Sample records for injector driven passive

  1. Scale Model Test and Transient Analysis of Steam Injector Driven Passive Core Injection System for Innovative-Simplified Nuclear Power Plant

    NASA Astrophysics Data System (ADS)

    Ohmori, Shuichi; Narabayashi, Tadashi; Mori, Michitsugu

    A steam injector (SI) is a simple, compact and passive pump and also acts as a high-performance direct-contact compact heater. This provides SI with capability to serve also as a direct-contact feed-water heater that heats up feed-water by using extracted steam from turbine. Our technology development aims to significantly simplify equipment and reduce physical quantities by applying "high-efficiency SI", which are applicable to a wide range of operation regimes beyond the performance and applicable range of existing SIs and enables unprecedented multistage and parallel operation, to the low-pressure feed-water heaters and emergency core cooling system of nuclear power plants, as well as achieve high inherent safety to prevent severe accidents by keeping the core covered with water (a severe accident-free concept). This paper describes the results of the scale model test, and the transient analysis of SI-driven passive core injection system (PCIS).

  2. Effects of Passive Fuel-Air Mixing Control on Burner Emissions Via Lobed Fuel Injectors

    NASA Technical Reports Server (NTRS)

    Mitchell, M. G.; Smith, O. I.; Karagozian, A. R.

    1999-01-01

    The present experimental study examines the effects of differing levels of passive fuel-air premixing on flame structures and their associated NO(x) and CO emissions. Four alternative fuel injector geometries were explored, three of which have lobed shapes. These lobed injectors mix fuel and air and strain species inter-faces to differing extents due to streamwise vorticity generation, thus creating different local or core equivalence ratios within flow regions upstream of flame ignition and stabilization. Prior experimental studies of two of these lobed injector flowfields focused on non-reactive mixing characteristics and emissions measurements for the case where air speeds were matched above and below the fuel injector, effectively generating stronger streamwise vorticity than spanwise vorticity. The present studies examine the effects of airstream mismatch (and hence additional spanwise vorticity generation), effects of confinement of the crossflow to reduce the local equivalence ratio, and the effects of altering the geometry and position of the flameholders. NO(x) and CO emissions as well as planar laser-induced fluorescence imaging (PLIF) of seeded acetone are used to characterize injector performance and reactive flow evolution.

  3. Two-step passivation for enhanced InGaN/GaN light emitting diodes with step graded electron injectors

    NASA Astrophysics Data System (ADS)

    Sheremet, V.; Genç, M.; Gheshlaghi, N.; Elçi, M.; Sheremet, N.; Aydınlı, A.; Altuntaş, I.; Ding, K.; Avrutin, V.; Özgür, Ü.; Morkoç, H.

    2018-01-01

    Enhancement of InGaN/GaN based light emitting diode performance with step graded electron injectors through a two-step passivation is reported. Perimeter passivation of LED dies with SiO2 immediately following ICP mesa etch in addition to conventional Si3N4 dielectric surface passivation leads to decrease in the reverse bias leakage current by a factor of two as well as a decrease in the shunt current under forward bias by an order of magnitude. Mitigation of the leakage currents owing to the two-step passivation leads to significant increase in the radiant intensity of LEDs by more than a factor of two compared to the conventional single step surface passivation. Further, micro-dome patterned surface of Si3N4 passivation layer allow enhanced light extraction from LEDs.

  4. A universal piezo-driven ultrasonic cell microinjection system.

    PubMed

    Huang, Haibo; Mills, James K; Lu, Cong; Sun, Dong

    2011-08-01

    Over the past decade, the rapid development of biotechnologies such as gene injection, in-vitro fertilization, intracytoplasmic sperm injection (ICSI) and drug development have led to great demand for highly automated, high precision equipment for microinjection. Recently a new cell injection technology using piezo-driven pipettes with a very small mercury column was proposed and successfully applied in ICSI to a variety of mammal species. Although this technique significantly improves the survival rates of the ICSI process, shortcomings due to the toxicity of mercury and damage to the cell membrane due to large lateral tip oscillations of the injector pipette may limit its application. In this paper, a new cell injection system for automatic batch injection of suspended cells is developed. A new design of the piezo-driven cell injector is proposed for automated suspended cell injection. This new piezo-driven cell injector design relocates the piezo oscillation actuator to the injector pipette which eliminates the vibration effect on other parts of the micromanipulator. A small piezo stack is sufficient to perform the cell injection process. Harmful lateral tip oscillations of the injector pipette are reduced substantially without the use of a mercury column. Furthermore, ultrasonic vibration micro-dissection (UVM) theory is utilized to analyze the piezo-driven cell injection process, and the source of the lateral oscillations of the injector pipette is investigated. From preliminary experiments of cell injection of a large number of zebrafish embryos (n = 200), the injector pipette can easily pierce through the cell membrane at a low injection speed and almost no deformation of the cell wall, and with a high success rate(96%) and survival rate(80.7%) This new injection approach shows good potential for precision injection with less damage to the injected cells.

  5. The Physics of Local Helicity Injection Non-Solenoidal Tokamak Startup

    NASA Astrophysics Data System (ADS)

    Redd, A. J.; Barr, J. L.; Bongard, M. W.; Fonck, R. J.; Hinson, E. T.; Jardin, S.

    2013-10-01

    Non-solenoidal startup via Local Helicity Injection (LHI) uses compact current injectors to produce toroidal plasma current Ip up to 170 kA in the PEGASUS Toroidal Experiment, driven by 4-8 kA injector current on timescales of 5-20 milliseconds. Increasing the Ip buildup duration enables experimental demonstration of plasma position control on timescales relevant for high-current startup. LHI-driven discharges exhibit bursty MHD activity, apparently line-tied kinking of LHI-driven field lines, with the bursts correlating with rapid equilibrium changes, sharp Ip rises, and sharp drops in the injector impedance. Preliminary NIMROD results suggest that helical LHI-driven current channels remain coherent, with Ip increases due to reconnection between adjacent helical turns forming axisymmetric plasmoids, and corresponding sharp drops in the bias circuit impedance. The DC injector impedance is consistent with a space charge limit at low bias current and a magnetic limit at high bias current. Internal measurements show the current density profile starts strongly hollow and rapidly fills in during Ip buildup. Simulations of LHI discharges using the Tokamak Simulation Code (TSC) will provide insight into the detailed current drive mechanism and guide experiments on PEFASUS and NSTX-U. Work supported by US DOE Grants DE-FG02-96ER54375 and DE-SC0006928.

  6. Laser ignition of an experimental combustion chamber with a multi-injector configuration at low pressure conditions

    NASA Astrophysics Data System (ADS)

    Börner, Michael; Manfletti, Chiara; Kroupa, Gerhard; Oschwald, Michael

    2017-09-01

    In search of reliable and light-weight ignition systems for re-ignitable upper stage engines, a laser ignition system was adapted and tested on an experimental combustion chamber for propellant injection into low combustion chamber pressures at 50-80 mbar. The injector head pattern consisted of five coaxial injector elements. Both, laser-ablation-driven ignition and laser-plasma-driven ignition were tested for the propellant combination liquid oxygen and gaseous hydrogen. The 122 test runs demonstrated the reliability of the ignition system for different ignition configurations and negligible degradation due to testing. For the laser-plasma-driven scheme, minimum laser pulse energies needed for 100% ignition probability were found to decrease when increasing the distance of the ignition location from the injector faceplate with a minimum of 2.6 mJ. For laser-ablation-driven ignition, the minimum pulse energy was found to be independent of the ablation material tested and was about 1.7 mJ. The ignition process was characterized using both high-speed Schlieren and OH* emission diagnostics. Based on these findings and on the increased fiber-based pulse transport capabilities recently published, new ignition system configurations for space propulsion systems relying on fiber-based pulse delivery are formulated. If the laser ignition system delivers enough pulse energy, the laser-plasma-driven configuration represents the more versatile configuration. If the laser ignition pulse power is limited, the application of laser-ablation-driven ignition is an option to realize ignition, but implies restrictions concerning the location of ignition.

  7. Relativistic klystron driven compact high gradient accelerator as an injector to an X-ray synchrotron radiation ring

    DOEpatents

    Yu, David U. L.

    1990-01-01

    A compact high gradient accelerator driven by a relativistic klystron is utilized to inject high energy electrons into an X-ray synchrotron radiation ring. The high gradients provided by the relativistic klystron enables accelerator structure to be much shorter (typically 3 meters) than conventional injectors. This in turn enables manufacturers which utilize high energy, high intensity X-rays to produce various devices, such as computer chips, to do so on a cost effective basis.

  8. Laser-driven injector of electrons for IOTA

    NASA Astrophysics Data System (ADS)

    Romanov, Aleksandr

    2017-03-01

    Fermilab is developing the Integrable Optics Test Accelerator (IOTA) ring for experiments on nonlinear integrable optics. The machine will operate with either electron beams of 150 MeV or proton beams of 2.5 MeV energies, respectively. The stability of integrable optics depends critically on the precision of the magnetic lattice, which demands the use of beam-based lattice measurements for optics correction. In the proton mode, the low-energy proton beam does not represent a good probe for this application; hence we consider the use of a low-intensity reverse-injected electron beam of matched momentum (70 MeV). Such an injector could be implemented with the use of laser-driven acceleration techniques. This report presents the consideration for a laser-plasma injector for IOTA and discusses the requirements determined by the ring design.

  9. Injector-concentrator electrodes for microchannel electrophoresis

    DOEpatents

    Swierkowski, Stefan P.

    2003-05-06

    An input port geometry, with injector-concentrator electrodes, for planar microchannel array for electrophoresis. This input port geometry enables efficient extraction and injection of the DNA sample from a single input port. The geometry, which utilizes injector-concentrator electrodes, allows simultaneous concentration, in different channels, of the sample into a longitudinally narrow strip just before releasing it for a run with enhanced injection spatial resolution, and time resolution. Optional multiple electrodes, at a different bias than the concentrator electrodes, may be used to discriminate against sample impurity ions. Electrode passivation can be utilized to prevent electrolysis. An additional electrode in or on the input hole can better define the initial loading. The injector-concentrator electrodes are positioned so that they cross the drift channel in a narrow strip at the bond plane between the top and bottom plates of the instrument and are located close to the inlet hole. The optional sample purification electrodes are located at a greater distance from the input hole than the injector-concentrate electrodes.

  10. Casting Apparatus Including A Gas Driven Molten Metal Injector And Method

    DOEpatents

    Meyer, Thomas N.

    2004-06-01

    The casting apparatus (50) includes a holding vessel (10) for containing a supply of molten metal (12) and a casting mold (52) located above the holding vessel (10) and having a casting cavity (54). A molten metal injector (14) extends into the holding vessel (10) and is at least partially immersed in the molten metal (12) in the holding vessel (10). The molten metal injector (14) is in fluid communication with the casting cavity (54). The molten metal injector (14) has an injector body (16) defining an inlet opening (24) for receiving molten metal into the injector body (16). A gas pressurization source (38) is in fluid communication with the injector body (16) for cyclically pressurizing the injector body (16) and inducing molten metal to flow from the injector body (16) to the casting cavity (54). An inlet valve (42) is located in the inlet opening (24) in the injector body (16) for filling molten metal into the injector body (16). The inlet valve (42) is configured to prevent outflow of molten metal from the injector body (16) during pressurization and permit inflow of molten metal into the injector body (16) after pressurization. The inlet valve (42) has an inlet valve actuator (44) located above the surface of the supply of molten metal (12) and is operatively connected to the inlet valve (42) for operating the inlet valve (42) between open and closed positions.

  11. An Approach to Improved Credibility of CFD Simulations for Rocket Injector Design

    NASA Technical Reports Server (NTRS)

    Tucker, Paul K.; Menon, Suresh; Merkle, Charles L.; Oefelein, Joseph C.; Yang, Vigor

    2007-01-01

    Computational fluid dynamics (CFD) has the potential to improve the historical rocket injector design process by simulating the sensitivity of performance and injector-driven thermal environments to. the details of the injector geometry and key operational parameters. Methodical verification and validation efforts on a range of coaxial injector elements have shown the current production CFD capability must be improved in order to quantitatively impact the injector design process.. This paper documents the status of an effort to understand and compare the predictive capabilities and resource requirements of a range of CFD methodologies on a set of model problem injectors. Preliminary results from a steady Reynolds-Average Navier-Stokes (RANS), an unsteady Reynolds-Average Navier Stokes (URANS) and three different Large Eddy Simulation (LES) techniques used to model a single element coaxial injector using gaseous oxygen and gaseous hydrogen propellants are presented. Initial observations are made comparing instantaneous results, corresponding time-averaged and steady-state solutions in the near -injector flow field. Significant differences in the flow fields exist, as expected, and are discussed. An important preliminary result is the identification of a fundamental mixing mechanism, accounted for by URANS and LES, but missing in the steady BANS methodology. Since propellant mixing is the core injector function, this mixing process may prove to have a profound effect on the ability to more correctly simulate injector performance and resulting thermal environments. Issues important to unifying the basis for future comparison such as solution initialization, required run time and grid resolution are addressed.

  12. Injector Beam Dynamics for a High-Repetition Rate 4th-Generation Light Source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Papadopoulos, C. F.; Corlett, J.; Emma, P.

    2013-05-20

    We report on the beam dynamics studies and optimization methods for a high repetition rate (1 MHz) photoinjector based on a VHF normal conducting electron source. The simultaneous goals of beamcompression and reservation of 6-dimensional beam brightness have to be achieved in the injector, in order to accommodate a linac driven FEL light source. For this, a parallel, multiobjective optimization algorithm is used. We discuss the relative merits of different injector design points, as well as the constraints imposed on the beam dynamics by technical considerations such as the high repetition rate.

  13. Experiments Using Local Helicity Injectors in the Lower Divertor Region as the Majority Current Drive in a Tokamak Plasma

    NASA Astrophysics Data System (ADS)

    Perry, Justin M.

    Local helicity injection (LHI) is a non-solenoidal current drive capable of achieving high-Ip tokamak startup with a relatively compact and non-invasive array of current injectors in the plasma scrape-off layer. The choice of injector location within the edge region is flexible, but has a profound influence on the nature of the current drive in LHI discharges. Past experiments on the Pegasus ST with injection on the low-field-side near the outboard midplane produced plasmas dominated by inductive drive resulting primarily from plasma geometry evolution over the discharge. Recent experiments with injection on the high-field- side in the lower divertor region produce plasmas dominated by helicity injection current drive, with relatively static plasma geometry, and thus negligible inductive drive. Plasma current up to 200 kA is driven with helicity injection as the dominant current drive using a pair of 4 cm2 area injectors sourcing 8 kA of total injected current. Steady sustainment with LHI current drive alone is demonstrated, with 100 kA sustained for 18 ms. Maximum achievable plasma current is found to scale approximately linearly with a plasma-geometry- normalized form of the effective loop voltage from LHI, Vnorm = AinjVinj/Rinj, where A inj is the total injector area, Vinj is the injector bias voltage, and Rinj is the major radius of the injectors. A newly-discovered MHD regime for LHI-driven plasmas is described, in which the large-amplitude n = 1 fluctuations at 20-50 kHz which are generally dominant during LHI are abruptly reduced by an order of magnitude on the outboard side. High frequency fluctuations ( f > 400 kHz) increase inside the plasma edge at the same time. This regime results in improved plasma current and pervasive changes to plasma behavior, and may suggest short wavelength turbulence as a current drive mechanism during LHI.

  14. Physics design of a 10 MeV injector test stand for an accelerator-driven subcritical system

    NASA Astrophysics Data System (ADS)

    Yan, Fang; Pei, Shilun; Geng, Huiping; Meng, Cai; Zhao, Yaliang; Sun, Biao; Cheng, Peng; Yang, Zheng; Ouyang, Huafu; Li, Zhihui; Tang, Jingyu; Wang, Jianli; Sui, Yefeng; Dai, Jianping; Sha, Peng; Ge, Rui

    2015-05-01

    The 10 MeV accelerator-driven subcritical system (ADS) Injector I test stand at Institute of High Energy Physics (IHEP) is a testing facility dedicated to demonstrate one of the two injector design schemes [Injector Scheme-I, which works at 325 MHz], for the ADS project in China. The injector is composed of two parts, the linac part and the beam dump line. The former is designed on the basis of 325 MHz four-vane type copper structure radio frequency quadrupole and superconducting (SC) spoke cavities with β =0.12 . The latter is designed to transport the beam coming out of the SC section of the linac to the beam dump, where the beam transverse profile is fairly enlarged and unformed to simplify the beam target design. The SC section consists of two cryomodules with 14 β =0.12 Spoke cavities, 14 solenoid and 14 BPMs in total. The first challenge in the physics design comes from the necessary space required for the cryomodule separation where the periodical lattice is destroyed at a relatively lower energy of ˜5 MeV . Another challenge is the beam dump line design, as it will be the first beam dump line being built by using a step field magnet for the transverse beam expansion and uniformity in the world. This paper gives an overview of the physics design study together with the design principles and machine construction considerations. The results of an optimized design, fabrication status and end to end simulations including machine errors are presented.

  15. Fundamental rocket injector/spray programs at the Phillips Laboratory

    NASA Astrophysics Data System (ADS)

    Talley, D. G.

    1993-11-01

    The performance and stability of liquid rocket engines is determined to a large degree by atomization, mixing, and combustion processes. Control over these processes is exerted through the design of the injector. Injectors in liquid rocket engines are called upon to perform many functions. They must first of all mix the propellants to provide suitable performance in the shortest possible length. For main injectors, this is driven by the tradeoff between the combustion chamber performance, stability, efficiency, and its weight and cost. In gas generators and preburners, however, it is also driven by the possibility of damage to downstream components, for example piping and turbine blades. This can occur if unburned fuel and oxidant later react to create hot spots. Weight and cost considerations require that the injector design be simple and lightweight. For reusable engines, the injectors must also be durable and easily maintained. Suitable atomization and mixing must be produced with as small a pressure drop as possible, so that the size and weight of pressure vessels and turbomachinery can be minimized. However, the pressure drop must not be so small as to promote feed system coupled instabilities. Another important function of the injectors is to ensure that the injector face plate and the chamber and nozzle walls are not damaged. Typically this requires reducing the heat transfer to an acceptable level and also keeping unburned oxygen from chemically attacking the walls, particularly in reusable engines. Therefore the mixing distribution is often tailored to be fuel-rich near the walls. Wall heat transfer can become catastrophically damaging in the presence of acoustic instabilities, so the injector must prevent these from occurring at all costs. In addition to acoustic stability (but coupled with it), injectors must also be kinetically stable. That is, the flame itself must maintain ignition in the combustion chamber. This is not typically a problem with main injectors, but can be a consideration in preburners, where the desire to keep turbine inlet temperatures as cool as possible can make it advantageous for the preburners to operate as far from stoichiometry as can be tolerated.

  16. Method and apparatus for duct sealing using a clog-resistant insertable injector

    DOEpatents

    Wang, Duo; Modera, Mark P.

    2007-01-02

    A clog-resistant injector spray nozzle allows relatively unobtrusive insertion through a small access aperture into existing ductwork in occupied buildings for atomized particulate sealing of a ductwork. The spray nozzle comprises an easily cleaned and easily replaced straight liquid tube whose liquid contents are principally propelled by a heated propellant gas, such as heated air. Heat transfer is minimized from the heated propellant gas to the liquid tube until they both exit the injector, thereby greatly reducing the likelihood of nozzle clogging. A method of duct sealing using particles driven by heated propellant gas is described, whereby duct-sealing operations become both faster, and commercially practicable in inhabited commercial and residential buildings.

  17. Magnetic reconnection process in transient coaxial helicity injection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ebrahimi, F.; Hooper, E. B.; Sovinec, C. R.

    The physics of magnetic reconnection and fast flux closure in transient coaxial helicity injection experiments in NSTX is examined using resistive MHD simulations. These simulations have been performed using the NIMROD code with fixed boundary flux (including NSTX poloidal coil currents) in the NSTX experimental geometry. Simulations show that an X point is formed in the injector region, followed by formation of closed flux surfaces within 0.5 ms after the driven injector voltage and injector current begin to rapidly decrease. As the injector voltage is turned off, the field lines tend to untwist in the toroidal direction and magnetic fieldmore » compression exerts a radial J × B force and generates a bi-directional radial E{sub toroidal}×B{sub poloidal} pinch flow to bring oppositely directed field lines closer together to reconnect. At sufficiently low magnetic diffusivity (high Lundquist number), and with a sufficiently narrow injector flux footprint width, the oppositely directed field lines have sufficient time to reconnect (before dissipating), leading to the formation of closed flux surfaces. The reconnection process is shown to have transient Sweet-Parker characteristics.« less

  18. All optical electron injector using an intense ultrashort pulse laser and a solid wire target

    NASA Astrophysics Data System (ADS)

    Palchan, T.; Eisenmann, S.; Zigler, A.; Kaganovich, D.; Hubbard, R. F.; Fraenkel, M.; Fisher, D.; Henis, Z.

    2006-05-01

    Energetic electron bunches were generated by irradiating a solid tungsten wire 13 μm wide with 50 femtosecond pulses at an intensity of ˜3×1018 W/cm2. The electron yield, energy spectrum and angular distribution were measured. These energetic electron bunches are suitable for injection into a laser driven plasma accelerator. An all-optical electron injector based on this approach could simplify timing and alignment in future laser-plasma accelerator experiments.

  19. Validation of extended magnetohydrodynamic simulations of the HIT-SI3 experiment using the NIMROD code

    NASA Astrophysics Data System (ADS)

    Morgan, K. D.; Jarboe, T. R.; Hossack, A. C.; Chandra, R. N.; Everson, C. J.

    2017-12-01

    The HIT-SI3 experiment uses a set of inductively driven helicity injectors to apply a non-axisymmetric current drive on the edge of the plasma, driving an axisymmetric spheromak equilibrium in a central confinement volume. These helicity injectors drive a non-axisymmetric perturbation that oscillates in time, with relative temporal phasing of the injectors modifying the mode structure of the applied perturbation. A set of three experimental discharges with different perturbation spectra are modelled using the NIMROD extended magnetohydrodynamics code, and comparisons are made to both magnetic and fluid measurements. These models successfully capture the bulk dynamics of both the perturbation and the equilibrium, though disagreements related to the pressure gradients experimentally measured exist.

  20. Predictive Evaluations of Oxygen-Rich Hydrocarbon Combustion Gas-Centered Swirl Coaxial Injectors using a Flamelet-Based 3-D CFD Simulation Approach

    NASA Technical Reports Server (NTRS)

    Richardson, Brian R.; Braman, Kalem; West, Jeff

    2016-01-01

    NASA Marshall Space Flight Center (MSFC) has embarked upon a joint project with the Air Force to improve the state-of-the-art of space application combustion device design and operational understanding. One goal of the project is to design, build and hot-fire test a 40,000 pound-thrust Oxygen/Rocket Propellant-2 (RP-2) Oxygen-Rich staged engine at MSFC. The overall project goals afford the opportunity to test multiple different injector designs and experimentally evaluate the any effect on the engine performance and combustion dynamics. To maximize the available test resources and benefits, pre-test, combusting flow, Computational Fluid Dynamics (CFD) analysis was performed on the individual injectors to guide the design. The results of the CFD analysis were used to design the injectors for specific, targeted fluid dynamic features and the analysis results also provided some predictive input for acoustic and thermal analysis of the main Thrust Chamber Assembly (TCA). MSFC has developed and demonstrated the ability to utilize a computationally efficient, flamelet-based combustion model to guide the pre-test design of single-element Gas Centered Swirl Coaxial (GCSC) injectors. Previous, Oxygen/RP-2 simulation models utilizing the Loci-STREAM flow solver, were validated using single injector test data from the EC-1 Air Force test facility. The simulation effort herein is an extension of the validated, CFD driven, single-injector design approach applied to single injectors which will be part of a larger engine array. Time-accurate, Three-Dimensional, CFD simulations were performed for five different classes of injector geometries. Simulations were performed to guide the design of the injector to achieve a variety of intended performance goals. For example, two GCSC injectors were designed to achieve stable hydrodynamic behavior of the propellant circuits while providing the largest thermal margin possible within the design envelope. While another injector was designed to purposefully create a hydrodynamic instability in the fuel supply circuit as predicted by the CFD analysis. Future multi-injector analysis and testing will indicate what if any changes occur in the predicted behavior for the single-element injector when the same injector geometry is placed in a multi-element array.

  1. Non-Solenoidal Startup via Helicity Injection in the Pegasus ST

    NASA Astrophysics Data System (ADS)

    Bongard, M. W.; Bodner, G. M.; Burke, M. G.; Fonck, R. J.; Pachicano, J. L.; Perry, J. M.; Pierren, C.; Richner, N. J.; Rodriguez Sanchez, C.; Schlossberg, D. J.; Reusch, J. A.; Weberski, J. D.

    2017-10-01

    Research on the A 1 . 2 Pegasus ST is developing the physics and technology basis for optimal non-solenoidal tokamak startup. Recent work explores startup via Local Helicity Injection (LHI) using compact, multi-MW current sources placed at the plasma edge in the lower divertor region. This minimizes inductive drive from poloidal fields and dynamic shaping. Plasmas with Ip <= 200 kA, Δtpulse 20 ms and BT <= 0 . 15 T are produced to date, sustained by two injectors with Ainj = 4 cm2 , Vinj 1 . 5 kV, and Iinj 8 kA, facilitated by improvements to the injectors, limiters, and divertor plates that mitigate deleterious PMI. These plasmas feature anomalous, reconnection-driven ion heating with Ti >=Te >= 50 - 100 eV and large-amplitude MHD activity driven by the injectors. Under some conditions, MHD fluctuations abruptly decrease by over an order of magnitude without loss of LHI drive, improving realized Ip , and suggesting short-wavelength modes may relate to the current drive mechanism. The high IN >= 10 , ion heating, and low li driven by LHI, and the favorable stability of A 1 STs allows access to record βt 100 % and high βN 6 . 5 . Such high-βt plasmas have a minimum | B | well spanning 50 % of the plasma volume. Enhancements to the Pegasus facility are considered to increase BT towards NSTX-U levels; establish coaxial helicity injection capabilities; and add auxiliary heating and current drive. Work supported by US DOE Grant DE-FG02-96ER54375.

  2. An Experimental Study of Characteristic Combustion-Driven Flow for CFD Validation

    NASA Technical Reports Server (NTRS)

    Santoro, Robert J.

    1997-01-01

    A series of uni-element rocket injector studies were completed to provide benchmark quality data needed to validate computational fluid dynamic models. A shear coaxial injector geometry was selected as the primary injector for study using gaseous hydrogen/oxygen and gaseous hydrogen/liquid oxygen propellants. Emphasis was placed on the use of nonintrusive diagnostic techniques to characterize the flowfields inside an optically-accessible rocket chamber. Measurements of the velocity and species fields were obtained using laser velocimetry and Raman spectroscopy, respectively. Qualitative flame shape information was also obtained using laser-induced fluorescence excited from OH radicals and laser light scattering studies of aluminum oxide particle seeded combusting flows. The gaseous hydrogen/liquid oxygen propellant studies for the shear coaxial injector focused on breakup mechanisms associated with the liquid oxygen jet under subcritical pressure conditions. Laser sheet illumination techniques were used to visualize the core region of the jet and a Phase Doppler Particle Analyzer was utilized for drop velocity, size and size distribution characterization. The results of these studies indicated that the shear coaxial geometry configuration was a relatively poor injector in terms of mixing. The oxygen core was observed to extend well downstream of the injector and a significant fraction of the mixing occurred in the near nozzle region where measurements were not possible to obtain. Detailed velocity and species measurements were obtained to allow CFD model validation and this set of benchmark data represents the most comprehensive data set available to date. As an extension of the investigation, a series of gas/gas injector studies were conducted in support of the X-33 Reusable Launch Vehicle program. A Gas/Gas Injector Technology team was formed consisting of the Marshall Space Flight Center, the NASA Lewis Research Center, Rocketdyne and Penn State. Injector geometries studied under this task included shear and swirl coaxial configurations as well as an impinging jet injector.

  3. An Experimental Study of Characteristic Combustion-Driven Flow for CFD Validation

    NASA Technical Reports Server (NTRS)

    Santoro, Robert J.

    1997-01-01

    A series of uni-element rocket injector studies were completed to provide benchmark quality data needed to validate computational fluid dynamic models. A shear coaxial injector geometry was selected as the primary injector for study using gaseous hydrogen/oxygen and gaseous hydrogen/liquid oxygen propellants. Emphasis was placed on the use of non-intrusive diagnostic techniques to characterize the flowfields inside an optically-accessible rocket chamber. Measurements of the velocity and species fields were obtained using laser velocimetry and Raman spectroscopy, respectively Qualitative flame shape information was also obtained using laser-induced fluorescence excited from OH radicals and laser light scattering studies of aluminum oxide particle seeded combusting flows. The gaseous hydrogen/liquid oxygen propellant studies for the shear coaxial injector focused on breakup mechanisms associated with the liquid oxygen jet under sub-critical pressure conditions. Laser sheet illumination techniques were used to visualize the core region of the jet and a Phase Doppler Particle Analyzer was utilized for drop velocity, size and size distribution characterization. The results of these studies indicated that the shear coaxial geometry configuration was a relatively poor injector in terms of mixing. The oxygen core was observed to extend well downstream of the injector and a significant fraction of the mixing occurred in the near nozzle region where measurements were not possible to obtain Detailed velocity and species measurements were obtained to allow CFD model validation and this set of benchmark data represents the most comprehensive data set available to date As an extension of the investigation, a series of gas/gas injector studies were conducted in support of the X-33 Reusable Launch Vehicle program. A Gas/Gas Injector Technology team was formed consisting of the Marshall Space Flight Center, the NASA Lewis Research Center, Rocketdyne and Penn State. Injector geometries studied under this task included shear and swirl coaxial configurations as well as an impinging jet injector.

  4. Non-solenoidal Startup via Local Helicity Injection on Pegasus: Progress and Plans

    NASA Astrophysics Data System (ADS)

    Reusch, J. A.; Barr, J. L.; Bodner, G. M.; Bongard, M. W.; Burke, M. G.; Fonck, R. J.; Hinson, E. T.; Lewicki, B. T.; Perry, J. M.; Schlossberg, D. J.

    2015-11-01

    Non-solenoidal plasma startup via local helicity injection (LHI) at the Pegasus toroidal experiment now provides routine operation at Ip ~ 0.17MA with Iinj ~ 5kA and Vinj ~ 1kV from four active arc injectors. Experiments in the past year have advanced the understanding of the governing physics of LHI and its supporting technology. Injector impedance scales as Vinj3/ 2 and is governed by two effects: a quasineutrality constraint on electron beam propagation, related to the tokamak edge density, and double-layer sheath expansion, related to narc. Injector design improvements permit operation at Vinj >= 1 kV without deleterious PMI or impurity generation. Discharges with varied shape, Ip(t), and helicity input test a predictive 0D power-balance model for LHI startup. Anomalous, reconnection-driven Ti >800 eV and strong MHD activity localized near the injectors are observed during LHI. Preliminary core Thomson scattering measurements indicate surprisingly high Te >300 eV, which if verified may indicate the dominance of high-energy electron fueling from the injector current streams. A new divertor injector system has been designed to substantially increase the available helicity input rate and support critical studies of confinement during LHI and reconnection activity at high Ip. A proposed upgrade to the Pegasus experiment will extend these studies to NSTX-U relevant parameters. Support: US DOE grants DE-FG02-96ER54375; and DE-SC0006928.

  5. Casting Apparatus Including A Gas Driven Molten Metal Injector And Method

    DOEpatents

    Trudel, David R.; Meyer, Thomas N.; Kinosz, Michael J.; Arnaud, Guy; Bigler, Nicolas

    2003-06-17

    The filtering molten metal injector system includes a holder furnace, a casting mold supported above the holder furnace, and at least one molten metal injector supported from a bottom side of the casting mold. The holder furnace contains a supply of molten metal. The mold defines a mold cavity for receiving the molten metal from the holder furnace. The molten metal injector projects into the holder furnace. The molten metal injector includes a cylinder defining a piston cavity housing a reciprocating piston for pumping the molten metal upward from the holder furnace to the mold cavity. The cylinder and piston are at least partially submerged in the molten metal when the holder furnace contains the molten metal. The cylinder or the piston includes a molten metal intake for receiving the molten metal into the piston cavity when the holder furnace contains molten metal. A conduit connects the piston cavity to the mold cavity. A molten metal filter is located in the conduit for filtering the molten metal passing through the conduit during the reciprocating movement of the piston. The molten metal intake may be a valve connected to the cylinder, a gap formed between the piston and an open end of the cylinder, an aperture defined in the sidewall of the cylinder, or a ball check valve incorporated into the piston. A second molten metal filter preferably covers the molten metal intake to the injector.

  6. Magnetized Target Fusion Propulsion: Plasma Injectors for MTF Guns

    NASA Technical Reports Server (NTRS)

    Griffin, Steven T.

    2003-01-01

    To achieve increased payload size and decreased trip time for interplanetary travel, a low mass, high specific impulse, high thrust propulsion system is required. This suggests the need for research into fusion as a source of power and high temperature plasma. The plasma would be deflected by magnetic fields to provide thrust. Magnetized Target Fusion (MTF) research consists of several related investigations into these topics. These include the orientation and timing of the plasma guns and the convergence and interface development of the "pusher" plasma. Computer simulations of the gun as it relates to plasma initiation and repeatability are under investigation. One of the items under development is the plasma injector. This is a surface breakdown driven plasma generator designed to function at very low pressures. The performance, operating conditions and limitations of these injectors need to be determined.

  7. N-butanol and isobutanol as alternatives to gasoline: Comparison of port fuel injector characteristics

    NASA Astrophysics Data System (ADS)

    Fenkl, Michael; Pechout, Martin; Vojtisek, Michal

    2016-03-01

    The paper reports on an experimental investigation of the relationship between the pulse width of a gasoline engine port fuel injector and the quantity of the fuel injected when butanol is used as a fuel. Two isomers of butanol, n-butanol and isobutanol, are considered as potential candidates for renewable, locally produced fuels capable of serving as a drop-in replacement fuel for gasoline, as an alternative to ethanol which poses material compatibility and other drawbacks. While the injected quantity of fuel is typically a linear function of the time the injector coil is energized, the flow through the port fuel injector is complex, non ideal, and not necessarily laminar, and considering that butanol has much higher viscosity than gasoline, an experimental investigation was conducted. A production injector, coupled to a production fueling system, and driven by a pulse width generator was operated at various pulse lengths and frequencies, covering the range of engine rpm and loads on a car engine. The results suggest that at least at room temperature, the fueling rate remains to be a linear function of the pulse width for both n-butanol and isobutanol, and the volumes of fuel injected are comparable for gasoline and both butanol isomers.

  8. Hydraulically actuated fuel injector including a pilot operated spool valve assembly and hydraulic system using same

    DOEpatents

    Shafer, Scott F.

    2002-01-01

    The present invention relates to hydraulic systems including hydraulically actuated fuel injectors that have a pilot operated spool valve assembly. One class of hydraulically actuated fuel injectors includes a solenoid driven pilot valve that controls the initiation of the injection event. However, during cold start conditions, hydraulic fluid, typically engine lubricating oil, is particularly viscous and is often difficult to displace through the relatively small drain path that is defined past the pilot valve member. Because the spool valve typically responds slower than expected during cold start due to the difficulty in displacing the relatively viscous oil, accurate start of injection timing can be difficult to achieve. There also exists a greater difficulty in reaching the higher end of the cold operating speed range. Therefore, the present invention utilizes a fluid evacuation valve to aid in displacement of the relatively viscous oil during cold start conditions.

  9. Validation of High-Fidelity CFD Simulations for Rocket Injector Design

    NASA Technical Reports Server (NTRS)

    Tucker, P. Kevin; Menon, Suresh; Merkle, Charles L.; Oefelein, Joseph C.; Yang, Vigor

    2008-01-01

    Computational fluid dynamics (CFD) has the potential to improve the historical rocket injector design process by evaluating the sensitivity of performance and injector-driven thermal environments to the details of the injector geometry and key operational parameters. Methodical verification and validation efforts on a range of coaxial injector elements have shown the current production CFD capability must be improved in order to quantitatively impact the injector design process. This paper documents the status of a focused effort to compare and understand the predictive capabilities and computational requirements of a range of CFD methodologies on a set of single element injector model problems. The steady Reynolds-Average Navier-Stokes (RANS), unsteady Reynolds-Average Navier-Stokes (URANS) and three different approaches using the Large Eddy Simulation (LES) technique were used to simulate the initial model problem, a single element coaxial injector using gaseous oxygen and gaseous hydrogen propellants. While one high-fidelity LES result matches the experimental combustion chamber wall heat flux very well, there is no monotonic convergence to the data with increasing computational tool fidelity. Systematic evaluation of key flow field regions such as the flame zone, the head end recirculation zone and the downstream near wall zone has shed significant, though as of yet incomplete, light on the complex, underlying causes for the performance level of each technique. 1 Aerospace Engineer and Combustion CFD Team Leader, MS ER42, NASA MSFC, AL 35812, Senior Member, AIAA. 2 Professor and Director, Computational Combustion Laboratory, School of Aerospace Engineering, 270 Ferst Dr., Atlanta, GA 30332, Associate Fellow, AIAA. 3 Reilly Professor of Engineering, School of Mechanical Engineering, 585 Purdue Mall, West Lafayette, IN 47907, Fellow, AIAA. 4 Principal Member of Technical Staff, Combustion Research Facility, 7011 East Avenue, MS9051, Livermore, CA 94550, Associate Fellow, AIAA. 5 J. L. and G. H. McCain Endowed Chair, Mechanical Engineering, 104 Research Building East, University Park, PA 16802, Fellow, AIAA. American Institute of Aeronautics and Astronautics 1

  10. Uncertainty Quantification of Non-linear Oscillation Triggering in a Multi-injector Liquid-propellant Rocket Combustion Chamber

    NASA Astrophysics Data System (ADS)

    Popov, Pavel; Sideris, Athanasios; Sirignano, William

    2014-11-01

    We examine the non-linear dynamics of the transverse modes of combustion-driven acoustic instability in a liquid-propellant rocket engine. Triggering can occur, whereby small perturbations from mean conditions decay, while larger disturbances grow to a limit-cycle of amplitude that may compare to the mean pressure. For a deterministic perturbation, the system is also deterministic, computed by coupled finite-volume solvers at low computational cost for a single realization. The randomness of the triggering disturbance is captured by treating the injector flow rates, local pressure disturbances, and sudden acceleration of the entire combustion chamber as random variables. The combustor chamber with its many sub-fields resulting from many injector ports may be viewed as a multi-scale complex system wherein the developing acoustic oscillation is the emergent structure. Numerical simulation of the resulting stochastic PDE system is performed using the polynomial chaos expansion method. The overall probability of unstable growth is assessed in different regions of the parameter space. We address, in particular, the seven-injector, rectangular Purdue University experimental combustion chamber. In addition to the novel geometry, new features include disturbances caused by engine acceleration and unsteady thruster nozzle flow.

  11. Protecting nickel with graphene spin-filtering membranes: A single layer is enough

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martin, M.-B.; Dlubak, B.; Piquemal-Banci, M.

    2015-07-06

    We report on the demonstration of ferromagnetic spin injectors for spintronics which are protected against oxidation through passivation by a single layer of graphene. The graphene monolayer is directly grown by catalytic chemical vapor deposition on pre-patterned nickel electrodes. X-ray photoelectron spectroscopy reveals that even with its monoatomic thickness, monolayer graphene still efficiently protects spin sources against oxidation in ambient air. The resulting single layer passivated electrodes are integrated into spin valves and demonstrated to act as spin polarizers. Strikingly, the atom-thick graphene layer is shown to be sufficient to induce a characteristic spin filtering effect evidenced through the signmore » reversal of the measured magnetoresistance.« less

  12. Electronic band-gap modified passive silicon optical modulator at telecommunications wavelengths.

    PubMed

    Zhang, Rui; Yu, Haohai; Zhang, Huaijin; Liu, Xiangdong; Lu, Qingming; Wang, Jiyang

    2015-11-13

    The silicon optical modulator is considered to be the workhorse of a revolution in communications. In recent years, the capabilities of externally driven active silicon optical modulators have dramatically improved. Self-driven passive modulators, especially passive silicon modulators, possess advantages in compactness, integration, low-cost, etc. Constrained by a large indirect band-gap and sensitivity-related loss, the passive silicon optical modulator is scarce and has been not advancing, especially at telecommunications wavelengths. Here, a passive silicon optical modulator is fabricated by introducing an impurity band in the electronic band-gap, and its nonlinear optics and applications in the telecommunications-wavelength lasers are investigated. The saturable absorption properties at the wavelength of 1.55 μm was measured and indicates that the sample is quite sensitive to light intensity and has negligible absorption loss. With a passive silicon modulator, pulsed lasers were constructed at wavelengths at 1.34 and 1.42 μm. It is concluded that the sensitive self-driven passive silicon optical modulator is a viable candidate for photonics applications out to 2.5 μm.

  13. Refined beam measurements on the SNS H- injector

    NASA Astrophysics Data System (ADS)

    Han, B. X.; Welton, R. F.; Murray, S. N.; Pennisi, T. R.; Santana, M.; Stinson, C. M.; Stockli, M. P.

    2017-08-01

    The H- injector for the SNS RFQ accelerator consists of an RF-driven, Cs-enhanced H- ion source and a compact, two-lens electrostatic LEBT. The LEBT output and the RFQ input beam current are measured by deflecting the beam on to an annular plate at the RFQ entrance. Our method and procedure have recently been refined to improve the measurement reliability and accuracy. The new measurements suggest that earlier measurements tended to underestimate the currents by 0-2 mA, but essentially confirm H- beam currents of 50-60 mA being injected into the RFQ. Emittance measurements conducted on a test stand featuring essentially the same H- injector setup show that the normalized rms emittance with 0.5% threshold (99% inclusion of the total beam) is in a range of 0.25-0.4 mm.mrad for a 50-60 mA beam. The RFQ output current is monitored with a BCM toroid. Measurements as well as simulations with the PARMTEQ code indicate an underperforming transmission of the RFQ since around 2012.

  14. LCP method for a planar passive dynamic walker based on an event-driven scheme

    NASA Astrophysics Data System (ADS)

    Zheng, Xu-Dong; Wang, Qi

    2018-06-01

    The main purpose of this paper is to present a linear complementarity problem (LCP) method for a planar passive dynamic walker with round feet based on an event-driven scheme. The passive dynamic walker is treated as a planar multi-rigid-body system. The dynamic equations of the passive dynamic walker are obtained by using Lagrange's equations of the second kind. The normal forces and frictional forces acting on the feet of the passive walker are described based on a modified Hertz contact model and Coulomb's law of dry friction. The state transition problem of stick-slip between feet and floor is formulated as an LCP, which is solved with an event-driven scheme. Finally, to validate the methodology, four gaits of the walker are simulated: the stance leg neither slips nor bounces; the stance leg slips without bouncing; the stance leg bounces without slipping; the walker stands after walking several steps.

  15. LCP method for a planar passive dynamic walker based on an event-driven scheme

    NASA Astrophysics Data System (ADS)

    Zheng, Xu-Dong; Wang, Qi

    2018-02-01

    The main purpose of this paper is to present a linear complementarity problem (LCP) method for a planar passive dynamic walker with round feet based on an event-driven scheme. The passive dynamic walker is treated as a planar multi-rigid-body system. The dynamic equations of the passive dynamic walker are obtained by using Lagrange's equations of the second kind. The normal forces and frictional forces acting on the feet of the passive walker are described based on a modified Hertz contact model and Coulomb's law of dry friction. The state transition problem of stick-slip between feet and floor is formulated as an LCP, which is solved with an event-driven scheme. Finally, to validate the methodology, four gaits of the walker are simulated: the stance leg neither slips nor bounces; the stance leg slips without bouncing; the stance leg bounces without slipping; the walker stands after walking several steps.

  16. A Null Space Control of Two Wheels Driven Mobile Manipulator Using Passivity Theory

    NASA Astrophysics Data System (ADS)

    Shibata, Tsuyoshi; Murakami, Toshiyuki

    This paper describes a control strategy of null space motion of a two wheels driven mobile manipulator. Recently, robot is utilized in various industrial fields and it is preferable for the robot manipulator to have multiple degrees of freedom motion. Several studies of kinematics for null space motion have been proposed. However stability analysis of null space motion is not enough. Furthermore, these approaches apply to stable systems, but they do not apply unstable systems. Then, in this research, base of manipulator equips with two wheels driven mobile robot. This robot is called two wheels driven mobile manipulator, which becomes unstable system. In the proposed approach, a control design of null space uses passivity based stabilizing. A proposed controller is decided so that closed-loop system of robot dynamics satisfies passivity. This is passivity based control. Then, control strategy is that stabilizing of the robot system applies to work space observer based approach and null space control while keeping end-effector position. The validity of the proposed approach is verified by simulations and experiments of two wheels driven mobile manipulator.

  17. Microrobot with passive diamagnetic levitation for microparticle manipulations

    NASA Astrophysics Data System (ADS)

    Feng, Lin; Zhang, Shengyuan; Jiang, Yonggang; Zhang, Deyuan; Arai, Fumihito

    2017-12-01

    In this paper, an innovative microrobot with passive diamagnetic levitation is presented. Based on theoretical analysis, finite element method simulation, and experiments, the shape of pyrolytic graphite is redesigned, which improves the stability of passive diamagnetic levitation significantly. Therefore, passive diamagnetic levitation is able to be applied for 3-D control of the microrobot. Compared with the traditional microrobots driven by permanent magnets in a microfluidic chip, the microrobot made of pyrolytic graphite and driven by magnetic force has two advantages, no friction and 3-D control, which is able to expand the scope of the microrobot applications. Finally, the microrobot with passive diamagnetic levitation was demonstrated by being encapsulated in a microfluidic chip for microparticle manipulations.

  18. Tuner control system of Spoke012 SRF cavity for C-ADS injector I

    NASA Astrophysics Data System (ADS)

    Liu, Na; Sun, Yi; Wang, Guang-Wei; Mi, Zheng-Hui; Lin, Hai-Ying; Wang, Qun-Yao; Liu, Rong; Ma, Xin-Peng

    2016-09-01

    A new tuner control system for spoke superconducting radio frequency (SRF) cavities has been developed and applied to cryomodule I of the C-ADS injector I at the Institute of High Energy Physics, Chinese Academy of Sciences. We have successfully implemented the tuner controller based on Programmable Logic Controller (PLC) for the first time and achieved a cavity tuning phase error of ±0.7° (about ±4 Hz peak to peak) in the presence of electromechanical coupled resonance. This paper presents preliminary experimental results based on the PLC tuner controller under proton beam commissioning. Supported by Proton linac accelerator I of China Accelerator Driven sub-critical System (Y12C32W129)

  19. Characterization of compact-toroid injection during formation, translation, and field penetration

    NASA Astrophysics Data System (ADS)

    Matsumoto, T.; Roche, T.; Allfrey, I.; Sekiguchi, J.; Asai, T.; Gota, H.; Cordero, M.; Garate, E.; Kinley, J.; Valentine, T.; Waggoner, W.; Binderbauer, M.; Tajima, T.

    2016-11-01

    We have developed a compact toroid (CT) injector system for particle refueling of the advanced beam-driven C-2U field-reversed configuration (FRC) plasma. The CT injector is a magnetized coaxial plasma gun (MCPG), and the produced CT must cross the perpendicular magnetic field surrounding the FRC for the refueling of C-2U. To simulate this environment, an experimental test stand has been constructed. A transverse magnetic field of ˜1 kG is established, which is comparable to the C-2U axial magnetic field in the confinement section, and CTs are fired across it. On the test stand we have been characterizing and studying CT formation, ejection/translation from the MCPG, and penetration into transverse magnetic fields.

  20. Characterization of compact-toroid injection during formation, translation, and field penetration.

    PubMed

    Matsumoto, T; Roche, T; Allfrey, I; Sekiguchi, J; Asai, T; Gota, H; Cordero, M; Garate, E; Kinley, J; Valentine, T; Waggoner, W; Binderbauer, M; Tajima, T

    2016-11-01

    We have developed a compact toroid (CT) injector system for particle refueling of the advanced beam-driven C-2U field-reversed configuration (FRC) plasma. The CT injector is a magnetized coaxial plasma gun (MCPG), and the produced CT must cross the perpendicular magnetic field surrounding the FRC for the refueling of C-2U. To simulate this environment, an experimental test stand has been constructed. A transverse magnetic field of ∼1 kG is established, which is comparable to the C-2U axial magnetic field in the confinement section, and CTs are fired across it. On the test stand we have been characterizing and studying CT formation, ejection/translation from the MCPG, and penetration into transverse magnetic fields.

  1. Compact toroid injection fueling in a large field-reversed configuration

    NASA Astrophysics Data System (ADS)

    Asai, T.; Matsumoto, T.; Roche, T.; Allfrey, I.; Gota, H.; Sekiguchi, J.; Edo, T.; Garate, E.; Takahashi, Ts.; Binderbauer, M.; Tajima, T.

    2017-07-01

    A repetitively driven compact toroid (CT) injector has been developed for the large field-reversed configuration (FRC) facility of the C-2/C-2U, primarily for particle refueling. A CT is formed and injected by a magnetized coaxial plasma gun (MCPG) exclusively developed for the C-2/C-2U FRC. To refuel the particles of long-lived FRCs, multiple CT injections are required. Thus, a multi-stage discharge circuit was developed for a multi-pulsed CT injection. The drive frequency of this system can be adjusted up to 1 kHz and the number of CT shots per injector is two; the system can be further upgraded for a larger number of injection pulses. The developed MCPG can achieve a supersonic ejection velocity in the range of ~100 km s-1. The key plasma parameters of electron density, electron temperature and the number of particles are ~5  ×  1021 m-3, ~30 eV and 0.5-1.0  ×  1019, respectively. In this project, single- and double-pulsed counter CT injection fueling were conducted on the C-2/C-2U facility by two CT injectors. The CT injectors were mounted 1 m apart in the vicinity of the mid-plane. To avoid disruptive perturbation on the FRC, the CT injectors were operated at the lower limit of the particle inventory. The experiments demonstrated successful refueling with a significant density build-up of 20-30% of the FRC particle inventory per single CT injection without any deleterious effects on the C-2/C-2U FRC.

  2. Northrop Grumman TR202 LOX/LH2 Deep Throttling Engine Technology Project Status

    NASA Technical Reports Server (NTRS)

    Gromski, Jason; Majamaki, Annik; Chianese, Silvio; Weinstock, Vladimir; Kim, Tony S.

    2010-01-01

    NASA's Propulsion and Cryogenic Advanced Development (PCAD) project is currently developing enabling propulsion technologies in support of future lander missions. To meet lander requirements, several technical challenges need to be overcome, one of which is the ability for the descent engine(s) to operate over a deep throttle range with cryogenic propellants. To address this need, PCAD has enlisted Northrop Grumman Aerospace Systems (NGAS) in a technology development effort associated with the TR202 engine. The TR202 is a LOX/LH2 expander cycle engine driven by independent turbopump assemblies and featuring a variable area pintle injector similar to the injector used on the TR200 Apollo Lunar Module Descent Engine (LMDE). Since the Apollo missions, NGAS has continued to mature deep throttling pintle injector technology. The TR202 program has completed two series of pintle injector testing. The first series of testing used ablative thrust chambers and demonstrated igniter operation as well as stable performance at discrete points throughout the designed 10:1 throttle range. The second series was conducted with calorimeter chambers and demonstrated injector performance at discrete points throughout the throttle range as well as chamber heat flow adequate to power an expander cycle design across the throttle range. This paper provides an overview of the TR202 program, describing the different phases and key milestones. It describes how test data was correlated to the engine conceptual design. The test data obtained has created a valuable database for deep throttling cryogenic pintle technology, a technology that is readily scalable in thrust level.

  3. Measuring air core characteristics of a pressure-swirl atomizer via a transparent acrylic nozzle at various Reynolds numbers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Eun J.; Oh, Sang Youp; Kim, Ho Y.

    2010-11-15

    Because of thermal fluid-property dependence, atomization stability (or flow regime) can change even at fixed operating conditions when subject to temperature change. Particularly at low temperatures, fuel's high viscosity can prevent a pressure-swirl (or simplex) atomizer from sustaining a centrifugal-driven air core within the fuel injector. During disruption of the air core inside an injector, spray characteristics outside the nozzle reflect a highly unstable, nonlinear mode where air core length, Sauter mean diameter (SMD), cone angle, and discharge coefficient variability. To better understand injector performance, these characteristics of the pressure-swirl atomizer were experimentally investigated and data were correlated to Reynoldsmore » numbers (Re). Using a transparent acrylic nozzle, the air core length, SMD, cone angle, and discharge coefficient are observed as a function of Re. The critical Reynolds numbers that distinguish the transition from unstable mode to transitional mode and eventually to a stable mode are reported. The working fluids are diesel and a kerosene-based fuel, referred to as bunker-A. (author)« less

  4. Multi-injector modeling of transverse combustion instability experiments

    NASA Astrophysics Data System (ADS)

    Shipley, Kevin J.

    Concurrent simulations and experiments are used to study combustion instabilities in a multiple injector element combustion chamber. The experiments employ a linear array of seven coaxial injector elements positioned atop a rectangular chamber. Different levels of instability are driven in the combustor by varying the operating and geometry parameters of the outer driving injector elements located near the chamber end-walls. The objectives of the study are to apply a reduced three-injector model to generate a computational test bed for the evaluation of injector response to transverse instability, to apply a full seven-injector model to investigate the inter-element coupling between injectors in response to transverse instability, and to further develop this integrated approach as a key element in a predictive methodology that relies heavily on subscale test and simulation. To measure the effects of the transverse wave on a central study injector element two opposing windows are placed in the chamber to allow optical access. The chamber is extensively instrumented with high-frequency pressure transducers. High-fidelity computational fluid dynamics simulations are used to model the experiment. Specifically three-dimensional, detached eddy simulations (DES) are used. Two computational approaches are investigated. The first approach models the combustor with three center injectors and forces transverse waves in the chamber with a wall velocity function at the chamber side walls. Different levels of pressure oscillation amplitudes are possible by varying the amplitude of the forcing function. The purpose of this method is to focus on the combustion response of the study element. In the second approach, all seven injectors are modeled and self-excited combustion instability is achieved. This realistic model of the chamber allows the study of inter-element flow dynamics, e.g., how the resonant motions in the injector tubes are coupled through the transverse pressure waves in the chamber. The computational results are analyzed and compared with experiment results in the time, frequency and modal domains. Results from the three injector model show how applying different velocity forcing amplitudes change the amplitude and spatial location of heat release from the center injector. The instability amplitudes in the simulation are able to be tuned to experiments and produce similar modal combustion responses of the center injector. The reaction model applied was found to play an important role in the spatial and temporal heat release response. Only when the model was calibrated to ignition delay measurements did the heat release response reflect measurements in the experiment. While insightful the simulations are not truly predictive because the driving frequency and forcing function amplitude are input into the simulation. However, the use of this approach as a tool to investigate combustion response is demonstrated. Results from the seven injector simulations provide an insightful look at the mechanisms driving the instability in the combustor. The instability was studied over a range of pressure fluctuations, up to 70% of mean chamber pressure produced in the self-exited simulation. At low amplitudes the transverse instability was found to be supported by both flame impingement with the side wall as well as vortex shedding at the primary acoustic frequency. As instability level grew the primary supporting mechanism shifted to just vortex impingement on the side walls and the greatest growth was seen as additional vortices began impinging between injector elements at the primary acoustic frequency. This research reveals the advantages and limitations of applying these two modeling techniques to simulate multiple injector experiments. The advantage of the three injector model is a simplified geometry which results in faster model development and the ability to more rapidly study the injector response under varying velocity amplitudes. The possibly faster run time is offset though by the need to run multiple cases to calibrate the model to the experiment. The model is also limited to studying the central injector effect and lacks heat release sources from the outer injectors and additional vortex interactions as shown in the seven injector simulation. The advantage of the seven injector model is that the whole domain can be explored to provide a better understanding about influential processes but does require longer development and run time due to the extensive gridding requirement. Both simulations have proven useful in exploring transverse combustion instability and show the need to further develop subscale experiments and companions simulations in developing a full-scale combustion instability prediction capability.

  5. Helical undulator based on partial redistribution of uniform magnetic field

    NASA Astrophysics Data System (ADS)

    Balal, N.; Bandurkin, I. V.; Bratman, V. L.; Fedotov, A. E.

    2017-12-01

    A new type of helical undulator based on redistribution of magnetic field of a solenoid by ferromagnetic helix has been proposed and studied both in theory and experiment. Such undulators are very simple and efficient for promising sources of coherent spontaneous THz undulator radiation from dense electron bunches formed in laser-driven photo-injectors.

  6. Advancing High Current Startup via Localized Helicity Injection in the PEGASUS Toroidal Experiment

    NASA Astrophysics Data System (ADS)

    Hinson, E. T.; Barr, J. L.; Bongard, M. W.; Burke, M. G.; Fonck, R. J.; Perry, J. M.; Redd, A. J.; Schlossberg, D. J.

    2013-10-01

    Non-solenoidal startup via local helicity injection (LHI) and poloidal field induction is used to produce Ip = 0 . 17 MA tokamak discharges. Impurity contamination has been reduced to negligible levels by use of conical frustum cathode geometry and local scraper limiters. Attainable currents are governed by global limits of helicity and energy balance, and Taylor relaxation. A simple lumped parameter model based on these limits is used to project discharge evolution, and indicates that attaining 1 MA in NSTX-U will require LHI-driven effective loop voltages to dominate contributions from dLp / dt . This regime contrasts with results to date and will be tested at 0.3 MA in PEGASUS with a new integrated multi-injector array. Injector impedance characteristics are consistent with magnetically-limited regimes observed in higher-power foilless diodes. Bursts of MHD are measured on time scales of order ~ 100 μ s, and correlate with rapid equilibrium changes, discrete rises in Ip, redistribution of the toroidal current, ion heating (Ti ~ 1 keV), transient drops in injector voltage, and apparent n = 1 line-tied kink activity at the injector. NIMROD simulations of high-field-side HI discharges in PEGASUS are in qualitative agreement, suggesting Ip buildup results from inward propagating toroidal current loops created by intermittent reconnection of injected current streams. Work supported by US DOE Grant DE-FG02-96ER54375.

  7. Characterization of compact-toroid injection during formation, translation, and field penetration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matsumoto, T., E-mail: cstd14003@g.nihon-u.ac.jp; Sekiguchi, J.; Asai, T.

    2016-11-15

    We have developed a compact toroid (CT) injector system for particle refueling of the advanced beam-driven C-2U field-reversed configuration (FRC) plasma. The CT injector is a magnetized coaxial plasma gun (MCPG), and the produced CT must cross the perpendicular magnetic field surrounding the FRC for the refueling of C-2U. To simulate this environment, an experimental test stand has been constructed. A transverse magnetic field of ∼1 kG is established, which is comparable to the C-2U axial magnetic field in the confinement section, and CTs are fired across it. On the test stand we have been characterizing and studying CT formation,more » ejection/translation from the MCPG, and penetration into transverse magnetic fields.« less

  8. Development of Technologies on Innovative-Simplified Nuclear Power Plant using High-Efficiency Steam Injectors

    NASA Astrophysics Data System (ADS)

    Ohmori, Shuichi; Narabayashi, Tadashi; Mori, Michitsugu; Iwaki, Chikako; Asanuma, Yutaka; Goto, Shoji

    A Steam Injector (SI) is a simple, compact and passive pump and also acts as a high-performance direct-contact heater. This provides SI with capability to serve also as a direct-contact feed-water heater that heats up feed-water by using extracted steam from turbine. Our technology development aims to significantly simplify equipment and reduce physical quantities by applying "High-Efficiency SI", which are applicable to a wide range of operation regimes beyond the performance and applicable range of existing SIs and enables unprecedented multistage and parallel operation, to the low-pressure feed-water heaters and Emergency Core Cooling System of nuclear power plants, as well as achieve high inherent safety to prevent severe accidents by keeping the core covered with water (a Severe Accident-Free Concept). This paper describes the results of the endurance and performance tests of low-pressure SIs for feed-water heaters with Jet-deaerator and core injection system.

  9. Intensity limits of the PSI Injector II cyclotron

    NASA Astrophysics Data System (ADS)

    Kolano, A.; Adelmann, A.; Barlow, R.; Baumgarten, C.

    2018-03-01

    We investigate limits on the current of the PSI Injector II high intensity separate-sector isochronous cyclotron, in its present configuration and after a proposed upgrade. Accelerator Driven Subcritical Reactors, neutron and neutrino experiments, and medical isotope production all benefit from increases in current, even at the ∼ 10% level: the PSI cyclotrons provide relevant experience. As space charge dominates at low beam energy, the injector is critical. Understanding space charge effects and halo formation through detailed numerical modelling gives clues on how to maximise the extracted current. Simulation of a space-charge dominated low energy high intensity (9.5 mA DC) machine, with a complex collimator set up in the central region shaping the bunch, is not trivial. We use the OPAL code, a tool for charged-particle optics calculations in large accelerator structures and beam lines, including 3D space charge. We have a precise model of the present (production) Injector II, operating at 2.2 mA current. A simple model of the proposed future (upgraded) configuration of the cyclotron is also investigated. We estimate intensity limits based on the developed models, supported by fitted scaling laws and measurements. We have been able to perform more detailed analysis of the bunch parameters and halo development than any previous study. Optimisation techniques enable better matching of the simulation set-up with Injector II parameters and measurements. We show that in the production configuration the beam current scales to the power of three with the beam size. However, at higher intensities, 4th power scaling is a better fit, setting the limit of approximately 3 mA. Currents of over 5 mA, higher than have been achieved to date, can be produced if the collimation scheme is adjusted.

  10. Propellant injection strategy for suppressing acoustic combustion instability

    NASA Astrophysics Data System (ADS)

    Diao, Qina

    Shear-coaxial injector elements are often used in liquid-propellant-rocket thrust chambers, where combustion instabilities remain a significant problem. A conventional solution to the combustion instability problem relies on passive control techniques that use empirically-developed hardware such as acoustic baffles and tuned cavities. In addition to adding weight and decreasing engine performance, these devices are designed using trial-and-error methods, which do not provide the capability to predict the overall system stability characteristics in advance. In this thesis, two novel control strategies that are based on propellant fluid dynamics were investigated for mitigating acoustic instability involving shear-coaxial injector elements. The new control strategies would use a set of controlled injectors allowing local adjustment of propellant flow patterns for each operating condition, particularly when instability could become a problem. One strategy relies on reducing the oxidizer-fuel density gradient by blending heavier methane with the main fuel, hydrogen. Another strategy utilizes modifying the equivalence ratio to affect the acoustic impedance through mixing and reaction rate changes. The potential effectiveness of these strategies was assessed by conducting unit-physics experiments. Two different model combustors, one simulating a single-element injector test and the other a double-element injector test, were designed and tested for flame-acoustic interaction. For these experiments, the Reynolds number of the central oxygen jet was kept between 4700 and 5500 making the injector flames sufficiently turbulent. A compression driver, mounted on one side of the combustor wall, provided controlled acoustic excitation to the injector flames, simulating the initial phase of flame-acoustic interaction. Acoustic excitation was applied either as band-limited white noise forcing between 100 Hz and 5000 Hz or as single-frequency, fixed-amplitude forcing at 1150 Hz which represented a frequency least amplified by any resonance. Effects of each control strategy on flame-acoustic interaction were assessed in terms of modifying the acoustic resonance characteristics subject to white-noise excitation and changes in flame brush thickness under single-frequency excitation. In the methane blending experiments, the methane mole fraction was varied between 0% and 63%. Under white noise excitation, up to 16% shift in a resonant frequency was observed but the acoustic pressure spectra remained qualitatively similar. For the fixed frequency forcing, the spatial extent of flame-acoustic interaction was substantially reduced. In the other experiments, the equivalence ratio of the control injector was varied between zero and infinity, causing up to 40% shift in a resonant frequency as well as changes in the acoustic pressure spectrum. These results open up the possibility of employing flow-based control to prevent combustion instabilities in liquid-fueled rockets.

  11. Micropumps, microvalves, and micromixers within PCR microfluidic chips: Advances and trends.

    PubMed

    Zhang, Chunsun; Xing, Da; Li, Yuyuan

    2007-01-01

    This review surveys the advances of microvalves, micropumps, and micromixers within PCR microfluidic chips over the past ten years. First, the types of microvalves in PCR chips are discussed, including active and passive microvalves. The active microvalves are subdivided into mechanical (thermopneumatic and shape memory alloy), non-mechanical (hydrogel, sol-gel, paraffin, and ice), and external (modular built-in, pneumatic, and non-pneumatic) microvalves. The passive microvalves also include mechanical (in-line polymerized gel and passive plug) and non-mechanical (hydrophobic) microvalves. The review then discusses mechanical (piezoelectric, pneumatic, and thermopneumatic) and non-mechanical (electrokinetic, magnetohydrodynamic, electrochemical, acoustic-wave, surface tension and capillary, and ferrofluidic magnetic) micropumps in PCR chips. Next, different micromixers within PCR chips are presented, including passive (Y/T-type flow, recirculation flow, and drop) and active (electrokinetically-driven, acoustically-driven, magnetohydrodynamical-driven, microvalves/pumps) micromixers. Finally, general discussions on microvalves, micropumps, and micromixers for PCR chips are given. The microvalve/micropump/micromixers allow high levels of PCR chip integration and analytical throughput.

  12. Non-solenoidal Startup with High-Field-Side Local Helicity Injection on the Pegasus ST

    NASA Astrophysics Data System (ADS)

    Perry, J. M.; Bodner, G. M.; Bongard, M. W.; Burke, M. G.; Fonck, R. J.; Pachicano, J. L.; Pierren, C.; Richner, N. J.; Rodriguez Sanchez, C.; Schlossberg, D. J.; Reusch, J. A.; Weberski, J. D.

    2017-10-01

    Local Helicity Injection (LHI) is a non-solenoidal startup technique utilizing electron current injectors at the plasma edge to initiate a tokamak-like plasma at high Ip . Recent experiments on Pegasus explore the inherent tradeoffs between high-field-side (HFS) injection in the lower divertor region and low-field-side (LFS) injection at the outboard midplane. Trade-offs include the relative current drive contributions of HI and poloidal induction, and the magnetic geometry required for relaxation to a tokamak-like state. HFS injection using a set of two increased-area injectors (Ainj = 4 cm2, Vinj 1.5 kV, and Iinj 8 kA) in the lower divertor is demonstrated over the full range of toroidal field available on Pegasus (BT 0 <= 0.15 T). Increased PMI on both the injectors and the lower divertor plates was observed during HFS injection, and was substantively mitigated through optimization of injector geometry and placement of local limiters to reduce scrape-off density in the divertor region. Ip up to 200 kA is achieved with LHI as the dominant current drive, consistent with expectations from helicity balance. To date, experiments support Ip increasing linearly with helicity injection rate. The high normalized current (IN >= 10) attainable with LHI and the favorable stability of the ultra-low aspect ratio, low-li LHI-driven plasmas allow access to high βt-up to 100 % , as indicated by kinetically-constrained equilibrium reconstructions. Work supported by US DOE Grant DE-FG02-96ER54375.

  13. NIMROD Simulations of the HIT-SI and HIT-SI3 Devices

    NASA Astrophysics Data System (ADS)

    Morgan, Kyle; Jarboe, Tom; Hossack, Aaron; Chandra, Rian; Everson, Chris

    2017-10-01

    The Helicity Injected Torus with Steady Inductive helicity injection (HIT-SI) experiment uses a set of inductively driven helicity injectors to apply non-axisymmetric current drive on the edge of the plasma, driving an axisymmetric spheromak equilibrium in a central confinement volume. Significant improvements have been made to extended MHD modeling of HIT-SI, with both the resolution of disagreement at high injector frequencies in HIT-SI in addition to successes with the new upgraded HIT-SI3 device. Previous numerical studies of HIT-SI, using a zero-beta eMHD model, focused on operations with a drive frequency of 14.5 kHz, and found reduced agreement with both the magnetic profile and current amplification at higher frequencies (30-70 kHz). HIT-SI3 has three helicity injectors which are able to operate with different mode structures of perturbations through the different relative temporal phasing of the injectors. Simulations that allow for pressure gradients have been performed in the parameter regimes of both devices using the NIMROD code and show improved agreement with experimental results, most notably capturing the observed Shafranov-shift due to increased beta observed at higher finj in HIT-SI and the variety of toroidal perturbation spectra available in HIT-SI3. This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Fusion Energy Sciences under Award Number DE-FG02- 96ER54361.

