Science.gov

Sample records for injury atrophy synaptic

  1. Distinctive PSA-NCAM and NCAM hallmarks in glutamate-induced dendritic atrophy and synaptic disassembly.

    PubMed

    Podestá, María Fernanda; Yam, Patricia; Codagnone, Martín Gabriel; Uccelli, Nonthué Alejandra; Colman, David; Reinés, Analía

    2014-01-01

    Dendritic and synapse remodeling are forms of structural plasticity that play a critical role in normal hippocampal function. Neural cell adhesion molecule (NCAM) and its polysialylated form (PSA-NCAM) participate in neurite outgrowth and synapse formation and plasticity. However, it remains unclear whether they contribute to dendritic retraction and synaptic disassembly. Cultured hippocampal neurons exposed to glutamate (5 µM) showed a reduced MAP-2 (+) area in the absence of neuronal death 24 h after the insult. Concomitantly, synapse loss, revealed by decreased synaptophysin and post-synaptic density-95 cluster number and area, together with changes in NCAM and PSA-NCAM levels were found. Dendritic atrophy and PSA-NCAM reduction proved NMDA-receptor dependent. Live-imaging experiments evidenced dendritic atrophy 4 h after the insult; this effect was preceded by smaller NCAM clusters (1 h) and decreased surface and total PSA-NCAM levels (3 h). Simultaneously, total NCAM cluster number and area remained unchanged. The subsequent synapse disassembly (6 h) was accompanied by reductions in total NCAM cluster number and area. A PSA mimetic peptide prevented both the dendritic atrophy and the subsequent synaptic changes (6 h) but had no effect on the earliest synaptic remodeling (3 h). Thus, NCAM-synaptic reorganization and PSA-NCAM level decrease precede glutamate-induced dendritic atrophy, whereas the NCAM level reduction is a delayed event related to synapse loss. Consequently, distinctive stages in PSA-NCAM/NCAM balance seem to accompany glutamate-induced dendritic atrophy and synapse loss.

  2. Tau Deletion Prevents Stress-Induced Dendritic Atrophy in Prefrontal Cortex: Role of Synaptic Mitochondria.

    PubMed

    Lopes, Sofia; Teplytska, Larysa; Vaz-Silva, Joao; Dioli, Chrysoula; Trindade, Rita; Morais, Monica; Webhofer, Christian; Maccarrone, Giuseppina; Almeida, Osborne F X; Turck, Christoph W; Sousa, Nuno; Sotiropoulos, Ioannis; Filiou, Michaela D

    2016-04-12

    Tau protein in dendrites and synapses has been recently implicated in synaptic degeneration and neuronal malfunction. Chronic stress, a well-known inducer of neuronal/synaptic atrophy, triggers hyperphosphorylation of Tau protein and cognitive deficits. However, the cause-effect relationship between these events remains to be established. To test the involvement of Tau in stress-induced impairments of cognition, we investigated the impact of stress on cognitive behavior, neuronal structure, and the synaptic proteome in the prefrontal cortex (PFC) of Tau knock-out (Tau-KO) and wild-type (WT) mice. Whereas exposure to chronic stress resulted in atrophy of apical dendrites and spine loss in PFC neurons as well as significant impairments in working memory in WT mice, such changes were absent in Tau-KO animals. Quantitative proteomic analysis of PFC synaptosomal fractions, combined with transmission electron microscopy analysis, suggested a prominent role for mitochondria in the regulation of the effects of stress. Specifically, chronically stressed animals exhibit Tau-dependent alterations in the levels of proteins involved in mitochondrial transport and oxidative phosphorylation as well as in the synaptic localization of mitochondria in PFC. These findings provide evidence for a causal role of Tau in mediating stress-elicited neuronal atrophy and cognitive impairment and indicate that Tau may exert its effects through synaptic mitochondria.

  3. Distinctive PSA-NCAM and NCAM Hallmarks in Glutamate-Induced Dendritic Atrophy and Synaptic Disassembly

    PubMed Central

    Podestá, María Fernanda; Yam, Patricia; Codagnone, Martín Gabriel; Uccelli, Nonthué Alejandra; Colman, David; Reinés, Analía

    2014-01-01

    Dendritic and synapse remodeling are forms of structural plasticity that play a critical role in normal hippocampal function. Neural cell adhesion molecule (NCAM) and its polysialylated form (PSA-NCAM) participate in neurite outgrowth and synapse formation and plasticity. However, it remains unclear whether they contribute to dendritic retraction and synaptic disassembly. Cultured hippocampal neurons exposed to glutamate (5 µM) showed a reduced MAP-2 (+) area in the absence of neuronal death 24 h after the insult. Concomitantly, synapse loss, revealed by decreased synaptophysin and post-synaptic density-95 cluster number and area, together with changes in NCAM and PSA-NCAM levels were found. Dendritic atrophy and PSA-NCAM reduction proved NMDA-receptor dependent. Live-imaging experiments evidenced dendritic atrophy 4 h after the insult; this effect was preceded by smaller NCAM clusters (1 h) and decreased surface and total PSA-NCAM levels (3 h). Simultaneously, total NCAM cluster number and area remained unchanged. The subsequent synapse disassembly (6 h) was accompanied by reductions in total NCAM cluster number and area. A PSA mimetic peptide prevented both the dendritic atrophy and the subsequent synaptic changes (6 h) but had no effect on the earliest synaptic remodeling (3 h). Thus, NCAM-synaptic reorganization and PSA-NCAM level decrease precede glutamate-induced dendritic atrophy, whereas the NCAM level reduction is a delayed event related to synapse loss. Consequently, distinctive stages in PSA-NCAM/NCAM balance seem to accompany glutamate-induced dendritic atrophy and synapse loss. PMID:25279838

  4. Matrix Metalloproteinases, Synaptic Injury, and Multiple Sclerosis

    PubMed Central

    Szklarczyk, Arek; Conant, Katherine

    2010-01-01

    Multiple sclerosis (MS) is a disease of the central nervous system in which immune mediated damage to myelin is characteristic. For an overview of this condition and its pathophysiology, please refer to one of many excellent published reviews (Sorensen and Ransohoff, 1998; Weiner, 2009). To follow, is a discussion focused on the possibility that synaptic injury occurs in at least a subset of patients, and that matrix metalloproteinases (MMPs) play a role in such. PMID:21423441

  5. Survival motor neuron protein in motor neurons determines synaptic integrity in spinal muscular atrophy.

    PubMed

    Martinez, Tara L; Kong, Lingling; Wang, Xueyong; Osborne, Melissa A; Crowder, Melissa E; Van Meerbeke, James P; Xu, Xixi; Davis, Crystal; Wooley, Joe; Goldhamer, David J; Lutz, Cathleen M; Rich, Mark M; Sumner, Charlotte J

    2012-06-20

    The inherited motor neuron disease spinal muscular atrophy (SMA) is caused by deficient expression of survival motor neuron (SMN) protein and results in severe muscle weakness. In SMA mice, synaptic dysfunction of both neuromuscular junctions (NMJs) and central sensorimotor synapses precedes motor neuron cell death. To address whether this synaptic dysfunction is due to SMN deficiency in motor neurons, muscle, or both, we generated three lines of conditional SMA mice with tissue-specific increases in SMN expression. All three lines of mice showed increased survival, weights, and improved motor behavior. While increased SMN expression in motor neurons prevented synaptic dysfunction at the NMJ and restored motor neuron somal synapses, increased SMN expression in muscle did not affect synaptic function although it did improve myofiber size. Together these data indicate that both peripheral and central synaptic integrity are dependent on motor neurons in SMA, but SMN may have variable roles in the maintenance of these different synapses. At the NMJ, it functions at the presynaptic terminal in a cell-autonomous fashion, but may be necessary for retrograde trophic signaling to presynaptic inputs onto motor neurons. Importantly, SMN also appears to function in muscle growth and/or maintenance independent of motor neurons. Our data suggest that SMN plays distinct roles in muscle, NMJs, and motor neuron somal synapses and that restored function of SMN at all three sites will be necessary for full recovery of muscle power.

  6. Alteration in synaptic junction proteins following traumatic brain injury.

    PubMed

    Merlo, Lucia; Cimino, Francesco; Angileri, Filippo Flavio; La Torre, Domenico; Conti, Alfredo; Cardali, Salvatore Massimiliano; Saija, Antonella; Germanò, Antonino

    2014-08-15

    Extensive research and scientific efforts have been focused on the elucidation of the pathobiology of cellular and axonal damage following traumatic brain injury (TBI). Conversely, few studies have specifically addressed the issue of synaptic dysfunction. Synaptic junction proteins may be involved in post-TBI alterations, leading to synaptic loss or disrupted plasticity. A Synapse Protein Database on synapse ontology identified 109 domains implicated in synaptic activities and over 5000 proteins, but few of these demonstrated to play a role in the synaptic dysfunction after TBI. These proteins are involved in neuroplasticity and neuromodulation and, most importantly, may be used as novel neuronal markers of TBI for specific intervention.

  7. Disability, atrophy and cortical reorganization following spinal cord injury.

    PubMed

    Freund, Patrick; Weiskopf, Nikolaus; Ward, Nick S; Hutton, Chloe; Gall, Angela; Ciccarelli, Olga; Craggs, Michael; Friston, Karl; Thompson, Alan J

    2011-06-01

    The impact of traumatic spinal cord injury on structural integrity, cortical reorganization and ensuing disability is variable and may depend on a dynamic interaction between the severity of local damage and the capacity of the brain for plastic reorganization. We investigated trauma-induced anatomical changes in the spinal cord and brain, and explored their relationship to functional changes in sensorimotor cortex. Structural changes were assessed using cross-sectional cord area, voxel-based morphometry and voxel-based cortical thickness of T1-weighted images in 10 subjects with cervical spinal cord injury and 16 controls. Cortical activation in response to right-sided (i) handgrip; and (ii) median and tibial nerve stimulation were assessed using functional magnetic resonance imaging. Regression analyses explored associations between cord area, grey and white matter volume, cortical activations and thickness, and disability. Subjects with spinal cord injury had impaired upper and lower limb function bilaterally, a 30% reduced cord area, smaller white matter volume in the pyramids and left cerebellar peduncle, and smaller grey matter volume and cortical thinning in the leg area of the primary motor and sensory cortex compared with controls. Functional magnetic resonance imaging revealed increased activation in the left primary motor cortex leg area during handgrip and the left primary sensory cortex face area during median nerve stimulation in subjects with spinal cord injury compared with controls, but no increased activation following tibial nerve stimulation. A smaller cervical cord area was associated with impaired upper limb function and increased activations with handgrip and median nerve stimulation, but reduced activations with tibial nerve stimulation. Increased sensory deficits were associated with increased activations in the left primary sensory cortex face area due to median nerve stimulation. In conclusion, spinal cord injury leads to cord atrophy

  8. Synaptic ultrastructure changes in trigeminocervical complex posttrigeminal nerve injury.

    PubMed

    Park, John; Trinh, Van Nancy; Sears-Kraxberger, Ilse; Li, Kang-Wu; Steward, Oswald; Luo, Z David

    2016-02-01

    Trigeminal nerves collecting sensory information from the orofacial area synapse on second-order neurons in the dorsal horn of subnucleus caudalis and cervical C1/C2 spinal cord (Vc/C2, or trigeminocervical complex), which is critical for sensory information processing. Injury to the trigeminal nerves may cause maladaptive changes in synaptic connectivity that plays an important role in chronic pain development. Here we examined whether injury to the infraorbital nerve, a branch of the trigeminal nerves, led to synaptic ultrastructural changes when the injured animals have developed neuropathic pain states. Transmission electron microscopy was used to examine synaptic profiles in Vc/C2 at 3 weeks postinjury, corresponding to the time of peak behavioral hypersensitivity following chronic constriction injury to the infraorbital nerve (CCI-ION). Using established criteria, synaptic profiles were classified as associated with excitatory (R-), inhibitory (F-), and primary afferent (C-) terminals. Each type was counted within the superficial dorsal horn of the Vc/C2 and the means from each rat were compared between sham and injured animals; synaptic contact length was also measured. The overall analysis indicates that rats with orofacial pain states had increased numbers and decreased mean synaptic length of R-profiles within the Vc/C2 superficial dorsal horn (lamina I) 3 weeks post-CCI-ION. Increases in the number of excitatory synapses in the superficial dorsal horn of Vc/C2 could lead to enhanced activation of nociceptive pathways, contributing to the development of orofacial pain states.

  9. Synaptic ultrastructure changes in trigeminocervical complex post trigeminal nerve injury

    PubMed Central

    Park, John; Trinh, Van Nancy; Sears-Kraxberger, Ilse; Li, Kang-Wu; Steward, Oswald; Luo, Z. David

    2015-01-01

    Trigeminal nerves collecting sensory information from the orofacial area synapse on second order neurons in the dorsal horn of subnucleus caudalis and cervical C1/C2 spinal cord (Vc/C2, or trigeminocervical complex), which is critical for sensory information processing. Injury to the trigeminal nerves may cause maladaptive changes in synaptic connectivity that plays an important role in chronic pain development. Here, we examined whether injury to the infraorbital nerve, a branch of the trigeminal nerves, led to synaptic ultrastructural changes when the injured animals have developed neuropathic pain states. Transmission electron microscopy was used to examine synaptic profiles in Vc/C2 at three-weeks post-injury, corresponding to the time of peak behavioral hypersensitivity following chronic constriction injury to the infraorbital nerve (CCI-ION). Using established criteria, synaptic profiles were classified as associated with excitatory (R-), inhibitory (F-), and primary afferent (C-) terminals. Each type was counted within the superficial dorsal horn of the Vc/C2 and the means from each rat were compared between sham and injured animals; synaptic contact length was also measured. The overall analysis indicates that rats with orofacial pain states had increased numbers and decreased mean synaptic length of R-profiles within the Vc/C2 superficial dorsal horn (lamina I) three-weeks post CCI-ION. Increases in the number of excitatory synapses in the superficial dorsal horn of Vc/C2 could lead to enhanced activation of nociceptive pathways, contributing to the development of orofacial pain states. PMID:26132987

  10. Synaptic Mitochondria Sustain More Damage than Non-Synaptic Mitochondria after Traumatic Brain Injury and Are Protected by Cyclosporine A.

    PubMed

    Kulbe, Jacqueline R; Hill, Rachel L; Singh, Indrapal N; Wang, Juan A; Hall, Edward D

    2016-10-13

    Currently, there are no Food and Drug Administration (FDA)-approved pharmacotherapies for the treatment of those with traumatic brain injury (TBI). As central mediators of the secondary injury cascade, mitochondria are promising therapeutic targets for prevention of cellular death and dysfunction after TBI. One of the most promising and extensively studied mitochondrial targeted TBI therapies is inhibition of the mitochondrial permeability transition pore (mPTP) by the FDA-approved drug, cyclosporine A (CsA). A number of studies have evaluated the effects of CsA on total brain mitochondria after TBI; however, no study has investigated the effects of CsA on isolated synaptic and non-synaptic mitochondria. Synaptic mitochondria are considered essential for proper neurotransmission and synaptic plasticity, and their dysfunction has been implicated in neurodegeneration. Synaptic and non-synaptic mitochondria have heterogeneous characteristics, but their heterogeneity can be masked in total mitochondrial (synaptic and non-synaptic) preparations. Therefore, it is essential that mitochondria targeted pharmacotherapies, such as CsA, be evaluated in both populations. This is the first study to examine the effects of CsA on isolated synaptic and non-synaptic mitochondria after experimental TBI. We conclude that synaptic mitochondria sustain more damage than non-synaptic mitochondria 24 h after severe controlled cortical impact injury (CCI), and that intraperitoneal administration of CsA (20 mg/kg) 15 min after injury improves synaptic and non-synaptic respiration, with a significant improvement being seen in the more severely impaired synaptic population. As such, CsA remains a promising neuroprotective candidate for the treatment of those with TBI.

  11. Lingual nerve injury after third molar removal: Unilateral atrophy of fungiform papillae

    PubMed Central

    de-Pablo-Garcia-Cuenca, Alba; Bescós-Atín, Maria S.

    2014-01-01

    Background: Pain and sensory changes due to lingual nerve injury are one of the most common alterations that follow surgical removal of third molar. They are usually transient but other less common complications, such as the atrophy of fungiform papillae, have an uncertain prognosis. Case Description: We report a case of a 34-year-old woman who presented a unilateral lingual atrophy of fungiform papillae after third molar extraction accompanied by severe dysesthesia that altered her daily life significantly during the following months and how this complication evolved over time. We conducted a literature review on the different factors that can lead to a lingual nerve injury. Clinical Implications: The clinical evolution of temporary and permanent somatosensitve injuries is an important fact to take into consideration during the postoperative management because it will indicate the lesion prognosis. Key words:Lingual nerve, third molar removal, somatosensitive alteration, papillae atrophy, permanent injury, temporary injury. PMID:24790723

  12. Proteomic and bioinformatic analyses of spinal cord injury-induced skeletal muscle atrophy in rats

    PubMed Central

    WEI, ZHI-JIAN; ZHOU, XIAN-HU; FAN, BAO-YOU; LIN, WEI; REN, YI-MING; FENG, SHI-QING

    2016-01-01

    Spinal cord injury (SCI) may result in skeletal muscle atrophy. Identifying diagnostic biomarkers and effective targets for treatment is an important challenge in clinical work. The aim of the present study is to elucidate potential biomarkers and therapeutic targets for SCI-induced muscle atrophy (SIMA) using proteomic and bioinformatic analyses. The protein samples from rat soleus muscle were collected at different time points following SCI injury and separated by two-dimensional gel electrophoresis and compared with the sham group. The identities of these protein spots were analyzed by mass spectrometry (MS). MS demonstrated that 20 proteins associated with muscle atrophy were differentially expressed. Bioinformatic analyses indicated that SIMA changed the expression of proteins associated with cellular, developmental, immune system and metabolic processes, biological adhesion and localization. The results of the present study may be beneficial in understanding the molecular mechanisms of SIMA and elucidating potential biomarkers and targets for the treatment of muscle atrophy. PMID:27177391

  13. Inhibitory effects of Eleutherococcus senticosus extracts on amyloid beta(25-35)-induced neuritic atrophy and synaptic loss.

    PubMed

    Tohda, Chihiro; Ichimura, Mahoko; Bai, Yanjing; Tanaka, Ken; Zhu, Shu; Komatsu, Katsuko

    2008-07-01

    Neurons with atrophic neurites may remain alive and therefore may have the potential to regenerate even when neuronal death has occurred in some parts of the brain. This study aimed to explore effects of drugs that can facilitate the regeneration of neurites and the reconstruction of synapses even in severely damaged neurons. We investigated the effects of Eleutherococcus senticosus extracts on the regeneration of neurites and the reconstruction of synapses in rat cultured cortical neurons damaged by amyloid beta (Abeta)(25-35). Treatment with Abeta(25-35) (10 microM) induced axonal and dendritic atrophies and synaptic loss in cortical neurons. Subsequent treatment with the methanol extract and the water extract of E. senticosus (10 - 1000 ng/ml) resulted in significant axonal and dendritic regenerations and reconstruction of neuronal synapses. Co-application of the extract and Abeta(25-35) attenuated Abeta(25-35)-induced neuronal death. We investigated neurite outgrowth activities of eleutherosides B and E and isoflaxidin, which are known as major compounds in E. senticosus. Although eleutheroside B protected against Abeta(25-35)-induced dendritic and axonal atrophies, the activities of eleutheroside E and isofraxidin were less than that of eleutheroside B. Although the contents of these three compounds in the water extract were less than in the methanol extract, restoring activities against neuronal damages were not different between the two extracts. In conclusion, extracts of E. senticosus protect against neuritic atrophy and cell death under Abeta treatment, and one of active constituents may be eleutheroside B.

  14. Transplantation of Embryonic Spinal Cord Derived Cells Helps to Prevent Muscle Atrophy after Peripheral Nerve Injury

    PubMed Central

    Ruven, Carolin; Li, Wen; Li, Heng; Wong, Wai-Man; Wu, Wutian

    2017-01-01

    Injuries to peripheral nerves are frequent in serious traumas and spinal cord injuries. In addition to surgical approaches, other interventions, such as cell transplantation, should be considered to keep the muscles in good condition until the axons regenerate. In this study, E14.5 rat embryonic spinal cord fetal cells and cultured neural progenitor cells from different spinal cord segments were injected into transected musculocutaneous nerve of 200–300 g female Sprague Dawley (SD) rats, and atrophy in biceps brachii was assessed. Both kinds of cells were able to survive, extend their axons towards the muscle and form neuromuscular junctions that were functional in electromyographic studies. As a result, muscle endplates were preserved and atrophy was reduced. Furthermore, we observed that the fetal cells had a better effect in reducing the muscle atrophy compared to the pure neural progenitor cells, whereas lumbar cells were more beneficial compared to thoracic and cervical cells. In addition, fetal lumbar cells were used to supplement six weeks delayed surgical repair after the nerve transection. Cell transplantation helped to preserve the muscle endplates, which in turn lead to earlier functional recovery seen in behavioral test and electromyography. In conclusion, we were able to show that embryonic spinal cord derived cells, especially the lumbar fetal cells, are beneficial in the treatment of peripheral nerve injuries due to their ability to prevent the muscle atrophy. PMID:28264437

  15. Transplantation of Embryonic Spinal Cord Derived Cells Helps to Prevent Muscle Atrophy after Peripheral Nerve Injury.

    PubMed

    Ruven, Carolin; Li, Wen; Li, Heng; Wong, Wai-Man; Wu, Wutian

    2017-02-27

    Injuries to peripheral nerves are frequent in serious traumas and spinal cord injuries. In addition to surgical approaches, other interventions, such as cell transplantation, should be considered to keep the muscles in good condition until the axons regenerate. In this study, E14.5 rat embryonic spinal cord fetal cells and cultured neural progenitor cells from different spinal cord segments were injected into transected musculocutaneous nerve of 200-300 g female Sprague Dawley (SD) rats, and atrophy in biceps brachii was assessed. Both kinds of cells were able to survive, extend their axons towards the muscle and form neuromuscular junctions that were functional in electromyographic studies. As a result, muscle endplates were preserved and atrophy was reduced. Furthermore, we observed that the fetal cells had a better effect in reducing the muscle atrophy compared to the pure neural progenitor cells, whereas lumbar cells were more beneficial compared to thoracic and cervical cells. In addition, fetal lumbar cells were used to supplement six weeks delayed surgical repair after the nerve transection. Cell transplantation helped to preserve the muscle endplates, which in turn lead to earlier functional recovery seen in behavioral test and electromyography. In conclusion, we were able to show that embryonic spinal cord derived cells, especially the lumbar fetal cells, are beneficial in the treatment of peripheral nerve injuries due to their ability to prevent the muscle atrophy.

  16. Distinct white matter injury associated with medial temporal lobe atrophy in Alzheimer's versus semantic dementia.

    PubMed

    Bejanin, Alexandre; Desgranges, Béatrice; La Joie, Renaud; Landeau, Brigitte; Perrotin, Audrey; Mézenge, Florence; Belliard, Serge; de La Sayette, Vincent; Eustache, Francis; Chételat, Gaël

    2017-04-01

    This study aims at further understanding the distinct vulnerability of brain networks in Alzheimer's disease (AD) versus semantic dementia (SD) investigating the white matter injury associated with medial temporal lobe (MTL) atrophy in both conditions. Twenty-six AD patients, twenty-one SD patients, and thirty-nine controls underwent a high-resolution T1-MRI scan allowing to obtain maps of grey matter volume and white matter density. A statistical conjunction approach was used to identify MTL regions showing grey matter atrophy in both patient groups. The relationship between this common grey matter atrophy and white matter density maps was then assessed within each patient group. Patterns of grey matter atrophy were distinct in AD and SD but included a common region in the MTL, encompassing the hippocampus and amygdala. This common atrophy was associated with alterations in different white matter areas in AD versus SD, mainly including the cingulum and corpus callosum in AD, while restricted to the temporal lobe - essentially the uncinate and inferior longitudinal fasciculi - in SD. Complementary analyses revealed that these relationships remained significant when controlling for global atrophy or disease severity. Overall, this study provides the first evidence that atrophy of the same MTL region is related to damage in distinct white matter fibers in AD and SD. These different patterns emphasize the vulnerability of distinct brain networks related to the MTL in these two disorders, which might underlie the discrepancy in their symptoms. These results further suggest differences between AD and SD in the neuropathological processes occurring in the MTL. Hum Brain Mapp 38:1791-1800, 2017. © 2017 Wiley Periodicals, Inc.

  17. Excitatory synaptic transmission and network activity are depressed following mechanical injury in cortical neurons

    PubMed Central

    Goforth, Paulette B.; Ren, Jianhua; Schwartz, Benjamin S.

    2011-01-01

    In vitro and in vivo traumatic brain injury (TBI) alter the function and expression of glutamate receptors, yet the combined effect of these alterations on cortical excitatory synaptic transmission is unclear. We examined the effect of in vitro mechanical injury on excitatory synaptic function in cultured cortical neurons by assaying synaptically driven intracellular free calcium ([Ca2+]i) oscillations in small neuronal networks as well as spontaneous and miniature excitatory postsynaptic currents (mEPSCs). We show that injury decreased the incidence and frequency of spontaneous neuronal [Ca2+]i oscillations for at least 2 days post-injury. The amplitude of the oscillations was reduced immediately and 2 days post-injury, although a transient rebound at 4 h post-injury was observed due to increased activity of N-methyl-d-aspartate (NMDARs) and calcium-permeable α-amino-3-hydroxyl-5-methyl-4-isoxazole-propionate receptors (CP-AMPARs). Increased CP-AMPAR function was abolished by the inhibition of protein synthesis. In parallel, mEPSC amplitude decreased immediately, 4 h, and 2 days post-injury, with a transient increase in the contribution of synaptic CP-AMPARs observed at 4 h post-injury. Decreased mEPSC amplitude was evident after injury, even if NMDARs and CP-AMPARs were blocked pharmacologically, suggesting the decrease reflected alterations in synaptic Glur2-containing, calcium-impermeable AMPARs. Despite the transient increase in CP-AMPAR activity that we observed, the overriding effect of mechanical injury was long-term depression of excitatory neurotransmission that would be expected to contribute to the cognitive deficits of TBI. PMID:21346214

  18. Excitatory synaptic transmission and network activity are depressed following mechanical injury in cortical neurons.

    PubMed

    Goforth, Paulette B; Ren, Jianhua; Schwartz, Benjamin S; Satin, Leslie S

    2011-05-01

    In vitro and in vivo traumatic brain injury (TBI) alter the function and expression of glutamate receptors, yet the combined effect of these alterations on cortical excitatory synaptic transmission is unclear. We examined the effect of in vitro mechanical injury on excitatory synaptic function in cultured cortical neurons by assaying synaptically driven intracellular free calcium ([Ca(2+)](i)) oscillations in small neuronal networks as well as spontaneous and miniature excitatory postsynaptic currents (mEPSCs). We show that injury decreased the incidence and frequency of spontaneous neuronal [Ca(2+)](i) oscillations for at least 2 days post-injury. The amplitude of the oscillations was reduced immediately and 2 days post-injury, although a transient rebound at 4 h post-injury was observed due to increased activity of N-methyl-d-aspartate (NMDARs) and calcium-permeable α-amino-3-hydroxyl-5-methyl-4-isoxazole-propionate receptors (CP-AMPARs). Increased CP-AMPAR function was abolished by the inhibition of protein synthesis. In parallel, mEPSC amplitude decreased immediately, 4 h, and 2 days post-injury, with a transient increase in the contribution of synaptic CP-AMPARs observed at 4 h post-injury. Decreased mEPSC amplitude was evident after injury, even if NMDARs and CP-AMPARs were blocked pharmacologically, suggesting the decrease reflected alterations in synaptic Glur2-containing, calcium-impermeable AMPARs. Despite the transient increase in CP-AMPAR activity that we observed, the overriding effect of mechanical injury was long-term depression of excitatory neurotransmission that would be expected to contribute to the cognitive deficits of TBI.

  19. Pycnogenol protects CA3-CA1 synaptic function in a rat model of traumatic brain injury.

    PubMed

    Norris, Christopher M; Sompol, Pradoldej; Roberts, Kelly N; Ansari, Mubeen; Scheff, Stephen W

    2016-02-01

    Pycnogenol (PYC) is a patented mix of bioflavonoids with potent anti-oxidant and anti-inflammatory properties. Previously, we showed that PYC administration to rats within hours after a controlled cortical impact (CCI) injury significantly protects against the loss of several synaptic proteins in the hippocampus. Here, we investigated the effects of PYC on CA3-CA1 synaptic function following CCI. Adult Sprague-Dawley rats received an ipsilateral CCI injury followed 15 min later by intravenous injection of saline vehicle or PYC (10 mg/kg). Hippocampal slices from the injured (ipsilateral) and uninjured (contralateral) hemispheres were prepared at seven and fourteen days post-CCI for electrophysiological analyses of CA3-CA1 synaptic function and induction of long-term depression (LTD). Basal synaptic strength was impaired in slices from the ipsilateral, relative to the contralateral, hemisphere at seven days post-CCI and susceptibility to LTD was enhanced in the ipsilateral hemisphere at both post-injury timepoints. No interhemispheric differences in basal synaptic strength or LTD induction were observed in rats treated with PYC. The results show that PYC preserves synaptic function after CCI and provides further rationale for investigating the use of PYC as a therapeutic in humans suffering from neurotrauma.

  20. Pycnogenol protects CA3-CA1 synaptic function in a rat model of traumatic brain injury

    PubMed Central

    Sompol, Pradoldej; Roberts, Kelly N.; Ansari, Mubeen

    2015-01-01

    Pycnogenol (PYC) is a patented mix of bioflavonoids with potent anti-oxidant and anti-inflammatory properties. Previously, we showed that PYC administration to rats within hours after a controlled cortical impact (CCI) injury significantly protects against the loss of several synaptic proteins in the hippocampus. Here, we investigated the effects of PYC on CA3-CA1 synaptic function following CCI. Adult Sprague Dawley rats received an ipsilateral CCI injury followed 15 min later by intravenous injection of saline vehicle or PYC (10mg/kg). Hippocampal slices from the injured (ipsilateral) and uninjured (contralateral) hemispheres were prepared at seven and fourteen days post-CCI for electrophysiological analyses of CA3-CA1 synaptic function and induction of long-term depression (LTD). Basal synaptic strength was impaired in slices from the ipsilateral, relative to the contralateral, hemisphere at seven days post-CCI and susceptibility to LTD was enhanced in the ipsilateral hemisphere at both post-injury timepoints. No interhemispheric differences in basal synaptic strength or LTD induction were observed in rats treated with PYC. The results show that PYC preserves synaptic function after CCI and provides further rationale for investigating the use of PYC as a therapeutic in humans suffering from neurotrauma. PMID:26607913

  1. Calpain 3 Expression Pattern during Gastrocnemius Muscle Atrophy and Regeneration Following Sciatic Nerve Injury in Rats

    PubMed Central

    Wu, Ronghua; Yan, Yingying; Yao, Jian; Liu, Yan; Zhao, Jianmei; Liu, Mei

    2015-01-01

    Calpain 3 (CAPN3), also known as p94, is a skeletal muscle-specific member of the calpain family that is involved in muscular dystrophy; however, the roles of CAPN3 in muscular atrophy and regeneration are yet to be understood. In the present study, we attempted to explain the effect of CAPN3 in muscle atrophy by evaluating CAPN3 expression in rat gastrocnemius muscle following reversible sciatic nerve injury. After nerve injury, the wet weight ratio and cross sectional area (CSA) of gastrocnemius muscle were decreased gradually from 1–14 days and then recovery from 14–28 days. The active form of CAPN3 (~62 kDa) protein decreased slightly on day 3 and then increased from day 7 to 14 before a decrease from day 14 to 28. The result of linear correlation analysis showed that expression of the active CAPN3 protein level was negatively correlated with muscle wet weight ratio. CAPN3 knockdown by short interfering RNA (siRNA) injection improved muscle recovery on days 7 and 14 after injury as compared to that observed with control siRNA treatment. Depletion of CAPN3 gene expression could promote myoblast differentiation in L6 cells. Based on these findings, we conclude that the expression pattern of the active CAPN3 protein is linked to muscle atrophy and regeneration following denervation: its upregulation during early stages may promote satellite cell renewal by inhibiting differentiation, whereas in later stages, CAPN3 expression may be downregulated to stimulate myogenic differentiation and enhance recovery. These results provide a novel mechanistic insight into the role of CAPN3 protein in muscle regeneration after peripheral nerve injury. PMID:26569227

  2. Synaptic reorganization of inhibitory hilar interneuron circuitry after traumatic brain injury in mice.

    PubMed

    Hunt, Robert F; Scheff, Stephen W; Smith, Bret N

    2011-05-04

    Functional plasticity of synaptic networks in the dentate gyrus has been implicated in the development of posttraumatic epilepsy and in cognitive dysfunction after traumatic brain injury, but little is known about potentially pathogenic changes in inhibitory circuits. We examined synaptic inhibition of dentate granule cells and excitability of surviving GABAergic hilar interneurons 8-13 weeks after cortical contusion brain injury in transgenic mice that express enhanced green fluorescent protein in a subpopulation of inhibitory neurons. Whole-cell voltage-clamp recordings in granule cells revealed a reduction in spontaneous and miniature IPSC frequency after head injury; no concurrent change in paired-pulse ratio was found in granule cells after paired electrical stimulation of the hilus. Despite reduced inhibitory input to granule cells, action potential and EPSC frequencies were increased in hilar GABA neurons from slices ipsilateral to the injury versus those from control or contralateral slices. Furthermore, increased excitatory synaptic activity was detected in hilar GABA neurons ipsilateral to the injury after glutamate photostimulation of either the granule cell or CA3 pyramidal cell layers. Together, these findings suggest that excitatory drive to surviving hilar GABA neurons is enhanced by convergent input from both pyramidal and granule cells, but synaptic inhibition of granule cells is not fully restored after injury. This rewiring of circuitry regulating hilar inhibitory neurons may reflect an important compensatory mechanism, but it may also contribute to network destabilization by increasing the relative impact of surviving individual interneurons in controlling granule cell excitability in the posttraumatic dentate gyrus.

