate of 200 Hz and a pulse width of 109 ns. The half-width of the pulse spectrum is measured to be 4.19 MHz by using the heterodyne technique. The fluctuation of the center frequency of the single-frequency pulses is 1.52 MHz (root mean square (RMS)) in 1 h.
NASA Astrophysics Data System (ADS)
Fenkl, Michael; Pechout, Martin; Vojtisek, Michal
2016-03-01
The paper reports on an experimental investigation of the relationship between the pulse width of a gasoline engine port fuel injector and the quantity of the fuel injected when butanol is used as a fuel. Two isomers of butanol, n-butanol and isobutanol, are considered as potential candidates for renewable, locally produced fuels capable of serving as a drop-in replacement fuel for gasoline, as an alternative to ethanol which poses material compatibility and other drawbacks. While the injected quantity of fuel is typically a linear function of the time the injector coil is energized, the flow through the port fuel injector is complex, non ideal, and not necessarily laminar, and considering that butanol has much higher viscosity than gasoline, an experimental investigation was conducted. A production injector, coupled to a production fueling system, and driven by a pulse width generator was operated at various pulse lengths and frequencies, covering the range of engine rpm and loads on a car engine. The results suggest that at least at room temperature, the fueling rate remains to be a linear function of the pulse width for both n-butanol and isobutanol, and the volumes of fuel injected are comparable for gasoline and both butanol isomers.
Wu, Hanyu; Zhang, Xinjun; Sun, Tieping; Zeng, Zhengzhong; Cong, Peitian; Zhang, Shaoguo
2015-10-01
In this article, we describe a rectangular pulse generator, consisting of a polymer-film switch, a tri-plate transmission line, and parallel post-shaped ceramic resistor load, for 50-kV voltage, 0.8-ns rise time, and 10-ns width. The switch and resistors are arranged in atmospheric air and the transmission line can work in atmospheric air or in transformer oil to change the pulse width from 6.7 ns to 10 ns. The fast switching and low-inductance characteristics of the polymer-film switch ensure the fast rising wavefront of <1 ns. This generator can be applied in the calibration of nanosecond voltage dividers and used for electromagnetic pulse tests as a fast-rising current injection source.
Gao, Chunqing; Lin, Zhifeng; Gao, Mingwei; Zhang, Yunshan; Zhu, Lingni; Wang, Ran; Zheng, Yan
2010-05-20
We present a diode-pumped, 2mum single-frequency Q-switched Tm:YAG laser. The Q-switched laser is injection seeded by a monolithic Tm:YAG nonplanar ring oscillator with the ramp-hold-fire technique. The output energy of the 2mum single-frequency Q-switched pulse is 2.23mJ, with a pulse width of 290ns and a repetition rate of 200Hz. From the heterodyne beating measurement, the frequency difference between the seed laser and the Q-switched laser is determined to be 37.66MHz, with a half-width of the symmetric spectrum of about 2 MHz.
NASA Technical Reports Server (NTRS)
Flamant, P. H.; Menzies, R. T.; Kavaya, M. J.; Oppenheim, U. P.
1983-01-01
A grating-tunable TEA-CO2 laser with an unstable resonator cavity, modified to allow injection of CW CO2 laser radiation at the resonant transition line by means of an intracavity NaCl window, has been used to study the coupling requirements for generation of single frequency pulses. The width and shape of the mode selection region, and the dependence of the gain-switched spike buildup time and the pulse shapes on the intensity and detuning frequency of the injected radiation are reported. Comparisons of the experimental results with previously reported mode selection behavior are discussed.
Multiwavelength self-pulsating fibre laser based on cascaded SPM spectral broadening and filtering
NASA Astrophysics Data System (ADS)
Rochette, Martin; Sun, Kai; Hernández-Cordero, Juan; Chen, Lawrence R.
2008-06-01
We experimentally demonstrate the operation of a laser based on self-phase modulation followed by offset spectral filtering. This laser has three operation modes: a continuous-wave mode, a self-pulsating mode where the laser self ignites and produces pulses, and a pulse-buffering mode where no new pulse is formed from spontaneous emission noise but only pulses already propagating or pulses injected in the laser cavity can be sustained. In the self-pulsating and pulse-buffering modes, the laser is multi-wavelength and continuously tunable over the entire gain band of the amplifiers. The output pulse width is quasi transform-limited with respect to the spectral-width of the filters used in the cavity. Overall, this device provides a simple alternative to pulsed laser source and also represents a promising approach for signal buffering.
Lin, Gong-Ru; Pan, Ci-Ling; Chiu, I-Hsiang
2006-03-15
A backward dark-optical-comb-injection mode-locked semiconductor optical amplifier fiber laser (SOAFL) with a femtosecond pulse width and an ultrahigh supermode-noise suppressing ratio (SMSR) is primarily demonstrated. The mode-locked SOAFL pulse with a spectral linewidth of 0.45 nm is shortened from 15 to 8.6 ps under chirp compensation in a 420 m long dispersion-compensated fiber, corresponding to a time-bandwidth product of 0.48. The eighth-order soliton is obtained by the nonlinearly soliton's compression of the chirp-compensated SOAFL pulse in a 112 m long single-mode fiber at an input peak power of 51 W, providing the pulse width, the linewidth, and the nearly transform-limited time-bandwidth product are <200 fs, 13.8 nm, and 0.34, respectively. The phase noise and integrated timing jitter at an offset frequency below 1 MHz are -105 dBc/Hz and 0.8 ps, respectively. An ultrahigh pulse-compression ratio of 43 and a SMSR of 87 dB for the eighth-order SOAFL soliton are reported.
Closed-Loop Control of Chemical Injection Rate for a Direct Nozzle Injection System.
Cai, Xiang; Walgenbach, Martin; Doerpmond, Malte; Schulze Lammers, Peter; Sun, Yurui
2016-01-20
To realize site-specific and variable-rate application of agricultural pesticides, accurately metering and controlling the chemical injection rate is necessary. This study presents a prototype of a direct nozzle injection system (DNIS) by which chemical concentration transport lag was greatly reduced. In this system, a rapid-reacting solenoid valve (RRV) was utilized for injecting chemicals, driven by a pulse-width modulation (PWM) signal at 100 Hz, so with varying pulse width the chemical injection rate could be adjusted. Meanwhile, a closed-loop control strategy, proportional-integral-derivative (PID) method, was applied for metering and stabilizing the chemical injection rate. In order to measure chemical flow rates and input them into the controller as a feedback in real-time, a thermodynamic flowmeter that was independent of chemical viscosity was used. Laboratory tests were conducted to assess the performance of DNIS and PID control strategy. Due to the nonlinear input-output characteristics of the RRV, a two-phase PID control process obtained better effects as compared with single PID control strategy. Test results also indicated that the set-point chemical flow rate could be achieved within less than 4 s, and the output stability was improved compared to the case without control strategy.
Closed-Loop Control of Chemical Injection Rate for a Direct Nozzle Injection System
Cai, Xiang; Walgenbach, Martin; Doerpmond, Malte; Schulze Lammers, Peter; Sun, Yurui
2016-01-01
To realize site-specific and variable-rate application of agricultural pesticides, accurately metering and controlling the chemical injection rate is necessary. This study presents a prototype of a direct nozzle injection system (DNIS) by which chemical concentration transport lag was greatly reduced. In this system, a rapid-reacting solenoid valve (RRV) was utilized for injecting chemicals, driven by a pulse-width modulation (PWM) signal at 100 Hz, so with varying pulse width the chemical injection rate could be adjusted. Meanwhile, a closed-loop control strategy, proportional-integral-derivative (PID) method, was applied for metering and stabilizing the chemical injection rate. In order to measure chemical flow rates and input them into the controller as a feedback in real-time, a thermodynamic flowmeter that was independent of chemical viscosity was used. Laboratory tests were conducted to assess the performance of DNIS and PID control strategy. Due to the nonlinear input–output characteristics of the RRV, a two-phase PID control process obtained better effects as compared with single PID control strategy. Test results also indicated that the set-point chemical flow rate could be achieved within less than 4 s, and the output stability was improved compared to the case without control strategy. PMID:26805833
Lin, Gong-Ru; Pan, Ci-Ling; Yu, Kun-Chieh
2007-10-01
By spectrally and temporally reshaping the gain-window of a traveling-wave semiconductor optical amplifier (TWSOA) with a backward injected multi- or single-wavelength inverse-optical-comb, we theoretically and experimentally investigate the dynamic frequency chirp of the all-optical 10GBit/s Return-to-Zero (RZ) data-stream format-converted from the TWSOA under strong cross-gain depletion scheme. The multi-wavelength inverse-optical-comb injection effectively depletes the TWSOA gain spectrally and temporally, remaining a narrow gain-window and a reduced spectral linewidth and provide a converted RZ data with a smaller peak-to-peak frequency chirp of 6.7 GHz. Even at high inverse-optical-comb injection power and highly biased current condition for improving the operational bit-rate, the chirp of the multi-wavelength-injection converted RZ pulse is still 2.1-GHz smaller than that obtained by using single-wavelength injection at a cost of slight pulse-width broadening by 1 ps.
Wilson, Ryan B; Siegler, W Christopher; Hoggard, Jamin C; Fitz, Brian D; Nadeau, Jeremy S; Synovec, Robert E
2011-05-27
By taking into consideration band broadening theory and using those results to select experimental conditions, and also by reducing the injection pulse width, peak capacity production (i.e., peak capacity per separation time) is substantially improved for one dimensional (1D-GC) and comprehensive two dimensional (GC×GC) gas chromatography. A theoretical framework for determining the optimal linear gas velocity (the linear gas velocity producing the minimum H), from experimental parameters provides an in-depth understanding of the potential for GC separations in the absence of extra-column band broadening. The extra-column band broadening is referred to herein as off-column band broadening since it is additional band broadening not due to the on-column separation processes. The theory provides the basis to experimentally evaluate and improve temperature programmed 1D-GC separations, but in order to do so with a commercial 1D-GC instrument platform, off-column band broadening from injection and detection needed to be significantly reduced. Specifically for injection, a resistively heated transfer line is coupled to a high-speed diaphragm valve to provide a suitable injection pulse width (referred to herein as modified injection). Additionally, flame ionization detection (FID) was modified to provide a data collection rate of 5kHz. The use of long, relatively narrow open tubular capillary columns and a 40°C/min programming rate were explored for 1D-GC, specifically a 40m, 180μm i.d. capillary column operated at or above the optimal average linear gas velocity. Injection using standard auto-injection with a 1:400 split resulted in an average peak width of ∼1.5s, hence a peak capacity production of 40peaks/min. In contrast, use of modified injection produced ∼500ms peak widths for 1D-GC, i.e., a peak capacity production of 120peaks/min (a 3-fold improvement over standard auto-injection). Implementation of modified injection resulted in retention time, peak width, peak height, and peak area average RSD%'s of 0.006, 0.8, 3.4, and 4.0%, respectively. Modified injection onto the first column of a GC×GC coupled with another high-speed valve injection onto the second column produced an instrument with high peak capacity production (500-800peaks/min), ∼5-fold to 8-fold higher than typically reported for GC×GC. Copyright © 2011 Elsevier B.V. All rights reserved.
Wide-band fanned-out supercontinuum source covering O-, E-, S-, C-, L- and U-bands
NASA Astrophysics Data System (ADS)
Ahmad, H.; Latif, A. A.; Awang, N. A.; Zulkifli, M. Z.; Thambiratnam, K.; Ghani, Z. A.; Harun, S. W.
2012-10-01
A wide-band supercontinuum source generated by mode-locked pulses injected into a Highly Non-Linear Fiber (HNLF) is proposed and demonstrated. A 49 cm long Bismuth-Erbium Doped Fiber (Bi-EDF) pumped by two 1480 nm laser diodes acts as the active gain medium for a ring fiber laser, from which mode-locked pulses are obtained using the Non-Polarization Rotation (NPR) technique. The mode-locked pulses are then injected into a 100 m long HLNF with a dispersion of 0.15 ps/nm km at 1550 nm to generate a supercontinuum spectrum spanning from 1340 nm to more than 1680 nm with a pulse width of 0.08 ps and an average power of -17 dBm. The supercontinuum spectrum is sliced using a 24 channel Arrayed Waveguide Grating (AWG) with a channel spacing of 100 GHz to obtain a fanned-out laser output covering the O-, E-, S-, C-, L- and U-bands. The lasing wavelengths obtained have an average pulse width of 9 ps with only minor fluctuations and a mode-locked repetition rate of 40 MHz, and is sufficiently stable to be used in a variety of sensing and communication applications, most notably as cost-effective sources for Fiber-to-the-Home (FTTH) networks.
Study of monopropellants for electrothermal thrusters
NASA Technical Reports Server (NTRS)
Kuenzly, J. D.
1974-01-01
A 333 mN electrothermal thruster designed to use MIL-grade hydrazine was demonstrated to be suitable for operation with low freezing point monopropellants containing hydrazine azide, monomethylhydrazine, unsymmetrical-dimethylhydrazine and ammonia. The steady-state specific impulse was greater than 200 sec for all propellants. The pulsed-mode specific impulse for an azide blend exceeded 175 sec for pulse widths greater than 50 msec; propellants containing carbonaceous species delivered 175 sec pulsed-mode specific impulses for pulse widths greater than 100 msec. Longer thrust chamber residence times were required for the carbonaceous propellants; the original thruster design was modified by increasing the characteristic chamber length and screen packing density. Specific recommendations were made for the work required to design and develop flight worthy thrusters, including methods to increase propellant dispersal at injection, thruster geometry changes to reduce holding power levels and methods to initiate the rapid decomposition of the carbonaceous propellants.
NASA Astrophysics Data System (ADS)
Guo, Dawei; Cheng, Mousen; Li, Xiaokang
2017-10-01
In support of our planar pulsed inductive plasma thruster research, a fast electromagnetic inductive valve for a gas propellant injection system has been built and tested. A new and important design feature is the use of a conical diaphragm as the action part, which greatly contributes to the virtue of simplicity for adopting the resultant force of the diaphragm deformation as the closing force. An optical transmission technique is adopted to measure the opening and closing characters of the valve while the gas throughput is determined by measuring the pressure change per pulse in a test chamber with a capacitance manometer. The experimental results revealed that the delay time before the valve reaction is less than 40 μs, and the valve pulse width is no longer than 160 μs full width at half maximum. The valve delivers 0-2.5 mg of argon gas per pulse varied by adjusting the drive voltage and gas pressure.
Guo, Dawei; Cheng, Mousen; Li, Xiaokang
2017-10-01
In support of our planar pulsed inductive plasma thruster research, a fast electromagnetic inductive valve for a gas propellant injection system has been built and tested. A new and important design feature is the use of a conical diaphragm as the action part, which greatly contributes to the virtue of simplicity for adopting the resultant force of the diaphragm deformation as the closing force. An optical transmission technique is adopted to measure the opening and closing characters of the valve while the gas throughput is determined by measuring the pressure change per pulse in a test chamber with a capacitance manometer. The experimental results revealed that the delay time before the valve reaction is less than 40 μs, and the valve pulse width is no longer than 160 μs full width at half maximum. The valve delivers 0-2.5 mg of argon gas per pulse varied by adjusting the drive voltage and gas pressure.
Badets, Franck; Nouet, Pascal; Masmoudi, Mohamed
2018-01-01
A fully integrated sensor interface for a wide operational temperature range is presented. It translates the sensor signal into a pulse width modulated (PWM) signal that is then converted into a 12-bit digital output. The sensor interface is based on a pair of injection locked oscillators used to implement a differential time-domain architecture with low sensitivity to temperature variations. A prototype has been fabricated using a 180 nm partially depleted silicon-on-insulator (SOI) technology. Experimental results demonstrate a thermal stability as low as 65 ppm/°C over a large temperature range from −20 °C up to 220 °C. PMID:29621171
Klehr, A; Wenzel, H; Fricke, J; Bugge, F; Erbert, G
2014-10-06
We have developed a diode-laser based master oscillator power amplifier (MOPA) light source which emits high-power spectrally stabilized and nearly-diffraction limited optical pulses in the nanoseconds range as required by many applications. The MOPA consists of a distributed Bragg reflector (DBR) laser as master oscillator driven by a constant current and a ridge waveguide power amplifier (PA) which can be driven by a constant current (DC) or by rectangular current pulses with a width of 5 ns at a repetition frequency of 200 kHz. Under pulsed operation the amplifier acts as an optical gate, converting the CW input beam emitted by the DBR laser into a train of short amplified optical pulses. With this experimental MOPA arrangement no relaxation oscillations occur. A continuous wave power of 1 W under DC injection and a pulse power of 4 W under pulsed operation are reached. For both operational modes the optical spectrum of the emission of the amplifier exhibits a peak at a constant wavelength of 973.5 nm with a spectral width < 10 pm.
NASA Technical Reports Server (NTRS)
Yu, Jirong; Trieu, Bo; Bai, Yingxin; Koch, Grady; Chen, Songsheng; Petzar, Paul; Singh, Upendra N.; Kavaya, Michael J.; Beyon, Jeffrey
2010-01-01
The design of a double pulsed, injection seeded, 2-micrometer compact coherent Differential absorption Lidar (DIAL) transmitter for CO2 sensing is presented. This system is hardened for ground and airborne applications. The design architecture includes three continuous wave lasers which provide controlled on and off line seeding, injection seeded power oscillator and a single amplifier operating in double pass configuration. As the derivative a coherent Doppler wind lidar, this instrument has the added benefit of providing wind information. The active laser material used for this application is a Ho: Tm:YLF crystal operates at the eye-safe wavelength. The 3-meter long folded ring resonator produces energy of 130-mJ (90/40) with a temporal pulse length around 220 nanoseconds and 530 nanosecond pulses for on and off lines respectively. The separation between the two pulses is on the order of 200 microseconds. The line width is in the order of 2.5MHz and the beam quality has an M(sup 2) of 1.1 times diffraction limited beam. A final output energy for a pair of both on and off pulses as high as 315 mJ (190/125) at a repetition rate of 10 Hz is achieved. The operating temperature is set around 20 C for the pump diode lasers and 10 C for the rod. Since the laser design has to meet high-energy as well as high beam quality requirements, close attention is paid to the laser head design to avoid thermal distortion in the rod. A side-pumped configuration is used and heat is removed uniformly by passing coolant through a tube slightly larger than the rod to reduce thermal gradient. This paper also discusses the advantage of using a long upper laser level life time laser crystal for DIAL application. In addition issues related to injection seeding with two different frequencies to achieve a transform limited line width will be presented.
NASA Astrophysics Data System (ADS)
Knorr, Nikolaus; Rosselli, Silvia; Miteva, Tzenka; Nelles, Gabriele
2009-06-01
Although charging of insulators by atomic force microscopy (AFM) has found widespread interest, often with data storage or nanoxerography in mind, less attention has been paid to the charging mechanism and the nature of the charge. Here we present a systematic study on charging of amorphous polymer films by voltage pulses applied to conducting AFM probes. We find a quadratic space charge limited current law of Kelvin probe force microscopy and electrostatic force microscopy peak volumes in pulse height, offset by a threshold voltage, and a power law in pulse width of positive exponents smaller than one. We interpret the results by a charging mechanism of injection and surface near accumulation of aqueous ions stemming from field induced water adsorption, with threshold voltages linked to the water affinities of the polymers.
NASA Astrophysics Data System (ADS)
Ishii, K.; Watanabe, S.; Obata, D.; Hazama, H.; Morita, Y.; Matsuoka, Y.; Kutsumi, H.; Azuma, T.; Awazu, K.
2010-02-01
Endoscopic submucosal dissection (ESD) is accepted as a minimally invasive treatment technique for small early gastric cancers. Procedures are carried out using some specialized electrosurgical knifes with a submucosal injection solution. However it is not widely used because its procedure is difficult. The objective of this study is to develop a novel ESD method which is safe in principle and widely used by using laser techniques. In this study, we used CO2 lasers with a wavelength of 10.6 μm for mucosal ablation. Two types of pulse, continuous wave and pulsed wave with a pulse width of 110 ns, were studied to compare their values. Porcine stomach tissues were used as a sample. Aqueous solution of sodium hyaluronate (MucoUpR) with 50 mg/ml sodium dihydrogenphosphate is injected to a submucosal layer. As a result, ablation effect by CO2 laser irradiation was stopped because submucosal injection solution completely absorbed CO2 laser energy in the invasive energy condition which perforates a muscle layer without submucosal injection solution. Mucosal ablation by the combination of CO2 Laser and a submucosal injection solution is a feasible technique for treating early gastric cancers safely because it provides a selective mucosal resection and less-invasive interaction to muscle layer.
Magnetic plasma confinement for laser ion source.
Okamura, M; Adeyemi, A; Kanesue, T; Tamura, J; Kondo, K; Dabrowski, R
2010-02-01
A laser ion source (LIS) can easily provide a high current beam. However, it has been difficult to obtain a longer beam pulse while keeping a high current. On occasion, longer beam pulses are required by certain applications. For example, more than 10 micros of beam pulse is required for injecting highly charged beams to a large sized synchrotron. To extend beam pulse width, a solenoid field was applied at the drift space of the LIS at Brookhaven National Laboratory. The solenoid field suppressed the diverging angle of the expanding plasma and the beam pulse was widened. Also, it was observed that the plasma state was conserved after passing through a few hundred gauss of the 480 mm length solenoid field.
NASA Technical Reports Server (NTRS)
Chen, Y. C.; Lee, K. K.
1993-01-01
The applications of Q-switched lasers are well known, for example, laser radar, laser remote sensing, satellite orbit determination, Moon orbit and 'moon quake' determination, satellite laser communication, and many nonlinear optics applications. Most of the applications require additional properties of the Q-switched lasers, such as single-axial and/or single-transverse mode, high repetition rate, stable pulse shape and pulse width, or ultra compact and rugged oscillators. Furthermore, space based and airborne lasers for lidar and laser communication applications require efficient, compact, lightweight, long-lived, and stable-pulsed laser sources. Diode-pumped solid-state lasers (DPSSL) have recently shown the potential for satisfying all of these requirements. We will report on the operating characteristics of a diode-pumped, monolithic, self-Q-switched Cr,Nd:YAG laser where the chromium ions act as a saturable absorber for the laser emission at 1064 nm. The pulse duration is 3.5 ns and the output is highly polarized with an extinction ratio of 700:1. It is further shown that the output is single-longitudinal-mode with transform-limited spectral line width without pulse-to-pulse mode competition. Consequently, the pulse-to-pulse intensity fluctuation is less than the instrument resolution of 0.25 percent. This self-stabilization mechanism is because the lasing mode bleaches the distributed absorber and establishes a gain-loss grating similar to that used in the distributed feedback semiconductor lasers. A repetition rate above 5 KHz has also been demonstrated. For higher power, this laser can be used for injection seeding an amplifier (or amplifier chain) or injection locking of a power oscillator pumped by diode lasers. We will discuss some research directions on the master oscillator for higher output energy per pulse as well as how to scale the output power of the diode-pumped amplifier(s) to multi-kilowatt average power.
NASA Astrophysics Data System (ADS)
Klehr, A.; Liero, A.; Wenzel, H.; Bugge, F.; Brox, O.; Fricke, J.; Ressel, P.; Knigge, A.; Heinrich, W.; Tränkle, G.
2017-02-01
A new compact 1030 nm picosecond light source which can be switched between pulse gating and mode locking operation is presented. It consists of a multi-section distributed Bragg reflector (DBR) laser, an ultrafast multisection optical gate and a flared power amplifier (PA), mounted together with high frequency electronics and optical elements on a 5×4 cm micro bench. The master oscillator (MO) is a 10 mm long ridge wave-guide (RW) laser consisting of 200 μm long saturable absorber, 1500 μm long gain, 8000 μm long cavity, 200 μm long DBR and 100 μm long monitor sections. The 2 mm long optical gate consisting of several RW sections is monolithically integrated with the 4 mm long gain-guided tapered amplifier on a single chip. The light source can be switched between pulse gating and passive mode locking operation. For pulse gating all sections of the MO (except of the DBR and monitor sections) are forward biased and driven by a constant current. By injecting electrical pulses into one section of the optical gate the CW beam emitted by the MO is converted into a train of optical pulses with adjustable widths between 250 ps and 1000 ps. Peak powers of 20 W and spectral linewidths in the MHz range are achieved. Shorter pulses with widths between 4 ps and 15 ps and peak powers up to 50 W but larger spectral widths of about 300 pm are generated by mode locking where the saturable absorber section of the MO is reversed biased. The repetition rate of 4.2 GHz of the pulse train emitted by the MO can be reduced to values between 1 kHz and 100 MHz by utilizing the optical gate as pulse picker. The pulse-to-pulse distance can be controlled by an external trigger source.
Global synchronization of parallel processors using clock pulse width modulation
Chen, Dong; Ellavsky, Matthew R.; Franke, Ross L.; Gara, Alan; Gooding, Thomas M.; Haring, Rudolf A.; Jeanson, Mark J.; Kopcsay, Gerard V.; Liebsch, Thomas A.; Littrell, Daniel; Ohmacht, Martin; Reed, Don D.; Schenck, Brandon E.; Swetz, Richard A.
2013-04-02
A circuit generates a global clock signal with a pulse width modification to synchronize processors in a parallel computing system. The circuit may include a hardware module and a clock splitter. The hardware module may generate a clock signal and performs a pulse width modification on the clock signal. The pulse width modification changes a pulse width within a clock period in the clock signal. The clock splitter may distribute the pulse width modified clock signal to a plurality of processors in the parallel computing system.
Koch, Peter; Bartschke, Juergen; L'huillier, Johannes A
2015-11-30
In this paper we report on the realization of a single-mode Q-switched Nd:YVO4 ring laser at 1342 nm. Unidirectional and single-mode operation of the ring laser is achieved by injection-locking with a continuous wave Nd:YVO4 microchip laser, emitting a single-frequency power of up to 40 mW. The ring laser provides a single-mode power of 13.9 W at 10 kHz pulse repetition frequency with a pulse duration of 18.2 ns and an excellent beam quality (M2 < 1.05). By frequency doubling of the fundamental 1342 nm laser, a power of 8.7 W at 671 nm with a pulse duration of 14.8 ns and a beam propagation factor of M2 < 1.1 is obtained. The 671 nm radiation features a long-term spectral width of 75 MHz.
1.55-μm mode-locked quantum-dot lasers with 300 MHz frequency tuning range
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sadeev, T., E-mail: tagir@mailbox.tu-berlin.de; Arsenijević, D.; Bimberg, D.
2015-01-19
Passive mode-locking of two-section quantum-dot mode-locked lasers grown by metalorganic vapor phase epitaxy on InP is reported. 1250-μm long lasers exhibit a wide tuning range of 300 MHz around the fundamental mode-locking frequency of 33.48 GHz. The frequency tuning is achieved by varying the reverse bias of the saturable absorber from 0 to −2.2 V and the gain section current from 90 to 280 mA. 3 dB optical spectra width of 6–7 nm leads to ex-facet optical pulses with full-width half-maximum down to 3.7 ps. Single-section quantum-dot mode-locked lasers show 0.8 ps broad optical pulses after external fiber-based compression. Injection current tuning from 70 tomore » 300 mA leads to 30 MHz frequency tuning.« less
Electrically-pumped, broad-area, single-mode photonic crystal lasers.
Zhu, Lin; Chak, Philip; Poon, Joyce K S; DeRose, Guy A; Yariv, Amnon; Scherer, Axel
2007-05-14
Planar broad-area single-mode lasers, with modal widths of the order of tens of microns, are technologically important for high-power applications and improved coupling efficiency into optical fibers. They may also find new areas of applications in on-chip integration with devices that are of similar size scales, such as for spectroscopy in microfluidic chambers or optical signal processing with micro-electromechanical systems. An outstanding challenge is that broad-area lasers often require external means of control, such as injection-locking or a frequency/spatial filter to obtain single-mode operation. In this paper, we propose and demonstrate effective index-guided, large-area, edge-emitting photonic crystal lasers driven by pulsed electrical current injection at the optical telecommunication wavelength of 1550 nm. By suitable design of the photonic crystal lattice, our lasers operate in a single mode with a 1/e(2) modal width of 25 microm and a length of 600 microm.
125-mJ diode-pumped injection-seeded Ho:Tm:YLF laser.
Yu, J; Singh, U N; Barnes, N P; Petros, M
1998-05-15
We describe a diode-pumped, room-temperature Ho:Tm:YLF power oscillator with an optical-to-optical efficiency of 0.03. A Q -switched output energy of as much as 125 mJ at 6 Hz with a pulse width of 170 ns was obtained. Single-frequency, nearly transform-limited operation of the laser was achieved by injection seeding. Laser performance as a function of laser rod temperature and pump intensity was also investigated. The high power and high beam quality of this laser make it well suited for use as a coherent wind lidar transmitter on a space platform.
Pulse Width Affects Scalp Sensation of Transcranial Magnetic Stimulation.
Peterchev, Angel V; Luber, Bruce; Westin, Gregory G; Lisanby, Sarah H
Scalp sensation and pain comprise the most common side effect of transcranial magnetic stimulation (TMS), which can reduce tolerability and complicate experimental blinding. We explored whether changing the width of single TMS pulses affects the quality and tolerability of the resultant somatic sensation. Using a controllable pulse parameter TMS device with a figure-8 coil, single monophasic magnetic pulses inducing electric field with initial phase width of 30, 60, and 120 µs were delivered in 23 healthy volunteers. Resting motor threshold of the right first dorsal interosseus was determined for each pulse width, as reported previously. Subsequently, pulses were delivered over the left dorsolateral prefrontal cortex at each of the three pulse widths at two amplitudes (100% and 120% of the pulse-width-specific motor threshold), with 20 repetitions per condition delivered in random order. After each pulse, subjects rated 0-to-10 visual analog scales for Discomfort, Sharpness, and Strength of the sensation. Briefer TMS pulses with amplitude normalized to the motor threshold were perceived as slightly more uncomfortable than longer pulses (with an average 0.89 point increase on the Discomfort scale for pulse width of 30 µs compared to 120 µs). The sensation of the briefer pulses was felt to be substantially sharper (2.95 points increase for 30 µs compared to 120 µs pulse width), but not stronger than longer pulses. As expected, higher amplitude pulses increased the perceived discomfort and strength, and, to a lesser degree the perceived sharpness. Our findings contradict a previously published hypothesis that briefer TMS pulses are more tolerable. We discovered that the opposite is true, which merits further study as a means of enhancing tolerability in the context of repetitive TMS. Copyright © 2016 Elsevier Inc. All rights reserved.
Pulse width affects scalp sensation of transcranial magnetic stimulation
Peterchev, Angel V.; Luber, Bruce; Westin, Gregory G.; Lisanby, Sarah H.
2016-01-01
Background Scalp sensation and pain comprise the most common side effect of transcranial magnetic stimulation (TMS), which can reduce tolerability and complicate experimental blinding. Objective We explored whether changing the width of single TMS pulses affects the quality and tolerability of the resultant somatic sensation. Methods Using a controllable pulse parameter TMS device with a figure-8 coil, single monophasic magnetic pulses inducing electric field with initial phase width of 30, 60, and 120 µs were delivered in 23 healthy volunteers. Resting motor threshold of the right first dorsal interosseus was determined for each pulse width, as reported previously. Subsequently, pulses were delivered over the left dorsolateral prefrontal cortex at each of the three pulse widths at two amplitudes (100% and 120% of the pulse-width-specific motor threshold), with 20 repetitions per condition delivered in random order. After each pulse, subjects rated 0-to-10 visual analog scales for Discomfort, Sharpness, and Strength of the sensation. Results Briefer TMS pulses with amplitude normalized to the motor threshold were perceived as slightly more uncomfortable than longer pulses (with an average 0.89 points increase on the Discomfort scale for pulse width of 30 µs compared to 120 µs). The sensation of the briefer pulses was felt to be substantially sharper (2.95 point increase for 30 µs compared to 120 µs pulse width), but not stronger than longer pulses. As expected, higher amplitude pulses increased the perceived discomfort and strength, and, to a lesser degree the perceived sharpness. Conclusions Our findings contradict a previously published hypothesis that briefer TMS pulses are more tolerable. We discovered that the opposite is true, which merits further study as a means of enhancing tolerability in the context of repetitive TMS. PMID:28029593
Photonic jet: key role of injection for etchings with a shaped optical fiber tip.
Pierron, Robin; Zelgowski, Julien; Pfeiffer, Pierre; Fontaine, Joël; Lecler, Sylvain
2017-07-15
We demonstrate the key role of the laser injection into a multimode fiber to obtain a photonic jet (PJ). PJ, a high concentrated propagating beam with a full width at half-maximum smaller than the diffraction limit, is here generated with a shaped optical fiber tip using a pulsed laser source (1064 nm, 100 ns, 35 kHz). Three optical injection systems of light are compared. For similar etched marks on silicon with diameters around 1 μm, we show that the required ablation energy is minimum when the injected light beam is close to the fundamental mode diameter of the fiber. Thus, we confirm experimentally that to obtain a PJ out of an optical fiber, light injection plays a role as important as that of the tip shape and, therefore, the role of the fundamental mode in the process.
Manipulation of the micro and macro-structure of beams extracted from cyclotrons
DOE Office of Scientific and Technical Information (OSTI.GOV)
Laxdal, R.E.
1995-09-01
It is standard practice in cyclotrons to alter the extracted micro-pulse width by using center-region slits and/or by chopping the beam before injection. The macro-structure can also be varied by means of pulsed or sinusoidal deflection devices before injection and/or after extraction. All above methods, however, involve cutting away the unwanted beam, thus reducing the time-averaged intensity. This paper will focus on some methods used to alter the time structure of extracted beams without significant beam loss. For example radial gradients in the accelerating fields from rf cavities can be utilized to compress, expand or even split longitudinally the circulatingmore » particle bunches. The macro-structure of the extracted beam can be altered by employing resonant extraction methods and replacing the static magnetic bump with either a pulsed or a sinusoidal transverse perturbation. The methods are most suitable for H cyclotrons but may also be considered in a limited scope for cyclotrons using direct extraction. Results of computer simulations and beam tests on the TRIUMF 500 MeV H{sup {minus}} cyclotron will be presented.« less
Analysis of all-optical temporal integrator employing phased-shifted DFB-SOA.
Jia, Xin-Hong; Ji, Xiao-Ling; Xu, Cong; Wang, Zi-Nan; Zhang, Wei-Li
2014-11-17
All-optical temporal integrator using phase-shifted distributed-feedback semiconductor optical amplifier (DFB-SOA) is investigated. The influences of system parameters on its energy transmittance and integration error are explored in detail. The numerical analysis shows that, enhanced energy transmittance and integration time window can be simultaneously achieved by increased injected current in the vicinity of lasing threshold. We find that the range of input pulse-width with lower integration error is highly sensitive to the injected optical power, due to gain saturation and induced detuning deviation mechanism. The initial frequency detuning should also be carefully chosen to suppress the integration deviation with ideal waveform output.
Voyager Uranus encounter 0.2lbf T/VA short pulse test report
NASA Technical Reports Server (NTRS)
1986-01-01
The attitude control thrusters on the Voyager spacecraft were tested for operation at electrical pulse widths of less than the current 10-millisecond minimum to reduce impulse bit and, therefore, reduce image smear of pictures taken during the Uranus encounter. Thrusters with the identical configuration of the units on the spacecraft were fired in an altitude chamber to characterize impulse bit and impulse bit variations as a function of electrical pulse widths and to determine if the short pulses decreased thruster life. Pulse widths of 4.0 milliseconds provide approximately 45 percent of the impulse provided by a 10-ms pulse, and thruster-to-thruster and pulse-to-pulse variation is approximately plus or minus 10 percent. Pulse widths shorter than 4 ms showed wide variation, and no pulse was obtained at 3 ms. Three thrusters were each subjected to 75,000 short pulses of 4 ms or less without performance degradation. A fourth thruster exhibited partial flow blockage after 13,000 short pulses, but this was attributed to prevous test history and not short pulse exposure. The Voyager attitude control thrusters should be considered flight qualified for short pulse operation at pulse widths of 4.0 ms or more.
An investigation of the performance of an electronic in-line pump system for diesel engines
NASA Astrophysics Data System (ADS)
Fan, Li-Yun; Zhu, Yuan-Xian; Long, Wu-Qiang; Ma, Xiu-Zhen; Xue, Ying-Ying
2008-12-01
WIT Electronic Fuel System Co., Ltd. has developed a new fuel injector, the Electronic In-line Pump (EIP) system, designed to meet China’s diesel engine emission and fuel economy regulations. It can be used on marine diesel engines and commercial vehicle engines through different EIP systems. A numerical model of the EIP system was built in the AMESim environment for the purpose of creating a design tool for engine application and system optimization. The model was used to predict key injection characteristics under different operating conditions, such as injection pressure, injection rate, and injection duration. To validate these predictions, experimental tests were conducted under the conditions that were modeled. The results were quite encouraging and in agreement with model predictions. Additional experiments were conducted to study the injection characteristics of the EIP system. These results show that injection pressure and injection quantity are insensitive to injection timing variations, this is due to the design of the constant velocity cam profile. Finally, injection quantity and pressure vs. pulse width at different cam speeds are presented, an important injection characteristic for EIP system calibration.
Ultra-narrow pulse generator with precision-adjustable pulse width
NASA Astrophysics Data System (ADS)
Fu, Zaiming; Liu, Hanglin
2018-05-01
In this paper, a novel ultra-narrow pulse generation approach is proposed. It is based on the decomposition and synthesis of pulse edges. Through controlling their relative delay, an ultra-narrow pulse could be generated. By employing field programmable gate array digital synthesis technology, the implemented pulse generator is with programmable ability. The amplitude of pulse signals is controlled by the radio frequency amplifiers and bias tees, and high precision can be achieved. More importantly, the proposed approach can break through the limitation of device's propagation delay and optimize the resolution and the accuracy of the pulse width significantly. The implemented pulse generator has two channels, whose minimum pulse width, frequency range, and amplitude range are 100 ps, 15 MHz-1.5 GHz, and 0.1 Vpp-1.8 Vpp, respectively. Both resolution of pulse width and channel delay are 1 ps, and amplitude resolution is 10 mVpp.
NASA Astrophysics Data System (ADS)
Uno, Kazuyuki; Jitsuno, Takahisa
2018-05-01
In a longitudinally excited CO2 laser that had a 45 cm-long discharge tube with a 1:1:2 mixture of CO2/N2/He gas at a pressure of 3.0 kPa, we realized the generation of a short laser pulse with a spike pulse width of about 200 ns and a pulse tail length of several tens of microseconds, control of the energy ratio of the spike pulse part to the pulse tail part in the short laser pulse, the generation of a long laser pulse with a pulse width of several tens of microseconds, and control of the pulse width in the long laser pulse, by using four types of excitation circuits in which the capacitance was adjusted. In the short laser pulse, the energy ratio was in the range 1:14-1:112. In the long laser pulse, the pulse width was in the range 25.7-82.7 μs.
NASA Astrophysics Data System (ADS)
Wu, Frank F.; Khizhnyak, Anatoliy; Markov, Vladimir
2010-02-01
We have realized a single frequency Q-switched Nd:YAG laser with precisely controllable lasing time and thus enabled synchronization of multi-laser systems. The use of injection seeding to the slave ring oscillator results in unidirectional Q-switched laser oscillation with suppression of bidirectional Q-switched oscillation that otherwise would be initiated from spontaneous emission if the seeding laser is not present. Under normal condition, the cavity is high in loss during the pumping period; then a Pockels cell opens the cavity to form the pulse build up, with a second Pockels cell to perform cavity dumping, generating the Q-switched pulse output with optimized characteristics. The two Pockels cells can be replaced by a single unit if an adjustable gated electrical pulse is applied to the Pockels cell in which the pulse front is used to open the cavity and the falling edge to dump the laser pulse. Proper selection of the pump parameters and Pockels-cell gating enables operation of the system in a mode in which the Q-switched pulse can be formed only under the seeding condition. The advantage of the realized regime is in stable laser operation with no need in adjustment of the seeded light wavelength and the mode of the cavity. It is found that the frequency of the Q-switched laser radiation matches well to the injected seeded laser mode. By using two-stage amplifiers, an output energy better than 300 mJ has been achieved in MOPA configuration without active control of the cavity length and with pulse width adjustability from several nanoseconds to 20 ns. The Q-switched oscillator operates not only at precisely controlled firing time but also can be tuned over wide range. This will enable multi-laser systems synchronization and frequency locking down each other if necessary.
Heterogeneity in Short Gamma-Ray Bursts
NASA Technical Reports Server (NTRS)
Norris, Jay P.; Gehrels Neil; Scargle, Jeffrey D.
2011-01-01
We analyze the Swift/BAT sample of short gamma-ray bursts, using an objective Bayesian Block procedure to extract temporal descriptors of the bursts' initial pulse complexes (IPCs). The sample comprises 12 and 41 bursts with and without extended emission (EE) components, respectively. IPCs of non-EE bursts are dominated by single pulse structures, while EE bursts tend to have two or more pulse structures. The medians of characteristic timescales - durations, pulse structure widths, and peak intervals - for EE bursts are factors of approx 2-3 longer than for non-EE bursts. A trend previously reported by Hakkila and colleagues unifying long and short bursts - the anti-correlation of pulse intensity and width - continues in the two short burst groups, with non-EE bursts extending to more intense, narrower pulses. In addition we find that preceding and succeeding pulse intensities are anti-correlated with pulse interval. We also examine the short burst X-ray afterglows as observed by the Swift/XRT. The median flux of the initial XRT detections for EE bursts (approx 6 X 10(exp -10) erg / sq cm/ s) is approx > 20 x brighter than for non-EE bursts, and the median X-ray afterglow duration for EE bursts (approx 60,000 s) is approx 30 x longer than for non-EE bursts. The tendency for EE bursts toward longer prompt-emission timescales and higher initial X-ray afterglow fluxes implies larger energy injections powering the afterglows. The longer-lasting X-ray afterglows of EE bursts may suggest that a significant fraction explode into more dense environments than non-EE bursts, or that the sometimes-dominant EE component efficiently p()wers the afterglow. Combined, these results favor different progenitors for EE and non-EE short bursts.
A review of ultrabrief pulse width electroconvulsive therapy
Katalinic, Natalie; Martin, Donel; Schweitzer, Isaac
2012-01-01
The effect of shortening the pulse width of the electrical stimulus when administering electroconvulsive therapy (ECT) has recently been systematically studied with promising results. This review examines reported outcomes from three randomized controlled trials which compared ultrabrief (≤0.3 ms) with brief (0.5–1.5 ms) pulse width ECT, and other recent clinical trials of ultrabrief pulse width ECT. The emerging evidence for ultrabrief pulse right unilateral (RUL) ECT suggests clinically meaningful efficacy and substantially reduced neuropsychological side effects compared with standard (brief) pulse ECT; this may represent a generational advance in the ECT technique. However, it is unclear if patients receiving ultrabrief pulse RUL ECT may have a slower speed of response and require additional treatments compared with brief pulse ECT. Therefore, until further data are available, clinicians may be well advised to use brief pulse ECT in situations requiring an urgent clinical response. The evidence base for ultrabrief bilateral ECT is limited, with findings that efficacy may be reduced compared with brief pulse width ECT. Thus ultrabrief bilateral ECT should not be used outside the research setting. PMID:23251770
Surface ablation of aluminum and silicon by ultrashort laser pulses of variable width
NASA Astrophysics Data System (ADS)
Zayarny, D. A.; Ionin, A. A.; Kudryashov, S. I.; Makarov, S. V.; Kuchmizhak, A. A.; Vitrik, O. B.; Kulchin, Yu. N.
2016-06-01
Single-shot thresholds of surface ablation of aluminum and silicon via spallative ablation by infrared (IR) and visible ultrashort laser pulses of variable width τlas (0.2-12 ps) have been measured by optical microscopy. For increasing laser pulse width τlas < 3 ps, a drastic (threefold) drop of the ablation threshold of aluminum has been observed for visible pulses compared to an almost negligible threshold variation for IR pulses. In contrast, the ablation threshold in silicon increases threefold with increasing τlas for IR pulses, while the corresponding thresholds for visible pulses remained almost constant. In aluminum, such a width-dependent decrease in ablation thresholds has been related to strongly diminished temperature gradients for pulse widths exceeding the characteristic electron-phonon thermalization time. In silicon, the observed increase in ablation thresholds has been ascribed to two-photon IR excitation, while in the visible range linear absorption of the material results in almost constant thresholds.
NASA Astrophysics Data System (ADS)
Bulushev, A. G.; Dianov, Evgenii M.; Kuznetsov, A. V.; Okhotnikov, O. G.; Paramonov, Vladimir M.; Tsarev, Vladimir A.
1990-05-01
A study was made of the use of single-mode fiber ring interferometers in narrowing the emission lines of semiconductor lasers and increasing the optical radiation power. Efficient coupling of radiation, emitted by a multifrequency injection laser with an external resonator, into a fiber ring interferometer was achieved both under cw and mode-locking conditions. Matching of the optical lengths of the external resonator and the fiber interferometer made it possible to determine the mode width for this laser. A method for generation of optical pulses in a fiber ring interferometer from cw frequency modulated radiation was developed.
Pulsed liquid microjet for intravascular injection
NASA Astrophysics Data System (ADS)
Palanker, Daniel V.; Fletcher, Daniel A.; Miller, Jason; Huie, Philip; Marmor, Michael; Blumenkranz, Mark S.
2002-06-01
Occlusions of the retinal veins and arteries are associated with common diseases such as hypertension and arteriosclerosis and usually cause severe and irreversible loss of vision. Treatments for these vascular diseases have been unsatisfactory to date in part because of the difficulty of delivering thrombolytic drugs locally within the eye. In this article we describe a pulsed liquid microjet for minimally invasive intra-vascular drug delivery. The microjet is driven by a vapor bubble following an explosive evaporation of saline, produced by a microsecond-long electric discharge in front of the 25 micrometers electrode inside the micronozzle. Expansion of the transient vapor bubble produces a water jet with a diameter equal to the diameter of the nozzle, and with a velocity and duration that are controlled by the pulse energy. We found that fluid could be injected through the wall of a 60-micrometers -diameter artery in choriallantoic membrane using a 15-micrometers diameter liquid jet traveling at more than 60 m/s. Histological analysis of these arteries showed that the width of the perforation is limited to the diameter of the micronozzle, and the penetration depth of the jet is controlled by the discharge energy. The pulsed liquid microjet offers a promising technique for precise and needle-free intravascular delivery of thrombolytic drugs for localized treatment of retinal vascular occlusions.
NASA Astrophysics Data System (ADS)
Wang, Jian; Sun, Junqiang; Luo, Chuanhong
2006-06-01
A novel cascaded χ (2) wavelength conversion of picosecond pulses based on sum frequency generation and difference frequency generation (SFG+DFG) is proposed and experimentally demonstrated in LiNbO 3 waveguides. The signal pulse with 40-GHz repetition rate and 1.57-ps pulse width is adopted. First of all, high conversion efficiency about -18.93dB can be achieved with low power level required for both two pump lights, which is greatly enhanced approximately 8dB compared with the conventional cascaded second-order nonlinear interactions (SHG+DFG) with a single and much higher power pump. Secondly, the wavelength of the converted idler wave can be tuned from 1527.4 to 1540.5nm when the signal wavelength is changed from 1561.9 to 1548.4nm, and about 13.1nm converted idler bandwidth is achieved with the conversion efficiency higher than -31dB. Thirdly, two pump wavelengths can be separated as large as 17.3nm. Meanwhile, when one pump wavelength is fixed at 1549.1nm, the other can be tuned within a wide wavelength range about 7.6nm with the conversion efficiency higher than -34dB, which is much larger than that in the SHG+DFG situation. Finally, the temporal waveform of the converted idler pulse is observed with rather clear appearance achieved, and no obvious changes of the pulse shape and width are found compared with its corresponding original injected signal, showing that our proposed scheme exhibits a very good conversion performance.
Control strategy based on SPWM switching patterns for grid connected photovoltaic inverter
NASA Astrophysics Data System (ADS)
Hassaine, L.; Mraoui, A.
2017-02-01
Generally, for lower installation of photovoltaic systems connected to the grid, pulse width modulation (PWM) is a widely used technique for controlling the voltage source inverters injects currents into the grid. The current injected must be sinusoidal with reduced harmonic distortion. In this paper, a digital implementation of a control strategy based on PWM switching patterns for an inverter for photovoltaic system connected to the grid is presented. This strategy synchronize a sinusoidal inverter output current with a grid voltage The digital implementation of the proposed PWM switching pattern when is compared with the conventional one exhibit the advantage: Simplicity, reduction of the memory requirements and power calculation for the control
TEMPORAL EVOLUTION OF THE VELA PULSAR’S PULSE PROFILE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Palfreyman, J. L.; Dickey, J. M.; Ellingsen, S. P.
The mechanisms of emission and changes in rotation frequency (“glitching”) of the Vela pulsar (J0835−4510) are not well understood. Further insight into these mechanisms can be achieved by long-term studies of integrated pulse width, timing residuals, and bright-pulse rates. We have undertaken an intensive observing campaign of Vela and collected over 6000 hr of single-pulse data. The data shows that the pulse width changes with time, including marked jumps in width after micro-glitches (frequency changes). The abundance of bright pulses also changes after some micro-glitches, but not all. The secular changes in pulse width have three possible cyclic periods thatmore » match with X-ray periodicities of a helical jet that are interpreted as free precession.« less
Chen, Shaoqiang; Diao, Shengxi; Li, Pengtao; Nakamura, Takahiro; Yoshita, Masahiro; Weng, Guoen; Hu, Xiaobo; Shi, Yanling; Liu, Yiqing; Akiyama, Hidefumi
2017-07-31
High power pulsed lasers with tunable pulse widths are highly favored in many applications. When combined with power amplification, gain-switched semiconductor lasers driven by broadband tunable electric pulsers can meet such requirements. For this reason, we designed and produced a low-cost integrated CMOS pulse generator with a minimum pulse width of 80 ps and a wide tuning range of up to 270 ns using a 40-nm microelectronic process technique. We used this pulser to drive a 1.3-µm semiconductor laser diode directly, and thereafter investigated the gain-switching properties of the laser system. The optical pulses consist of a spike followed by a steady state region. Tuning the width of the electrical pulse down to approximately 1.5 ns produces optical pulses consisting only of the spike, which has a minimum pulse-width of 100 ps. Moreover, the duration of the steady state can be tuned continuously by tuning the electrical pulse width, with a peak power of approximately 5 mW. The output voltage of the electric pulser has a tuning range of 0.8-1.5 V that can be used to directly drive semiconductor laser diodes with wavelengths in the near-infrared spectrum, which are suitable for power amplification with rare-earth doped fiber amplifiers.
Well-behaved dynamics in a dissipative nonideal periodically kicked rotator.
Chacón, R; Martínez García-Hoz, A
2003-12-01
Well-behaved dynamical properties are found in a dissipative kicked rotator subjected to a periodic string of asymmetric pulses of finite amplitude and width. The stability boundaries of the equilibrium are determined to arbitrary approximation for trigonometric pulses by means of circular harmonic balance, and to first approximation for general elliptic pulses by means of an elliptic harmonic balance method. The bifurcation behavior at the stability boundaries is determined numerically. We show how the extension of the instability region of the equilibrium in pulse parameter space reaches a maximum as the pulse width is varied. We also characterize the dependence of the mean duration of the transients to the equilibrium on the pulse width. The evolution of the basins of attraction of chaotic attractors when solely the pulse width is varied is characterized numerically. Finally, we show that the order-chaos route when solely the width of the pulses is altered appears to be especially rich, including different types of crises. The mechanism underlying these reshaping-induced crises is discussed with the aid of a two-dimensional map.
Capacitor charging FET switcher with controller to adjust pulse width
Mihalka, Alex M.
1986-01-01
A switching power supply includes an FET full bridge, a controller to drive the FETs, a programmable controller to dynamically control final output current by adjusting pulse width, and a variety of protective systems, including an overcurrent latch for current control. Power MOSFETS are switched at a variable frequency from 20-50 kHz to charge a capacitor load from 0 to 6 kV. A ferrite transformer steps up the DC input. The transformer primary is a full bridge configuration with the FET switches and the secondary is fed into a high voltage full wave rectifier whose output is connected directly to the energy storage capacitor. The peak current is held constant by varying the pulse width using predetermined timing resistors and counting pulses. The pulse width is increased as the capacitor charges to maintain peak current. A digital ripple counter counts pulses, and after the desired number is reached, an up-counter is clocked. The up-counter output is decoded to choose among different resistors used to discharge a timing capacitor, thereby determining the pulse width. A current latch shuts down the supply on overcurrent due to either excessive pulse width causing transformer saturation or a major bridge fault, i.e., FET or transformer failure, or failure of the drive circuitry.
NASA Astrophysics Data System (ADS)
Gao, Hezhe; Li, Yongjian; Wang, Shanming; Zhu, Jianguo; Yang, Qingxin; Zhang, Changgeng; Li, Jingsong
2018-05-01
Practical core losses in electrical machines differ significantly from those experimental results using the standardized measurement method, i.e. Epstein Frame method. In order to obtain a better approximation of the losses in an electrical machine, a simulation method considering sinusoidal pulse width modulation (SPWM) and space vector pulse width modulation (SVPWM) waveforms is proposed. The influence of the pulse width modulation (PWM) parameters on the harmonic components in SPWM and SVPWM is discussed by fast Fourier transform (FFT). Three-level SPWM and SVPWM are analyzed and compared both by simulation and experiment. The core losses of several ring samples magnetized by SPWM, SVPWM and sinusoidal alternating current (AC) are obtained. In addition, the temperature rise of the samples under SPWM, sinusoidal excitation are analyzed and compared.
Warnell, Ronald L; Swartz, Conrad M; Thomson, Alice
2011-11-01
We measured cognitive side effects from bitemporal electroconvulsive therapy (ECT) using stimuli of 0.5 msec pulse width 900 milliamperes (mA). Mini-Mental State Exam (MMSE) and 21-item Hamilton Rating Scale for Depression (HRSD-21) were rated within 36 hours before and 36 hours after a series of 6 bitemporal ECT sessions on 15 patients age ≥45. MMSE remained high after ECT (pre-ECT mean 29, standard deviation [SD] 1.60, post-ECT mean 28.53, SD 1.36) with no significant change. The mean HRSD-21 fell from 27.5 to 16.3. Post-ECT MMSE was significantly and markedly higher than in previous studies of bitemporal ECT; all had used ECT stimuli of pulse width at least 1 msec. With stimuli of 0.5 msec pulse width and 900 mA, 6 bitemporal ECTs did not decrease MMSE score. This result leaves no opportunity for further decrease in basic cognitive side effects, and complements published reports of stronger physiological effects with stimuli of 0.5 msec pulse width and 900 mA. ECT stimuli of 0.5 msec pulse width and 900 mA are more desirable than wider pulse widths. Six bitemporal ECT sessions using these stimuli generally will not have more cognitive side effects than treatments with other placements, allowing maintenance of full efficacy with clinically insubstantial side effects.
Henry, J.J.
1961-09-01
A linear count-rate meter is designed to provide a highly linear output while receiving counting rates from one cycle per second to 100,000 cycles per second. Input pulses enter a linear discriminator and then are fed to a trigger circuit which produces positive pulses of uniform width and amplitude. The trigger circuit is connected to a one-shot multivibrator. The multivibrator output pulses have a selected width. Feedback means are provided for preventing transistor saturation in the multivibrator which improves the rise and decay times of the output pulses. The multivibrator is connected to a diode-switched, constant current metering circuit. A selected constant current is switched to an averaging circuit for each pulse received, and for a time determined by the received pulse width. The average output meter current is proportional to the product of the counting rate, the constant current, and the multivibrator output pulse width.
NASA Astrophysics Data System (ADS)
Klehr, A.; Wenzel, H.; Fricke, J.; Bugge, F.; Liero, A.; Hoffmann, Th.; Erbert, G.; Tränkle, G.
2015-03-01
Semiconductor based sources which emit high-power spectrally stable nearly diffraction-limited optical pulses in the nanosecond range are ideally suited for a lot of applications, such as free-space communications, metrology, material processing, seed lasers for fiber or solid state lasers, spectroscopy, LIDAR and frequency doubling. Detailed experimental investigations of 975 nm and 800 nm diode lasers based on master oscillator power amplifier (MOPA) light sources are presented. The MOPA systems consist of distributed Bragg reflector lasers (DBR) as master oscillators driven by a constant current and ridge waveguide power amplifiers which can be driven DC and by current pulses. In pulse regime the amplifiers modulated with rectangular current pulses of about 5 ns width and a repetition frequency of 200 kHz act as optical gates, converting the continuous wave (CW) input beam emitted by the DBR lasers into a train of short optical pulses which are amplified. With these experimental MOPA arrangements no relaxation oscillations in the pulse power occur. With a seed power of about 5 mW at a wavelength of 973 nm output powers behind the amplifier of about 1 W under DC injection and 4 W under pulsed operation, corresponding to amplification factors of 200 (amplifier gain 23 dB) and 800 (gain 29 dB) respectively, are reached. At 800 nm a CW power of 1 W is obtained for a seed power of 40 mW. The optical spectra of the emission of the amplifiers exhibit a single peak at a constant wavelength with a line width < 10 pm in the whole investigated current ranges. The ratios between laser and ASE levels were > 50 dB. The output beams are nearly diffraction limited with beam propagation ratios M2lat ~ 1.1 and M2ver ~ 1.2 up to 4 W pulse power.
High resolution, high rate X-ray spectrometer
Goulding, Frederick S.; Landis, Donald A.
1987-01-01
A pulse processing system (10) for use in an X-ray spectrometer in which a ain channel pulse shaper (12) and a fast channel pulse shaper (13) each produce a substantially symmetrical triangular pulse (f, p) for each event detected by the spectrometer, with the pulse width of the pulses being substantially independent of the magnitude of the detected event and with the pulse width of the fast pulses (p) being substantially shorter than the pulse width of the main channel pulses (f). A pile-up rejector circuit (19) allows output pulses to be generated, with amplitudes linearly related to the magnitude of the detected events, whenever the peak of a main channel pulse (f) is not affected by a preceding or succeeding main channel pulse, while inhibiting output pulses wherein peak magnitudes of main channel pulses are affected by adjacent pulses. The substantially symmetrical triangular main channel pulses (f) are generated by the weighted addition (27-31) of successive RC integrations (24, 25, 26) of an RC differentiated step wave (23). The substantially symmetrical triangular fast channel pulses (p) are generated by the RC integration ( 43) of a bipolar pulse (o) in which the amplitude of the second half is 1/e that of the first half, with the RC time constant of integration being equal to one-half the width of the bipolar pulse.
Zhao, Zhigang; Dong, Yantao; Pan, Sunqiang; Liu, Chong; Chen, Jun; Tong, Lixin; Gao, Qingsong; Tang, Chun
2012-01-16
A large aperture fused silica tapered fiber phase conjugate mirror is presented with a maximum 70% stimulated Brillouin scattering (SBS) reflectivity, which is obtained with 1 kHz repetition rate, 15 ns pulse width and 38 mJ input pulse energy. To the best of our knowledge, this is the highest SBS reflectivity ever reported by using optical fiber as a phase conjugate mirror for such high pulse repetition rate (1 kHz) and several tens of millijoule (mJ) input pulse energy. The influences of fiber end surface quality and pump pulse widths on SBS reflectivity are investigated experimentally. The results show that finer fiber end surface quality and longer input pulse widths are preferred for obtaining higher SBS reflectivity with higher input pulse energy. Double passing amplification experiments are also performed. 52 mJ pulse energy is achieved at 1 kHz repetition rate, with a reflected SBS pulse width of 1.5 ns and a M(2) factor of 2.3. The corresponding peak power reaches 34.6 MW. Obvious beam quality improvement is observed.
Revisiting NMR composite pulses for broadband 2H excitation
Shen, Ming; Roopchand, Rabia; Mananga, Eugene S.; Amoureux, Jean-Paul; Chen, Qun; Boutis, Gregory S.; Hu, Bingwen
2014-01-01
Quadrupolar echo NMR spectroscopy of static solids often requires RF excitation that covers spectral widths exceeding 100 kHz, which is difficult to obtain due to instrumental limitations. In this work we revisit four well-known composite pulses (COM-I, II, III and IV) for broadband excitation in deuterium quadrupolar echo spectroscopy. These composite pulses are combined with several phase cycling schemes that were previously shown to decrease finite pulse width distortions in deuterium solid-echo experiments performed with two single pulses. The simulations and experiments show that COM-II and IV composite pulses combined with an 8-step phase cycling aid in achieving broadband excitation with limited pulse width distortions. PMID:25583576
SYSTEM FOR AND METHOD OF DETERMINING RANGE
Horrell, M.W.; Sanders, E.R.
1963-11-01
A system and method for indicating a predetermined altitude of an object or aircraft is described. The device utilizes a pulse transmit-receive system wherein pulses of predetermined width are transmitted towards the ground and the reflected pulses received gating only pulses having a predetermined width. (AEC)
NASA Astrophysics Data System (ADS)
Duan, Zhengchao; He, Feng; Si, Xinlu; Bradley, James W.; Ouyang, Jiting
2018-02-01
Conductive solid material sampling by micro-plasma under ambient atmosphere was studied experimentally. A high-voltage pulse generator was utilized to drive discharge between a tungsten needle and metal samples. The effects of pulse width on discharge, micro-plasma and sampling were investigated. The electrical results show that two discharge current pulses can be formed in one voltage pulse. The duration of the first current pulse is of the order of 100 ns. The duration of the second current pulse depends on the width of the voltage pulse. The electrical results also show that arc micro-plasma was generated during both current pulses. The results of the emission spectra of different sampled materials indicate that the relative emission intensity of elemental metal ions will increase with pulse width. The excitation temperature and electron density of the arc micro-plasmas increase with the voltage pulse width, which contributes to the increase of relative emission intensity of metal ions. The optical images and energy dispersive spectroscopy results of the sampling spots on metal surfaces indicate that discharge with a short voltage pulse can generate a small sputtering crater.
NASA Astrophysics Data System (ADS)
Miller, Sawyer; Trujillo, Skyler; Fort Lewis College Laser Group Team
This work concerns the novel design of an inexpensive pulsed Nd:YAG laser, consisting of a hybrid Kerr Mode Lock (KLM) and Q-switch pulse. The two pulse generation systems work independently, non simultaneously of each other, thus generating the ability for the user to easily switch between ultra-short pulse widths or large energy density pulses. Traditionally, SF57 glass has been used as the Kerr medium. In this work, novel Kerr mode-locking mediums are being investigated including: tellurite compound glass (TeO2), carbon disulfide (CS2), and chalcogenide glass. These materials have a nonlinear index of refraction orders of magnitude,(n2), larger than SF57 glass. The Q-switched pulse will utilize a Pockels cell. As the two pulse generation systems cannot be operated simultaneously, the Pockels cell and Kerr medium are attached to kinematic mounts, allowing for quick interchange between systems. Pulse widths and repetition rates will vary between the two systems. A goal of 100 picosecond pulse widths are desired for the mode-locked system. A goal of 10 nanosecond pulse widths are desired for the Q-switch system, with a desired repetition rate of 50 Hz. As designed, the laser will be useful in imaging applications.
Performance benefits from pulsed laser heating in heat assisted magnetic recording
NASA Astrophysics Data System (ADS)
Xu, B. X.; Cen, Z. H.; Goh, J. H.; Li, J. M.; Toh, Y. T.; Zhang, J.; Ye, K. D.; Quan, C. G.
2014-05-01
Smaller cross track thermal spot size and larger down track thermal gradient are desired for increasing the density of heat assisted magnetic recording. Both parameters are affected significantly by the thermal energy accumulation and diffusion in the recording media. Pulsed laser heating is one of the ways to reduce the thermal diffusion. In this paper, we describe the benefits from the pulsed laser heating such as the dependences of the cross track thermal width, down track thermal gradient, the required laser pulse/average powers, and the transducer temperature rise on the laser pulse width at different media thermal properties. The results indicate that as the pulse width decreases, the thermal width decreases, the thermal gradient increases, the required pulse power increases and the average power decreases. For shorter pulse heating, the effects of the medium thermal properties on the thermal performances become weaker. This can greatly relax the required thermal properties of the media. The results also show that the pulsed laser heating can effectively reduce the transducer temperature rise and allow the transducer to reach its "dynamically" stable temperature more quickly.
Freye, Chris E; Bahaghighat, H Daniel; Synovec, Robert E
2018-01-15
Partial modulation via a pulsed flow valve for comprehensive two-dimensional (2D) gas chromatography (GC × GC) is demonstrated, producing narrow peak widths, 2 W b , on the secondary separation dimension, 2 D, coupled with short modulation periods, P M , thus producing a high peak capacity on the 2 D dimension, 2 n c . The GC × GC modulator is a pulse flow valve that injects a pulse of carrier gas at the specified P M , at the connection between the primary, 1 D, column and the 2 D column. Using a commercially available pulse flow valve, this injection technique performs a combination of vacancy chromatography and frontal analysis, whereby each pulse disturbance in the analyte concentration profile as it exits the 1 D column results in data that is readily converted into a 2 D separation. A three-step process converts the raw data into a format analogous to a GC × GC separation, incorporating signal differentiation, baseline correction and conversion to a GC × GC chromatogram representation. A 115-component test mixture with a wide range of boiling points (36-372°C) of nine compound classes is demonstrated using modulation periods of P M = 50, 100, 250, and 500ms, respectively. For the test mixture with a P M of 250ms, peak shapes on 2 D are symmetric with apparent 2 W b ranging from 12 to 45ms producing a 2 n c of ~ 10. Based on the average peak width of 0.93s on the 1 D separation for a time window of 400s, the 1 D peak capacity is 1 n c ∼ 430. Thus, the ideal 2D peak capacity n c,2D is 4300 or a peak capacity production of 650 peaks/min using the P M of 250ms. Additionally, for a P M of 50, 100 and 500ms, the 2 n c are 4, 7, and 12, respectively. Retention times on 2 D, 2 t R , are reproducible having standard deviations less than 1ms. Finally, the processed data is shown to be quantitative, with an average RSD of 4.7% for test analytes. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Poultney, S. K.