  14. Absorber arc mitigation during CHI on NSTX

    NASA Astrophysics Data System (ADS)

    Mueller, D.; Bell, M. G.; Roquemore, A. L.; Raman, R.; Nelson, B. A.; Jarboe, T. R.

    2009-11-01

    A method of non-inductive startup, referred to as transient coaxial helicity injection (CHI), was successfully developed on the Helicity Injected Torus (HIT-II) experiment and employed on the National Spherical Torus Experiment (NSTX). This technique has produced 160 kA of plasma current on closed flux surfaces. Over 100 kA of the CHI current has been coupled to inductively driven current ramp-up. In transient CHI, a voltage is applied across the insulating gap separating the inner and outer vacuum vessel and gas is introduced at the lower gap (the injector). The resulting current in the injector follows the helical magnetic field connecting the electrodes, forms a toroidal current and expands into the vacuum vessel. At higher CHI current, the poloidal field due to the plasma can connect the inner and outer vessels at the insulating gap at the top (called the absorber) of NSTX and lower the impedance there. This results in arcs in the absorber which are a source of impurities and which reduce the desired current in the injector. Two coils installed in the absorber will be used to reduce the magnetic field across the absorber gap and mitigate the absorber arcs.

  15. Record productions establish RF-driven sources as the standard for generating high-duty-factor, high-current H- beams for accelerators (Winner of the ICIS 2017 Brightness Award)

    NASA Astrophysics Data System (ADS)

    Stockli, Martin P.; Welton, Robert F.; Han, Baoxi

    2018-05-01

    The Spallation Neutron Source operates reliably at 1.2 MW and will gradually ramp to 1.4 MW. This paper briefly recalls some of the struggles when the unprecedented project was started and ramped to 1 MW over a 3½ year period. This was challenging, especially for the H- ion source and the low-energy beam transport system, which make up the H- injector. It took several more years to push the H- injector to the 1.4 MW requirements, and even longer to reach close to 100% injector availability. An additional breakthrough was the carefully staged, successful extension of the H- source service cycle so that disruptive source changes became rare events. More than 7 A.h of extracted H- ions have been demonstrated with a single source without maintenance, more than twice the single-source quantity of ions produced by any other high-current H- accelerator facility. Achieving the 1.4 MW requirements with close to 100% availability and record-breaking source service cycles were the basis for the 2017 Brightness Award.

  16. Numerical studies and metric development for validation of magnetohydrodynamic models on the HIT-SI experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hansen, C., E-mail: hansec@uw.edu; Columbia University, New York, New York 10027; Victor, B.

    We present application of three scalar metrics derived from the Biorthogonal Decomposition (BD) technique to evaluate the level of agreement between macroscopic plasma dynamics in different data sets. BD decomposes large data sets, as produced by distributed diagnostic arrays, into principal mode structures without assumptions on spatial or temporal structure. These metrics have been applied to validation of the Hall-MHD model using experimental data from the Helicity Injected Torus with Steady Inductive helicity injection experiment. Each metric provides a measure of correlation between mode structures extracted from experimental data and simulations for an array of 192 surface-mounted magnetic probes. Numericalmore » validation studies have been performed using the NIMROD code, where the injectors are modeled as boundary conditions on the flux conserver, and the PSI-TET code, where the entire plasma volume is treated. Initial results from a comprehensive validation study of high performance operation with different injector frequencies are presented, illustrating application of the BD method. Using a simplified (constant, uniform density and temperature) Hall-MHD model, simulation results agree with experimental observation for two of the three defined metrics when the injectors are driven with a frequency of 14.5 kHz.« less

  17. NIMROD simulations and physics assessment of possible designs for a next generation Steady Inductive Helicity Injection HIT device

    NASA Astrophysics Data System (ADS)

    Penna, James; Morgan, Kyle; Grubb, Isaac; Jarboe, Thomas

    2017-10-01

    The Helicity Injected Torus - Steady Inductive 3 (HIT-SI3) experiment forms and maintains spheromaks via Steady Inductive Helicity Injection (SIHI) using discrete injectors that inject magnetic helicity via a non-axisymmetric perturbation and drive toroidally symmetric current. Newer designs for larger SIHI-driven spheromaks incorporate a set of injectors connected to a single external manifold to allow more freedom for the toroidal structure of the applied perturbation. Simulations have been carried out using the NIMROD code to assess the effectiveness of various imposed mode structures and injector schema in driving current via Imposed Dynamo Current Drive (IDCD). The results are presented here for varying flux conserver shapes on a device approximately 1.5 times larger than the current HIT-SI3 experiment. The imposed mode structures and spectra of simulated spheromaks are analyzed in order to examine magnetic structure and stability and determine an optimal regime for IDCD sustainment in a large device. The development of scaling laws for manifold operation is also presented, and simulation results are analyzed and assessed as part of the development path for the large scale device.

  18. Concepts for the magnetic design of the MITICA neutral beam test facility ion accelerator.

    PubMed

    Chitarin, G; Agostinetti, P; Marconato, N; Marcuzzi, D; Sartori, E; Serianni, G; Sonato, P

    2012-02-01

    The megavolt ITER injector concept advancement neutral injector test facility will be constituted by a RF-driven negative ion source and by an electrostatic Accelerator, designed to produce a negative Ion with a specific energy up to 1 MeV. The beam is then neutralized in order to obtain a focused 17 MW neutral beam. The magnetic configuration inside the accelerator is of crucial importance for the achievement of a good beam efficiency, with the early deflection of the co-extracted and stripped electrons, and also of the required beam optic quality, with the correction of undesired ion beamlet deflections. Several alternative magnetic design concepts have been considered, comparing in detail the magnetic and beam optics simulation results, evidencing the advantages and drawbacks of each solution both from the physics and engineering point of view.

  19. Time and flow-direction responses of shear-styress-sensitive liquid crystal coatings

    NASA Technical Reports Server (NTRS)

    Reda, Daniel C.; Muraqtore, J. J.; Heinick, James T.

    1994-01-01

    Time and flow-direction responses of shear-stress liquid crystal coatings were exploresd experimentally. For the time-response experiments, coatings were exposed to transient, compressible flows created during the startup and off-design operation of an injector-driven supersonic wind tunnel. Flow transients were visualized with a focusing schlieren system and recorded with a 100 frame/s color video camera.

  20. Multi-Point Combustion System: Final Report

    NASA Technical Reports Server (NTRS)

    Goeke, Jerry; Pack, Spencer; Zink, Gregory; Ryon, Jason

    2014-01-01

    A low-NOx emission combustor concept has been developed for NASA's Environmentally Responsible Aircraft (ERA) program to meet N+2 emissions goals for a 70,000 lb thrust engine application. These goals include 75 percent reduction of LTO NOx from CAEP6 standards without increasing CO, UHC, or smoke from that of current state of the art. An additional key factor in this work is to improve lean combustion stability over that of previous work performed on similar technology in the early 2000s. The purpose of this paper is to present the final report for the NASA contract. This work included the design, analysis, and test of a multi-point combustion system. All design work was based on the results of Computational Fluid Dynamics modeling with the end results tested on a medium pressure combustion rig at the UC and a medium pressure combustion rig at GRC. The theories behind the designs, results of analysis, and experimental test data will be discussed in this report. The combustion system consists of five radially staged rows of injectors, where ten small scale injectors are used in place of a single traditional nozzle. Major accomplishments of the current work include the design of a Multipoint Lean Direct Injection (MLDI) array and associated air blast and pilot fuel injectors, which is expected to meet or exceed the goal of a 75 percent reduction in LTO NOx from CAEP6 standards. This design incorporates a reduced number of injectors over previous multipoint designs, simplified and lightweight components, and a very compact combustor section. Additional outcomes of the program are validation that the design of these combustion systems can be aided by the use of Computational Fluid Dynamics to predict and reduce emissions. Furthermore, the staging of fuel through the individually controlled radially staged injector rows successfully demonstrated improved low power operability as well as improvements in emissions over previous multipoint designs. Additional comparison between Jet- A fuel and a hydrotreated biofuel is made to determine viability of the technology for use with alternative fuels. Finally, the operability of the array and associated nozzles proved to be very stable without requiring additional active or passive control systems. A number of publications have been publish

  1. Active sieving across driven nanopores for tunable selectivity

    NASA Astrophysics Data System (ADS)

    Marbach, Sophie; Bocquet, Lydéric

    2017-10-01

    Molecular separation traditionally relies on sieving processes across passive nanoporous membranes. Here we explore theoretically the concept of non-equilibrium active sieving. We investigate a simple model for an active noisy nanopore, where gating—in terms of size or charge—is externally driven at a tunable frequency. Our analytical and numerical results unveil a rich sieving diagram in terms of the forced gating frequency. Unexpectedly, the separation ability is strongly increased as compared to its passive (zero frequency) counterpart. It also points to the possibility of tuning dynamically the osmotic pressure. Active separation outperforms passive sieving and represents a promising avenue for advanced filtration.

  2. The IPHI Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ferdinand, Robin; Beauvais, Pierre-Yves

    High Power Proton Accelerators (HPPAs) are studied for several projects based on high-flux neutron sources driven by proton or deuteron beams. Since the front end is considered as the most critical part of such accelerators, the two French national research agencies CEA and CNRS decided to collaborate in 1997 to study and build a High-Intensity Proton Injector (IPHI). The main objective of this project is to master the complex technologies used and the concepts of manufacturing and controlling the HPPAs. Recently, a collaboration agreement was signed with CERN and led to some evolutions in the design and in the schedule.more » The IPHI design current was maintained at 100 mA in Continuous Wave mode. This choice should allow to produce a high reliability beam at reduced intensity (typically 30 mA) tending to fulfill the Accelerator Driven System requirements. The output energy of the Radio Frequency Quadrupole (RFQ), was reduced from 5 to 3 MeV, allowing then the adjunction and the test, in pulsed operation of a chopper line developed by CERN for the Superconducting Proton Linac (SPL). In a final step, the IPHI RFQ and the chopper line should become parts of the SPL injector. In this paper, the IPHI project and the recent evolutions are reported together with the construction and operation schedule.« less

  3. A Microwave Driven Ion Source for Continuous-Flow AMS (Abstract)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wills, J.; Schneider, R.J.; Reden, K.F. von

    2005-03-15

    A microwave-driven, gas-fed ion source originally developed as a high-current positive ion injector for a Tandem accelerator at Chalk River has been the subject of a three-year development program at the Woods Hole Oceanographic Institution NOSAMS facility. Off-line tests have demonstrated positive carbon currents of 1 mA and negative carbon currents of 80 {mu}A from CO2 gas feed. This source and a magnesium charge-exchange canal were coupled to the recombinator of the NOSAMS Tandetron for on-line tests, with the source fed with reference gasses and a combustion device.The promising results obtained have prompted the redesign of the microwave source formore » use as an on-line, continuous-flow injector for a new AMS facility under construction at NOSAMS. The new design is optimized for best transmission of the extracted positive-ion beam through the charge-exchange canal and for reliable operation at 40 kV extraction voltage. Other goals of the re-design include improved lifetime of the microwave window and the elimination of dead volumes in the plasma generator that increase sample hold-up time.This talk will include a summary of results obtained to date at NOSAMS with the Chalk River source and a detailed description of the new design.« less

  4. Optimization of laser-plasma injector via beam loading effects using ionization-induced injection

    NASA Astrophysics Data System (ADS)

    Lee, P.; Maynard, G.; Audet, T. L.; Cros, B.; Lehe, R.; Vay, J.-L.

    2018-05-01

    Simulations of ionization-induced injection in a laser driven plasma wakefield show that high-quality electron injectors in the 50-200 MeV range can be achieved in a gas cell with a tailored density profile. Using the PIC code Warp with parameters close to existing experimental conditions, we show that the concentration of N2 in a hydrogen plasma with a tailored density profile is an efficient parameter to tune electron beam properties through the control of the interplay between beam loading effects and varying accelerating field in the density profile. For a given laser plasma configuration, with moderate normalized laser amplitude, a0=1.6 and maximum electron plasma density, ne 0=4 ×1018 cm-3 , the optimum concentration results in a robust configuration to generate electrons at 150 MeV with a rms energy spread of 4% and a spectral charge density of 1.8 pC /MeV .

  5. Validation and Continued Development of Methods for Spheromak Simulation

    NASA Astrophysics Data System (ADS)

    Benedett, Thomas

    2017-10-01

    The HIT-SI experiment has demonstrated stable sustainment of spheromaks. Determining how the underlying physics extrapolate to larger, higher-temperature regimes is of prime importance in determining the viability of the inductively-driven spheromak. It is thus prudent to develop and validate a computational model that can be used to study current results and study the effect of possible design choices on plasma behavior. An extended MHD model has shown good agreement with experimental data at 14 kHz injector operation. Efforts to extend the existing validation to a range of higher frequencies (36, 53, 68 kHz) using the PSI-Tet 3D extended MHD code will be presented, along with simulations of potential combinations of flux conserver features and helicity injector configurations and their impact on current drive performance, density control, and temperature for future SIHI experiments. Work supported by USDoE.

  6. Overview of the Helicity Injected Torus (HIT) Program

    NASA Astrophysics Data System (ADS)

    Redd, A. J.; Jarboe, T. R.; Hamp, W. T.; Nelson, B. A.; O'Neill, R. G.; Sieck, P. E.; Smith, R. J.; Sutphin, G. L.; Wrobel, J. S.

    2007-06-01

    The Helicity Injected Torus with Steady Inductive Helicity Injection (HIT-SI) consists of a "bowtie"-shaped axisymmetric confinement region, with two half-torus helicity injectors mounted on each side of the axisymmetric flux conserver [Sieck et al, IEEE Trans. Plasma Sci., v.33, p.723 (2005); Jarboe, Fusion Technology, v.36, p.85 (1999)]. Current and flux are driven sinusoidally with time in each injector, with the goal of generating and sustaining an axisymmetric spheromak in the main confinement region. Improvements in machine conditioning have enabled systematic study of HIT-SI discharges with significant toroidal current ITOR, including cases in which this current ITOR switches sign one or more times during the discharge. Statistical studies of all HIT-SI discharges to date demonstrate a minimum injected power to form significant ITOR, and that the maximum ITOR scales approximately linearly with the total injected power.

  7. Study on the high speed scramjet characteristics at Mach 10 to 15 flight condition

    NASA Astrophysics Data System (ADS)

    Takahashi, M.; Itoh, K.; Tanno, H.; Komuro, T.; Sunami, T.; Sato, K.; Ueda, S.

    A scramjet engine model, designed to establish steady and strong combustion at free-stream conditions corresponding to Mach 12 flight, was tested in a large free-piston driven shock tunnel. Combustion tests of a previous engine model showed that combustion heat release obtained in the combustor was not sufficient to maintain strong combustion. For a new scramjet engine model, the inlet compression ratio was increased to raise the static temperature and density of the flow at the combustor entrance. As a result of the aerodynamic design change, the pressure rise due to combustion increased and the duration of strong combustion conditions in the combustor was extended. A hyper-mixer injector designed to enhance mixing and combustion by introducing streamwise vortices was applied to the new engine model. The results showed that the hyper mixer injector was very effective in promoting combustion heat release and establishing steady and strong combustion in the combustor.

  8. A 5 nW Quasi-Linear CMOS Hot-Electron Injector for Self-Powered Monitoring of Biomechanical Strain Variations.

    PubMed

    Zhou, Liang; Abraham, Adam C; Tang, Simon Y; Chakrabartty, Shantanu

    2016-12-01

    Piezoelectricity-driven hot-electron injectors (p-HEI) are used for self-powered monitoring of mechanical activity in biomechanical implants and structures. Previously reported p-HEI devices operate by harvesting energy from a piezoelectric transducer to generate current and voltage references which are then used for initiating and controlling the process of hot-electron injection. As a result, the minimum energy required to activate the device is limited by the power requirements of the reference circuits. In this paper we present a p-HEI device that operates by directly exploiting the self-limiting capability of an energy transducer when driving the process of hot-electron injection in a pMOS floating-gate transistor. As a result, the p-HEI device can activate itself at input power levels less than 5 nW. Using a prototype fabricated in a 0.5- [Formula: see text] bulk CMOS process we validate the functionality of the proposed injector and show that for a fixed input power, its dynamics is quasi-linear with respect to time. The paper also presents measurement results using a cadaver phantom where the fabricated p-HEI device has been integrated with a piezoelectric transducer and is used for self-powered monitoring of mechanical activity.

  9. Temporal profile measurements of relativistic electron bunch based on wakefield generation

    DOE PAGES

    Bettoni, S.; Craievich, P.; Lutman, A. A.; ...

    2016-02-25

    A complete characterization of the time-resolved longitudinal beam phase space is important to optimize the final performances of an accelerator, and in particular this is crucial for Free Electron Laser (FEL) facilities. In this study we propose a novel method to characterize the profile of a relativistic electron bunch by passively streaking the beam using its self-interaction with the transverse wakefield excited by the bunch itself passing off-axis through a dielectric-lined or a corrugated waveguide. Results of a proof-of-principle experiment at the SwissFEL Injector Test Facility are discussed.

  10. Water transport mechanism through open capillaries analyzed by direct surface modifications on biological surfaces

    NASA Astrophysics Data System (ADS)

    Ishii, Daisuke; Horiguchi, Hiroko; Hirai, Yuji; Yabu, Hiroshi; Matsuo, Yasutaka; Ijiro, Kuniharu; Tsujii, Kaoru; Shimozawa, Tateo; Hariyama, Takahiko; Shimomura, Masatsugu

    2013-10-01

    Some small animals only use water transport mechanisms passively driven by surface energies. However, little is known about passive water transport mechanisms because it is difficult to measure the wettability of microstructures in small areas and determine the chemistry of biological surfaces. Herein, we developed to directly analyse the structural effects of wettability of chemically modified biological surfaces by using a nanoliter volume water droplet and a hi-speed video system. The wharf roach Ligia exotica transports water only by using open capillaries in its legs containing hair- and paddle-like microstructures. The structural effects of legs chemically modified with a self-assembled monolayer were analysed, so that the wharf roach has a smart water transport system passively driven by differences of wettability between the microstructures. We anticipate that this passive water transport mechanism may inspire novel biomimetic fluid manipulations with or without a gravitational field.

  11. An analysis of respondent-driven sampling with injecting drug users in a high HIV prevalent state of India.

    PubMed

    Phukan, Sanjib Kumar; Medhi, Gajendra Kumar; Mahanta, Jagadish; Adhikary, Rajatashuvra; Thongamba, Gay; Paranjape, Ramesh S; Akoijam, Brogen S

    2017-07-03

    Personal networks are significant social spaces to spread of HIV or other blood-borne infections among hard-to-reach population, viz., injecting drug users, female sex workers, etc. Sharing of infected needles or syringes among drug users is one of the major routes of HIV transmission in Manipur, a high HIV prevalence state in India. This study was carried out to describe the network characteristics and recruitment patterns of injecting drug users and to assess the association of personal network with injecting risky behaviors in Manipur. A total of 821 injecting drug users were recruited into the study using respondent-driven sampling (RDS) from Bishnupur and Churachandpur districts of Manipur; data on demographic characteristics, HIV risk behaviors, and network size were collected from them. Transition probability matrices and homophily indices were used to describe the network characteristics, and recruitment patterns of injecting drug users. Univariate and multivariate binary logistic regression models were performed to analyze the association between the personal networks and sharing of needles or syringes. The average network size was similar in both the districts. Recruitment analysis indicates injecting drug users were mostly engaged in mixed age group setting for injecting practice. Ever married and new injectors showed lack of in-group ties. Younger injecting drug users had mainly recruited older injecting drug users from their personal network. In logistic regression analysis, higher personal network was found to be significantly associated with increased likelihood of injecting risky behaviors. Because of mixed personal network of new injectors and higher network density associated with HIV exposure, older injecting drug users may act as a link for HIV transmission or other blood-borne infections to new injectors and also to their sexual partners. The information from this study may be useful to understanding the network pattern of injecting drug users for enriching the HIV prevention in this region.

  12. Analysis of Alfven eigenmode destabilization in DIII-D high poloidal β discharges using a Landau closure model

    NASA Astrophysics Data System (ADS)

    Varela, J.; Spong, D. A.; Garcia, L.; Huang, J.; Murakami, M.; Garofalo, A. M.; Qian, J. P.; Holcomb, C. T.; Hyatt, A. W.; Ferron, J. R.; Collins, C. S.; Ren, Q. L.; McClenaghan, J.; Guo, W.

    2018-07-01

    Alfvén eigenmodes are destabilized at the DIII-D pedestal during transient beta drops in high poloidal β discharges with internal transport barriers (ITBs), driven by n  =  1 external kink modes, leading to energetic particle losses. There are two different scenarios in the thermal β recovery phase: with bifurcation (two instability branches with different frequencies) or without bifurcation (single instability branch). We use the reduced MHD equations in a full 3D system, coupled with equations of density and parallel velocity moments for the energetic particles as well as the geodesic acoustic wave dynamics, to study the properties of the instabilities observed in the DIII-D high poloidal β discharges and identify the conditions to trigger the bifurcation. The simulations suggest that instabilities with lower frequency in the bifurcation case are ballooning modes driven at the plasma pedestal, while the instability branch with higher frequencies are low n (n  <  4) toroidal Alfvén eigenmodes nearby the pedestal. The reverse shear region between the middle and plasma periphery in the non-bifurcated case avoids the excitation of ballooning modes at the pedestal, although toroidal Alfvén eigenmodes and reverse shear Alfvén eigenmodes are unstable in the reverse shear region. The n  =  1 and n  =  2 Alfvén eigenmode activity can be suppressed or minimized if the neutral beam injector (NBI) intensity is lower than the experimental value (). In addition, if the beam energy or neutral beam injector voltage is lower than in the experiment (), the resonance between beam and thermal plasma is weaker. The and 6 AE activity can not be fully suppressed, although the growth rate and frequency is smaller for an optimized neutral beam injector operation regime. In conclusion, AE activity in high poloidal β discharges can be minimized for optimized NBI operation regimes.

  13. Maximum current density and beam brightness achievable by laser-driven electron sources

    NASA Astrophysics Data System (ADS)

    Filippetto, D.; Musumeci, P.; Zolotorev, M.; Stupakov, G.

    2014-02-01

    This paper discusses the extension to different electron beam aspect ratio of the Child-Langmuir law for the maximum achievable current density in electron guns. Using a simple model, we derive quantitative formulas in good agreement with simulation codes. The new scaling laws for the peak current density of temporally long and transversely narrow initial beam distributions can be used to estimate the maximum beam brightness and suggest new paths for injector optimization.

  14. Dynamics of electron injection and acceleration driven by laser wakefield in tailored density profiles

    DOE PAGES

    Lee, Patrick; Maynard, G.; Audet, T. L.; ...

    2016-11-16

    The dynamics of electron acceleration driven by laser wakefield is studied in detail using the particle-in-cell code WARP with the objective to generate high-quality electron bunches with narrow energy spread and small emittance, relevant for the electron injector of a multistage accelerator. Simulation results, using experimentally achievable parameters, show that electron bunches with an energy spread of ~11% can be obtained by using an ionization-induced injection mechanism in a mm-scale length plasma. By controlling the focusing of a moderate laser power and tailoring the longitudinal plasma density profile, the electron injection beginning and end positions can be adjusted, while themore » electron energy can be finely tuned in the last acceleration section.« less

  15. Beam commissioning for a superconducting proton linac

    NASA Astrophysics Data System (ADS)

    Wang, Zhi-Jun; He, Yuan; Jia, Huan; Dou, Wei-ping; Chen, Wei-long; Zhang, X. L.; Liu, Shu-hui; Feng, Chi; Tao, Yue; Wang, Wang-sheng; Wu, Jian-qiang; Zhang, Sheng-hu; Zhao, Hong-Wei

    2016-12-01

    To develop the next generation of safe and cleaner nuclear energy, the accelerator-driven subcritical (ADS) system emerges as one of the most attractive technologies. It will be able to transmute the long-lived transuranic radionuclides produced in the reactors of today's nuclear power plants into shorter-lived ones, and also it will provide positive energy output at the same time. The prototype of the Chinese ADS (C-ADS) proton accelerator comprises two injectors and a 1.5 GeV, 10 mA continuous wave (CW) superconducting main linac. The injector scheme II at the C-ADS demo facility inside the Institute of Modern Physics is a 10 MeV CW superconducting linac with a designed beam current of 10 mA, which includes an ECR ion source, a low-energy beam transport line, a 162.5 MHz radio frequency quadrupole accelerator, a medium-energy beam transport line, and a superconducting half wave resonator accelerator section. This demo facility has been successfully operating with an 11 mA, 2.7 MeV CW beam and a 3.9 mA, 4.3 MeV CW beam at different times and conditions since June 2014. The beam power has reached 28 kW, which is the highest record for the same type of linear accelerators. In this paper, the parameters of the test injector II and the progress of the beam commissioning are reported.

  16. Associations between injection risk and community disadvantage among suburban injection drug users in southwestern Connecticut, USA.

    PubMed

    Heimer, Robert; Barbour, Russell; Palacios, Wilson R; Nichols, Lisa G; Grau, Lauretta E

    2014-03-01

    Increases in drug abuse, injection, and opioid overdoses in suburban communities led us to study injectors residing in suburban communities in southwestern Connecticut, US. We sought to understand the influence of residence on risk and injection-associated diseases. Injectors were recruited by respondent-driven sampling and interviewed about sociodemographics, somatic and mental health, injection risk, and interactions with healthcare, harm reduction, substance abuse treatment, and criminal justice systems. HIV, hepatitis B and C (HBV and HCV) serological testing was also conducted. Our sample was consistent in geographic distribution and age to the general population and to the patterns of heroin-associated overdose deaths in the suburban towns. High rates of interaction with drug abuse treatment and criminal justice systems contrasted with scant use of harm reduction services. The only factors associated with both dependent variables-residence in less disadvantaged census tracts and more injection risk-were younger age and injecting in one's own residence. This contrasts with the common association among urban injectors of injection-associated risk behaviors and residence in disadvantaged communities. Poor social support and moderate/severe depression were associated with risky injection practices (but not residence in specific classes of census tracts), suggesting that a region-wide dual diagnosis approach to the expansion of harm reduction services could be effective at reducing the negative consequences of injection drug use.

  17. Passive injection control for microfluidic systems

    DOEpatents

    Paul, Phillip H.; Arnold, Don W.; Neyer, David W.

    2004-12-21

    Apparatus for eliminating siphoning, "dead" regions, and fluid concentration gradients in microscale analytical devices. In its most basic embodiment, the present invention affords passive injection control for both electric field-driven and pressure-driven systems by providing additional fluid flow channels or auxiliary channels disposed on either side of a sample separation column. The auxiliary channels are sized such that volumetric fluid flow rate through these channels, while sufficient to move the sample away from the sample injection region in a timely fashion, is less than that through the sample separation channel or chromatograph.

  18. MHD Simulations of Plasma Dynamics with Non-Axisymmetric Boundaries

    NASA Astrophysics Data System (ADS)

    Hansen, Chris; Levesque, Jeffrey; Morgan, Kyle; Jarboe, Thomas

    2015-11-01

    The arbitrary geometry, 3D extended MHD code PSI-TET is applied to linear and non-linear simulations of MCF plasmas with non-axisymmetric boundaries. Progress and results from simulations on two experiments will be presented: 1) Detailed validation studies of the HIT-SI experiment with self-consistent modeling of plasma dynamics in the helicity injectors. Results will be compared to experimental data and NIMROD simulations that model the effect of the helicity injectors through boundary conditions on an axisymmetric domain. 2) Linear studies of HBT-EP with different wall configurations focusing on toroidal asymmetries in the adjustable conducting wall. HBT-EP studies the effect of active/passive stabilization with an adjustable ferritic wall. Results from linear verification and benchmark studies of ideal mode growth with and without toroidal asymmetries will be presented and compared to DCON predictions. Simulations of detailed experimental geometries are enabled by use of the PSI-TET code, which employs a high order finite element method on unstructured tetrahedral grids that are generated directly from CAD models. Further development of PSI-TET will also be presented including work to support resistive wall regions within extended MHD simulations. Work supported by DoE.

  19. Studies on Plasmoid Merging using Compact Toroid Injectors

    NASA Astrophysics Data System (ADS)

    Allfrey, Ian; Matsumoto, Tadafumi; Roche, Thomas; Gota, Hiroshi; Edo, Takahiro; Asai, Tomohiko; Sheftman, Daniel; Osin Team; Dima Team

    2017-10-01

    C-2 and C-2U experiments have used magnetized coaxial plasma guns (MCPG) to inject compact toroids (CTs) for refueling the long-lived advanced beam-driven field-reversed configuration (FRC) plasma. This refueling method will also be used for the C-2W experiment. To minimize momentum transfer from the CT to the FRC two CTs are injected radially, diametrically opposed and coincident in time. To improve understanding of the CT characteristics TAE has a dedicated test bed for the development of CT injectors (CTI), where plasmoid merging experiments are performed. The test bed has two CTIs on axis with both axial and transverse magnetic fields. The 1 kG magnetic fields, intended to approximate the magnetic field strength and injection angle on C-2W, allow studies of cross-field transport and merging. Both CTIs are capable of injecting multiple CTs at up to 1 kHz. The resulting merged CT lives >100 μs with a radius of 25 cm. More detailed results of CT parameters will be presented.

  20. Deformation mechanism of the Cryostat in the CADS Injector II

    NASA Astrophysics Data System (ADS)

    Yuan, Jiandong; Zhang, Bin; Wan, Yuqin; Sun, Guozhen; Bai, Feng; Zhang, Juihui; He, Yuan

    2018-01-01

    Thermal contraction and expansion of the Cryostat will affect its reliability and stability. To optimize and upgrade the Cryostat, we analyzed the heat transfer in a cryo-vacuum environment from the theoretical point first. The simulation of cryo-vacuum deformation based on a finite element method was implemented respectively. The completed measurement based on a Laser Tracker and a Micro Alignment Telescope was conducted to verify its correctness. The monitored deformations were consistent with the simulated ones. After the predictable deformations in vertical direction have been compensated, the superconducting solenoids and Half Wave Resonator cavities approached the ideal "zero" position under liquid helium conditions. These guaranteed the success of 25 MeV@170 uA continuous wave protons of Chinese accelerator driven subcritical system Injector II. By correlating the vacuum and cryo-deformation, we have demonstrated that the complete deformation was the superposition effect of the atmospheric pressure, gravity and thermal stress during both the process of cooling down and warming up. The results will benefit to an optimization for future Cryostat's design.

  1. 2D hydrodynamic simulations of a variable length gas target for density down-ramp injection of electrons into a laser wakefield accelerator

    NASA Astrophysics Data System (ADS)

    Kononenko, O.; Lopes, N. C.; Cole, J. M.; Kamperidis, C.; Mangles, S. P. D.; Najmudin, Z.; Osterhoff, J.; Poder, K.; Rusby, D.; Symes, D. R.; Warwick, J.; Wood, J. C.; Palmer, C. A. J.

    2016-09-01

    In this work, two-dimensional (2D) hydrodynamic simulations of a variable length gas cell were performed using the open source fluid code OpenFOAM. The gas cell was designed to study controlled injection of electrons into a laser-driven wakefield at the Astra Gemini laser facility. The target consists of two compartments: an accelerator and an injector section connected via an aperture. A sharp transition between the peak and plateau density regions in the injector and accelerator compartments, respectively, was observed in simulations with various inlet pressures. The fluid simulations indicate that the length of the down-ramp connecting the sections depends on the aperture diameter, as does the density drop outside the entrance and the exit cones. Further studies showed, that increasing the inlet pressure leads to turbulence and strong fluctuations in density along the axial profile during target filling, and consequently, is expected to negatively impact the accelerator stability.

  2. Gas Turbine Engine Staged Fuel Injection Using Adjacent Bluff Body and Swirler Fuel Injectors

    NASA Technical Reports Server (NTRS)

    Snyder, Timothy S. (Inventor)

    2015-01-01

    A fuel injection array for a gas turbine engine includes a plurality of bluff body injectors and a plurality of swirler injectors. A control operates the plurality of bluff body injectors and swirler injectors such that bluff body injectors are utilized without all of the swirler injectors at least at low power operation. The swirler injectors are utilized at higher power operation.

  3. Annual Report to the Strategic Defense Initiative Organization on the Free-Electron Laser Driven by the NIST CW Microtron

    DTIC Science & Technology

    1986-05-05

    design of the injector for the method selected was completed. A study on the problem of mirror damage has been completed, and commercial suppliers of... mirrors that can withstand the high intracavity power of the FEL have been identified. The design of the room in which the FEL is located has been...Appendices ............ ............................. .25 A. Design Note 10 - Mirror Damage B. Design Note 11 - Wiggler Field Errors C. Design Note 12

  4. Northrop Grumman TR202 LOX/LH2 Deep Throttling Engine Project Status

    NASA Technical Reports Server (NTRS)

    Gromski, J.; Majamaki, A. N.; Chianese, S. G.; Weinstock, V. D.; Kim, T.

    2010-01-01

    NASA's Propulsion and Cryogenic Advanced Development (PCAD) project is currently developing enabling propulsion technologies in support of the Exploration Initiative, with a particular focus on the needs of the Altair Project. To meet Altair requirements, several technical challenges need to be overcome, one of which is the ability for the lunar descent engine(s) to operate over a deep throttle range with cryogenic propellants. To address this need, PCAD has enlisted Northrop Grumman Aerospace Systems (NGAS) in a technology development effort associated with the TR202, a LOX/LH2 expander cycle engine driven by independent turbopump assemblies and featuring a variable area pintle injector similar to the injector used on the TR200 Apollo Lunar Module Descent Engine (LMDE). Since the Apollo missions, NGAS has continued to mature deep throttling pintle injector technology. The TR202 program has completed two phases of pintle injector testing. The first phase of testing used ablative thrust chambers and demonstrated igniter operation as well as stable performance at several power levels across the designed 10:1 throttle range. The second phase of testing was performed on a calorimeter chamber and demonstrated injector performance at various power levels (75%, 50%, 25%, 10%, and 7.5%) across the throttle range as well as chamber heat flux to show that the engine can close an expander cycle design across the throttle range. This paper provides an overview of the TR202 program. It describes the different phases of the program with the key milestones of each phase. It then shows when those milestones were met. Next, it describes how the test data was used to update the conceptual design and how the test data has created a database for deep throttling cryogenic pintle technology that is readily scaleable and can be used to again update the design once the Altair program's requirements are firm. The final section of the paper describes the path forward, which includes demonstrating continuously throttling with an actuator and pursuing a path towards integrated engine sea-level test-bed testing.

  5. Passively Driven Probe Based on Miniaturized Propeller for Intravascular Optical Coherence Tomography.

    PubMed

    Lu, Yu; Li, Zhongliang; Nan, Nan; Bu, Yang; Liu, Xuebo; Xu, Xiangdong; Wang, Xuan; Sasaki, Osami; Wang, Xiangzhao

    2018-03-26

    Optical coherent tomography (OCT) has enabled clinical applications ranging from ophthalmology to cardiology that revolutionized in vivo medical diagnostics in the last few decades, and a variety of endoscopic probes have been developed in order to meet the needs of various endoscopic OCT imaging. We propose a passive driven intravascular optical coherent tomography (IV-OCT) probe in this paper. Instead of using any electrically driven scanning device, the probe makes use of the kinetic energy of the fluid that flushes away the blood during the intravascular optical coherence tomography imaging. The probe converts it into the rotational kinetic energy of the propeller, and the rotation of the rectangular prism mounted on the propeller shaft enables the scanning of the beam. The probe is low cost, and enables unobstructed stable circumferential scanning over 360 deg. The experimental results show that the probe scanning speed can exceed 100 rotations per second (rps). Spectral-domain OCT imaging of a phantom and porcine cardiac artery are demonstrated with axial resolution of 13.6 μm, lateral resolution of 22 μm, and sensitivity of 101.7 dB. We present technically the passively driven IV-OCT probe in full detail and discuss how to optimize the probe in further.

  6. A new concept for spatially divided Deep Reactive Ion Etching with ALD-based passivation

    NASA Astrophysics Data System (ADS)

    Roozeboom, F.; Kniknie, B.; Lankhorst, A. M.; Winands, G.; Knaapen, R.; Smets, M.; Poodt, P.; Dingemans, G.; Keuning, W.; Kessels, W. M. M.

    2012-12-01

    Conventional Deep Reactive Ion Etching (DRIE) is a plasma etch process with alternating half-cycles of 1) Si-etching with SF6 to form gaseous SiFx etch products, and 2) passivation with C4F8 that polymerizes as a protecting fluorocarbon deposit on the sidewalls and bottom of the etched features. In this work we report on a novel alternative and disruptive technology concept of Spatially-divided Deep Reactive Ion Etching, S-DRIE, where the process is converted from the time-divided into the spatially divided regime. The spatial division can be accomplished by inert gas bearing 'curtains' of heights down to ~20 μm. These curtains confine the reactive gases to individual (often linear) injection slots constructed in a gas injector head. By horizontally moving the substrate back and forth under the head one can realize the alternate exposures to the overall cycle. A second improvement in the spatially divided approach is the replacement of the CVD-based C4F8 passivation steps by ALD-based oxide (e.g. SiO2) deposition cycles. The method can have industrial potential in cost-effective creation of advanced 3D interconnects (TSVs), MEMS manufacturing and advanced patterning, e.g., in nanoscale transistor line edge roughness using Atomic Layer Etching.

  7. Developing a compact toroid injector in the ThermoElectric driven Liquid metal plasma facing Structures device

    NASA Astrophysics Data System (ADS)

    Christenson, Michael; Szott, Matthew; Kalathiparambil, Kishor; Sovinec, Carl; Ruzic, David

    2016-10-01

    The ThermoElectric-driven Liquid-metal plasma-facing Structures (TELS) device at the University of Illinois is a theta-pinched, plasma-material interaction test stand used to simulate extreme events in the edge and divertor regions of a tokamak plasma. Previous measurements of the electron and ion temperatures have shown that the isotropic heat load on target ranges between 0.1 and 0.2 MJ m-2 over a pulse lasting 0.2 ms. While this compares well to the heat loads from Type 1 ELMs in larger toroidal devices, it is still much less than the energy deposition from Type 1 ELMs expected in ITER, which are in excess of 1 MJ m-2. To this end, a compact toroid (CT) injector has been proposed as a modification to the existing TELS device. By using an externally applied bias field to force reconnection at the muzzle of the coaxial plasma accelerator source that drives ionization, NIMROD MHD simulations have shown a peak magnetic flux of 3.5 mWb is reached 0.025 ms into the pulse - more than sufficient to form a CT. Early calorimetry and magnetic field measurements indicate that a new plasma structure has been formed in the magnetized coaxial plasma source. This work presents the current results of CT generation with respect to the bias field strength as well as the coaxial source geometry. DOE OFES DE-SC0008587, DE-SC0008658, DE-FG02-99ER54515.

  8. Triaxial Swirl Injector Element for Liquid-Fueled Engines

    NASA Technical Reports Server (NTRS)

    Muss, Jeff

    2010-01-01

    A triaxial injector is a single bi-propellant injection element located at the center of the injector body. The injector element consists of three nested, hydraulic swirl injectors. A small portion of the total fuel is injected through the central hydraulic injector, all of the oxidizer is injected through the middle concentric hydraulic swirl injector, and the balance of the fuel is injected through an outer concentric injection system. The configuration has been shown to provide good flame stabilization and the desired fuel-rich wall boundary condition. The injector design is well suited for preburner applications. Preburner injectors operate at extreme oxygen-to-fuel mass ratios, either very rich or very lean. The goal of a preburner is to create a uniform drive gas for the turbomachinery, while carefully controlling the temperature so as not to stress or damage turbine blades. The triaxial injector concept permits the lean propellant to be sandwiched between two layers of the rich propellant, while the hydraulic atomization characteristics of the swirl injectors promote interpropellant mixing and, ultimately, good combustion efficiency. This innovation is suited to a wide range of liquid oxidizer and liquid fuels, including hydrogen, methane, and kerosene. Prototype testing with the triaxial swirl injector demonstrated excellent injector and combustion chamber thermal compatibility and good combustion performance, both at levels far superior to a pintle injector. Initial testing with the prototype injector demonstrated over 96-percent combustion efficiency. The design showed excellent high -frequency combustion stability characteristics with oxygen and kerosene propellants. Unlike the more conventional pintle injector, there is not a large bluff body that must be cooled. The absence of a protruding center body enhances the thermal durability of the triaxial swirl injector. The hydraulic atomization characteristics of the innovation allow the design to be rapidly scaled from small in-space applications [500-5,000 lbf (2.2 22.2 kN)] to large thrust engine applications [80,000 lbf (356 kN) and beyond]. The triaxial injector is also less sensitive to eccentricities, manufacturing tolerances, and gap width of many traditional coaxial and pintle injector designs. The triaxial-injector injection orifice configuration provides for high injection stiffness. The low parts count and relatively large injector design features are amenable to low-cost production.

  9. Light-Driven Chiral Molecular Motors for Passive Agile Filters

    DTIC Science & Technology

    2014-05-20

    liquid crystal , we fabricated the self-organized, phototubable 3D photonic superstructure, i.e. photoresponsive monodisperse cholesteric liquid...systems for applications. Here the new light-driven chiral molecular switch and upconversion nanoparticles, doped in a liquid crystal media, were...the bottom-up nanofabrication of intelligent molecular devices. Light-driven chiral molecular switches or motors in liquid crystal (LC) media that

  10. Comparison of JP-8 Sprays from a Hydraulically Actuated Electronically Controlled Unit Injector and a Common Rail Injector

    DTIC Science & Technology

    2015-10-01

    acquired of a calibration plate to provide scaling for the injector orifices. The determined scaling factor for the images was 0.3 µm/pixel. A circle...Controlled Unit Injector and a Common Rail Injector by Matthew Kurman, Michael Tess, Luis Bravo, Chol-Bum Kweon, and Craig Hershey Reprinted...Comparison of JP-8 Sprays from a Hydraulically Actuated Electronically Controlled Unit Injector and a Common Rail Injector by Matthew Kurman

  11. Dual nozzle single pump fuel injection system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gonzalez, C.

    1992-02-25

    This patent describes an improvement in a fuel injection system in a stratified charge hybrid internal combustion engine including a main combustion chamber, a precombustion chamber connected with the main chamber, fuel injectors in the main combustion chamber and precombustion chamber which open at higher and lower pressure levels respectively to sequentially inject fuel into the prechamber and the main chamber, timed spark ignition means in the prechamber for ignition of the fuel-air mixture therein, and an engine driven and timed fuel injection pump having a variable output capacity that varies with power level position, the injection pump is suppliedmore » by a low pressure charging pump. The improvement comprises: a shuttle valve including a bore therein; a shuttle spool means positioned within the bore defining a prechamber supply chamber on one side thereof and a spool activation chamber on the opposite side thereof the spool means having a first and second position; biasing means urging the spool towards it first position with the spool actuation chamber at its minimum volume; first conduit means connecting charging pressure to the prechamber supply camber in the first position oil the spool means; second conduit means connecting the injection pump to spool actuation chamber; third conduit means connecting the spool actuating chamber with the main injector; forth conduit means connecting the prechamber supply chamber with the prechamber injector; the initial charge from the injection pump actuates the spool means from its fir to its second position.« less

  12. Folding in and out: passive morphing in flapping wings.

    PubMed

    Stowers, Amanda K; Lentink, David

    2015-03-25

    We present a new mechanism for passive wing morphing of flapping wings inspired by bat and bird wing morphology. The mechanism consists of an unactuated hand wing connected to the arm wing with a wrist joint. Flapping motion generates centrifugal accelerations in the hand wing, forcing it to unfold passively. Using a robotic model in hover, we made kinematic measurements of unfolding kinematics as functions of the non-dimensional wingspan fold ratio (2-2.5) and flapping frequency (5-17 Hz) using stereo high-speed cameras. We find that the wings unfold passively within one to two flaps and remain unfolded with only small amplitude oscillations. To better understand the passive dynamics, we constructed a computer model of the unfolding process based on rigid body dynamics, contact models, and aerodynamic correlations. This model predicts the measured passive unfolding within about one flap and shows that unfolding is driven by centrifugal acceleration induced by flapping. The simulations also predict that relative unfolding time only weakly depends on flapping frequency and can be reduced to less than half a wingbeat by increasing flapping amplitude. Subsequent dimensional analysis shows that the time required to unfold passively is of the same order of magnitude as the flapping period. This suggests that centrifugal acceleration can drive passive unfolding within approximately one wingbeat in small and large wings. Finally, we show experimentally that passive unfolding wings can withstand impact with a branch, by first folding and then unfolding passively. This mechanism enables flapping robots to squeeze through clutter without sophisticated control. Passive unfolding also provides a new avenue in morphing wing design that makes future flapping morphing wings possibly more energy efficient and light-weight. Simultaneously these results point to possible inertia driven, and therefore metabolically efficient, control strategies in bats and birds to morph or recover within a beat.

  13. Experimental study of combustion processes involved in hypergolic propellant coaxial injector operation

    NASA Astrophysics Data System (ADS)

    Habiballah, M.; Dubois, I.; Gicquel, P.; Foucaud, R.

    1992-07-01

    The first results are presented of an experimental research program to understand the operation of a coaxial injector using hypergolic propellants. Mechanisms and processes involved in coaxial injector operation are identified for a two-plate injector and a coaxial injector. The usefulness of backlight cinematography and laser sheet visualization in the study of coaxial injector operation is examined. A review of the literature on injector elements using highly reactive hypergolic propellants is presented along with an analysis of fundamental mechanisms involved in these propellants.

  14. Swirl Coaxial Injector Testing with LOX/RP-J

    NASA Technical Reports Server (NTRS)

    Greene, Sandra Elam; Casiano, Matt

    2013-01-01

    Testing was conducted at NASA fs Marshall Space Flight Center (MSFC) in the fall of 2012 to evaluate the operation and performance of liquid oxygen (LOX) and kerosene (RP ]1) in an existing swirl coaxial injector. While selected Russian engines use variations of swirl coaxial injectors, component level performance data has not been readily available, and all previously documented component testing at MSFC with LOX/RP ]1 had been performed using a variety of impinging injector designs. Impinging injectors have been adequate for specific LOX/RP ]1 engine applications, yet swirl coaxial injectors offer easier fabrication efforts, providing cost and schedule savings for hardware development. Swirl coaxial elements also offer more flexibility for design changes. Furthermore, testing with LOX and liquid methane propellants at MSFC showed that a swirl coaxial injector offered improved performance compared to an impinging injector. So, technical interest was generated to see if similar performance gains could be achieved with LOX/RP ]1 using a swirl coaxial injector. Results would allow such injectors to be considered for future engine concepts that require LOX/RP ]1 propellants. Existing injector and chamber hardware was used in the test assemblies. The injector had been tested in previous programs at MSFC using LOX/methane and LOX/hydrogen propellants. Minor modifications were made to the injector to accommodate the required LOX/RP ]1 flows. Mainstage tests were performed over a range of chamber pressures and mixture ratios. Additional testing included detonated gbombs h for stability data. Test results suggested characteristic velocity, C*, efficiencies for the injector were 95 ]97%. The injector also appeared dynamically stable with quick recovery from the pressure perturbations generated in the bomb tests.

  15. Measurements of admittances and characteristic combustion times of reactive gaseous propellant coaxial injectors

    NASA Technical Reports Server (NTRS)

    Janardan, B. A.; Daniel, B. R.; Zinn, B. T.

    1979-01-01

    The results of an experimental investigation that was concerned with the quantitative determination of the capabilities of combustion processes associated with coaxial injectors to amplify and sustain combustor oscillations was described. The driving provided by the combustion process was determined by employing the modified standing-wave method utilizing coaxial injectors and air-acetylene mixtures. Analyses of the measured data indicate that the investigated injectors are capable of initiating and amplifying combustion instabilities under favorable conditions of injector-combustion coupling and over certain frequency ranges. These frequency ranges and the frequency at which an injector's driving capacity is maximum are observed to depend upon the equivalence ratio, the pressure drop across the injector orifices and the number of injector elements. The characteristic combustion times of coaxial injectors were determined from steady state temperature measurements.

  16. Space Storable Propellant Performance Gas/Liquid Like-Doublet Injector Characterization

    NASA Technical Reports Server (NTRS)

    Falk, A. Y.

    1972-01-01

    A 30-month applied research program was conducted, encompassing an analytical, design, and experimental effort to relate injector design parameters to simultaneous attainment of high performance and component (injector/thrust chamber) compatibility for gas/liquid space-storable propellants. The gas/liquid propellant combination selected for study was FLOX (82.6% F2)/ambient temperature gaseous methane. The injector pattern characterized was the like-(self)-impinging doublet. Program effort was apportioned into four basic technical tasks: injector and thrust chamber design, injector and thrust chamber fabrication, performance evaluation testing, and data evaluation and reporting. Analytical parametric combustion analyses and cold flow distribution and atomization experiments were conducted with injector segment models to support design of injector/thrust chamber combinations for hot fire evaluation. Hot fire tests were conducted to: (1) optimize performance of the injector core elements, and (2) provide design criteria for the outer zone elements so that injector/thrust chamber compatibility could be achieved with only minimal performance losses.

  17. Space transportation booster engine thrust chamber technology, large scale injector

    NASA Technical Reports Server (NTRS)

    Schneider, J. A.

    1993-01-01

    The objective of the Large Scale Injector (LSI) program was to deliver a 21 inch diameter, 600,000 lbf thrust class injector to NASA/MSFC for hot fire testing. The hot fire test program would demonstrate the feasibility and integrity of the full scale injector, including combustion stability, chamber wall compatibility (thermal management), and injector performance. The 21 inch diameter injector was delivered in September of 1991.

  18. A Pre-ionization System to Limit Neutral Gas in a Compact Toroid Injector

    NASA Astrophysics Data System (ADS)

    Allfrey, Ian; Roche, Thomas; Matsumoto, Tadafumi; Garate, Eusebio; Gota, Hiroshi; Asai, Tomohiko; the TAE Team

    2016-10-01

    Fusion plasmas require long lifetimes and high temperatures, both of which are limited by particle loss, among other factors. Therefore, refueling a long-lived advanced beam-driven field-reversed configuration (FRC) plasma in C-2U is necessary, and injecting a supersonic compact toroid (CT) is an effective means of introducing particles into the FRC core. However, neutral gas that trails the CT into the target chamber cools the FRC. Pre-ionization (PI) system assists the break down between electrodes of the CT injector (CTI), so the amount of introduced gas can be lowered by up to a factor of two, effectively increasing the ionization fraction; thus, reducing the amount of neutral gas in the system. Additionally, the PI decreases the delay in CTI breakdown so a highly reproducible operation is achievable. The PI system consists of a fast, high voltage, pulse discharge circuit coupled to a Teflon insulated semi-rigid coaxial cable inserted into the CTI. System details and experimental data will be presented, in addition to issues such as the introduction of impurities and pre-ionizer lifetime.

  19. Continued Development and Validation of Methods for Spheromak Simulation

    NASA Astrophysics Data System (ADS)

    Benedett, Thomas

    2015-11-01

    The HIT-SI experiment has demonstrated stable sustainment of spheromaks; determining how the underlying physics extrapolate to larger, higher-temperature regimes is of prime importance in determining the viability of the inductively-driven spheromak. It is thus prudent to develop and validate a computational model that can be used to study current results and provide an intermediate step between theory and future experiments. A zero-beta Hall-MHD model has shown good agreement with experimental data at 14.5 kHz injector operation. Experimental observations at higher frequency, where the best performance is achieved, indicate pressure effects are important and likely required to attain quantitative agreement with simulations. Efforts to extend the existing validation to high frequency (~ 36-68 kHz) using an extended MHD model implemented in the PSI-TET arbitrary-geometry 3D MHD code will be presented. Results from verification of the PSI-TET extended MHD model using the GEM magnetic reconnection challenge will also be presented along with investigation of injector configurations for future SIHI experiments using Taylor state equilibrium calculations. Work supported by DoE.

  20. Passive MHD Spectroscopy for Enabling Magnetic Reconstructions on Spherical Tokamak Plasmas at General Fusion Inc

    NASA Astrophysics Data System (ADS)

    O'Shea, Peter; Laberge, Michel; Mossman, Alex; Reynolds, Meritt

    2017-10-01

    Magnetic reconstructions on lab based plasma injectors at General Fusion relies heavily on edge magnetic (``Bdot'') probes. On plasma experiments built for field compression (PCS) tests, the number and locations of Bdot probes is limited by mechanical constraints. Additional information about the q profiles near the core in our Spector plasmas is obtained using passive MHD spectroscopy. The coaxial helicity injection (CHI) formation process naturally generates hollow current profiles and reversed shear early in each discharge. Central Ohmic heating naturally peaks the current profiles as our plasmas evolve in time, simultaneously reducing the core safety factor, q(0), and reverse shear. As the central, non-monotonic q-profile crosses rational flux surfaces, we observe transient magnetic reconnection events (MRE's) due to the double tearing mode. Modal analysis allows us to infer the q surfaces involved in each burst. The parametric dependence of the timing of MRE's allows us to estimate the continuous time evolution of the core q profile. Combining core MHD spectroscopy with edge magnetic probe measurements greatly enhances our certainty of the overall q profile.

  1. Effects of fuel-injector design on ultra-lean combustion performance

    NASA Technical Reports Server (NTRS)

    Anderson, D. N.

    1981-01-01

    Emissions data were obtained for six fuel injector configurations tested with ultra lean combustion. Fuel injectors included three multiple source designs and three configurations using a single air assist injector. Only the multiple source fuel injectors provided acceptable emissions. Values of 16g CO/kg fuel, 1.9g HC/kg fuel, and 19.g NO2/kg fuel were obtained for the combustion temperature range of 1450 to 1700 K for both a high blockage 19 source injector and a low blockage 41 source injector. It was shown that high fuel injector pressure drop may not be required to achieve low emissions performance at high inlet air temperature when the fuel is well dispersed in the airstream.

  2. Design of 1 MHz Solid State High Frequency Power Supply

    NASA Astrophysics Data System (ADS)

    Parmar, Darshan; Singh, N. P.; Gajjar, Sandip; Thakar, Aruna; Patel, Amit; Raval, Bhavin; Dhola, Hitesh; Dave, Rasesh; Upadhay, Dishang; Gupta, Vikrant; Goswami, Niranjan; Mehta, Kush; Baruah, Ujjwal

    2017-04-01

    High Frequency Power supply (HFPS) is used for various applications like AM Transmitters, metallurgical applications, Wireless Power Transfer, RF Ion Sources etc. The Ion Source for a Neutral beam Injector at ITER-India uses inductively coupled power source at High Frequency (∼1 MHz). Switching converter based topology used to generate 1 MHz sinusoidal output is expected to have advantages on efficiency and reliability as compared to traditional RF Tetrode tubes based oscillators. In terms of Power Electronics, thermal and power coupling issues are major challenges at such a high frequency. A conceptual design for a 200 kW, 1 MHz power supply and a prototype design for a 600 W source been done. The prototype design is attempted with Class-E amplifier topology where a MOSFET is switched resonantly. The prototype uses two low power modules and a ferrite combiner to add the voltage and power at the output. Subsequently solution with Class-D H-Bridge configuration have been evaluated through simulation where module design is stable as switching device do not participate in resonance, further switching device voltage rating is substantially reduced. The rating of the modules is essentially driven by the maximum power handling capacity of the MOSFETs and ferrites in the combiner circuit. The output passive network including resonance tuned network and impedance matching network caters for soft switching and matches the load impedance to 50ohm respectively. This paper describes the conceptual design of a 200 kW high frequency power supply and experimental results of the prototype 600 W, 1 MHz source.

  3. Initial experimental evidence of self-collimation of target-normal-sheath-accelerated proton beam in a stack of conducting foils

    NASA Astrophysics Data System (ADS)

    Ni, P. A.; Lund, S. M.; McGuffey, C.; Alexander, N.; Aurand, B.; Barnard, J. J.; Beg, F. N.; Bellei, C.; Bieniosek, F. M.; Brabetz, C.; Cohen, R. H.; Kim, J.; Neumayer, P.; Roth, M.; Logan, B. G.

    2013-08-01

    Phenomena consistent with self-collimation (or weak self-focusing) of laser target-normal-sheath-accelerated protons was experimentally observed for the first time, in a specially engineered structure ("lens") consisting of a stack of 300 thin aluminum foils separated by 50 μm vacuum gaps. The experiments were carried out in a "passive environment," i.e., no external fields applied, neutralization plasma or injection of secondary charged particles was imposed. Experiments were performed at the petawatt "PHELIX" laser user facility (E = 100 J, Δt = 400 fs, λ = 1062 nm) at the "Helmholtzzentrum für Schwerionenforschung-GSI" in Darmstadt, Germany. The observed rms beam spot reduction depends inversely on energy, with a focusing degree decreasing monotonically from 2 at 5.4 MeV to 1.5 at 18.7 MeV. The physics inside the lens is complex, resulting in a number of different mechanisms that can potentially affect the particle dynamics within the structure. We present a plausible simple interpretation of the experiment in which the combination of magnetic self-pinch forces generated by the beam current together with the simultaneous reduction of the repulsive electrostatic forces due to the foils are the dominant mechanisms responsible for the observed focusing/collimation. This focusing technique could be applied to a wide variety of space-charge dominated proton and heavy ion beams and impact fields and applications, such as HEDP science, inertial confinement fusion in both fast ignition and heavy ion fusion approaches, compact laser-driven injectors for a Linear Accelerator (LINAC) or synchrotron, medical therapy, materials processing, etc.

  4. Initial experimental evidence of self-collimation of TNSA proton beam in a stack of conducting foils

    NASA Astrophysics Data System (ADS)

    Ni, Pavel

    2013-10-01

    Phenomena consistent with self-collimation (or weak self-focusing) of laser target-normal-sheath-accelerated (TNSA) protons was experimentally observed for the first time, in a specially engineered structure (``lens'') consisting of a stack of 300 thin aluminum foils separated by 50 μm vacuum gaps. The experiments were carried out in a ``passive environment,'' i.e. no external fields applied, neutralization plasma or injection of secondary charged particles was imposed. Experiments were performed at the petawatt ``PHELIX'' laser user facility (E = 100 J, Δt = 400 fs, λ = 1062 nm) at the ``Helmholtzzentrum für Schwerionenforschung-GSI'' in Darmstadt, Germany. The observed rms beam spot reduction depends inversely on energy, with a focusing degree decreasing monotonically from 2 at 5.4 MeV to 1.5 MeV at 18.7 MeV. The physics inside the lens is complex, resulting in a number of different mechanisms that can potentially affect the particle dynamics within the structure. We present a plausible simple interpretation of the experiment in which the combination of magnetic self-pinch forces generated by the beam current together with the simultaneous reduction of the repulsive electrostatic forces due to the foils are the dominant mechanisms responsible for the observed focusing/collimation. This focusing technique could be applied to a wide variety of space-charge dominated proton and heavy ion beams and impact fields and applications, such as HEDP science, inertial confinement fusion in both fast ignition and heavy ion fusion approaches, compact laser-driven injectors for a LINAC or synchrotron, medical therapy, materials processing, etc.

  5. Development of the platelet micro-orifice injector. [for liquid propellant rocket engines

    NASA Technical Reports Server (NTRS)

    La Botz, R. J.

    1984-01-01

    For some time to come, liquid rocket engines will continue to provide the primary means of propulsion for space transportation. The injector represents a key to the optimization of engine and system performance. The present investigation is concerned with a unique injector design and fabrication process which has demonstrated performance capabilities beyond that achieved with more conventional approaches. This process, which is called the 'platelet process', makes it feasible to fabricate injectors with a pattern an order of magnitude finer than that obtainable by drilling. The fine pattern leads to an achievement of high combustion efficiencies. Platelet injectors have been identified as one of the significant technology advances contributing to the feasibility of advanced dual-fuel booster engines. Platelet injectors are employed in the Space Shuttle Orbit Maneuvering System (OMS) engines. Attention is given to injector design theory as it relates to pattern fineness, a description of platelet injectors, and test data obtained with three different platelet injectors.

  6. Stable solar-driven oxidation of water by semiconducting photoanodes protected by transparent catalytic nickel oxide films.

    PubMed

    Sun, Ke; Saadi, Fadl H; Lichterman, Michael F; Hale, William G; Wang, Hsin-Ping; Zhou, Xinghao; Plymale, Noah T; Omelchenko, Stefan T; He, Jr-Hau; Papadantonakis, Kimberly M; Brunschwig, Bruce S; Lewis, Nathan S

    2015-03-24

    Reactively sputtered nickel oxide (NiOx) films provide transparent, antireflective, electrically conductive, chemically stable coatings that also are highly active electrocatalysts for the oxidation of water to O2(g). These NiOx coatings provide protective layers on a variety of technologically important semiconducting photoanodes, including textured crystalline Si passivated by amorphous silicon, crystalline n-type cadmium telluride, and hydrogenated amorphous silicon. Under anodic operation in 1.0 M aqueous potassium hydroxide (pH 14) in the presence of simulated sunlight, the NiOx films stabilized all of these self-passivating, high-efficiency semiconducting photoelectrodes for >100 h of sustained, quantitative solar-driven oxidation of water to O2(g).

  7. Developing the Model of Fuel Injection Process Efficiency Analysis for Injector for Diesel Engines

    NASA Astrophysics Data System (ADS)

    Anisimov, M. Yu; Kayukov, S. S.; Gorshkalev, A. A.; Belousov, A. V.; Gallyamov, R. E.; Lysenko, Yu D.

    2018-01-01

    The article proposes an assessment option for analysing the quality of fuel injection by the injector constituting the development of calculation blocks in a common injector model within LMS Imagine.Lab AMESim. The parameters of the injector model in the article correspond to the serial injector Common Rail-type with solenoid. The possibilities of this approach are demonstrated with providing the results using the example of modelling the modified injector. Following the research results, the advantages of the proposed approach to analysing assessing the fuel injection quality were detected.

  8. Plasma injector for a three-phase plasma torch with rail electrodes and some results of its investigation

    NASA Astrophysics Data System (ADS)

    Dudnik, Yu D.; Borovskoy, A. M.; Shiryaev, V. N.; Safronov, A. A.; Kuznetsov, V. E.; Vasilieva, O. B.; Pavlov, A. V.; Ivanov, D. V.

    2018-01-01

    Plasma injector made on the basis of the alternating-current plasma torch designed for the three-phase ac plasma torch with 100-500 kWrail electrodes is studied. The construction of the plasma injector is examined. Different materials for manufacture of injector electrodes are investigated. Current-voltage characteristics of the injector are obtained. Investigations of the plasma jet are carried out, and the jet temperature dependence versus the gas flow rate and electric power of the injector is measured.

  9. Computation of Transverse Injection Into Supersonic Crossflow With Various Injector Orifice Geometries

    NASA Technical Reports Server (NTRS)

    Foster, Lancert; Engblom, William A.

    2003-01-01

    Computational results are presented for the performance and flow behavior of various injector geometries employed in transverse injection into a non-reacting Mach 1.2 flow. 3-D Reynolds-Averaged Navier Stokes (RANS) results are obtained for the various injector geometries using the Wind code with the Mentor s Shear Stress Transport turbulence model in both single and multi-species modes. Computed results for the injector mixing, penetration, and induced wall forces are presented. In the case of rectangular injectors, those longer in the direction of the freestream flow are predicted to generate the most mixing and penetration of the injector flow into the primary stream. These injectors are also predicted to provide the largest discharge coefficients and induced wall forces. Minor performance differences are indicated among diamond, circle, and square orifices. Grid sensitivity study results are presented which indicate consistent qualitative trends in the injector performance comparisons with increasing grid fineness.

  10. Axially staged combustion system for a gas turbine engine

    DOEpatents

    Bland, Robert J [Oviedo, FL

    2009-12-15

    An axially staged combustion system is provided for a gas turbine engine comprising a main body structure having a plurality of first and second injectors. First structure provides fuel to at least one of the first injectors. The fuel provided to the one first injector is adapted to mix with air and ignite to produce a flame such that the flame associated with the one first injector defines a flame front having an average length when measured from a reference surface of the main body structure. Each of the second injectors comprising a section extending from the reference surface of the main body structure through the flame front and having a length greater than the average length of the flame front. Second structure provides fuel to at least one of the second injectors. The fuel passes through the one second injector and exits the one second injector at a location axially spaced from the flame front.

  11. Research on the injectors remanufacturing

    NASA Astrophysics Data System (ADS)

    Daraba, D.; Alexandrescu, I. M.; Daraba, C.

    2017-05-01

    During the remanufacturing process, the injector body - after disassembling and cleaning process - should be subjected to some strict control processes, both visually and by an electronic microscope, for evidencing any defects that may occur on the sealing surface of the injector body and the atomizer. In this paper we present the path followed by an injector body in the process of remanufacturing, exemplifying the verification method of roughness and hardness of the sealing surfaces, as well as the microscopic analysis of the sealing surface areas around the inlet. These checks can indicate which path the injector body has to follow during the remanufacturing. The control methodology of the injector body, that is established on the basis of this research, helps preventing some defective injector bodies to enter into the remanufacturing process, thus reducing to a minimum the number of remanufactured injectors to be declared non-conforming after final verification process.

  12. Transverse Injection into Subsonic Crossflow with Various Injector Orifice Geometries

    NASA Technical Reports Server (NTRS)

    Foster, Lancert E.; Zaman, Khairul B.

    2010-01-01

    Computational and experimental results are presented for a case study of single injectors employed in 90 deg transverse injection into a non-reacting subsonic flow. Different injector orifice shapes are used (including circular, square, diamond-shaped, and wide rectangular slot), all with constant cross-sectional area, to observe the effects of this variation on injector penetration and mixing. Whereas the circle, square, and diamond injector produce similar jet plumes, the wide rectangular slot produces a plume with less vertical penetration than the others. There is also some evidence that the diamond injector produces slightly faster penetration with less mixing of the injected fluid. In addition, a variety of rectangular injectors were analyzed, with varying length/width ratios. Both experimental and computational data show improved plume penetration with increased streamwise orifice length. 3-D Reynolds-Averaged Navier-Stokes (RANS) results are obtained for the various injector geometries using NCC (National Combustion Code) with the kappa-epsilon turbulence model in multi-species modes on an unstructured grid. Grid sensitivity results are also presented which indicate consistent qualitative trends in the injector performance comparisons with increasing grid refinement.

  13. Gyro-effect stabilizes unstable permanent maglev centrifugal pump.

    PubMed

    Qian, Kun-Xi

    2007-03-01

    According to Earnshaw's Theorem (1839), the passive maglev cannot achieve stable equilibrium and thus an extra coil is needed to make the rotor electrically levitated in a heart pump. The author had developed a permanent maglev centrifugal pump utilizing only passive magnetic bearings, to keep the advantages but to avoid the disadvantages of the electric maglev pumps. The equilibrium stability was achieved by use of so-called "gyro-effect": a rotating body with certain high speed can maintain its rotation stably. This pump consisted of a rotor (driven magnets and an impeller), and a stator with motor coil and pump housing. Two passive magnetic bearings between rotor and stator were devised to counteract the attractive force between the motor coil iron core and the rotor driven magnets. Bench testing with saline demonstrated a levitated rotor under preconditions of higher than 3,250 rpm rotation and more than 1 l/min pumping flow. Rotor levitation was demonstrated by 4 Hall sensors on the stator, with evidence of reduced maximal eccentric distance from 0.15 mm to 0.07 mm. The maximal rotor vibration amplitude was 0.06 mm in a gap of 0.15 mm between rotor and stator. It concluded that Gyro-effect can help passive maglev bearings to achieve stabilization of permanent maglev pump; and that high flow rate indicates good hydraulic property of the pump, which helps also the stability of passive maglev pump.

  14. Detailed Measurement of ORSC Main Chamber Injector Dynamics

    NASA Astrophysics Data System (ADS)

    Bedard, Michael J.