  3. Synaptic Plasticity, Neurogenesis, and Functional Recovery after Spinal Cord Injury

    PubMed Central

    Darian-Smith, Corinna

    2010-01-01

    Spinal cord injury research has greatly expanded in recent years, but our understanding of the mechanisms that underlie the functional recovery that can occur over the weeks and months following the initial injury, is far from complete. To grasp the scope of the problem, it is important to begin by defining the sensorimotor pathways that might be involved by a spinal injury. This is done in the rodent and nonhuman primate, which are two of the most commonly used animal models in basic and translational spinal injury research. Many of the better known experimentally induced models are then reviewed in terms of the pathways they involve and the reorganization and recovery that have been shown to follow. The better understood neuronal mechanisms mediating such post-injury plasticity, including dendritic spine growth and axonal sprouting, are then examined. PMID:19307422

  4. Patient-Tailored Connectomics Visualization for the Assessment of White Matter Atrophy in Traumatic Brain Injury

    PubMed Central

    Irimia, Andrei; Chambers, Micah C.; Torgerson, Carinna M.; Filippou, Maria; Hovda, David A.; Alger, Jeffry R.; Gerig, Guido; Toga, Arthur W.; Vespa, Paul M.; Kikinis, Ron; Van Horn, John D.

    2011-01-01

    Available approaches to the investigation of traumatic brain injury (TBI) are frequently hampered, to some extent, by the unsatisfactory abilities of existing methodologies to efficiently define and represent affected structural connectivity and functional mechanisms underlying TBI-related pathology. In this paper, we describe a patient-tailored framework which allows mapping and characterization of TBI-related structural damage to the brain via multimodal neuroimaging and personalized connectomics. Specifically, we introduce a graphically driven approach for the assessment of trauma-related atrophy of white matter connections between cortical structures, with relevance to the quantification of TBI chronic case evolution. This approach allows one to inform the formulation of graphical neurophysiological and neuropsychological TBI profiles based on the particular structural deficits of the affected patient. In addition, it allows one to relate the findings supplied by our workflow to the existing body of research that focuses on the functional roles of the cortical structures being targeted. A graphical means for representing patient TBI status is relevant to the emerging field of personalized medicine and to the investigation of neural atrophy. PMID:22363313

  5. Dietary curcumin counteracts the outcome of traumatic brain injury on oxidative stress, synaptic plasticity, and cognition.

    PubMed

    Wu, Aiguo; Ying, Zhe; Gomez-Pinilla, Fernando

    2006-02-01

    The pervasive action of oxidative stress on neuronal function and plasticity after traumatic brain injury (TBI) is becoming increasingly recognized. Here, we evaluated the capacity of the powerful antioxidant curry spice curcumin ingested in the diet to counteract the oxidative damage encountered in the injured brain. In addition, we have examined the possibility that dietary curcumin may favor the injured brain by interacting with molecular mechanisms that maintain synaptic plasticity and cognition. The analysis was focused on the BDNF system based on its action on synaptic plasticity and cognition by modulating synapsin I and CREB. Rats were exposed to a regular diet or a diet high in saturated fat, with or without 500 ppm curcumin for 4 weeks (n = 8/group), before a mild fluid percussion injury (FPI) was performed. The high-fat diet has been shown to exacerbate the effects of TBI on synaptic plasticity and cognitive function. Supplementation of curcumin in the diet dramatically reduced oxidative damage and normalized levels of BDNF, synapsin I, and CREB that had been altered after TBI. Furthermore, curcumin supplementation counteracted the cognitive impairment caused by TBI. These results are in agreement with previous evidence, showing that oxidative stress can affect the injured brain by acting through the BDNF system to affect synaptic plasticity and cognition. The fact that oxidative stress is an intrinsic component of the neurological sequel of TBI and other insults indicates that dietary antioxidant therapy is a realistic approach to promote protective mechanisms in the injured brain.

  6. Man Versus Machine Part 2: Comparison of Radiologists' Interpretations and NeuroQuant Measures of Brain Asymmetry and Progressive Atrophy in Patients With Traumatic Brain Injury.

    PubMed

    Ross, David E; Ochs, Alfred L; DeSmit, Megan E; Seabaugh, Jan M; Havranek, Michael D

    2015-01-01

    This study is an expanded version of an earlier study, which compared NeuroQuant measures of MRI brain volume with the radiologist's traditional approach in outpatients with mild or moderate traumatic brain injury. NeuroQuant volumetric analyses were compared with the radiologists' interpretations. NeuroQuant found significantly higher rates of atrophy (50.0%), abnormal asymmetry (83.3%), and progressive atrophy (70.0%) than the radiologists (12.5%, 0% and 0%, respectively). Overall, NeuroQuant was more sensitive for detecting at least one sign of atrophy, abnormal asymmetry, or progressive atrophy (95.8%) than the traditional radiologist's approach (12.5%).

  7. Oxidative stress and modification of synaptic proteins in hippocampus after traumatic brain injury.

    PubMed

    Ansari, Mubeen A; Roberts, Kelly N; Scheff, Stephen W

    2008-08-15

    Oxidative stress, an imbalance between oxidants and antioxidants, contributes to the pathogenesis of traumatic brain injury (TBI). Oxidative neurodegeneration is a key mediator of exacerbated morphological responses and deficits in behavioral recoveries. The present study assessed early hippocampal sequential imbalance to possibly enhance antioxidant therapy. Young adult male Sprague-Dawley rats were subjected to a unilateral moderate cortical contusion. At various times post-TBI, animals were killed and the hippocampus was analyzed for antioxidants (GSH, GSSG, glutathione peroxidase, glutathione reductase, glutathione-S-transferase, glucose-6-phosphate dehydrogenase, superoxide dismutase, and catalase) and oxidants (acrolein, 4-hydroxynonenal, protein carbonyl, and 3-nitrotyrosine). Synaptic markers (synapsin I, postsynaptic density protein 95, synapse-associated protein 97, growth-associated protein 43) were also analyzed. All values were compared with those for sham-operated animals. Significant time-dependent changes in antioxidants were observed as early as 3 h posttrauma and paralleled increases in oxidants (4-hydroxynonenal, acrolein, and protein carbonyl), with peak values obtained at 24-48 h. Time-dependent changes in synaptic proteins (synapsin I, postsynaptic density protein 95, and synapse-associated protein 97) occurred well after levels of oxidants peaked. These results indicate that depletion of antioxidant systems following trauma could adversely affect synaptic function and plasticity. Early onset of oxidative stress suggests that the initial therapeutic window following TBI appears to be relatively short, and it may be necessary to stagger selective types of antioxidant therapy to target specific oxidative components.

  8. A Soluble Activin Receptor IIB Fails to Prevent Muscle Atrophy in a Mouse Model of Spinal Cord Injury.

    PubMed

    Graham, Zachary A; Collier, Lauren; Peng, Yuanzhen; Saéz, Juan C; Bauman, William A; Qin, Weiping; Cardozo, Christopher P

    2016-06-15

    Myostatin (MST) is a potent regulator of muscle growth and size. Spinal cord injury (SCI) results in marked atrophy of muscle below the level of injury. Currently, there is no effective pharmaceutical treatment available to prevent sublesional muscle atrophy post-SCI. To determine whether inhibition of MST with a soluble activin IIB receptor (RAP-031) prevents sublesional SCI-induced muscle atrophy, mice were randomly assigned to the following groups: Sham-SCI; SCI+Vehicle group (SCI-VEH); and SCI+RAP-031 (SCI-RAP-031). SCI was induced by complete transection at thoracic level 10. Animals were euthanized at 56 days post-surgery. RAP-031 reduced, but did not prevent, body weight loss post-SCI. RAP-031 increased total lean tissue mass compared to SCI-VEH (14.8%). RAP-031 increased forelimb muscle mass post-SCI by 38% and 19% for biceps and triceps, respectively (p < 0.001). There were no differences in hindlimb muscle weights between the RAP-031 and SCI-VEH groups. In the gastrocnemius, messenger RNA (mRNA) expression was elevated for interleukin (IL)-6 (8-fold), IL-1β (3-fold), and tumor necrosis factor alpha (8-fold) in the SCI-VEH, compared to the Sham group. Muscle RING finger protein 1 mRNA was 2-fold greater in the RAP-031 group, compared to Sham-SCI. RAP-031 did not influence cytokine expression. Bone mineral density of the distal femur and proximal tibia were decreased post-SCI (-26% and -28%, respectively) and were not altered by RAP-031. In conclusion, MST inhibition increased supralesional muscle mass, but did not prevent sublesional muscle or bone loss, or the inflammation in paralyzed muscle.

  9. Permanent central synaptic disconnection of proprioceptors after nerve injury and regeneration. I. Loss of VGLUT1/IA synapses on motoneurons.

    PubMed

    Alvarez, Francisco J; Titus-Mitchell, Haley E; Bullinger, Katie L; Kraszpulski, Michal; Nardelli, Paul; Cope, Timothy C

    2011-11-01

    Motor and sensory proprioceptive axons reinnervate muscles after peripheral nerve transections followed by microsurgical reattachment; nevertheless, motor coordination remains abnormal and stretch reflexes absent. We analyzed the possibility that permanent losses of central IA afferent synapses, as a consequence of peripheral nerve injury, are responsible for this deficit. VGLUT1 was used as a marker of proprioceptive synapses on rat motoneurons. After nerve injuries synapses are stripped from motoneurons, but while other excitatory and inhibitory inputs eventually recover, VGLUT1 synapses are permanently lost on the cell body (75-95% synaptic losses) and on the proximal 100 μm of dendrite (50% loss). Lost VGLUT1 synapses did not recover, even many months after muscle reinnervation. Interestingly, VGLUT1 density in more distal dendrites did not change. To investigate whether losses are due to VGLUT1 downregulation in injured IA afferents or to complete synaptic disassembly and regression of IA ventral projections, we studied the central trajectories and synaptic varicosities of axon collaterals from control and regenerated afferents with IA-like responses to stretch that were intracellularly filled with neurobiotin. VGLUT1 was present in all synaptic varicosities, identified with the synaptic marker SV2, of control and regenerated afferents. However, regenerated afferents lacked axon collaterals and synapses in lamina IX. In conjunction with the companion electrophysiological study [Bullinger KL, Nardelli P, Pinter MJ, Alvarez FJ, Cope TC. J Neurophysiol (August 10, 2011). doi:10.1152/jn.01097.2010], we conclude that peripheral nerve injuries cause a permanent retraction of IA afferent synaptic varicosities from lamina IX and disconnection with motoneurons that is not recovered after peripheral regeneration and reinnervation of muscle by sensory and motor axons.

  10. AMPA Receptor Phosphorylation and Synaptic Colocalization on Motor Neurons Drive Maladaptive Plasticity below Complete Spinal Cord Injury

    PubMed Central

    Stuck, Ellen D.; Irvine, Karen-Amanda; Bresnahan, Jacqueline C.

    2015-01-01

    Abstract Clinical spinal cord injury (SCI) is accompanied by comorbid peripheral injury in 47% of patients. Human and animal modeling data have shown that painful peripheral injuries undermine long-term recovery of locomotion through unknown mechanisms. Peripheral nociceptive stimuli induce maladaptive synaptic plasticity in dorsal horn sensory systems through AMPA receptor (AMPAR) phosphorylation and trafficking to synapses. Here we test whether ventral horn motor neurons in rats demonstrate similar experience-dependent maladaptive plasticity below a complete SCI in vivo. Quantitative biochemistry demonstrated that intermittent nociceptive stimulation (INS) rapidly and selectively increases AMPAR subunit GluA1 serine 831 phosphorylation and localization to synapses in the injured spinal cord, while reducing synaptic GluA2. These changes predict motor dysfunction in the absence of cell death signaling, suggesting an opportunity for therapeutic reversal. Automated confocal time-course analysis of lumbar ventral horn motor neurons confirmed a time-dependent increase in synaptic GluA1 with concurrent decrease in synaptic GluA2. Optical fractionation of neuronal plasma membranes revealed GluA2 removal from extrasynaptic sites on motor neurons early after INS followed by removal from synapses 2 h later. As GluA2-lacking AMPARs are canonical calcium-permeable AMPARs (CP-AMPARs), their stimulus- and time-dependent insertion provides a therapeutic target for limiting calcium-dependent dynamic maladaptive plasticity after SCI. Confirming this, a selective CP-AMPAR antagonist protected against INS-induced maladaptive spinal plasticity, restoring adaptive motor responses on a sensorimotor spinal training task. These findings highlight the critical involvement of AMPARs in experience-dependent spinal cord plasticity after injury and provide a pharmacologically targetable synaptic mechanism by which early postinjury experience shapes motor plasticity. PMID:26668821

  11. AMPA Receptor Phosphorylation and Synaptic Colocalization on Motor Neurons Drive Maladaptive Plasticity below Complete Spinal Cord Injury.

    PubMed

    Huie, J Russell; Stuck, Ellen D; Lee, Kuan H; Irvine, Karen-Amanda; Beattie, Michael S; Bresnahan, Jacqueline C; Grau, James W; Ferguson, Adam R

    2015-01-01

    Clinical spinal cord injury (SCI) is accompanied by comorbid peripheral injury in 47% of patients. Human and animal modeling data have shown that painful peripheral injuries undermine long-term recovery of locomotion through unknown mechanisms. Peripheral nociceptive stimuli induce maladaptive synaptic plasticity in dorsal horn sensory systems through AMPA receptor (AMPAR) phosphorylation and trafficking to synapses. Here we test whether ventral horn motor neurons in rats demonstrate similar experience-dependent maladaptive plasticity below a complete SCI in vivo. Quantitative biochemistry demonstrated that intermittent nociceptive stimulation (INS) rapidly and selectively increases AMPAR subunit GluA1 serine 831 phosphorylation and localization to synapses in the injured spinal cord, while reducing synaptic GluA2. These changes predict motor dysfunction in the absence of cell death signaling, suggesting an opportunity for therapeutic reversal. Automated confocal time-course analysis of lumbar ventral horn motor neurons confirmed a time-dependent increase in synaptic GluA1 with concurrent decrease in synaptic GluA2. Optical fractionation of neuronal plasma membranes revealed GluA2 removal from extrasynaptic sites on motor neurons early after INS followed by removal from synapses 2 h later. As GluA2-lacking AMPARs are canonical calcium-permeable AMPARs (CP-AMPARs), their stimulus- and time-dependent insertion provides a therapeutic target for limiting calcium-dependent dynamic maladaptive plasticity after SCI. Confirming this, a selective CP-AMPAR antagonist protected against INS-induced maladaptive spinal plasticity, restoring adaptive motor responses on a sensorimotor spinal training task. These findings highlight the critical involvement of AMPARs in experience-dependent spinal cord plasticity after injury and provide a pharmacologically targetable synaptic mechanism by which early postinjury experience shapes motor plasticity.

  12. Atrophy and Primary Somatosensory Cortical Reorganization after Unilateral Thoracic Spinal Cord Injury: A Longitudinal Functional Magnetic Resonance Imaging Study

    PubMed Central

    Manxiu, Ma; Zhao, Can; Xi, Yue; Yang, Zhao-Yang; Li, Xiao-Guang

    2013-01-01

    The effects of traumatic spinal cord injury (SCI) on the changes in the central nervous system (CNS) over time may depend on the dynamic interaction between the structural integrity of the spinal cord and the capacity of the brain plasticity. Functional magnetic resonance imaging (fMRI) was used in a longitudinal study on five rhesus monkeys to observe cerebral activation during upper limb somatosensory tasks in healthy animals and after unilateral thoracic SCI. The changes in the spinal cord diameters were measured, and the correlations among time after the lesion, structural changes in the spinal cord, and primary somatosensory cortex (S1) reorganization were also determined. After SCI, activation of the upper limb in S1 shifted to the region which generally dominates the lower limb, and the rostral spinal cord transverse diameter adjacent to the lesion exhibited obvious atrophy, which reflects the SCI-induced changes in the CNS. A significant correlation was found among the time after the lesion, the spinal cord atrophy, and the degree of contralateral S1 reorganization. The results indicate the structural changes in the spinal cord and the dynamic reorganization of the cerebral activation following early SCI stage, which may help to further understand the neural plasticity in the CNS. PMID:24490171

  13. Joint-specific changes in locomotor complexity in the absence of muscle atrophy following incomplete spinal cord injury

    PubMed Central

    2013-01-01

    Background Following incomplete spinal cord injury (iSCI), descending drive is impaired, possibly leading to a decrease in the complexity of gait. To test the hypothesis that iSCI impairs gait coordination and decreases locomotor complexity, we collected 3D joint angle kinematics and muscle parameters of rats with a sham or an incomplete spinal cord injury. Methods 12 adult, female, Long-Evans rats, 6 sham and 6 mild-moderate T8 iSCI, were tested 4 weeks following injury. The Basso Beattie Bresnahan locomotor score was used to verify injury severity. Animals had reflective markers placed on the bony prominences of their limb joints and were filmed in 3D while walking on a treadmill. Joint angles and segment motion were analyzed quantitatively, and complexity of joint angle trajectory and overall gait were calculated using permutation entropy and principal component analysis, respectively. Following treadmill testing, the animals were euthanized and hindlimb muscles removed. Excised muscles were tested for mass, density, fiber length, pennation angle, and relaxed sarcomere length. Results Muscle parameters were similar between groups with no evidence of muscle atrophy. The animals showed overextension of the ankle, which was compensated for by a decreased range of motion at the knee. Left-right coordination was altered, leading to left and right knee movements that are entirely out of phase, with one joint moving while the other is stationary. Movement patterns remained symmetric. Permutation entropy measures indicated changes in complexity on a joint specific basis, with the largest changes at the ankle. No significant difference was seen using principal component analysis. Rats were able to achieve stable weight bearing locomotion at reasonable speeds on the treadmill despite these deficiencies. Conclusions Decrease in supraspinal control following iSCI causes a loss of complexity of ankle kinematics. This loss can be entirely due to loss of supraspinal control in

  14. Third-Degree Hindpaw Burn Injury Induced Apoptosis of Lumbar Spinal Cord Ventral Horn Motor Neurons and Sciatic Nerve and Muscle Atrophy in Rats

    PubMed Central

    Wu, Sheng-Hua; Cheng, Kuang-I; Chai, Chee-Yin; Yeh, Jwu-Lai; Wu, Tai-Cheng; Kwan, Aij-Lie

    2015-01-01

    Background. Severe burns result in hypercatabolic state and concomitant muscle atrophy that persists for several months, thereby limiting patient recovery. However, the effects of burns on the corresponding spinal dermatome remain unknown. This study aimed to investigate whether burns induce apoptosis of spinal cord ventral horn motor neurons (VHMNs) and consequently cause skeletal muscle wasting. Methods. Third-degree hindpaw burn injury with 1% total body surface area (TBSA) rats were euthanized 4 and 8 weeks after burn injury. The apoptosis profiles in the ventral horns of the lumbar spinal cords, sciatic nerves, and gastrocnemius muscles were examined. The Schwann cells in the sciatic nerve were marked with S100. The gastrocnemius muscles were harvested to measure the denervation atrophy. Result. The VHMNs apoptosis in the spinal cord was observed after inducing third-degree burns in the hindpaw. The S100 and TUNEL double-positive cells in the sciatic nerve increased significantly after the burn injury. Gastrocnemius muscle apoptosis and denervation atrophy area increased significantly after the burn injury. Conclusion. Local hindpaw burn induces apoptosis in VHMNs and Schwann cells in sciatic nerve, which causes corresponding gastrocnemius muscle denervation atrophy. Our results provided an animal model to evaluate burn-induced muscle wasting, and elucidate the underlying mechanisms. PMID:25695065

  15. Neonatal sensory nerve injury-induced synaptic plasticity in the trigeminal principal sensory nucleus.

    PubMed

    Lo, Fu-Sun; Erzurumlu, Reha S

    2016-01-01

    Sensory deprivation studies in neonatal mammals, such as monocular eye closure, whisker trimming, and chemical blockade of the olfactory epithelium have revealed the importance of sensory inputs in brain wiring during distinct critical periods. But very few studies have paid attention to the effects of neonatal peripheral sensory nerve damage on synaptic wiring of the central nervous system (CNS) circuits. Peripheral somatosensory nerves differ from other special sensory afferents in that they are more prone to crush or severance because of their locations in the body. Unlike the visual and auditory afferents, these nerves show regenerative capabilities after damage. Uniquely, damage to a somatosensory peripheral nerve does not only block activity incoming from the sensory receptors but also mediates injury-induced neuro- and glial chemical signals to the brain through the uninjured central axons of the primary sensory neurons. These chemical signals can have both far more and longer lasting effects than sensory blockade alone. Here we review studies which focus on the consequences of neonatal peripheral sensory nerve damage in the principal sensory nucleus of the brainstem trigeminal complex.

  16. Case study: Muscle atrophy and hypertrophy in a premier league soccer player during rehabilitation from ACL injury.

    PubMed

    Milsom, Jordan; Barreira, Paulo; Burgess, Darren J; Iqbal, Zafar; Morton, James P

    2014-10-01

    The onset of injury and subsequent period of immobilization and disuse present major challenges to maintenance of skeletal muscle mass and function. Although the characteristics of immobilization-induced muscle atrophy are well documented in laboratory studies, comparable data from elite athletes in free-living conditions are not readily available. We present a 6-month case-study account from a professional soccer player of the English Premier League characterizing rates of muscle atrophy and hypertrophy (as assessed by DXA) during immobilization and rehabilitation after ACL injury. During 8 weeks of inactivity and immobilization, where the athlete adhered to a low carbohydrate-high protein diet, total body mass decreased by 5 kg attributable to 5.8 kg loss and 0.8 kg gain in lean and fat mass, respectively. Changes in whole-body lean mass was attributable to comparable relative decreases in the trunk (12%, 3.8 kg) and immobilized limb (13%, 1.4 kg) whereas the nonimmobilized limb exhibited smaller declines (7%, 0.8 kg). In Weeks 8 to 24, the athlete adhered to a moderate carbohydrate-high protein diet combined with structured resistance and field based training for both the lower and upper-body that resulted in whole-body muscle hypertrophy (varying from 0.5 to 1 kg per week). Regional hypertrophy was particularly pronounced in the trunk and nonimmobilized limb during weeks 8 to 12 (2.6 kg) and 13 to 16 (1.3 kg), respectively, whereas the previously immobilized limb exhibited slower but progressive increases in lean mass from Week 12 to 24 (1.2 kg). The athlete presented after the totality of the injured period with an improved anthropometrical and physical profile.

  17. Effects of diazepam on glutamatergic synaptic transmission in the hippocampal CA1 area of rats with traumatic brain injury

    PubMed Central

    Cao, Lei; Bie, Xiaohua; Huo, Su; Du, Jubao; Liu, Lin; Song, Weiqun

    2014-01-01

    The activity of the Schaffer collaterals of hippocampal CA3 neurons and hippocampal CA1 neurons has been shown to increase after fluid percussion injury. Diazepam can inhibit the hyperexcitability of rat hippocampal neurons after injury, but the mechanism by which it affects excitatory synaptic transmission remains poorly understood. Our results showed that diazepam treatment significantly increased the slope of input-output curves in rat neurons after fluid percussion injury. Diazepam significantly decreased the numbers of spikes evoked by super stimuli in the presence of 15 μmol/L bicuculline, indicating the existence of inhibitory pathways in the injured rat hippocampus. Diazepam effectively increased the paired-pulse facilitation ratio in the hippocampal CA1 region following fluid percussion injury, reduced miniature excitatory postsynaptic potentials, decreased action-potential-dependent glutamine release, and reversed spontaneous glutamine release. These data suggest that diazepam could decrease the fluid percussion injury-induced enhancement of excitatory synaptic transmission in the rat hippocampal CA1 area. PMID:25558239

  18. Effect of Electroacupuncture on the Expression of Glycyl-tRNA Synthetase and Ultrastructure Changes in Atrophied Rat Peroneus Longus Muscle Induced by Sciatic Nerve Injection Injury.

    PubMed

    Wang, Meng; Zhang, Xiao Ming; Yang, Sheng Bo

    2016-01-01

    Glycyl-tRNA synthetase (GlyRS) is one of the key enzymes involved in protein synthesis. Its mutations have been reported to cause Charcot-Marie-Tooth disease which demonstrates muscular atrophy in distal extremities, particularly manifested in peroneus muscles. In this situation, the dysfunctions of mitochondria and sarcoplasmic reticulum (SR) affect energy supply and excitation-contraction coupling of muscle fibers, therefore resulting in muscular atrophy. Although the treatment of muscular atrophy is a global urgent problem, it can be improved by electroacupuncture (EA) treatment. To investigate the mechanism underlying EA treatment improving muscular atrophy, we focused on the perspective of protein synthesis by establishing a penicillin injection-induced sciatic nerve injury model. In our model, injured rats without treatment showed decreased sciatic functional index (SFI), decreased peroneus longus muscle weight and muscle fiber cross-sectional area, aggregated mitochondria with vacuoles appearing, swollen SR, and downregulated mRNA and protein expression levels of GlyRS and myosin heavy chain IIb (MHC-IIb). The injured rats with EA treatment showed significant recovery. These results indicated that EA stimulation can alleviate peroneus longus muscular atrophy induced by iatrogenic sciatic nerve injury through promoting the recovery of GlyRS and muscle ultrastructure and increasing muscle protein synthesis.

  19. Abnormal right hepatic artery injury resulting in right hepatic atrophy: diagnosed by laparoscopic cholecystectomy

    PubMed Central

    Martino, Valter; Ferrarese, Alessia; Bindi, Marco; Marola, Silvia; Gentile, Valentina; Rivelli, Matteo; Ferrara, Yuri; Enrico, Stefano; Berti, Stefano; Solej, Mario

    2015-01-01

    An intact hepatic artery is the gateway to successful hepato-biliary surgery. Introduction of laproscopic cholecystectomy (LC) has stimulated a renewed interest in the anatomy of hepatic artery. In this case report we have highlighted importance of variations of right hepatic artery in terms of origin and course We present a rare asymptomatic case of liver atrophy due to an intraoperative lesion of right hepatic artery. We also performed a literature review about surgical vascular lesions and tried to confirm the right concept behind “non trivial procedure” of the LC. PMID:28352750

  20. Vaginal Atrophy

    MedlinePlus

    Vaginal atrophy Overview By Mayo Clinic Staff Vaginal atrophy (atrophic vaginitis) is thinning, drying and inflammation of the vaginal walls due to your body having less estrogen. Vaginal atrophy occurs most ...

  1. Exercise Training after Spinal Cord Injury Selectively Alters Synaptic Properties in Neurons in Adult Mouse Spinal Cord

    PubMed Central

    Flynn, Jamie R.; Dunn, Lynda R.; Galea, Mary P.; Callister, Robin; Rank, Michelle M.

    2013-01-01

    Abstract Following spinal cord injury (SCI), anatomical changes such as axonal sprouting occur within weeks in the vicinity of the injury. Exercise training enhances axon sprouting; however, the exact mechanisms that mediate exercised-induced plasticity are unknown. We studied the effects of exercise training after SCI on the intrinsic and synaptic properties of spinal neurons in the immediate vicinity (<2 segments) of the SCI. Male mice (C57BL/6, 9–10 weeks old) received a spinal hemisection (T10) and after 1 week of recovery, they were randomized to trained (treadmill exercise for 3 weeks) and untrained (no exercise) groups. After 3 weeks, mice were killed and horizontal spinal cord slices (T6–L1, 250 μm thick) were prepared for visually guided whole cell patch clamp recording. Intrinsic properties, including resting membrane potential, input resistance, rheobase current, action potential (AP) threshold and after-hyperpolarization (AHP) amplitude were similar in neurons from trained and untrained mice (n=67 and 70 neurons, respectively). Neurons could be grouped into four categories based on their AP discharge during depolarizing current injection; the proportions of tonic firing, initial bursting, single spiking, and delayed firing neurons were similar in trained and untrained mice. The properties of spontaneous excitatory synaptic currents (sEPSCs) did not differ in trained and untrained animals. In contrast, evoked excitatory synaptic currents recorded after dorsal column stimulation were markedly increased in trained animals (peak amplitude 78.9±17.5 vs. 42.2±6.8 pA; charge 1054±376 vs. 348±75 pA·ms). These data suggest that 3 weeks of treadmill exercise does not affect the intrinsic properties of spinal neurons after SCI; however, excitatory synaptic drive from dorsal column pathways, such as the corticospinal tract, is enhanced. PMID:23320512

  2. Geniposide Alleviates Amyloid-Induced Synaptic Injury by Protecting Axonal Mitochondrial Trafficking

    PubMed Central

    Zhang, Haijing; Zhao, Chunhui; Lv, Cui; Liu, Xiaoli; Du, Shijing; Li, Zhi; Wang, Yongyan; Zhang, Wensheng

    2017-01-01

    Synaptic and mitochondrial pathologies are early events in the progression of Alzheimer's disease (AD). Normal axonal mitochondrial function and transport play crucial roles in maintaining synaptic function by producing high levels of adenosine triphosphate and buffering calcium. However, there can be abnormal axonal mitochondrial trafficking, distribution, and fragmentation, which are strongly correlated with amyloid-β (Aβ)-induced synaptic loss and dysfunction. The present study examined the neuroprotective effect of geniposide, a compound extracted from gardenia fruit in Aβ-treated neurons and an AD mouse model. Geniposide alleviated Aβ-induced axonal mitochondrial abnormalities by increasing axonal mitochondrial density and length and improving mitochondrial motility and trafficking in cultured hippocampal neurons, consequently ameliorating synaptic damage by reversing synaptic loss, addressing spine density and morphology abnormalities, and ameliorating the decreases in synapse-related proteins in neurons and APPswe/PS1dE9 mice. These findings provide new insights into the effects of geniposide administration on neuronal and synaptic functions under conditions of Aβ enrichment. PMID:28179878

  3. In Vivo Expression of Reprogramming Factors Increases Hippocampal Neurogenesis and Synaptic Plasticity in Chronic Hypoxic-Ischemic Brain Injury

    PubMed Central

    Wi, Soohyun; Yu, Ji Hea; Kim, MinGi

    2016-01-01

    Neurogenesis and synaptic plasticity can be stimulated in vivo in the brain. In this study, we hypothesized that in vivo expression of reprogramming factors such as Klf4, Sox2, Oct4, and c-Myc would facilitate endogenous neurogenesis and functional recovery. CD-1® mice were induced at 1 week of age by unilaterally carotid artery ligation and exposure to hypoxia. At 6 weeks of age, mice were injected GFP only or both four reprogramming factors and GFP into lateral ventricle. Passive avoidance task and open field test were performed to evaluate neurobehavioral function. Neurogenesis and synaptic activity in the hippocampus were evaluated using immunohistochemistry, qRT-PCR, and/or western blot analyses. Whereas BrdU+GFAP+ cells in the subgranular zone of the hippocampus were not significantly different, the numbers of BrdU+βIII-tubulin+ and BrdU+NeuN+ cells were significantly higher in treatment group than control group. Expressions of synaptophysin and PSD-95 were also higher in treatment group than control group. Importantly, passive avoidance task and open field test showed improvement in long-term memory and decreased anxiety in treatment group. In conclusion, in vivo expression of reprogramming factors improved behavioral functions in chronic hypoxic-ischemic brain injury. The mechanisms underlying these repair processes included endogenous neurogenesis and synaptic plasticity in the hippocampus. PMID:27900211

  4. RhoA Signaling and Synaptic Damage Occur Within Hours in a Live Pig Model of CNS Injury, Retinal Detachment

    PubMed Central

    Wang, Jianfeng; Zarbin, Marco; Sugino, Ilene; Whitehead, Ian; Townes-Anderson, Ellen

    2016-01-01

    Purpose The RhoA pathway is activated after retinal injury. However, the time of onset and consequences of activation are unknown in vivo. Based on in vitro studies we focused on a period 2 hours after retinal detachment, in pig, an animal whose retina is holangiotic and contains cones. Methods Under anesthesia, retinal detachments were created by subretinal injection of a balanced salt solution. Two hours later, animals were sacrificed and enucleated for GTPase activity assays and quantitative Western blot and confocal microscopy analyses. Results RhoA activity with detachment was increased 1.5-fold compared to that in normal eyes or in eyes that had undergone vitrectomy only. Increased phosphorylation of myosin light chain, a RhoA effector, also occurred. By 2 hours, rod cells had retracted their terminals toward their cell bodies, disrupting the photoreceptor-to-bipolar synapse and producing significant numbers of spherules with SV2 immunolabel in the outer nuclear layer of the retina. In eyes with detachment, distant retina that remained attached also showed significant increases in RhoA activity and synaptic disjunction. Increases in RAC1 activity and glial fibrillary acidic protein (GFAP) were not specific for detachment, and sprouting of bipolar dendrites, reported for longer detachments, was not seen. The RhoA kinase inhibitor Y27632 significantly reduced axonal retraction by rod cells. Conclusions Activation of the RhoA pathway occurs quickly after injury and promotes synaptic damage that can be controlled by RhoA kinase inhibition. We suggest that retinal detachment joins the list of central nervous system injuries, such as stroke and spinal cord injury, that should be considered for rapid therapeutic intervention. PMID:27472075

  5. Knockout of Cyclophilin-D Provides Partial Amelioration of Intrinsic and Synaptic Properties Altered by Mild Traumatic Brain Injury

    PubMed Central

    Sun, Jianli; Jacobs, Kimberle M.