1971-01-01
The behavior of the photomultiplier is considered, as well as the method of derivation of the photomultiplier output pulse and its relation to the reflected light pulse width and amplitude, and the calibration of range precision and accuracy. Pulsed laser radars with light pulse widths of 30, 3, and 0.1 nanosec a considered, with the 0.1 nanosec system capable of highest precision in several modes of operation, including a high repetition rate, single photoelectron reception mode. An alternate calibration scheme using a fast, triggerable light pulser is described in detail.
Chen, Shaoqiang; Yoshita, Masahiro; Sato, Aya; Ito, Takashi; Akiyama, Hidefumi; Yokoyama, Hiroyuki
2013-05-06
Picosecond-pulse-generation dynamics and pulse-width limiting factors via spectral filtering from intensely pulse-excited gain-switched 1.55-μm distributed-feedback laser diodes were studied. The spectral and temporal characteristics of the spectrally filtered pulses indicated that the short-wavelength component stems from the initial part of the gain-switched main pulse and has a nearly linear down-chirp of 5.2 ps/nm, whereas long-wavelength components include chirped pulse-lasing components and steady-state-lasing components. Rate-equation calculations with a model of linear change in refractive index with carrier density explained the major features of the experimental results. The analysis of the expected pulse widths with optimum spectral widths was also consistent with the experimental data.
Wang, Zhenzhen; Deguchi, Yoshihiro; Liu, Renwei; Ikutomo, Akihiro; Zhang, Zhenzhen; Chong, Daotong; Yan, Junjie; Liu, Jiping; Shiou, Fang-Jung
2017-09-01
Collinear long and short dual-pulse laser-induced breakdown spectroscopy (DP-LIBS) was employed to clarify the emission characteristics from laser-induced plasma. The plasma was sustained and became stable by the long pulse-width laser with the pulse width of 60 μs under free running (FR) conditions as an external energy source. Comparing the measurement results of stainless steel in air using single-pulse LIBS (SP-LIBS) and DP-LIBS, the emission intensity was markedly enhanced using DP-LIBS. The temperature of plasma induced by DP-LIBS was maintained at a higher temperature under different gate delay time and short pulse-width laser power conditions compared with those measured using short SP-LIBS. Moreover, the variation rates of plasma temperatures measured using DP-LIBS were also lower. The superior detection ability was verified by the measurement of aluminum sample in water. The spectra were clearly detected using DP-LIBS, whereas it cannot be identified using SP-LIBS of short and long pulse widths. The effects of gate delay time and short pulse-width laser power were also discussed. These results demonstrate the feasibility and enhanced detection ability of the proposed collinear long and short DP-LIBS method.
NASA Technical Reports Server (NTRS)
Davidson, Frederic M.; Sun, Xiaoli; Field, Christopher T.
1995-01-01
Laser altimeters measure the time of flight of the laser pulses to determine the range of the target. The simplest altimeter receiver consists of a photodetector followed by a leading edge detector. A time interval unit (TIU) measures the time from the transmitted laser pulse to the leading edge of the received pulse as it crosses a preset threshold. However, the ranging error of this simple detection scheme depends on the received, pulse amplitude, pulse shape, and the threshold. In practice, the pulse shape and the amplitude are determined by the target target characteristics which has to be assumed unknown prior to the measurement. The ranging error can be improved if one also measures the pulse width and use the average of the leading and trailing edges (half pulse width) as the pulse arrival time. The ranging error becomes independent of the received pulse amplitude and the pulse width as long as the pulse shape is symmetric. The pulse width also gives the slope of the target. The ultimate detection scheme is to digitize the received waveform and calculate the centroid as the pulse arrival time. The centroid detection always gives unbiased measurement even for asymmetric pulses. In this report, we analyze the laser altimeter ranging errors for these three detection schemes using the Mars Orbital Laser Altimeter (MOLA) as an example.
Precise delay measurement through combinatorial logic
NASA Technical Reports Server (NTRS)
Burke, Gary R. (Inventor); Chen, Yuan (Inventor); Sheldon, Douglas J. (Inventor)
2010-01-01
A high resolution circuit and method for facilitating precise measurement of on-chip delays for FPGAs for reliability studies. The circuit embeds a pulse generator on an FPGA chip having one or more groups of LUTS (the "LUT delay chain"), also on-chip. The circuit also embeds a pulse width measurement circuit on-chip, and measures the duration of the generated pulse through the delay chain. The pulse width of the output pulse represents the delay through the delay chain without any I/O delay. The pulse width measurement circuit uses an additional asynchronous clock autonomous from the main clock and the FPGA propagation delay can be displayed on a hex display continuously for testing purposes.
Energy scaling of terahertz-wave parametric sources.
Tang, Guanqi; Cong, Zhenhua; Qin, Zengguang; Zhang, Xingyu; Wang, Weitao; Wu, Dong; Li, Ning; Fu, Qiang; Lu, Qingming; Zhang, Shaojun
2015-02-23
Terahertz-wave parametric oscillators (TPOs) have advantages of room temperature operation, wide tunable range, narrow line-width, good coherence. They have also disadvantage of small pulse energy. In this paper, several factors preventing TPOs from generating high-energy THz pulses and the corresponding solutions are analyzed. A scheme to generate high-energy THz pulses by using the combination of a TPO and a Stokes-pulse-injected terahertz-wave parametric generator (spi-TPG) is proposed and demonstrated. A TPO is used as a source to generate a seed pulse for the surface-emitted spi-TPG. The time delay between the pump and Stokes pulses is adjusted to guarantee they have good temporal overlap. The pump pulses have a large pulse energy and a large beam size. The Stokes beam is enlarged to make its size be larger than the pump beam size to have a large effective interaction volume. The experimental results show that the generated THz pulse energy from the spi-TPG is 1.8 times as large as that obtained from the TPO for the same pumping pulse energy density of 0.90 J/cm(2) and the same pumping beam size of 3.0 mm. When the pumping beam sizes are 5.0 and 7.0 mm, the enhancement times are 3.7 and 7.5, respectively. The spi-TPG here is similar to a difference frequency generator; it can also be used as a Stokes pulse amplifier.
Klehr, A; Wenzel, H; Brox, O; Schwertfeger, S; Staske, R; Erbert, G
2013-02-11
We present detailed experimental investigations of the temporal, spectral and spatial behavior of a gain-switched distributed feedback (DFB) laser emitting at a wavelength of 1064 nm. Gain-switching is achieved by injecting nearly rectangular shaped current pulses having a length of 50 ns and a very high amplitude up to 2.5 A. The repetition frequency is 200 kHz. The laser has a ridge waveguide (RW) for lateral waveguiding with a ridge width of 3 µm and a cavity length of 1.5 mm. Time resolved investigations show, depending on the amplitude of the current pulses, that the optical power exhibits different types of oscillatory behavior during the pulses, accompanied by changes in the lateral near field intensity profiles and optical spectra. Three different types of instabilities can be distinguished: mode beating with frequencies between 25 GHz and 30 GHz, switching between different lateral intensity profiles with a frequency of 0.4 GHz and self-sustained oscillations with a frequency of 4 GHz. The investigations are of great relevance for the utilization of gain-switched DFB-RW lasers as seed lasers for fiber laser systems and in other applications, which require a high optical power.
Temporal characterization of the wave-breaking flash in a laser plasma accelerator
NASA Astrophysics Data System (ADS)
Miao, Bo; Feder, Linus; Goers, Andrew; Hine, George; Salehi, Fatholah; Wahlstrand, Jared; Woodbury, Daniel; Milchberg, Howard
2017-10-01
Wave-breaking injection of electrons into a relativistic plasma wake generated in near-critical density plasma by sub-terawatt laser pulses generates an intense ( 1 μJ) and ultra-broadband (Δλ 300 nm) radiation flash. In this work we demonstrate the spectral coherence of this radiation and measure its temporal width using single-shot supercontinuum spectral interferometry (SSSI). The measured temporal width is limited by measurement resolution to 50 fs. Spectral coherence is corroborated by PIC simulations which show that the spatial extent of the acceleration trajectory at the trapping region is small compared to the radiation center wavelength. To our knowledge, this is the first temporal and coherence characterization of wave-breaking radiation. This work is supported by the US Department of Energy, the National Science Foundation, and the Air Force Office of Scientific Research.
Laurence, T. A.; Negres, R. A.; Ly, S.; ...
2017-06-22
Here, we investigate the role of defects in laser-induced damage of fused silica and of silica coatings produced by e-beam and PIAD processes which are used in damage resistant, multi-layer dielectric, reflective optics. We perform experiments using 1053 nm, 1–60 ps laser pulses with varying beam size, number of shots, and pulse widths in order to understand the characteristics of defects leading to laser-induced damage. This pulse width range spans a transition in mechanisms from intrinsic material ablation for short pulses to defect-dominated damage for longer pulses. We show that for pulse widths as short as 10 ps, laser-induced damagemore » properties of fused silica and silica films are dominated by isolated absorbers. The density of these precursors and their fluence dependence of damage initiation suggest a single photon process for initial energy absorption in these precursors. Higher density precursors that initiate close to the ablation threshold at shorter pulse widths are also observed in fused silica, whose fluence and pulse width scaling suggest a multiphoton initiation process. We also show that these initiated damage sites grow with subsequent laser pulses. We show that scaling laws obtained in more conventional ways depend on the beam size and on the definition of damage for ps pulses. For this reason, coupling scaling laws with the density of precursors are critical to understanding the damage limitations of optics in the ps regime.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Laurence, T. A.; Negres, R. A.; Ly, S.
Here, we investigate the role of defects in laser-induced damage of fused silica and of silica coatings produced by e-beam and PIAD processes which are used in damage resistant, multi-layer dielectric, reflective optics. We perform experiments using 1053 nm, 1–60 ps laser pulses with varying beam size, number of shots, and pulse widths in order to understand the characteristics of defects leading to laser-induced damage. This pulse width range spans a transition in mechanisms from intrinsic material ablation for short pulses to defect-dominated damage for longer pulses. We show that for pulse widths as short as 10 ps, laser-induced damagemore » properties of fused silica and silica films are dominated by isolated absorbers. The density of these precursors and their fluence dependence of damage initiation suggest a single photon process for initial energy absorption in these precursors. Higher density precursors that initiate close to the ablation threshold at shorter pulse widths are also observed in fused silica, whose fluence and pulse width scaling suggest a multiphoton initiation process. We also show that these initiated damage sites grow with subsequent laser pulses. We show that scaling laws obtained in more conventional ways depend on the beam size and on the definition of damage for ps pulses. For this reason, coupling scaling laws with the density of precursors are critical to understanding the damage limitations of optics in the ps regime.« less
A flexible master oscillator for a pulse-burst laser system
NASA Astrophysics Data System (ADS)
Den Hartog, D. J.; Young, W. C.
2015-12-01
A new master oscillator is being installed in the pulse-burst laser system used for high-rep-rate Thomson scattering on the MST experiment. This new master oscillator will enable pulse repetition rates up to 1 MHz, with the ability to program a burst of pulses with arbitrary and varying time separation between each pulse. In addition, the energy of each master oscillator pulse can be adjusted to compensate for gain variations in the power amplifier section of the laser system. This flexibility is accomplished by chopping a CW laser source with a high-bandwidth acousto-optic modulator (AOM). The laser source is a Laser Quantum ventus 1064 diode-pumped solid-state laser with continuous output power variable from 100 to 500 mW. The 1064 nm, 2.7 mm diameter polarized beam is focused into the gallium phosphide crystal of a Brimrose AOM, which deflects the beam by approximately 60 mR when driven by the 400 MHz fixed frequency driver. Beam deflection is controlled by a simple digital input pulse, and is capable of producing deflected pulses of less than 20 ns width at repetition rates much greater than 1 MHz. These deflected pulses from the output of the AOM are collimated and propagated into the laser amplifier system, where they will be amplified to ~ 2 J/pulse and injected into the MST plasma.
[Loudness optimized registration of compound action potential in cochlear implant recipients].
Berger, Klaus; Hocke, Thomas; Hessel, Horst
2017-11-01
Background Postoperative measurements of compound action potentials are not always possible due to the insufficient acceptance of the CI-recipients. This study investigated the impact of different parameters on the acceptance of the measurements. Methods Compound action potentials of 16 CI recipients were measured with different pulse-widths. Recipients performed a loudness rating at the potential thresholds with the different sequences. Results Compound action potentials obtained with higher pulse-widths were rated softer than those obtained with smaller pulse-widths. Conclusions Compound action potentials measured with higher pulse-widths generate a gap between loudest acceptable presentation level and potential threshold. This gap contributes to a higher acceptance of postoperative measurements. Georg Thieme Verlag KG Stuttgart · New York.
Audet, T. L.; Hansson, M.; Lee, P.; ...
2016-02-16
Ionization-induced electron injection was investigated experimentally by focusing a driving laser pulse with a maximum normalized potential of 1.2 at different positions along the plasma density profile inside a gas cell, filled with a gas mixture composed of 99%H 2+1%N 2. Changing the laser focus position relative to the gas cell entrance controls the accelerated electron bunch properties, such as the spectrum width, maximum energy, and accelerated charge. Simulations performed using the 3D particle-in-cell code WARP with a realistic density profile give results that are in good agreement with the experimental ones. Lastly, we discuss the interest of this regimemore » for optimizing the bunch charge in a selected energy window.« less
Optimal time-domain technique for pulse width modulation in power electronics
NASA Astrophysics Data System (ADS)
Mayergoyz, I.; Tyagi, S.
2018-05-01
Optimal time-domain technique for pulse width modulation is presented. It is based on exact and explicit analytical solutions for inverter circuits, obtained for any sequence of input voltage rectangular pulses. Two optimal criteria are discussed and illustrated by numerical examples.
Pulse width and height modulation for multi-level resistance in bi-layer TaOx based RRAM
NASA Astrophysics Data System (ADS)
Alamgir, Zahiruddin; Beckmann, Karsten; Holt, Joshua; Cady, Nathaniel C.
2017-08-01
Mutli-level switching in resistive memory devices enables a wide range of computational paradigms, including neuromorphic and cognitive computing. To this end, we have developed a bi-layer tantalum oxide based resistive random access memory device using Hf as the oxygen exchange layer. Multiple, discrete resistance levels were achieved by modulating the RESET pulse width and height, ranging from 2 kΩ to several MΩ. For a fixed pulse height, OFF state resistance was found to increase gradually with the increase in the pulse width, whereas for a fixed pulse width, the increase in the pulse height resulted in drastic changes in resistance. Resistive switching in these devices transitioned from Schottky emission in the OFF state to tunneling based conduction in the ON state, based on I-V curve fitting and temperature dependent current measurements. These devices also demonstrated endurance of more than 108 cycles with a satisfactory Roff/Ron ratio and retention greater than 104 s.
Guo, Jia; Buxton, Richard B.; Wong, Eric C.
2015-01-01
Purpose In pulsed arterial spin labeling (PASL) methods, arterial blood is labeled via inverting a slab with uniform thickness, resulting in different temporal widths of boluses in vessels with different flow velocities. This limits the temporal resolution and signal-to-noise ratio (SNR) efficiency gains in PASL-based methods intended for high temporal resolution and SNR efficiency, such as Turbo-ASL and Turbo-QUASAR. Theory and Methods A novel wedge-shaped (WS) adiabatic inversion pulse is developed by adding in-plane gradient pulses to a slice-selective (SS) adiabatic inversion pulse to linearly modulate the inversion thicknesses at different locations while maintaining the adiabatic properties of the original pulse. A hyperbolic secant (HS) based WS inversion pulse was implemented. Its performance was tested in simulations, phantom and human experiments, and compared to an SS HS inversion pulse. Results Compared to the SS inversion pulse, the WS inversion pulse is capable of inducing different inversion thicknesses at different locations. It can be adjusted to generate a uniform temporal width of boluses in arteries at locations with different flow velocities. Conclusion The WS inversion pulse can be used to control the temporal widths of labeled boluses in PASL experiments. This should benefit PASL experiments by maximizing labeling duty cycle, and improving temporal resolution and SNR efficiency. PMID:26451521
Liquid mixing enhanced by pulse width modulation in a Y-shaped jet configuration
NASA Astrophysics Data System (ADS)
Xia, Qingfeng; Zhong, Shan
2013-04-01
In this paper, mixing between two fluid streams, which are injected into a planar mixing channel via a Y-shaped confluence section at the same volume flow rate, is studied experimentally. The injection of the two fluid streams is controlled by two separate solenoid valves, which are operated with a phase difference of 180°, using pulse width modulation. The experiments are conducted using water at a mean Reynolds number between 83 and 250, a range of pulsation frequencies and two duty cycles (25 and 50%). Both particle-image velocimetry and planar laser-induced fluorescence technique are used to visualize the flow patterns and to quantify the mixing degree in the mixing channel. This experiment shows that the pulsation of each jet produces vortical structures, which promotes mixing via vortex entrainment and vortex breakup, and at the same time the mixing is also greatly enhanced by sequential segmentation produced by a 180° out-of-phase pulsation of the two jets. This mixing enhancement method is effective at a Reynolds number greater than 125 with a mixing degree of 0.9 being achieved. For the Reynolds numbers studied in the present experiments, an optimal frequency exists, which corresponds to a Strouhal number in the range of 0.5-2. Furthermore, at a given mean Reynolds number a lower duty cycle is found to produce a better mixing due to the resultant higher instantaneous Reynolds number in the jet flow. It is also found that pulsation of only one jet can produce a similar mixing effect.
Experimental strategies for imaging bioparticles with femtosecond hard X-ray pulses
Daurer, Benedikt J.; Okamoto, Kenta; Bielecki, Johan; ...
2017-04-07
This study explores the capabilities of the Coherent X-ray Imaging Instrument at the Linac Coherent Light Source to image small biological samples. The weak signal from small samples puts a significant demand on the experiment. AerosolizedOmono River virusparticles of ~40 nm in diameter were injected into the submicrometre X-ray focus at a reduced pressure. Diffraction patterns were recorded on two area detectors. The statistical nature of the measurements from many individual particles provided information about the intensity profile of the X-ray beam, phase variations in the wavefront and the size distribution of the injected particles. The results point to amore » wider than expected size distribution (from ~35 to ~300 nm in diameter). This is likely to be owing to nonvolatile contaminants from larger droplets during aerosolization and droplet evaporation. The results suggest that the concentration of nonvolatile contaminants and the ratio between the volumes of the initial droplet and the sample particles is critical in such studies. The maximum beam intensity in the focus was found to be 1.9 × 10 12photons per µm 2per pulse. The full-width of the focus at half-maximum was estimated to be 500 nm (assuming 20% beamline transmission), and this width is larger than expected. Under these conditions, the diffraction signal from a sample-sized particle remained above the average background to a resolution of 4.25 nm. Finally, the results suggest that reducing the size of the initial droplets during aerosolization is necessary to bring small particles into the scope of detailed structural studies with X-ray lasers.« less
EVOLUTION OF FAST MAGNETOACOUSTIC PULSES IN RANDOMLY STRUCTURED CORONAL PLASMAS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yuan, D.; Li, B.; Pascoe, D. J.
2015-02-01
We investigate the evolution of fast magnetoacoustic pulses in randomly structured plasmas, in the context of large-scale propagating waves in the solar atmosphere. We perform one-dimensional numerical simulations of fast wave pulses propagating perpendicular to a constant magnetic field in a low-β plasma with a random density profile across the field. Both linear and nonlinear regimes are considered. We study how the evolution of the pulse amplitude and width depends on their initial values and the parameters of the random structuring. Acting as a dispersive medium, a randomly structured plasma causes amplitude attenuation and width broadening of the fast wavemore » pulses. After the passage of the main pulse, secondary propagating and standing fast waves appear. Width evolution of both linear and nonlinear pulses can be well approximated by linear functions; however, narrow pulses may have zero or negative broadening. This arises because narrow pulses are prone to splitting, while broad pulses usually deviate less from their initial Gaussian shape and form ripple structures on top of the main pulse. Linear pulses decay at an almost constant rate, while nonlinear pulses decay exponentially. A pulse interacts most efficiently with a random medium with a correlation length of about half of the initial pulse width. This detailed model of fast wave pulses propagating in highly structured media substantiates the interpretation of EIT waves as fast magnetoacoustic waves. Evolution of a fast pulse provides us with a novel method to diagnose the sub-resolution filamentation of the solar atmosphere.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, De-Zheng; Wang, Wen-Chun; Zhang, Shuai
2013-05-13
Room temperature homogenous dielectric barrier discharge plasma with high instantaneous energy efficiency is acquired by using nanosecond pulse voltage with 20-200 ns tunable pulse width. Increasing the voltage pulse width can lead to the generation of regular and stable multiple current peaks in each discharge sequence. When the voltage pulse width is 200 ns, more than 5 organized current peaks can be observed under 26 kV peak voltage. Investigation also shows that the organized multiple current peaks only appear in homogenous discharge mode. When the discharge is filament mode, organized multiple current peaks are replaced by chaotic filament current peaks.
Design of a variable width pulse generator feasible for manual or automatic control
NASA Astrophysics Data System (ADS)
Vegas, I.; Antoranz, P.; Miranda, J. M.; Franco, F. J.
2017-01-01
A variable width pulse generator featuring more than 4-V peak amplitude and less than 10-ns FWHM is described. In this design the width of the pulses is controlled by means of the control signal slope. Thus, a variable transition time control circuit (TTCC) is also developed, based on the charge and discharge of a capacitor by means of two tunable current sources. Additionally, it is possible to activate/deactivate the pulses when required, therefore allowing the creation of any desired pulse pattern. Furthermore, the implementation presented here can be electronically controlled. In conclusion, due to its versatility, compactness and low cost it can be used in a wide variety of applications.
Yarrington, C. D.; Abere, M. J.; Adams, D. P.; ...
2017-04-03
We irradiated Al/Pt nanolaminates with a bilayer thickness (tb, width of an Al/Pt pair-layer) of 164 nm with single laser pulses with durations of 10 ms and 0.5 ms at 189 W/cm 2 and 1189 W/cm 2, respectively. The time to ignition was measured for each pulse, and shorter ignition times were observed for the higher power/shorter pulse width. While the shorter pulse shows uniform brightness, videographic images of the irradiated area shortly after ignition show a non-uniform radial brightness for the longer pulse. A diffusion-limited single step reaction mechanism was implemented in a finite element package to model themore » progress from reactants to products at both pulse widths. Finally, the model captures well both the observed ignition delay and qualitative observations regarding the non-uniform radial temperature.« less
2008-10-01
acoustic phenomenon. Our results indicate that the shorter pulse width (with lower energy/pulse) required ~30-35 mJ/pulse to initiate ignition of... acoustic behavior and some other novel phenomena associated with radiation absorption by SWCNTs. 15. SUBJECT TERMS 16. SECURITY CLASSIFICATION OF: 17...pressure level (SPL) from the photo acoustic phenomenon. Our results indicate that the shorter pulse width (with lower energy/pulse) required ~30-35
Tissue effects of Ho:YAG laser with varying fluences and pulse widths
NASA Astrophysics Data System (ADS)
Vari, Sandor G.; van der Veen, Maurits J.; Pergadia, Vani R.; Shi, Wei-Qiang; Duffy, J. T.; Weiss, Andrew B.; Fishbein, Michael C.; Grundfest, Warren S.
1994-02-01
We investigated the effect of varying fluence and pulse width on the ablation rate and consequent thermal damage of the Ho:YAG (2.130 micrometers ) laser. The rate of ablation on fresh bovine knee joint tissues, fibrous cartilage, hyaline cartilage, and bone in saline was determined after varying the fluence (160 - 640 J/cm2) and pulse width (150, 250, 450 microsecond(s) ec, FWHM) at a repetition rate of 2 Hz. A 400/440 micrometers fiber was used. The ablation rate increased linearly with the fluence. In fibrocartilage, different pulse durations generated significant changes in the ablation rates, but showed minor effects on hyaline cartilage and bone. The heat of ablation for all three tissue types decreased after lengthening the pulse.
Speed of response in ultrabrief and brief pulse width right unilateral ECT.
Loo, Colleen K; Garfield, Joshua B B; Katalinic, Natalie; Schweitzer, Isaac; Hadzi-Pavlovic, Dusan
2013-05-01
Ultrabrief pulse width stimulation electroconvulsive therapy (ECT) results in less cognitive side-effects than brief pulse ECT, but recent work suggests that more treatment sessions may be required to achieve similar efficacy. In this retrospective analysis of subjects pooled from three research studies, time to improvement was analysed in 150 depressed subjects who received right unilateral ECT with a brief pulse width (at five times seizure threshold) or ultrabrief pulse width (at six times seizure threshold). Multivariate Cox regression analyses compared the number of treatments required for 50% reduction in depression scores (i.e. speed of response) in these two samples. The analyses controlled for clinical, demographic and treatment variables that differed between the samples or that were found to be significant predictors of speed of response in univariate analyses. In the multivariate analysis, older age predicted faster speed of response. There was a non-significant trend for faster time to 50% improvement with brief pulse ECT (p = 0.067). Remission rates were higher after brief pulse ECT than ultrabrief pulse ECT (p = 0.007) but response rates were similar. This study, the largest of its kind reported to date, suggests that fewer treatments may be needed to attain response with brief than ultrabrief pulse ECT and that remission rates are higher with brief pulse ECT. Further research with a larger randomized and blinded study is recommended.
Franks, L.A.; Nelson, M.A.
1979-12-07
The invention is a method by which an optical pulse of an arbitrary but defined shape may be transformed into a virtual multitude of optical or electrical output pulse shapes. Since the method is not limited to any particular input pulse shape, the output pulse shapes that can be generated thereby are virtually unlimited. Moreover, output pulse widths as narrow as about 0.1 nsec can be readily obtained since optical pulses of less than a few picoseconds are available for use as driving pulses. The range of output pulse widths obtainable is very large, the limiting factors being the driving source energy and the particular shape of the desired output pulse.
NASA Astrophysics Data System (ADS)
Li, Peng; Zhu, Zheng H.; Meguid, S. A.
2016-07-01
This paper studies the pulse-width pulse-frequency modulation based trajectory planning for orbital rendezvous and proximity maneuvering near a non-cooperative spacecraft in an elliptical orbit. The problem is formulated by converting the continuous control input, output from the state dependent model predictive control, into a sequence of pulses of constant magnitude by controlling firing frequency and duration of constant-magnitude thrusters. The state dependent model predictive control is derived by minimizing the control error of states and control roughness of control input for a safe, smooth and fuel efficient approaching trajectory. The resulting nonlinear programming problem is converted into a series of quadratic programming problem and solved by numerical iteration using the receding horizon strategy. The numerical results show that the proposed state dependent model predictive control with the pulse-width pulse-frequency modulation is able to effectively generate optimized trajectories using equivalent control pulses for the proximity maneuvering with less energy consumption.
Propagation and spatiotemporal coupling characteristics of ultra-short Gaussian vortex pulse
NASA Astrophysics Data System (ADS)
Nie, Jianye; Liu, Guodong; Zhang, Rongzhu
2018-05-01
Based on Collins diffraction integral formula, the propagation equation of ultra-short Gaussian vortex pulse beam has been derived. Using the equation, the intensity distribution variations of vortex pulse in the propagation process are calculated. Specially, the spatiotemporal coupling characteristics of ultra-short vortex beams are discussed in detail. The results show that some key parameters, such as transverse distance, transmission distance, pulse width and topological charge number will influence the spatiotemporal coupling characteristics significantly. With the increasing of transverse distance, the waveforms of the pulses distort obviously. And when transmission distance is far than 50 mm, the distribution curve of transverse intensity gradually changes into a Gaussian type. In addition, initial pulse width will affect the distribution of light field, however, when initial pulse width is larger than 3 fs, the spatiotemporal coupling effect will be insignificant. Topological charge number does not affect the time delay characteristics, since with the increasing of topological charge number, the waveform of the pulse distorts gradually but the time delay does not occur.
Pulsed helium ionization detection system
Ramsey, R.S.; Todd, R.A.
1985-04-09
A helium ionization detection system is provided which produces stable operation of a conventional helium ionization detector while providing improved sensitivity and linearity. Stability is improved by applying pulsed dc supply voltage across the ionization detector, thereby modifying the sampling of the detectors output current. A unique pulse generator is used to supply pulsed dc to the detector which has variable width and interval adjust features that allows up to 500 V to be applied in pulse widths ranging from about 150 nsec to about dc conditions.
Pulsed helium ionization detection system
Ramsey, Roswitha S.; Todd, Richard A.
1987-01-01
A helium ionization detection system is provided which produces stable operation of a conventional helium ionization detector while providing improved sensitivity and linearity. Stability is improved by applying pulsed dc supply voltage across the ionization detector, thereby modifying the sampling of the detectors output current. A unique pulse generator is used to supply pulsed dc to the detector which has variable width and interval adjust features that allows up to 500 V to be applied in pulse widths ranging from about 150 nsec to about dc conditions.
Effect of Pulse Width on Oxygen-fed Ozonizer
NASA Astrophysics Data System (ADS)
Okada, Sho; Wang, Douyan; Namihira, Takao; Katsuki, Sunao; Akiyama, Hidenori
Though general ozonizers based on silent discharge (barrier discharge) have been used to supply ozone at many industrial situations, there is still some problem, such as improvements of ozone yield. In this work, ozone was generated by pulsed discharge in order to improve the characteristics of ozone generation. It is known that a pulse width gives strong effect to the improvement of energy efficiency in exhaust gas processing. In this paper, the effect of pulse duration on ozone generation by pulsed discharge in oxygen would be reported.
Huang, Yulu; Wang, Haipeng; Rimmer, Robert A.; ...
2016-08-01
An ultrafast kicker system is being developed for the energy recovery linac (ERL) based electron circulator cooler ring (CCR) in the proposed Jefferson Lab Electron Ion Collider (JLEIC, previously named MEIC). In the CCR, the injected electron bunches can be recirculated while performing ion cooling for 10–30 turns before the extraction, thus reducing the recirculation beam current in the ERL to 1/10–1/30 (150mA–50 mA) of the cooling beam current (up to 1.5 A). Assuming a bunch repetition rate of 476.3 MHz and a recirculating factor of 10 in the CCR, the kicker is required to operate at a pulse repetitionmore » rate of 47.63 MHz with pulse width of around 2 ns, so that only every 10th bunch in the CCR will experience a transverse kick while the rest of the bunches will not be disturbed. Such a kicker pulse can be synthesized by ten harmonic modes of the 47.63 MHz kicker pulse repetition frequency, using up to four quarter wavelength resonator (QWR) based deflecting cavities. In this paper, several methods to synthesize such a kicker waveform will be discussed and a comparison of their beam dynamics performance is made using ELEGANT. Four QWR cavities are envisaged with high transverse shunt impedance requiring less than 100 W of total rf power for a Flat-Top kick pulse. Multipole fields due to the asymmetry of this type of cavity are analyzed. The transverse emittance growth due to the sextupole component is simulated in ELEGANT. In conclusion, off-axis injection and extraction issues and beam optics using a multicavity kick-drift scheme will also be discussed.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Yulu; Wang, Haipeng; Rimmer, Robert A.
An ultrafast kicker system is being developed for the energy recovery linac (ERL) based electron circulator cooler ring (CCR) in the proposed Jefferson Lab Electron Ion Collider (JLEIC, previously named MEIC). In the CCR, the injected electron bunches can be recirculated while performing ion cooling for 10–30 turns before the extraction, thus reducing the recirculation beam current in the ERL to 1/10–1/30 (150mA–50 mA) of the cooling beam current (up to 1.5 A). Assuming a bunch repetition rate of 476.3 MHz and a recirculating factor of 10 in the CCR, the kicker is required to operate at a pulse repetitionmore » rate of 47.63 MHz with pulse width of around 2 ns, so that only every 10th bunch in the CCR will experience a transverse kick while the rest of the bunches will not be disturbed. Such a kicker pulse can be synthesized by ten harmonic modes of the 47.63 MHz kicker pulse repetition frequency, using up to four quarter wavelength resonator (QWR) based deflecting cavities. In this paper, several methods to synthesize such a kicker waveform will be discussed and a comparison of their beam dynamics performance is made using ELEGANT. Four QWR cavities are envisaged with high transverse shunt impedance requiring less than 100 W of total rf power for a Flat-Top kick pulse. Multipole fields due to the asymmetry of this type of cavity are analyzed. The transverse emittance growth due to the sextupole component is simulated in ELEGANT. In conclusion, off-axis injection and extraction issues and beam optics using a multicavity kick-drift scheme will also be discussed.« less
Inactivation of Viruses by Coherent Excitations with a Low Power Visible Femtosecond Laser
2007-06-05
visible femtosecond laser having a wavelength of 425 nm and a pulse width of 100 fs, we show that M13 phages were inactivated when the laser power density...was greater than or equal to 50 MW/cm2. The inactivation of M13 phages was determined by plaque counts and had been found to depend on the pulse width...visible femtosecond laser having a wavelength of 425 nm and a pulse width of 100 fs, we show that M13 phages were inactivated when the laser power
The effect of laser pulse tailored welding of Inconel 718
NASA Technical Reports Server (NTRS)
Mccay, T. Dwayne; Mccay, Mary Helen; Sharp, C. Michael; Womack, Michael G.
1990-01-01
Pulse tailored laser welding has been applied to wrought, wrought grain grown, and cast Inconel 718 using a CO2 laser. Prior to welding, the material was characterized metallographically and the solid state transformation regions were identified using Differential Scanning Calorimetry and high temperature x-ray diffraction. Bead on plate welds (restrained and unrestrained) were then produced using a matrix of pulse duty cycles and pulsed average power. Subsequent characterization included heat affected zone width, penetration and underbead width, the presence of cracks, microfissures and porosity, fusion zone curvature, and precipitation and liquated region width. Pedigree welding on three selected processing conditions was shown by microstructural and dye penetrant analysis to produce no microfissures, a result which strongly indicates the viability of pulse tailored welding for microfissure free IN 718.
Theoretical analysis of low-power fast optogenetic control of firing of Chronos-expressing neurons.
Saran, Sant; Gupta, Neha; Roy, Sukhdev
2018-04-01
A detailed theoretical analysis of low-power, fast optogenetic control of firing of Chronos-expressing neurons has been presented. A three-state model for the Chronos photocycle has been formulated and incorporated in a fast-spiking interneuron circuit model. The effect of excitation wavelength, pulse irradiance, pulse width, and pulse frequency has been studied in detail and compared with ChR2. Theoretical simulations are in excellent agreement with recently reported experimental results and bring out additional interesting features. At very low irradiances ([Formula: see text]), the plateau current in Chronos exhibits a maximum. At [Formula: see text], the plateau current is 2 orders of magnitude smaller and saturates at longer pulse widths ([Formula: see text]) compared to ChR2 ([Formula: see text]). [Formula: see text] in Chronos saturates at much shorter pulse widths (1775 pA at 1.5 ms and [Formula: see text]) than in ChR2. Spiking fidelity is also higher at lower irradiances and longer pulse widths compared to ChR2. Chronos exhibits an average maximal driven rate of over [Formula: see text] in response to [Formula: see text] stimuli, each of 1-ms pulse-width, in the intensity range 0 to [Formula: see text]. The analysis is important to not only understand the photodynamics of Chronos and Chronos-expressing neurons but also to design opsins with optimized properties and perform precision experiments with required spatiotemporal resolution.
A compact high current pulsed electron gun with subnanosecond electron pulse widths
NASA Technical Reports Server (NTRS)
Khakoo, M. A.; Srivastava, S. K.
1984-01-01
A magnetically-collimated, double-pulsed electron gun capable of generating electron pulses with a peak instantaneous current of approximately 70 microamps and a temporal width of 0.35 ns (FWHM) has been developed. Calibration is accomplished by measuring the lifetime of the well known 2(1P)-to-1(1S) transition in helium (58.4nm) at a near-threshold electron-impact energy by use of the delayed-coincidence technique.
Hölscher, Thilo; Raman, Rema; Fisher, David J; Ahadi, Golnaz; Zadicario, Eyal; Voie, Arne
2013-01-01
The goal was to test the effects of various combinations of pulse widths (PW) and duty cycles (DC) on high-intensity focused ultrasound (HIFU)-induced sonothrombolysis efficacy using an in vitro flow model. An ExAblate™ 4000 HIFU headsystem (InSightec, Inc., Israel) was used. Artificial blood clots were placed into test tubes inside a human calvarium and exposed to pulsatile flow. Four different duty cycles were tested against four different pulse widths. For all study groups, an increase in thrombolysis efficacy could be seen in association with increasing DC and/or PW (p < 0.0001). Using transcranial HIFU, significant thrombolysis can be achieved within seconds and without the use of lytic drugs in vitro. Longer duty cycles in combination with longer pulse widths seem to have the highest potential to optimize clot lysis efficacy.
2013-01-01
The goal was to test the effects of various combinations of pulse widths (PW) and duty cycles (DC) on high-intensity focused ultrasound (HIFU)-induced sonothrombolysis efficacy using an in vitro flow model. An ExAblate™ 4000 HIFU headsystem (InSightec, Inc., Israel) was used. Artificial blood clots were placed into test tubes inside a human calvarium and exposed to pulsatile flow. Four different duty cycles were tested against four different pulse widths. For all study groups, an increase in thrombolysis efficacy could be seen in association with increasing DC and/or PW (p < 0.0001). Using transcranial HIFU, significant thrombolysis can be achieved within seconds and without the use of lytic drugs in vitro. Longer duty cycles in combination with longer pulse widths seem to have the highest potential to optimize clot lysis efficacy. PMID:25512862
Design and performance of a pulse transformer based on Fe-based nanocrystalline core.
Yi, Liu; Xibo, Feng; Lin, Fuchang
2011-08-01
A dry-type pulse transformer based on Fe-based nanocrystalline core with a load of 0.88 nF, output voltage of more than 65 kV, and winding ratio of 46 is designed and constructed. The dynamic characteristics of Fe-based nanocrystalline core under the impulse with the pulse width of several microseconds were studied. The pulse width and incremental flux density have an important effect on the pulse permeability, so the pulse permeability is measured under a certain pulse width and incremental flux density. The minimal volume of the toroidal pulse transformer core is determined by the coupling coefficient, the capacitors of the resonant charging circuit, incremental flux density, and pulse permeability. The factors of the charging time, ratio, and energy transmission efficiency in the resonant charging circuit based on magnetic core-type pulse transformer are analyzed. Experimental results of the pulse transformer are in good agreement with the theoretical calculation. When the primary capacitor is 3.17 μF and charge voltage is 1.8 kV, a voltage across the secondary capacitor of 0.88 nF with peak value of 68.5 kV, rise time (10%-90%) of 1.80 μs is obtained.
Experimental strategies for imaging bioparticles with femtosecond hard X-ray pulses
Okamoto, Kenta; Bielecki, Johan; Maia, Filipe R. N. C.; Mühlig, Kerstin; Seibert, M. Marvin; Hantke, Max F.; Benner, W. Henry; Svenda, Martin; Ekeberg, Tomas; Loh, N. Duane; Pietrini, Alberto; Zani, Alessandro; Rath, Asawari D.; Westphal, Daniel; Kirian, Richard A.; Awel, Salah; Wiedorn, Max O.; van der Schot, Gijs; Carlsson, Gunilla H.; Hasse, Dirk; Sellberg, Jonas A.; Barty, Anton; Andreasson, Jakob; Boutet, Sébastien; Williams, Garth; Koglin, Jason; Hajdu, Janos; Larsson, Daniel S. D.
2017-01-01
This study explores the capabilities of the Coherent X-ray Imaging Instrument at the Linac Coherent Light Source to image small biological samples. The weak signal from small samples puts a significant demand on the experiment. Aerosolized Omono River virus particles of ∼40 nm in diameter were injected into the submicrometre X-ray focus at a reduced pressure. Diffraction patterns were recorded on two area detectors. The statistical nature of the measurements from many individual particles provided information about the intensity profile of the X-ray beam, phase variations in the wavefront and the size distribution of the injected particles. The results point to a wider than expected size distribution (from ∼35 to ∼300 nm in diameter). This is likely to be owing to nonvolatile contaminants from larger droplets during aerosolization and droplet evaporation. The results suggest that the concentration of nonvolatile contaminants and the ratio between the volumes of the initial droplet and the sample particles is critical in such studies. The maximum beam intensity in the focus was found to be 1.9 × 1012 photons per µm2 per pulse. The full-width of the focus at half-maximum was estimated to be 500 nm (assuming 20% beamline transmission), and this width is larger than expected. Under these conditions, the diffraction signal from a sample-sized particle remained above the average background to a resolution of 4.25 nm. The results suggest that reducing the size of the initial droplets during aerosolization is necessary to bring small particles into the scope of detailed structural studies with X-ray lasers. PMID:28512572
Miller, Joseph D; Slipchenko, Mikhail N; Meyer, Terrence R
2011-07-04
Hybrid femtosecond/picosecond coherent anti-Stokes Raman scattering (fs/ps CARS) offers accurate thermometry at kHz rates for combustion diagnostics. In high-temperature flames, selection of probe-pulse characteristics is key to simultaneously optimizing signal-to-nonresonant-background ratio, signal strength, and spectral resolution. We demonstrate a simple method for enhancing signal-to-nonresonant-background ratio by using a narrowband Lorentzian filter to generate a time-asymmetric probe pulse with full-width-half-maximum (FWHM) pulse width of only 240 fs. This allows detection within just 310 fs after the Raman excitation for eliminating nonresonant background while retaining 45% of the resonant signal at 2000 K. The narrow linewidth is comparable to that of a time-symmetric sinc2 probe pulse with a pulse width of ~2.4 ps generated with a conventional 4-f pulse shaper. This allows nonresonant-background-free, frequency-domain vibrational spectroscopy at high temperature, as verified using comparisons to a time-dependent theoretical fs/ps CARS model.
Gattinger, Norbert; Moessnang, Georg; Gleich, Bernhard
2012-07-01
Transcranial magnetic stimulation (TMS) is able to noninvasively excite neuronal populations due to brief magnetic field pulses. The efficiency and the characteristics of stimulation pulse shapes influence the physiological effect of TMS. However, commercial devices allow only a minimum of control of different pulse shapes. Basically, just sinusoidal and monophasic pulse shapes with fixed pulse widths are available. Only few research groups work on TMS devices with controllable pulse parameters such as pulse shape or pulse width. We describe a novel TMS device with a full-bridge circuit topology incorporating four insulated-gate bipolar transistor (IGBT) modules and one energy storage capacitor to generate arbitrary waveforms. This flexible TMS (flexTMS ) device can generate magnetic pulses which can be adjusted with respect to pulse width, polarity, and intensity. Furthermore, the equipment allows us to set paired pulses with a variable interstimulus interval (ISI) from 0 to 20 ms with a step size of 10 μs. All user-defined pulses can be applied continually with repetition rates up to 30 pulses per second (pps) or, respectively, up to 100 pps in theta burst mode. Offering this variety of flexibility, flexTMS will allow the enhancement of existing TMS paradigms and novel research applications.
Pulse-Width-Modulating Driver for Brushless dc Motor
NASA Technical Reports Server (NTRS)
Salomon, Phil M.
1991-01-01
High-current pulse-width-modulating driver for brushless dc motor features optical coupling of timing signals from low-current control circuitry to high-current motor-driving circuitry. Provides high electrical isolation of motor-power supply, helping to prevent fast, high-current motor-driving pulses from being coupled through power supplies into control circuitry, where they interfere with low-current control signals.
Steering population transfer of the Na2 molecule by an ultrashort pulse train
NASA Astrophysics Data System (ADS)
Niu, Dong-Hua; Wang, Shuo; Zhan, Wei-Shen; Tao, Hong-Cai; Wang, Si-Qi
2018-05-01
We theoretically investigate the complete population transfer among quantum states of the Na2 molecule using ultrashort pulse trains using the time-dependent wave packet method. The population accumulation of the target state can be steered by controlling the laser parameters, such as the variable pulse pairs, the different pulse widths, the time delays and the repetition period between two contiguous pulses; in particular, the pulse pairs and the pulse widths have a great effect on the population transfer. The calculations show that the ultrashort pulse train is a feasible solution, which can steer the population transfer from the initial state to the target state efficiently with lower peak intensities.
Device for detecting imminent failure of high-dielectric stress capacitors. [Patent application
McDuff, G.G.
1980-11-05
A device is described for detecting imminent failure of a high-dielectric stress capacitor utilizing circuitry for detecting pulse width variations and pulse magnitude variations. Inexpensive microprocessor circuitry is utilized to make numerical calculations of digital data supplied by detection circuitry for comparison of pulse width data and magnitude data to determine if preselected ranges have been exceeded, thereby indicating imminent failure of a capacitor. Detection circuitry may be incorporated in transmission lines, pulse power circuitry, including laser pulse circuitry or any circuitry where capacitors or capacitor banks are utilized.
Device for detecting imminent failure of high-dielectric stress capacitors
McDuff, George G.
1982-01-01
A device for detecting imminent failure of a high-dielectric stress capacitor utilizing circuitry for detecting pulse width variations and pulse magnitude variations. Inexpensive microprocessor circuitry is utilized to make numerical calculations of digital data supplied by detection circuitry for comparison of pulse width data and magnitude data to determine if preselected ranges have been exceeded, thereby indicating imminent failure of a capacitor. Detection circuitry may be incorporated in transmission lines, pulse power circuitry, including laser pulse circuitry or any circuitry where capacitors or capactior banks are utilized.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Q., E-mail: wuq@impcas.ac.cn; Ma, H. Y.; Yang, Y.
Two compact intense 2.45 GHz permanent magnet proton sources and their corresponding low energy beam transport (LEBT) system were developed successfully for China accelerator driven sub-critical system in 2014. Both the proton sources operate at 35 kV potential. The beams extracted from the ion source are transported by the LEBT, which is composed of two identical solenoids, to the 2.1 MeV Radio-Frequency Quadrupole (RFQ). In order to ensure the safety of the superconducting cavities during commissioning, an electrostatic-chopper has been designed and installed in the LEBT line that can chop the continuous wave beam into a pulsed one. The minimummore » width of the pulse is less than 10 μs and the fall/rise time of the chopper is about 20 ns. The performance of the proton source and the LEBT, such as beam current, beam profile, emittance and the impact to RFQ injection will be presented.« less
NASA Astrophysics Data System (ADS)
Luo, Hanjun; Ouyang, Zhengbiao; Liu, Qiang; Chen, Zhiliang; Lu, Hualan
2017-10-01
Cumulative pulses detection with appropriate cumulative pulses number and threshold has the ability to improve the detection performance of the pulsed laser ranging system with GM-APD. In this paper, based on Poisson statistics and multi-pulses cumulative process, the cumulative detection probabilities and their influence factors are investigated. With the normalized probability distribution of each time bin, the theoretical model of the range accuracy and precision is established, and the factors limiting the range accuracy and precision are discussed. The results show that the cumulative pulses detection can produce higher target detection probability and lower false alarm probability. However, for a heavy noise level and extremely weak echo intensity, the false alarm suppression performance of the cumulative pulses detection deteriorates quickly. The range accuracy and precision is another important parameter evaluating the detection performance, the echo intensity and pulse width are main influence factors on the range accuracy and precision, and higher range accuracy and precision is acquired with stronger echo intensity and narrower echo pulse width, for 5-ns echo pulse width, when the echo intensity is larger than 10, the range accuracy and precision lower than 7.5 cm can be achieved.
A report on the introduction of ultrabrief pulse width ECT in a private psychiatric hospital.
Galletly, Cherrie; Paterson, Tom; Burton, Cassandra
2012-03-01
We report on 6 months of data since the introduction of ultrabrief pulse width electroconvulsive therapy (UB ECT) at a private psychiatric hospital in Adelaide. Results suggest that psychiatrists welcomed the availability of UB ECT, with an increase in prescription of ECT. About a quarter of UB ECT patients changed to standard pulse width (SPW) ECT, but those who did respond to UB ECT had an equivalent response to those who had SPW ECT. Courses of treatment were longer with UB ECT, which was reflected in an increased length of stay.
Power supply circuit for an ion engine sequentially operated power inverters
NASA Technical Reports Server (NTRS)
Cardwell, Jr., Gilbert I. (Inventor)
2000-01-01
A power supply circuit for an ion engine suitable for a spacecraft has a voltage bus having input line and a return line. The power supply circuit includes a pulse width modulation circuit. A plurality of bridge inverter circuits is coupled to the bus and the pulse width modulation circuit. The pulse width modulation circuit generates operating signals having a variable duty cycle. Each bridge inverter has a primary winding and a secondary winding. Each secondary winding is coupled to a rectifier bridge. Each secondary winding is coupled in series with another of the plurality of rectifier bridges.
Effects of injection nozzle exit width on rotating detonation engine
NASA Astrophysics Data System (ADS)
Sun, Jian; Zhou, Jin; Liu, Shijie; Lin, Zhiyong; Cai, Jianhua
2017-11-01
A series of numerical simulations of RDE modeling real injection nozzles with different exit widths are performed in this paper. The effects of nozzle exit width on chamber inlet state, plenum flowfield and detonation propagation are analyzed. The results are compared with that using an ideal injection model. Although the ideal injection model is a good approximation method to model RDE inlet, the two-dimensional effects of real nozzles are ignored in the ideal injection model so that some complicated phenomena such as the reflected waves caused by the nozzle walls and the reversed flow into the nozzles can not be modeled accurately. Additionally, the ideal injection model overpredicts the block ratio. In all the cases that stabilize at one-wave mode, the block ratio increases as the nozzle exit width gets smaller. The dual-wave mode case also has a relatively high block ratio. A pressure oscillation in the plenum with the same main frequency with the rotating detonation wave is observed. A parameter σ is applied to describe the non-uniformity in the plenum. σ increases as the nozzle exit width gets larger. Under some condition, the heat release on the interface of fresh premixed gas layer and detonation products can be strong enough to induce a new detonation wave. A spontaneous mode-transition process is observed for the smallest exit width case. Due to the detonation products existing in the premixed gas layer before the detonation wave, the detonation wave will propagate through reactants and products alternately, and therefore its strength will vary with time, especially near the chamber inlet. This tendency gets weaker as the injection nozzle exit width increases.
Broadhurst, Matthew S; Akst, Lee M; Burns, James A; Kobler, James B; Heaton, James T; Anderson, R Rox; Zeitels, Steven M
2007-02-01
Selective vascular ablation (photoangiolysis) using pulsed lasers that target hemoglobin is an effective treatment strategy for many vocal fold lesions. However, vessel rupture with extravasation of blood reduces selectivity for vessels, which is frequently observed with the 0.45-ms, 585-nm pulsed dye laser. Previous studies have shown that vessel rupture is the result of vaporization of blood, an event that varies with laser pulse width and pulse fluence (energy per unit area). Clinical observations using a 532-nm wavelength pulsed potassium-titanyl-phosphate (KTP) laser revealed less laser-induced hemorrhage than the pulsed dye laser. This study investigated settings for the pulsed KTP laser to achieve selective vessel destruction without rupture using the avian chorioallantoic membrane under conditions similar to flexible laryngoscopic delivery of the laser in clinical practice. The chick chorioallantoic membrane offers convenient access to many small blood vessels similar in size to those targeted in human vocal fold. Using a 532-nm pulsed KTP laser, pulse width, pulse energy, and working distance from the optical delivery fiber were varied to assess influence on the ability to achieve vessel coagulation without vessel wall rupture. Third-order vessels (n = 135) were irradiated: Energy (471-550 mJ), pulse width (10, 15, 30 ms), and fiber-to-tissue distance (1 mm, 3 mm) were varied systematically. Selective vessel destruction without vessel wall rupture was more often achieved by increasing pulse width, increasing the fiber-to-tissue distance, and decreasing energy. Vessel destruction without rupture was consistently achieved using 15- or 30-ms pulses with a fiber-to-tissue distance of 3 mm (pulse fluence of 13-16 J/cm). This study substantiates our clinical observation that a 532-nm pulsed KTP laser was effective for ablating microcirculation while minimizing vessel wall rupture and hemorrhage.
Single-shot temporal characterization of kilojoule-level, picosecond pulses on OMEGA EP
DOE Office of Scientific and Technical Information (OSTI.GOV)
Waxer, Leon; Dorrer, Christophe; Kalb, Adam
To achieve a variety of experimental conditions, the OMEGA EP laser provides kilojoule-level pulses over a pulse-width range of 0.6 to 100 ps. Precise knowledge of the pulse width is important for laser system safety and the interpretation of experimental results. This paper describes the development and implementation of a single-shot, ultrashort-pulse measurement diagnostic, which provides an accurate characterization of the output pulse shape. We also present a brief overview of the measurement algorithm; discuss design considerations necessary for implementation in a complex, user-facility environment; and review the results of the diagnostic commissioning shots, which demonstrated excellent agreement with predictions.
Single-shot temporal characterization of kilojoule-level, picosecond pulses on OMEGA EP
Waxer, Leon; Dorrer, Christophe; Kalb, Adam; ...
2018-02-19
To achieve a variety of experimental conditions, the OMEGA EP laser provides kilojoule-level pulses over a pulse-width range of 0.6 to 100 ps. Precise knowledge of the pulse width is important for laser system safety and the interpretation of experimental results. This paper describes the development and implementation of a single-shot, ultrashort-pulse measurement diagnostic, which provides an accurate characterization of the output pulse shape. We also present a brief overview of the measurement algorithm; discuss design considerations necessary for implementation in a complex, user-facility environment; and review the results of the diagnostic commissioning shots, which demonstrated excellent agreement with predictions.
A Flexible Master Oscillator for a Thomson Scattering Pulse-Burst Laser System
NASA Astrophysics Data System (ADS)
den Hartog, D. J.; Young, W. C.
2015-11-01
A new master oscillator will be installed in the pulse-burst laser system used for high-rep-rate Thomson scattering on the MST experiment. This new master oscillator will enable pulse repetition rates up to 1 MHz, with the ability to program a burst of pulses with arbitrary and varying time separation between each pulse. In addition, the energy of each master oscillator pulse can be adjusted to compensate for gain variations in the power amplifier section of the laser system. This flexibility is accomplished by chopping a CW laser source with a high-bandwidth acousto-optic modulator (AOM). The laser source is a 1064 nm diode-pumped solid-state laser with continuous output power variable from 100 to 500 mW. The 2 mm diameter polarized beam is focused into the gallium phosphide crystal of the AOM, which deflects the beam by approximately 60 mrad. Beam deflection is controlled by a simple digital input pulse, and is capable of producing laser pulses of less than 20 ns width at repetition rates much greater than 1 MHz. These pulses from the output of the AOM will be collimated and propagated into the laser amplifier system, where they will be amplified to ~ 2 J/pulse and injected into the MST plasma. This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Fusion Energy Sciences under Award Number DE-FC02-05ER54814, and by the National Science Foundation under Award Number PHY-0821899.
Stanford, Michael G.; Lewis, Brett B.; Noh, Joo Hyon; ...
2014-11-05
Platinum–carbon deposits made via electron-beam-induced deposition were purified in this study via a pulsed laser-induced oxidation reaction and erosion of the amorphous carbon to form pure platinum. Purification proceeds from the top down and is likely catalytically facilitated via the evolving platinum layer. Thermal simulations suggest a temperature threshold of ~485 K, and the purification rate is a function of the PtC 5 thickness (80–360 nm) and laser pulse width (1–100 μs) in the ranges studied. The thickness dependence is attributed to the ~235 nm penetration depth of the PtC 5 composite at the laser wavelength, and the pulse-width dependencemore » is attributed to the increased temperatures achieved at longer pulse widths. Finally, remarkably fast purification is realized at cumulative laser exposure times of less than 1 s.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stanford, Michael G.; Lewis, Brett B.; Noh, Joo Hyon
Platinum–carbon deposits made via electron-beam-induced deposition were purified in this study via a pulsed laser-induced oxidation reaction and erosion of the amorphous carbon to form pure platinum. Purification proceeds from the top down and is likely catalytically facilitated via the evolving platinum layer. Thermal simulations suggest a temperature threshold of ~485 K, and the purification rate is a function of the PtC 5 thickness (80–360 nm) and laser pulse width (1–100 μs) in the ranges studied. The thickness dependence is attributed to the ~235 nm penetration depth of the PtC 5 composite at the laser wavelength, and the pulse-width dependencemore » is attributed to the increased temperatures achieved at longer pulse widths. Finally, remarkably fast purification is realized at cumulative laser exposure times of less than 1 s.« less
Effect of pulse width on near-infrared supercontinuum generation in nonlinear fiber amplifier
NASA Astrophysics Data System (ADS)
Song, Rui; Lei, Cheng-Min; Chen, Sheng-Ping; Wang, Ze-Feng; Hou, Jing
2015-08-01
The effect of pulse width on near-infrared supercontinuum generation in nonlinear fiber amplifier is investigated theoretically and experimentally. The complex Ginzburg-Landau equation and adaptive split-step Fourier method are used to simulate the propagation of pulses with different pulse widths in the fiber amplifier, and the results show that a longer pulse is more profitable in near-infrared supercontinuum generation if the central wavelength of the input laser lies in the normal dispersion region of the gain fiber. A four-stage master oscillator power amplifier configuration is adopted and the output spectra under picosecond and nanosecond input pulses are compared with each other. The experimental results are in good accordance with the simulations which can provide some guidance for further optimization of the system. Project supported by the National Natural Science Foundation of China (Grant Nos. 11404404 and 11274385) and the Outstanding Youth Fund Project of Hunan Province and the Fund of Innovation of National University of Defense Technology, China (Grant No. B120701).
Total Ionizing Dose Test Report for the UC1823A Pulse Width Modulator
NASA Technical Reports Server (NTRS)
Chen, Dakai; Forney, James
2017-01-01
The purpose of this study is to examine the total ionizing dose susceptibility for the UC1823A pulse width modulator manufactured by Texas Instruments, Inc. The part is suspected to be vulnerable to enhanced low dose rate sensitivity (ELDRS).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bartnik, A.; Wachulak, P.; Fiedorowicz, H.
2013-11-15
In this work, spectral investigations of photoionized He plasmas were performed. The photoionized plasmas were created by irradiation of helium stream, with intense pulses from laser-plasma extreme ultraviolet (EUV) source. The EUV source was based on a double-stream Xe/Ne gas-puff target irradiated with 10 ns/10 J Nd:YAG laser pulses. The most intense emission from the source spanned a relatively narrow spectral region below 20 nm, however, spectrally integrated intensity at longer wavelengths was also significant. The EUV radiation was focused onto a gas stream, injected into a vacuum chamber synchronously with the EUV pulse. The long-wavelength part of the EUVmore » radiation was used for backlighting of the photoionized plasmas to obtain absorption spectra. Both emission and absorption spectra in the EUV range were investigated. Significant differences between absorption spectra acquired for neutral helium and low temperature photoionized plasmas were demonstrated for the first time. Strong increase of intensities and spectral widths of absorption lines, together with a red shift of the K-edge, was shown.« less
Resolving the shape of a sonoluminescence pulse in sulfuric acid by the use of streak camera.
Huang, Wei; Chen, Weizhong; Cui, Weicheng
2009-06-01
A streak camera is used to measure the shape of sonoluminescence pulses from a cavitation bubble levitated stably in a sulfuric acid solution. The shape and response to an acoustic pressure field of the sonoluminescence pulse in 85% by weight sulfuric acid are qualitatively similar to those in water. However, the pulse width in sulfuric acid is wider than that in water by over one order of magnitude. The width of the sonoluminescence pulse is strongly dependent on the concentration of the sulfuric acid solution, while the skewed distribution of the shape remains unchanged.
A compact plasma pre-ionized TEA-CO2 laser pulse clipper for material processing
NASA Astrophysics Data System (ADS)
Gasmi, Taieb
2017-08-01
An extra-laser cavity CO2-TEA laser pulse clipper using gas breakdown techniques for high spatial resolution material processing and shallow material engraving and drilling processes is presented. Complete extinction of the nitrogen tail, that extends the pulse width, is obtained at pressures from 375 up to 1500 torr for nitrogen and argon gases. Excellent energy stability and pulse repeatability were further enhanced using high voltage assisted preionized plasma gas technique. Experimental data illustrates the direct correlation between laser pulse width and depth of engraving in aluminum and alumina materials.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yousefi, S; Ahmad, M; Xiang, L
Purpose: To report our investigations of proton acoustic imaging, including computer simulations and preliminary experimental studies at clinical facilities. The ultimate achievable accuracy, sensitivity and clinical translation challenges are discussed. Methods: The acoustic pulse due to pressure rise was estimated using finite element model. Since the ionoacoustic pulse is highly dependent on the proton pulse width and energy, multiple pulse widths were studied. Based on the received signal spectrum at piezoelectric ultrasound transducer with consideration of random thermal noise, maximum spatial resolution of the proton-acoustic imaging modality was calculated. The simulation studies defined the design specifications of the system tomore » detect proton acoustic signal from Hitachi and Mevion clinical machines. A 500 KHz hydrophone with 100 dB amplification was set up in a water tank placed in front of the proton nozzle A 40 MHz data acquisition was synchronized by a trigger signal provided by the machine. Results: Given 30–800 mGy dose per pulse at the Bragg peak, the minimum number of protons detectable by the proton acoustic technique was on the order of 10×10^6 per pulse. The broader pulse widths produce signal with lower acoustic frequencies, with 10 µs pulses producing signals with frequency less than 100 kHz. As the proton beam pulse width increases, a higher dose rate is required to measure the acoustic signal. Conclusion: We have established the minimal detection limit for protonacoustic range validation for a variety of pulse parameters. Our study indicated practical proton-acoustic range verification can be feasible with a pulse shorter than 10 µs, 5×10^6 protons/pulse, 50 nA beam current and a highly sensitive ultrasonic transducer. The translational challenges into current clinical machines include proper magnetic shielding of the measurement equipment, providing a clean trigger signal from the proton machine, providing a shorter proton beam pulse and higher dose per pulse.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Degtiarenko, Pavel V.
An environmental radiation detector for detecting and distinguishing between all types of environmental radiation, including photons, charged particles, and neutrons. A large volume high pressure ionization chamber (HPIC) includes BF.sub.3 gas at a specific concentration to render the radiation detector sensitive to the reactions of neutron capture in Boron-10 isotope. A pulse-mode readout is connected to the ionization chamber capable of measuring both the height and the width of the pulse. The heavy charged products of the neutron capture reaction deposit significant characteristic energy of the reaction in the immediate vicinity of the reaction in the gas, producing a signalmore » with a pulse height proportional to the reaction energy, and a narrow pulse width corresponding to the essentially pointlike energy deposition in the gas. Readout of the pulse height and the pulse width parameters of the signals enables distinguishing between the different types of environmental radiation, such as gamma (x-rays), cosmic muons, and neutrons.« less
Imaging Surfaces and Nanostructures
2011-02-28
Principles and Perspectives," Phys. Chern. Chern. Phys. 10, 2879 (2008). 8) A. Gahlmann, S. T. Park, and A. H. Zewail , " Ultrashort Electron Pulses ...1~ copy with high spatiotemporal reso- 104 lutions. The time resolution becomes limited only by the laser pulse width and energy width of the...definition, transformations in which atoms move at speeds of the order of I krnls is in the femtosecond domain, and although laser light pulses can
Effects of finite pulse width on two-dimensional Fourier transform electron spin resonance.
Liang, Zhichun; Crepeau, Richard H; Freed, Jack H
2005-12-01
Two-dimensional (2D) Fourier transform ESR techniques, such as 2D-ELDOR, have considerably improved the resolution of ESR in studies of molecular dynamics in complex fluids such as liquid crystals and membrane vesicles and in spin labeled polymers and peptides. A well-developed theory based on the stochastic Liouville equation (SLE) has been successfully employed to analyze these experiments. However, one fundamental assumption has been utilized to simplify the complex analysis, viz. the pulses have been treated as ideal non-selective ones, which therefore provide uniform irradiation of the whole spectrum. In actual experiments, the pulses are of finite width causing deviations from the theoretical predictions, a problem that is exacerbated by experiments performed at higher frequencies. In the present paper we provide a method to deal with the full SLE including the explicit role of the molecular dynamics, the spin Hamiltonian and the radiation field during the pulse. The computations are rendered more manageable by utilizing the Trotter formula, which is adapted to handle this SLE in what we call a "Split Super-Operator" method. Examples are given for different motional regimes, which show how 2D-ELDOR spectra are affected by the finite pulse widths. The theory shows good agreement with 2D-ELDOR experiments performed as a function of pulse width.
Pulse-width-modulated servo valve for autopilot system
NASA Technical Reports Server (NTRS)
Garner, H. D.
1974-01-01
Valve was developed for autopilot wing-lever system and is to be used in light, single-engine aircraft. Valve is controlled by electronic circuit which feeds pulse-width-modulated correction signals to two solenoids. Valve housing is cast from plastic, making it very economical to fabricate.
Auditory-nerve single-neuron thresholds to electrical stimulation from scala tympani electrodes.