    Improving fidelity in simulation of combustion dynamics in rocket combustors requires an increase in experimental measurement fidelity for validation. In a model rocket combustor, a chemiluminescence based spectroscopy technique was used to capture flame light emissions for direct comparison to a computational simulation of the production of chemiluminescent species. The comparison indicated that high fidelity models of rocket combustors can predict spatio-temporal distribution of chemiluminescent species with trend-wise accuracy. The comparison also indicated the limited ability of OH* and CH* emission to indicate flame heat release. Based on initial spectroscopy experiments, a photomultiplier based chemiluminescence sensor was designed to increase the temporal resolution of flame emission measurements. To apply developed methodologies, an experiment was designed to investigate the flow and combustion dynamics associated with main chamber injector elements typical of the RD-170 rocket engine. A unique feature of the RD-170 injector element is the beveled expansion between the injector recess and combustion chamber. To investigate effects of this geometry, a scaling methodology was applied to increase the physical scale of a single injector element while maintaining traceability to the RD-170 design. Two injector configurations were tested, one including a beveled injector face and the other a flat injector face. This design enabled improved spatial resolution of pressure and light emission measurements densely arranged in the injector recess and near-injector region of the chamber. Experimental boundary conditions were designed to closely replicate boundary conditions in simulations. Experimental results showed that the beveled injector face had a damping effect on pressure fluctuations occurring near the longitudinal resonant acoustic modes of the chamber, implying a mechanism for improved overall combustion stability. Near the injector, the beveled geometry resulted in more acoustic energy into higher frequency modes, while the flat-face geometry excited modes closer to the fundamental longitudinal mode frequency and its harmonics. Multi-scale analysis techniques were used to investigate intermittency and the range of physical scales present in measured signals. Flame light emission measurements confirmed the presence of flame holding in the injector recess in both configurations. Analysis of dynamics in light emission signals showed flame response at the chamber acoustic resonance frequency in addition to non-acoustic modes associated with mixing shear layer dynamics in the injector recess. The first known benchmark quality data sets of such injector dynamics were recorded in each configuration to enable pressure-based validation of high fidelity models of gas-centered swirl coaxial injectors. This work presents a critical contribution to development of validated combustion dynamics predictive tools and to the understanding of gas-centered swirl coaxial injector elements.

  15. Nano-patterned superconducting surface for high quantum efficiency cathode

    DOEpatents

    Hannon, Fay; Musumeci, Pietro

    2017-03-07

    A method for providing a superconducting surface on a laser-driven niobium cathode in order to increase the effective quantum efficiency. The enhanced surface increases the effective quantum efficiency by improving the laser absorption of the surface and enhancing the local electric field. The surface preparation method makes feasible the construction of superconducting radio frequency injectors with niobium as the photocathode. An array of nano-structures are provided on a flat surface of niobium. The nano-structures are dimensionally tailored to interact with a laser of specific wavelength to thereby increase the electron yield of the surface.

  16. Study on atomization features of a plain injector in high speed transverse air stream

    NASA Astrophysics Data System (ADS)

    Wan, Jian; Gu, Shanjian; Yang, Maolin; Xiao, Weihui

    1990-04-01

    The atomization features of a plain injector in high-speed transverse air stream were investigated by Malvern. In this investigation, air velocity ranged from 50-150m/s, pressure drop of fuel injector, (1.1 - 4.2) x 10 to the 6th Pa, diameter of orifice, 0.5 - 0.9 mm, axial distance between the injector and the survey plane, 50 - 250 mm. Aviation kerosene was used in all experiments. It was found that the atomization features in high pressure drop of fuel injector were greatly differed from the low pressure drop of fuel injector.

  17. Coaxial Helicity Injection experiments in NSTX*

    NASA Astrophysics Data System (ADS)

    Raman, R.; Jarboe, T. R.; Gates, D.; Mueller, D.; Schaffer, M. J.; Maqueda, R.; Nelson, B. A.; Menard, J.; Soukhanovskii, V.; Paul, S.; Jardin, S.; Skinner, C. H.; Sabbagh, S.; Paoletti, F.; Stutman, D.; Lao, L.; Nagata, M.

    2001-10-01

    Coaxial helicity injection (CHI) can potentially eliminate inductive startup and thus the induction solenoid in spherical tori (ST), thereby greatly improving the ST fusion concept. CHI experiments on NSTX have produced 360 kA of toroidal current using about 25 kA of injector current. These have been produced in the preferred 'narrow flux foot print' condition in pulses that were sustained for 300 ms. A rotating n=1 mode, previously observed in optimized discharges on smaller STs driven by CHI and deemed necessary for transporting edge driven current to the interior of the discharge, has been observed for the first time in NSTX CHI discharges. The flux utilization efficiency continues to be high, approaching 100%. EFIT and TSC codes are being used to assess flux closure. This work is supported by the US DOE contract numbers: DE-AC02-76CH03073 and DE-AC05-00R22725.

  18. STE thrust chamber technology: Main injector technology program and nozzle Advanced Development Program (ADP)

    NASA Technical Reports Server (NTRS)

    1993-01-01

    The purpose of the STME Main Injector Program was to enhance the technology base for the large-scale main injector-combustor system of oxygen-hydrogen booster engines in the areas of combustion efficiency, chamber heating rates, and combustion stability. The initial task of the Main Injector Program, focused on analysis and theoretical predictions using existing models, was complemented by the design, fabrication, and test at MSFC of a subscale calorimetric, 40,000-pound thrust class, axisymmetric thrust chamber operating at approximately 2,250 psi and a 7:1 expansion ratio. Test results were used to further define combustion stability bounds, combustion efficiency, and heating rates using a large injector scale similar to the Pratt & Whitney (P&W) STME main injector design configuration including the tangential entry swirl coaxial injection elements. The subscale combustion data was used to verify and refine analytical modeling simulation and extend the database range to guide the design of the large-scale system main injector. The subscale injector design incorporated fuel and oxidizer flow area control features which could be varied; this allowed testing of several design points so that the STME conditions could be bracketed. The subscale injector design also incorporated high-reliability and low-cost fabrication techniques such as a one-piece electrical discharged machined (EDMed) interpropellant plate. Both subscale and large-scale injectors incorporated outer row injector elements with scarfed tip features to allow evaluation of reduced heating rates to the combustion chamber.

  19. Heavy hydrocarbon main injector technology program

    NASA Technical Reports Server (NTRS)

    Arbit, H. A.; Tuegel, L. M.; Dodd, F. E.

    1991-01-01

    The Heavy Hydrocarbon Main Injector Program was an analytical, design, and test program to demonstrate an injection concept applicable to an Isolated Combustion Compartment of a full-scale, high pressure, LOX/RP-1 engine. Several injector patterns were tested in a 3.4-in. combustor. Based on these results, features of the most promising injector design were incorporated into a 5.7-in. injector which was then hot-fire tested. In turn, a preliminary design of a 5-compartment 2D combustor was based on this pattern. Also the additional subscale injector testing and analysis was performed with an emphasis on improving analytical techniques and acoustic cavity design methodology. Several of the existing 3.5-in. diameter injectors were hot-fire tested with and without acoustic cavities for spontaneous and dynamic stability characteristics.

  20. Economic evaluation of epinephrine auto-injectors for peanut allergy.

    PubMed

    Shaker, Marcus; Bean, Katherine; Verdi, Marylee

    2017-08-01

    Three commercial epinephrine auto-injectors were available in the United States in the summer of 2016: EpiPen, Adrenaclick, and epinephrine injection, USP auto-injector. To describe the variation in pharmacy costs among epinephrine auto-injector devices in New England and evaluate the additional expense associated with incremental auto-injector costs. Decision analysis software was used to evaluate costs of the most and least expensive epinephrine auto-injector devices for children with peanut allergy. To evaluate regional variation in epinephrine auto-injector costs, a random sample of New England national and corporate pharmacies was compared with a convenience sample of pharmacies from 10 Canadian provinces. Assuming prescriptions written for 2 double epinephrine packs each year (home and school), the mean costs of food allergy over the 20-year model horizon totaled $58,667 (95% confidence interval [CI] $57,745-$59,588) when EpiPen was prescribed and $45,588 (95% CI $44,873-$46,304) when epinephrine injection, USP auto-injector was prescribed. No effectiveness differences were evident between groups, with 17.19 (95% CI 17.11-17.27) quality-adjusted life years accruing for each subject. The incremental cost per episode of anaphylaxis treated with epinephrine over the model horizon was $12,576 for EpiPen vs epinephrine injection, USP auto-injector. EpiPen costs were lowest at Canadian pharmacies ($96, 95% CI $85-$107). There was price consistency between corporate and independent pharmacies throughout New England by device brand, with the epinephrine injection, USP auto-injector being the most affordable device. Cost differences among epinephrine auto-injectors were significant. More expensive auto-injector brands did not appear to provide incremental benefit. Copyright © 2017 American College of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  1. Unintentional Epinephrine Auto-injector Injuries: A National Poison Center Observational Study.

    PubMed

    Anshien, Marco; Rose, S Rutherfoord; Wills, Brandon K

    2016-11-24

    Epinephrine is the only first-line therapeutic agent used to treat life-threatening anaphylaxis. Epinephrine auto-injectors are commonly carried by patients at risk for anaphylaxis, and reported cases of unintentional auto-injector injury have increased over the last decade. Modifications of existing designs and release of a new style of auto-injector are intended to reduce epinephrine auto-injector misuse. The aim of the study was to characterize reported cases of unintentional epinephrine auto-injector exposures from 2013 to 2014 and compare demographics, auto-injector model, and anatomical site of such exposures. The American Association of Poison Control Center's National Poison Data System was searched from January 1, 2013, to December 31, 2014, for cases of unintentional epinephrine auto-injector exposures. Anatomical site data were obtained from all cases reported to the Virginia Poison Center and participating regional poison center for Auvi-Q cases. A total of 6806 cases of unintentional epinephrine auto-injector exposures were reported to US Poison Centers in 2013 and 2014. Of these cases, 3933 occurred with EpiPen, 2829 with EpiPen Jr, 44 with Auvi-Q, and no case reported of Adrenaclick. The most common site of unintentional injection for traditional epinephrine auto-injectors was the digit or thumb, with 58% of cases for EpiPen and 39% of cases with EpiPen Jr. With Auvi-Q, the most common site was the leg (78% of cases). The number of unintentional epinephrine auto-injector cases reported to American Poison Centers in 2013-2014 has increased compared with previous data. Most EpiPen exposures were in the digits, whereas Auvi-Q was most frequently in the leg. Because of the limitations of Poison Center data, more research is needed to identify incidence of unintentional exposures and the effectiveness of epinephrine auto-injector redesign.

  2. Designing Liquid Rocket Engine Injectors for Performance, Stability, and Cost

    NASA Technical Reports Server (NTRS)

    Westra, Douglas G.; West, Jeffrey S.

    2014-01-01

    NASA is developing the Space Launch System (SLS) for crewed exploration missions beyond low Earth orbit. Marshall Space Flight Center (MSFC) is designing rocket engines for the SLS Advanced Booster (AB) concepts being developed to replace the Shuttle-derived solid rocket boosters. One AB concept uses large, Rocket-Propellant (RP)-fueled engines that pose significant design challenges. The injectors for these engines require high performance and stable operation while still meeting aggressive cost reduction goals for access to space. Historically, combustion stability problems have been a critical issue for such injector designs. Traditional, empirical injector design tools and methodologies, however, lack the ability to reliably predict complex injector dynamics that often lead to combustion stability. Reliance on these tools alone would likely result in an unaffordable test-fail-fix cycle for injector development. Recently at MSFC, a massively parallel computational fluid dynamics (CFD) program was successfully applied in the SLS AB injector design process. High-fidelity reacting flow simulations were conducted for both single-element and seven-element representations of the full-scale injector. Data from the CFD simulations was then used to significantly augment and improve the empirical design tools, resulting in a high-performance, stable injector design.

  3. Effect of the number and position of nozzle holes on in- and near-nozzle dynamic characteristics of diesel injection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moon, Seoksu; Gao, Yuan; Park, Suhan

    Despite the fact that all modern diesel engines use multi-hole injectors, single-hole injectors are frequently used to understand the fundamental properties of high-pressure diesel injections due to their axisymmetric design of the injector nozzles. A multi-hole injector accommodates many holes around the nozzle axis to deliver adequate amount of fuel with small orifices. The off-axis arrangement of the multi-hole injectors significantly alters the inter- and near-nozzle flow patterns compared to those of the single-hole injectors. This study compares the transient needle motion and near-nozzle flow characteristics of the single- and multi-hole (3-hole and 6-hole) diesel injectors to understand how themore » difference in hole arrangement and number affects the initial flow development of the diesel injectors. A propagation-based X-ray phase-contrast imaging technique was applied to compare the transient needle motion and near-nozzle flow characteristics of the single- and multi-hole injectors. The comparisons were made by dividing the entire injection process by three sub-stages: opening-transient, quasi-steady and closing-transient. (C) 2015 Elsevier Ltd. All rights reserved.« less

  4. Stable solar-driven oxidation of water by semiconducting photoanodes protected by transparent catalytic nickel oxide films

    DOE PAGES

    Sun, Ke; Saadi, Fadl H.; Lichterman, Michael F.; ...

    2015-03-11

    Reactively sputtered nickel oxide (NiO x) films provide transparent, antireflective, electrically conductive, chemically stable coatings that also are highly active electrocatalysts for the oxidation of water to O 2(g). These NiO x coatings provide protective layers on a variety of technologically important semiconducting photoanodes, including textured crystalline Si passivated by amorphous silicon, crystalline n-type cadmium telluride, and hydrogenated amorphous silicon. Finally, under anodic operation in 1.0 M aqueous potassium hydroxide (pH 14) in the presence of simulated sunlight, the NiO x films stabilized all of these self-passivating, high-efficiency semiconducting photoelectrodes for >100 h of sustained, quantitative solar-driven oxidation of watermore » to O 2(g).« less

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    NEIL K. MCDOUGALD

    Alzeta Corporation has developed surface-stabilized fuel injectors for use with lean premixed combustors which provide extended turndown and ultra-low NOX emission performance. These injectors use a patented technique to form interacting radiant and blue-flame zones immediately above a selectively-perforated porous metal surface. This allows stable operation at low reaction temperatures. This technology is being commercialized under the product name nanoSTAR. Initial tests demonstrated low NOX emissions but, were limited by flashback failure of the injectors. The weld seams required to form cylindrical injectors from flat sheet material were identified as the cause of the failures. The approach for this projectmore » was to first develop new fabrication methods to produce injectors without weld seams, verify similar emissions performance to the original flat sheet material and then develop products for microturbines and small gas turbines along parallel development paths. A 37 month project was completed to develop and test a surface stabilized combustion system for gas turbine applications. New fabrication techniques developed removed a technological barrier to the success of the product by elimination of conductive weld seams from the injector surface. The injectors demonstrated ultra low emissions in rig tests conducted under gas turbine operating conditions. The ability for injectors to share a common combustion chamber allowing for deployment in annular combustion liner was also demonstrated. Some further development is required to resolve integration issues related to specific engine constraints, but the nanoSTAR technology has clearly demonstrated its low emissions potential. The overall project conclusions can be summarized: (1) A wet-laid casting method successfully eliminated weld seams from the injector surface without degrading performance. (2) Gas turbine cycle analysis identified several injector designs and control schemes to start and load engines using nanoSTAR technology. A mechanically simple single zone injector can be used in Solar Turbine's Taurus 60 engine. (3) Rig testing of single monolithic injectors demonstrated sub 3 ppmv NOX and sub 10 ppmv CO and UHC emissions (all corrected to 15% O2) at Taurus 60 full-load pressure and combustion air inlet temperature. (4) Testing of two nanoSTAR injectors in Solar Turbine's sector rig demonstrated the ability for injectors to survive when fired in close proximity at Taurus 60 full load pressure and combustion air inlet temperature. (5) Sector rig tests demonstrated emissions performance and range of operability consistent with single injector rig tests. Alzeta has committed to the commercialization of nanoSTAR injectors and has sufficient production capability to conclude development and meet initial demand.« less

  6. Effect of Cup Length on Film Profiles in Gas-Centered Swirl-Coaxial Injectors

    DTIC Science & Technology

    2009-12-01

    as the working fluid , film lengths and were determined in six unique injector geometries and over a number of flow conditions. Each injector...with water and nitrogen as the working fluid , film lengths and were determined in six unique injector geometries and over a number of flow...vary the cup length across the face of the injector to act as acoustic dampers . For these reasons and because of the need for simple design criteria

  7. Free electron laser

    DOEpatents

    Villa, Francesco

    1990-01-01

    A high gain, single-pass free electron laser formed of a high brilliance electron injector source, a linear accelerator which imparts high energy to the electron beam, and an undulator capable of extremely high magnetic fields, yet with a very short period. The electron injector source is the first stage (gap) of the linear accelerator or a radial line transformer driven by fast circular switch. The linear accelerator is formed of a plurality of accelerating gaps arranged in series. These gaps are energized in sequence by releasing a single pulse of energy which propagates simultaneously along a plurality of transmission lines, each of which feeds the gaps. The transmission lines are graduated in length so that pulse power is present at each gap as the accelerated electrons pass therethrough. The transmission lines for each gap are open circuited at their ends. The undualtor has a structure similar to the accelerator, except that the transmission lines for each gap are substantially short circuited at their ends, thus converting the electric field into magnetic field. A small amount of resistance is retained in order to generate a small electric field for replenishing the electron bunch with the energy lost as it traverses through the undulator structure.

  8. Study on transient beam loading compensation for China ADS proton linac injector II

    NASA Astrophysics Data System (ADS)

    Gao, Zheng; He, Yuan; Wang, Xian-Wu; Chang, Wei; Zhang, Rui-Feng; Zhu, Zheng-Long; Zhang, Sheng-Hu; Chen, Qi; Powers, Tom

    2016-05-01

    Significant transient beam loading effects were observed during beam commissioning tests of prototype II of the injector for the accelerator driven sub-critical (ADS) system, which took place at the Institute of Modern Physics, Chinese Academy of Sciences, between October and December 2014. During these tests experiments were performed with continuous wave (CW) operation of the cavities with pulsed beam current, and the system was configured to make use of a prototype digital low level radio frequency (LLRF) controller. The system was originally operated in pulsed mode with a simple proportional plus integral and deviation (PID) feedback control algorithm, which was not able to maintain the desired gradient regulation during pulsed 10 mA beam operations. A unique simple transient beam loading compensation method which made use of a combination of proportional and integral (PI) feedback and feedforward control algorithm was implemented in order to significantly reduce the beam induced transient effect in the cavity gradients. The superconducting cavity field variation was reduced to less than 1.7% after turning on this control algorithm. The design and experimental results of this system are presented in this paper. Supported by National Natural Science Foundation of China (91426303, 11525523)

  9. Administration of the adrenaline auto-injector at the nursery/kindergarten/school in Western Japan.

    PubMed

    Korematsu, Seigo; Fujitaka, Michiko; Ogata, Mika; Zaitsu, Masafumi; Motomura, Chikako; Kuzume, Kazuyo; Toku, Yuchiro; Ikeda, Masanori; Odajima, Hiroshi

    2017-01-01

    In view of the increasing prevalence of food allergies, there has been an associated increase in frequency of situations requiring an emergency response for anaphylaxis at the home, childcare facilities and educational institutions. To clarify the situation of adrenaline auto-injector administration in nursery/kindergarten/school, we carried out a questionnaire survey on pediatric physicians in Western Japan. In 2015, self-reported questionnaires were mailed to 421 physicians who are members of the West Japan Research Society Pediatric Clinical Allergy and Shikoku Research Society Pediatric Clinical Allergy. The response rate was 44% (185 physicians) where 160 physicians had a prescription registration for the adrenaline auto-injector. In the past year, 1,330 patients were prescribed the adrenaline auto-injector where 83 patients (6% of the prescribed patients) actually administered the adrenaline auto-injector, of which 14 patients (17% of the administered patients) self-administered the adrenaline auto-injector. "Guardians" at the nursery/kindergarten and elementary school were found to have administered the adrenaline auto-injector the most. Among 117 adrenaline auto-injector prescription-registered physicians, 79% had experienced nonadministration of adrenaline auto-injector at nursery/kindergarten/school when anaphylaxis has occurred. The most frequent reason cited for not administering the adrenaline auto-injector was "hesitation about the timing of administration." If the adrenaline auto-injector was administered after the guardian arrived at the nursery/kindergarten/school, it may lead to delayed treatment of anaphylaxis in which symptoms develop in minutes. Education and cooperation among physicians and nursery/kindergarten/school staff will reduce the number of children suffering unfortunate outcomes due to anaphylaxis.

  10. 49 CFR 230.57 - Injectors and feedwater pumps.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Appurtenances Injectors, Feedwater Pumps, and Flue Plugs § 230.57 Injectors and feedwater pumps. (a) Water... water to the boiler, at least one of which is a live steam injector. (b) Maintenance and testing... delivering water to the boiler. Boiler checks, delivery pipes, feed water pipes, tank hose and tank valves...

  11. 21 CFR 872.4475 - Spring-powered jet injector.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Spring-powered jet injector. 872.4475 Section 872...) MEDICAL DEVICES DENTAL DEVICES Surgical Devices § 872.4475 Spring-powered jet injector. (a) Identification. A spring-powered jet injector is a syringe device intended to administer a local anesthetic. The...

  12. 21 CFR 872.4475 - Spring-powered jet injector.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Spring-powered jet injector. 872.4475 Section 872...) MEDICAL DEVICES DENTAL DEVICES Surgical Devices § 872.4475 Spring-powered jet injector. (a) Identification. A spring-powered jet injector is a syringe device intended to administer a local anesthetic. The...

  13. 21 CFR 872.4475 - Spring-powered jet injector.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Spring-powered jet injector. 872.4475 Section 872...) MEDICAL DEVICES DENTAL DEVICES Surgical Devices § 872.4475 Spring-powered jet injector. (a) Identification. A spring-powered jet injector is a syringe device intended to administer a local anesthetic. The...

  14. 21 CFR 872.4475 - Spring-powered jet injector.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Spring-powered jet injector. 872.4475 Section 872...) MEDICAL DEVICES DENTAL DEVICES Surgical Devices § 872.4475 Spring-powered jet injector. (a) Identification. A spring-powered jet injector is a syringe device intended to administer a local anesthetic. The...

  15. 21 CFR 872.4475 - Spring-powered jet injector.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Spring-powered jet injector. 872.4475 Section 872...) MEDICAL DEVICES DENTAL DEVICES Surgical Devices § 872.4475 Spring-powered jet injector. (a) Identification. A spring-powered jet injector is a syringe device intended to administer a local anesthetic. The...

  16. Rejuvenating harm reduction projects for injection drug users: Ukraine's nationwide introduction of peer-driven interventions.

    PubMed

    Smyrnov, Pavlo; Broadhead, Robert S; Datsenko, Oleksandra; Matiyash, Oksana

    2012-03-01

    A peer-driven intervention (PDI) for injecting drug users (IDUs) was implemented in five Ukrainian city-sites to test-pilot its effectiveness in rejuvenating harm reduction (HR) projects that had become moribund. A PDI relies on drug users in a unique way to educate their peers in the community and recruit them for HIV prevention services. The goal of the PDI was to recruit in six month 500 IDUs who had never been respondents before to each of the five HR projects, especially stimulant- and women-injectors, and IDUs<25 years of age. We standardized the PDI's structure and operations across all five sites. All five PDIs were started in May 2007 using a carefully selected handful of "seed" IDU-recruiters who were trained to educate three peers who had never received HR services. We also accessed the database of all five projects and analysed the new respondents they recruited six-months prior to the start-up of the PDIs with the new recruits generated by the PDIs. Whilst the HR projects in the five city-sites recruited 72 new respondents on average during the six months prior to the PDIs' start-up, the PDIs recruited 455 new respondents on average in each city during their six months of operation, indicating that the PDI was 6.3 times more powerful as a recruitment mechanism. Compared to traditional outreach the PDIs resulted in significant increases in the recruitment of women- and young-injectors, and IDUs who injected a more diverse variety of drugs. The PDI can have a rejuvenating effect when added to HR projects that had become stagnate over time, resulting in an increase in the number and diversity of new IDU-respondents. Copyright © 2012 Elsevier B.V. All rights reserved.

  17. A numerical study of candidate transverse fuel injector configurations in the Langley scramjet engine

    NASA Technical Reports Server (NTRS)

    Drummond, J. P.

    1980-01-01

    A computer program has been developed that numerically solves the two-dimensional Navier-Stokes and species equations near one or more transverse hydrogen fuel injectors in a scramjet engine. The program currently computes the turbulent mixing and reaction of hydrogen fuel and air, and allows the study of separated regions of the flow immediately preceding and following the injectors. The complex shock-expansion structure produced by the injectors in this region of the engine can also be represented. Results are presented that describe the flow field near two opposing transverse fuel injectors and two opposing staged (multiple) injectors, and comparisons between the two configurations are made to assess their mixing and flameholding qualities.

  18. Use of a corrugated beam pipe as a passive deflector for bunch length measurements

    NASA Astrophysics Data System (ADS)

    Seok, Jimin; Chung, Moses; Kang, Heung-Sik; Min, Chang-Ki; Na, Donghyun

    2018-02-01

    We report the experimental demonstration of bunch length measurements using a corrugated metallic beam pipe as a passive deflector. The corrugated beam pipe has been adopted for reducing longitudinal chirping after the bunch compressors in several XFEL facilities worldwide. In the meantime, there have been attempts to measure the electron bunch's longitudinal current profile using the dipole wakefields generated in the corrugated pipe. Nevertheless, the bunch shape reconstructed from the nonlinearly deflected beam suffers from significant distortion, particularly near the head of the bunch. In this paper, we introduce an iterative process to improve the resolution of the bunch shape reconstruction. The astra and elegant simulations have been performed for pencil beam and cigar beam cases, in order to verify the effectiveness of the reconstruction process. To overcome the undesirable effects of transverse beam spreads, a measurement scheme involving both the corrugated beam pipe and the spectrometer magnet has been employed, both of which do not require a dedicated (and likely very expensive) rf system. A proof-of-principle experiment was carried out at Pohang Accelerator Laboratory (PAL) Injector Test Facility (ITF), and its results are discussed together with a comparison with the rf deflector measurement.

  19. On the prediction of spray angle of liquid-liquid pintle injectors

    NASA Astrophysics Data System (ADS)

    Cheng, Peng; Li, Qinglian; Xu, Shun; Kang, Zhongtao

    2017-09-01

    The pintle injector is famous for its capability of deep throttling and low cost. However, the pintle injector has been seldom investigated. To get a good prediction of the spray angle of liquid-liquid pintle injectors, theoretical analysis, numerical simulations and experiments were conducted. Under the hypothesis of incompressible and inviscid flow, a spray angle formula was deduced from the continuity and momentum equations based on a control volume analysis. The formula was then validated by numerical and experimental data. The results indicates that both geometric and injection parameters affect the total momentum ratio (TMR) and then influence the spray angle formed by liquid-liquid pintle injectors. TMR is the pivotal non-dimensional number that dominates the spray angle. Compared with gas-gas pintle injectors, spray angle formed by liquid-liquid injectors is larger, which benefits from the local high pressure zone near the pintle wall caused by the impingement of radial and axial sheets.

  20. A Versatile Ion Injector at KACST

    NASA Astrophysics Data System (ADS)

    El Ghazaly, M. O. A.; Behery, S. A.; Almuqhim, A. A.; Papash, A. I.; Welsch, C. P.

    2011-10-01

    A versatile ion-beam injector is presently being constructed at the National Centre for Mathematics and Physics (NCMP) at the King Abdul-Aziz City for Science and Technology (KACST), Saudi Arabia. This versatile injector will provide an electrostatic storage ring with high-quality ion beams of energies up to 30 keV per charge q. It will also allow for crossed-beams experiments in single-pass setups. The injector has been designed to include beams from two different ion sources, switched by a 90° deflection setup, and to allow for matching of the beam parameters to the Twiss parameters of the ring. The injector is equipped with two crossed beam-lines (inlets), with duplicated beam extraction and acceleration systems. As part of the initial setup, a simple electric discharge ion source has been developed for commissioning of the whole injector. In this paper, we report on the ion optics layout and the design parameters of the injector.

  1. Sensitivity and Nonlinearity of Thermoacoustic Oscillations

    NASA Astrophysics Data System (ADS)

    Juniper, Matthew P.; Sujith, R. I.

    2018-01-01

    Nine decades of rocket engine and gas turbine development have shown that thermoacoustic oscillations are difficult to predict but can usually be eliminated with relatively small ad hoc design changes. These changes can, however, be ruinously expensive to devise. This review explains why linear and nonlinear thermoacoustic behavior is so sensitive to parameters such as operating point, fuel composition, and injector geometry. It shows how nonperiodic behavior arises in experiments and simulations and discusses how fluctuations in thermoacoustic systems with turbulent reacting flow, which are usually filtered or averaged out as noise, can reveal useful information. Finally, it proposes tools to exploit this sensitivity in the future: adjoint-based sensitivity analysis to optimize passive control designs and complex systems theory to warn of impending thermoacoustic oscillations and to identify the most sensitive elements of a thermoacoustic system.

  2. 21 CFR 872.4465 - Gas-powered jet injector.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Gas-powered jet injector. 872.4465 Section 872...) MEDICAL DEVICES DENTAL DEVICES Surgical Devices § 872.4465 Gas-powered jet injector. (a) Identification. A gas-powered jet injector is a syringe device intended to administer a local anesthetic. The syringe is...

  3. 21 CFR 872.4465 - Gas-powered jet injector.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Gas-powered jet injector. 872.4465 Section 872...) MEDICAL DEVICES DENTAL DEVICES Surgical Devices § 872.4465 Gas-powered jet injector. (a) Identification. A gas-powered jet injector is a syringe device intended to administer a local anesthetic. The syringe is...

  4. Scramjet fuel injector design parameters and considerations: Development of a two-dimensional tangential fuel injector with constant pressure at the flame

    NASA Technical Reports Server (NTRS)

    Agnone, A. M.

    1972-01-01

    The factors affecting a tangential fuel injector design for scramjet operation are reviewed and their effect on the efficiency of the supersonic combustion process is evaluated using both experimental data and theoretical predictions. A description of the physical problem of supersonic combustion and method of analysis is followed by a presentation and evaluation of some standard and exotic types of fuel injectors. Engineering fuel injector design criteria and hydrogen ignition schemes are presented along with a cursory review of available experimental data. A two-dimensional tangential fuel injector design is developed using analyses as a guide in evaluating the effects on the combustion process of various initial and boundary conditions including splitter plate thickness, injector wall temperature, pressure gradients, etc. The fuel injector wall geometry is shaped so as to maintain approximately constant pressure at the flame as required by a cycle analysis. A viscous characteristics program which accounts for lateral as well as axial pressure variations due to the mixing and combustion process is used in determining the wall geometry.

  5. CFD Based Design of a Filming Injector for N+3 Combustors

    NASA Technical Reports Server (NTRS)

    Ajmani, Kumud; Mongia, Hukam; Lee, Phil

    2016-01-01

    An effort was undertaken to perform CFD analysis of fluid flow in Lean-Direct Injection (LDI) combustors with axial swirl-venturi elements for next-generation LDI-3 combustor design. The National Combustion Code (NCC) was used to perform non-reacting and two-phase reacting flow computations for a newly-designed pre-filming type fuel injector LDI-3 injector, in a single-injector and a five-injector array configuration. All computations were performed with a consistent approach of mesh-optimization, spray-modeling, ignition and kinetics-modeling. Computational predictions of the aerodynamics of the single-injector were used to arrive at an optimized main-injector design that meets effective area and fuel-air mixing criteria. Emissions (EINOx) characteristics were predicted for a medium-power engine cycle condition, and will be compared with data when it is made available from experimental measurements. The use of a PDF-like turbulence-chemistry interaction model with NCC's Time-Filtered Navier-Stokes (TFNS) solver is shown to produce a significant impact on the CFD results, when compared with a laminar-chemistry TFNS approach for the five-injector computations.

  6. Tritium proof-of-principle pellet injector: Phase 2

    NASA Astrophysics Data System (ADS)

    Fisher, P. W.; Gouge, M. J.

    1995-03-01

    As part of the International Thermonuclear Engineering Reactor (ITER) plasma fueling development program, Oak Ridge National Laboratory (ORNL) has fabricated a pellet injection system to test the mechanical and thermal properties of extruded tritium. This repeating, single-stage, pneumatic injector, called the Tritium-Proof-of-Principle Phase-2 (TPOP-2) Pellet Injector, has a piston-driven mechanical extruder and is designed to extrude hydrogenic pellets sized for the ITER device. The TPOP-II program has the following development goals: evaluate the feasibility of extruding tritium and DT mixtures for use in future pellet injection systems; determine the mechanical and thermal properties of tritium and DT extrusions; integrate, test and evaluate the extruder in a repeating, single-stage light gas gun sized for the ITER application (pellet diameter approximately 7-8 mm); evaluate options for recycling propellant and extruder exhaust gas; evaluate operability and reliability of ITER prototypical fueling systems in an environment of significant tritium inventory requiring secondary and room containment systems. In initial tests with deuterium feed at ORNL, up to thirteen pellets have been extruded at rates up to 1 Hz and accelerated to speeds of order 1.0-1.1 km/s using hydrogen propellant gas at a supply pressure of 65 bar. The pellets are typically 7.4 mm in diameter and up to 11 mm in length and are the largest cryogenic pellets produced by the fusion program to date. These pellets represent about a 11% density perturbation to ITER. Hydrogenic pellets will be used in ITER to sustain the fusion power in the plasma core and may be crucial in reducing first wall tritium inventories by a process called isotopic fueling where tritium-rich pellets fuel the burning plasma core and deuterium gas fuels the edge.

  7. [Needle-free injection--science fiction or comeback of an almost forgotten drug delivery system?].

    PubMed

    Ziegler, Andreas

    2007-08-01

    The first to create a "needle-free injector" was the American anesthetist Robert A. Hingson, 65 year ago. Since that time those devices underwent a changeful history. In 1986 an outbreak of hepatitis B among patients receiving injections from a needle-free multiple-use-nozzle injector was documented and related to the use of the injector device. Due to such risk of transmission of infection with these reusable devices, their application has been restricted. In 1998 the WHO recommended that only conventional needles and syringes should be used for immunization until safe needle-free injectors are identified through independent safety testing. Since needle-free injection has shown numerous advantages in comparison to conventional injection, new systems were developed that combine the advantages of needle-free injection with sufficient safety in mass vaccination programs. As an alternative to this early injector type, the disposable-cartridge injectors were developed. The newest research field in the area of the needle-free injection systems opened with the development of powder injectors, in which the drug preparation is no longer a suspension or solution, but a powdered solid. This injector type using powder formulations shows a number of advantages in comparison with the conventional needle/syringe injection technique as well as towards the liquid jet injectors. Due to this new kind of injectors the comeback of the needle-free injection technique in large-scale vaccination programs of the WHO seems reasonable and within reach.

  8. Influence of Reduced Mass Flow Rate and Chamber Backpressure on Swirl Injector Fluid Mechanics

    NASA Technical Reports Server (NTRS)

    Kenny, R Jeremy; Hulka, James R.

    2008-01-01

    Industry interest in variable-thrust liquid rocket engines places a demand on engine injector technology to operate over a wide range of liquid mass flow rates and chamber backpressures. One injection technology of current interest for variable thrust applications is an injector design with swirled fluids. Current swirl injector design methodologies do not take into account how swirl injector design parameters respond to elevated chamber backpressures at less than design mass flow rates. The current work was created to improve state-of-the-art swirl injector design methods in this area. The specific objective was to study the effects of elevated chamber backpressure and off-design mass flow rates on swirl injector fluid mechanics. Using a backpressure chamber with optical access, water was flowed through a swirl injector at various combinations of chamber backpressure and mass flow rates. The film thickness profile down the swirl injector nozzle section was measured through a transparent nozzle section of the injector. High speed video showed measurable increases in the film thickness profile with application of chamber backpressure and mass flow rates less than design. At prescribed combinations of chamber backpressure and injected mass flow rate, a discrete change in the film thickness profile was observed. Measured injector discharge coefficient values showed different trends with increasing chamber backpressure at low mass flow rates as opposed to near-design mass flow rates. Downstream spray angles showed classic changes in morphology as the mass flow rate was decreased below the design value. Increasing chamber backpressure decreased the spray angle at any injection mass flow rate. Experimental measurements and discussion of these results are reported in this paper.

  9. Summary of Liquid Oxygen/Hydrogen, Direct Metal Laser Sintering Injector Testing and Evaluation Effort at Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Barnett, Gregory; Bullard, David B.

    2015-01-01

    The last several years have witnessed a significant advancement in the area of additive manufacturing technology. One area that has seen substantial expansion in application has been laser sintering (or melting) in a powder bed. This technology is often termed 3D printing or various acronyms that may be industry, process, or company specific. Components manufactured via 3D printing have the potential to significantly reduce development and fabrication time and cost. The usefulness of 3D printed components is influenced by several factors such as material properties and surface roughness. This paper details three injectors that were designed, fabricated, and tested in order to evaluate the utility of 3D printed components for rocket engine applications. The three injectors were tested in a hot-fire environment with chamber pressures of approximately 1400 psia. One injector was a 28 element design printed by Directed Manufacturing. The other two injectors were identical 40 element designs printed by Directed Manufacturing and Solid Concepts. All the injectors were swirl-coaxial designs and were subscale versions of a full-scale injector currently in fabrication. The test and evaluation programs for the 28 element and 40 element injectors provided a substantial amount of data that confirms the feasibility of 3D printed parts for future applications. The operating conditions of previously tested, conventionally manufactured injectors were reproduced in the 28 and 40 element programs in order to contrast the performance of each. Overall, the 3D printed injectors demonstrated comparable performance to the conventionally manufactured units. The design features of the aforementioned injectors can readily be implemented in future applications with a high degree of confidence.

  10. 76 FR 79051 - Airworthiness Directives; Lycoming Engines, Fuel Injected Reciprocating Engines

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-21

    ... models requiring inspections. We are issuing this AD to prevent failure of the fuel injector fuel lines... to prevent failure of the fuel injector fuel lines that would allow fuel to spray into the engine... injector nozzles, and replace as necessary any fuel injector fuel line and clamp that does not meet all...

  11. Vehicle-scale investigation of a fluorine jet-pump liquid hydrogen tank pressurization system

    NASA Technical Reports Server (NTRS)

    Cady, E. C.; Kendle, D. W.

    1972-01-01

    A comprehensive analytical and experimental program was performed to evaluate the performance of a fluorine-hydrogen jet-pump injector for main tank injection (MTI) pressurization of a liquid hydrogen (LH2) tank. The injector performance during pressurization and LH2 expulsion was determined by a series of seven tests of a full-scale injector and MTI pressure control system in a 28.3 cu m (1000 cu ft) flight-weight LH2 tank. Although the injector did not effectively jet-pump LH2 continuously, it showed improved pressurization performance compared to straight-pipe injectors tested under the same conditions in a previous program. The MTI computer code was modified to allow performance prediction for the jet-pump injector.

  12. Injector having multiple fuel pegs

    DOEpatents

    Hadley, Mark Allan; Felling, David Kenton

    2013-04-30

    A fuel injector is provided, including a fuel injector body, a plurality of fuel vanes, and a plurality of fuel pegs. The injector body includes a manifold and an inlet. The manifold is configured for receiving fuel, and the inlet is configured for receiving air. The fuel vanes are located within the injector body and are positioned in a direction that is generally parallel with a longitudinal axis of the injector body to orient the air flowing from the inlet. The plurality of fuel pegs are fluidly connected to the manifold and are arranged within the plurality of fuel vanes. The plurality of fuel pegs are each spaced at a distance that is about equal between each of the plurality of fuel pegs.

  13. Activity-induced instability of phonons in 1D microfluidic crystals.

    PubMed

    Tsang, Alan Cheng Hou; Shelley, Michael J; Kanso, Eva

    2018-02-14

    One-dimensional crystals of passively-driven particles in microfluidic channels exhibit collective vibrational modes reminiscent of acoustic 'phonons'. These phonons are induced by the long-range hydrodynamic interactions among the particles and are neutrally stable at the linear level. Here, we analyze the effect of particle activity - self-propulsion - on the emergence and stability of these phonons. We show that the direction of wave propagation in active crystals is sensitive to the intensity of the background flow. We also show that activity couples, at the linear level, transverse waves to the particles' rotational motion, inducing a new mode of instability that persists in the limit of large background flow, or, equivalently, vanishingly small activity. We then report a new phenomenon of phonons switching back and forth between two adjacent crystals in both passively-driven and active systems, similar in nature to the wave switching observed in quantum mechanics, optical communication, and density stratified fluids. These findings could have implications for the design of commercial microfluidic systems and the self-assembly of passive and active micro-particles into one-dimensional structures.

  14. Apparatus for testing high pressure injector elements

    NASA Technical Reports Server (NTRS)

    Myers, William Neill (Inventor); Scott, Ewell M. (Inventor); Forbes, John C. (Inventor); Shadoan, Michael D. (Inventor)

    1995-01-01

    An apparatus for testing and evaluating the spray pattern of high pressure fuel injector elements for use in supplying fuel to combustion engines is presented. Prior art fuel injector elements were normally tested by use of low pressure apparatuses which did not provide a purge to prevent mist from obscuring the injector element or to prevent frosting of the view windows; could utilize only one fluid during each test; and had their viewing ports positioned one hundred eighty (180 deg) apart, thus preventing optimum use of laser diagnostics. The high pressure fluid injector test apparatus includes an upper hub, an upper weldment or housing, a first clamp and stud/nut assembly for securing the upper hub to the upper weldment, a standoff assembly within the upper weldment, a pair of window housings having view glasses within the upper weldment, an injector block assembly and purge plate within the upper weldment for holding an injector element to be tested and evaluated, a lower weldment or housing, a second clamp and stud/nut assembly for securing the lower weldment to the upper hub, a third clamp and stud/nut assembly for securing the lower hub to the lower weldment, mechanisms for introducing fluid under high pressure for testing an injector element, and mechanisms for purging the apparatus to prevent frosting of view glasses within the window housings and to permit unobstructed viewing of the injector element.

  15. Apparatus for testing high pressure injector elements

    NASA Technical Reports Server (NTRS)

    Myers, William Neill (Inventor); Scott, Ewell M. (Inventor); Forbes, John C. (Inventor); Shadoan, Michael D. (Inventor)

    1993-01-01

    An apparatus for testing and evaluating the spray pattern of high pressure fuel injector elements for use in supplying fuel to combustion engines is presented. Prior art fuel injector elements were normally tested by use of low pressure apparatuses which did not provide a purge to prevent mist from obscuring the injector element or to prevent frosting of the view windows; could utilize only one fluid during each test; and had their viewing ports positioned one hundred eighty (180 deg) apart, thus preventing optimum use of laser diagnostics. The high pressure fluid injector test apparatus includes an upper hub, an upper weldment or housing, a first clamp and stud/nut assembly for securing the upper hub to the upper weldment, a standoff assembly within the upper weldment, a pair of window housings having view glasses within the upper weldment, an injector block assembly and purge plate within the upper weldment for holding an injector element to be tested and evaluated, a lower weldment or housing, a second clamp and stud/nut assembly for securing the lower weldment to the upper weldment, a lower hub, a third clamp and stud/nut assembly for securing the lower hub to the lower weldment, mechanisms for introducing fluid under high pressure for testing an injector element, and mechanisms for purging the apparatus to prevent frosting of view glasses within the window housings and to permit unobstructed viewing of the injector element.

  16. Single element injector testing for STME injector technology

    NASA Technical Reports Server (NTRS)

    Hulka, J.; Schneider, J. A.; Davis, J.

    1992-01-01

    An oxidizer-swirled coaxial element injector is being developed for application in the liquid oxygen/gaseous hydrogen Space Transportation Main Engine (STME) for the National Launch System (NLS) vehicle. This paper reports on the first two parts of a four part single injector element study for optimization of the STME injector design. Measurements of Rupe mixing efficiency and atomization characteristics are reported for single element versions of injection elements from two multielement injectors that have been recently hot fire tested. Rather than attempting to measure a definitive mixing efficiency or droplet size parameters of these injector elements, the purpose of these experiments was to provide a baseline comparison for evaluating future injector element design modifications. Hence, all the experiments reported here were conducted with cold flow simulants to nonflowing, ambient conditions. Mixing experiments were conducted with liquid/liquid simulants to provide economical trend data. Atomization experiments were conducted with liquid/gas simulants without backpressure. The results, despite significant differences from hot fire conditions, were found to relate to mixing and atomization parameters deduced from the hot fire testing, suggesting that these experiments are valid for trend analyses. Single element and subscale multielement hot fire testing will verify optimized designs before committing to fullscale fabrication.

  17. HIT-SI Injector Voltage Measurements Using Injector Langmuir Probes

    NASA Astrophysics Data System (ADS)

    Aboul Hosn, Rabih; Smith, Roger; Jarboe, Thomas

    2006-10-01

    A pair of Langmuir probe arrays have been designed and built to measure floating potentials of the plasma at the injector mouth of the HIT-SI device. The Helicity Injected Torus using Steady Inductive Helicity Injection (HIT-SI) [1,2] is a ``bow tie'' spheromak using an electrodeless formation and sustainment concept. HIT-SI is powered by two inductive helicity injectors operated in quadrature to maintain a constant helicity injection rate. The electric probes consist of an array of four floating potential Langmuir probes measuring the voltage distribution in each injector from the shell to midpoint of the injector mouth. The probe measurements combine to determine the part of the injector loop voltage driving the n = 0 spheromak equilibrium region. Preliminary data suggest the spheromak voltage is the loop voltage minus the nearly constant injector voltage of 150-180 volts. These probe data will be used to calculate the helicity decay time of the spheromak. [1] T. R. Jarboe. Steady inductive helicity injection and its application to a high-beta spheromak. Fusion Technology, 36(1):85--91, July 1999. [2] P.E.Sieck et al., ``Demonstration of Steady Inductive Helicity Injection'', Nuc. Fusion, in press (2006).

  18. Experimental evaluation of two premixing-prevaporizing fuel injection concepts for a gas turbine catalytic combustor

    NASA Technical Reports Server (NTRS)

    Tacina, R.

    1976-01-01

    A premixing-prevaporizing fuel system to be used with a catalytic combustor was evaluated for possible application in an automotive gas turbine. Spatial fuel distribution and degree of vaporization were measured using jet A fuel. Two types of air blast injectors were tested, a splash groove injector and a multiple jet cross stream injector. Air swirlers with vane angles of 15 deg and 30 deg were used to improve the spatial fuel distribution in a 12 cm diameter tubular rig. Distribution and vaporization measurements were made 35.5 cm downstream of the injector. The spatial fuel distribution was nearly uniform with the multiple jet contrastream injector and the splash-groove injector with a 30 deg air swirler. The vaporization was nearly 100 percent at an inlet air temperature of 600 K, and at 800 K inlet air temperature fuel oxidation reactions were observed. The total pressure loss was less than 0.5 percent of the total pressure for the multiple jet cross stream injector and the splash groove injector (without air swirler) and less than 1 percent for the splash groove with a 30 deg air swirler.

  19. What factors affect the carriage of epinephrine auto-injectors by teenagers?

    PubMed

    Macadam, Clare; Barnett, Julie; Roberts, Graham; Stiefel, Gary; King, Rosemary; Erlewyn-Lajeunesse, Michel; Holloway, Judith A; Lucas, Jane S

    2012-02-02

    Teenagers with allergies are at particular risk of severe and fatal reactions, but epinephrine auto-injectors are not always carried as prescribed. We investigated barriers to carriage. Patients aged 12-18 years old under a specialist allergy clinic, who had previously been prescribed an auto-injector were invited to participate. Semi-structured interviews explored the factors that positively or negatively impacted on carriage. Twenty teenagers with food or venom allergies were interviewed. Only two patients had used their auto-injector in the community, although several had been treated for severe reactions in hospital. Most teenagers made complex risk assessments to determine whether to carry the auto-injector. Most but not all decisions were rational and were at least partially informed by knowledge. Factors affecting carriage included location, who else would be present, the attitudes of others and physical features of the auto-injector. Teenagers made frequent risk assessments when deciding whether to carry their auto-injectors, and generally wanted to remain safe. Their decisions were complex, multi-faceted and highly individualised. Rather than aiming for 100% carriage of auto-injectors, which remains an ambitious ideal, personalised education packages should aim to empower teenagers to make and act upon informed risk assessments.

  20. Space storable propellant performance program coaxial injector characterization

    NASA Technical Reports Server (NTRS)

    Burick, R. J.

    1972-01-01

    An experimental program was conducted to characterize the circular coaxial injector concept for application with the space-storable gas/liquid propellant combination FLOX(82.6% F2)/CH4(g) at high pressure. The primary goal of the program was to obtain high characteristic velocity efficiency in conjunction with acceptable injector/chamber compatibility. A series of subscale (single element) cold flow and hot fire experiments was employed to establish design criteria for a 3000-lbf (sea level) engine operating at 500 psia. The subscale experiments characterized both high performance core elements and peripheral elements with enhanced injector/chamber compatibility. The full-scale injector which evolved from the study demonstrated a performance level of 99 percent of the theoretical shifting characteristic exhaust velocity with low chamber heat flux levels. A 44-second-duration firing demonstrated the durability of the injector. Parametric data are presented that are applicable for the design of circular, coaxial injectors that operate with injection dynamics (fuel and oxidizer velocity, etc.) similar to those employed in the work reported.

  1. ELM Triggering with the New PPPL Lithium Granular Injector

    NASA Astrophysics Data System (ADS)

    Mansfield, D. K.; Roquemore, A. L.; Maingi, R.; Hu, J. S.; Liang, Y.; Sun, Z.; Zhang, L.; Zou, G.

    2012-10-01

    A Li granular injector based on a high-speed rotating impeller has been developed at PPPL. The injector is capable of injecting spherical particles with diameters up to 1.3 mm and velocities of up to 100 m/s and has several possible applications. Primarily, the injector was developed as a tool to induce ELMs for ELM pacing experiments in plasmas operating in the H-mode. It can also operate as a real-time wall conditioning tool or as a method to resupply Li during a discharge to devices where Li is applied to the PFC's prior to a discharge. The injector is also capable of horizontally injecting small dust particles of any variety for plasma-dust transport studies. The first injector has recently been successfully installed on the EAST tokamak in Hefei, China where ELMs were induced with near 100% efficiency when 0.7mm spheres were injected at ˜ 40m/s into the midplane SOL. The injector will be described and supporting data for ELM triggering will be presented.

  2. Simbol-X Background Minimization: Mirror Spacecraft Passive Shielding Trade-off Study

    NASA Astrophysics Data System (ADS)

    Fioretti, V.; Malaguti, G.; Bulgarelli, A.; Palumbo, G. G. C.; Ferri, A.; Attinà, P.

    2009-05-01

    The present work shows a quantitative trade-off analysis of the Simbol-X Mirror Spacecraft (MSC) passive shielding, in the phase space of the various parameters: mass budget, dimension, geometry and composition. A simplified physical (and geometrical) model of the sky screen, implemented by means of a GEANT4 simulation, has been developed to perform a performance-driven mass optimization and evaluate the residual background level on Simbol-X focal plane.

  3. Potential Application of a Thermoelectric Generator in Passive Cooling System of Nuclear Power Plants

    NASA Astrophysics Data System (ADS)

    Wang, Dongqing; Liu, Yu; Jiang, Jin; Pang, Wei; Lau, Woon Ming; Mei, Jun

    2017-05-01

    In the design of nuclear power plants, various natural circulation passive cooling systems are considered to remove residual heat from the reactor core in the event of a power loss and maintain the plant's safety. These passive systems rely on gravity differences of fluids, resulting from density differentials, rather than using an external power-driven system. Unfortunately, a major drawback of such systems is their weak driving force, which can negatively impact safety. In such systems, there is a temperature difference between the heat source and the heat sink, which potentially offers a natural platform for thermoelectric generator (TEG) applications. While a previous study designed and analyzed a TEG-based passive core cooling system, this paper considers TEG applications in other passive cooling systems of nuclear power plants, after which the concept of a TEG-based passive cooling system is proposed. In such a system, electricity is produced using the system's temperature differences through the TEG, and this electricity is used to further enhance the cooling process.

  4. Micro injector sample delivery system for charged molecules

    DOEpatents

    Davidson, James C.; Balch, Joseph W.

    1999-11-09

    A micro injector sample delivery system for charged molecules. The injector is used for collecting and delivering controlled amounts of charged molecule samples for subsequent analysis. The injector delivery system can be scaled to large numbers (>96) for sample delivery to massively parallel high throughput analysis systems. The essence of the injector system is an electric field controllable loading tip including a section of porous material. By applying the appropriate polarity bias potential to the injector tip, charged molecules will migrate into porous material, and by reversing the polarity bias potential the molecules are ejected or forced away from the tip. The invention has application for uptake of charged biological molecules (e.g. proteins, nucleic acids, polymers, etc.) for delivery to analytical systems, and can be used in automated sample delivery systems.

  5. Effect of broad properties fuel on injector performance in a reverse flow combustor

    NASA Technical Reports Server (NTRS)

    Raddlebaugh, S. M.; Norgren, C. T.

    1983-01-01

    The effect of fuel type on the performance of various fuel injectors was investigated in a reverse flow combustor. Combustor performance and emissions are documented for simplex pressure atomizing, spill flow, and airblast fuel injectors using a broad properties fuel and compared with performance using Jet A fuel. Test conditions simulated a range of flight conditions including sea level take off, low and high altitude cruise, as well as a parametric evaluation of the effect of increased combustor loading. The baseline simplex injector produced higher emission levels with corresponding lower combustion efficiency with the broad properties fuel. There was little or not loss in performance by the two advanced concept injectors with the broad properties fuel. The airblast injector proved to be especially insensitive to fuel type.

  6. Results of a Demonstration Assessment of Passive System Reliability Utilizing the Reliability Method for Passive Systems (RMPS)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bucknor, Matthew; Grabaskas, David; Brunett, Acacia

    2015-04-26

    Advanced small modular reactor designs include many advantageous design features such as passively driven safety systems that are arguably more reliable and cost effective relative to conventional active systems. Despite their attractiveness, a reliability assessment of passive systems can be difficult using conventional reliability methods due to the nature of passive systems. Simple deviations in boundary conditions can induce functional failures in a passive system, and intermediate or unexpected operating modes can also occur. As part of an ongoing project, Argonne National Laboratory is investigating various methodologies to address passive system reliability. The Reliability Method for Passive Systems (RMPS), amore » systematic approach for examining reliability, is one technique chosen for this analysis. This methodology is combined with the Risk-Informed Safety Margin Characterization (RISMC) approach to assess the reliability of a passive system and the impact of its associated uncertainties. For this demonstration problem, an integrated plant model of an advanced small modular pool-type sodium fast reactor with a passive reactor cavity cooling system is subjected to a station blackout using RELAP5-3D. This paper discusses important aspects of the reliability assessment, including deployment of the methodology, the uncertainty identification and quantification process, and identification of key risk metrics.« less

  7. Visualization of cavitating and flashing flows within a high aspect ratio injector

    NASA Astrophysics Data System (ADS)

    Thompson, Andrew S.

    Thermal management issues necessitate the use of fuel as a heat sink for gas turbine and liquid rocket engines. There are certain benefits to using heated fuels, namely, increased sensible enthalpy, increased combustion efficiency, a decrease in certain emissions, and enhanced vaporization characteristics. However, the thermal and pressure enviornment inside an injector can result in the fuel flashing to vapor. Depending on the injector design, this can have deleterious effects on engine performance. As interest in heated fuels inreases, it is important to understand what occurs in the flow path of an injector under flashing conditions. At the High Pressure Laboratory at Purdue University's Maurice J. Zucrow Laboritories, a test rig was designed and built to give visual access into the flow path of a 2-D slot injector. The rig is capable of pressurizing and heating a liquid to superheated conditions and utilizes a pneumatically actuated piston to pusth the liquid through the slot injector. Methanol was chosen as a surrogate fuel to allow for high levels of superheat at relatively low temperatures. Testing was completed with acrylic and quartz injectors of varying L/DH. Flashing conditions inside the injector flow path were induced via a combination of heating and back pressure adjustments. Volume flow rate, pressure measurements, and temperature measurements were made which allowed the discharge characteristics, the level of superheat, and other parameters to be calculated and compared. To give a basis for comparison the flashing results are compared to the flow through the injector under cavitating conditions. Cavitation and flashing appear to be related phenomena and this relationship is shown. Bubble formation under cavitating or flashing conditions is observed to attenuate the injector's discharge characteristics. High speed videos of the flow field were also collected. Several flow regimes and flow structures, unique to these regimes, were observed. A frequency analysis was also performed on the video files. Bubble formation in the flow field dominates the frequency spectrum, which is confined below 1 kHz. The test campaign was successful. The result is a possible way to predict an injector's performance under flashing conditions without running heated fuel through the injector. These results may be applicable to real world injector design and testing.

  8. Photographic characterization of spark-ignition engine fuel injectors

    NASA Technical Reports Server (NTRS)

    Evanich, P. L.

    1978-01-01

    Manifold port fuel injectors suitable for use in general aviation spark-ignition engines were evaluated qualitatively on the basis of fuel spray characteristics. Photographs were taken at various fuel flow rates or pressure levels. Mechanically and electronically operated pintle injectors generally produced the most atomization. The plain-orifice injectors used on most fuel-injected general aviation engines did not atomize the fuel when sprayed into quiescent air.

  9. CFD simulation of coaxial injectors

    NASA Technical Reports Server (NTRS)

    Landrum, D. Brian

    1993-01-01

    The development of improved performance models for the Space Shuttle Main Engine (SSME) is an important, ongoing program at NASA MSFC. These models allow prediction of overall system performance, as well as analysis of run-time anomalies which might adversely affect engine performance or safety. Due to the complexity of the flow fields associated with the SSME, NASA has increasingly turned to Computational Fluid Dynamics (CFD) techniques as modeling tools. An important component of the SSME system is the fuel preburner, which consists of a cylindrical chamber with a plate containing 264 coaxial injector elements at one end. A fuel rich mixture of gaseous hydrogen and liquid oxygen is injected and combusted in the chamber. This process preheats the hydrogen fuel before it enters the main combustion chamber, powers the hydrogen turbo-pump, and provides a heat dump for nozzle cooling. Issues of interest include the temperature and pressure fields at the turbine inlet and the thermal compatibility between the preburner chamber and injector plate. Performance anomalies can occur due to incomplete combustion, blocked injector ports, etc. The performance model should include the capability to simulate the effects of these anomalies. The current approach to the numerical simulation of the SSME fuel preburner flow field is to use a global model based on the MSFC sponsored FNDS code. This code does not have the capabilities of modeling several aspects of the problem such as detailed modeling of the coaxial injectors. Therefore, an effort has been initiated to develop a detailed simulation of the preburner coaxial injectors and provide gas phase boundary conditions just downstream of the injector face as input to the FDNS code. This simulation should include three-dimensional geometric effects such as proximity of injectors to baffles and chamber walls and interaction between injectors. This report describes an investigation into the numerical simulation of GH2/LOX coaxial injectors. The following sections will discuss the physical aspects of injectors, the CFD code employed, and preliminary results of a simulation of a single coaxial injector for which experimental data is available. It is hoped that this work will lay the foundation for the development of a unique and useful tool to support the SSME program.

  10. Potential for cross-contamination from use of a needleless injector.

    PubMed

    Weintraub, A M; Ponce de Leon, M P

    1998-08-01

    Medical devices that are used on patients in fields containing potentially infectious body fluids can become contaminated and transmit infectious agents to other sites on the patient or to other patients if the devices are not properly cleaned and decontaminated after use on each patient treatment site. One such device is the needleless or jet injector, which is widely used in medicine and dentistry to deliver local anesthetic in procedures such as bone marrow aspirations, lumbar punctures, and cutaneous and intraoral injections. This study was conducted to determine whether cross-contamination can occur on in vitro reuse of a needleless injector and whether a manufacturer's recommended method of injector decontamination (ie, immersion sterilization) is effective in the prevention of cross-contamination. The study was performed with new autoclaved injectors, fluorescein dye, and Streptococcus crista (the bacteria commonly found in saliva) in the field of use to determine whether these devices can become contaminated during use and carry over the contamination to other sites during immediate reuse. Fluorescein dye and bacteria tests with the needleless injectors showed that contamination or carryover does occur. It appeared to reduced to a minimum when a autoclaved, sterile rubber cap used over the head of the device during injection was replaced between each use, although replacement of the rubber cap alone did not prevent carryover. Immersion of the head of the injector in a 2% glutaraldehyde solution for 30 minutes followed by a sterile water rinse and the replacement of the rubber cap with a sterile cap between uses was shown to curtail bacterial growth and prevent cross-contamination on immediate reuse of the device. This study demonstrated that needleless injectors become contaminated during in vitro use and direct contact with contaminated surfaces and that needless injectors carry over the contamination to subsequent sites of release. The replacement of the injector's rubber cap with a new one after initial discharge or the removal of an exposed rubber cap and immersion of the head of the injector in 2% glutaraldehyde followed by a rinse of the head in sterile water, as recommended by one injector manufacturer, can minimize or eliminate the carryover.

  11. High-Resolution X-Ray and Neutron Computed Tomography of an Engine Combustion Network Spray G Gasoline Injector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duke, Daniel J.; Finney, Charles E. A.; Kastengren, Alan

    Given the importance of the fuel-injection process on the combustion and emissions performance of gasoline direct injected engines, there has been significant recent interest in understanding the fluid dynamics within the injector, particularly around the needle and through the nozzles. Furthermore, the pressure losses and transients that occur in the flow passages above the needle are also of interest. Simulations of these injectors typically use the nominal design geometry, which does not always match the production geometry. Computed tomography (CT) using x-ray and neutron sources can be used to obtain the real geometry from production injectors, but there are trade-offsmore » in using these techniques. X-ray CT provides high resolution, but cannot penetrate through the thicker parts of the injector. Neutron CT has excellent penetrating power but lower resolution. Here, we present results from a joint effort to characterize a gasoline direct injector representative of the Spray G injector as defined by the Engine Combustion Network. High-resolution (1.2 to 3 µm) x-ray CT measurements from the Advanced Photon Source at Argonne National Laboratory were combined with moderate-resolution (40 µm) neutron CT measurements from the High Flux Isotope Reactor at Oak Ridge National Laboratory to generate a complete internal geometry for the injector. This effort combined the strengths of both facilities’ capabilities, with extremely fine spatially resolved features in the nozzles and injector tips and fine resolution of internal features of the needle along the length of injector. Analysis of the resulting surface model of the internal fluid flow volumes of the injector reveals how the internal cross-sectional area and nozzle hole geometry differs slightly from the design dimensions. A simplified numerical simulation of the internal flow shows how deviations from the design geometry can alter the flow inside the sac and holes. Our results of this study will provide computational modelers with very accurate solid and surface models for use in computational fluid dynamics studies and experimentalists with increased insight into the operating characteristics of their injectors.« less

  12. High-Resolution X-Ray and Neutron Computed Tomography of an Engine Combustion Network Spray G Gasoline Injector

    DOE PAGES

    Duke, Daniel J.; Finney, Charles E. A.; Kastengren, Alan; ...

    2017-03-14

    Given the importance of the fuel-injection process on the combustion and emissions performance of gasoline direct injected engines, there has been significant recent interest in understanding the fluid dynamics within the injector, particularly around the needle and through the nozzles. Furthermore, the pressure losses and transients that occur in the flow passages above the needle are also of interest. Simulations of these injectors typically use the nominal design geometry, which does not always match the production geometry. Computed tomography (CT) using x-ray and neutron sources can be used to obtain the real geometry from production injectors, but there are trade-offsmore » in using these techniques. X-ray CT provides high resolution, but cannot penetrate through the thicker parts of the injector. Neutron CT has excellent penetrating power but lower resolution. Here, we present results from a joint effort to characterize a gasoline direct injector representative of the Spray G injector as defined by the Engine Combustion Network. High-resolution (1.2 to 3 µm) x-ray CT measurements from the Advanced Photon Source at Argonne National Laboratory were combined with moderate-resolution (40 µm) neutron CT measurements from the High Flux Isotope Reactor at Oak Ridge National Laboratory to generate a complete internal geometry for the injector. This effort combined the strengths of both facilities’ capabilities, with extremely fine spatially resolved features in the nozzles and injector tips and fine resolution of internal features of the needle along the length of injector. Analysis of the resulting surface model of the internal fluid flow volumes of the injector reveals how the internal cross-sectional area and nozzle hole geometry differs slightly from the design dimensions. A simplified numerical simulation of the internal flow shows how deviations from the design geometry can alter the flow inside the sac and holes. Our results of this study will provide computational modelers with very accurate solid and surface models for use in computational fluid dynamics studies and experimentalists with increased insight into the operating characteristics of their injectors.« less

  13. Is there an omission effect in prosocial behavior? A laboratory experiment on passive vs. active generosity

    PubMed Central

    Gärtner, Manja

    2017-01-01

    We investigate whether individuals are more prone to act selfishly if they can passively allow for an outcome to be implemented (omission) rather than having to make an active choice (commission). In most settings, active and passive choice alternatives differ in terms of factors such as the presence of a suggested option, costs of taking an action, and awareness. We isolate the omission effect from confounding factors in three experiments, and find no evidence that the distinction between active and passive choices has an independent effect on the propensity to implement selfish outcomes. This suggests that increased selfishness through omission, as observed in various economic choice situations, is driven by other factors than a preference for selfish omissions. PMID:28248979

  14. CFD-Based Design of a Filming Injector for N+3 Combustors

    NASA Technical Reports Server (NTRS)

    Ajmani, Kumud; Mongia, Hukam; Lee, Phil

    2016-01-01

    An effort was undertaken to perform CFD analysis of fluid flow in Lean-Direct Injection (LDI) combustors with axial swirl-venturi elements coupled with a new fuel-filming injector design for next-generation N+3 combustors. The National Combustion Code (NCC) was used to perform non-reacting and two-phase reacting flow computations on a N+3 injector configuration, in a single-element and a five-element injector array. All computations were performed with a consistent approach towards mesh-generation, spray-, ignition- and kinetics-modeling with the NCC. Computational predictions of the aerodynamics of the injector were used to arrive at an optimal injector design that met effective area, aerodynamics, and fuel-air mixing criteria. LDI-3 emissions (EINOx, EICO and UHC) were compared with the previous generation LDI-2 combustor experimental data at representative engine cycle conditions.

  15. Injector design guidelines for gas/liquid propellant systems

    NASA Technical Reports Server (NTRS)

    Falk, A. Y.; Burick, R. J.

    1973-01-01

    Injector design guidelines are provided for gas/liquid propellant systems. Information was obtained from a 30-month applied research program encompassing an analytical, design, and experimental effort to relate injector design parameters to simultaneous attainment of high performance and component (injector/thrust chamber) compatibility for gas/liquid space storable propellants. The gas/liquid propellant combination studied was FLOX (82.6% F2)/ ambient temperature gaseous methane. Design criteria that provide for simultaneous attainment of high performance and chamber compatibility are presented for both injector types. Parametric data are presented that are applicable for the design of circular coaxial and like-doublet injectors that operate with design parameters similar to those employed. However, caution should be exercised when applying these data to propellant combinations whose elements operate in ranges considerably different from those employed in this study.