    2016-01-01

    Mitochondria are central to cell survival and Ca2+ homeostasis due to their intracellular buffering capabilities. Mitochondrial dysfunction resulting in mitochondrial permeability transition pore (mPTP) opening has been reported after mild traumatic brain injury (mTBI). Cyclosporine A provides protection against the mPTP opening through its interaction with cyclophilin-D (CypD). A recent study has found that the extent of axonal injury after mTBI was diminished in neocortex in cyclophilin-D knockout (CypDKO) mice. Here we tested whether this CypDKO could also provide protection from the increased intrinsic and synaptic neuronal excitability previously described after mTBI in a mild central fluid percussion injury mice model. CypDKO mice were crossed with mice expressing yellow fluorescent protein (YFP) in layer V pyramidal neurons in neocortex to create CypDKO/YFP-H mice. Whole cell patch clamp recordings from axotomized (AX) and intact (IN) YFP+ layer V pyramidal neurons were made 1 and 2 days after sham or mTBI in slices from CypDKO/YFP-H mice. Both excitatory post synaptic currents (EPSCs) recorded in voltage clamp and intrinsic cellular properties, including action potential (AP), afterhyperpolarization (AHP), and depolarizing after potential (DAP) characteristics recorded in current clamp were evaluated. There was no significant difference between sham and mTBI for either spontaneous or miniature EPSC frequency, suggesting that CypDKO ameliorates excitatory synaptic abnormalities. There was a partial amelioration of intrinsic properties altered by mTBI. Alleviated were the increased slope of the AP frequency vs. injected current plot, the increased AP, AHP and DAP amplitudes. Other properties that saw a reversal that became significant in the opposite direction include the current rheobase and AP overshoot. The AP threshold remained depolarized and the input resistance remained increased in mTBI compared to sham. Additional altered properties suggest that the

  6. Decreased MHC I expression in IFN gamma mutant mice alters synaptic elimination in the spinal cord after peripheral injury

    PubMed Central

    2012-01-01

    Background The histocompatibility complex (MHC) class I expression in the central nervous system (CNS) regulates synaptic plasticity events during development and adult life. Its upregulation may be associated with events such as axotomy, cytokine exposition and changes in neuron electrical activity. Since IFNγ is a potent inducer of the MHC I expression, the present work investigated the importance of this pro-inflammatory cytokine in the synaptic elimination process in the spinal cord, as well as the motor recovery of IFN−/−, following peripheral injury. Methods The lumbar spinal cords of C57BL/6J (wild type) and IFNγ−/− (mutant) mice, subjected to unilateral sciatic nerve transection, were removed and processed for immunohistochemistry and real time RT-PCR, while the sciatic nerves from animals subjected to unilateral crush, were submitted to immunohistochemistry and electron microscopy for counting of the axons. Gait recovery was monitored using the Cat Walk system. Newborn mice astrocyte primary cultures were established in order to study the astrocytic respose in the absence of the IFNγ expression. Results IFNγ−/− mutant mice showed a decreased expression of MHC I and β2-microglobulin mRNA coupled with reduced synaptophysin immunolabelling in the lesioned spinal cord segment. Following unilateral nerve transection, the Iba-1 (ionized calcium binding adaptor molecule 1) and glial fibrillary acid protein (GFAP) reactivities increased equally in both strains. In vitro, the astrocytes demonstrated similar GFAP levels, but the proliferation rate was higher in the wild type mice. In the crushed nerves (distal stump), neurofilaments and p75NTR immunolabeling were upregulated in the mutant mice as compared to the wild type and an improvement in locomotor recovery was observed. Conclusion The present results show that a lack of IFNγ affects the MHC I expression and the synaptic elimination process in the spinal cord. Such changes, however, do not

  7. Traumatic Brain Injury Impairs Soluble N-Ethylmaleimide-Sensitive Factor Attachment Protein Receptor Complex Formation and Alters Synaptic Vesicle Distribution in the Hippocampus

    PubMed Central

    Carlson, Shaun W.; Yan, Hong; Ma, Michelle; Li, Youming; Henchir, Jeremy

    2016-01-01

    Abstract Traumatic brain injury (TBI) impairs neuronal function and can culminate in lasting cognitive impairment. While impaired neurotransmitter release has been well established after experimental TBI, little is understood about the mechanisms underlying this consequence. In the synapse, vesicular docking and neurotransmitter release requires the formation of the soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) complex. Impairments in vesicle docking, and alterations in SNARE complex formation are associated with impaired neurotransmitter release. We hypothesized that TBI reduces SNARE complex formation and disrupts synaptic vesicle distribution in the hippocampus. To examine the effect of TBI on the SNARE complex, rats were subjected to controlled cortical impact (CCI) or sham injury, and the brains were assessed at 6 h, 1 d, one week, two weeks, or four weeks post-injury. Immunoblotting of hippocampal homogenates revealed significantly reduced SNARE complex formation at one week and two weeks post-injury. To assess synaptic vesicles distribution, rats received CCI or sham injury and the brains were processed for transmission electron microscopy at one week post-injury. Synapses in the hippocampus were imaged at 100k magnification, and vesicle distribution was assessed in pre-synaptic terminals at the active zone. CCI resulted in a significant reduction in vesicle number within 150 nm of the active zone. These findings provide the first evidence of TBI-induced impairments in synaptic vesicle docking, and suggest that reductions in the pool of readily releasable vesicles and impaired SNARE complex formation are two novel mechanisms contributing to impaired neurotransmission after TBI. PMID:25923735

  8. Blockade of Astrocytic Calcineurin/NFAT Signaling Helps to Normalize Hippocampal Synaptic Function and Plasticity in a Rat Model of Traumatic Brain Injury

    PubMed Central

    Furman, Jennifer L.; Sompol, Pradoldej; Kraner, Susan D.; Pleiss, Melanie M.; Putman, Esther J.; Dunkerson, Jacob; Mohmmad Abdul, Hafiz; Roberts, Kelly N.; Scheff, Stephen W.

    2016-01-01

    Increasing evidence suggests that the calcineurin (CN)-dependent transcription factor NFAT (Nuclear Factor of Activated T cells) mediates deleterious effects of astrocytes in progressive neurodegenerative conditions. However, the impact of astrocytic CN/NFAT signaling on neural function/recovery after acute injury has not been investigated extensively. Using a controlled cortical impact (CCI) procedure in rats, we show that traumatic brain injury is associated with an increase in the activities of NFATs 1 and 4 in the hippocampus at 7 d after injury. NFAT4, but not NFAT1, exhibited extensive labeling in astrocytes and was found throughout the axon/dendrite layers of CA1 and the dentate gyrus. Blockade of the astrocytic CN/NFAT pathway in rats using adeno-associated virus (AAV) vectors expressing the astrocyte-specific promoter Gfa2 and the NFAT-inhibitory peptide VIVIT prevented the injury-related loss of basal CA1 synaptic strength and key synaptic proteins and reduced the susceptibility to induction of long-term depression. In conjunction with these seemingly beneficial effects, VIVIT treatment elicited a marked increase in the expression of the prosynaptogenic factor SPARCL1 (hevin), especially in hippocampal tissue ipsilateral to the CCI injury. However, in contrast to previous work on Alzheimer's mouse models, AAV-Gfa2-VIVIT had no effects on the levels of GFAP and Iba1, suggesting that synaptic benefits of VIVIT were not attributable to a reduction in glial activation per se. Together, the results implicate the astrocytic CN/NFAT4 pathway as a key mechanism for disrupting synaptic remodeling and homeostasis in the hippocampus after acute injury. SIGNIFICANCE STATEMENT Similar to microglia, astrocytes become strongly “activated” with neural damage and exhibit numerous morphologic/biochemical changes, including an increase in the expression/activity of the protein phosphatase calcineurin. Using adeno-associated virus (AAV) to inhibit the calcineurin

  9. Infraspinatus muscle atrophy from suprascapular nerve compression.

    PubMed

    Cordova, Christopher B; Owens, Brett D

    2014-02-01

    Muscle weakness without pain may signal a nerve compression injury. Because these injuries should be identified and treated early to prevent permanent muscle weakness and atrophy, providers should consider suprascapular nerve compression in patients with shoulder muscle weakness.

  10. Bed Rest Muscular Atrophy

    NASA Technical Reports Server (NTRS)

    Greenleaf, John E.

    2000-01-01

    A major debilitating response from prolonged bed rest (BR) is muscle atrophy, defined as a "decrease in size of a part of tissue after full development has been attained: a wasting away of tissue as from disuse, old age, injury or disease". Part of the complicated mechanism for the dizziness, increased body instability, and exaggerated gait in patients who arise immediately after BR may be a result of not only foot pain, but also of muscular atrophy and associated reduction in lower limb strength. Also, there seems to be a close association between muscle atrophy and bone atrophy. A discussion of many facets of the total BR homeostatic syndrome has been published. The old adage that use determines form which promotes function of bone (Wolff's law) also applies to those people exposed to prolonged BR (without exercise training) in whom muscle atrophy is a consistent finding. An extreme case involved a 16-year-old boy who was ordered to bed by his mother in 1932: after 50 years in bed he had "a lily-white frame with limbs as thin as the legs of a ladder-back chair". These findings emphasize the close relationship between muscle atrophy and bone atrophy. In addition to loss of muscle mass during deconditioning, there is a significant loss of muscle strength and a decrease in protein synthesis. Because the decreases in force (strength) are proportionately greater than those in fiber size or muscle cross-sectional area, other contributory factors must be involved; muscle fiber dehydration may be important.

  11. Primary Blast Injury Depressed Hippocampal Long-Term Potentiation through Disruption of Synaptic Proteins.

    PubMed

    Vogel, Edward W; Rwema, Steve H; Meaney, David F; Bass, Cameron R Dale; Morrison, Barclay

    2017-03-01

    Blast-induced traumatic brain injury (bTBI) is a major threat to United States service members in military conflicts worldwide. The effects of primary blast, caused by the supersonic shockwave interacting with the skull and brain, remain unclear. Our group has previously reported that in vitro primary blast exposure can reduce long-term potentiation (LTP), the electrophysiological correlate of learning and memory, in rat organotypic hippocampal slice cultures (OHSCs) without significant changes to cell viability or basal, evoked neuronal function. We investigated the time course of primary blast-induced deficits in LTP and the molecular mechanisms that could underlie these deficits. We found that pure primary blast exposure induced LTP deficits in a delayed manner, requiring longer than 1 hour to develop, and that these deficits spontaneously recovered by 10 days following exposure depending on blast intensity. Additionally, we observed that primary blast exposure reduced total α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) glutamate receptor 1 (GluR1) subunit expression and phosphorylation of the GluR1 subunit at the serine-831 site. Blast also reduced the expression of postsynaptic density protein-95 (PSD-95) and phosphorylation of stargazin protein at the serine-239/240 site. Finally, we found that modulation of the cyclic adenosine monophosphate (cAMP) pathway ameliorated electrophysiological and protein-expression changes caused by blast. These findings could inform the development of novel therapies to treat blast-induced loss of neuronal function.

  12. TNF-α Differentially Regulates Synaptic Plasticity in the Hippocampus and Spinal Cord by Microglia-Dependent Mechanisms after Peripheral Nerve Injury.

    PubMed

    Liu, Yong; Zhou, Li-Jun; Wang, Jun; Li, Dai; Ren, Wen-Jie; Peng, Jiyun; Wei, Xiao; Xu, Ting; Xin, Wen-Jun; Pang, Rui-Ping; Li, Yong-Yong; Qin, Zhi-Hai; Murugan, Madhuvika; Mattson, Mark P; Wu, Long-Jun; Liu, Xian-Guo

    2017-01-25

    Clinical studies show that chronic pain is accompanied by memory deficits and reduction in hippocampal volume. Experimental studies show that spared nerve injury (SNI) of the sciatic nerve induces long-term potentiation (LTP) at C-fiber synapses in spinal dorsal horn, but impairs LTP in the hippocampus. The opposite changes may contribute to neuropathic pain and memory deficits, respectively. However, the cellular and molecular mechanisms underlying the functional synaptic changes are unclear. Here, we show that the dendrite lengths and spine densities are reduced significantly in hippocampal CA1 pyramidal neurons, but increased in spinal neurokinin-1-positive neurons in mice after SNI, indicating that the excitatory synaptic connectivity is reduced in hippocampus but enhanced in spinal dorsal horn in this neuropathic pain model. Mechanistically, tumor necrosis factor-alpha (TNF-α) is upregulated in bilateral hippocampus and in ipsilateral spinal dorsal horn, whereas brain-derived neurotrophic factor (BDNF) is decreased in the hippocampus but increased in the ipsilateral spinal dorsal horn after SNI. Importantly, the SNI-induced opposite changes in synaptic connectivity and BDNF expression are prevented by genetic deletion of TNF receptor 1 in vivo and are mimicked by TNF-α in cultured slices. Furthermore, SNI activated microglia in both spinal dorsal horn and hippocampus; pharmacological inhibition or genetic ablation of microglia prevented the region-dependent synaptic changes, neuropathic pain, and memory deficits induced by SNI. The data suggest that neuropathic pain involves different structural synaptic alterations in spinal and hippocampal neurons that are mediated by overproduction of TNF-α and microglial activation and may underlie chronic pain and memory deficits.

  13. Muscle atrophy

    MedlinePlus

    ... damage caused by injury, diabetes, toxins, or alcohol Polio ( poliomyelitis ) Spinal cord injury Although people can adapt to ... Guillain-Barré syndrome Hypotonia Muscle cramps Muscular dystrophy Polio Review Date 1/5/2016 Updated by: Joseph ...

  14. Opposing effects of Toll-like receptors 2 and 4 on synaptic stability in the spinal cord after peripheral nerve injury

    PubMed Central

    2012-01-01

    Background Glial cells are involved in the synaptic elimination process that follows neuronal lesions, and are also responsible for mediating the interaction between the nervous and immune systems. Neurons and glial cells express Toll-like receptors (TLRs), which may affect the plasticity of the central nervous system (CNS). Because TLRs might also have non-immune functions in spinal-cord injury (SCI), we aimed to investigate the influence of TLR2 and TLR4 on synaptic plasticity and glial reactivity after peripheral nerve axotomy. Methods The lumbar spinal cords of C3H/HePas wild-type (WT) mice, C3H/HeJ TLR4-mutant mice, C57BL/6J WT mice, and C57BL/6J TLR2 knockout (KO) mice were studied after unilateral sciatic nerve transection. The mice were killed via intracardiac perfusion, and the spinal cord was processed for immunohistochemistry, transmission electron microscopy (TEM), western blotting, cell culture, and reverse transcriptase PCR. Primary cultures of astrocytes from newborn mice were established to study the astrocyte response in the absence of TLR2 and the deficiency of TLR4 expression. Results The results showed that TLR4 and TLR2 expression in the CNS may have opposite effects on the stability of presynaptic terminals in the spinal cord. First, TLR4 contributed to synaptic preservation of terminals in apposition to lesioned motor neurons after peripheral injury, regardless of major histocompatibility complex class I (MHC I) expression. In addition, in the presence of TLR4, there was upregulation of glial cell-derived neurotrophic factor and downregulation of interleukin-6, but no morphological differences in glial reactivity were seen. By contrast, TLR2 expression led to greater synaptic loss, correlating with increased astrogliosis and upregulation of pro-inflammatory interleukins. Moreover, the absence of TLR2 resulted in the upregulation of neurotrophic factors and MHC I expression. Conclusion TLR4 and TLR2 in the CNS may have opposite effects on the

  15. Effect of icariin in combination with daily sildenafil on penile atrophy and erectile dysfunction in a rat model of bilateral cavernous nerves injury.

    PubMed

    Xu, Y; Xin, H; Wu, Y; Guan, R; Lei, H; Fu, X; Xin, Z; Yang, Y

    2017-03-10

    The commonly utilized phosphodiesterase type 5 inhibitors do not lead to satisfactory penile erection after radical prostatectomy mainly because of insufficient nitric oxide drive from the damaged cavernous nerves. The aim of this study was to assess the efficacy and mechanisms of icariin in combination with daily sildenafil on neurogenic erectile dysfunction and penile atrophy in a rat model of bilateral cavernous nerves injury. Sixty male Sprague-Dawley rats injected with 5-ethynyl-2-deoxyuridine (50 mg/kg) at postnatal day 1 for the purpose of tracking endogenous stem cells in penis. Forty-eight rats of bilateral cavernous nerves injury were randomized equally into gavage feeding of vehicle, sildenafil (10 mg/kg), icariin (1.5 mg/kg) and sildenafil + icariin, respectively. Twelve sham-operated rats served as control. The intracavernous pressure and mean arterial pressure was measured and mid-penile cross sections were histologically examined 5 weeks after surgery. Western blotting of cavernous tissue protein was also performed. Animals treated with sildenafil + icariin had significantly higher mean intracavernous pressure/mean arterial pressure ratio relative to other rats with bilateral cavernous nerves injury (p < 0.05). The circumference and mean cross-sectional area of the paired corpus cavernosum were effectively preserved in the sildenafil + icariin. Treatment with sildenafil + icariin significantly increased the cavernous cyclic guanosine monophosphate concentration compared with the icariin group (p < 0.05). In addition, the numbers of neuronal nitric oxide synthase-positive nerves and 5-ethynyl-2-deoxyuridine-positive cells co-expressing S100 in the icariin-treated groups were greater compared with the bilateral cavernous nerves injury control group (p < 0.05). These data suggest that the combined use of icariin and daily sildenafil holds promise as a potential therapy for neurogenic erectile dysfunction in the future. The underlying

  16. Transplantation of marrow stromal cells restores cerebral blood flow and reduces cerebral atrophy in rats with traumatic brain injury: in vivo MRI study.

    PubMed

    Li, Lian; Jiang, Quan; Qu, Chang Sheng; Ding, Guang Liang; Li, Qing Jiang; Wang, Shi Yang; Lee, Ji Hyun; Lu, Mei; Mahmood, Asim; Chopp, Michael

    2011-04-01

    Cell therapy promotes brain remodeling and improves functional recovery after various central nervous system disorders, including traumatic brain injury (TBI). We tested the hypothesis that treatment of TBI with intravenous administration of human marrow stromal cells (hMSCs) provides therapeutic benefit in modifying hemodynamic and structural abnormalities, which are detectable by in vivo MRI. hMSCs were labeled with superparamagnetic iron oxide (SPIO) nanoparticles. Male Wistar rats (300-350 g, n=18) subjected to controlled cortical impact TBI were intravenously injected with 1 mL of saline (n=9) or hMSCs in suspension (n=9, approximately 3 × 10(6) SPIO-labeled hMSCs) 5 days post-TBI. In vivo MRI measurements consisting of cerebral blood flow (CBF), T2-weighted imaging, and 3D gradient echo imaging were performed for all animals 2 days post-TBI and weekly for 6 weeks. Functional outcome was evaluated with modified neurological severity score and Morris water maze test. Cell engraftment was detected in vivo by 3D MRI and confirmed by double staining. Ventricle and lesion volumetric alterations were measured using T2 maps, and hemodynamic abnormality was tracked by MRI CBF measurements. Our data demonstrate that treatment with hMSCs following TBI diminishes hemodynamic abnormalities by early restoration and preservation of CBF in the brain regions adjacent to and remote from the impact site, and reduces generalized cerebral atrophy, all of which may contribute to the observed improvement of functional outcome.

  17. Enhanced neurofibrillary tangle formation, cerebral atrophy, and cognitive deficits induced by repetitive mild brain injury in a transgenic tauopathy mouse model.

    PubMed

    Yoshiyama, Yasumasa; Uryu, Kunihiro; Higuchi, Makoto; Longhi, Luca; Hoover, Rachel; Fujimoto, Scott; McIntosh, Tracy; Lee, Virginia M-Y; Trojanowski, John Q

    2005-10-01

    Traumatic brain injury (TBI) is a risk factors for Alzheimer's disease (AD), and repetitive TBI (rTBI) may culminate in dementia pugilistica (DP), a syndrome characterized by progressive dementia, parkinsonism, and the hallmark brain lesions of AD, including neurofibrillary tangles (NFTs), formed by abnormal tau filaments and senile plaques (SPs) composed of Abeta fibrils. Previous study showed that mild rTBI (mrTBI) accelerated the deposition of Abeta in the brains of transgenic (Tg) mice (Tg2576) that over-express human Abeta precursor proteins with the familial AD Swedish mutations (APP695swe) and model of AD-like amyloidosis. Here, we report studies of the effects of mrTBI on AD-like tau pathologies in Tg mice expressing the shortest human tau isoform (T44) subjected to mrTBI, causing brain concussion without structural brain damage to simulate injuries linked to DP. Twelve-month-old Tg T44 (n = 18) and wild-type (WT; n = 24) mice were subjected to mrTBI (four times a day, 1 day per week, for 4 weeks; n = 24) or sham treatment (n = 18). Histopathological analysis of mice at 9 months after mrTBI revealed that one of the Tg T44 mice showed extensive telencephalic NFT and cerebral atrophy. Although statistical analysis of neurobehavioral tests at 6 months after mrTBI did not show any significant difference in any of groups of mice, the Tg T44 mouse with extensive NFT had an exceptionally low neurobehavioral score. The reasons for the augmentation of tau pathologies in only one T44 tau Tg mouse subjected to mrTBI remain to be elucidated.

  18. PKA Inhibitor H89 (N-[2-p-bromocinnamylamino-ethyl]-5-isoquinolinesulfonamide) Attenuates Synaptic Dysfunction and Neuronal Cell Death following Ischemic Injury

    PubMed Central

    Song, Juhyun; Cheon, So Yeong; Lee, Won Taek; Park, Kyung Ah; Lee, Jong Eun

    2015-01-01

    The cyclic AMP-dependent protein kinase (PKA), which activates prosurvival signaling proteins, has been implicated in the expression of long-term potentiation and hippocampal long-term memory. It has come to light that H89 commonly known as the PKA inhibitor have diverse roles in the nervous system that are unrelated to its role as a PKA inhibitor. We have investigated the role of H89 in ischemic and reperfusion injury. First, we examined the expression of postsynaptic density protein 95 (PSD95), microtubule-associated protein 2 (MAP2), and synaptophysin in mouse brain after middle cerebral artery occlusion injury. Next, we examined the role of H89 pretreatment on the expression of brain-derived neurotrophic factor (BDNF), PSD95, MAP2, and the apoptosis regulators Bcl2 and cleaved caspase-3 in cultured neuroblastoma cells exposed to hypoxia and reperfusion injury. In addition, we investigated the alteration of AKT activation in H89 pretreated neuroblastoma cells under hypoxia and reperfusion injury. The data suggest that H89 may contribute to brain recovery after ischemic stroke by regulating neuronal death and proteins related to synaptic plasticity. PMID:26448879

  19. Differential effects of the mitochondrial uncoupling agent, 2,4-dinitrophenol, or the nitroxide antioxidant, Tempol, on synaptic or nonsynaptic mitochondria after spinal cord injury.

    PubMed

    Patel, Samir P; Sullivan, Patrick G; Pandya, Jignesh D; Rabchevsky, Alexander G

    2009-01-01

    We recently documented the progressive nature of mitochondrial dysfunction over 24 hr after contusion spinal cord injury (SCI), but the underlying mechanism has not been elucidated. We investigated the effects of targeting two distinct possible mechanisms of mitochondrial dysfunction by using the mitochondrial uncoupler 2,4-dinitrophenol (2,4-DNP) or the nitroxide antioxidant Tempol after contusion SCI in rats. A novel aspect of this study was that all assessments were made in both synaptosomal (neuronal)- and nonsynaptosomal (glial and neuronal soma)-derived mitochondria 24 hr after injury. Mitochondrial uncouplers target Ca(2+) cycling and subsequent reactive oxygen species production in mitochondria after injury. When 2,4-DNP was injected 15 and 30 min after injury, mitochondrial function was preserved in both populations compared with vehicle-treated rats, whereas 1 hr postinjury treatment was ineffective. Conversely, targeting peroxynitrite with Tempol failed to maintain normal bioenergetics in synaptic mitochondria, but was effective in nonsynaptic mitochondria when administered 15 min after injury. When administered at 15 and 30 min after injury, increased hydroxynonenal, 3-NT, and protein carbonyl levels were significantly reduced by 2,4-DNP, whereas Tempol only reduced 3-NT and protein carbonyls after SCI. Despite such antioxidant effects, only 2,4-DNP was effective in preventing mitochondrial dysfunction, indicating that mitochondrial Ca(2+) overload may be the key mechanism involved in acute mitochondrial damage after SCI. Collectively, our observations demonstrate the significant role that mitochondrial dysfunction plays in SCI neuropathology. Moreover, they indicate that combinatorial therapeutic approaches targeting different populations of mitochondria holds great potential in fostering neuroprotection after acute SCI.

  20. Permanent central synaptic disconnection of proprioceptors after nerve injury and regeneration. II. Loss of functional connectivity with motoneurons.

    PubMed

    Bullinger, Katie L; Nardelli, Paul; Pinter, Martin J; Alvarez, Francisco J; Cope, Timothy C

    2011-11-01

    Regeneration of a cut muscle nerve fails to restore the stretch reflex, and the companion paper to this article [Alvarez FJ, Titus-Mitchell HE, Bullinger KL, Kraszpulski M, Nardelli P, Cope TC. J Neurophysiol (August 10, 2011). doi:10.1152/jn.01095.2010] suggests an important central contribution from substantial and persistent disassembly of synapses between regenerated primary afferents and motoneurons. In the present study we tested for physiological correlates of synaptic disruption. Anesthetized adult rats were studied 6 mo or more after a muscle nerve was severed and surgically rejoined. We recorded action potentials (spikes) from individual muscle afferents classified as IA like (*IA) by several criteria and tested for their capacity to produce excitatory postsynaptic potentials (EPSPs) in homonymous motoneurons, using spike-triggered averaging (STA). Nearly every paired recording from a *IA afferent and homonymous motoneuron (93%) produced a STA EPSP in normal rats, but that percentage was only 17% in rats with regenerated nerves. In addition, the number of motoneurons that produced aggregate excitatory stretch synaptic potentials (eSSPs) in response to stretch of the reinnervated muscle was reduced from 100% normally to 60% after nerve regeneration. The decline in functional connectivity was not attributable to synaptic depression, which returned to its normally low level after regeneration. From these findings and those in the companion paper, we put forward a model in which synaptic excitation of motoneurons by muscle stretch is reduced not only by misguided axon regeneration that reconnects afferents to the wrong receptor type but also by retraction of synapses with motoneurons by spindle afferents that successfully reconnect with spindle receptors in the periphery.

  1. Optic nerve atrophy

    MedlinePlus

    Optic atrophy; Optic neuropathy ... There are many causes of optic atrophy. The most common is poor blood flow. This is called ischemic optic neuropathy. The problem most often affects older adults. ...

  2. Opposing effects of traumatic brain injury on excitatory synaptic function in the lateral amygdala in the absence and presence of preinjury stress.

    PubMed

    Klein, Rebecca C; Acheson, Shawn K; Qadri, Laura H; Dawson, Alina A; Rodriguiz, Ramona M; Wetsel, William C; Moore, Scott D; Laskowitz, Daniel T; Dawson, Hana N

    2016-06-01

    Traumatic brain injury (TBI) is a leading cause of death and disability among young adults and is highly prevalent among recently deployed military personnel. Survivors of TBI often experience cognitive and emotional deficits, suggesting that long-term effects of injury may disrupt neuronal function in critical brain regions, including the amygdala, which is involved in emotion and fear memory. Amygdala hyperexcitability has been reported in both TBI and posttraumatic stress disorder patients, yet little is known regarding the effects of combined stress and TBI on amygdala structure and function at the neuronal level. The present study seeks to determine how the long-term effects of preinjury foot-shock stress and TBI interact to influence synaptic plasticity in the lateral amygdala (LA) of adult male C57BL/6J mice by using whole-cell patch clamp electrophysiology 2-3 months postinjury. In the absence of stress, TBI resulted in a significant increase in membrane excitability and spontaneous excitatory postsynaptic currents (sEPSCs) in LA pyramidal-like neurons. Foot-shock stress in the absence of TBI also resulted in increased sEPSC activity. In contrast, when preinjury stress and TBI occurred in combination, sEPSC activity was significantly decreased compared with either condition alone. There were no significant differences in inhibitory activity or total dendritic length among any of the treatment groups. These results demonstrate that stress and TBI may be contributing to amygdala hyperexcitability via different mechanisms and that these pathways may counterbalance each other with respect to long-term pathophysiology in the LA.

  3. AGE-DEPENDENT ALTERATIONS IN cAMP SIGNALING CONTRIBUTE TO SYNAPTIC PLASTICITY DEFICITS FOLLOWING TRAUMATIC BRAIN INJURY

    PubMed Central

    Titus, D. J.; Furones, C.; Kang, Y.; Atkins, C. M.

    2012-01-01

    The elderly have comparatively worse cognitive impairments from traumatic brain injury (TBI) relative to younger adults, but the molecular mechanisms that underlie this exacerbation of cognitive deficits are unknown. Experimental models of TBI have demonstrated that the cyclic AMP-protein kinase A (cAMP-PKA) signaling pathway is downregulated after brain trauma. Since the cAMPPKA signaling pathway is a key mediator of long-term memory formation, we investigated whether the TBI-induced decrease in cAMP levels is exacerbated in aged animals. Aged (19 months) and young adult (3 months) male Fischer 344 rats received sham surgery or mild (1.4–1.6 atmospheres, atm) or moderate (1.7–2.1 atm) parasagittal fluid-percussion brain injury. At various time points after surgery, the ipsilateral parietal cortex, hippocampus, and thalamus were assayed for cAMP levels. Mild TBI lowered cAMP levels in the hippocampus of aged, but not young adult animals. Moderate TBI lowered cAMP levels in the hippocampus and parietal cortex of both age groups. In the thalamus, cAMP levels were significantly lowered after moderate, but not mild TBI. To determine if the TBI-induced decreases in cAMP had physiological consequences in aged animals, hippocampal long-term potentiation (LTP) in the Schaffer collateral pathway of the CA1 region was assessed. LTP was significantly decreased in both young adult and aged animals after mild and moderate TBI as compared to sham surgery animals. Rolipram rescued the LTP deficits after mild TBI for young adult animals and caused a partial recovery for aged animals. However, rolipram did not rescue LTP deficits after moderate TBI in either young adult or aged animals. These results indicate that exacerbation of cognitive impairments in aged animals with TBI may be due to decreased cAMP levels and deficits in hippocampal LTP. PMID:23238576

  4. Is hippocampal atrophy a future drug target?

    PubMed

    Dhikav, Vikas; Anand, Kuljeet Singh

    2007-01-01

    Hippocampus is the brain structure, vital for episodic and declarative memory. Atrophy of the human hippocampus is seen in a variety of psychiatric and neurological disorders e.g. recurrent depression, schizophrenia, bipolar disorder, post-traumatic stress disorder, epilepsy, head injury, and Alzheimer's disease (AD). Importantly, aging hippocampus also undergoes atrophy. In many instances, for example, AD, the atrophy precedes the development of symptoms while in others, there is a temporal relationship between atrophy and symptomatology. The presence of atrophied hippocampus is one of the most consistent features of many common psychiatric disorders. Several factors contribute to this atrophy. Stress is one of the most profound factors implicated and the mechanisms involve glucocorticoids, serotonin, excitatory amino acids etc. Hippocampal formation as a whole can undergo atrophy or its individual structural components e.g. apical dendrities can exhibit atrophy. Several drugs of unrelated classes have been shown to prevent atrophy indicating heterogenous manner in which hippocampal atrophy is produced. These include, tianeptine (affects structural plasticity in hippocampus and is an effective antidepressant); phenytoin (antiseizure and neuroprotective); fluoxetine (downregulates neurodegenerative enzyme and increases neuroprotective hippocampal S100 beta); lithium (neuroprotective and antiapoptotic); tricyclic antidepressants (increase hippocampal neurogenesis); antipsychotics (reduce hippocampal neuronal suppression); sodium valproate (increases neurogenesis) and mifepristone (antioxidant, neuroprotective and anti-glucocorticoid). Now the most important question is: to what extent does the hippocampal atrophy play a role in the genesis of symptoms of diseases or their progression? And if it does, can we achieve the same degree of prevention or reversal seen in experimental animals, in humans also. An even more important question is: whether the prevention of

  5. EDITORIAL: Synaptic electronics Synaptic electronics

    NASA Astrophysics Data System (ADS)

    Demming, Anna; Gimzewski, James K.; Vuillaume, Dominique

    2013-09-01

    Conventional computers excel in logic and accurate scientific calculations but make hard work of open ended problems that human brains handle easily. Even von Neumann—the mathematician and polymath who first developed the programming architecture that forms the basis of today's computers—was already looking to the brain for future developments before his death in 1957 [1]. Neuromorphic computing uses approaches that better mimic the working of the human brain. Recent developments in nanotechnology are now providing structures with very accommodating properties for neuromorphic approaches. This special issue, with guest editors James K Gimzewski and Dominique Vuillaume, is devoted to research at the serendipitous interface between the two disciplines. 'Synaptic electronics', looks at artificial devices with connections that demonstrate behaviour similar to synapses in the nervous system allowing a new and more powerful approach to computing. Synapses and connecting neurons respond differently to incident signals depending on the history of signals previously experienced, ultimately leading to short term and long term memory behaviour. The basic characteristics of a synapse can be replicated with around ten simple transistors. However with the human brain having around 1011 neurons and 1015 synapses, artificial neurons and synapses from basic transistors are unlikely to accommodate the scalability required. The discovery of nanoscale elements that function as 'memristors' has provided a key tool for the implementation of synaptic connections [2]. Leon Chua first developed the concept of the 'The memristor—the missing circuit element' in 1971 [3]. In this special issue he presents a tutorial describing how memristor research has fed into our understanding of synaptic behaviour and how they can be applied in information processing [4]. He also describes, 'The new principle of local activity, which uncovers a minuscule life-enabling "Goldilocks zone", dubbed the

  6. Progressive hemifacial atrophy

    PubMed Central

    Sande, Abhijeet; Risbud, Mukund; Kshar, Avinash; Paranjpe, Arati Oka

    2013-01-01

    Progressive hemifacial atrophy, also known as Parry-Romberg Syndrome, is an uncommon degenerative and poorly understood condition. It is characterized by a slow and progressive but self-limited atrophy affecting one side of the face. The incidence and the cause of this alteration are unknown. A cerebral disturbance of fat metabolism has been proposed as a primary cause. Possible factors that are involved in the pathogenesis include trauma, viral infections, heredity, endocrine disturbances and auto-immunity. The most common complications that appear in association to this disorder are: trigeminal neuralgia, facial paresthesia, severe headache and epilepsy. Characteristically, the atrophy progresses slowly for several years and, it becomes stable. The objective of this work is, through the presentation of a clinical case, to accomplish a literature review concerning general characteristics, etiology, physiopathology and treatment of progressive hemifacial atrophy. PMID:23878573

  7. Spinal Muscular Atrophy (SMA)

    MedlinePlus

    ... Lessons? Visit KidsHealth in the Classroom What Other Parents Are Reading Your Child's Development (Birth to 3 Years) Feeding Your 1- to 3-Month-Old Feeding Your 4- to 7-Month-Old Feeding Your 8- to 12-Month-Old Feeding Your 1- to 2-Year-Old Spinal ... > For Parents > Spinal Muscular Atrophy (SMA) Print A A A ...