Parkins, C W; Colombo, J
1987-12-31
Single auditory-nerve neuron thresholds were studied in sensory-deafened squirrel monkeys to determine the effects of electrical stimulus shape and frequency on single-neuron thresholds. Frequency was separated into its components, pulse width and pulse rate, which were analyzed separately. Square and sinusoidal pulse shapes were compared. There were no or questionably significant threshold differences in charge per phase between sinusoidal and square pulses of the same pulse width. There was a small (less than 0.5 dB) but significant threshold advantage for 200 microseconds/phase pulses delivered at low pulse rates (156 pps) compared to higher pulse rates (625 pps and 2500 pps). Pulse width was demonstrated to be the prime determinant of single-neuron threshold, resulting in strength-duration curves similar to other mammalian myelinated neurons, but with longer chronaxies. The most efficient electrical stimulus pulse width to use for cochlear implant stimulation was determined to be 100 microseconds/phase. This pulse width delivers the lowest charge/phase at threshold. The single-neuron strength-duration curves were compared to strength-duration curves of a computer model based on the specific anatomy of auditory-nerve neurons. The membrane capacitance and resulting chronaxie of the model can be varied by altering the length of the unmyelinated termination of the neuron, representing the unmyelinated portion of the neuron between the habenula perforata and the hair cell. This unmyelinated segment of the auditory-nerve neuron may be subject to aminoglycoside damage. Simulating a 10 micron unmyelinated termination for this model neuron produces a strength-duration curve that closely fits the single-neuron data obtained from aminoglycoside deafened animals. Both the model and the single-neuron strength-duration curves differ significantly from behavioral threshold data obtained from monkeys and humans with cochlear implants. This discrepancy can best be explained by the involvement of higher level neurologic processes in the behavioral responses. These findings suggest that the basic principles of neural membrane function must be considered in developing or analyzing electrical stimulation strategies for cochlear prostheses if the appropriate stimulation of frequency specific populations of auditory-nerve neurons is the objective.
NASA Astrophysics Data System (ADS)
Liu, You; Yuan, Zhi-Guo; Fan, Li-Yun; Tian, Bin-Qi
2010-12-01
The electronic in-line pump (EIP) is a complex system consisting of mechanical, hydraulic, and electromagnetic parts. Experimental study showed that the fuel pressure of the plunger and the fuel drainage of the pressure system after fuel injection could result in fuel pressure fluctuation in the low pressure system. Such fluctuation exhibited pulsating cycle fluctuation as the amplitude rose with the increase of the injection pulse width. The time domain analysis found that the pressure time history curve and injection cylinders corresponded with a one-to-one relationship. By frequency domain analysis, the result was that with the increase of the working cylinder number, the high frequency amplitude gradually increased and the basic frequency amplitude gradually decreased. The conclusion was that through wavelet transformation, the low pressure signal simultaneously moved towards low frequency as the high frequency of the wavelet transformation signal with the working cylinder number increased. Lastly, by using the numerical model, the study investigated the simulation research concerning the relationship of the fluctuation dynamic characteristic in the low pressure system and the fuel injection characteristic of the high pressure system, completing the conclusions obtained by the experimental study.
Effects of pulsed magnetic stimulation on tumor development and immune functions in mice.
Yamaguchi, Sachiko; Ogiue-Ikeda, Mari; Sekino, Masaki; Ueno, Shoogo
2006-01-01
We investigated the effects of pulsed magnetic stimulation on tumor development processes and immune functions in mice. A circular coil (inner diameter = 15 mm, outer diameter = 75 mm) was used in the experiments. Stimulus conditions were pulse width = 238 micros, peak magnetic field = 0.25 T (at the center of the coil), frequency = 25 pulses/s, 1,000 pulses/sample/day and magnetically induced eddy currents in mice = 0.79-1.54 A/m(2). In an animal study, B16-BL6 melanoma model mice were exposed to the pulsed magnetic stimulation for 16 days from the day of injection of cancer cells. A tumor growth study revealed a significant tumor weight decrease in the stimulated group (54% of the sham group). In a cellular study, B16-BL6 cells were also exposed to the magnetic field (1,000 pulses/sample, and eddy currents at the bottom of the dish = 2.36-2.90 A/m(2)); however, the magnetically induced eddy currents had no effect on cell viabilities. Cytokine production in mouse spleens was measured to analyze the immunomodulatory effect after the pulsed magnetic stimulation. tumor necrosis factor (TNF-alpha) production in mouse spleens was significantly activated after the exposure of the stimulus condition described above. These results showed the first evidence of the anti-tumor effect and immunomodulatory effects brought about by the application of repetitive magnetic stimulation and also suggested the possible relationship between anti-tumor effects and the increase of TNF-alpha levels caused by pulsed magnetic stimulation.
An experimental and theoretical investigation into the ``worm-hole'' effect
NASA Astrophysics Data System (ADS)
Zhao, Liang; Su, Jiancang; Zhang, Xibo; Pan, Yafeng; Wang, Limin; Fang, Jinpeng; Sun, Xu; Li, Rui; Zeng, Bo; Cheng, Jie
2013-08-01
On a nanosecond time scale, solid insulators abnormally fail in bulk rather than on surface, which is termed as the "worm-hole" effect. By using a generator with adjustable output pulse width and dozens of organic glass (PMMA) and polystyrene (PS) samples, experiments to verify this effect are conducted. The results show that under short pulses of 10 ns, all the samples fail due to bulk breakdown, whereas when the pulse width is tuned to a long pulse of 7 μs, the samples fail as a result of surface flashover. The experimental results are interpreted by analyzing the conditions for the bulk breakdown and the surface flashover. It is found that under short pulses, the flashover threshold would be as high as the bulk breakdown strength (EBD) and the flashover time delay (td) would be longer than the pulse width (τ), both of which make the dielectrics' cumulative breakdown occur easily; whereas under long pulses, that Ef is much lower than EBD and td is smaller than τ is advantageous to the occurrence of the surface flashover. In addition, a general principle on solid insulation design under short pulse condition is proposed based on the experimental results and the theoretical analysis.
NASA Astrophysics Data System (ADS)
Bilalic, Rusmir
A novel application of support vector machines (SVMs), artificial neural networks (ANNs), and Gaussian processes (GPs) for machine learning (GPML) to model microcontroller unit (MCU) upset due to intentional electromagnetic interference (IEMI) is presented. In this approach, an MCU performs a counting operation (0-7) while electromagnetic interference in the form of a radio frequency (RF) pulse is direct-injected into the MCU clock line. Injection times with respect to the clock signal are the clock low, clock rising edge, clock high, and the clock falling edge periods in the clock window during which the MCU is performing initialization and executing the counting procedure. The intent is to cause disruption in the counting operation and model the probability of effect (PoE) using machine learning tools. Five experiments were executed as part of this research, each of which contained a set of 38,300 training points and 38,300 test points, for a total of 383,000 total points with the following experiment variables: injection times with respect to the clock signal, injected RF power, injected RF pulse width, and injected RF frequency. For the 191,500 training points, the average training error was 12.47%, while for the 191,500 test points the average test error was 14.85%, meaning that on average, the machine was able to predict MCU upset with an 85.15% accuracy. Leaving out the results for the worst-performing model (SVM with a linear kernel), the test prediction accuracy for the remaining machines is almost 89%. All three machine learning methods (ANNs, SVMs, and GPML) showed excellent and consistent results in their ability to model and predict the PoE on an MCU due to IEMI. The GP approach performed best during training with a 7.43% average training error, while the ANN technique was most accurate during the test with a 10.80% error.
Chin, Sang Hoon; Kim, Young Jae; Song, Ho Seong; Kim, Dug Young
2006-10-10
We propose a simple but powerful scheme for the complete analysis of the frequency chirp of a gain-switched optical pulse using a fringe-resolved interferometric two-photon absorption autocorrelator. A frequency chirp imposed on the gain-switched pulse from a laser diode was retrieved from both the intensity autocorrelation trace and the envelope of the second-harmonic interference fringe pattern. To verify the accuracy of the proposed phase retrieval method, we have performed an optical pulse compression experiment by using dispersion-compensating fibers with different lengths. We have obtained close agreement by less than a 1% error between the compressed pulse widths and numerically calculated pulse widths.
Extension of FRI for modeling of electrocardiogram signals.
Quick, R Frank; Crochiere, Ronald E; Hong, John H; Hormati, Ali; Baechler, Gilles
2012-01-01
Recent work has developed a modeling method applicable to certain types of signals having a "finite rate of innovation" (FRI). Such signals contain a sparse collection of time- or frequency-limited pulses having a restricted set of allowable pulse shapes. A limitation of past work on FRI is that all of the pulses must have the same shape. Many real signals, including electrocardiograms, consist of pulses with varying widths and asymmetry, and therefore are not well fit by the past FRI methods. We present an extension of FRI allowing pulses having variable pulse width (VPW) and asymmetry. We show example results for electrocardiograms and discuss the possibility of application to signal compression and diagnostics.
Missing pulse detector for a variable frequency source
Ingram, Charles B.; Lawhorn, John H.
1979-01-01
A missing pulse detector is provided which has the capability of monitoring a varying frequency pulse source to detect the loss of a single pulse or total loss of signal from the source. A frequency-to-current converter is used to program the output pulse width of a variable period retriggerable one-shot to maintain a pulse width slightly longer than one-half the present monitored pulse period. The retriggerable one-shot is triggered at twice the input pulse rate by employing a frequency doubler circuit connected between the one-shot input and the variable frequency source being monitored. The one-shot remains in the triggered or unstable state under normal conditions even though the source period is varying. A loss of an input pulse or single period of a fluctuating signal input will cause the one-shot to revert to its stable state, changing the output signal level to indicate a missing pulse or signal.
Pulsatile Hormonal Signaling to Extracellular Signal-regulated Kinase
Perrett, Rebecca M.; Voliotis, Margaritis; Armstrong, Stephen P.; Fowkes, Robert C.; Pope, George R.; Tsaneva-Atanasova, Krasimira; McArdle, Craig A.
2014-01-01
Gonadotropin-releasing hormone (GnRH) is secreted in brief pulses that stimulate synthesis and secretion of pituitary gonadotropin hormones and thereby mediate control of reproduction. It acts via G-protein-coupled receptors to stimulate effectors, including ERK. Information could be encoded in GnRH pulse frequency, width, amplitude, or other features of pulse shape, but the relative importance of these features is unknown. Here we examine this using automated fluorescence microscopy and mathematical modeling, focusing on ERK signaling. The simplest scenario is one in which the system is linear, and response dynamics are relatively fast (compared with the signal dynamics). In this case integrated system output (ERK activation or ERK-driven transcription) will be roughly proportional to integrated input, but we find that this is not the case. Notably, we find that relatively slow response kinetics lead to ERK activity beyond the GnRH pulse, and this reduces sensitivity to pulse width. More generally, we show that the slowing of response kinetics through the signaling cascade creates a system that is robust to pulse width. We, therefore, show how various levels of response kinetics synergize to dictate system sensitivity to different features of pulsatile hormone input. We reveal the mathematical and biochemical basis of a dynamic GnRH signaling system that is robust to changes in pulse amplitude and width but is sensitive to changes in receptor occupancy and frequency, precisely the features that are tightly regulated and exploited to exert physiological control in vivo. PMID:24482225
NASA Astrophysics Data System (ADS)
Cui, Minchao; Deguchi, Yoshihiro; Wang, Zhenzhen; Fujita, Yuki; Liu, Renwei; Shiou, Fang-Jung; Zhao, Shengdun
2018-04-01
A collinear long-short dual-pulse laser-induced breakdown spectroscopy (DP-LIBS) method was employed to enhance and stabilize the laser-induced plasma from steel sample. The long-pulse-width laser beam with the pulse width of 60 μs was generated by a Nd: YAG laser which was operated at FR (free running) mode. The comparative experiments were carried out between single pulse LIBS (SP-LIBS) and long-short DP-LIBS. The recorded results showed that the emission intensities and the temperature of plasma were enhanced by long-short DP-LIBS. The plasma images showed that the plasma was bigger and had a longer lifetime in long-short DP-LIBS situation. Through the calculation of time-resolved plasma temperature and intensity ratio, it can be concluded that the plasma was stabilized by the long-pulse-width laser beam. The long-short DP-LIBS method also generated the stable plasma condition from the samples with different initial temperatures, which overcame the difficulties of LIBS in the online measurement for steel production line.
Noise-like pulse generation in an ytterbium-doped fiber laser using tungsten disulphide
NASA Astrophysics Data System (ADS)
Zhang, Wenping; Song, Yanrong; Guoyu, Heyang; Xu, Runqin; Dong, Zikai; Li, Kexuan; Tian, Jinrong; Gong, Shuang
2017-12-01
We demonstrated the noise-like pulse (NLP) generation in an ytterbium-doped fiber (YDF) laser with tungsten disulphide (WS2). Stable fundamental mode locking and second-order harmonic mode locking were observed. The saturable absorber (SA) was a WS2-polyvinyl alcohol film. The modulation depth of the WS2 film was 2.4%, and the saturable optical intensity was 155 MW cm-2. Based on this SA, the fundamental NLP with a pulse width of 20 ns and repetition rate of 7 MHz were observed. The autocorrelation trace of output pulses had a coherent spike, which came from NLP. The average pulse width of the spike was 550 fs on the top of a broad pedestal. The second-order harmonic NLP had a spectral bandwidth of 1.3 nm and pulse width of 10 ns. With the pump power of 400 mW, the maximum output power was 22.2 mW. To the best of our knowledge, this is the first time a noise-like mode locking in an YDF laser based on WS2-SA in an all normal dispersion regime was obtained.
NASA Astrophysics Data System (ADS)
Wang, Jun-Hua; Wang, Jin; Lu, Yan; Du, Mao-Hua; Han, Fu-Zhu
2015-01-01
The effects of single pulse energy on the properties of ceramic coating fabricated on a Ti-6Al-4V alloy via micro-arc oxidation (MAO) in aqueous solutions containing aluminate, phosphate, and some additives are investigated. The thickness, micro-hardness, surface and cross-sectional morphology, surface roughness, and compositions of the ceramic coating are studied using eddy current thickness meter, micro-hardness tester, JB-4C Precision Surface roughness meter, scanning electron microscopy (SEM) and X-ray diffraction (XRD). Single pulse energy remarkably influences the ceramic coating properties. The accumulative time of impulse width is an important parameter in the scientific and rational measurement of the film forming law of ceramic coating. The ceramic coating thickness approximately linearly increases with the cumulative time of impulse width. Larger impulse width resulted in higher single pulse energy, film forming rates and thicker ceramic coating thickness. The sizes of oxide particles, micro-pores and micro-cracks slightly increase with impulse width and single pulse energy. The main surface conversion products generated during MAO process in aqueous solutions containing aluminate are rutile TiO2, anatase TiO2, and a large amount of Al2TiO5. The effects of single pulse energy on the micro-hardness and phase composition of ceramic coating are not as evident as those of frequency and duty cycle.
Anomalous broadening and shift of emission lines in a femtosecond laser plasma filament in air
NASA Astrophysics Data System (ADS)
Ilyin, A. A.; Golik, S. S.; Shmirko, K. A.; Mayor, A. Yu.; Proschenko, D. Yu.
2017-12-01
The temporal evolution of the width and shift of N I 746.8 and O I 777.4 nm lines is investigated in a filament plasma produced by a tightly focused femtosecond laser pulse (0.9 mJ, 48 fs). The nitrogen line shift and width are determined by the joint action of electron impact shift and the far-off resonance AC Stark effect. The intensive (I = 1.2·1010 W/cm2) electric field of ASE (amplified spontaneous emission) and post-pulses result in a possible LS coupling break for the O I 3p 5P level and the generation of Rabi sidebands. The blueshifted main femtosecond pulse and Rabi sideband cause the stimulated emission of the N2 1+ system. The maximal widths of emission lines are approximately 6.7 times larger than the calculated Stark widths.
Modeling and Numerical Simulation of Microwave Pulse Propagation in Air Breakdown Environment
NASA Technical Reports Server (NTRS)
Kuo, S. P.; Kim, J.
1991-01-01
Numerical simulation is used to investigate the extent of the electron density at a distant altitude location which can be generated by a high-power ground-transmitted microwave pulse. This is done by varying the power, width, shape, and carrier frequency of the pulse. The results show that once the breakdown threshold field is exceeded in the region below the desired altitude location, electron density starts to build up in that region through cascading breakdown. The generated plasma attenuates the pulse energy (tail erosion) and thus deteriorates the energy transmission to the destined altitude. The electron density saturates at a level limited by the pulse width and the tail erosion process. As the pulse continues to travel upward, though the breakdown threshold field of the background air decreases, the pulse energy (width) is reduced more severely by the tail erosion process. Thus, the electron density grows more quickly at the higher altitude, but saturates at a lower level. Consequently, the maximum electron density produced by a single pulse at 50 km altitude, for instance, is limited to a value below 10(exp 6) cm(exp -3). Three different approaches are examined to determine if the ionization at the destined location can be improved: a repetitive pulse approach, a focused pulse approach, and two intersecting beams. Only the intersecting beam approach is found to be practical for generating the desired density level.
Pulse width modulation inverter with battery charger
Slicker, James M.
1985-01-01
An inverter is connected between a source of DC power and a three-phase AC induction motor, and a microprocessor-based circuit controls the inverter using pulse width modulation techniques. In the disclosed method of pulse width modulation, both edges of each pulse of a carrier pulse train are equally modulated by a time proportional to sin .theta., where .theta. is the angular displacement of the pulse center at the motor stator frequency from a fixed reference point on the carrier waveform. The carrier waveform frequency is a multiple of the motor stator frequency. The modulated pulse train is then applied to each of the motor phase inputs with respective phase shifts of 120.degree. at the stator frequency. Switching control commands for electronic switches in the inverter are stored in a random access memory (RAM) and the locations of the RAM are successively read out in a cyclic manner, each bit of a given RAM location controlling a respective phase input of the motor. The DC power source preferably comprises rechargeable batteries and all but one of the electronic switches in the inverter can be disabled, the remaining electronic switch being part of a "flyback" DC-DC converter circuit for recharging the battery.
Pulse width modulation inverter with battery charger
NASA Technical Reports Server (NTRS)
Slicker, James M. (Inventor)
1985-01-01
An inverter is connected between a source of DC power and a three-phase AC induction motor, and a microprocessor-based circuit controls the inverter using pulse width modulation techniques. In the disclosed method of pulse width modulation, both edges of each pulse of a carrier pulse train are equally modulated by a time proportional to sin .theta., where .theta. is the angular displacement of the pulse center at the motor stator frequency from a fixed reference point on the carrier waveform. The carrier waveform frequency is a multiple of the motor stator frequency. The modulated pulse train is then applied to each of the motor phase inputs with respective phase shifts of 120.degree. at the stator frequency. Switching control commands for electronic switches in the inverter are stored in a random access memory (RAM) and the locations of the RAM are successively read out in a cyclic manner, each bit of a given RAM location controlling a respective phase input of the motor. The DC power source preferably comprises rechargeable batteries and all but one of the electronic switches in the inverter can be disabled, the remaining electronic switch being part of a flyback DC-DC converter circuit for recharging the battery.
Matsuta, Naohiro; Hiryu, Shizuko; Fujioka, Emyo; Yamada, Yasufumi; Riquimaroux, Hiroshi; Watanabe, Yoshiaki
2013-04-01
The echolocation sounds of Japanese CF-FM bats (Rhinolophus ferrumequinum nippon) were measured while the bats pursued a moth (Goniocraspidum pryeri) in a flight chamber. Using a 31-channel microphone array system, we investigated how CF-FM bats adjust pulse direction and beam width according to prey position. During the search and approach phases, the horizontal and vertical beam widths were ±22±5 and ±13±5 deg, respectively. When bats entered the terminal phase approximately 1 m from a moth, distinctive evasive flight by G. pryeri was sometimes observed. Simultaneously, the bats broadened the beam widths of some emissions in both the horizontal (44% of emitted echolocation pulses) and vertical planes (71%). The expanded beam widths were ±36±7 deg (horizontal) and ±30±9 deg (vertical). When moths began evasive flight, the tracking accuracy decreased compared with that during the approach phase. However, in 97% of emissions during the terminal phase, the beam width was wider than the misalignment (the angular difference between the pulse and target directions). These findings indicate that bats actively adjust their beam width to retain the moving target within a spatial echolocation window during the final capture stages.
A simple sub-nanosecond ultraviolet light pulse generator with high repetition rate and peak power.
Binh, P H; Trong, V D; Renucci, P; Marie, X
2013-08-01
We present a simple ultraviolet sub-nanosecond pulse generator using commercial ultraviolet light-emitting diodes with peak emission wavelengths of 290 nm, 318 nm, 338 nm, and 405 nm. The generator is based on step recovery diode, short-circuited transmission line, and current-shaping circuit. The narrowest pulses achieved have 630 ps full width at half maximum at repetition rate of 80 MHz. Optical pulse power in the range of several hundreds of microwatts depends on the applied bias voltage. The bias voltage dependences of the output optical pulse width and peak power are analysed and discussed. Compared to commercial UV sub-nanosecond generators, the proposed generator can produce much higher pulse repetition rate and peak power.
NASA Astrophysics Data System (ADS)
Zhou, Yu-Xuan; Wang, Hai-Peng; Bao, Xue-Liang; Lü, Xiao-Ying; Wang, Zhi-Gong
2016-02-01
Objective. Surface electromyography (sEMG) is often used as a control signal in neuromuscular electrical stimulation (NMES) systems to enhance the voluntary control and proprioceptive sensory feedback of paralyzed patients. Most sEMG-controlled NMES systems use the envelope of the sEMG signal to modulate the stimulation intensity (current amplitude or pulse width) with a constant frequency. The aims of this study were to develop a strategy that co-modulates frequency and pulse width based on features of the sEMG signal and to investigate the torque-reproduction performance and the level of fatigue resistance achieved with our strategy. Approach. We examined the relationships between wrist torque and two stimulation parameters (frequency and pulse width) and between wrist torque and two sEMG time-domain features (mean absolute value (MAV) and number of slope sign changes (NSS)) in eight healthy volunteers. By using wrist torque as an intermediate variable, customized and generalized transfer functions were constructed to convert the two features of the sEMG signal into the two stimulation parameters, thereby establishing a MAV/NSS dual-coding (MNDC) algorithm. Wrist torque reproduction performance was assessed by comparing the torque generated by the algorithms with that originally recorded during voluntary contractions. Muscle fatigue was assessed by measuring the decline percentage of the peak torque and by comparing the torque time integral of the response to test stimulation trains before and after fatigue sessions. Main Results. The MNDC approach could produce a wrist torque that closely matched the voluntary wrist torque. In addition, a smaller decay in the wrist torque was observed after the MNDC-coded fatigue stimulation was applied than after stimulation using pulse-width modulation alone. Significance. Compared with pulse-width modulation stimulation strategies that are based on sEMG detection, the MNDC strategy is more effective for both voluntary muscle force reproduction and muscle fatigue reduction.
Effects of pulse width and coding on radar returns from clear air
NASA Technical Reports Server (NTRS)
Cornish, C. R.
1983-01-01
In atmospheric radar studies it is desired to obtain maximum information about the atmosphere and to use efficiently the radar transmitter and processing hardware. Large pulse widths are used to increase the signal to noise ratio since clear air returns are generally weak and maximum height coverage is desired. Yet since good height resolution is equally important, pulse compression techniques such as phase coding are employed to optimize the average power of the transmitter. Considerations in implementing a coding scheme and subsequent effects of an impinging pulse on the atmosphere are investigated.
Injection locked oscillator system for pulsed metal vapor lasers
Warner, Bruce E.; Ault, Earl R.
1988-01-01
An injection locked oscillator system for pulsed metal vapor lasers is disclosed. The invention includes the combination of a seeding oscillator with an injection locked oscillator (ILO) for improving the quality, particularly the intensity, of an output laser beam pulse. The present invention includes means for matching the first seeder laser pulses from the seeding oscillator to second laser pulses of a metal vapor laser to improve the quality, and particularly the intensity, of the output laser beam pulse.
Bell, John Roger; Penniston, Kristina L; Nakada, Stephen Y
2017-09-01
To compare the performance of variable- and fixed-pulse lasers on stone phantoms in vitro. Seven-millimeter stone phantoms were made to simulate calcium oxalate monohydrate stones using BegoStone plus. The in vitro setting was created with a clear polyvinyl chloride tube. For each trial, a stone phantom was placed at the open end of the tubing. The Cook Rhapsody H-30 variable-pulse laser was tested on both long- and short-pulse settings and was compared to the Dornier H-20 fixed-pulse laser; 5 trials were conducted for each trial arm. Fragmentation was accomplished with the use of a flexible ureteroscope and a 273-micron holmium laser fiber using settings of 1 J × 12 Hz. The treatment time (in minute) for complete fragmentation was recorded as was the total retropulsion distance (in centimeter) during treatment. Laser fibers were standardized for all repetitions. The treatment time was significantly shorter with the H-30 vs the H-20 laser (14.3 ± 2.5 vs 33.1 ± 8.9 minutes, P = .008). There was no difference between the treatment times using the long vs short pulse widths of the H-30 laser (14.4 ± 3.4 vs 14.3 ± 1.7 minutes, P = .93). Retropulsion differed by laser type and pulse width, H-30 long pulse (15.8 ± 5.7 cm), H-30 short pulse (54.8 ± 7.1 cm), and H-20 (33.2 ± 12.5 cm) (P <.05). The H-30 laser fragmented stone phantoms in half the time of the H-20 laser regardless of the pulse width. Retropulsion effects differed between the lasers, with the H-30 causing the least retropulsion. Longer pulse widths result in less stone retropulsion. Copyright © 2017 Elsevier Inc. All rights reserved.
Gapeev, A B; Mikhaĭlik, E N; Rubanik, A V; Cheremis, N K
2007-01-01
A pronounced anti-inflammatory effect of high peak-power pulsed electromagnetic radiation of extremely high frequency was shown for the first time in a model of zymosan-induced footpad edema in mice. Exposure to radiation of specific parameters (35, 27 GHz, peak power 20 kW, pulse widths 400-600 ns, pulse repetition frequency 5-500 Hz) decreased the exudative edema and local hyperthermia by 20% compared to the control. The kinetics and the magnitude of the anti-inflammatory effect were comparable with those induced by sodium diclofenac at a dose of 3 mg/kg. It was found that the anti-inflammatory effect linearly increased with increasing pulse width at a fixed pulse repetition frequency and had threshold dependence on the average incident power density of the radiation at a fixed pulse width. When animals were whole-body exposed in the far-field zone of radiator, the optimal exposure duration was 20 min. Increasing the average incident power density upon local exposure of the inflamed paw accelerated both the development of the anti-inflammatory effect and the reactivation time. The results obtained will undoubtedly be of great importance in the hygienic standardization of pulsed electromagnetic radiation and in further studies of the mechanisms of its biological action.
Effect of electric barrier on passage and physical condition of juvenile and adult rainbow trout
Layhee, Megan J.; Sepulveda, Adam; Shaw, Amy; Smuckall, Matthew; Kapperman, Kevin; Reyes, Alejandro
2016-01-01
Electric barriers can inhibit passage and injure fish. Few data exist on electric barrier parameters that minimize these impacts and on how body size affects susceptibility, especially to nontarget fish species. The goal of this study was to determine electric barrier voltage and pulse-width settings that inhibit passage of larger bodied rainbow trout Oncorhynchus mykiss (215–410 mm fork length) while allowing passage of smaller bodied juvenile rainbow trout (52–126 mm) in a static laboratory setting. We exposed rainbow trout to 30-Hz pulsed-direct current voltage gradients (0.00–0.45 V cm−1) and pulse widths (0.0–0.7 ms) and recorded their movement, injury incidence, and mortality. No settings tested allowed all juveniles to pass while impeding all adult passage. Juvenile and adult rainbow trout avoided the barrier at higher pulse widths, and fewer rainbow trout passed the barrier at 0.7-ms pulse width compared to 0.1 ms and when the barrier was turned off. We found no effect of voltage gradient on fish passage. No mortality occurred, and we observed external bruising in 5 (7%) juvenile rainbow trout and 15 (21%) adult rainbow trout. This study may aid managers in selecting barrier settings that allow for increased juvenile passage.
PCF based high power narrow line width pulsed fiber laser
NASA Astrophysics Data System (ADS)
Chen, H.; Yan, P.; Xiao, Q.; Wang, Y.; Gong, M.
2012-09-01
Based on semiconductor diode seeded multi-stage cascaded fiber amplifiers, we have obtained 88-W average power of a 1063-nm laser with high repetition rate of up to 1.5 MHz and a constant 2-ns pulse duration. No stimulated Brillouin scattering pulse or optical damage occurred although the maximum pulse peak power has exceeded 112 kW. The output laser exhibits excellent beam quality (M2x = 1.24 and M2y = 1.18), associated with a spectral line width as narrow as 0.065 nm (FWHM). Additionally, we demonstrate high polarization extinction ratio of 18.4 dB and good pulse stabilities superior to 1.6 % (RMS).
Real-time method and apparatus for measuring the temperature of a fluorescing phosphor
Britton, Jr., Charles L.; Beshears, David L.; Simpson, Marc L.; Cates, Michael R.; Allison, Steve W.
1999-01-01
A method for determining the temperature of a fluorescing phosphor is provided, together with an apparatus for performing the method. The apparatus includes a photodetector for detecting light emitted by a phosphor irradiated with an excitation pulse and for converting the detected light into an electrical signal. The apparatus further includes a differentiator for differentiating the electrical signal and a zero-crossing discrimination circuit that outputs a pulse signal having a pulse width corresponding to the time period between the start of the excitation pulse and the time when the differentiated electrical signal reaches zero. The width of the output pulse signal is proportional to the decay-time constant of the phosphor.
Konrad, C.E.; Boothe, R.W.
1994-02-15
A scheme for optimizing the efficiency of an AC motor drive operated in a pulse-width-modulated mode provides that the modulation frequency of the power furnished to the motor is a function of commanded motor torque and is higher at lower torque requirements than at higher torque requirements. 6 figures.
Konrad, C.E.; Boothe, R.W.
1996-01-23
A scheme for optimizing the efficiency of an AC motor drive operated in a pulse-width-modulated mode provides that the modulation frequency of the power furnished to the motor is a function of commanded motor torque and is higher at lower torque requirements than at higher torque requirements. 6 figs.
Konrad, Charles E.; Boothe, Richard W.
1996-01-01
A scheme for optimizing the efficiency of an AC motor drive operated in a pulse-width-modulated mode provides that the modulation frequency of the power furnished to the motor is a function of commanded motor torque and is higher at lower torque requirements than at higher torque requirements.
Konrad, Charles E.; Boothe, Richard W.
1994-01-01
A scheme for optimizing the efficiency of an AC motor drive operated in a pulse-width-modulated mode provides that the modulation frequency of the power furnished to the motor is a function of commanded motor torque and is higher at lower torque requirements than at higher torque requirements.
NASA Astrophysics Data System (ADS)
Ueno, Yoshifumi; Ariga, Tatsuya; Soumagne, George; Higashiguchi, Takeshi; Kubodera, Shoichi; Pogorelsky, Igor; Pavlishin, Igor; Stolyarov, Daniil; Babzien, Marcus; Kusche, Karl; Yakimenko, Vitaly
2007-05-01
We demonstrated efficacy of a CO2-laser-produced xenon plasma in the extreme ultraviolet (EUV) spectral region at 13.5nm at variable laser pulse widths between 200ps and 25ns. The plasma target was a 30μm liquid xenon microjet. To ensure the optimum coupling of CO2 laser energy with the plasma, they applied a prepulse yttrium aluminum garnet laser. The authors measured the conversion efficiency (CE) of the 13.5nm EUV emission for different pulse widths of the CO2 laser. A maximum CE of 0.6% was obtained for a CO2 laser pulse width of 25ns at an intensity of 5×1010W/cm2.
Zhang, Shuo
2015-09-01
The spectral, electrical and atomic fluorescence characteristics of As, Se, Sb and Pb hollow cathode lamps (HCLs) powered by a laboratory-built high current microsecond pulse (HCMP) power supply were studied, and the feasibility of using HCMP-HCLs as the excitation source of hydride generation atomic fluorescence spectrometry (HG-AFS) was evaluated. Under the HCMP power supply mode, the As, Se, Sb, Pb HCLs can maintain stable glow discharge at frequency of 100~1000 Hz, pulse width of 4.0~20 μs and pulse current up to 4.0 A. Relationship between the intensity of characteristic emission lines and HCMP power supply parameters, such as pulse current, power supply voltage, pulse width and frequency, was studied in detail. Compared with the conventional pulsed (CP) HCLs used in commercial AFS instruments, HCMP-HCLs have a narrower pulse width and much stronger pulse current. Under the optimized HCMP power supply parameters, the intensity of atomic emission lines of As, Se, Sb HCLs had sharp enhancement and that indicated their capacity of being a novel HG-AFS excitation source. However, the attenuation of atomic lines and enhancement of ionic lines negated such feasibility of HCMP-Pb HCL. Then the HG-AFS analytical capability of using the HCMP-As/Se/Sb HCLs excitation source was established and results showed that the HCMP-HCL is a promising excitation source for HG-AFS.
Navarro, Ricardo Scarparo; Gouw-Soares, Sheila; Cassoni, Alessandra; Haypek, Patricia; Zezell, Denise Maria; de Paula Eduardo, Carlos
2010-11-01
The objective of this study was to evaluate the influence of various pulse widths with different energy parameters of erbium:yttrium-aluminum-garnet (Er:YAG) laser (2.94 mum) on the morphology and microleakage of cavities restored with composite resin. Identically sized class V cavities were prepared on the buccal surfaces of 54 bovine teeth by high-speed drill (n = 6, control, group 1) and prepared by Er:YAG laser (Fidelis 320A, Fotona, Slovenia) with irradiation parameters of 350 mJ/ 4 Hz or 400 mJ/2 Hz and pulse width: group 2, very short pulse (VSP); group 3, short pulse (SP); group 4, long pulse (LP); group 5, very long pulse (VLP). All cavities were filled with composite resin (Z-250-3 M), stored at 37 degrees C in distilled water, polished after 24 h, and thermally stressed (700 cycles/5-55 degrees C). The teeth were impermeabilized, immersed in 50% silver nitrate solution for 8 h, sectioned longitudinally, and exposed to Photoflood light for 10 min to reveal the stain. The leakage was evaluated under stereomicroscope by three different examiners, in a double-blind fashion, and scored (0-3). The results were analyzed by Kruskal-Wallis test (P > 0.05) and showed that there was no significant differences between the groups tested. Under scanning electron microscopy (SEM) the morphology of the cavities prepared by laser showed irregular enamel margins and dentin internal walls, and a more conservative pattern than that of conventional cavities. The different power settings and pulse widths of Er:YAG laser in cavity preparation had no influence on microleakage of composite resin restorations.
Wu, Q; Ma, H Y; Yang, Y; Sun, L T; Zhang, X Z; Zhang, Z M; Zhao, H Y; He, Y; Zhao, H W
2016-02-01
Two compact intense 2.45 GHz permanent magnet proton sources and their corresponding low energy beam transport (LEBT) system were developed successfully for China accelerator driven sub-critical system in 2014. Both the proton sources operate at 35 kV potential. The beams extracted from the ion source are transported by the LEBT, which is composed of two identical solenoids, to the 2.1 MeV Radio-Frequency Quadrupole (RFQ). In order to ensure the safety of the superconducting cavities during commissioning, an electrostatic-chopper has been designed and installed in the LEBT line that can chop the continuous wave beam into a pulsed one. The minimum width of the pulse is less than 10 μs and the fall/rise time of the chopper is about 20 ns. The performance of the proton source and the LEBT, such as beam current, beam profile, emittance and the impact to RFQ injection will be presented.
NASA Astrophysics Data System (ADS)
Wu, Q.; Ma, H. Y.; Yang, Y.; Sun, L. T.; Zhang, X. Z.; Zhang, Z. M.; Zhao, H. Y.; He, Y.; Zhao, H. W.
2016-02-01
Two compact intense 2.45 GHz permanent magnet proton sources and their corresponding low energy beam transport (LEBT) system were developed successfully for China accelerator driven sub-critical system in 2014. Both the proton sources operate at 35 kV potential. The beams extracted from the ion source are transported by the LEBT, which is composed of two identical solenoids, to the 2.1 MeV Radio-Frequency Quadrupole (RFQ). In order to ensure the safety of the superconducting cavities during commissioning, an electrostatic-chopper has been designed and installed in the LEBT line that can chop the continuous wave beam into a pulsed one. The minimum width of the pulse is less than 10 μs and the fall/rise time of the chopper is about 20 ns. The performance of the proton source and the LEBT, such as beam current, beam profile, emittance and the impact to RFQ injection will be presented.
Zhang, Jingdong; Zhu, Tao; Zhou, Huan; Huang, Shihong; Liu, Min; Huang, Wei
2016-11-28
We demonstrate a cost-effective distributed fiber sensing system for the multi-parameter detection of the vibration, the temperature, and the strain by integrating phase-sensitive optical time domain reflectometry (φ-OTDR) and Brillouin optical time domain reflectometry (B-OTDR). Taking advantage of the fast changing property of the vibration and the static properties of the temperature and the strain, both the width and intensity of the laser pulses are modulated and injected into the single-mode sensing fiber proportionally, so that three concerned parameters can be extracted simultaneously by only one photo-detector and one data acquisition channel. A data processing method based on Gaussian window short time Fourier transform (G-STFT) is capable of achieving high spatial resolution in B-OTDR. The experimental results show that up to 4.8kHz vibration sensing with 3m spatial resolution at 10km standard single-mode fiber can be realized, as well as the distributed temperature and stress profiles along the same fiber with 80cm spatial resolution.
NASA Astrophysics Data System (ADS)
Türkyilmaz, Erdal; Lohbreier, Jan; Günther, Christian; Mehner, Eva; Kopf, Daniel; Giessen, Harald; Braun, Bernd
2016-06-01
Commercial picosecond sources have found widespread applications. Typical system parameters are pulse widths below 20 ps, repetition rates between 0.1 and 2 MHz, and microjoule level pulse energies. Most systems are based on short pulse mode-locked oscillators, regenerative amplifiers, and pockel cells as active beam switches. In contrast, we present a completely passive system, consisting of a passively Q-switched microchip laser, a single-stage amplifier, and a pulse compressor. The Q-switched microchip laser has a 50-μm-long Nd:YVO4 gain material optically bonded to a 4.6-mm-thick undoped YVO4 crystal. It delivers pulse widths of 40 ps and repetition rates of 0.2 to 1.4 MHz at a wavelength of 1.064 μm. The pulse energy is a few nanojoule. These 40-ps pulses are spectrally broadened in a standard single-mode fiber and then compressed in a 24-mm-long chirped Bragg grating to as low as 3.3 ps. The repetition rate can be tuned from ˜0.2 to 1.4 MHz by changing the pump power, while the pulse width and the pulse energy from the microchip laser are unchanged. The spectral broadening in the fiber is observed throughout the pulse repetition rate, supporting sub-10-ps pulses. Finally, the pulses are amplified in a single-stage Nd:YVO4 amplifier up to the microjoule level (up to 4 μJ pulse energy). As a result, the system delivers sub-10-ps pulses at a microjoule level with about 1 MHz repetition rate, and thus fulfills the requirements for ps-micromachining. It does not contain any active switching elements and can be integrated in a very compact setup.
NASA Astrophysics Data System (ADS)
Türkyilmaz, Erdal; Lohbreier, Jan; Günther, Christian; Mehner, Eva; Kopf, Daniel; Giessen, Harald; Braun, Bernd
2016-03-01
Commercial picosecond sources have found widespread applications. Typical system parameters are pulse widths below 20 ps, repetition rates between 0.1 to 2 MHz, and micro Joule level pulse energies. Most systems are based on short pulse modelocked oscillators, regenerative amplifiers, and pockel cells as active beam switches. In contrast we present a completely passive system, consisting of a passively Q-switched microchip laser, a single-stage amplifier, and a pulse compressor. The Q-switched microchip laser has a 50 μm long Nd:YVO4-gain material optically bonded to a 4.6 mm thick undoped YVO4-crystal. It delivers pulse widths of 40 ps and repetition rates of 0.2 - 1.4 MHz at a wavelength of 1.064 μm. The pulse energy is a few nJ. These 40-ps pulses are spectrally broadened in a standard single mode fibre and then compressed in a 24 mm long chirped Bragg grating to as low as 3.3 ps. The repetition rate can be tuned from app. 0.2 to 1.4 MHz by changing the pump power while the pulse width and the pulse energy from the microchip laser are unchanged. The spectral broadening in the fibre is observed throughout the pulse repetition rate, supporting sub-10- ps pulses. Finally, the pulses are amplified in a single-stage Nd:YVO4-amplifier up to the microjoule level (up to 4 μJ pulse energy). As a result the system delivers sub-10-ps pulses at a microjoule level with about 1 MHz repetition rate, and thus fulfills the requirements for ps-micromachining. It does not contain any active switching elements and can be integrated in a very compact setup.
The study of laser pulse width on efficiency of Ho:YAG laser lithotripsy
NASA Astrophysics Data System (ADS)
Zhang, Jian J.; Rutherford, Jonathan; Solomon, Metasebya; Cheng, Brian; Xuan, Jason R.; Gong, Jason; Yu, Honggang; Xia, Michael; Yang, Xirong; Hasenberg, Thomas; Curran, Sean
2017-02-01
When treating ureteral calculi, retropulsion can be reduced by using a longer pulse width without compromising fragmentation efficiency (from the studies by David S. Finley et al. and Hyun Wook Kang et al.). In this study, a lab build Ho:YAG laser was used as the laser pulse source, with pulse energy from 0.2J up to 3.0 J, and electrical pump pulse width from 150 us up to 1000 us. The fiber used in the investigation is a 365 μm core diameter fiber, SureFlexTM, Model S-LLF365. Plaster of Paris calculus phantoms were ablated at different energy levels (0.2, 0.5, 1, 2, 3J) and with different number of pulses (1, 3, 10) using different electrical pump pulse width (333, 667, 1000 μs). The dynamics of the recoil action of a calculus phantom was monitored using a high-speed camera with frame rate up to 1 million frame per second (Photron Fastcam SA5); and the laser-induced craters were evaluated with a 3-D digital microscope (Keyence VHX-900F). A design of experiment software (DesignExpert-10, Minneapolis, MN, USA) is used in this study for the best fit of surface response on volume of dusting and retropulsion amplitude. The numerical formulas for the response surfaces of dusting speed and retropulsion amplitude are generated. More detailed investigation on the optimal conditions for dusting of other kinds of stone samples and the fiber size effect will be conducted as a future study.
Bochkezanian, Vanesa; Newton, Robert U; Trajano, Gabriel S; Vieira, Amilton; Pulverenti, Timothy S; Blazevich, Anthony J
2017-05-02
Neuromuscular electrical stimulation (NMES) is commonly used to activate skeletal muscles and reverse muscle atrophy in clinical populations. Clinical recommendations for NMES suggest the use of short pulse widths (100-200 μs) and low-to-moderate pulse frequencies (30-50 Hz). However, this type of NMES causes rapid muscle fatigue due to the (non-physiological) high stimulation intensities and non-orderly recruitment of motor units. The use of both wide pulse widths (1000 μs) and tendon vibration might optimize motor unit activation through spinal reflex pathways and thus delay the onset of muscle fatigue, increasing muscle force and mass. Thus, the objective of this study was to examine the acute effects of patellar tendon vibration superimposed onto wide-pulse width (1000 μs) knee extensor electrical stimulation (NMES, 30 Hz) on peak muscle force, total impulse before "muscle fatigue", and the post-exercise recovery of muscle function. Tendon vibration (Vib), NMES (STIM) or NMES superimposed onto vibration (STIM + Vib) were applied in separate sessions to 16 healthy adults. Total torque-time integral (TTI), maximal voluntary contraction torque (MVIC) and indirect measures of muscle damage were tested before, immediately after, 1 h and 48 h after each stimulus. TTI increased (145.0 ± 127.7%) in STIM only for "positive responders" to the tendon vibration (8/16 subjects), but decreased in "negative responders" (-43.5 ± 25.7%). MVIC (-8.7%) and rectus femoris electromyography (RF EMG) (-16.7%) decreased after STIM (group effect) for at least 1 h, but not after STIM + Vib. No changes were detected in indirect markers of muscle damage in any condition. Tendon vibration superimposed onto wide-pulse width NMES increased TTI only in 8 of 16 subjects, but reduced voluntary force loss (fatigue) ubiquitously. Negative responders to tendon vibration may derive greater benefit from wide-pulse width NMES alone.
NASA Astrophysics Data System (ADS)
Wang, Jian; Sun, Junqiang; Lou, Chuanhong; Sun, Qizhen
2005-09-01
All-optical wavelength conversion between ps-pulses based on cascaded sum- and difference frequency generation (SFG+DFG) is proposed and experimentally demonstrated in periodically poled LiNbO3 (PPLN) waveguides. The signal pulse with 40-GHz repetition rate and 1.57- ps pulse width is adopted. The converted idler wavelength can be tuned from 1527.4 to 1540.5nm as the signal wavelength is varied from 1561.9 to 1548.4nm. No obvious changes of the pulse shape and width, also no chirp are observed in the converted idler pulse. The results imply that single-to-multiple channel wavelength conversions can be achieved by appropriately tuning the two pump wavelengths.
Wang, Jian; Sun, Junqiang; Lou, Chuanhong; Sun, Qizhen
2005-09-19
All-optical wavelength conversion between ps-pulses based on cascaded sum- and difference frequency generation (SFG+DFG) is proposed and experimentally demonstrated in periodically poled LiNbO3 (PPLN) waveguides. The signal pulse with 40-GHz repetition rate and 1.57- ps pulse width is adopted. The converted idler wavelength can be tuned from 1527.4 to 1540.5nm as the signal wavelength is varied from 1561.9 to 1548.4nm. No obvious changes of the pulse shape and width, also no chirp are observed in the converted idler pulse. The results imply that single-to-multiple channel wavelength conversions can be achieved by appropriately tuning the two pump wavelengths.
NASA Astrophysics Data System (ADS)
Taha, Z.; Rahim, MF Abdul; Mamat, R.
2017-10-01
The injection characteristics of direct injector affect the mixture formation and combustion processes. In addition, the injector is converted from gasoline operation for CNG application. Thus measurement of CNG direct injector mass flow rate was done by independently tested a single injector on a test bench. The first case investigated the effect of CNG injection pressure and the second case evaluate the effect of pulse-width of injection duration. An analytical model was also developed to predict the mass flow rate of the injector. The injector was operated in a choked condition in both the experiments and simulation studies. In case 1, it was shown that mass flow rate through the injector is affected by injection pressure linearly. Based on the tested injection pressure of 20 bar to 60 bar, the resultant mass flow rate are in the range of 0.4 g/s to 1.2 g/s which are met with theoretical flow rate required by the engine. However, in Case 2, it was demonstrated that the average mass flow rate at short injection durations is lower than recorded in Case 1. At injection pressure of 50 bar, the average mass flow rate for Case 2 and Case 1 are 0.7 g/s and 1.1 g/s respectively. Also, the measured mass flow rate at short injection duration showing a fluctuating data in the range of 0.2 g/s - 1.3 g/s without any noticeable trends. The injector model able to predict the trend of the mass flow rate at different injection pressure but unable to track the fluctuating trend at short injection duration.
A novel compact low impedance Marx generator with quasi-rectangular pulse output
NASA Astrophysics Data System (ADS)
Liu, Hongwei; Jiang, Ping; Yuan, Jianqiang; Wang, Lingyun; Ma, Xun; Xie, Weiping
2018-04-01
In this paper, a novel low impedance compact Marx generator with near-square pulse output based on the Fourier theory is developed. Compared with the traditional Marx generator, capacitors with different capacity have been used. It can generate a high-voltage quasi-rectangular pulse with a width of 100 ns at low impedance load, and it also has high energy density and power density. The generator consists of 16 modules. Each module comprises an integrative single-ended plastic case capacitor with a nominal value of 54 nF, four ceramic capacitors with a nominal value of 1.5 nF, a gas switch, a charging inductor, a grounding inductor, and insulators which provide mechanical support for all elements. In the module, different discharge periods from different capacitors add to the main circuit to form a quasi-rectangular pulse. The design process of the generator is analyzed, and the test results are provided here. The generator achieved pulse output with a rise time of 32 ns, pulse width of 120 ns, flat-topped width (95%-95%) of 50 ns, voltage of 550 kV, and power of 20 GW.
Method and apparatus for pulse width modulation control of an AC induction motor
Geppert, Steven; Slicker, James M.
1984-01-01
An inverter is connected between a source of DC power and a three-phase AC induction motor, and a micro-processor-based circuit controls the inverter using pulse width modulation techniques. In the disclosed method of pulse width modulation, both edges of each pulse of a carrier pulse train are equally modulated by a time proportional to sin .THETA., where .THETA. is the angular displacement of the pulse center at the motor stator frequency from a fixed reference point on the carrier waveform. The carrier waveform frequency is a multiple of the motor stator frequency. The modulated pulse train is then applied to each of the motor phase inputs with respective phase shifts of 120.degree. at the stator frequency. Switching control commands of electronic switches in the inverter are stored in a random access memory (RAM) and the locations of the RAM are successively read out in a cyclic manner, each bit of a given RAM location controlling a respective phase input of the motor. The DC power source preferably comprises rechargeable batteries and all but one of the electronic switches in the inverter can be disabled, the remaining electronic switch being part of a "flyback" DC-DC converter circuit for recharging the battery.
Method and apparatus for pulse width modulation control of an AC induction motor
NASA Technical Reports Server (NTRS)
Geppert, Steven (Inventor); Slicker, James M. (Inventor)
1984-01-01
An inverter is connected between a source of DC power and a three-phase AC induction motor, and a micro-processor-based circuit controls the inverter using pulse width modulation techniques. In the disclosed method of pulse width modulation, both edges of each pulse of a carrier pulse train are equally modulated by a time proportional to sin .THETA., where .THETA. is the angular displacement of the pulse center at the motor stator frequency from a fixed reference point on the carrier waveform. The carrier waveform frequency is a multiple of the motor stator frequency. The modulated pulse train is then applied to each of the motor phase inputs with respective phase shifts of 120.degree. at the stator frequency. Switching control commands of electronic switches in the inverter are stored in a random access memory (RAM) and the locations of the RAM are successively read out in a cyclic manner, each bit of a given RAM location controlling a respective phase input of the motor. The DC power source preferably comprises rechargeable batteries and all but one of the electronic switches in the inverter can be disabled, the remaining electronic switch being part of a flyback DC-DC converter circuit for recharging the battery.
Reliability of High-Power Pulsed IMPATT Diodes.
1981-11-01
FOLLOWING 168 HOUR STORAGE AT 3100 C D- 20816 5-14 FIGURE 5.11 READ DOUBLE DRIFT DEVICE FROM WAFER 21693-1 WITH GOLD GERMANIUM SOLDER FOLLOWING...vs. DUTY CYCLE FOR VARIOUS WIDTHS FOR SINGLE DRIFT SCHOTTKY LHL X-BAND GaAs DEVICES D- 20816 6-2 10 _PULSE WIDTH z,- 4 CL 0.11I 0.1 1.0 10 100 DUTY
Chen, Xiao-E; Liu, Juan; Bin Jameel, Afzaal Ahmed; Valeska, Maya; Zhang, Jia-An; Xu, Yang; Liu, Xing-Wu; Zhou, Hong; Luo, Dan; Zhou, Bing-Rong
2017-06-01
Keloids are benign tumors that originate from scar tissues, but they usually overgrow beyond the original wounds. In a three-month single-center clinical trial, 69 patients were randomly divided into three groups. Patients in group 1 were treated with intralesional injection of diprospan (2 mg betamethasone disodium phosphate and 5 mg betamethasone dipropionate in 1 ml) with one-month intervals for three months. Patients in groups 2 and 3 were injected with a combination of 0.5 ml 5-fluorouracil (5-FU; 25 mg/ml) and diprospan as above for three months also. Prior to each injection, the keloids of patients in group 3 were additionally irradiated by a 1,064-nm neodymium-yttrium-aluminum-garnet (Nd:YAG) laser with a single pulse at an energy density of 90-100 J/cm 2 and a pulse width of 12 msec. Clinical responses were evaluated by patient self-assessment and overall assessment by an observer according to the clinical signs of erythema, pruritus and pliability. A total of sixty-two patients completed the tests of the present study. At 2 and 3 months, the patients in all treatment groups showed an acceptable improvement in nearly all measurements. At the end of the study, the erythema and toughness score was significantly reduced and itch reduction was significantly greater in the diprospan + 5-FU + Nd:YAG group when compared to those in the other groups (P<0.05 for all indexes). The acceptable responses (good to excellent improvements) reported by blinded observers were as follows: 12% in the diprospan group, 48% in the diprospan + 5-FU group and 69% in the diprospan + 5-FU + Nd:YAG group. All of the results indicated that the combination of diprospan + 5-FU + Nd:YAG was the most efficacious therapy for keloid scars.
Chen, Xiao-E; Liu, Juan; Bin Jameel, Afzaal Ahmed; Valeska, Maya; Zhang, Jia-An; Xu, Yang; Liu, Xing-Wu; Zhou, Hong; Luo, Dan; Zhou, Bing-Rong
2017-01-01
Keloids are benign tumors that originate from scar tissues, but they usually overgrow beyond the original wounds. In a three-month single-center clinical trial, 69 patients were randomly divided into three groups. Patients in group 1 were treated with intralesional injection of diprospan (2 mg betamethasone disodium phosphate and 5 mg betamethasone dipropionate in 1 ml) with one-month intervals for three months. Patients in groups 2 and 3 were injected with a combination of 0.5 ml 5-fluorouracil (5-FU; 25 mg/ml) and diprospan as above for three months also. Prior to each injection, the keloids of patients in group 3 were additionally irradiated by a 1,064-nm neodymium-yttrium-aluminum-garnet (Nd:YAG) laser with a single pulse at an energy density of 90–100 J/cm2 and a pulse width of 12 msec. Clinical responses were evaluated by patient self-assessment and overall assessment by an observer according to the clinical signs of erythema, pruritus and pliability. A total of sixty-two patients completed the tests of the present study. At 2 and 3 months, the patients in all treatment groups showed an acceptable improvement in nearly all measurements. At the end of the study, the erythema and toughness score was significantly reduced and itch reduction was significantly greater in the diprospan + 5-FU + Nd:YAG group when compared to those in the other groups (P<0.05 for all indexes). The acceptable responses (good to excellent improvements) reported by blinded observers were as follows: 12% in the diprospan group, 48% in the diprospan + 5-FU group and 69% in the diprospan + 5-FU + Nd:YAG group. All of the results indicated that the combination of diprospan + 5-FU + Nd:YAG was the most efficacious therapy for keloid scars. PMID:28588688
NASA Astrophysics Data System (ADS)
Otanocha, Omonigho B.; Li, Lin; Zhong, Shan; Liu, Zhu
2016-03-01
H13 tool steels are often used as dies and moulds for injection moulding of plastic components. Certain injection moulded components require micro-patterns on their surfaces in order to modify the physical properties of the components or for better mould release to reduce mould contamination. With these applications it is necessary to study micro-patterning to moulds and to ensure effective pattern transfer and replication onto the plastic component during moulding. In this paper, we report an investigation into high average powered (100 W) picosecond laser interactions with H13 tool steel during surface micro-patterning (texturing) and the subsequent pattern replication on ABS plastic material through injection moulding. Design of experiments and statistical modelling were used to understand the influences of laser pulse repetition rate, laser fluence, scanning velocity, and number of scans on the depth of cut, kerf width and heat affected zones (HAZ) size. The characteristics of the surface patterns are analysed. The process parameter interactions and significance of process parameters on the processing quality and efficiency are characterised. An optimum operating window is recommended. The transferred geometry is compared with the patterns generated on the dies. A discussion is made to explain the characteristics of laser texturing and pattern replication on plastics.
Study on the amplifier experiment of end-pumped long pulse slab laser
NASA Astrophysics Data System (ADS)
Jin, Quanwei; Chen, Xiaoming; Jiang, JianFeng; Pang, Yu; Tong, Lixin; Li, Mi; Hu, Hao; Lv, Wenqiang; Gao, Qingsong; Tang, Chun
2018-03-01
The amplifier experiment research of end-pumped long pulse slab laser is developed, the results of out-put energy, optical-optical efficiency and pulse waveform are obtained at different experiment conditions, such as peak pumped power, amplifier power and pumped pulse width. The seed laser is CW fundamental transverse-mode operation fiber laser, the laser medium is composited Nd:YAG slab. Under end-pumped and the 2 passes, the laser obtain 7.65J out-put energy and 43.1% optical-optical efficiency with 45kW peak-pumped power and 386μs pump pulse width. The experimental results provide the basic for the optimization design to high frequency, high energy and high beam-quality slab lasers.
Three-Level 48-Pulse STATCOM with Pulse Width Modulation
NASA Astrophysics Data System (ADS)
Singh, Bhim; Srinivas, Kadagala Venkata
2016-03-01
In this paper, a new control strategy of a three-level 48-pulse static synchronous compensator (STATCOM) is proposed with a constant dc link voltage and pulse width modulation at fundamental frequency switching. The proposed STATCOM is realized using eight units of three-level voltage source converters (VSCs) to form a three-level 48-pulse STATCOM. The conduction angle of each three-level VSC is modulated to control the ac converter output voltage, which controls the reactive power of the STATCOM. A fuzzy logic controller is used to control the STATCOM. The dynamic performance of the STATCOM is studied for the control of the reference reactive power, the reference terminal voltage and under the switching of inductive and capacitive loads.
Real-time method and apparatus for measuring the decay-time constant of a fluorescing phosphor
Britton, Jr., Charles L.; Beshears, David L.; Simpson, Marc L.; Cates, Michael R.; Allison, Steve W.
1999-01-01
A method for determining the decay-time constant of a fluorescing phosphor is provided, together with an apparatus for performing the method. The apparatus includes a photodetector for detecting light emitted by a phosphor irradiated with an excitation pulse and for converting the detected light into an electrical signal. The apparatus further includes a differentiator for differentiating the electrical signal and a zero-crossing discrimination circuit that outputs a pulse signal having a pulse width corresponding to the time period between the start of the excitation pulse and the time when the differentiated electrical signal reaches zero. The width of the output pulse signal is proportional to the decay-time constant of the phosphor.
OH Production Enhancement in Bubbling Pulsed Discharges
NASA Astrophysics Data System (ADS)
Lungu, Cristian P.; Porosnicu, Corneliu; Jepu, Ionut; Chiru, Petrica; Zaroschi, Valentin; Lungu, Ana M.; Saito, Nagahiro; Bratescu, Maria; Takai, Osamu; Velea, Theodor; Predica, Vasile
2010-10-01
The generation of active species, such as H2O2, O*, OH*, HO2*, O3, N2*, etc, produced in aqueous solutions by HV pulsed discharges was studied in order to find the most efficient way in waste water treatment taking into account that these species are almost stronger oxidizers than ozone. Plasma was generated inside gas bubbles formed by the argon, air and oxygen gas flow between the special designed electrodes. The pulse width and pulse frequency influence was studied in order to increase the efficiency of the OH active species formation. The produced active species were investigated by optical emission spectroscopy and correlated with electrical parameters of the discharges (frequency, pulse width, amplitude, and rise and decay time).
Jovanovic, Igor; Comaskey, Brian J.
2004-09-14
A first pump pulse and a signal pulse are injected into a first optical parametric amplifier. This produces a first amplified signal pulse. At least one additional pump pulse and the first amplified signal pulse are injected into at least one additional optical parametric amplifier producing an increased power coherent optical pulse.
Madan, Vishal; Ferguson, Janice
2010-01-01
Thick linear telangiectasia on the ala nasi and nasolabial crease can be resistant to treatment with the potassium-titanyl-phosphate (KTP) laser and the traditional round spot on a pulsed dye laser (PDL). We evaluated the efficacy of a 3 mm x 10 mm elliptical spot using the ultra-long pulse width on a Candela Vbeam(R) PDL for treatment of PDL- and KTP laser-resistant nasal telangiectasia. Nasal telangiectasia resistant to PDL (12 patients) and KTP laser (12 patients) in 18 patients were treated with a 3 mm x 10 mm elliptical spot on the ultra-long pulse pulsed dye laser (ULPDL) utilising long pulse width [595 nm, 40 ms, double pulse, 30:20 dynamic cooling device (DCD)]. Six patients had previously received treatment with both PDL and KTP laser prior to ULPDL (40 treatments, range1-4, mean 2.2). Complete clearance was seen in ten patients, and eight patients displayed more than 80% improvement after ULPDL treatment. Self-limiting purpura occurred with round spot PDL and erythema with KTP laser and ULPDL. Subtle linear furrows along the treatment sites were seen in three patients treated with the KTP laser. ULPDL treatment delivered using a 3 mm x 10 mm elliptical spot was non-purpuric and highly effective in the treatment of nasal telangiectasia resistant to KTP laser and PDL.
Passive, active, and hybrid mode-locking in a self-optimized ultrafast diode laser
NASA Astrophysics Data System (ADS)
Alloush, M. Ali; Pilny, Rouven H.; Brenner, Carsten; Klehr, Andreas; Knigge, Andrea; Tränkle, Günther; Hofmann, Martin R.
2018-02-01
Semiconductor lasers are promising sources for generating ultrashort pulses. They are directly electrically pumped, allow for a compact design, and therefore they are cost-effective alternatives to established solid-state systems. Additionally, their emission wavelength depends on the bandgap which can be tuned by changing the semiconductor materials. Theoretically, the obtained pulse width can be few tens of femtoseconds. However, the generated pulses are typically in the range of several hundred femtoseconds only. Recently, it was shown that by implementing a spatial light modulator (SLM) for phase and amplitude control inside the resonator the optical bandwidth can be optimized. Consequently, by using an external pulse compressor shorter pulses can be obtained. We present a Fourier-Transform-External-Cavity setup which utilizes an ultrafast edge-emitting diode laser. The used InGaAsP diode is 1 mm long and emits at a center wavelength of 850 nm. We investigate the best conditions for passive, active and hybrid mode-locking operation using the method of self-adaptive pulse shaping. For passive mode-locking, the bandwidth is increased from 2.34 nm to 7.2 nm and ultrashort pulses with a pulse width of 216 fs are achieved after external pulse compression. For active and hybrid mode-locking, we also increased the bandwidth. It is increased from 0.26 nm to 5.06 nm for active mode-locking and from 3.21 nm to 8.7 nm for hybrid mode-locking. As the pulse width is strongly correlated with the bandwidth of the laser, we expect further reduction in the pulse duration by increasing the bandwidth.
Coherent THz Repetitive Pulse Generation in a GaSe Crystal by Dual-wavelength Nd:YLF Laser
NASA Astrophysics Data System (ADS)
Bezotosnyi, V. V.; Cheshev, E. A.; Gorbunkov, M. V.; Koromyslov, A. L.; Krokhin, O. N.; Mityagin, Yu. A.; Popov, Yu. M.; Savinov, S. A.; Tunkin, V. G.
We present modification of difference frequency generator of coherent THz radiation in a nonlinear GaSe crystal using dual-wavelength diode-pumped solid-state Nd:YLF laser. Generation at the two wavelengths (1.047 and 1.053 μm) was carried out by equalization of the gains at these wavelengths near the frequency degeneracy of the transverse modes in resonator cavity, Q-switched by acousto-optical modulator. The main parameters of the device were measured: angular synchronism (width 0.6 degrees), polarization ratio (1:100), conversion efficiency (10-7), pulse power (0.8 mW), frequency and width (53,8 сm-1, 0,6 сm-1), pulse width and repetition rate (10 ns,7 kHz). The method is promising for practical purposes.
NASA Astrophysics Data System (ADS)
Calvert, Nick; Betcke, Marta M.; Cresswell, John R.; Deacon, Alick N.; Gleeson, Anthony J.; Judson, Daniel S.; Mason, Peter; McIntosh, Peter A.; Morton, Edward J.; Nolan, Paul J.; Ollier, James; Procter, Mark G.; Speller, Robert D.
2015-05-01
Using a short pulse width x-ray source and measuring the time-of-flight of photons that scatter from an object under inspection allows for the point of interaction to be determined, and a profile of the object to be sampled along the path of the beam. A three dimensional image can be formed by interrogating the entire object. Using high energy x rays enables the inspection of cargo containers with steel walls, in the search for concealed items. A longer pulse width x-ray source can also be used with deconvolution techniques to determine the points of interaction. We present time-of-flight results from both short (picosecond) width and long (hundreds of nanoseconds) width x-ray sources, and show that the position of scatter can be localised with a resolution of 2 ns, equivalent to 30 cm, for a 3 cm thick plastic test object.
All-fiber high-power monolithic femtosecond laser at 1.59 µm with 63-fs pulse width
NASA Astrophysics Data System (ADS)
Hekmat, M. J.; Omoomi, M.; Gholami, A.; Yazdabadi, A. Bagheri; Abdollahi, M.; Hamidnejad, E.; Ebrahimi, A.; Normohamadi, H.
2018-01-01
In this research, by adopting an alternative novel approach to ultra-short giant pulse generation which basically originated from difficulties with traditional employed methods, an optimized Er/Yb co-doped double-clad fiber amplifier is applied to boost output average power of single-mode output pulses to a high level of 2-W at 1.59-µm central wavelength. Output pulses of approximately 63-fs pulse width at 52-MHz repetition rate are obtained in an all-fiber monolithic laser configuration. The idea of employing parabolic pulse amplification for stretching output pulses together with high-power pulse amplification using Er/Yb co-doped active fibers for compressing and boosting output average power plays crucial role in obtaining desired results. The proposed configuration enjoys massive advantages over previously reported literature which make it well-suited for high-power precision applications such as medical surgery. Detailed dynamics of pulse stretching and compressing in active fibers with different GVD parameters are numerically and experimentally investigated.