  16. X-ray Fluorescence Measurements of Turbulent Methane-Oxygen Shear Coaxial Flames

    DTIC Science & Technology

    2015-05-01

    The shear coaxial jet injector is a typical injector design in liquid rocket engines, used as the main chamber element for Space Shuttle Main...current study. (b) Representation of the injector tip of the shear coaxial burner with propellant streams and dimensions labeled. (c) Picture of flame...integrated with the Air Force Research Laboratories’ (AFRL) Mobile Flow Laboratory (MFL). This facility is designed to allow aerospace-propulsion injector

  17. Direct Fuel Injector Power Drive System Optimization

    DTIC Science & Technology

    2014-04-01

    solenoid coil to create magnetic field in the stator. Then, the stator pulls the pintle to open the injector nozzle . This pintle movement occurs when the...that typically deal with power strategies to the injector solenoid coil. Numerical simulation codes for diesel injection systems were developed by...Laboratory) for providing the JP-8 test fuel. REFERENCES 1. Digesu, P. and Laforgia D., “ Diesel electro- injector : A numerical simulation code”. Journal of

  18. What factors affect the carriage of epinephrine auto-injectors by teenagers?

    PubMed Central

    2012-01-01

    Background Teenagers with allergies are at particular risk of severe and fatal reactions, but epinephrine auto-injectors are not always carried as prescribed. We investigated barriers to carriage. Methods Patients aged 12-18 years old under a specialist allergy clinic, who had previously been prescribed an auto-injector were invited to participate. Semi-structured interviews explored the factors that positively or negatively impacted on carriage. Results Twenty teenagers with food or venom allergies were interviewed. Only two patients had used their auto-injector in the community, although several had been treated for severe reactions in hospital. Most teenagers made complex risk assessments to determine whether to carry the auto-injector. Most but not all decisions were rational and were at least partially informed by knowledge. Factors affecting carriage included location, who else would be present, the attitudes of others and physical features of the auto-injector. Teenagers made frequent risk assessments when deciding whether to carry their auto-injectors, and generally wanted to remain safe. Their decisions were complex, multi-faceted and highly individualised. Conclusions Rather than aiming for 100% carriage of auto-injectors, which remains an ambitious ideal, personalised education packages should aim to empower teenagers to make and act upon informed risk assessments. PMID:22409884

  19. Filtered Rayleigh scattering mixing measurements of merging and non-merging streamwise vortex interactions in supersonic flow

    NASA Astrophysics Data System (ADS)

    Ground, Cody R.; Gopal, Vijay; Maddalena, Luca

    2018-04-01

    By introducing large-scale streamwise vortices into a supersonic flow it is possible to enhance the rate of mixing between two fluid streams. However, increased vorticity content alone does not explicitly serve as a predictor of mixing enhancement. Additional factors, particularly the mutual interactions occurring between neighboring vortical structures, affect the underlying fundamental physics that influence the rate at which the fluids mix. As part of a larger systematic study on supersonic streamwise vortex interactions, this work experimentally quantifies the average rate of mixing of helium and air in the presence of two separate modes of vortex interaction, the merging and non-merging of a pair of co-rotating vortices. In these experiments vortex-generating expansion ramps are placed on a strut injector. The freestream Mach number is set at 2.5 and helium is injected as a passive scalar. Average injectant mole fractions at selected flow planes downstream of the injector are measured utilizing the filtered Rayleigh scattering technique. The filtered Rayleigh scattering measurements reveal that, in the domain surveyed, the merging vortex interaction strongly displaces the plume from its initial horizontal orientation while the non-merging vortex interaction more rapidly mixes the helium and air. The results of the current experiments are consistent with associated knowledge derived from previous analyses of the two studied configurations which have included the detailed experimental characterization of entrainment, turbulent kinetic energy, and vorticity of both modes of vortex interaction.

  20. High performance N2O4/amine elements: Blowapart

    NASA Technical Reports Server (NTRS)

    Lawver, B. R.

    1977-01-01

    The mechanisms controlling hypergolic propellant reactive stream separation (RRS) were studied and used to develop design criteria for injectors free from both steady state RSS and cyclic propellant stream separation. This was accomplished through the analysis of single element injectors using N204/MMH propellants; the injectors were representative of the space shuttle orbit maneuvering engine and space tug applications. A gas phase/surface reaction mechanism which controls RSS was identified. Injector design criteria were developed, which defined a critical chamber pressure for those operating conditions above which RSS occurs. It was found that the amount of interfacial surface area at impingement is controlled by injector hydraulics.

  1. Mixing Enhancement in a Lobed Injector

    NASA Technical Reports Server (NTRS)

    Smith, L. L.; Majamaki, A. J.; Lam, I. T.; Delabroy, O.; Karagozian, A. R.; Marble, F. E.; Smith, O. I.

    1997-01-01

    An experimental investigation of the non-reactive mixing processes associated with a lobed fuel injector in a coflowing air stream is presented. The lobed fuel injector is a device which generates streamwise vorticity, producing high strain rates which can enhance the mixing of reactants while delaying ignition in a controlled manner. The lobed injectors examined in the present study consist of two corrugated plates between which a fuel surrogate, CO2, is injected into coflowing air. Acetone is seeded in the CO2 supply as a fuel marker. Comparison of two alternative lobed injector geometries is made with a straight fuel injector to determine net differences in mixing and strain fields due to streamwise vorticity generation. Planar laser-induced fluorescence (PLIF) of the seeded acetone yields two-dimensional images of the scalar concentration field at various downstream locations, from which local mixing and scalar dissipation rates are computed. It is found that the lobed injector geometry can enhance molecular mixing and create a highly strained flowfield, and that the strain rates generated by scalar energy dissipation can potentially delay ignition in a reacting flowfield.

  2. Engine Hydraulic Stability. [injector model for analyzing combustion instability

    NASA Technical Reports Server (NTRS)

    Kesselring, R. C.; Sprouse, K. M.

    1977-01-01

    An analytical injector model was developed specifically to analyze combustion instability coupling between the injector hydraulics and the combustion process. This digital computer dynamic injector model will, for any imposed chamber of inlet pressure profile with a frequency ranging from 100 to 3000 Hz (minimum) accurately predict/calculate the instantaneous injector flowrates. The injector system is described in terms of which flow segments enter and leave each pressure node. For each flow segment, a resistance, line lengths, and areas are required as inputs (the line lengths and areas are used in determining inertance). For each pressure node, volume and acoustic velocity are required as inputs (volume and acoustic velocity determine capacitance). The geometric criteria for determining inertances of flow segments and capacitance of pressure nodes was set. Also, a technique was developed for analytically determining time averaged steady-state pressure drops and flowrates for every flow segment in an injector when such data is not known. These pressure drops and flowrates are then used in determining the linearized flow resistance for each line segment of flow.

  3. Mixing Characteristics of Coaxial Injectors at High Gas to Liquid Momentum Ratios

    NASA Technical Reports Server (NTRS)

    Strakey, P. A.; Talley, D. G.; Hutt, J. J.

    1999-01-01

    A study of the spray of a swirl coaxial gas-liquid injector operating at high gas to liquid momentum ratios is reported. Mixing and droplet size characteristics of the swirl injector are also compared to a shear coaxial injector, currently being used in the Space Shuttle Main Engine fuel preburner. The injectors were tested at elevated chamber pressures using water as a LOX simulant and nitrogen and helium as gaseous hydrogen simulants. The elevated chamber pressure allowed for matching of several of the preburner injector conditions including; gas to liquid momentum ratio, density ratio and Mach number. Diagnostic techniques used to characterize the spray included; strobe back-light imaging, laser sheet spray imaging, mechanical patternation, and a phase Doppler interferometry. Results thus far indicate that the radial spreading of the swirl coaxial spray is much less than was reported in previous studies of swirl injectors operating at atmospheric back-pressure. The swirl coaxial spray does, however, exhibit a smaller overall droplet size which may be interpreted as an increase in local mixing.

  4. Evaluation of thermal loading on a methane injector at high pressure and temperature

    NASA Technical Reports Server (NTRS)

    Harvin, Stephen F.

    1990-01-01

    Experimental and numerical analyses are conducted to determine the surface temperature on a methane fuel injector used to produce a high enthalpy test stream for a combustion-fed subscale wind tunnel facility. It was found that the ratio of the methane fuel injection velocity to the air stream velocity is a significant factor in the production of high injector surface temperatures which lead to rapid deterioration of the fuel injector structure. The numerical code utilized for the computational analysis was found to be representative of the experimentally measured data since the experimental trends were reproduced by the numerical simulation. The quantitative accuracy of the numerical predictions could not be assessed from the data gathered because of the difficulty of making a noninterfering injector surface temperature measurement. The numerical code can be used for parametric evaluation of combustor parameters and thus will serve as an important tool in the design of such fuel injector systems.

  5. Design of a low emittance and high repetition rate S-band photoinjector

    NASA Astrophysics Data System (ADS)

    Han, Jang-Hui

    2014-09-01

    As an electron beam injector of X-ray free-electron lasers (FELs), photoinjectors have been developed for the past few decades. Such an injector starting with a photocathode RF gun provides high brightness beams and therefore it is being adopted as an injector of X-ray FELs. In this paper we show how to improve photoinjector performance in terms of emittance and repetition rates by means of injector components optimization, especially with the gun. Transverse emittance at the end of an injector is reduced by optimizing the gun design, gun solenoid position, and accelerating section position. The repetition rate of an injector mainly depends on the gun. It is discussed that a repetition rate of 1 kHz at a normal-conducting S-band photoinjector is feasible by adopting a coaxial RF coupler and improving cooling-water channels surrounding the gun.

  6. Characterization of typical platelet injector flow configurations. [liquid propellant rocket engines

    NASA Technical Reports Server (NTRS)

    Hickox, C. E.

    1975-01-01

    A study to investigate the hydraulic atomization characteristics of several novel injector designs for use in liquid propellant rocket engines is presented. The injectors were manufactured from a series of thin stainless steel platelets through which orifices were very accurately formed by a photoetching process. These individual platelets were stacked together and the orifices aligned so as to produce flow passages of prescribed geometry. After alignment, the platelets were bonded into a single, 'platelet injector', unit by a diffusion bonding process. Because of the complex nature of the flow associated with platelet injectors, it was necessary to use experimental techniques, exclusively, throughout the study. Large scale models of the injectors were constructed from aluminum plates and the appropriate fluids were modeled using a glycerol-water solution. Stop-action photographs of test configurations, using spark-shadowgraph or stroboscopic back-lighting, are shown.

  7. Experimental Evaluation of a Subscale Gaseous Hydrogen/gaseous Oxygen Coaxial Rocket Injector

    NASA Technical Reports Server (NTRS)

    Smith, Timothy D.; Klem, Mark D.; Breisacher, Kevin J.; Farhangi, Shahram; Sutton, Robert

    2002-01-01

    The next generation reusable launch vehicle may utilize a Full-Flow Stage Combustion (FFSC) rocket engine cycle. One of the key technologies required is the development of an injector that uses gaseous oxygen and gaseous hydrogen as propellants. Gas-gas propellant injection provides an engine with increased stability margin over a range of throttle set points. This paper summarizes an injector design and testing effort that evaluated a coaxial rocket injector for use with gaseous oxygen and gaseous hydrogen propellants. A total of 19 hot-fire tests were conducted up to a chamber pressure of 1030 psia, over a range of 3.3 to 6.7 for injector element mixture ratio. Post-test condition of the hardware was also used to assess injector face cooling. Results show that high combustion performance levels could be achieved with gas-gas propellants and there were no problems with excessive face heating for the conditions tested.

  8. Review on pressure swirl injector in liquid rocket engine

    NASA Astrophysics Data System (ADS)

    Kang, Zhongtao; Wang, Zhen-guo; Li, Qinglian; Cheng, Peng

    2018-04-01

    The pressure swirl injector with tangential inlet ports is widely used in liquid rocket engine. Commonly, this type of pressure swirl injector consists of tangential inlet ports, a swirl chamber, a converging spin chamber, and a discharge orifice. The atomization of the liquid propellants includes the formation of liquid film, primary breakup and secondary atomization. And the back pressure and temperature in the combustion chamber could have great influence on the atomization of the injector. What's more, when the combustion instability occurs, the pressure oscillation could further affects the atomization process. This paper reviewed the primary atomization and the performance of the pressure swirl injector, which include the formation of the conical liquid film, the breakup and atomization characteristics of the conical liquid film, the effects of the rocket engine environment, and the response of the injector and atomization on the pressure oscillation.

  9. Experimental Study of Injection Characteristics of a Multi-hole port injector on various Fuel Injection pressures and Temperatures

    NASA Astrophysics Data System (ADS)

    Movahednejad, E.; Ommi, F.; Nekofar, K.

    2013-04-01

    The structures of the port injector spray dominates the mixture preparation process and strongly affect the subsequent engine combustion characteristics over a wide range of operating conditions in port-injection gasoline engines. All these spray characteristics are determined by particular injector design and operating conditions. In this paper, an experimental study is made to characterize the breakup mechanism and spray characteristics of a injector with multi-disc nozzle (SAGEM,D2159MA). A comparison was made on injection characteristics of the multi-hole injectors and its effects on various fuel pressure and temperature. The distributions of the droplet size and velocity and volume flux were characterized using phase Doppler anemometry (PDA) technique. Through this work, it was found that the injector produces a finer spray with a wide spray angle in higher fuel pressure and temperature.

  10. Analysis of High Speed Jets Produced by a Servo Tube Driven Liquid Jet Injector

    NASA Astrophysics Data System (ADS)

    Portaro, Rocco; Ng, Hoi Dick

    2017-11-01

    In today's healthcare environment many types of medication must be administered through the use of hypodermic needles. Although this practice has been in use for many years, drawbacks such as accidental needle stick injuries, transmission of deadly viruses and bio-hazardous waste are still present. This study focuses on improving a needle free technology known as liquid jet injection, through the implementation of a linear servo tube actuator for the construction of a fully closed loop liquid jet injection system. This device has the ability to deliver both micro- and macro- molecules, high viscosity fluids whilst providing real time control of the jet pressure profile for accurate depth and dispersion control. The experiments are conducted using a prototype that consists of a 3 kW servo tube actuator, coupled to a specially designed injection head allowing nozzle size and injection volume to be varied. The device is controlled via a high speed servo amplifier and FPGA. The high speed jets emanating from the injector are assessed via high speed photography and through the use of a force transducer. Preliminary results indicate that the system allows for accurate shaping of the jet pressure profile, making it possible to target different tissue depths/types accurately.

  11. Efficiency gain of solid oxide fuel cell systems by using anode offgas recycle - Results for a small scale propane driven unit

    NASA Astrophysics Data System (ADS)

    Dietrich, Ralph-Uwe; Oelze, Jana; Lindermeir, Andreas; Spitta, Christian; Steffen, Michael; Küster, Torben; Chen, Shaofei; Schlitzberger, Christian; Leithner, Reinhard

    The transfer of high electrical efficiencies of solid oxide fuel cells (SOFC) into praxis requires appropriate system concepts. One option is the anode-offgas recycling (AOGR) approach, which is based on the integration of waste heat using the principle of a chemical heat pump. The AOGR concept allows a combined steam- and dry-reforming of hydrocarbon fuel using the fuel cell products steam and carbon dioxide. SOFC fuel gas of higher quantity and quality results. In combination with internal reuse of waste heat the system efficiency increases compared to the usual path of partial oxidation (POX). The demonstration of the AOGR concept with a 300 Wel-SOFC stack running on propane required: a combined reformer/burner-reactor operating in POX (start-up) and AOGR modus; a hotgas-injector for anode-offgas recycling to the reformer; a dynamic process model; a multi-variable process controller; full system operation for experimental proof of the efficiency gain. Experimental results proof an efficiency gain of 18 percentage points (η·POX = 23%, η·AOGR = 41%) under idealized lab conditions. Nevertheless, further improvements of injector performance, stack fuel utilization and additional reduction of reformer reformer O/C ratio and system pressure drop are required to bring this approach into self-sustaining operation.

  12. Investigation of spray characteristics for flashing injection of fuels containing dissolved air and superheated fuels

    NASA Technical Reports Server (NTRS)

    Solomon, A. S. P.; Chen, L. D.; Faeth, G. M.

    1982-01-01

    The flow, atomization and spreading of flashing injector flowing liquids containing dissolved gases (jet/air) as well as superheated liquids (Freon II) were considered. The use of a two stage expansion process separated by an expansion chamber, ws found to be beneficial for flashing injection particularly for dissolved gas systems. Both locally homogeneous and separated flow models provided good predictions of injector flow properties. Conventional correlations for drop sizes from pressure atomized and airblast injectors were successfully modified, using the separated flow model to prescribe injector exit conditions, to correlate drop size measurements. Additional experimental results are provided for spray angle and combustion properties of sprays from flashing injectors.

  13. Atomization characteristics of swirl injector sprays

    NASA Technical Reports Server (NTRS)

    Feikema, Douglas A.

    1996-01-01

    Stable combustion within rocket engines is a continuing concern for designers of rocket engine systems. The swirl-coaxial injector has demonstrated effectiveness in achieving atomization and mixing, and therefore stable combustion. Swirl-coaxial injector technology is being deployed in the American RL1OA rocket design and Russian engine systems already make wide spread use of this technology. The present requirement for swirl injector research is derived from NASA's current Reusable Launch Vehicle (RLV) technology program. This report describes some of the background and literature on this topic including drop size measurements, comparison with theoretical predictions, the effect of surface tension on the atomization process, and surface wave characteristics of liquid film at the exit of the injector.

  14. Method and apparatus for duct sealing using a clog-resistant insertable injector

    DOEpatents

    Wang, Duo; Modera, Mark P.

    2010-12-14

    A method for forming a duct access region through one side of a previously installed air duct, wherein the air duct has an air flow with an air flow direction by inserting an aerosol injector into a previously installed air duct through the access region. The aerosol injector includes a liquid tube having a liquid tube orifice for ejecting a liquid to be atomized; and a propellant cap. The method is accomplished by aligning the aerosol injector with the direction of air flow in the duct; activating an air flow within the duct; and spraying a sealant through the aerosol injector to seal the duct in the direction of the air flow.

  15. Noncircular orifice holes and advanced fabrication techniques for liquid rocket injectors. Phase 3: Analytical and cold-flow experimental evaluation of rectangular concentric tube injector elements for gas/liquid application. Phase 4: Analytical and experimental evaluation of noncircular injector elements for gas/liquid and liquid/liquid application

    NASA Technical Reports Server (NTRS)

    Mchale, R. M.

    1974-01-01

    Results are presented of a cold-flow and hot-fire experimental study of the mixing and atomization characteristics of injector elements incorporating noncircular orifices. Both liquid/liquid and gas/liquid element types are discussed. Unlike doublet and triplet elements (circular orifices only) were investigated for the liquid/liquid case while concentric tube elements were investigated for the gas/liquid case. It is concluded that noncircular shape can be employed to significant advantage in injector design for liquid rocket engines.

  16. HIV Prevalence and Risk among Heterosexual Methamphetamine Injectors in California

    PubMed Central

    Kral, Alex H.; Lorvick, Jennifer; Martinez, Alexis; Lewis, Megan A.; Orr, Alexander; Anderson, Rachel; Flynn, Neil; Bluthenthal, Ricky N.

    2013-01-01

    This CDC-funded study compares HIV prevalence and risk behavior among heterosexual methamphetamine (n=428) and non-methamphetamine (n=878) injectors in California, USA during 2001–2003. While HIV was not highly prevalent among methamphetamine injectors (3%), sexual and injection risk behaviors were highly prevalent (ranging from 21% to 72%). In multivariate analyses, methamphetamine injectors had higher odds than non-methamphetamine injectors of unprotected vaginal intercourse and sex with five or more sexual partners in the past six months, and of distributive and receptive syringe sharing in the past thirty days. There was no significant difference in HIV sero-status by methamphetamine use. Suggestions are made for designing HIV prevention programs. PMID:21391786

  17. Tactical/Combat Engines Cetane Window Evaluation

    DTIC Science & Technology

    2013-01-31

    non-instrumented injector . The leaky instrumented injector was showing some of the combustion characteristics of the diesel fuel and it was...Instrumented HEUI-B Injector -10 0 10 20 30 40 50 60 70 80 90 100 -30 -20 -10 0 10 20 30 40 50 60 J/ CA D CAD HRR Comparison of Different Injectors Diesel ...SUPPLEMENTARY NOTES 14. ABSTRACT The European Stationary Cycle 13 Mode test was performed on a turbocharged inline 6-cylinder diesel engine and a

  18. The use of x-ray radiography for measuring mass distributions of Rocket Injectors

    DTIC Science & Technology

    2013-06-01

    successfully applied to diesel injectors , aerated liquid jets and impinging-jet sprays [7-10]. X-ray radiography can be performed using either a...Rocket Injectors 5a. CONTRACT NUMBER N/A 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) S.A. Schumaker, A.L. Kastengren, M.D.A...measurements for injector design. Unfortunately, the mass flow rates typically encountered in rocket engines create sprays with high optical densities

  19. The Effect of Fuel Injector Nozzle Configuration on JP-8 Sprays at Diesel Engine Conditions

    DTIC Science & Technology

    2014-10-01

    The Effect of Fuel Injector Nozzle Configuration on JP-8 Sprays at Diesel Engine Conditions by Matthew Kurman, Luis Bravo, Chol-Bum Kweon...Fuel Injector Nozzle Configuration on JP-8 Sprays at Diesel Engine Conditions Matthew Kurman, Luis Bravo, and Chol-Bum Kweon Vehicle Technology...March 2014 4. TITLE AND SUBTITLE The Effect of Fuel Injector Nozzle Configuration on JP-8 Sprays at Diesel Engine Conditions 5a. CONTRACT NUMBER 5b

  20. Redirecting by Injector

    NASA Technical Reports Server (NTRS)

    Filman, Robert E.; Lee, Diana D.; Norvig, Peter (Technical Monitor)

    2000-01-01

    We describe the Object Infrastructure Framework, a system that seeks to simplify the creation of distributed applications by injecting behavior on the communication paths between components. We touch on some of the ilities and services that can be achieved with injector technology, and then focus on the uses of redirecting injectors, injectors that take requests directed at a particular server and generate requests directed at others. We close by noting that OIF is an Aspect-Oriented Programming system, and comparing OIF to related work.

  1. Injection dynamics of gelled propellants

    NASA Astrophysics Data System (ADS)

    Yoon, Changjin

    Gel propellants have been recognized as attractive candidates for future propulsion systems due to the reduced tendency to spill and the energy advantages over solid propellants. One of strong benefits emphasized in gel propellant applications is a throttling capability, but the accurate flow control is more complicated and difficult than with conventional Newtonian propellants because of the unique rheological behaviors of gels. This study is a computational effort directed to enhance understanding of the injector internal flow characteristics for gel propellants under rocket injection conditions. In simulations, the emphasized rheology is a shear-thinning which represents a viscosity decrease with increasing a shear rate. It is described by a generalized Newtonian fluid constitutive equation and Carreau-Yasuda model. Using this rheological model, two injection schemes are considered in the present study: axially-fed and cross-fed injection for single-element and multi-element impinging injectors, respectively. An axisymmetric model is developed to describe the axially-fed injector flows and fully three-dimensional model is utilized to simulate cross-fed injector flows. Under axially-fed injection conditions investigated, three distinct modes, an unsteady, steady, and hydraulic flip mode, are observed and mapped in terms of Reynolds number and orifice design. In an unsteady mode, quasi-periodic oscillations occur near the inlet lip leading mass pulsations and viscosity fluctuations at the orifice exit. This dynamic behavior is characterized using a time-averaged discharge coefficient, oscillation magnitude and frequency by a parametric study with respect to an orifice design, Reynolds number and rheology. As a result, orifice exit flows for gel propellants appear to be significantly influenced by a viscous damping and flow resistance due to a shear thinning behavior and these are observed in each factors considered. Under conditions driven by a manifold crossflow, unsteady and asymmetric flow structures are revealed as a series of vortices generated from the unstable vena contracta. Here, flows are characterized by an orifice design, manifold/core injection velocity ratio, Reynolds number and rheology. A significant decrease of discharge coefficients is noted with increasing the manifold flow. As the manifold crossflow increases, stronger friction losses are exerted on the leeward, and lead to larger hydraulic losses across the injector. In addition, calculations show that discharge coefficients decrease and the unsteadiness is mitigated as the viscosity increases by fluid rheology variations. A larger and more distinct horseshoe vortex is observed, and pulsation magnitude and viscosity fluctuations are mitigated with increasing viscosity. The oscillation frequency, however, remains unchanged even though the viscosity curves at the high shear rate are modified. All these observations confirm the conclusion that the role of viscous damping and flow resistance is more critical in cross-fed injection conditions than in axially-fed one.

  2. Using CFD as Rocket Injector Design Tool: Recent Progress at Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Tucker, Kevin; West, Jeff; Williams, Robert; Lin, Jeff; Rocker, Marvin; Canabal, Francisco; Robles, Bryan; Garcia, Robert; Chenoweth, James

    2003-01-01

    The choice of tools used for injector design is in a transitional phase between exclusive reliance on the empirically based correlations and extensive use of computational fluid dynamics (CFD). The Next Generation Launch Technology (NGLT) Program goals emphasizing lower costs and increased reliability have produced a need to enable CFD as an injector design tool in a shorter time frame. This is the primary objective of the Staged Combustor Injector Technology Task currently under way at Marshall Space Flight Center (MSFC). The documentation of this effort begins with a very brief status of current injector design tools. MSFC's vision for use of CFD as a tool for combustion devices design is stated and discussed with emphasis on the injector. The concept of the Simulation Readiness Level (SRL), comprised of solution fidelity, robustness and accuracy, is introduced and discussed. This quantitative measurement is used to establish the gap between the current state of demonstrated capability and that necessary for regular use in the design process. MSFC's view of the validation process is presented and issues associated with obtaining the necessary data are noted and discussed. Three current experimental efforts aimed at generating validation data are presented. The importance of uncertainty analysis to understand the data quality is also demonstrated. First, a brief status of current injector design tools is provided as context for the current effort. Next, the MSFC vision for using CFD as an injector design tool is stated. A generic CFD-based injector design methodology is also outlined and briefly discussed. Three areas where MSFC is using injector CFD analyses for program support will be discussed. These include the Integrated Powerhead Development (IPD) engine which uses hydrogen and oxygen propellants in a full flow staged combustion (FFSC) cycle and the TR-107 and the RS84 engine both of which use RP-1 and oxygen in an ORSC cycle. Finally, an attempt is made to objectively summarize what progress has been made at MSFC in enabling CFD as an injector design tool.

  3. Etude Experimentale du Photo-Injecteur de Fermilab (in French)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carneiro, Jean-Paul

    2001-01-01

    TESLA (TeV Superconducting Linear Accelerator) is an international collaboration which is studying the feasibility of anmore » $e^+e^-$ collider of energy 0.8 TeV in the center of mass. One of the first goals of this collaboration was to construct a prototype linear accelerator at the DESY Laboratory in Hamburg, the TESLA Test Facility (TTF), in order to establish the technical basis for the collider. Two injectors were developed for TTF: a thermionic injector (developed by LAL-Orsay, IPN-Orsay, and CEA-Saclay) and a photo-injector (developed by Fermilab). The thermionic injector was used from February 1997 to October 1998, and then it was replaced by the photo-injector, which was first operated in December 1998. Another photo-injector, identical to the one delivered to TTF, was installed at Fermilab in the $$A{\\emptyset}$$ Building. The first beam from the latter was produced on 3 March 1999. The photo-injector consists of an RF gun, followed by a superconducting cavity. The RF gun is a 1.625-cell copper cavity with a resonant frequency of 1.3 GHz. The gun contains a cesium telluride ($$C_{s_2}$$Te) photo-cathode, which is illuminated by UV pulses from a Nd:YLF laser. The system can produce trains of 800 bunches of photo-electrons of charge 8 nC per bunch with spacing between bunches of 1$$\\mu$$s and 10 Hz repetition rate. Upon emerging from the RF gun, the beam energy is 4 to 5 MeV; the beam is then rapidly accelerated by the superconducting cavity to an energy of 17 to 20 MeV. Finally, a magnetic chicane, consisting of 4 dipoles, produces longitudinal compression of the electron bunches. This thesis describes the installation of the photo-injector at Fermilab and presents the experimentally-measured characteristics of the injector. The principal measurements were quantum eciency, dark current, transverse emittance, and bunch length. The conclusion from these studies is that the quality of the photo-injector beam fullls the design goals. The photo-injector at Fermilab is presently available for user experiments, including the production of at beams and plasma wake eld acceleration.« less

  4. Simultaneous 3D tracking of passive tracers and microtubule bundles in an active gel

    NASA Astrophysics Data System (ADS)

    Fan, Yi; Breuer, Kenneth S.; Fluids Team

    Kinesin-driven microtubule bundles generate a spontaneous flow in unconfined geometries. They exhibit properties of active matter, including the emergence of collective motion, reduction of apparent viscosity and consumption of local energy. Here we present results from 3D tracking of passive tracers (using Airy rings and 3D scanning) synchronized with 3D measurement of the microtubule bundles motion. This technique is applied to measure viscosity variation and collective flow in a confined geometry with particular attention paid to the self-pumping system recently reported by Wu et al. (2016). Results show that the viscosity in an equilibrium microtubule network is around half that of the isotropic unbundled microtubule solution. Cross-correlations of the active microtubule network and passive tracers define a neighborhood around microtubule bundles in which passive tracers are effectively transported. MRSEC NSF.

  5. DURIP: Integrated Sensing and Computation for Passive Covert Radar, Signals Intelligence, and Other Applications Driven by Moore’s Law

    DTIC Science & Technology

    2005-12-31

    spectrum. 20060405003 AIRCRAFT ... ..... ... .... . ./ / "... ...... - - RECEIVER Passive radars are fundmentally bistatic (or multistatic), in nature... principle investigator has his main office, will not let us put any research equipment on their roof.) The 5th floor of Van Leer is also the home of Profs...signal already.) These splitters introduce losses that must be taken into account in system performance modeling. We must use both the 105 MHz and the

  6. Passive and active plasma deceleration for the compact disposal of electron beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bonatto, A., E-mail: abonatto@lbl.gov; CAPES Foundation, Ministry of Education of Brazil, Brasília, DF 700040-020; Schroeder, C. B.

    2015-08-15

    Plasma-based decelerating schemes are investigated as compact alternatives for the disposal of high-energy beams (beam dumps). Analytical solutions for the energy loss of electron beams propagating in passive and active (laser-driven) schemes are derived. These solutions, along with numerical modeling, are used to investigate the evolution of the electron distribution, including energy chirp and total beam energy. In the active beam dump scheme, a laser-driver allows a more homogeneous beam energy extraction and drastically reduces the energy chirp observed in the passive scheme. These concepts could benefit applications requiring overall compactness, such as transportable light sources, or facilities operating atmore » high beam power.« less

  7. 3-D CFD Simulation and Validation of Oxygen-Rich Hydrocarbon Combustion in a Gas-Centered Swirl Coaxial Injector using a Flamelet-Based Approach

    NASA Technical Reports Server (NTRS)

    Richardson, Brian; Kenny, Jeremy

    2015-01-01

    Injector design is a critical part of the development of a rocket Thrust Chamber Assembly (TCA). Proper detailed injector design can maximize propulsion efficiency while minimizing the potential for failures in the combustion chamber. Traditional design and analysis methods for hydrocarbon-fuel injector elements are based heavily on empirical data and models developed from heritage hardware tests. Using this limited set of data produces challenges when trying to design a new propulsion system where the operating conditions may greatly differ from heritage applications. Time-accurate, Three-Dimensional (3-D) Computational Fluid Dynamics (CFD) modeling of combusting flows inside of injectors has long been a goal of the fluid analysis group at Marshall Space Flight Center (MSFC) and the larger CFD modeling community. CFD simulation can provide insight into the design and function of an injector that cannot be obtained easily through testing or empirical comparisons to existing hardware. However, the traditional finite-rate chemistry modeling approach utilized to simulate combusting flows for complex fuels, such as Rocket Propellant-2 (RP-2), is prohibitively expensive and time consuming even with a large amount of computational resources. MSFC has been working, in partnership with Streamline Numerics, Inc., to develop a computationally efficient, flamelet-based approach for modeling complex combusting flow applications. In this work, a flamelet modeling approach is used to simulate time-accurate, 3-D, combusting flow inside a single Gas Centered Swirl Coaxial (GCSC) injector using the flow solver, Loci-STREAM. CFD simulations were performed for several different injector geometries. Results of the CFD analysis helped guide the design of the injector from an initial concept to a tested prototype. The results of the CFD analysis are compared to data gathered from several hot-fire, single element injector tests performed in the Air Force Research Lab EC-1 test facility located at Edwards Air Force Base.

  8. A novel solar bi-ejector refrigeration system and the performance of the added injector with different structures and operation parameters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Fei; Shen, Shengqiang

    2009-12-15

    A novel solar bi-ejector refrigeration system was investigated, whose difference compared to the traditional system is that the circulation pump is replaced by a thermal injector. The new system works more stably and needs less maintenance work than the old one, and the whole system can more fully utilize the solar energy. The mathematical models for calculating the performance of the injector and the whole solar refrigeration system were established. The pressure rise performance of injector under different structure and operation parameters and the performance of solar bi-ejector refrigeration system were studied with R123. The results show that the dischargedmore » pressure of injector is affected by structure dimensions of injector and operation conditions. With increasing generation temperature, the entrainment ratio of ejector becomes better while that of injector becomes worse and the overall thermal efficiency of the solar bi-ejector refrigeration system first increases and then decreases with an optimum value of 0.132 at generation temperature of 105 C, condensation temperature of 35 C and evaporation temperature of 10 C. (author)« less

  9. Low-energy beam transport studies supporting the spallation neutron source 1-MW beam operation.

    PubMed

    Han, B X; Kalvas, T; Tarvainen, O; Welton, R F; Murray, S N; Pennisi, T R; Santana, M; Stockli, M P

    2012-02-01

    The H(-) injector consisting of a cesium enhanced RF-driven ion source and a 2-lens electrostatic low-energy beam transport (LEBT) system supports the spallation neutron source 1 MW beam operation with ∼38 mA beam current in the linac at 60 Hz with a pulse length of up to ∼1.0 ms. In this work, two important issues associated with the low-energy beam transport are discussed: (1) inconsistent dependence of the post-radio frequency quadrupole accelerator beam current on the ion source tilt angle and (2) high power beam losses on the LEBT electrodes under some off-nominal conditions compromising their reliability.

  10. Injection characteristics study of high-pressure direct injector for Compressed Natural Gas (CNG) using experimental and analytical method

    NASA Astrophysics Data System (ADS)

    Taha, Z.; Rahim, MF Abdul; Mamat, R.

    2017-10-01

    The injection characteristics of direct injector affect the mixture formation and combustion processes. In addition, the injector is converted from gasoline operation for CNG application. Thus measurement of CNG direct injector mass flow rate was done by independently tested a single injector on a test bench. The first case investigated the effect of CNG injection pressure and the second case evaluate the effect of pulse-width of injection duration. An analytical model was also developed to predict the mass flow rate of the injector. The injector was operated in a choked condition in both the experiments and simulation studies. In case 1, it was shown that mass flow rate through the injector is affected by injection pressure linearly. Based on the tested injection pressure of 20 bar to 60 bar, the resultant mass flow rate are in the range of 0.4 g/s to 1.2 g/s which are met with theoretical flow rate required by the engine. However, in Case 2, it was demonstrated that the average mass flow rate at short injection durations is lower than recorded in Case 1. At injection pressure of 50 bar, the average mass flow rate for Case 2 and Case 1 are 0.7 g/s and 1.1 g/s respectively. Also, the measured mass flow rate at short injection duration showing a fluctuating data in the range of 0.2 g/s - 1.3 g/s without any noticeable trends. The injector model able to predict the trend of the mass flow rate at different injection pressure but unable to track the fluctuating trend at short injection duration.

  11. Study on development of active-passive rehabilitation system for upper limbs: Hybrid-PLEMO

    NASA Astrophysics Data System (ADS)

    Kikuchi, T.; Jin, Y.; Fukushima, K.; Akai, H.; Furusho, J.

    2009-02-01

    In recent years, many researchers have studied the potential of using robotics technology to assist and quantify the motor functions for neuron-rehabilitation. Some kinds of haptic devices have been developed and evaluated its efficiency with clinical tests, for example, upper limb training for patients with spasticity after stroke. Active-type (motor-driven) haptic devices can realize a lot of varieties of haptics. But they basically require high-cost safety system. On the other hand, passive-type (brake-based) haptic devices have inherent safety. However, the passive robot system has strong limitation on varieties of haptics. There are not sufficient evidences to clarify how the passive/active haptics effect to the rehabilitation of motor skills. In this paper, we developed an active-passive-switchable rehabilitation system with ER clutch/brake device named "Hybrid-PLEMO" in order to address these problems. In this paper, basic structures and haptic control methods of the Hybrid-PLEMO are described.

  12. Internal combustion engine with compressed air collection system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, P.W.

    1988-08-23

    This patent describes an internal combustion engine comprising cylinders respectively including a pressure port, pistons respectively movable in the cylinders through respective compression strokes, fuel injectors respectively connected to the cylinders and operative to supply, from a fuel source to the respective cylinders, a metered quantity of fuel conveyed by compressed gas in response to fuel injector operation during the compression strokes of the respective cylinders, a storage tank for accumulating and storing compressed gas, means for selectively connecting the pressure ports to the storage tank only during the compression strokes of the respective cylinders, and duct means connecting themore » storage tank to the fuel injectors for supplying the fuel injectors with compressed gas in response to fuel injector operation.« less

  13. 21 CFR 870.1660 - Indicator injector.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Indicator injector. 870.1660 Section 870.1660 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Diagnostic Devices § 870.1660 Indicator injector. (a...

  14. 21 CFR 870.1660 - Indicator injector.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Indicator injector. 870.1660 Section 870.1660 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Diagnostic Devices § 870.1660 Indicator injector. (a...

  15. Installation and first operation of the International Fusion Materials Irradiation Facility injector at the Rokkasho site

    NASA Astrophysics Data System (ADS)

    Gobin, Raphael; Bogard, Daniel; Bolzon, Benoit; Bourdelle, Gilles; Chauvin, Nicolas; Chel, Stéphane; Girardot, Patrick; Gomes, Adelino; Guiho, Patrice; Harrault, Francis; Loiseau, Denis; Lussignol, Yves; Misiara, Nicolas; Roger, Arnaud; Senée, Franck; Valette, Matthieu; Cara, Philippe; Duglué, Daniel; Gex, Dominique; Okumura, Yoshikazu; Marcos Ayala, Juan; Knaster, Juan; Marqueta, Alvaro; Kasugai, Atsushi; O'Hira, Shigeru; Shinto, Katsuhiro; Takahashi, Hiroki

    2016-02-01

    The International Fusion Materials Irradiation Facility (IFMIF) linear IFMIF prototype accelerator injector dedicated to high intensity deuteron beam production has been designed, built, and tested at CEA/Saclay between 2008 and 2012. After the completion of the acceptance tests at Saclay, the injector has been fully sent to Japan. The re-assembly of the injector has been performed between March and May 2014. Then after the check-out phase, the production of the first proton beam occurred in November 2014. Hydrogen and deuteron beam commissioning is now in progress after having proceeded with the final tests on the entire injector equipment including high power diagnostics. This article reports the different phases of the injector installation pointing out the safety and security needs, as well as the first beam production results in Japan and chopper tests. Detailed operation and commissioning results (with H+ and D+ 100 keV beams) are reported in a second article.

  16. Transitions from injecting to non-injecting drug use: potential protection against HCV infection

    PubMed Central

    Des Jarlais, Don C.; McKnight, Courtney; Arasteh, Kamyar; Feelemyer, Jonathan; Perlman, David C.; Hagan, Holly; Cooper, Hannah L. F.

    2013-01-01

    Transitions from injecting to non-injecting drug use have been reported from many different areas, particularly in areas with large human immunodeficiency virus (HIV) epidemics. The extent to which such transitions actually protect against HIV and HCV has not been determined. A cross-sectional survey with HIV and hepatitis C (HCV) testing was conducted with 322 former injectors (persons who had injected illicit drugs but permanently transitioned to non-injecting use) and 801 current injectors recruited in New York City between 2007 and 2012. There were no differences in HIV prevalence, while HCV prevalence was significantly lower among former injectors compared to current injectors. Years injecting functioned as a mediating variable linking former injector status to lower HCV prevalence. Transitions have continued well beyond the reduction in the threat of AIDS to injectors in the city. New interventions to support transitions to non-injecting drug use should be developed and supported by both drug treatment and syringe exchange programs. PMID:24161262

  17. Cryobot: an ice penetrating robotic vehicle for Mars and Europa

    NASA Technical Reports Server (NTRS)

    Zimmerman, W. F.; Bonitz, R.; Feldman, J.

    2001-01-01

    This paper describes the science driven requirements for a robotic vehicle, which utilizes gravity, and both passive and active heating systems to drive ice to a liquid phase change state, in order to facilitate mobility.

  18. A novel permanent maglev rotary LVAD with passive magnetic bearings.

    PubMed

    Qian, K X; Yuan, H Y; Zeng, P; Ru, W M

    2005-01-01

    It has been widely acknowledged that permanent maglev cannot achieve stability; however, the authors have discovered that stable permanent maglev is possible under the effect of a combination of passive magnetic and nonmagnetic forces. In addition, a rotary left ventricular assist device (LVAD) with passive magnetic bearings has been developed. It is a radially driven impeller pump, having a rotor and a stator. The rotor consists of driven magnets and impeller; the motor coil and pump housing form the stator. Two passive magnetic bearings counteract the attractive force between motor coil iron core and rotor magnets; the rotor thereafter can be disaffiliated from the stator and become levitated under the action of passive magnetic and haemodynamic forces. Because of the pressure difference between the outlet and the inlet of the pump, there is a small flow passing through the gap of rotor and stator, and then entering the lower pressure area along the central hole of the rotor. This small flow comes to a full washout of all blood contacting surfaces in the motor. Moreover, a decreased Bernoulli force in the larger gap with faster flow produces a centring force that leads to stable levitation of the rotor. Resultantly, neither mechanical wear nor thrombosis will occur in the pump. The rotor position detection reveals that the precondition of levitation is a high rotating speed (over 3250 rpm) and a high flow rate (over 1 l min(-1)). Haemodynamic tests with porcine blood indicate that the device as a LVAD requires a rotating speed between 3500 and 4000 rpm for producing a blood flow of 4 - 6 l min(-1) against 100 mmHg mean pressure head. The egg-sized device has a weight of 200 g and an O.D. of 40 mm at its largest point.

  19. Quantification and Patterns of Endothelial Cell Loss Due to Eye Bank Preparation and Injector Method in Descemet Membrane Endothelial Keratoplasty Tissues.

    PubMed

    Schallhorn, Julie M; Holiman, Jeffrey D; Stoeger, Christopher G; Chamberlain, Winston

    2016-03-01

    To evaluate endothelial cell damage after eye bank preparation and passage through 1 of 2 different injectors for Descemet membrane endothelial keratoplasty grafts. Eighteen Descemet membrane endothelial keratoplasty grafts were prepared by Lions VisionGift with the standard partial prepeel technique and placement of an S-stamp for orientation. The grafts were randomly assigned to injection with either a glass-modified Jones tube injector (Gunther Weiss Scientific Glass) or a closed-system intraocular lens injector (Viscoject 2.2; Medicel). After injection, the grafts were stained with the vital fluorescent dye Calcein AM and digitally imaged. The percentage of cell loss was calculated by measuring the area of nonfluorescent pixels and dividing it by the total graft area pixels. Grafts injected using the modified Jones tube injector had an overall cell loss of 27% ± 5% [95% confidence interval, 21%-35%]. Grafts injected using the closed-system intraocular lens injector had a cell loss of 32% ± 8% (95% confidence interval, 21%-45%). This difference was not statistically significant (P = 0.3). Several damage patterns including damage due to S-stamp placement were observed, but they did not correlate with injector type. In this in vitro study, there was no difference in the cell loss associated with the injector method. Grafts in both groups sustained significant cell loss and displayed evidence of graft preparation and S-stamp placement. Improvement in graft preparation and injection methods may improve cell retention.

  20. Evaluation of a new soft tipped injector for the implantation of foldable intraocular lenses.

    PubMed

    Kleinmann, Guy; Apple, David J

    2007-08-01

    To evaluate the R-INJ-04 soft-tipped injector, a new injector with an integral round nozzle manufactured by Rayner Intraocular Lenses, England. 16 Rayner C-flex intraocular lenses (IOLs; Rayner Intraocular lenses, England) ranging between +10 and +30 D (2 for each power) were tested. An ophthalmic viscoelastic device (Healon, AMO, Santa Ana, California, USA) was applied to the injectors. The IOLs were loaded according to the company injector's instructions for use and were injected into a Petri dish. After the injection, all the IOLs and nozzles were evaluated by gross (macroscopic) and microscopic analyses and photographed under a light microscope. One lens of each power and the cartridge used for the implantation were then sent for further analysis by scanning electron microscopy (SEM). The rest of the IOLs were tested for power and modulation transfer function (MTF). All the injections were successful. No damage to the IOLs or to the injectors was found by gross examination, light microscopy and SEM. No deposits were found on the IOL optical surfaces or haptics. Power and MTF analysis showed a close match with the original measurements. Our results suggest that the R-INJ-04 soft-tipped injector is safe for the implantation of the C-flex IOL with power range from 10 to 30 D. No structural damage to the IOLs or to the injectors was found, and the lens power and light transmission properties were not damaged in any way by the injection process.

  1. Non-Solenoidal Tokamak Startup via Inboard Local Helicity Injection on the Pegasus ST

    NASA Astrophysics Data System (ADS)

    Perry, J. M.; Barr, J. L.; Bodner, G. M.; Bongard, M. W.; Fonck, R. J.; Pachicano, J. L.; Reusch, J. A.; Rodriguez Sanchez, C.; Richner, N. J.; Schlossberg, D. J.

    2016-10-01

    Local helicity injection (LHI) is a non-solenoidal startup technique utilizing small injectors at the plasma edge to source current along helical magnetic field lines. Unstable injected current streams relax to a tokamak-like configuration with high toroidal current multiplication. Flexible placement of injectors permits tradeoffs between helicity injection rate, poloidal field induction, and magnetic geometry requirements for initial relaxation. Experiments using a new set of large-area injectors in the lower divertor explore the efficacy of high-field-side (HFS) injection. The increased area (4 cm2) current source is functional up to full Pegasus toroidal field (BT , inj = 0.23 T). However, relaxation to a tokamak state is increasingly frustrated for BT , inj > 0.15 T with uniform vacuum vertical field. Paths to relaxation at increased field include: manipulation of vacuum poloidal field geometry; increased injector current; and plasma initiation with outboard injectors, subsequently transitioning to divertor injector drive. During initial tests of HFS injectors, achieved Vinj was limited to 600 V by plasma-material interactions on the divertor plate, which may be mitigated by increasing injector elevation. In experiments with helicity injection as the dominant current drive Ip 0.13 MA has been attained, with T̲e > 100 eV and ne 1019 m-3. Extrapolation to full BT, longer pulse length, and Vinj 1 kV suggest Ip > 0.25 MA should be attainable in a plasma dominated by helicity drive. Work supported by US DOE Grant DE-FG02-96ER54375.

  2. Patient-related constraints on get- and be-passive uses in English: evidence from paraphrasing

    PubMed Central

    Thompson, Dominic; Ling, S. P.; Myachykov, Andriy; Ferreira, Fernanda; Scheepers, Christoph

    2013-01-01

    In English, transitive events can be described in various ways. The main possibilities are active-voice and passive-voice, which are assumed to have distinct semantic and pragmatic functions. Within the passive, there are two further options, namely be-passive or get-passive. While these two forms are generally understood to differ, there is little agreement on precisely how and why. The passive Patient is frequently cited as playing a role, though again agreement on the specifics is rare. Here we present three paraphrasing experiments investigating Patient-related constraints on the selection of active vs. passive voice, and be- vs. get-passive, respectively. Participants either had to re-tell short stories in their own words (Experiments 1 and 2) or had to answer specific questions about the Patient in those short stories (Experiment 3). We found that a given Agent in a story promotes the use of active-voice, while a given Patient promotes be-passives specifically. Meanwhile, get-passive use increases when the Patient is marked as important. We argue that the three forms of transitive description are functionally and semantically distinct, and can be arranged along two dimensions: Patient Prominence and Patient Importance. We claim that active-voice has a near-complementary relationship with the be-passive, driven by which protagonist is given. Since both get and be are passive, they share the features of a Patient-subject and an optional Agent by-phrase; however, get specifically responds to a Patient being marked as important. Each of these descriptions has its own set of features that differentiate it from the others. PMID:24273527

  3. 21 CFR 872.4465 - Gas-powered jet injector.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Gas-powered jet injector. 872.4465 Section 872.4465 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Surgical Devices § 872.4465 Gas-powered jet injector. (a) Identification. A...

  4. [Development of a novel liquid injection system].

    PubMed

    Chen, Kai; Lv, Yong-Gui

    2009-11-01

    A liquid jet injector employs compressed gas or spring to produce a high-velocity stream to deliver liquid drug into human body through skin. There are many clinical jet injection products available, none of which is domestic. A new liquid jet injector is designed based on a comprehensive analysis of the current products. The injector consists of an ejector, trigger and a re-positioning mechanism. The jets characteristics of sample injector are tested, and the results show that the maximum exit pressure is above 15 MPa, a threshold value for penetrating into the skin.

  5. Investigation of the burning configuration of a coaxial injector in a combustion chamber

    NASA Technical Reports Server (NTRS)

    Ohara, J.

    1978-01-01

    An analytical investigation was made into the stability of the burning configuration of a single coaxial injector surrounded by similar injectors. The stability criteria was based on an average pressure difference along the boundaries of the adjacent stream tubes as calculated using Spaulding's numerical method. The results indicate qualitatively that there is a tendency for the injectors to have different burning configurations. It is believed that the configuration achieved is random, however once the burning configuration is established, it is believed to persist.

  6. Large Eddy Simulations of Transverse Combustion Instability in a Multi-Element Injector

    DTIC Science & Technology

    2016-07-27

    Instability in a Multi- Element Injector 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Matthew Harvazinski, Yogin...Simulations of Transverse  Combustion Instability in a Multi‐ Element  Injector 2 History Damaged engine injector  faceplate caused by combustion...Clearance #16346 3 Single  Element  Studies Short Post Marginally Stable Intermediate Post Unstable Long Post Stable Long Post Unstable CVRC Experiment

  7. Effectiveness of Additives in Improving Fuel Lubricity and Preventing Pump Failure at High Temperature

    DTIC Science & Technology

    2013-01-01

    after pump calibrations , transfer pump blade measurements, injector nozzle tests, pump parts evaluation, and parts conditions photographs are also... Injectors –0 0.53 5,500 0.257 1 2-15293089 DF2 As Purchased 105 (40) 1,000 1,000 Calibration off spec areas–4 Pump Rating–1.04 Failed Injectors –0 0.53...5,500 0.257 2 1-15382732 DF2 As Purchased 135 (57) 1,000 1,000 Calibration off spec areas–4 Pump Rating–1.13 Failed Injectors –0 0.55

  8. CAM/LIFTER forces and friction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gabbey, D.J.; Lee, J.; Patterson, D.J.

    1992-02-01

    This report details the procedures used to measure the cam/lifter forces and friction. The present effort employed a Cummins LTA-10, and focuses on measurements and dynamic modeling of the injector train. The program was sponsored by the US Department of Energy in support of advanced diesel engine technology. The injector train was instrumented to record the instantaneous roller speed, roller pin friction torque, pushrod force, injector link force and cam speed. These measurements, together with lift profiles for pushrod and injector link displacement, enabled the friction work loss in the injector train to be determined. Other significant design criteria suchmore » as camshaft roller follower slippage and maximum loads on components were also determined. Future efforts will concentrate on the dynamic model, with tests run as required for correlation.« less

  9. Multi-tube arrangement for combustor and method of making the multi-tube arrangement

    DOEpatents

    Ziminsky, Willy Steve [Simpsonville, SC

    2012-07-31

    A fuel injector tube includes a one piece, unitary, polygonal tube having an inlet end and an outlet end. The fuel injector tube further includes a fuel passage extending from the inlet end to the outlet end along a longitudinal axis of the polygonal tube, a plurality of air passages extending from the inlet end to the outlet end and surrounding the fuel passage, and a plurality of fuel holes. Each fuel hole connects an air passage with the fuel passage. The inlet end of the polygonal tube is formed into a fuel tube. A fuel injector includes a plurality of fuel injector tubes and a plate. The plurality of fuel tubes are connected to the plate adjacent the inlet ends of the plurality of fuel injector tubes.

  10. LES of cavitating flow inside a Diesel injector including dynamic needle movement

    NASA Astrophysics Data System (ADS)

    Örley, F.; Hickel, S.; Schmidt, S. J.; Adams, N. A.

    2015-12-01

    We perform large-eddy simulations (LES) of the turbulent, cavitating flow inside a 9-hole solenoid common-rail injector including jet injection into gas during a full injection cycle. The liquid fuel, vapor, and gas phases are modelled by a homogeneous mixture approach. The cavitation model is based on a thermodynamic equilibrium assumption. The geometry of the injector is represented on a Cartesian grid by a conservative cut-element immersed boundary method. The strategy allows for the simulation of complex, moving geometries with sub-cell resolution. We evaluate the effects of needle movement on the cavitation characteristics in the needle seat and tip region during opening and closing of the injector. Moreover, we study the effect of cavitation inside the injector nozzles on primary jet break-up.

  11. Use of the Keele injector for sample introduction for gas chromatographic analysis of vinclozolin in lettuces.

    PubMed

    Shim, J H; Lee, Y S; Kim, M R; Lee, C J; Kim, I S

    2003-10-10

    We examined a Keele injector for sample introduction for gas chromatographic analysis of vinclozolin treated in lettuces. Samples in milligram quantity were introduced into a glass tube in a Keele injector at a gas chromatograph injection port. The glass tube was then crushed to allow the sample to carry onto a capillary column in a normal manner. The standard calibration curve for quantitative detection of vinclozolin was obtained by determining vinclozolin spiked in samples at variable concentrations. The calibration curve showed a linear response to vinclozolin ranging from 0.05 to 1.0 microg/g, giving a slope value of 174.8, the y-intercept value of -2.8146 and the mean r2-value of 0.9994. Limit of quantification for vinclozolin was 0.05 microg/g by this method, comparable to 0.01 microg/g by a normal injector. When samples treated previously with vinclozolin were determined by the Keele injector, vinclozolin was found to be about 30% lower as compared to a normal method, suggesting about 70% recovery of the spiked vinclozolin by the Keele injector. From these results, the Keele injector was suggested to be potential for sample introduction in gas chromatographic analysis of vinclozolin in lettuce samples.

  12. Liquid Methane/Oxygen Injector Study for Mars Ascent Engines

    NASA Technical Reports Server (NTRS)

    Trinh, Huu Phuoc

    1999-01-01

    As a part of the advancing technology of the cryogenic propulsion system for the Mars exploration mission, this effort aims at evaluating propellant injection concepts for liquid methane/liquid oxygen (LOX) rocket engines. Split-triplet and unlike impinging injectors were selected for this study. A total of four injector configurations were tested under combustion conditions in a modular combustor test article (MCTA), equipped with optically accessible windows, at MSFC. A series of forty hot-fire tests, which covered a wide range of engine operating conditions with the chamber pressure ranging from 320 to 510 and the mixture ratio from 1.5 to 3.5, were conducted. The test matrix also included a variation in the combustion chamber length for the purpose of investigating its effects on the combustion performance and stability. Initial assessments of the test results showed that the injectors provided stable combustion and there were no injector face overheating problems under all operating conditions. The Raman scattering signal measurement method was successfully demonstrated for the hydrocarbon/oxygen reactive flow field. The near-injector face flow field was visually observed through the use of an infrared camera. Chamber wall temperature, high frequency chamber pressure, and average throat section heat flux were also recorded throughout the test series. Assessments of the injector performance are underway.

  13. Design and Study of a LOX/GH2 Throttleable Swirl Injector for Rocket Applications

    NASA Technical Reports Server (NTRS)

    Greene, Christopher; Woodward, Roger; Pal, Sibtosh; Santoro, Robert

    2002-01-01

    A LOX/GH2 swirl injector was designed for a 10:1 propellant throttling range. To accomplish this, a dual LOX manifold was used feeding a single common vortex chamber of the swirl element. Hot-fire experiments were conducted for rocket chamber pressures from 80 to 800 psia at a mixture ratio of nominally 6.0 using steady flow, single-point-per-firing cases as well as dynamic throttling conditions. Low frequency (mean) and high frequency (fluctuating) pressure transducer data, flow meter measurements, and Raman spectroscopy images for mixing information were obtained. The injector design, experimental setup, low frequency pressure data, and injector performance analysis are presented. C* efficiency was very high (approx. 100%) at the middle of the throttleable range with somewhat lower performance at the high and low ends. From the analysis of discreet steady state operating conditions, injector pressure drop was slightly higher than predicted with an inviscid analysis, but otherwise agreed well across the design throttling range. Dynamic throttling of this injector was attempted with marginal success due to the immaturity of the throttling control system. Although the targeted mixture ratio of 6.0 was not maintained throughout the dynamic throttling profile, the injector behaved well over the wide range of conditions.

  14. Efficient GO2/GH2 Injector Design: A NASA, Industry and University Cooperative Effort

    NASA Technical Reports Server (NTRS)

    Tucker, P. K.; Klem, M. D.; Fisher, S. C.; Santoro, R. J.

    1997-01-01

    Developing new propulsion components in the face of shrinking budgets presents a significant challenge. The technical, schedule and funding issues common to any design/development program are complicated by the ramifications of the continuing decrease in funding for the aerospace industry. As a result, new working arrangements are evolving in the rocket industry. This paper documents a successful NASA, industry, and university cooperative effort to design efficient high performance GO2/GH2 rocket injector elements in the current budget environment. The NASA Reusable Launch Vehicle (RLV) Program initially consisted of three vehicle/engine concepts targeted at achieving single stage to orbit. One of the Rocketdyne propulsion concepts, the RS 2100 engine, used a full-flow staged-combustion cycle. Therefore, the RS 2100 main injector would combust GO2/GH 2 propellants. Early in the design phase, but after budget levels and contractual arrangements had been set the limitations of the current gas/gas injector database were identified. Most of the relevant information was at least twenty years old. Designing high performance injectors to meet the RS 2100 requirements would require the database to be updated and significantly enhanced. However, there was no funding available to address the need for more data. NASA proposed a teaming arrangement to acquire the updated information without additional funds from the RLV Program. A determination of the types and amounts of data needed was made along with test facilities with capabilities to meet the data requirements, budget constraints, and schedule. After several iterations a program was finalized and a team established to satisfy the program goals. The Gas/Gas Injector Technology (GGIT) Program had the overall goal of increasing the ability of the rocket engine community to design efficient high-performance, durable gas/gas injectors relevant to RLV requirements. First, the program would provide Rocketdyne with data on preliminary gas/gas injector designs which would enable discrimination among candidate injector designs. Secondly, the program would enhance the national gas/gas database by obtaining high-quality data that increases the understanding of gas/gas injector physics and is suitable for computational fluid dynamics (CFD) code validation. The third program objective was to validate CFD codes for future gas/gas injector design in the RLV program.

  15. A data-driven and physics-based single-pass retrieval of active-passive microwave covariation and vegetation parameters for the SMAP mission

    NASA Astrophysics Data System (ADS)

    Entekhabi, D.; Jagdhuber, T.; Das, N. N.; Baur, M.; Link, M.; Piles, M.; Akbar, R.; Konings, A. G.; Mccoll, K. A.; Alemohammad, S. H.; Montzka, C.; Kunstmann, H.

    2016-12-01

    The active-passive soil moisture retrieval algorithm of NASA's SMAP mission depends on robust statistical estimation of active-passive covariation (β) and vegetation structure (Γ) parameters in order to provide reliable global measurements of soil moisture on an intermediate level (9km) compared to the native resolution of the radiometer (36km) and radar (3km) instruments. These parameters apply to the SMAP radiometer-radar combination over the period of record that was cut short with the end of the SMAP radar transmission. They also apply to the current SMAP radiometer and Sentinel 1A/B radar combination for high-resolution surface soil moisture mapping. However, the performance of the statistically-based approach is directly dependent on the selection of a representative time frame in which these parameters can be estimated assuming dynamic soil moisture and stationary soil roughness and vegetation cover. Here, we propose a novel, data-driven and physics-based single-pass retrieval of active-passive microwave covariation and vegetation parameters for the SMAP mission. The algorithm does not depend on time series analyses and can be applied using minimum one pair of an active-passive acquisition. The algorithm stems from the physical link between microwave emission and scattering via conservation of energy. The formulation of the emission radiative transfer is combined with the Distorted Born Approximation of radar scattering for vegetated land surfaces. The two formulations are simultaneously solved for the covariation and vegetation structure parameters. Preliminary results from SMAP active-passive observations (April 13th to July 7th 2015) compare well with the time-series statistical approach and confirms the capability of this method to estimate these parameters. Moreover, the method is not restricted to a given frequency (applies to both L-band and C-band combinations for the radar) or incidence angle (all angles and not just the fixed 40° incidence). Therefore, the approach is applicable to the combination of SMAP and Sentinel-1A/B data for active-passive and high-resolution soil moisture estimation.

  16. Investigation of Injector Slot Geometry on Curved-Diffuser Aerodynamic Performance

    NASA Technical Reports Server (NTRS)

    Silva, Odlanier

    2004-01-01

    The Compressor Branch vision is to be recognized as world-class leaders in research for fluid mechanics of compressors. Its mission is to conduct research and develop technology to advance the state of the art of compressors and transfer new technology to U.S. industries. Maintain partnerships with U.S. industries, universities, and other government organizations. Maintain a balance between customers focused and long range research. Flow control comprises enabling technologies to meet compression system performance requirements driven by emissions and fuel reduction goals (e.g., in UEET), missions (e.g., access-to-space), aerodynamically aggressive vehicle configurations (e.g., UAV and future blended wing body configurations with highly distorted inlets), and cost goals (e.g., in VAATE). The compression system requirements include increased efficiency, power-to-weight, and adaptability (i.e., robustness in terms of wide operability, distortion tolerance, and engine system health and reliability). The compressor flow control task comprises efforts to develop, demonstrate, and transfer adaptive flow control technology to industry to increase aerodynamic loading at current blade row loss levels, to enable adaptive1 y wide operability, and to develop plant models for adaptive compression systems. In this context, flow control is the controlled modification of a flow field by a deliberate means beyond the natural (uncontrolled) shaping of the solid surfaces that define the principal flow path. The objective of the compressor flow control task is to develop and apply techniques that control circulation, aerodynamic blockage, and entropy production in order to enhance the performance and operability of compression systems for advanced aero-propulsion applications. This summer I would be working with a curved-diffuser because it simulates what happens with flow in the stator blades in the compressor. With this experiment I will be doing some data analysis and parametric study of the injector slot geometries to get the best aerodynamic performance of it. This includes some data reduction, redesign and fast prototyping of the injector nozzle.

  17. Controlling HIV Epidemics among Injection Drug Users: Eight Years of Cross-Border HIV Prevention Interventions in Vietnam and China

    PubMed Central

    Hammett, Theodore M.; Des Jarlais, Don C.; Kling, Ryan; Kieu, Binh Thanh; McNicholl, Janet M.; Wasinrapee, Punneeporn; McDougal, J. Stephen; Liu, Wei; Chen, Yi; Meng, Donghua; Huu Nguyen, Tho; Ngoc Hoang, Quyen; Van Hoang, Tren

    2012-01-01

    Introduction HIV in Vietnam and Southern China is driven by injection drug use. We have implemented HIV prevention interventions for IDUs since 2002–2003 in Lang Son and Ha Giang Provinces, Vietnam and Ning Ming County (Guangxi), China. Methods Interventions provide peer education and needle/syringe distribution. Evaluation employed serial cross-sectional surveys of IDUs 26 waves from 2002 to 2011, including interviews and HIV testing. Outcomes were HIV risk behaviors, HIV prevalence and incidence. HIV incidence estimation used two methods: 1) among new injectors from prevalence data; and 2) a capture enzyme immunoassay (BED testing) on all HIV+ samples. Results We found significant declines in drug-related risk behaviors and sharp reductions in HIV prevalence among IDUs (Lang Son from 46% to 23% [p<0.001], Ning Ming: from 17% to 11% [p = 0.003], and Ha Giang: from 51% to 18% [p<0.001]), reductions not experienced in other provinces without such interventions. There were significant declines in HIV incidence to low levels among new injectors through 36–48 months, then some rebound, particularly in Ning Ming, but BED-based estimates revealed significant reductions in incidence through 96 months. Discussion This is one of the longest studies of HIV prevention among IDUs in Asia. The rebound in incidence among new injectors may reflect sexual transmission. BED-based estimates may overstate incidence (because of false-recent results in patients with long-term infection or on ARV treatment) but adjustment for false-recent results and survey responses on duration of infection generally confirm BED-based incidence trends. Combined trends from the two estimation methods show sharp declines in incidence to low levels. The significant downward trends in all primary outcome measures indicate that the Cross-Border interventions played an important role in bringing HIV epidemics among IDUs under control. The Cross-Border project offers a model of HIV prevention for IDUs that should be considered for large-scale replication. PMID:22952640

  18. Patterns of drug dependence in a Queensland (Australia) sample of Indigenous and non-Indigenous people who inject drugs.

    PubMed

    Smirnov, Andrew; Kemp, Robert; Ward, James; Henderson, Suzanna; Williams, Sidney; Dev, Abhilash; Najman, Jake M

    2016-09-01

    Despite over-representation of Indigenous Australians in sentinel studies of injecting drug use, little is known about relevant patterns of drug use and dependence. This study compares drug dependence and possible contributing factors in Indigenous and non-Indigenous Australians who inject drugs. Respondent-driven sampling was used in major cities and 'peer recruitment' in regional towns of Queensland to obtain a community sample of Indigenous (n = 282) and non-Indigenous (n = 267) injectors. Data are cross sectional. Multinomial models were developed for each group to examine types of dependence on injected drugs (no dependence, methamphetamine-dependent only, opioid-dependent only, dependent on methamphetamine and opioids). Around one-fifth of Indigenous and non-Indigenous injectors were dependent on both methamphetamine and opioids in the previous 12 months. Psychological distress was associated with dual dependence on these drugs for Indigenous [adjusted relative risk (ARR) 4.86, 95% confidence interval (CI) 2.08-11.34] and non-Indigenous (ARR 4.14, 95% CI 1.59-10.78) participants. Unemployment (ARR 8.98, 95% CI 2.25-35.82) and repeated (> once) incarceration as an adult (ARR 3.78, 95% CI 1.43-9.97) were associated with dual dependence for Indigenous participants only. Indigenous participants had high rates of alcohol dependence, except for those dependent on opioids only. The drug dependence patterns of Indigenous and non-Indigenous people who inject drugs were similar, including the proportions dependent on both methamphetamine and opioids. However, for Indigenous injectors, there was a stronger association between drug dependence and contextual factors such as unemployment and incarceration. Expansion of treatment options and community-level programs may be required. [Smirnov A, Kemp R, Ward J, Henderson S, Williams S, Dev A, Najman J M. Patterns of drug dependence in a Queensland (Australia) sample of Indigenous and non-Indigenous people who inject drugs. Drug Alcohol Rev 2016;35:611-619]. © 2016 Australasian Professional Society on Alcohol and other Drugs.

  19. Evidence for equivalence of diffusion processes of passive scalar and magnetic fields in anisotropic Navier-Stokes turbulence.

    PubMed

    Jurčišinová, E; Jurčišin, M

    2017-05-01

    The influence of the uniaxial small-scale anisotropy on the kinematic magnetohydrodynamic turbulence is investigated by using the field theoretic renormalization group technique in the one-loop approximation of a perturbation theory. The infrared stable fixed point of the renormalization group equations, which drives the scaling properties of the model in the inertial range, is investigated as the function of the anisotropy parameters and it is shown that, at least at the one-loop level of approximation, the diffusion processes of the weak passive magnetic field in the anisotropically driven kinematic magnetohydrodynamic turbulence are completely equivalent to the corresponding diffusion processes of passively advected scalar fields in the anisotropic Navier-Stokes turbulent environments.

  20. Safety assessment of a new single-use small-incision injector for intraocular lens implantation.

    PubMed

    Satanovsky, Alexandra; Ben-Eliahu, Shmuel; Apple, David J; Kleinmann, Guy

    2011-07-01

    To evaluate the safety of a new injector, the Raysert R-INJ-04/18, for implantation of the C-flex intraocular lens (IOL). Ophthalmology Department, Kaplan Medical Center, Rehovot, Israel. Experimental study. Sixty IOLs were subdivided into 2 equally sized groups. Group A IOLs were injected using the established R-INJ-04 injector, and those in Group B were injected with the new injector. The IOLs were injected into a Petri dish. Subsequently, all IOLs and injectors were evaluated macroscopically and microscopically and then photographed under light microscopy (LM). Two IOLs in each group were randomly chosen and sent for evaluation by scanning electron microscopy (SEM) and energy dispersive analysis of x-ray. All remaining IOLs were sent for power and modulation transfer function (MTF) analysis. All Group B IOLs were successfully injected without evident signs of scratching, cracks, or deposits on LM and SEM examination. In Group A, findings were confined to a singular incidence of a small deposit detected on the periphery of the posterior optical surface of the IOL, with corresponding findings detected on the injector nozzle. No signs of scratching, cracks, or deposits were found in the rest of the IOLs or injectors. The power and MTF analyses were within the normal range for all IOLs. The new 1.8 mm external diameter soft-tipped injector for 2.4 to 2.2 mm incisions was shown to be safe for the implantation of the C-flex 21.0 diopter IOL. Copyright © 2011 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.