  8. Research opportunities in muscle atrophy

    NASA Technical Reports Server (NTRS)

    Herbison, G. J. (Editor); Talbot, J. M. (Editor)

    1984-01-01

    Muscle atrophy in a weightless environment is studied. Topics of investigation include physiological factors of muscle atrophy in space flight, biochemistry, countermeasures, modelling of atrophied muscle tissue, and various methods of measurement of muscle strength and endurance. A review of the current literature and suggestions for future research are included.

  9. Reduced synaptic activity precedes synaptic stripping in vagal motoneurons after axotomy.

    PubMed

    Yamada, Jun; Hayashi, Yoshinori; Jinno, Shozo; Wu, Zhou; Inoue, Kazuhide; Kohsaka, Shinichi; Nakanishi, Hiroshi

    2008-10-01

    Activated microglia, which spread on the motor neurons following nerve injury, engage in the displacement of detached afferent synaptic boutons from the surface of regenerating motor neurons. This phenomenon is known as "synaptic stripping." The present study attempted to examine whether changes in the synaptic inputs after motor nerve injury correlated with the microglial attachment to the dorsal motor neurons of the vagus (DMV). DMV neurons in Wistar rats could survive after nerve injury, whereas most of injured DMV neurons in the C57BL/6 mice died. At 2 days after nerve injury, a significant decrease was observed in the frequencies of both spontaneous and miniature EPSCs and IPSCs recorded from DMV neurons in the slice preparation but not from the mechanically dissociated neurons in the Wistar rats. At this stage, no direct apposition of microglia on the injured neurons was observed. High-K(+) stimulation restored their frequencies to control levels. Furthermore, PPADS and DPCPX, antagonists of P2 and adenosine receptors, respectively, also stimulated the recovery of their frequencies. In contrast, no significant change was detected in the spontaneous EPSCs frequency recorded from the severely injured DMV neurons in the slice preparation of the C57BL/6 mice. These observations strongly suggest that presynaptic inhibition through glia-derived ATP and adenosine, thus precedes synaptic stripping in regenerating DMV neurons following nerve injury.

  10. Treatment of vaginal atrophy.

    PubMed

    Domoney, Claudine

    2014-03-01

    Vaginal or vulvovaginal atrophy is a widespread but poorly recognized condition of peri- and post-menopausal women. It causes urogenital symptoms of dryness, reduced lubrication, itching, burning, irritable bladder symptoms and painful intercourse. This impacts quality of life and sexual health, but increases with time rather than reduces, as with most other menopausal symptoms. With early identification, treatments can improve these symptoms and reverse the physical changes. However, when embedded, bladder and sexual changes have occurred and these may be more difficult to remedy. Therefore, it is important to educate both healthcare professionals and women about these symptoms and advise on the range of interventions available.

  11. Rapamycin improves motor function, reduces 4-hydroxynonenal adducted protein in brain, and attenuates synaptic injury in a mouse model of synucleinopathy

    PubMed Central

    Bai, Xiang; Wey, Margaret Chia-Ying; Fernandez, Elizabeth; Hart, Matthew J.; Gelfond, Jonathan; Bokov, Alex F.; Rani, Sheela; Strong, Randy

    2015-01-01

    Background Synucleinopathy is any of a group of age-related neurodegenerative disorders including Parkinson's disease, multiple system atrophy, and dementia with Lewy Bodies, which is characterized by α-synuclein inclusions and parkinsonian motor deficits affecting millions of patients worldwide. But there is no cure at present for synucleinopathy. Rapamycin has been shown to be neuroprotective in several in vitro and in vivo synucleinopathy models. However, there are no reports on the long-term effects of RAPA on motor function or measures of neurodegeneration in models of synucleinopathy. Methods We determined whether long-term feeding a rapamycin diet (14 ppm in diet; 2.25 mg/kg body weight/day) improves motor function in neuronal A53T α-synuclein transgenic mice (TG) and explored underlying mechanisms using a variety of behavioral and biochemical approaches. Results After 24 weeks of treatment, rapamycin improved performance on the forepaw stepping adjustment test, accelerating rotarod and pole test. Rapamycin did not alter A53T α-synuclein content. There was no effect of rapamycin treatment on midbrain or striatal monoamines or their metabolites. Proteins adducted to the lipid peroxidation product 4-hydroxynonenal were decreased in brain regions of both wild-type and TG mice treated with rapamycin. Reduced levels of the presynaptic marker synaptophysin were found in several brain regions of TG mice. Rapamycin attenuated the loss of synaptophysin protein in the affected brain regions. Rapamycin also attenuated the loss of synaptophysin protein and prevented the decrease of neurite length in SH-SY5Y cells treated with 4-hydroxynonenal. Conclusion Taken together, these data suggest that rapamycin, an FDA approved drug, may prove useful in the treatment of synucleinopathy. PMID:26306821

  12. Posterior Cortical Atrophy

    PubMed Central

    Crutch, Sebastian J; Lehmann, Manja; Schott, Jonathan M; Rabinovici, Gil D; Rossor, Martin N; Fox, Nick C

    2013-01-01

    Posterior cortical atrophy (PCA) is a neurodegenerative syndrome that is characterized by a progressive decline in visuospatial, visuoperceptual, literacy and praxic skills. The progressive neurodegeneration affecting parietal, occipital and occipito-temporal cortices which underlies PCA is attributable to Alzheimer's disease (AD) in the majority of patients. However, alternative underlying aetiologies including Dementia with Lewy Bodies (DLB), corticobasal degeneration (CBD) and prion disease have also been identified, and not all PCA patients have atrophy on clinical imaging. This heterogeneity has led to diagnostic and terminological inconsistencies, caused difficulty comparing studies from different centres, and limited the generalizability of clinical trials and investigations of factors driving phenotypic variability. Significant challenges remain in identifying the factors associated with both the selective vulnerability of posterior cortical regions and the young age of onset seen in PCA. Greater awareness of the syndrome and agreement over the correspondence between syndrome-and disease-level classifications are required in order to improve diagnostic accuracy, research study design and clinical management. PMID:22265212

  13. Transcranial magnetic stimulation (TMS) responses elicited in hindlimb muscles as an assessment of synaptic plasticity in spino-muscular circuitry after chronic spinal cord injury.

    PubMed

    Petrosyan, Hayk A; Alessi, Valentina; Sisto, Sue A; Kaufman, Mark; Arvanian, Victor L

    2017-03-06

    Electromagnetic stimulation applied at the cranial level, i.e. transcranial magnetic stimulation (TMS), is a technique for stimulation and neuromodulation used for diagnostic and therapeutic applications in clinical and research settings. Although recordings of TMS elicited motor-evoked potentials (MEP) are an essential diagnostic tool for spinal cord injured (SCI) patients, they are reliably recorded from arm, and not leg muscles. Mid-thoracic contusion is a common SCI that results in locomotor impairments predominantly in legs. In this study, we used a chronic T10 contusion SCI rat model and examined whether (i) TMS-responses in hindlimb muscles can be used for evaluation of conduction deficits in cortico-spinal circuitry and (ii) if plastic changes at spinal levels will affect these responses. In this study, plastic changes of transmission in damaged spinal cord were achieved by repetitive electro-magnetic stimulation applied over the spinal level (rSEMS). Spinal electro-magnetic stimulation was previously shown to activate spinal nerves and is gaining large acceptance as a non-invasive alternative to direct current and/or epidural electric stimulation. Results demonstrate that TMS fails to induce measurable MEPs in hindlimbs of chronically SCI animals. After facilitation of synaptic transmission in damaged spinal cord was achieved with rSEMS, however, MEPs were recorded from hindlimb muscles in response to single pulse TMS stimulation. These results provide additional evidence demonstrating beneficial effects of TMS as a diagnostic technique for descending motor pathways in uninjured CNS and after SCI. This study confirms the ability of TMS to assess plastic changes of transmission occurring at the spinal level.

  14. Dominant optic atrophy

    PubMed Central

    2012-01-01

    Definition of the disease Dominant Optic Atrophy (DOA) is a neuro-ophthalmic condition characterized by a bilateral degeneration of the optic nerves, causing insidious visual loss, typically starting during the first decade of life. The disease affects primary the retinal ganglion cells (RGC) and their axons forming the optic nerve, which transfer the visual information from the photoreceptors to the lateral geniculus in the brain. Epidemiology The prevalence of the disease varies from 1/10000 in Denmark due to a founder effect, to 1/30000 in the rest of the world. Clinical description DOA patients usually suffer of moderate visual loss, associated with central or paracentral visual field deficits and color vision defects. The severity of the disease is highly variable, the visual acuity ranging from normal to legal blindness. The ophthalmic examination discloses on fundoscopy isolated optic disc pallor or atrophy, related to the RGC death. About 20% of DOA patients harbour extraocular multi-systemic features, including neurosensory hearing loss, or less commonly chronic progressive external ophthalmoplegia, myopathy, peripheral neuropathy, multiple sclerosis-like illness, spastic paraplegia or cataracts. Aetiology Two genes (OPA1, OPA3) encoding inner mitochondrial membrane proteins and three loci (OPA4, OPA5, OPA8) are currently known for DOA. Additional loci and genes (OPA2, OPA6 and OPA7) are responsible for X-linked or recessive optic atrophy. All OPA genes yet identified encode mitochondrial proteins embedded in the inner membrane and ubiquitously expressed, as are the proteins mutated in the Leber Hereditary Optic Neuropathy. OPA1 mutations affect mitochondrial fusion, energy metabolism, control of apoptosis, calcium clearance and maintenance of mitochondrial genome integrity. OPA3 mutations only affect the energy metabolism and the control of apoptosis. Diagnosis Patients are usually diagnosed during their early childhood, because of bilateral, mild

  15. Exposure to an organophosphate pesticide, individually or in combination with other Gulf War agents, impairs synaptic integrity and neuronal differentiation, and is accompanied by subtle microvascular injury in a mouse model of Gulf War agent exposure.

    PubMed

    Ojo, Joseph O; Abdullah, Laila; Evans, James; Reed, Jon Mike; Montague, Hannah; Mullan, Michael J; Crawford, Fiona C

    2014-04-01

    Gulf War illness (GWI) is a currently untreatable multi-symptom disorder experienced by 1990-1991 Persian Gulf War (GW) veterans. The characteristic hallmarks of GWI include cognitive dysfunction, tremors, migraine, and psychological disturbances such as depression and anxiety. Meta-analyses of epidemiological studies have consistently linked these symptomatic profiles to the combined exposure of GW agents such as organophosphate-based and pyrethroid-based pesticides (e.g. chlorpyrifos (CPF) and permethrin (PER) respectively) and the prophylactic use of pyridostigmine bromide (PB) as a treatment against neurotoxins. Due to the multi-symptomatic presentation of this illness and the lack of available autopsy tissue from GWI patients, very little is currently known about the distinct early pathological profile implicated in GWI (including its influence on synaptic function and aspects of neurogenesis). In this study, we used preclinical models of GW agent exposure to investigate whether 6-month-old mice exposed to CPF alone, or a combined dose of CPF, PB and PER daily for 10 days, demonstrate any notable pathological changes in hippocampal, cortical (motor, piriform) or amygdalar morphometry. We report that at an acute post-exposure time point (after 3 days), both exposures resulted in the impairment of synaptic integrity (reducing synaptophysin levels) in the CA3 hippocampal region and altered neuronal differentiation in the dentate gyrus (DG), demonstrated by a significant reduction in doublecortin positive cells. Both exposures also significantly increased astrocytic GFAP immunoreactivity in the piriform cortex, motor cortex and the basolateral amygdala and this was accompanied by an increase in (basal) brain acetylcholine (ACh) levels. There was no evidence of microglial activation or structural deterioration of principal neurons in these regions following exposure to CPF alone or in combination with PB and PER. Evidence of subtle microvascular injury was

  16. Brain atrophy in frontotemporal dementia.

    PubMed Central

    Frisoni, G B; Beltramello, A; Geroldi, C; Weiss, C; Bianchetti, A; Trabucchi, M

    1996-01-01

    OBJECTIVES--To evaluate the pattern of regional brain atrophy in patients with frontotemporal dementia by comparing it with that in patients with Alzheimer's disease and normal controls. METHODS--Fourteen patients with frontotemporal dementia, 13 with moderate, and 33 with mild Alzheimer's disease, and 31 controls were studied. Atrophy was evaluated with linear measures in the anterior brain, medial temporal lobe, and hippocampal formation regions using MRI. RESULTS--Patients with frontotemporal dementia had greater atrophy in the anterior brain regions than patients with Alzheimer's disease or controls. Atrophy of the hippocampal formation, which best discriminates Alzheimer's disease from controls, was present also in patients with frontotemporal dementia. By contrast, atrophy of the medial temporal lobe, which is also present in Alzheimer's disease, was absent in frontotemporal dementia. CONCLUSION--A pattern of atrophy in the frontal lobes and hippocampal formation with sparing of the medial temporal lobe might be distinctive of frontotemporal dementia. Hippocampal involvement might not be specific for Alzheimer's disease and specific patterns of atrophy might be distinctive of some forms of degenerative dementia. Images PMID:8708683

  17. The Significance of Bronchial Atrophy

    PubMed Central

    Maisel, John C.; Silvers, G. Wayne; George, Marlyce S.; Dart, Gladys A.; Petty, Thomas L.; Mitchell, Roger S.

    1972-01-01

    In a 4-year period, 196 lungs from patients with and without chronic obstructive pulmonary disease were examined postmortem for the presence of atrophy in segmental and subsegmental bronchi. As a result of simultaneous postmortem spirometry, cinefluorobronchography and partitioning of airways resistance, plus later assessment of anatomic emphysema, bronchial atrophy emerges as only one of at least three factors usually cooperating in production of abnormal expiratory airway collapse. In selected cases, bronchial atrophy appears to be an important contributor to expiratory airways obstruction. ImagesFig 1 PMID:5021107

  18. Defects in Motoneuron-Astrocyte Interactions in Spinal Muscular Atrophy.

    PubMed

    Zhou, Chunyi; Feng, Zhihua; Ko, Chien-Ping

    2016-02-24

    Spinal muscular atrophy (SMA) is a motoneuron disease caused by loss or mutation in Survival of Motor Neuron 1 (SMN1) gene. Recent studies have shown that selective restoration of SMN protein in astrocytes partially alleviates pathology in an SMA mouse model, suggesting important roles for astrocytes in SMA. Addressing these underlying mechanisms may provide new therapeutic avenues to fight SMA. Using primary cultures of pure motoneurons or astrocytes from SMNΔ7 (SMA) and wild-type (WT) mice, as well as their mixed and matched cocultures, we characterized the contributions of motoneurons, astrocytes, and their interactions to synapse loss in SMA. In pure motoneuron cultures, SMA motoneurons exhibited normal survival but intrinsic defects in synapse formation and synaptic transmission. In pure astrocyte cultures, SMA astrocytes exhibited defects in calcium homeostasis. In motoneuron-astrocyte contact cocultures, synapse formation and synaptic transmission were significantly reduced when either motoneurons, astrocytes or both were from SMA mice compared with those in WT motoneurons cocultured with WT astrocytes. The reduced synaptic activity is unlikely due to changes in motoneuron excitability. This disruption in synapse formation and synaptic transmission by SMN deficiency was not detected in motoneuron-astrocyte noncontact cocultures. Additionally, we observed a downregulation of Ephrin B2 in SMA astrocytes. These findings suggest that there are both cell autonomous and non-cell-autonomous defects in SMA motoneurons and astrocytes. Defects in contact interactions between SMA motoneurons and astrocytes impair synaptogenesis seen in SMA pathology, possibly due to the disruption of the Ephrin B2 pathway.

  19. Congenital segmental spinal muscular atrophy: a case report.

    PubMed

    Savaş, Tülin; Erol, Ilknur; Özkale, Yasemin; Saygi, Semra

    2015-03-01

    Spinal muscular atrophies are genetic disorders in which anterior horn cells in the spinal cord and motor nuclei of the brainstem are progressively lost. We present a patient with arthrogryposis due to congenital spinal muscular atrophy predominantly affecting the upper limbs. Spinal muscular atrophies with onset at birth may be a cause of arthrogryposis. Localized forms of neurogenic arthrogryposis have been divided into cervical and caudal forms. Our case is similar to the cases described by Hageman et al (J Neurol Neurosurg Psychiatry 1993;56:365-368): severe symmetric lower motor neuron deficit in the upper extremities at the time of birth, no history of injury to the cervical spinal cord or the brachial plexus during delivery, and severe muscle wasting suggesting chronic denervation in utero. Because there was improvement of our patient's situation, her disease was also possibly nonprogressive and sporadic. To our knowledge, this is the first reported case of a Turkish patient with congenital cervical spinal muscular atrophy. Congenital cervical spinal muscular atrophy affecting predominantly the upper limbs is a relatively rare form of motor neuron disease and should be considered in the differential diagnosis of infants with congenital contractures and severe muscle weakness by wasting mainly confined to the upper limbs.

  20. Modeling Spinal Muscular Atrophy in Drosophila

    PubMed Central

    Mukherjee, Ashim; Kankel, Mark W.; Sen, Anindya; Sridhar, Vasanthi; Fulga, Tudor A.; Hart, Anne C.; Van Vactor, David; Artavanis-Tsakonas, Spyros

    2008-01-01

    Spinal Muscular Atrophy (SMA), a recessive hereditary neurodegenerative disease in humans, has been linked to mutations in the survival motor neuron (SMN) gene. SMA patients display early onset lethality coupled with motor neuron loss and skeletal muscle atrophy. We used Drosophila, which encodes a single SMN ortholog, survival motor neuron (Smn), to model SMA, since reduction of Smn function leads to defects that mimic the SMA pathology in humans. Here we show that a normal neuromuscular junction (NMJ) structure depends on SMN expression and that SMN concentrates in the post-synaptic NMJ regions. We conducted a screen for genetic modifiers of an Smn phenotype using the Exelixis collection of transposon-induced mutations, which affects approximately 50% of the Drosophila genome. This screen resulted in the recovery of 27 modifiers, thereby expanding the genetic circuitry of Smn to include several genes not previously known to be associated with this locus. Among the identified modifiers was wishful thinking (wit), a type II BMP receptor, which was shown to alter the Smn NMJ phenotype. Further characterization of two additional members of the BMP signaling pathway, Mothers against dpp (Mad) and Daughters against dpp (Dad), also modify the Smn NMJ phenotype. The NMJ defects caused by loss of Smn function can be ameliorated by increasing BMP signals, suggesting that increased BMP activity in SMA patients may help to alleviate symptoms of the disease. These results confirm that our genetic approach is likely to identify bona fide modulators of SMN activity, especially regarding its role at the neuromuscular junction, and as a consequence, may identify putative SMA therapeutic targets. PMID:18791638

  1. Spinal muscular atrophy

    PubMed Central

    2011-01-01

    Spinal muscular atrophy (SMA) is an autosomal recessive neuromuscular disease characterized by degeneration of alpha motor neurons in the spinal cord, resulting in progressive proximal muscle weakness and paralysis. Estimated incidence is 1 in 6,000 to 1 in 10,000 live births and carrier frequency of 1/40-1/60. This disease is characterized by generalized muscle weakness and atrophy predominating in proximal limb muscles, and phenotype is classified into four grades of severity (SMA I, SMAII, SMAIII, SMA IV) based on age of onset and motor function achieved. This disease is caused by homozygous mutations of the survival motor neuron 1 (SMN1) gene, and the diagnostic test demonstrates in most patients the homozygous deletion of the SMN1 gene, generally showing the absence of SMN1 exon 7. The test achieves up to 95% sensitivity and nearly 100% specificity. Differential diagnosis should be considered with other neuromuscular disorders which are not associated with increased CK manifesting as infantile hypotonia or as limb girdle weakness starting later in life. Considering the high carrier frequency, carrier testing is requested by siblings of patients or of parents of SMA children and are aimed at gaining information that may help with reproductive planning. Individuals at risk should be tested first and, in case of testing positive, the partner should be then analyzed. It is recommended that in case of a request on carrier testing on siblings of an affected SMA infant, a detailed neurological examination should be done and consideration given doing the direct test to exclude SMA. Prenatal diagnosis should be offered to couples who have previously had a child affected with SMA (recurrence risk 25%). The role of follow-up coordination has to be managed by an expert in neuromuscular disorders and in SMA who is able to plan a multidisciplinary intervention that includes pulmonary, gastroenterology/nutrition, and orthopedic care. Prognosis depends on the phenotypic

  2. Astrocytes optimize synaptic fidelity

    NASA Astrophysics Data System (ADS)

    Nadkarni, Suhita; Jung, Peter; Levine, Herbert

    2007-03-01

    Most neuronal synapses in the central nervous system are enwrapped by an astrocytic process. This relation allows the astrocyte to listen to and feed back to the synapse and to regulate synaptic transmission. We combine a tested mathematical model for the Ca^2+ response of the synaptic astrocyte and presynaptic feedback with a detailed model for vesicle release of neurotransmitter at active zones. The predicted Ca^2+ dependence of the presynaptic synaptic vesicle release compares favorably for several types of synapses, including the Calyx of Held. We hypothesize that the feedback regulation of the astrocyte onto the presynaptic terminal optimizes the fidelity of the synapse in terms of information transmission.

  3. Research opportunities in muscle atrophy

    NASA Technical Reports Server (NTRS)

    Herbison, G. J.; Talbot, J. M.

    1984-01-01

    A trophy of skeletal muscle; muscle a trophy associated with manned space flight; the nature, causes, and mechanisms of muscle atrophy associated with space flight, selected physiological factors, biochemical aspects, and countermeasures are addressed.

  4. Neuropeptides as synaptic transmitters.

    PubMed

    Salio, Chiara; Lossi, Laura; Ferrini, Francesco; Merighi, Adalberto

    2006-11-01

    Neuropeptides are small protein molecules (composed of 3-100 amino-acid residues) that have been localized to discrete cell populations of central and peripheral neurons. In most instances, they coexist with low-molecular-weight neurotransmitters within the same neurons. At the subcellular level, neuropeptides are selectively stored, singularly or more frequently in combinations, within large granular vesicles. Release occurs through mechanisms different from classical calcium-dependent exocytosis at the synaptic cleft, and thus they account for slow synaptic and/or non-synaptic communication in neurons. Neuropeptide co-storage and coexistence can be observed throughout the central nervous system and are responsible for a series of functional interactions that occur at both pre- and post-synaptic levels. Thus, the subcellular site(s) of storage and sorting mechanisms into different neuronal compartments are crucial to the mode of release and the function of neuropeptides as neuronal messengers.

  5. Idiopathic atrophie blanche.

    PubMed

    Amato, Lauretta; Chiarini, Caterina; Berti, Samantha; Massi, Daniela; Fabbri, Paolo

    2006-01-01

    clinical, serologic, histopathologic, and immunopathologic findings, a diagnosis of idiopathic atrophie blanche was made. The patient was treated with dapsone (50 mg p.o. q.d.) and pentoxifylline (400 mg p.o. t.i.d.) with pain relief and complete resolution of the ulcerations after 6 weeks of therapy.

  6. Synaptic Plasticity, Dementia and Alzheimer Disease.

    PubMed

    Skaper, Stephen D; Facci, Laura; Zusso, Morena; Giusti, Pietro

    2017-01-13

    Neuroplasticity is not only shaped by learning and memory but is also a mediator of responses to neuron attrition and injury (compensatory plasticity). As an ongoing process it reacts to neuronal cell activity and injury, death, and genesis, which encompasses the modulation of structural and functional processes of axons, dendrites, and synapses. The range of structural elements that comprise plasticity includes long-term potentiation (a cellular correlate of learning and memory), synaptic efficacy and remodelling, synaptogenesis, axonal sprouting and dendritic remodelling, and neurogenesis and recruitment. Degenerative diseases of the human brain continue to pose one of biomedicine's most intractable problems. Research on human neurodegeneration is now moving from descriptive to mechanistic analyses. At the same time, it is increasing apparent that morphological lesions traditionally used by neuropathologists to confirm post-mortem clinical diagnosis might furnish us with an experimentally tractable handle to understand causative pathways. Consider the aging-dependent neurodegenerative disorder Alzheimer's disease (AD) which is characterised at the neuropathological level by deposits of insoluble amyloid b-peptide (Ab) in extracellular plaques and aggregated tau protein, which is found largely in the intracellular neurofibrillary tangles. We now appreciate that mild cognitive impairment in early AD may be due to synaptic dysfunction caused by accumulation of non-fibrillar, oligomeric Ab, occurring well in advance of evident widespread synaptic loss and neurodegeneration. Soluble Ab oligomers can adversely affect synaptic structure and plasticity at extremely low concentrations, although the molecular substrates by which synaptic memory mechanisms are disrupted remain to be fully elucidated. The dendritic spine constitutes a primary locus of excitatory synaptic transmission in the mammalian central nervous system. These structures protruding from dendritic shafts

  7. [Research progress of induced pluripotent stem cells in treatment of muscle atrophy].

    PubMed

    Yao, Zhongkai; Yang, Chensong; Sun, Guixin

    2016-03-01

    Muscle atrophy caused by nerve injury is a common and difficult clinical problem. The development of stem cell researches has opened up a new way for the treatment of nerve injury-induced muscle atrophy. The induced pluripotent stem cells(iPSCs)can differentiate into various types of cells and have more advantages than embryonic stem cells (ESCs). After being transplanted into the damaged area, iPSCs are guided by neurogenic signals to the lesion sites, to repair the damaged nerve, promote generation of axon myelination, rebuild neural circuits and restore physiological function. Meanwhile, iPSCs can also differentiate into muscle cells and promote muscle tissue regeneration. Therefore, it would be possible to attenuate muscle atrophy caused by nerve injury with iPSCs treatment.

  8. Optic atrophy and glaucomatous cupping.

    PubMed

    Radius, R L; Maumenee, A E

    1978-02-01

    We reviewed 170 eyes of 112 patients with optic atrophy from various causes. Special attention was directed towards measured cup:disk ratios as well as presence of glaucomatous-like cupping of the optic nerve head. We observed a small but significant increase in nerve head cupping in eyes with optic atrophy when compared to contralateral eyes, as well as to eyes of 50 diabetic patients. No characteristic glaucomatous disk changes were documented. We evaluated these findings with respect to possible causes of glaucomatous disk and field changes.

  9. TNFα in synaptic function: switching gears.

    PubMed

    Santello, Mirko; Volterra, Andrea

    2012-10-01

    Pathological brain states are known to induce massive production of proinflammatory cytokines, including tumor necrosis factor alpha (TNFα). At much lower levels, these cytokines are also present in the healthy brain, where it is increasingly being recognized that they exert regulatory influences. Recent studies suggest that TNFα plays important roles in controlling synaptic transmission and plasticity. Here, we discuss the evidence in support of synaptic regulation by TNFα and the underlying cellular mechanisms, including control of AMPA receptor trafficking and glutamate release from astrocytes. These findings suggest that increases in TNFα levels (caused by nervous system infection, injury, or disease) transform the physiological actions of the cytokine into deleterious ones. This functional switch may contribute to cognitive alterations in several brain pathologies.

  10. Learning about Spinal Muscular Atrophy

    MedlinePlus

    ... causes the disorder. Top of page NHGRI Clinical Research on Spinal Muscular Atrophy Currently, NHGRI is not conducting studies on SMA. The National Institutes of Health is conducting clinical trials identified as enrolling individuals with SMA: Quantitative Analysis of SMN1 and SMN2 Gene Based on ...

  11. [Neural mechanisms of memory: synaptic and genomic hypotheses].

    PubMed

    Arshavskiĭ, Iu I

    2011-01-01

    Memorizing of new facts and events means that entering signals produce definite changes within the brain. According to the commonly accepted hypothesis, traces of memory are stored through modifications in the strength of synaptic connections, resulting in formations of new patterns of neural activity. This synaptic hypothesis of memory determines the main direction of experimental studies in the field. It is shown in this review that the synaptic hypothesis can hardly explain the mechanism of long-term (often life-long) memory storage as well as memory resistance to both uncontrolled synaptic activity (epileptic seizures) and various adverse effects on the brain (anesthesia, injury, concussion, etc.). Arguments for an alternative hypothesis are given that long-term memory is mainly formed at the intraneural level through modifications of DNA molecules and associated proteins. This genomic hypothesis allows for a new approach to understanding the etiology ofAlzheimer's disease, whose initial symptom is solely memory impairment.

  12. [Memory and synaptic plasticity].

    PubMed

    Maitre, M

    1996-01-01

    Short term memory traces are probably induced by a sustained and specific functional activation of some sensory and/or motor circuits in brain. These modifications, which could concern a large proportion of the brain but especially the limbic areas, are constituted primarily by ionic mechanisms and second messengers cascades induced by the activation of glutamatergic receptors (namely NMDA). In the invertebrate (Drosophilia melanogaster, aplysia), the role of serotonergic receptors seems to be more important. The activated cAMP-dependent and calcium dependent protein kinases target several proteins which are reversibly phosphorylated modifying the synaptic functions which in turn induce potentiated (PLT) or depressed (DLT) post-synaptic responses. These phenomena are at the basis of specific protein neosynthesis which is initiated by several early genes or trancription factor (cfos, zif 268, jun, CREB). Specific mRNA migrate to the potentiated synapse or dendritic spine where activated polyribosomes synthesize trophic factor, adhesion molecules and synaptic constituents. The building of new synaptic contacts and/or the plastic evolution of existing synapses could explain long-term LTP and long-term memory traces.

  13. Synaptic growth: dancing with adducin.

    PubMed

    Stevens, Robin J; Littleton, J Troy

    2011-05-24

    Manipulations of the actin-capping protein adducin in Drosophila and mammalian neurons provide new insights into the mechanisms linking structural changes to synaptic plasticity and learning. Adducin regulates synaptic remodeling, providing a molecular switch that controls synaptic growth versus disassembly during plasticity.

  14. Optical fiber synaptic sensor

    NASA Astrophysics Data System (ADS)

    Pisarchik, A. N.; Jaimes-Reátegui, R.; Sevilla-Escoboza, R.; García-Lopez, J. H.; Kazantsev, V. B.

    2011-06-01

    Understanding neuron connections is a great challenge, which is needed to solve many important problems in neurobiology and neuroengineering for recreation of brain functions and efficient biorobotics. In particular, a design of an optical synapse capable to communicate with neuron spike sequences would be crucial to improve the functionality of neuromimmetic networks. In this work we propose an optical synaptic sensor based on an erbium-doped fiber laser driven by a FitzHung-Nagumo electronic neuron, to connect with another electronic neuron. Two possible optical synaptic configurations are analyzed for optoelectronic coupling between neurons: laser cavity loss modulation and pump laser modulation. The control parameters of the proposed optical synapse provide additional degrees of flexibility to the neuron connection traditionally controlled only by coupling strengths in artificial networks.

  15. Astrocytes Potentiate Synaptic Transmission

    NASA Astrophysics Data System (ADS)

    Nadkarni, Suhita

    2005-03-01

    A recent experimental study shows that astrocytes, a subtype of glia, are able to influence the spontaneous activity in the brain via calcium dependent glutamate release. We model the coupling mechanism between an astrocyte and a neuron based on experimental data. This coupling is dynamic and bi-directional, such that the modulations in intracellular calcium concentrations in astrocytes affect neuronal excitability and vice versa via a glutamatergic pathway. We demonstrate through simple neural-glial circuits that increases in the intracellular calcium concentration in astrocytes nearby can enhance spontaneous activity in a neuron, a significant mechanism said to be involved in plasticity and learning. The pattern of this marked increase in spontaneous firing rate in our model quantitatively follows that observed in the experiment. Further, depending on the type of synaptic connections diverging from the neuron, it can either inhibit or excite the ensuing dynamics and potentiate synaptic transmission, thus reinstating the integral role played by astrocytes in normal neuronal dynamics.