Generation of switchable domain wall and Cubic-Quintic nonlinear Schrödinger equation dark pulse
NASA Astrophysics Data System (ADS)
Tiu, Z. C.; Suthaskumar, M.; Zarei, A.; Tan, S. J.; Ahmad, H.; Harun, S. W.
2015-10-01
A switchable domain-wall (DW) and Cubic-Quintic nonlinear Schrödinger equation (CQNLSE) dark soliton pulse generation are demonstrated in Erbium-doped fiber laser (EDFL) for the first time. The DW pulse train operates at 1575 nm with a fundamental repetition rate of 1.52 MHz and pulse width of 203 ns as the pump power is increased above the threshold pump power of 80 mW. The highest pulse energy of 2.24 nJ is obtained at the maximum pump power of 140 mW. CQNLSE pulse can also be realized from the same cavity by adjusting the polarization state but at a higher threshold pump power of 104 mW. The repetition rate and pulse width of the CQNLSE dark pulses are obtained at 1.52 MHz and 219 ns, respectively. The highest energy of 0.58 nJ is obtained for the CQNLSE pulse at pump power of 140 mW.
Intense Nanosecond-Pulsed Cavity-Dumped Laser Radiation at 1.04 THz
NASA Astrophysics Data System (ADS)
Wilson, Thomas
2013-03-01
We report first results of intense far-infrared (FIR) nanosecond-pulsed laser radiation at 1.04 THz from a previously described[2] cavity-dumped, optically-pumped molecular gas laser. The gain medium, methyl fluoride, is pumped by the 9R20 line of a TEA CO2 laser[3] with a pulse energy of 200 mJ. The THz laser pulses contain of 30 kW peak power in 5 nanosecond pulse widths at a pulse repetition rate of 10 Hz. The line width, measured by a scanning metal-mesh FIR Fabry-Perot interferometer, is 100 MHz. The novel THz laser is being used in experiments to resonantly excite coherent ns-pulsed 1.04 THz longitudinal acoustic phonons in silicon doping-superlattices. The research is supported by NASA EPSCoR NNX11AM04A and AFOSR FA9550-12-1-0100 awards.
Jalinous, Reza; Lisanby, Sarah H.
2013-01-01
A novel transcranial magnetic stimulation (TMS) device with controllable pulse width (PW) and near rectangular pulse shape (cTMS) is described. The cTMS device uses an insulated gate bipolar transistor (IGBT) with appropriate snubbers to switch coil currents up to 7 kA, enabling PW control from 5 μs to over 100 μs. The near-rectangular induced electric field pulses use 22–34% less energy and generate 67–72% less coil heating compared to matched conventional cosine pulses. CTMS is used to stimulate rhesus monkey motor cortex in vivo with PWs of 20 to 100 μs, demonstrating the expected decrease of threshold pulse amplitude with increasing PW. The technological solutions used in the cTMS prototype can expand functionality, and reduce power consumption and coil heating in TMS, enhancing its research and therapeutic applications. PMID:18232369
Analysis of pulsed injection for microgravity receiver tank chilldown
NASA Astrophysics Data System (ADS)
Honkonen, Scott C.; Pietrzyk, Joe R.; Schuster, John R.
The dominant heat transfer mechanism during the hold phase of a tank chilldown cycle in a low-gravity environment is due to fluid motion persistence following the charge. As compared to the single-charge per vent cycle case, pulsed injection maintains fluid motion and the associated high wall heat transfer coefficients during the hold phase. As a result, the pulsed injection procedure appears to be an attractive method for reducing the time and liquid mass required to chill a tank. However, for the representative conditions considered, no significant benefit can be realized by using pulsed injection as compared to the single-charge case. A numerical model of the charge/hold/vent process was used to evaluate the pulsed injection procedure for tank chilldown in microgravity. Pulsed injection results in higher average wall heat transfer coefficients during the hold, as compared to the single-charge case. However, these high levels were not coincident with the maximum wall-to-fluid temperature differences, as in the single-charge case. For representative conditions investigated, the charge/hold/vent process is very efficient. A slightly shorter chilldown time was realized by increasing the number of pulses.
Heterogeneity in Short Gamma-Ray Bursts
NASA Astrophysics Data System (ADS)
Norris, Jay P.; Gehrels, Neil; Scargle, Jeffrey D.
2011-07-01
We analyze the Swift/BAT sample of short gamma-ray bursts, using an objective Bayesian Block procedure to extract temporal descriptors of the bursts' initial pulse complexes (IPCs). The sample is comprised of 12 and 41 bursts with and without extended emission (EE) components, respectively. IPCs of non-EE bursts are dominated by single pulse structures, while EE bursts tend to have two or more pulse structures. The medians of characteristic timescales—durations, pulse structure widths, and peak intervals—for EE bursts are factors of ~2-3 longer than for non-EE bursts. A trend previously reported by Hakkila and colleagues unifying long and short bursts—the anti-correlation of pulse intensity and width—continues in the two short burst groups, with non-EE bursts extending to more intense, narrower pulses. In addition, we find that preceding and succeeding pulse intensities are anti-correlated with pulse interval. We also examine the short burst X-ray afterglows as observed by the Swift/X-Ray Telescope (XRT). The median flux of the initial XRT detections for EE bursts (~6×10-10 erg cm-2 s-1) is gsim20× brighter than for non-EE bursts, and the median X-ray afterglow duration for EE bursts (~60,000 s) is ~30× longer than for non-EE bursts. The tendency for EE bursts toward longer prompt-emission timescales and higher initial X-ray afterglow fluxes implies larger energy injections powering the afterglows. The longer-lasting X-ray afterglows of EE bursts may suggest that a significant fraction explode into denser environments than non-EE bursts, or that the sometimes-dominant EE component efficiently powers the afterglow. Combined, these results favor different progenitors for EE and non-EE short bursts.
NASA Astrophysics Data System (ADS)
Zhao, Liang; Su, Jian Cang; Li, Rui; Zeng, Bo; Cheng, Jie; Zheng, Lei; Yu, Bin Xiong; Wu, Xiao Long; Zhang, Xi Bo; Pan, Ya Feng
2015-04-01
The critical pulse width (τc) is a pulse width at which the surface flashover threshold (Ef) is equal to the bulk breakdown threshold (EBD) for liquid-polymer composite insulation systems, which is discovered by Zhao et al. [Annual Report Conference on Electrical Insulation and Dielectric Phenomena (IEEE Dielectrics and Electrical Insulation Society, Shenzhen, China, 2013), Vol. 2, pp. 854-857]. In this paper, the mechanism of τc is interpreted in perspective of the threshold and the time delay (td) of surface flashover and bulk breakdown, respectively. It is found that two changes appear as the pulse width decreases which are responsible for the existence of τc: (1) EBD is lower than Ef; (2) td of bulk breakdown is shorter than td of surface flashover. In addition, factors which have influences on τc are investigated, such as the dielectric type, the insulation length, the dielectric thickness, the dielectrics configuration, the pulse number, and the liquid purity. These influences of factors are generalized as three types if τc is expected to increase: (1) factors causing EBD to decrease, such as increasing the pulse number or employing a dielectric of lower EBD; (2) factors causing Ef to increase, such as complicating the insulator's configuration or increasing the liquid purity; (3) factors causing EBD and Ef to increase together, but Ef increases faster than EBD, such as decreasing the dielectric thickness or the insulation length. With the data in references, all the three cases are verified experimentally. In the end, a general method based on τc for solid insulation design is presented and the significance of τc on solid insulation design and on solid demolition are discussed.
Characterization of Pilot Technique
NASA Technical Reports Server (NTRS)
Bachelder, Edward; Aponso, Bimal; Godfroy, Martine
2017-01-01
Skilled pilots often use pulse control when controlling higher order (i.e. acceleration-command) vehicle dynamics. Pulsing does not produce a stick response that resembles what the human Crossover Model predicts. The Crossover Model (CM) assumes the pilot provides compensation necessary (lead or lag) such that the suite of display-human-vehicle approximates an integrator in the region of crossover frequency. However, it is shown that the CM does appear to drive the pilots pulsing behavior in a very predictable manner. Roughly speaking, the pilot generates pulses such that the area under the pulse (pulse amplitude multiplied by pulse width) is approximately equal to area under the hypothetical CM output. This can allow a pilot to employ constant amplitude pulsing so that only the pulse duration (width) is modulated a drastic simplification over the demands of continuous tracking. A pilot pulse model is developed, with which the parameters of the pilots internally-generated CM can be computed in real time for pilot monitoring and display compensation. It is also demonstrated that pursuit tracking may be activated when pulse control is employed.
Exploiting solitons in all-optical networks
NASA Astrophysics Data System (ADS)
Atieh, Ahmad K.
Two key components, the pulse generator and optical signal demultiplexer, needed for the implementation of all-optical soliton-based local area and wide area networks are investigated. The technology of generating a bright soliton pulse train from a sinusoidal pulse train produced as the beat signal of two distributed feedback laser diodes passed through a so-called comblike fiber structure is developed. A design methodology for this structure is discussed, and using this approach a soliton pulse source is constructed generating 1553 nm pulses at a repetition rate of 50 GHz, with pulses of full width at half maximum of 2.0 ps. The fiber structure used to generate the bright soliton pulse train employs the lowest average power for the beat signal ever reported in the literature, and the shortest length of fiber. The same structure (with a different design) is also used to produce a 47.6 GHz dark soliton pulse train with a full width at half maximum of 3.8 ps. This is the first reported use of this structure to generate dark solitons. It is shown that the comblike dispersion profile fiber structures may also be exploited for soliton pulse compression producing widths as short as 200 fs. Two approaches to implementation of optical signal demultiplexing are discussed. These are the nonlinear optical loop mirror (NOLM) and the separation of multilevel time division multiplexed signal pulses in the frequency domain by exploiting the relationship between the pulse's energy (i.e. pulse amplitude and width) and the Raman self-frequency shift. A modification of the NOLM scheme is investigated where feedback that adjusts the power of the control signal (by controlling the gain of an erbium-doped fiber amplifier introduced into the control signal input path) is employed to make the structure insensitive to the state of polarization of the signal and control pulses. In order to better understand the physical phenomena exploited in optical fiber soliton transmission and the above schemes, two experiments are conducted to measure the fiber nonlinear ratio (n2/Aeff) and the Raman time constant (TR) in single-mode fibers at 1550 nm. The fiber nonlinear ratio was measured for standard telecommunication fiber, dispersion shifted fiber, and dispersion compensating fiber. A value of 3.0 fs for the Raman time constant was measured and is recommended for soliton pulse propagation modeling in single-mode optical fibers.
Single event effects in pulse width modulation controllers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Penzin, S.H.; Crain, W.R.; Crawford, K.B.
1996-12-01
SEE testing was performed on pulse width modulation (PWM) controllers which are commonly used in switching mode power supply systems. The devices are designed using both Set-Reset (SR) flip-flops and Toggle (T) flip-flops which are vulnerable to single event upset (SEU) in a radiation environment. Depending on the implementation of the different devices the effect can be significant in spaceflight hardware.
PAL-XFEL soft X-ray scientific instruments and X-ray optics: First commissioning results
NASA Astrophysics Data System (ADS)
Park, Sang Han; Kim, Minseok; Min, Changi-Ki; Eom, Intae; Nam, Inhyuk; Lee, Heung-Soo; Kang, Heung-Sik; Kim, Hyeong-Do; Jang, Ho Young; Kim, Seonghan; Hwang, Sun-min; Park, Gi-Soo; Park, Jaehun; Koo, Tae-Yeong; Kwon, Soonnam
2018-05-01
We report an overview of soft X-ray scientific instruments and X-ray optics at the free electron laser (FEL) of the Pohang Accelerator Laboratory, with selected first-commissioning results. The FEL exhibited a pulse energy of 200 μJ/pulse, a pulse width of <50 fs full width at half maximum, and an energy bandwidth of 0.44% at a photon energy of 850 eV. Monochromator resolving power of 10 500 was achieved. The estimated total time resolution between optical laser and X-ray pulses was <270 fs. A resonant inelastic X-ray scattering spectrometer was set up; its commissioning results are also reported.
OH Production Enhancement in Bubbling Pulsed Discharges
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lungu, Cristian P.; Porosnicu, Corneliu; Jepu, Ionut
2010-10-13
The generation of active species, such as H{sub 2}O{sub 2}, O{sup *}, OH*, HO{sub 2}*, O{sub 3}, N{sub 2}{sup *}, etc, produced in aqueous solutions by HV pulsed discharges was studied in order to find the most efficient way in waste water treatment taking into account that these species are almost stronger oxidizers than ozone. Plasma was generated inside gas bubbles formed by the argon, air and oxygen gas flow between the special designed electrodes. The pulse width and pulse frequency influence was studied in order to increase the efficiency of the OH active species formation. The produced active speciesmore » were investigated by optical emission spectroscopy and correlated with electrical parameters of the discharges (frequency, pulse width, amplitude, and rise and decay time).« less
Repetitive transcranial magnetic stimulator with controllable pulse parameters
NASA Astrophysics Data System (ADS)
Peterchev, Angel V.; Murphy, David L.; Lisanby, Sarah H.
2011-06-01
The characteristics of transcranial magnetic stimulation (TMS) pulses influence the physiological effect of TMS. However, available TMS devices allow very limited adjustment of the pulse parameters. We describe a novel TMS device that uses a circuit topology incorporating two energy storage capacitors and two insulated-gate bipolar transistor (IGBT) modules to generate near-rectangular electric field pulses with adjustable number, polarity, duration, and amplitude of the pulse phases. This controllable pulse parameter TMS (cTMS) device can induce electric field pulses with phase widths of 10-310 µs and positive/negative phase amplitude ratio of 1-56. Compared to conventional monophasic and biphasic TMS, cTMS reduces energy dissipation up to 82% and 57% and decreases coil heating up to 33% and 41%, respectively. We demonstrate repetitive TMS trains of 3000 pulses at frequencies up to 50 Hz with electric field pulse amplitude and width variability less than the measurement resolution (1.7% and 1%, respectively). Offering flexible pulse parameter adjustment and reduced power consumption and coil heating, cTMS enhances existing TMS paradigms, enables novel research applications and could lead to clinical applications with potentially enhanced potency.
Repetitive transcranial magnetic stimulator with controllable pulse parameters.
Peterchev, Angel V; Murphy, David L; Lisanby, Sarah H
2011-06-01
The characteristics of transcranial magnetic stimulation (TMS) pulses influence the physiological effect of TMS. However, available TMS devices allow very limited adjustment of the pulse parameters. We describe a novel TMS device that uses a circuit topology incorporating two energy storage capacitors and two insulated-gate bipolar transistor (IGBT) modules to generate near-rectangular electric field pulses with adjustable number, polarity, duration, and amplitude of the pulse phases. This controllable pulse parameter TMS (cTMS) device can induce electric field pulses with phase widths of 10-310 µs and positive/negative phase amplitude ratio of 1-56. Compared to conventional monophasic and biphasic TMS, cTMS reduces energy dissipation up to 82% and 57% and decreases coil heating up to 33% and 41%, respectively. We demonstrate repetitive TMS trains of 3000 pulses at frequencies up to 50 Hz with electric field pulse amplitude and width variability less than the measurement resolution (1.7% and 1%, respectively). Offering flexible pulse parameter adjustment and reduced power consumption and coil heating, cTMS enhances existing TMS paradigms, enables novel research applications and could lead to clinical applications with potentially enhanced potency.
Design and Analysis of Nano-Pulse Generator for Industrial Wastewater Application
NASA Astrophysics Data System (ADS)
Jang, Sung-Duck; Son, Yoon-Kyoo; Cho, Moo-Hyun; Norov, Enkhbat
2018-05-01
Recently, the application of a pulsed power system is being extended to environmental and industrial fields. The non-dissolution wastewater pollutants from industrial plants can be processed by applying high-voltage pulses with a fast rising time (a few nanoseconds) and short duration (nano to microseconds) in a pulsed corona discharge reactor. The high-voltage nano-pulse generator with a magnetic switch has been developed. It can be used for a spray type water treatment facility. Its corona current in load can be adjusted by pulse width and repetition rate. We investigated the performance of the nano-pulse generator by using the dummy load that is composed of resistor and capacitor equivalent to the actual reactor. In this paper, the results of design, construction and characterization of a high-voltage nano-pulse generator for an industrial wastewater treatment are reported. Consequently, a pulse width of 1.1 μs at the repetition rate of 200 pps, a peak voltage of 41 kV for the nano-pulse generator were achieved across a 640 Ω load. The simulation results on magnetic switch show reasonable agreement with experimental ones.
Development and testing of pulsed and rotating detonation combustors
NASA Astrophysics Data System (ADS)
St. George, Andrew C.
Detonation is a self-sustaining, supersonic, shock-driven, exothermic reaction. Detonation combustion can theoretically provide significant improvements in thermodynamic efficiency over constant pressure combustion when incorporated into existing cycles. To harness this potential performance benefit, countless studies have worked to develop detonation combustors and integrate these devices into existing systems. This dissertation consists of a series of investigations on two types of detonation combustors: the pulse detonation combustor (PDC) and the rotating detonation combustor (RDC). In the first two investigations, an array of air-breathing PDCs is integrated with an axial power turbine. The system is initially operated with steady and pulsed cold air flow to determine the effect of pulsed flow on turbine performance. Various averaging approaches are employed to calculate turbine efficiency, but only flow-weighted (e.g., mass or work averaging) definitions have physical significance. Pulsed flow turbine efficiency is comparable to steady flow efficiency at high corrected flow rates and low rotor speeds. At these conditions, the pulse duty cycle expands and the variation of the rotor incidence angle is constrained to a favorable range. The system is operated with pulsed detonating flow to determine the effect of frequency, fill fraction, and rotor speed on turbine performance. For some conditions, output power exceeds the maximum attainable value from steady constant pressure combustion due to a significant increase in available power from the detonation products. However, the turbine component efficiency estimated from classical thermodynamic analysis is four times lower than the steady design point efficiency. Analysis of blade angles shows a significant penalty due to the detonation, fill, and purge processes simultaneously imposed on the rotor. The latter six investigations focus on fundamental research of the RDC concept. A specially-tailored RDC data analysis approach is developed, which employs cross-correlations to detect the combustor operating state as it evolves during a test. This method enables expedient detection of the operating state from sensors placed outside the combustor, and can also identify and quantify instabilities. An investigation is conducted on a tangentially-injecting initiator tube to characterize the RDC ignition process. Maximum energy deposition for this ignition method is an order of magnitude lower than the required energy for direct initiation, and detonation develops via a deflagration-to-detonation transition process. Stable rotating detonation is preceded by a transitory onset phase with a stochastic duration, which appears to be a function of the reactant injection pressure ratio. Hydrogen-ethylene fuel blends are explored as an interim strategy to transition to stable detonation in ethylene-air mixtures. While moderate hydrogen addition enables stable operation, removal of the supplemental hydrogen triggers instability and failure. Chemical kinetic analysis indicates that elevated reactant pressure is far more significant than hydrogen addition, and suggests that the stabilizing effect of hydrogen is physical, rather than kinetic. The role of kinetic effects (e.g., cell width) is also assessed, using H2-O2-N2 mixtures. Detonation is observed when the normalized channel width exceeds the classical limit of wch/lambda = 0.5, and the number of detonations increases predictably when the detonation perimeter exceeds a critical value.
NASA Astrophysics Data System (ADS)
Wilson, Nicholas; Mauch, Daniel; Meyers, Vincent; Feathers, Shannon; Dickens, James; Neuber, Andreas
2017-08-01
The electrical and optical characteristics of a high-power UV light emitting diode (LED) (365 nm wavelength) were evaluated under pulsed operating conditions at current amplitudes several orders of magnitude beyond the LED's manufacturer specifications. Geared towards triggering of photoconductive semiconductor switches (PCSSs) for pulsed power applications, measurements were made over varying pulse widths (25 ns-100 μs), current (0 A-250 A), and repetition rates (single shot-5 MHz). The LED forward voltage was observed to increase linearly with increasing current (˜3.5 V-53 V) and decrease with increasing pulse widths. The peak optical power observed was >30 W, and a maximum system efficiency of 23% was achieved. The evaluated LED and auxiliary hardware were successfully used as the optical trigger source for a 4H-SiC PCSS. The lowest measured on-resistance of SiC was approximately 67 kΩ.
Wilson, Nicholas; Mauch, Daniel; Meyers, Vincent; Feathers, Shannon; Dickens, James; Neuber, Andreas
2017-08-01
The electrical and optical characteristics of a high-power UV light emitting diode (LED) (365 nm wavelength) were evaluated under pulsed operating conditions at current amplitudes several orders of magnitude beyond the LED's manufacturer specifications. Geared towards triggering of photoconductive semiconductor switches (PCSSs) for pulsed power applications, measurements were made over varying pulse widths (25 ns-100 μs), current (0 A-250 A), and repetition rates (single shot-5 MHz). The LED forward voltage was observed to increase linearly with increasing current (∼3.5 V-53 V) and decrease with increasing pulse widths. The peak optical power observed was >30 W, and a maximum system efficiency of 23% was achieved. The evaluated LED and auxiliary hardware were successfully used as the optical trigger source for a 4H-SiC PCSS. The lowest measured on-resistance of SiC was approximately 67 kΩ.
Riedy, L W; Walter, J S
1996-06-01
The safe charge injection density for pulsing of 316LVM electrodes has been reported to be 40 microC/cm2. However, only 20 microC/cm2 is available for nonfaradic charge transfer and double layer charge injection. Therefore, we evaluated long term pulsing at 20 microC/cm2 with capacitor coupling.
NASA Astrophysics Data System (ADS)
Yusof, M. F. M.; Ishak, M.; Ghazali, M. F.
2017-09-01
In this paper, the feasibility of using acoustic method to monitor the depth of penetration was investigated by determine the characteristic of the acquired sound throughout the pulse mode laser welding process. To achieve the aim, the sound signal was acquired during the pulsed laser welding process on the 2 mm structural carbon steel plate. During the experiment, the laser peak power and pulse width was set to be varied while welding speed was constantly at 2 mm/s. Result from the experiment revealed that the sound pressure level of the acquired sound was linearly related to the pulse energy as well as the depth of penetration for welding process using 2ms pulse width. However, as the pulse width increase, the sound pressure level show insignificant change with respect to the change in the depth of penetration when the pulse energy reaches certain values. The reported result shows that this was happen due to the occurrence of spatter which suppressed the information associated with the generation of plasma plume as the product of high pulse energy. In this work, it was demonstrated that in some condition, the acoustic method was found to be potentially suitable to be used as a medium to monitor the depth of weld on online basis. To increase the robustness of this method to be used in wider range of parameter, it was believed that some other post processing method is needed in order to extract the specific information associated with the depth of penetration from the acquired sound.
Fantz, U; Franzen, P; Kraus, W; Falter, H D; Berger, M; Christ-Koch, S; Fröschle, M; Gutser, R; Heinemann, B; Martens, C; McNeely, P; Riedl, R; Speth, E; Wünderlich, D
2008-02-01
The international fusion experiment ITER requires for the plasma heating and current drive a neutral beam injection system based on negative hydrogen ion sources at 0.3 Pa. The ion source must deliver a current of 40 A D(-) for up to 1 h with an accelerated current density of 200 Am/(2) and a ratio of coextracted electrons to ions below 1. The extraction area is 0.2 m(2) from an aperture array with an envelope of 1.5 x 0.6 m(2). A high power rf-driven negative ion source has been successfully developed at the Max-Planck Institute for Plasma Physics (IPP) at three test facilities in parallel. Current densities of 330 and 230 Am/(2) have been achieved for hydrogen and deuterium, respectively, at a pressure of 0.3 Pa and an electron/ion ratio below 1 for a small extraction area (0.007 m(2)) and short pulses (<4 s). In the long pulse experiment, equipped with an extraction area of 0.02 m(2), the pulse length has been extended to 3600 s. A large rf source, with the width and half the height of the ITER source but without extraction system, is intended to demonstrate the size scaling and plasma homogeneity of rf ion sources. The source operates routinely now. First results on plasma homogeneity obtained from optical emission spectroscopy and Langmuir probes are very promising. Based on the success of the IPP development program, the high power rf-driven negative ion source has been chosen recently for the ITER beam systems in the ITER design review process.
An 8-GW long-pulse generator based on Tesla transformer and pulse forming network
DOE Office of Scientific and Technical Information (OSTI.GOV)
Su, Jiancang; Zhang, Xibo; Li, Rui
A long-pulse generator TPG700L based on a Tesla transformer and a series pulse forming network (PFN) is constructed to generate intense electron beams for the purpose of high power microwave (HPM) generation. The TPG700L mainly consists of a 12-stage PFN, a built-in Tesla transformer in a pulse forming line, a three-electrode gas switch, a transmission line with a trigger, and a load. The Tesla transformer and the compact PFN are the key technologies for the development of the TPG700L. This generator can output electrical pulses with a width as long as 200 ns at a level of 8 GW andmore » a repetition rate of 50 Hz. When used to drive a relative backward wave oscillator for HPM generation, the electrical pulse width is about 100 ns on a voltage level of 520 kV. Factors affecting the pulse waveform of the TPG700L are also discussed. At present, the TPG700L performs well for long-pulse HPM generation in our laboratory.« less
An 8-GW long-pulse generator based on Tesla transformer and pulse forming network.
Su, Jiancang; Zhang, Xibo; Li, Rui; Zhao, Liang; Sun, Xu; Wang, Limin; Zeng, Bo; Cheng, Jie; Wang, Ying; Peng, Jianchang; Song, Xiaoxin
2014-06-01
A long-pulse generator TPG700L based on a Tesla transformer and a series pulse forming network (PFN) is constructed to generate intense electron beams for the purpose of high power microwave (HPM) generation. The TPG700L mainly consists of a 12-stage PFN, a built-in Tesla transformer in a pulse forming line, a three-electrode gas switch, a transmission line with a trigger, and a load. The Tesla transformer and the compact PFN are the key technologies for the development of the TPG700L. This generator can output electrical pulses with a width as long as 200 ns at a level of 8 GW and a repetition rate of 50 Hz. When used to drive a relative backward wave oscillator for HPM generation, the electrical pulse width is about 100 ns on a voltage level of 520 kV. Factors affecting the pulse waveform of the TPG700L are also discussed. At present, the TPG700L performs well for long-pulse HPM generation in our laboratory.
Impact of Raman scattering on pulse dynamics in a fiber laser with narrow gain bandwidth
NASA Astrophysics Data System (ADS)
Uthayakumar, T.; Alsaleh, M.; Igbonacho, J.; Tchomgo Felenou, E.; Tchofo Dinda, P.; Grelu, Ph; Porsezian, K.
2018-06-01
We examine theoretically the multi-pulse dynamics in a dispersion-managed fiber laser, in which the pulse’s spectral width is controlled by a pass-band filter. We show that in the domain of stable states with very narrow spectral width, i.e. which is one order of magnitude smaller than the bandwidth of the Raman gain of the intra-cavity fiber system, the Raman scattering (RS) significantly alters the multi-pulse dynamics. RS is found to have a greater impact in the immediate vicinity of some critical values of the pump power of the intra-cavity gain medium, where processes of pulse fragmentation occur. As a result, all the borders between the zones of stability of the multi-pulse states are altered, i.e. either shifted or suppressed.
Multiphoton correlations in parametric down-conversion and their measurement in the pulsed regime
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ivanova, O A; Iskhakov, T Sh; Penin, A N
2006-10-31
We consider normalised intensity correlation functions (CFs) of different orders for light emitted via parametric down-conversion (PDC) and their dependence on the number of photons per mode. The main problem in measuring such correlation functions is their extremely small width, which considerably reduces their contrast. It is shown that if the radiation under study is modulated by a periodic sequence of pulses that are short compared to the CF width, no decrease in the contrast occurs. A procedure is proposed for measuring normalised CFs of various orders in the pulsed regime. For nanosecond-pulsed PDC radiation, normalised second-order CF is measuredmore » experimentally as a function of the mean photon number. (nonlinear optical phenomena)« less
Pulse Width Dependence Of Pigment Cell Damage At 694 nm In Guinea Pig Skin
NASA Astrophysics Data System (ADS)
Dover, Jeffrey S.; Polla, Luigi L.; Margolis, Randall J.; Whitaker, Diana; Watanabe, Schinichi; Murphy, George F.; Parrish, John A.; Anderson, R. R.
1987-03-01
351 nm, 20-nsec XeF excimer laser irradiation has previously been shown to selectively target and damage melanosomes in human skin. In the following studies selective targeting with melanosomal photodisruption has been demonstrated in pigmented guinea pig skin with a Q-switched 40-nsec ruby laser, and a 750-nsec pulsed dye laser but not with a 400-usec pulsed dye laser. The pulse width dependence of melanosomal disruption, occurring only at pulsewidths shorter than the thermal relaxation time of the melanosome (0.5 - 1.0 usec), is in accordance with the theory of selective photothermolysis. Possible mechanisms of melanosomal photodisruption include development of sudden thermal gradients leading to cavitation or shock wave production.
ADJUSTABLE DOUBLE PULSE GENERATOR
Gratian, J.W.; Gratian, A.C.
1961-08-01
>A modulator pulse source having adjustable pulse width and adjustable pulse spacing is described. The generator consists of a cross coupled multivibrator having adjustable time constant circuitry in each leg, an adjustable differentiating circuit in the output of each leg, a mixing and rectifying circuit for combining the differentiated pulses and generating in its output a resultant sequence of negative pulses, and a final amplifying circuit for inverting and square-topping the pulses. (AEC)
Micro-fractional ablative skin resurfacing with two novel erbium laser systems.
Dierickx, Christine C; Khatri, Khalil A; Tannous, Zeina S; Childs, James J; Cohen, Richard H; Erofeev, Andrei; Tabatadze, David; Yaroslavsky, Ilya V; Altshuler, Gregory B
2008-02-01
Fractional ablation offers the potential benefits of full-surface ablative skin resurfacing while minimizing adverse effects. The purpose of this study was to evaluate the safety, damage profile, and efficacy of erbium fractional lasers. Histology from animal and human skin as well as clinical evaluations were conducted with erbium YAG (2,940 nm) and erbium YSGG (2,790 nm) fractional lasers varying pulse width, microbeam (microb) energy, number of passes, and stacking of pulses. Single-pulse treatment parameters from 1 to 12 mJ per 50-70 microm diameter microbeam and 0.25-5 milliseconds pulse widths produced microcolumns of ablation with border coagulation of up to 100 microm width and 450 microm depth. Stacking of pulses generated deeper microcolumns. Clinical observations and in vivo histology demonstrate rapid re-epithelization and limited adverse side effects. Facial treatments were performed in the periorbital and perioral areas using 1-8 passes of single and stacked pulses. Treatments were well-tolerated and subjects could resume their normal routine in 4 days. A statistically significant reduction in wrinkle scores at 3 months was observed for both periorbital and perioral wrinkles using blinded grading. For periorbital treatments of four passes or more, over 90% had > or =1 score wrinkle reduction (0-9 scale) and 42% had > or =2. For perioral wrinkles, over 50% had substantial improvements (> or =2). The clinical observations and histology findings demonstrate that micro-fractional ablative treatment with 2,790 and 2,940 nm erbium lasers resulted in safe and effective wrinkle reduction with minimal patient downtime. The depth and width of the ablated microcolumns and varying extent of surrounding coagulation can be controlled and used to design new treatment procedures targeted for specific indications and areas such as moderate to severe rhytides and photodamaged skin.
Two-Photon Excited Fluorescence from Biological Aerosol Particles
2010-09-29
in material damage. We overcame these limitations by building a band-limited Yb-doped fiber laser with no dispersion compensation [9], as the master...master oscillator was an all-normal- dispersion Yb-doped fiber laser [9], followed by high- dispersion fiber for stretching the pulses, a single-mode...of ~670 fs in duration, and its expected transform-limited pulse width for a normal- dispersion laser with this spectral width would be ~454 fs [10
Separation Control in a Multistage Compressor Using Impulsive Surface Injection
NASA Technical Reports Server (NTRS)
Wundrow, David W.; Braunscheidel, Edward P.; Culley, Dennis E.; Bright, Michelle M.
2006-01-01
Control of flow separation using impulsive surface injection is investigated within the multistage environment of a low speed axial-flow compressor. Measured wake profiles behind a set of embedded stator vanes treated with suction-surface injection indicate significant reduction in flow separation at a variety of injection-pulse repetition rates and durations. The corresponding total pressure losses across the vanes reveal a bank of repetition rates at each pulse duration where the separation control remains nearly complete. This persistence allows for demands on the injected-mass delivery system to be economized while still achieving effective flow control. The response of the stator-vane boundary layers to infrequently applied short injection pulses is described in terms of the periodic excitation of turbulent strips whose growth and propagation characteristics dictate the lower bound on the band of optimal pulse repetition rates. The eventual falloff in separation control at higher repetition rates is linked to a competition between the benefits of pulse-induced mixing and the aggravation caused by the periodic introduction of low-momentum fluid. Use of these observations for impulsive actuator design is discussed and their impact on modeling the time-average effect of impulsive surface injection for multistage steady-flow simulation is considered.
Acharya, Santhosh; Bhat, N N; Joseph, Praveen; Sanjeev, Ganesh; Sreedevi, B; Narayana, Y
2011-05-01
The effects of single pulses and multiple pulses of 7 MV electrons on micronuclei (MN) induction in cytokinesis-blocked human peripheral blood lymphocytes (PBLs) were investigated over a wide range of dose rates per pulse (instantaneous dose rate). PBLs were exposed to graded doses of 2, 3, 4, 6, and 8 Gy of single electron pulses of varying pulse widths at different dose rates per pulse, ranging from 1 × 10(6) Gy s(-1) to 3.2 × 10(8) Gy s(-1). Different dose rates per pulse were achieved by changing the dose per electron pulse by adjusting the beam current and pulse width. MN yields per unit absorbed dose after irradiation with single electron pulses were compared with those of multiple pulses of electrons. A significant decrease in the MN yield with increasing dose rates per pulse was observed, when dose was delivered by a single electron pulse. However, no reduction in the MN yield was observed when dose was delivered by multiple pulses of electrons. The decrease in the yield at high dose rates per pulse suggests possible radical recombination, which leads to decreased biological damage. Cellular response to the presence of very large numbers of chromosomal breaks may also alter the damage.
NASA Astrophysics Data System (ADS)
Higuchi, Kazuhide; Miyaji, Kousuke; Johguchi, Koh; Takeuchi, Ken
2012-02-01
This paper proposes a verify-programming method for the resistive random access memory (ReRAM) cell which achieves a 50-times higher endurance and a fast set and reset compared with the conventional method. The proposed verify-programming method uses the incremental pulse width with turnback (IPWWT) for the reset and the incremental voltage with turnback (IVWT) for the set. With the combination of IPWWT reset and IVWT set, the endurance-cycle increases from 48 ×103 to 2444 ×103 cycles. Furthermore, the measured data retention-time after 20 ×103 set/reset cycles is estimated to be 10 years. Additionally, the filamentary based physical model is proposed to explain the set/reset failure mechanism with various set/reset pulse shapes. The reset pulse width and set voltage correspond to the width and length of the conductive-filament, respectively. Consequently, since the proposed IPWWT and IVWT recover set and reset failures of ReRAM cells, the endurance-cycles are improved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Markmann, Sergej, E-mail: sergej.markmann@ruhr-uni-bochum.de; Nong, Hanond, E-mail: nong.hanond@ruhr-uni-bochum.de; Hekmat, Negar
2015-09-14
We demonstrate by injection seeding that the spectral emission of a terahertz (THz) quantum cascade laser (QCL) can be modified with broad-band THz pulses whose bandwidths are greater than the QCL bandwidth. Two broad-band THz pulses delayed in time imprint a modulation on the single THz pulse spectrum. The resulting spectrum is used to injection seed the THz QCL. By varying the time delay between the THz pulses, the amplitude distribution of the QCL longitudinal modes is modified. By applying this approach, the QCL emission is reversibly switched from multi-mode to single mode emission.
Laparoscopic Transcystic Treatment Biliary Calculi by Laser Lithotripsy
Jin, Lan; Zhang, Zhongtao
2016-01-01
Background and Objectives: Laparoscopic transcystic common bile duct exploration (LTCBDE) is a complex procedure requiring expertise in laparoscopic and choledochoscopic skills. The purpose of this study was to investigate the safety and feasibility of treating biliary calculi through laparoscopic transcystic exploration of the CBD via an ultrathin choledochoscope combined with dual-frequency laser lithotripsy. Methods: From August 2011 through September 2014, 89 patients at our hospital were treated for cholecystolithiasis with biliary calculi. Patients underwent laparoscopic cholecystectomy and exploration of the CBD via the cystic duct and the choledochoscope instrument channel. A dual-band, dual-pulse laser lithotripsy system was used to destroy the calculi. Two intermittent laser emissions (intensity, 0.12 J; pulse width 1.2 μs; and pulse frequency, 10 Hz) were applied during each contact with the calculi. The stones were washed out by water injection or removed by a stone-retrieval basket. Results: Biliary calculi were removed in 1 treatment in all 89 patients. No biliary tract injury or bile leakage was observed. Follow-up examination with type-B ultrasonography or magnetic resonance cholangiopancreatography 3 months after surgery revealed no instances of retained-calculi–related biliary tract stenosis. Conclusion: The combined use of laparoscopic transcystic CBD exploration by ultrathin choledochoscopy and dual-frequency laser lithotripsy offers an accurate, convenient, safe, effective method of treating biliary calculi. PMID:27904308
Hitomi X-ray studies of giant radio pulses from the Crab pulsar
NASA Astrophysics Data System (ADS)
Hitomi Collaboration; Aharonian, Felix; Akamatsu, Hiroki; Akimoto, Fumie; Allen, Steven W.; Angelini, Lorella; Audard, Marc; Awaki, Hisamitsu; Axelsson, Magnus; Bamba, Aya; Bautz, Marshall W.; Blandford, Roger; Brenneman, Laura W.; Brown, Gregory V.; Bulbul, Esra; Cackett, Edward M.; Chernyakova, Maria; Chiao, Meng P.; Coppi, Paolo S.; Costantini, Elisa; de Plaa, Jelle; de Vries, Cor P.; den Herder, Jan-Willem; Done, Chris; Dotani, Tadayasu; Ebisawa, Ken; Eckart, Megan E.; Enoto, Teruaki; Ezoe, Yuichiro; Fabian, Andrew C.; Ferrigno, Carlo; Foster, Adam R.; Fujimoto, Ryuichi; Fukazawa, Yasushi; Furuzawa, Akihiro; Galeazzi, Massimiliano; Gallo, Luigi C.; Gandhi, Poshak; Giustini, Margherita; Goldwurm, Andrea; Gu, Liyi; Guainazzi, Matteo; Haba, Yoshito; Hagino, Kouichi; Hamaguchi, Kenji; Harrus, Ilana M.; Hatsukade, Isamu; Hayashi, Katsuhiro; Hayashi, Takayuki; Hayashida, Kiyoshi; Hiraga, Junko S.; Hornschemeier, Ann; Hoshino, Akio; Hughes, John P.; Ichinohe, Yuto; Iizuka, Ryo; Inoue, Hajime; Inoue, Yoshiyuki; Ishida, Manabu; Ishikawa, Kumi; Ishisaki, Yoshitaka; Iwai, Masachika; Kaastra, Jelle; Kallman, Tim; Kamae, Tsuneyoshi; Kataoka, Jun; Katsuda, Satoru; Kawai, Nobuyuki; Kelley, Richard L.; Kilbourne, Caroline A.; Kitaguchi, Takao; Kitamoto, Shunji; Kitayama, Tetsu; Kohmura, Takayoshi; Kokubun, Motohide; Koyama, Katsuji; Koyama, Shu; Kretschmar, Peter; Krimm, Hans A.; Kubota, Aya; Kunieda, Hideyo; Laurent, Philippe; Lee, Shiu-Hang; Leutenegger, Maurice A.; Limousin, Olivier O.; Loewenstein, Michael; Long, Knox S.; Lumb, David; Madejski, Greg; Maeda, Yoshitomo; Maier, Daniel; Makishima, Kazuo; Markevitch, Maxim; Matsumoto, Hironori; Matsushita, Kyoko; McCammon, Dan; McNamara, Brian R.; Mehdipour, Missagh; Miller, Eric D.; Miller, Jon M.; Mineshige, Shin; Mitsuda, Kazuhisa; Mitsuishi, Ikuyuki; Miyazawa, Takuya; Mizuno, Tsunefumi; Mori, Hideyuki; Mori, Koji; Mukai, Koji; Murakami, Hiroshi; Mushotzky, Richard F.; Nakagawa, Takao; Nakajima, Hiroshi; Nakamori, Takeshi; Nakashima, Shinya; Nakazawa, Kazuhiro; Nobukawa, Kumiko K.; Nobukawa, Masayoshi; Noda, Hirofumi; Odaka, Hirokazu; Ohashi, Takaya; Ohno, Masanori; Okajima, Takashi; Oshimizu, Kenya; Ota, Naomi; Ozaki, Masanobu; Paerels, Frits; Paltani, Stéphane; Petre, Robert; Pinto, Ciro; Porter, Frederick S.; Pottschmidt, Katja; Reynolds, Christopher S.; Safi-Harb, Samar; Saito, Shinya; Sakai, Kazuhiro; Sasaki, Toru; Sato, Goro; Sato, Kosuke; Sato, Rie; Sawada, Makoto; Schartel, Norbert; Serlemtsos, Peter J.; Seta, Hiromi; Shidatsu, Megumi; Simionescu, Aurora; Smith, Randall K.; Soong, Yang; Stawarz, Łukasz; Sugawara, Yasuharu; Sugita, Satoshi; Szymkowiak, Andrew; Tajima, Hiroyasu; Takahashi, Hiromitsu; Takahashi, Tadayuki; Takeda, Shiníchiro; Takei, Yoh; Tamagawa, Toru; Tamura, Takayuki; Tanaka, Takaaki; Tanaka, Yasuo; Tanaka, Yasuyuki T.; Tashiro, Makoto S.; Tawara, Yuzuru; Terada, Yukikatsu; Terashima, Yuichi; Tombesi, Francesco; Tomida, Hiroshi; Tsuboi, Yohko; Tsujimoto, Masahiro; Tsunemi, Hiroshi; Tsuru, Takeshi Go; Uchida, Hiroyuki; Uchiyama, Hideki; Uchiyama, Yasunobu; Ueda, Shutaro; Ueda, Yoshihiro; Uno, Shiníchiro; Urry, C. Megan; Ursino, Eugenio; Watanabe, Shin; Werner, Norbert; Wilkins, Dan R.; Williams, Brian J.; Yamada, Shinya; Yamaguchi, Hiroya; Yamaoka, Kazutaka; Yamasaki, Noriko Y.; Yamauchi, Makoto; Yamauchi, Shigeo; Yaqoob, Tahir; Yatsu, Yoichi; Yonetoku, Daisuke; Zhuravleva, Irina; Zoghbi, Abderahmen; Terasawa, Toshio; Sekido, Mamoru; Takefuji, Kazuhiro; Kawai, Eiji; Misawa, Hiroaki; Tsuchiya, Fuminori; Yamazaki, Ryo; Kobayashi, Eiji; Kisaka, Shota; Aoki, Takahiro
2018-03-01
To search for giant X-ray pulses correlated with the giant radio pulses (GRPs) from the Crab pulsar, we performed a simultaneous observation of the Crab pulsar with the X-ray satellite Hitomi in the 2-300 keV band and the Kashima NICT radio telescope in the 1.4-1.7 GHz band with a net exposure of about 2 ks on 2016 March 25, just before the loss of the Hitomi mission. The timing performance of the Hitomi instruments was confirmed to meet the timing requirement and about 1000 and 100 GRPs were simultaneously observed at the main pulse and inter-pulse phases, respectively, and we found no apparent correlation between the giant radio pulses and the X-ray emission in either the main pulse or inter-pulse phase. All variations are within the 2 σ fluctuations of the X-ray fluxes at the pulse peaks, and the 3 σ upper limits of variations of main pulse or inter-pulse GRPs are 22% or 80% of the peak flux in a 0.20 phase width, respectively, in the 2-300 keV band. The values for main pulse or inter-pulse GRPs become 25% or 110%, respectively, when the phase width is restricted to the 0.03 phase. Among the upper limits from the Hitomi satellite, those in the 4.5-10 keV and 70-300 keV bands are obtained for the first time, and those in other bands are consistent with previous reports. Numerically, the upper limits of the main pulse and inter-pulse GRPs in the 0.20 phase width are about (2.4 and 9.3) × 10-11 erg cm-2, respectively. No significant variability in pulse profiles implies that the GRPs originated from a local place within the magnetosphere. Although the number of photon-emitting particles should temporarily increase to account for the brightening of the radio emission, the results do not statistically rule out variations correlated with the GRPs, because the possible X-ray enhancement may appear due to a >0.02% brightening of the pulse-peak flux under such conditions.
Full Spectrum Conversion Using Traveling Pulse Wave Quantization
2017-03-01
Full Spectrum Conversion Using Traveling Pulse Wave Quantization Michael S. Kappes Mikko E. Waltari IQ-Analog Corporation San Diego, California...temporal-domain quantization technique called Traveling Pulse Wave Quantization (TPWQ). Full spectrum conversion is defined as the complete...pulse width measurements that are continuously generated hence the name “traveling” pulse wave quantization. Our TPWQ-based ADC is composed of a
USDA-ARS?s Scientific Manuscript database
Whole fresh blueberries were treated using a parallel pulsed electric field (PEF) treatment chamber and a sanitizer solution (60 ppm peracetic acid [PAA]) as PEF treatment medium with square wave bipolar pulses at 2 kV/cm electric field strength, 1us pulse width, and 100 pulses per second for 2, 4, ...
Advanced Orion Optimized Laser System Analysis
NASA Technical Reports Server (NTRS)
1996-01-01
Contractor shall perform a complete analysis of the potential of the solid state laser in the very long pulse mode (100 ns pulse width, 10-30 hz rep-rate) and in the very short pulse mode (100 ps pulse width 10-30 hz rep rate) concentrating on the operation of the device in the 'hot-rod' mode, where no active cooling the laser operation is attempted. Contractor's calculations shall be made of the phase aberrations which develop during the repped-pulse train, and the results shall feed into the adaptive optics analyses. The contractor shall devise solutions to work around ORION track issues. A final report shall be furnished to the MSFC COTR including all calculations and analysis of estimates of bulk phase and intensity aberration distribution in the laser output beam as a function of time during the repped-pulse train for both wave forms (high-energy/long-pulse, as well as low-energy/short-pulse). Recommendations shall be made for mitigating the aberrations by laser re-design and/or changes in operating parameters of optical pump sources and/or designs.
Repetitive Transcranial Magnetic Stimulator with Controllable Pulse Parameters
Peterchev, Angel V; Murphy, David L; Lisanby, Sarah H
2013-01-01
The characteristics of transcranial magnetic stimulation (TMS) pulses influence the physiological effect of TMS. However, available TMS devices allow very limited adjustment of the pulse parameters. We describe a novel TMS device that uses a circuit topology incorporating two energy storage capacitors and two insulated-gate bipolar transistor (IGBT) modules to generate near-rectangular electric field pulses with adjustable number, polarity, duration, and amplitude of the pulse phases. This controllable pulse parameter TMS (cTMS) device can induce electric field pulses with phase widths of 10–310 μs and positive/negative phase amplitude ratio of 1–56. Compared to conventional monophasic and biphasic TMS, cTMS reduces energy dissipation by up to 82% and 57%, and decreases coil heating by up to 33% and 41%, respectively. We demonstrate repetitive TMS trains of 3,000 pulses at frequencies up to 50 Hz with electric field pulse amplitude and width variability less than the measurement resolution (1.7% and 1%, respectively). Offering flexible pulse parameter adjustment and reduced power consumption and coil heating, cTMS enhances existing TMS paradigms, enables novel research applications, and could lead to clinical applications with potentially enhanced potency. PMID:21540487
High resolution time interval counter
Condreva, Kenneth J.
1994-01-01
A high resolution counter circuit measures the time interval between the occurrence of an initial and a subsequent electrical pulse to two nanoseconds resolution using an eight megahertz clock. The circuit includes a main counter for receiving electrical pulses and generating a binary word--a measure of the number of eight megahertz clock pulses occurring between the signals. A pair of first and second pulse stretchers receive the signal and generate a pair of output signals whose widths are approximately sixty-four times the time between the receipt of the signals by the respective pulse stretchers and the receipt by the respective pulse stretchers of a second subsequent clock pulse. Output signals are thereafter supplied to a pair of start and stop counters operable to generate a pair of binary output words representative of the measure of the width of the pulses to a resolution of two nanoseconds. Errors associated with the pulse stretchers are corrected by providing calibration data to both stretcher circuits, and recording start and stop counter values. Stretched initial and subsequent signals are combined with autocalibration data and supplied to an arithmetic logic unit to determine the time interval in nanoseconds between the pair of electrical pulses being measured.
High resolution time interval counter
Condreva, K.J.
1994-07-26
A high resolution counter circuit measures the time interval between the occurrence of an initial and a subsequent electrical pulse to two nanoseconds resolution using an eight megahertz clock. The circuit includes a main counter for receiving electrical pulses and generating a binary word--a measure of the number of eight megahertz clock pulses occurring between the signals. A pair of first and second pulse stretchers receive the signal and generate a pair of output signals whose widths are approximately sixty-four times the time between the receipt of the signals by the respective pulse stretchers and the receipt by the respective pulse stretchers of a second subsequent clock pulse. Output signals are thereafter supplied to a pair of start and stop counters operable to generate a pair of binary output words representative of the measure of the width of the pulses to a resolution of two nanoseconds. Errors associated with the pulse stretchers are corrected by providing calibration data to both stretcher circuits, and recording start and stop counter values. Stretched initial and subsequent signals are combined with autocalibration data and supplied to an arithmetic logic unit to determine the time interval in nanoseconds between the pair of electrical pulses being measured. 3 figs.
Numerical simulation of passively mode-locked fiber laser based on semiconductor optical amplifier
NASA Astrophysics Data System (ADS)
Yang, Jingwen; Jia, Dongfang; Zhang, Zhongyuan; Chen, Jiong; Liu, Tonghui; Wang, Zhaoying; Yang, Tianxin
2013-03-01
Passively mode-locked fiber laser (MLFL) has been widely used in many applications, such as optical communication system, industrial production, information processing, laser weapons and medical equipment. And many efforts have been done for obtaining lasers with small size, simple structure and shorter pulses. In recent years, nonlinear polarization rotation (NPR) in semiconductor optical amplifier (SOA) has been studied and applied as a mode-locking mechanism. This kind of passively MLFL has faster operating speed and makes it easier to realize all-optical integration. In this paper, we had a thorough analysis of NPR effect in SOA. And we explained the principle of mode-locking by SOA and set up a numerical model for this mode-locking process. Besides we conducted a Matlab simulation of the mode-locking mechanism. We also analyzed results under different working conditions and several features of this mode-locking process are presented. Our simulation shows that: Firstly, initial pulse with the peak power exceeding certain threshold may be amplified and compressed, and stable mode-locking may be established. After about 25 round-trips, stable mode-locked pulse can be obtained which has peak power of 850mW and pulse-width of 780fs.Secondly, when the initial pulse-width is greater, narrowing process of pulse is sharper and it needs more round-trips to be stable. Lastly, the bias currents of SOA affect obviously the shape of mode-locked pulse and the mode-locked pulse with high peak power and narrow width can be obtained through adjusting reasonably the bias currents of SOA.
Delay-tunable gap-soliton-based slow-light system
NASA Astrophysics Data System (ADS)
Mok, Joe T.; de Sterke, C. Martijn; Eggleton, Benjamin J.
2006-12-01
We numerically and analytically evaluate the delay of solitons propagating slowly, and without broadening, in an apodized Bragg grating. Simulations indicate that a 100 mm Bragg grating with Δn = 10-3 can delay sub-nanosecond pulses by nearly 20 pulse widths without any change in the output pulse width. Delay tunability is achieved by simultaneously adjusting the launch power and detuning. A simple analytic model is developed to describe the monotonic dependence of delay on Δn and compared with simulations. As the intensity may be greatly enhanced due to a reduced velocity, a procedure for improving the delay while avoiding material damage is outlined.
Stoll, Dwight R; Sajulga, Ray W; Voigt, Bryan N; Larson, Eli J; Jeong, Lena N; Rutan, Sarah C
2017-11-10
An important research direction in the continued development of two-dimensional liquid chromatography (2D-LC) is to improve the detection sensitivity of the method. This is especially important in applications where injection of large volumes of effluent from the first dimension ( 1 D) column into the second dimension ( 2 D) column leads to severe 2 D peak broadening and peak shape distortion. For example, this is common when coupling two reversed-phase columns and the organic solvent content of the 1 D mobile phase overwhelms the 2 D column with each injection of 1 D effluent, leading to low resolution in the second dimension. In a previous study we validated a simulation approach based on the Craig distribution model and adapted from the work of Czok and Guiochon [1] that enabled accurate simulation of simple isocratic and gradient separations with very small injection volumes, and isocratic separations with mismatched injection and mobile phase solvents [2]. In the present study we have extended this simulation approach to simulate separations relevant to 2D-LC. Specifically, we have focused on simulating 2 D separations where gradient elution conditions are used, there is mismatch between the sample solvent and the starting point in the gradient elution program, injection volumes approach or even exceed the dead volume of the 2 D column, and the extent of sample loop filling is varied. To validate this simulation we have compared results from simulations and experiments for 101 different conditions, including variation in injection volume (0.4-80μL), loop filling level (25-100%), and degree of mismatch between sample organic solvent and the starting point in the gradient elution program (-20 to +20% ACN). We find that that the simulation is accurate enough (median errors in retention time and peak width of -1.0 and -4.9%, without corrections for extra-column dispersion) to be useful in guiding optimization of 2D-LC separations. However, this requires that real injection profiles obtained from 2D-LC interface valves are used to simulate the introduction of samples into the 2 D column. These profiles are highly asymmetric - simulation using simple rectangular pulses leads to peak widths that are far too narrow under many conditions. We believe the simulation approach developed here will be useful for addressing practical questions in the development of 2D-LC methods. Copyright © 2017 Elsevier B.V. All rights reserved.
Luo, W; Xu, W; Pan, Q Y; Cai, X Z; Chen, J G; Chen, Y Z; Fan, G T; Fan, G W; Guo, W; Li, Y J; Liu, W H; Lin, G Q; Ma, Y G; Shen, W Q; Shi, X C; Xu, B J; Xu, J Q; Xu, Y; Zhang, H O; Yan, Z; Yang, L F; Zhao, M H
2010-01-01
As a prototype of the Shanghai Laser Electron Gamma Source in the Shanghai Synchrotron Radiation Facility, an x-ray source based on laser-Compton scattering (LCS) has been installed at the terminal of the 100 MeV linac of the Shanghai Institute of Applied Physics. LCS x-rays are generated by interactions between Q-switched Nd:yttrium aluminum garnet laser pulses [with wavelength of 1064 nm and pulse width of 21 ns (full width at half maximum)] and electron bunches [with energy of 108 MeV and pulse width of 0.95 ns (rms)] at an angle of 42 degrees between laser and electron beam. In order to measure the energy spectrum of LCS x-rays, a Si(Li) detector along the electron beam line axis is positioned at 9.8 m away from a LCS chamber. After background subtraction, the LCS x-ray spectrum with the peak energy of 29.1+/-4.4|(stat)+/-2.1|(syst) keV and the peak width (rms) of 7.8+/-2.8|(stat)+/-0.4|(syst) keV is observed. Normally the 100 MeV linac operates with the electron macropulse charge of 1.0 nC/pulse, and the electron and laser collision repetition rate of 20 Hz. Therefore, the total LCS x-ray flux of (5.2+/-2.0) x 10(2) Hz can be achieved.
NASA Astrophysics Data System (ADS)
Hmood, Jassim K.; Harun, Sulaiman W.
2018-05-01
A new approach for realizing a wideband optical frequency comb (OFC) generator based on driving cascaded modulators by a Gaussian-shaped waveform, is proposed and numerically demonstrated. The setup includes N-cascaded MZMs, a single Gaussian-shaped waveform generator, and N-1 electrical time delayer. The first MZM is driven directly by a Gaussian-shaped waveform, while delayed replicas of the Gaussian-shaped waveform drive the other MZMs. An analytical model that describes the proposed OFC generator is provided to study the effect of number and chirp factor of cascaded MZM as well as pulse width on output spectrum. Optical frequency combs at frequency spacing of 1 GHz are generated by applying Gaussian-shaped waveform at pulse widths ranging from 200 to 400 ps. Our results reveal that, the number of comb lines is inversely proportional to the pulse width and directly proportional to both number and chirp factor of cascaded MZMs. At pulse width of 200 ps and chirp factor of 4, 67 frequency lines can be measured at output spectrum of two-cascaded MZMs setup. Whereas, increasing the number of cascaded stages to 3, 4, and 5, the optical spectra counts 89, 109 and 123 frequency lines; respectively. When the delay time is optimized, 61 comb lines can be achieved with power fluctuations of less than 1 dB for five-cascaded MZMs setup.
NASA Astrophysics Data System (ADS)
Joh, Hea Min; Choi, Ji Ye; Kim, Sun Ja; Kang, Tae Hong; Chung, T. H.
2017-08-01
Plasma-liquid and plasma-cell interactions were investigated using an atmospheric pressure dc microsecond-pulsed helium plasma jet. We investigated the effects of the electrical parameters such as applied voltage and pulse width (determined by the pulse frequency and duty ratio) on the production of reactive species in the gas/liquid phases and on the DNA damage responses in the cancer cells. The densities of reactive species including OH radicals were estimated inside the plasma-treated liquids using a chemical probe method, and the nitrite concentration was detected by Griess assay. Importantly, the more concentration of OH resulted in the more DNA base oxidation and breaks in human lung cancer A549 cells. The data are very suggestive that there is strong correlation between the production of OH in the plasmas/liquids and the DNA damage.
NASA Astrophysics Data System (ADS)
Belyayev, Serhiy; Ivchenko, Nickolay
2018-04-01
Digital fluxgate magnetometers employ processing of the measured pickup signal to produce the value of the compensation current. Using pulse-width modulation with filtering for digital to analog conversion is a convenient approach, but it can introduce an intrinsic source of nonlinearity, which we discuss in this design note. A code shift of one least significant bit changes the second harmonic content of the pulse train, which feeds into the pick-up signal chain despite the heavy filtering. This effect produces a code-dependent nonlinearity. This nonlinearity can be overcome by the specific design of the timing of the pulse train signal. The second harmonic is suppressed if the first and third quarters of the excitation period pulse train are repeated in the second and fourth quarters. We demonstrate this principle on a digital magnetometer, achieving a magnetometer noise level corresponding to that of the sensor itself.
Passively mode-locked soliton femtosecond pulses employing graphene saturable absorber
NASA Astrophysics Data System (ADS)
Lau, K. Y.; Muhammad, F. D.; Latif, A. A.; Abu Bakar, M. H.; Yusoff, Z.; Mahdi, M. A.
2017-09-01
We demonstrate a passively mode-locked fiber laser incorporating graphene thin film (GTF) as saturable absorber (SA). The SA is fabricated by sandwiching the GTF between two single mode fiber ferrules through a fiber adaptor. The transmission loss at 1560 nm and non-linear saturation absorption modulation depth for GTF-SA are 0.8 dB and 2.90%, respectively. An erbium-doped fiber laser cavity is constructed to verify the functionality of GTF-SA and is designed to have net anomalous dispersion. It generates large spectral width of 4.99 nm with pulse repetition rate of 9.655 MHz and pulse width of 670 fs. Net anomalous dispersion and time bandwidth product higher than the sech2 transform-limited pulse validate the experimental result. In short, we demonstrate high performance GTF-SA that is able to generate ultrafast pulse duration in femtosecond range effortlessly with simple and green SA fabrication procedures.
Generation of programmable temporal pulse shape and applications in micromachining
NASA Astrophysics Data System (ADS)
Peng, X.; Jordens, B.; Hooper, A.; Baird, B. W.; Ren, W.; Xu, L.; Sun, L.
2009-02-01
In this paper we presented a pulse shaping technique on regular solid-state lasers and the application in semiconductor micromachining. With a conventional Q-switched laser, all of the parameters can be adjusted over only limited ranges, especially the pulse width and pulse shape. However, some laser link processes using traditional laser pulses with pulse widths of a few nanoseconds to a few tens of nanoseconds tend to over-crater in thicker overlying passivation layers and thereby cause IC reliability problems. Use of a laser pulse with a special shape and a fast leading edge, such as tailored pulse, is one technique for controlling link processing. The pulse shaping technique is based on light-loop controlled optical modulation to shape conventional Q-switched solid-state lasers. One advantage of the pulse shaping technique is to provide a tailored pulse shape that can be programmed to have more than one amplitude value. Moreover, it has the capability of providing programmable tailored pulse shapes with discrete amplitude and time duration components. In addition, it provides fast rising and fall time of each pulse at fairly high repetition rate at 355nm with good beam quality. The regular-to-shaped efficiency is up to 50%. We conclude with a discussion of current results for laser processing of semiconductor memory link structures using programmable temporal pulse shapes. The processing experiments showed promising results with shaped pulse.
NASA Astrophysics Data System (ADS)
Liu, Yang; Wang, Chao; Luo, Daping; Yang, Chao; Li, Jiang; Ge, Lin; Pan, Yubai; Li, Wenxue
2017-12-01
We demonstrate the passively mode-locked laser performances of bulk Yb:YAG ceramic prepared by non-aqueous tape casting, which generates initial pulses in temporal width of 3 ps and spectrum width of 3 nm without intra-cavity dispersion management. The ceramic laser is further used as seeding oscillator in a fiber nonlinear amplification system, where ultrashort pulses in maximum output power of ˜100 W and pulse duration of 70 fs are achieved. Moreover, the laser spectrum is broadened to be ˜41 nm due to self-phase modulation effects in the gain fiber, overcoming the narrow spectrum limitations of ceramic materials. Our approach opens a new avenue for power-scaling and spectrum-expanding of femtosecond ceramic lasers.
Chaitanya N, Apurv; Aadhi, A; Singh, R P; Samanta, G K
2014-09-15
We report on experimental realization of optimum focusing condition for type-I second-harmonic generation (SHG) of high-power, ultrafast laser in "thick" nonlinear crystal. Using single-pass, frequency doubling of a 5 W Yb-fiber laser of pulse width ~260 fs at repetition rate of 78 MHz in a 5-mm-long bismuth triborate (BIBO) crystal we observed that the optimum focusing condition is more dependent on the birefringence of the crystal than its group-velocity mismatch (GVM). A theoretical fit to our experimental results reveals that even in the presence of GVM, the optimum focusing condition matches the theoretical model of Boyd and Kleinman, predicted for continuous-wave and long-pulse SHG. Using a focusing factor of ξ=1.16 close to the estimated optimum value of ξ=1.72 for our experimental conditions, we generated 2.25 W of green radiation of pulse width 176 fs with single-pass conversion efficiency as high as 46.5%. Our study also verifies the effect of pulse narrowing and broadening of angular phase-matching bandwidth of SHG at tighter focusing. This study signifies the advantage of SHG in "thick" crystal in controlling SH-pulse width by changing the focusing lens while accessing high conversion efficiency and broad angular phase-matching bandwidth.
NASA Technical Reports Server (NTRS)
Miller, George E.
1992-01-01
Differential absorption of laser radiation by various molecular species represents both a selective and a sensitive method of measuring specific atmospheric constituents. DIAL measurements can be carried out via two different means. Both involve using two laser pulses with slightly different wavelengths (lambda), (one lambda at a strong absorption line of the molecule of interest, the other detuned into the wing of the line), and comparing the attenuation of the pulses. One approach relies on scattering of the radiation from some conveniently located topographical target. In the other technique elastic scattering from atmospheric aerosols and particulates is used to return the radiation to the lidar receiver system. This case is referred to as the differential absorption and scattering technique, and is the technique we are interested in to measure water vapor at 940 nm. The 940 nm wavelength is extremely desirable to atmospheric scientist interested in accurate DIAL measurements of H2O in the upper and lower troposphere. Simulated measurements using approximately 940 nm and 815 nm lasers at a range of altitudes and experimental conditions are shown. By offering access to larger absorption cross-sections, injected seeded, 940 nm DIAL laser transmitters would allow for more accurate water profile measurements at altitudes from 6 to 16 km than is currently possible with 730 nm and 815 nm DIAL laser transmitters. We have demonstrated the operation of an injected seeded titanium-sapphire (TS) laser operating at approximately 940 nm with an energy of more than 90 mJ per pulse. The TS laser is pumped by a commercial, 600 mJ, 532 nm, 10 Hz Nd:YAG laser. The slope efficiency of the laser using a flat 50 percent R output coupler and a 10 m end-mirror is shown. The laser was injected seeded with a CW, AlGaAs, semiconductor diode laser which had an output of 83 mW. The CW diode seed beam was introduced into the TS laser cavity through a HR end-mirror. When the diode beam is aligned to the TS resonator, it controls the TS laser output wavelength and its spectral line width with the required resolution for DIAL applications. This work supports the need for the development of 940 nm, titanium-sapphire DIAL transmitters.
Energy-conserving programming of VVI pacemakers: a telemetry-supported, long-term, follow-up study.