  1. Usage and Perceptions of Pen Injectors for Diabetes Management: A Survey of Type 2 Diabetes Patients in the United States

    PubMed Central

    Toscano, Deborah; Brice, Jennifer; Alfaro, Christina

    2012-01-01

    Background This study was conducted to investigate type 2 diabetes mellitus (T2DM) patient perceptions of their pen injectors and determine which features were deemed most important to overall satisfaction. Methods Frost & Sullivan conducted a Web-based survey of T2DM patients in the United States in November 2010. Survey participants were initially screened prior to full participation. A total of 1002 adult T2DM patients who were using a pen injector on a regular basis to administer their diabetes medication(s) were surveyed. The survey consisted of 24 questions focused on awareness and current usage of pen injectors by type and brand, specific features of pen injectors, and patients' preferences for and satisfaction with pen injectors. Results The majority of surveyed patients were using prefilled pen injectors as compared with durable pens. The LANTUS SoloSTAR (sanofi-aventis) was reported to be the most commonly used pen. The LANTUS SoloSTAR was also ranked highly for overall satisfaction and likelihood of continued usage. Regardless of brand, most surveyed patients reported that they were likely to continue using their current pen. In general, the single most important feature for user satisfaction was an easy push-button injection. Conclusions Ease of self-administration is of highest priority to users of pen injectors. Important features facilitating ease of use, such as an easily depressed push-button injection, are likely to minimize the burden on T2DM patients, thereby improving compliance and clinical outcomes. PMID:22768901

  2. 40 CFR 80.176 - Alternative certification test procedures and standards.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... temperature. At the end of this 48-hour ambient temperature soak, an injector balance test is conducted to... injector balance test. (x) Fuel pressure gauge. A fuel pressure gauge capable of measuring fuel system... conducting the injector balance test. A pressure transducer shall not be used. (xi) Gaskets. The upper intake...

  3. 76 FR 8661 - Airworthiness Directives; Lycoming Engines, Fuel Injected Reciprocating Engines

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-15

    ... engine models requiring inspections. We are proposing this AD to prevent failure of the fuel injector... repetitive inspection compliance time. We issued that AD to prevent failure of the fuel injector fuel lines... engine models requiring inspection. We are issuing this AD to prevent failure of the fuel injector fuel...

  4. Effect of fuel stratification on detonation wave propagation

    NASA Astrophysics Data System (ADS)

    Masselot, Damien; Fievet, Romain; Raman, Venkat

    2016-11-01

    Rotating detonation engines (RDEs) form a class of pressure-gain combustion systems of higher efficiency compared to conventional gas turbine engines. One of the key features of the design is the injection system, as reactants need to be continuously provided to the detonation wave to sustain its propagation speed. As inhomogeneities in the reactant mixture can perturb the detonation wave front, premixed fuel jet injectors might seem like the most stable solution. However, this introduces the risk of the detonation wave propagating through the injector, causing catastrophic failure. On the other hand, non-premixed fuel injection will tend to quench the detonation wave near the injectors, reducing the likelihood of such failure. Still, the effects of such non-premixing and flow inhomogeneities ahead of a detonation wave have yet to be fully understood and are the object of this study. A 3D channel filled with O2 diluted in an inert gas with circular H2 injectors is simulated as a detonation wave propagates through the system. The impact of key parameters such as injector spacing, injector size, mixture composition and time variations will be discussed. PhD Candidate.

  5. Heavy hydrocarbon main injector technology

    NASA Technical Reports Server (NTRS)

    Fisher, S. C.; Arbit, H. A.

    1988-01-01

    One of the key components of the Advanced Launch System (ALS) is a large liquid rocket, booster engine. To keep the overall vehicle size and cost down, this engine will probably use liquid oxygen (LOX) and a heavy hydrocarbon, such as RP-1, as propellants and operate at relatively high chamber pressures to increase overall performance. A technology program (Heavy Hydrocarbon Main Injector Technology) is being studied. The main objective of this effort is to develop a logic plan and supporting experimental data base to reduce the risk of developing a large scale (approximately 750,000 lb thrust), high performance main injector system. The overall approach and program plan, from initial analyses to large scale, two dimensional combustor design and test, and the current status of the program are discussed. Progress includes performance and stability analyses, cold flow tests of injector model, design and fabrication of subscale injectors and calorimeter combustors for performance, heat transfer, and dynamic stability tests, and preparation of hot fire test plans. Related, current, high pressure, LOX/RP-1 injector technology efforts are also briefly discussed.

  6. Assessing respondent-driven sampling.

    PubMed

    Goel, Sharad; Salganik, Matthew J

    2010-04-13

    Respondent-driven sampling (RDS) is a network-based technique for estimating traits in hard-to-reach populations, for example, the prevalence of HIV among drug injectors. In recent years RDS has been used in more than 120 studies in more than 20 countries and by leading public health organizations, including the Centers for Disease Control and Prevention in the United States. Despite the widespread use and growing popularity of RDS, there has been little empirical validation of the methodology. Here we investigate the performance of RDS by simulating sampling from 85 known, network populations. Across a variety of traits we find that RDS is substantially less accurate than generally acknowledged and that reported RDS confidence intervals are misleadingly narrow. Moreover, because we model a best-case scenario in which the theoretical RDS sampling assumptions hold exactly, it is unlikely that RDS performs any better in practice than in our simulations. Notably, the poor performance of RDS is driven not by the bias but by the high variance of estimates, a possibility that had been largely overlooked in the RDS literature. Given the consistency of our results across networks and our generous sampling conditions, we conclude that RDS as currently practiced may not be suitable for key aspects of public health surveillance where it is now extensively applied.

  7. Assessing respondent-driven sampling

    PubMed Central

    Goel, Sharad; Salganik, Matthew J.

    2010-01-01

    Respondent-driven sampling (RDS) is a network-based technique for estimating traits in hard-to-reach populations, for example, the prevalence of HIV among drug injectors. In recent years RDS has been used in more than 120 studies in more than 20 countries and by leading public health organizations, including the Centers for Disease Control and Prevention in the United States. Despite the widespread use and growing popularity of RDS, there has been little empirical validation of the methodology. Here we investigate the performance of RDS by simulating sampling from 85 known, network populations. Across a variety of traits we find that RDS is substantially less accurate than generally acknowledged and that reported RDS confidence intervals are misleadingly narrow. Moreover, because we model a best-case scenario in which the theoretical RDS sampling assumptions hold exactly, it is unlikely that RDS performs any better in practice than in our simulations. Notably, the poor performance of RDS is driven not by the bias but by the high variance of estimates, a possibility that had been largely overlooked in the RDS literature. Given the consistency of our results across networks and our generous sampling conditions, we conclude that RDS as currently practiced may not be suitable for key aspects of public health surveillance where it is now extensively applied. PMID:20351258

  8. Optical Fuel Injector Patternation Measurements in Advanced Liquid-Fueled, High Pressure, Gas Turbine Combustors

    NASA Technical Reports Server (NTRS)

    Locke, R. J.; Hicks, Y. R.; Anderson, R. C.; Zaller, M. M.

    1998-01-01

    Planar laser-induced fluorescence (PLIF) imaging and planar Mie scattering are used to examine the fuel distribution pattern (patternation) for advanced fuel injector concepts in kerosene burning, high pressure gas turbine combustors. Three fuel injector concepts for aerospace applications were investigated under a broad range of operating conditions. Fuel PLIF patternation results are contrasted with those obtained by planar Mie scattering. For one injector, further comparison is also made with data obtained through phase Doppler measurements. Differences in spray patterns for diverse conditions and fuel injector configurations are readily discernible. An examination of the data has shown that a direct determination of the fuel spray angle at realistic conditions is also possible. The results obtained in this study demonstrate the applicability and usefulness of these nonintrusive optical techniques for investigating fuel spray patternation under actual combustor conditions.

  9. CAM/LIFTER forces and friction. Final report, September 15, 1988--November 30, 1991

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gabbey, D.J.; Lee, J.; Patterson, D.J.

    1992-02-01

    This report details the procedures used to measure the cam/lifter forces and friction. The present effort employed a Cummins LTA-10, and focuses on measurements and dynamic modeling of the injector train. The program was sponsored by the US Department of Energy in support of advanced diesel engine technology. The injector train was instrumented to record the instantaneous roller speed, roller pin friction torque, pushrod force, injector link force and cam speed. These measurements, together with lift profiles for pushrod and injector link displacement, enabled the friction work loss in the injector train to be determined. Other significant design criteria suchmore » as camshaft roller follower slippage and maximum loads on components were also determined. Future efforts will concentrate on the dynamic model, with tests run as required for correlation.« less

  10. Numerical analysis and experimental studies on solenoid common rail diesel injector with worn control valve

    NASA Astrophysics Data System (ADS)

    Krivtsov, S. N.; Yakimov, I. V.; Ozornin, S. P.

    2018-03-01

    A mathematical model of a solenoid common rail fuel injector was developed. Its difference from existing models is control valve wear simulation. A common rail injector of 0445110376 Series (Cummins ISf 2.8 Diesel engine) produced by Bosch Company was used as a research object. Injector parameters (fuel delivery and back leakage) were determined by calculation and experimental methods. GT-Suite model average R2 is 0.93 which means that it predicts the injection rate shape very accurately (nominal and marginal technical conditions of an injector). Numerical analysis and experimental studies showed that control valve wear increases back leakage and fuel delivery (especially at 160 MPa). The regression models for determining fuel delivery and back leakage effects on fuel pressure and energizing time were developed (for nominal and marginal technical conditions).

  11. Effect of H2O2 injection patterns on catalyst bed characteristics

    NASA Astrophysics Data System (ADS)

    Kang, Hongjae; Lee, Dahae; Kang, Shinjae; Kwon, Sejin

    2017-01-01

    The decomposition process of hydrogen peroxide can be applied to a bipropellant thruster, as well as to monopropellant thruster. To provide a framework for the optimal design of the injector and catalyst bed depending on a type of thruster, this research scrutinizes the effect of injection patterns of the propellant on the performance of the catalyst bed. A showerhead injector and impinging jet injector were tested with a 50 N monopropellant thruster. Manganese oxide/γ-alumina catalyst and manganese oxide/lanthanum-doped alumina catalyst were prepared and tested. The showerhead injector provided a fast response time, suitable for pulse mode operation. The impinging jet injector mitigated the performance instability and catalyst attrition that is favorable for large scale bipropellant thrusters. The design of a dual catalyst bed was conceptually proposed based on the data obtained from firing tests.

  12. Investigation of gaseous propellant combustion and associated injector/chamber design guidelines

    NASA Technical Reports Server (NTRS)

    Calhoon, D. F.; Ito, J. I.; Kors, D. L.

    1973-01-01

    Injector design criteria are provided for gaseous hydrogen-gaseous oxygen propellants. Design equations and procedures are presented which will allow an injector-chamber designer to a priori estimate of the performance, compatibility and stability characteristics of prototype injectors. The effects of chamber length, element geometry, thrust per element, mixture ratio, impingement angle, and element spacing were evaluated for four element concepts and their derivatives. The data from this series of tests were reduced to a single valued mixing function that describes the mixing potential of the various elements. Performance, heat transfer and stability data were generated for various mixture ratios, propellant temperatures, chamber pressures, contraction ratios, and chamber lengths. Applications of the models resulted in the design of procedures, whereby the performance and chamber heat flux can be calculated directly, and the injector stability estimated in conjunction with existing models.

  13. Quantitative X-ray measurements of high-pressure fuel sprays from a production heavy duty diesel injector

    NASA Astrophysics Data System (ADS)

    Ramírez, A. I.; Som, S.; Aggarwal, Suresh K.; Kastengren, A. L.; El-Hannouny, E. M.; Longman, D. E.; Powell, C. F.

    2009-07-01

    A quantitative and time-resolved X-ray radiography technique has been used for detailed measurements of high-pressure fuel sprays in the near-nozzle region of a diesel engine injector. The technique provides high spatial and temporal resolution, especially in the relatively dense core region. A single spray plume from a hydraulically actuated electronically controlled unit injector model 315B injector with a 6-hole nozzle was isolated and studied at engine-like densities for two different injection pressures. Optical spray imaging was also employed to evaluate the effectiveness of the shield used to isolate a single spray plume. The steady state fuel distributions for both injection pressures are similar and show a dense spray region along the axis of the spray, with the on-axis spray density decreasing as the spray progresses downstream. The higher injection pressure case exhibits a larger cone angle and spray broadening at the exit of the nozzle. For some time periods, the near-nozzle penetration speed is lower for the high injection pressure case than the low injection pressure case, which is unexpected, but can be attributed to the needle and flow dynamics inside the injector causing slower pressure build-up for the former case. Rate of injection testing was performed to further understand near-nozzle behavior. Mass distribution data were obtained and used to find mass-averaged velocity of the spray. Comparisons of the radiography data with that from a common rail single-hole light duty injectors under similar injection conditions show several significant differences. The current data show a larger cone angle and lower penetration speed than that from the light-duty injector. Moreover, these data display a Gaussian mass distribution across the spray near the injector, whereas in previous light-duty injector measurements, the mass distribution had steeper sides and a flatter peak. Measurements are also used to examine the spray models in the STAR-CD software.

  14. Simulation of transient effects in the heavy ion fusion injectors

    NASA Astrophysics Data System (ADS)

    Chen, Yu-Jiuan; Hewett, D. W.

    1993-05-01

    We have used the 2-D PIC code, GYMNOS, to study the transient behaviors in the Heavy Ion Fusion (HIF) injectors. GYMNOS simulations accurately provide the steady state Child-Langmuir current and the beam transient behavior within a planar diode. The simulations of the LBL HIF ESAC injector experiments agree well with the experimental data and EGUN steady state results. Simulations of the nominal HIF injectors have revealed the need to design the accelerating electrodes carefully to control the ion beam current, particularly the ion loss at the end of the bunch as the extraction voltage is reduced.

  15. Injector element characterization methodology

    NASA Technical Reports Server (NTRS)

    Cox, George B., Jr.

    1988-01-01

    Characterization of liquid rocket engine injector elements is an important part of the development process for rocket engine combustion devices. Modern nonintrusive instrumentation for flow velocity and spray droplet size measurement, and automated, computer-controlled test facilities allow rapid, low-cost evaluation of injector element performance and behavior. Application of these methods in rocket engine development, paralleling their use in gas turbine engine development, will reduce rocket engine development cost and risk. The Alternate Turbopump (ATP) Hot Gas Systems (HGS) preburner injector elements were characterized using such methods, and the methodology and some of the results obtained will be shown.

  16. Mixed Mode Fuel Injector And Injection System

    DOEpatents

    Stewart, Chris Lee; Tian, Ye; Wang, Lifeng; Shafer, Scott F.

    2005-12-27

    A fuel injector includes a homogenous charge nozzle outlet set and a conventional nozzle outlet set that are controlled respectively by first and second three way needle control valves. Each fuel injector includes first and second concentric needle valve members. One of the needle valve members moves to an open position for a homogenous charge injection event, while the other needle valve member moves to an open position for a conventional injection event. The fuel injector has the ability to operate in a homogenous charge mode with a homogenous charge spray pattern, a conventional mode with a conventional spray pattern or a mixed mode.

  17. Method for Determining Optimum Injector Inlet Geometry

    NASA Technical Reports Server (NTRS)

    Myers, W. Neill (Inventor); Trinh, Huu P. (Inventor)

    2015-01-01

    A method for determining the optimum inlet geometry of a liquid rocket engine swirl injector includes obtaining a throttleable level phase value, volume flow rate, chamber pressure, liquid propellant density, inlet injector pressure, desired target spray angle and desired target optimum delta pressure value between an inlet and a chamber for a plurality of engine stages. The method calculates the tangential inlet area for each throttleable stage. The method also uses correlation between the tangential inlet areas and delta pressure values to calculate the spring displacement and variable inlet geometry of a liquid rocket engine swirl injector.

  18. Systems and methods to reduce reductant consumption in exhaust aftertreament systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gupta, Aniket; Cunningham, Michael J.

    Systems, apparatus and methods are provided for reducing reductant consumption in an exhaust aftertreatment system that includes a first SCR device and a downstream second SCR device, a first reductant injector upstream of the first SCR device, and a second reductant injector between the first and second SCR devices. NOx conversion occurs with reductant injection by the first reductant injector to the first SCR device in a first temperature range and with reductant injection by the second reductant injector to the second SCR device when the temperature of the first SCR device is above a reductant oxidation conversion threshold.

  19. Fuel Lubricity Impact on Shipboard Engine and Fuel Systems and Sensitivity of U.S. Navy Diesel Engines to Low-Sulfur Diesel Fuel

    DTIC Science & Technology

    2011-06-30

    load fuel and operated with a dummy injector to make sure the system was clean. The rig was de -fueled and a fresh charge of 2000-gram fuel was added...the rocker arm on the injector. The rocker arm contact was repositioned when it was noted it was hitting the injector off-center, and it was felt...going up. Figure B6. DD 149 Unit Injector with Diesel Fuel and Centered Rocker Arm Figure B7. Wear Rate Deviation Attributed to Head

  20. Adrenaline auto-injectors for the treatment of anaphylaxis with and without cardiovascular collapse in the community.

    PubMed

    Sheikh, Aziz; Simons, F Estelle R; Barbour, Victoria; Worth, Allison

    2012-08-15

    Anaphylaxis is a serious hypersensitivity reaction that is rapid in onset and may cause death. Adrenaline (epinephrine) auto-injectors are recommended as the initial, potentially life-saving treatment of choice for anaphylaxis in the community, but they are not universally available and have limitations in their use. To assess the effectiveness of adrenaline (epinephrine) auto-injectors in relieving respiratory, cardiovascular, and other symptoms during episodes of anaphylaxis that occur in the community. We searched the Cochrane Central Register of Controlled Trials (CENTRAL) (The Cochrane Library 2012, Issue 1), MEDLINE (Ovid SP) (1950 to January 2012), EMBASE (Ovid SP) (1980 to January 2012 ), CINAHL (EBSCO host) (1982 to January 2012 ), AMED (EBSCO host) (1985 to January 2012 ), LILACS, (BIREME) (1980 to January 2012 ), ISI Web of Science (1950 to January 2012 ). We adapted our search terms for other databases. We also searched websites listing on-going trials: the World Health Organization International Clinical Trials Registry Platform, the UK Clinical Research Network Study Portfolio, and the meta Register of Controlled Trials; and contacted pharmaceutical companies who manufacture adrenaline auto-injectors in an attempt to locate unpublished material. Randomized and quasi-randomized controlled trials comparing auto-injector administration of adrenaline with any control including no intervention, placebo, or other adrenergic agonists were eligible for inclusion. Two authors independently assessed articles for inclusion. None of the 1328 studies that were identified satisfied the inclusion criteria. Based on this review, we cannot make any new recommendations on the effectiveness of adrenaline auto-injectors for the treatment of anaphylaxis. Although randomized, double-blind, placebo-controlled clinical trials of high methodological quality are necessary to define the true extent of benefits from the administration of adrenaline in anaphylaxis via an auto-injector, such trials are unlikely to be performed in individuals experiencing anaphylaxis because of ethical concerns associated with randomization to placebo. There is, however, a need to consider trials in which, for example, auto-injectors of different doses of adrenaline and differing devices are compared in order to provide greater clarity on the dose and device of choice. Such trials would be practically challenging to conduct. In the absence of appropriate trials, we recommend that adrenaline administration by auto-injector should still be regarded as the most effective first-line treatment for the management of anaphylaxis in the community. In countries where auto-injectors are not commonly used, it may be possible to conduct trials to compare administration of adrenaline via auto-injector with adrenaline administered by syringe and ampoule, or comparing the effectiveness of two different types of auto-injector.

  1. Main Chamber Injectors for Advanced Hydrocarbon Booster Engines

    NASA Technical Reports Server (NTRS)

    Long, Matthew R.; Bazarov, Vladimir G.; Anderson, William E.

    2003-01-01

    Achieving the highest possible specific impulse has long been a key driver for space launch systems. Recently, more importance has been placed on the need for increased reliability and streamlined launch operations. These general factors along with more specific mission requirements have provided a new focus that is centered on the oxidizer rich staged combustion (ORSC) cycle. Despite a history of use in Russia that extends back to the 1960's, a proven design methodology for ORSC cycle engines does not exist in the West. This lack of design expertise extends to the main chamber injector, a critical subcomponent that largely determines the engine performance and main chamber life. The goals of the effort described here are to establish an empirical knowledge base to provide a fundamental understanding of main chamber injectors and for verification of an injector design methodology for the ORSC cycle. The design of a baseline injector element, derived from information on Russian engines in the open literature, is presented. The baseline injector comprises a gaseous oxidizer core flow and an annular swirling fuel flow. Sets of equations describing the steady-state and the dynamic characteristics of the injector are presented; these equations, which form the basis of the design analysis methodology, will be verified in tests later this year. On-going cold flow studies, using nitrogen and water as simulants, are described which indicate highly atomized and symmetric sprays.

  2. Experimental characterization of gasoline sprays under highly evaporating conditions

    NASA Astrophysics Data System (ADS)

    Khan, Muhammad Mahabat; Sheikh, Nadeem Ahmed; Khalid, Azfar; Lughmani, Waqas Akbar

    2018-05-01

    An experimental investigation of multistream gasoline sprays under highly evaporating conditions is carried out in this paper. Temperature increase of fuel and low engine pressure could lead to flash boiling. The spray shape is normally modified significantly under flash boiling conditions. The spray plumes expansion along with reduction in the axial momentum causes the jets to merge and creates a low-pressure area below the injector's nozzle. These effects initiate the collapse of spray cone and lead to the formation of a single jet plume or a big cluster like structure. The collapsing sprays reduces exposed surface and therefore they last longer and subsequently penetrate more. Spray plume momentum increase, jet plume reduction and spray target widening could delay or prevent the closure condition and limit the penetration (delayed formation of the cluster promotes evaporation). These spray characteristics are investigated experimentally using shadowgraphy, for five and six hole injectors, under various boundary conditions. Six hole injectors produce more collapsing sprays in comparison to five hole injector due to enhanced jet to jet interactions. The spray collapse tendency reduces with increase in injection pressure due high axial momentum of spray plumes. The spray evaporation rates of five hole injector are observed to be higher than six hole injectors. Larger spray cone angles of the six hole injectors promote less penetrating and less collapsing sprays.

  3. NASA Multipoint LDI Development

    NASA Technical Reports Server (NTRS)

    Tacina, Robert

    2001-01-01

    Multipoint Lean-Direct-Injection (LDI) is a combustor concept in which a large number of fuel injectors and fuel-air mixers are used to quickly and uniformly mix the fuel and air so that ultralow levels of NO, are produced. Each fuel injector has an air swirler associated with it for fuel-air mixing and to establish a small recirculation and burning zone. A concept in which there are 36 fuel injectors in the space of a conventional single fuel injector has been tested in a flame tube. A greater than 80 percent reduction in NO, at high power conditions (400 psia, 1000 "Finlet) was achieved. Alternate concepts with 9,25,36 or 49 fuel injectors are being investigated in flame tube tests for their low NO, potential and with fuel staging to improve the turn-down ratio at low power conditions. A preliminary sector concept of a large engine design has been successfully tested at inlet conditions of 700 psia and 1100 O F . This concept had one half the number of fuel injectors per square inch as the flame tube configuration with 36 fuel injectors, and the NO, reduction was 65 percent of the ICAO standard. Future regional engine size sector tests are planned for the 2nd quarter of FY02 and large engine size sector tests for the 1st quarter of FY03.

  4. Diagnostics for a 1.2 kA, 1 MeV, electron induction injector

    NASA Astrophysics Data System (ADS)

    Houck, T. L.; Anderson, D. E.; Eylon, S.; Henestroza, E.; Lidia, S. M.; Vanecek, D. L.; Westenskow, G. A.; Yu, S. S.

    1998-12-01

    We are constructing a 1.2 kA, 1 MeV, electron induction injector as part of the RTA program, a collaborative effort between LLNL and LBNL to develop relativistic klystrons for Two-Beam Accelerator applications. The RTA injector will also be used in the development of a high-gradient, low-emittance, electron source and beam diagnostics for the second axis of the Dual Axis Radiographic Hydrodynamic Test (DARHT) Facility. The electron source will be a 3.5″-diameter, thermionic, flat-surface, m-type cathode with a maximum shroud field stress of approximately 165 kV/cm. Additional design parameters for the injector include a pulse length of over 150 ns flat top (1% energy variation), and a normalized edge emittance of less than 200 π-mm-mr. Precise measurement of the beam parameters is required so that performance of the RTA injector can be confidently scaled to the 4 kA, 3 MeV, and 2-microsecond pulse parameters of the DARHT injector. Planned diagnostics include an isolated cathode with resistive divider for direct measurement of current emission, resistive wall and magnetic probe current monitors for measuring beam current and centroid position, capacitive probes for measuring A-K gap voltage, an energy spectrometer, and a pepperpot emittance diagnostic. Details of the injector, beam line, and diagnostics are presented.

  5. What are the 'ideal' features of an adrenaline (epinephrine) auto-injector in the treatment of anaphylaxis?

    PubMed

    Frew, A J

    2011-01-01

    Anaphylaxis is a systemic allergic reaction that often involves respiratory symptoms and cardiovascular collapse, which are potentially life-threatening if not treated promptly with intramuscular adrenaline. Owing to the unpredictable nature of anaphylaxis and accidental exposure to allergens (such as peanuts and shellfish), patients should be prescribed intramuscular adrenaline auto-injectors and carry these with them at all times. Patients also need to be able to use their auto-injectors correctly while under high stress, when an anaphylactic attack occurs. Despite this, an alarming number of patients fail to carry their auto-injectors and many patients, carers of children with known anaphylaxis and healthcare professionals do not know how to use the device correctly, despite having had training. Currently available auto-injector devices have various limitations that may impede their use in the management of anaphylaxis. There is also a lack of validated assessment criteria and regulatory requirements for new devices. This review describes the different delivery systems used in currently available auto-injectors and discusses the key barriers to the use of adrenaline auto-injectors, with the goal of identifying the 'ideal' features/characteristics of such devices in the emergency treatment of anaphylaxis that will ensure ease of use, portability and accurate delivery of a life-saving drug. © 2010 John Wiley & Sons A/S.

  6. NIMROD simulations of HIT-SI plasmas

    NASA Astrophysics Data System (ADS)

    Akcay, Cihan; Jarboe, Thomas; Nelson, Brian; Kim, Charlson

    2011-10-01

    HIT-SI (Steady Inductive Helicity Injected Torus) is a current drive experiment that uses two semi-toroidal helicity injectors driven at 5-15 kHz to generate steady inductive helicity injection (SIHI). All the plasma-facing walls of the experiment are coated with an insulating material to guarantee an inductive discharge. NIMROD is a 3-D extended MHD code that can only model toroidally-uniform geometries. The helicity injectors of the experiment are simulated as flux and voltage boundary conditions with odd toroidal symmetry. A highly resistive, thin edge-layer approximates the insulating walls. The simulations are initial-value calculations that use a zero β resistive MHD (rMHD) model with uniform density. The Prandtl number (Pr = 10), and Lundquist number (S = 5 - 50) closely match the experimental values. rMHD calculations at S ~ 10 show no growth of an n = 0 mode and only a few kA of toroidal current whereas HIT-SI has demonstrated toroidal currents greater than 50 kA with a current amplification of 3. At higher S (>= 20) the simulations exhibit significant n = 0 magnetic energy growth and a current amplification exceeding unity: Itor/Iinj >= 1 . While HIT-SI has shown evidence for separatrix formation, rMHD calculations indicate an entirely stochastic magnetic structure during sustainment. Results will also presented for Hall MHD, anticipated to play a crucial role in the physics of SIHI.

  7. Nozzle

    DOEpatents

    Chen, Alexander G.; Cohen, Jeffrey M.

    2009-06-16

    A fuel injector has a number of groups of nozzles. The groups are generally concentric with an injector axis. Each nozzle defines a gas flowpath having an outlet for discharging a fuel/air mixture jet. There are means for introducing the fuel to the air. One or more groups of the nozzles are oriented to direct the associated jets skew to the injector axis.

  8. Hot-Fire Test of Liquid Oxygen/Hydrogen Space Launch Mission Injector Applicable to Exploration Upper Stage

    NASA Technical Reports Server (NTRS)

    Barnett, Greg; Turpin, Jason; Nettles, Mindy

    2015-01-01

    This task is to hot-fire test an existing Space Launch Mission (SLM) injector that is applicable for all expander cycle engines being considered for the exploration upper stage. The work leverages investment made in FY 2013 that was used to additively manufacture three injectors (fig. 1) all by different vendors..

  9. Evaluation of Future Fuels in a High Pressure Common Rail System. Part 3. John Deere 4.5L Powertech Plus

    DTIC Science & Technology

    2013-01-01

    within the fuel injectors regardless of viscosity or lubricity levels. 15. SUBJECT TERMS Fuel Lubricity, Viscosity, HPCR, Synthetic Jet Fuel, Denso... injectors regardless of viscosity or lubricity levels. UNCLASSIFIED v UNCLASSIFIED FOREWORD/ACKNOWLEDGMENTS The U.S. Army TARDEC...40 3.10 UPPER INJECTOR CONNECTING PIN

  10. Solar Thermo-coupled Electrochemical Oxidation of Aniline in Wastewater for the Complete Mineralization Beyond an Anodic Passivation Film.

    PubMed

    Yuan, Dandan; Tian, Lei; Li, Zhida; Jiang, Hong; Yan, Chao; Dong, Jing; Wu, Hongjun; Wang, Baohui

    2018-02-15

    Herein, we report the solar thermal electrochemical process (STEP) aniline oxidation in wastewater for totally solving the two key obstacles of the huge energy consumption and passivation film in the electrochemical treatment. The process, fully driven by solar energy without input of any other energies, sustainably serves as an efficient thermoelectrochemical oxidation of aniline by the control of the thermochemical and electrochemical coordination. The thermocoupled electrochemical oxidation of aniline achieved a fast rate and high efficiency for the full minimization of aniline to CO 2 with the stability of the electrode and without formation of polyaniline (PAN) passivation film. A clear mechanism of aniline oxidation indicated a switching of the reactive pathway by the STEP process. Due to the coupling of solar thermochemistry and electrochemistry, the electrochemical current remained stable, significantly improving the oxidation efficiency and mineralization rate by apparently decreasing the electrolytic potential when applied with high temperature. The oxidation rate of aniline and chemical oxygen demand (COD) removal rate could be lifted up to 2.03 and 2.47 times magnification compared to conventional electrolysis, respectively. We demonstrate that solar-driven STEP processes are capable of completely mineralizing aniline with high utilization of solar energy. STEP aniline oxidation can be utilized as a green, sustainable water treatment.

  11. New concepts and new design of permanent maglev rotary artificial heart blood pumps.

    PubMed

    Qian, K X; Zeng, P; Ru, W M; Yuan, H Y

    2006-05-01

    According to tradition, permanent maglev cannot achieve stable equilibrium. The authors have developed, to the contrary, two stable permanent maglev impeller blood pumps. The first pump is an axially driven uni-ventricular assist pump, in which the rotor with impeller is radially supported by two passive magnetic bearings, but has one point contact with the stator axially at standstill. As the pump raises its rotating speed, the increasing hydrodynamic force of fluid acting on the impeller will make the rotor taking off from contacting point and disaffiliate from the stator. Then the rotor becomes fully suspended. The second pump is a radially driven bi-ventricular assist pump, i.e., an impeller total artificial heart. Its rotor with two impellers on both ends is supported by two passive magnetic bearings, which counteract the attractive force between rotor magnets and stator coil iron core. The rotor is affiliated to the stator radially at standstill and becomes levitated during rotation. Therefore, the rotor keeps concentric with stator during rotation but eccentric at standstill, as is confirmed by rotor position detection with Honeywell sensors. It concludes that the permanent maglev needs action of a non-magnetic force to achieve stability but a rotating magnetic levitator with high speed and large inertia can maintain its stability merely with passive magnetic bearings.

  12. Demonstration of passive plasma lensing of a laser wakefield accelerated electron bunch

    DOE PAGES

    Kuschel, S.; Hollatz, D.; Heinemann, T.; ...

    2016-07-20

    We report on the first demonstration of passive all-optical plasma lensing using a two-stage setup. An intense femtosecond laser accelerates electrons in a laser wakefield accelerator (LWFA) to 100 MeV over millimeter length scales. By adding a second gas target behind the initial LWFA stage we introduce a robust and independently tunable plasma lens. We observe a density dependent reduction of the LWFA electron beam divergence from an initial value of 2.3 mrad, down to 1.4 mrad (rms), when the plasma lens is in operation. Such a plasma lens provides a simple and compact approach for divergence reduction well matchedmore » to the mm-scale length of the LWFA accelerator. The focusing forces are provided solely by the plasma and driven by the bunch itself only, making this a highly useful and conceptually new approach to electron beam focusing. Possible applications of this lens are not limited to laser plasma accelerators. Since no active driver is needed the passive plasma lens is also suited for high repetition rate focusing of electron bunches. As a result, its understanding is also required for modeling the evolution of the driving particle bunch in particle driven wake field acceleration.« less

  13. Radio frequency multicusp ion source development (invited)

    NASA Astrophysics Data System (ADS)

    Leung, K. N.

    1996-03-01

    The radio-frequency (rf) driven multicusp source was originally developed for use in the Superconducting Super Collider injector. It has been demonstrated that the source can meet the H- beam current and emittance requirements for this application. By employing a porcelain-coated antenna, a clean plasma discharge with very long-life operation can be achieved. Today, the rf source is used to generate both positive and negative hydrogen ion beams and has been tested in various particle accelerator laboratories throughout the world. Applications of this ion source have been extended to other fields such as ion beam lithography, oil-well logging, ion implantation, accelerator mass spectrometry and medical therapy machines. This paper summarizes the latest rf ion source technology and development at the Lawrence Berkeley National Laboratory.

  14. Noninterceptive transverse emittance measurements using BPM for Chinese ADS R&D project

    NASA Astrophysics Data System (ADS)

    Wang, Zhi-Jun; Feng, Chi; He, Yuan; Dou, Weiping; Tao, Yue; Chen, Wei-long; Jia, Huan; Liu, Shu-hui; Wang, Wang-sheng; Zhang, Yong; Wu, Jian-qiang; Zhang, Sheng-hu; Zhang, X. L.

    2016-04-01

    The noninterceptive four-dimensional transverse emittance measurements are essential for commissioning the high power continue-wave (CW) proton linacs as well as their operations. The conventional emittance measuring devices such as slits and wire scanners are not well suited under these conditions due to sure beam damages. Therefore, the method of using noninterceptive Beam Position Monitor (BPM) is developed and demonstrated on Injector Scheme II at the Chinese Accelerator Driven Sub-critical System (China-ADS) proofing facility inside Institute of Modern Physics (IMP) [1]. The results of measurements are in good agreements with wire scanners and slits at low duty-factor pulsed (LDFP) beam. In this paper, the detailed experiment designs, data analysis and result benchmarking are presented.

  15. Fuel Cell/Reformers Technology Development

    NASA Technical Reports Server (NTRS)

    2004-01-01

    NASA Glenn Research Center is interested in developing Solid Oxide Fuel Cell for use in aerospace applications. Solid oxide fuel cell requires hydrogen rich feed stream by converting commercial aviation jet fuel in a fuel processing process. The grantee's primary research activities center on designing and constructing a test facility for evaluating injector concepts to provide optimum feeds to fuel processor; collecting and analyzing literature information on fuel processing and desulfurization technologies; establishing industry and academic contacts in related areas; providing technical support to in-house SOFC-based system studies. Fuel processing is a chemical reaction process that requires efficient delivery of reactants to reactor beds for optimum performance, i.e., high conversion efficiency and maximum hydrogen production, and reliable continuous operation. Feed delivery and vaporization quality can be improved by applying NASA's expertise in combustor injector design. A 10 KWe injector rig has been designed, procured, and constructed to provide a tool to employ laser diagnostic capability to evaluate various injector concepts for fuel processing reactor feed delivery application. This injector rig facility is now undergoing mechanical and system check-out with an anticipated actual operation in July 2004. Multiple injector concepts including impinging jet, venturi mixing, discrete jet, will be tested and evaluated with actual fuel mixture compatible with reforming catalyst requirement. Research activities from September 2002 to the closing of this collaborative agreement have been in the following areas: compiling literature information on jet fuel reforming; conducting autothermal reforming catalyst screening; establishing contacts with other government agencies for collaborative research in jet fuel reforming and desulfurization; providing process design basis for the build-up of injector rig facility and individual injector design.

  16. Nonlinear MHD simulation of magnetic relaxation during DC helicity injection in spherical torus plasmas

    NASA Astrophysics Data System (ADS)

    Kanki, Takashi; Nagata, Masayoshi; Kagei, Yasuhiro

    2009-11-01

    Recently, the intermittent plasma flow has been observed to be correlated with the fluctuations of the toroidal current It and n=1 mode in the HIST spherical torus device. During the partially driven phase mixed with a resistive decay, the toroidal ion flow velocity (˜ 40 km/s) in the opposite direction of It is driven in the central open flux region, and the oscillations in n=1 mode occur there, while during the resistive decay phase, this flow velocity reverses and results in the same as that of It, and the oscillations in n=1 mode disappear there. The purpose of the present study is to investigate the plasma flow reversal process and the relevant MHD relaxation by using the 3-D nonlinear MHD simulations. The numerical results exhibit that during the driven phase, the toroidal flow velocity (˜ 37 km/s) is in the opposite direction to It, but in the same direction as the ExB rotation induced by an applied voltage. This flow is driven by the magnetic reconnection occurring at the X-point during the repetitive process of the non-axisymmetric magnetized plasmoid ejection from the helicity injector. The oscillations of poloidal flux ψp are out of phase with those of toroidal flux ψt and magnetic energy for the dominant n=1 mode, indicating the flux conversion from ψt to ψp. The effect of the vacuum toroidal field strength on the plasma dynamics is discussed.

  17. Fuel Injector Patternation Evaluation in Advanced Liquid-Fueled, High Pressure, Gas Turbine Combustors, Using Nonintrusive Optical Diagnostic Techniques

    NASA Technical Reports Server (NTRS)

    Locke, R. J.; Hicks, Y. R.; Anderson, R. C.; Zaller, M. M.

    1998-01-01

    Planar laser-induced fluorescence (PLIF) imaging and planar Mie scattering are used to examine the fuel distribution pattern (patternation) for advanced fuel injector concepts in kerosene burning, high pressure gas turbine combustors. Three diverse fuel injector concepts for aerospace applications were investigated under a broad range of operating conditions. Fuel PLIF patternation results are contrasted with those obtained by planar Mie scattering. Further comparison is also made for one injector with data obtained through phase Doppler measurements. Differences in spray patterns for diverse conditions and fuel injector configurations are readily discernible. An examination of the data has shown that a direct determination of the fuel spray angle at realistic conditions is also possible. The results obtained in this study demonstrate the applicability and usefulness of these nonintrusive optical techniques for investigating fuel spray patternation under actual combustor conditions.

  18. Injector for the University of Maryland Electron Ring (UMER)

    NASA Astrophysics Data System (ADS)

    Kehne, D.; Godlove, T.; Haldemann, P.; Bernal, S.; Guharay, S.; Kishek, R.; Li, Y.; O'Shea, P.; Reiser, M.; Yun, V.; Zou, Y.; Haber, I.

    2001-05-01

    The electron beam injector constructed by FM technologies for the University of Maryland Electron Ring (UMER) program is described. The program will use an electron beam to model space-charge-dominated ion beams in a recirculating linac for heavy ion inertial fusion, as well as for high-current muon colliders. The injector consists of a 10 keV, 100 mA electron gun with 50-100 nsec pulse width and a repetition rate of 120 Hz. The e-gun system includes a 6-mask, rotatable aperture plate, a Rogowski current monitor, an ion pump, and a gate valve. The injector beamline consists of a solenoid, a five-quadrupole matching section, two diagnostic chambers, and a fast current monitor. An independent diagnostic chamber also built for UMER will be used to measure horizontal and vertical emittance, current, energy, energy spread, and the evolution of the beam envelope and profile along the injector beamline.

  19. Integrated numerical modeling of a laser gun injector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, H.; Benson, S.; Bisognano, J.

    1993-06-01

    CEBAF is planning to incorporate a laser gun injector into the linac front end as a high-charge cw source for a high-power free electron laser and nuclear physics. This injector consists of a DC laser gun, a buncher, a cryounit and a chicane. The performance of the injector is predicted based on integrated numerical modeling using POISSON, SUPERFISH and PARMELA. The point-by-point method incorporated into PARMELA by McDonald is chosen for space charge treatment. The concept of ``conditioning for final bunching`` is employed to vary several crucial parameters of the system for achieving highest peak current while maintaining low emittancemore » and low energy spread. Extensive parameter variation studies show that the design will perform beyond the specifications for FEL operations aimed at industrial applications and fundamental scientific research. The calculation also shows that the injector will perform as an extremely bright cw electron source.« less

  20. Combustor exhaust emissions with air-atomizing splash-groove fuel injectors burning Jet A and Diesel number 2 fuels

    NASA Technical Reports Server (NTRS)

    Ingebo, R. D.; Norgren, C. T.

    1975-01-01

    Air-atomizing, splash-groove injectors were shown to improve primary-zone fuel spreading and reduce combustor exhaust emissions for Jet A and diesel number 2 fuels. With Jet A fuel large-orifice, splash-groove injectors the oxides-of-nitrogen emission index was reduced, but emissions of carbon monoxide, unburned hydrocarbons, or smoke were unaffected. Small-orifice, splash-groove injectors did not reduce oxides of nitrogen, but reduced the smoke number and carbon monoxide and unburned-hydrocarbon emission indices. With diesel number 2 fuel, the small-orifice, splash-groove injectors reduced oxides of nitrogen by 19 percent, smoke number by 28 percent, carbon monoxide by 75 percent, and unburned hydrocarbons by 50 percent. Smoke number and unburned hydrocarbons were twice as high with diesel number 2 as with Jet A fuel. Combustor blowout limits were similar for diesel number 2 and Jet A fuels.

  1. DIFMOS - A floating-gate electrically erasable nonvolatile semiconductor memory technology. [Dual Injector Floating-gate MOS

    NASA Technical Reports Server (NTRS)

    Gosney, W. M.

    1977-01-01

    Electrically alterable read-only memories (EAROM's) or reprogrammable read-only memories (RPROM's) can be fabricated using a single-level metal-gate p-channel MOS technology with all conventional processing steps. Given the acronym DIFMOS for dual-injector floating-gate MOS, this technology utilizes the floating-gate technique for nonvolatile storage of data. Avalanche injection of hot electrons through gate oxide from a special injector diode in each bit is used to charge the floating gates. A second injector structure included in each bit permits discharge of the floating gate by avalanche injection of holes through gate oxide. The overall design of the DIFMOS bit is dictated by the physical considerations required for each of the avalanche injector types. The end result is a circuit technology which can provide fully decoded bit-erasable EAROM-type circuits using conventional manufacturing techniques.

  2. Sequential variable fuel injection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weglarz, M.W.; Vincent, M.T.; Prestel, J.F.

    This patent describes a fuel injection system for an engine of an automotive vehicle including cylinders, a spark plug for each of the cylinders, a distributor electrically connected to the spark plug, a throttle body having a throttle valve connected to the engine to allow or prevent air to the cylinders, a fuel source at least one fuel line connected to the fuel source, fuel injectors connected to the fuel line for delivering fuel to the cylinders, a sensor located near the distributor for sensing predetermined states of the distributor, and an electronic control unit (ECU) electrically connected to themore » sensor, distributor and fuel injectors. It comprises calculating a desired total injector on time for current engine conditions; calculating a variable injection time (VIT) and a turn on time based on the VIT; and firing the fuel injectors at the calculated turn on time for the calculated total injector on time.« less

  3. Active nematic emulsions

    PubMed Central

    Hardoüin, Jérôme; Sagués, Francesc

    2018-01-01

    The formation of emulsions from multiple immiscible fluids is governed by classical concepts such as surface tension, differential chemical affinity and viscosity, and the action of surface-active agents. Much less is known about emulsification when one of the components is active and thus inherently not constrained by the laws of thermodynamic equilibrium. We demonstrate one such realization consisting in the encapsulation of an active liquid crystal (LC)–like gel, based on microtubules and kinesin molecular motors, into a thermotropic LC. These active nematic emulsions exhibit a variety of dynamic behaviors that arise from the cross-talk between topological defects separately residing in the active and passive components. Using numerical simulations, we show a feedback mechanism by which active flows continuously drive the passive defects that, in response, resolve the otherwise degenerated trajectories of the active defects. Our experiments show that the choice of surfactant, which stabilizes the active/passive interface, allows tuning the regularity of the self-sustained dynamic events. The hybrid active-passive system demonstrated here provides new perspectives for dynamic self-assembly driven by an active material but regulated by the equilibrium properties of the passive component. PMID:29740605

  4. Active nematic emulsions.

    PubMed

    Guillamat, Pau; Kos, Žiga; Hardoüin, Jérôme; Ignés-Mullol, Jordi; Ravnik, Miha; Sagués, Francesc

    2018-04-01

    The formation of emulsions from multiple immiscible fluids is governed by classical concepts such as surface tension, differential chemical affinity and viscosity, and the action of surface-active agents. Much less is known about emulsification when one of the components is active and thus inherently not constrained by the laws of thermodynamic equilibrium. We demonstrate one such realization consisting in the encapsulation of an active liquid crystal (LC)-like gel, based on microtubules and kinesin molecular motors, into a thermotropic LC. These active nematic emulsions exhibit a variety of dynamic behaviors that arise from the cross-talk between topological defects separately residing in the active and passive components. Using numerical simulations, we show a feedback mechanism by which active flows continuously drive the passive defects that, in response, resolve the otherwise degenerated trajectories of the active defects. Our experiments show that the choice of surfactant, which stabilizes the active/passive interface, allows tuning the regularity of the self-sustained dynamic events. The hybrid active-passive system demonstrated here provides new perspectives for dynamic self-assembly driven by an active material but regulated by the equilibrium properties of the passive component.

  5. Neuronal correlates of a virtual-reality-based passive sensory P300 network.

    PubMed

    Chen, Chun-Chuan; Syue, Kai-Syun; Li, Kai-Chiun; Yeh, Shih-Ching

    2014-01-01

    P300, a positive event-related potential (ERP) evoked at around 300 ms after stimulus, can be elicited using an active or passive oddball paradigm. Active P300 requires a person's intentional response, whereas passive P300 does not require an intentional response. Passive P300 has been used in incommunicative patients for consciousness detection and brain computer interface. Active and passive P300 differ in amplitude, but not in latency or scalp distribution. However, no study has addressed the mechanism underlying the production of passive P300. In particular, it remains unclear whether the passive P300 shares an identical active P300 generating network architecture when no response is required. This study aims to explore the hierarchical network of passive sensory P300 production using dynamic causal modelling (DCM) for ERP and a novel virtual reality (VR)-based passive oddball paradigm. Moreover, we investigated the causal relationship of this passive P300 network and the changes in connection strength to address the possible functional roles. A classical ERP analysis was performed to verify that the proposed VR-based game can reliably elicit passive P300. The DCM results suggested that the passive and active P300 share the same parietal-frontal neural network for attentional control and, underlying the passive network, the feed-forward modulation is stronger than the feed-back one. The functional role of this forward modulation may indicate the delivery of sensory information, automatic detection of differences, and stimulus-driven attentional processes involved in performing this passive task. To our best knowledge, this is the first study to address the passive P300 network. The results of this study may provide a reference for future clinical studies on addressing the network alternations under pathological states of incommunicative patients. However, caution is required when comparing patients' analytic results with this study. For example, the task presented here is not applicable to incommunicative patients.

  6. Neuronal Correlates of a Virtual-Reality-Based Passive Sensory P300 Network

    PubMed Central

    Chen, Chun-Chuan; Syue, Kai-Syun; Li, Kai-Chiun; Yeh, Shih-Ching

    2014-01-01

    P300, a positive event-related potential (ERP) evoked at around 300 ms after stimulus, can be elicited using an active or passive oddball paradigm. Active P300 requires a person’s intentional response, whereas passive P300 does not require an intentional response. Passive P300 has been used in incommunicative patients for consciousness detection and brain computer interface. Active and passive P300 differ in amplitude, but not in latency or scalp distribution. However, no study has addressed the mechanism underlying the production of passive P300. In particular, it remains unclear whether the passive P300 shares an identical active P300 generating network architecture when no response is required. This study aims to explore the hierarchical network of passive sensory P300 production using dynamic causal modelling (DCM) for ERP and a novel virtual reality (VR)-based passive oddball paradigm. Moreover, we investigated the causal relationship of this passive P300 network and the changes in connection strength to address the possible functional roles. A classical ERP analysis was performed to verify that the proposed VR-based game can reliably elicit passive P300. The DCM results suggested that the passive and active P300 share the same parietal-frontal neural network for attentional control and, underlying the passive network, the feed-forward modulation is stronger than the feed-back one. The functional role of this forward modulation may indicate the delivery of sensory information, automatic detection of differences, and stimulus-driven attentional processes involved in performing this passive task. To our best knowledge, this is the first study to address the passive P300 network. The results of this study may provide a reference for future clinical studies on addressing the network alternations under pathological states of incommunicative patients. However, caution is required when comparing patients’ analytic results with this study. For example, the task presented here is not applicable to incommunicative patients. PMID:25401520

  7. Effects of Mean Flow Profiles on the Instability of a Low-Density Gas Jet Injected into a High-Density Gas

    NASA Technical Reports Server (NTRS)

    Vedantam, NandaKishore; Parthasarathy, Ramkumar N.

    2004-01-01

    The effects of the mean velocity profiles on the instability characteristics in the near-injector region of axisymmetric low density gas jets injected vertically upwards into a high-density gas medium were investigated using linear inviscid stability analysis. The flow was assumed to be isothermal and locally parallel. Three velocity profiles, signifying different changes in the mean velocity in the shear layer, were used in the analysis. The effects of the inhomogeneous shear layer and the Froude number (signifying the effects of gravity) on the instability for each set of mean profiles were delineated. At a large Froude number (negligible gravity), a critical density ratio was found for the three profiles at which the jet became absolutely unstable. The critical density ratio for each velocity profile was increased as the Froude number was reduced. A critical Froude number was found for the three sets of profiles, below which the jet was absolutely unstable for all the density ratios less than unity, which demarcated the jet flow into the momentum-driven regime and the buoyancy-driven regime.

  8. Development progresses of radio frequency ion source for neutral beam injector in fusion devices.

    PubMed

    Chang, D H; Jeong, S H; Kim, T S; Park, M; Lee, K W; In, S R

    2014-02-01

    A large-area RF (radio frequency)-driven ion source is being developed in Germany for the heating and current drive of an ITER device. Negative hydrogen ion sources are the major components of neutral beam injection systems in future large-scale fusion experiments such as ITER and DEMO. RF ion sources for the production of positive hydrogen (deuterium) ions have been successfully developed for the neutral beam heating systems at IPP (Max-Planck-Institute for Plasma Physics) in Germany. The first long-pulse ion source has been developed successfully with a magnetic bucket plasma generator including a filament heating structure for the first NBI system of the KSTAR tokamak. There is a development plan for an RF ion source at KAERI to extract the positive ions, which can be applied for the KSTAR NBI system and to extract the negative ions for future fusion devices such as the Fusion Neutron Source and Korea-DEMO. The characteristics of RF-driven plasmas and the uniformity of the plasma parameters in the test-RF ion source were investigated initially using an electrostatic probe.

  9. Measurements of droplet size in shear-driven atomization using ultra-small angle x-ray scattering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kastengren, A.; Ilavsky, J.; Viera, Juan Pablo

    Measurements of droplet size in optically-thick, non-evaporating, shear-driven sprays have been made using ultra-small angle x-ray scattering (USAXS). The sprays are produced by orifice-type nozzles coupled to diesel injectors, with measurements conducted from 1 – 24 mm from the orifice, spanning from the optically-dense near-nozzle region to more dilute regions where optical diagnostics are feasible. The influence of nozzle diameter, liquid injection pressure, and ambient density were examined. The USAXS measurements reveal few if any nanoscale droplets, in conflict with a popular computational model of diesel spray breakup. The average droplet diameter rapidly decreases with downstream distance from the nozzlemore » until a plateau value is reached, after which only small changes are seen in droplet diameter. This plateau droplet size is consistent with the droplets being small enough to be stable with respect to further breakup. As a result, liquid injection pressure and nozzle diameter have the biggest impact on droplet size, while ambient density has a smaller effect.« less

  10. Experimental studies of characteristic combustion-driven flows for CFD validation

    NASA Technical Reports Server (NTRS)

    Santoro, R. J.; Moser, M.; Anderson, W.; Pal, S.; Ryan, H.; Merkle, C. L.

    1992-01-01

    A series of rocket-related studies intended to develop a suitable data base for validation of Computational Fluid Dynamics (CFD) models of characteristic combustion-driven flows was undertaken at the Propulsion Engineering Research Center at Penn State. Included are studies of coaxial and impinging jet injectors as well as chamber wall heat transfer effects. The objective of these studies is to provide fundamental understanding and benchmark quality data for phenomena important to rocket combustion under well-characterized conditions. Diagnostic techniques utilized in these studies emphasize determinations of velocity, temperature, spray and droplet characteristics, and combustion zone distribution. Since laser diagnostic approaches are favored, the development of an optically accessible rocket chamber has been a high priority in the initial phase of the project. During the design phase for this chamber, the advice and input of the CFD modeling community were actively sought through presentations and written surveys. Based on this procedure, a suitable uni-element rocket chamber was fabricated and is presently under preliminary testing. Results of these tests, as well as the survey findings leading to the chamber design, were presented.

  11. Measurements of droplet size in shear-driven atomization using ultra-small angle x-ray scattering

    DOE PAGES

    Kastengren, A.; Ilavsky, J.; Viera, Juan Pablo; ...

    2017-03-16

    Measurements of droplet size in optically-thick, non-evaporating, shear-driven sprays have been made using ultra-small angle x-ray scattering (USAXS). The sprays are produced by orifice-type nozzles coupled to diesel injectors, with measurements conducted from 1 – 24 mm from the orifice, spanning from the optically-dense near-nozzle region to more dilute regions where optical diagnostics are feasible. The influence of nozzle diameter, liquid injection pressure, and ambient density were examined. The USAXS measurements reveal few if any nanoscale droplets, in conflict with a popular computational model of diesel spray breakup. The average droplet diameter rapidly decreases with downstream distance from the nozzlemore » until a plateau value is reached, after which only small changes are seen in droplet diameter. This plateau droplet size is consistent with the droplets being small enough to be stable with respect to further breakup. As a result, liquid injection pressure and nozzle diameter have the biggest impact on droplet size, while ambient density has a smaller effect.« less

  12. Passive Joint Forces Are Tuned to Limb Use in Insects and Drive Movements without Motor Activity

    PubMed Central

    Ache, Jan M.; Matheson, Thomas

    2013-01-01

    Summary Background Limb movements are generally driven by active muscular contractions working with and against passive forces arising in muscles and other structures. In relatively heavy limbs, the effects of gravity and inertia predominate, whereas in lighter limbs, passive forces intrinsic to the limb are of greater consequence. The roles of passive forces generated by muscles and tendons are well understood, but there has been little recognition that forces originating within joints themselves may also be important, and less still that these joint forces may be adapted through evolution to complement active muscle forces acting at the same joint. Results We examined the roles of passive joint forces in insect legs with different arrangements of antagonist muscles. We first show that passive forces modify actively generated movements of a joint across its working range, and that they can be sufficiently strong to generate completely passive movements that are faster than active movements observed in natural behaviors. We further demonstrate that some of these forces originate within the joint itself. In legs of different species adapted to different uses (walking, jumping), these passive joint forces complement the balance of strength of the antagonist muscles acting on the joint. We show that passive joint forces are stronger where they assist the weaker of two antagonist muscles. Conclusions In limbs where the dictates of a key behavior produce asymmetry in muscle forces, passive joint forces can be coadapted to provide the balance needed for the effective generation of other behaviors. PMID:23871240

  13. Reductant injection and mixing system

    DOEpatents

    Reeves, Matt; Henry, Cary A.; Ruth, Michael J.

    2016-02-16

    A gaseous reductant injection and mixing system is described herein. The system includes an injector for injecting a gaseous reductant into an exhaust gas stream, and a mixer attached to a surface of the injector. The injector includes a plurality of apertures through which the gaseous reductant is injected into an exhaust gas stream. The mixer includes a plurality of fluid deflecting elements.

  14. Response of normal children to influenza A/New Jersey/76 virus vaccine administered by jet injector.

    PubMed

    McIntosh, K; Orr, I; Andersen, M; Arthur, J H; Blakeman, G J

    1977-12-01

    Ninety-seven children six to 10 years old received monovalent influenza A/New Jersey/76 virus vaccine by jet injector. Comparison with groups receiving vaccine intramuscularly revealed that local reactions (tenderness and erythema) were more frequent and more severe in the group vaccinated by jet injector. Antibody response, however, was similar for all groups.

  15. Performance effects resulting from plugged liquid oxygen posts of the Space Shuttle Main Engine Injector

    NASA Technical Reports Server (NTRS)

    Kim, S.; Trinh, H. P.

    1992-01-01

    The paper discusses the performance effects resulting from plugged LOX posts of the Space Shuttle Main Engine Injector. The simulation was performed with the REFLEQS 2-D code. Analysis was performed axisymmetrically and injector surface was divided into several regions to account for the mixture ratio variation on the injector surface. The reduction of vaccum specific impulse was approximately 0.01 second per plugged LOX post. This reduction is an order of magnitude higher than the result of Space Shuttle flight reconstruction data. It is presumed that this overprediction is due to the axisymmetric simulation that smears local effects.

  16. Nozzle insert for mixed mode fuel injector

    DOEpatents

    Lawrence, Keith E [Peoria, IL

    2006-11-21

    A fuel injector includes a homogenous charge nozzle outlet set and a conventional nozzle outlet set controlled respectively, by first and second needle valve members. The homogeneous charged nozzle outlet set is defined by a nozzle insert that is attached to an injector body, which defines the conventional nozzle outlet set. The nozzle insert is a one piece metallic component with a large diameter segment separated from a small diameter segment by an annular engagement surface. One of the needle valve members is guided on an outer surface of the nozzle insert, and the nozzle insert has an interference fit attachment to the injector body.

  17. Integrated titer plate-injector head for microdrop array preparation, storage and transfer

    DOEpatents

    Swierkowski, Stefan P.

    2000-01-01

    An integrated titer plate-injector head for preparing and storing two-dimensional (2-D) arrays of microdrops and for ejecting part or all of the microdrops and inserting same precisely into 2-D arrays of deposition sites with micrometer precision. The titer plate-injector head includes integrated precision formed nozzles with appropriate hydrophobic surface features and evaporative constraints. A reusable pressure head with a pressure equalizing feature is added to the titer plate to perform simultaneous precision sample ejection. The titer plate-injector head may be utilized in various applications including capillary electrophoresis, chemical flow injection analysis, microsample array preparation, etc.

  18. Optimizing RF gun cavity geometry within an automated injector design system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alicia Hofler ,Pavel Evtushenko

    2011-03-28

    RF guns play an integral role in the success of several light sources around the world, and properly designed and optimized cw superconducting RF (SRF) guns can provide a path to higher average brightness. As the need for these guns grows, it is important to have automated optimization software tools that vary the geometry of the gun cavity as part of the injector design process. This will allow designers to improve existing designs for present installations, extend the utility of these guns to other applications, and develop new designs. An evolutionary algorithm (EA) based system can provide this capability becausemore » EAs can search in parallel a large parameter space (often non-linear) and in a relatively short time identify promising regions of the space for more careful consideration. The injector designer can then evaluate more cavity design parameters during the injector optimization process against the beam performance requirements of the injector. This paper will describe an extension to the APISA software that allows the cavity geometry to be modified as part of the injector optimization and provide examples of its application to existing RF and SRF gun designs.« less

  19. Modular injector integrated linear apparatus with motion profile optimization for spatial atomic layer deposition.

    PubMed

    Wang, Xiaolei; Li, Yun; Lin, Jilong; Shan, Bin; Chen, Rong

    2017-11-01

    A spatial atomic layer deposition apparatus integrated with a modular injector and a linear motor has been designed. It consists of four parts: a precursor delivery manifold, a modular injector, a reaction zone, and a driving unit. An injector with multi-layer structured channels is designed to help improve precursor distribution homogeneity. During the back and forth movement of the substrate at high speed, the inertial impact caused by jerk and sudden changes of acceleration will degrade the film deposition quality. Such residual vibration caused by inertial impact will aggravate the fluctuation of the gap distance between the injector and the substrate in the deposition process. Thus, an S-curve motion profile is implemented to reduce the large inertial impact, and the maximum position error could be reduced by 84%. The microstructure of the film under the S-curve motion profile shows smaller root-mean-square and scanning voltage amplitude under an atomic force microscope, which verifies the effectiveness of the S-curve motion profile in reducing the residual vibration and stabilizing the gap distance between the injector and the substrate. The film deposition rate could reach 100 nm/min while maintaining good uniformity without obvious periodic patterns on the surface.

  20. Modular injector integrated linear apparatus with motion profile optimization for spatial atomic layer deposition

    NASA Astrophysics Data System (ADS)

    Wang, Xiaolei; Li, Yun; Lin, Jilong; Shan, Bin; Chen, Rong

    2017-11-01

    A spatial atomic layer deposition apparatus integrated with a modular injector and a linear motor has been designed. It consists of four parts: a precursor delivery manifold, a modular injector, a reaction zone, and a driving unit. An injector with multi-layer structured channels is designed to help improve precursor distribution homogeneity. During the back and forth movement of the substrate at high speed, the inertial impact caused by jerk and sudden changes of acceleration will degrade the film deposition quality. Such residual vibration caused by inertial impact will aggravate the fluctuation of the gap distance between the injector and the substrate in the deposition process. Thus, an S-curve motion profile is implemented to reduce the large inertial impact, and the maximum position error could be reduced by 84%. The microstructure of the film under the S-curve motion profile shows smaller root-mean-square and scanning voltage amplitude under an atomic force microscope, which verifies the effectiveness of the S-curve motion profile in reducing the residual vibration and stabilizing the gap distance between the injector and the substrate. The film deposition rate could reach 100 nm/min while maintaining good uniformity without obvious periodic patterns on the surface.

  1. Effects of Viscosity on the Performance of Air-Powered Liquid Jet Injectors

    NASA Astrophysics Data System (ADS)

    Portaro, Rocco; Jaber, Hadi; Ng, Hoi Dick

    2017-11-01

    Drug delivery without the use of hypodermic needles has been a long-term objective within the medical field. This study focuses on observing the effects of drug viscosity on injector performance for air-powered liquid jet injectors, as well as the viability of using this technology for delivering viscous-type medications such as monoclonal antibodies. The experiments are conducted through the use of a prototype injector which allows key parameters such as driver pressure, injection volume and nozzle size to be varied. Different viscosities which range from 0.9 cP to 87 cP are obtained by using a water-glycerol mix. The liquid jets emanating from the injector are assessed using high speed photography as well as a pressure transducer. Experimental findings are then compared to a CFD model which considered experimental geometry and parameters. The results of this study highlight the effect of viscosity on the operating pressure of the injector and the reduction in jet stagnation pressure. It also illustrates improved jet confinement as viscosity is increased, a finding which is in line with the numerical model, and should play a key role in improving the device's characteristics for puncturing skin.

  2. Investigation of ramp injectors for supersonic mixing enhancement

    NASA Technical Reports Server (NTRS)

    Haimovitch, Y.; Gartenberg, E.; Roberts, A. S., Jr.

    1994-01-01

    A comparative study of wall mounted swept ramp injectors fitted with injector nozzles of different shape has been conducted in a constant area duct to explore mixing enhancement techniques for scramjet combustors. Six different injector nozzle inserts, all having equal exit and throat areas, were tested to explore the interaction between the preconditioned fuel jet and the vortical flowfield produced by the ramp: circular nozzle (baseline), nozzle with three downstream facing steps, nozzle with four vortex generators, elliptical nozzle, tapered-slot nozzle, and trapezoidal nozzle. The main flow was air at Mach 2, and the fuel was simulated by air injected at Mach 1.63 or by helium injected at Mach 1.7. Pressure and temperature surveys, combined with Mie and Rayleigh scattering visualization, were used to investigate the flow field. The experiments were compared with three dimensional Navier-Stokes computations. The results indicate that the mixing process is dominated by the streamwise vorticity generated by the ramp, the injectors' inner geometry having a minor effect. It was also found that the injectant/air mixing in the far-field is nearly independent of the injector geometry, molecular weight of the injectant, and the initial convective Mach number.

  3. Start-to-end simulations for beam dynamics in the injector system of the KHIMA heavy ion accelerator

    NASA Astrophysics Data System (ADS)

    Lee, Yumi; Kim, Eun-San; Kim, Chanmi; Bahng, Jungbae; Li, Zhihui; Hahn, Garam

    2017-07-01

    The Korea Heavy Ion Medical Accelerator (KHIMA) project has been developed for cancer therapy. The injector system consists of a low energy beam transport (LEBT) line, a radio-frequency quadrupole, a drift tube linac with two tanks, and a medium energy beam transport (MEBT) line with a charge stripper section. The injector system transports and accelerates the 12C4+ beam that is produced from electron cyclotron resonance ion source up to 7 MeV/u, respectively. The 12C6+ beam, which is transformed by a charge stripper from the 12C4+ beam, is injected into a synchrotron and accelerated up to 430 MeV/u. The lattice for the injector system was designed to optimize the beam parameters and to meet beam requirements for the synchrotron. We performed start-to-end simulations from the LEBT line to the MEBT line to confirm that the required design goals of the beam and injector system were met. Our simulation results indicate that our design achieves the required performance and a good transmission efficiency of 90%. We present the lattice design and beam dynamics for the injector system in the KHIMA project.

  4. Design and Study of a LOX/GH2 Throttleable Swirl Injector for Rocket Applications

    NASA Technical Reports Server (NTRS)

    Greene, Christopher; Woodward, Roger; Pal, Sibtosh; Santoro, Robert; Garcia, Roberto (Technical Monitor)

    2002-01-01

    A LOX/GH2 swirl injector was designed for a 10:1 propellant throttling range. To accomplish this, a dual LOX (liquid oxygen) manifold was used feeding a single common vortex chamber of the swirl element. Hot-fire experiments were conducting for rocket chamber pressures from 80 to 800 psia at a mixture ratio of nominally 6.0 using steady flow, single-point-per-firing cases as well as dynamic throttling conditions. Low frequency (mean) and high frequency (fluctuating) pressure transducer data, flow meter measurements, and Raman spectroscopy images for mixing information were obtained. The injector design, experimental setup, low frequency pressure data, and injector performance analysis will be presented. C efficiency was very high (approximately 100%) at the middle of the throttle-able range with somewhat lower performance at the high and low ends. From the analysis of discreet steady state operating conditions, injector pressure drop was slightly higher than predicted with an inviscid analysis, but otherwise agreed well across the design throttling range. Analysis of the dynamic throttling data indicates that the injector may experience transient conditions that effect pressure drop and performance when compared to steady state results.

  5. Modeling of classical swirl injector dynamics

    NASA Astrophysics Data System (ADS)

    Ismailov, Maksud M.

    The knowledge of the dynamics of a swirl injector is crucial in designing a stable liquid rocket engine. Since the swirl injector is a complex fluid flow device in itself, not much work has been conducted to describe its dynamics either analytically or by using computational fluid dynamics techniques. Even the experimental observation is limited up to date. Thus far, there exists an analytical linear theory by Bazarov [1], which is based on long-wave disturbances traveling on the free surface of the injector core. This theory does not account for variation of the nozzle reflection coefficient as a function of disturbance frequency, and yields a response function which is strongly dependent on the so called artificial viscosity factor. This causes an uncertainty in designing an injector for the given operational combustion instability frequencies in the rocket engine. In this work, the author has studied alternative techniques to describe the swirl injector response, both analytically and computationally. In the analytical part, by using the linear small perturbation analysis, the entire phenomenon of unsteady flow in swirl injectors is dissected into fundamental components, which are the phenomena of disturbance wave refraction and reflection, and vortex chamber resonance. This reveals the nature of flow instability and the driving factors leading to maximum injector response. In the computational part, by employing the nonlinear boundary element method (BEM), the author sets the boundary conditions such that they closely simulate those in the analytical part. The simulation results then show distinct peak responses at frequencies that are coincident with those resonant frequencies predicted in the analytical part. Moreover, a cold flow test of the injector related to this study also shows a clear growth of instability with its maximum amplitude at the first fundamental frequency predicted both by analytical methods and BEM. It shall be noted however that Bazarov's theory does not predict the resonant peaks. Overall this methodology provides clearer understanding of the injector dynamics compared to Bazarov's. Even though the exact value of response is not possible to obtain at this stage of theoretical, computational, and experimental investigation, this methodology sets the starting point from where the theoretical description of reflection/refraction, resonance, and their interaction between each other may be refined to higher order to obtain its more precise value.