  16. Decoding hippocampal signaling deficits after traumatic brain injury.

    PubMed

    Atkins, Coleen M

    2011-12-01

    There are more than 3.17 million people coping with long-term disabilities due to traumatic brain injury (TBI) in the United States. The majority of TBI research is focused on developing acute neuroprotective treatments to prevent or minimize these long-term disabilities. Therefore, chronic TBI survivors represent a large, underserved population that could significantly benefit from a therapy that capitalizes on the endogenous recovery mechanisms occurring during the weeks to months following brain trauma. Previous studies have found that the hippocampus is highly vulnerable to brain injury, in both experimental models of TBI and during human TBI. Although often not directly mechanically injured by the head injury, in the weeks to months following TBI, the hippocampus undergoes atrophy and exhibits deficits in long-term potentiation (LTP), a persistent increase in synaptic strength that is considered to be a model of learning and memory. Decoding the chronic hippocampal LTP and cell signaling deficits after brain trauma will provide new insights into the molecular mechanisms of hippocampal-dependent learning impairments caused by TBI and facilitate the development of effective therapeutic strategies to improve hippocampal-dependent learning for chronic survivors of TBI.

  17. Synaptic Vesicle Exocytosis

    PubMed Central

    Südhof, Thomas C.; Rizo, Josep

    2011-01-01

    Presynaptic nerve terminals release neurotransmitters by synaptic vesicle exocytosis. Membrane fusion mediating synaptic exocytosis and other intracellular membrane traffic is affected by a universal machinery that includes SNARE (for “soluble NSF-attachment protein receptor”) and SM (for “Sec1/Munc18-like”) proteins. During fusion, vesicular and target SNARE proteins assemble into an α-helical trans-SNARE complex that forces the two membranes tightly together, and SM proteins likely wrap around assembling trans-SNARE complexes to catalyze membrane fusion. After fusion, SNARE complexes are dissociated by the ATPase NSF (for “N-ethylmaleimide sensitive factor”). Fusion-competent conformations of SNARE proteins are maintained by chaperone complexes composed of CSPα, Hsc70, and SGT, and by nonenzymatically acting synuclein chaperones; dysfunction of these chaperones results in neurodegeneration. The synaptic membrane-fusion machinery is controlled by synaptotagmin, and additionally regulated by a presynaptic protein matrix (the “active zone”) that includes Munc13 and RIM proteins as central components. PMID:22026965

  18. Atrophy of the brachialis muscle after a displaced clavicle fracture in an Ironman triathlete: case report

    PubMed Central

    2011-01-01

    Clavicle fractures are frequent injuries in athletes and midshaft clavicle fractures in particular are well-known injuries in Ironman triathletes. In 2000, Auzou et al. described the mechanism leading to an isolated truncular paralysis of the musculocutaneous nerve after a shoulder trauma. It is well-known that nerve palsies can lead to an atrophy of the associated muscle if they persist for months or even longer. In this case report we describe a new case of an Ironman triathlete suffering from a persistent isolated atrophy of the brachialis muscle. The atrophy occurred following a displaced midshaft clavicle fracture acquiring while falling off his bike after hitting a duck during a competition. PMID:21961883

  19. Glial responses to synaptic damage and plasticity.

    PubMed

    Aldskogius, H; Liu, L; Svensson, M

    1999-10-01

    We review three principally different forms of injury-induced synaptic alterations. (1) Displacement of presynaptic terminals from perikarya and dendrites of axotomized neurons, (2) central changes in primary afferent terminals of peripherally axotomized sensory ganglion cells, and (3) anterograde Wallerian-type degeneration following interruption of central axonal pathways. All these instances rapidly activate astrocytes and microglia in the vicinity of the affected synaptic terminals. The evidence suggests that activated astrocytes play important and direct roles in synapse elimination and in the processes mediating collateral reinnervation. The roles of microglia are enigmatic. They undergo activation close to axotomized motoneuron perikarya, where synapse displacement occurs, but not adjacent to axotomized intrinsic central nervous system neurons, where synapse displacement also occurs. Microglia are also rapidly activated around central primary sensory terminals of peripherally axotomized sensory ganglion cells. Occasional phagocytosis of degenerating axon terminals by microglia occur in the latter situation. However, the role of microglia may be more oriented toward the general tissue conditions rather than specifically toward synaptic terminals.

  20. [Posterior cortical atrophy (Benson-syndrome)].

    PubMed

    Rózsa, Anikó; Szilvássy, Ildikó; Kovács, Krisztina; Boór, Krisztina; Gács, Gyula

    2010-01-30

    We present the characteristics of posterior cortical atrophy--a very rare cortical dementia--in a 69 year old woman's case. Our patient's symptoms began with a visual problem which was initially explained by ophthalmological disorder. After neurological exam visual agnosia was diagnosed apart from other cognitive disorder (alexia without agraphia, acalculia, prosopagnosia, constructional disorder, clock-time recognition disorder, dressing apraxia, visuospatial disorientation). The brain MRI showed bilateral asymmetric parieto-occipital atrophy which is characteristic of posterior cortical atrophy.

  1. Iris atrophy in sickle cell disease.

    PubMed Central

    Acheson, R W; Ford, S M; Maude, G H; Lyness, R W; Serjeant, G R

    1986-01-01

    Iris atrophy, of unknown origin and believed to be secondary to the vaso-occlusive process of sickle cell disease, has been observed in 25 eyes of 22 patients (two SS disease, 20 SC disease). The crude prevalence was highest in males with SC disease, in whom 14.7% of patients were affected. Iris atrophy was closely associated with proliferative sickle retinopathy in the same eye. Analysis of haematological indices failed to reveal any significant differences between patients with and without iris atrophy. The characteristics and distribution of iris atrophy are described as well as the histopathology in one 68-year-old male patient with SS disease. Images PMID:3718915

  2. Synaptic encoding of temporal contiguity

    PubMed Central

    Ostojic, Srdjan; Fusi, Stefano

    2013-01-01

    Often we need to perform tasks in an environment that changes stochastically. In these situations it is important to learn the statistics of sequences of events in order to predict the future and the outcome of our actions. The statistical description of many of these sequences can be reduced to the set of probabilities that a particular event follows another event (temporal contiguity). Under these conditions, it is important to encode and store in our memory these transition probabilities. Here we show that for a large class of synaptic plasticity models, the distribution of synaptic strengths encodes transitions probabilities. Specifically, when the synaptic dynamics depend on pairs of contiguous events and the synapses can remember multiple instances of the transitions, then the average synaptic weights are a monotonic function of the transition probabilities. The synaptic weights converge to the distribution encoding the probabilities also when the correlations between consecutive synaptic modifications are considered. We studied how this distribution depends on the number of synaptic states for a specific model of a multi-state synapse with hard bounds. In the case of bistable synapses, the average synaptic weights are a smooth function of the transition probabilities and the accuracy of the encoding depends on the learning rate. As the number of synaptic states increases, the average synaptic weights become a step function of the transition probabilities. We finally show that the information stored in the synaptic weights can be read out by a simple rate-based neural network. Our study shows that synapses encode transition probabilities under general assumptions and this indicates that temporal contiguity is likely to be encoded and harnessed in almost every neural circuit in the brain. PMID:23641210

  3. Bone and Spinal Muscular Atrophy.

    PubMed

    Vai, Silvia; Bianchi, Maria Luisa; Moroni, Isabella; Mastella, Chiara; Broggi, Francesca; Morandi, Lucia; Arnoldi, Maria Teresa; Bussolino, Chiara; Baranello, Giovanni

    2015-10-01

    Spinal Muscular Atrophy (SMA) is an autosomal recessive neuromuscular disease, leading to progressive denervation atrophy in the involved skeletal muscles. Bone status has been poorly studied. We assessed bone metabolism, bone mineral density (BMD) and fractures in 30 children (age range 15-171 months) affected by SMA types 2 and 3. Eighteen children (60%) had higher than normal levels of CTx (bone resorption marker); 25-OH vitamin D was in the lower range of normal (below 20 ng/ml in 9 children and below 12 ng/ml in 2). Lumbar spine BMAD (bone mineral apparent density) Z-score was below -1.5 in 50% of children. According to clinical records, four children had sustained four peripheral fractures; on spine X-rays, we observed 9 previously undiagnosed vertebral fractures in 7 children. There was a significant inverse regression between PTH and 25-OH D levels, and a significant regression between BMC and BMAD values and the scores of motor-functional tests. Even if this study could not establish the pathogenesis of bone derangements in SMA, its main findings - reduced bone density, low 25OH vitamin D levels, increased bone resorption markers and asymptomatic vertebral fractures also in very young patients - strongly suggest that even young subjects affected by SMA should be considered at risk of osteopenia and even osteoporosis and fractures.

  4. Neuronal involvement in muscular atrophy.

    PubMed

    Cisterna, Bruno A; Cardozo, Christopher; Sáez, Juan C

    2014-01-01

    The innervation of skeletal myofibers exerts a crucial influence on the maintenance of muscle tone and normal operation. Consequently, denervated myofibers manifest atrophy, which is preceded by an increase in sarcolemma permeability. Recently, de novo expression of hemichannels (HCs) formed by connexins (Cxs) and other none selective channels, including P2X7 receptors (P2X7Rs), and transient receptor potential, sub-family V, member 2 (TRPV2) channels was demonstrated in denervated fast skeletal muscles. The denervation-induced atrophy was drastically reduced in denervated muscles deficient in Cxs 43 and 45. Nonetheless, the transduction mechanism by which the nerve represses the expression of the above mentioned non-selective channels remains unknown. The paracrine action of extracellular signaling molecules including ATP, neurotrophic factors (i.e., brain-derived neurotrophic factor (BDNF)), agrin/LDL receptor-related protein 4 (Lrp4)/muscle-specific receptor kinase (MuSK) and acetylcholine (Ach) are among the possible signals for repression for connexin expression. This review discusses the possible role of relevant factors in maintaining the normal functioning of fast skeletal muscles and suppression of connexin hemichannel expression.

  5. Synaptic Plasticity and Translation Initiation

    ERIC Educational Resources Information Center

    Klann, Eric; Antion, Marcia D.; Banko, Jessica L.; Hou, Lingfei

    2004-01-01

    It is widely accepted that protein synthesis, including local protein synthesis at synapses, is required for several forms of synaptic plasticity. Local protein synthesis enables synapses to control synaptic strength independent of the cell body via rapid protein production from pre-existing mRNA. Therefore, regulation of translation initiation is…

  6. Isolated Unilateral Tongue Atrophy: A Possible Late Complication of Juxta Cephalic Radiation Therapy

    PubMed Central

    Alqahtani, Saeed A.; Agha, Caroline; Rothstein, Ted

    2016-01-01

    Patient: Male, 51 Final Diagnosis: Radiation therapy induced unilateral tongue atrophy Symptoms: — Medication: — Clinical Procedure: EMG Specialty: Neurology Objective: Rare disease Background: Isolated unilateral hypoglossal nerve injury is extremely rare. It may be caused by radiation therapy targeting neoplasms of the cephalic region. Case Report: A 51-year-old man with synovial sarcoma of the left upper arm status post extensive radiation therapy in 1980 presented in late 2014 with gradual onset of speech difficulty and difficulty moving his tongue for a couple of weeks. Neurological examination revealed isolated left-sided unilateral tongue atrophy. Postradiation residual extensive cicatrix with erythema over the whole left upper extremity extending to the neck on the affected side was noticed. On head magnetic resonance imaging (MRI) before and after administration of gadolinium, he was found to have asymmetrically fatty striations, atrophy, and fibrosis in the left tongue consistent with radiation toxicity. The patient’s tongue weakness persisted without improvement. Conclusions: The diagnosis of unilateral hypoglossal nerve injury is usually difficult. Detailed neurological examinations and thorough investigations including head MRI are very helpful. Previous exposure to radiation therapy is a potential cause of hypoglossal nerve injury. To our knowledge, this is the first case report that presents isolated unilateral tongue atrophy as a late complication of juxta cephalic radiation therapy. PMID:27458010

  7. Synaptic electronics: materials, devices and applications.

    PubMed

    Kuzum, Duygu; Yu, Shimeng; Wong, H-S Philip

    2013-09-27

    In this paper, the recent progress of synaptic electronics is reviewed. The basics of biological synaptic plasticity and learning are described. The material properties and electrical switching characteristics of a variety of synaptic devices are discussed, with a focus on the use of synaptic devices for neuromorphic or brain-inspired computing. Performance metrics desirable for large-scale implementations of synaptic devices are illustrated. A review of recent work on targeted computing applications with synaptic devices is presented.

  8. A Model of Synaptic Reconsolidation

    PubMed Central

    Kastner, David B.; Schwalger, Tilo; Ziegler, Lorric; Gerstner, Wulfram

    2016-01-01

    Reconsolidation of memories has mostly been studied at the behavioral and molecular level. Here, we put forward a simple extension of existing computational models of synaptic consolidation to capture hippocampal slice experiments that have been interpreted as reconsolidation at the synaptic level. The model implements reconsolidation through stabilization of consolidated synapses by stabilizing entities combined with an activity-dependent reservoir of stabilizing entities that are immune to protein synthesis inhibition (PSI). We derive a reduced version of our model to explore the conditions under which synaptic reconsolidation does or does not occur, often referred to as the boundary conditions of reconsolidation. We find that our computational model of synaptic reconsolidation displays complex boundary conditions. Our results suggest that a limited resource of hypothetical stabilizing molecules or complexes, which may be implemented by protein phosphorylation or different receptor subtypes, can underlie the phenomenon of synaptic reconsolidation. PMID:27242410

  9. Molecular Mechanisms of Synaptic Specificity

    PubMed Central

    Margeta, Milica A.; Shen, Kang

    2011-01-01

    Synapses are specialized junctions that mediate information flow between neurons and their targets. A striking feature of the nervous system is the specificity of its synaptic connections: an individual neuron will form synapses only with a small subset of available presynaptic and postsynaptic partners. Synaptic specificity has been classically thought to arise from homophilic or heterophilic interactions between adhesive molecules acting across the synaptic cleft. Over the past decade, many new mechanisms giving rise to synaptic specificity have been identified. Synapses can be specified by secreted molecules that promote or inhibit synaptogenesis, and their source can be a neighboring guidepost cell, not just presynaptic and postsynaptic neurons. Furthermore, lineage, fate, and timing of development can also play critical roles in shaping neural circuits. Future work utilizing large-scale screens will aim to elucidate the full scope of cellular mechanisms and molecular players that can give rise to synaptic specificity. PMID:19969086

  10. Crustacean muscles: atrophy and regeneration during molting

    SciTech Connect

    Mykles, D.L.; Skinner, D.M.

    1981-01-01

    The ultrastructural basis of atrophy of claw closer muscle of the land crab and the organization of myofibrils and sacroplasmic reticulum during the hydrolysis of protein that occurs during proecdysis was examined. The changes that occur in contractile proteins during claw muscle atrophy and the involvement of Ca/sup 2 +/-dependent proteinases (CDP) in myofilament degradation were investigated. (ACR)

  11. Seronegative Intestinal Villous Atrophy: A Diagnostic Challenge

    PubMed Central

    Teixeira, Cristina; Ribeiro, Suzane; Trabulo, Daniel; Cardoso, Cláudia; Mangualde, João; Freire, Ricardo; Alves, Ana Luísa; Gamito, Élia; Cremers, Isabelle; Oliveira, Ana Paula

    2016-01-01

    Celiac disease is the most important cause of intestinal villous atrophy. Seronegative intestinal villous atrophy, including those that are nonresponsive to a gluten-free diet, is a diagnostic challenge. In these cases, before establishing the diagnosis of seronegative celiac disease, alternative etiologies of atrophic enteropathy should be considered. Recently, a new clinical entity responsible for seronegative villous atrophy was described—olmesartan-induced sprue-like enteropathy. Herein, we report two uncommon cases of atrophic enteropathy in patients with arterial hypertension under olmesartan, who presented with severe chronic diarrhea and significant involuntary weight loss. Further investigation revealed intestinal villous atrophy and intraepithelial lymphocytosis. Celiac disease and other causes of villous atrophy were ruled out. Drug-induced enteropathy was suspected and clinical improvement and histologic recovery were verified after olmesartan withdrawal. These cases highlight the importance for clinicians to maintain a high index of suspicion for olmesartan as a precipitant of sprue-like enteropathy. PMID:27803820

  12. Synaptic pathology in the cerebellar dentate nucleus in chronic multiple sclerosis.

    PubMed

    Albert, Monika; Barrantes-Freer, Alonso; Lohrberg, Melanie; Antel, Jack P; Prineas, John W; Palkovits, Miklós; Wolff, Joachim R; Brück, Wolfgang; Stadelmann, Christine

    2016-10-05

    In multiple sclerosis, cerebellar symptoms are associated with clinical impairment and an increased likelihood of progressive course. Cortical atrophy and synaptic dysfunction play a prominent role in cerebellar pathology and although the dentate nucleus is a predilection site for lesion development, structural synaptic changes in this region remain largely unexplored. Moreover, the mechanisms leading to synaptic dysfunction have not yet been investigated at an ultrastructural level in multiple sclerosis. Here, we report on synaptic changes of dentate nuclei in post-mortem cerebella of 16 multiple sclerosis patients and eight controls at the histological level as well as an electron microscopy evaluation of afferent synapses of the cerebellar dentate and pontine nuclei of one multiple sclerosis patient and one control. We found a significant reduction of afferent dentate synapses in multiple sclerosis, irrespective of the presence of demyelination, and a close relationship between glial processes and dentate synapses. Ultrastructurally, we show autophagosomes containing degradation products of synaptic vesicles within dendrites, residual bodies within intact-appearing axons and free postsynaptic densities opposed to astrocytic appendages. Our study demonstrates loss of dentate afferent synapses and provides, for the first time, ultrastructural evidence pointing towards neuron-autonomous and neuroglia-mediated mechanisms of synaptic degradation in chronic multiple sclerosis.

  13. Neurobiology of stress, depression, and rapid acting antidepressants: remodeling synaptic connections.

    PubMed

    Duman, Ronald S

    2014-04-01

    Stress and depression are associated with atrophy and loss of neurons in limbic and cortical brain regions that could contribute to the symptoms of depression. Typical monoamine reuptake inhibitor antidepressants have only modest efficacy and require long-term treatment, and are only weakly effective in blocking or reversing these structural changes caused by stress. Recent findings demonstrate that ketamine, an NMDA receptor antagonist, produces rapid antidepressant actions in difficult to treat depressed patients. In addition, preclinical studies demonstrate that ketamine rapidly increases synaptic connections in the prefrontal cortex by increasing glutamate signaling and activation of pathways that control the synthesis of synaptic proteins. Moreover, ketamine rapidly reverses the synaptic deficits caused by exposure to chronic stress in rodent models. Studies of the signaling mechanisms underlying the actions of ketamine have provided novel approaches and targets for new rapid acting antidepressants with decreased side effects, as well as a better understanding of the neurobiology of stress, depression, and treatment response.

  14. IL-6 regulation of synaptic function in the CNS.

    PubMed

    Gruol, Donna L

    2015-09-01

    A growing body of evidence supports a role for glial-produced neuroimmune factors, including the cytokine IL-6, in CNS physiology and pathology. CNS expression of IL-6 has been documented in the normal CNS at low levels and at elevated levels in several neurodegenerative or psychiatric disease states as well as in CNS infection and injury. The altered CNS function associated with these conditions raises the possibility that IL-6 has neuronal or synaptic actions. Studies in in vitro and in vivo models confirmed this possibility and showed that IL-6 can regulate a number of important neuronal and synaptic functions including synaptic transmission and synaptic plasticity, an important cellular mechanism of memory and learning. Behavioral studies in animal models provided further evidence of an important role for IL-6 as a regulator of CNS pathways that are critical to cognitive function. This review summarizes studies that have lead to our current state of knowledge. In spite of the progress that has been made, there is a need for a greater understanding of the physiological and pathophysiological actions of IL-6 in the CNS, the mechanisms underlying these actions, conditions that induce production of IL-6 in the CNS and therapeutic strategies that could ameliorate or promote IL-6 actions. This article is part of a Special Issue entitled 'Neuroimmunology and Synaptic Function'.

  15. Inflammation, atrophy, and gastric cancer

    PubMed Central

    Fox, James G.; Wang, Timothy C.

    2006-01-01

    The association between chronic inflammation and cancer is now well established. This association has recently received renewed interest with the recognition that microbial pathogens can be responsible for the chronic inflammation observed in many cancers, particularly those originating in the gastrointestinal system. A prime example is Helicobacter pylori, which infects 50% of the world’s population and is now known to be responsible for inducing chronic gastric inflammation that progresses to atrophy, metaplasia, dysplasia, and gastric cancer. This Review provides an overview of recent progress in elucidating the bacterial properties responsible for colonization of the stomach, persistence in the stomach, and triggering of inflammation, as well as the host factors that have a role in determining whether gastritis progresses to gastric cancer. We also discuss how the increased understanding of the relationship between inflammation and gastric cancer still leaves many questions unanswered regarding recommendations for prevention and treatment. PMID:17200707

  16. Circadian Regulation of Synaptic Plasticity.

    PubMed

    Frank, Marcos G

    2016-07-13

    Circadian rhythms refer to oscillations in biological processes with a period of approximately 24 h. In addition to the sleep/wake cycle, there are circadian rhythms in metabolism, body temperature, hormone output, organ function and gene expression. There is also evidence of circadian rhythms in synaptic plasticity, in some cases driven by a master central clock and in other cases by peripheral clocks. In this article, I review the evidence for circadian influences on synaptic plasticity. I also discuss ways to disentangle the effects of brain state and rhythms on synaptic plasticity.

  17. Circadian Regulation of Synaptic Plasticity

    PubMed Central

    Frank, Marcos G.

    2016-01-01

    Circadian rhythms refer to oscillations in biological processes with a period of approximately 24 h. In addition to the sleep/wake cycle, there are circadian rhythms in metabolism, body temperature, hormone output, organ function and gene expression. There is also evidence of circadian rhythms in synaptic plasticity, in some cases driven by a master central clock and in other cases by peripheral clocks. In this article, I review the evidence for circadian influences on synaptic plasticity. I also discuss ways to disentangle the effects of brain state and rhythms on synaptic plasticity. PMID:27420105

  18. Chronic spinal muscular atrophy of facioscapulohumeral type.

    PubMed Central

    Furukawa, T; Toyokura, Y

    1976-01-01

    Chronic spinal muscular atrophy of FSH type affecting a mother and her son and daughter is reported. The relevant literature is reviewed and the relation between this conditon and Kugelberg-Welander (K-W) disease is discussed. Chronic spinal muscular atrophy of FSH type is considered to be a different entity from the eponymous K-W disease. Each type of muscular dystrophy, e.g. limb-girdle, FSH, distal, ocular, or oculopharyngeal type, has its counterpart of nuclear origin. A classification of the chronic spinal muscular atrophies is suggested following the classification of muscular dystrophy. Images PMID:957378

  19. Inflammation and focal atrophy in prostate needle biopsy cores and association to prostatic adenocarcinoma.

    PubMed

    Benedetti, Ines; Bettin, Alfonso; Reyes, Niradiz

    2016-10-01

    The possible origin of proliferative inflammatory atrophy in the regenerative proliferation of prostate epithelial cells in response to injury caused by inflammation, and their relation to prostate adenocarcinoma have not been defined. Inflammation and focal atrophy are common pathological findings in prostate biopsies, currently not routinely included in surgical pathology reports. The objective of the study was to determine the correlation between inflammation and focal atrophy with prostate adenocarcinoma. Prostate needle biopsies from 203 patients with clinical parameters suspicious for malignancy were evaluated for the presence and extent of chronic inflammation, type and grade of focal atrophy, high-grade intraepithelial neoplasia, and adenocarcinoma. Relations among them and with age were also analyzed. χ(2) tests and binary logistic regression were used to estimate associations. Chronic inflammation was observed in 77.3% of the biopsies, significantly associated to adenocarcinoma (P = .031). Moderate/severe inflammation in at least 1 biopsy core increased the risk of prostate adenocarcinoma (odds ratio, 2.94; 95% confidence interval, 1.27-6.8), whereas glandular localization of inflammation decreased the risk. Focal atrophy was present in 72.9% of the biopsies, proliferative inflammatory atrophy was the most common type, and its grade was significantly associated to inflammation (P < .0001) and inflammation intensity (P = .003). An association between prostate adenocarcinoma and inflammation was found, with higher odds in presence of moderate/severe inflammation in at least 1 biopsy core. Increasing grades of proliferative inflammatory atrophy were associated to high levels of inflammation, supporting its previously proposed inflammatory nature.

  20. miR-628 Promotes Burn-Induced Skeletal Muscle Atrophy via Targeting IRS1

    PubMed Central

    Yu, Yonghui; Li, Xiao; Liu, Lingying; Chai, Jiake; Haijun, Zhang; Chu, Wanli; Yin, Huinan; Ma, Li; Duan, Hongjie; Xiao, Mengjing

    2016-01-01

    Skeletal muscle atrophy is a common clinical feature among patients with severe burns. Previous studies have shown that miRNAs play critical roles in the regulation of stress-induced skeletal muscle atrophy. Our previous study showed that burn-induced skeletal muscle atrophy is mediated by miR-628. In this study, compared with sham rats, rats subjected to burn injury exhibited skeletal muscle atrophy, as well as significantly decreased insulin receptor substrate 1 (IRS1) protein expression and significantly increased skeletal muscle cell apoptosis. An miRNA array showed that the levels of miR-628, a potential regulator of IRS1 protein translation, were also clearly elevated. Second, L6 myocyte cell apoptosis increased after induction of miR-628 expression, and IRS1 and p-Akt protein expression decreased significantly. Expression of the cell apoptosis-related proteins FoxO3a and cleaved caspase 3 also increased after induction of miR-628 expression. Finally, forced miR-628 expression in normal rats resulted in increased cell apoptosis and skeletal muscle atrophy, as well as changes in IRS1/Akt/FoxO3a signaling pathway activity consistent with the changes in protein expression described above. Inhibiting cell apoptosis with Z-VAD-FMK resulted in alleviation of burn-induced skeletal muscle atrophy. In general, our results indicate that miR-628 mediates burn-induced skeletal muscle atrophy by regulating the IRS1/Akt/FoxO3a signaling pathway. PMID:27766036

  1. Synaptic dynamics in analog VLSI.

    PubMed

    Bartolozzi, Chiara; Indiveri, Giacomo

    2007-10-01

    Synapses are crucial elements for computation and information transfer in both real and artificial neural systems. Recent experimental findings and theoretical models of pulse-based neural networks suggest that synaptic dynamics can play a crucial role for learning neural codes and encoding spatiotemporal spike patterns. Within the context of hardware implementations of pulse-based neural networks, several analog VLSI circuits modeling synaptic functionality have been proposed. We present an overview of previously proposed circuits and describe a novel analog VLSI synaptic circuit suitable for integration in large VLSI spike-based neural systems. The circuit proposed is based on a computational model that fits the real postsynaptic currents with exponentials. We present experimental data showing how the circuit exhibits realistic dynamics and show how it can be connected to additional modules for implementing a wide range of synaptic properties.

  2. Growth factors in synaptic function

    PubMed Central

    Poon, Vivian Y.; Choi, Sojoong; Park, Mikyoung

    2013-01-01

    Synapses are increasingly recognized as key structures that malfunction in disorders like schizophrenia, mental retardation, and neurodegenerative diseases. The importance and complexity of the synapse has fuelled research into the molecular mechanisms underlying synaptogenesis, synaptic transmission, and plasticity. In this regard, neurotrophic factors such as netrin, Wnt, transforming growth factor-β (TGF-β), tumor necrosis factor-α (TNF-α), and others have gained prominence for their ability to regulate synaptic function. Several of these factors were first implicated in neuroprotection, neuronal growth, and axon guidance. However, their roles in synaptic development and function have become increasingly clear, and the downstream signaling pathways employed by these factors have begun to be elucidated. In this review, we will address the role of these factors and their downstream effectors in synaptic function in vivo and in cultured neurons. PMID:24065916

  3. The Role of Exercise and TFAM in Preventing Skeletal Muscle Atrophy.

    PubMed

    Theilen, Nicholas T; Kunkel, George H; Tyagi, Suresh C

    2016-12-14

    Skeletal muscle atrophy is the consequence of protein degradation exceeding protein synthesis. This arises for a multitude of reasons including the unloading of muscle during microgravity, post-surgery bedrest, immobilization of a limb after injury, and overall disuse of the musculature. The development of therapies prior to skeletal muscle atrophy settings to diminish protein degradation is scarce. Mitochondrial dysfunction is associated with skeletal muscle atrophy and contributes to the induction of protein degradation and cell apoptosis through increased levels of ROS observed with the loss of organelle function. ROS binds mtDNA, leading to its degradation and decreasing functionality. Mitochondrial transcription factor A (TFAM) will bind and coat mtDNA, protecting it from ROS and degradation while increasing mitochondrial function. Exercise stimulates cell signaling pathways that converge on and increase PGC-1α, a well-known activator of the transcription of TFAM and mitochondrial biogenesis. Therefore, in the present review we are proposing, separately, exercise and TFAM treatments prior to atrophic settings (muscle unloading or disuse) alleviate skeletal muscle atrophy through enhanced mitochondrial adaptations and function. Additionally, we hypothesize the combination of exercise and TFAM leads to a synergistic effect in targeting mitochondrial function to prevent skeletal muscle atrophy. This article is protected by copyright. All rights reserved.

  4. Genetics Home Reference: dentatorubral-pallidoluysian atrophy

    MedlinePlus

    ... trinucleotide repeat often increases in size. Larger repeat expansions are usually associated with an earlier onset of ... pallidoluysian atrophy (DRPLA): close correlation of CAG repeat expansions with the wide spectrum of clinical presentations and ...

  5. Genetics Home Reference: spinal muscular atrophy

    MedlinePlus

    ... by a loss of specialized nerve cells, called motor neurons , in the spinal cord and the part ... the spinal cord ( the brainstem ). The loss of motor neurons leads to weakness and wasting ( atrophy ) of ...

  6. Hippocampal atrophy rates in Alzheimer disease

    PubMed Central

    Henneman, W J.P.; Sluimer, J D.; Barnes, J; van der Flier, W M.; Sluimer, I C.; Fox, N C.; Scheltens, P; Vrenken, H; Barkhof, F

    2009-01-01

    Objective: To investigate the added value of hippocampal atrophy rates over whole brain volume measurements on MRI in patients with Alzheimer disease (AD), patients with mild cognitive impairment (MCI), and controls. Methods: We included 64 patients with AD (67 ± 9 years; F/M 38/26), 44 patients with MCI (71 ± 6 years; 21/23), and 34 controls (67 ± 9 years; 16/18). Two MR scans were performed (scan interval: 1.8 ± 0.7 years; 1.0 T), using a coronal three-dimensional T1-weighted gradient echo sequence. At follow-up, 3 controls and 23 patients with MCI had progressed to AD. Hippocampi were manually delineated at baseline. Hippocampal atrophy rates were calculated using regional, nonlinear fluid registration. Whole brain baseline volumes and atrophy rates were determined using automated segmentation and registration tools. Results: All MRI measures differed between groups (p < 0.005). For the distinction of MCI from controls, larger effect sizes of hippocampal measures were found compared to whole brain measures. Between MCI and AD, only whole brain atrophy rate differed significantly. Cox proportional hazards models (variables dichotomized by median) showed that within all patients without dementia, hippocampal baseline volume (hazard ratio [HR]: 5.7 [95% confidence interval: 1.5–22.2]), hippocampal atrophy rate (5.2 [1.9–14.3]), and whole brain atrophy rate (2.8 [1.1–7.2]) independently predicted progression to AD; the combination of low hippocampal volume and high atrophy rate yielded a HR of 61.1 (6.1–606.8). Within patients with MCI, only hippocampal baseline volume and atrophy rate predicted progression. Conclusion: Hippocampal measures, especially hippocampal atrophy rate, best discriminate mild cognitive impairment (MCI) from controls. Whole brain atrophy rate discriminates Alzheimer disease (AD) from MCI. Regional measures of hippocampal atrophy are the strongest predictors of progression to AD. GLOSSARY AD = Alzheimer disease; BET = brain

  7. Zika virus causes testicular atrophy

    PubMed Central

    Uraki, Ryuta; Hwang, Jesse; Jurado, Kellie Ann; Householder, Sarah; Yockey, Laura J.; Hastings, Andrew K.; Homer, Robert J.; Iwasaki, Akiko; Fikrig, Erol

    2017-01-01

    Zika virus (ZIKV) is an emerging mosquito-borne flavivirus that has recently been found to cause fetal infection and neonatal abnormalities, including microcephaly and neurological dysfunction. ZIKV persists in the semen months after the acute viremic phase in humans. To further understand the consequences of ZIKV persistence in males, we infected Ifnar1−/− mice via subcutaneous injection of a pathogenic but nonlethal ZIKV strain. ZIKV replication persists within the testes even after clearance from the blood, with interstitial, testosterone-producing Leydig cells supporting virus replication. We found high levels of viral RNA and antigen within the epididymal lumen, where sperm is stored, and within surrounding epithelial cells. Unexpectedly, at 21 days post-infection, the testes of the ZIKV-infected mice were significantly smaller compared to those of mock-infected mice, indicating progressive testicular atrophy. ZIKV infection caused a reduction in serum testosterone, suggesting that male fertility can be affected. Our findings have important implications for nonvector-borne vertical transmission, as well as long-term potential reproductive deficiencies, in ZIKV-infected males. PMID:28261663

  8. Models of Multiple System Atrophy

    PubMed Central

    Fellner, Lisa; Wenning, Gregor K.; Stefanova, Nadia

    2016-01-01

    Multiple system atrophy (MSA) is a predominantly sporadic, adult-onset, fatal neurodegenerative disease of unknown etiology. MSA is characterized by autonomic failure, levodopa-unresponsive parkinsonism, cerebellar ataxia and pyramidal signs in any combination. MSA belongs to a group of neurodegenerative disorders termed α-synucleinopathies, which also include Parkinson’s disease and dementia with Lewy bodies. Their common pathological feature is the occurrence of abnormal α-synuclein positive inclusions in neurons or glial cells. In MSA, the main cell type presenting aggregates composed of α-synuclein are oligodendroglial cells. This pathological hallmark, also called glial cytoplasmic inclusions (GCIs), is associated with progressive and profound neuronal loss in various regions of the brain. The development of animal models of MSA is justified by the limited understanding of the mechanisms of neurodegeneration and GCIs formation, which is paralleled by a lack of therapeutic strategies. Two main types of rodent models have been generated to replicate different features of MSA neuropathology. On one hand, neurotoxin-based models have been produced to reproduce neuronal loss in substantia nigra pars compacta and striatum. On the other hand, transgenic mouse models with overexpression of α-synuclein in oligodendroglia have been used to reproduce GCIs-related pathology. This chapter gives an overview of the atypical Parkinson’s syndrome MSA and summarizes the currently available MSA animal models and their relevance for pre-clinical testing of disease-modifying therapies. PMID:24338664

  9. Zika virus causes testicular atrophy.

    PubMed

    Uraki, Ryuta; Hwang, Jesse; Jurado, Kellie Ann; Householder, Sarah; Yockey, Laura J; Hastings, Andrew K; Homer, Robert J; Iwasaki, Akiko; Fikrig, Erol

    2017-02-01

    Zika virus (ZIKV) is an emerging mosquito-borne flavivirus that has recently been found to cause fetal infection and neonatal abnormalities, including microcephaly and neurological dysfunction. ZIKV persists in the semen months after the acute viremic phase in humans. To further understand the consequences of ZIKV persistence in males, we infected Ifnar1(-/-) mice via subcutaneous injection of a pathogenic but nonlethal ZIKV strain. ZIKV replication persists within the testes even after clearance from the blood, with interstitial, testosterone-producing Leydig cells supporting virus replication. We found high levels of viral RNA and antigen within the epididymal lumen, where sperm is stored, and within surrounding epithelial cells. Unexpectedly, at 21 days post-infection, the testes of the ZIKV-infected mice were significantly smaller compared to those of mock-infected mice, indicating progressive testicular atrophy. ZIKV infection caused a reduction in serum testosterone, suggesting that male fertility can be affected. Our findings have important implications for nonvector-borne vertical transmission, as well as long-term potential reproductive deficiencies, in ZIKV-infected males.