Klein, H H; Knake, W
1990-06-01
Thirty patients with VVI pacemakers (Quantum 253-09, 253-19, Intermedics Inc., Freeport, TX) were observed for a mean of 65 months. Within 12 months after implantation, optimized output programming was performed in 29 patients. This included a decrease in pulse amplitude (22 patients), pulse width (4 patients), and/or pacing rate (11 patients). After 65 months postimplantation, telemetered battery voltage and battery impedance were compared with the predicted values expected when the pulse generator constantly stimulates at nominal program conditions (heart rate 72.3 beats/min, pulse amplitude 5.4 V, pulse width 0.61 ms). Instead of an expected cell voltage of 2.6 V and a cell impedance of 10 k omega mean telemetered values amounted to 2.78 V and 1.4 k omega, respectively. These data correspond to a battery age of 12-15 months at nominal program conditions. This long-term follow-up study suggests that adequate programming will extend battery longevity and thus pulse generator survival in many patients.
Light-induced new memory states in electronic resistive switching of NiO/NSTO junction
NASA Astrophysics Data System (ADS)
Wei, Ling; Li, G. Q.; Zhang, W. F.
2016-02-01
n-type and p-type NiO films were prepared on SrTiO3:Nb (NSTO) by controlling oxygen pressures during the process of pulsed laser deposition. The results of current-voltage (I-V) characteristics and photocurrent investigation indicate that the junction shows a typical electronic bipolar resistive switching (RS) behavior and the optical injection can add new resistance states. Photocurrents can obviously be modulated by different resistance states of NiO/NSTO junction. The linear fitting results of I-V curves reveal that the low resistance state follows Ohmic behavior and the high resistance state follows Schottky-emission mechanism. The depletion widths under forward and reverse bias in the dark and with the illumination were estimated respectively. Combined with the energy band structure, the mechanism of RS and photoresponse in the NiO/NSTO junction can be attributed to the variance of interfacial barrier during electrical and optical injection. These results pave the way for the application of the NiO/NSTO junction in the multilevel storage of optical-electrical devices.
Influence of spray nozzle shape upon atomization process
NASA Astrophysics Data System (ADS)
Beniuga, Marius; Mihai, Ioan
2016-12-01
The atomization process is affected by a number of operating parameters (pressure, viscosity, temperature, etc.) [1-6] and the adopted constructive solution. In this article are compared parameters of atomized liquid jet with two nozzles that have different lifespan, one being new and the other one out. The last statement shows that the second nozzle was monitored as time of operation on the one hand and on the other hand, two dimensional nozzles have been analyzed using laser profilometry. To compare the experimental parameters was carried an experimental stand to change the period and pulse width in injecting liquid through two nozzles. Atomized liquid jets were photographed and filmed quickly. Images obtained were analyzed using a Matlab code that allowed to determine a number of parameters that characterize an atomized jet. Knowing the conditions and operating parameters of atomized jet, will establish a new wastewater nozzle block of parameter values that can be implemented in controller that provides dosing of the liquid injected. Experimental measurements to observe the myriad forms of atomized droplets to a wide range of operating conditions, realized using the electronic control module.
Selective two-photon excitation of a vibronic state by correlated photons.
Oka, Hisaki
2011-03-28
We theoretically investigate the two-photon excitation of a molecular vibronic state by correlated photons with energy anticorrelation. A Morse oscillator having three sets of vibronic states is used, as an example, to evaluate the selectivity and efficiency of two-photon excitation. We show that a vibrational mode can be selectively excited with high efficiency by the correlated photons, without phase manipulation or pulse-shaping techniques. This can be achieved by controlling the quantum correlation so that the photon pair concurrently has two pulse widths, namely, a temporally narrow width and a spectrally narrow width. Though this concurrence is seemingly contradictory, we can create such a photon pair by tailoring the quantum correlation between two photons.
Li, Jiangtao; Zhao, Zheng; Sun, Yi; Liu, Yuhao; Ren, Ziyuan; He, Jiaxin; Cao, Hui; Zheng, Minjun
2017-03-01
Numerous applications driven by pulsed voltage require pulses to be with high amplitude, high repetitive frequency, and narrow width, which could be satisfied by utilizing avalanche transistors. The output improvement is severely limited by power capacities of transistors. Pulse combining is an effective approach to increase the output amplitude while still adopting conventional pulse generating modules. However, there are drawbacks in traditional topologies including the saturation tendency of combining efficiency and waveform oscillation. In this paper, a hybrid pulse combining topology was adopted utilizing the combination of modularized avalanche transistor Marx circuits, direct pulse adding, and transmission line transformer. The factors affecting the combining efficiency were determined including the output time synchronization of Marx circuits, and the quantity and position of magnetic cores. The numbers of the parallel modules and the stages were determined by the output characteristics of each combining method. Experimental results illustrated the ability of generating pulses with 2-14 kV amplitude, 7-11 ns width, and a maximum 10 kHz repetitive rate on a matched 50-300 Ω resistive load. The hybrid topology would be a convinced pulse combining method for similar nanosecond pulse generators based on the solid-state switches.
NASA Astrophysics Data System (ADS)
Li, Jiangtao; Zhao, Zheng; Sun, Yi; Liu, Yuhao; Ren, Ziyuan; He, Jiaxin; Cao, Hui; Zheng, Minjun
2017-03-01
Numerous applications driven by pulsed voltage require pulses to be with high amplitude, high repetitive frequency, and narrow width, which could be satisfied by utilizing avalanche transistors. The output improvement is severely limited by power capacities of transistors. Pulse combining is an effective approach to increase the output amplitude while still adopting conventional pulse generating modules. However, there are drawbacks in traditional topologies including the saturation tendency of combining efficiency and waveform oscillation. In this paper, a hybrid pulse combining topology was adopted utilizing the combination of modularized avalanche transistor Marx circuits, direct pulse adding, and transmission line transformer. The factors affecting the combining efficiency were determined including the output time synchronization of Marx circuits, and the quantity and position of magnetic cores. The numbers of the parallel modules and the stages were determined by the output characteristics of each combining method. Experimental results illustrated the ability of generating pulses with 2-14 kV amplitude, 7-11 ns width, and a maximum 10 kHz repetitive rate on a matched 50-300 Ω resistive load. The hybrid topology would be a convinced pulse combining method for similar nanosecond pulse generators based on the solid-state switches.
NASA Astrophysics Data System (ADS)
Brunner, D.; Burke, W.; Kuang, A. Q.; LaBombard, B.; Lipschultz, B.; Wolfe, S.
2016-02-01
Mitigation of the intense heat flux to the divertor is one of the outstanding problems in fusion energy. One technique that has shown promise is impurity seeding, i.e., the injection of low-Z gaseous impurities (typically N2 or Ne) to radiate and dissipate the power before it arrives to the divertor target plate. To this end, the Alcator C-Mod team has created a first-of-its-kind feedback system to control the injection of seed gas based on real-time surface heat flux measurements. Surface thermocouples provide real-time measurements of the surface temperature response to the plasma heat flux. The surface temperature measurements are inputted into an analog computer that "solves" the 1-D heat transport equation to deliver accurate, real-time signals of the surface heat flux. The surface heat flux signals are sent to the C-Mod digital plasma control system, which uses a proportional-integral-derivative (PID) algorithm to control the duty cycle demand to a pulse width modulated piezo valve, which in turn controls the injection of gas into the private flux region of the C-Mod divertor. This paper presents the design and implementation of this new feedback system as well as initial results using it to control divertor heat flux.
Brunner, D; Burke, W; Kuang, A Q; LaBombard, B; Lipschultz, B; Wolfe, S
2016-02-01
Mitigation of the intense heat flux to the divertor is one of the outstanding problems in fusion energy. One technique that has shown promise is impurity seeding, i.e., the injection of low-Z gaseous impurities (typically N2 or Ne) to radiate and dissipate the power before it arrives to the divertor target plate. To this end, the Alcator C-Mod team has created a first-of-its-kind feedback system to control the injection of seed gas based on real-time surface heat flux measurements. Surface thermocouples provide real-time measurements of the surface temperature response to the plasma heat flux. The surface temperature measurements are inputted into an analog computer that "solves" the 1-D heat transport equation to deliver accurate, real-time signals of the surface heat flux. The surface heat flux signals are sent to the C-Mod digital plasma control system, which uses a proportional-integral-derivative (PID) algorithm to control the duty cycle demand to a pulse width modulated piezo valve, which in turn controls the injection of gas into the private flux region of the C-Mod divertor. This paper presents the design and implementation of this new feedback system as well as initial results using it to control divertor heat flux.
NASA Technical Reports Server (NTRS)
Coyle, Barry; Poulios, Demetrios
2013-01-01
A fiber/solid-state hybrid seeded regenerative amplifier, capable of achieving high output energy with tunable pulse widths, has been developed for satellite laser ranging applications. The regenerative amplifier cavity uses a pair of Nd:YAG zigzag slabs oriented orthogonally to one another in order to make thermal lensing effects symmetrical and simplify optical correction schemes. The seed laser used is a fiber-coupled 1,064-nm narrowband (<0.02 nm) diode laser that is discretely driven in a new short-pulsed mode, enabling continuously tunable seed pulse widths in the 0.2-to-0.4-ns range. The amplifier gain unit consists of a pair of Brewster-cut 6-bounce zigzag Nd:YAG laser slabs, oriented 90deg relative to each other in the amplifier head. This arrangement creates a net-symmetrical thermal lens effect (an opposing singleaxis effect in each slab), and makes thermo-optical corrections simple by optimizing the curvature of the nearest cavity mirror. Each slab is pumped by a single 120-W, pulsed 808-nm laser diode array. In this configuration, the average pump beam distribution in the slabs had a 1-D Gaussian shape, which matches the estimated cavity mode size. A half-wave plate between the slabs reduces losses from Fresnel reflections due to the orthogonal slabs Brewster-cut end faces. Successful "temporal" seeding of the regenerative amplifier cavity results in a cavity Q-switch pulse envelope segmenting into shorter pulses, each having the width of the input seed, and having a uniform temporal separation corresponding to the cavity round-trip time of approx. =10 ns. The pulse energy is allowed to build on successive passes in the regenerative amplifier cavity until a maximum is reached, (when cavity gains and losses are equal), after which the pulse is electro- optically switched out on the next round trip The overall gain of the amplifier is approx. =82 dB (or a factor of 1.26 million). After directing the amplified output through a LBO frequency doubling crystal, approx. = 2.1 W of 532-nm output (>1 mJ) was measured. This corresponds to a nonlinear conversion efficiency of >60%. Furthermore, by pulse pumping this system, a single pulse per laser shot can be created for the SLR (satellite laser ranging) measurement, and this can be ejected into the instrument. This is operated at the precise frequency needed by the measurement, as opposed to commercial short-pulsed, mode-locked systems that need to operate in a continuous fashion, or CW (continuous wave), and create pulses at many MHz. Therefore, this design does not need to throw away or dump 99% of the laser energy to produce what is required; this system can be far smaller, more efficient, cheaper, and readily deployed in the field when packaged efficiently. Finally, by producing custom diode seed pulses electronically, two major advantages over commercial systems are realized: First, this pulse shape is customizable and not affected by the cavity length or gain of the amplifier cavity, and second, it can produce adjustable (selectable) pulse widths by simply adding multiple seed diodes and coupling each into commercial, low-cost fiber-optic combiners.
All-optical controlled switching of solitons
NASA Astrophysics Data System (ADS)
Man, Wai Sing
1999-11-01
In this dissertation, we have numerically investigated various method of switching solitons using two different nonlinear optical switching devices, namely the twin core nonlinear directional coupler (TCNLDC) and the nonlinear optical loop mirror (NOLM). In the case of TCNLDC, four different schemes were explored where the polarization of the controlling pulse is either parallel or orthogonal to that of the signal soliton, or the controlling pulse may be launched into either of the input ports or it may have a wavelength different from that of the signal. It has been shown that high switching efficiency and distortionless propagation of the signal pulse through the coupler can only be achieved for the case in which the control pulse is launched into the adjacent port of the directional coupler and that its dispersion has equal magnitude but opposite sign as that of the signal. The effect of varying pulse width, walk-off and timing jitter were also investigated for this particular scheme for signal pulse width of 1 ps wide. In the case of NOLM, a control pulse having central wavelength located at the normal dispersion region is used to switch the soliton. The control pulse width and the NOLM's loop length were varied to obtain the switched soliton with minimum distortion and high switching efficiency. In this analysis, Raman effect is included because the control pulse transfers part of its energy to the co-propagating signal pulse in the optical loop. A compact soliton laser has also been developed for this project and its performance was analyzed experimentally and numerically. In our analysis of this soliton laser, we found that the wavelength of the mode-locked pulse can be tuned by varying the polarization elements in the laser and this is entirely due to the birefringence in the laser cavity. In summary, our works have shown that optical solitons can be switched effectively by TCNLDC and NOLM in the high bit-rate and low switching energy regime. (Abstract shortened by UMI.)
Theoretical and experimental analysis of injection seeding a Q-switched alexandrite laser
NASA Technical Reports Server (NTRS)
Prasad, C. R.; Lee, H. S.; Glesne, T. R.; Monosmith, B.; Schwemmer, G. K.
1991-01-01
Injection seeding is a method for achieving linewidths of less than 500 MHz in the output of broadband, tunable, solid state lasers. Dye lasers, CW and pulsed diode lasers, and other solid state lasers have been used as injection seeders. By optimizing the fundamental laser parameters of pump energy, Q-switched pulse build-up time, injection seed power and mode matching, one can achieve significant improvements in the spectral purity of the Q-switched output. These parameters are incorporated into a simple model for analyzing spectral purity and pulse build-up processes in a Q-switched, injection-seeded laser. Experiments to optimize the relevant parameters of an alexandrite laser show good agreement.
High peak power actively Q-switched mid-infrared fiber lasers at 3 μm
NASA Astrophysics Data System (ADS)
Shen, Yanlong; Wang, Yishan; Luan, Kunpeng; Chen, Hongwei; Tao, Mengmeng; Si, Jinhai
2017-04-01
Diode-pumped pulsed Er3+-doped ZBLAN fiber lasers at 2.8 μm actively Q-switched by using an mechanical Q-switch with feedbacks of a protected gold mirror and a blazing grating were investigated, respectively. A pulse energy of 0.13 mJ and repetition rate of 10 kHz with a pulse width of 127.3 ns at 2.78 μm was obtained when using a protected gold mirror as the feedback. By replacing the mirror with a blazing grating in Littrow configuration, the wavelength of the Q-switched pulse train was tunable with over 100 nm tuning range from 2.71 to 2.82 μm and a linewidth of 1.5 nm. A maxinmum pulse energy of up to 0.15 mJ and repetition rate of 10 kHz with a pulse width of 92.6 ns was achieved, yielding the maximum peak power of exceeding 1.6 kW. The pulse energy and peak power, to our knowledge, are the highest ever reported in the mid-infrared Q-switched fiber lasers.
Reinjection laser oscillator and method
McLellan, Edward J.
1984-01-01
A uv preionized CO.sub.2 oscillator with integral four-pass amplifier capable of providing 1 to 5 GW laser pulses with pulse widths from 0.1 to 0.5 ns full width at half-maximum (FWHM) is described. The apparatus is operated at any pressure from 1 atm to 10 atm without the necessity of complex high voltage electronics. The reinjection technique employed gives rise to a compact, efficient system that is particularly immune to alignment instabilities with a minimal amount of hardware and complexity.
CORE SATURATION BLOCKING OSCILLATOR
Spinrad, R.J.
1961-10-17
A blocking oscillator which relies on core saturation regulation to control the output pulse width is described. In this arrangement an external magnetic loop is provided in which a saturable portion forms the core of a feedback transformer used with the thermionic or semi-conductor active element. A first stationary magnetic loop establishes a level of flux through the saturation portion of the loop. A second adjustable magnet moves the flux level to select a saturation point giving the desired output pulse width. (AEC)
Tunable mode and line selection by injection in a TEA CO2 laser
NASA Technical Reports Server (NTRS)
Menzies, R. T.; Flamant, P. H.; Kavaya, M. J.; Kuiper, E. N.
1984-01-01
Tunable mode selection by injection in pulsed CO2 lasers is examined, and both analytical and numerical models are used to compute the required injection power for a variety of experimental cases. These are treated in two categories: mode selection at a desired frequency displacement from the center frequency of a transition line in a dispersive cavity and mode (and line) selection at the center frequency of a selected transition line in a nondispersive cavity. The results point out the potential flexibility of pulsed injection in providing wavelength tunable high-energy single-frequency pulses.
Injection-controlled laser resonator
Chang, J.J.
1995-07-18
A new injection-controlled laser resonator incorporates self-filtering and self-imaging characteristics with an efficient injection scheme. A low-divergence laser signal is injected into the resonator, which enables the injection signal to be converted to the desired resonator modes before the main laser pulse starts. This injection technique and resonator design enable the laser cavity to improve the quality of the injection signal through self-filtering before the main laser pulse starts. The self-imaging property of the present resonator reduces the cavity induced diffraction effects and, in turn, improves the laser beam quality. 5 figs.
Injection-controlled laser resonator
Chang, Jim J.
1995-07-18
A new injection-controlled laser resonator incorporates self-filtering and self-imaging characteristics with an efficient injection scheme. A low-divergence laser signal is injected into the resonator, which enables the injection signal to be converted to the desired resonator modes before the main laser pulse starts. This injection technique and resonator design enable the laser cavity to improve the quality of the injection signal through self-filtering before the main laser pulse starts. The self-imaging property of the present resonator reduces the cavity induced diffraction effects and, in turn, improves the laser beam quality.
Progress of long pulse operation with high performance plasma in KSTAR
NASA Astrophysics Data System (ADS)
Bae, Young; Kstar Team
2015-11-01
Recent KSTAR experiments showed the sustained H-mode operation up to the pulse duration of 46 s at the plasma current of 600 kA. The long-pulse H-mode operation has been supported by long-pulse capable neutral beam injection (NBI) system with high NB current drive efficiency attributed by highly tangential injections of three beam sources. In next phase, aiming to demonstrate the long pulse stationary high performance plasma operation, we are attempting the long pulse inductive operation at the higher performance (MA plasma current, high normalized beta, and low q95) for the final goal of demonstration of ITER-like baseline scenario in KSTAR with progressive improvement of the plasma shape control and higher neutral beam injection power. This paper presents the progress of long pulse operation and the analysis of energy confinement time and non-inductive current drive in KSTAR.
Autogenerator of beams of charged particles
Adler, Richard J.; Mazarakis, Michael G.; Miller, Robert B.; Shope, Steven L.; Smith, David L.
1986-01-01
An autogenerating apparatus provides secondary intense relativistic current beam pulses in response to an injected beam pulse. One or more electromagnetic energy storage devices are provided in conjunction with gaps along a beam propagation path for the injected beam pulse. For injected beam pulses which are no longer than double the transit time of electromagnetic waves within the storage devices (which may be resonant cavities), distinct secondary beam pulses are generated by each of the energy storage devices. The beam propagation path, together with the one or more gaps provided therein, operates as a pulse forming transmission line cavity, in which the separate cavities associated with the gaps provide delays for electromagnetic waves generated at the gaps. After doubly traversing the cavity, the electromagnetic waves cause the gap to generate the secondary beam pulses, which are thus delayed by a time interval equal to the double transit time for the induced wave within the cavity.
Autogenerator of beams of charged particles
Adler, R.J.; Mazarakis, M.G.; Miller, R.M.; Shope, S.L.; Smith, D.L.
1983-10-31
An autogenerating apparatus provides secondary intense relativistic current beam pulses in response to an injected beam pulse. One or more electromagnetic energy storage devices are provided in conjunction with gaps along a beam propagation path for the injected beam pulse. For injected beam pulses which are no longer than double the transit time of electromagnetic waves within the storage devices (which may be resonant cavities), distinct secondary beam pulses are generated by each of the energy storage devices. The beam propagation path, together with the one or more gaps provided therein, operates as a pulse forming transmission line cavity, in which the separate cavities associated with the gaps provide delays for electromagnetic waves generated at the gaps. After doubly traversing the cavity, the electromagnetic waves cause the gap to generate the secondary beam pulses, which are thus delayed by a time interval equal to the double transit time for the induced wave within the cavity.
Measured pulse width of sonoluminescence flashes in the form of resonance radiation
NASA Astrophysics Data System (ADS)
Giri, Asis; Arakeri, Vijay H.
1998-09-01
Recent studies have shown that the measured flash widths from single and multibubble sonoluminescence are in subnanosecond or even picosecond regime. Here, we provide conclusive evidence for the existence of nanosecond multibubble sonoluminescence. This has become possible by our ability to find a medium from which exclusive sodium D line resonance radiation as a form of sonoluminescence is possible. The measured flash width of this emission is found to be in the range of tens of nanoseconds and is sensitively dependent on experimental parameters. Our finding is important since all the earlier pulse width measurements have been limited to emission with the physical source or species responsible for observed optical radiation not being clearly identified. We propose that the presently observed resonance radiation is from ``soft'' bubble collapse as analyzed by V. Kamath et al. [J. Acoust. Soc. Am. 94, 248 (1993)].
Dye laser traveling wave amplifier
NASA Technical Reports Server (NTRS)
Davidson, F.; Hohman, J.
1985-01-01
Injection locking was applied to a cavity-dumped coaxial flashlamp pumped dye laser in an effort to obtain nanosecond duration pulses which have both high energy and narrow-linewidth. In the absence of an injected laser pulse, the cavity-dumped dye laser was capable of generating high energy (approx. 60mJ) nanosecond duration output pulses. These pulses, however, had a fixed center wavelength and were extremely broadband (approx. 6nm FWHM). Experimental investigations were performed to determine if the spectral properties of these outputs could be improved through the use of injection-locking techniques. A parametric study to determine the specific conditions under which the laser could be injection-locked was also carried out. Significant linewidth reduction to 0.0015nm) of the outputs was obtained through injection-locking but only at wavelengths near the peak lasing wavelength of the dye. It was found, however; that by inserting weakly dispersive tuning elements in the laser cavity, these narrow-linewidth outputs could be obtained over a wide (24nm) tuning range. Since the tuning elements had low insertion losses, the tunability of the output was obtained without sacrificing output pulse energy.
Diwakar, Prasoon K.; Harilal, Sivanandan S.; LaHaye, Nicole L.; Hassanein, Ahmed; Kulkarni, Pramod
2015-01-01
Laser parameters, typically wavelength, pulse width, irradiance, repetition rate, and pulse energy, are critical parameters which influence the laser ablation process and thereby influence the LA-ICP-MS signal. In recent times, femtosecond laser ablation has gained popularity owing to the reduction in fractionation related issues and improved analytical performance which can provide matrix-independent sampling. The advantage offered by fs-LA is due to shorter pulse duration of the laser as compared to the phonon relaxation time and heat diffusion time. Hence the thermal effects are minimized in fs-LA. Recently, fs-LA-ICP-MS demonstrated improved analytical performance as compared to ns-LA-ICP-MS, but detailed mechanisms and processes are still not clearly understood. Improvement of fs-LA-ICP-MS over ns-LA-ICP-MS elucidates the importance of laser pulse duration and related effects on the ablation process. In this study, we have investigated the influence of laser pulse width (40 fs to 0.3 ns) and energy on LA-ICP-MS signal intensity and repeatability using a brass sample. Experiments were performed in single spot ablation mode as well as rastering ablation mode to monitor the Cu/Zn ratio. The recorded ICP-MS signal was correlated with total particle counts generated during laser ablation as well as particle size distribution. Our results show the importance of pulse width effects in the fs regime that becomes more pronounced when moving from femtosecond to picosecond and nanosecond regimes. PMID:26664120
Graphene Oxide: A Perfect Material for Spatial Light Modulation Based on Plasma Channels
Tan, Chao; Wu, Xinghua; Wang, Qinkai; Tang, Pinghua; Shi, Xiaohui; Zhan, Shiping; Xi, Zaifang; Fu, Xiquan
2017-01-01
The graphene oxide (GO) is successfully prepared from a purified natural graphite through a pressurized oxidation method. We experimentally demonstrate that GO as an optical media can be used for spatial light modulation based on plasma channels induced by femtosecond pulses. The modulated beam exhibits good propagation properties in free space. It is easy to realize the spatial modulation on the probe beam at a high concentration of GO dispersion solutions, high power and smaller pulse width of the pump beam. We also find that the spatial modulation on the probe beam can be conveniently adjusted through the power and pulse width of pump lasers, dispersion solution concentration. PMID:28772712
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen Weicheng; Chen Guojie; Han Dingan
A fibre laser with a SESAM as a passive mode-locker is constructed for obtaining a vector soliton with the Kelly sidebands. The analysis of the peculiarities of the sidebands shows that the polarisation states are nonuniform across the entire pulse spectral profile from the leading edge to the trailing edge. Polarisation filtering effect is proposed to obtain a vector soliton with a uniform polarisation state. It is shown that during the polarisation filtering by a polariser incorporated into the laser cavity, the spectral width of the vector solitons gradually broadens and the pulse power decreases. It is found that atmore » a maximum spectral width and a minimum pulse power, vector solitons with a uniform polarisation state are generated. (nonlinear optical phenomena)« less
Self-seeding ring optical parametric oscillator
Smith, Arlee V [Albuquerque, NM; Armstrong, Darrell J [Albuquerque, NM
2005-12-27
An optical parametric oscillator apparatus utilizing self-seeding with an external nanosecond-duration pump source to generate a seed pulse resulting in increased conversion efficiency. An optical parametric oscillator with a ring configuration are combined with a pump that injection seeds the optical parametric oscillator with a nanosecond duration, mJ pulse in the reverse direction as the main pulse. A retroreflecting means outside the cavity injects the seed pulse back into the cavity in the direction of the main pulse to seed the main pulse, resulting in higher conversion efficiency.
Effects of supercritical environment on hydrocarbon-fuel injection
NASA Astrophysics Data System (ADS)
Shin, Bongchul; Kim, Dohun; Son, Min; Koo, Jaye
2017-04-01
In this study, the effects of environment conditions on decane were investigated. Decane was injected in subcritical and supercritical ambient conditions. The visualization chamber was pressurized to 1.68 MPa by using nitrogen gas at a temperature of 653 K for subcritical ambient conditions. For supercritical ambient conditions, the visualization chamber was pressurized to 2.52 MPa by using helium at a temperature of 653 K. The decane injection in the pressurized chamber was visualized via a shadowgraph technique and gradient images were obtained by a post processing method. A large variation in density gradient was observed at jet interface in the case of subcritical injection in subcritical ambient conditions. Conversely, for supercritical injection in supercritical ambient conditions, a small density gradient was observed at the jet interface. In a manner similar to that observed in other cases, supercritical injection in subcritical ambient conditions differed from supercritical ambient conditions such as sphere shape liquid. Additionally, there were changes in the interface, and the supercritical injection core width was thicker than that in the subcritical injection. Furthermore, in cases with the same injection conditions, the change in the supercritical ambient normalized core width was smaller than the change in the subcritical ambient normalized core width owing to high specific heat at the supercritical injection and small phase change at the interface. Therefore, the interface was affected by the changing ambient condition. Given that the effect of changing the thermodynamic properties of propellants could be essential for a variable thrust rocket engine, the effects of the ambient conditions were investigated experimentally.
Laser micro-machining strategies for transparent brittle materials using ultrashort pulsed lasers
NASA Astrophysics Data System (ADS)
Bernard, Benjamin; Matylitsky, Victor
2017-02-01
Cutting and drilling of transparent materials using short pulsed laser systems are important industrial production processes. Applications ranging from sapphire cutting, hardened glass processing, and flat panel display cutting, to diamond processing are possible. The ablation process using a Gaussian laser beam incident on the topside of a sample with several parallel overlapping lines leads to a V-shaped structured groove. This limits the structuring depth for a given kerf width. The unique possibility for transparent materials to start the ablation process from the backside of the sample is a well-known strategy to improve the aspect ratio of the ablated features. This work compares the achievable groove depth depending on the kerf width for front-side and back-side ablation and presents the best relation between the kerf width and number of overscans. Additionally, the influence of the number of pulses in one burst train on the ablation efficiency is investigated. The experiments were carried out using Spirit HE laser from Spectra-Physics, with the features of adjustable pulse duration from <400 fs to 10 ps, three different repetition rates (100 kHz, 200 kHz and 400 kHz) and average output powers of >16 W ( at 1040 nm wavelength).
Laser Pulse Width Dependence and Ionization Mechanism of Matrix-Assisted Laser Desorption/Ionization
NASA Astrophysics Data System (ADS)
Liang, Sheng-Ping; Lu, I.-Chung; Tsai, Shang-Ting; Chen, Jien-Lian; Lee, Yuan Tseh; Ni, Chi-Kung
2017-10-01
Ultraviolet laser pulses at 355 nm with variable pulse widths in the region from 170 ps to 1.5 ns were used to investigate the ionization mechanism of matrix-assisted laser desorption/ionization (MALDI) for matrices 2,5-dihydroxybenzoic acid (DHB), α-cyano-4-hydroxycinnamic acid (CHCA), and sinapinic acid (SA). The mass spectra of desorbed ions and the intensity and velocity distribution of desorbed neutrals were measured simultaneously for each laser shot. These quantities were found to be independent of the laser pulse width. A comparison of the experimental measurements and numerical simulations according to the multiphoton ionization, coupled photophysical and chemical dynamics (CPCD), and thermally induced proton transfer models showed that the predictions of thermally induced proton transfer model were in agreement with the experimental data, but those of the multiphoton ionization model were not. Moreover, the predictions of the CPCD model based on singlet-singlet energy pooling were inconsistent with the experimental data of CHCA and SA, but were consistent with the experimental data of DHB only when some parameters used in the model were adjusted to extreme values. [Figure not available: see fulltext.
NASA Astrophysics Data System (ADS)
Liao, Renbo; Liu, Hongzhan; Qiao, Yaojun
2014-05-01
In order to improve the power efficiency and reduce the packet error rate of reverse differential pulse position modulation (RDPPM) for wireless optical communication (WOC), a hybrid reverse differential pulse position width modulation (RDPPWM) scheme is proposed, based on RDPPM and reverse pulse width modulation. Subsequently, the symbol structure of RDPPWM is briefly analyzed, and its performance is compared with that of other modulation schemes in terms of average transmitted power, bandwidth requirement, and packet error rate over ideal additive white Gaussian noise (AWGN) channels. Based on the given model, the simulation results show that the proposed modulation scheme has the advantages of improving the power efficiency and reducing the bandwidth requirement. Moreover, in terms of error probability performance, RDPPWM can achieve a much lower packet error rate than that of RDPPM. For example, at the same received signal power of -28 dBm, the packet error rate of RDPPWM can decrease to 2.6×10-12, while that of RDPPM is 2.2×10. Furthermore, RDPPWM does not need symbol synchronization at the receiving end. These considerations make RDPPWM a favorable candidate to select as the modulation scheme in the WOC systems.
Control Systems with Pulse Width Modulation in Matrix Converters
NASA Astrophysics Data System (ADS)
Bondarev, A. V.; Fedorov, S. V.; Muravyova, E. A.
2018-03-01
In this article, the matrix frequency converter for the system of the frequency control of the electric drive is considered. Algorithms of formation of an output signal on the basis of pulse width modulation were developed for the quantitative analysis of quality of an output signal on the basis of mathematical models. On the basis of simulation models of an output signal, assessment of quality of this signal was carried out. The analysis of harmonic composition of the voltage output received on the basis of pulse width modulation was made for the purpose of determination of opportunities of the control system for improving harmonic composition. The result of such analysis led to the fact that the device formation of switching functions of the control system on the basis of PWM does not lead to a distortion reduction of a harmonic of the control signal, and leads to offset of harmonic in the field of frequencies, the multiple relatively carrier frequency.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Iijima, Hokuto; Nagai, Ryoji; Nishimori, Nobuyuki
2009-12-15
A second-harmonic generation frequency-resolved optical gating (SHG-FROG) system has been developed for the complete characterization of laser pulses in the wavelength range of 10-30 {mu}m. A tellurium crystal is used so that spectrally resolved autocorrelation signals with a good signal-to-noise ratio are obtained. Pulses (wavelength {approx}22 {mu}m) generated from a free-electron laser are measured by the SHG-FROG system. The SHG intensity profile and the spectrum obtained by FROG measurements are well consistent with those of independent measurements of the pulse length and spectrum. The pulse duration and spectral width determined from the FROG trace are 0.6 ps and 5.2 THzmore » at full width half maximum, respectively.« less
Optically powered oil tank multichannel detection system with optical fiber link
NASA Astrophysics Data System (ADS)
Yu, Zhijing
1998-08-01
A novel oil tanks integrative parameters measuring system with optically powered are presented. To realize optical powered and micro-power consumption multiple channels and parameters detection, the system has taken the PWM/PPM modulation, ratio measurement, time division multiplexing and pulse width division multiplexing techniques. Moreover, the system also used special pulse width discriminator and single-chip microcomputer to accomplish signal pulse separation, PPM/PWM signal demodulation, the error correction of overlapping pulse and data processing. This new transducer has provided with high characteristics: experimental transmitting distance is 500m; total consumption of the probes is less than 150 (mu) W; measurement error: +/- 0.5 degrees C and +/- 0.2 percent FS. The measurement accuracy of the liquid level and reserves is mainly determined by the pressure accuracy. Finally, some points of the experiment are given.
NASA Astrophysics Data System (ADS)
Hamam, Kholoud A.; Gamal, Yosr E. E.-D.
2018-06-01
We report a numerical investigation of the breakdown and damage in fused silica caused by ultra-short laser pulses. The study based on a modified model (Gaabour et al., 2012) that solves the rate equation numerically for the electron density evolution during the laser pulse, under the combined effect of both multiphoton and electron impact ionization processes. Besides, electron loss processes due to diffusion out of the focal volume and recombination are also considered in this analysis. The model is applied to investigate the threshold intensity dependence on laser pulse width in the experimental measurements that are given by Liu et al. (2005). In this experiment, a Ti-sapphire laser source operating at 800 nm with pulse duration varies between 240 fs and 2.5 ps is used to irradiate a bulk of fused silica with dimensions 10 × 5 × 3 mm. The laser beam was focused into the bulk using two optical systems with effective numerical apertures (NA) 0.126 and 0.255 to give beam spot radius at the focus of the order 2.0 μm and 0.95 μm respectively. Reasonable agreement between the calculated thresholds and the measured ones is attained. Moreover, a study is performed to examine the respective role of the physical processes of the breakdown of fused silica in relation to the pulse width and focusing optical system. The analysis revealed a real picture of the location and size of the generated plasma.
Sub-Fourier characteristics of a δ-kicked-rotor resonance.
Talukdar, I; Shrestha, R; Summy, G S
2010-07-30
We experimentally investigate the sub-Fourier behavior of a δ-kicked-rotor resonance by performing a measurement of the fidelity or overlap of a Bose-Einstein condensate exposed to a periodically pulsed standing wave. The temporal width of the fidelity resonance peak centered at the Talbot time and zero initial momentum exhibits an inverse cube pulse number (1/N3)-dependent scaling compared to a 1/N2 dependence for the mean energy width at the same resonance. A theoretical analysis shows that for an accelerating potential the width of the resonance in acceleration space depends on 1/N3, a property which we also verify experimentally. Such a sub-Fourier effect could be useful for high precision gravity measurements.
System and process for pulsed multiple reaction monitoring
Belov, Mikhail E
2013-05-17
A new pulsed multiple reaction monitoring process and system are disclosed that uses a pulsed ion injection mode for use in conjunction with triple-quadrupole instruments. The pulsed injection mode approach reduces background ion noise at the detector, increases amplitude of the ion signal, and includes a unity duty cycle that provides a significant sensitivity increase for reliable quantitation of proteins/peptides present at attomole levels in highly complex biological mixtures.
NASA Astrophysics Data System (ADS)
Volkov, K. N.; Emelyanov, V. N.; Yakovchuk, M. S.
2017-11-01
The transverse injection of a pulsed jet into a supersonic flow for thrust vectoring in solid rocket motors is investigated. The gas flow through the injection nozzle is controlled by a piston which performs reciprocating motion. Reynolds-averaged Navier-Stokes equations and the ( k- ɛ) turbulence model equations are discretized using the finite volume method and moving grids. The pressure distributions on the plate surface obtained using various approaches to the description of the flow field and difference schemes are compared. The solution obtained for the case of injection of a pulsed jet is compared with the solution for the case where a valve prevents gas flow through the injection nozzle. The dependence of the control force produced by gas injection on time is investigated.
Dual fuel injection piggyback controller system
NASA Astrophysics Data System (ADS)
Muji, Siti Zarina Mohd.; Hassanal, Muhammad Amirul Hafeez; Lee, Chua King; Fawzi, Mas; Zulkifli, Fathul Hakim
2017-09-01
Dual-fuel injection is an effort to reduce the dependency on diesel and gasoline fuel. Generally, there are two approaches to implement the dual-fuel injection in car system. The first approach is changing the whole injector of the car engine, the consequence is excessive high cost. Alternatively, it also can be achieved by manipulating the system's control signal especially the Electronic Control Unit (ECU) signal. Hence, the study focuses to develop a dual injection timing controller system that likely adopted to control injection time and quantity of compressed natural gas (CNG) and diesel fuel. In this system, Raspberry Pi 3 reacts as main controller unit to receive ECU signal, analyze it and then manipulate its duty cycle to be fed into the Electronic Driver Unit (EDU). The manipulation has changed the duty cycle to two pulses instead of single pulse. A particular pulse mainly used to control injection of diesel fuel and another pulse controls injection of Compressed Natural Gas (CNG). The test indicated promising results that the system can be implemented in the car as piggyback system. This article, which was originally published online on 14 September 2017, contained an error in the acknowledgment section. The corrected acknowledgment appears in the Corrigendum attached to the pdf.
Interband optical pulse injection locking of quantum dot mode-locked semiconductor laser.
Kim, Jimyung; Delfyett, Peter J
2008-07-21
We experimentally demonstrate optical clock recovery from quantum dot mode-locked semiconductor lasers by interband optical pulse injection locking. The passively mode-locked slave laser oscillating on the ground state or the first excited state transition is locked through the injection of optical pulses generated via the opposite transition bands, i.e. the first excited state or the ground state transition from the hybridly mode-locked master laser, respectively. When an optical pulse train generated via the first excited state from the master laser is injected to the slave laser oscillating via ground state, the slave laser shows an asymmetric locking bandwidth around the nominal repetition rate of the slave laser. In the reverse injection case of, i.e. the ground state (master laser) to the first excited state (slave laser), the slave laser does not lock even though both lasers oscillate at the same cavity frequency. In this case, the slave laser only locks to higher injection rates as compared to its own nominal repetition rate, and also shows a large locking bandwidth of 6.7 MHz.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shao, Lang; Wang, Fu-Ri; Cheng, Ye-Hao
We carry out a systematical study of the spectral lag properties of 50 single-pulsed gamma-ray bursts (GRBs) detected by the Fermi Gamma-Ray Burst Monitor. By dividing the light curves into multiple consecutive energy channels, we provide a new measurement of the spectral lag that is independent of energy channel selections. We perform a detailed statistical study of our new measurements. We find two similar power-law energy dependencies of both the pulse arrival time and pulse width. Our new results on the power-law indices would favor the relativistic geometric effects for the origin of spectral lag. However, a complete theoretical frameworkmore » that can fully account for the diverse energy dependencies of both arrival time and pulse width revealed in this work is still lacking. We also study the spectral evolution behaviors of the GRB pulses. We find that a GRB pulse with negligible spectral lag would usually have a shorter pulse duration and would appear to have a “hardness-intensity tracking” behavior, and a GRB pulse with a significant spectral lag would usually have a longer pulse duration and would appear to have a “hard-to-soft” behavior.« less
Development of the dense plasma focus for short-pulse applications
NASA Astrophysics Data System (ADS)
Bennett, N.; Blasco, M.; Breeding, K.; Constantino, D.; DeYoung, A.; DiPuccio, V.; Friedman, J.; Gall, B.; Gardner, S.; Gatling, J.; Hagen, E. C.; Luttman, A.; Meehan, B. T.; Misch, M.; Molnar, S.; Morgan, G.; O'Brien, R.; Robbins, L.; Rundberg, R.; Sipe, N.; Welch, D. R.; Yuan, V.
2017-01-01
The dense plasma focus (DPF) has long been considered a compact source for pulsed neutrons and has traditionally been optimized for the total neutron yield. In this paper, we describe the efforts to optimize the DPF for short-pulse applications by introducing a reentrant cathode at the end of the coaxial plasma gun. The resulting neutron pulse widths are reduced by an average of 21 ±9 % from the traditional long-drift DPF design. Pulse widths and yields achieved from deuterium-tritium fusion at 2 MA are 61.8 ±30.7 ns FWHM and 1.84 ±0.49 ×1012 neutrons per shot. Simulations were conducted concurrently to elucidate the DPF operation and confirm the role of the reentrant cathode. A hybrid fluid-kinetic particle-in-cell modeling capability demonstrates correct sheath velocities, plasma instabilities, and fusion yield rates. Consistent with previous findings that the DPF is dominated by beam-target fusion from superthermal ions, we estimate that the thermonuclear contribution is at the 1% level.
Chen, Fei; Xu, Dongdong; Gao, Fei; Zheng, Changbin; Zhang, Kuo; He, Yang; Wang, Chunrui; Guo, Jin
2015-05-04
Employing a fiber-coupled diode-laser with a center wavelength of 852.25 nm and a line width of 0.17 nm, experimental investigation on diode-end-pumped cesium (Cs) vapor laser stably operated at continuous-wave (CW) and pulse regime is carried out. A 5 mm long cesium vapor cell filled with 60 kPa helium and 20 kPa ethane is used as laser medium. Using an output coupler with reflectivity of 48.79%, 1.26 W 894.57 nm CW laser is obtained at an incident pump power of 4.76 W, corresponding an optical-optical efficiency of 26.8% and a slope-efficiency of 28.8%, respectively. The threshold temperature is 67.5 °C. Stable pulsed cesium laser with a maximum average output power of 2.6 W is obtained at a repetition rate of 76 Hz, and the pulse repetition rate can be extend to 1 kHz with a pulse width of 18 μs.
NASA Astrophysics Data System (ADS)
Nunes, Syllene; Moreno, E.; Oliveira, H.; Osaka, J.; Salvador, G.; Michalany, N.; Tolosa, E.
2002-10-01
This study was to evaluate the effects of the CVL with low energy and short pulse widths. 18 female mice, C57BL/6 (9-11 weeks old) were distributed into four groups. The control group (CG) wasn't exposed to laser beam . Group L1 had 2 laser expositions with 24 hours gap between them (0.5W). Group L2 had 3 expositions (0.5W and 0.25W) and group L3 had 4 expositions (0.25 W). It was used a CVL prototype (5lOnm, 13 Khz, pulse width of 20 ms and spot size of 0.8cm). 7 days after last laser pulse no groups presented actinic keratosis, tumors or collagen changes. CVL had effective action on pilosebaceous units. High energy with few short pulses induced hair follicles proliferation while low energy with many repetitive short pulses showed increased and specific tissue damage besides hair plugging.
Self-focusing and group-velocity dispersion of pulsed laser beams in the inhomogeneous atmosphere.
Zhang, Yuqiu; Ji, Xiaoling; Zhang, Hao; Li, Xiaoqing; Wang, Tao; Wang, Huan; Deng, Yu
2018-05-28
We study self-focusing and group-velocity dispersion (GVD) effects in the inhomogeneous atmosphere on pulsed-laser space debris removal facilitated by a ground-based laser. It is found that changes of the pulse duration and the beam spot size with the propagation distance are noticeable due to the interplay of the GVD effect and the self-focusing effect, which is quite different from the behavior in the linear case. It is shown that the temporal pulse splitting may appear on the space debris, and the spatial side lobe usually appears together with the temporal pulse splitting. As compared with the linear case, the beam width and the pulse width on the debris target increase. On the other hand, crucial formulae of the modified focal length and the M 2 -factor for laser debris removal are also derived. It is found that the beam quality on the debris target becomes better if our modified focal length is adopted, and the beam quality on the debris target will be good if the value of M 2 -factor is less than 1.6.
Phase-matching of attosecond XUV supercontinuum
NASA Astrophysics Data System (ADS)
Gilbertson, Steve; Mashiko, Hiroki; Li, Chengquan; Khan, Sabih; Shakya, Mahendra; Moon, Eric; Chang, Zenghu
2008-05-01
Adding a weak second harmonic field to an ellipticity dependent polarization gating field allowed for the production of XUV supercontinua from longer (˜10 fs) input pulses in argon. The spectra support 200 as single isolated pulses. This technique, dubbed double optical gating (DOG), demonstrated a large enhancement of the harmonic yield as compared with polarization gating. These results can be attributed to the reduced depletion of the ground state of the target from the leading edge of the pulse and the increased intensity inside the polarization gate width. Through optimization of the harmonic generation process under the phase matching conditions, we were able to further increase the harmonic flux. The parameters included the target gas pressure, laser focus position, input pulse duration, and polarization gate width. By varying the CE phase of the pulse, we were able to verify that the results were indeed from DOG due to its unique 2 pi dependence on the harmonic spectrum. We were able to extend our results to neon. Its higher ionization potential allowed an extension of the harmonic cutoff for the production of even shorter pulses.
Laser one-dimensional range profile and the laser two-dimensional range profile of cylinders
NASA Astrophysics Data System (ADS)
Gong, Yanjun; Wang, Mingjun; Gong, Lei
2015-10-01
Laser one-dimensional range profile, that is scattering power from pulse laser scattering of target, is a radar imaging technology. The laser two-dimensional range profile is two-dimensional scattering imaging of pulse laser of target. Laser one-dimensional range profile and laser two-dimensional range profile are called laser range profile(LRP). The laser range profile can reflect the characteristics of the target shape and surface material. These techniques were motivated by applications of laser radar to target discrimination in ballistic missile defense. The radar equation of pulse laser is given in this paper. This paper demonstrates the analytical model of laser range profile of cylinder based on the radar equation of the pulse laser. Simulations results of laser one-dimensional range profiles of some cylinders are given. Laser range profiles of cylinder, whose surface material with diffuse lambertian reflectance, is given in this paper. Laser range profiles of different pulse width of cylinder are given in this paper. The influences of geometric parameters, pulse width, attitude on the range profiles are analyzed.
A simple fast pulse gas valve using a dynamic pressure differential as the primary closing mechanism
NASA Astrophysics Data System (ADS)
Thomas, J. C.; Hwang, D. Q.; Horton, R. D.; Rogers, J. H.; Raman, R.
1993-06-01
In this article we describe a simple fast pulse gas valve developed for use in a plasma discharge experiment. The valve delivers 1017-1019 molecules per pulse varied by changing the voltage on the electromagnetic driver power supply. Valve pulse widths are observed to be less than 300 μs full width at half maximum with a rise time of less than 100 μs resulting in a maximum gas flow rate of ˜1022 molecules per second. An optical transmission technique was used to determine the mechanical opening and closing characteristics of the valve piston. A fast ionization gauge (FIG) was used for diagnosis of the temporal character of the gas pulse while the total gas throughput was determined by measuring the change in pressure per pulse in a small test chamber with a convectron tube gauge. Calibration of the FIG was accomplished by comparing the net change in pressure in a large chamber as measured by the FIG to the net change in pressure in a small test chamber as measured by the convectron tube gauge.
Two-color ionization injection using a plasma beatwave accelerator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schroeder, C. B.; Benedetti, C.; Esarey, E.
Two-color laser ionization injection is a method to generate ultra-low emittance (sub-100 nm transverse normalized emittance) beams in a laser-driven plasma accelerator. A plasma beatwave accelerator is proposed to drive the plasma wave for ionization injection, where the beating of the lasers effectively produces a train of long-wavelength pulses. The plasma beatwave accelerator excites a large amplitude plasma wave with low peak laser electric fields, leaving atomically-bound electrons with low ionization potential. A short-wavelength, low-amplitude ionization injection laser pulse (with a small ponderomotive force and large peak electric field) is used to ionize the remaining bound electrons at a wakemore » phase suitable for trapping, generating an ultra-low emittance electron beam that is accelerated in the plasma wave. Using a plasma beatwave accelerator for wakefield excitation, compared to short-pulse wakefield excitation, allows for a lower amplitude injection laser pulse and, hence, a lower emittance beam may be generated.« less
Two-color ionization injection using a plasma beatwave accelerator
Schroeder, C. B.; Benedetti, C.; Esarey, E.; ...
2018-01-10
Two-color laser ionization injection is a method to generate ultra-low emittance (sub-100 nm transverse normalized emittance) beams in a laser-driven plasma accelerator. A plasma beatwave accelerator is proposed to drive the plasma wave for ionization injection, where the beating of the lasers effectively produces a train of long-wavelength pulses. The plasma beatwave accelerator excites a large amplitude plasma wave with low peak laser electric fields, leaving atomically-bound electrons with low ionization potential. A short-wavelength, low-amplitude ionization injection laser pulse (with a small ponderomotive force and large peak electric field) is used to ionize the remaining bound electrons at a wakemore » phase suitable for trapping, generating an ultra-low emittance electron beam that is accelerated in the plasma wave. Using a plasma beatwave accelerator for wakefield excitation, compared to short-pulse wakefield excitation, allows for a lower amplitude injection laser pulse and, hence, a lower emittance beam may be generated.« less
Ghaly, Michael; Links, Jonathan M; Frey, Eric C
2015-07-07
Dual-isotope simultaneous-acquisition (DISA) rest-stress myocardial perfusion SPECT (MPS) protocols offer a number of advantages over separate acquisition. However, crosstalk contamination due to scatter in the patient and interactions in the collimator degrade image quality. Compensation can reduce the effects of crosstalk, but does not entirely eliminate image degradations. Optimizing acquisition parameters could further reduce the impact of crosstalk. In this paper we investigate the optimization of the rest Tl-201 energy window width and relative injected activities using the ideal observer (IO), a realistic digital phantom population and Monte Carlo (MC) simulated Tc-99m and Tl-201 projections as a means to improve image quality. We compared performance on a perfusion defect detection task for Tl-201 acquisition energy window widths varying from 4 to 40 keV centered at 72 keV for a camera with a 9% energy resolution. We also investigated 7 different relative injected activities, defined as the ratio of Tc-99m and Tl-201 activities, while keeping the total effective dose constant at 13.5 mSv. For each energy window and relative injected activity, we computed the IO test statistics using a Markov chain Monte Carlo (MCMC) method for an ensemble of 1,620 triplets of fixed and reversible defect-present, and defect-absent noisy images modeling realistic background variations. The volume under the 3-class receiver operating characteristic (ROC) surface (VUS) was estimated and served as the figure of merit. For simultaneous acquisition, the IO suggested that relative Tc-to-Tl injected activity ratios of 2.6-5 and acquisition energy window widths of 16-22% were optimal. For separate acquisition, we observed a broad range of optimal relative injected activities from 2.6 to 12.1 and acquisition energy window of widths 16-22%. A negative correlation between Tl-201 injected activity and the width of the Tl-201 energy window was observed in these ranges. The results also suggested that DISA methods could potentially provide image quality as good as that obtained with separate acquisition protocols. We compared observer performance for the optimized protocols and the current clinical protocol using separate acquisition. The current clinical protocols provided better performance at a cost of injecting the patient with approximately double the injected activity of Tc-99m and Tl-201, resulting in substantially increased radiation dose.
Long pulse production from short pulses
Toeppen, J.S.
1994-08-02
A method of producing a long output pulse from a short pump pulse is disclosed, using an elongated amplified fiber having a doped core that provides an amplifying medium for light of one color when driven into an excited state by light of a shorter wavelength and a surrounding cladding. A seed beam of the longer wavelength is injected into the core at one end of the fiber and a pump pulse of the shorter wavelength is injected into the cladding at the other end of the fiber. The counter-propagating seed beam and pump pulse will produce an amplified output pulse having a time duration equal to twice the transit time of the pump pulse through the fiber plus the length of the pump pulse. 3 figs.
Injection-seeded tunable mid-infrared pulses generated by difference frequency mixing
NASA Astrophysics Data System (ADS)
Miyamoto, Yuki; Hara, Hideaki; Masuda, Takahiko; Hiraki, Takahiro; Sasao, Noboru; Uetake, Satoshi
2017-03-01
We report on the generation of nanosecond mid-infrared pulses having frequency tunability, a narrow linewidth, and a high pulse energy. These pulses are obtained by frequency mixing between injection-seeded near-infrared pulses in potassium titanyl arsenate crystals. A continuous-wave external cavity laser diode or a Ti:sapphire ring laser is used as a tunable seeding source for the near-infrared pulses. The typical energy of the generated mid-infrared pulses is in the range of 0.4-1 mJ/pulse. The tuning wavelength ranges from 3142 to 4806 nm. A narrow linewidth of 1.4 GHz and good frequency reproducibility of the mid-infrared pulses are confirmed by observing a rovibrational absorption line of gaseous carbon monoxide at 4587 nm.
Compact biomedical pulsed signal generator for bone tissue stimulation
Kronberg, J.W.
1993-06-08
An apparatus for stimulating bone tissue for stimulating bone growth or treating osteoporosis by applying directly to the skin of the patient an alternating current electrical signal comprising wave forms known to simulate the piezoelectric constituents in bone. The apparatus may, by moving a switch, stimulate bone growth or treat osteoporosis, as desired. Based on low-power CMOS technology and enclosed in a moisture-resistant case shaped to fit comfortably, two astable multivibrators produce the desired waveforms. The amplitude, pulse width and pulse frequency, and the subpulse width and subpulse frequency of the waveforms are adjustable. The apparatus, preferably powered by a standard 9-volt battery, includes signal amplitude sensors and warning signals indicate an output is being produced and the battery needs to be replaced.
Fabrication of narrow pulse passively Q-switched self-stimulated Raman laser with c-cut Nd:GdVO4
NASA Astrophysics Data System (ADS)
Shen, Gao; Li, Zuo-han; Han, Ming
2016-11-01
Combining the self-stimulated Raman scattering technology and saturable absorber of Cr4+:YAG, a 1.17 μm c-cut Nd:GdVO4 picosecond Q-switched laser is demonstrated in this paper. With an incident pump power of 10 W, the Q-switched laser with average power of 430 mW for 1.17 μm, pulse width of 270 ps, repetition rate of 13 kHz and the first order Stokes conversion efficiency of 4.3% is obtained. The Q-switched pulse width can be the narrowest in our research. In addition, the yellow laser at 0.58 μm is also achieved by using the LiB3O5 frequency doubling crystal.
Compact biomedical pulsed signal generator for bone tissue stimulation
Kronberg, James W.
1993-01-01
An apparatus for stimulating bone tissue for stimulating bone growth or treating osteoporosis by applying directly to the skin of the patient an alternating current electrical signal comprising wave forms known to simulate the piezoelectric constituents in bone. The apparatus may, by moving a switch, stimulate bone growth or treat osteoporosis, as desired. Based on low-power CMOS technology and enclosed in a moisture-resistant case shaped to fit comfortably, two astable multivibrators produce the desired waveforms. The amplitude, pulse width and pulse frequency, and the subpulse width and subpulse frequency of the waveforms are adjustable. The apparatus, preferably powered by a standard 9-volt battery, includes signal amplitude sensors and warning signals indicate an output is being produced and the battery needs to be replaced.
Li, Tao; Zhao, Shengzhi; Zhuo, Zhuang; Yang, Kejian; Li, Guiqiu; Li, Dechun
2009-04-20
A diode end-pumped doubly Q-switched YVO4/Nd:YVO4 laser has been realized for the first time to our knowledge by using both an electro-optic (EO) modulator and a Cr4):YAG saturable absorber. A 3.8 ns pulse width is generated by this laser under a pump power of 15 W at 2 kHz, which is obviously compressed in comparison with that of 8.8 ns from a single actively EO Q-switched laser. Under the same conditions, peak power values of 174.7 and 93 kW are also obtained. A coupled equation is given to theoretically analyze the experimental data. The experimental and theoretical results show that the doubly Q-switched laser has the advantages of a shorter pulse width and higher pulse peak power in contrast with a singly Q-switched laser.
Compact pulse generators with soft ferromagnetic cores driven by gunpowder and explosive.
Ben, Chi; He, Yong; Pan, Xuchao; Chen, Hong; He, Yuan
2015-12-01
Compact pulse generators which utilized soft ferromagnets as an initial energy carrier inside multi-turn coil and hard ferromagnets to provide the initial magnetic field outside the coil have been studied. Two methods of reducing the magnetic flux in the generators have been studied: (1) by igniting gunpowder to launch the core out of the generator, and (2) by detonating explosives that demagnetize the core. Several types of compact generators were explored to verify the feasibility. The generators with an 80-turn coil that utilize gunpowder were capable of producing pulses with amplitude 78.6 V and the full width at half maximum was 0.41 ms. The generators with a 37-turn coil that utilize explosive were capable of producing pulses with amplitude 1.41 kV and the full width at half maximum was 11.68 μs. These two methods were both successful, but produce voltage waveforms with significantly different characteristics.
Conceptual design of sub-exa-watt system by using optical parametric chirped pulse amplification
NASA Astrophysics Data System (ADS)
Kawanaka, J.; Tsubakimoto, K.; Yoshida, H.; Fujioka, K.; Fujimoto, Y.; Tokita, S.; Jitsuno, T.; Miyanaga, N.; Gekko-EXA Design Team
2016-03-01
A 50 PW ultrahigh-peak-power laser has been conceptually designed, which is based on optical parametric chirped pulse amplification (OPCPA). A 250 J DPSSL and a flash- lamp-pumped kJ laser are adopted as new repeatable pump source. The existed LFEX-laser with more than ten kilo joules are used in the final amplifier stage and the OPCPA with the 2x2 tiled pump beams in random phase has been proposed with several ten centimeter aperture. A pulse duration of amplified pulses is set at less than 10 fs. A broadband OPCPA with ∼500 nm of the gain spectral width near 1 μm is required. A partially deuterated KDP (p-DKDP) crystal is one of the most promising nonlinear crystals and our numerical calculation ensured such ultra-broad gain width. p-DKDP crystals with several deuteration ratio have been successfully grown.
SAS-2 gamma-ray observations of PSR 1747-46. [radio pulsar
NASA Technical Reports Server (NTRS)
Thompson, D. J.; Fichtel, C. E.; Kniffen, D. A.; Ogelman, H. B.; Lamb, R. C.
1976-01-01
Evidence is reported for the observation of gamma-ray emission from the radio pulsar PSR 1747-46 by the gamma-ray telescope aboard SAS 2. The evidence is based on the presence of both an approximately 3-sigma enhancement of gamma rays at the pulsar's location and an approximately 4-sigma peak in the phase plot of 79 gamma-ray events whose phase was calculated from the pulsar's known period. The gamma-ray pulsation is found to appear at a phase lag of about 0.16 from that predicted by the radio observations. The pulsed gamma-ray fluxes above 35 MeV and 100 MeV are estimated, and it is shown that the gamma-ray pulse width is similar to the radio pulse width. It is concluded that PSR 1747-46 is a most likely candidate for pulsed gamma-ray emission.
Peterchev, Angel V.; Wagner, Timothy A.; Miranda, Pedro C.; Nitsche, Michael A.; Paulus, Walter; Lisanby, Sarah H.; Pascual-Leone, Alvaro; Bikson, Marom
2011-01-01
The growing use of transcranial electric and magnetic (EM) brain stimulation in basic research and in clinical applications necessitates a clear understanding of what constitutes the dose of EM stimulation and how it should be reported. The biological effects of EM stimulation are mediated through an electromagnetic field injected (via electric stimulation) or induced (via magnetic stimulation) in the body. Therefore, transcranial EM stimulation dose ought to be defined by all parameters of the stimulation device that affect the electromagnetic field generated in the body, including the stimulation electrode or coil configuration parameters: shape, size, position, and electrical properties, as well as the electrode or coil current (or voltage) waveform parameters: pulse shape, amplitude, width, polarity, and repetition frequency; duration of and interval between bursts or trains of pulses; total number of pulses; and interval between stimulation sessions and total number of sessions. Knowledge of the electromagnetic field generated in the body may not be sufficient but is necessary to understand the biological effects of EM stimulation. We believe that reporting of EM stimulation dose should be guided by the principle of reproducibility: sufficient information about the stimulation parameters should be provided so that the dose can be replicated. This paper provides fundamental definition and principles for reporting of dose that encompass any transcranial EM brain stimulation protocol. PMID:22305345
Lu, Qifeng; Zhao, Chun; Mu, Yifei; Zhao, Ce Zhou; Taylor, Stephen; Chalker, Paul R
2015-07-29
A powerful characterization technique, pulse capacitance-voltage (CV) technique, was used to investigate oxide traps before and after annealing for lanthanide zirconium oxide thin films deposited on n-type Si (111) substrates at 300 °C by liquid injection Atomic Layer Deposition (ALD). The results indicated that: (1) more traps were observed compared to the conventional capacitance-voltage characterization method in LaZrO x ; (2) the time-dependent trapping/de-trapping was influenced by the edge time, width and peak-to-peak voltage of a gate voltage pulse. Post deposition annealing was performed at 700 °C, 800 °C and 900 °C in N₂ ambient for 15 s to the samples with 200 ALD cycles. The effect of the high temperature annealing on oxide traps and leakage current were subsequently explored. It showed that more traps were generated after annealing with the trap density increasing from 1.41 × 10 12 cm -2 for as-deposited sample to 4.55 × 10 12 cm -2 for the 800 °C annealed one. In addition, the leakage current density increase from about 10 - ⁶ A/cm² at V g = +0.5 V for the as-deposited sample to 10 -3 A/cm² at V g = +0.5 V for the 900 °C annealed one.
Peterchev, Angel V; Wagner, Timothy A; Miranda, Pedro C; Nitsche, Michael A; Paulus, Walter; Lisanby, Sarah H; Pascual-Leone, Alvaro; Bikson, Marom
2012-10-01
The growing use of transcranial electric and magnetic (EM) brain stimulation in basic research and in clinical applications necessitates a clear understanding of what constitutes the dose of EM stimulation and how it should be reported. This paper provides fundamental definitions and principles for reporting of dose that encompass any transcranial EM brain stimulation protocol. The biologic effects of EM stimulation are mediated through an electromagnetic field injected (via electric stimulation) or induced (via magnetic stimulation) in the body. Therefore, transcranial EM stimulation dose ought to be defined by all parameters of the stimulation device that affect the electromagnetic field generated in the body, including the stimulation electrode or coil configuration parameters: shape, size, position, and electrical properties, as well as the electrode or coil current (or voltage) waveform parameters: pulse shape, amplitude, width, polarity, and repetition frequency; duration of and interval between bursts or trains of pulses; total number of pulses; and interval between stimulation sessions and total number of sessions. Knowledge of the electromagnetic field generated in the body may not be sufficient but is necessary to understand the biologic effects of EM stimulation. We believe that reporting of EM stimulation dose should be guided by the principle of reproducibility: sufficient information about the stimulation parameters should be provided so that the dose can be replicated. Copyright © 2012 Elsevier Inc. All rights reserved.
Kwak, So Young; Chang, Min Cheol
2018-04-01
Despite medication, exercise, and medical intervention, many patients complain of persistent discogenic neck pain. To manage discogenic neck pain, we performed intradiscal pulsed radiofrequency (PRF) stimulation in a patient with chronic discogenic neck pain refractory to oral medication and epidural steroid injection. A 26-year-old man presented with a numeric rating scale (NRS) score of 7 for chronic neck pain. His pain was worse when the neck was held in one position for a prolonged period. There was no pain in the upper extremities. Discography was positive at C4-5. Based on the pain characteristics, and the result of discography, we diagnosed him as having discogenic neck pain originating from C4-5. Intradiscal PRF on the C4-5 intervertebral disc was performed under C-arm fluoroscopy. The PRF treatment was administered at 2 Hz and a 20-ms pulsed width for 20 minutes at 60 V with the constraint that the electrode tip temperature should not exceed 42°C. At the 2-week, and 1-month follow-up visits, the patient's pain was completely relieved. At 2, and 3 months after intradiscal PRF, the pain was scored as NRS 2. No adverse effects of intradiscal PRF stimulation were observed. Application of intradiscal PRF appears to be an effective and safe technique for treating chronic discogenic neck pain.
NASA Astrophysics Data System (ADS)
Suttinger, Matthew; Go, Rowel; Figueiredo, Pedro; Todi, Ankesh; Shu, Hong; Leshin, Jason; Lyakh, Arkadiy
2018-01-01
Experimental and model results for 15-stage broad area quantum cascade lasers (QCLs) are presented. Continuous wave (CW) power scaling from 1.62 to 2.34 W has been experimentally demonstrated for 3.15-mm long, high reflection-coated QCLs for an active region width increased from 10 to 20 μm. A semiempirical model for broad area devices operating in CW mode is presented. The model uses measured pulsed transparency current, injection efficiency, waveguide losses, and differential gain as input parameters. It also takes into account active region self-heating and sublinearity of pulsed power versus current laser characteristic. The model predicts that an 11% improvement in maximum CW power and increased wall-plug efficiency can be achieved from 3.15 mm×25 μm devices with 21 stages of the same design, but half doping in the active region. For a 16-stage design with a reduced stage thickness of 300 Å, pulsed rollover current density of 6 kA/cm2, and InGaAs waveguide layers, an optical power increase of 41% is projected. Finally, the model projects that power level can be increased to ˜4.5 W from 3.15 mm×31 μm devices with the baseline configuration with T0 increased from 140 K for the present design to 250 K.
Continuous wave power scaling in high power broad area quantum cascade lasers
NASA Astrophysics Data System (ADS)
Suttinger, M.; Leshin, J.; Go, R.; Figueiredo, P.; Shu, H.; Lyakh, A.