  6. Coupling of active motion and advection shapes intracellular cargo transport.

    PubMed

    Khuc Trong, Philipp; Guck, Jochen; Goldstein, Raymond E

    2012-07-13

    Intracellular cargo transport can arise from passive diffusion, active motor-driven transport along cytoskeletal filament networks, and passive advection by fluid flows entrained by such cargo-motor motion. Active and advective transport are thus intrinsically coupled as related, yet different representations of the same underlying network structure. A reaction-advection-diffusion system is used here to show that this coupling affects the transport and localization of a passive tracer in a confined geometry. For sufficiently low diffusion, cargo localization to a target zone is optimized either by low reaction kinetics and decoupling of bound and unbound states, or by a mostly disordered cytoskeletal network with only weak directional bias. These generic results may help to rationalize subtle features of cytoskeletal networks, for example as observed for microtubules in fly oocytes.

  7. Modeling and analysis of passive dynamic bipedal walking with segmented feet and compliant joints

    NASA Astrophysics Data System (ADS)

    Huang, Yan; Wang, Qi-Ning; Gao, Yue; Xie, Guang-Ming

    2012-10-01

    Passive dynamic walking has been developed as a possible explanation for the efficiency of the human gait. This paper presents a passive dynamic walking model with segmented feet, which makes the bipedal walking gait more close to natural human-like gait. The proposed model extends the simplest walking model with the addition of flat feet and torsional spring based compliance on ankle joints and toe joints, to achieve stable walking on a slope driven by gravity. The push-off phase includes foot rotations around the toe joint and around the toe tip, which shows a great resemblance to human normal walking. This paper investigates the effects of the segmented foot structure on bipedal walking in simulations. The model achieves satisfactory walking results on even or uneven slopes.

  8. Local Heat Flux Measurements with Single Element Coaxial Injectors

    NASA Technical Reports Server (NTRS)

    Jones, Gregg; Protz, Christopher; Bullard, Brad; Hulka, James

    2006-01-01

    To support the mission for the NASA Vision for Space Exploration, the NASA Marshall Space Flight Center conducted a program in 2005 to improve the capability to predict local thermal compatibility and heat transfer in liquid propellant rocket engine combustion devices. The ultimate objective was to predict and hence reduce the local peak heat flux due to injector design, resulting in a significant improvement in overall engine reliability and durability. Such analyses are applicable to combustion devices in booster, upper stage, and in-space engines, as well as for small thrusters with few elements in the injector. In this program, single element and three-element injectors were hot-fire tested with liquid oxygen and ambient temperature gaseous hydrogen propellants at The Pennsylvania State University Cryogenic Combustor Laboratory from May to August 2005. Local heat fluxes were measured in a 1-inch internal diameter heat sink combustion chamber using Medtherm coaxial thermocouples and Gardon heat flux gauges. Injectors were tested with shear coaxial and swirl coaxial elements, including recessed, flush and scarfed oxidizer post configurations, and concentric and non-concentric fuel annuli. This paper includes general descriptions of the experimental hardware, instrumentation, and results of the hot-fire testing for three of the single element injectors - recessed-post shear coaxial with concentric fuel, flush-post swirl coaxial with concentric fuel, and scarfed-post swirl coaxial with concentric fuel. Detailed geometry and test results will be published elsewhere to provide well-defined data sets for injector development and model validatation.

  9. Sexual and Injection Risk among Women who Inject Methamphetamine in San Francisco

    PubMed Central

    Martinez, Alexis; Gee, Lauren; Kral, Alex H.

    2006-01-01

    Methamphetamine (MA) use is on the rise in the United States, with many cities reporting increases of 100% or more in MA-related Emergency Department (ED) mentions. Women are keeping pace with this trend: in 2003, 40% of ED mentions and 45% of MA-related treatment admissions were female. Although there have been extensive examinations of MA use and HIV/STI risk among gay men in recent years, literature regarding female MA users is scarce. This paper examines female methamphetamine injectors in San Francisco, CA, from 2003–2005. We assessed sexual and injection related risk behaviors, comparing female MA injectors to female injectors of other drugs. We also examined whether MA use was independently associated with specific sexual and injection risk behaviors. We found that female MA injectors were significantly more likely than non-MA injectors to report unprotected anal intercourse, multiple sexual partners, receptive syringe sharing and sharing of syringes with more than one person in the past six months. In multivariate analysis, MA use among female injectors was significantly associated with anal sex, more than five sexual partners, receptive syringe sharing, and more than one syringe-sharing partner in the past six months. Deeper exploration of the relationship between MA use and sexual risk among women would benefit HIV/STI prevention efforts. In addition, existing interventions for drug-injecting women may need to be adapted to better meet the risks of female MA injectors. PMID:16739050

  10. Laminar Flow Supersonic Wind Tunnel primary air injector

    NASA Technical Reports Server (NTRS)

    Smith, Brooke Edward

    1993-01-01

    This paper describes the requirements, design, and prototype testing of the flex-section and hinge seals for the Laminar Flow Supersonic Wind Tunnel Primary Injector. The supersonic atmospheric primary injector operates between Mach 1.8 and Mach 2.2 with mass-flow rates of 62 to 128 lbm/s providing the necessary pressure reduction to operate the tunnel in the desired Reynolds number (Re) range.

  11. Cytoskeletal motor-driven active self-assembly in in vitro systems

    DOE PAGES

    Lam, A. T.; VanDelinder, V.; Kabir, A. M. R.; ...

    2015-11-11

    Molecular motor-driven self-assembly has been an active area of soft matter research for the past decade. Because molecular motors transform chemical energy into mechanical work, systems which employ molecular motors to drive self-assembly processes are able to overcome kinetic and thermodynamic limits on assembly time, size, complexity, and structure. Here, we review the progress in elucidating and demonstrating the rules and capabilities of motor-driven active self-assembly. Lastly, we focus on the types of structures created and the degree of control realized over these structures, and discuss the next steps necessary to achieve the full potential of this assembly mode whichmore » complements robotic manipulation and passive self-assembly.« less

  12. Passively operated spool valve for drain-down freeze protection of thermosyphon water heaters. Final technical report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    1982-04-30

    The work done to extend the existing drain-down valve technology to provide passive drain-down freeze protection for thermosyphon-based solar water heaters is described. The basic design of the existing valve model is that of a spool valve, employing a cylindrical spool which moves axially in a mating cartridge to open and close o-rings at the two operating extremes (drain and operate) to perform the valving function. Three passive actuators to drive the basic valving mechanism were designed, fabricated, and tested. Two piping configurations used to integrate the spool valve with the thermosyphon system are described, as are the passive actuators.more » The three actuator designs are: photovoltaic driven, refrigerant-based bellows, and heat motor cable-drive designs. Costs are compared for the alternative actuator designs, and operating characteristics were examined for the thermosyphon system, including field tests. The market for the valve for thermosyphon systems is then assessed. (LEW)« less

  13. Efficacy of laser-driven irrigation versus ultrasonic in removing an airlock from the apical third of a narrow root canal.

    PubMed

    Peeters, Harry Huiz; Gutknecht, Norbert

    2014-08-01

    The purpose of the study was to test the hypothesis that air entrapment occurs in the apical third of a root canal during irrigation. A second objective was to test the null hypothesis that there is no difference between laser-driven irrigation (an erbium, chromium:yttrium-scandium-gallium-garnet laser) and passive ultrasonic irrigation in removing an airlock from the apical third. One hundred twenty extracted human teeth with single narrow root canals were randomised into two experimental groups (n = 40) and two control groups (n = 20). The specimens were shaped using hand instruments up to a size 30/0.02 file. The teeth were irrigated with a mixture of saline, radiopaque contrast and ink in solution. In the passive ultrasonic irrigation group, the irrigant was activated with an ultrasonic device for 60 s. In the laser group, the irrigant was activated with a laser for 60 s. It was concluded that if the insertion of irrigation needle is shorter than the working length, air entrapment may develop in the apical third, but the use of laser-driven irrigation is completely effective in removing it. © 2013 The Authors. Australian Endodontic Journal © 2013 Australian Society of Endodontology.

  14. Hollow-Wall Heat Shield for Fuel Injector Component

    NASA Technical Reports Server (NTRS)

    Hanson, Russell B. (Inventor)

    2018-01-01

    A fuel injector component includes a body, an elongate void and a plurality of bores. The body has a first surface and a second surface. The elongate void is enclosed by the body and is integrally formed between portions of the body defining the first surface and the second surface. The plurality of bores extends into the second surface to intersect the elongate void. A process for making a fuel injector component includes building an injector component body having a void and a plurality of ports connected to the void using an additive manufacturing process that utilizes a powdered building material, and removing residual powdered building material from void through the plurality of ports.

  15. Fuel injector system

    DOEpatents

    Hsu, Bertrand D.; Leonard, Gary L.

    1988-01-01

    A fuel injection system particularly adapted for injecting coal slurry fuels at high pressures includes an accumulator-type fuel injector which utilizes high-pressure pilot fuel as a purging fluid to prevent hard particles in the fuel from impeding the opening and closing movement of a needle valve, and as a hydraulic medium to hold the needle valve in its closed position. A fluid passage in the injector delivers an appropriately small amount of the ignition-aiding pilot fuel to an appropriate region of a chamber in the injector's nozzle so that at the beginning of each injection interval the first stratum of fuel to be discharged consists essentially of pilot fuel and thereafter mostly slurry fuel is injected.

  16. A chemical reactor network for oxides of nitrogen emission prediction in gas turbine combustor

    NASA Astrophysics Data System (ADS)

    Hao, Nguyen Thanh

    2014-06-01

    This study presents the use of a new chemical reactor network (CRN) model and non-uniform injectors to predict the NOx emission pollutant in gas turbine combustor. The CRN uses information from Computational Fluid Dynamics (CFD) combustion analysis with two injectors of CH4-air mixture. The injectors of CH4-air mixture have different lean equivalence ratio, and they control fuel flow to stabilize combustion and adjust combustor's equivalence ratio. Non-uniform injector is applied to improve the burning process of the turbine combustor. The results of the new CRN for NOx prediction in the gas turbine combustor show very good agreement with the experimental data from Korea Electric Power Research Institute.

  17. Cat vestibular neurons that exhibit different responses to active and passive yaw head rotations

    NASA Technical Reports Server (NTRS)

    Robinson, F. R.; Tomko, D. L.

    1987-01-01

    Neurons in the vestibular nuclei were recorded in alert cats during voluntary yaw rotations of the head and during the same rotations delivered with a turntable driven from a record of previous voluntary movements. During both voluntary and passive rotations, 35 percent (6/17) of neurons tested responded at higher rates or for a larger part of the movement during voluntary movements than during the same rotations delivered with the turntable. Neck sensory input was evaluated separately in many of these cells and can account qualitatively for the extra firing present during active movement.

  18. Mechanism for Deploying a Long, Thin-Film Antenna from a Rover

    NASA Technical Reports Server (NTRS)

    Lazio, Joseph; Matthews, B.; Nesnas, Issa A.; Zarzhitsky, Dimitri

    2013-01-01

    Observations with radio telescopes address key problems in cosmology, astrobiology, heliophysics, and planetary science including the first light in the Universe (Cosmic Dawn), magnetic fields of extrasolar planets, particle acceleration mechanisms, and the lunar ionosphere. The Moon is a unique science platform because it allows access to radio frequencies that do not penetrate the Earth's ionosphere and because its far side is shielded from intense terrestrial emissions. A radio antenna can be realized by using polyimide film as a substrate, with a conducting substance deposited on it. Such an antenna can be rolled into a small volume for transport, then deployed by unrolling, and a robotic rover offers a natural means of unrolling a polyimide film-based antenna. An antenna deployment mechanism was developed that allows a thin film to be deposited onto a ground surface, in a controlled manner, using a minimally actuated rover. The deployment mechanism consists of two rollers, one driven and one passive. The antenna film is wrapped around the driven roller. The passive roller is mounted on linear bearings that allow it to move radially with respect to the driven roller. Springs preload the passive roller against the driven roller, and prevent the tightly wrapped film from unspooling or "bird's nesting" on the driven spool. The antenna deployment mechanism is integrated on the minimally-actuated Axel rover. Axel is a two-wheeled rover platform with a trailing boom that is capable of traversing undulated terrain and overcoming obstacles of a wheel radius in height. It is operated by four motors: one that drives each wheel; a third that controls the rotation of the boom, which orients the body mounted sensors; and a fourth that controls the rover's spool to drive the antenna roller. This low-mass axle-like rover houses its control and communication avionics inside its cylindrical body. The Axel rover teleoperation software has an auto-spooling mode that allows a user to automatically deploy the thin-film antenna at a rate proportional to the wheel speed as it drives the rover along its trajectory. The software allows Axel to deposit the film onto the ground to prevent or minimize relative motion between the film and the terrain to avoid the risk of scraping and antenna with the terrain.

  19. Energy extraction from a semi-passive flapping-foil turbine with active heave and passive pitch

    NASA Astrophysics Data System (ADS)

    Boudreau, Matthieu; Dumas, Guy; Gunther, Kevin; CFD Laboratory LMFN Team

    2017-11-01

    Due to the inherent complexity of the mechanisms needed to prescribe the heaving and the pitching motions of optimal flapping-foil turbines, several research groups are now investigating the potential of using unconstrained passive motions. The amplitude, the phase and the frequency of such free motions are thus the result of the interaction of the blade with the flow and its elastic supports, namely springs and dampers. In parallel with our current study on fully-passive flapping-foil turbines, we investigate in this work the possibility of using a semi-passive turbine. Unlike previous semi-passive turbines studied in the literature, we propose a turbine with a passive pitching motion and an active heaving motion constrained to be a sine wave with desired amplitude and frequency. As most of the energy extracted by flapping-foil turbines comes from the heaving motion, it is natural to connect an electric generator to this degree of freedom, thereby allowing one to constrain this motion. It is found that large-amplitude pitching motions leading to a considerable energy extraction can arise under different circumstances and mechanisms, either forced by the heaving motion or driven by an instability of the pitching motion itself. The authors gratefully acknowledge the support from the Natural Sciences and Engineering Research Council of Canada (NSERC), the Tyler Lewis Clean Energy Research Foundation, Calcul Québec and Compute Canada.

  20. Injector Element which Maintains a Constant Mean Spray Angle and Optimum Pressure Drop During Throttling by Varying the Geometry of Tangential Inlets

    NASA Technical Reports Server (NTRS)

    Trinh, Huu P. (Inventor); Myers, William Neill (Inventor)

    2014-01-01

    A method for determining the optimum inlet geometry of a liquid rocket engine swirl injector includes obtaining a throttleable level phase value, volume flow rate, chamber pressure, liquid propellant density, inlet injector pressure, desired target spray angle and desired target optimum delta pressure value between an inlet and a chamber for a plurality of engine stages. The tangential inlet area for each throttleable stage is calculated. The correlation between the tangential inlet areas and delta pressure values is used to calculate the spring displacement and variable inlet geometry. An injector designed using the method includes a plurality of geometrically calculated tangential inlets in an injection tube; an injection tube cap with a plurality of inlet slots slidably engages the injection tube. A pressure differential across the injector element causes the cap to slide along the injection tube and variably align the inlet slots with the tangential inlets.

  1. Injector design for liner-on-target gas-puff experiments

    NASA Astrophysics Data System (ADS)

    Valenzuela, J. C.; Krasheninnikov, I.; Conti, F.; Wessel, F.; Fadeev, V.; Narkis, J.; Ross, M. P.; Rahman, H. U.; Ruskov, E.; Beg, F. N.

    2017-11-01

    We present the design of a gas-puff injector for liner-on-target experiments. The injector is composed of an annular high atomic number (e.g., Ar and Kr) gas and an on-axis plasma gun that delivers an ionized deuterium target. The annular supersonic nozzle injector has been studied using Computational Fluid Dynamics (CFD) simulations to produce a highly collimated (M > 5), ˜1 cm radius gas profile that satisfies the theoretical requirement for best performance on ˜1-MA current generators. The CFD simulations allowed us to study output density profiles as a function of the nozzle shape, gas pressure, and gas composition. We have performed line-integrated density measurements using a continuous wave (CW) He-Ne laser to characterize the liner gas density. The measurements agree well with the CFD values. We have used a simple snowplow model to study the plasma sheath acceleration in a coaxial plasma gun to help us properly design the target injector.

  2. Injector design for liner-on-target gas-puff experiments.

    PubMed

    Valenzuela, J C; Krasheninnikov, I; Conti, F; Wessel, F; Fadeev, V; Narkis, J; Ross, M P; Rahman, H U; Ruskov, E; Beg, F N

    2017-11-01

    We present the design of a gas-puff injector for liner-on-target experiments. The injector is composed of an annular high atomic number (e.g., Ar and Kr) gas and an on-axis plasma gun that delivers an ionized deuterium target. The annular supersonic nozzle injector has been studied using Computational Fluid Dynamics (CFD) simulations to produce a highly collimated (M > 5), ∼1 cm radius gas profile that satisfies the theoretical requirement for best performance on ∼1-MA current generators. The CFD simulations allowed us to study output density profiles as a function of the nozzle shape, gas pressure, and gas composition. We have performed line-integrated density measurements using a continuous wave (CW) He-Ne laser to characterize the liner gas density. The measurements agree well with the CFD values. We have used a simple snowplow model to study the plasma sheath acceleration in a coaxial plasma gun to help us properly design the target injector.

  3. LOX/Hydrogen Coaxial Injector Atomization Test Program

    NASA Technical Reports Server (NTRS)

    Zaller, M.

    1990-01-01

    Quantitative information about the atomization of injector sprays is needed to improve the accuracy of computational models that predict the performance and stability margin of liquid propellant rocket engines. To obtain this data, a facility for the study of spray atomization is being established at NASA-Lewis to determine the drop size and velocity distributions occurring in vaporizing liquid sprays at supercritical pressures. Hardware configuration and test conditions are selected to make the cold flow simulant testing correspond as closely as possible to conditions in liquid oxygen (LOX)/gaseous H2 rocket engines. Drop size correlations from the literature, developed for liquid/gas coaxial injector geometries, are used to make drop size predictions for LOX/H2 coaxial injectors. The mean drop size predictions for a single element coaxial injector range from 0.1 to 2000 microns, emphasizing the need for additional studies of the atomization process in LOX/H2 engines. Selection of cold flow simulants, measured techniques, and hardware for LOX/H2 atomization simulations are discussed.

  4. Exploratory tests of two strut fuel injectors for supersonic combustion

    NASA Technical Reports Server (NTRS)

    Anderson, G. Y.; Gooderum, P. B.

    1974-01-01

    Results of supersonic mixing and combustion tests performed with two simple strut injector configurations, one with parallel injectors and one with perpendicular injectors, are presented and analyzed. Good agreement is obtained between static pressure measured on the duct wall downstream of the strut injectors and distributions obtained from one-dimensional calculations. Measured duct heat load agrees with results of the one-dimensional calculations for moderate amounts of reaction, but is underestimated when large separated regions occur near the injection location. For the parallel injection strut, good agreement is obtained between the shape of the injected fuel distribution inferred from gas sample measurements at the duct exit and the distribution calculated with a multiple-jet mixing theory. The overall fraction of injected fuel reacted in the multiple-jet calculation closely matches the amount of fuel reaction necessary to match static pressure with the one-dimensional calculation. Gas sample measurements with the perpendicular injection strut also give results consistent with the amount of fuel reaction in the one-dimensional calculation.

  5. Thermocathode radio-frequency gun for the Budker Institute of Nuclear Physics free-electron laser

    NASA Astrophysics Data System (ADS)

    Volkov, V.; Getmanov, Ya.; Kenjebulatov, E.; Kolobanov, E.; Krutikhin, S.; Kurkin, G.; Ovchar, V.; Petrov, V. M.; Sedlyarov, I.

    2016-12-01

    A radio-frequency (RF) gun for a race-track microtron-recuperator injector driving the free-electron laser (FEL) (Budker Institute of Nuclear Physics) is being tested at a special stand. Electron bunches of the RF gun have an energy of up to 300 keV and a repetition rate of up to 90 MHz. The average electro-beam current can reach 100 mA in the continuous operation regime. The advantages of the new injector are as follows: long lifetime of the cathode for high average beam current; simple scheme of longitudinal beam bunching, which does not require an additional bunching resonator in the injector; absence of dark-current contamination of the injector beam; and comfortable RF gun operation due to the absence of a high potential of 300 kV at the cathode control circuits. In this study we describe the RF gun design, present the main characteristics of the injector with the RF gun, and give the results of testing.

  6. Staged direct injection diesel engine

    DOEpatents

    Baker, Quentin A.

    1985-01-01

    A diesel engine having staged injection for using lower cetane number fuels than No. 2 diesel fuel. The engine includes a main fuel injector and a pilot fuel injector. Pilot and main fuel may be the same fuel. The pilot injector injects from five to fifteen percent of the total fuel at timings from 20.degree. to 180.degree. BTDC depending upon the quantity of pilot fuel injected, the fuel cetane number and speed and load. The pilot fuel injector is directed toward the centerline of the diesel cylinder and at an angle toward the top of the piston, avoiding the walls of the cylinder. Stratification of the early injected pilot fuel is needed to reduce the fuel-air mixing rate, prevent loss of pilot fuel to quench zones, and keep the fuel-air mixture from becoming too fuel lean to become effective. In one embodiment, the pilot fuel injector includes a single hole for injection of the fuel and is directed at approximately 48.degree. below the head of the cylinder.

  7. The Impact of Injector-Based Contrast Agent Administration on Bolus Shape and Magnetic Resonance Angiography Image Quality.

    PubMed

    Jost, Gregor; Endrikat, Jan; Pietsch, Hubertus

    2017-01-01

    To compare injector-based contrast agent (CA) administration with hand injection in magnetic resonance angiography (MRA). Gadobutrol was administered in 6 minipigs with 3 protocols: (a) hand injection (one senior technician), (b) hand injection (6 less-experienced technicians), and (c) power injector administration. The arterial bolus shape was quantified by test bolus measurements. A head and neck MRA was performed for quantitative and qualitative comparison of signal enhancement. A significantly shorter time to peak was observed for protocol C, whereas no significant differences between protocols were found for peak height and bolus width. However, for protocol C, these parameters showed a much lower variation. The MRA revealed a significantly higher signal-to-noise ratio for injector-based administration. A superimposed strong contrast of the jugular vein was found in 50% of the hand injections. Injector-based CA administration results in a more standardized bolus shape, a higher vascular contrast, and a more robust visualization of target vessels.

  8. Development of a radio frequency ion source with multi-helicon plasma injectors for neutral beam injection system of Versatile Experiment Spherical Torus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choe, Kyumin; Jung, Bongki; Chung, Kyoung-Jae, E-mail: jkjlsh1@snu.ac.kr

    2014-02-15

    Despite of high plasma density, helicon plasma has not yet been applied to a large area ion source such as a driver for neutral beam injection (NBI) system due to intrinsically poor plasma uniformity in the discharge region. In this study, a radio-frequency (RF) ion source with multi-helicon plasma injectors for high plasma density with good uniformity has been designed and constructed for the NBI system of Versatile Experiment Spherical Torus at Seoul National University. The ion source consists of a rectangular plasma expansion chamber (120 × 120 × 120 mm{sup 3}), four helicon plasma injectors with annular permanent magnetsmore » and RF power system. Main feature of the source is downstream plasma confinement in the cusp magnetic field configuration which is generated by arranging polarities of permanent magnets in the helicon plasma injectors. In this paper, detailed design of the multi-helicon plasma injector and plasma characteristics of the ion source are presented.« less

  9. Development of a radio frequency ion source with multi-helicon plasma injectors for neutral beam injection system of Versatile Experiment Spherical Torus

    NASA Astrophysics Data System (ADS)

    Choe, Kyumin; Jung, Bongki; Chung, Kyoung-Jae; Hwang, Y. S.

    2014-02-01

    Despite of high plasma density, helicon plasma has not yet been applied to a large area ion source such as a driver for neutral beam injection (NBI) system due to intrinsically poor plasma uniformity in the discharge region. In this study, a radio-frequency (RF) ion source with multi-helicon plasma injectors for high plasma density with good uniformity has been designed and constructed for the NBI system of Versatile Experiment Spherical Torus at Seoul National University. The ion source consists of a rectangular plasma expansion chamber (120 × 120 × 120 mm3), four helicon plasma injectors with annular permanent magnets and RF power system. Main feature of the source is downstream plasma confinement in the cusp magnetic field configuration which is generated by arranging polarities of permanent magnets in the helicon plasma injectors. In this paper, detailed design of the multi-helicon plasma injector and plasma characteristics of the ion source are presented.

  10. Development of a radio frequency ion source with multi-helicon plasma injectors for neutral beam injection system of Versatile Experiment Spherical Torus.

    PubMed

    Choe, Kyumin; Jung, Bongki; Chung, Kyoung-Jae; Hwang, Y S

    2014-02-01

    Despite of high plasma density, helicon plasma has not yet been applied to a large area ion source such as a driver for neutral beam injection (NBI) system due to intrinsically poor plasma uniformity in the discharge region. In this study, a radio-frequency (RF) ion source with multi-helicon plasma injectors for high plasma density with good uniformity has been designed and constructed for the NBI system of Versatile Experiment Spherical Torus at Seoul National University. The ion source consists of a rectangular plasma expansion chamber (120 × 120 × 120 mm(3)), four helicon plasma injectors with annular permanent magnets and RF power system. Main feature of the source is downstream plasma confinement in the cusp magnetic field configuration which is generated by arranging polarities of permanent magnets in the helicon plasma injectors. In this paper, detailed design of the multi-helicon plasma injector and plasma characteristics of the ion source are presented.

  11. Characterization of deposits formed on diesel injectors in field test and from thermal oxidative degradation of n-hexadecane in a laboratory reactor

    PubMed Central

    Venkataraman, Ramya; Eser, Semih

    2008-01-01

    Solid deposits from commercially available high-pressure diesel injectors (HPDI) were analyzed to study the solid deposition from diesel fuel during engine operation. The structural and chemical properties of injector deposits were compared to those formed from the thermal oxidative stressing of a diesel fuel range model compound, n-hexadecane at 160°C and 450 psi for 2.5 h in a flow reactor. Both deposits consist of polyaromatic compounds (PAH) with oxygen moieties. The similarities in structure and composition of the injector deposits and n-hexadecane deposits suggest that laboratory experiments can simulate thermal oxidative degradation of diesel in commercial injectors. The formation of PAH from n-hexadecane showed that aromatization of straight chain alkanes and polycondensation of aromatic rings was possible at temperatures as low as 160°C in the presence of oxygen. A mechanism for an oxygen-assisted aromatization of cylcoalkanes is proposed. PMID:19091086

  12. ALS LOX/H2 subscale coaxial injector testing

    NASA Technical Reports Server (NTRS)

    Dexter, Carol E.

    1991-01-01

    Tests of a 40K subscale LOX/H2 coaxial LOX swirl injector conducted without injector or chamber degradation are reported. Chamber pressures ranged from 1572 to 2355 psia with overall mixture ratios from 5.04 to 6.39. The highest characteristic velocities were measured when the mixture ratio across the injector face was uniform. Scarfing of the outer row LOX posts had the largest effect on chamber heating rates. As a result of the tests, the LSI design was modified to arrange the outer row LOX posts in a circular pattern, eliminate O/F biasing and fuel film cooling, and modify the interpropellant plate to allow for larger pressure differentials during the start and cutoff transients. Testing of a 100 K LOX/H2 coaxial LOX swirl injector involved chamber pressure ranging from 700 to 2500 psia with overall mixture ratios from 3.2 to 8.8. Stable combustion was observed to a fuel temperature of 90R and characteristic velocity efficiencies were good.

  13. Liquid fuel injection elements for rocket engines

    NASA Technical Reports Server (NTRS)

    Cox, George B., Jr. (Inventor)

    1993-01-01

    Thrust chambers for liquid propellant rocket engines include three principal components. One of these components is an injector which contains a plurality of injection elements to meter the flow of propellants at a predetermined rate, and fuel to oxidizer mixture ratio, to introduce the mixture into the combustion chamber, and to cause them to be atomized within the combustion chamber so that even combustion takes place. Evolving from these injectors are tube injectors. These tube injectors have injection elements for injecting the oxidizer into the combustion chamber. The oxidizer and fuel must be metered at predetermined rates and mixture ratios in order to mix them within the combustion chamber so that combustion takes place smoothly and completely. Hence tube injectors are subject to improvement. An injection element for a liquid propellant rocket engine of the bipropellant type is provided which includes tangential fuel metering orifices, and a plurality of oxidizer tube injection elements whose injection tubes are also provided with tangential oxidizer entry slots and internal reed valves.

  14. Space shuttle orbital maneuvering engine platelet injector program

    NASA Technical Reports Server (NTRS)

    1975-01-01

    A platelet face injector for the Orbit Maneuvering Engine (OME) on the space shuttle was evaluated as a means of obtaining additional design margin and lower cost. The program was conducted in three phases. The first phase evaluated single injection elements, or unielements; it involved visual flow studies, mixing experiments using propellant simulants, and hot firings to assess combustion efficiency, chamber wall compatibility, and injector face temperatures. In the second phase, subscale units producing 600 lbf thrust were used to further evaluate the orifice patterns chosen on the basis of unielement testing. In addition to combustion efficiency, chamber and injector heat transfer, the subscale testing provided a preliminary indication of injector stability. Full scale testing of the selected patterns at 6,000 lbf thrust was performed in the third phase. Performance, heat transfer, and combustion stability were evaluated over the anticipated range of OMS operating conditions. The effects on combustion stability of acoustic cavity configuration, including cavity depth, open area, inlet contour, and other parameters, were investigated.

  15. NIMROD Modeling of HIT-SI and HIT-SI3

    NASA Astrophysics Data System (ADS)

    Morgan, Kyle; Jarboe, Tom; Hossack, Aaron

    2016-10-01

    The HIT-SI and HIT-SI3 devices are spheromaks formed and sustained via a set of Steady Inductive Helicity Injectors (SIHI) that are operated in AC. The experiment explores the formation and sustain of stable spheromaks with a variety of perturbation mode structures. The HIT-SI device consisted of two injectors with primarily n = 1 toroidal symmetry while the HIT-SI3 device has three injectors capable of a mixture of n = 1 and n = 2 perturbations or a primarily n = 3 perturbation, depending on the relative phase of the injectors. Using the NIMROD code to model these devices, we are able to validate with experimental results (previously only done on HIT-SI) and examine the interaction between the injectors and the spheromak. Simulations are performed with both finite and zero- β models to gain an understanding of the thermal properties of the device. Additionally, a set of extrapolation simulations has been performed illustrating the spontaneous formation of closed flux surfaces at high current amplification. Work supported by the US DOE.

  16. Preventing contamination between injections with multiple-use nozzle needle-free injectors: a safety trial.

    PubMed

    Kelly, Kimberly; Loskutov, Anatoly; Zehrung, Darin; Puaa, Kapaakea; LaBarre, Paul; Muller, Nancy; Guiqiang, Wang; Ding, Hui-Guo; Hu, Darong; Blackwelder, William C

    2008-03-04

    Multiple-use nozzle jet injectors (MUNJIs), a type of needle-free injector, use a high-pressure stream to penetrate skin and deliver medicament. Concerns for their potential to transmit blood borne pathogens led to development of a hybrid MUNJI for use in mass immunizations. The HSI-500, referred to here as a protector cap needle-free injector (PCNFI), utilizes a disposable cap as a shield between the reusable injector nozzle and the skin to reduce the risk of contamination. This study aimed to determine the presence of hepatitis B virus (HBV) contamination in post-injection ("next person") samples immediately following injection in HBV-carrier adults. Tolerability and pain were also assessed. The study ended early because the PCNFI failed to prevent contamination in the first batch tested (8.2% failure rate). The injections were very well tolerated, with most followed by no bleeding (81.2%) or mild bleeding (7.8%). 55.2% of participants experienced no pain while 42.3% experienced mild pain following injection.

  17. The RIACS Intelligent Auditing and Categorizing System

    NASA Technical Reports Server (NTRS)

    Bishop, Matt

    1988-01-01

    The organization of the RIACS auditing package is described along with how to installation instructions and how to interpret the output. How to set up both local and remote file system auditing is given. Logging is done on a time driven basis, and auditing in a passive mode.

  18. Pulverized coal fuel injector

    DOEpatents

    Rini, Michael J.; Towle, David P.

    1992-01-01

    A pulverized coal fuel injector contains an acceleration section to improve the uniformity of a coal-air mixture to be burned. An integral splitter is provided which divides the coal-air mixture into a number separate streams or jets, and a center body directs the streams at a controlled angle into the primary zone of a burner. The injector provides for flame shaping and the control of NO/NO.sub.2 formation.

  19. X-ray Radiography Measurements of Shear Coaxial Rocket Injectors

    DTIC Science & Technology

    2013-05-07

    injector EPL profiles have elliptical shape expected from a solid liquid jet  EPL decreases as liquid core is atomized and droplets are...study diesel, swirl, gas-centered swirl-coaxial, impingers, and aerated liquid jet injectors  Use a monochromatic beam of x-rays at a synchrotron...Shear coaxial jets can be found in a number of combustion devices – Turbofan engine exhaust, air blast furnaces, and liquid rocket engines

  20. Making the Surface Fleet Green: The DOTMLPF, Policy, and Cost Implications of Using Biofuel in Surface Ships

    DTIC Science & Technology

    2012-12-01

    Navy’s Ships Renewable Fuels Evaluation, 2011) ..25 Table 4. Diesel Injector Component Testing (From U.S. Navy Biofuel Test and Qualification Update...components, including shipboard quality assurance instruments, fuel injector nozzles , fuel nozzle atomization, fuel nozzle fouling, carbon deposition...Leung, Turgeon, & Williams, 2011, p. 7). Table 4 lists the results from component testing conducted on various diesel engine fuel injectors using

  1. Comprehensive Fuel Spray Modeling and Impacts on Chamber Acoustics in Combustion Dynamics Simulations

    DTIC Science & Technology

    2013-05-01

    multiple swirler configurations and fuel injector locations at atmospheric pressure con- ditions. Both single-element and multiple-element LDI...the swirl number, Reynolds’ number and injector location in the LDI element. Besides the multi-phase flow characteristics, several experimen- tal...region downstream of the fuel injector on account of a sta- ble and compact precessing vortex core. Recent ex- periments conducted by the Purdue group have

  2. Fuel flexible fuel injector

    DOEpatents

    Tuthill, Richard S; Davis, Dustin W; Dai, Zhongtao

    2015-02-03

    A disclosed fuel injector provides mixing of fuel with airflow by surrounding a swirled fuel flow with first and second swirled airflows that ensures mixing prior to or upon entering the combustion chamber. Fuel tubes produce a central fuel flow along with a central airflow through a plurality of openings to generate the high velocity fuel/air mixture along the axis of the fuel injector in addition to the swirled fuel/air mixture.

  3. Orbital transfer vehicle engine technology: Baffled injector design, fabrication, and verification

    NASA Technical Reports Server (NTRS)

    Schneider, J. A.

    1991-01-01

    New technologies for space-based, reusable, throttleable, cryogenic orbit transfer propulsion are being evaluated. Supporting tasks for the design of a dual expander cycle engine thrust chamber design are documented. The purpose of the studies was to research the materials used in the thrust chamber design, the supporting fabrication methods necessary to complete the design, and the modification of the injector element for optimum injector/chamber compatibility.

  4. Design of a Premixed Gaseous Rocket Engine Injector for Ethylene and Oxygen

    DTIC Science & Technology

    2006-12-01

    and uniform combustion zone. An engine will benefit by having a greater characteristic exhaust velocity efficiency (ηc*), less soot production and...the challenges of designing a premixed injector. The design requirements for the engine are to provide a wide range of combustion pressure... Engineering Original Premixed Injector1 Downstream of the three inch combustion chamber a bolt-on conical nozzle was attached. This nozzle had a

  5. Spark-integrated propellant injector head with flashback barrier

    NASA Technical Reports Server (NTRS)

    Mungas, Gregory Stuart (Inventor); Fisher, David James (Inventor); Mungas, Christopher (Inventor)

    2012-01-01

    High performance propellants flow through specialized mechanical hardware that allows for effective and safe thermal decomposition and/or combustion of the propellants. By integrating a sintered metal component between a propellant feed source and the combustion chamber, an effective and reliable fuel injector head may be implemented. Additionally the fuel injector head design integrates a spark ignition mechanism that withstands extremely hot running conditions without noticeable spark mechanism degradation.

  6. Fuel injection system and method of operating the same for an engine

    DOEpatents

    Topinka, Jennifer Ann [Niskayuna, NY; DeLancey, James Peter [Corinth, NY; Primus, Roy James [Niskayuna, NY; Pintgen, Florian Peter [Niskayuna, NY

    2011-02-15

    A fuel injector is coupled to an engine. The fuel injector includes an injection opening configured to vary in cross-section between a open state and a fully closed state. The fuel injector is configured to provide a plurality of discrete commanded fuel injections into an engine cylinder by modulating the size of the injection opening without completely closing the opening to the fully closed state.

  7. Low Emission Hydrogen Combustors for Gas Turbines Using Lean Direct Injection

    NASA Technical Reports Server (NTRS)

    Marek, C. John; Smith, Timothy D.; Kundu, Krishna

    2005-01-01

    One of the key technology challenges for the use of hydrogen in gas turbine engines is the performance of the combustion system, in particular the fuel injectors. To investigate the combustion performance of gaseous hydrogen fuel injectors flame tube combustor experiments were performed. Tests were conducted to measure the nitrogen oxide (NOx) emissions and combustion performance at inlet conditions of 600 to 1000 deg F, 60 to 200 pounds per square inch absolute (psia), and equivalence ratios up to 0.48. All the injectors were based on Lean Direct Injection (LDI) technology with multiple injection points and quick mixing. One challenge to hydrogen based premixing combustion systems is flashback since hydrogen has a reaction rate over seven times that of Jet-A. To reduce the risk, design mixing times were kept short and velocities high to minimize flashback. Five fuel injector designs were tested in 2.5 and 3.5-in. diameter flame tubes with non-vitiated heated air and gaseous hydrogen. Data is presented on measurements of NOx emissions and combustion efficiency for the hydrogen injectors at 1.0, 3.125, and 5.375 in. from the injector face. Results show that for some configurations, NOx emissions are comparable to that of state of the art Jet-A LDI combustor concepts.

  8. Low-Emission Hydrogen Combustors for Gas Turbines Using Lean Direct Injection

    NASA Technical Reports Server (NTRS)

    Marek, C. John; Smith, Timothy D.; Kundu, Krishna

    2007-01-01

    One of the key technology challenges for the use of hydrogen in gas turbine engines is the performance of the combustion system, in particular the fuel injectors. To investigate the combustion performance of gaseous hydrogen fuel injectors flame tube combustor experiments were performed. Tests were conducted to measure the nitrogen oxide (NO(x)) emissions and combustion performance at inlet conditions of 588 to 811 K, 0.4 to 1.4 MPa, and equivalence ratios up to 0.48. All the injectors were based on Lean Direct Injection (LDI) technology with multiple injection points and quick mixing. One challenge to hydrogen-based premixing combustion systems is flashback since hydrogen has a reaction rate over 7 times that of Jet-A. To reduce the risk, design mixing times were kept short and velocities high to minimize flashback. Five fuel injector designs were tested in 6.35- and 8.9-cm-diameter flame tubes with non-vitiated heated air and gaseous hydrogen. Data is presented on measurements of NO(x) emissions and combustion efficiency for the hydrogen injectors at 2.540, 7.937, and 13.652 cm from the injector face. Results show that for some configurations, NO(x) emissions are comparable to that of state of the art Jet-A LDI combustor concepts.

  9. Large-volume flux closure during plasmoid-mediated reconnection in coaxial helicity injection

    DOE Data Explorer

    Ebrahimi, Fatima [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States)] (ORCID:0000000331095367); Raman, Roger [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States)] (ORCID:0000000220273271)

    2016-01-01

    A large-volume flux closure during transient coaxial helicity injection (CHI) in NSTX-U is demonstrated through resistive magnetohydrodynamics (MHD) simulations. Several major improvements, including the improved positioning of the divertor poloidal field coils, are projected to improve the CHI start-up phase in NSTX-U. Simulations in the NSTX-U configuration with constant in time coil currents show that with strong flux shaping the injected open field lines (injector flux) rapidly reconnect and form large volume of closed flux surfaces. This is achieved by driving parallel current in the injector flux coil and oppositely directed currents in the flux shaping coils to form a narrow injector flux footprint and push the injector flux into the vessel. As the helicity and plasma are injected into the device, the oppositely directed field lines in the injector region are forced to reconnect through a local Sweet–Parker type reconnection, or to spontaneously reconnect when the elongated current sheet becomes MHD unstable to form plasmoids. In these simulations for the first time, it is found that the closed flux is over 70% of the initial injector flux used to initiate the discharge. These results could work well for the application of transient CHI in devices that employ super conducting coils to generate and sustain the plasma equilibrium.

  10. Large-volume flux closure during plasmoid-mediated reconnection in coaxial helicity injection

    DOE Data Explorer

    Ebrahimi, F. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Raman, R. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States)

    2016-04-01

    A large-volume flux closure during transient coaxial helicity injection (CHI) in NSTX-U is demonstrated through resistive magnetohydrodynamics (MHD) simulations. Several major improvements, including the improved positioning of the divertor poloidal field coils, are projected to improve the CHI start-up phase in NSTX-U. Simulations in the NSTX-U configuration with constant in time coil currents show that with strong flux shaping the injected open field lines (injector flux) rapidly reconnect and form large volume of closed flux surfaces. This is achieved by driving parallel current in the injector flux coil and oppositely directed currents in the flux shaping coils to form a narrow injector flux footprint and push the injector flux into the vessel. As the helicity and plasma are injected into the device, the oppositely directed field lines in the injector region are forced to reconnect through a local Sweet–Parker type reconnection, or to spontaneously reconnect when the elongated current sheet becomes MHD unstable to form plasmoids. In these simulations for the first time, it is found that the closed flux is over 70% of the initial injector flux used to initiate the discharge. These results could work well for the application of transient CHI in devices that employ super conducting coils to generate and sustain the plasma equilibrium.

  11. Experimental Investigation of a Multiplex Fuel Injector Module With Discrete Jet Swirlers for Low Emission Combustors

    NASA Technical Reports Server (NTRS)

    Tacina, Robert; Mao, Chien-Pei; Wey, Changlie

    2004-01-01

    A low-NOx emissions combustor concept has been demonstrated in flame-tube tests. A lean-direct injection (LDI) concept was used where the fuel is injected directly into the flame zone and the overall equivalence ratio of the mixture is lean. The LDI concept described in this report is a multiplex fuel injector module containing multipoint fuel injection tips and multi-burning zones. The injector module comprises 25 equally spaced injection tips within a 76 by 76 mm area that fits into the flame-tube duct. The air swirlers were made from a concave plate on the axis of the fuel injector using drilled holes at an angle to the axis of the fuel injector. The NOx levels were quite low and are greater than 70 percent lower than the 1996 ICAO standard. At an inlet temperature of 810 K, inlet pressure of 2760 kPa, pressure drop of 4 percent and a flame temperature of 1900 K with JP8 fuel, the NOx emission index was 9. The 25-point injector module exhibited the most uniform radial distribution of fuel-air mixture and NOx emissions in the flame tube when compared to other multipoint injection devices. A correlation is developed relating the NOx emissions to inlet temperature, inlet pressure, equivalence ratio and pressure drop.

  12. The Effect of Rapid Liquid-Phase Reactions on Injector Design and Combustion in Rocket Motors

    NASA Technical Reports Server (NTRS)

    Elverum, Gerard W., Jr.; Staudhammer, Peter

    1959-01-01

    Data are presented indicating the rates and magnitudes of energy released by the liquid-phase reactions of various propellant combinations. The data show that this energy release can contribute significantly to the rate of vaporization of the incoming propellants and thus aid the combustion process. Nevertheless, very low performances were obtained in rocket motors with conventional impinging-jet injectors when highly reactive systems such as N104-N2H4, were employed. A possible explanation for this low performance is that the initial reactions of such systems are so rapid that liquid-phase mixing is inhibited. Evidence for such an effect is presented in a series of color photographs of open flames using various injector elements. Based on these studies, some requirements are suggested for injector elements using highly reactive propellants. Experimental results are presented of motor tests using injector elements in which some of these requirements are met through the use of a set of concentric tubes. These tests, carried out at thrust levels of 40 to 800 lb per element, demonstrated combustion efficiencies of up to 98% based on equilibrium characteristic velocity values. Results are also presented for tests made with impinging-jet and splash-plate injectors for comparison.

  13. Application of human factors engineering (HFE) to the design of a naloxone auto-injector for the treatment of opioid emergencies.

    PubMed

    Raffa, Robert B; Taylor, Robert; Pergolizzi, Joseph V; Nalamachu, Srinivas; Edwards, Eric S; Edwards, Evan T

    2017-02-01

    The increased use of opioids for chronic treatment of pain and the resulting epidemic of opioid overdoses have created a major public health challenge. Parenteral naloxone has been used since the 1970's to treat opioid overdose. Recently, a novel naloxone auto-injector device (EVZIO, kaleo, Inc., Richmond, VA) was approved by the Food and Drug Administration. In this article, we review the Human Factors Engineering (HFE) process used in the development and testing of this novel naloxone auto-injector currently used in nonmedical settings for the emergency treatment of known or suspected opioid overdose. HFE methods were employed throughout the product development process for the naloxone auto-injector including formative and summative studies in order to optimize the auto-injector's user interface, mitigate use-related hazards and increase reliability during an opioid emergency use scenario. HFE was also used to optimize the product's design and user interface in order to reduce or prevent user confusion and misuse. The naloxone auto-injector went through a rigorous HFE process that included perceptual, cognitive, and physical action analysis; formative usability evaluations; use error analysis and summative design validation studies. Applying HFE resulted in the development of a product that is safe, fast, easy and predictably reliable to deliver a potentially life-saving dose of naloxone during an opioid overdose emergency. The naloxone auto-injector may be considered as a universal precaution option for at-risk patients prescribed opioids or those who are at increased risk for an opioid overdose emergency.

  14. Characterization of the external and internal flow structure of an aerated-liquid injector using X-ray radiography and fluorescence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peltier, Scott J.; Lin, Kuo-Cheng; Carter, Campbell D.

    In the present study, the internal flowfield of aerated-liquid fuel injectors is examined through x-ray radiography and x-ray fluorescence. An inside-out injector, consisting of a perforated aerating tube within an annular liquid stream, sprays into a quiescent environment at a fixed mass flow rate of water and nitrogen gas. The liquid is doped with bromine (in the form of NaBr) to create an x-ray fluorescence signal. This allows for reasonable absorption and fluorescence signals, and one or both diagnostics can be used to track the liquid distribution. The injector housing is fabricated from beryllium (Be), which allows the internal flowfieldmore » to be examined (as Be has relatively low x-ray attenuation coefficient). Two injector geometries are compared, illustrating the effects of aerating orifice size and location on the flow evolution. Time-averaged equivalent pathlength (EPL) and line-of-sight averaged density ρ(y) reveal the formation of the two-phase mixture, showing that the liquid film thickness along the injector walls is a function of the aerating tube geometry, though only upstream of the nozzle. These differences in gas and liquid distribution (between injectors with different aerating tube designs) are suppressed as the mixture traverses the nozzle contraction. The averaged liquid velocity (computed from the density and liquid mass flow rate) reveal a similar trend. This suggests that at least for the current configurations, the plume width, liquid mass distribution, and averaged liquid velocity for the time-averaged external spray are insensitive to the aerating tube geometry.« less

  15. Investigation of the effect of pilot burner on lean blow out performance of a staged injector

    NASA Astrophysics Data System (ADS)

    Yang, Jinhu; Zhang, Kaiyu; Liu, Cunxi; Ruan, Changlong; Liu, Fuqiang; Xu, Gang

    2014-12-01

    The staged injector has exhibited great potential to achieve low emissions and is becoming the preferable choice of many civil airplanes. Moreover, it is promising to employ this injector design in military engine, which requires most of the combustion air enters the combustor through injector to reduce smoke emission. However, lean staged injector is prone to combustion instability and extinction in low load operation, so techniques for broadening its stable operation ranges are crucial for its application in real engine. In this work, the LBO performance of a staged injector is assessed and analyzed on a single sector test section. The experiment was done in atmospheric environment with optical access. Kerosene-PLIF technique was used to visualize the spray distribution and common camera was used to record the flame patterns. Emphasis is put on the influence of pilot burner on LBO performance. The fuel to air ratios at LBO of six injectors with different pilot swirler vane angle were evaluated and the obtained LBO data was converted into data at idle condition. Results show that the increase of pilot swirler vane angle could promote the air assisted atomization, which in turn improves the LBO performance slightly. Flame patterns typical in the process of LBO are analyzed and attempts are made to find out the main factors which govern the extinction process with the assistance of spray distribution and numerical flow field results. It can be learned that the flame patterns are mainly influenced by structure of the flow field just behind the pilot burner when the fuel mass flow rate is high; with the reduction of fuel, atomization quality become more and more important and is the main contributing factor of LBO. In the end of the paper, conclusions are drawn and suggestions are made for the optimization of the present staged injector.

  16. Immune responses after fractional doses of inactivated poliovirus vaccine using newly developed intradermal jet injectors: a randomized controlled trial in Cuba.

    PubMed

    Resik, Sonia; Tejeda, Alina; Mach, Ondrej; Fonseca, Magile; Diaz, Manuel; Alemany, Nilda; Garcia, Gloria; Hung, Lai Heng; Martinez, Yenisleydis; Sutter, Roland

    2015-01-03

    The World Health Organization recommends that, as part of the new polio endgame, a dose of inactivated poliovirus vaccine (IPV) be introduced by the end of 2015 in all countries using only oral poliovirus vaccine (OPV). Administration of fractional dose (1/5th of full dose) IPV (fIPV) intradermally may reduce costs, but its administration is cumbersome with BCG needle and syringe. We evaluated performance of two newly developed intradermal-only jet injectors and compared the immune response induced by fIPV with that induced by full-dose IPV. Children between 12 and 20 months of age, who had previously received two doses of OPV, were enrolled in Camaguey, Cuba. Subjects received a single dose of IPV (either full-dose IPV intramuscularly with needle and syringe or fIPV intradermally administered with one of two new injectors or with BCG needle or a conventional needle-free injector). Serum was tested for presence of poliovirus neutralizing antibodies on day 0 (pre-IPV) and on days 3, 7 and 21 (post-vaccination). Complete data were available from 74.2% (728/981) subjects. Baseline median antibody titers were 713, 284, and 113 for poliovirus types 1, 2, and 3, respectively. Seroprevalence at study end were similar across the intervention groups (≥ 94.8%). The immune response induced with one new injector was similar to BCG needle and to the conventional injector; and superior to the other new injector. fIPV induced significantly lower boosting response compared to full-dose IPV. No safety concerns were identified. One of the two new injectors demonstrated its ability to streamline intradermal fIPV administration, however, further investigations are needed to assess the potential contribution of fIPV in the polio endgame plan. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. 5 MeV Mott Polarimeter Development at Jefferson Lab

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Price, J. S.; Sinclair, C. K.; Cardman, L. S.

    1997-01-01

    Low energy (E{sub k}=100 keV) Mott scattering polarimeters are ill- suited to support operations foreseen for the polarized electron injector at Jefferson Lab. One solution is to measure the polarization at 5 MeV where multiple and plural scattering are unimportant and precision beam monitoring is straightforward. The higher injector beam current offsets the lower cross-sections. Recent improvements in the CEBAF injector polarimeter scattering chamber have improved signal to noise.

  18. Small gas turbine combustor study - Fuel injector performance in a transpiration-cooled liner

    NASA Technical Reports Server (NTRS)

    Riddlebaugh, S. M.; Norgren, C. T.

    1985-01-01

    The effect of fuel injection technique on the performance of an advanced reverse flow combustor liner constructed of Lamilloy (a multilaminate transpiration type material) was determined. Performance and emission levels are documented over a range of simulated flight conditions using simplex pressure atomizing, spill return, and splash cone airblast injectors. A parametric evaluation of the effect of increased combustor loading with each of the fuel injector types is obtained.

  19. Injector for use in high voltage isolators for liquid feed lines

    NASA Technical Reports Server (NTRS)

    Snyder, J. A. (Inventor)

    1973-01-01

    An improved injector is described for use in introducing fluid substances into feed lines employed in delivering flowing bodies of liquids. The injector includes a porous plug, concentrically related to a feed line, including an internally tapered surface of a truncated conical configuration with an inlet orifice of a first diameter substantially smaller than the first diameter and an external surface circumscribed by an annular chamber containing a body of insulating gas.

  20. Small gas turbine combustor study: Fuel injector performance in a transpiration-cooled liner

    NASA Technical Reports Server (NTRS)

    Riddlebaugh, S. M.; Norgren, C. T.

    1985-01-01

    The effect of fuel injection technique on the performance of an advanced reverse flow combustor liner constructed of Lamilloy (a multilaminate transpiration type material) was determined. Performance and emission levels are documented over a range of simulated flight conditions using simplex pressure atomizing, spill return, and splash cone airblast injectors. A parametric evaluation of the effect of increased combustor loading with each of the fuel injector types is obtained.

  1. Evaluation of Hydroprocessed Renewable Diesel (HRD) Fuel in a Caterpillar Engine Using the 210 Hour TWV Cycle

    DTIC Science & Technology

    2014-05-01

    TERMS Hydroprocessed Renewable Diesel , Reference Diesel Fuel, C7, emissions, power, performance, deposition, ambient, desert, synthetic fuel injector ...the engine run-in, the engine was disassembled to determine injector nozzle tip deposits, and the piston crowns and engine combustion chamber deposits...removed from the test cell and disassembled to determine injector nozzle tip and piston crown and engine combustion chamber deposits. Post- test

  2. Concentric-flow electrokinetic injector enables serial crystallography of ribosome and photosystem II

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sierra, Raymond G.; Gati, Cornelius; Laksmono, Hartawan

    We describe a concentric-flow electrokinetic injector for efficiently delivering microcrystals for serial femtosecond X-ray crystallography analysis that enables studies of challenging biological systems in their unadulterated mother liquor. We used the injector to analyze microcrystals of Geobacillus stearothermophilus thermolysin (2.2-Å structure), Thermosynechococcus elongatus photosystem II (<3-Å diffraction) and Thermus thermophilus small ribosomal subunit bound to the antibiotic paromomycin at ambient temperature (3.4-Å structure).

  3. Concentric-flow electrokinetic injector enables serial crystallography of ribosome and photosystem II.

    PubMed

    Sierra, Raymond G; Gati, Cornelius; Laksmono, Hartawan; Dao, E Han; Gul, Sheraz; Fuller, Franklin; Kern, Jan; Chatterjee, Ruchira; Ibrahim, Mohamed; Brewster, Aaron S; Young, Iris D; Michels-Clark, Tara; Aquila, Andrew; Liang, Mengning; Hunter, Mark S; Koglin, Jason E; Boutet, Sébastien; Junco, Elia A; Hayes, Brandon; Bogan, Michael J; Hampton, Christina Y; Puglisi, Elisabetta V; Sauter, Nicholas K; Stan, Claudiu A; Zouni, Athina; Yano, Junko; Yachandra, Vittal K; Soltis, S Michael; Puglisi, Joseph D; DeMirci, Hasan

    2016-01-01

    We describe a concentric-flow electrokinetic injector for efficiently delivering microcrystals for serial femtosecond X-ray crystallography analysis that enables studies of challenging biological systems in their unadulterated mother liquor. We used the injector to analyze microcrystals of Geobacillus stearothermophilus thermolysin (2.2-Å structure), Thermosynechococcus elongatus photosystem II (<3-Å diffraction) and Thermus thermophilus small ribosomal subunit bound to the antibiotic paromomycin at ambient temperature (3.4-Å structure).

  4. Optimum design of space storable gas/liquid coaxial injectors.

    NASA Technical Reports Server (NTRS)

    Burick, R. J.

    1972-01-01

    Review of the results of a program of single-element, cold-flow/hot-fire experiments performed for the purpose of establishing design criteria for a high-performance gas/liquid (FLOX/CH4) coaxial injector. The approach and the techniques employed resulted in the direct design of an injector that met or exceeded the performance and chamber compatibility goals of the program without any need for the traditional 'cut-and-try' development methods.

  5. Parameter Optimization of PAL-XFEL Injector

    NASA Astrophysics Data System (ADS)

    Lee, Jaehyun; Ko, In Soo; Han, Jang-Hui; Hong, Juho; Yang, Haeryong; Min, Chang Ki; Kang, Heung-Sik

    2018-05-01

    A photoinjector is used as the electron source to generate a high peak current and low emittance beam for an X-ray free electron laser (FEL). The beam emittance is one of the critical parameters to determine the FEL performance together with the slice energy spread and the peak current. The Pohang Accelerator Laboratory X-ray Free Electron Laser (PAL-XFEL) was constructed in 2015, and the beam commissioning was carried out in spring 2016. The injector is running routinely for PAL-XFEL user operation. The operational parameters of the injector have been optimized experimentally, and these are somewhat different from the originally designed ones. Therefore, we study numerically the injector parameters based on the empirically optimized parameters and review the present operating condition.

  6. Development of a negative ion-based neutral beam injector in Novosibirsk.

    PubMed

    Ivanov, A A; Abdrashitov, G F; Anashin, V V; Belchenko, Yu I; Burdakov, A V; Davydenko, V I; Deichuli, P P; Dimov, G I; Dranichnikov, A N; Kapitonov, V A; Kolmogorov, V V; Kondakov, A A; Sanin, A L; Shikhovtsev, I V; Stupishin, N V; Sorokin, A V; Popov, S S; Tiunov, M A; Belov, V P; Gorbovsky, A I; Kobets, V V; Binderbauer, M; Putvinski, S; Smirnov, A; Sevier, L

    2014-02-01

    A 1000 keV, 5 MW, 1000 s neutral beam injector based on negative ions is being developed in the Budker Institute of Nuclear Physics, Novosibirsk in collaboration with Tri Alpha Energy, Inc. The innovative design of the injector features the spatially separated ion source and an electrostatic accelerator. Plasma or photon neutralizer and energy recuperation of the remaining ion species is employed in the injector to provide an overall energy efficiency of the system as high as 80%. A test stand for the beam acceleration is now under construction. A prototype of the negative ion beam source has been fabricated and installed at the test stand. The prototype ion source is designed to produce 120 keV, 1.5 A beam.

  7. Control apparatus and method for efficiently heating a fuel processor in a fuel cell system

    DOEpatents

    Doan, Tien M.; Clingerman, Bruce J.

    2003-08-05

    A control apparatus and method for efficiently controlling the amount of heat generated by a fuel cell processor in a fuel cell system by determining a temperature error between actual and desired fuel processor temperatures. The temperature error is converted to a combustor fuel injector command signal or a heat dump valve position command signal depending upon the type of temperature error. Logic controls are responsive to the combustor fuel injector command signals and the heat dump valve position command signal to prevent the combustor fuel injector command signal from being generated if the heat dump valve is opened or, alternately, from preventing the heat dump valve position command signal from being generated if the combustor fuel injector is opened.

  8. PUMPS

    DOEpatents

    Thornton, J.D.

    1959-03-24

    A pump is described for conveving liquids, particure it is not advisable he apparatus. The to be submerged in the liquid to be pumped, a conduit extending from the high-velocity nozzle of the injector,and means for applying a pulsating prcesure to the surface of the liquid in the conduit, whereby the surface oscillates between positions in the conduit. During the positive half- cycle of an applied pulse liquid is forced through the high velocity nozzle or jet of the injector and operates in the manner of the well known water injector and pumps liquid from the main intake to the outlet of the injector. During the negative half-cycle of the pulse liquid flows in reverse through the jet but no reverse pumping action takes place.

  9. Computational model for fuel component supply into a combustion chamber of LRE

    NASA Astrophysics Data System (ADS)

    Teterev, A. V.; Mandrik, P. A.; Rudak, L. V.; Misyuchenko, N. I.

    2017-12-01

    A 2D-3D computational model for calculating a flow inside jet injectors that feed fuel components to a combustion chamber of a liquid rocket engine is described. The model is based on the gasdynamic calculation of compressible medium. Model software provides calculation of both one- and two-component injectors. Flow simulation in two-component injectors is realized using the scheme of separate supply of “gas-gas” or “gas-liquid” fuel components. An algorithm for converting a continuous liquid medium into a “cloud” of drops is described. Application areas of the developed model and the results of 2D simulation of injectors to obtain correction factors in the calculation formulas for fuel supply are discussed.

  10. Method for removing solid particulate material from within liquid fuel injector assemblies

    DOEpatents

    Simandl, R.F.; Brown, J.D.; Andriulli, J.B.; Strain, P.D.

    1998-09-08

    A method is described for removing residual solid particulate material from the interior of liquid fuel injectors and other fluid flow control mechanisms having or being operatively associated with a flow-regulating fixed or variable orifice. The method comprises the sequential and alternate introduction of columns of a non-compressible liquid phase and columns of a compressed gas phase into the body of a fuel injector whereby the expansion of each column of the gas phase across the orifice accelerates the liquid phase in each trailing column of the liquid phase and thereby generates turbulence in each liquid phase for lifting and entraining the solid particulates for the subsequent removal thereof from the body of the fuel injector. 1 fig.

  11. Sample injector for high pressure liquid chromatography

    DOEpatents

    Paul, Phillip H.; Arnold, Don W.; Neyer, David W.

    2001-01-01

    Apparatus and method for driving a sample, having a well-defined volume, under pressure into a chromatography column. A conventional high pressure sampling valve is replaced by a sample injector composed of a pair of injector components connected in series to a common junction. The injector components are containers of porous dielectric material constructed so as to provide for electroosmotic flow of a sample into the junction. At an appropriate time, a pressure pulse from a high pressure source, that can be an electrokinetic pump, connected to the common junction, drives a portion of the sample, whose size is determined by the dead volume of the common junction, into the chromatographic column for subsequent separation and analysis. The apparatus can be fabricated on a substrate for microanalytical applications.

  12. Method for removing solid particulate material from within liquid fuel injector assemblies

    DOEpatents

    Simandl, Ronald F.; Brown, John D.; Andriulli, John B.; Strain, Paul D.

    1998-01-01

    A method for removing residual solid particulate material from the interior of liquid fuel injectors and other fluid flow control mechanisms having or being operatively associated with a flow-regulating fixed or variable orifice. The method comprises the sequential and alternate introduction of columns of a non-compressible liquid phase and columns of a compressed gas phase into the body of a fuel injector whereby the expansion of each column of the gas phase across the orifice accelerates the liquid phase in each trailing column of the liquid phase and thereby generates turbulence in each liquid phase for lifting and entraining the solid particulates for the subsequent removal thereof from the body of the fuel injector.

  13. Genetic differentiation and diversity upon genotype and phenotype in cowpea (Vigna unguiculata L. Walp.)

    USDA-ARS?s Scientific Manuscript database

    The evolution of species is complex and subtle, which always associates with the genetic variation and environment adaption during active/ passive spread or migration. In crops, this process is usually driven and influenced by human activities such as domestication, cultivation and immigration. One ...

  14. [CPM--Continuous Passive Motion: treatment of injured or operated knee-joints using passive movement. A meta-analysis of current literature].

    PubMed

    Kirschner, P

    2004-04-01

    There is still a controversial discussion in literature about the use of motor driven splints in knee surgery--as the principle of continuous passive motion, CPM. For this reason it seemed useful for an evaluation to look through the papers which were published since 1990. It was obvious, that negative results were published often before this year, but this papers are still quoted standard works. In medical data bases subito-doc.de, medscape.com, medica.de and zbmed.de 230 papers were found by search CPM, continuous passive motion and arthromot. Coincidentally there was a search for authors who were already quoted in other papers. 36 papers concerning CPM after knee surgery were utilized. The role of CPM regarding the range of motion, swelling, duration of hospital stay, use of analgesics, costs, postoperative manipulations, wound healing and thrombo embolic complications was evaluated. Although the results of this partial retrospective, partial prospective, sometimes randomized or double blinded studies are in contradiction, there can only be found a trend to better results. New clinical studies for evidence based guidelines in the handling of continuous passive motion after knee surgery are necessary.

  15. 1400313

    NASA Image and Video Library

    2014-04-21

    1. ENGINEERS AND TECHNICIANS PREPARE FOR AN UPCOMING HOT-FIRE TEST OF A ROCKET INJECTOR MANUFACTURED USING ADDITIVE MANUFACTURING, OR 3-D PRINTING…RANDALL MCALLISTER, INFOPRO TECHNICIAN, FITS NOZZLE TO ROCKET INJECTOR

  16. Polyatomic ions from a high current ion implanter driven by a liquid metal ion source.

    PubMed

    Pilz, W; Laufer, P; Tajmar, M; Böttger, R; Bischoff, L

    2017-12-01

    High current liquid metal ion sources are well known and found their first application as field emission electric propulsion thrusters in space technology. The aim of this work is the adaption of such kind of sources in broad ion beam technology. Surface patterning based on self-organized nano-structures on, e.g., semiconductor materials formed by heavy mono- or polyatomic ion irradiation from liquid metal (alloy) ion sources (LMAISs) is a very promising technique. LMAISs are nearly the only type of sources delivering polyatomic ions from about half of the periodic table elements. To overcome the lack of only very small treated areas by applying a focused ion beam equipped with such sources, the technology taken from space propulsion systems was transferred into a large single-end ion implanter. The main component is an ion beam injector based on high current LMAISs combined with suited ion optics allocating ion currents in the μA range in a nearly parallel beam of a few mm in diameter. Different types of LMAIS (needle, porous emitter, and capillary) are presented and characterized. The ion beam injector design is specified as well as the implementation of this module into a 200 kV high current ion implanter operating at the HZDR Ion Beam Center. Finally, the obtained results of large area surface modification of Ge using polyatomic Bi 2 + ions at room temperature from a GaBi capillary LMAIS will be presented and discussed.

  17. Polyatomic ions from a high current ion implanter driven by a liquid metal ion source

    NASA Astrophysics Data System (ADS)

    Pilz, W.; Laufer, P.; Tajmar, M.; Böttger, R.; Bischoff, L.

    2017-12-01

    High current liquid metal ion sources are well known and found their first application as field emission electric propulsion thrusters in space technology. The aim of this work is the adaption of such kind of sources in broad ion beam technology. Surface patterning based on self-organized nano-structures on, e.g., semiconductor materials formed by heavy mono- or polyatomic ion irradiation from liquid metal (alloy) ion sources (LMAISs) is a very promising technique. LMAISs are nearly the only type of sources delivering polyatomic ions from about half of the periodic table elements. To overcome the lack of only very small treated areas by applying a focused ion beam equipped with such sources, the technology taken from space propulsion systems was transferred into a large single-end ion implanter. The main component is an ion beam injector based on high current LMAISs combined with suited ion optics allocating ion currents in the μA range in a nearly parallel beam of a few mm in diameter. Different types of LMAIS (needle, porous emitter, and capillary) are presented and characterized. The ion beam injector design is specified as well as the implementation of this module into a 200 kV high current ion implanter operating at the HZDR Ion Beam Center. Finally, the obtained results of large area surface modification of Ge using polyatomic Bi2+ ions at room temperature from a GaBi capillary LMAIS will be presented and discussed.

  18. Investigating High Frequency Magnetic Activity During Local Helicity Injection on the Pegasus Toroidal Experiment

    NASA Astrophysics Data System (ADS)

    Richner, N. J.; Bongard, M. W.; Fonck, R. J.; Pachicano, J. L.; Perry, J. M.; Reusch, J. A.