  10. Rapid diaphragm atrophy following cervical spinal cord hemisection.

    PubMed

    Gill, L C; Ross, H H; Lee, K Z; Gonzalez-Rothi, E J; Dougherty, B J; Judge, A R; Fuller, D D

    2014-02-01

    A cervical (C2) hemilesion (C2Hx), which disrupts ipsilateral bulbospinal inputs to the phrenic nucleus, was used to study diaphragm plasticity after acute spinal cord injury. We hypothesized that C2Hx would result in rapid atrophy of the ipsilateral hemidiaphragm and increases in mRNA expression of proteolytic biomarkers. Diaphragm tissue was harvested from male Sprague-Dawley rats at 1 or 7 days following C2Hx. Histological analysis demonstrated reduction in cross-sectional area (CSA) of type I and IIa fibers in the ipsilateral hemidiaphragm at 1 but not 7 days. Type IIb/x fibers, however, had reduced CSA at 1 and 7 days. A targeted gene array was used to screen mRNA changes for genes associated with skeletal muscle myopathy and myogenesis; this was followed by qRT-PCR validation. Changes in diaphragm gene expression suggested that profound myoplasticity is initiated immediately following C2Hx including activation of both proteolytic and myogenic pathways. We conclude that an immediate myoplastic response occurs in the diaphragm after C2Hx with atrophy occurring in ipsilateral myofibers within 1 day.

  11. The role of synaptic ion channels in synaptic plasticity

    PubMed Central

    Voglis, Giannis; Tavernarakis, Nektarios

    2006-01-01

    The nervous system receives a large amount of information about the environment through elaborate sensory routes. Processing and integration of these wide-ranging inputs often results in long-term behavioural alterations as a result of past experiences. These relatively permanent changes in behaviour are manifestations of the capacity of the nervous system for learning and memory. At the cellular level, synaptic plasticity is one of the mechanisms underlying this process. Repeated neural activity generates physiological changes in the nervous system that ultimately modulate neuronal communication through synaptic transmission. Recent studies implicate both presynaptic and postsynaptic ion channels in the process of synapse strength modulation. Here, we review the role of synaptic ion channels in learning and memory, and discuss the implications and significance of these findings towards deciphering the molecular biology of learning and memory. PMID:17077866

  12. Synaptic Cell Adhesion Molecules in Alzheimer's Disease

    PubMed Central

    Leshchyns'ka, Iryna

    2016-01-01

    Alzheimer's disease (AD) is a neurodegenerative brain disorder associated with the loss of synapses between neurons in the brain. Synaptic cell adhesion molecules are cell surface glycoproteins which are expressed at the synaptic plasma membranes of neurons. These proteins play key roles in formation and maintenance of synapses and regulation of synaptic plasticity. Genetic studies and biochemical analysis of the human brain tissue, cerebrospinal fluid, and sera from AD patients indicate that levels and function of synaptic cell adhesion molecules are affected in AD. Synaptic cell adhesion molecules interact with Aβ, a peptide accumulating in AD brains, which affects their expression and synaptic localization. Synaptic cell adhesion molecules also regulate the production of Aβ via interaction with the key enzymes involved in Aβ formation. Aβ-dependent changes in synaptic adhesion affect the function and integrity of synapses suggesting that alterations in synaptic adhesion play key roles in the disruption of neuronal networks in AD. PMID:27242933

  13. Spatial patterns of brain amyloid-beta burden and atrophy rate associations in mild cognitive impairment.

    PubMed

    Tosun, Duygu; Schuff, Norbert; Mathis, Chester A; Jagust, William; Weiner, Michael W

    2011-04-01

    Amyloid-β accumulation in the brain is thought to be one of the earliest events in Alzheimer's disease, possibly leading to synaptic dysfunction, neurodegeneration and cognitive/functional decline. The earliest detectable changes seen with neuroimaging appear to be amyloid-β accumulation detected by (11)C-labelled Pittsburgh compound B positron emission tomography imaging. However, some individuals tolerate high brain amyloid-β loads without developing symptoms, while others progressively decline, suggesting that events in the brain downstream from amyloid-β deposition, such as regional brain atrophy rates, play an important role. The main purpose of this study was to understand the relationship between the regional distributions of increased amyloid-β and the regional distribution of increased brain atrophy rates in patients with mild cognitive impairment. To simultaneously capture the spatial distributions of amyloid-β and brain atrophy rates, we employed the statistical concept of parallel independent component analysis, an effective method for joint analysis of multimodal imaging data. Parallel independent component analysis identified significant relationships between two patterns of amyloid-β deposition and atrophy rates: (i) increased amyloid-β burden in the left precuneus/cuneus and medial-temporal regions was associated with increased brain atrophy rates in the left medial-temporal and parietal regions; and (ii) in contrast, increased amyloid-β burden in bilateral precuneus/cuneus and parietal regions was associated with increased brain atrophy rates in the right medial temporal regions. The spatial distribution of increased amyloid-β and the associated spatial distribution of increased brain atrophy rates embrace a characteristic pattern of brain structures known for a high vulnerability to Alzheimer's disease pathology, encouraging for the use of (11)C-labelled Pittsburgh compound B positron emission tomography measures as early indicators of

  14. Neuritic regeneration and synaptic reconstruction induced by withanolide A

    PubMed Central

    Kuboyama, Tomoharu; Tohda, Chihiro; Komatsu, Katsuko

    2005-01-01

    We investigated whether withanolide A (WL-A), isolated from the Indian herbal drug Ashwagandha (root of Withania somnifera), could regenerate neurites and reconstruct synapses in severely damaged neurons. We also investigated the effect of WL-A on memory-deficient mice showing neuronal atrophy and synaptic loss in the brain. Axons, dendrites, presynapses, and postsynapses were visualized by immunostaining for phosphorylated neurofilament-H (NF-H), microtubule-associated protein 2 (MAP2), synaptophysin, and postsynaptic density-95 (PSD-95), respectively. Treatment with Aβ(25–35) (10 μM) induced axonal and dendritic atrophy, and pre- and postsynaptic loss in cultured rat cortical neurons. Subsequent treatment with WL-A (1 μM) induced significant regeneration of both axons and dendrites, in addition to the reconstruction of pre- and postsynapses in the neurons. WL-A (10 μmol kg−1 day−1, for 13 days, p.o.) recovered Aβ(25–35)-induced memory deficit in mice. At that time, the decline of axons, dendrites, and synapses in the cerebral cortex and hippocampus was almost recovered. WL-A is therefore an important candidate for the therapeutic treatment of neurodegenerative diseases, as it is able to reconstruct neuronal networks. PMID:15711595

  15. Extent of hippocampal atrophy predicts degree of deficit in recall

    PubMed Central

    Patai, Eva Zita; Gadian, David G.; Cooper, Janine M.; Dzieciol, Anna M.; Mishkin, Mortimer; Vargha-Khadem, Faraneh

    2015-01-01

    Which specific memory functions are dependent on the hippocampus is still debated. The availability of a large cohort of patients who had sustained relatively selective hippocampal damage early in life enabled us to determine which type of mnemonic deficit showed a correlation with extent of hippocampal injury. We assessed our patient cohort on a test that provides measures of recognition and recall that are equated for difficulty and found that the patients' performance on the recall tests correlated significantly with their hippocampal volumes, whereas their performance on the equally difficult recognition tests did not and, indeed, was largely unaffected regardless of extent of hippocampal atrophy. The results provide new evidence in favor of the view that the hippocampus is essential for recall but not for recognition. PMID:26417089

  16. Extent of hippocampal atrophy predicts degree of deficit in recall.

    PubMed

    Patai, Eva Zita; Gadian, David G; Cooper, Janine M; Dzieciol, Anna M; Mishkin, Mortimer; Vargha-Khadem, Faraneh

    2015-10-13

    Which specific memory functions are dependent on the hippocampus is still debated. The availability of a large cohort of patients who had sustained relatively selective hippocampal damage early in life enabled us to determine which type of mnemonic deficit showed a correlation with extent of hippocampal injury. We assessed our patient cohort on a test that provides measures of recognition and recall that are equated for difficulty and found that the patients' performance on the recall tests correlated significantly with their hippocampal volumes, whereas their performance on the equally difficult recognition tests did not and, indeed, was largely unaffected regardless of extent of hippocampal atrophy. The results provide new evidence in favor of the view that the hippocampus is essential for recall but not for recognition.

  17. Molecular bases of caloric restriction regulation of neuronal synaptic plasticity.

    PubMed

    Fontán-Lozano, Angela; López-Lluch, Guillermo; Delgado-García, José María; Navas, Placido; Carrión, Angel Manuel

    2008-10-01

    Aging is associated with the decline of cognitive properties. This situation is magnified when neurodegenerative processes associated with aging appear in human patients. Neuronal synaptic plasticity events underlie cognitive properties in the central nervous system. Caloric restriction (CR; either a decrease in food intake or an intermittent fasting diet) can extend life span and increase disease resistance. Recent studies have shown that CR can have profound effects on brain function and vulnerability to injury and disease. Moreover, CR can stimulate the production of new neurons from stem cells (neurogenesis) and can enhance synaptic plasticity, which modulate pain sensation, enhance cognitive function, and may increase the ability of the brain to resist aging. The beneficial effects of CR appear to be the result of a cellular stress response stimulating the production of proteins that enhance neuronal plasticity and resistance to oxidative and metabolic insults; they include neurotrophic factors, neurotransmitter receptors, protein chaperones, and mitochondrial biosynthesis regulators. In this review, we will present and discuss the effect of CR in synaptic processes underlying analgesia and cognitive improvement in healthy, sick, and aging animals. We will also discuss the possible role of mitochondrial biogenesis induced by CR in regulation of neuronal synaptic plasticity.

  18. Altered expressions of apoptotic factors and synaptic markers in postmortem brain from bipolar disorder patients

    PubMed Central

    Kim, Hyung-Wook; Rapoport, Stanley I; Rao, Jagadeesh S

    2009-01-01

    Bipolar disorder (BD) is a progressive psychiatric disorder characterized by recurrent changes of mood, and is associated with cognitive decline. There is evidence of excitotoxicity, neuroinflammation, upregulated arachidonic acid (AA) cascade signaling and brain atrophy in BD patients. These observations suggest that BD pathology may be associated with apoptosis as well as with disturbed synaptic function. To test this hypothesis, we measured mRNA and protein levels of the pro-apoptotic (Bax, BAD, Caspase-9 and Caspase-3) and anti-apoptotic factors (BDNF and Bcl-2), and of pre- and post-synaptic markers (synaptophysin and drebrin), in postmortem brain from 10 BD patients and 10 age-matched controls. Consistent with the hypothesis, BD brains showed significant increases in protein and mRNA levels of the pro-apoptotic factors and significant decreases of levels of the anti-apoptotic factors and the synaptic markers, synaptophysin and drebrin. These differences may contribute to brain atrophy and progressive cognitive changes in BD. PMID:19945534

  19. Isolated Unilateral Tongue Atrophy: A Possible Late Complication of Juxta Cephalic Radiation Therapy.

    PubMed

    Alqahtani, Saeed A; Agha, Caroline; Rothstein, Ted

    2016-07-26

    BACKGROUND Isolated unilateral hypoglossal nerve injury is extremely rare. It may be caused by radiation therapy targeting neoplasms of the cephalic region. CASE REPORT A 51-year-old man with synovial sarcoma of the left upper arm status post extensive radiation therapy in 1980 presented in late 2014 with gradual onset of speech difficulty and difficulty moving his tongue for a couple of weeks. Neurological examination revealed isolated left-sided unilateral tongue atrophy. Postradiation residual extensive cicatrix with erythema over the whole left upper extremity extending to the neck on the affected side was noticed. On head magnetic resonance imaging (MRI) before and after administration of gadolinium, he was found to have asymmetrically fatty striations, atrophy, and fibrosis in the left tongue consistent with radiation toxicity. The patient's tongue weakness persisted without improvement. CONCLUSIONS The diagnosis of unilateral hypoglossal nerve injury is usually difficult. Detailed neurological examinations and thorough investigations including head MRI are very helpful. Previous exposure to radiation therapy is a potential cause of hypoglossal nerve injury. To our knowledge, this is the first case report that presents isolated unilateral tongue atrophy as a late complication of juxta cephalic radiation therapy.

  20. Atrophy of amygdala and abnormal memory-related alpha oscillations over posterior cingulate predict conversion to Alzheimer’s disease

    PubMed Central

    Prieto del Val, Laura; Cantero, Jose L.; Atienza, Mercedes

    2016-01-01

    Synaptic dysfunction, a key pathophysiological hallmark of Alzheimer’s disease (AD), may account for abnormal memory-related EEG patterns in prodromal AD. Here, we investigate to what extent oscillatory EEG changes during memory encoding and/or retrieval enhance the accuracy of medial temporal lobe (MTL) atrophy in predicting conversion from amnestic mild cognitive impairment (aMCI) to AD. As expected, aMCI individuals that, within a 2-year follow-up period, developed dementia (N = 16) compared to healthy older (HO) (N = 26) and stable aMCI (N = 18) showed poorer associative memory, greater MTL atrophy, and lower capacity to recruit alpha oscillatory cortical networks. Interestingly, encoding-induced abnormal alpha desynchronized activity over the posterior cingulate cortex (PCC) at baseline showed significantly higher accuracy in predicting AD than the magnitude of amygdala atrophy. Nevertheless, the best accuracy was obtained when the two markers were fitted into the model (sensitivity = 78%, specificity = 82%). These results support the idea that synaptic integrity/function in the PCC is affected during prodromal AD and has the potential of improving early detection when combined with MRI biomarkers. PMID:27546195

  1. Synaptic Effects of Electric Fields

    NASA Astrophysics Data System (ADS)

    Rahman, Asif

    Learning and sensory processing in the brain relies on the effective transmission of information across synapses. The strength and efficacy of synaptic transmission is modifiable through training and can be modulated with noninvasive electrical brain stimulation. Transcranial electrical stimulation (TES), specifically, induces weak intensity and spatially diffuse electric fields in the brain. Despite being weak, electric fields modulate spiking probability and the efficacy of synaptic transmission. These effects critically depend on the direction of the electric field relative to the orientation of the neuron and on the level of endogenous synaptic activity. TES has been used to modulate a wide range of neuropsychiatric indications, for various rehabilitation applications, and cognitive performance in diverse tasks. How can a weak and diffuse electric field, which simultaneously polarizes neurons across the brain, have precise changes in brain function? Designing therapies to maximize desired outcomes and minimize undesired effects presents a challenging problem. A series of experiments and computational models are used to define the anatomical and functional factors leading to specificity of TES. Anatomical specificity derives from guiding current to targeted brain structures and taking advantage of the direction-sensitivity of neurons with respect to the electric field. Functional specificity originates from preferential modulation of neuronal networks that are already active. Diffuse electric fields may recruit connected brain networks involved in a training task and promote plasticity along active synaptic pathways. In vitro, electric fields boost endogenous synaptic plasticity and raise the ceiling for synaptic learning with repeated stimulation sessions. Synapses undergoing strong plasticity are preferentially modulated over weak synapses. Therefore, active circuits that are involved in a task could be more susceptible to stimulation than inactive circuits

  2. Synaptic vesicle distribution by conveyor belt.

    PubMed

    Moughamian, Armen J; Holzbaur, Erika L F

    2012-03-02

    The equal distribution of synaptic vesicles among synapses along the axon is critical for robust neurotransmission. Wong et al. show that the continuous circulation of synaptic vesicles throughout the axon driven by molecular motors ultimately yields this even distribution.

  3. [COX-2 regulation of prostaglandins in synaptic signaling].

    PubMed

    Yang, Hong-Wei

    2009-10-01

    Cyclooxygenase-2 (COX-2) is a rate-limiting enzyme converting arachidonic acid to prostaglandins (PGs), which is a key messenger in traumatic brain injury- and ischemia-induced neuronal damage and in neuroinflammation. COX-2 is implicated in the pathogeneses of neurodegenerative diseases. Growing evidence implies that the contribution of COX-2 to neuropathology is associated with its involvement in synaptic alteration. Elevation or inhibition of COX-2 has been shown to enhance or suppress excitatory glutamatergic neurotransmission and long-term potentiation (LTP). These events are mainly mediated via PGE2, the predominant reaction product of COX-2, and the PGE2 subtype 2 receptor (EP2). Thus, elucidation of COX-2 in synaptic signaling may provide a mechanistic basis for designing new drugs aimed at preventing, treating or alleviating neuroinflammation-associated neurological disorders.

  4. Testicular atrophy as a risk inguinal hernioplasty.

    PubMed

    Wantz, G E

    1982-04-01

    In my experience, the complication of testicular atrophy after primary hernioplasty occurred only in patients in whom a complete indirect inguinal hernia sac was dissected from the spermatic cord. Avoiding this dissection by leaving the distal part of the sac in place reduces the incidence of the complication. All patients with scrotal inguinal hernias and all patients with recurrent inguinal hernias should have the complications of ischemic orchitis and testicular atrophy explained to them in depth because of the litigious nature of some of the men in whom this condition occurs. Patients who had undergone two or more operations for inguinal hernia should give prior written permission for orchiectomy even though this procedure is rarely necessary. In these patients, the performance of preperitoneal inguinal hernioplasty will permit the surgeon to avoid dissecting previously mobilized spermatic cords and should reduce the incidence of testicular atrophy in men fearful of this complication.

  5. [Iridoschisis, a special form of iris atrophy].

    PubMed

    Agard, E; Malcles, A; El Chehab, H; Ract-Madoux, G; Swalduz, B; Aptel, F; Denis, P; Dot, C

    2013-04-01

    Iridoschisis is a rare degenerative disease characterized by the separation of the anterior iris stroma from the posterior layer. The anterior layer splits into strands, and the free ends float freely in the anterior chamber. We report the case of a 57-year-old man, in whom we incidentally discovered isolated unilateral iris atrophy. The patient had no history of the common causes of atrophy (herpes, pigment dispersion, ocular trauma, etc.). During follow-up, the atrophy gradually worsened, with an increase in the number and bilaterality of the lesions. Ultrasound biomicroscopy (UBM) and optical coherence tomography (OCT) of anterior chamber showed thinning of the anterior iris and cleavage of the iris into two layers, an imaging result which, to our knowledge, has not yet been reported in the literature. Familiarity with iridoschisis is important, due to its frequent association with glaucoma, so that appropriate screening can be carried out at the time of diagnosis and on follow-up.

  6. Modulation of Synaptic Plasticity by Exercise Training as a Basis for Ischemic Stroke Rehabilitation.

    PubMed

    Nie, Jingjing; Yang, Xiaosu

    2017-01-01

    In recent years, rehabilitation of ischemic stroke draws more and more attention in the world, and has been linked to changes of synaptic plasticity. Exercise training improves motor function of ischemia as well as cognition which is associated with formation of learning and memory. The molecular basis of learning and memory might be synaptic plasticity. Research has therefore been conducted in an attempt to relate effects of exercise training to neuroprotection and neurogenesis adjacent to the ischemic injury brain. The present paper reviews the current literature addressing this question and discusses the possible mechanisms involved in modulation of synaptic plasticity by exercise training. This review shows the pathological process of synaptic dysfunction in ischemic roughly and then discusses the effects of exercise training on scaffold proteins and regulatory protein expression. The expression of scaffold proteins generally increased after training, but the effects on regulatory proteins were mixed. Moreover, the compositions of postsynaptic receptors were changed and the strength of synaptic transmission was enhanced after training. Finally, the recovery of cognition is critically associated with synaptic remodeling in an injured brain, and the remodeling occurs through a number of local regulations including mRNA translation, remodeling of cytoskeleton, and receptor trafficking into and out of the synapse. We do provide a comprehensive knowledge of synaptic plasticity enhancement obtained by exercise training in this review.

  7. Mitochondria, synaptic plasticity, and schizophrenia.

    PubMed

    Ben-Shachar, Dorit; Laifenfeld, Daphna

    2004-01-01

    The conceptualization of schizophrenia as a disorder of connectivity, i.e., of neuronal?synaptic plasticity, suggests abnormal synaptic modeling and neuronal signaling, possibly as a consequence of flawed interactions with the environment, as at least a secondary mechanism underlying the pathophysiology of this disorder. Indeed, deficits in episodic memory and malfunction of hippocampal circuitry, as well as anomalies of axonal sprouting and synapse formation, are all suggestive of diminished neuronal plasticity in schizophrenia. Evidence supports a dysfunction of mitochondria in schizophrenia, including mitochondrial hypoplasia, and a dysfunction of the oxidative phosphorylation system, as well as altered mitochondrial-related gene expression. Mitochondrial dysfunction leads to alterations in ATP production and cytoplasmatic calcium concentrations, as well as reactive oxygen species and nitric oxide production. All of the latter processes have been well established as leading to altered synaptic strength or plasticity. Moreover, mitochondria have been shown to play a role in plasticity of neuronal polarity, and studies in the visual cortex show an association between mitochondria and synaptogenesis. Finally, mitochondrial gene upregulation has been observed following synaptic and neuronal activity. This review proposes that mitochondrial dysfunction in schizophrenia could cause, or arise from, anomalies in processes of plasticity in this disorder.

  8. Differential induction of muscle atrophy pathways in two mouse models of spinal muscular atrophy

    PubMed Central

    Deguise, Marc-Olivier; Boyer, Justin G.; McFall, Emily R.; Yazdani, Armin; De Repentigny, Yves; Kothary, Rashmi

    2016-01-01

    Motor neuron loss and neurogenic atrophy are hallmarks of spinal muscular atrophy (SMA), a leading genetic cause of infant deaths. Previous studies have focused on deciphering disease pathogenesis in motor neurons. However, a systematic evaluation of atrophy pathways in muscles is lacking. Here, we show that these pathways are differentially activated depending on severity of disease in two different SMA model mice. Although proteasomal degradation is induced in skeletal muscle of both models, autophagosomal degradation is present only in Smn2B/− mice but not in the more severe Smn−/−; SMN2 mice. Expression of FoxO transcription factors, which regulate both proteasomal and autophagosomal degradation, is elevated in Smn2B/− muscle. Remarkably, administration of trichostatin A reversed all molecular changes associated with atrophy. Cardiac muscle also exhibits differential induction of atrophy between Smn2B/− and Smn−/−; SMN2 mice, albeit in the opposite direction to that of skeletal muscle. Altogether, our work highlights the importance of cautious analysis of different mouse models of SMA as distinct patterns of atrophy induction are at play depending on disease severity. We also revealed that one of the beneficial impacts of trichostatin A on SMA model mice is via attenuation of muscle atrophy through reduction of FoxO expression to normal levels. PMID:27349908

  9. Progressive cerebral atrophy in neuromyelitis optica.

    PubMed

    Warabi, Yoko; Takahashi, Toshiyuki; Isozaki, Eiji

    2015-12-01

    We report two cases of neuromyelitis optica patients with progressive cerebral atrophy. The patients exhibited characteristic clinical features, including elderly onset, secondary progressive tetraparesis and cognitive impairment, abnormally elevated CSF protein and myelin basic protein levels, and extremely highly elevated serum anti-AQP-4 antibody titer. Because neuromyelitis optica pathology cannot switch from an inflammatory phase to the degenerative phase until the terminal phase, neuromyelitis optica rarely appears as a secondary progressive clinical course caused by axonal degeneration. However, severe intrathecal inflammation and massive destruction of neuroglia could cause a secondary progressive clinical course associated with cerebral atrophy in neuromyelitis optica patients.

  10. Posterior cortical atrophy: a brief review.

    PubMed

    Kirshner, Howard S; Lavin, Patrick J M

    2006-11-01

    Posterior cortical atrophy is a striking clinical syndrome in which a dementing illness begins with visual symptoms. Initially, the problem may seem to be loss of elementary vision, but over time the patient develops features of visual agnosia, topographical difficulty, optic ataxia, simultanagnosia, ocular apraxia (Balint's syndrome), alexia, acalculia, right-left confusion, and agraphia (Gerstmann's syndrome), and later a more generalized dementia. Occasional patients have visual hallucinations and signs of Parkinson's disease or Lewy body dementia. A number of different neuropathologic disorders are associated with posterior cortical atrophy.

  11. [Geographic atrophy imaging using fundus autofluorescence method].

    PubMed

    Dolar-Szczasny, Joanna; Święch-Zubilewicz, Anna; Mackiewicz, Jerzy

    2015-01-01

    Geographic atrophy is a manifestation of the advanced age-related macular degeneration and form of irreversible atrophy of retinal pigment epithelium and photoreceptor layer. Early detection of changes and the ability to evaluate disease progression accurately constitute a key problem in diagnosis and treatment planning. Fundus autofluorescence is a relatively new imaging method considered nowadays to be the best in diagnosis and observing the natural or treatment-altered course of disease. High resolution images showing the 3D distribution of retinal pigment epithelium autofluorescence as lipofuscin index can be obtained owing to the launch of the confocal scanning laser ophthalmoscope.

  12. Grey matter atrophy in patients suffering from multiple sclerosis.

    PubMed

    Kincses, Zsigmond Tamás; Tóth, Eszter; Bankó, Nóra; Veréb, Dániel; Szabó, Nikoletta; Csete, Gergő; Faragó, Péter; Király, András; Bencsik, Krisztina; Vécsei, László

    2014-09-30

    White matter lesions are defining characteristics of multiple sclerosis (MS), whereas grey matter involvement is a less recognised attribute. Recent investigations using dedicated imaging approaches have made it possible to depict cortical lesions. Additionally, grey matter atrophy may be estimated using various methods. Several studies have suggested that grey matter atrophy closely correlates to clinical disability. In this review we have collected information on grey matter atrophy in MS and the effect of disease modifying therapies upon brain atrophy.

  13. Genetics Home Reference: multiple system atrophy

    MedlinePlus

    ... inability to hold the body upright and balanced (postural instability). The other type of multiple system atrophy , known as MSA-C, is characterized by cerebellar ataxia , which causes problems with coordination and balance. This form of the condition can also include ...

  14. Anabolic Steroid Reversal of Denervation Atrophy

    DTIC Science & Technology

    2012-03-01

    10-1-0932 TITLE: Anabolic Steroid Reversal of Denervation Atrophy PRINCIPAL INVESTIGATOR: Dr. Jonathan E. Isaacs...certainly “denervation atrophy” plays a significant role. Anabolic steroids , which have been shown to cause hypertrophy of muscle fibers, increase net...of satellite cells to muscle fibers. In conclusion, there did not seem to be a functional benefit for anabolic steroid treatment following

  15. Progressive hemifacial atrophy. A natural history study.

    PubMed Central

    Miller, M T; Spencer, M A

    1995-01-01

    PURPOSE: To describe two very different natural history courses in 2 patients with hemifacial atrophy. Progressive hemifacial atrophy (Parry-Romberg syndrome, Romberg syndrome, PHA) is characterized by slowly progressive atrophy, frequently involving only one side of the face, primarily affecting the subcutaneous tissue and fat. The onset usually occurs during the first 2 decades of life. The cause and pathophysiology are unknown. Ophthalmic involvement is common, with progressive enophthalmos a frequent finding. Pupillary disturbances, heterochromia, uveitis, pigmentary disturbances of the ocular fundus, and restrictive strabismus have also been reported. Neurologic findings may be present, but the natural history and progression of ocular findings are often not described in the literature. METHODS: We studied the records and present findings of 2 patients with progressive hemifacial atrophy who were observed in our institution over a 10-year period. RESULTS: Both patients showed progression of ophthalmic findings, primarily on the affected side. One patient has had chronic uveitis with secondary cataract and glaucoma, in addition to retinal pigmentary changes. She also had a third-nerve paresis of the contralateral eye and mild seizure activity. The other patient had mild uveitis, some progression of unilateral retinal pigmentary changes, and a significant increase in hyperopia in the affected eye, in addition to hypotony at age 19 without a clear cause, but with secondary retinal and refractive changes. CONCLUSION: Ocular manifestations of progressive hemifacial atrophy are varied, but can progress from mild visual impairment to blindness. Images FIGURE 1 FIGURE 2 FIGURE 3A FIGURE 3B FIGURE 4 FIGURE 5 FIGURE 6 PMID:8719679

  16. Characteristic Retinal Atrophy with Secondary “Inverse” Optic Atrophy Identifies Vigabatrin Toxicity in Children

    PubMed Central

    Buncic, J. Raymond; Westall, Carol A.; Panton, Carole M.; Munn, J. Robert; MacKeen, Leslie D.; Logan, William J.

    2013-01-01

    Objective To describe the clinical pattern of retinal atrophy in children caused by the anticonvulsant vigabatrin. Design An interventional case series report. Participants One hundred thirty-eight patients, mainly infants, were evaluated regularly for evidence of possible vigabatrin toxicity in the Eye and Neurology clinics at the Hospital for Sick Children, Toronto. Method Sequential clinical and electroretinographic (International Society for Clinical Electrophysiology of Vision standards) evaluations every 6 months. Main Outcome Measures Presence of recognizable retinal and optic atrophy in the presence of abnormal electroretinogram (ERG) and other clinical findings. Results Three children being treated for seizures with vigabatrin showed definite clinical findings of peripheral retinal nerve fiber layer atrophy, with relative sparing of the central or macular portion of the retina and relative nasal optic nerve atrophic changes. Some macular wrinkling was evident in 1 case. Progressive ERG changes showing decreased responses, especially the 30-Hz flicker response, supported the presence of decreased retinal function. Conclusions A recognizable and characteristic form of peripheral retinal atrophy and nasal or “inverse” optic disc atrophy can occur in a small number of children being treated with vigabatrin. The changes in superficial light reflexes of the retina in children facilitate the clinical recognition of nerve fiber layer atrophy. The macula is relatively spared, although superficial retinal light reflexes indicating wrinkling of the innermost retina suggest early macular toxicity as well. Because these changes are accompanied by electrophysiologic evidence of retinal dysfunction, discontinuation of vigabatrin should be strongly considered. PMID:15465561

  17. Open Syntaxin Docks Synaptic Vesicles

    PubMed Central

    Olsen, Shawn; Jorgensen, Erik M

    2007-01-01

    Synaptic vesicles dock to the plasma membrane at synapses to facilitate rapid exocytosis. Docking was originally proposed to require the soluble N-ethylmaleimide–sensitive fusion attachment protein receptor (SNARE) proteins; however, perturbation studies suggested that docking was independent of the SNARE proteins. We now find that the SNARE protein syntaxin is required for docking of all vesicles at synapses in the nematode Caenorhabditis elegans. The active zone protein UNC-13, which interacts with syntaxin, is also required for docking in the active zone. The docking defects in unc-13 mutants can be fully rescued by overexpressing a constitutively open form of syntaxin, but not by wild-type syntaxin. These experiments support a model for docking in which UNC-13 converts syntaxin from the closed to the open state, and open syntaxin acts directly in docking vesicles to the plasma membrane. These data provide a molecular basis for synaptic vesicle docking. PMID:17645391

  18. Synaptic dynamics and decision making

    PubMed Central

    Deco, Gustavo; Rolls, Edmund T.; Romo, Ranulfo

    2010-01-01

    During decision making between sequential stimuli, the first stimulus must be held in memory and then compared with the second. Here, we show that in systems that encode the stimuli by their firing rate, neurons can use synaptic facilitation not only to remember the first stimulus during the delay but during the presentation of the second stimulus so that they respond to a combination of the first and second stimuli, as has been found for “partial differential” neurons recorded in the ventral premotor cortex during vibrotactile flutter frequency decision making. Moreover, we show that such partial differential neurons provide important input to a subsequent attractor decision-making network that can then compare this combination of the first and second stimuli with inputs from other neurons that respond only to the second stimulus. Thus, both synaptic facilitation and neuronal attractor dynamics can account for sequential decision making in such systems in the brain. PMID:20360555

  19. Optimal Degrees of Synaptic Connectivity.

    PubMed

    Litwin-Kumar, Ashok; Harris, Kameron Decker; Axel, Richard; Sompolinsky, Haim; Abbott, L F

    2017-03-08

    Synaptic connectivity varies widely across neuronal types. Cerebellar granule cells receive five orders of magnitude fewer inputs than the Purkinje cells they innervate, and cerebellum-like circuits, including the insect mushroom body, also exhibit large divergences in connectivity. In contrast, the number of inputs per neuron in cerebral cortex is more uniform and large. We investigate how the dimension of a representation formed by a population of neurons depends on how many inputs each neuron receives and what this implies for learning associations. Our theory predicts that the dimensions of the cerebellar granule-cell and Drosophila Kenyon-cell representations are maximized at degrees of synaptic connectivity that match those observed anatomically, showing that sparse connectivity is sometimes superior to dense connectivity. When input synapses are subject to supervised plasticity, however, dense wiring becomes advantageous, suggesting that the type of plasticity exhibited by a set of synapses is a major determinant of connection density.