2018-02-01
Experimental and model results for high power broad area quantum cascade lasers are presented. Continuous wave power scaling from 1.62 W to 2.34 W has been experimentally demonstrated for 3.15 mm-long, high reflection-coated 5.6 μm quantum cascade lasers with 15 stage active region for active region width increased from 10 μm to 20 μm. A semi-empirical model for broad area devices operating in continuous wave mode is presented. The model uses measured pulsed transparency current, injection efficiency, waveguide losses, and differential gain as input parameters. It also takes into account active region self-heating and sub-linearity of pulsed power vs current laser characteristic. The model predicts that an 11% improvement in maximum CW power and increased wall plug efficiency can be achieved from 3.15 mm x 25 μm devices with 21 stages of the same design but half doping in the active region. For a 16-stage design with a reduced stage thickness of 300Å, pulsed roll-over current density of 6 kA/cm2 , and InGaAs waveguide layers; optical power increase of 41% is projected. Finally, the model projects that power level can be increased to 4.5 W from 3.15 mm × 31 μm devices with the baseline configuration with T0 increased from 140 K for the present design to 250 K.
Christopher, Heike; Kovalchuk, Evgeny V; Wenzel, Hans; Bugge, Frank; Weyers, Markus; Wicht, Andreas; Peters, Achim; Tränkle, Günther
2017-07-01
We present a compact, mode-locked diode laser system designed to emit a frequency comb in the wavelength range around 780 nm. We compare the mode-locking performance of symmetric and asymmetric double quantum well ridge-waveguide diode laser chips in an extended-cavity diode laser configuration. By reverse biasing a short section of the diode laser chip, passive mode-locking at 3.4 GHz is achieved. Employing an asymmetric double quantum well allows for generation of a mode-locked optical spectrum spanning more than 15 nm (full width at -20 dB) while the symmetric double quantum well device only provides a bandwidth of ∼2.7 nm (full width at -20 dB). Analysis of the RF noise characteristics of the pulse repetition rate shows an RF linewidth of about 7 kHz (full width at half-maximum) and of at most 530 Hz (full width at half-maximum) for the asymmetric and symmetric double quantum well devices, respectively. Investigation of the frequency noise power spectral density at the pulse repetition rate shows a white noise floor of approximately 2100 Hz 2 /Hz and of at most 170 Hz 2 /Hz for the diode laser employing the asymmetric and symmetric double quantum well structures, respectively. The pulse width is less than 10 ps for both devices.
Weiss, Robert A; Ross, E Victor; Tanghetti, Emil A; Vasily, David B; Childs, James J; Smirnov, Mikhail Z; Altshuler, Gregory B
2011-02-01
An arc lamp-based device providing optimized spectrum and pulse shape was characterized and compared with two pulsed dye laser (PDL) systems using a vascular phantom. Safety and effectiveness for facial telangiectasia are presented in clinical case studies. An optimized pulsed light source's (OPL) spectral and power output were characterized and compared with two 595 nm PDL devices. Purpuric threshold fluences were determined for the OPL and PDLs on Fitzpatrick type II normal skin. A vascular phantom comprising blood-filled quartz capillaries beneath porcine skin was treated by the devices at their respective purpuric threshold fluences for 3 ms pulse widths, while vessel temperatures were monitored with an infrared (IR) camera. Patients with Fitzpatrick skin types II-III received a split-face treatment with the OPL and a 595 nm PDL. The OPL provided a dual-band output spectrum from 500 to 670 nm and 850-1,200 nm, pulse widths from 3 to 100 ms, and fluences to 80 J/cm(2). The smooth output power measured during all pulse widths provides unambiguous vessel size selectivity. Percent energy in the near infra-red increased with decreasing output power from 45% to 60% and contributed 15-26% to heating of deep vessels, respectively. At purpuric threshold fluences the ratio of OPL to PDL vessel temperature rise was 1.7-2.8. OPL treatments of facial telangiectasia were well-tolerated by patients demonstrating significant improvements comparable to PDL with no downtime. Intense pulsed light (IPL) and PDL output pulse and spectral profiles are important for selective treatment of vessels in vascular lesions. The OPL's margin between purpuric threshold fluence and treatment fluence for deeper, larger vessels was greater than the corresponding margin with PDLs. The results warrant further comparison studies with IPLs and other PDLs. Copyright © 2011 Wiley-Liss, Inc.
Laurence, T. A.; Ly, S.; Shen, N.; ...
2017-06-22
Laser-induced damage with ps pulse widths straddles the transition from intrinsic, multi-photon ionization and avalanche ionization-based ablation with fs pulses to defect-dominated, thermal-based damage with ns pulses. We investigated the morphology of damage for fused silica and silica coatings between 1 ps and 60 ps at 1053 nm. Using calibrated laser-induced damage experiments, in situ imaging, and high-resolution optical microscopy, atomic force microscopy, and scanning electron microscopy, we show that defects play an important role in laser-induced damage down to 1 ps. Three types of damage are observed: ablation craters, ultra-high density pits, and smooth, circular depressions with central pits.more » For 10 ps and longer, the smooth, circular depressions limit the damage performance of fused silica and silica coatings. The observed high-density pits and material removal down to 3 ps indicate that variations in surface properties limit the laser-induced damage onset to a greater extent than expected below 60 ps. Below 3 ps, damage craters are smoother although there is still evidence as seen by AFM of inhomogeneous laser-induced damage response very near the damage onset. These results show that modeling the damage onset only as a function of pulse width does not capture the convoluted processes leading to laser induced damage with ps pulses. It is necessary to account for the effects of defects on the processes leading to laser-induced damage. In conclusion, the effects of isolated defects or inhomogeneities are most pronounced above 3 ps but are still discernible and possibly important down to the shortest pulse width investigated here.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Laurence, T. A.; Ly, S.; Shen, N.
Laser-induced damage with ps pulse widths straddles the transition from intrinsic, multi-photon ionization and avalanche ionization-based ablation with fs pulses to defect-dominated, thermal-based damage with ns pulses. We investigated the morphology of damage for fused silica and silica coatings between 1 ps and 60 ps at 1053 nm. Using calibrated laser-induced damage experiments, in situ imaging, and high-resolution optical microscopy, atomic force microscopy, and scanning electron microscopy, we show that defects play an important role in laser-induced damage down to 1 ps. Three types of damage are observed: ablation craters, ultra-high density pits, and smooth, circular depressions with central pits.more » For 10 ps and longer, the smooth, circular depressions limit the damage performance of fused silica and silica coatings. The observed high-density pits and material removal down to 3 ps indicate that variations in surface properties limit the laser-induced damage onset to a greater extent than expected below 60 ps. Below 3 ps, damage craters are smoother although there is still evidence as seen by AFM of inhomogeneous laser-induced damage response very near the damage onset. These results show that modeling the damage onset only as a function of pulse width does not capture the convoluted processes leading to laser induced damage with ps pulses. It is necessary to account for the effects of defects on the processes leading to laser-induced damage. In conclusion, the effects of isolated defects or inhomogeneities are most pronounced above 3 ps but are still discernible and possibly important down to the shortest pulse width investigated here.« less
Tu, Yiyou; Plotnikov, Elizaveta Y; Seidman, David N
2015-04-01
This study investigates the effects of the charge-state ratio of evaporated ions on the accuracy of local-electrode atom-probe (LEAP) tomographic compositional and structural analyses, which employs a picosecond ultraviolet pulsed laser. Experimental results demonstrate that the charge-state ratio is a better indicator of the best atom-probe tomography (APT) experimental conditions compared with laser pulse energy. The thermal tails in the mass spectra decrease significantly, and the mass resolving power (m/Δm) increases by 87.5 and 185.7% at full-width half-maximum and full-width tenth-maximum, respectively, as the laser pulse energy is increased from 5 to 30 pJ/pulse. The measured composition of this alloy depends on the charge-state ratio of the evaporated ions, and the most accurate composition is obtained when Ni2+/Ni+ is in the range of 0.3-20. The γ(f.c.c.)/γ'(L12) interface is quantitatively more diffuse when determined from the measured concentration profiles for higher laser pulse energies. Conclusions of the APT compositional and structural analyses utilizing the same suitable charge-state ratio are more comparable than those collected with the same laser pulse energy.
978-nm square-wave in an all-fiber single-mode ytterbium-doped fiber laser
NASA Astrophysics Data System (ADS)
Li, Shujie; Xu, Lixin; Gu, Chun
2018-01-01
A 978 nm single mode passively mode-locked all-fiber laser delivering square-wave pulses was demonstrated using a figure-8 cavity and a 75 cm commercial double-clad ytterbium-doped fiber. We found the three-level system near 978 nm was able to operate efficiently under clad pumping, simultaneously oscillation around 1030 nm well inhibited. The optimized nonlinear amplifying loop mirror made the mode locking stable and performed the square-pulses shaping. To the best of our knowledge, it is the first time to report the square-wave pulse fiber laser operating at 980 nm. The spectral width of the 978 mode-locked square pulses was about 4 nm, far greater than that of the mode-locked square pulses around 1060 nm reported before, which would be helpful to deeply understand the various square-wave pulses' natures and forming mechanisms. Compared with modulated single-mode or multimode 980 nm LDs, this kind of 980 nm square-wave sources having higher brightness, more steeper rising and falling edge and shorter pulse width, might have potential applications in pumping nanosecond ytterbium or erbium fiber lasers and amplifiers.
Effect of timed secondary-air injection on automotive emissions
NASA Technical Reports Server (NTRS)
Coffin, K. P.
1973-01-01
A single cylinder of an automotive V-8 engine was fitted with an electronically timed system for the pulsed injection of secondary air. A straight-tube exhaust minimized any mixing other than that produced by secondary-air pulsing. The device was operated over a range of engine loads and speeds. Effects attributable to secondary-air pulsing were found, but emission levels were generally no better than using the engine's own injection system. Under nontypical fast-idle, no-load conditions, emission levels were reduced by roughly a factor of 2.
NASA Astrophysics Data System (ADS)
Peterchev, Angel V.; DʼOstilio, Kevin; Rothwell, John C.; Murphy, David L.
2014-10-01
Objective. This work aims at flexible and practical pulse parameter control in transcranial magnetic stimulation (TMS), which is currently very limited in commercial devices. Approach. We present a third generation controllable pulse parameter device (cTMS3) that uses a novel circuit topology with two energy-storage capacitors. It incorporates several implementation and functionality advantages over conventional TMS devices and other devices with advanced pulse shape control. cTMS3 generates lower internal voltage differences and is implemented with transistors with a lower voltage rating than prior cTMS devices. Main results. cTMS3 provides more flexible pulse shaping since the circuit topology allows four coil-voltage levels during a pulse, including approximately zero voltage. The near-zero coil voltage enables snubbing of the ringing at the end of the pulse without the need for a separate active snubber circuit. cTMS3 can generate powerful rapid pulse sequences (\\lt 10 ms inter pulse interval) by increasing the width of each subsequent pulse and utilizing the large capacitor energy storage, allowing the implementation of paradigms such as paired-pulse and quadripulse TMS with a single pulse generation circuit. cTMS3 can also generate theta (50 Hz) burst stimulation with predominantly unidirectional electric field pulses. The cTMS3 device functionality and output strength are illustrated with electrical output measurements as well as a study of the effect of pulse width and polarity on the active motor threshold in ten healthy volunteers. Significance. The cTMS3 features could extend the utility of TMS as a research, diagnostic, and therapeutic tool.
D’Ostilio, Kevin; Rothwell, John C; Murphy, David L
2014-01-01
Objective This work aims at flexible and practical pulse parameter control in transcranial magnetic stimulation (TMS), which is currently very limited in commercial devices. Approach We present a third generation controllable pulse parameter device (cTMS3) that uses a novel circuit topology with two energy-storage capacitors. It incorporates several implementation and functionality advantages over conventional TMS devices and other devices with advanced pulse shape control. cTMS3 generates lower internal voltage differences and is implemented with transistors with lower voltage rating than prior cTMS devices. Main results cTMS3 provides more flexible pulse shaping since the circuit topology allows four coil-voltage levels during a pulse, including approximately zero voltage. The near-zero coil voltage enables snubbing of the ringing at the end of the pulse without the need for a separate active snubber circuit. cTMS3 can generate powerful rapid pulse sequences (<10 ms inter pulse interval) by increasing the width of each subsequent pulse and utilizing the large capacitor energy storage, allowing the implementation of paradigms such as paired-pulse and quadripulse TMS with a single pulse generation circuit. cTMS3 can also generate theta (50 Hz) burst stimulation with predominantly unidirectional electric field pulses. The cTMS3 device functionality and output strength are illustrated with electrical output measurements as well as a study of the effect of pulse width and polarity on the active motor threshold in 10 healthy volunteers. Significance The cTMS3 features could extend the utility of TMS as a research, diagnostic, and therapeutic tool. PMID:25242286
Multiplexer and time duration measuring circuit
Gray, Jr., James
1980-01-01
A multiplexer device is provided for multiplexing data in the form of randomly developed, variable width pulses from a plurality of pulse sources to a master storage. The device includes a first multiplexer unit which includes a plurality of input circuits each coupled to one of the pulse sources, with all input circuits being disabled when one input circuit receives an input pulse so that only one input pulse is multiplexed by the multiplexer unit at any one time.
Rutherford, Jonathan; Solomon, Metasebya; Cheng, Brian; Xuan, Jason R.; Gong, Jason; Yu, Honggang; Xia, Michael L. D.; Yang, Xirong; Hasenberg, Thomas; Curran, Sean
2018-01-01
Objectives Although laser lithotripsy is now the preferred treatment option for urolithiasis due to shorter operation time and a better stone-free rate, the optimal laser settings for URS (ureteroscopic lithotripsy) for less operation time remain unclear. The aim of this study was to look for quantitative responses of calculus ablation and retropulsion by performing operator-independent experiments to determine the best fit versus the pulse energy, pulse width, and the number of pulses. Methods A lab-built Ho:YAG laser was used as the laser pulse source, with a pulse energy from 0.2 J up to 3.0 J and a pulse width of 150 μs up to 1000 μs. The retropulsion was monitored using a high-speed camera, and the laser-induced craters were evaluated with a 3-D digital microscope. The best fit to the experimental data is done by a design of experiment software. Results The numerical formulas for the response surfaces of ablation speed and retropulsion amplitude are generated. Conclusions The longer the pulse, the less the ablation or retropulsion, while the longer pulse makes the ablation decrease faster than the retropulsion. The best quadratic fit of the response surface for the volume of ablation varied nonlinearly with pulse duration and pulse number. PMID:29707187
NASA Technical Reports Server (NTRS)
Mach, D. M.; Blakeslee, R. J.; Bailey, J. C.; Farrell, W. M.; Goldberg, R. A.; Desch, M. D.; Houser, J. G.
2004-01-01
The Altus Cumulus Electrification Study (ACES) was conducted during the month of August, 2002 in an area near Key West, Florida. One of the goals of this uninhabited aerial vehicle (UAV) study was to collect time resolved optical pulse data from thunderstorms. During the month long campaign, we acquired 5294 lightning generated optical pulses. Most of these observations were made while close to the top of the storms. We divided our data into two amplitude groups based on prior NASA U2 aircraft optical data and our pulse characteristics. The group of large pulses with radiance greater than 2.1 mW /sq m sr had mean and median 10 - 10% optical pulse widths of 765 and 735 microns respectively, the 50-50% pulse widths of 396 and 355 microns respectively, and 10-90% rise times of 290 and 260 microns. These values are very similar to the previous U2 based optical results The other group of pulses consisting of slightly more than a quarter of the total pulses observed had radiances less than the minimum values detected in the U2 study. The small pulses were narrower than the large pulses with 5040% mean and median values of 198 and 160 ps respectively. Only 12 % of the flashes contained only small pulses, minimizing the impact of this data on the estimates of detection efficiencies of the orbital instruments, the Lightning Imaging Sensor and Optical Transient Detector.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gilbertson, Steve; Khan, Sabih D.; Wu Yi
2010-08-27
Single isolated attosecond pulses can be extracted from a pulse train with an ultrafast gate in the generation target. By setting the gate width sufficiently narrow with the generalized double optical gating, we demonstrate that single isolated attosecond pulses can be generated with any arbitrary carrier-envelope phase value of the driving laser. The carrier-envelope phase only affects the photon flux, not the pulse duration or contrast. Our results show that isolated attosecond pulses can be generated using carrier-envelope phase unstabilized 23 fs pulses directly from chirped pulse amplifiers.
Migration of cell surface concanavalin A receptors in pulsed electric fields.
Lin-Liu, S; Adey, W R; Poo, M M
1984-01-01
Concanavalin A (con A) receptors on the surface of cultured Xenopus myoblasts redistributed in response to monopolar, pulsed electric fields. The prefield uniform distribution of the receptors became asymmetrical, and was polarized toward the cathodal pole, in the same way as in DC fields. The extent of asymmetry depended on the duration of field exposure, pulse width (or alternatively, interpulse interval), frequency, and intensity. This relationship was most conveniently expressed by using duty cycle, a quantity determined by both pulse width and frequency. Pulses of average intensity 1.5 V/cm induced detectable asymmetry within 5 min. At the lowest average field intensity used, 0.8 V/cm, significant asymmetry was detected at 150 min. For pulses of high duty cycle (greater than 25%), steady state was reached after 30 min exposure and the steady state asymmetry was dependent on average field intensity. For low duty cycle fields, the time required to reach steady state was prolonged (greater than 50 min). Before reaching a steady state, effectiveness of the pulses, as compared with DC fields of equivalent intensity, was a function of duty cycle. A low duty cycle field (fixed number of pulses at low frequency or long interpulse interval) was less effective than high duty cycle fields or DC. PMID:6743751
NASA Astrophysics Data System (ADS)
Kaltenbach, André; Hofmann, Julian; Seidel, Dirk; Lauritsen, Kristian; Bugge, Frank; Fricke, Jörg; Paschke, Katrin; Erdmann, Rainer; Tränkle, Günther
2017-02-01
A miniaturized picosecond pulsed semiconductor laser source in the spectral range around 560nm is realized by integrating a frequency doubled distributed Bragg reflector ridge waveguide laser (DBR-RWL) into a micromodule. Such compact laser sources are suitable for mobile application, e.g. in microscopes. The picosecond optical pulses are generated by gain-switching which allows for arbitrary pulse repetition frequencies. For frequency conversion a periodically poled magnesium doped lithium niobate ridge waveguide crystal (PPLN) is used to provide high conversion efficiency with single-pass second harmonic generation (SHG). The coupling of the pulsed radiation into the PPLN crystal is realized by a GRIN-lens. Such types of lenses collect the divergent laser radiation and focus it into the crystal waveguide providing high coupling efficiency at a minimum of space compared to the usage of fast axis collimator(FAC)/slow axis collimator (SAC) lens combinations. The frequency doubled output pulses show a pulse width of about 60 ps FWHM and a spectral width around 0.06nm FWHM at a central wavelength of 557nm at 15Å. The pulse peak power could be determined to be more than 300mW at a repetition frequency of 40 MHz.
Keller, Scott B; Dudley, Jonathan A; Binzel, Katherine; Jasensky, Joshua; de Pedro, Hector Michael; Frey, Eric W; Urayama, Paul
2008-10-15
Time-gated techniques are useful for the rapid sampling of excited-state (fluorescence) emission decays in the time domain. Gated detectors coupled with bright, economical, nanosecond-pulsed light sources like flashlamps and nitrogen lasers are an attractive combination for bioanalytical and biomedical applications. Here we present a calibration approach for lifetime determination that is noniterative and that does not assume a negligible instrument response function (i.e., a negligible excitation pulse width) as does most current rapid lifetime determination approaches. Analogous to a transducer-based sensor, signals from fluorophores of known lifetime (0.5-12 ns) serve as calibration references. A fast avalanche photodiode and a GHz-bandwidth digital oscilloscope is used to detect transient emission from reference samples excited using a nitrogen laser. We find that the normalized time-integrated emission signal is proportional to the lifetime, which can be determined with good reproducibility (typically <100 ps) even for data with poor signal-to-noise ratios ( approximately 20). Results are in good agreement with simulations. Additionally, a new time-gating scheme for fluorescence lifetime imaging applications is proposed. In conclusion, a calibration-based approach is a valuable analysis tool for the rapid determination of lifetime in applications using time-gated detection and finite pulse width excitation.
Mode selection and frequency tuning by injection in pulsed TEA-CO2 lasers
NASA Technical Reports Server (NTRS)
Flamant, P. H.; Menzies, R. T.
1983-01-01
An analytical model characterizing pulsed-TEA-CO2-laser injection locking by tunable CW-laser radiation is presented and used to explore the requirements for SLM pulse generation. Photon-density-rate equations describing the laser mechanism are analyzed in terms of the mode competition between photon densities emitted at two frequencies. The expression derived for pulsed dye lasers is extended to homogeneously broadened CO2 lasers, and locking time is defined as a function of laser parameters. The extent to which injected radiation can be detuned from the CO2 line center and continue to produce SLM pulses is investigated experimentally in terms of the analytical framework. The dependence of locking time on the detuning/pressure-broadened-halfwidth ratio is seen as important for spectroscopic applications requiring tuning within the TEA-laser line-gain bandwidth.
McGrath, Susan P; Ryan, Kathy L; Wendelken, Suzanne M; Rickards, Caroline A; Convertino, Victor A
2011-02-01
The primary objective of this study was to determine whether alterations in the pulse oximeter waveform characteristics would track progressive reductions in central blood volume. We also assessed whether changes in the pulse oximeter waveform provide an indication of blood loss in the hemorrhaging patient before changes in standard vital signs. Pulse oximeter data from finger, forehead, and ear pulse oximeter sensors were collected from 18 healthy subjects undergoing progressive reduction in central blood volume induced by lower body negative pressure (LBNP). Stroke volume measurements were simultaneously recorded using impedance cardiography. The study was conducted in a research laboratory setting where no interventions were performed. Pulse amplitude, width, and area under the curve (AUC) features were calculated from each pulse wave recording. Amalgamated correlation coefficients were calculated to determine the relationship between the changes in pulse oximeter waveform features and changes in stroke volume with LBNP. For pulse oximeter sensors on the ear and forehead, reductions in pulse amplitude, width, and area were strongly correlated with progressive reductions in stroke volume during LBNP (R(2) ≥ 0.59 for all features). Changes in pulse oximeter waveform features were observed before profound decreases in arterial blood pressure. The best correlations between pulse features and stroke volume were obtained from the forehead sensor area (R(2) = 0.97). Pulse oximeter waveform features returned to baseline levels when central blood volume was restored. These results support the use of pulse oximeter waveform analysis as a potential diagnostic tool to detect clinically significant hypovolemia before the onset of cardiovascular decompensation in spontaneously breathing patients.
NASA Astrophysics Data System (ADS)
Ben Neriah, Asaf; Paster, Amir
2017-10-01
Application of short-duration pulses of high air pressure, to an air sparging system for groundwater remediation, was tested in a two-dimensional laboratory setup. It was hypothesized that this injection mode, termed boxcar, can enhance the remediation efficiency due to the larger ZOI and enhanced mixing which results from the pressure pulses. To test this hypothesis, flow and transport experiments were performed. Results confirm that cyclically applying short-duration pressure pulses may enhance contaminant cleanup. Comparing the boxcar to conventional continuous air-injection shows up to a three-fold increase in the single well radius of influence, dependent on the intensity of the short-duration pressure-pulses. The cleanup efficiency of Toluene from the water was 95% higher than that achieved under continuous injection with the same average conditions. This improvement was attributed to the larger zone of influence and higher average air permeability achieved in the boxcar mode, relative to continuous sparging. Mixing enhancement resultant from recurring pressure pulses was suggested as one of the mechanisms which enhance the contaminant cleanup. The application of a boxcar mode in an existing, multiwell, air sparging setup can be relatively straightforward: it requires the installation of an on-off valve in each of the injection-wells and a central control system. Then, turning off some of the wells, for a short-duration, result in a stepwise increase in injection pressure in the rest of the wells. It is hoped that this work will stimulate the additional required research and ultimately a field scale application of this new injection mode.
Ring-shaped active mode-locked tunable laser using quantum-dot semiconductor optical amplifier
NASA Astrophysics Data System (ADS)
Zhang, Mingxiao; Wang, Yongjun; Liu, Xinyu
2018-03-01
In this paper, a lot of simulations has been done for ring-shaped active mode-locked lasers with quantum-dot semiconductor optical amplifier (QD-SOA). Based on the simulation model of QD-SOA, we discussed about the influence towards mode-locked waveform frequency and pulse caused by QD-SOA maximum mode peak gain, active layer loss coefficient, bias current, incident light pulse, fiber nonlinear coefficient. In the meantime, we also take the tunable performance of the laser into consideration. Results showed QD-SOA a better performance than original semiconductor optical amplifier (SOA) in recovery time, line width, and nonlinear coefficients, which makes it possible to output a locked-mode impulse that has a higher impulse power, narrower impulse width as well as the phase is more easily controlled. After a lot of simulations, this laser can realize a 20GHz better locked-mode output pulse after 200 loops, where the power is above 17.5mW, impulse width is less than 2.7ps, moreover, the tunable wavelength range is between 1540nm-1580nm.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Robertson, David C.; Christophersen, Jon P.; Bennett, Taylor
Two testing protocols, QC/T 743 and those used by the U.S. Advanced Battery Consortium (USABC), were compared using cells based on LiFePO4/graphite chemistry. Differences in the protocols directly affected the data and the performance decline mechanisms deduced from the data. In all cases, the rate of capacity fade was linear with time. Overall, the testing protocols produced very similar data when the testing conditions and metrics used to define performance were similar. The choice of depth of discharge and pulse width had a direct effect on the apparent rate of resistance increased and estimated cell life. At greater percent depthmore » of discharge (%DOD) and pulse width, the estimated life was shorter that at lower %DOD and shorter pulse width. This indicates that cells which were at the end of life based on the USABC protocol were not at end of life based on the QC/T 743 protocol by a large margin. (C) 2016 ELSEVIER B.V. All rights reserved.« less
NASA Astrophysics Data System (ADS)
Khan, Mansoor; Yong, Wang; Mustafa, Ehtasham
2017-07-01
After the rapid advancement in the field of power electronics devices and drives for last few decades, there are different kinds of Pulse Width Modulation techniques which have been brought to the market. The applications ranging from industrial appliances to military equipment including the home appliances. The vey common application for the PWM is three phase voltage source inverter, which is used to convert DC to AC in the homes to supply the power to the house in case electricity failure, usually named as Un-interrupted Power Supply. In this paper Space Vector Pulse Width Modulation techniques is discussed and analysed under the control technique named as Field Oriented Control. The working and implementation of this technique has been studied by implementing on the three phase bridge inverter. The technique is used to control the Permanente Magnet Synchronous Motor. The drive system is successfully implemented in MATLAB/Simulink using the mathematical equation and algorithm to achieve the satisfactory results. PI type of controller is used to tuned ers of the motothe parametr i.e. torque and current.
Theory and Modeling of Petawatt Laser Pulse Propagation in Low Density Plasmas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shadwick, Bradley A.; Kalmykov, S. Y.
Report describing accomplishments in all-optical control of self-injection in laser-plasma accelerators and in developing advanced numerical models of laser-plasma interactions. All-optical approaches to controlling electron self-injection and beam formation in laser-plasma accelerators (LPAs) were explored. It was demonstrated that control over the laser pulse evolution is the key ingredient in the generation of low-background, low-phase-space-volume electron beams. To this end, preserving a smooth laser pulse envelope throughout the acceleration process can be achieved through tuning the phase and amplitude of the incident pulse. A negative frequency chirp compensates the frequency red-shift accumulated due to wake excitation, preventing evolution of themore » pulse into a relativistic optical shock. This reduces the ponderomotive force exerted on quiescent plasma electrons, suppressing expansion of the bubble and continuous injection of background electrons, thereby reducing the charge in the low-energy tail by an order of magnitude. Slowly raising the density in the pulse propagation direction locks electrons in the accelerating phase, boosting their energy, keeping continuous injection at a low level, tripling the brightness of the quasi-monoenergetic component. Additionally, propagating the negatively chirped pulse in a plasma channel suppresses diffraction of the pulse leading edge, further reducing continuous injection. As a side effect, oscillations of the pulse tail may be enhanced, leading to production of low-background, polychromatic electron beams. Such beams, consisting of quasi-monoenergetic components with controllable energy and energy separation, may be useful as drivers of polychromatic x-rays based on Thomson backscattering. These all-optical methods of electron beam quality control are critically important for the development of future compact, high-repetition-rate, GeV-scale LPA using 10 TW-class, ultra-high bandwidth pulses and mm-scale, dense plasmas. These results emphasize that investment into new pulse amplification techniques allowing for ultrahigh frequency bandwidth is as important for the design of future LPA as are the current efforts directed to increasing the pulse energy.« less
Development of New Photorefractive Polymer Materials
2015-05-19
which gives an indirect measurement of the field strength. The setup used is presented on Figure 8. A femtosecond pulsed fiber laser emits light at...measure the diffraction efficiency. The pulsed fiber laser characteristics are: Energy per pulse: up to 100 µJ/pulse Pulse temporal width: from 250 ns...to 250 µs Repetition rate: up to 10kHz Coherence length: 1cm Figure 26: Four wave mixing setup fed by the fiber laser . Three primary time
Synthesis of Nanosecond Ultrawideband Radiation Pulses
NASA Astrophysics Data System (ADS)
Koshelev, V. I.; Plisko, V. V.; Sevostyanov, E. A.
2017-12-01
The synthesis of electromagnetic pulses with an extended spectrum by summing pulses of different duration in free space has been studied. The radiation spectrum has been estimated analytically for a 4-element array of combined antennas excited by bipolar voltage pulses of duration 0.5, 1, 2, and 3 ns. It has been shown experimentally that radiation with a spectral width of more than three octaves can be produced using a 2×2 array of combined antennas excited by bipolar pulses of duration 2 and 3 ns.
An analysis of superluminal propagation becoming subluminal in highly dispersive media
NASA Astrophysics Data System (ADS)
Nanda, L.
2018-05-01
In this article the time-moments of the Poynting vector associated with an electromagnetic pulse are used to characterize the traversal time and the pulse width as the pulse propagates through highly dispersive media. The behaviour of these quantities with propagation distance is analyzed in two physical cases: Lorentz absorptive medium, and Raman gain doublet amplifying medium. It is found that the superluminal pulse propagation in these two cases with anomalous dispersion is always accompanied by pulse compression and eventually the pulse becomes subluminal with increasing distance of propagation.
Molecular dynamics study of lubricant depletion by pulsed laser heating
NASA Astrophysics Data System (ADS)
Seo, Young Woo; Rosenkranz, Andreas; Talke, Frank E.
2018-05-01
In this study, molecular dynamics simulations were performed to numerically investigate the effect of pulsed laser heating on lubricant depletion. The maximum temperature, the lubricant depletion width, the number of evaporated lubricant beads and the number of fragmented lubricant chains were studied as a function of laser peak power, pulse duration and repetition rate. A continuous-wave laser and a square pulse laser were simulated and compared to a Gaussian pulse laser. With increasing repetition rate, pulsed laser heating was found to approach continuous-wave laser heating.
Effect of intravitreal triamcinolone acetonide on healing of retinal photocoagulation lesions.
Nomoto, Hiroyuki; Lavinsky, Daniel; Paulus, Yannis M; Leung, Loh-Shan; Dalal, Roopa; Blumenkranz, Mark S; Palanker, Daniel
2013-01-01
To evaluate the effect of intravitreal triamcinolone acetonide (TA) on healing of retinal photocoagulation lesions using drug and laser dosing typically employed in clinical practice. Laser burns with a 267-μm retinal beam size at 532-nm wavelength were applied to 40 eyes of Dutch belted rabbits. Barely visible to intense lesions were produced with pulses of 5, 10, 20, and 50 milliseconds and power of 175 mW. Eyes received intravitreal injections of either 2 mg TA/50 μL or balanced salt solution administered either 1 week before or immediately after laser treatment. Lesion grades were assessed acutely ophthalmoscopically and by a masked observer histologically at 1, 3, 7, 30, and 60 days. Both TA groups demonstrated significant reduction in retinal thickness throughout follow-up compared with balanced salt solution groups (P < 0.001). The width of the lesions at 1 day after injection was not significantly different between groups. However, by 7 days, the lesions in balanced salt solution groups contracted much more than in the TA groups, especially the more intense burns, and this difference persisted to 2 months. The healing rate of the barely visible burns was not significantly affected by TA compared with the balanced salt solution control eyes. Triamcinolone acetonide injection previously or concurrently with photocoagulation significantly decreases laser-induced edema but interferes with lesions healing, thereby leaving wider residual scarring, especially persistent in more intense burns.
Debnath, Tushar; Maity, Partha; Dana, Jayanta; Ghosh, Hirendra N
2016-03-03
Wide-band-gap ZnS nanocrystals (NCs) were synthesized, and after sensitizing the NCs with series of triphenyl methane (TPM) dyes, ultrafast charge-transfer dynamics was demonstrated. HRTEM images of ZnS NCs show the formation of aggregate crystals with a flower-like structure. Exciton absorption and lumimescence, due to quantum confinement of the ZnS NCs, appear at approximately 310 and 340 nm, respectively. Interestingly, all the TPM dyes (pyrogallol red, bromopyrogallol red, and aurin tricarboxylic acid) form charge-transfer complexes with the ZnS NCs, with the appearance of a red-shifted band. Electron injection from the photoexcited TPM dyes into the conduction band of the ZnS NCs is shown to be a thermodynamically viable process, as confirmed by steady-state and time-resolved emission studies. To unravel charge-transfer (both electron injection and charge recombination) dynamics and the effect of molecular coupling, femtosecond transient absorption studies were carried out in TPM-sensitized ZnS NCs. The electron-injection dynamics is pulse-width-limited in all the ZnS/TPM dye systems, however, the back electron transfer differs, depending on the molecular coupling of the sensitizers (TPM dyes). The detailed mechanisms for the above-mentioned processes are discussed. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Uiberacker, Christoph; Jakubetz, Werner
2004-06-22
Using 550 previously calculated vibrational energy levels and dipole moments we performed simulations of the HCN-->HNC isomerization dynamics induced by sub-one-cycle and few-cycle IR pulses, which we represent as Gaussian pulses with 0.25-2 optical cycles in the pulse width. Starting from vibrationally pre-excited states, isomerization probabilities of up to 50% are obtained for optimized pulses. With decreasing number of optical cycles a strong dependence on the carrier-envelope phase (CEP) emerges. Although the optimized pulse parameters change significantly with the number of optical cycles, the distortion by the Gaussian envelope produces nearly equal fields, with a positive lobe followed by a negative one. The positions and areas of the lobes are also almost unchanged, irrespective of the number of cycles in the half-width. Isomerization proceeds via a pump-dumplike mechanism induced by the sequential lobes. The first lobe prepares a wave packet incorporating many delocalized states above the barrier. It is the motion of this wave packet across the barrier, which determines the timing of the pump and dump lobes. The role of the pulse parameters, and in particular of the CEP, is to produce the correct lobe sequence, size and timing within a continuous pulse. (c) 2004 American Institute of Physics.
NASA Astrophysics Data System (ADS)
Bogatskaya, A. V.; Volkova, E. A.; Popov, A. M.
2018-06-01
A new approach to constructing the source of radiation in the sub-THz frequency range is discussed. It is based on the strong-field ionization of heavy rare gases with Ramsauer minimum in the transport cross-section by a two-color () femtosecond laser pulse. Then a four-photon nonlinear process ( are the frequencies from the spectral width of the pulse with frequency ω, and is the frequency from the spectral width of the second harmonic 2ω) with a transition to the initial state results in a low-frequency spontaneous emission that can be amplified in the strongly nonequilibrium laser plasma if the position of the photoelectron peaks is located in the region of growing energy transport cross-section.
Juan, Yu-Shan; Lin, Fan-Yi
2010-04-26
We experimentally demonstrated the ultra-wideband (UWB) signal generation utilizing nonlinear dynamics of an optical pulse-injected semiconductor laser. The UWB signals generated are fully in compliant with the FCC mask for indoor radiation, while a large fractional bandwidth of 93% is achieved. To show the feasibility of UWB-over-fiber, transmission over a 2 km single-mode fiber and a wireless channel utilizing a pair of broadband antennas are examined. Moreover, proof of concept experiment on data encoding and decoding with 250 Mb/s in the optical pulse-injected laser is successfully demonstrated.
NASA Astrophysics Data System (ADS)
Schroeder, Carl; Benedetti, Carlo; Esarey, Eric; Leemans, Wim
2017-10-01
Ultra-low emittance beams can be generated using ionization injection of electrons into a wakefield excited by a plasma beatwave accelerator. This all-optical method of electron beam generation uses three laser pulses of different colors. Two long-wavelength laser pulses, with frequency difference equal to the plasma frequency, resonantly drive a plasma wave without fully ionizing a gas. A short-wavelength injection laser pulse (with a small ponderomotive force and large peak electric field), co-propagating and delayed with respect to the beating long-wavelength lasers, ionizes a fraction of the remaining bound electrons at a trapped wake phase, generating an electron beam that is accelerated in the wakefield. Using the beating of long-wavelength pulses to generate the wakefield enables atomically-bound electrons to remain at low ionization potentials, reducing the required amplitude of the ionization pulse, and, hence, the initial transverse momentum and emittance of the injected electrons. An example is presented using two lines of a CO2 laser to form a plasma beatwave accelerator to drive the wake and a frequency-doubled Ti:Al2O3 laser for ionization injection. Supported by the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.
Closed-loop pulsed helium ionization detector
Ramsey, Roswitha S.; Todd, Richard A.
1987-01-01
A helium ionization detector for gas chromatography is operated in a constant current, pulse-modulated mode by configuring the detector, electrometer and a high voltage pulser in a closed-loop control system. The detector current is maintained at a fixed level by varying the frequency of fixed-width, high-voltage bias pulses applied to the detector. An output signal proportional to the pulse frequency is produced which is indicative of the charge collected for a detected species.
Controller for a High-Power, Brushless dc Motor
NASA Technical Reports Server (NTRS)
Fleming, David J.; Makdad, Terence A.
1987-01-01
Driving and braking torques controllable. Control circuit operates 7-kW, 45-lb-ft (61-N-m), three-phase, brushless dc motor in both motor and generator modes. In motor modes, energy from power source is pulse-width modulated to motor through modified "H-bridge" circuit, in generator mode, energy from motor is pulse-width modulated into bank of load resistors to provide variable braking torques. Circuit provides high-resolution torque control in both directions over wide range of speeds and torques. Tested successfully at bus voltages up to 200 Vdc and currents up to 45 A.
Effect of Fuel Injection and Mixing Characteristics on Pulse-Combustor Performance at High-Pressure
NASA Technical Reports Server (NTRS)
Yungster, Shaye; Paxson, Daniel E.; Perkins, Hugh D.
2014-01-01
Recent calculations of pulse-combustors operating at high-pressure conditions produced pressure gains significantly lower than those observed experimentally and computationally at atmospheric conditions. The factors limiting the pressure-gain at high-pressure conditions are identified, and the effects of fuel injection and air mixing characteristics on performance are investigated. New pulse-combustor configurations were developed, and the results show that by suitable changes to the combustor geometry, fuel injection scheme and valve dynamics the performance of the pulse-combustor operating at high-pressure conditions can be increased to levels comparable to those observed at atmospheric conditions. In addition, the new configurations can significantly reduce the levels of NOx emissions. One particular configuration resulted in extremely low levels of NO, producing an emission index much less than one, although at a lower pressure-gain. Calculations at representative cruise conditions demonstrated that pulse-combustors can achieve a high level of performance at such conditions.
Long pulse production from short pulses
Toeppen, John S.
1994-01-01
A method of producing a long output pulse (SA) from a short pump pulse (P), using an elongated amplified fiber (11) having a doped core (12) that provides an amplifying medium for light of one color when driven into an excited state by light of a shorter wavelength and a surrounding cladding 13. A seed beam (S) of the longer wavelength is injected into the core (12) at one end of the fiber (11) and a pump pulse (P) of the shorter wavelength is injected into the cladding (13) at the other end of the fiber (11). The counter-propagating seed beam (S) and pump pulse (P) will produce an amplified output pulse (SA) having a time duration equal to twice the transit time of the pump pulse (P) through the fiber (11) plus the length of the pump pulse (P).
High speed micromachining with high power UV laser
NASA Astrophysics Data System (ADS)
Patel, Rajesh S.; Bovatsek, James M.
2013-03-01
Increasing demand for creating fine features with high accuracy in manufacturing of electronic mobile devices has fueled growth for lasers in manufacturing. High power, high repetition rate ultraviolet (UV) lasers provide an opportunity to implement a cost effective high quality, high throughput micromachining process in a 24/7 manufacturing environment. The energy available per pulse and the pulse repetition frequency (PRF) of diode pumped solid state (DPSS) nanosecond UV lasers have increased steadily over the years. Efficient use of the available energy from a laser is important to generate accurate fine features at a high speed with high quality. To achieve maximum material removal and minimal thermal damage for any laser micromachining application, use of the optimal process parameters including energy density or fluence (J/cm2), pulse width, and repetition rate is important. In this study we present a new high power, high PRF QuasarR 355-40 laser from Spectra-Physics with TimeShiftTM technology for unique software adjustable pulse width, pulse splitting, and pulse shaping capabilities. The benefits of these features for micromachining include improved throughput and quality. Specific example and results of silicon scribing are described to demonstrate the processing benefits of the Quasar's available power, PRF, and TimeShift technology.
Development of the dense plasma focus for short-pulse applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bennett, N.; Blasco, M.; Breeding, K.
The dense plasma focus (DPF) has long been considered a compact source for pulsed neutrons and has traditionally been optimized for the total neutron yield. Here, we describe the efforts to optimize the DPF for short-pulse applications by introducing a reentrant cathode at the end of the coaxial plasma gun. We reduced the resulting neutron pulse widths by an average of 21±921±9% from the traditional long-drift DPF design. Pulse widths and yields achieved from deuterium-tritium fusion at 2 MA are 61.8±30.761.8±30.7 ns FWHM and 1.84±0.49×10121.84±0.49×10 12 neutrons per shot. Simulations were conducted concurrently to elucidate the DPF operation and confirmmore » the role of the reentrant cathode. Furthermore, a hybrid fluid-kinetic particle-in-cell modeling capability demonstrates correct sheath velocities, plasma instabilities, and fusion yield rates. Consistent with previous findings that the DPF is dominated by beam-target fusion from superthermal ions, we estimate that the thermonuclear contribution is at the 1% level.« less
Terahertz Streaking of Few-Femtosecond Relativistic Electron Beams
NASA Astrophysics Data System (ADS)
Zhao, Lingrong; Wang, Zhe; Lu, Chao; Wang, Rui; Hu, Cheng; Wang, Peng; Qi, Jia; Jiang, Tao; Liu, Shengguang; Ma, Zhuoran; Qi, Fengfeng; Zhu, Pengfei; Cheng, Ya; Shi, Zhiwen; Shi, Yanchao; Song, Wei; Zhu, Xiaoxin; Shi, Jiaru; Wang, Yingxin; Yan, Lixin; Zhu, Liguo; Xiang, Dao; Zhang, Jie
2018-04-01
Streaking of photoelectrons with optical lasers has been widely used for temporal characterization of attosecond extreme ultraviolet pulses. Recently, this technique has been adapted to characterize femtosecond x-ray pulses in free-electron lasers with the streaking imprinted by far-infrared and terahertz (THz) pulses. Here, we report successful implementation of THz streaking for time stamping of an ultrashort relativistic electron beam, whose energy is several orders of magnitude higher than photoelectrons. Such an ability is especially important for MeV ultrafast electron diffraction (UED) applications, where electron beams with a few femtosecond pulse width may be obtained with longitudinal compression, while the arrival time may fluctuate at a much larger timescale. Using this laser-driven THz streaking technique, the arrival time of an ultrashort electron beam with a 6-fs (rms) pulse width has been determined with 1.5-fs (rms) accuracy. Furthermore, we have proposed and demonstrated a noninvasive method for correction of the timing jitter with femtosecond accuracy through measurement of the compressed beam energy, which may allow one to advance UED towards a sub-10-fs frontier, far beyond the approximate 100-fs (rms) jitter.
Madej, Mary Ann
2001-01-01
Large, episodic inputs of coarse sediment (sediment pulses) in forested, mountain streams may result in changes in the size and arrangement of bed forms and in channel roughness. A conceptual model of channel organization delineates trajectories of response to sediment pulses for many types of gravel bed channels. Channels exhibited self‐organizing behavior to various degrees based on channel gradient, presence of large in‐channel wood or other forcing elements, the size of the sediment pulse, and the number of bed‐mobilizing flows since disturbance. Typical channel changes following a sediment pulse were initial decreases in water depth, in variability of bed elevations, and in the regularity of bed form spacing. Trajectories of change subsequently showed increased average water depth, more variable and complex bed topography, and increased uniformity of bed form spacing. Bed form spacing in streams with abundant forcing elements developed at a shorter spatial scale (two to five channel widths) than in streams without such forcing mechanisms (five to 10 channel widths). Channel roughness increased as bed forms developed.
Lam, Jessica; Rennick, Christopher J; Softley, Timothy P
2015-05-01
A chopper wheel construct is used to shorten the duration of a molecular beam to 13 μs. Molecular beams seeded with NO or with Br2 and an initial pulse width of ≥200 μs were passed through a spinning chopper wheel, which was driven by a brushless DC in vacuo motor at a range of speeds, from 3000 rpm to 80,000 rpm. The resulting duration of the molecular-beam pulses measured at the laser detection volume ranged from 80 μs to 13 μs and was the same for both NO and Br2. The duration is consistent with a simple analytical model, and the minimum pulse width measured is limited by the spreading of the beam between the chopper and the detection point as a consequence of the longitudinal velocity distribution of the beam. The setup adopted here effectively eliminates buildup of background gas without the use of a differential pumping stage, and a clean narrow pulse is obtained with low rotational temperature.
Laser processing of sapphire with picosecond and sub-picosecond pulses
NASA Astrophysics Data System (ADS)
Ashkenasi, D.; Rosenfeld, A.; Varel, H.; Wähmer, M.; Campbell, E. E. B.
1997-11-01
Laser processing of sapphire using a Ti:sapphire laser at 790 and 395 nm and pulse widths varying between 0.2 and 5 ps is reported. A clear improvement in quality is demonstrated for multi-shot processing with sub-ps laser pulses. For fluences between 3 and 12 J/cm 2 two ablation phases were observed, in agreement with previous work from Tam et al. using 30 ps, 266 nm laser pulses [A.C. Tam, J.L. Brand, D.C. Cheng, W. Zapka, Appl. Phys. Lett. 55 (20) (1994) 2045]. During the `gentle ablation' phase periodic wavelike structures, i.e. ripples, were observed on the Al 2O 3 surface, perpendicular to the laser polarisation and with a spacing almost equalling the laser wavelength, indicating metallic-like behaviour. The ripple modulation depth was in the order of a few tens of nm. For fluences between 1 and 2.5 J/cm 2, below the single-shot surface damage threshold and at a pulse width above 200 fs, microstructures could be produced at the rear side of a 1 mm thick sapphire substrate without affecting the front surface.
Development of the dense plasma focus for short-pulse applications
Bennett, N.; Blasco, M.; Breeding, K.; ...
2017-01-05
The dense plasma focus (DPF) has long been considered a compact source for pulsed neutrons and has traditionally been optimized for the total neutron yield. Here, we describe the efforts to optimize the DPF for short-pulse applications by introducing a reentrant cathode at the end of the coaxial plasma gun. We reduced the resulting neutron pulse widths by an average of 21±921±9% from the traditional long-drift DPF design. Pulse widths and yields achieved from deuterium-tritium fusion at 2 MA are 61.8±30.761.8±30.7 ns FWHM and 1.84±0.49×10121.84±0.49×10 12 neutrons per shot. Simulations were conducted concurrently to elucidate the DPF operation and confirmmore » the role of the reentrant cathode. Furthermore, a hybrid fluid-kinetic particle-in-cell modeling capability demonstrates correct sheath velocities, plasma instabilities, and fusion yield rates. Consistent with previous findings that the DPF is dominated by beam-target fusion from superthermal ions, we estimate that the thermonuclear contribution is at the 1% level.« less
Hou, Lei; Guo, Hongyu; Wang, Yonggang; Sun, Jiang; Lin, Qimeng; Bai, Yang; Bai, Jintao
2018-04-02
Ultrafast fiber laser light sources attract enormous interest due to the booming applications they are enabling, including long-distance communication, optical metrology, detecting technology of infra-biophotons, and novel material processing. In this paper, we demonstrate 175 fs dispersion-managed soliton (DMS) mode-locked ytterbium-doped fiber (YDF) laser based on single-walled carbon nanotubes (SWCNTs) saturable absorber (SA). The output DMSs have been achieved with repetition rate of 21.2 MHz, center wavelength of 1025.5 nm, and a spectral width of 32.7 nm. The operation directly pulse duration of 300 fs for generated pulse is the reported shortest pulse width for broadband SA based YDF lasers. By using an external grating-based compressor, the pulse duration could be compressed down to 175 fs. To the best of our knowledge, it is the shortest pulse duration obtained directly from YDF laser based on broadband SAs. In this paper, SWCNTs-SA has been utilized as the key optical component (mode locker) and the grating pair providing negative dispersion acts as the dispersion controller.
Pulse stuttering as a remedy for aliased ground backscatter
NASA Astrophysics Data System (ADS)
Bowhill, S. A.
1983-12-01
An algorithm that aides in the removal of ground scatter from low frequency Mesosphere, Stratosphere, Troposphere (MST) radar signals is examined. The unwanted ground scatter is shown as a sequence of velocity plots which are almost typical at the various altitudes. The interpulse period is changed in a cyclic way, thereby destroying the coherence of the unwanted signal. The interpulse period must be changed by an amount at least equal to the transmitted pulse width, and optimum performance is obtained when the number of different interpulse period occupies a time span greater than the coherence time of the unwanted signal. Since a 20-msec pulse width is used, it was found convenient to cycle through 50 pulses, the interpulse period changing from 2 msec to 3 msec during the 1/8-second time. This particular pattern of interpulse periods was provided by a software radar controller. With application of this algorithm, the unwanted scatter signal becomes incoherent from one pulse to the next, and therefore is perceived as noise by the coherent integrator and correlator.
Pulse stuttering as a remedy for aliased ground backscatter
NASA Technical Reports Server (NTRS)
Bowhill, S. A.
1983-01-01
An algorithm that aides in the removal of ground scatter from low frequency Mesosphere, Stratosphere, Troposphere (MST) radar signals is examined. The unwanted ground scatter is shown as a sequence of velocity plots which are almost typical at the various altitudes. The interpulse period is changed in a cyclic way, thereby destroying the coherence of the unwanted signal. The interpulse period must be changed by an amount at least equal to the transmitted pulse width, and optimum performance is obtained when the number of different interpulse period occupies a time span greater than the coherence time of the unwanted signal. Since a 20-msec pulse width is used, it was found convenient to cycle through 50 pulses, the interpulse period changing from 2 msec to 3 msec during the 1/8-second time. This particular pattern of interpulse periods was provided by a software radar controller. With application of this algorithm, the unwanted scatter signal becomes incoherent from one pulse to the next, and therefore is perceived as noise by the coherent integrator and correlator.
System and method for determining stator winding resistance in an AC motor using motor drives
Lu, Bin; Habetler, Thomas G; Zhang, Pinjia
2013-02-26
A system and method for determining the stator winding resistance of AC motors is provided. The system includes an AC motor drive having an input connectable to an AC source and an output connectable to an input terminal of an AC motor, a pulse width modulation (PWM) converter having switches therein to control current flow and terminal voltages in the AC motor, and a control system connected to the PWM converter. The control system generates a command signal to cause the PWM converter to control an output of the AC motor drive corresponding to an input to the AC motor, selectively generates a modified command signal to cause the PWM converter to inject a DC signal into the output of the AC motor drive, and determines a stator winding resistance of the AC motor based on the DC signal of at least one of the voltage and current.
NASA Astrophysics Data System (ADS)
Weng, Hai-Zhong; Han, Jun-Yuan; Li, Qing; Yang, Yue-De; Xiao, Jin-Long; Qin, Guan-Shi; Huang, Yong-Zhen
2018-05-01
A novel approach using a dual-mode square microlaser as the pump source is demonstrated to produce wideband optical frequency comb (OFC). The enhanced nonlinear frequency conversion processes are accomplished in a nonlinear fiber loop, which can reduce the stimulated Brillouin scattering threshold and then generate a dual-mode Brillouin laser with improved optical signal-to-noise ratio. An OFC with 130 nm bandwidth and 76 GHz repetition rate is successfully generated under the four-wave mixing, and the number of the comb lines is enhanced by 26 times compared with the system without fiber loop. In addition, the repetition rate of the comb can be adjusted by changing the injection current of the microlaser. The pulse width of the comb spectrum is also compressed from 3 to 1 ps with an extra amplification-nonlinear process.
High peak power THz source for ultrafast electron diffraction
NASA Astrophysics Data System (ADS)
Liu, Shengguang
2018-01-01
Terahertz (THz) science and technology have already become the research highlight at present. In this paper, we put forward a device setup to carry out ultrafast fundamental research. A photocathode RF gun generates electron bunches with ˜MeV energy, ˜ps bunch width and about 25pC charge. The electron bunches inject the designed wiggler, the coherent radiation at THz spectrum emits from these bunches and increases rapidly until the saturation at ˜MW within a short wiggler. THz pulses can be used as pump to stimulate an ultra-short excitation in some kind of sample. Those electron bunches out of wiggler can be handled into bunches with ˜1pC change, small beam spot and energy spread to be probe. Because the pump and probe comes from the same electron source, synchronization between pump and probe is inherent. The whole facility can be compacted on a tabletop.
3D two-photon lithographic microfabrication system
Kim, Daekeun [Cambridge, MA; So, Peter T. C. [Boston, MA
2011-03-08
An imaging system is provided that includes a optical pulse generator for providing an optical pulse having a spectral bandwidth and includes monochromatic waves having different wavelengths. A dispersive element receives a second optical pulse associated with the optical pulse and disperses the second optical pulse at different angles on the surface of the dispersive element depending on wavelength. One or more focal elements receives the dispersed second optical pulse produced on the dispersive element. The one or more focal element recombine the dispersed second optical pulse at a focal plane on a specimen where the width of the optical pulse is restored at the focal plane.
DIRECT COUPLED PROGRESSIVE STAGE PULSE COUNTER APPARATUS
Kaufman, W.M.
1962-08-14
A progressive electrical pulse counter circuit was designed for the counting of a chain of input pulses of random width and/or frequency. The circuit employs an odd and even pulse input line alternately connected to a series of directly connected bistable counting stages. Each bistable stage has two d-c operative states which stage, when in its rnrtial state, prevents the next succeeding stage from changing its condition when the latter stage is pulsed. Since only altennate stages are pulsed for each incoming pulse, only one stage will change its state for each input pulse thereby providing prog essive stage by stage counting. (AEC)
A graphite based STT-RAM cell with reduction in switching current
NASA Astrophysics Data System (ADS)
Varghani, Ali; Peiravi, Ali
2015-10-01
Spin Transfer Torque Random Access Memory (STT-RAM) is a serious candidate for "universal memory" because of its non-volatility, fast access time, high density, good scalability, high endurance and relatively low power dissipation. However, problems with low write speed and large write current are important existing challenges in STT-RAM design and there is a tradeoff between them and data retention time. In this study, a novel STT-RAM cell structure which uses perfect graphite based Magnetic Tunnel Junction (MTJ) is proposed. First, the cross-section of the structure is selected to be an ellipse of 45 nm and 180 nm dimensions and a six-layer graphite is used as tunnel barrier. By passing a lateral current with a short pulse width (before applying STT current and independent of it) through four middle graphene layers of the tunnel barrier, a 27% reduction in the amplitude of the switching current (for fast switching time of 2 ns) or a 58% reduction in its pulse width is achieved without any reduction in data retention time. Finally, the effect of downscaling of technology on the proposed structure is evaluated. A reduction of 31.6% and 9% in switching current is achieved for 90 and 22 nm cell width respectively by passing sufficient current (100 μA with 0.1 ns pulse width) through the tunnel barrier. Simulations are done using Object Oriented Micro Magnetic Framework (OOMMF).
Katz, Ira; Pichelin, Marine; Montesantos, Spyridon; Kang, Min-Yeong; Sapoval, Bernard; Zhu, Kaixian; Thevenin, Charles-Philippe; McCoy, Robert; Martin, Andrew R; Caillibotte, Georges
2016-01-01
Oxygen treatment based on intermittent-flow devices with pulse delivery modes available from portable oxygen concentrators (POCs) depends on the characteristics of the delivered pulse such as volume, pulse width (the time of the pulse to be delivered), and pulse delay (the time for the pulse to be initiated from the start of inhalation) as well as a patient’s breathing characteristics, disease state, and respiratory morphology. This article presents a physiological-based analysis of the performance, in terms of blood oxygenation, of a commercial POC at different settings using an in silico model of a COPD patient at rest and during exercise. The analysis encompasses experimental measurements of pulse volume, width, and time delay of the POC at three different settings and two breathing rates related to rest and exercise. These experimental data of device performance are inputs to a physiological-based model of oxygen uptake that takes into account the real dynamic nature of gas exchange to illustrate how device- and patient-specific factors can affect patient oxygenation. This type of physiological analysis that considers the true effectiveness of oxygen transfer to the blood, as opposed to delivery to the nose (or mouth), can be instructive in applying therapies and designing new devices. PMID:27729783
Spectral Flattening at Low Frequencies in Crab Giant Pulses
NASA Astrophysics Data System (ADS)
Meyers, B. W.; Tremblay, S. E.; Bhat, N. D. R.; Shannon, R. M.; Kirsten, F.; Sokolowski, M.; Tingay, S. J.; Oronsaye, S. I.; Ord, S. M.
2017-12-01
We report on simultaneous wideband observations of Crab giant pulses with the Parkes radio telescope and the Murchison Widefield Array (MWA). The observations were conducted simultaneously at 732 and 3100 MHz with Parkes and at 120.96, 165.76, and 210.56 MHz with the MWA. Flux density calibration of the MWA data was accomplished using a novel technique based on tied-array beam simulations. We detected between 90 and 648 giant pulses in the 120.96-210.56 MHz MWA subbands above a 5.5σ threshold, while in the Parkes subbands we detected 6344 and 231 giant pulses above a threshold of 6σ at 732 and 3100 MHz, respectively. We show, for the first time over a wide frequency range, that the average spectrum of Crab giant pulses exhibits a significant flattening at low frequencies. The spectral index, α, for giant pulses evolves from a steep, narrow distribution with a mean α =-2.6 and width {σ }α =0.5 between 732 and 3100 MHz to a wide, flat distribution of spectral indices with a mean α =-0.7 and width {σ }α =1.4 between 120.96 and 165.76 MHz. We also comment on the plausibility of giant pulse models for fast radio bursts based on this spectral information.
Wang, Wei; Wang, Zijian; Lin, Xiuli; Wang, ZongWen; Fu, FengFu
2012-10-15
In this work, a reflux injection mode for the cross form micro-fluidic chip was studied. This injection mode could flexibly control the length of sample plug from less than one channel width (<83 μm) to tens of channel widths (millimeter-sized) by adjusting the injection time. Namely, the separation resolution or sample detection sensitivity could be selectively improved by changing injection time. Composed of four steps, the reflux injection mode alleviated the electrophoretic sampling bias and prevented sample leakage successfully. On a micro-fluidic chip coupled with laser induced fluorescence (LIF) detector, the injection mode was applied to separate seven oligopeptides, namely GG, GL, RPP, KPV, VKK, WYD and YWS. All analytes were completely separated and detected within 12 min with detection limits of 25-625 nmol/L. At last, the proposed method had been successfully applied to detect oligopeptides consumed by bacillus licheniformis in anode chamber of microbial fuel cell (MFC) to study the effect of oligopeptides on the MFC running. Copyright © 2012 Elsevier B.V. All rights reserved.
Turbulent structure and emissions of strongly-pulsed jet diffusion flames
NASA Astrophysics Data System (ADS)
Fregeau, Mathieu
This current research project studied the turbulent flame structure, the fuel/air mixing, the combustion characteristics of a nonpremixed pulsed (unsteady) and unpulsed (steady) flame configuration for both normal- and microgravity conditions, as well as the flame emissions in normal gravity. The unsteady flames were fully-modulated, with the fuel flow completely shut off between injection pulses using an externally controlled valve, resulting in the generation of compact puff-like flame structures. Conducting experiments in normal and microgravity environments enabled separate control over the relevant Richardson and Reynolds numbers to clarify the influence of buoyancy on the flame behavior, mixing, and structure. Experiments were performed in normal gravity in the laboratory at the University of Washington and in microgravity using the NASA GRC 2.2-second Drop Tower facility. High-speed imaging, as well as temperature and emissions probes were used to determine the large-scale structure dynamics, the details of the flame structure and oxidizer entrainment, the combustion temperatures, and the exhaust emissions of the pulsed and steady flames. Of particular interest was the impact of changes in flame structure due to pulsing on the combustion characteristics of this system. The turbulent flame puff celerity (i.e., the bulk velocity of the puffs) was strongly impacted by the jet-off time, increasing markedly as the time between pulses was decreased, which caused the degree of puff interaction to increase and the strongly-pulsed flame to more closely resemble a steady flame. This increase occurred for all values of injection time as well as for constant fuelling rate and in both the presence and absence of buoyancy. The removal of positive buoyancy in microgravity resulted in a decrease in the flame puff celerity in all cases, amounting to as much as 40%, for both constant jet injection velocity and constant fuelling rate. The mean flame length of the strongly-pulsed flames was not strongly impacted by buoyancy. This lack of sensitivity to buoyancy was consistent with offsetting changes in flame puff celerity and time to burnout for the microgravity versus normal-gravity cases. The emissions of CO and NO were examined in the vicinity of the visible flame tip and at the combustor exit for strongly-pulsed flames. The highest exhaust-point emission indices of CO for compact, isolated puffs were as much as a factor of six higher than those of elongated flames with longer injection times. The amount of CO decreased substantially with a decreased amount of flame puff interaction. The higher CO levels for pulsed flames with the shortest injection times were consistent with quenching due to the very rapid mixing and dilution with excess air for the most compact flame puffs. The injection time for which steady-flame emission levels were attained was comparable to the injection time for which the visible flame length approached the flame length of steady flames. The CO emissions, for a given fuelling rate, were strongly dependent on both the injection time and jet-off time for a jet-on fraction less than approximately 50%. The NO levels were generally proportional to the fuelling rate. This work indicates that there are specific combinations of injection time and jet-off time that considerably change the fuel/air mixing, resulting in emissions comparable to those of the steady flame while the flame length is significantly shorter. This points the potential utility of the strongly-pulsed injection technique in the development of compact, low emissions combustors involving turbulent diffusion flames. (Abstract shortened by UMI.)
High-rate dead-time corrections in a general purpose digital pulse processing system
Abbene, Leonardo; Gerardi, Gaetano
2015-01-01
Dead-time losses are well recognized and studied drawbacks in counting and spectroscopic systems. In this work the abilities on dead-time correction of a real-time digital pulse processing (DPP) system for high-rate high-resolution radiation measurements are presented. The DPP system, through a fast and slow analysis of the output waveform from radiation detectors, is able to perform multi-parameter analysis (arrival time, pulse width, pulse height, pulse shape, etc.) at high input counting rates (ICRs), allowing accurate counting loss corrections even for variable or transient radiations. The fast analysis is used to obtain both the ICR and energy spectra with high throughput, while the slow analysis is used to obtain high-resolution energy spectra. A complete characterization of the counting capabilities, through both theoretical and experimental approaches, was performed. The dead-time modeling, the throughput curves, the experimental time-interval distributions (TIDs) and the counting uncertainty of the recorded events of both the fast and the slow channels, measured with a planar CdTe (cadmium telluride) detector, will be presented. The throughput formula of a series of two types of dead-times is also derived. The results of dead-time corrections, performed through different methods, will be reported and discussed, pointing out the error on ICR estimation and the simplicity of the procedure. Accurate ICR estimations (nonlinearity < 0.5%) were performed by using the time widths and the TIDs (using 10 ns time bin width) of the detected pulses up to 2.2 Mcps. The digital system allows, after a simple parameter setting, different and sophisticated procedures for dead-time correction, traditionally implemented in complex/dedicated systems and time-consuming set-ups. PMID:26289270
PRELIMINARY TEST RESULTS OF A PROTOTYPE FAST KICKER FOR APS MBA UPGRADE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yao, C.-Y.; Morrison, L.; Sun, X.