    2017-10-01

    Understanding the current drive mechanism(s) of Local Helicity Injection (LHI) is needed for confident scaling to next-step devices. 3D resistive MHD NIMROD simulations ascribe large-scale reconnection events of helical injector current streams as a current drive mechanism. The events generate n = 1 B fluctuations on outboard Mirnov coils, consistent with experiment. New results suggest additional mechanisms are also active during LHI. Reconnection-driven ion heating is better correlated with high frequency activity than the n = 1 bursts. Experiments with inboard injectors can exhibit an abrupt ( 250 μs) transition to a reduced MHD state on outboard Mirnovs where the n = 1 feature vanishes, while still maintaining current growth and/or sustainment. A new insertable magnetics probe was developed to investigate these phenomena. It measures TeXBz up to 3.5 MHz at 15 points over a 14 cm radial extent (ΔR 1 cm). Measurements with this probe are consistent with the outboard Mirnovs when positioned far from the plasma boundary. However, measurements near the plasma edge lack the reduction in broadband power (up to 2 MHz) following the transition. The probe shows power is concentrated at higher frequencies during LHI, with mostly flat B spectra up to 600-800 kHz ( fci) at which there is a resonance-like feature; at higher frequencies, the power decreases. These measurements suggest short-wavelength activity may play a significant role in LHI current drive. Work supported by US DOE Grant DE-FG02-96ER54375.

  19. The Design and Performance of a Twenty Barrel Hydrogen Pellet Injector for Alcator C-Mod

    NASA Astrophysics Data System (ADS)

    Urbahn, John A.

    A twenty barrel hydrogen pellet injector has been designed, built and tested both in the laboratory and on the Alcator C-Mod Tokamak at MIT. The injector functions by firing pellets of frozen hydrogen or deuterium deep into the plasma discharge for the purpose of fueling the plasma, modifying the density profile and increasing the global energy confinement time. The design goals of the injector are: (1) Operational flexibility, (2) High reliability, (3) Remote operation with minimal maintenance. These requirements have led to a single stage, pipe gun design with twenty barrels. Pellets are formed by in-situ condensation of the fuel gas, thus avoiding moving parts at cryogenic temperatures. The injector is the first to dispense with the need for cryogenic fluids and instead uses a closed cycle refrigerator to cool the thermal system components. The twenty barrels of the injector produce pellets of four different size groups and allow for a high degree of flexibility in fueling experiments. Operation of the injector is under PLC control allowing for remote operation, interlocked safety features and automated pellet manufacturing. The injector has been extensively tested and shown to produce pellets reliably with velocities up to 1400 m/sec. During the period from September to November of 1993, the injector was successfully used to fire pellets into over fifty plasma discharges. Experimental results include data on the pellet penetration into the plasma using an advanced pellet tracking diagnostic with improved time and spatial response. Data from the tracker indicates pellet penetrations were between 30 and 86 percent of the plasma minor radius. Line averaged density increases of up to 300 percent were recorded with peak densities of just under 1 times 10^ {21} / m^3, the highest achieved on C-Mod to date. A comparison is made between the ablation source function derived from tracker data with that predicted by four different variations of the neutral shield model. Results suggest rapid heat flow from the interior of the plasma maintains temperatures on the ablation flux surface. Localized density perturbations with a specific m = 1,n = 1 structure and location on the q = 1 flux surface were observed following injection. (Copies available exclusively from MIT Libraries, Rm. 14-0551, Cambridge, MA 02139-4307. Ph. 617-253-5668; Fax 617-253 -1690.).

  20. Using CFD as a Rocket Injector Design Tool: Recent Progress at Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Tucker, Kevin; West, Jeff; Williams, Robert; Lin, Jeff; Canabal, Francisco; Rocker, marvin; Robles, Bryan; Garcia, Robert; Chenoweth, James

    2005-01-01

    New programs are forcing American propulsion system designers into unfamiliar territory. For instance, industry s answer to the cost and reliability goals set out by the Next Generation Launch Technology Program are engine concepts based on the Oxygen- Rich Staged Combustion Cycle. Historical injector design tools are not well suited for this new task. The empirical correlations do not apply directly to the injector concepts associated with the ORSC cycle. These legacy tools focus primarily on performance with environment evaluation a secondary objective. Additionally, the environmental capability of these tools is usually one-dimensional while the actual environments are at least two- and often three-dimensional. CFD has the potential to calculate performance and multi-dimensional environments but its use in the injector design process has been retarded by long solution turnaround times and insufficient demonstrated accuracy. This paper has documented the parallel paths of program support and technology development currently employed at Marshall Space Flight Center in an effort to move CFD to the forefront of injector design. MSFC has established a long-term goal for use of CFD for combustion devices design. The work on injector design is the heart of that vision and the Combustion Devices CFD Simulation Capability Roadmap that focuses the vision. The SRL concept, combining solution fidelity, robustness and accuracy, has been established as a quantitative gauge of current and desired capability. Three examples of current injector analysis for program support have been presented and discussed. These examples are used to establish the current capability at MSFC for these problems. Shortcomings identified from this experience are being used as inputs to the Roadmap process. The SRL evaluation identified lack of demonstrated solution accuracy as a major issue. Accordingly, the MSFC view of code validation and current MSFC-funded validation efforts were discussed in some detail. The objectives of each effort were noted. Issues relative to code validation for injector design were discussed in some detail. The requirement for CFD support during the design of the experiment was noted and discussed in terms of instrumentation placement and experimental rig uncertainty. In conclusion, MSFC has made significant progress in the last two years in advancing CFD toward the goal of application to injector design. A parallel effort focused on program support and technology development via the SCIT Task have enabled the progress.

  1. When should we perform a repeat training on adrenaline auto-injector use for physician trainees?

    PubMed

    Topal, E; Bakirtas, A; Yilmaz, O; Karagol, I H E; Arga, M; Demirsoy, M S; Turktas, I

    2014-01-01

    Studies demonstrate that both doctors and patients may use adrenaline auto-injector improperly and the usage skills are improved by training. In this study, we aimed to determine the appropriate frequency of training to maintain skills for adrenaline auto-injector use. We invited all interns of 2011-2012 training period. At baseline, all participants were given theoretical and practical training on adrenaline auto-injector use. The participants were randomly assigned into two groups. We asked those in group 1 to demonstrate the use of adrenaline auto-injector trainer in the third month and those in group 2 in the sixth month. One hundred and sixty interns were enrolled. Compared with the beginning score, demonstration of skills at all the steps and total scores did not change for the group tested in the third month (p=0.265 and p=0.888, respectively). However; for the group examined in the sixth month; the demonstration of skills for proper use of the auto-injector at all steps and the mean time to administer adrenaline decreased (p=0.018 and p<0.001, respectively). Besides, the group which was tested in the third month was better than the group which was tested in the sixth month in terms of demonstrating all steps (p=0.014), the total score (p=0.019), mean time of change to administer adrenaline (p<0.001) and presumptive self-injection into thumb (p=0.029). Auto-injector usage skills of physician trainees decrease after the sixth month and are better in those who had skill reinforcement at 3 months, suggesting continued education and skill reinforcement may be useful. Copyright © 2013 SEICAP. Published by Elsevier Espana. All rights reserved.

  2. CFD Analysis of Mixing Characteristics of Several Fuel Injectors at Hypervelocity Flow Conditions

    NASA Technical Reports Server (NTRS)

    Drozda, Tomasz G.; Drummond, J. Philip; Baurle, Robert A.

    2016-01-01

    CFD analysis is presented of the mixing characteristics and performance of three fuel injectors at hypervelocity flow conditions. The calculations were carried out using the VULCAN-CFD solver and Reynolds-Averaged Simulations (RAS). The high Mach number flow conditions match those proposed for the planned experiments conducted as a part of the Enhanced Injection and Mixing Project (EIMP) at the NASA Langley Research Center. The EIMP aims to investigate scramjet fuel injection and mixing physics, improve the understanding of underlying physical processes, and develop enhancement strategies and functional relationships relevant to flight Mach numbers greater than eight. Because of the high Mach number flow considered, the injectors consist of a fuel placement device, a strut; and a fluidic vortical mixer, a ramp. These devices accomplish the necessary task of distributing and mixing fuel into the supersonic cross-flow albeit via different strategies. Both of these devices were previously studied at lower flight Mach numbers where they exhibited promising performance in terms of mixing efficiency and total pressure recovery. For comparison, a flush-wall injector is also included. This type of injector generally represents the simplest method of introducing fuel into a scramjet combustor, however, at high flight Mach number conditions, the dynamic pressure needed to induce sufficient fuel penetration may be difficult to achieve along with other requirements such as achieving desired levels of fuel-to-air mixing at the required equivalence ratio. The three injectors represent the baseline configurations planned for the experiments. The current work discusses the mixing flow field behavior and differences among the three fuel injectors, mixing performance as described by the mixing efficiency and the total pressure recovery, and performance considerations based on the thrust potential.

  3. Injector Mixing Efficiency Experiments

    NASA Technical Reports Server (NTRS)

    Moser, Marlow D.

    1998-01-01

    Various optical diagnostic techniques such as laser induce fluorescence, Raman spectroscopy, laser Doppler velocimetry, and laser light scattering have been employed to study the flowfield downstream of a single injector element in a optically accessible rocket chamber at Penn State for a number o years. These techniques have been used with both liquid and gaseous oxygen at pressures up to 1000 psia which is the limit of the facility. The purpose of the test programs at Penn State were to develop the techniques and to study the flow field from various injector designs. To extend these studies to higher pressure and ultimately to multiple injectors require the capabilities of the Marshall Space Flight Center. These studies will extend the data base available for the various injector designs to higher pressure as well as to determine the interaction between multiple injectors. During this effort the Princeton Instruments ICCD camera was set up and checked out. The functionality of the system has been thoroughly checked and the shutter compensation time was found to be not working. The controller was returned to the manufacturer for warranty repair. The sensitivity has been measured and found to be approximately 60 counts per photon at maximum gain which agrees with the test data supplied by the manufacturer. The actual value depends on wavelength. The Princeton Instruments camera was been installed in a explosion proof tube for use with the rocket combustor. A 35 mm camera was also made ready for taking still photos inside the combustor. A fiber optic was used to transmit the laser light from an argon-ion laser to the rocket combustor for the light scattering images. This images were obtained for a LOX-hydrogen swirl coax injector. Several still photos were also obtained with the 35 mm camera for these firings.

  4. Combustion Dynamics and Stability Modeling of a Liquid Oxygen/RP-2 Oxygen-Rich Staged Combustion Preburner and Thrust Chamber Assembly with Gas-Centered Swirl Coaxial Injector Elements

    NASA Technical Reports Server (NTRS)

    Casiano, M. J.; Kenny, R. J.; Protz, C. S.; Garcia, C. P.; Simpson, S. P.; Elmore, J. L.; Fischbach, S. R.; Giacomoni, C. B.; Hulka, J. R.

    2016-01-01

    The Combustion Stability Tool Development (CSTD) project, funded by the Air Force Space and Missile Systems Center, began in March 2015 supporting a renewed interest in the development of a liquid oxygen/hydrocarbon, oxygen-rich combustion engine. The project encompasses the design, assembly, and hot-fire testing of the NASA Marshall Space Flight Center 40-klbf Integrated Test Rig (MITR). The test rig models a staged-combustion configuration by combining an oxygen-rich preburner (ORPB), to generate hot gas, with a thrust chamber assembly (TCA) using gas-centered swirl coaxial injector elements. There are five separately designed interchangeable injectors in the TCA that each contain 19- or 27- injector elements. A companion paper in this JANNAF conference describes the design characteristics, rationale, and fabrication issues for all the injectors. The data acquired from a heavily instrumented rig encompasses several injectors, several operating points, and stability bomb tests. Another companion paper in this JANNAF conference describes this test program in detail. In this paper, dynamic data from the hot-fire testing is characterized and used to identify the responses in the ORPB and TCA. A brief review of damping metrics are discussed and applied as a measure of stability margin for damped acoustic modes. Chug and longitudinal combustion stability models and predictions are described which includes new dynamic models for compressible flow through an orifice and a modification to incorporate a third feed line for inclusion of the fuel-film coolant. Flow-acoustics finite element modeling is used to investigate the anticipated TCA acoustics, the effects of injector element length on stability margin, and the potential use of an ORPB orifice trip ring for improving longitudinal stability margin.

  5. Knowledge of allergies and performance in epinephrine auto-injector use: a controlled intervention in preschool teachers.

    PubMed

    Dumeier, Henriette Karoline; Richter, Luca Anne; Neininger, Martina Patrizia; Prenzel, Freerk; Kiess, Wieland; Bertsche, Astrid; Bertsche, Thilo

    2018-04-01

    Epinephrine auto-injectors are used for first aid in anaphylactic emergencies by non-healthcare professionals, e.g., (pre-)school teachers. We developed an education session for preschool teachers addressing allergies, anaphylactic emergencies, and administering auto-injectors. We assessed their attitudes and knowledge in allergies and anaphylactic emergency by a questionnaire and monitored their practical performance in administering auto-injectors before the education session, directly after, and 4-12 weeks after the session. From 75 teachers giving their consent to participate, 81% had children with allergies under their supervision and 3% had already administered medication from an available rescue kit. The knowledge of triggers of allergies increased from 9 to 55% directly and to 33% 4-12 weeks after the session (both p < 0.001, compared to baseline). Directly after the session, the number of teachers who felt well-prepared for an anaphylactic emergency rose from 11 to 88%, which decreased to 79% 4-12 weeks thereafter (each p < 0.001). The number of auto-injector administrations without any drug-related problems increased from 3 to 35% directly after the session and shrunk to 16% 4-12 weeks afterwards (both p < 0.025). A single education session substantially improved preschool teachers' attitudes and knowledge in allergies and anaphylactic emergencies. Additionally, their practical performance in auto-injector administration increased. What is Known: • Food allergies are increasing among children. • The knowledge about allergies and anaphylactic emergencies is poor. What is New: • The proportion of teachers who felt well-prepared for an anaphylactic emergency increased after a single education session. • The proportion of auto-injector administrations without any drug-related problems additionally increased due to an education session.

  6. New injectors and the social context of injection initiation

    PubMed Central

    Harocopos, Alex; Goldsamt, Lloyd A.; Kobrak, Paul; Jost, John J.; Clatts, Michael C.

    2009-01-01

    Background Preventing the onset of injecting drug use is an important public health objective yet there is little understanding of the process that leads to injection initiation. This paper draws extensively on narrative data to describe how injection initiation is influenced by social environment. We examine how watching other people inject can habitualise non-injectors to administering drugs with a needle and consider the process by which the stigma of injecting is replaced with curiosity. Method In-depth interviews (n=54) were conducted as part of a two-year longitudinal study examining the behaviours of new injecting drug users. Results Among our sample, injection initiation was the result of a dynamic process during which administering drugs with a needle became acceptable or even appealing. Most often, this occurred as a result of spending time with current injectors in a social context and the majority of this study’s participants were given their first shot by a friend or sexual partner. Initiates could be tenacious in their efforts to acquire an injection trainer and findings suggest that once injecting had been introduced to a drug-using network, it was likely to spread throughout the group. Conclusion Injection initiation should be viewed as a communicable process. New injectors are unlikely to have experienced the negative effects of injecting and may facilitate the initiation of their drug-using friends. Prevention messages should therefore aim to find innovative ways of targeting beginning injectors and present a realistic appraisal of the long-term consequences of injecting. Interventionists should also work with current injectors to develop strategies to refuse requests from non-injectors for their help to initiate. PMID:18790623

  7. Timing the transfer of responsibilities for anaphylaxis recognition and use of an epinephrine auto-injector from adults to children and teenagers: pediatric allergists' perspective.

    PubMed

    Simons, Elinor; Sicherer, Scott H; Simons, F Estelle R

    2012-05-01

    The optimal time for transferring responsibilities for anaphylaxis recognition and epinephrine auto-injector use from adults to children and teenagers has not yet been defined. To determine whether pediatric allergists have age-specific goals for beginning to transfer responsibilities for anaphylaxis recognition and epinephrine auto-injector use from parents and caregivers to children and teenagers at risk of anaphylaxis in the community. Members of the American Academy of Pediatrics Section on Allergy and Immunology (AAP-SOAI) were surveyed about when they typically begin to transfer these responsibilities from adults to children and teenagers. Eighty-eight allergists responded to the survey, 97.7% of whom provided service to children and teenagers with food allergies. Few allergists expected to begin transferring responsibilities for anaphylaxis recognition and epinephrine auto-injector use to children younger than 9 to 11 years. By the time their patients reached age 12 to 14 years, however, most allergists expected them to be able to describe some anaphylaxis symptoms (95.4%), demonstrate how to use an epinephrine auto-injector trainer (93.1%), begin carrying self-injectable epinephrine (88.2%), recognize the need for epinephrine (88.1%), learn to self-inject epinephrine (84.5%), and be able to self-inject epinephrine (78.6%) (cumulative data). The allergists rated the following as "very important" readiness factors for beginning to transfer responsibilities: medical history, developmental level, and ability to demonstrate auto-injector technique. Most pediatric allergists expected that by age 12 to 14 years, their patients should begin to share responsibilities with adults for anaphylaxis recognition and epinephrine auto-injector use; however, they individualized the timing based on assessment of patient readiness factors. Copyright © 2012 American College of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  8. Space shuttle maneuvering engine reusable thrust chamber program. Task 11: Low epsilon stability test report data dump

    NASA Technical Reports Server (NTRS)

    Pauckert, R. P.

    1974-01-01

    The stability characteristics of the like-doublet injector were defined over the range of OME chamber pressures and mixture ratios. This was accomplished by bomb testing the injector and cavity configurations in solid wall thrust chamber hardware typical of a flight contour with fuel heated to regenerative chamber outlet temperatures. It was found that stability in the 2600-2800 Hz region depends upon injector hydraulics and on chamber acoustics.

  9. Temperature and Species Measurements of Combustion Produced by a 9-Point Lean Direct Injector

    NASA Technical Reports Server (NTRS)

    Tedder, Sarah A.; Hicks, Yolanda R.; Locke, Randy J.

    2013-01-01

    This paper presents measurements of temperature and relative species concentrations in the combustion flowfield of a 9-point swirl venturi lean direct injector fueled with JP-8. The temperature and relative species concentrations of the flame produced by the injector were measured using spontaneous Raman scattering (SRS). Results of measurements taken at four flame conditions are presented. The species concentrations reported are measured relative to nitrogen and include oxygen, carbon dioxide, and water.

  10. Fuel injector utilizing non-thermal plasma activation

    DOEpatents

    Coates, Don M [Santa Fe, NM; Rosocha, Louis A [Los Alamos, NM

    2009-12-01

    A non-thermal plasma assisted combustion fuel injector that uses an inner and outer electrode to create an electric field from a high voltage power supply. A dielectric material is operatively disposed between the two electrodes to prevent arcing and to promote the formation of a non-thermal plasma. A fuel injector, which converts a liquid fuel into a dispersed mist, vapor, or aerosolized fuel, injects into the non-thermal plasma generating energetic electrons and other highly reactive chemical species.

  11. Numerical Simulations of Evaporating Sprays in High Pressure and Temperature Operating Conditions (Engine Combustion Network [ECN])

    DTIC Science & Technology

    2014-05-01

    temperature effect in nonreacting and reacting diesel sprays using a novel injector , and imaging diagnostics for liquid phase penetration, light-off...ambient conditions. A single hole, modern common rail injector with an injector diameter of 90 µ (Bosch CRIN 2.4) is used at typical diesel injection... diesel engine operating conditions. The objective of this report is to demonstrate the modeling capability of a recently adopted 3D-Computational Fluid

  12. Aerolization During Boron Nanoparticle Multi-Component Fuel Group Burning Studies

    DTIC Science & Technology

    2014-02-03

    Anderson, University of Utah). …………………… 14 Figure 2. Photograph of group burning facility showing benchtop flat flame burner unit with injector nozzle ...and (B) aerosol generator. 16 Figure 6. Diagram of benchtop flat flame burner unit showing injector nozzle assembly with VOAG orifice, fuel and...translation stage, variable fuel and gas supply rates, and injector nozzles that can be configured to investigate diffusion and premixed flames (Fig. 2 & 3

  13. Concentric-flow electrokinetic injector enables serial crystallography of ribosome and photosystem II

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sierra, Raymond G.; Gati, Cornelius; Laksmono, Hartawan

    In this paper, we describe a concentric-flow electrokinetic injector for efficiently delivering microcrystals for serial femtosecond X-ray crystallography analysis that enables studies of challenging biological systems in their unadulterated mother liquor. Finally, we used the injector to analyze microcrystals of Geobacillus stearothermophilus thermolysin (2.2-Å structure), Thermosynechococcus elongatus photosystem II (<3-Å diffraction) and Thermus thermophilus small ribosomal subunit bound to the antibiotic paromomycin at ambient temperature (3.4-Å structure).

  14. Concentric-flow electrokinetic injector enables serial crystallography of ribosome and photosystem II

    DOE PAGES

    Sierra, Raymond G.; Gati, Cornelius; Laksmono, Hartawan; ...

    2015-11-30

    In this paper, we describe a concentric-flow electrokinetic injector for efficiently delivering microcrystals for serial femtosecond X-ray crystallography analysis that enables studies of challenging biological systems in their unadulterated mother liquor. Finally, we used the injector to analyze microcrystals of Geobacillus stearothermophilus thermolysin (2.2-Å structure), Thermosynechococcus elongatus photosystem II (<3-Å diffraction) and Thermus thermophilus small ribosomal subunit bound to the antibiotic paromomycin at ambient temperature (3.4-Å structure).

  15. Twisted Vanes Would Enhance Fuel/Air Mixing In Turbines

    NASA Technical Reports Server (NTRS)

    Nguyen, H. Lee; Micklow, Gerald J.; Dogra, Anju S.

    1994-01-01

    Computations of flow show performance of high-shear airblast fuel injector in gas-turbine engine enhanced by use of appropriately proportioned twisted (instead of flat) dome swirl vanes. Resultant more nearly uniform fuel/air mixture burns more efficiently, emitting smaller amounts of nitrogen oxides. Twisted-vane high-shear airblast injectors also incorporated into paint sprayers, providing advantages of low pressure drop characteristic of airblast injectors in general and finer atomization of advanced twisted-blade design.

  16. Atropine Absorption after Administration with 2-Pralidoxime Chloride by Automatic Injector.

    DTIC Science & Technology

    1987-12-01

    NUMBER j2. GOVT ACCESSION NO. 3. RECIPIENT’S CATALOG NUMBER MAMC 87-1 4. TITLE (and Subtitle) 5. TYPE OF REPORT & PERIOD COVERED Atropine absorption after... types of injector. The early differences between injectors are attributed, in part, to their 9 mechanical action and evidence is presented which...effectively reverse symptoms and save life (Koelle, 1975). The effectiveness of such an antidote depends on the ease of self-administration by the

  17. Flow Visualization of a Rotating Detonation Engine

    DTIC Science & Technology

    2016-10-05

    2[b]), and a 3-dimensional (3-D) view around the injectors (2[c]). In this study, ethylene and oxygen were used as propellants. These gases were fed...1.0-mm radius; the ethylene injectors had a 0.8-mm radius. A total of 100 sets of injectors were installed at even intervals. The gases were injected...detonation wave, was filled with high-pressure, high-temperature burned gas. This high-pressure burned gas stopped the injection of ethylene and

  18. Longitudinal Beam Diagnostics for the ILC Injectors and Bunch Compressors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Piot, Philippe; Bracke, Adam; Demir, Veysel

    2010-12-01

    We present a diagnostics suite and analyze techniques for setting up the longitudinal beam dynamics in ILC e⁻ injectors and e⁺ and e⁻ bunch compressors. Techniques to measure the first order moments and recover the first order longitudinal transfer map of the injector's intricate bunching scheme are presented. Coherent transition radiation diagnostics needed to measure and monitor the bunch length downstream of the ~5 GeV bunch compressor are investigated using a vector diffraction model.

  19. Fueling of magnetically confined plasmas by single- and two-stage repeating pneumatic pellet injectors

    NASA Astrophysics Data System (ADS)

    Gouge, M. J.; Combs, S. K.; Foust, C. R.; Milora, S. L.

    Advanced plasma fueling systems for magnetic fusion confinement experiments are under development at Oak Ridge National Laboratory (ORNL). The general approach is that of producing and accelerating frozen hydrogenic pellets to speeds in the kilometer-per-second range using single shot and repetitive pneumatic (light-gas gun) pellet injectors. The millimeter-to-centimeter size pellets enter the plasma and continuously ablate because of the plasma electron heat flux, depositing fuel atoms along the pellet trajectory. This fueling method allows direct fueling in the interior of the hot plasma and is more efficient than the alternative method of injecting room temperature fuel gas at the wall of the plasma vacuum chamber. Single-stage pneumatic injectors based on the light-gas gun concept have provided hydrogenic fuel pellets in the speed range of 1 to 2 km/s in single-shot injector designs. Repetition rates up to 5 Hz have been demonstrated in repetitive injector designs. Future fusion reactor-scale devices may need higher pellet velocities because of the larger plasma size and higher plasma temperatures. Repetitive two-stage pneumatic injectors are under development at ORNL to provide long-pulse plasma fueling in the 3 to 5 km/s speed range. Recently, a repeating, two-stage light-gas gun achieved repetitive operation at 1 Hz with speeds in the range of 2 to 3 km/s.

  20. Flow Distribution Around the SSME Main Injector Assembly Using Porosity Formulation

    NASA Technical Reports Server (NTRS)

    Cheng, Gary C.; Chen, Yen-Sen; Wang, Ten-See

    1995-01-01

    Hot gas turbulent flow distribution around the main injector assembly of the Space Shuttle Main Engine (SSME) and Liquid Oxidizer (LOX) flow distribution through the LOX posts have a great effect on the combustion phenomena inside the main combustion chamber. In order to design a CFD model to be an effective engineering analysis tool with good computational turn- around time (especially for 3-D flow problems) and still maintain good accuracy in describing the flow features, the concept of porosity was employed to describe the effects of blockage and drag force due to the presence of the LOX posts in the turbulent flow field around the main injector assembly of the SSME. 2-D numerical studies were conducted to identify the drag coefficients of the flows both through tube banks and around the shielded posts over a wide range of Reynolds numbers. Empirical, analytical expressions of the drag coefficient as a function of local flow Reynolds number were then deduced. The porosity model was applied to the turbulent flow around the main injector assembly of the SSME, and analyses were performed. The 3-D CFD analysis was divided into three parts, LOX dome, hot gas injector assembly, and hydrogen cavity. The numerical results indicate that the mixture ratio at the downstream of injector face was close to stoichiometric around baffle elements.

  1. Combustion behaviors of GO2/GH2 swirl-coaxial injector using non-intrusive optical diagnostics

    NASA Astrophysics Data System (ADS)

    GuoBiao, Cai; Jian, Dai; Yang, Zhang; NanJia, Yu

    2016-06-01

    This research evaluates the combustion behaviors of a single-element, swirl-coaxial injector in an atmospheric combustion chamber with gaseous oxygen and gaseous hydrogen (GO2/GH2) as the propellants. A brief simulated flow field schematic comparison between a shear-coaxial injector and the swirl-coaxial injector reveals the distribution characteristics of the temperature field and streamline patterns. Advanced optical diagnostics, i.e., OH planar laser-induced fluorescence and high-speed imaging, are simultaneously employed to determine the OH radical spatial distribution and flame fluctuations, respectively. The present study focuses on the flame structures under varying O/F mixing ratios and center oxygen swirl intensities. The combined use of several image-processing methods aimed at OH instantaneous images, including time-averaged, root-mean-square, and gradient transformation, provides detailed information regarding the distribution of the flow field. The results indicate that the shear layers anchored on the oxygen injector lip are the main zones of chemical heat release and that the O/F mixing ratio significantly affects the flame shape. Furthermore, with high-speed imaging, an intuitionistic ignition process and several consecutive steady-state images reveal that lean conditions make it easy to drive the combustion instabilities and that the center swirl intensity has a moderate influence on the flame oscillation strength. The results of this study provide a visualized analysis for future optimal swirl-coaxial injector designs.

  2. Deuteron injector for Peking University Neutron Imaging Facility projecta)

    NASA Astrophysics Data System (ADS)

    Ren, H. T.; Peng, S. X.; Lu, P. N.; Zhou, Q. F.; Yuan, Z. X.; Zhao, J.; Zhang, M.; Song, Z. Z.; Yu, J. X.; Guo, Z. Y.; Chen, J. E.

    2012-02-01

    The deuteron injector developed for the PKUNIFTY (Peking University Neutron Imaging Facility) has been installed and commissioned at Peking University (PKU). The injector system must transfer 50 keV 50 mA of D+ ion beam to the entrance of the 2 MeV radio frequency quadrupole (RFQ) with 10% duty factor (1 ms, 100 Hz). A compact 2.45 GHz permanent magnet electron cyclotron resonance (PMECR) ion source and a 1.36 m long low energy beam transport (LEBT) line using two solenoids was developed as the deuteron injector. A ϕ5 mm four-quadrant diaphragm was used to simulate the entrance of RFQ electrodes. The beam parameters are measured after this core with an emittance measurement unit (EMU) and a bending magnet for ion fraction analysis at the end of injector. During the commissioning, 77 mA of total deuteron beam was extracted from PMECR and 56 mA of pure D+ beam that passed through the ϕ5 mm four-quadrant diaphragm was obtained at the position of RFQ entrance with the measured normalized rms emittance 0.12-0.16π mm mrad. Ion species analysis results show that the deuteron fraction is as high as 99.5%. All of the parameters satisfy PKUNIFTY's requirements. In this paper, we will describe the deuteron injector design and report the commissioning results as well as the initial operation.

  3. Flow Distribution Around the SSME Main Injector Assembly Using Porosity Formulation

    NASA Technical Reports Server (NTRS)

    Cheng, Gary C.; Chen, Yen-Sen; Wang, Ten-See

    1995-01-01

    Hot gas turbulent flow distribution around the main injector assembly of the Space Shuttle Main Engine (SSME) and Liquid Oxidizer (LOX) flow distribution through the LOX posts have a great effect on the combustion phenomena inside the main combustion chamber. In order to design a CFD model to be an effective engineering analysis tool with good computational turn-around time (especially for 3-D flow problems) and still maintain good accuracy in describing the flow features, the concept of porosity was employed to describe the effects of blockage and drag force due to the presence of the LOX posts in the turbulent flow field around the main injector assembly of the SSME. 2-D numerical studies were conducted to identify the drag coefficients of the flows both through tube banks and around the shielded posts over a wide range of Reynolds numbers. Empirical, analytical expressions of the drag coefficient as a function of local flow Reynolds number were then deduced. The porosity model was applied to the turbulent flow around the main injector assembly of the SSME, and analyses were performed. The 3-D CFD analysis was divided into three parts, LOX dome, hot gas injector assembly, and hydrogen cavity. The numerical results indicate that the mixture ratio at the downstream of injector face was close to stoichiometric around baffle elements.

  4. A new biolistic intradermal injector

    NASA Astrophysics Data System (ADS)

    Brouillette, M.; Doré, M.; Hébert, C.; Spooner, M.-F.; Marchand, S.; Côté, J.; Gobeil, F.; Rivest, M.; Lafrance, M.; Talbot, B. G.; Moutquin, J.-M.

    2016-01-01

    We present a novel intradermal needle-free drug delivery device which exploits the unsteady high-speed flow produced by a miniature shock tube to entrain drug or vaccine particles onto a skin target. A first clinical study of pain and physiological response of human subjects study is presented, comparing the new injector to intramuscular needle injection. This clinical study, performed according to established pain assessment protocols, demonstrated that every single subject felt noticeably less pain with the needle-free injector than with the needle injection. Regarding local tolerance and skin reaction, bleeding was observed on all volunteers after needle injection, but on none of the subjects following powder injection. An assessment of the pharmacodynamics, via blood pressure, of pure captopril powder using the new device on spontaneously hypertensive rats was also performed. It was found that every animal tested with the needle-free injector exhibited the expected pharmacodynamic response following captopril injection. Finally, the new injector was used to study the delivery of an inactivated influenza vaccine in mice. The needle-free device induced serum antibody response to the influenza vaccine that was comparable to that of subcutaneous needle injection, but without requiring the use of an adjuvant. Although no effort was made to optimize the formulation or the injection parameters in the present study, the novel injector demonstrates great promise for the rapid, safe and painless intradermal delivery of systemic drugs and vaccines.

  5. Large-volume flux closure during plasmoid-mediated reconnection in coaxial helicity injection

    DOE PAGES

    Ebrahimi, F.; Raman, R.

    2016-03-23

    A large-volume flux closure during transient coaxial helicity injection (CHI) in NSTX-U is demonstrated through resistive magnetohydrodynamics (MHD) simulations. Several major improvements, including the improved positioning of the divertor poloidal field coils, are projected to improve the CHI start-up phase in NSTX-U. Simulations in the NSTX-U configuration with constant in time coil currents show that with strong flux shaping the injected open field lines (injector flux) rapidly reconnect and form large volume of closed flux surfaces. This is achieved by driving parallel current in the injector flux coil and oppositely directed currents in the flux shaping coils to form amore » narrow injector flux footprint and push the injector flux into the vessel. As the helicity and plasma are injected into the device, the oppositely directed field lines in the injector region are forced to reconnect through a local Sweet-Parker type reconnection, or to spontaneously reconnect when the elongated current sheet becomes MHD unstable to form plasmoids. In these simulations for the first time, it is found that the closed flux is over 70% of the initial injector flux used to initiate the discharge. Furthermore, these results could work well for the application of transient CHI in devices that employ super conducting coils to generate and sustain the plasma equilibrium.« less

  6. Global Confinement, Sawtooth Mixing, and Stochastic Diffusion Ripple Loss of Fast ICRF-driven H+ Minority Ions in TFTR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Petrov, M.P.; Bell, R.; Budny, R.V.

    1998-07-01

    This paper presents studies of ICRF-driven H+ minority ions in TFTR (Tokamak Fusion Test Reator) deuterium plasmas using primarily passive Ho flux detection in the energy range of 0.2-1.0 MeV with some corroborating active (lithium pellet charge exchange) measurements. It is shown that in the passive mode the main donors for the neutralization of H+ ions in this energy range are C5+ ions. The measured effective H+ tail temperatures range from 0.15 MeV at an ICRF power of 2 MW to 0.35 MeV at 6 MW. Analysis of the ICRF-driven H+ ion energy balance has been performed on the basismore » of the dependence of effective H+ temperatures on the plasma parameters. The analysis showed that H+ confinement times are comparable with their slowing-down times and tended to decrease with increasing ICRF power. Radial redistribution of ICRF-driven H+ ions was detected when giant sawtooth crashes occurred during the ICRF heating. The redistribution affected ions with energy below 0.7-0.8 MeV. The sawtooth crashes displace H+ ions outward along the plasma major radius into the stochastic ripple diffusion domain were those ions are lost in about 10 milliseconds. These observations are consistent with the model of the redistribution of energetic particles developed previously to explain the results of deuterium-tritium alpha-particle redistribution due to sawteeth observed in TFTR. The experimental data are also consistent with ORBIT code simulations of H+ stochastic ripple diffusion losses.« less

  7. Evaluation of Impinging Stream Vortex Chamber Concepts for Liquid Rocket Engine Applications

    NASA Technical Reports Server (NTRS)

    Trinh, Huu; Kopicz, Charles; Bullard, Brad; Michaels, Scott

    2003-01-01

    NASA Marshall Space Flight Center (MSFC) and the U. S. Army are jointly investigating vortex chamber concepts for cryogenic oxygen/hydrocarbon fuel rocket engine applications. One concept, the Impinging Stream Vortex Chamber Concept (ISVC), has been tested with gel propellants at AMCOM at Redstone Arsenal, Alabama. A version of this concept for the liquid oxygen (LOX)/hydrocarbon fuel (RP-1) propellant system is derived from the one for the gel propellant. An unlike impinging injector is employed to deliver the propellants to the chamber. MSFC has also designed two alternative injection schemes, called the chasing injectors, associated with this vortex chamber concept. In these injection techniques, both propellant jets and their impingement point are in the same chamber cross-sectional plane. One injector has a similar orifice size with the original unlike impinging injector. The second chasing injector has small injection orifices. The team has achieved their objectives of demonstrating the self-cooled chamber wall benefits of ISVC and of providing the test data for validating computational fluids dynamics (CFD) models. These models, in turn, will be used to design the optimum vortex chambers in the future.

  8. Orbit Transfer Vehicle Engine Study. Phase A, extension 1: Alternate low-thrust capability task report

    NASA Technical Reports Server (NTRS)

    Mellish, J. A.

    1980-01-01

    The feasibility and design impact of a requirement for the advanced expander cycle engine to be adaptable to extended low thrust operation of approximately 1K to 2K lb is assessed. It is determined that the orbit transfer vehicle point design engine can be reduced in thrust with minor injector modifications from 15K to 1K without significantly affecting combustion performance efficiency or injector face/chamber wall thermal compatibility. Likewise, high frequency transverse mode combustion instability is not expected to be detrimentally affected. Primarily, the operational limitations consist of feed system chugging instabilities and potential coupling of the injector response with the chamber longitudinal mode resonances under certain operating conditions. The recommended injector modification for low thrust operation is a change in the oxidizer injector element orifice size. Analyses also indicate that chamber coolant flow stability may be a concern below 2K 1bF operation and oxidizer pump stability could be a problem below a 2K thrust level although a recirculation flow could alleviate the problem.

  9. Flexible-Device Injector with a Microflap Array for Subcutaneously Implanting Flexible Medical Electronics.

    PubMed

    Song, Kwangsun; Kim, Juho; Cho, Sungbum; Kim, Namyun; Jung, Dongwuk; Choo, Hyuck; Lee, Jongho

    2018-06-25

    Implantable electronics in soft and flexible forms can reduce undesired outcomes such as irritations and chronic damages to surrounding biological tissues due to the improved mechanical compatibility with soft tissues. However, the same mechanical flexibility also makes it difficult to insert such implants through the skin because of reduced stiffness. In this paper, a flexible-device injector that enables the subcutaneous implantation of flexible medical electronics is reported. The injector consists of a customized blade at the tip and a microflap array which holds the flexible implant while the injector penetrates through soft tissues. The microflap array eliminates the need of additional materials such as adhesives that require an extended period to release a flexible medical electronic implant from an injector inside the skin. The mechanical properties of the injection system during the insertion process are experimentally characterized, and the injection of a flexible optical pulse sensor and electrocardiogram sensor is successfully demonstrated in vivo in live pig animal models to establish the practical feasibility of the concept. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Evaluation of fuel injection configurations to control carbon and soot formation in small GT combustors

    NASA Technical Reports Server (NTRS)

    Rosfjord, T. J.; Briehl, D.

    1982-01-01

    An experimental program to investigate hardware configurations which attempt to minimize carbon formation and soot production without sacrificing performance in small gas turbine combustors has been conducted at the United Technologies Research Center. Four fuel injectors, embodying either airblast atomization, pressure atomization, or fuel vaporization techniques, were combined with nozzle air swirlers and injector sheaths, and evaluated at test conditions which included and extended beyond standard small gas turbine combustor operation. Extensive testing was accomplished with configurations embodying either a spill return or a T-vaporizer injector. Minimal carbon deposits were observed on the spill return nozzle for tests using either Jet A or ERBS test fuel. A more extensive film of soft carbon was observed on the vaporizer after operation at standard engine conditions, with large carbonaceous growths forming on the device during off-design operation at low combustor inlet temperature. Test results indicated that smoke emission levels depended on the combustor fluid mechanics (especially the mixing rates near the injector), the atomization quality of the injector and the fuel hydrogen content.

  11. Review of light-ion driver development for inertial fusion energy

    NASA Astrophysics Data System (ADS)

    Bluhm, H.; Hoppé, P.

    2001-05-01

    The concept of a light ion beam driver for Inertial Fusion Energy (IFE) is based on multi-terawatt, multi-megavolt pulsed power generators, two-stage ion acceleration and charge neutralised transport. In this paper we discuss the present status for each of these components and identify the main issues for research. Only modest extrapolations from presently available technologies seem necessary for the high voltage pulse generator. The greatest challenge of this approach is the accelerator, which will consist of two stages, the injector and the post-accelerator. Large progress has been made in understanding the physical phenomena occurring in the injector gap. This progress has become possible by new sophisticated diagnostics that allowed detailed temporally and spatially resolved measurements of field and particle densities in the acceleration gap and by relativistic fully electromagnetic PIC-simulation tools, that stimulated analytic models. The conclusions drawn from these studies, namely limiting the ion current density to small enhancements to reduce the beam divergence need still to be verified experimentally. Systematic experimental research on post-acceleration at high power and voltage must aim at a complete understanding of instabilities coupling from the injector to the post-accelerator and at limiting voltages and barriers for the extraction of unwanted ions from plasmas at the injection side. Ultimately the light ion approach requires rep-rateable large area ion sources with ion masses greater than 1 and particle energies around 30 MeV. Although different cleaning protocols were able to reduce the amount of parasitic ions in the Li beam from a LiF field emission source the achievements are still insufficient. A field of common interest between light and heavy ion beam driven fusion is beam transport from the accelerator to the target. Supposedly the most favourable concept for both approaches is self-pinched transport. Experimental evidence for self-pinched transport has recently been achieved in an experiment at NRL. Further experiments are needed to determine the dynamics and magnitude of net current formation, the efficiency of transport and the effect of bunching.

  12. Unsteady Three-Dimensional Simulation of a Shear Coaxial GO2/GH2 Rocket Injector with RANS and Hybrid-RAN-LES/DES Using Flamelet Models

    NASA Technical Reports Server (NTRS)

    Westra, Doug G.; West, Jeffrey S.; Richardson, Brian R.

    2015-01-01

    Historically, the analysis and design of liquid rocket engines (LREs) has relied on full-scale testing and one-dimensional empirical tools. The testing is extremely expensive and the one-dimensional tools are not designed to capture the highly complex, and multi-dimensional features that are inherent to LREs. Recent advances in computational fluid dynamics (CFD) tools have made it possible to predict liquid rocket engine performance, stability, to assess the effect of complex flow features, and to evaluate injector-driven thermal environments, to mitigate the cost of testing. Extensive efforts to verify and validate these CFD tools have been conducted, to provide confidence for using them during the design cycle. Previous validation efforts have documented comparisons of predicted heat flux thermal environments with test data for a single element gaseous oxygen (GO2) and gaseous hydrogen (GH2) injector. The most notable validation effort was a comprehensive validation effort conducted by Tucker et al. [1], in which a number of different groups modeled a GO2/GH2 single element configuration by Pal et al [2]. The tools used for this validation comparison employed a range of algorithms, from both steady and unsteady Reynolds Averaged Navier-Stokes (U/RANS) calculations, large-eddy simulations (LES), detached eddy simulations (DES), and various combinations. A more recent effort by Thakur et al. [3] focused on using a state-of-the-art CFD simulation tool, Loci/STREAM, on a two-dimensional grid. Loci/STREAM was chosen because it has a unique, very efficient flamelet parameterization of combustion reactions that are too computationally expensive to simulate with conventional finite-rate chemistry calculations. The current effort focuses on further advancement of validation efforts, again using the Loci/STREAM tool with the flamelet parameterization, but this time with a three-dimensional grid. Comparisons to the Pal et al. heat flux data will be made for both RANS and Hybrid RANSLES/ Detached Eddy simulations (DES). Computation costs will be reported, along with comparison of accuracy and cost to much less expensive two-dimensional RANS simulations of the same geometry.

  13. Monitoring the evolution and migration of a methane gas plume in an unconfined sandy aquifer using time-lapse GPR and ERT.

    PubMed

    Steelman, Colby M; Klazinga, Dylan R; Cahill, Aaron G; Endres, Anthony L; Parker, Beth L

    2017-10-01

    Fugitive methane (CH 4 ) leakage associated with conventional and unconventional petroleum development (e.g., shale gas) may pose significant risks to shallow groundwater. While the potential threat of stray (CH 4 ) gas in aquifers has been acknowledged, few studies have examined the nature of its migration and fate in a shallow groundwater flow system. This study examines the geophysical responses observed from surface during a 72day field-scale simulated CH 4 leak in an unconfined sandy aquifer at Canadian Forces Base Borden, Canada, to better understand the transient behaviour of fugitive CH 4 gas in the subsurface. Time-lapse ground-penetrating radar (GPR) and electrical resistivity tomography (ERT) were used to monitor the distribution and migration of the gas-phase and assess any impacts to groundwater hydrochemistry. Geophysical measurements captured the transient formation of a CH 4 gas plume emanating from the injector, which was accompanied by an increase in total dissolved gas pressure (P TDG ). Subsequent reductions in P TDG were accompanied by reduced bulk resistivity around the injector along with an increase in the GPR reflectivity along horizontal bedding reflectors farther downgradient. Repeat temporal GPR reflection profiling identified three events with major peaks in reflectivity, interpreted to represent episodic lateral CH 4 gas release events into the aquifer. Here, a gradual increase in P TDG near the injector caused a sudden lateral breakthrough of gas in the direction of groundwater flow, causing free-phase CH 4 to migrate much farther than anticipated based on groundwater advection. CH 4 accumulated along subtle permeability boundaries demarcated by grain-scale bedding within the aquifer characteristic of numerous Borden-aquifer multi-phase flow experiments. Diminishing reflectivity over a period of days to weeks suggests buoyancy-driven migration to the vadose zone and/or CH 4 dissolution into groundwater. Lateral and vertical CH 4 migration was primarily governed by subtle, yet measurable heterogeneity and anisotropy in the aquifer. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  14. Design and evaluation of high performance rocket engine injectors for use with hydrocarbon fuels

    NASA Technical Reports Server (NTRS)

    Pavli, A. J.

    1979-01-01

    The feasibility of using a heavy hydrocarbon fuel as a rocket propellant is examined. A method of predicting performance of a heavy hydrocarbon in terms of vaporization effectiveness is described and compared to other fuels and to experimental test results. Experiments were done at a chamber pressure of 4137 KN/sq M (600 psia) with RP-1, JP-10, and liquefied natural gas as fuels, and liquid oxygen as the oxidizer. Combustion length effects were explored over a range of 21.6 cm (8 1/2 in) to 55.9 cm (22 in). Four injector types were tested, each over a range of mixture ratios. Further configuration modifications were obtained by reaming each injector several times to provide test data over a range of injector pressure drop.

  15. Heat transfer in rocket engine combustion chambers and regeneratively cooled nozzles

    NASA Technical Reports Server (NTRS)

    1993-01-01

    A conjugate heat transfer computational fluid dynamics (CFD) model to describe regenerative cooling in the main combustion chamber and nozzle and in the injector faceplate region for a launch vehicle class liquid rocket engine was developed. An injector model for sprays which treats the fluid as a variable density, single-phase media was formulated, incorporated into a version of the FDNS code, and used to simulate the injector flow typical of that in the Space Shuttle Main Engine (SSME). Various chamber related heat transfer analyses were made to verify the predictive capability of the conjugate heat transfer analysis provided by the FDNS code. The density based version of the FDNS code with the real fluid property models developed was successful in predicting the streamtube combustion of individual injector elements.

  16. Determination of Local Experimental Heat-Transfer Coefficients on Combustion Side of an Ammonia-Oxygen Rocket

    NASA Technical Reports Server (NTRS)

    Liebert, Curt H.; Ehlers, Robert C.

    1961-01-01

    Local experimental heat-transfer coefficients were measured in the chamber and throat of a 2400-pound-thrust ammonia-oxygen rocket engine with a nominal chamber pressure of 600 pounds per square inch absolute. Three injector configurations were used. The rocket engine was run over a range of oxidant-fuel ratio and chamber pressure. The injector that achieved the best performance also produced the highest rates of heat flux at design conditions. The heat-transfer data from the best-performing injector agreed well with the simplified equation developed by Bartz at the throat region. A large spread of data was observed for the chamber. This spread was attributed generally to the variations of combustion processes. The spread was least evident, however, with the best-performing injector.

  17. Transient response of a liquid injector to a steep-fronted transverse pressure wave

    NASA Astrophysics Data System (ADS)

    Lim, D.; Heister, S.; Stechmann, D.; Kan, B.

    2017-12-01

    Motivated by the dynamic injection environment posed by unsteady pressure gain combustion processes, an experimental apparatus was developed to visualize the dynamic response of a transparent liquid injector subjected to a single steep-fronted transverse pressure wave. Experiments were conducted at atmospheric pressure with a variety of acrylic injector passage designs using water as the working fluid. High-speed visual observations were made of the injector exit near field, and the extent of backflow and the time to refill the orifice passage were characterized over a range of injection pressures. A companion transient one-dimensional model was developed for interpretation of the results and to elucidate the trends with regard to the strength of the transverse pressure wave. Results from the model were compared with the experimental observations.

  18. Transient response of a liquid injector to a steep-fronted transverse pressure wave

    NASA Astrophysics Data System (ADS)

    Lim, D.; Heister, S.; Stechmann, D.; Kan, B.

    2018-07-01

    Motivated by the dynamic injection environment posed by unsteady pressure gain combustion processes, an experimental apparatus was developed to visualize the dynamic response of a transparent liquid injector subjected to a single steep-fronted transverse pressure wave. Experiments were conducted at atmospheric pressure with a variety of acrylic injector passage designs using water as the working fluid. High-speed visual observations were made of the injector exit near field, and the extent of backflow and the time to refill the orifice passage were characterized over a range of injection pressures. A companion transient one-dimensional model was developed for interpretation of the results and to elucidate the trends with regard to the strength of the transverse pressure wave. Results from the model were compared with the experimental observations.

  19. Simulation of Swap-Out Reliability For The Advance Photon Source Upgrade

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Borland, M.

    2017-06-01

    The proposed upgrade of the Advanced Photon Source (APS) to a multibend-achromat lattice relies on the use of swap-out injection to accommodate the small dynamic acceptance, allow use of unusual insertion devices, and minimize collective effects at high single-bunch charge. This, combined with the short beam lifetime, will make injector reliability even more important than it is for top-up operation. We used historical data for the APS injector complex to obtain probability distributions for injector up-time and down-time durations. Using these distributions, we simulated several years of swap-out operation for the upgraded lattice for several operatingmodes. The results indicate thatmore » obtaining very high availability of beam in the storage ring will require improvements to injector reliability.« less

  20. Passive pavement-mounted acoustical linguistic drive alert system and method

    DOEpatents

    Kisner, Roger A.; Anderson, Richard L.; Carnal, Charles L.; Hylton, James O.; Stevens, Samuel S.

    2001-01-01

    Systems and methods are described for passive pavement-mounted acoustical alert of the occupants of a vehicle. A method of notifying a vehicle occupant includes providing a driving medium upon which a vehicle is to be driven; and texturing a portion of the driving medium such that the textured portion interacts with the vehicle to produce audible signals, the textured portion pattern such that a linguistic message is encoded into the audible signals. The systems and methods provide advantages because information can be conveyed to the occupants of the vehicle based on the location of the vehicle relative to the textured surface.

  1. Cognitive Effects of Mindfulness Training: Results of a Pilot Study Based on a Theory Driven Approach

    PubMed Central

    Wimmer, Lena; Bellingrath, Silja; von Stockhausen, Lisa

    2016-01-01

    The present paper reports a pilot study which tested cognitive effects of mindfulness practice in a theory-driven approach. Thirty-four fifth graders received either a mindfulness training which was based on the mindfulness-based stress reduction approach (experimental group), a concentration training (active control group), or no treatment (passive control group). Based on the operational definition of mindfulness by Bishop et al. (2004), effects on sustained attention, cognitive flexibility, cognitive inhibition, and data-driven as opposed to schema-based information processing were predicted. These abilities were assessed in a pre-post design by means of a vigilance test, a reversible figures test, the Wisconsin Card Sorting Test, a Stroop test, a visual search task, and a recognition task of prototypical faces. Results suggest that the mindfulness training specifically improved cognitive inhibition and data-driven information processing. PMID:27462287

  2. Cognitive Effects of Mindfulness Training: Results of a Pilot Study Based on a Theory Driven Approach.

    PubMed

    Wimmer, Lena; Bellingrath, Silja; von Stockhausen, Lisa

    2016-01-01

    The present paper reports a pilot study which tested cognitive effects of mindfulness practice in a theory-driven approach. Thirty-four fifth graders received either a mindfulness training which was based on the mindfulness-based stress reduction approach (experimental group), a concentration training (active control group), or no treatment (passive control group). Based on the operational definition of mindfulness by Bishop et al. (2004), effects on sustained attention, cognitive flexibility, cognitive inhibition, and data-driven as opposed to schema-based information processing were predicted. These abilities were assessed in a pre-post design by means of a vigilance test, a reversible figures test, the Wisconsin Card Sorting Test, a Stroop test, a visual search task, and a recognition task of prototypical faces. Results suggest that the mindfulness training specifically improved cognitive inhibition and data-driven information processing.

  3. Restartable High Power Gas Generator.

    DTIC Science & Technology

    1982-12-01

    RELEASE; DISTRIBUTION UNLIMITED DTIC AERO PROPULSION LABORATORY " D T-C ) AIR FORCE WRIGHT AERONAUTICAL LABORATORIES AIR FORCE SYSTEMS COMMAND APR 2 3 133 C...INIFRV 4umat OVT CCESIONNO. 3 .PERCORMNG’ CAORGO NUMER 14. ATLE(ad S.##* CTPOfRCTOR GR N OERED M. G. Gants F33615-79-C-2004 9. PERFORMING ORGANIZATION...Assembly 11 3 Injector Internal Confiquration 12 4 Injector Assembly 15 5 Injector Housing le 6 Pintle 17 7 Core 18 8 Fuel Injection Rina iS 9 Fuel

  4. BEAM DYNAMICS SIMULATIONS FOR A DC GUN BASED INJECTOR FOR PERL.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    ZHOU,F.; BEN-ZVI,I.; WANG,X.J.

    2001-06-18

    The National Synchrotron Light Source (NSLS) at Brookhaven National Laboratory (BNL) is considering an upgrade based on the Photoinjected Energy Recovering Linac (PERL). The various injector schemes for this machine are being extensively investigated at BNL. One of the possible options is photocathode DC gun. The schematic layout of a PERL DC gun based injector and its preliminary beam dynamics are presented in this paper. The transverse and longitudinal emittance of photo-electron beam were optimized for a DC field 500 kV.

  5. Interpretation of Core Length in Shear Coaxial Rocket Injectors from X-ray Radiography Measurements (Briefing Charts)

    DTIC Science & Technology

    2014-06-01

    Distribution A: Approved for public release; distribution unlimited. • Near-injector EPL profiles have elliptical shape expected from a solid liquid jet ...the shear between an outer lower-density high-velocity annulus and a higher-density low-velocity inner jet to atomize and mix a liquid and a gas...Used to study diesel, swirl, gas-centered swirl-coaxial, impingers, and aerated liquid jet injectors • Use a monochromatic beam of X-rays

  6. Computational Study of Combustion Dynamics in a Single-Element Lean Direct Injection Gas Turbine Combustor

    DTIC Science & Technology

    2013-12-01

    instabilities for different equivalence ratios and fuel injector locations. Comparisons of the computational and experimental results are carried out using...the fuel injector and swirler as the full geometry. The full geometry in Fig. 1 (b) is the same as the one that was used in the experiments. In Fig. 1...combustion instabilities in both the simulations and the experiments. Fuel injector (Detail B) sits in the converging-diverging section connecting the air

  7. Challenges and Plans for the Proton Injectors

    NASA Astrophysics Data System (ADS)

    Garoby, R.

    The flexibility of the LHC injectors combined with multiple longitudinal beam gymnastics have significantly contributed to the excellent performance of the LHC during its first run, delivering beam with twice the ultimate brightness with 50 ns bunch spacing. To meet the requirements of the High Luminosity LHC, 25 ns bunch spacing is required, the intensity per bunch at injection has to double and brightness shall almost triple. Extensive hardware modifications or additions are therefore necessary in all accelerators of the injector complex, as well as new beam gymnastics.

  8. Downhole steam injector

    DOEpatents

    Donaldson, A. Burl; Hoke, Donald E.

    1983-01-01

    An improved downhole steam injector has an angled water orifice to swirl the water through the device for improved heat transfer before it is converted to steam. The injector also has a sloped diameter reduction in the steam chamber to throw water that collects along the side of the chamber during slant drilling into the flame for conversion to steam. In addition, the output of the flame chamber is beveled to reduce hot spots and increase efficiency, and the fuel-oxidant inputs are arranged to minimize coking.

  9. 40 CFR 86.004-25 - Maintenance.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... injectors. (B) Turbocharger. (C) Electronic engine control unit and its associated sensors and actuators. (D... paragraphs (b)(4)(iv) (A)-(G) of this section. (A) Fuel injectors. (B) Turbocharger. (C) Electronic engine...

  10. Vestibular-somatosensory interactions: effects of passive whole-body rotation on somatosensory detection.

    PubMed

    Ferrè, Elisa Raffaella; Kaliuzhna, Mariia; Herbelin, Bruno; Haggard, Patrick; Blanke, Olaf

    2014-01-01

    Vestibular signals are strongly integrated with information from several other sensory modalities. For example, vestibular stimulation was reported to improve tactile detection. However, this improvement could reflect either a multimodal interaction or an indirect interaction driven by vestibular effects on spatial attention and orienting. Here we investigate whether natural vestibular activation induced by passive whole-body rotation influences tactile detection. In particular, we assessed the ability to detect faint tactile stimuli to the fingertips of the left and right hand during spatially congruent or incongruent rotations. We found that passive whole-body rotations significantly enhanced sensitivity to faint shocks, without affecting response bias. Critically, this enhancement of somatosensory sensitivity did not depend on the spatial congruency between the direction of rotation and the hand stimulated. Thus, our results support a multimodal interaction, likely in brain areas receiving both vestibular and somatosensory signals.

  11. Hygroscopic motions of fossil conifer cones

    NASA Astrophysics Data System (ADS)

    Poppinga, Simon; Nestle, Nikolaus; Šandor, Andrea; Reible, Bruno; Masselter, Tom; Bruchmann, Bernd; Speck, Thomas

    2017-01-01

    Conifer cones represent natural, woody compliant structures which move their scales as passive responses to changes in environmental humidity. Here we report on water-driven opening and closing motions in coalified conifer cones from the Eemian Interglacial (approx. 126,000-113,000 years BP) and from the Middle Miocene (approx. 16.5 to 11.5 million years BP). These cones represent by far the oldest documented evidence of plant parts showing full functionality of such passive hydraulically actuated motion. The functional resilience of these structures is far beyond the biological purpose of seed dispersal and protection and is because of a low level of mineralization of the fossils. Our analysis emphasizes the functional-morphological integrity of these biological compliant mechanisms which, in addition to their biological fascination, are potentially also role models for resilient and maintenance-free biomimetic applications (e.g., adaptive and autonomously moving structures including passive hydraulic actuators).

  12. An accessible micro-capillary electrophoresis device using surface-tension-driven flow

    PubMed Central

    Mohanty, Swomitra K.; Warrick, Jay; Gorski, Jack; Beebe, David J.

    2010-01-01

    We present a rapidly fabricated micro-capillary electrophoresis chip that utilizes surface-tension-driven flow for sample injection and extraction of DNA. Surface-tension-driven flow (i.e. passive pumping) injects a fixed volume of sample that can be predicted mathematically. Passive pumping eliminates the need for tubing, valves, syringe pumps, and other equipment typically needed for interfacing with microelectrophoresis chips. This method requires a standard micropipette to load samples before separation, and remove the resulting bands after analysis. The device was made using liquid phase photopolymerization to rapidly fabricate the chip without the need of special equipment typically associated with the construction of microelectrophoresis chips (e.g. cleanroom). Batch fabrication time for the device presented here was 1.5 h including channel coating time to suppress electroosmotic flow. Devices were constructed out of poly-isobornyl acrylate and glass. A standard microscope with a UV source was used for sample detection. Separations were demonstrated using Promega BenchTop 100 bp ladder in hydroxyl ethyl cellulose (HEC) and oligonucleotides of 91 and 118 bp were used to characterize sample injection and extraction of DNA bands. The end result was an inexpensive micro-capillary electrophoresis device that uses tools (e.g. micropipette, electrophoretic power supplies, and microscopes) already present in most labs for sample manipulation and detection, making it more accessible for potential end users. PMID:19425002

  13. Point-source helicity injection for ST plasma startup in Pegasus

    NASA Astrophysics Data System (ADS)

    Redd, A. J.; Battaglia, D. J.; Bongard, M. W.; Fonck, R. J.; Schlossberg, D. J.

    2009-11-01

    Plasma current guns are used as point-source DC helicity injectors for forming non-solenoidal tokamak plasmas in the Pegasus Toroidal Experiment. Discharges driven by this injection scheme have achieved Ip>= 100 kA using Iinj<= 4 kA. They form at the outboard midplane, transition to a tokamak-like equilibrium, and continue to grow inward as Ip increases due to helicity injection and outer- PF induction. The maximum Ip is determined by helicity balance (injection rate vs resistive dissipation) and a Taylor relaxation limit, in which Ip√ITF Iinj/w, where w is the radial thickness of the gun-driven edge. Preliminary experiments tentatively confirm these scalings with ITF, Iinj, and w, increasing confidence in this simple relaxation model. Adding solenoidal inductive drive during helicity injection can push Ip up to, but not beyond, the predicted relaxation limit, demonstrating that this is a hard performance limit. Present experiments are focused on increasing the injection voltage (i.e., helicity injection rate) and reducing w. Near-term goals are to further test scalings predicted by the simple relaxation model and to study in detail the observed bursty n=1 activity correlated with rapid increases in Ip.

  14. Investigating the effect of tumor vascularization on magnetic targeting in vivo using retrospective design of experiment.

    PubMed

    Mei, Kuo-Ching; Bai, Jie; Lorrio, Silvia; Wang, Julie Tzu-Wen; Al-Jamal, Khuloud T

    2016-11-01

    Nanocarriers take advantages of the enhanced permeability and retention (EPR) to accumulate passively in solid tumors. Magnetic targeting has shown to further enhance tumor accumulation in response to a magnetic field gradient. It is widely known that passive accumulation of nanocarriers varies hugely in tumor tissues of different tumor vascularization. It is hypothesized that magnetic targeting is likely to be influenced by such factors. In this work, magnetic targeting is assessed in a range of subcutaneously implanted murine tumors, namely, colon (CT26), breast (4T1), lung (Lewis lung carcinoma) cancer and melanoma (B16F10). Passively- and magnetically-driven tumor accumulation of the radiolabeled polymeric magnetic nanocapsules are assessed with gamma counting. The influence of tumor vasculature, namely, the tumor microvessel density, permeability and diameter on passive and magnetic tumor targeting is assessed with the aid of the retrospective design of experiment (DoE) approach. It is clear that the three tumor vascular parameters contribute greatly to both passive and magnetically targeted tumor accumulation but play different roles when nanocarriers are targeted to the tumor with different strategies. It is concluded that tumor permeability is a rate-limiting factor in both targeting modes. Diameter and microvessel density influence passive and magnetic tumor targeting, respectively. Copyright © 2016 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  15. Constructing a Discourse of Inquiry: Findings from a Five-Year Ethnography at One Elementary School

    ERIC Educational Resources Information Center

    Jennings, Louise; Mills, Heidi

    2009-01-01

    Background/Context: In an age of test-driven accountability, many schools are returning to banking pedagogies in which students passively take in content. Inquiry-based instruction offers one approach for actively involving students in meaningful learning activity, however, research on inquiry pedagogies often focuses on academic accomplishments.…

  16. TRICHLOROETHYLENE REMOVAL FROM GROUNDWATER IN FLOW-THROUGH COLUMNS SIMULATING A PERMEABLE REACTIVE BARRIER CONSTRUCTED WITH PLANT MULCH

    EPA Science Inventory

    Ground water contaminated with TCE is commonly treated with a passive reactive barrier (PRB) constructed with zero-valence iron. The cost of iron as the reactive matrix has driven a search for less costly alternatives, and composted plant mulch has been used as an alternative re...

  17. Skillful Spring Forecasts of September Arctic Sea Ice Extent Using Passive Microwave Data

    NASA Technical Reports Server (NTRS)

    Petty, A. A.; Schroder, D.; Stroeve, J. C.; Markus, Thorsten; Miller, Jeffrey A.; Kurtz, Nathan Timothy; Feltham, D. L.; Flocco, D.

    2017-01-01

    In this study, we demonstrate skillful spring forecasts of detrended September Arctic sea ice extent using passive microwave observations of sea ice concentration (SIC) and melt onset (MO). We compare these to forecasts produced using data from a sophisticated melt pond model, and find similar to higher skill values, where the forecast skill is calculated relative to linear trend persistence. The MO forecasts shows the highest skill in March-May, while the SIC forecasts produce the highest skill in June-August, especially when the forecasts are evaluated over recent years (since 2008). The high MO forecast skill in early spring appears to be driven primarily by the presence and timing of open water anomalies, while the high SIC forecast skill appears to be driven by both open water and surface melt processes. Spatial maps of detrended anomalies highlight the drivers of the different forecasts, and enable us to understand regions of predictive importance. Correctly capturing sea ice state anomalies, along with changes in open water coverage appear to be key processes in skillfully forecasting summer Arctic sea ice.

  18. Multi-source micro-friction identification for a class of cable-driven robots with passive backbone

    NASA Astrophysics Data System (ADS)

    Tjahjowidodo, Tegoeh; Zhu, Ke; Dailey, Wayne; Burdet, Etienne; Campolo, Domenico

    2016-12-01

    This paper analyses the dynamics of cable-driven robots with a passive backbone and develops techniques for their dynamic identification, which are tested on the H-Man, a planar cabled differential transmission robot for haptic interaction. The mechanism is optimized for human-robot interaction by accounting for the cost-benefit-ratio of the system, specifically by eliminating the necessity of an external force sensor to reduce the overall cost. As a consequence, this requires an effective dynamic model for accurate force feedback applications which include friction behavior in the system. We first consider the significance of friction in both the actuator and backbone spaces. Subsequently, we study the required complexity of the stiction model for the application. Different models representing different levels of complexity are investigated, ranging from the conventional approach of Coulomb to an advanced model which includes hysteresis. The results demonstrate each model's ability to capture the dynamic behavior of the system. In general, it is concluded that there is a trade-off between model accuracy and the model cost.

  19. Effect of aviation fuel type and fuel injection conditions on the spray characteristics of pressure swirl and hybrid air blast fuel injectors

    NASA Astrophysics Data System (ADS)

    Feddema, Rick

    Feddema, Rick T. M.S.M.E., Purdue University, December 2013. Effect of Aviation Fuel Type and Fuel Injection Conditions on the Spray Characteristics of Pressure Swirl and Hybrid Air Blast Fuel Injectors. Major Professor: Dr. Paul E. Sojka, School of Mechanical Engineering Spray performance of pressure swirl and hybrid air blast fuel injectors are central to combustion stability, combustor heat management, and pollutant formation in aviation gas turbine engines. Next generation aviation gas turbine engines will optimize spray atomization characteristics of the fuel injector in order to achieve engine efficiency and emissions requirements. Fuel injector spray atomization performance is affected by the type of fuel injector, fuel liquid properties, fuel injection pressure, fuel injection temperature, and ambient pressure. Performance of pressure swirl atomizer and hybrid air blast nozzle type fuel injectors are compared in this study. Aviation jet fuels, JP-8, Jet A, JP-5, and JP-10 and their effect on fuel injector performance is investigated. Fuel injector set conditions involving fuel injector pressure, fuel temperature and ambient pressure are varied in order to compare each fuel type. One objective of this thesis is to contribute spray patternation measurements to the body of existing drop size data in the literature. Fuel droplet size tends to increase with decreasing fuel injection pressure, decreasing fuel injection temperature and increasing ambient injection pressure. The differences between fuel types at particular set conditions occur due to differences in liquid properties between fuels. Liquid viscosity and surface tension are identified to be fuel-specific properties that affect the drop size of the fuel. An open aspect of current research that this paper addresses is how much the type of aviation jet fuel affects spray atomization characteristics. Conventional aviation fuel specifications are becoming more important with new interest in alternative fuels. Optical patternation data and line of sight laser diffraction data show that there is significant difference between jet fuels. Particularly at low fuel injection pressures (0.345 MPa) and cold temperatures (-40 C), the patternation data shows that the total surface area in the spray at 38.1 mm from the pressure swirl injector for the JP-10 fuel type is one-sixth the amount of the JP-8. Finally, this study compares the atomizer performance of a pressure swirl nozzle to a hybrid air blast nozzle. The total surface area for both the hybrid air blast nozzle and the pressure swirl nozzle show a similar decline in atomization performance at low fuel injection pressures and cold temperatures. However, the optical patternator radial profile data and the line of sight laser diffraction data show that the droplet size and spray distribution data are less affected by injection conditions and fuel type in the hybrid air blast nozzle, than they are in the pressure swirl nozzle. One explanation is that the aerodynamic forces associated with the swirler on the hybrid air blast nozzle control the distribution droplets in the spray. This is in contrast to the pressure swirl nozzle droplet distribution that is controlled by internal geometry and droplet ballistics.