  20. Synaptic Plasticity and Memory Formation

    DTIC Science & Technology

    1994-05-31

    The name " Ampakines " has been used to describe this family; when more is known about structure-activity relationships, it should be possible to...regarding the physiological effects of the drugs. Excised patch studies have shown that Ampakines prolong the duration of AMPA receptor-mediated...also revealed that Ampakines produce the expected facilitation and prolongation of synaptic responses in situ; these drugs are thus the first compounds

  1. Truncated tau deregulates synaptic markers in rat model for human tauopathy

    PubMed Central

    Jadhav, Santosh; Katina, Stanislav; Kovac, Andrej; Kazmerova, Zuzana; Novak, Michal; Zilka, Norbert

    2015-01-01

    Synaptic failure and neurofibrillary degeneration are two major neuropathological substrates of cognitive dysfunction in Alzheimer’s disease (AD). Only a few studies have demonstrated a direct relationship between these two AD hallmarks. To investigate tau mediated synaptic injury we used rat model of tauopathy that develops extensive neurofibrillary pathology in the cortex. Using fractionation of cortical synapses, we identified an increase in endogenous rat tau isoforms in presynaptic compartment, and their mis-sorting to the postsynaptic density (PSD). Truncated transgenic tau was distributed in both compartments exhibiting specific phospho-pattern that was characteristic for each synaptic compartment. In the presynaptic compartment, truncated tau was associated with impairment of dynamic stability of microtubules which could be responsible for reduction of synaptic vesicles. In the PSD, truncated tau lowered the levels of neurofilaments. Truncated tau also significantly decreased the synaptic levels of Aβ40 but not Aβ42. These data show that truncated tau differentially deregulates synaptic proteome in pre- and postsynaptic compartments. Importantly, we show that alteration of Aβ can arise downstream of truncated tau pathology. PMID:25755633

  2. Neuromuscular Junctions as Key Contributors and Therapeutic Targets in Spinal Muscular Atrophy

    PubMed Central

    Boido, Marina; Vercelli, Alessandro

    2016-01-01

    Spinal muscular atrophy (SMA) is a recessive autosomal neuromuscular disease, representing the most common fatal pediatric pathology. Even though, classically and in a simplistic way, it is categorized as a motor neuron (MN) disease, there is an increasing general consensus that its pathogenesis is more complex than expected. In particular, neuromuscular junctions (NMJs) are affected by dramatic alterations, including immaturity, denervation and neurofilament accumulation, associated to impaired synaptic functions: these abnormalities may in turn have a detrimental effect on MN survival. Here, we provide a description of NMJ development/maintenance/maturation in physiological conditions and in SMA, focusing on pivotal molecules and on the time-course of pathological events. Moreover, since NMJs could represent an important target to be exploited for counteracting the pathology progression, we also describe several therapeutic strategies that, directly or indirectly, aim at NMJs. PMID:26869891

  3. Early functional impairment of sensory-motor connectivity in a mouse model of spinal muscular atrophy

    PubMed Central

    Mentis, George Z.; Blivis, Dvir; Liu, Wenfang; Drobac, Estelle; Crowder, Melissa E.; Kong, Lingling; Alvarez, Francisco J.; Sumner, Charlotte J.; O'Donovan, Michael J.

    2011-01-01

    SUMMARY To define alterations of neuronal connectivity that occur during motor neuron degeneration, we characterized the function and structure of spinal circuitry in spinal muscular atrophy (SMA) model mice. SMA motor neurons show reduced proprioceptive reflexes that correlate with decreased number and function of synapses on motor neuron somata and proximal dendrites. These abnormalities occur at an early stage of disease in motor neurons innervating proximal hindlimb muscles and medial motor neurons innervating axial muscles, but only at end-stage disease in motor neurons innervating distal hindlimb muscles. Motor neuron loss follows afferent synapse loss with the same temporal and topographical pattern. Trichostatin A, which improves motor behavior and survival of SMA mice, partially restores spinal reflexes illustrating the reversibility of these synaptic defects. De-afferentation of motor neurons is an early event in SMA and may be a primary cause of motor dysfunction that is amenable to therapeutic intervention. PMID:21315257

  4. Early functional impairment of sensory-motor connectivity in a mouse model of spinal muscular atrophy.

    PubMed

    Mentis, George Z; Blivis, Dvir; Liu, Wenfang; Drobac, Estelle; Crowder, Melissa E; Kong, Lingling; Alvarez, Francisco J; Sumner, Charlotte J; O'Donovan, Michael J

    2011-02-10

    To define alterations of neuronal connectivity that occur during motor neuron degeneration, we characterized the function and structure of spinal circuitry in spinal muscular atrophy (SMA) model mice. SMA motor neurons show reduced proprioceptive reflexes that correlate with decreased number and function of synapses on motor neuron somata and proximal dendrites. These abnormalities occur at an early stage of disease in motor neurons innervating proximal hindlimb muscles and medial motor neurons innervating axial muscles, but only at end-stage disease in motor neurons innervating distal hindlimb muscles. Motor neuron loss follows afferent synapse loss with the same temporal and topographical pattern. Trichostatin A, which improves motor behavior and survival of SMA mice, partially restores spinal reflexes, illustrating the reversibility of these synaptic defects. Deafferentation of motor neurons is an early event in SMA and may be a primary cause of motor dysfunction that is amenable to therapeutic intervention.

  5. Thalamic atrophy in antero-medial and dorsal nuclei correlates with six-month outcome after severe brain injury☆

    PubMed Central

    Lutkenhoff, Evan S.; McArthur, David L.; Hua, Xue; Thompson, Paul M.; Vespa, Paul M.; Monti, Martin M.

    2013-01-01

    The primary and secondary damage to neural tissue inflicted by traumatic brain injury is a leading cause of death and disability. The secondary processes, in particular, are of great clinical interest because of their potential susceptibility to intervention. We address the dynamics of tissue degeneration in cortico-subcortical circuits after severe brain injury by assessing volume change in individual thalamic nuclei over the first six-months post-injury in a sample of 25 moderate to severe traumatic brain injury patients. Using tensor-based morphometry, we observed significant localized thalamic atrophy over the six-month period in antero-dorsal limbic nuclei as well as in medio-dorsal association nuclei. Importantly, the degree of atrophy in these nuclei was predictive, even after controlling for full-brain volume change, of behavioral outcome at six-months post-injury. Furthermore, employing a data-driven decision tree model, we found that physiological measures, namely the extent of atrophy in the anterior thalamic nucleus, were the most predictive variables of whether patients had regained consciousness by six-months, followed by behavioral measures. Overall, these findings suggest that the secondary non-mechanical degenerative processes triggered by severe brain injury are still ongoing after the first week post-trauma and target specifically antero-medial and dorsal thalamic nuclei. This result therefore offers a potential window of intervention, and a specific target region, in agreement with the view that specific cortico-thalamo-cortical circuits are crucial to the maintenance of large-scale network neural activity and thereby the restoration of cognitive function after severe brain injury. PMID:24273723

  6. Treatment of dyspareunia secondary to vulvovaginal atrophy.

    PubMed

    Fantasia, Heidi Collins

    2014-01-01

    Declining estrogen levels associated with menopause can result in vulvovaginal atrophy and some degree of dyspareunia for more than half of all women in menopause. In 2013, the U.S. Food and Drug Administration approved ospemifene, a nonhormonal oral medication for the treatment of dyspareunia in menopause. This article will provide an overview of ospemifene and its indications, side effects and implications for nurses.

  7. Progressive visual agnosia with posterior cortical atrophy.

    PubMed

    Mizuno, M; Sartori, G; Liccione, D; Battelli, L; Campo, R

    1996-05-01

    A patient of posterior cortical atrophy characterized by early signs of progressive visual agnosia documented by repeated neuropsychological tests, is reported. SPECT and MRI findings showed left unilateral parieto-occipital involvement in the earlier stage. A PET study executed eight months later showed bilateral parieto-occipital hypometabolism, but predominantly in the left hemisphere. This suggests that the degeneration may have developed asymmetrically, progressing from left unilateral to bilateral.

  8. Very severe spinal muscular atrophy (Type 0).

    PubMed

    Al Dakhoul, Suleiman

    2017-01-01

    This case report describes a rare phenotype of very severe spinal muscular atrophy (SMA) in a newborn who presented with reduced fetal movements in utero and significant respiratory distress at birth. The patient was homozygously deleted for exon 7 and exon 8 of the survival motor neuron gene 1. Very severe SMA should be considered in the differential diagnosis of respiratory distress at birth, and more research should be dedicated to investigate the genetic determinants of its widely variable phenotypes.

  9. Very severe spinal muscular atrophy (Type 0)

    PubMed Central

    Al Dakhoul, Suleiman

    2017-01-01

    This case report describes a rare phenotype of very severe spinal muscular atrophy (SMA) in a newborn who presented with reduced fetal movements in utero and significant respiratory distress at birth. The patient was homozygously deleted for exon 7 and exon 8 of the survival motor neuron gene 1. Very severe SMA should be considered in the differential diagnosis of respiratory distress at birth, and more research should be dedicated to investigate the genetic determinants of its widely variable phenotypes. PMID:28182029

  10. Reflections on the specificity of synaptic connections.

    PubMed

    White, Edward L

    2007-10-01

    The principal focus of this treatise is the specificity of synaptic connectivity in the mammalian central nervous system. The occurrence of stereotypical patterns of connection at the macro level (e.g., the general consistency with which axonal pathways impinge on and originate within specific cortical areas and layers) implies that the cerebral cortex is a highly ordered structure. Order is seen also at the more micro level of synaptic connectivity, for instance, in the contrasting synaptic patterns of spiny vs. non-spiny neurons. Quantitative electron microscopic studies of synapses between identified neurons and correlative anatomical/electrophysiological investigations indicate that the high degree of order characterizing many aspects of cortical organization is mirrored by an equally ordered arrangement of synaptic connections between specific types of neurons. The recognition of recurring synaptic patterns has generated increased support for the notion of synaptic specificity as opposed to randomness, and we have begun now to understand the role of specificity in cortical function. At the core of cortical processing lie myriad possibilities for computation provided by the wealth of synaptic connections involving each neuron. Specificity, by limiting possibilities for connection, imposes an order on synaptic interactions even as processes of dynamic selection or synaptic remodeling ensure the constant formation and dissolution of cortical circuits. Collectively, these operations make maximal use of the richness of cortical synaptic connections to produce a highly flexible system, irrespective of the degree of hard-wiring, mutability, randomness or specificity that obtains for cortical wiring at any particular time. A brief, historical account of developments leading to our current understanding of cortical synaptic organization will precede the presentation of evidence for synaptic specificity.

  11. Graded Synaptic Transmission between Spiking Neurons

    NASA Astrophysics Data System (ADS)

    Graubard, Katherine; Raper, Jonathan A.; Hartline, Daniel K.

    1980-06-01

    Graded synaptic transmission occurs between spiking neurons of the lobster stomatogastric ganglion. In addition to eliciting spike-evoked inhibitory potentials in postsynaptic cells, these neurons also release functionally significant amounts of transmitter below the threshold for action potentials. The spikeless postsynaptic potentials grade in amplitude with presynaptic voltage and can be maintained for long periods. Graded synaptic transmission can be modulated by synaptic input to the presynaptic neuron.

  12. Healthy brain connectivity predicts atrophy progression in non-fluent variant of primary progressive aphasia.

    PubMed

    Mandelli, Maria Luisa; Vilaplana, Eduard; Brown, Jesse A; Hubbard, H Isabel; Binney, Richard J; Attygalle, Suneth; Santos-Santos, Miguel A; Miller, Zachary A; Pakvasa, Mikhail; Henry, Maya L; Rosen, Howard J; Henry, Roland G; Rabinovici, Gil D; Miller, Bruce L; Seeley, William W; Gorno-Tempini, Maria Luisa

    2016-10-01

    Neurodegeneration has been hypothesized to follow predetermined large-scale networks through the trans-synaptic spread of toxic proteins from a syndrome-specific epicentre. To date, no longitudinal neuroimaging study has tested this hypothesis in vivo in frontotemporal dementia spectrum disorders. The aim of this study was to demonstrate that longitudinal progression of atrophy in non-fluent/agrammatic variant primary progressive aphasia spreads over time from a syndrome-specific epicentre to additional regions, based on their connectivity to the epicentre in healthy control subjects. The syndrome-specific epicentre of the non-fluent/agrammatic variant of primary progressive aphasia was derived in a group of 10 mildly affected patients (clinical dementia rating equal to 0) using voxel-based morphometry. From this region, the inferior frontal gyrus (pars opercularis), we derived functional and structural connectivity maps in healthy controls (n = 30) using functional magnetic resonance imaging at rest and diffusion-weighted imaging tractography. Graph theory analysis was applied to derive functional network features. Atrophy progression was calculated using voxel-based morphometry longitudinal analysis on 34 non-fluent/agrammatic patients. Correlation analyses were performed to compare volume changes in patients with connectivity measures of the healthy functional and structural speech/language network. The default mode network was used as a control network. From the epicentre, the healthy functional connectivity network included the left supplementary motor area and the prefrontal, inferior parietal and temporal regions, which were connected through the aslant, superior longitudinal and arcuate fasciculi. Longitudinal grey and white matter changes were found in the left language-related regions and in the right inferior frontal gyrus. Functional connectivity strength in the healthy speech/language network, but not in the default network, correlated with

  13. Space travel directly induces skeletal muscle atrophy.

    PubMed

    Vandenburgh, H; Chromiak, J; Shansky, J; Del Tatto, M; Lemaire, J

    1999-06-01

    Space travel causes rapid and pronounced skeletal muscle wasting in humans that reduces their long-term flight capabilities. To develop effective countermeasures, the basis of this atrophy needs to be better understood. Space travel may cause muscle atrophy indirectly by altering circulating levels of factors such as growth hormone, glucocorticoids, and anabolic steroids and/or by a direct effect on the muscle fibers themselves. To determine whether skeletal muscle cells are directly affected by space travel, tissue-cultured avian skeletal muscle cells were tissue engineered into bioartificial muscles and flown in perfusion bioreactors for 9 to 10 days aboard the Space Transportation System (STS, i.e., Space Shuttle). Significant muscle fiber atrophy occurred due to a decrease in protein synthesis rates without alterations in protein degradation. Return of the muscle cells to Earth stimulated protein synthesis rates of both muscle-specific and extracellular matrix proteins relative to ground controls. These results show for the first time that skeletal muscle fibers are directly responsive to space travel and should be a target for countermeasure development.

  14. Space travel directly induces skeletal muscle atrophy

    NASA Technical Reports Server (NTRS)

    Vandenburgh, H.; Chromiak, J.; Shansky, J.; Del Tatto, M.; Lemaire, J.

    1999-01-01

    Space travel causes rapid and pronounced skeletal muscle wasting in humans that reduces their long-term flight capabilities. To develop effective countermeasures, the basis of this atrophy needs to be better understood. Space travel may cause muscle atrophy indirectly by altering circulating levels of factors such as growth hormone, glucocorticoids, and anabolic steroids and/or by a direct effect on the muscle fibers themselves. To determine whether skeletal muscle cells are directly affected by space travel, tissue-cultured avian skeletal muscle cells were tissue engineered into bioartificial muscles and flown in perfusion bioreactors for 9 to 10 days aboard the Space Transportation System (STS, i.e., Space Shuttle). Significant muscle fiber atrophy occurred due to a decrease in protein synthesis rates without alterations in protein degradation. Return of the muscle cells to Earth stimulated protein synthesis rates of both muscle-specific and extracellular matrix proteins relative to ground controls. These results show for the first time that skeletal muscle fibers are directly responsive to space travel and should be a target for countermeasure development.

  15. Nonvolatile programmable neural network synaptic array

    NASA Technical Reports Server (NTRS)

    Tawel, Raoul (Inventor)

    1994-01-01

    A floating-gate metal oxide semiconductor (MOS) transistor is implemented for use as a nonvolatile analog storage element of a synaptic cell used to implement an array of processing synaptic cells. These cells are based on a four-quadrant analog multiplier requiring both X and Y differential inputs, where one Y input is UV programmable. These nonvolatile synaptic cells are disclosed fully connected in a 32 x 32 synaptic cell array using standard very large scale integration (VLSI) complementary MOS (CMOS) technology.

  16. Synaptic NMDA Receptors Mediate Hypoxic Excitotoxic Death

    PubMed Central

    Wroge, Christine M.; Hogins, Joshua; Eisenman, Larry; Mennerick, Steven

    2012-01-01

    Excessive NMDA receptor activation and excitotoxicity underlies pathology in many neuropsychiatric and neurological disorders, including hypoxia/ischemia. Thus, the development of effective therapeutics for these disorders demands a complete understanding of NMDA receptor (NMDAR) activation during excitotoxic insults. The extrasynaptic NMDAR hypothesis posits that synaptic NMDARs are neurotrophic/neuroprotective and extrasynaptic NMDARs are neurotoxic. In part, the extrasynaptic hypothesis is built on observed selectivity for extrasynaptic receptors of a neuroprotective use-dependent NMDAR channel blocker, memantine. In rat hippocampal neurons we found that a neuroprotective concentration of memantine shows little selectivity for extrasynaptic NMDARs when all receptors are tonically activated by exogenous glutamate. This led us to test the extrasynaptic NMDAR hypothesis using metabolic challenge, where the source of excitotoxic glutamate buildup may be largely synaptic. Three independent approaches suggest strongly that synaptic receptors participate prominently in hypoxic excitotoxicity. First, block of glutamate transporters with a non-substrate antagonist exacerbated rather than prevented damage, consistent with a primarily synaptic source of glutamate. Second, selective, preblock of synaptic NMDARs with a slowly reversible, use-dependent antagonist protected nearly fully against prolonged hypoxic insult. Third, glutamate pyruvate transaminase (GPT), which degrades ambient but not synaptic glutamate, did not protect against hypoxia but protected against exogenous glutamate damage. Together, these results suggest that synaptic NMDARs can mediate excitotoxicity, particularly when the glutamate source is synaptic and when synaptic receptor contributions are rigorously defined. Moreover, the results suggest that in some situations therapeutically targeting extrasynaptic receptors may be inappropriate. PMID:22573696

  17. GABAB receptor modulation of synaptic function

    PubMed Central

    Chalifoux, Jason R.; Carter, Adam G.

    2011-01-01

    Neuromodulators have complex effects on both the presynaptic release and postsynaptic detection of neurotransmitters. Here we describe recent advances in our understanding of synaptic modulation by metabotropic GABAB receptors. By inhibiting multivesicular release from the presynaptic terminal, these receptors decrease the synaptic glutamate signal. GABAB receptors also inhibit the Ca2+ permeability of NMDA receptors to decrease Ca2+ signals in postsynaptic spines. These new findings highlight the importance of GABAB receptors in regulating many aspects of synaptic transmission. They also point to novel questions about the spatiotemporal dynamics and sources of synaptic modulation in the brain. PMID:21376567

  18. Synaptic Control of Motoneuronal Excitability

    PubMed Central

    Rekling, Jens C.; Funk, Gregory D.; Bayliss, Douglas A.; Dong, Xiao-Wei; Feldman, Jack L.

    2016-01-01

    Movement, the fundamental component of behavior and the principal extrinsic action of the brain, is produced when skeletal muscles contract and relax in response to patterns of action potentials generated by motoneurons. The processes that determine the firing behavior of motoneurons are therefore important in understanding the transformation of neural activity to motor behavior. Here, we review recent studies on the control of motoneuronal excitability, focusing on synaptic and cellular properties. We first present a background description of motoneurons: their development, anatomical organization, and membrane properties, both passive and active. We then describe the general anatomical organization of synaptic input to motoneurons, followed by a description of the major transmitter systems that affect motoneuronal excitability, including ligands, receptor distribution, pre- and postsynaptic actions, signal transduction, and functional role. Glutamate is the main excitatory, and GABA and glycine are the main inhibitory transmitters acting through ionotropic receptors. These amino acids signal the principal motor commands from peripheral, spinal, and supraspinal structures. Amines, such as serotonin and norepinephrine, and neuropeptides, as well as the glutamate and GABA acting at metabotropic receptors, modulate motoneuronal excitability through pre- and postsynaptic actions. Acting principally via second messenger systems, their actions converge on common effectors, e.g., leak K+ current, cationic inward current, hyperpolarization-activated inward current, Ca2+ channels, or presynaptic release processes. Together, these numerous inputs mediate and modify incoming motor commands, ultimately generating the coordinated firing patterns that underlie muscle contractions during motor behavior. PMID:10747207

  19. Evolution of geographic atrophy of the retinal pigment epithelium.

    PubMed

    Sarks, J P; Sarks, S H; Killingsworth, M C

    1988-01-01

    The aim of this study was to trace the evolution of geographic atrophy (GA) by clinical documentation and by clinico-morphological correlation in representative eyes. Geographic atrophy commonly commenced within a parafoveal band of incipient atrophy of varying width, characterised by semisolid drusen and a microreticular pigment pattern. Progression of atrophy mostly skirted fixation and visual acuity was a poor guide to the functional impact, an estimate of the percentage of fovea involved proving a more useful clinical parameter. The rate of progression slowed once GA had involved all the retina affected by incipient atrophy and the risk of choroidal neovascularization appeared to decline. An earlier histological classification of the evolution of GA is revised according to the ultrastructural findings. Membranous debris was not previously recognised and its contribution to the findings in incipient atrophy and to dot-like drusen is described.

  20. Chronic Traumatic Encephalopathy Pathology in Multiple System Atrophy.

    PubMed

    Koga, Shunsuke; Dickson, Dennis W; Bieniek, Kevin F

    2016-10-01

    Chronic traumatic encephalopathy (CTE) is a progressive neurodegenerative disorder associated with repetitive traumatic brain injury. Multiple system atrophy (MSA) is a Parkinsonian disorder that can result in repetitive falls with associated head trauma. We hypothesized that patients with neurodegenerative disorders like MSA could develop CTE pathology. Therefore, we assessed CTE pathology in 139 MSA cases in our brain bank. Sections from convexity cerebral cortices were screened by immunohistochemistry with anti-phospho-tau antibody. For cases with suggestive CTE pathology, further sections of basal forebrain and hippocampus were immunostained. Consensus criteria were used to make the diagnosis of CTE and aging-related tau astrogliopathy (ARTAG) was differentiated from CTE pathology. Pertinent clinical information was derived from the available records and online searches. Of the 139 MSA cases, 8 (6%) had CTE pathology and 10 (8%) had ARTAG pathology. All 8 cases with CTE were male and 4 of them had a documented history of contact sports. The median age at death in MSA with CTE was younger than in MSA without CTE or MSA with ARTAG (60, 67, and 74 years, respectively; p = 0.002). Even without a known history of contact sports or head trauma, a small subset of cases with MSA had CTE pathology.

  1. Synaptic Transmission Correlates of General Mental Ability

    ERIC Educational Resources Information Center

    McRorie, Margaret; Cooper, Colin

    2004-01-01

    Nerve conduction velocity (NCV) and efficiency of synaptic transmission are two possible biological mechanisms that may underpin intelligence. Direct assessments of NCV, without synaptic transmission, show few substantial or reliable correlations with cognitive abilities ["Intelligence" 16 (1992) 273]. We therefore assessed the latencies…

  2. Neuromuscular junctions are pathological but not denervated in two mouse models of spinal bulbar muscular atrophy.

    PubMed

    Poort, Jessica E; Rheuben, Mary B; Breedlove, S Marc; Jordan, Cynthia L

    2016-09-01

    Spinal bulbar muscular atrophy (SBMA) is a progressive, late onset neuromuscular disease causing motor dysfunction in men. While the morphology of the neuromuscular junction (NMJ) is typically affected by neuromuscular disease, whether NMJs in SBMA are similarly affected by disease is not known. Such information will shed light on whether defective NMJs might contribute to the loss of motor function and represent a potential therapeutic target for treating symptoms of SBMA. To address this gap in information, the morphology of NMJs was examined in two mouse models of SBMA, a myogenic model that overexpresses wildtype androgen receptor (AR) exclusively in muscle fibres and a knockin (KI) model expressing a humanized mutant AR gene. The tripartite motor synapse consisting of motor nerve terminal, terminal Schwann cells (tSCs) and postsynaptic specialization were visualized and analysed using confocal microscopy. Counter to expectation, we found no evidence of denervation in either model, but junctions in both models show pathological fragmentation and an abnormal synaptophysin distribution consistent with functionally weak synapses. Neurofilament accumulations were observed only in the myogenic model, even though axonal transport dysfunction is characteristic of both models. The ultrastructure of NMJs revealed additional pathology, including deficits in docked vesicles presynaptically, wider synaptic clefts, and simpler secondary folds postsynaptically. The observed pathology of NMJs in diseased SBMA mice is likely the morphological correlates of defects in synaptic function which may underlie motor impairments associated with SBMA.

  3. Synaptic Vesicle Proteins and Active Zone Plasticity

    PubMed Central

    Kittel, Robert J.; Heckmann, Manfred

    2016-01-01

    Neurotransmitter is released from synaptic vesicles at the highly specialized presynaptic active zone (AZ). The complex molecular architecture of AZs mediates the speed, precision and plasticity of synaptic transmission. Importantly, structural and functional properties of AZs vary significantly, even for a given connection. Thus, there appear to be distinct AZ states, which fundamentally influence neuronal communication by controlling the positioning and release of synaptic vesicles. Vice versa, recent evidence has revealed that synaptic vesicle components also modulate organizational states of the AZ. The protein-rich cytomatrix at the active zone (CAZ) provides a structural platform for molecular interactions guiding vesicle exocytosis. Studies in Drosophila have now demonstrated that the vesicle proteins Synaptotagmin-1 (Syt1) and Rab3 also regulate glutamate release by shaping differentiation of the CAZ ultrastructure. We review these unexpected findings and discuss mechanistic interpretations of the reciprocal relationship between synaptic vesicles and AZ states, which has heretofore received little attention. PMID:27148040

  4. Programmable synaptic chip for electronic neural networks

    NASA Technical Reports Server (NTRS)

    Moopenn, A.; Langenbacher, H.; Thakoor, A. P.; Khanna, S. K.

    1988-01-01

    A binary synaptic matrix chip has been developed for electronic neural networks. The matrix chip contains a programmable 32X32 array of 'long channel' NMOSFET binary connection elements implemented in a 3-micron bulk CMOS process. Since the neurons are kept off-chip, the synaptic chip serves as a 'cascadable' building block for a multi-chip synaptic network as large as 512X512 in size. As an alternative to the programmable NMOSFET (long channel) connection elements, tailored thin film resistors are deposited, in series with FET switches, on some CMOS test chips, to obtain the weak synaptic connections. Although deposition and patterning of the resistors require additional processing steps, they promise substantial savings in silicon area. The performance of synaptic chip in a 32-neuron breadboard system in an associative memory test application is discussed.

  5. Acceleration of hippocampal atrophy rates in asymptomatic amyloidosis.

    PubMed

    Andrews, K Abigail; Frost, Chris; Modat, Marc; Cardoso, M Jorge; Rowe, Chris C; Villemagne, Victor; Fox, Nick C; Ourselin, Sebastien; Schott, Jonathan M

    2016-03-01

    Increased rates of brain atrophy measured from serial magnetic resonance imaging precede symptom onset in Alzheimer's disease and may be useful outcome measures for prodromal clinical trials. Appropriate trial design requires a detailed understanding of the relationships between β-amyloid load and accumulation, and rate of brain change at this stage of the disease. Fifty-two healthy individuals (72.3 ± 6.9 years) from Australian Imaging, Biomarkers and Lifestyle Study of Aging had serial (0, 18 m, 36 m) magnetic resonance imaging, (0, 18 m) Pittsburgh compound B positron emission tomography, and clinical assessments. We calculated rates of whole brain and hippocampal atrophy, ventricular enlargement, amyloid accumulation, and cognitive decline. Over 3 years, rates of whole brain atrophy (p < 0.001), left and right hippocampal atrophy (p = 0.001, p = 0.023), and ventricular expansion (p < 0.001) were associated with baseline β-amyloid load. Whole brain atrophy rates were also independently associated with β-amyloid accumulation over the first 18 months (p = 0.003). Acceleration of left hippocampal atrophy rate was associated with baseline β-amyloid load across the cohort (p < 0.02). We provide evidence that rates of atrophy are associated with both baseline β-amyloid load and accumulation, and that there is presymptomatic, amyloid-mediated acceleration of hippocampal atrophy. Clinical trials using rate of hippocampal atrophy as an outcome measure should not assume linear decline in the presymptomatic phase.

  6. The Impact of Gastric Atrophy on the Incidence of Diabetes

    PubMed Central

    Yu, Tse-Ya; Wei, Jung-Nan; Kuo, Chun-Heng; Liou, Jyh-Ming; Lin, Mao-Shin; Shih, Shyang-Rong; Hua, Cyue-Huei; Hsein, Yenh-Chen; Hsu, Ya-Wen; Chuang, Lee-Ming; Lee, Mei-Kuei; Hsiao, Ching-Hsiang; Wu, Ming-Shiang; Li, Hung-Yuan

    2017-01-01

    Gastric atrophy results in lower plasma ghrelin, higher gastrin secretion, a change in gut microbiota, and altered dietary nutrient absorption, which may be associated with the incidence of diabetes. Helicobacter pylori (H. pylori) infection is a major cause of gastric atrophy and is associated with diabetes in some reports. Since there is no study which investigates the impact of gastric atrophy on diabetes, we conduct a prospective cohort study to examine the relationship between H. pylori infection, gastric atrophy, and incident diabetes. In this study, subjects with gastric atrophy had a lower risk of incident diabetes, compared to those without gastric atrophy. The extent of gastric atrophy, measured by serum pepsinogen (PG) I/II ratio, was correlated with age, H. pylori IgG titer, HOMA2-IR, and HOMA2%B. When gastric atrophy is more extensive, presented as a lower serum PG I/II ratio, the risk of incident diabetes is lower. On the other hand, there was no significant association between H. pylori infection and the incidence of diabetes. In conclusion, the presence and the extent of gastric atrophy, but not H. pylori infection, are associated with incident diabetes. Further studies are needed to investigate the detailed mechanisms and the potential applications of the findings to guide diabetes screening and treatment strategies. PMID:28045079

  7. Pathophysiology of depression and innovative treatments: remodeling glutamatergic synaptic connections.

    PubMed

    Duman, Ronald S

    2014-03-01

    Despite the complexity and heterogeneity of mood disorders, basic and clinical research studies have begun to elucidate the pathophysiology of depression and to identify rapid, efficacious antidepressant agents. Stress and depression are associated with neuronal atrophy, characterized by loss of synaptic connections in key cortical and limbic brain regions implicated in depression. This is thought to occur in part via decreased expression and function of growth factors, such as brain-derived neurotrophic factor (BDNF), in the prefrontal cortex (PFC) and hippocampus. These structural alterations are difficult to reverse with typical antidepressants. However, recent studies demonstrate that ketamine, an N-methyl-D-aspartate (NMDA) receptor antagonist that produces rapid antidepressant actions in treatment-resistant depressed patients, rapidly increases spine synapses in the PFC and reverses the deficits caused by chronic stress. This is thought to occur by disinhibition of glutamate transmission, resulting in a rapid but transient burst of glutamate, followed by an increase in BDNF release and activation of downstream signaling pathways that stimulate synapse formation. Recent work demonstrates that the rapid-acting antidepressant effects of scopolamine, a muscarinic receptor antagonist, are also associated with increased glutamate transmission and synapse formation. These findings have resulted in testing and identification of additional targets and agents that influence glutamate transmission and have rapid antidepressant actions in rodent models and in clinical trials. Together these studies have created tremendous excitement and hope for a new generation of rapid, efficacious antidepressants.