The APS multi-bend achromatic (MBA) upgrade storage ring plans to support two bunch fill patterns: a 48-bunch and a 324-bunch. A “swap out” injection scheme is required. In order to provide the required kick to injected beam, to minimize the beam loss and residual oscillation of injected beam, and to minimize the perturbation to stored beam during injection, the rise, fall, and flat-top parts of the kicker pulse must be within a 16.9-ns interval. Stripline-type kickers are chosen for both injection and extraction. We developed a prototype kicker that supports a ±15kV differential pulse voltage. We performed high voltage discharge,more » TDR measurement, high voltage pulse test and beam test of the kicker. We report the final design of the fast kicker and the test results.« less
Ghaly, Michael; Links, Jonathan M; Frey, Eric C
2015-01-01
Dual-isotope simultaneous-acquisition (DISA) rest-stress myocardial perfusion SPECT (MPS) protocols offer a number of advantages over separate acquisition. However, crosstalk contamination due to scatter in the patient and interactions in the collimator degrade image quality. Compensation can reduce the effects of crosstalk, but does not entirely eliminate image degradations. Optimizing acquisition parameters could further reduce the impact of crosstalk. In this paper we investigate the optimization of the rest Tl-201 energy window width and relative injected activities using the ideal observer (IO), a realistic digital phantom population and Monte Carlo (MC) simulated Tc-99m and Tl-201 projections as a means to improve image quality. We compared performance on a perfusion defect detection task for Tl-201 acquisition energy window widths varying from 4 to 40 keV centered at 72 keV for a camera with a 9% energy resolution. We also investigated 7 different relative injected activities, defined as the ratio of Tc-99m and Tl-201 activities, while keeping the total effective dose constant at 13.5 mSv. For each energy window and relative injected activity, we computed the IO test statistics using a Markov chain Monte Carlo (MCMC) method for an ensemble of 1,620 triplets of fixed and reversible defect-present, and defect-absent noisy images modeling realistic background variations. The volume under the 3-class receiver operating characteristic (ROC) surface (VUS) was estimated and served as the figure of merit. For simultaneous acquisition, the IO suggested that relative Tc-to-Tl injected activity ratios of 2.6–5 and acquisition energy window widths of 16–22% were optimal. For separate acquisition, we observed a broad range of optimal relative injected activities from 2.6 to 12.1 and acquisition energy window of widths 16–22%. A negative correlation between Tl-201 injected activity and the width of the Tl-201 energy window was observed in these ranges. The results also suggested that DISA methods could potentially provide image quality as good as that obtained with separate acquisition protocols. We compared observer performance for the optimized protocols and the current clinical protocol using separate acquisition. The current clinical protocols provided better performance at a cost of injecting the patient with approximately double the injected activity of Tc-99m and Tl-201, resulting in substantially increased radiation dose. PMID:26083239
Ben Neriah, Asaf; Paster, Amir
2017-10-01
Application of short-duration pulses of high air pressure, to an air sparging system for groundwater remediation, was tested in a two-dimensional laboratory setup. It was hypothesized that this injection mode, termed boxcar, can enhance the remediation efficiency due to the larger ZOI and enhanced mixing which results from the pressure pulses. To test this hypothesis, flow and transport experiments were performed. Results confirm that cyclically applying short-duration pressure pulses may enhance contaminant cleanup. Comparing the boxcar to conventional continuous air-injection shows up to a three-fold increase in the single well radius of influence, dependent on the intensity of the short-duration pressure-pulses. The cleanup efficiency of Toluene from the water was 95% higher than that achieved under continuous injection with the same average conditions. This improvement was attributed to the larger zone of influence and higher average air permeability achieved in the boxcar mode, relative to continuous sparging. Mixing enhancement resultant from recurring pressure pulses was suggested as one of the mechanisms which enhance the contaminant cleanup. The application of a boxcar mode in an existing, multiwell, air sparging setup can be relatively straightforward: it requires the installation of an on-off valve in each of the injection-wells and a central control system. Then, turning off some of the wells, for a short-duration, result in a stepwise increase in injection pressure in the rest of the wells. It is hoped that this work will stimulate the additional required research and ultimately a field scale application of this new injection mode. Copyright © 2017 Elsevier B.V. All rights reserved.
Fitz, Brian D; Wilson, Ryan B; Parsons, Brendon A; Hoggard, Jamin C; Synovec, Robert E
2012-11-30
Peak capacity production is substantially improved for two-dimensional gas chromatography coupled with time-of-flight mass spectrometry (GC×GC-TOFMS) and applied to the fast separation of a 28 component liquid test mixture, and two complex vapor samples (a 65 component volatile organic compound test mixture, and the headspace of warm ground coffee beans). A high peak capacity is achieved in a short separation time by selecting appropriate experimental conditions based on theoretical modeling of on-column band broadening, and by reducing the off-column band broadening by applying a narrow, concentrated injection pulse onto the primary column using high-speed cryo-focusing injection (HSCFI), referred to as thermal injection. A long, relatively narrow open tubular capillary column (20 m, 100 μm inner diameter (i.d.) with a 0.4 μm film thickness to benefit column capacity) was used as the primary column. The initial flow rate was 2 ml/min (60 cm/s average linear flow velocity) which is slightly below the optimal average linear gas velocity of 83 cm/s, due to the flow rate constraint of the TOFMS vacuum system. The oven temperature programming rate was 30°C/min. The secondary column (1.8m, 100 μm i.d. with a 0.1 μm film thickness) provided a relatively high peak capacity separation, concurrent with a significantly shorter modulation period, P(M), than commonly applied with the commercial instrument. With this GC×GC-TOFMS instrumental platform, compounds in the 28 component liquid test mixture provided a ∼7 min separation (with a ∼6.5 min separation time window), producing average peak widths of ∼600 ms full width half maximum (FWHM), resulting in a peak capacity on the primary column of ∼400 peaks (at unit resolution). Using a secondary column with a 500 ms P(M), average peak widths of ∼20 ms FWHM were achieved, thus providing a peak capacity of 15 peaks on the second dimension. Overall, an ideal orthogonal GC×GC peak capacity of ∼6000 peaks (at unit resolution) was achieved (or a β-corrected orthogonal peak capacity of ∼4400, at an average modulation ratio, M(R), of ∼2). This corresponds to an ideal orthogonal peak capacity production of ∼1000 peaks/min (or ∼700 peaks/min, β-corrected). For comparison, standard split/split-less injection techniques with a 1:100 split, when combined with standard GC×GC conditions typically provide a peak capacity production of ∼100 peaks/min, hence the instrumental platform we report provides a ∼7-fold to 10-fold improvement. Copyright © 2012 Elsevier B.V. All rights reserved.
Nox reduction system utilizing pulsed hydrocarbon injection
Brusasco, Raymond M.; Penetrante, Bernardino M.; Vogtlin, George E.; Merritt, Bernard T.
2001-01-01
Hydrocarbon co-reductants, such as diesel fuel, are added by pulsed injection to internal combustion engine exhaust to reduce exhaust NO.sub.x to N.sub.2 in the presence of a catalyst. Exhaust NO.sub.x reduction of at least 50% in the emissions is achieved with the addition of less than 5% fuel as a source of the hydrocarbon co-reductants. By means of pulsing the hydrocarbon flow, the amount of pulsed hydrocarbon vapor (itself a pollutant) can be minimized relative to the amount of NO.sub.x species removed.
Efficacy of right unilateral ultrabrief pulse width ECT: a preliminary report.
Magid, Michelle; Truong, Liz; Trevino, Kenneth; Husain, Mustafa
2013-12-01
Ultrabrief (right unilateral) electroconvulsive therapy (UB-RU ECT) is a newer form of ECT, which uses a shorter pulse width than the standard ECT (0.3 vs 1.0 millisecond, respectively). As a result, the use of UB ECT may provide a means of further decreasing ECT-related cognitive adverse effects. In 2011, the University of Texas Southwestern Department of ECT in Austin adopted a UB ECT protocol. The purpose of this study was to perform a preliminary evaluation of the effectiveness and efficiency of UB-RU ECT. This study also examined whether sex, age, or diagnosis affected response rates. This retrospective chart review identified 62 patients treated with the UB ECT protocol. An analysis of ECT response rates and demographic characteristics was conducted based on the data from clinical evaluations and Patient Health Questionnaire 9. Sixty-eight percent of patients in the study responded to ECT; 55% responded to UB pulse width RU ECT with another 13% responding when switched to standard pulse width bilateral ECT. The mean number of treatments in an index ECT series was 12.5. There was no statistically significant difference in response rates between bipolar and unipolar depressed patients. Men required progression to bilateral treatment more than women. This UB ECT protocol demonstrated a similar response rate when compared to standard ECT protocols; however, an increase in the number of treatments was required. Ultrabrief protocols are a viable option for both bipolar and unipolar depression. In men, UB ECT protocols may be less advantageous due to a need to overcome a potentially higher seizure threshold in men; however, additional research is needed to confirm this finding.
Method and apparatus for improved high power impulse magnetron sputtering
Anders, Andre
2013-11-05
A high power impulse magnetron sputtering apparatus and method using a vacuum chamber with a magnetron target and a substrate positioned in the vacuum chamber. A field coil being positioned between the magnetron target and substrate, and a pulsed power supply and/or a coil bias power supply connected to the field coil. The pulsed power supply connected to the field coil, and the pulsed power supply outputting power pulse widths of greater that 100 .mu.s.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ji Wang; Yunjun Zhang; Aotuo Dong
2014-04-28
The active Q-switched and passive mode-locked Er{sup 3+}-doped all-fibre laser is presented. The fibre laser centre wavelength is located at 1563 nm and determined by the homemade singlemulti- single (SMS) in-line fibre filter. The laser spectrum width is nearly 0.1 nm. The active Q-switched mechanism relies on the polarisation state control using a piezoelectric to press a segment of passive fibre on the circular cavity. The nonlinear polarisation rotation technology is used to realise the passive self-started modelocked operation. In the passive mode-locked regimes, the output average power is 2.1 mW, repetition frequency is 11.96 MHz, and single pulse energymore » is 0.18 nJ. With the 100-Hz Q-switched regimes running, the output average power is 1.5 mW. The total Q-switched pulse width is 15 μs, and every Q-switched pulse is made up by several tens of mode-locked peak pulses. The calculated output pulse energy of the Q-switched fibre laser is about 15 μJ, and the energy of every mode-locked pulse is about 64–68 nJ during a Q-switched pulse taking into account the power fraction propagating between pulses. (lasers)« less
Low Probability of Intercept Laser Range Finder
2017-07-19
time of arrival, and it may also include wavelength, pulse width, and pulse repetition frequency (PRF). Second photodetector 38 in conjunction with... conjunction with lens 32 and telescope 36 that can correct for turbulence along the free space path. [0024] In all embodiments, the time interval
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lam, Jessica; Rennick, Christopher J.; Softley, Timothy P.
A chopper wheel construct is used to shorten the duration of a molecular beam to 13 μs. Molecular beams seeded with NO or with Br{sub 2} and an initial pulse width of ≥200 μs were passed through a spinning chopper wheel, which was driven by a brushless DC in vacuo motor at a range of speeds, from 3000 rpm to 80 000 rpm. The resulting duration of the molecular-beam pulses measured at the laser detection volume ranged from 80 μs to 13 μs and was the same for both NO and Br{sub 2}. The duration is consistent with a simple analyticalmore » model, and the minimum pulse width measured is limited by the spreading of the beam between the chopper and the detection point as a consequence of the longitudinal velocity distribution of the beam. The setup adopted here effectively eliminates buildup of background gas without the use of a differential pumping stage, and a clean narrow pulse is obtained with low rotational temperature.« less
NASA Astrophysics Data System (ADS)
Xi, Xiao-Wen; Chai, Chang-Chun; Liu, Yang; Yang, Yin-Tang; Fan, Qing-Yang; Shi, Chun-Lei
2016-08-01
An electromagnetic pulse (EMP)-induced damage model based on the internal damage mechanism of the GaAs pseudomorphic high electron mobility transistor (PHEMT) is established in this paper. With this model, the relationships among the damage power, damage energy, pulse width and signal amplitude are investigated. Simulation results show that the pulse width index from the damage power formula obtained here is higher than that from the empirical formula due to the hotspot transferring in the damage process of the device. It is observed that the damage energy is not a constant, which decreases with the signal amplitude increasing, and then changes little when the signal amplitude reaches up to a certain level. Project supported by the National Basic Research Program of China (Grant No. 2014CB339900) and the Open Fund of Key Laboratory of Complex Electromagnetic Environment Science and Technology, China Academy of Engineering Physics (CAEP) (Grant No. 2015-0214.XY.K).
Bochkezanian, Vanesa; Newton, Robert U; Trajano, Gabriel S; Vieira, Amilton; Pulverenti, Timothy S; Blazevich, Anthony J
2018-02-13
Neuromuscular electrical stimulation (NMES) is commonly used in skeletal muscles in people with spinal cord injury (SCI) with the aim of increasing muscle recruitment and thus muscle force production. NMES has been conventionally used in clinical practice as functional electrical stimulation (FES), using low levels of evoked force that cannot optimally stimulate muscular strength and mass improvements, and thus trigger musculoskeletal changes in paralysed muscles. The use of high intensity intermittent NMES training using wide-pulse width and moderate-intensity as a strength training tool could be a promising method to increase muscle force production in people with SCI. However, this type of protocol has not been clinically adopted because it may generate rapid muscle fatigue and thus prevent the performance of repeated high-intensity muscular contractions in paralysed muscles. Moreover, superimposing patellar tendon vibration onto the wide-pulse width NMES has been shown to elicit further increases in impulse or, at least, reduce the rate of fatigue in repeated contractions in able-bodied populations, but there is a lack of evidence to support this argument in people with SCI. Nine people with SCI received two NMES protocols with and without superimposing patellar tendon vibration on different days (i.e. STIM and STIM+vib), which consisted of repeated 30 Hz trains of 58 wide-pulse width (1000 μs) symmetric biphasic pulses (0.033-s inter-pulse interval; 2 s stimulation train; 2-s inter-train interval) being delivered to the dominant quadriceps femoris. Starting torque was 20% of maximal doublet-twitch torque and stimulations continued until torque declined to 50% of the starting torque. Total knee extensor impulse was calculated as the primary outcome variable. Total knee extensor impulse increased in four subjects when patellar tendon vibration was imposed (59.2 ± 15.8%) but decreased in five subjects (- 31.3 ± 25.7%). However, there were no statistically significant differences between these sub-groups or between conditions when the data were pooled. Based on the present results there is insufficient evidence to conclude that patellar tendon vibration provides a clear benefit to muscle force production or delays muscle fatigue during wide-pulse width, moderate-intensity NMES in people with SCI. ACTRN12618000022268 . Date: 11/01/2018. Retrospectively registered.
Pulsed Turbulent Diffusion Flames in a Coflow
NASA Astrophysics Data System (ADS)
Usowicz, James E.; Hermanson, James C.; Johari, Hamid
2000-11-01
Fully modulated diffusion flames were studied experimentally in a co-flow combustor using unheated ethylene fuel at atmospheric pressure. A fast solenoid valve was used to fully modulate (completely shut-off) the fuel flow. The fuel was released from a 2 mm diameter nozzle with injection times ranging from 2 to 750 ms. The jet exit Reynolds number was 2000 to 10,000 with a co-flow air velocity of up to 0.02 times the jet exit velocity. Establishing the effects of co-flow for the small nozzle and short injection times is required for future tests of pulsed flames under microgravity conditions. The very short injection times resulted in compact, burning puffs. The compact puffs had a mean flame length as little as 20flame for the same Reynolds number. As the injection time and fuel volume increased, elongated flames resembling starting jets resulted with a flame length comparable to that of a steady flame. For short injection times, the addition of an air co-flow resulted in an increase in flame length of nearly 50flames with longer injection times was correspondingly smaller. The effects of interaction of successive pulses on the flame length were most pronounced for the compact puffs. The emissions of unburned hydrocarbon and NOx from the pulsed flames were examined.
Nanosecond pulsed laser welding of high carbon steels
NASA Astrophysics Data System (ADS)
Ascari, Alessandro; Fortunato, Alessandro
2014-03-01
The present paper deals with the possibility to exploit low-cost, near infra-red, nanosecond pulsed laser sources in welding of high carbon content thin sheets. The exploitation of these very common sources allows to achieve sound weld beads with a good depth-to-width ratio and very small heat affected zones when the proper process parameters are involved. In particular the role of pulse frequency, pulse duration, peak power and welding speed on the characteristics of the weld beads is studied and the advantage of the application of short-pulse laser sources over traditional long-pulse or continuous wave one is assessed.
Chirped pulse digital holography for measuring the sequence of ultrafast optical wavefronts
NASA Astrophysics Data System (ADS)
Karasawa, Naoki
2018-04-01
Optical setups for measuring the sequence of ultrafast optical wavefronts using a chirped pulse as a reference wave in digital holography are proposed and analyzed. In this method, multiple ultrafast object pulses are used to probe the temporal evolution of ultrafast phenomena and they are interfered with a chirped reference wave to record a digital hologram. Wavefronts at different times can be reconstructed separately from the recorded hologram when the reference pulse can be treated as a quasi-monochromatic wave during the pulse width of each object pulse. The feasibility of this method is demonstrated by numerical simulation.
Zaïm, N; Thévenet, M; Lifschitz, A; Faure, J
2017-09-01
We propose a method to generate femtosecond, relativistic, and high-charge electron bunches using few-cycle and tightly focused radially polarized laser pulses. In this scheme, the incident laser pulse reflects off an overdense plasma that injects electrons into the reflected pulse. Particle-in-cell simulations show that the plasma injects electrons ideally, resulting in a dramatic increase of charge and energy of the accelerated electron bunch in comparison to previous methods. This method can be used to generate femtosecond pC bunches with energies in the 1-10 MeV range using realistic laser parameters corresponding to current kHz laser systems.
Tunable polarization plasma channel undulator for narrow bandwidth photon emission
Rykovanov, S. G.; Wang, J. W.; Kharin, V. Yu.; ...
2016-09-09
The theory of a plasma undulator excited by a short intense laser pulse in a parabolic plasma channel is presented. The undulator fields are generated either by the laser pulse incident off-axis and/or under the angle with respect to the channel axis. Linear plasma theory is used to derive the wakefield structure. It is shown that the electrons injected into the plasma wakefields experience betatron motion and undulator oscillations. Optimal electron beam injection conditions are derived for minimizing the amplitude of the betatron motion, producing narrow-bandwidth undulator radiation. Polarization control is readily achieved by varying the laser pulse injection conditions.
Multifunctional optical correlator for picosecond ultraviolet laser pulse measurement
Rakhman, Abdurahim; Wang, Yang; Garcia, Frances; ...
2014-01-01
A compact optical correlator system that measures both the autocorrelation between two infrared (IR) lights and the cross-correlation between an IR and an ultraviolet (UV) light using a single nonlinear optical crystal has been designed and experimentally demonstrated. The rapid scanning of optical delay line, switching between auto and cross-correlations, crystal angle tuning, and data acquisition and processing are all computer controlled. Pulse widths of an IR light from a mode-locked laser are measured by the correlator and the results are compared with a direct measurement using a high-speed photodetector system. The correlator has been used to study the parametermore » dependence of the pulse width of a macropulse UV laser designed for laser-assisted hydrogen ion (H-) beam stripping for the Spallation Neutron Source at Oak Ridge National Laboratory.« less
2012-10-01
EMBC10.1722. 10. Mitra, P.P., Halperin, B.I.: Effects of finite gradient-pulse widths in pulsed- field - gradient diffusion measurements . Journal of Magnetic ...December 2011 ABSTRACT: The addition of a pair of magnetic field gradient pulses had initially enabled the measurement of spin motion to nuclear mag- netic...introduced a pair of (homogenous) magnetic field gradients into the spin echo experi- ment with the purpose of accurately measuring the scalar diffusion
Control System for the LLNL Kicker Pulse Generator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Watson, J A; Anaya, R M; Cook, E G
2002-06-18
A solid-state high voltage pulse generator with multi-pulse burst capability, very fast rise and fall times, pulse width agility, and amplitude modulation capability for use with high speed electron beam kickers has been designed and tested at LLNL. A control system calculates a desired waveform to be applied to the kicker based on measured electron beam displacement then adjusts the pulse generators to provide the desired waveform. This paper presents the design of the control system and measure performance data from operation on the ETA-11 accelerator at LLNL.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Trull, J.; Wang, B.; Parra, A.
2015-06-01
Pulse compression in dispersive strontium barium niobate crystal with a random size and distribution of the anti-parallel orientated nonlinear domains is observed via transverse second harmonic generation. The dependence of the transverse width of the second harmonic trace along the propagation direction allows for the determination of the initial chirp and duration of pulses in the femtosecond regime. This technique permits a real-time analysis of the pulse evolution and facilitates fast in-situ correction of pulse chirp acquired in the propagation through an optical system.
Generation of sub-100-fs pulses from a CW mode-locked chromium-doped forsterite laser
NASA Technical Reports Server (NTRS)
Seas, A.; Petricevic, V.; Alfano, R. R.
1992-01-01
Generation of femtosecond pulses from a continuous-wave mode-locked chromium-doped forsterite laser is reported. The forsterite laser was actively mode locked by using an acoustooptic modulator operating at 78 MHz with two Brewster high-dispersion glass prisms for intracavity chirp compensation. Transform-limited sub-100-fs pulses were routinely generated in the TEM(00) mode with 85 mW of continuous power (with 1 percent output coupler), tunable over 1230-1280 nm. The shortest pulses measured had a 60-fs pulse width.
UWB dual burst transmit driver
Dallum, Gregory E [Livermore, CA; Pratt, Garth C [Discovery Bay, CA; Haugen, Peter C [Livermore, CA; Zumstein, James M [Livermore, CA; Vigars, Mark L [Livermore, CA; Romero, Carlos E [Livermore, CA
2012-04-17
A dual burst transmitter for ultra-wideband (UWB) communication systems generates a pair of precisely spaced RF bursts from a single trigger event. An input trigger pulse produces two oscillator trigger pulses, an initial pulse and a delayed pulse, in a dual trigger generator. The two oscillator trigger pulses drive a gated RF burst (power output) oscillator. A bias driver circuit gates the RF output oscillator on and off and sets the RF burst packet width. The bias driver also level shifts the drive signal to the level that is required for the RF output device.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sulaeman, M. Y.; Widita, R.
2014-09-30
Purpose: Non-ionizing radiation therapy for cancer using pulsed electric field with high intensity field has become an interesting field new research topic. A new method using nanosecond pulsed electric fields (nsPEFs) offers a novel means to treat cancer. Not like the conventional electroporation, nsPEFs able to create nanopores in all membranes of the cell, including membrane in cell organelles, like mitochondria and nucleus. NsPEFs will promote cell death in several cell types, including cancer cell by apoptosis mechanism. NsPEFs will use pulse with intensity of electric field higher than conventional electroporation, between 20–100 kV/cm and with shorter duration of pulsemore » than conventional electroporation. NsPEFs requires a generator to produce high voltage pulse and to achieve high intensity electric field with proper pulse width. However, manufacturing cost for creating generator that generates a high voltage with short duration for nsPEFs purposes is highly expensive. Hence, the aim of this research is to obtain the low cost generator design that is able to produce a high voltage pulse with nanosecond width and will be used for nsPEFs purposes. Method: Cockcroft-Walton multiplier circuit will boost the input of 220 volt AC into high voltage DC around 1500 volt and it will be combined by a series of power MOSFET as a fast switch to obtain a high voltage with nanosecond pulse width. The motivation using Cockcroft-Walton multiplier is to acquire a low-cost high voltage DC generator; it will use capacitors and diodes arranged like a step. Power MOSFET connected in series is used as voltage divider to share the high voltage in order not to damage them. Results: This design is expected to acquire a low-cost generator that can achieve the high voltage pulse in amount of −1.5 kV with falltime 3 ns and risetime 15 ns into a 50Ω load that will be used for nsPEFs purposes. Further detailed on the circuit design will be explained at presentation.« less
Cladding-pumped passively mode-locked fiber laser generating femtosecond and picosecond pulses
NASA Astrophysics Data System (ADS)
Fermann, M. E.; Harter, D.; Minelly, J. D.; Vienne, G. G.
1996-07-01
Passively mode-locked fiber lasers cladding pumped by broad-area diode-laser arrays are described. With a dispersion-compenstated erbium-ytterbium fiber oscillator, 200-fs pulses with pulse energies up to 100 pJ are generated at a wavelength of 1560 nm. In a highly dispersive cavity, pulse widths of 3 ps with pulse energies up to 1 nJ are obtained. A saturable absorber is used for pulse startup, whereas nonlinear polarization evolution is exploited for steady-state pulse shaping. An environmentally stable design is ensured by use of a compensation scheme for linear polarization drifts in the cavity.
Cladding-pumped passively mode-locked fiber laser generating femtosecond and picosecond pulses.
Fermann, M E; Harter, D; Minelly, J D; Vienne, G G
1996-07-01
Passively mode-locked fiber lasers cladding pumped by broad-area diode-laser arrays are described. With a dispersion-compenstated erbium-ytterbium fiber oscillator, 200-fs pulses with pulse energies up to 100 pJ are generated at a wavelength of 1560 nm. In a highly dispersive cavity, pulse widths of 3 ps with pulse energies up to 1 nJ are obtained. A saturable absorber is used for pulse startup, whereas nonlinear polarization evolution is exploited for steady-state pulse shaping. An environmentally stable design is ensured by use of a compensation scheme for linear polarization drifts in the cavity.
Proposal of a defense application for a chemical oxygen laser
NASA Astrophysics Data System (ADS)
Takehisa, K.
2015-05-01
Defense application for a chemical oxygen laser (COL) is explained. Although a COL has not yet been successful in lasing, the oscillator was estimated to produce a giant pulse with the full width at half maximum (FWHM) of ~0.05ms which makes the damage threshold for the mirrors several-order higher than that for a typical solid-state laser with a ~10ns pulse width. Therefore it has a potential to produce MJ class output considering the simple scalability of being a chemical laser. Since within 0.05ms a supersonic aircraft can move only a few centimeters which is roughly equal to the spot size of the focused beam at ~10km away using a large-diameter focusing mirror, a COL has a potential to make a damage to an enemy aircraft by a single shot without beam tracking. But since the extracted beam can propagate up to a few kilometers due to the absorption in the air, it may be suitable to use in space. While a chemical oxygen-iodine laser (COIL) can give a pulsed output with a width of ~2 ms using a high-pressure singlet oxygen generator (SOG). Therefore a pulsed COIL may also not require beam tracking if a target aircraft is approaching. Another advantage for these pulsed high-energy lasers (HELs) is that, in case of propagating in cloud or fog, much less energy is required for a laser for aerosol vaporization (LAV) than that of a LAV for a CW HEL. Considerations to use a COL as a directed energy weapon (DEW) in a point defense system are shown.
Guerreiro, Gabriela V; Zaitouna, Anita J; Lai, Rebecca Y
2014-01-31
Here we report the characterization of an electrochemical mercury (Hg(2+)) sensor constructed with a methylene blue (MB)-modified and thymine-containing linear DNA probe. Similar to the linear probe electrochemical DNA sensor, the resultant sensor behaved as a "signal-off" sensor in alternating current voltammetry and cyclic voltammetry. However, depending on the applied frequency or pulse width, the sensor can behave as either a "signal-off" or "signal-on" sensor in square wave voltammetry (SWV) and differential pulse voltammetry (DPV). In SWV, the sensor showed "signal-on" behavior at low frequencies and "signal-off" behavior at high frequencies. In DPV, the sensor showed "signal-off" behavior at short pulse widths and "signal-on" behavior at long pulse widths. Independent of the sensor interrogation technique, the limit of detection was found to be 10nM, with a linear dynamic range between 10nM and 500nM. In addition, the sensor responded to Hg(2+) rather rapidly; majority of the signal change occurred in <20min. Overall, the sensor retains all the characteristics of this class of sensors; it is reagentless, reusable, sensitive, specific and selective. This study also highlights the feasibility of using a MB-modified probe for real-time sensing of Hg(2+), which has not been previously reported. More importantly, the observed "switching" behavior in SWV and DPV is potentially generalizable and should be applicable to most sensors in this class of dynamics-based electrochemical biosensors. Copyright © 2013 Elsevier B.V. All rights reserved.
Numerical study on the maximum small-signal gain coefficient in passively mode-locked fiber lasers
NASA Astrophysics Data System (ADS)
Tang, Xin; Wang, Jian; Chen, Zhaoyang; Lin, Chengyou; Ding, Yingchun
2017-06-01
Ultrashort pulses have been found to have important applications in many fields, such as ultrafast diagnosis, biomedical engineering, and optical imaging. Passively mode-locked fiber lasers have become a tool for generating picosecond and femtosecond pulses. In this paper, the evolution of a picosecond laser pulse in different stable passively mode-locked fiber laser is analyzed using nonlinear Schrödinger equation. Firstly, different mode-locked regimes are calculated with different net cavity dispersion (from -0.3 ps2 to +0.3 ps2 ). Then we calculate the maximum small-signal gain on the different net cavity dispersion conditions, and estimate the pulse width, 3 dB bandwidth and time bandwidth product (TBP) when the small-signal gain coefficient is selected as the maximum value. The results show that the small signal gain coefficient is approximately proportional to the net cavity. Moreover, when the small signal gain coefficient reaches the maximum value, the pulse width of the output pulse and their corresponding TBP show a trend of increase gradually, and 3dB bandwidth shows a trend of increase firstly and then decrease. In addition, in the case that the net dispersion is positive, because of the pulse with quite large frequency chirp, the revolution to dechirp the pulse is researched and the output of the pulse is compressed and its compression ratio reached more than 10 times. The results provide a reference for the optimization of passively mode-locked fiber lasers.
Precision digital pulse phase generator
McEwan, T.E.
1996-10-08
A timing generator comprises a crystal oscillator connected to provide an output reference pulse. A resistor-capacitor combination is connected to provide a variable-delay output pulse from an input connected to the crystal oscillator. A phase monitor is connected to provide duty-cycle representations of the reference and variable-delay output pulse phase. An operational amplifier drives a control voltage to the resistor-capacitor combination according to currents integrated from the phase monitor and injected into summing junctions. A digital-to-analog converter injects a control current into the summing junctions according to an input digital control code. A servo equilibrium results that provides a phase delay of the variable-delay output pulse to the output reference pulse that linearly depends on the input digital control code. 2 figs.
Precision digital pulse phase generator
McEwan, Thomas E.
1996-01-01
A timing generator comprises a crystal oscillator connected to provide an output reference pulse. A resistor-capacitor combination is connected to provide a variable-delay output pulse from an input connected to the crystal oscillator. A phase monitor is connected to provide duty-cycle representations of the reference and variable-delay output pulse phase. An operational amplifier drives a control voltage to the resistor-capacitor combination according to currents integrated from the phase monitor and injected into summing junctions. A digital-to-analog converter injects a control current into the summing junctions according to an input digital control code. A servo equilibrium results that provides a phase delay of the variable-delay output pulse to the output reference pulse that linearly depends on the input digital control code.
Fiber Bragg grating Fabry-Perot cavity sensor based on pulse laser demodulation technique
NASA Astrophysics Data System (ADS)
Gao, Fangfang; Chen, Jianfeng; Liu, Yunqi; Wang, Tingyun
2011-12-01
We demonstrate a fiber laser sensing technique based on fiber Bragg grating Fabry-Perot (FBG-FP) cavity interrogated by pulsed laser, where short pulses generated from active mode-locked erbium-doped fiber ring laser and current modulated DFB laser are adopted. The modulated laser pulses launched into the FBG-FP cavity produce a group of reflected pulses. The optical loss in the cavity can be determined from the power ratio of the first two pulses reflected from the cavity. This technique does not require high reflectivity FBGs and is immune to the power fluctuation of the light source. Two short pulse laser sources were compared experimentally with each other on pulse width, pulse stability, pulse chirp and sensing efficiency.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, Liang, E-mail: zhaoliang@ninit.ac.cn; Li, Rui; Zheng, Lei
2015-04-15
The critical pulse width (τ{sub c}) is a pulse width at which the surface flashover threshold (E{sub f}) is equal to the bulk breakdown threshold (E{sub BD}) for liquid-polymer composite insulation systems, which is discovered by Zhao et al. [Annual Report Conference on Electrical Insulation and Dielectric Phenomena (IEEE Dielectrics and Electrical Insulation Society, Shenzhen, China, 2013), Vol. 2, pp. 854–857]. In this paper, the mechanism of τ{sub c} is interpreted in perspective of the threshold and the time delay (t{sub d}) of surface flashover and bulk breakdown, respectively. It is found that two changes appear as the pulse widthmore » decreases which are responsible for the existence of τ{sub c}: (1) E{sub BD} is lower than E{sub f}; (2) t{sub d} of bulk breakdown is shorter than t{sub d} of surface flashover. In addition, factors which have influences on τ{sub c} are investigated, such as the dielectric type, the insulation length, the dielectric thickness, the dielectrics configuration, the pulse number, and the liquid purity. These influences of factors are generalized as three types if τ{sub c} is expected to increase: (1) factors causing E{sub BD} to decrease, such as increasing the pulse number or employing a dielectric of lower E{sub BD}; (2) factors causing E{sub f} to increase, such as complicating the insulator's configuration or increasing the liquid purity; (3) factors causing E{sub BD} and E{sub f} to increase together, but E{sub f} increases faster than E{sub BD}, such as decreasing the dielectric thickness or the insulation length. With the data in references, all the three cases are verified experimentally. In the end, a general method based on τ{sub c} for solid insulation design is presented and the significance of τ{sub c} on solid insulation design and on solid demolition are discussed.« less
Spatial vector soliton and its collisions in isotropic self-defocusing Kerr media.
Radhakrishnan, R; Aravinthan, K
2007-06-01
A fairly general form of the two-component (dark-dark) vector one-soliton solution of the integrable coupled nonlinear Schrödinger equation (Manakov model) with self-defocusing nonlinearity is obtained by using the Hirota method. It couples two dark components with the same envelope width, envelope speed, and envelope trough location using two complex arbitrary parameters not only in the envelope amplitude but also in the complex modulation. Although it has the freedom to change its pulse width without affecting its speed, it can also tune its grayness (depth of the pulse relative to background) without disturbing the envelope width and speed. The variations in peak power against the depth of localization of two dark components are investigated with and without a parametric restriction. The collision between many dark-dark vector solitons has also been studied by constructing a multisoliton solution with more free parameters.
Nonlinear antiferroelectric-like capacitance-voltage curves in ferroelectric BiFeO3 thin films
NASA Astrophysics Data System (ADS)
Jiang, A. Q.; Zhang, D. W.; Tang, T. A.
2013-07-01
The ferroelectric capacitance is usually nonlinear against increasing/decreasing voltage in sweeping time longer than 1 s and achieves a maximum value at around a coercive voltage within each loop. With the improved short-pulse measurements, we estimated the differential capacitance of ferroelectric Au/BiFeO3/LaNiO3/SrTiO3 thin-film capacitors from a nanosecond discharging current induced by a delta voltage after a stressing voltage pulse with widths of 500 ns-50 ms. With the shortening of the voltage sweeping time, we clearly observed two capacitance maxima from each branch of a capacitance-voltage (C-V) loop, reminiscent of an antiferroelectric behavior. After transformation of nanosecond domain switching current transients under pulses into polarization-voltage hysteresis loops, we further measured time dependent polarization retention as well as imprint in the range of 100 ns-1 s. Both positive and negative polarizations decay exponentially at characteristic times of 2.25 and 198 μs, suggesting the coexistence of preferred domains pointing to top and bottom electrodes in most epitaxial films. This exponential time dependence is similar to the dielectric degradation under a dc voltage, and the polarization retention can be improved through long-time opposite voltage stressing. With this improvement, the additional antiferroelectric-like dielectric maximum within each branch of a C-V loop disappears. This experiment provides the strong evidence of the effect of time-dependent charge injection on polarization retention and dielectric degradation.
Nakarmi, Bikash; Hoai, Tran Quoc; Won, Yong-Hyub; Zhang, Xuping
2014-06-30
We propose and demonstrate a novel scheme for short pulse controlled all-optical switch using external cavity based single mode Fabry- Pérot laser diode (SMFP-LD). The proposed scheme consists of control unit and switching unit as two essential blocks. The basic principle of the proposed scheme is the optical bistability property of SMFP-LD for the control unit and the suppression of the dominant beam of SMFP-LD with injection locking for the switching unit. We also present the analysis of hysteresis width and rising/falling time with change in wavelength detuning which helps to find the optimum wavelength detuning value and power of light beams at different stages of the proposed scheme that gives wide input dynamic power range, high ON/OFF contrast ratio, and low rising/falling time. Input data of 10 Gb/s Non Return to Zero (NRZ) signal is switched at output ports depending upon the control signal generated by the control unit, which comprises of optical SR latch. Output waveforms, clear eye diagrams with extinction ratio of about 11 dB, rising/falling time of about 30 ps and 40 ps, and bit error rate (BER) are measured to validate proposed scheme. No noise floor is observed at output ports up to BER of 10-(12) and the maximum power penalty recorded is about 1.7 dB at a BER of 10-(9) which shows good performance of the proposed short pulse controlled optical switch using SMFP-LDs.
Lee, Soomin; Uchiyama, Yuria; Shimomura, Yoshihiro; Katsuura, Tetsuo
2017-11-17
The simultaneous exposure to blue and green light was reported to result in less melatonin suppression than monochromatic exposure to blue or green light. Here, we conducted an experiment using extremely short blue- and green-pulsed light to examine their visual and nonvisual effects on visual evoked potentials (VEPs), pupillary constriction, electroretinograms (ERGs), and subjective evaluations. Twelve adult male subjects were exposed to three light conditions: blue-pulsed light (2.5-ms pulse width), green-pulsed light (2.5-ms pulse width), and simultaneous blue- and green-pulsed light with white background light. We measured the subject's pupil diameter three times in each condition. Then, after 10 min of rest, the subject was exposed to the same three light conditions. We measured the averaged ERG and VEP during 210 pulsed-light exposures in each condition. We also determined subjective evaluations using a visual analog scale (VAS) method. The pupillary constriction during the simultaneous exposure to blue- and green-pulsed light was significantly lower than that during the blue-pulsed light exposure despite the double irradiance intensity of the combination. We also found that the b/|a| wave of the ERGs during the simultaneous exposure to blue- and green-pulsed light was lower than that during the blue-pulsed light exposure. We confirmed the subadditive response to pulsed light on pupillary constriction and ERG. However, the P100 of the VEPs during the blue-pulsed light were smaller than those during the simultaneous blue- and green-pulsed light and green-pulsed light, indicating that the P100 amplitude might depend on the luminance of light. Our findings demonstrated the effect of the subadditive response to extremely short pulsed light on pupillary constriction and ERG responses. The effects on ipRGCs by the blue-pulsed light exposure are apparently reduced by the simultaneous irradiation of green light. The blue versus yellow (b/y) bipolar cells in the retina might be responsible for this phenomenon.
Temporal complexity in emission from Anderson localized lasers
NASA Astrophysics Data System (ADS)
Kumar, Randhir; Balasubrahmaniyam, M.; Alee, K. Shadak; Mujumdar, Sushil
2017-12-01
Anderson localization lasers exploit resonant cavities formed due to structural disorder. The inherent randomness in the structure of these cavities realizes a probability distribution in all cavity parameters such as quality factors, mode volumes, mode structures, and so on, implying resultant statistical fluctuations in the temporal behavior. Here we provide direct experimental measurements of temporal width distributions of Anderson localization lasing pulses in intrinsically and extrinsically disordered coupled-microresonator arrays. We first illustrate signature exponential decays in the spatial intensity distributions of the lasing modes that quantify their localized character, and then measure the temporal width distributions of the pulsed emission over several configurations. We observe a dependence of temporal widths on the disorder strength, wherein the widths show a single-peaked, left-skewed distribution in extrinsic disorder and a dual-peaked distribution in intrinsic disorder. We propose a model based on coupled rate equations for an emitter and an Anderson cavity with a random mode structure, which gives excellent quantitative and qualitative agreement with the experimental observations. The experimental and theoretical analyses bring to the fore the temporal complexity in Anderson-localization-based lasing systems.
Parallel PWMs Based Fully Digital Transmitter with Wide Carrier Frequency Range
Zhou, Bo; Zhang, Kun; Zhou, Wenbiao; Zhang, Yanjun; Liu, Dake
2013-01-01
The carrier-frequency (CF) and intermediate-frequency (IF) pulse-width modulators (PWMs) based on delay lines are proposed, where baseband signals are conveyed by both positions and pulse widths or densities of the carrier clock. By combining IF-PWM and precorrected CF-PWM, a fully digital transmitter with unit-delay autocalibration is implemented in 180 nm CMOS for high reconfiguration. The proposed architecture achieves wide CF range of 2 M–1 GHz, high power efficiency of 70%, and low error vector magnitude (EVM) of 3%, with spectrum purity of 20 dB optimized in comparison to the existing designs. PMID:24223503
Sensorless Modeling of Varying Pulse Width Modulator Resolutions in Three-Phase Induction Motors
Marko, Matthew David; Shevach, Glenn
2017-01-01
A sensorless algorithm was developed to predict rotor speeds in an electric three-phase induction motor. This sensorless model requires a measurement of the stator currents and voltages, and the rotor speed is predicted accurately without any mechanical measurement of the rotor speed. A model of an electric vehicle undergoing acceleration was built, and the sensorless prediction of the simulation rotor speed was determined to be robust even in the presence of fluctuating motor parameters and significant sensor errors. Studies were conducted for varying pulse width modulator resolutions, and the sensorless model was accurate for all resolutions of sinusoidal voltage functions. PMID:28076418
Sensorless Modeling of Varying Pulse Width Modulator Resolutions in Three-Phase Induction Motors.
Marko, Matthew David; Shevach, Glenn
2017-01-01
A sensorless algorithm was developed to predict rotor speeds in an electric three-phase induction motor. This sensorless model requires a measurement of the stator currents and voltages, and the rotor speed is predicted accurately without any mechanical measurement of the rotor speed. A model of an electric vehicle undergoing acceleration was built, and the sensorless prediction of the simulation rotor speed was determined to be robust even in the presence of fluctuating motor parameters and significant sensor errors. Studies were conducted for varying pulse width modulator resolutions, and the sensorless model was accurate for all resolutions of sinusoidal voltage functions.
NASA Astrophysics Data System (ADS)
Lower, Kim Nigel
1985-03-01
Modulation processes associated with the digital implementation of pulse width modulation (PWM) switching strategies were examined. A software package based on a portable turnkey structure is presented. Waveform synthesizer implementation techniques are reviewed. A three phase PWM waveform synthesizer for voltage fed inverters was realized. It is based on a constant carrier frequency of 18 kHz and a regular sample, single edge, asynchronous PWM switching scheme. With high carrier frequencies, it is possible to utilize simple switching strategies and as a consequence, many advantages are highlighted, emphasizing the importance to industrial and office markets.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Robertson, David C.; Christophersen, Jon P.; Bennett, Taylor
Two testing protocols, QC/T 743 and those used by the U.S. Advanced Battery Consortium (USABC), were compared using cells based on LiFePO4/graphite chemistry. Differences in the protocols directly affected the data and the performance decline mechanisms deduced from the data. A change in capacity fade mechanism from linear-with-time to t1/2 was observed when the power density measurement was included in the QC/T 743 testing. The rate of resistance increase was linear with time using both protocols. Overall, the testing protocols produced very similar data when the testing conditions and metrics used to define performance were similar. The choice of depthmore » of discharge and pulse width had a direct effect on estimated cell life. At greater percent depth of discharge (%DOD) and pulse width, the estimated life was shorter that at lower %DOD and shorter pulse width. This indicates that cells which were at the end of life based on the USABC protocol were not at end of life based on the QC/T 743 protocol by a large margin.« less
NASA Astrophysics Data System (ADS)
Yu, Dongshan; Liang, Xuejie; Wang, Jingwei; Li, Xiaoning; Nie, Zhiqiang; Liu, Xingsheng
2017-02-01
A novel marco channel cooler (MaCC) has been developed for packaging high power diode vertical stacked (HPDL) lasers, which eliminates many of the issues in commercially-available copper micro-channel coolers (MCC). The MaCC coolers, which do not require deionized water as coolant, were carefully designed for compact size and superior thermal dissipation capability. Indium-free packaging technology was adopted throughout product design and fabrication process to minimize the risk of solder electromigration and thermal fatigue at high current density and long pulse width under QCW operation. Single MaCC unit with peak output power of up to 700W/bar at pulse width in microsecond range and 200W/bar at pulse width in millisecond range has been recorded. Characteristic comparison on thermal resistivity, spectrum, near filed and lifetime have been conducted between a MaCC product and its counterpart MCC product. QCW lifetime test (30ms 10Hz, 30% duty cycle) has also been conducted with distilled water as coolant. A vertical 40-MaCC stack product has been fabricated, total output power of 9 kilowatts has been recorded under QCW mode (3ms, 30Hz, 9% duty cycle).
NASA Astrophysics Data System (ADS)
Hussain, Kamal; Pratap Singh, Satya; Kumar Datta, Prasanta
2013-11-01
A numerical investigation is presented to show the dependence of patterning effect (PE) of an amplified signal in a bulk semiconductor optical amplifier (SOA) and an optical bandpass filter based amplifier on various input signal and filter parameters considering both the cases of including and excluding intraband effects in the SOA model. The simulation shows that the variation of PE with input energy has a characteristic nature which is similar for both the cases. However the variation of PE with pulse width is quite different for the two cases, PE being independent of the pulse width when intraband effects are neglected in the model. We find a simple relationship between the PE and the signal pulse width. Using a simple treatment we study the effect of the amplified spontaneous emission (ASE) on PE and find that the ASE has almost no effect on the PE in the range of energy considered here. The optimum filter parameters are determined to obtain an acceptable extinction ratio greater than 10 dB and a PE less than 1 dB for the amplified signal over a wide range of input signal energy and bit-rate.
Laser direct writing (LDW) of magnetic structures
NASA Astrophysics Data System (ADS)
Alasadi, Alaa; Claeyssens, F.; Allwood, D. A.
2018-05-01
Laser direct writing (LDW) has been used to pattern 90nm thick permalloy (Ni81Fe19) into 1-D and 2-D microstructures with strong shape anisotropy. Sub-nanosecond laser pulses were focused with a 0.75 NA lens to a 1.85μm diameter spot, to achieve a fluence of approximately 350 mJ.cm-2 and ablate the permalloy film. Computer-controlled sample scanning then allowed structures to be defined. Scan speeds were controlled to give 30% overlap between successive laser pulses and reduce the extent of width modulation in the final structures. Continuous magnetic wires that adjoined the rest of the film were fabricated with widths from 650 nm - 6.75μm and magneto-optical measurements showed coercivity reducing across this width range from 47 Oe to 11 Oe. Attempts to fabricate wires narrower than 650nm resulted in discontinuities in the wires and a marked decrease in coercivity. This approach is extremely rapid and was carried out in air, at room temperature and with no chemical processing. The 6-kHz laser pulse repetition rate allowed wire arrays across an area of 4 mm x 0.18 mm to be patterned in 85 s.
Pulsed ion beam investigation of the kinetics of surface reactions
NASA Technical Reports Server (NTRS)
Horton, C. C.; Eck, T. G.; Hoffman, R. W.
1989-01-01
Pulsed ion beam measurements of the kinetics of surface reactions are discussed for the case where the width of the ion pulse is comparable to the measured reaction time, but short compared to the time between successive pulses. Theoretical expressions are derived for the time dependence of the ion-induced signals for linear surface reactions. Results are presented for CO emission from surface carbon and CF emission from Teflon induced by oxygen ion bombardment. The strengths and limitations of this technique are described.
Merging magnetic droplets by a magnetic field pulse
NASA Astrophysics Data System (ADS)
Wang, Chengjie; Xiao, Dun; Liu, Yaowen
2018-05-01
Reliable manipulation of magnetic droplets is of immense importance for their applications in spin torque oscillators. Using micromagnetic simulations, we find that the antiphase precession state, which originates in the dynamic dipolar interaction effect, is a favorable stable state for two magnetic droplets nucleated at two identical nano-contacts. A magnetic field pulse can be used to destroy their stability and merge them into a big droplet. The merging process strongly depends on the pulse width as well as the pulse strength.
Effect of idler absorption in pulsed optical parametric oscillators.
Rustad, Gunnar; Arisholm, Gunnar; Farsund, Øystein
2011-01-31
Absorption at the idler wavelength in an optical parametric oscillator (OPO) is often considered detrimental. We show through simulations that pulsed OPOs with significant idler absorption can perform better than OPOs with low idler absorption both in terms of conversion efficiency and beam quality. The main reason for this is reduced back conversion. We also show how the beam quality depends on the beam width and pump pulse length, and present scaling relations to use the example simulations for other pulsed nanosecond OPOs.
Parametric Study of High Frequency Pulse Detonation Tubes
NASA Technical Reports Server (NTRS)
Cutler, Anderw D.
2008-01-01
This paper describes development of high frequency pulse detonation tubes similar to a small pulse detonation engine (PDE). A high-speed valve injects a charge of a mixture of fuel and air at rates of up to 1000 Hz into a constant area tube closed at one end. The reactants detonate in the tube and the products exit as a pulsed jet. High frequency pressure transducers are used to monitor the pressure fluctuations in the device and thrust is measured with a balance. The effects of injection frequency, fuel and air flow rates, tube length, and injection location are considered. Both H2 and C2H4 fuels are considered. Optimum (maximum specific thrust) fuel-air compositions and resonant frequencies are identified. Results are compared to PDE calculations. Design rules are postulated and applications to aerodynamic flow control and propulsion are discussed.
NASA Astrophysics Data System (ADS)
Soglasnov, V. A.; Popov, M. V.; Bartel, N.; Cannon, W.; Novikov, A. Yu.; Kondratiev, V. I.; Altunin, V. I.
2004-11-01
Giant radio pulses of the millisecond pulsar B1937+21 were recorded with the S2 VLBI system at 1.65 GHz with NASA/JPL's 70 m radio telescope at Tidbinbilla, Australia. These pulses have been observed as strong as 65,000 Jy with widths <=15 ns, corresponding to a brightness temperature of Tb>=5×1039 K, the highest observed in the universe. The vast majority of these pulses occur in 5.8 and 8.2 μs windows at the very trailing edges of the regular main pulse and interpulse profiles, respectively. Giant pulses occur, in general, with a single spike. Only in one case of 309 was the structure clearly more complex. The cumulative distribution is fitted by a power law with index -1.40+/-0.01 with a low-energy but no high-energy cutoff. We estimate that giant pulses occur frequently but are only rarely detected. When corrected for the directivity factor, 25 giant pulses are estimated to be generated in one neutron star revolution alone. The intensities of the giant pulses of the main pulses and interpulses are not correlated with each other nor with the intensities or energies of the main pulses and interpulses themselves. Their radiation energy density can exceed 300 times the plasma energy density at the surface of the neutron star and can even exceed the magnetic field energy density at that surface. We therefore do not think that the generation of giant pulses is linked to the plasma mechanisms in the magnetosphere. Instead we suggest that it is directly related to discharges in the polar cap region of the pulsar.
Adaptive Phase Delay Generator
NASA Technical Reports Server (NTRS)
Greer, Lawrence
2013-01-01
There are several experimental setups involving rotating machinery that require some form of synchronization. The adaptive phase delay generator (APDG) the Bencic-1000 is a flexible instrument that allows the user to generate pulses synchronized to the rising edge of a tachometer signal from any piece of rotating machinery. These synchronized pulses can vary by the delay angle, pulse width, number of pulses per period, number of skipped pulses, and total number of pulses. Due to the design of the pulse generator, any and all of these parameters can be changed independently, yielding an unparalleled level of versatility. There are two user interfaces to the APDG. The first is a LabVIEW program that has the advantage of displaying all of the pulse parameters and input signal data within one neatly organized window on the PC monitor. Furthermore, the LabVIEW interface plots the rpm of the two input signal channels in real time. The second user interface is a handheld portable device that goes anywhere a computer is not accessible. It consists of a liquid-crystal display and keypad, which enable the user to control the unit by scrolling through a host of command menus and parameter listings. The APDG combines all of the desired synchronization control into one unit. The experimenter can adjust the delay, pulse width, pulse count, number of skipped pulses, and produce a specified number of pulses per revolution. Each of these parameters can be changed independently, providing an unparalleled level of versatility when synchronizing hardware to a host of rotating machinery. The APDG allows experimenters to set up quickly and generate a host of synchronizing configurations using a simple user interface, which hopefully leads to faster results.
Phase coded, micro-power impulse radar motion sensor
McEwan, Thomas E.
1996-01-01
A motion sensing, micro-power impulse radar MIR impresses on the transmitted signal, or the received pulse timing signal, one or more frequencies lower than the pulse repetition frequency, that become intermediate frequencies in a "IF homodyne" receiver. Thus, many advantages of classical RF receivers can be thereby be realized with ultra-wide band radar. The sensor includes a transmitter which transmits a sequence of electromagnetic pulses in response to a transmit timing signal at a nominal pulse repetition frequency. A receiver samples echoes of the sequence of electromagnetic pulses from objects within the field with controlled timing, in response to a receive timing signal, and generates a sample signal in response to the samples. A timing circuit supplies the transmit timing signal to the transmitter and supplies the receive timing signal to the receiver. The relative timing of the transmit timing signal and the receive timing signal is modulated between a first relative delay and a second relative delay at an intermediate frequency, causing the receiver to sample the echoes such that the time between transmissions of pulses in the sequence and samples by the receiver is modulated at the intermediate frequency. Modulation may be executed by modulating the pulse repetition frequency which drives the transmitter, by modulating the delay circuitry which controls the relative timing of the sample strobe, or by modulating amplitude of the transmitted pulses. The electromagnetic pulses will have a nominal center frequency related to pulse width, and the first relative delay and the second relative delay between which the timing signals are modulated, differ by less than the nominal pulse width, and preferably by about one-quarter wavelength at the nominal center frequency of the transmitted pulses.
Phase coded, micro-power impulse radar motion sensor
McEwan, T.E.
1996-05-21
A motion sensing, micro-power impulse radar MIR impresses on the transmitted signal, or the received pulse timing signal, one or more frequencies lower than the pulse repetition frequency, that become intermediate frequencies in a ``IF homodyne`` receiver. Thus, many advantages of classical RF receivers can be thereby be realized with ultra-wide band radar. The sensor includes a transmitter which transmits a sequence of electromagnetic pulses in response to a transmit timing signal at a nominal pulse repetition frequency. A receiver samples echoes of the sequence of electromagnetic pulses from objects within the field with controlled timing, in response to a receive timing signal, and generates a sample signal in response to the samples. A timing circuit supplies the transmit timing signal to the transmitter and supplies the receive timing signal to the receiver. The relative timing of the transmit timing signal and the receive timing signal is modulated between a first relative delay and a second relative delay at an intermediate frequency, causing the receiver to sample the echoes such that the time between transmissions of pulses in the sequence and samples by the receiver is modulated at the intermediate frequency. Modulation may be executed by modulating the pulse repetition frequency which drives the transmitter, by modulating the delay circuitry which controls the relative timing of the sample strobe, or by modulating amplitude of the transmitted pulses. The electromagnetic pulses will have a nominal center frequency related to pulse width, and the first relative delay and the second relative delay between which the timing signals are modulated, differ by less than the nominal pulse width, and preferably by about one-quarter wavelength at the nominal center frequency of the transmitted pulses. 5 figs.
NASA Astrophysics Data System (ADS)
Xiang, Shuiying; Wen, Aijun; Zhang, Hao; Li, Jiafu; Guo, Xingxing; Shang, Lei; Lin, Lin
2016-11-01
The polarization-resolved nonlinear dynamics of vertical-cavity surface-emitting lasers (VCSELs) subject to orthogonally polarized optical pulse injection are investigated numerically based on the spin flip model. By extensive numerical bifurcation analysis, the responses dynamics of photonic neuron based on VCSELs under the arrival of external stimuli of orthogonally polarized optical pulse injection are mainly discussed. It is found that, several neuron-like dynamics, such as phasic spiking of a single abrupt large amplitude pulse followed with or without subthreshold oscillation, and tonic spiking with multiple periodic pulses, are successfully reproduced in the numerical model of VCSELs. Besides, the effects of stimuli strength, pump current, frequency detuning, as well as the linewidth enhancement factor on the neuron-like response dynamics are examined carefully. The operating parameters ranges corresponding to different neuron-like dynamics are further identified. Thus, the numerical model and simulation results are very useful and interesting for the ultrafast brain-inspired neuromorphic photonics systems based on VCSELs.
Long-Lag, Wide-pulse Gamma-Ray Bursts
NASA Technical Reports Server (NTRS)
Norris, J. P.; Bonnell, J. T.; Kazanas, D.; Scargle, . D.; Hakkila, J.; Giblin, T. W.
2004-01-01
Currently, the best available probe of the early phase of gamma-ray burst (GRB) jet attributes is the prompt gamma-ray emission, in which several intrinsic and extrinsic variables determine GRB pulse evolution. Bright, usually complex bursts have many narrow pulses that are difficult to model due to overlap. However, the relatively simple, long spectral lag, wide-pulse bursts may have simpler physics and are easier to model. In this work we analyze the temporal and spectral behavior of wide pulses in 24 long-lag bursts, using a pulse model with two shape parameters - width and asymmetry - and the Band spectral model with three shape parameters. We find that pulses in long-lag bursts are distinguished both temporally and spectrally from those in bright bursts: the pulses in long spectral lag bursts are few in number, and approximately 100 times wider (10s of seconds), have systematically lower peaks in vF(v), harder low-energy spectra and softer high-energy spectra. We find that these five pulse descriptors are essentially uncorrelated for our long-lag sample, suggesting that at least approximately 5 parameters are needed to model burst temporal and spectral behavior. However, pulse width is strongly correlated with spectral lag; hence these two parameters may be viewed as mutual surrogates. We infer that accurate formulations for estimating GRB luminosity and total energy will depend on several gamma-ray attributes, at least for long-lag bursts. The prevalence of long-lag bursts near the BATSE trigger threshold, their predominantly low vF(v) spectral peaks, and relatively steep upper power-law spectral indices indicate that Swift will detect many such bursts.
NASA Technical Reports Server (NTRS)
Buchner, Steve; McMorrow, Dale; Poivey, Christian; Howard, James, Jr.; Pease, Rom; Savage, Mark; Boulghassoul, Younis; Massengill, Lloyd
2003-01-01
A comparison of transients from heavy-ion and pulsed-laser testing shows good agreement for many different voltage configurations. The agreement is illustrated by comparing directly individual transients and plots of transient amplitude versus width.
NASA Technical Reports Server (NTRS)
Valley, G. C.; Wright, M.
2001-01-01
Simulations of 1-50 kHz repetition rate, pulsed Yb-fiber amplifiers show peak powers to 10 kW with half-widths < 30 ns, consistent with commercial amplifier performance. This device is a potential source for deep space-communication.
NASA Technical Reports Server (NTRS)
Helder, Dennis; Choi, Taeyoung; Rangaswamy, Manjunath
2005-01-01
The spatial characteristics of an imaging system cannot be expressed by a single number or simple statement. However, the Modulation Transfer Function (MTF) is one approach to measure the spatial quality of an imaging system. Basically, MTF is the normalized spatial frequency response of an imaging system. The frequency response of the system can be evaluated by applying an impulse input. The resulting impulse response is termed the Point Spread function (PSF). This function is a measure of the amount of blurring present in the imaging system and is itself a useful measure of spatial quality. An underlying assumption is that the imaging system is linear and shift-independent. The Fourier transform of the PSF is called the Optical Transfer Function (OTF) and the normalized magnitude of the OTF is the MTF. In addition to using an impulse input, a knife-edge in technique has also been used in this project. The sharp edge exercises an imaging system at all spatial frequencies. The profile of an edge response from an imaging system is called an Edge Spread Function (ESF). Differentiation of the ESF results in a one-dimensional version of the Point Spread Function (PSF). Finally, MTF can be calculated through use of Fourier transform of the PSF as stated previously. Every image includes noise in some degree which makes MTF of PSF estimation more difficult. To avoid the noise effects, many MTF estimation approaches use smooth numerical models. Historically, Gaussian models and Fermi functions were applied to reduce the random noise in the output profiles. The pulse-input method was used to measure the MTF of the Landsat Thematic Mapper (TM) using 8th order even functions over the San Mateo Bridge in San Francisco, California. Because the bridge width was smaller than the 30-meter ground sample distance (GSD) of the TM, the Nyquist frequency was located before the first zero-crossing point of the sinc function from the Fourier transformation of the bridge pulse. To avoid the zero-crossing points in the frequency domain from a pulse, the pulse width should be less than the width of two pixels (or 2 GSD's), but the short extent of the pulse results in a poor signal-to-noise ratio. Similarly, for a high-resolution satellite imaging system such as Quickbird, the input pulse width was critical because of the zero crossing points and noise present in the background area. It is important, therefore, that the width of the input pulse be appropriately sized. Finally, the MTF was calculated by taking ratio between Fourier transform of output and Fourier transform of input. Regardless of whether the edge, pulse and impulse target method is used, the orientation of the targets is critical in order to obtain uniformly spaced sub-pixel data points. When the orientation is incorrect, sample data points tend to be located in clusters that result in poor reconstruction of the edge or pulse profiles. Thus, a compromise orientation must be selected so that all spectral bands can be accommodated. This report continues by outlining the objectives in Section 2, procedures followed in Section 3, descriptions of the field campaigns in Section 4, results in Section 5, and a brief summary in Section 6.
Pulsed-incoherent-light-injected Fabry-Perot laser diode for WDM passive optical networks.
Kim, Hoon
2010-01-18
We propose and demonstrate a pulsed-incoherent-light-injected Fabry-Perot laser diode (FP-LD) which generates incoherent return-to-zero (RZ) signals for wavelength-division-multiplexing passive optical networks. For the generation of the RZ signals, we first convert the continuous-wave (CW) amplified spontaneous emission (ASE) into an ASE pulse train with a pulse carver, spectrum-slice it into multiple channels with a waveguide grating router, and then inject them into FP-LDs for data modulation. Thanks to a wide slicing bandwidth of the injected incoherent light, the spectral linewidth of the generated RZ signals is determined by the slicing bandwidth, without being affected by the use of the RZ format. Thus, compared to incoherent non-return-to-zero (NRZ) signals generated with CW-ASE-injected FP-LDs, the RZ signals have a similar spectral linewidth but a wide timing margin between adjacent bits. Thus, the proposed transmitter can offer better dispersion tolerance than the NRZ signals. For example, our experimental demonstration performed at 1.25 Gb/s shows approximately 50% higher dispersion tolerance than the NRZ signals generated with CW ASE-injected FP-LDs. Despite the large slicing bandwidth of 0.67 nm for the injected ASE, we were able to transmit 1.25-Gb/s signals over 45-km standard single-mode fiber without dispersion compensation. The receiver sensitivity is also improved by 1.5 dB by using the RZ format.
All solid-state high power microwave source with high repetition frequency.
Bragg, J-W B; Sullivan, W W; Mauch, D; Neuber, A A; Dickens, J C
2013-05-01
An all solid-state, megawatt-class high power microwave system featuring a silicon carbide (SiC) photoconductive semiconductor switch (PCSS) and a ferrimagnetic-based, coaxial nonlinear transmission line (NLTL) is presented. A 1.62 cm(2), 50 kV 4H-SiC PCSS is hard-switched to produce electrical pulses with 7 ns full width-half max (FWHM) pulse widths at 2 ns risetimes in single shot and burst-mode operation. The PCSS resistance drops to sub-ohm when illuminated with approximately 3 mJ of laser energy at 355 nm (tripled Nd:YAG) in a single pulse. Utilizing a fiber optic based optical delivery system, a laser pulse train of four 7 ns (FWHM) signals was generated at 65 MHz repetition frequency. The resulting electrical pulse train from the PCSS closely follows the optical input and is utilized to feed the NLTL generating microwave pulses with a base microwave-frequency of about 2.1 GHz at 65 MHz pulse repetition frequency (prf). Under typical experimental conditions, the NLTL produces sharpened output risetimes of 120 ps and microwave oscillations at 2-4 GHz that are generated due to damped gyromagnetic precession of the ferrimagnetic material's axially pre-biased magnetic moments. The complete system is discussed in detail with its output matched into 50 Ω, and results covering MHz-prf in burst-mode operation as well as frequency agility in single shot operation are discussed.
Laser pulse control of ultrafast heterogeneous electron transfer: a computational study.
Wang, Luxia; May, Volkhard
2004-10-22
Laser pulse control of the photoinduced 90 fs charge injection from perylene into the conduction band of TiO2 is studied theoretically. The approach accounts for the electronic-ground state of the dye, the first excited state, the ionized state formed after charge injection, and the continuum of the electronic states in the conduction band, all defined vs a single reaction coordinate. To address different control tasks optimal control theory is combined with a full quantum dynamical description of the electron-vibrational motion accompanying the charge injection process. First it is proved in which way the charge injection time can be changed by tailored laser pulses. In a second step a pump-dump scheme from the perylene ground state to the first excited electronic state and back to the ground state is discussed. Because of the strong coupling of the excited perylene state to the band continuum of TiO2 this control task is more suited to an experimental test than the direct control of the charge injection.
Wang, Xiaojie; Wang, Xiaolei; Zheng, Zhifen; Qiao, Xihao; Dong, Jun
2018-04-20
A synchronous pulsed, dual-wavelength Raman laser at 1164.4 nm and 1174.7 nm has been demonstrated in a Nd:GdVO 4 /Cr 4+ :YAG/YVO 4 passively Q-switched Raman microchip laser (PQSRML). The 1164.4 nm and 1174.7 nm dual-wavelength first-order Stokes laser oscillation is attributed to the conversion of the 1063.2 nm and 1063.43 nm two-longitudinal-mode fundamental lasers with Raman frequency shifts of 816 cm -1 and 890 cm -1 , respectively. Stable dual-wavelength Raman laser pulses with nearly equal spectral intensities have been achieved independent of the pump power. A pulse repetition rate as high as 139.4 kHz has been achieved with T 0 =85%, and the pulse width has been shortened to 825 ps with T 0 =70%. A dual-wavelength Raman laser with sub-nanosecond pulse width and peak power of over 1 kW has been achieved in the Nd:GdVO 4 /Cr 4+ :YAG/YVO 4 PQSRML.