  20. Jet outflow and open field line measurements on the C-2U advanced beam-driven field-reversed configuration plasma experiment.

    PubMed

    Sheftman, D; Gupta, D; Roche, T; Thompson, M C; Giammanco, F; Conti, F; Marsili, P; Moreno, C D

    2016-11-01

    Knowledge and control of the axial outflow of plasma particles and energy along open-magnetic-field lines are of crucial importance to the stability and longevity of the advanced beam-driven field-reversed configuration plasma. An overview of the diagnostic methods used to perform measurements on the open field line plasma on C-2U is presented, including passive Doppler impurity spectroscopy, microwave interferometry, and triple Langmuir probe measurements. Results of these measurements provide the jet ion temperature and axial velocity, electron density, and high frequency density fluctuations.

  1. Jet outflow and open field line measurements on the C-2U advanced beam-driven field-reversed configuration plasma experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sheftman, D., E-mail: dsheftman@trialphaenergy.com; Gupta, D.; Roche, T.

    Knowledge and control of the axial outflow of plasma particles and energy along open-magnetic-field lines are of crucial importance to the stability and longevity of the advanced beam-driven field-reversed configuration plasma. An overview of the diagnostic methods used to perform measurements on the open field line plasma on C-2U is presented, including passive Doppler impurity spectroscopy, microwave interferometry, and triple Langmuir probe measurements. Results of these measurements provide the jet ion temperature and axial velocity, electron density, and high frequency density fluctuations.

  2. Front-end simulation of injector for terawatt accumulator.

    PubMed

    Kropachev, G N; Balabin, A I; Kolomiets, A A; Kulevoy, T V; Pershin, V I; Shumshurov, A V

    2008-02-01

    A terawatt accumulator (TWAC) accelerator/storage ring complex with the laser ion source is in progress at ITEP. The new injector I4 based on the radio frequency quadrupole (RFQ) and interdigital H-mode (IH) linear accelerator is under construction. The front end of the new TWAC injector consists of a laser ion source, an extraction system, and a low energy beam transport (LEBT). The KOBRA3-INP was used for the simulation and optimization of the ion source extraction system. The optimization parameter is the maximum brightness of the beam generated by the laser ion source. Also the KOBRA3-INP code was used for LEBT investigation. The LEBT based on electrostatic grid lenses is chosen for injector I4. The results of the extraction system and LEBT investigations for ion beam matching with RFQ are presented.

  3. Design and evaluation of high performance rocket engine injectors for use with hydrocarbon fuels

    NASA Technical Reports Server (NTRS)

    Pavli, A. J.

    1979-01-01

    An experimental program to determine the feasibility of using a heavy hydrocarbon fuel as a rocket propellant is reported herein. A method of predicting performance of a heavy hydrocarbon in terms of vaporization effectiveness is described and compared to other fuels and to experimental test results. The work was done at a chamber pressure of 4137 KN/sq M (600 psia) with RP-1, JP-10, and liquefied natural gas as fuels, and liquid oxygen as the oxidizer. Combustion length effects were explored over a range of 21.6 cm (8 1/2 in.) to 55.9 cm (22 in.). Four injector types were tested, each over a range of mixture ratios. Further configuration modifications were obtained by 'reaming' each injector several times to provide test data over a range of injector pressure drop.

  4. Heavy-Ion Injector for the High Current Experiment

    NASA Astrophysics Data System (ADS)

    Bieniosek, F. M.; Henestroza, E.; Kwan, J. W.; Prost, L.; Seidl, P.

    2001-10-01

    We report on progress in development of the Heavy-Ion Injector at LBNL, which is being prepared for use as an injector for the High Current Experiment (HCX). It is composed of a 10-cm-diameter surface ionization source, an extraction diode, and an electrostatic quadrupole (ESQ) accelerator, with a typical operating current of 0.6 A of potassium ions at 1.8 MeV, and a beam pulse length of 4.5 microsecs. We have improved the Injector equipment and diagnostics, and have characterized the source emission and radial beam profiles at the diode and ESQ regions. We find improved agreement with EGUN predictions, and improved compatibility with the downstream matching section. Plans are to attach the matching section and the initial ESQ transport section of HCX. Results will be presented and compared with EGUN and WARP simulations.

  5. Shielded fluid stream injector for particle bed reactor

    DOEpatents

    Notestein, John E.

    1993-01-01

    A shielded fluid-stream injector assembly is provided for particle bed reactors. The assembly includes a perforated pipe injector disposed across the particle bed region of the reactor and an inverted V-shaped shield placed over the pipe, overlapping it to prevent descending particles from coming into direct contact with the pipe. The pipe and shield are fixedly secured at one end to the reactor wall and slidably secured at the other end to compensate for thermal expansion. An axially extending housing aligned with the pipe and outside the reactor and an in-line reamer are provided for removing deposits from the inside of the pipe. The assembly enables fluid streams to be injected and distributed uniformly into the particle bed with minimized clogging of injector ports. The same design may also be used for extraction of fluid streams from particle bed reactors.

  6. Robust spin-current injection in lateral spin valves with two-terminal Co2FeSi spin injectors

    NASA Astrophysics Data System (ADS)

    Oki, S.; Kurokawa, T.; Honda, S.; Yamada, S.; Kanashima, T.; Itoh, H.; Hamaya, K.

    2017-05-01

    We demonstrate generation and detection of pure spin currents by combining a two-terminal spin-injection technique and Co2FeSi (CFS) spin injectors in lateral spin valves (LSVs). We find that the two-terminal spin injection with CFS has the robust dependence of the nonlocal spin signals on the applied bias currents, markedly superior to the four-terminal spin injection with permalloy reported previously. In our LSVs, since the spin transfer torque from one CFS injector to another CFS one is large, the nonlocal magnetoresistance with respect to applied magnetic fields shows large asymmetry in high bias-current conditions. For utilizing multi-terminal spin injection with CFS as a method for magnetization reversals, the terminal arrangement of CFS spin injectors should be taken into account.

  7. Apparatus and method for treating pollutants in a gas using hydrogen peroxide and UV light

    NASA Technical Reports Server (NTRS)

    Cooper, Charles David (Inventor); Clausen, Christian Anthony (Inventor)

    2005-01-01

    An apparatus for treating pollutants in a gas may include a source of hydrogen peroxide, and a treatment injector for creating and injecting dissociated hydrogen peroxide into the flow of gas. The treatment injector may further include an injector housing having an inlet, an outlet, and a hollow interior extending therebetween. The inlet may be connected in fluid communication with the source of hydrogen peroxide so that hydrogen peroxide flows through the hollow interior and toward the outlet. At least one ultraviolet (UV) lamp may be positioned within the hollow interior of the injector housing. The at least one UV lamp may dissociate the hydrogen peroxide flowing through the tube. The dissociated hydrogen peroxide may be injected into the flow of gas from the outlet for treating pollutants, such as nitrogen oxides.

  8. APPARATUS AND METHOD FOR TREATING POLLUTANTS IN A GAS USING HYDROGEN PEROXIDE AND UV LIGHT

    NASA Technical Reports Server (NTRS)

    Cooper, Charles David (Inventor); Clauseu, christian Anthony (Inventor)

    2005-01-01

    An apparatus for treating pollutants in a gas may include a source of hydrogen peroxide, and a treatment injector for creating and injecting dissociated hydrogen peroxide into the flow of gas. The treatment injector may further include an injector housing having an inlet, an outlet, and a hollow interior extending there between. The inlet may be connected in fluid communication with the source of hydrogen peroxide so that hydrogen peroxide flows through the hollow interior and toward the outlet. At least one ultraviolet (UV) lamp may be positioned within the hollow interior of the injector housing. The at least one UV lamp may dissociate the hydrogen peroxide flowing through the tube. The dissociated hydrogen peroxide may be injected into the flow of gas from the outlet for treating pollutants, such as nitrogen oxides.

  9. System for supporting a bundled tube fuel injector within a combustor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    LeBegue, Jeffrey Scott; Melton, Patrick Benedict; Westmoreland, III, James Harold

    A combustor includes an end cover having an outer side and an inner side, an outer barrel having a forward end that is adjacent to the inner side of the end cover and an aft end that is axially spaced from the forward end. An inner barrel is at least partially disposed concentrically within the outer barrel and is fixedly connected to the outer barrel. A fluid conduit extends downstream from the end cover. A first bundled tube fuel injector segment is disposed concentrically within the inner barrel. The bundled tube fuel injector segment includes a fuel plenum that ismore » in fluid communication with the fluid conduit and a plurality of parallel tubes that extend axially through the fuel plenum. The bundled tube fuel injector segment is fixedly connected to the inner barrel.« less

  10. Effect of Injector Geometry on Atomization of a Liquid-Liquid Double Swirl Coaxial Injector Using Non-invasive Laser, Optical and X-ray Techniques

    NASA Technical Reports Server (NTRS)

    Radke, C. R.; Meyer, T. R.

    2014-01-01

    The spray characteristics of a liquid-liquid double swirl coaxial injector were studied using non-invasive optical, laser, and X-ray diagnostics. A parametric study of injector exit geometry demonstrated that spray breakup time, breakup type and sheet stability could be controlled with exit geometry. Phase Doppler interferometry was used to characterize droplet statistics and non-dimensional droplet parameters over a range of inlet conditions and for various fluids allowing for a study on the role of specific fluid properties in atomization. Further, X-ray radiography allowed for investigation of sheet thickness and breakup length to be quantified for different recess exit diameters and inlet pressures. Finally, computed tomography scans revealed that the spray cone was distinctively non-uniform and comprised of several pockets of increased mass flux.

  11. Effect of Injector Geometry on Atomization of a Liquid-Liquid Double Swirl Coaxial Injector using Non-Invasive Laser, Optical and X-ray Techniques

    NASA Technical Reports Server (NTRS)

    Radke, C. R.; Meyer, T. R.

    2014-01-01

    The spray characteristics of a Liquid-Liquid Double Swirl Coaxial Injector were studied using noninvasive Optical, Laser, and X-ray diagnostics. A parametric study of injector exit geometry demonstrated that spray breakup time, breakup type and sheet stability could be controlled with exit geometry. Phase Doppler Particle Analysis characterized droplet statistics and non-dimensional droplet parameters over a range of inlet conditions and for various fluids allowing for a study on the role of specific fluid properties in atomization. Further, x-ray radiographs allowed for investigations of sheet thickness and breakup length to be quantified for different recess exits and inlet pressures. Finally Computed Tomography scans revealed that the spray cone was distinctively non-uniform and comprised of several pockets of increased mass flux.

  12. Effect of Air Swirler Configuration on Lean Direct Injector Flow Structure and Combustion Performance with a 7-Point Lean Direct Injector Array

    NASA Technical Reports Server (NTRS)

    Hicks, Yolanda R.; Tacina, Kathleen M.; Anderson, Robert C.

    2017-01-01

    Studies of various injector configurations in a 7-point Lean Direct Injector (LDI) array are reported for both non-reacting (cold) flow and for Jet-A/air reacting flows. For cold flow, central recirculation zone (CRZ) formation is investigated and for reacting flows, combustor operability and dynamics are of interest. 2D Particle Image Velocimetry (PIV) measurements are described for the cold flow experiments and flame chemiluminescence imaging and dynamic pressure results are discussed for the reacting flow cases. PIV results indicate that for this configuration the close spacing between swirler elements leads to strong interaction that affects whether a CRZ forms, and pilot recess and counter-swirl helps to isolate swirlers from one another. Dynamics results focus on features identified near 500-Hz.

  13. Subcutaneous Interferon β-1a Administration by Electronic Auto-injector is Associated with High Adherence in Patients with Relapsing Remitting Multiple Sclerosis in a Real-life Study.

    PubMed

    Järvinen, Elina; Multanen, Juha; Atula, Sari

    2017-02-20

    The objective was to investigate adherence measured by an electronic auto-injector device, and self-reported adherence and treatment convenience in subjects with relapsing remitting multiple sclerosis (RRMS), using an electronic auto-injector Rebismart ® to self-inject interferon β-1a. Thirty one patients with RRMS using the electronic auto-injector Rebismart ® for self-injecting interferon β-1a subcutaneously three times weekly were included in a real-life clinical multicenter study for 24 weeks in Finland. Mean adherence reported by the device and mean self-assessment of adherence were studied. Reasons for missing injections and treatment convenience were assessed. Association between adherence and gender and age were studied. The mean adherence calculated from the device data was 93.5%. The mean self-assessment of adherence was 96.6%. The most common reason for missing an injection was forget-fulness. Adherence (measured by the device) was not changed over time. In the high adherence group there were more females and young patients (<30 years of age). The auto-injector was found to substantially ease the treatment by 90% of the patients. The electronic auto-injector was associated with high adherence to treatment. The device was found to ease the patient's treatment and it was perceived as easy to use. It is a convenient tool to assess patient's adherence to treatment.

  14. Local Heat Flux Measurements with Single and Small Multi-element Coaxial Element-Injectors

    NASA Technical Reports Server (NTRS)

    Jones, Gregg; Protz, Christopher; Bullard, Brad; Hulka, James

    2006-01-01

    To support NASA's Vision for Space Exploration mission, the NASA Marshall Space Flight Center conducted a program in 2005 to improve the capability to predict local thermal compatibility and heat transfer in liquid propellant rocket engine combustion devices. The ultimate objective was to predict and hence reduce the local peak heat flux due to injector design, resulting in a significant improvement in overall engine reliability and durability. Such analyses are applicable to combustion devices in booster, upper stage, and in-space engines with regeneratively cooled chamber walls, as well as in small thrust chambers with few elements in the injector. In this program, single and three-element injectors were hot-fire tested with liquid oxygen and gaseous hydrogen propellants at The Pennsylvania State University Cryogenic Combustor Laboratory from May to August 2005. Local heat fluxes were measured in a 1-inch internal diameter heat sink combustion chamber using Medtherm coaxial thermocouples and Gardon heat flux gauges, Injector configurations were tested with both shear coaxial elements and swirl coaxial elements. Both a straight and a scarfed single element swirl injector were tested. This paper includes general descriptions of the experimental hardware, instrumentation, and results of the hot-fire testing for three coaxial shear and swirl elements. Detailed geometry and test results the for shear coax elements has already been published. Detailed test result for the remaining 6 swirl coax element for the will be published in a future JANNAF presentation to provide well-defined data sets for development and model validation.

  15. Radiation Safety System for SPIDER Neutral Beam Accelerator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sandri, S.; Poggi, C.; Coniglio, A.

    2011-12-13

    SPIDER (Source for Production of Ion of Deuterium Extracted from RF Plasma only) and MITICA (Megavolt ITER Injector Concept Advanced) are the ITER neutral beam injector (NBI) testing facilities of the PRIMA (Padova Research Injector Megavolt Accelerated) Center. Both injectors accelerate negative deuterium ions with a maximum energy of 1 MeV for MITICA and 100 keV for SPIDER with a maximum beam current of 40 A for both experiments. The SPIDER facility is classified in Italy as a particle accelerator. At present, the design of the radiation safety system for the facility has been completed and the relevant reports havemore » been presented to the Italian regulatory authorities. Before SPIDER can operate, approval must be obtained from the Italian Regulatory Authority Board (IRAB) following a detailed licensing process. In the present work, the main project information and criteria for the SPIDER injector source are reported together with the analysis of hypothetical accidental situations and safety issues considerations. Neutron and photon nuclear analysis is presented, along with special shielding solutions designed to meet Italian regulatory dose limits. The contribution of activated corrosion products (ACP) to external exposure of workers has also been assessed. Nuclear analysis indicates that the photon contribution to worker external exposure is negligible, and the neutron dose can be considered by far the main radiation protection issue. Our results confirm that the injector has no important radiological impact on the population living around the facility.« less

  16. Evaluation of friction heating in cavitating high pressure Diesel injector nozzles

    NASA Astrophysics Data System (ADS)

    Salemi, R.; Koukouvinis, P.; Strotos, G.; McDavid, R.; Wang, Lifeng; Li, Jason; Marengo, M.; Gavaises, M.

    2015-12-01

    Variation of fuel properties occurring during extreme fuel pressurisation in Diesel fuel injectors relative to those under atmospheric pressure and room temperature conditions may affect significantly fuel delivery, fuel injection temperature, injector durability and thus engine performance. Indicative results of flow simulations during the full injection event of a Diesel injector are presented. In addition to the Navier-Stokes equations, the enthalpy conservation equation is considered for predicting the fuel temperature. Cavitation is simulated using an Eulerian-Lagrangian cavitation model fully coupled with the flow equations. Compressible bubble dynamics based on the R-P equation also consider thermal effects. Variable fuel properties function of the local pressure and temperature are taken from literature and correspond to a reference so-called summer Diesel fuel. Fuel pressurisation up to 3000bar pressure is considered while various wall temperature boundary conditions are tested in order to compare their effect relative to those of the fuel heating caused during the depressurisation of the fuel as it passes through the injection orifices. The results indicate formation of strong temperature gradients inside the fuel injector while heating resulting from the extreme friction may result to local temperatures above the fuel's boiling point. Predictions indicate bulk fuel temperature increase of more than 100°C during the opening phase of the needle valve. Overall, it is concluded that such effects are significant for the injector performance and should be considered in relevant simulation tools.

  17. Hot-Fire Test Results of an Oxygen/RP-2 Multi-Element Oxidizer-Rich Staged-Combustion Integrated Test Article

    NASA Technical Reports Server (NTRS)

    Hulka, J. R.; Protz, C. S.; Garcia, C. P.; Casiano, M. J.; Parton, J. A.

    2016-01-01

    As part of the Combustion Stability Tool Development project funded by the Air Force Space and Missile Systems Center, the NASA Marshall Space Flight Center was contracted to assemble and hot-fire test a multi-element integrated test article demonstrating combustion characteristics of an oxygen/hydrocarbon propellant oxidizer-rich staged-combustion engine thrust chamber. Such a test article simulates flow through the main injectors of oxygen/kerosene oxidizer-rich staged combustion engines such as the Russian RD-180 or NK-33 engines, or future U.S.-built engine systems such as the Aerojet-Rocketdyne AR-1 engine or the Hydrocarbon Boost program demonstration engine. For the thrust chamber assembly of the test article, several configurations of new main injectors, using relatively conventional gas-centered swirl coaxial injector elements, were designed and fabricated. The design and fabrication of these main injectors are described in a companion paper at this JANNAF meeting. New ablative combustion chambers were fabricated based on hardware previously used at NASA for testing at similar size and pressure. An existing oxygen/RP-1 oxidizer-rich subscale preburner injector from a previous NASA-funded program, along with existing and new inter-connecting hot gas duct hardware, were used to supply the oxidizer-rich combustion products to the oxidizer circuit of the main injector of the thrust chamber. Results from independent hot-fire tests of the preburner injector in a combustion chamber with a sonic throat are described in companion papers at this JANNAF conference. The resulting integrated test article - which includes the preburner, inter-connecting hot gas duct, main injector, and ablative combustion chamber - was assembled at Test Stand 116 at the East Test Area of the NASA Marshall Space Flight Center. The test article was well instrumented with static and dynamic pressure, temperature, and acceleration sensors to allow the collected data to be used for combustion analysis model development. Hot-fire testing was conducted with main combustion chamber pressures ranging from 1400 to 2100 psia, and main combustion chamber mixture ratios ranging from 2.4 to 2.9. Different levels of fuel film cooling injected from the injector face were examined ranging from none to about 12% of the total fuel flow. This paper presents the hot-fire test results of the integrated test article. Combustion performance, stability, thermal, and compatibility characteristics of both the preburner and the thrust chamber are described. Another companion paper at this JANNAF meeting includes additional and more detailed test data regarding the combustion dynamics and stability characteristics.

  18. Combustion Stability Characteristics of the Project Morpheus Liquid Oxygen/Liquid Methane Main Engine

    NASA Technical Reports Server (NTRS)

    Melcher, J. C.; Morehead, Robert L.

    2014-01-01

    The Project Morpheus liquid oxygen (LOX) / liquid methane rocket engines demonstrated acousticcoupled combustion instabilities during sea-level ground-based testing at the NASA Johnson Space Center (JSC) and Stennis Space Center (SSC). High-amplitude, 1T, 1R, 1T1R (and higher order) modes appear to be triggered by injector conditions. The instability occurred during the Morpheus-specific engine ignition/start sequence, and did demonstrate the capability to propagate into mainstage. However, the instability was never observed to initiate during mainstage, even at low power levels. The Morpheus main engine is a JSC-designed 5,000 lbf-thrust, 4:1 throttling, pressure-fed cryogenic engine using an impinging element injector design. Two different engine designs, named HD4 and HD5, and two different builds of the HD4 engine all demonstrated similar instability characteristics. Through the analysis of more than 200 hot fire tests on the Morpheus vehicle and SSC test stand, a relationship between ignition stability and injector/chamber pressure was developed. The instability has the distinct characteristic of initiating at high relative injection pressure drop (dP) at low chamber pressure (Pc); i.e., instabilities initiated at high dP/Pc at low Pc during the start sequence. The high dP/Pc during start results during the injector /chamber chill-in, and is enhanced by hydraulic flip in the injector orifice elements. Because of the fixed mixture ratio of the existing engine design (the main valves share a common actuator), it is not currently possible to determine if LOX or methane injector dP/Pc were individual contributors (i.e., LOX and methane dP/Pc typically trend in the same direction within a given test). The instability demonstrated initiation characteristic of starting at or shortly after methane injector chillin. Colder methane (e.g., sub-cooled) at the injector inlet prior to engine start was much more likely to result in an instability. A secondary effect of LOX sub-cooling was also possibly observed; greater LOX sub- cooling improved stability. Some tests demonstrated a low-amplitude 1L-1T instability prior to LOX injector chill-in. The Morpheus main engine also demonstrated chug instabilities during some engine shutdown sequences on the flight vehicle and SSC test stand. The chug instability was also infrequently observed during the startup sequence. The chug instabilities predictably initiated at low dP/Pc at low Pc. The chug instabilities were always self-limiting; startup chug instabilities terminated during throttle-up and shutdown chug instabilities decayed by shutdown termination.

  19. Design and Fabrication of Oxygen/RP-2 Multi-Element Oxidizer-Rich Staged Combustion Thrust Chamber Injectors

    NASA Technical Reports Server (NTRS)

    Garcia, C. P.; Medina, C. R.; Protz, C. S.; Kenny, R. J.; Kelly, G. W.; Casiano, M. J.; Hulka, J. R.; Richardson, B. R.

    2016-01-01

    As part of the Combustion Stability Tool Development project funded by the Air Force Space and Missile Systems Center, the NASA Marshall Space Flight Center was contracted to assemble and hot-fire test a multi-element integrated test article demonstrating combustion characteristics of an oxygen/hydrocarbon propellant oxidizer-rich staged-combustion engine thrust chamber. Such a test article simulates flow through the main injectors of oxygen/kerosene oxidizer-rich staged combustion engines such as the Russian RD-180 or NK-33 engines, or future U.S.-built engine systems such as the Aerojet-Rocketdyne AR-1 engine or the Hydrocarbon Boost program demonstration engine. On the current project, several configurations of new main injectors were considered for the thrust chamber assembly of the integrated test article. All the injector elements were of the gas-centered swirl coaxial type, similar to those used on the Russian oxidizer-rich staged-combustion rocket engines. In such elements, oxidizer-rich combustion products from the preburner/turbine exhaust flow through a straight tube, and fuel exiting from the combustion chamber and nozzle regenerative cooling circuits is injected near the exit of the oxidizer tube through tangentially oriented orifices that impart a swirl motion such that the fuel flows along the wall of the oxidizer tube in a thin film. In some elements there is an orifice at the inlet to the oxidizer tube, and in some elements there is a sleeve or "shield" inside the oxidizer tube where the fuel enters. In the current project, several variations of element geometries were created, including element size (i.e., number of elements or pattern density), the distance from the exit of the sleeve to the injector face, the width of the gap between the oxidizer tube inner wall and the outer wall of the sleeve, and excluding the sleeve entirely. This paper discusses the design rationale for each of these element variations, including hydraulic, structural, thermal, combustion performance, and combustion stability considerations. This paper also discusses the fabrication and assembly of the injector components, including the injector body/interpropellant plate, the additive manufactured GRCop-84 faceplate, and the pieces that make up the injector elements including the oxidizer tube, an inlet to the oxidizer tube, and a facenut that includes the fuel tangential inlets and forms the initial recessed volume where oxidizer and fuel first interact. Hot-fire test results of these main injector designs in an integrated test article that includes an oxidizer-rich preburner are described in companion papers at this JANNAF meeting.

  20. Passive margins getting squeezed in the mantle convection vice

    NASA Astrophysics Data System (ADS)

    Husson, Laurent; Yamato, Philippe; Becker, Thorsten; Pedoja, Kevin

    2013-04-01

    Quaternary coastal geomorphology reveals that passive margins underwent wholesale uplift at least during the glacial cycle. In addition, these not-so-passive margins often exhibit long term exhumation and tectonic inversion, which suggest that compression and tectonic shortening could be the mechanism that triggers their overall uplift. We speculate that the compression in the lithosphere gradually increased during the Cenozoic. The many mountain belts at active margins that accompany this event readily witness this increase. Less clear is how that compression increase affects passive margins. In order to address this issue, we design minimalist 2D viscous models to quantify the impact of plate collision on the stress regime. In these models, a sluggish plate is disposed on a less viscous mantle. It is driven by a "mantle conveyor belt" alternatively excited by lateral shear stresses that represent a downwelling on one side, an upwelling on the other side, or both simultaneously. The lateral edges of the plate are either free or fixed, respectively representing the cases of free convergence and collision. In practice, it dramatically changes the upper boundary condition for mantle circulation and subsequently, for the stress field. The flow pattern transiently evolves almost between two end-members, starting from a situation close to a Couette flow to a pattern that looks like a Poiseuille flow with an almost null velocity at the surface (though in the models, the horizontal velocity at the surface is not strictly null, as the lithosphere deforms). In the second case, the lithosphere is highly stressed horizontally and deforms. For an equivalent bulk driving force, compression increases drastically at passive margins if upwellings are active because they push plates towards the collision. Conversely, if only downwellings are activated, compression occurs on one half of the plate and extension on the other half, because only the downwelling is pulling the plate. Thus, active upwellings underneath oceanic plates are required to explain compression at passive margins. This conclusion is corroborated by "real-Earth" 3D spherical models, wherein the flow is alternatively driven by density anomalies inferred from seismic tomography -and therefore include both downwellings at subduction zones and upwellings above the superswells- and density anomalies that correspond to subducting slabs only. While the second scenario mostly compresses the active margins of upper plates and leave other areas at rest, the first scenario efficiently compresses passive margins where the geological record reveals their uplift, exhumation, and tectonic inversion.

  1. A Robot-Driven Computational Model for Estimating Passive Ankle Torque With Subject-Specific Adaptation.

    PubMed

    Zhang, Mingming; Meng, Wei; Davies, T Claire; Zhang, Yanxin; Xie, Sheng Q

    2016-04-01

    Robot-assisted ankle assessment could potentially be conducted using sensor-based and model-based methods. Existing ankle rehabilitation robots usually use torquemeters and multiaxis load cells for measuring joint dynamics. These measurements are accurate, but the contribution as a result of muscles and ligaments is not taken into account. Some computational ankle models have been developed to evaluate ligament strain and joint torque. These models do not include muscles and, thus, are not suitable for an overall ankle assessment in robot-assisted therapy. This study proposed a computational ankle model for use in robot-assisted therapy with three rotational degrees of freedom, 12 muscles, and seven ligaments. This model is driven by robotics, uses three independent position variables as inputs, and outputs an overall ankle assessment. Subject-specific adaptations by geometric and strength scaling were also made to allow for a universal model. This model was evaluated using published results and experimental data from 11 participants. Results show a high accuracy in the evaluation of ligament neutral length and passive joint torque. The subject-specific adaptation performance is high, with each normalized root-mean-square deviation value less than 10%. This model could be used for ankle assessment, especially in evaluating passive ankle torque, for a specific individual. The characteristic that is unique to this model is the use of three independent position variables that can be measured in real time as inputs, which makes it advantageous over other models when combined with robot-assisted therapy.

  2. Propulsion by passive filaments and active flagella near boundaries.

    PubMed

    Evans, Arthur A; Lauga, Eric

    2010-10-01

    Confinement and wall effects are known to affect the kinematics and propulsive characteristics of swimming microorganisms. When a solid body is dragged through a viscous fluid at constant velocity, the presence of a wall increases fluid drag, and thus the net force required to maintain speed has to increase. In contrast, recent optical trapping experiments have revealed that the propulsive force generated by human spermatozoa is decreased by the presence of boundaries. Here, we use a series of simple models to analytically elucidate the propulsive effects of a solid boundary on passively actuated filaments and model flagella. For passive flexible filaments actuated periodically at one end, the presence of the wall is shown to increase the propulsive forces generated by the filaments in the case of displacement-driven actuation, while it decreases the force in the case of force-driven actuation. In the case of active filaments as models for eukaryotic flagella, we demonstrate that the manner in which a solid wall affects propulsion cannot be known a priori, but is instead a nontrivial function of the flagellum frequency, wavelength, its material characteristics, the manner in which the molecular motors self-organize to produce oscillations (prescribed activity model or self-organized axonemal beating model), and the boundary conditions applied experimentally to the tethered flagellum. In particular, we show that in some cases, the increase in fluid friction induced by the wall can lead to a change in the waveform expressed by the flagella, which results in a decrease in their propulsive force.

  3. Single element injector cold flow testing for STME swirl coaxial injector element design

    NASA Technical Reports Server (NTRS)

    Hulka, J.; Schneider, J. A.

    1993-01-01

    An oxidizer-swirled coaxial element injector is being investigated for application in the Space Transportation Main Engine (STME). Single element cold flow experiments were conducted to provide characterization of the STME injector element for future analysis, design, and optimization. All tests were conducted to quiescent, ambient backpressure conditions. Spray angle, circumferential spray uniformity, dropsize, and dropsize distribution were measured in water-only and water/nitrogen flows. Rupe mixing efficiency was measured using water/sucrose solution flows with a large grid patternator for simple comparative evaluation of mixing. Factorial designs of experiment were used for statistical evaluation of injector geometrical design features and propellant flow conditions on mixing and atomization. Increasing the free swirl angle of the liquid oxidizer had the greatest influence on increasing the mixing efficiency. The addition of gas assistance had the most significant effect on reducing oxidizer droplet size parameters and increasing droplet size distribution. Increasing the oxidizer injection velocity had the greatest influence for reducing oxidizer droplet size parameters and increasing size distribution for non-gas assisted flows. Single element and multi-element subscale hot fire testing are recommended to verify optimized designs before committing to the STME design.

  4. Design of a compact all-permanent magnet ECR ion source injector for ReA at the MSU NSCL

    NASA Astrophysics Data System (ADS)

    Pham, Alfonse N.; Leitner, Daniela; Glennon, Patrick; Ottarson, Jack; Lawton, Don; Portillo, Mauricio; Machicoane, Guillaume; Wenstrom, John; Lajoie, Andrew

    2016-06-01

    The design of a compact all-permanent magnet electron cyclotron resonance (ECR) ion source injector for the ReAccelerator Facility (ReA) at the Michigan State University (MSU) National Superconducting Cyclotron Laboratory (NSCL) is currently being carried out. The ECR ion source injector will complement the electron beam ion trap (EBIT) charge breeder as an off-line stable ion beam injector for the ReA linac. The objective of the ECR ion source injector is to provide continuous-wave beams of heavy ions from hydrogen to masses up to 136Xe within the ReA charge-to-mass ratio (Q / A) operational range from 0.2 to 0.5. The ECR ion source will be mounted on a high-voltage platform that can be adjusted to obtain the required 12 keV/u injection energy into a room temperature radio-frequency quadrupole (RFQ) for further acceleration. The beam line consists of a 30 kV tetrode extraction system, mass analyzing section, and optical matching section for injection into the existing ReA low energy beam transport (LEBT) line. The design of the ECR ion source and the associated beam line are discussed.

  5. Development And Characterization Of A Liner-On-Target Injector For Staged Z-Pinch Experiments

    NASA Astrophysics Data System (ADS)

    Valenzuela, J. C.; Conti, F.; Krasheninnikov, I.; Narkis, J.; Beg, F.; Wessel, F. J.; Rahman, H. U.

    2016-10-01

    We present the design and optimization of a liner-on-target injector for Staged Z-pinch experiments. The injector is composed of an annular high atomic number (e.g. Ar, Kr) gas-puff and an on-axis plasma gun that delivers the ionized deuterium target. The liner nozzle injector has been carefully studied using Computational Fluid Dynamics (CFD) simulations to produce a highly collimated 1 cm radius gas profile that satisfies the theoretical requirement for best performance on the 1 MA Zebra current driver. The CFD simulations produce density profiles as a function of the nozzle shape and gas. These profiles are initialized in the MHD MACH2 code to find the optimal liner density for a stable, uniform implosion. We use a simple Snowplow model to study the plasma sheath acceleration in a coaxial plasma gun to help us properly design the target injector. We have performed line-integrated density measurements using a CW He-Ne laser to characterize the liner gas and the plasma gun density as a function of time. The measurements are compared with models and calculations and benchmarked accordingly. Advanced Research Projects Agency - Energy, DE-AR0000569.

  6. High Power Hydrogen Injector with Beam Focusing for Plasma Heating

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deichuli, P.P.; Ivanov, A.A.; Korepanov, S.A.

    2005-01-15

    High power neutral beam injector has been developed with the atom energy of 25 keV, a current of 60 A, and several milliseconds pulse duration. Six of these injectors will be used for upgrade of the atomic injection system at central cell of a Gas Dynamic Trap (GDT) device and 2 injectors are planned for SHIP experiment.The injector ion source is based on an arc discharge plasma box. The plasma emitter is produced by a 1 kA arc discharge in hydrogen. A multipole magnetic field produced with permanent magnets at the periphery of the plasma box is used to increasemore » its efficiency and improve homogeneity of the plasma emitter. The ion beam is extracted by a 4-electrodes ion optical system (IOS). Initial beam diameter is 200 mm. The grids of the IOS have a spherical curvature for geometrical focusing of the beam. The optimal IOS geometry and grid potentials were found with the numerical simulation to provide precise beam formation. The measured angular divergence of the beam is 0.02 rad, which corresponds to the 2.5 cm Gaussian radius of the beam profile measured at focal point.« less

  7. Recent high-speed ballistics experiments at ORNL

    NASA Astrophysics Data System (ADS)

    Combs, S. K.; Gouge, M. J.; Baylor, L. R.; Fisher, P. W.; Foster, C. A.; Foust, C. R.; Milora, S. L.; Qualls, A. L.

    Oak Ridge National Laboratory (ORNL) has been developing pellet injectors for plasma fueling experiments on magnetic confinement devices for almost 20 years. With these devices, pellets (1 to 8 mm in diameter) composed of hydrogen isotopes are formed (at temperatures less than 20 K) and typically accelerated to speeds of (approximately) 1.0 to 2.0 km/s for injection into plasmas of experimental fusion devices. A variety of pellet injector designs have been developed at ORNL, including repeating pneumatic injectors (single- and multiple-barrel light gas guns) that can inject up to hundreds of pellets for long-pulse plasma operation. The repeating pneumatic injectors are of particular importance because long-pulse fueling is required for present large experimental fusion devices, with steady-state operation the objective for future fusion reactors. In this paper, recent advancements in the development of repeating pneumatic injectors are described, including (1) a small-bore (1.8-mm), high-firing-rate (10-Hz) version of a single-stage light gas gun; (2) a repeating single-stage light gas gun for 8-mm-diam tritium pellets; (3) a repeating two-stage light gas gun for operation at higher pellet velocities; and (4) a steady-state hydrogen extruder feed system.

  8. Verification on spray simulation of a pintle injector for liquid rocket engine

    NASA Astrophysics Data System (ADS)

    Son, Min; Yu, Kijeong; Radhakrishnan, Kanmaniraja; Shin, Bongchul; Koo, Jaye

    2016-02-01

    The pintle injector used for a liquid rocket engine is a newly re-attracted injection system famous for its wide throttle ability with high efficiency. The pintle injector has many variations with complex inner structures due to its moving parts. In order to study the rotating flow near the injector tip, which was observed from the cold flow experiment using water and air, a numerical simulation was adopted and a verification of the numerical model was later conducted. For the verification process, three types of experimental data including velocity distributions of gas flows, spray angles and liquid distribution were all compared using simulated results. The numerical simulation was performed using a commercial simulation program with the Eulerian multiphase model and axisymmetric two dimensional grids. The maximum and minimum velocities of gas were within the acceptable range of agreement, however, the spray angles experienced up to 25% error when the momentum ratios were increased. The spray density distributions were quantitatively measured and had good agreement. As a result of this study, it was concluded that the simulation method was properly constructed to study specific flow characteristics of the pintle injector despite having the limitations of two dimensional and coarse grids.

  9. Recent high-speed ballistics experiments at ORNL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Combs, S.K.; Gouge, M.J.; Baylor, L.R.

    1994-12-31

    Oak Ridge National Laboratory (ORNL) has been developing pellet injectors for plasma fueling experiments on magnetic confinement devices for almost 20 years. With these devices, pellets (1 to 8 mm in diameter) composed of hydrogen isotopes are formed (at temperatures <20 K) and typically accelerated to speeds of {approximately} 1.0 to 2.0 km/s for injection into plasmas of experimental fusion devices. A variety of pellet injector designs have been developed at ORNL, including repeating pneumatic injectors (single- and multiple-barrel light gas guns) that can inject up to hundreds of pellets for long-pulse plasma operation. The repeating pneumatic injectors are ofmore » particular importance because long-pulse fueling is required for present large experimental fusion devices, with steady-state operation the objective for future fusion reactors. In this paper, recent advancements in the development of repeating pneumatic injectors are described, including (1) a small-bore (1.8-mm), high-firing-rate (10-Hz) version of a single-stage light gas gun; (2) a repeating single-stage light gas gun for 8-mm-diam tritium pellets; (3) a repeating two-stage light gas gun for operation at higher pellet velocities; and (4) a steady-state hydrogen extruder feed system.« less

  10. Interior flow and near-nozzle spray development in a marine-engine diesel fuel injector

    NASA Astrophysics Data System (ADS)

    Hult, J.; Simmank, P.; Matlok, S.; Mayer, S.; Falgout, Z.; Linne, M.

    2016-04-01

    A consolidated effort at optically characterising flow patterns, in-nozzle cavitation, and near-nozzle jet structure of a marine diesel fuel injector is presented. A combination of several optical techniques was employed to fully transparent injector models, compound metal-glass and full metal injectors. They were all based on a common real-scale dual nozzle hole geometry for a marine two-stroke diesel engine. In a stationary flow rig, flow velocities in the sac-volume and nozzle holes were measured using PIV, and in-nozzle cavitation visualized using high-resolution shadowgraphs. The effect of varying cavitation number was studied and results compared to CFD predictions. In-nozzle cavitation and near-nozzle jet structure during transient operation were visualized simultaneously, using high-speed imaging in an atmospheric pressure spray rig. Near-nozzle spray formation was investigated using ballistic imaging. Finally, the injector geometry was tested on a full-scale marine diesel engine, where the dynamics of near-nozzle jet development was visualized using high-speed shadowgraphy. The range of studies focused on a single common geometry allows a comprehensive survey of phenomena ranging from first inception of cavitation under well-controlled flow conditions to fuel jet structure at real engine conditions.

  11. Evaluating Swine Injection Technologies as a Workplace Musculoskeletal Injury Intervention: A Study Protocol

    PubMed Central

    Bath, Brenna; Milosavljevic, Stephan; Kociolek, Aaron M.; Predicala, Bernardo; Penz, Erika; Adebayo, Olugbenga; Whittington, Lee

    2017-01-01

    Intensification of modern swine production has led to many new technologies, including needleless injectors. Although needleless injectors may increase productivity (by reducing injection time) and reduce needlestick injuries, the effect on risk for musculoskeletal disorders is not clear. This project will compare conventional needles with needleless injectors in terms of cost, productivity, injury rates, biomechanical exposures, and worker preference. Muscle activity (EMG) and hand/wrist posture will be measured on swine workers performing injection tasks with both injection methods. Video recordings during the exposure assessments will compare the duration and productivity for each injection method using time-and-motion methods. Injury claim data from up to 60 pig barns will be analyzed for needlestick and musculoskeletal injuries before/after needleless injector adoption. Workers and managers will be asked about what they like and dislike about each method and what helps and hinders successful implementation. The information above will be input into a cost-benefit model to determine the incremental effects of needleless injectors in terms of occupational health, worker preference, and the financial “bottom line” of the farm. Findings will be relevant to the swine industry and are intended to be transferable to other new technologies in animal production. PMID:29214171

  12. Evaluating Swine Injection Technologies as a Workplace Musculoskeletal Injury Intervention: A Study Protocol.

    PubMed

    Trask, Catherine; Bath, Brenna; Milosavljevic, Stephan; Kociolek, Aaron M; Predicala, Bernardo; Penz, Erika; Adebayo, Olugbenga; Whittington, Lee

    2017-01-01

    Intensification of modern swine production has led to many new technologies, including needleless injectors. Although needleless injectors may increase productivity (by reducing injection time) and reduce needlestick injuries, the effect on risk for musculoskeletal disorders is not clear. This project will compare conventional needles with needleless injectors in terms of cost, productivity, injury rates, biomechanical exposures, and worker preference. Muscle activity (EMG) and hand/wrist posture will be measured on swine workers performing injection tasks with both injection methods. Video recordings during the exposure assessments will compare the duration and productivity for each injection method using time-and-motion methods. Injury claim data from up to 60 pig barns will be analyzed for needlestick and musculoskeletal injuries before/after needleless injector adoption. Workers and managers will be asked about what they like and dislike about each method and what helps and hinders successful implementation. The information above will be input into a cost-benefit model to determine the incremental effects of needleless injectors in terms of occupational health, worker preference, and the financial "bottom line" of the farm. Findings will be relevant to the swine industry and are intended to be transferable to other new technologies in animal production.

  13. Flow visualization of a rocket injector spray using gelled propellant simulants

    NASA Technical Reports Server (NTRS)

    Green, James M.; Rapp, Douglas C.; Roncace, James

    1991-01-01

    A study was conducted at NASA-Lewis to compare the atomization characteristics of gelled and nongelled propellant simulants. A gelled propellant simulant composed of water, sodium hydroxide, and an acrylic acid polymer resin (as the gelling agent) was used to simulate the viscosity of an aluminum/PR-1 metallized fuel gel. Water was used as a comparison fluid to isolate the rheological effects of the water-gel and to simulate nongelled RP-1. The water-gel was injected through the central orifice of a triplet injector element and the central post of a coaxial injector element. Nitrogen gas flowed through the outer orifices of the triplet injector element and through the annulus of the coaxial injector element and atomized the gelled and nongelled liquids. Photographs of the water-gel spray patterns at different operating conditions were compared with images obtained using water and nitrogen. A laser light was used for illumination of the sprays. The results of the testing showed that the water sprays produced a finer and more uniform atomization than the water-gel sprays. Rheological analysis of the water-gel showed poor atomization caused by high viscosity of water-gel delaying the transition to turbulence.

  14. Molten metal injector system and method

    DOEpatents

    Meyer, Thomas N.; Kinosz, Michael J.; Bigler, Nicolas; Arnaud, Guy

    2003-04-01

    Disclosed is a molten metal injector system including a holder furnace, a casting mold supported above the holder furnace, and a molten metal injector supported from a bottom side of the mold. The holder furnace contains a supply of molten metal having a metal oxide film surface. The bottom side of the mold faces the holder furnace. The mold defines a mold cavity for receiving the molten metal from the holder furnace. The injector projects into the holder furnace and is in fluid communication with the mold cavity. The injector includes a piston positioned within a piston cavity defined by a cylinder for pumping the molten metal upward from the holder furnace and injecting the molten metal into the mold cavity under pressure. The piston and cylinder are at least partially submerged in the molten metal when the holder furnace contains the molten metal. The cylinder further includes a molten metal intake for receiving the molten metal into the piston cavity. The molten metal intake is located below the metal oxide film surface of the molten metal when the holder furnace contains the molten metal. A method of injecting molten metal into a mold cavity of a casting mold is also disclosed.

  15. Numerical simulation of internal and near-nozzle flow of a gasoline direct injection fuel injector

    NASA Astrophysics Data System (ADS)

    Saha, Kaushik; Som, Sibendu; Battistoni, Michele; Li, Yanheng; Quan, Shaoping; Senecal, Peter Kelly

    2015-12-01

    A numerical study of two-phase flow inside the nozzle holes and the issuing spray jets for a multi-hole direct injection gasoline injector has been presented in this work. The injector geometry is representative of the Spray G nozzle, an eight-hole counterbore injector, from, the Engine Combustion Network (ECN). Simulations have been carried out for the fixed needle lift. Effects of turbulence, compressibility and, non-condensable gases have been considered in this work. Standard k—ɛ turbulence model has been used to model the turbulence. Homogeneous Relaxation Model (HRM) coupled with Volume of Fluid (VOF) approach has been utilized to capture the phase change phenomena inside and outside the injector nozzle. Three different boundary conditions for the outlet domain have been imposed to examine non-flashing and evaporative, non-flashing and non-evaporative, and flashing conditions. Inside the nozzle holes mild cavitation-like and in the near-nozzle region flash boiling phenomena have been predicted in this study when liquid fuel is subjected to superheated ambiance. Noticeable hole to hole variation has been also observed in terms of mass flow rates for all the holes under both flashing and non-flashing conditions.

  16. High-pressure LOX/CH4 injector program

    NASA Technical Reports Server (NTRS)

    Wheeler, D. B.; Kirby, F. M.

    1979-01-01

    Two injector types, either coaxial or impinging elements, for high pressure LOX/CH4 operation with an existing 40K chamber are examined. A comparison is presented. The detailed fabrication drawings and supporting analysis are presented.

  17. Beam collimation and energy spectrum compression of laser-accelerated proton beams using solenoid field and RF cavity

    NASA Astrophysics Data System (ADS)

    Teng, J.; Gu, Y. Q.; Zhu, B.; Hong, W.; Zhao, Z. Q.; Zhou, W. M.; Cao, L. F.

    2013-11-01

    This paper presents a new method of laser produced proton beam collimation and spectrum compression using a combination of a solenoid field and a RF cavity. The solenoid collects laser-driven protons efficiently within an angle that is smaller than 12 degrees because it is mounted few millimeters from the target, and collimates protons with energies around 2.3 MeV. The collimated proton beam then passes through a RF cavity to allow compression of the spectrum. Particle-in-cell (PIC) simulations demonstrate the proton beam transport in the solenoid and RF electric fields. Excellent energy compression and collection efficiency of protons are presented. This method for proton beam optimization is suitable for high repetition-rate laser acceleration proton beams, which could be used as an injector for a conventional proton accelerator.

  18. Hydrodynamic Capture and Release of Passively Driven Particles by Active Particles Under Hele-Shaw Flows

    NASA Astrophysics Data System (ADS)

    Mishler, Grant; Tsang, Alan Cheng Hou; Pak, On Shun

    2018-03-01

    The transport of active and passive particles plays central roles in diverse biological phenomena and engineering applications. In this paper, we present a theoretical investigation of a system consisting of an active particle and a passive particle in a confined micro-fluidic flow. The introduction of an external flow is found to induce the capture of the passive particle by the active particle via long-range hydrodynamic interactions among the particles. This hydrodynamic capture mechanism relies on an attracting stable equilibrium configuration formed by the particles, which occurs when the external flow intensity exceeds a certain threshold. We evaluate this threshold by studying the stability of the equilibrium configurations analytically and numerically. Furthermore, we study the dynamics of typical capture and non-capture events and characterize the basins of attraction of the equilibrium configurations. Our findings reveal a critical dependence of the hydrodynamic capture mechanism on the external flow intensity. Through adjusting the external flow intensity across the stability threshold, we demonstrate that the active particle can capture and release the passive particle in a controllable manner. Such a capture-and-release mechanism is desirable for biomedical applications such as the capture and release of therapeutic payloads by synthetic micro-swimmers in targeted drug delivery.

  19. Dual mode fuel injector with one piece needle valve member

    DOEpatents

    Lawrence, Keith E.; Hinrichsen, Michael H.; Buckman, Colby

    2005-01-18

    A fuel injector includes a homogenous charge nozzle outlet set and a conventional nozzle outlet set controlled respectively by inner and outer needle value members. The homogenous charged nozzle outlet set is defined by an outer needle value member that is moveably positioned in an injector body, which defines the conventional nozzle outlet set. The inner needle valve member is positioned in the outer needle valve member. The outer needle valve member is a piece component that includes at least one external guide surface, an external value surface and an internal valve seat.

  20. Analytical and experimental validation of the Oblique Detonation Wave Engine concept

    NASA Technical Reports Server (NTRS)

    Adelman, Henry G.; Cambier, Jean-Luc; Menees, Gene P.; Balboni, John A.

    1988-01-01

    The Oblique Detonation Wave Engine (ODWE) for hypersonic flight has been analytically studied by NASA using the CFD codes which fully couple finite rate chemistry with fluid dynamics. Fuel injector designs investigated included wall and strut injectors, and the in-stream strut injectors were chosen to provide good mixing with minimal stagnation pressure losses. Plans for experimentally validating the ODWE concept in an arc-jet hypersonic wind tunnel are discussed. Measurements of the flow field properties behind the oblique wave will be compared to analytical predictions.

  1. Flow conditioner for fuel injector for combustor and method for low-NO.sub.x combustor

    DOEpatents

    Dutta, Partha; Smith, Kenneth O.; Ritz, Frank J.

    2013-09-10

    An injector for a gas turbine combustor including a catalyst coated surface forming a passage for feed gas flow and a channel for oxidant gas flow establishing an axial gas flow through a flow conditioner disposed at least partially within an inner wall of the injector. The flow conditioner includes a length with an interior passage opening into upstream and downstream ends for passage of the axial gas flow. An interior diameter of the interior passage smoothly reduces and then increases from upstream to downstream ends.

  2. Experimental study of cleaning aircraft GTE fuel injectors using a vortex ejector

    NASA Astrophysics Data System (ADS)

    Evdokimov, O. A.; Piralishvili, Sh A.; Veretennikov, S. V.; Elkes, A. A.

    2017-11-01

    The main ways of cleaning the fuel injectors and the circuits of jet and vortex ejectors used for pumping gas, liquid and two-phase media, as well as for evacuation of enclosed spaces are analyzed. The possibility of organizing the process of pumping the liquid out of the fuel injection manifold secondary circuit using a vortex ejector is shown experimentally. The regimes of manifold evacuation at various inlet liquid pressure values are studied. The technology of carbon cleaning fuel injectors using a washing liquid at various working process parameters is tested.

  3. Study of effects of injector geometry on fuel-air mixing and combustion

    NASA Technical Reports Server (NTRS)

    Bangert, L. H.; Roach, R. L.

    1977-01-01

    An implicit finite-difference method has been developed for computing the flow in the near field of a fuel injector as part of a broader study of the effects of fuel injector geometry on fuel-air mixing and combustion. Detailed numerical results have been obtained for cases of laminar and turbulent flow without base injection, corresponding to the supersonic base flow problem. These numerical results indicated that the method is stable and convergent, and that significant savings in computer time can be achieved, compared with explicit methods.

  4. Analysis and Evaluation of German Attainments and Research in the Liquid Rocket Engine Field. Volume 4. Propellant Injectors

    DTIC Science & Technology

    1951-02-01

    they were ob- served at a given pressure drop in "cold" testing with water or unreacted propellants. heat-transfer considerations and the location of... water as a coolant in the main chamber. The Winkler injector was used.on a test unit developing a thrust of 220 lb and an exhaust ve- locity of 6370 ft... water . Provision was made for an igniter in the center of the injector. The relatively high performance reported for this unit does not seem to be

  5. Passive stimulation and behavioral training differentially transform temporal processing in the inferior colliculus and primary auditory cortex

    PubMed Central

    Beitel, Ralph E.; Schreiner, Christoph E.; Leake, Patricia A.

    2016-01-01

    In profoundly deaf cats, behavioral training with intracochlear electric stimulation (ICES) can improve temporal processing in the primary auditory cortex (AI). To investigate whether similar effects are manifest in the auditory midbrain, ICES was initiated in neonatally deafened cats either during development after short durations of deafness (8 wk of age) or in adulthood after long durations of deafness (≥3.5 yr). All of these animals received behaviorally meaningless, “passive” ICES. Some animals also received behavioral training with ICES. Two long-deaf cats received no ICES prior to acute electrophysiological recording. After several months of passive ICES and behavioral training, animals were anesthetized, and neuronal responses to pulse trains of increasing rates were recorded in the central (ICC) and external (ICX) nuclei of the inferior colliculus. Neuronal temporal response patterns (repetition rate coding, minimum latencies, response precision) were compared with results from recordings made in the AI of the same animals (Beitel RE, Vollmer M, Raggio MW, Schreiner CE. J Neurophysiol 106: 944–959, 2011; Vollmer M, Beitel RE. J Neurophysiol 106: 2423–2436, 2011). Passive ICES in long-deaf cats remediated severely degraded temporal processing in the ICC and had no effects in the ICX. In contrast to observations in the AI, behaviorally relevant ICES had no effects on temporal processing in the ICC or ICX, with the single exception of shorter latencies in the ICC in short-deaf cats. The results suggest that independent of deafness duration passive stimulation and behavioral training differentially transform temporal processing in auditory midbrain and cortex, and primary auditory cortex emerges as a pivotal site for behaviorally driven neuronal temporal plasticity in the deaf cat. NEW & NOTEWORTHY Behaviorally relevant vs. passive electric stimulation of the auditory nerve differentially affects neuronal temporal processing in the central nucleus of the inferior colliculus (ICC) and the primary auditory cortex (AI) in profoundly short-deaf and long-deaf cats. Temporal plasticity in the ICC depends on a critical amount of electric stimulation, independent of its behavioral relevance. In contrast, the AI emerges as a pivotal site for behaviorally driven neuronal temporal plasticity in the deaf auditory system. PMID:27733594

  6. Fuel injection and mixing systems and methods of using the same

    DOEpatents

    Mao, Chien-Pei; Short, John

    2010-08-03

    A fuel injection and mixing system is provided. The system includes an injector body having a fuel inlet and a fuel outlet, and defines a fuel flow path between the inlet and outlet. The fuel flow path may include a generally helical flow passage having an inlet end portion disposed proximate the fuel inlet of the injector body. The flow path also may include an expansion chamber downstream from and in fluid communication with the helical flow passage, as well as a fuel delivery device in fluid communication with the expansion chamber for delivering fuel. Heating means is also provided in thermal communication with the injector body. The heating means may be adapted and configured for maintaining the injector body at a predetermined temperature to heat fuel traversing the flow path. A method of preheating and delivering fuel is also provided.

  7. Optical Measurements in a Combustor Using a 9-Point Swirl-Venturi Fuel Injector

    NASA Technical Reports Server (NTRS)

    Hicks, Yolanda R.; Anderson, Robert C.; Locke, Randy J.

    2007-01-01

    This paper highlights the use of two-dimensional data to characterize a multipoint swirl-venturi injector. The injector is based on a NASA-conceived lean direct injection concept. Using a variety of advanced optical diagnostic techniques, we examine the flows resultant from multipoint, lean-direct injectors that have nine injection sites arranged in a 3 x 3 grid. The measurements are made within an optically-accessible, jet-A-fueled, 76-mm by 76-mm flame tube combustor. Combustion species mapping and velocity measurements are obtained using planar laser-induced fluorescence of OH and fuel, planar laser scatter of liquid fuel, chemiluminescence from CH*, NO*, and OH*, and particle image velocimetry of seeded air (non-fueled). These measurements are used to study fuel injection, mixedness, and combustion processes and are part of a database of measurements that will be used for validating computational combustion models.

  8. Effects of Injection Scheme on Rotating Detonation Engine Operation

    NASA Astrophysics Data System (ADS)

    Chacon, Fabian; Duvall, James; Gamba, Mirko

    2017-11-01

    In this work, we experimentally investigate the operation and performance characteristics of a rotating detonation engine (RDE) operated with different fuel injection schemes and operating conditions. In particular, we investigate the detonation and operation characteristics produced with an axial flow injector configuration and semi-impinging injector configurations. These are compared to the characteristics produced with a canonical radial injection system (AFRL injector). Each type produces a different flowfield and mixture distribution, leading to a different detonation initiation, injector dynamic response, and combustor pressure rise. By using a combination of diagnostics, we quantify the pressure loses and gains in the system, the ability to maintain detonation over a range of operating points, and the coupling between the detonation and the air/fuel feed lines. We particularly focus on how this coupling affects both the stability and the performance of the detonation wave. This work is supported by the DOE/UTSR program under project DE-FE0025315.

  9. Earth storable bimodal engine, phase 1

    NASA Technical Reports Server (NTRS)

    1973-01-01

    An in-depth study of an Earth Storable Bimodal (ESB) Engine using earth storable propellants N2O/N2H4 and operating in either a monopropellant or bipropellant mode was conducted. Detailed studies were completed for both a hot-gas, regeneratively cooled thrust chamber and a ducted hot-gas, film cooled thrust chamber. Hydrazine decomposition products were used for cooling in either configuration. The various arrangements and configurations of hydrazine reactors, secondary injectors, chambers and gimbal methods were considered. The two basic materials selected for the major components were columbium alloys and L-605. The secondary injector types considered were previously demonstrated by JPL and consisted of a liquid-on-gas triplet, a liquid-on-gas doublet, and a liquid-on-gas coaxial injector. Various design tradeoffs were made with different reactor types located at: the secondary injector station, the thrust chamber throat, and the nozzle/extension interface. Associated thermal, structural, and mass analyses were completed.

  10. Comparison of cryogenic (hydrogen) and TESPEL (polystyrene) pellet particle deposition in a magnetically confined plasma

    NASA Astrophysics Data System (ADS)

    McCarthy, K. J.; Tamura, N.; Combs, S. K.; Panadero, N.; Ascabíbar, E.; Estrada, T.; García, R.; Hernández Sánchez, J.; López Fraguas, A.; Navarro, M.; Pastor, I.; Soleto, A.; TJ-II Team

    2017-10-01

    A cryogenic pellet injector (PI) and tracer encapsulated solid pellet (TESPEL) injector system has been operated in combination on the stellarator TJ-II. This unique arrangement has been created by piggy-backing a TESPEL injector onto the backend of a pipe-gun-type PI. The combined injector provides a powerful new tool for comparing ablation and penetration of polystyrene TESPEL pellets and solid hydrogen pellets, as well as for contrasting subsequent pellet particle deposition and plasma perturbation under analogous plasma conditions. For instance, a significantly larger increase in plasma line-averaged electron density, and electron content, is observed after a TESPEL pellet injection compared with an equivalent cryogenic pellet injection. Moreover, for these injections from the low-magnetic-field side of the plasma cross-section, TESPEL pellets deposit electrons deeper into the plasma core than cryogenic pellets. Finally, the physics behind these observations and possible implications for pellet injection studies are discussed.

  11. Staged fuel and air injection in combustion systems of gas turbines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hughes, Michael John; Berry, Jonathan Dwight

    A gas turbine that includes a working fluid flowpath extending aftward from a forward injector in a combustor. The combustor may include an inner radial wall, an outer radial wall, and, therebetween, a flow annulus. A staged injector may intersect the flow annulus so to attain an injection point within the working fluid flowpath by which aftward and forward annulus sections are defined. Air directing structure may include an aftward intake section that corresponds to the aftward annulus section and a forward intake section that corresponds to the forward annulus section. The air directing structure may be configured to: directmore » air entering through the aftward intake section through the aftward annulus section in a forward direction to the staged injector; and direct air entering through the forward intake section through the forward annulus section in a forward direction to the forward injector.« less

  12. Staged fuel and air injection in combustion systems of gas turbines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hughes, Michael John; Berry, Jonathan Dwight

    A gas turbine that includes a working fluid flowpath extending aftward from a forward injector in a combustor. The combustor may include an inner radial wall, an outer radial wall, and, therebetween, a flow annulus. A staged injector may intersect the flow annulus so to attain an injection point within the working fluid flowpath by which aftward and forward annulus sections are defined. Air directing structure may include an aftward intake section that corresponds to the aftward annulus section and a forward intake section that corresponds to the forward annulus section. The air directing structure may be configured to: directmore » air entering through the aftward intake section through the aftward annulus section in a forward direction to the staged injector; and direct air entering through the forward intake section through the forward annulus section in an aftward direction to the staged injector.« less

  13. A High Peak Current Source for the CEBAF Injector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yunn, Byung; Sinclair, Charles; Krafft, Geoffrey

    1992-07-01

    The CEBAF accelerator can drive high power IR and UV FELs, if a high peak current source is added to the existing front end. We present a design for a high peak current injector which is compatible with simultaneous operation of the accelerator for cw nulear physics (NP) beam. The high peak current injector provides 60 A peak current in 2 psec long bunches carrying 120 pC charge at 7.485 MHz. At 10 MeV that beam is combined with 5 MeV NP beam (0.13pC, 2 psec long bunches at 1497 MHz) in an energy combination chicane for simultaneous acceleration inmore » the injector linac. The modifications to the low-energy NP transport are described. Results of optical and beam dynamics calculations for both high peak current and NP beams in combined operation are presented.« less

  14. Fuel injector for use in a gas turbine engine

    DOEpatents

    Wiebe, David J.

    2012-10-09

    A fuel injector in a combustor apparatus of a gas turbine engine. An outer wall of the injector defines an interior volume in which an intermediate wall is disposed. A first gap is formed between the outer wall and the intermediate wall. The intermediate wall defines an internal volume in which an inner wall is disposed. A second gap is formed between the intermediate wall and the inner wall. The second gap receives cooling fluid that cools the injector. The cooling fluid provides convective cooling to the intermediate wall as it flows within the second gap. The cooling fluid also flows through apertures in the intermediate wall into the first gap where it provides impingement cooling to the outer wall and provides convective cooling to the outer wall. The inner wall defines a passageway that delivers fuel into a liner downstream from a main combustion zone.

  15. Parametric Design of Injectors for LDI-3 Combustors

    NASA Technical Reports Server (NTRS)

    Ajmani, Kumud; Mongia, Hukam; Lee, Phil

    2015-01-01

    Application of a partially calibrated National Combustion Code (NCC) for providing guidance in the design of the 3rd generation of the Lean-Direct Injection (LDI) multi-element combustion configuration (LDI-3) is summarized. NCC was used to perform non-reacting and two-phase reacting flow computations on several LDI-3 injector configurations in a single-element and a five-element injector array. All computations were performed with a consistent approach for mesh-generation, turbulence, spray simulations, ignition and chemical kinetics-modeling. Both qualitative and quantitative assessment of the computed flowfield characteristics of the several design options led to selection of an optimal injector LDI- 3 design that met all the requirements including effective area, aerodynamics and fuel-air mixing criteria. Computed LDI-3 emissions (namely, NOx, CO and UHC) will be compared with the prior generation LDI- 2 combustor experimental data at relevant engine cycle conditions.

  16. Status of the Combustion Devices Injector Technology Program at the NASA MSFC

    NASA Technical Reports Server (NTRS)

    Jones, Gregg; Protz, Christopher; Trinh, Huu; Tucker, Kevin; Nesman, Tomas; Hulka, James

    2005-01-01

    To support the NASA Space Exploration Mission, an in-house program called Combustion Devices Injector Technology (CDIT) is being conducted at the NASA Marshall Space Flight Center (MSFC) for the fiscal year 2005. CDIT is focused on developing combustor technology and analysis tools to improve reliability and durability of upper-stage and in-space liquid propellant rocket engines. The three areas of focus include injector/chamber thermal compatibility, ignition, and combustion stability. In the compatibility and ignition areas, small-scale single- and multi-element hardware experiments will be conducted to demonstrate advanced technological concepts as well as to provide experimental data for validation of computational analysis tools. In addition, advanced analysis tools will be developed to eventually include 3-dimensional and multi- element effects and improve capability and validity to analyze heat transfer and ignition in large, multi-element injectors.

  17. Status of the SPIRAL2 injector commissioning

    NASA Astrophysics Data System (ADS)

    Thuillier, T.; Angot, J.; Barué, C.; Bertrand, P.; Biarrotte, J. L.; Canet, C.; Denis, J.-F.; Ferdinand, R.; Flambard, J.-L.; Jacob, J.; Jardin, P.; Lamy, T.; Lemagnen, F.; Maunoury, L.; Osmond, B.; Peaucelle, C.; Roger, A.; Sole, P.; Touzery, R.; Tuske, O.; Uriot, D.

    2016-02-01

    The SPIRAL2 injector, installed in its tunnel, is currently under commissioning at GANIL, Caen, France. The injector is composed of two low energy beam transport lines: one is dedicated to the light ion beam production, the other to the heavy ions. The first light ion beam, created by a 2.45 GHz electron cyclotron resonance ion source, has been successfully produced in December 2014. The first beam of the PHOENIX V2 18 GHz heavy ion source was analyzed on 10 July 2015. A status of the SPIRAL2 injector commissioning is given. An upgrade of the heavy ion source, named PHOENIX V3 aimed to replace the V2, is presented. The new version features a doubled plasma chamber volume and the high charge state beam intensity is expected to increase by a factor of 1.5 to 2 up to the mass ˜50. A status of its assembly is proposed.

  18. Status of the SPIRAL2 injector commissioning.

    PubMed

    Thuillier, T; Angot, J; Barué, C; Bertrand, P; Biarrotte, J L; Canet, C; Denis, J-F; Ferdinand, R; Flambard, J-L; Jacob, J; Jardin, P; Lamy, T; Lemagnen, F; Maunoury, L; Osmond, B; Peaucelle, C; Roger, A; Sole, P; Touzery, R; Tuske, O; Uriot, D

    2016-02-01

    The SPIRAL2 injector, installed in its tunnel, is currently under commissioning at GANIL, Caen, France. The injector is composed of two low energy beam transport lines: one is dedicated to the light ion beam production, the other to the heavy ions. The first light ion beam, created by a 2.45 GHz electron cyclotron resonance ion source, has been successfully produced in December 2014. The first beam of the PHOENIX V2 18 GHz heavy ion source was analyzed on 10 July 2015. A status of the SPIRAL2 injector commissioning is given. An upgrade of the heavy ion source, named PHOENIX V3 aimed to replace the V2, is presented. The new version features a doubled plasma chamber volume and the high charge state beam intensity is expected to increase by a factor of 1.5 to 2 up to the mass ∼50. A status of its assembly is proposed.

  19. Normal injection of helium from swept struts into ducted supersonic flow

    NASA Technical Reports Server (NTRS)

    Mcclinton, C. R.; Torrence, M. G.

    1975-01-01

    Recent design studies have shown that airframe-integrated scramjets should include instream mounted, swept-back strut fuel injectors to obtain short combustors. Because there was no data in the literature on mixing characteristics of swept strut fuel injectors, the present investigation was undertaken to provide such data. This investigation was made with two swept struts in a closed duct at Mach number of 4.4 and nominal jet-to-air mass flow ratio of 0.029 with helium used to simulate hydrogen fuel. The data is compared with flat plate mounted normal injector data to obtain the effect of swept struts on mixing. Three injector patterns were evaluated representing the range of hole spacing and jet-to-freestream dynamic pressure ratio of interest. Measured helium concentration, pitot pressure, and static pressure in the downstream mixing region are used to generate contour plots necessary to define the mixing region flow field and the mixing parameters.

  20. Development of Tripropellant CFD Design Code

    NASA Technical Reports Server (NTRS)

    Farmer, Richard C.; Cheng, Gary C.; Anderson, Peter G.

    1998-01-01

    A tripropellant, such as GO2/H2/RP-1, CFD design code has been developed to predict the local mixing of multiple propellant streams as they are injected into a rocket motor. The code utilizes real fluid properties to account for the mixing and finite-rate combustion processes which occur near an injector faceplate, thus the analysis serves as a multi-phase homogeneous spray combustion model. Proper accounting of the combustion allows accurate gas-side temperature predictions which are essential for accurate wall heating analyses. The complex secondary flows which are predicted to occur near a faceplate cannot be quantitatively predicted by less accurate methodology. Test cases have been simulated to describe an axisymmetric tripropellant coaxial injector and a 3-dimensional RP-1/LO2 impinger injector system. The analysis has been shown to realistically describe such injector combustion flowfields. The code is also valuable to design meaningful future experiments by determining the critical location and type of measurements needed.

Top