NASA Astrophysics Data System (ADS)
Hyodo, Toshio; Mochizuki, Izumi; Wada, Ken; Toge, Nobukazu; Shidara, Tetsuo
2018-05-01
Slow Positron Facility at High Energy Accelerator Research Organization (KEK) is a user dedicated facility with an energy-tunable (0.1 - 35 keV) slow positron beam created by a dedicated ˜ 50 MeV linac. It operates in a short pulse (width 1-12 ns, variable, 5×106 e+/s) and a long pulse (width 1.2 µs, 5×107 e+/s) modes of 50 Hz. High energy positrons from pair creation are moderated by reemission after thermalization in W foils. The reemitted positrons are then electrostatically accelerated to a desired energy up to 35 keV and magnetically transported. A pulse-stretching section (pulse stretcher) is installed in the middle of the beamline. It stretches the slow positron pulse for the experiments where too many positrons annihilating in the sample at the same time has to be avoided. Four experiment stations for TRHEPD (total-reflection high-energy positron diffraction), LEPD (low-energy positron diffraction), Ps- (positronium negative ion), and Ps-TOF (positronium time-of-flight) experiments are connected to the beamline branches, SPF-A3, SPF-A4, SPF-B1 and SPF-B2, respectively. Recent results of these stations are briefly described.
Influence of Time-Pickoff Circuit Parameters on LiDAR Range Precision
Wang, Hongming; Yang, Bingwei; Huyan, Jiayue; Xu, Lijun
2017-01-01
A pulsed time-of-flight (TOF) measurement-based Light Detection and Ranging (LiDAR) system is more effective for medium-long range distances. As a key ranging unit, a time-pickoff circuit based on automatic gain control (AGC) and constant fraction discriminator (CFD) is designed to reduce the walk error and the timing jitter for obtaining the accurate time interval. Compared with Cramer–Rao lower bound (CRLB) and the estimation of the timing jitter, four parameters-based Monte Carlo simulations are established to show how the range precision is influenced by the parameters, including pulse amplitude, pulse width, attenuation fraction and delay time of the CFD. Experiments were carried out to verify the relationship between the range precision and three of the parameters, exclusing pulse width. It can be concluded that two parameters of the ranging circuit (attenuation fraction and delay time) were selected according to the ranging performance of the minimum pulse amplitude. The attenuation fraction should be selected in the range from 0.2 to 0.6 to achieve high range precision. The selection criterion of the time-pickoff circuit parameters is helpful for the ranging circuit design of TOF LiDAR system. PMID:29039772
Müller, André; Jensen, Ole Bjarlin; Unterhuber, Angelika; Le, Tuan; Stingl, Andreas; Hasler, Karl-Heinz; Sumpf, Bernd; Erbert, Götz; Andersen, Peter E; Petersen, Paul Michael
2011-06-20
For the first time a single-pass frequency doubled DBR-tapered diode laser suitable for pumping Ti:sapphire lasers generating ultrashort pulses is demonstrated. The maximum output powers achieved when pumping the Ti:sapphire laser are 110 mW (CW) and 82 mW (mode-locked) respectively at 1.2 W of pump power. This corresponds to a reduction in optical conversion efficiencies to 75% of the values achieved with a commercial diode pumped solid-state laser. However, the superior electro-optical efficiency of the diode laser improves the overall efficiency of the Ti:sapphire laser by a factor > 2. The optical spectrum emitted by the Ti:sapphire laser when pumped with our diode laser shows a spectral width of 112 nm (FWHM). Based on autocorrelation measurements, pulse widths of less than 20 fs can therefore be expected.
Picosecond laser system with 30-W average power via cavity dumping and amplifying
NASA Astrophysics Data System (ADS)
Fu, J.; Pang, Q. S.; Chang, L.; Bai, Z. A.; Ai, Q. K.; Chen, L. Y.; Chen, M.; Li, G.; Ma, Y. F.; Fan, Z. W.; Niu, G.; Yu, J.; Liu, Y.; Zhang, X.; Kang, W. Y.; He, K.
2011-06-01
We present a picosecond laser system with high energy by technologies of cavity dumping and amplifying. Firstly, pulses with 10 ps and ˜520 nJ were obtained by cavity-dumped mode-locked laser at 10 kHz repetition rate. Secondly those pulses were seeded into a side-pumped regenerative amplifier (RA). Then pulses output from the regenerative amplifier were amplified by two four-pass post amplifiers. From the laser system pulses with an average power of 30 W corresponding to 3 mJ pulse energy were achieved with the pulse-width of 25.4 ps at repetition rate of 10 kHz.
Ultrafocused Electromagnetic Field Pulses with a Hollow Cylindrical Waveguide
NASA Astrophysics Data System (ADS)
Maurer, P.; Prat-Camps, J.; Cirac, J. I.; Hänsch, T. W.; Romero-Isart, O.
2017-07-01
We theoretically show that a dipole externally driven by a pulse with a lower-bounded temporal width, and placed inside a cylindrical hollow waveguide, can generate a train of arbitrarily short and focused electromagnetic pulses. The waveguide encloses vacuum with perfect electric conducting walls. A dipole driven by a single short pulse, which is properly engineered to exploit the linear spectral filtering of the cylindrical hollow waveguide, excites longitudinal waveguide modes that are coherently refocused at some particular instances of time, thereby producing arbitrarily short and focused electromagnetic pulses. We numerically show that such ultrafocused pulses persist outside the cylindrical waveguide at distances comparable to its radius.
Compressed 6 ps pulse in nonlinear amplification of a Q-switched microchip laser
NASA Astrophysics Data System (ADS)
Diao, Ruxin; Liu, Zuosheng; Niu, Fuzeng; Wang, Aimin; Taira, Takunori; Zhang, Zhigang
2017-02-01
We present a passively Q-switched Nd:YVO4 crystal microchip laser with a 6 ps pulse width, which is based on SPM-induced spectral broadening and pulse compression. The passive Q-switching is obtained by a semiconductor saturable absorber mirror. The laser’s seed source centered at 1064 nm pulses with a duration of 80 ps, at a repetition rate of 600 kHz corresponding to an average output power of 10 mW. After amplification and compression, the pulses were compressed to 6 ps with a maximum pulse energy of 0.5 µJ.
Development of a Flow Visualization Technique for Transient Fluid Flow
1992-12-31
high repetition rates, 2 to 10 kHz. The CW laser with a chopper wheel is limited to 4 kHz with a relatively large pulse width of 125 microseconds. The... four data points are in one CRAY word *I I* print«" bufloop %d width %d bufbytes %d image offset %ld xoffset %d \
NASA Astrophysics Data System (ADS)
Koshelev, V. I.; Plisko, V. V.; Sevostyanov, E. A.
2017-05-01
To broaden the spectrum of high-power ultrawideband radiation, it is suggested to synthesize an electromagnetic pulse summing the pulses of different length in free space. On the example of model pulses corresponding to radiation of combined antennas excited by bipolar voltage pulses of the length of 2 and 3 ns, the possibility of twofold broadening of the radiation spectrum was demonstrated. Radiation pulses with the spectrum width exceeding three octaves were obtained. Pattern formation by the arrays of different geometry excited by the pulses having different time shifts was considered. Optimum array structure with the pattern maximum in the main direction was demonstrated on the example of a 2×2 array.
NASA Technical Reports Server (NTRS)
Lindsey, R. S., Jr. (Inventor)
1975-01-01
An exemplary embodiment of the present invention provides a source of random width and random spaced rectangular voltage pulses whose mean or average frequency of operation is controllable within prescribed limits of about 10 hertz to 1 megahertz. A pair of thin-film metal resistors are used to provide a differential white noise voltage pulse source. Pulse shaping and amplification circuitry provide relatively short duration pulses of constant amplitude which are applied to anti-bounce logic circuitry to prevent ringing effects. The pulse outputs from the anti-bounce circuits are then used to control two one-shot multivibrators whose output comprises the random length and random spaced rectangular pulses. Means are provided for monitoring, calibrating and evaluating the relative randomness of the generator.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deng, Liulin; Ibrahim, Yehia M.; Garimella, Sandilya V. B.
The initial use of traveling waves (TW) for ion mobility (IM) separations using a structures for lossless ion manipulations (SLIM) employed an ion funnel trap (IFT) to accumulate ions from a continuous electrospray ionization source, and limited to injected ion populations of ~106 charges due to the onset of space charge effects in the trapping region. Additional limitations arise due to the loss of resolution for the injection of ions over longer periods (e.g. in extended pulses). In this work a new SLIM ‘flat funnel’ (FF) module has been developed and demonstrated to enable the accumulation of much larger ionmore » populations and their injection for IM separations. Ion current measurements indicate a capacity of ~3.2×108 charges for the extended trapping volume, over an order of magnitude greater than the IFT. The orthogonal ion injection into a funnel shaped separation region can greatly reduce space charge effects during the initial IM separation stage, and the gradually reduced width of the path allows the ion packet to be increasingly compressed in the lateral dimension as the separation progresses, allowing e.g. efficient transmission through conductance limits or compatibility with subsequent ion manipulations. This work examined the TW, RF, and DC confining field SLIM parameters involved in ion accumulation, injection, transmission and separation in the FF IM module using both direct ion current and MS measurements. Wide m/z range ion transmission is demonstrated, along with significant increases in signal to noise (S/N) ratios due to the larger ion populations injected. Additionally, we observed a reduction in the chemical background, which was attributed to more efficient desolvation of solvent related clusters over the extended ion accumulation periods. The TW SLIM FF IM module is anticipated to be especially effective as a front end for long path SLIM IM separation modules.« less
NASA Astrophysics Data System (ADS)
Gasmi, Taieb
2018-04-01
An extra-cavity CO2-TEA laser pulse clipper for high spatial resolution atmospheric monitoring is presented. The clipper uses pulsed high voltageto facilitate the breakdown of the gas within the clipper cell. Complete extinction of the nitrogen tail, that degrades the range resolution of LIDARS, is obtained at pressures from 375 up to 1500 Torr for nitrogen and argon gases whereas an attenuation coefficient of almost 102 is achieved for helium. Excellent energy stability and pulse width repeatability were achieved using high voltage pre-ionized gas technique.
Femtosecond laser pulse distortion in Ti:sapphire multipass amplifier by atomic phase shifts
NASA Astrophysics Data System (ADS)
Hwang, Seungjin; Jeong, Jihoon; Cho, Seryeyohan; Lee, Jongmin; Yu, Tae Jun
2017-11-01
We have derived modified Frantz-Nodvik equations that simultaneously account for atomic phase shift (APS) and gain depletion as the chirped laser pulse passes through a gain medium, and have analyzed the effect of temporal pulse distortion in a Ti:sapphire multipass amplifier chain. The combination of APS and gain depletion distorted a temporal pulse and decreased the peak power. The pulse width increased from 21.3 fs to 22.8 fs and the peak power reduced to 89% for the PW class Ti:sapphire CPA laser system in the particular conditions.
Optimal pulse design for communication-oriented slow-light pulse detection.
Stenner, Michael D; Neifeld, Mark A
2008-01-21
We present techniques for designing pulses for linear slow-light delay systems which are optimal in the sense that they maximize the signal-to-noise ratio (SNR) and signal-to-noise-plus-interference ratio (SNIR) of the detected pulse energy. Given a communication model in which input pulses are created in a finite temporal window and output pulse energy in measured in a temporally-offset output window, the SNIR-optimal pulses achieve typical improvements of 10 dB compared to traditional pulse shapes for a given output window offset. Alternatively, for fixed SNR or SNIR, window offset (detection delay) can be increased by 0.3 times the window width. This approach also invites a communication-based model for delay and signal fidelity.
Advanced injection seeder for various applications: form LIDARs to supercontinuum sources
NASA Astrophysics Data System (ADS)
Grzes, Pawel
2017-12-01
The paper describes an injection seeder driver (prototype) for a directly modulated semiconductor laser diode. The device provides adjustable pulse duration and repetition frequency to shape an output signal. A temperature controller stabilizes a laser diode spectrum. Additionally, to avoid a back oscillation, redundant power supply holds a generation until next stages shut down. Low EMI design and ESD protection guarantee stable operation even in a noisy environment. The controller is connected to the PC via USB and parameters of the pulse are digitally controlled through a graphical interface. The injection seeder controller can be used with a majority of commercially available laser diodes. In the experimental setup a telecommunication DFB laser with 4 GHz bandwidth was used. It allows achieving subnanosecond pulses generated at the repetition rate ranging from 1 kHz to 50 MHz. The developed injection seeder controller with a proper laser diode can be used in many scientific, industrial and medical applications.
Secure distance ranging by electronic means
Gritton, Dale G.
1992-01-01
A system for secure distance ranging between a reader 11 and a tag 12 wherein the distance between the two is determined by the time it takes to propagate a signal from the reader to the tag and for a responsive signal to return, and in which such time is random and unpredictable, except to the reader, even though the distance between the reader and tag remains the same. A random number (19) is sent from the reader and encrypted (26) by the tag into a number having 16 segments of 4 bits each (28). A first tag signal (31) is sent after such encryption. In response, a random width start pulse (13) is generated by the reader. When received in the tag, the width of the start pulse is measured (41) in the tag and a segment of the encrypted number is selected (42) in accordance with such width. A second tag pulse is generated at a time T after the start pulse arrives at the tag, the time T being dependent on the length of a variable time delay t.sub.v which is determined by the value of the bits in the selected segment of the encrypted number. At the reader, the total time from the beginning of the start pulse to the receipt of the second tag signal is measured (36, 37). The value of t.sub.v (21, 22, 23, 34) is known at the reader and the time T is subtracted (46) from the total time to find the actual propagation t.sub.p for signals to travel between the reader 11 and tag 12. The propagation time is then converted into distance (46).
Integrated injection seeded terahertz source and amplifier for time-domain spectroscopy.
Maysonnave, J; Jukam, N; Ibrahim, M S M; Maussang, K; Madéo, J; Cavalié, P; Dean, P; Khanna, S P; Steenson, D P; Linfield, E H; Davies, A G; Tignon, J; Dhillon, S S
2012-02-15
We used a terahertz (THz) quantum cascade laser (QCL) as an integrated injection seeded source and amplifier for THz time-domain spectroscopy. A THz input pulse is generated inside a QCL by illuminating the laser facet with a near-IR pulse from a femtosecond laser and amplified using gain switching. The THz output from the QCL is found to saturate upon increasing the amplitude of the THz input power, which indicates that the QCL is operating in an injection seeded regime.
Film Implementation of a Neutron Detector (FIND): Critical Materials Properties
2007-09-01
In the implementation of the TRR method used initially,2 a pulsed titanium -sapphire laser with a repetition rate of 82 MHz and a pulse width of...for this fluorescence to appear. The carriers are excited by a very short (20 fs) laser pulse generated by a titanium -sapphire laser oscillator...were made using the following methods: • Lifetime: time-resolved (pump-probe) reflectivity method with dual fiber laser system • Mobility: free
Contrasting dynamics of electrons and protons in the near-Earth plasma sheet during dipolarization
NASA Astrophysics Data System (ADS)
Malykhin, Andrey Y.; Grigorenko, Elena E.; Kronberg, Elena A.; Koleva, Rositza; Ganushkina, Natalia Y.; Kozak, Ludmila; Daly, Patrick W.
2018-05-01
The fortunate location of Cluster and the THEMIS P3 probe in the near-Earth plasma sheet (PS) (at X ˜ -7-9 RE) allowed for the multipoint analysis of properties and spectra of electron and proton injections. The injections were observed during dipolarization and substorm current wedge formation associated with braking of multiple bursty bulk flows (BBFs). In the course of dipolarization, a gradual growth of the BZ magnetic field lasted ˜ 13 min and it was comprised of several BZ pulses or dipolarization fronts (DFs) with duration ≤ 1 min. Multipoint observations have shown that the beginning of the increase in suprathermal ( > 50 keV) electron fluxes - the injection boundary - was observed in the PS simultaneously with the dipolarization onset and it propagated dawnward along with the onset-related DF. The subsequent dynamics of the energetic electron flux was similar to the dynamics of the magnetic field during the dipolarization. Namely, a gradual linear growth of the electron flux occurred simultaneously with the gradual growth of the BZ field, and it was comprised of multiple short ( ˜ few minutes) electron injections associated with the BZ pulses. This behavior can be explained by the combined action of local betatron acceleration at the BZ pulses and subsequent gradient drifts of electrons in the flux pile up region through the numerous braking and diverting DFs. The nonadiabatic features occasionally observed in the electron spectra during the injections can be due to the electron interactions with high-frequency electromagnetic or electrostatic fluctuations transiently observed in the course of dipolarization. On the contrary, proton injections were detected only in the vicinity of the strongest BZ pulses. The front thickness of these pulses was less than a gyroradius of thermal protons that ensured the nonadiabatic acceleration of protons. Indeed, during the injections in the energy spectra of protons the pronounced bulge was clearly observed in a finite energy range ˜ 70-90 keV. This feature can be explained by the nonadiabatic resonant acceleration of protons by the bursts of the dawn-dusk electric field associated with the BZ pulses.
Generating nonlinear FM chirp radar signals by multiple integrations
Doerry, Armin W [Albuquerque, NM
2011-02-01
A phase component of a nonlinear frequency modulated (NLFM) chirp radar pulse can be produced by performing digital integration operations over a time interval defined by the pulse width. Each digital integration operation includes applying to a respectively corresponding input parameter value a respectively corresponding number of instances of digital integration.
Applications of Pulsed Power in Advanced Oxidation and Reduction Processes for Pollution Control
1993-06-01
electrical driver pulse width and rise time, electrical drive circuit coupling to plasma cells, and the role of UV light in the plasma chemistry and...will permit industrial service. Basic understanding of the plasma chemistry has evolved to the point where trends and equipment scaling can be
NASA Astrophysics Data System (ADS)
Nur Fatin Zuikafly, Siti; Ahmad, Fauzan; Haniff Ibrahim, Mohd; Wadi Harun, Sulaiman
2017-11-01
The paper demonstrates passively Q-switched erbium-doped fiber laser implementing multiwalled carbon nanotubes (MWCNTs) based saturable absorber. The paper is the first to report the use of the MWCNTs with diameter less than 8 nm as typically, the diameter used is 10 to 20 nm. The MWCNTs is incorporated with water soluble host polymer, polyvinyl alcohol (PVA) to produce a MWCNTs polymer composite thin film which is then sandwiched between two fiber connectors. The fabricated SA is employed in the laser experimental setup in ring cavity. The Q-switching regime started at threshold pump power of 103 mW and increasable to 215 mW. The stable pulse train from 41.6 kHz to 76.92 kHz with maximum average output power and pulse energy of 0.17 mW and 3.39 nJ are produced. The shortest pulse width of 1.9 μs is obtained in the proposed experimental work, making it the lowest pulse width ever reported using MWCNTs-based saturable absorber.
NASA Astrophysics Data System (ADS)
Zhao, Tongtong; Lian, Zhenggang; Benson, Trevor; Wang, Xin; Zhang, Wan; Lou, Shuqin
2017-11-01
We propose an As2Se3-based photonic quasi-crystal fiber (PQF) with high nonlinearity and birefringence. By optimizing the structure parameters, a nonlinear coefficient up to 2079 W-1km-1 can be achieved at the wavelength of 2 μm; the birefringence reaches up to the order of 10-2 due to the introduction of large circular air holes in the cladding. Using an optical pulse with a peak power of 6 kW, a pulse width of 150 fs, and a central wavelength of 2.94 μm as the pump pulse, a mid-infrared polarized supercontinuum is obtained by using a 15 mm long PQF. The spectral width for x- and y-polarizations covers 1 μm-10.2 μm and 1 μm-12.5 μm, respectively. The polarization state can be well maintained when the incident angle of the input pulse changes within ±2°. The proposed PQF, with high nonlinear coefficient and birefringence, has potential applications in mid-infrared polarization-maintaining supercontinuum generation.
Evaluation of the shock-wave pattern for endoscopic electrohydraulic lithotripsy.
Vorreuther, R; Engelmann, Y
1995-01-01
We evaluated the electrical events and the resulting shock waves of the spark discharge for electrohydraulic lithotripsy at the tip of a 3.3F probe. Spark generation was achieved by variable combinations of voltage and capacity. The effective electrical output was determined by means of a high-voltage probe, a current coil, and a digital oscilloscope. Peak pressures, rise times, and pulse width of the pressure profiles were recorded using a polyvinylidene difluoride needle hydrophone in 0.9% NaCl solution at a distance of 10 mm. The peak pressure and the slope of the shock front depend solely on the voltage, while the pulse width was correlated with the capacity. Pulses of less than 1-microsecond duration can be obtained when low capacity is applied and the inductivity of the cables and plugs is kept at a low level. Using chalk as a stone model it was proven that short pulses of high peak pressure provided by a low capacity and a high voltage have a greater impact on fragmentation than the corresponding broader shock waves of lower peak pressure carrying the same energy.
Pulse duration settings in subthalamic stimulation for Parkinson's disease
Steigerwald, Frank; Timmermann, Lars; Kühn, Andrea; Schnitzler, Alfons; Reich, Martin M.; Kirsch, Anna Dalal; Barbe, Michael Thomas; Visser‐Vandewalle, Veerle; Hübl, Julius; van Riesen, Christoph; Groiss, Stefan Jun; Moldovan, Alexia‐Sabine; Lin, Sherry; Carcieri, Stephen; Manola, Ljubomir
2017-01-01
ABSTRACT Background Stimulation parameters in deep brain stimulation (DBS) of the subthalamic nucleus for Parkinson's disease (PD) are rarely tested in double‐blind conditions. Evidence‐based recommendations on optimal stimulator settings are needed. Results from the CUSTOM‐DBS study are reported, comparing 2 pulse durations. Methods A total of 15 patients were programmed using a pulse width of 30 µs (test) or 60 µs (control). Efficacy and side‐effect thresholds and unified PD rating scale (UPDRS) III were measured in meds‐off (primary outcome). The therapeutic window was the difference between patients’ efficacy and side effect thresholds. Results The therapeutic window was significantly larger at 30 µs than 60 µs (P = ·0009) and the efficacy (UPDRS III score) was noninferior (P = .00008). Interpretation Subthalamic neurostimulation at 30 µs versus 60 µs pulse width is equally effective on PD motor signs, is more energy efficient, and has less likelihood of stimulation‐related side effects. © 2017 The Authors. Movement Disorders published by Wiley Periodicals, Inc. on behalf of International Parkinson and Movement Disorder Society. PMID:29165837
980 nm all-fiber NPR mode-locking Yb-doped phosphate fiber oscillator and its amplifier
NASA Astrophysics Data System (ADS)
Li, Pingxue; Yao, Yifei; Chi, Junjie; Hu, Haowei; Yang, Chun; Zhao, Ziqiang; Zhang, Guangju
2014-12-01
We report on a 980 nm all-fiber passively mode-locking Yb-doped phosphate fiber oscillator with the nonlinear polarization rotation (NPR) technique and its amplifier. In order to obtaining the stable self-starting mode-locking oscillator at 980 nm, a bandpass filter with 30 nm transmission bandwidth around 980 nm is inserted into the cavity. The oscillator generates the average output power of 26.1 mW with the repetition rate of 20.38 MHz, corresponding to the single pulse energy of 1.28 nJ. The pulse width is 159.48 ps. The output spectrum of the pulses is centered at 977 nm with a full width half maximum (FWHM) of 10 nm and has the characteristic steep spectral edges of dissipative soliton. No undesired ASE and harmful oscillation around 1030 nm is observed. Moreover, through two stage all-fiber-integrated amplifier by using the 980 nm oscillator as seed source, an amplified output power of 205 mW at 980 nm and pulse duration of 178.10 ps is achieved.
GRB Diversity vs. Utility as Cosmological Probes
NASA Technical Reports Server (NTRS)
Norris, J. P.; Scargle, J. D.; Bonnell, J. T.; Nemiroff, R. J.; Young, Richard E. (Technical Monitor)
1997-01-01
Recent detections of apparent gamma-ray burst (GRB) counterparts in optical and radio wavebands strongly favor the cosmological distance scale, at least for some GRBs, opening the possibility of GRBs serving as cosmological probes. But GRBs exhibit great diversity: in total duration; in number, width and pulse configuration; and in pulse and overall spectral evolution. However, it is possible that a portion of this behavior reflects a luminosity distribution, and possible that evolution of with cosmic time introduces dispersion into the average GRB characteristics -- issues analogous to those encountered with quasars. The temporal domain offers a rich avenue to investigate this problem. When corrected for assumed spectral redshift, time dilation of event durations, pulse widths, and intervals between pulses must yield the same time-dilation factor as a function of peak flux, or else a luminosity distribution may be the cause of observed time dilation effects. We describe results of burst analysis using an automated, Bayesian-based algorithm to determine burst temporal characteristics for different peak flux groups, and derived constraints on any physical process that would introduce a luminosity distribution.
NASA Astrophysics Data System (ADS)
Hu, Qingmei; Zou, Bingsuo; Zhang, Yongyou
2018-03-01
Transmission and correlation properties of a two-photon pulse are studied in a one-dimensional waveguide (1DW) in the presence of three types of quantum emitters: two-level atom (TLA), side optical cavity (SOC), and Jaynes-Cummings model (JCM). Since there are many plane-wave components for a two-photon pulse, a nonlinear waveguide dispersion is used instead of the linearized one. The two-photon transmission spectra become flatter with decreasing the pulse width. With respect to the δ coupling between the 1DW and quantum emitter the transmission dips show a blueshift for the non-δ one and the blueshift first increases and then decreases with increasing the width of the coupling. The TLA and JCM can induce an effective photon-photon interaction that depends on the distance between the two photons, while the SOC cannot. We show that the 1DW coupled with the TLA or JCM is able to evaluate the overlap of the two photons and that the non-δ coupling has potential for controlling the two-photon correlation.
Picosecond 1064-nm fiber laser with tunable pulse width and low timing jitter
NASA Astrophysics Data System (ADS)
Tian, Wenyan; Zhang, Shukui
2018-02-01
We report an all-fiber, linearly polarized, 1.1-W, 1064-nm fiber laser based on a two-stage Ytterbium-doped fiber amplifier seeded by a gain-switched diode laser with tunable pulse width from 21 to 200 ps at repetition rates of 0.5-1.5 GHz. Timing jitter of our 1064-nm fiber laser was measured to be 0.60 ps over 10 Hz-40 MHz when the gain-switched diode laser was operated at a repetition rate of 0.5, 1, and 1.5 GHz. The fiber laser offers an excellent long term power stability of +/- 0.3% and wavelength stability of +/- 0.01 nm over 8 hours
NASA Technical Reports Server (NTRS)
Li, Jing; Hylton, Alan; Budinger, James; Nappier, Jennifer; Downey, Joseph; Raible, Daniel
2012-01-01
Due to its simplicity and robustness against wavefront distortion, pulse position modulation (PPM) with photon counting detector has been seriously considered for long-haul optical wireless systems. This paper evaluates the dual-pulse case and compares it with the conventional single-pulse case. Analytical expressions for symbol error rate and bit error rate are first derived and numerically evaluated, for the strong, negative-exponential turbulent atmosphere; and bandwidth efficiency and throughput are subsequently assessed. It is shown that, under a set of practical constraints including pulse width and pulse repetition frequency (PRF), dual-pulse PPM enables a better channel utilization and hence a higher throughput than it single-pulse counterpart. This result is new and different from the previous idealistic studies that showed multi-pulse PPM provided no essential information-theoretic gains than single-pulse PPM.
Nonlinear combining and compression in multicore fibers
Chekhovskoy, I. S.; Rubenchik, A. M.; Shtyrina, O. V.; ...
2016-10-25
In this paper, we demonstrate numerically light-pulse combining and pulse compression using wave-collapse (self-focusing) energy-localization dynamics in a continuous-discrete nonlinear system, as implemented in a multicore fiber (MCF) using one-dimensional (1D) and 2D core distribution designs. Large-scale numerical simulations were performed to determine the conditions of the most efficient coherent combining and compression of pulses injected into the considered MCFs. We demonstrate the possibility of combining in a single core 90% of the total energy of pulses initially injected into all cores of a 7-core MCF with a hexagonal lattice. Finally, a pulse compression factor of about 720 can bemore » obtained with a 19-core ring MCF.« less
Low-intensity pulsed ultrasound stimulation for mandibular condyle osteoarthritis lesions in rats.
Kanaguchi Arita, A; Yonemitsu, I; Ikeda, Y; Miyazaki, M; Ono, T
2018-05-01
This study evaluated low-intensity pulsed ultrasound effects for temporomandibular joint osteoarthritis in adult rats. Osteoarthritis-like lesions were induced in 24 adult rats' temporomandibular joints with low-dose mono-iodoacetate injections. The rats were divided into four groups: control and mono-iodoacetate groups, injected with contrast media and mono-iodoacetate, respectively, at 12 weeks and observed until 20 weeks; and low-intensity pulsed ultrasound and mono-iodoacetate + low-intensity pulsed ultrasound groups, injected with contrast media and mono-iodoacetate, respectively, at 12 weeks with low-intensity pulsed ultrasound performed from 16 to 20 weeks. Condylar bone mineral density, bone mineral content and bone volume were evaluated weekly with microcomputed tomography. Histological and immunohistochemical staining for matrix metalloproteinases-13 was performed at 20 weeks. At 20 weeks, the mono-iodoacetate + low-intensity pulsed ultrasound group showed significantly higher bone mineral density, bone mineral content and bone volume than the mono-iodoacetate group; however, these values remained lower than those in the other two groups. On histological and immunohistochemical analysis, the chondrocytes were increased, and fewer matrix metalloproteinases-13 immunopositive cells were identified in the mono-iodoacetate + low-intensity pulsed ultrasound group than mono-iodoacetate group. Low-intensity pulsed ultrasound for 2 weeks may have therapeutic potential for treating temporomandibular joint osteoarthritis lesions. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Polyion selective polymeric membrane-based pulstrode as a detector in flow-injection analysis.
Bell-Vlasov, Andrea K; Zajda, Joanna; Eldourghamy, Ayman; Malinowska, Elzbieta; Meyerhoff, Mark E
2014-04-15
A method for the detection of polyions using fully reversible polyion selective polymeric membrane type pulstrodes as detectors in a flow-injection analysis (FIA) system is examined. The detection electrode consists of a plasticized polymeric membrane doped with 10 wt % of tridodecylmethylammonium-dinonylnaphthalene sulfonate (TDMA/DNNS) ion-exchanger salt. The pulse sequence used involves a short (1 s) galvanostatic pulse, an open-circuit pulse (0.5 s) during which the EMF of the cell is measured, and a longer (15 s) potentiostatic pulse to return the membrane to its original chemical composition. It is shown that total pulse sequence times can be optimized to yield reproducible real-time detection of injected samples of protamine and heparin at up to 20 samples/h. Further, it is shown that the same membrane detector can be employed for FIA detection of both polycations at levels ≥10 μg/mL and polyanions at levels of ≥40 μg/mL by changing the direction of the galvanostatic pulse. The methodology described may also be applicable in the detection of polyionic species at low levels in other flowing configurations, such as in liquid chromatography and capillary electrophoresis.
Gaussian temporal modulation for the behavior of multi-sinc Schell-model pulses in dispersive media
NASA Astrophysics Data System (ADS)
Liu, Xiayin; Zhao, Daomu; Tian, Kehan; Pan, Weiqing; Zhang, Kouwen
2018-06-01
A new class of pulse source with correlation being modeled by the convolution operation of two legitimate temporal correlation function is proposed. Particularly, analytical formulas for the Gaussian temporally modulated multi-sinc Schell-model (MSSM) pulses generated by such pulse source propagating in dispersive media are derived. It is demonstrated that the average intensity of MSSM pulses on propagation are reshaped from flat profile or a train to a distribution with a Gaussian temporal envelope by adjusting the initial correlation width of the Gaussian pulse. The effects of the Gaussian temporal modulation on the temporal degree of coherence of the MSSM pulse are also analyzed. The results presented here show the potential of coherence modulation for pulse shaping and pulsed laser material processing.
Peak holding circuit for extremely narrow pulses
NASA Technical Reports Server (NTRS)
Oneill, R. W. (Inventor)
1975-01-01
An improved pulse stretching circuit comprising: a high speed wide-band amplifier connected in a fast charge integrator configuration; a holding circuit including a capacitor connected in parallel with a discharging network which employs a resistor and an FET; and an output buffer amplifier. Input pulses of very short duration are applied to the integrator charging the capacitor to a value proportional to the input pulse amplitude. After a predetermined period of time, conventional circuitry generates a dump pulse which is applied to the gate of the FET making a low resistance path to ground which discharges the capacitor. When the dump pulse terminates, the circuit is ready to accept another pulse to be stretched. The very short input pulses are thus stretched in width so that they may be analyzed by conventional pulse height analyzers.
Hirooka, Toshihiko; Seya, Daiki; Harako, Koudai; Suzuki, Daiki; Nakazawa, Masataka
2015-08-10
We propose the ultrahigh-speed demultiplexing of Nyquist OTDM signals using an optical Nyquist pulse as both a signal and a sampling pulse in an all-optical nonlinear switch. The narrow spectral width of the Nyquist pulses means that the spectral overlap between data and control pulses is greatly reduced, and the control pulse itself can be made more tolerant to dispersion and nonlinear distortions inside the nonlinear switch. We apply the Nyquist control pulse to the 640 to 40 Gbaud demultiplexing of DPSK and DQPSK signals using a nonlinear optical loop mirror (NOLM), and demonstrate a large performance improvement compared with conventional Gaussian control pulses. We also show that the optimum spectral profile of the Nyquist control pulse depends on the walk-off property of the NOLM.
Characterization of a Laser-Generated Perturbation in High-Speed Flow for Receptivity Studies
2014-01-01
to trip the boundary layer. Figure 1. Schematic of the Boeing/AFOSR Mach-6 Quiet Tunnel (BAM6QT) The BAM6QT is a Ludwieg tube with a double- burst ...reduced to a 4-mm beam diameter by an aperture. Although the PIV-400 is a double- pulse laser, only the first pulse is used to generate perturbations in the...also both seeded, and pulse at 10 Hz, with a pulse width of about 7 ns. 2. Forming Optics The laser-generated perturbation is created by focusing a
Yuan, Hang; Wang, Yulei; Lu, Zhiwei; Zheng, Zhenxing
2018-02-01
A frequency matching Brillouin amplification in high-power solid-state laser systems is proposed. The energy extraction efficiency could be maintained at a high level in a non-collinear Brillouin amplification structure using an exact Stokes frequency shift. Laser pulses having a width of 200 ps and energy of 2.4 J were produced. This method can be used to transfer energy from a long pulse to a short pulse through a high-power solid-state laser system.
Long-Lag, Wide-pulse Gamma-Ray Bursts
NASA Technical Reports Server (NTRS)
Norris, J. P.; Bonnell, J. T.; Kazanas, D.; Scargie, J. D.; Hakkila, J.; Giblin, T. W.
2005-01-01
The best available probe of the early phase of gamma-ray burst (GRB) jet attributes is the prompt gamma-ray emission, in which several intrinsic and extrinsic variables determine observed GRB pulse evolution, including at least: jet opening angle, profiles of Lorentz factor and matter/field density, distance of emission region from central source, and viewing angle. Bright, usually complex bursts have many narrow pulses that are difficult to model due to overlap. However, the relatively simple, long spectral lag, wide-pulse bursts may have simpler physics and are easier to model. We have analyzed the temporal and spectral behavior of wide pulses in 24 long-lag bursts from the BATSE sample, using a pulse model with two shape parameters - width and asymmetry - and the Band spectral model with three shape parameters. We find that pulses in long-lag bursts are distinguished both temporally and spectrally from those in bright bursts: the pulses in long spectral lag bursts are few in number, and approximately 100 times wider (10s of seconds), have systemtically lower peaks in nu*F(nu), harder low-energy spectra and softer high-energy spectra. These five pulse descriptors are essentially uncorrelated for our long-lag sample, suggesting that at least approximately 5 parameters are needed to model burst temporal and spectral behavior, roughly commensurate with the theoretical phase space. However, we do find that pulse width is strongly correlated with spectral lag; hence these two parameters may be viewed as mutual surrogates. The prevalence of long-lag bursts near the BATSE trigger threshold, their predominantly low nu*F(nu) spectral peaks, and relatively steep upper power-law spectral indices indicate that Swiift will detect many such bursts.
NASA Astrophysics Data System (ADS)
Zhou, Wenzhen; Gong, Yanjun; Wang, Mingjun; Gong, Lei
2016-10-01
technology. Laser one-dimensional range profile can reflect the characteristics of the target shape and surface material. These techniques were motivated by applications of laser radar to target discrimination in ballistic missile defense. The radar equation of pulse laser about cone is given in this paper. This paper demonstrates the analytical model of laser one-dimensional range profile of cone based on the radar equation of the pulse laser. Simulations results of laser one-dimensional range profiles of some cones are given. Laser one-dimensional range profiles of cone, whose surface material with diffuse lambertian reflectance, is given in this paper. Laser one-dimensional range profiles of cone, whose surface mater with diffuse materials whose retroreflectance can be modeled closely with an exponential term that decays with increasing incidence angles, is given in this paper. Laser one-dimensional range profiles of different pulse width of cone is given in this paper. The influences of surface material, pulse width, attitude on the one-dimensional range are analyzed. The laser two-dimensional range profile is two-dimensional scattering imaging of pulse laser of target. The two-dimensional range profile of roughness target can provide range resolved information. An analytical model of two-dimensional laser range profile of cone is proposed. The simulations of two-dimensional laser range profiles of some cones are given. Laser two-dimensional range profiles of cone, whose surface mater with diffuse lambertian reflectance, is given in this paper. Laser two-dimensional range profiles of cone, whose surface mater with diffuse materials whose retroreflectance can be modeled closely with an exponential term that decays with increasing incidence angles, is given in this paper. The influence of pulse width, surface material on laser two-dimensional range profile is analyzed. Laser one-dimensional range profile and laser two-dimensional range profile are called as laser range profile (LRP).
NASA Astrophysics Data System (ADS)
Furukawa, Hideaki; Makino, Takeshi; Wang, Xiaomin; Kobayashi, Tetsuya; Asghari, Mohammad H.; Trinh, Paul; Jalali, Bahram; Man, Wai Sing; Tsang, Kwong Shing; Wada, Naoya
2018-02-01
The time stretch dispersive Fourier Transform (TS-DFT) technique based on a fiber chromatic dispersion is a powerful tool for pulse-by-pulse single-shot spectrum measurement for highrepetition rate optical pulses. The distributed feedback laser diode (DFB-LD) with the gain switch operation can flexibly change the pulse repetition frequency (PRF). In this paper, we newly introduce a semiconductor gain-switched DFB-LD operating from 1 MHz up to 1 GHz PRF into the TS-DFT based spectrum measurement system to improve the flexibility and the operability. The pulse width can be below 2 ps with a pulse compression technique. We successfully measure the spectrum of each optical pulse at 1 GHz, 100 MHz, and 10 MHz PRF, and demonstrate the flexibility of the measurement system.
Injection locked coupled opto-electronic oscillator for optical frequency comb generation
NASA Astrophysics Data System (ADS)
Williams, Charles; Mandridis, Dimitrios; Davila-Rodriguez, Josue; Delfyett, Peter J.
2011-06-01
A CW injection locked Coupled Opto-Electronic Oscillator (COEO) is presented with a 10.24 GHz spaced optical frequency comb output as well as a low noise RF output. A modified Pound-Drever-Hall scheme is employed to ensure long-term stability of the injection lock, feeding back into the cavity length to compensate for cavity resonance drifts relative to the injection seed frequency. Error signal comparison to an actively mode-locked injection locked laser is presented. High optical signal-to-noise ratio of ~35 dB is demonstrated with >20 comblines of useable bandwidth. The optical linewidth, in agreement with injection locking theory, reduces to that of the injection seed frequency, <5 kHz. Low amplitude and absolute phase noise are presented from the optical output of the laser system. The integrated pulse-to-pulse energy fluctuation was found to be reduced by up to a factor of two due to optical injection. Additional decreases were shown for varying injection powers.
NASA Technical Reports Server (NTRS)
Cutler, A. D.; Harding, G. C.; Diskin, G. S.
2001-01-01
An injector has been developed to provide high-speed high-frequency (order 10 kHz) pulsed a supersonic crossflow. The injector nozzle is formed between the fixed internal surface of the nozzle and a freely rotating three- or four-sided wheel embedded within the device. Flow-induced rotation of the wheel causes the nozzle throat to open and close at a frequency proportional to the speed of sound of the injected gas. Measurements of frequency and mass flow rate as a function of supply pressure are discussed for various injector designs. Preliminary results are presented for wall-normal injection of helium into a Mach-2 ducted airflow. The data include schlieren images in the injectant plume in a plane normal to the flow, downstream of injection.
NASA Technical Reports Server (NTRS)
Mach, D. A.; Blakeslee, R. J.; Bailey, J. C.; Farrell, W. M.; Goldberg, R. A.; Desch, M. D.; Houser, J. G.
2003-01-01
The Altus Cumulus Electrification Study (ACES) was conducted during the month of August, 2002 in an area near Key West, Florida. One of the goals of this uninhabited aerial vehicle (UAV) study was to collect high resolution optical pulse and electric field data from thunderstorms. During the month long campaign, we acquired 5294 lightning generated optical pulses with associated electric field changes. Most of these observations were made while close to the top of the storms. We found filtered mean and median 10-10% optical pulse widths of 875 and 830 microns respectively while the 50-50% mean and median optical pulse widths are 422 and 365 microns respectively. These values are similar to previous results as are the 10-90% mean and median rise times of 327 and 265 microns. The peak electrical to optical pulse delay mean and median were 209 and 145 microns which is longer than one would expect from theoretical results. The results of the pulse analysis will contribute to further validation of the Optical Transient Detector (OTD) and the Lightning Imaging Sensor (LIS) satellites. Pre-launch estimates of the flash detection efficiency were based on a small sample of optical pulse measurements associated with less than 350 lightning discharges collected by NASA U-2 aircraft in the early 1980s. Preliminary analyses of the ACES measurements show that we have greatly increased the number of optical pulses available for validation of the LIS and other orbital lightning optical sensors. Since the Altus was often close to the cloud tops, many of the optical pulses are from low-energy pulses. From these low-energy pulses, we can determine the fraction of optical lightning pulses below the thresholds of LIS, OTD, and any future satellite-based optical sensors such as the geostationary Lightning Mapping Sensor.
Fast Rise Time and High Voltage Nanosecond Pulses at High Pulse Repetition Frequency
NASA Astrophysics Data System (ADS)
Miller, Kenneth E.; Ziemba, Timothy; Prager, James; Picard, Julian; Hashim, Akel
2015-09-01
Eagle Harbor Technologies (EHT), Inc. is conducting research to decrease the rise time and increase the output voltage of the EHT Nanosecond Pulser product line, which allows for independently, user-adjustable output voltage (0 - 20 kV), pulse width (20 - 500 ns), and pulse repetition frequency (0 - 100 kHz). The goals are to develop higher voltage pulses (50 - 60 kV), decrease the rise time from 20 to below 10 ns, and maintain the high pulse repetition capabilities. These new capabilities have applications to pseudospark generation, corona production, liquid discharges, and nonlinear transmission line driving for microwave production. This work is supported in part by the US Navy SBIR program.
High energy 523 nm ND:YLF pulsed slab laser with novel pump beam waveguide design
NASA Astrophysics Data System (ADS)
Yang, Qi; Zhu, Xiaolei; Ma, Jian; Lu, Tingting; Ma, Xiuhua; Chen, Weibiao
2015-11-01
A laser diode pumped Nd:YLF master oscillator power amplifier (MOPA) green laser system with high pulse energy and high stable output is demonstrated. At a repetition rate of 50 Hz, 840 mJ pulse energy, 9.1 ns pulse width of 1047 nm infrared laser emitting is obtained from the MOPA system. The corresponding peak power is 93 MW. Extra-cavity frequency doubling with a LiB3O5 crystal, pulse energy of 520 mJ at 523 nm wavelength is achieved. The frequency conversion efficiency reaches up to 62%. The output pulse energy instability of the laser system is less than 0.6% for one hour.
High power solid state laser modulator
Birx, Daniel L.; Ball, Don G.; Cook, Edward G.
2004-04-27
A multi-stage magnetic modulator provides a pulse train of .+-.40 kV electrical pulses at a 5-7 kHz repetition rate to a metal vapor laser. A fractional turn transformer steps up the voltage by a factor of 80 to 1 and magnetic pulse compression is used to reduce the pulse width of the pulse train. The transformer is fabricated utilizing a rod and plate stack type of construction to achieve a high packing factor. The pulses are controlled by an SCR stack where a plurality of SCRs are electrically connected in parallel, each SCR electrically connected to a saturable inductor, all saturable inductors being wound on the same core of magnetic material for enhanced power handling characteristics.
Buntenbach, R.W.
1959-06-01
S>An electro-optical apparatus is described which produces electric pulses in programmed sequences at times and durations controlled with great accuracy. An oscilloscope CRT is supplied with signals to produce a luminous spot moving in a circle. An opaque mask with slots of variable width transmits light from the spot to a photoelectric transducer. For shorter pulse decay times a CRT screen which emits UV can be used with a UVtransmitting filter and a UV- sensitive photoelectric cell. Pulses are varied by changing masks or by using masks with variable slots. This device may be used in multiple arrangements to produce other pulse aT rangements, or it can be used to trigger an electronic pulse generator. (T.R.H.)
Cui, Quan; Chen, Zhongyun; Liu, Qian; Zhang, Zhihong; Luo, Qingming; Fu, Ling
2017-09-01
In this study, we demonstrate endogenous fluorescence imaging using visible continuum pulses based on 100-fs Ti:sapphire oscillator and a nonlinear photonic crystal fiber. Broadband (500-700 nm) and high-power (150 mW) continuum pulses are generated through enhanced dispersive wave generation by pumping femtosecond pulses at the anomalous dispersion region near zero-dispersion wavelength of high-nonlinear photonic crystal fibers. We also minimize the continuum pulse width by determining the proper fiber length. The visible-wavelength two-photon microscopy produces NADH and tryptophan images of mice tissues simultaneously. Our 500-700 nm continuum pulses support extending nonlinear microscopy to visible wavelength range that is inaccessible to 100-fs Ti:sapphire oscillators and other applications requiring visible laser pulses.
Ultra-short ion and neutron pulse production
Leung, Ka-Ngo; Barletta, William A.; Kwan, Joe W.
2006-01-10
An ion source has an extraction system configured to produce ultra-short ion pulses, i.e. pulses with pulse width of about 1 .mu.s or less, and a neutron source based on the ion source produces correspondingly ultra-short neutron pulses. To form a neutron source, a neutron generating target is positioned to receive an accelerated extracted ion beam from the ion source. To produce the ultra-short ion or neutron pulses, the apertures in the extraction system of the ion source are suitably sized to prevent ion leakage, the electrodes are suitably spaced, and the extraction voltage is controlled. The ion beam current leaving the source is regulated by applying ultra-short voltage pulses of a suitable voltage on the extraction electrode.
AN/TPN-14 Precision Approach Radar (PAR) Analysis
1964-05-01
to install high -pass filters on the transmitter power lines, or (2) change the PRF to, for example, 1400 cps to give maximum separation of the PRF...consist of a high voltage power supply, pulse forming and transmitting circuitry, and necessary control circuitry. It shall have a pulse type...1200 cycles per second and a pulse width of 0. 2 or 0. 8 microseconds selectable. 3. 5. 5. 1 High voltage power supply. - The high voltage power
Agneessens, Laura Mia; Ottosen, Lars Ditlev Mørck; Voigt, Niels Vinther; Nielsen, Jeppe Lund; de Jonge, Nadieh; Fischer, Christian Holst; Kofoed, Michael Vedel Wegener
2017-06-01
Surplus electricity from fluctuating renewable power sources may be converted to CH 4 via biomethanisation in anaerobic digesters. The reactor performance and response of methanogen population of mixed-culture reactors was assessed during pulsed H 2 injections. Initial H 2 uptake rates increased immediately and linearly during consecutive pulse H 2 injections for all tested injection rates (0.3 to 1.7L H2 /L sludge /d), while novel high throughput mcrA sequencing revealed an increased abundance of specific hydrogenotrophic methanogens. These findings illustrate the adaptability of the methanogen population to H 2 injections and positively affects the implementation of biomethanisation. Acetate accumulated by a 10-fold following injections exceeding a 4:1 H 2 :CO 2 ratio and may act as temporary storage prior to biomethanisation. Daily methane production decreased for headspace CO 2 concentrations below 12% and may indicate a high sensitivity of hydrogenotrophic methanogens to CO 2 limitation. This may ultimately decide the biogas upgrading potential which can be achieved by biomethanisation. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Chen, Junbao; Xia, Wei; Wang, Ming
2017-06-01
Photodiodes that exhibit a two-photon absorption effect within the spectral communication band region can be useful for building an ultra-compact autocorrelator for the characteristic inspection of optical pulses. In this work, we develop an autocorrelator for measuring the temporal profile of pulses at 1550 nm from an erbium-doped fiber laser based on the two-photon photovoltaic (TPP) effect in a GaAs PIN photodiode. The temporal envelope of the autocorrelation function contains two symmetrical temporal side lobes due to the third order dispersion of the laser pulses. Moreover, the joint time-frequency distribution of the dispersive pulses and the dissimilar two-photon response spectrum of GaAs and Si result in different delays for the appearance of the temporal side lobes. Compared with Si, GaAs displays a greater sensitivity for pulse shape reconstruction at 1550 nm, benefiting from the higher signal-to-noise ratio of the side lobes and the more centralized waveform of the autocorrelation trace. We also measure the pulse width using the GaAs PIN photodiode, and the resolution of the measured full width at half maximum of the TPP autocorrelation trace is 0.89 fs, which is consistent with a conventional second-harmonic generation crystal autocorrelator. The GaAs PIN photodiode is shown to be highly suitable for real-time second-order autocorrelation measurements of femtosecond optical pulses. It is used both for the generation and detection of the autocorrelation signal, allowing the construction of a compact and inexpensive intensity autocorrelator.
Rogers, III, C. E.; Gould, P. L.
2016-02-01
Here, we describe a system for generating frequency-chirped and amplitude-shaped pulses on time scales from sub-nanosecond to ten nanoseconds. The system starts with cw diode-laser light at 780 nm and utilizes fiber-based electro-optical phase and intensity modulators, driven by an arbitrary waveform generator, to generate the shaped pulses. These pulses are subsequently amplified to several hundred mW with a tapered amplifier in a delayed double-pass configuration. Frequency chirps up to 5 GHz in 2 ns and pulse widths as short as 0.15 ns have been realized.
NASA Astrophysics Data System (ADS)
Skeldon, Mark D.; Okishev, Andrey V.; Letzring, Samuel A.; Donaldson, William R.; Green, Kenton; Seka, Wolf D.; Fuller, Lynn F.
1995-01-01
An electrical pulse-generation system using two optically activated Si photoconductive switches can generate shaped electrical pulses with multigigahertz bandwidth. The Si switches are activated by an optical pulse whose leading edge is steepened by stimulated Brillouin scattering (SBS) in CCl4. With the bandwidth generated by the SBS process, a laser having a 1- to 3-ns pulse width is used to generate electrical pulses with approximately 80-ps rise times (approximately 4-GHz bandwidth). Variable impedance microstrip lines are used to generate complex electrical waveforms that can be transferred to a matched load with minimal loss of bandwidth.
Zhang, Ailing; Li, Changxiu
2012-10-08
In this paper, a novel structure of dynamic optical arbitrary waveform generation (O-AWG) with amplitude controlled by interference of two fiber Bragg grating (FBG) arrays is proposed. The FBG array consists of several FBGs and fiber stretchers (FSs). The amplitude is controlled by FSs through interference of two FBG arrays. The phase is controlled by FSs simultaneously. As a result, optical pulse trains with various waveforms as well as pulse trains with nonuniform pulse intensity, pulse spacing and pulse width in each period are obtained via FSs adjustment to change the phase shift of signal in each array.
Rogers, C E; Gould, P L
2016-02-08
We describe a system for generating frequency-chirped and amplitude-shaped pulses on time scales from sub-nanosecond to ten nanoseconds. The system starts with cw diode-laser light at 780 nm and utilizes fiber-based electro-optical phase and intensity modulators, driven by an arbitrary waveform generator, to generate the shaped pulses. These pulses are subsequently amplified to several hundred mW with a tapered amplifier in a delayed double-pass configuration. Frequency chirps up to 5 GHz in 2 ns and pulse widths as short as 0.15 ns have been realized.
System for testing optical fibers
Golob, John E. [Olathe, KS; Looney, Larry D. [Los Alamos, NM; Lyons, Peter B. [Los Alamos, NM; Nelson, Melvin A. [Santa Barbara, CA; Davies, Terence J. [Santa Barbara, CA
1980-07-15
A system for measuring a combination of optical transmission properties of fiber optic waveguides. A polarized light pulse probe is injected into one end of the optical fiber. Reflections from discontinuities within the fiber are unpolarized whereas reflections of the probe pulse incident to its injection remain polarized. The polarized reflections are prevented from reaching a light detector whereas reflections from the discontinuities reaches the detector.
Flux amplification and sustainment of ST plasmas by multi-pulsed coaxial helicity injection on HIST
NASA Astrophysics Data System (ADS)
Higashi, T.; Ishihara, M.; Kikuchi, Y.; Fukumoto, N.; Nagata, M.
2010-11-01
The Helicity Injected Spherical Torus (HIST) device has been developed towards high-current start up and sustainment by Multi-pulsed Coaxial Helicity Injection (M-CHI) method. Multiple pulses operation of the coaxial plasma gun can build the magnetic field of STs and spheromak plasmas in a stepwise manner. So far, successive gun pulses on SSPX at LLNL were demonstrated to maintain the magnetic field of spheromak in a quasi-steady state against resistive decay [1]. The resistive 3D-MHD numerical simulation [2] for STs reproduced the current amplification by the M-CHI method and confirmed that stochastic magnetic field was reduced during the decay phase. By double pulsed operation on HIST, the plasma current was effectively amplified against the resistive decay. The life time increases up to 10 ms which is longer than that in the single CHI case (4 ms). The edge poloidal fields last between 0.5 ms and 6 ms like a repetitive manner. During the second driven phase, the toroidal ion flow is driven in the same direction as the plasma current as well as in the initial driven phase. At the meeting, we will discuss a current amplification mechanism based on the merging process with the plasmoid injected secondly from the gun. [1] B. Hudson et al., Phys. Plasmas Vol.15, 056112 (2008). [2] Y. Kagei et al., J. Plasma Fusion Res. Vol.79, 217 (2003).
Interferometer design and controls for pulse stacking in high power fiber lasers
NASA Astrophysics Data System (ADS)
Wilcox, Russell; Yang, Yawei; Dahlen, Dar; Xu, Yilun; Huang, Gang; Qiang, Du; Doolittle, Lawrence; Byrd, John; Leemans, Wim; Ruppe, John; Zhou, Tong; Sheikhsofla, Morteza; Nees, John; Galvanauskas, Almantas; Dawson, Jay; Chen, Diana; Pax, Paul
2017-03-01
In order to develop a design for a laser-plasma accelerator (LPA) driver, we demonstrate key technologies that enable fiber lasers to produce high energy, ultrafast pulses. These technologies must be scalable, and operate in the presence of thermal drift, acoustic noise, and other perturbations typical of an operating system. We show that coherent pulse stacking (CPS), which requires optical interferometers, can be made robust by image-relaying, multipass optical cavities, and by optical phase control schemes that sense pulse train amplitudes from each cavity. A four-stage pulse stacking system using image-relaying cavities is controlled for 14 hours using a pulse-pattern sensing algorithm. For coherent addition of simultaneous ultrafast pulses, we introduce a new scheme using diffractive optics, and show experimentally that four pulses can be added while a preserving pulse width of 128 fs.
Song, Zhiyang; Meyerson, Björn A; Linderoth, Bengt
2015-12-01
Conflicting data regarding the efficacy of high-frequency spinal cord stimulation (HF SCS) has prompted the issue of the possible importance of the shape of the stimulating pulses. The aim of this pilot study was to compare HF SCS applied with monophasic and biphasic pulses of two different durations with conventional SCS in a rat model of neuropathic pain. Rats were operated with lesions of sciatic nerve branches according to the spared nerve injury procedure (SNI). Animals, which developed pathological tactile hypersensitivity after surgery, were implanted with four-polar miniature SCS leads. SCS was applied during 60 min with either conventional current parameters (monophasic pulse width [PW]: 200 μsec; 50 Hz and amplitude 80% of the motor threshold [MT]), or with high-frequency SCS (1 kHz) with monophasic or biphasic pulses, the latter with pulse widths of either 24 (12 + 12) or 48 (24 + 24) μsec. The outcomes were examined regarding change of tactile hypersensitivity during the one-hour SCS period and with two tests of thermal sensitivity. Conventional monophasic SCS, as well as HF SCS applied with monophasic PW = 24 μsec or with biphasic PW = 48 (24 + 24) μsec, had similar suppressive effects on tactile hypersensitivity. Solely, HF SCS applied with biphasic pulses with a total PW of 24 (12 + 12) μsec demonstrated no effect. Thermal hypersensitivity was unaffected by HF SCS with all pulse varieties. There is no significant difference in efficacy between HF SCS applied with low amplitude ("subparesthetic") monophasic and biphasic pulses. However, short PWs providing only 12 μsec of cathodal stimulation was ineffective, presumably because of insufficient electric charge transfer from the lead contacts to the nervous tissue. © 2015 International Neuromodulation Society.
Lin, Gong-Ru; Lee, Chao-Kuei; Kang, Jung-Jui
2008-06-09
We study the rational harmonic mode-locking (RHML) order dependent pulse shortening force and dynamic chirp characteristics of a gain-saturated semiconductor optical amplifier fiber laser (SOAFL) under dark-optical-comb injection, and discuss the competition between mode-locking mechanisms in the SOAFL at high-gain and strong optical injection condition at higher RHML orders. The evolutions of spectra, mode-locking and continuous lasing powers by measuring the ratio of DC/pulse amplitude and the pulse shortening force (I(pulse)/P(avg)(2) ) are performed to determine the RHML capability of SOAFL. As the rational harmonic order increases up to 20, the spectral linewidth shrinks from 12 to 3 nm, the ratio of DC/pulse amplitude enlarges from 0.025 to 2.4, and the pulse-shortening force reduces from 0.9 to 0.05. At fundamental and highest RHML condition, we characterize the frequency detuning range to realize the mode-locking quality, and measure the dynamic frequency chirp of the RHML-SOAFL to distinguish the linear and nonlinear chirp after dispersion compensation. With increasing RHML order, the pulsewidth is broadened from 4.2 to 26.4 ps with corresponding chirp reducing from 0.7 to 0.2 GHz and linear/nonlinear chirp ratio changes from 4.3 to 1.3, which interprets the high-order chirp becomes dominates at higher RHML orders.
Passively Q-switched Nd3+ solid-state lasers with antimonene as saturable absorber.
Wang, Mengixa; Zhang, Fang; Wang, Zhengping; Wu, Zhixin; Xu, Xinguang
2018-02-19
Based on the saturable absorption feature of a two-dimensional (2D) nano-material, antimonene, the passively Q-switched operation for solid-state laser was realized for the first time. For the 946 and 1064 nm laser emissions of the Nd:YAG crystal, the Q-switched pulse widths were 209 and 129 ns, and the peak powers were 1.48, 1.77 W, respectively. For the 1342 nm laser emission of the Nd:YVO 4 crystal, the Q-switched pulse width was 48 ns, giving a peak power of 28.17 W. Our research shows that antimonene can be used as a stable, broadband optical modulating device for a solid-state laser, which will be particularly effective for long wavelength operation.
Computational model of retinal photocoagulation and rupture
NASA Astrophysics Data System (ADS)
Sramek, Christopher; Paulus, Yannis M.; Nomoto, Hiroyuki; Huie, Phil; Palanker, Daniel
2009-02-01
In patterned scanning laser photocoagulation, shorter duration (< 20 ms) pulses help reduce thermal damage beyond the photoreceptor layer, decrease treatment time and minimize pain. However, safe therapeutic window (defined as the ratio of rupture threshold power to that of light coagulation) decreases for shorter exposures. To quantify the extent of thermal damage in the retina, and maximize the therapeutic window, we developed a computational model of retinal photocoagulation and rupture. Model parameters were adjusted to match measured thresholds of vaporization, coagulation, and retinal pigment epithelial (RPE) damage. Computed lesion width agreed with histological measurements in a wide range of pulse durations and power. Application of ring-shaped beam profile was predicted to double the therapeutic window width for exposures in the range of 1 - 10 ms.
Jitter model and signal processing techniques for pulse width modulation optical recording
NASA Technical Reports Server (NTRS)
Liu, Max M.-K.
1991-01-01
A jitter model and signal processing techniques are discussed for data recovery in Pulse Width Modulation (PWM) optical recording. In PWM, information is stored through modulating sizes of sequential marks alternating in magnetic polarization or in material structure. Jitter, defined as the deviation from the original mark size in the time domain, will result in error detection if it is excessively large. A new approach is taken in data recovery by first using a high speed counter clock to convert time marks to amplitude marks, and signal processing techniques are used to minimize jitter according to the jitter model. The signal processing techniques include motor speed and intersymbol interference equalization, differential and additive detection, and differential and additive modulation.
Mansuori, M; Zareei, G H; Hashemi, H
2015-10-01
We present a numerical method for generation of optical pulse width modulation (PWM) based on tunable reflective interface by using a microfluidic droplet. We demonstrate a single layer, planar, optofluidic PWM switch that is driven by excited alternating microbubbles. The main parameters of generation of this PWM such as frequency and speed of switching can be controlled by the mass flow rates of input fluids, and the shape of plug or droplet. Advantages of this design are the reconfigurability in design and the easy control of the switching parameters. The validation of the proposed design is carried out by employing the finite element method (FEM) for the mechanical simulation and the finite-difference time-domain (FDTD) for the optical simulation.
Development and performance of pulse-width-modulated static inverter and converter modules
NASA Technical Reports Server (NTRS)
Pittman, P. F.; Gourash, F.; Birchenough, A. G.; Pittman, P. F.; Ravas, R. J.; Hall, W. G.
1971-01-01
Pulse-width-modulated inverter and converter modules are being developed for modular aerospace electrical power systems. The modules, rate 2.5 kilowatts per module and 10-minute - 150-percent overload, operate from 56 volts dc. The converter module provides two output voltages: a nominal link voltage of 200 volts dc when used with the inverter, and 150 volts dc to a load bus when used separately. The inverter module output is 400-hertz, sinusoidal, three-phase, 120/208 volts. Tests of breadboard models with standard parts and integrated circuits show rated power efficiencies of 71.4 and 85.1 percent and voltage regulation of 5 and 3.1 percent for inverter and converter modules, respectively. Sine-wave output distortion is 0.74 percent.
Ramasubbu, Rajamannar; Anderson, Susan; Haffenden, Angela; Chavda, Swati; Kiss, Zelma H T
2013-09-01
Deep brain stimulation (DBS) of the subcallosal cingulate (SCC) is reported to be a safe and effective new treatment for treatment-resistant depression (TRD). However, the optimal electrical stimulation parameters are unknown and generally selected by trial and error. This pilot study investigated the relationship between stimulus parameters and clinical effects in SCC-DBS treatment for TRD. Four patients with TRD underwent SCC-DBS surgery. In a double-blind stimulus optimization phase, frequency and pulse widths were randomly altered weekly, and corresponding changes in mood and depression were evaluated using a visual analogue scale (VAS) and the 17-item Hamilton Rating Scale for Depression (HAM-D-17). In the open-label postoptimization phase, depressive symptoms were evaluated biweekly for 6 months to determine long-term clinical outcomes. Longer pulse widths (270-450 μs) were associated with reductions in HAM-D-17 scores in 3 patients and maximal happy mood VAS responses in all 4 patients. Only 1 patient showed acute clinical or mood effects from changing the stimulation frequency. After 6 months of open-label therapy, 2 patients responded and 1 patient partially responded. Limitations include small sample size, weekly changes in stimulus parameters, and fixed-order and carry-forward effects. Longer pulse width stimulation may have a role in stimulus optimization for SCC-DBS in TRD. Longer pulse durations produce larger apparent current spread, suggesting that we do not yet know the optimal target or stimulus parameters for this therapy. Investigations using different stimulus parameters are required before embarking on large-scale randomized sham-controlled trials.
2.4-3.2 GHz robust self-injecting injection-locked phase-locked loop
NASA Astrophysics Data System (ADS)
Yang, Jincheng; Zhang, Zhao; Qi, Nan; Liu, Liyuan; Liu, Jian; Wu, Nanjian
2018-04-01
In this paper, we propose a robust self-injecting injection-locked phase-locked loop (SI-ILPLL). It adopts a phase alignment loop (PAL) based on a subsampling phase frequency detector to align the phase between the injected pulse and the voltage-controlled oscillator (VCO) output. With the proposed phase frequency detector, the PAL performs phase alignment and the pulse generator can self-inject pulses into the VCO for injection locking. The subsampling phase detection and self-injection locking techniques can suppress the phase noise of the SI-ILPLL. The SI-ILPLL shows excellent robustness to environmental interference. The SI-ILPLL is implemented in 65 nm CMOS technology. It occupies an active area of 0.7 mm2. The measured root-mean-square (RMS) jitters at 3.2 GHz output without and with injection locking are 216 and 131 fs, respectively. When the supply voltage varies from 1.17 to 1.23 V and the temperature varies from 0 to 80 °C, the maximum jitter variation of all the output frequencies is less than 50 fs. The measured results demonstrate that even when a large interference appears at the supply voltage and unlocks the SI-ILPLL, the SI-ILPLL can self-recover its injection-locked state rapidly after the disturbance disappears, whereas the conventional ILPLL cannot self-recover its locked state after losing it. The power consumption of the SI-ILPLL is 7.4 mW under a 1.2 V supply voltage. The SI-ILPLL achieves a figure of merit (FOM) of -249 dB.