  8. CLADA: cortical longitudinal atrophy detection algorithm.

    PubMed

    Nakamura, Kunio; Fox, Robert; Fisher, Elizabeth

    2011-01-01

    Measurement of changes in brain cortical thickness is useful for the assessment of regional gray matter atrophy in neurodegenerative conditions. A new longitudinal method, called CLADA (cortical longitudinal atrophy detection algorithm), has been developed for the measurement of changes in cortical thickness in magnetic resonance images (MRI) acquired over time. CLADA creates a subject-specific cortical model which is longitudinally deformed to match images from individual time points. The algorithm was designed to work reliably for lower resolution images, such as the MRIs with 1×1×5 mm(3) voxels previously acquired for many clinical trials in multiple sclerosis (MS). CLADA was evaluated to determine reproducibility, accuracy, and sensitivity. Scan-rescan variability was 0.45% for images with 1mm(3) isotropic voxels and 0.77% for images with 1×1×5 mm(3) voxels. The mean absolute accuracy error was 0.43 mm, as determined by comparison of CLADA measurements to cortical thickness measured directly in post-mortem tissue. CLADA's sensitivity for correctly detecting at least 0.1mm change was 86% in a simulation study. A comparison to FreeSurfer showed good agreement (Pearson correlation=0.73 for global mean thickness). CLADA was also applied to MRIs acquired over 18 months in secondary progressive MS patients who were imaged at two different resolutions. Cortical thinning was detected in this group in both the lower and higher resolution images. CLADA detected a higher rate of cortical thinning in MS patients compared to healthy controls over 2 years. These results show that CLADA can be used for reliable measurement of cortical atrophy in longitudinal studies, even in lower resolution images.

  9. CLADA: Cortical Longitudinal Atrophy Detection Algorithm

    PubMed Central

    Nakamura, Kunio; Fox, Robert; Fisher, Elizabeth

    2010-01-01

    Measurement of changes in brain cortical thickness is useful for assessment of regional gray matter atrophy in neurodegenerative conditions. A new longitudinal method, called CLADA (cortical longitudinal atrophy detection algorithm), has been developed for measurement of changes in cortical thickness in magnetic resonance images (MRI) acquired over time. CLADA creates a subject-specific cortical model which is longitudinally deformed to match images from individual time points. The algorithm was designed to work reliably for lower-resolution images, such as the MRIs with 1×1×5mm3 voxels previously acquired for many clinical trials in multiple sclerosis (MS). CLADA was evaluated to determine reproducibility, accuracy, and sensitivity. Scan-rescan variability was 0.45% for images with 1mm3 isotropic voxels and 0.77% for images with 1×1×5 mm3 voxels. The mean absolute accuracy error was 0.43 mm, as determined by comparison of CLADA measurements to cortical thickness measured directly in post- mortem tissue. CLADA’s sensitivity for correctly detecting at least 0.1 mm change was 86% in a simulation study. A comparison to FreeSurfer showed good agreement (Pearson correlation = 0.73 for global mean thickness). CLADA was also applied to MRIs acquired over 18 months in secondary progressive MS patients who were imaged at two different resolutions. Cortical thinning was detected in this group in both the lower and higher resolution images. CLADA detected a higher rate of cortical thinning in MS patients compared to healthy controls over 2 years. These results show that CLADA can be used for reliable measurement of cortical atrophy in longitudinal studies, even in lower resolution images. PMID:20674750

  10. Cardiac atrophy after bed rest and spaceflight

    NASA Technical Reports Server (NTRS)

    Perhonen, M. A.; Franco, F.; Lane, L. D.; Buckey, J. C.; Blomqvist, C. G.; Zerwekh, J. E.; Peshock, R. M.; Weatherall, P. T.; Levine, B. D.

    2001-01-01

    Cardiac muscle adapts well to changes in loading conditions. For example, left ventricular (LV) hypertrophy may be induced physiologically (via exercise training) or pathologically (via hypertension or valvular heart disease). If hypertension is treated, LV hypertrophy regresses, suggesting a sensitivity to LV work. However, whether physical inactivity in nonathletic populations causes adaptive changes in LV mass or even frank atrophy is not clear. We exposed previously sedentary men to 6 (n = 5) and 12 (n = 3) wk of horizontal bed rest. LV and right ventricular (RV) mass and end-diastolic volume were measured using cine magnetic resonance imaging (MRI) at 2, 6, and 12 wk of bed rest; five healthy men were also studied before and after at least 6 wk of routine daily activities as controls. In addition, four astronauts were exposed to the complete elimination of hydrostatic gradients during a spaceflight of 10 days. During bed rest, LV mass decreased by 8.0 +/- 2.2% (P = 0.005) after 6 wk with an additional atrophy of 7.6 +/- 2.3% in the subjects who remained in bed for 12 wk; there was no change in LV mass for the control subjects (153.0 +/- 12.2 vs. 153.4 +/- 12.1 g, P = 0.81). Mean wall thickness decreased (4 +/- 2.5%, P = 0.01) after 6 wk of bed rest associated with the decrease in LV mass, suggesting a physiological remodeling with respect to altered load. LV end-diastolic volume decreased by 14 +/- 1.7% (P = 0.002) after 2 wk of bed rest and changed minimally thereafter. After 6 wk of bed rest, RV free wall mass decreased by 10 +/- 2.7% (P = 0.06) and RV end-diastolic volume by 16 +/- 7.9% (P = 0.06). After spaceflight, LV mass decreased by 12 +/- 6.9% (P = 0.07). In conclusion, cardiac atrophy occurs during prolonged (6 wk) horizontal bed rest and may also occur after short-term spaceflight. We suggest that cardiac atrophy is due to a physiological adaptation to reduced myocardial load and work in real or simulated microgravity and demonstrates the plasticity

  11. Spinal and Bulbar Muscular Atrophy Overview

    PubMed Central

    Fischbeck, Kenneth H.

    2016-01-01

    Spinal and bulbar muscular atrophy is an X-linked neuromuscular disease caused by an expanded repeat in the androgen receptor gene. The mutant protein is toxic to motor neurons and muscle. The toxicity is ligand-dependent and likely involves aberrant interaction of the mutant androgen receptor with other nuclear factors leading to transcriptional dysregulation. Various therapeutic strategies have been effective in transgenic animal models, and the challenge now is to translate these strategies into safe and effective treatment in patients. PMID:26547319

  12. [Susceptibility gene in multiple system atrophy (MSA)].

    PubMed

    Tsuji, Shoji

    2014-01-01

    To elucidate molecular bases of multiple system atrophy (MSA), we first focused on recently identified MSA multiplex families. Though linkage analyses followed by whole genome resequencing, we have identified a causative gene, COQ2, for MSA. We then conducted comprehensive nucleotide sequence analysis of COQ2 of sporadic MSA cases and controls, and found that functionally deleterious COQ2 variants confer a strong risk for developing MSA. COQ2 encodes an enzyme in the biosynthetic pathway of coenzyme Q10. Decreased synthesis of coenzyme Q10 is considered to be involved in the pathogenesis of MSA through decreased electron transport in mitochondria and increased vulnerability to oxidative stress.

  13. Tuning synaptic transmission in the hippocampus by stress: the CRH system

    PubMed Central

    Chen, Yuncai; Andres, Adrienne L.; Frotscher, Michael; Baram, Tallie Z.

    2012-01-01

    To enhance survival, an organism needs to remember—and learn from—threatening or stressful events. This fact necessitates the presence of mechanisms by which stress can influence synaptic transmission in brain regions, such as hippocampus, that subserve learning and memory. A major focus of this series of monographs is on the role and actions of adrenal-derived hormones, corticosteroids, and of brain-derived neurotransmitters, on synaptic function in the stressed hippocampus. Here we focus on the contribution of hippocampus-intrinsic, stress-activated CRH-CRH receptor signaling to the function and structure of hippocampal synapses. Corticotropin-releasing hormone (CRH) is expressed in interneurons of adult hippocampus, and is released from axon terminals during stress. The peptide exerts time- and dose-dependent effects on learning and memory via modulation of synaptic function and plasticity. Whereas physiological levels of CRH, acting over seconds to minutes, augment memory processes, exposure to presumed severe-stress levels of the peptide results in spine retraction and loss of synapses over more protracted time-frames. Loss of dendritic spines (and hence of synapses) takes place through actin cytoskeleton collapse downstream of CRHR1 receptors that reside within excitatory synapses on spine heads. Chronic exposure to stress levels of CRH may promote dying-back (atrophy) of spine-carrying dendrites. Thus, the acute effects of CRH may contribute to stress-induced adaptive mechanisms, whereas chronic or excessive exposure to the peptide may promote learning problems and premature cognitive decline. PMID:22514519

  14. Viral gene transfer of APPsα rescues synaptic failure in an Alzheimer's disease mouse model.

    PubMed

    Fol, Romain; Braudeau, Jerome; Ludewig, Susann; Abel, Tobias; Weyer, Sascha W; Roederer, Jan-Peter; Brod, Florian; Audrain, Mickael; Bemelmans, Alexis-Pierre; Buchholz, Christian J; Korte, Martin; Cartier, Nathalie; Müller, Ulrike C

    2016-02-01

    Alzheimer's disease (AD) is characterized by synaptic failure, dendritic and axonal atrophy, neuronal death and progressive loss of cognitive functions. It is commonly assumed that these deficits arise due to β-amyloid accumulation and plaque deposition. However, increasing evidence indicates that loss of physiological APP functions mediated predominantly by neurotrophic APPsα produced in the non-amyloidogenic α-secretase pathway may contribute to AD pathogenesis. Upregulation of APPsα production via induction of α-secretase might, however, be problematic as this may also affect substrates implicated in tumorigenesis. Here, we used a gene therapy approach to directly overexpress APPsα in the brain using AAV-mediated gene transfer and explored its potential to rescue structural, electrophysiological and behavioral deficits in APP/PS1∆E9 AD model mice. Sustained APPsα overexpression in aged mice with already preexisting pathology and amyloidosis restored synaptic plasticity and partially rescued spine density deficits. Importantly, AAV-APPsα treatment also resulted in a functional rescue of spatial reference memory in the Morris water maze. Moreover, we demonstrate a significant reduction of soluble Aβ species and plaque load. In addition, APPsα induced the recruitment of microglia with a ramified morphology into the vicinity of plaques and upregulated IDE and TREM2 expression suggesting enhanced plaque clearance. Collectively, these data indicate that APPsα can mitigate synaptic and cognitive deficits, despite established pathology. Increasing APPsα may therefore be of therapeutic relevance for AD.

  15. Aquaporin-4 water channels and synaptic plasticity in the hippocampus.

    PubMed

    Scharfman, Helen E; Binder, Devin K

    2013-12-01

    Aquaporin-4 (AQP4) is the major water channel expressed in the central nervous system (CNS) and is primarily expressed in glial cells. Many studies have shown that AQP4 regulates the response of the CNS to insults or injury, but far less is known about the potential for AQP4 to influence synaptic plasticity or behavior. Recent studies have examined long-term potentiation (LTP), long-term depression (LTD), and behavior in AQP4 knockout (KO) and wild-type mice to gain more insight into its potential role. The results showed a selective effect of AQP4 deletion on LTP of the Schaffer collateral pathway in hippocampus using an LTP induction protocol that simulates pyramidal cell firing during theta oscillations (theta-burst stimulation; TBS). However, LTP produced by a different induction protocol was unaffected. There was also a defect in LTD after low frequency stimulation (LFS) in AQP4 KO mice. Interestingly, some slices from AQP4 KO mice exhibited LTD after TBS instead of LTP, or LTP following LFS instead of LTD. These data suggest that AQP4 and astrocytes influence the polarity of long-term synaptic plasticity (potentiation or depression). These potentially powerful roles expand the influence of AQP4 and astrocytes beyond the original suggestions related to regulation of extracellular potassium and water balance. Remarkably, AQP4 KO mice did not show deficits in basal transmission, suggesting specificity for long-term synaptic plasticity. The mechanism appears to be related to neurotrophins and specifically brain-derived neurotrophic factor (BDNF) because pharmacological blockade of neurotrophin trk receptors or scavenging ligands such as BDNF restored plasticity. The in vitro studies predicted effects in vivo of AQP4 deletion because AQP4 KO mice performed worse using a task that requires memory for the location of objects (object placement). However, performance on other hippocampal-dependent tasks was spared. The results suggest an unanticipated and selective

  16. Hemifusion in Synaptic Vesicle Cycle

    PubMed Central

    Kweon, Dae-Hyuk; Kong, Byoungjae; Shin, Yeon-Kyun

    2017-01-01

    In the neuron, early neurotransmitters are released through the fusion pore prior to the complete vesicle fusion. It has been thought that the fusion pore is a gap junction-like structure made of transmembrane domains (TMDs) of soluble N-ethylmaleimide-sensitive-factor attachment protein receptor (SNARE) proteins. However, evidence has accumulated that lipid mixing occurs prior to the neurotransmitter release through the fusion pore lined predominantly with lipids. To explain these observations, the hemifusion, a membrane structure in which two bilayers are partially merged, has emerged as a key step preceding the formation of the fusion pore. Furthermore, the hemifusion appears to be the bona fide intermediate step not only for the synaptic vesicle cycle, but for a wide range of membrane remodeling processes, such as viral membrane fusion and endocytotic membrane fission. PMID:28360835

  17. Effect of mesenchymal stem cells on induced skeletal muscle chemodenervation atrophy in adult male albino rats.

    PubMed

    Shehata, Azza S; Al-Ghonemy, Nabila M; Ahmed, Samah M; Mohamed, Samar R

    2017-04-01

    The present research was conducted to evaluate the effect of bone marrow derived mesenchymal stem cells (BM-MSCs) as a potential therapeutic tool for improvement of skeletal muscle recovery after induced chemodenervation atrophy by repeated local injection of botulinum toxin-A in the right tibialis anterior muscle of adult male albino rats. Forty five adult Wistar male albino rats were classified into control and experimental groups. Experimental group was further subdivided into 3 equal subgroups; induced atrophy, BM-MSCs treated and recovery groups. Biochemical analysis of serum LDH, CK and Real-time PCR for Bcl-2, caspase 3 and caspase 9 was measured. Skeletal muscle sections were stained with H and E, Mallory trichrome, and Immunohistochemical reaction for Bax and CD34. Improvement in the skeletal muscle histological structure was noticed in BM-MSCs treated group, however, in the recovery group, some sections showed apparent transverse striations and others still affected. Immunohistochemical reaction of Bax protein showed strong positive immunoreaction in the cytoplasm of muscle fibers in the induced atrophy group. BM-MSCs treated group showed weak positive reaction while the recovery group showed moderate reaction in the cytoplasm of muscle fibers. Immunohistochemical reaction for CD34 revealed occasional positive CD34 stained cells in the induced atrophy group. In BM-MSCs treated group, multiple positive CD34 stained cells were detected. However, recovery group showed some positive CD34 stained cells at the periphery of the muscle fibers. Marked improvement in the regenerative capacity of skeletal muscles after BM-MSCs therapy. Hence, stem cell therapy provides a new hope for patients suffering from myopathies and severe injuries.

  18. A role for synaptic plasticity in the adolescent development of executive function

    PubMed Central

    Selemon, L D

    2013-01-01

    Adolescent brain maturation is characterized by the emergence of executive function mediated by the prefrontal cortex, e.g., goal planning, inhibition of impulsive behavior and set shifting. Synaptic pruning of excitatory contacts is the signature morphologic event of late brain maturation during adolescence. Mounting evidence suggests that glutamate receptor-mediated synaptic plasticity, in particular long term depression (LTD), is important for elimination of synaptic contacts in brain development. This review examines the possibility (1) that LTD mechanisms are enhanced in the prefrontal cortex during adolescence due to ongoing synaptic pruning in this late developing cortex and (2) that enhanced synaptic plasticity in the prefrontal cortex represents a key molecular substrate underlying the critical period for maturation of executive function. Molecular sites of interaction between environmental factors, such as alcohol and stress, and glutamate receptor mediated plasticity are considered. The accentuated negative impact of these factors during adolescence may be due in part to interference with LTD mechanisms that refine prefrontal cortical circuitry and when disrupted derail normal maturation of executive function. Diminished prefrontal cortical control over risk-taking behavior could further exacerbate negative outcomes associated with these behaviors, as for example addiction and depression. Greater insight into the neurobiology of the adolescent brain is needed to fully understand the molecular basis for heightened vulnerability during adolescence to the injurious effects of substance abuse and stress. PMID:23462989

  19. Chondroitin Sulfate Induces Depression of Synaptic Transmission and Modulation of Neuronal Plasticity in Rat Hippocampal Slices.

    PubMed

    Albiñana, Elisa; Gutierrez-Luengo, Javier; Hernández-Juarez, Natalia; Baraibar, Andrés M; Montell, Eulalia; Vergés, Josep; García, Antonio G; Hernández-Guijo, Jesus M

    2015-01-01

    It is currently known that in CNS the extracellular matrix is involved in synaptic stabilization and limitation of synaptic plasticity. However, it has been reported that the treatment with chondroitinase following injury allows the formation of new synapses and increased plasticity and functional recovery. So, we hypothesize that some components of extracellular matrix may modulate synaptic transmission. To test this hypothesis we evaluated the effects of chondroitin sulphate (CS) on excitatory synaptic transmission, cellular excitability, and neuronal plasticity using extracellular recordings in the CA1 area of rat hippocampal slices. CS caused a reversible depression of evoked field excitatory postsynaptic potentials in a concentration-dependent manner. CS also reduced the population spike amplitude evoked after orthodromic stimulation but not when the population spikes were antidromically evoked; in this last case a potentiation was observed. CS also enhanced paired-pulse facilitation and long-term potentiation. Our study provides evidence that CS, a major component of the brain perineuronal net and extracellular matrix, has a function beyond the structural one, namely, the modulation of synaptic transmission and neuronal plasticity in the hippocampus.

  20. Ketones Prevent Oxidative Impairment of Hippocampal Synaptic Integrity through KATP Channels

    PubMed Central

    Kim, Do Young; Abdelwahab, Mohammed G.; Lee, Soo Han; O’Neill, Derek; Thompson, Roger J.; Duff, Henry J.; Sullivan, Patrick G.; Rho, Jong M.

    2015-01-01

    Dietary and metabolic therapies are increasingly being considered for a variety of neurological disorders, based in part on growing evidence for the neuroprotective properties of the ketogenic diet (KD) and ketones. Earlier, we demonstrated that ketones afford hippocampal synaptic protection against exogenous oxidative stress, but the mechanisms underlying these actions remain unclear. Recent studies have shown that ketones may modulate neuronal firing through interactions with ATP-sensitive potassium (KATP) channels. Here, we used a combination of electrophysiological, pharmacological, and biochemical assays to determine whether hippocampal synaptic protection by ketones is a consequence of KATP channel activation. Ketones dose-dependently reversed oxidative impairment of hippocampal synaptic integrity, neuronal viability, and bioenergetic capacity, and this action was mirrored by the KATP channel activator diazoxide. Inhibition of KATP channels reversed ketone-evoked hippocampal protection, and genetic ablation of the inwardly rectifying K+ channel subunit Kir6.2, a critical component of KATP channels, partially negated the synaptic protection afforded by ketones. This partial protection was completely reversed by co-application of the KATP blocker, 5-hydoxydecanoate (5HD). We conclude that, under conditions of oxidative injury, ketones induce synaptic protection in part through activation of KATP channels. PMID:25848768

  1. Cyclophilin D deficiency rescues Aβ-impaired PKA/CREB signaling and alleviates synaptic degeneration.

    PubMed

    Du, Heng; Guo, Lan; Wu, Xiaoping; Sosunov, Alexander A; McKhann, Guy M; Chen, John Xi; Yan, Shirley ShiDu

    2014-12-01

    The coexistence of neuronal mitochondrial pathology and synaptic dysfunction is an early pathological feature of Alzheimer's disease (AD). Cyclophilin D (CypD), an integral part of mitochondrial permeability transition pore (mPTP), is involved in amyloid beta (Aβ)-instigated mitochondrial dysfunction. Blockade of CypD prevents Aβ-induced mitochondrial malfunction and the consequent cognitive impairments. Here, we showed the elimination of reactive oxygen species (ROS) by antioxidants probucol or superoxide dismutase (SOD)/catalase blocks Aβ-mediated inactivation of protein kinase A (PKA)/cAMP regulatory-element-binding (CREB) signal transduction pathway and loss of synapse, suggesting the detrimental effects of oxidative stress on neuronal PKA/CREB activity. Notably, neurons lacking CypD significantly attenuate Aβ-induced ROS. Consequently, CypD-deficient neurons are resistant to Aβ-disrupted PKA/CREB signaling by increased PKA activity, phosphorylation of PKA catalytic subunit (PKA C), and CREB. In parallel, lack of CypD protects neurons from Aβ-induced loss of synapses and synaptic dysfunction. Furthermore, compared to the mAPP mice, CypD-deficient mAPP mice reveal less inactivation of PKA-CREB activity and increased synaptic density, attenuate abnormalities in dendritic spine maturation, and improve spontaneous synaptic activity. These findings provide new insights into a mechanism in the crosstalk between the CypD-dependent mitochondrial oxidative stress and signaling cascade, leading to synaptic injury, functioning through the PKA/CREB signal transduction pathway.

  2. Ketones prevent oxidative impairment of hippocampal synaptic integrity through KATP channels.

    PubMed

    Kim, Do Young; Abdelwahab, Mohammed G; Lee, Soo Han; O'Neill, Derek; Thompson, Roger J; Duff, Henry J; Sullivan, Patrick G; Rho, Jong M

    2015-01-01

    Dietary and metabolic therapies are increasingly being considered for a variety of neurological disorders, based in part on growing evidence for the neuroprotective properties of the ketogenic diet (KD) and ketones. Earlier, we demonstrated that ketones afford hippocampal synaptic protection against exogenous oxidative stress, but the mechanisms underlying these actions remain unclear. Recent studies have shown that ketones may modulate neuronal firing through interactions with ATP-sensitive potassium (KATP) channels. Here, we used a combination of electrophysiological, pharmacological, and biochemical assays to determine whether hippocampal synaptic protection by ketones is a consequence of KATP channel activation. Ketones dose-dependently reversed oxidative impairment of hippocampal synaptic integrity, neuronal viability, and bioenergetic capacity, and this action was mirrored by the KATP channel activator diazoxide. Inhibition of KATP channels reversed ketone-evoked hippocampal protection, and genetic ablation of the inwardly rectifying K+ channel subunit Kir6.2, a critical component of KATP channels, partially negated the synaptic protection afforded by ketones. This partial protection was completely reversed by co-application of the KATP blocker, 5-hydoxydecanoate (5HD). We conclude that, under conditions of oxidative injury, ketones induce synaptic protection in part through activation of KATP channels.

  3. Oats induced villous atrophy in coeliac disease

    PubMed Central

    Lundin, K E A; Nilsen, E M; Scott, H G; Løberg, E M; Gjøen, A; Bratlie, J; Skar, V; Mendez, E; Løvik, A; Kett, K

    2003-01-01

    The current trend is to allow coeliac disease (CD) patients to introduce oats to their gluten free diet. We sought further data from the clinical setting with regards to oats consumption by coeliac patients. Several oat products were tested for wheat contamination using a commercial enzyme linked immunoassay (ELISA) kit, and six samples were examined by an ELISA using a cocktail of monoclonal antibodies, mass spectrometry, and western blot analysis. Nineteen adult CD patients on a gluten free diet were challenged with 50 g of oats per day for 12 weeks. Serological testing and gastroduodenoscopy was performed before and after the challenge. Biopsies were scored histologically and levels of mRNA specific for interferon γ were determined by reverse transcription-polymerase chain reaction analysis. Oats were well tolerated by most patients but several reported initial abdominal discomfort and bloating. One of the patients developed partial villous atrophy and a rash during the first oats challenge. She subsequently improved on an oats free diet but developed subtotal villous atrophy and dramatic dermatitis during a second challenge. Five of the patients showed positive levels of interferon γ mRNA after challenge. Some concerns therefore remain with respect to the safety of oats for coeliacs. PMID:14570737

  4. Bringing CLARITY to Gray Matter Atrophy

    PubMed Central

    Spence, Rory D.; Kurth, Florian; Itoh, Noriko; Mongerson, Chandler R.L.; Wailes, Shannon H.; Peng, Mavis S.; MacKenzie-Graham, Allan J.

    2015-01-01

    Gray matter atrophy has been shown to be a strong correlate to clinical disability in multiple sclerosis (MS) and its most commonly used animal model, experimental autoimmune encephalomyelitis (EAE). However, the relationship between gray mater atrophy and the spinal cord pathology often observed in EAE has never been established. Here EAE was induced in Thy1.1-YFP mice and their brains imaged using in vivo magnetic resonance imaging (MRI). The brains and spinal cords were subsequently optically cleared using Clear Lipid-exchanged Acrylamide-hybridized Rigid Imaging-compatible Tissue-hYdrogel (CLARITY). Axons were followed 5 mm longitudinally in three dimensions in intact spinal cords revealing that 61% of the axons exhibited a mean of 22 axonal ovoids and 8% of the axons terminating in axonal end bulbs. In the cerebral cortex, we observed a decrease in the mean number of layer V pyramidal neurons and a decrease in the mean length of the apical dendrites of the remaining neurons, compared to healthy controls. MRI analysis demonstrated decreased cortical volumes in EAE. Cross-modality correlations revealed a direct relationship between cortical volume loss and axonal end bulb number in the spinal cord, but not ovoid number. This is the first report of the use of CLARITY in an animal model of disease and the first report of the use of both CLARITY and MRI. PMID:25038439

  5. Oats induced villous atrophy in coeliac disease.

    PubMed

    Lundin, K E A; Nilsen, E M; Scott, H G; Løberg, E M; Gjøen, A; Bratlie, J; Skar, V; Mendez, E; Løvik, A; Kett, K

    2003-11-01

    The current trend is to allow coeliac disease (CD) patients to introduce oats to their gluten free diet. We sought further data from the clinical setting with regards to oats consumption by coeliac patients. Several oat products were tested for wheat contamination using a commercial enzyme linked immunoassay (ELISA) kit, and six samples were examined by an ELISA using a cocktail of monoclonal antibodies, mass spectrometry, and western blot analysis. Nineteen adult CD patients on a gluten free diet were challenged with 50 g of oats per day for 12 weeks. Serological testing and gastroduodenoscopy was performed before and after the challenge. Biopsies were scored histologically and levels of mRNA specific for interferon gamma were determined by reverse transcription-polymerase chain reaction analysis. Oats were well tolerated by most patients but several reported initial abdominal discomfort and bloating. One of the patients developed partial villous atrophy and a rash during the first oats challenge. She subsequently improved on an oats free diet but developed subtotal villous atrophy and dramatic dermatitis during a second challenge. Five of the patients showed positive levels of interferon gamma mRNA after challenge. Some concerns therefore remain with respect to the safety of oats for coeliacs.

  6. Effects of muscle atrophy on motor control

    NASA Technical Reports Server (NTRS)

    Stuart, D. G.

    1985-01-01

    As a biological tissue, muscle adapts to the demands of usage. One traditional way of assessing the extent of this adaptation has been to examine the effects of an altered-activity protocol on the physiological properties of muscles. However, in order to accurately interpret the changes associated with an activity pattern, it is necessary to employ an appropriate control model. A substantial literature exists which reports altered-use effects by comparing experimental observations with those from animals raised in small laboratory cages. Some evidence suggests that small-cage-reared animals actually represent a model of reduced use. For example, laboratory animals subjected to limited physical activity have shown resistance to insulin-induced glucose uptake which can be altered by exercise training. This project concerned itself with the basic mechanisms underlying muscle atrophy. Specifically, the project addressed the issue of the appropriateness of rats raised in conventional-sized cages as experimental models to examine this phenomenon. The project hypothesis was that rats raised in small cages are inappropriate models for the study of muscle atrophy. The experimental protocol involved: 1) raising two populations of rats, one group in conventional (small)-sized cages and the other group in a much larger (133x) cage, from weanling age (21 days) through to young adulthood (125 days); 2) comparison of size- and force-related characteristics of selected test muscles in an acute terminal paradigm.

  7. Synaptic vesicle recycling: steps and principles

    PubMed Central

    Rizzoli, Silvio O

    2014-01-01

    Synaptic vesicle recycling is one of the best-studied cellular pathways. Many of the proteins involved are known, and their interactions are becoming increasingly clear. However, as for many other pathways, it is still difficult to understand synaptic vesicle recycling as a whole. While it is generally possible to point out how synaptic reactions take place, it is not always easy to understand what triggers or controls them. Also, it is often difficult to understand how the availability of the reaction partners is controlled: how the reaction partners manage to find each other in the right place, at the right time. I present here an overview of synaptic vesicle recycling, discussing the mechanisms that trigger different reactions, and those that ensure the availability of reaction partners. A central argument is that synaptic vesicles bind soluble cofactor proteins, with low affinity, and thus control their availability in the synapse, forming a buffer for cofactor proteins. The availability of cofactor proteins, in turn, regulates the different synaptic reactions. Similar mechanisms, in which one of the reaction partners buffers another, may apply to many other processes, from the biogenesis to the degradation of the synaptic vesicle. PMID:24596248

  8. Brain MRI volumetry in a single patient with mild traumatic brain injury.

    PubMed

    Ross, David E; Castelvecchi, Cody; Ochs, Alfred L

    2013-01-01

    This letter to the editor describes the case of a 42 year old man with mild traumatic brain injury and multiple neuropsychiatric symptoms which persisted for a few years after the injury. Initial CT scans and MRI scans of the brain showed no signs of atrophy. Brain volume was measured using NeuroQuant®, an FDA-approved, commercially available software method. Volumetric cross-sectional (one point in time) analysis also showed no atrophy. However, volumetric longitudinal (two points in time) analysis showed progressive atrophy in several brain regions. This case illustrated in a single patient the principle discovered in multiple previous group studies, namely that the longitudinal design is more powerful than the cross-sectional design for finding atrophy in patients with traumatic brain injury.

  9. GABA and Central Neuropathic Pain following Spinal Cord Injury

    PubMed Central

    Gwak, Young S.; Hulsebosch, Claire E.

    2012-01-01

    Spinal cord injury induces maladaptive synaptic transmission in the somatosensory system that results in chronic central neuropathic pain. Recent literature suggests that glial-neuronal interactions are important modulators in synaptic transmission following spinal cord injury. Neuronal hyperexcitability is one of the predominant phenomenon caused by maladaptive synaptic transmission via altered glial-neuronal interactions after spinal cord injury. In the somatosensory system, spinal inhibitory neurons counter balance the enhanced synaptic transmission from peripheral input. For a decade, the literature suggests that hypofunction of GABAergic inhibitory tone is an important factor in the enhanced synaptic transmission that often results in neuronal hyperexcitability in dorsal horn neurons following spinal cord injury. Neurons and glial cells synergistically control intracellular chloride ion gradients via modulation of chloride transporters, extracellular glutamate and GABA concentrations via uptake mechanisms. Thus, the intracellular “GABA-glutamate-glutamine cycle” is maintained for normal physiological homeostasis. However, hyperexcitable neurons and glial activation after spinal cord injury disrupts the balance of chloride ions, glutamate and GABA distribution in the spinal dorsal horn and results in chronic neuropathic pain. In this review, we address spinal cord injury induced mechanisms in hypofunction of GABAergic tone that results in chronic central neuropathic pain. PMID:21216257

  10. Macrophage colony-stimulating factor-induced macrophage differentiation promotes regrowth in atrophied skeletal muscles and C2C12 myotubes.

    PubMed

    Dumont, Nicolas A; Frenette, Jérôme

    2013-02-01

    Skeletal muscle injury and regeneration are closely associated with an inflammatory reaction that is usually characterized by sequential recruitment of neutrophils and monocytes or macrophages. Selective macrophage depletion models have shown that macrophages are essential for complete regeneration of muscle fibers after freeze injuries, toxin injuries, ischemia-reperfusion, and hindlimb unloading and reloading. Although there is growing evidence that macrophages possess major myogenic capacities, it is not known whether the positive effects of macrophages can be optimized to stimulate muscle regrowth. We used in vivo and in vitro mouse models of atrophy to investigate the effects of stimulating macrophages with macrophage colony-stimulating factor (M-CSF) on muscle regrowth. When atrophied soleus muscles were injected intramuscularly with M-CSF, we observed a 1.6-fold increase in macrophage density and a faster recovery in muscle force (20%), combined with an increase in muscle fiber diameter (10%), after 7 days of reloading, compared with PBS-injected soleus muscles. Furthermore, coculture of atrophied myotubes with or without bone marrow-derived macrophages (BMDM) and/or M-CSF revealed that the combination of BMDMs and M-CSF was required to promote myotube growth (15%). More specifically, M-CSF promoted the anti-inflammatory macrophage phenotype, which in turn decreased protein degradation and MuRF-1 expression by 25% in growing myotubes. These results indicate that specific macrophage subsets can be stimulated to promote muscle cell regrowth after atrophy.

  11. Connectivity Disruption, Atrophy, and Hypometabolism within Posterior Cingulate Networks in Alzheimer's Disease

    PubMed Central

    Mutlu, Justine; Landeau, Brigitte; Tomadesso, Clémence; de Flores, Robin; Mézenge, Florence; de La Sayette, Vincent; Eustache, Francis; Chételat, Gaël

    2016-01-01

    The posterior cingulate cortex (PCC) is a critical brain network hub particularly sensitive to Alzheimer's disease (AD) and can be subdivided into ventral (vPCC) and dorsal (dPCC) regions. The aim of the present study was to highlight functional connectivity (FC) disruption, atrophy, and hypometabolism within the ventral and dorsal PCC networks in patients with amnestic mild cognitive impairment (aMCI) or AD. Forty-three healthy elders (HE) (68.7 ± 6 years), 34 aMCI (73.4 ± 6.8 years) and 24 AD (70.9 ± 9.1 years) patients underwent resting-state functional MRI, anatomical T1-weighted MRI and FDG-PET scans. We compared FC maps obtained from the vPCC and dPCC seeds in HE to identify the ventral and dorsal PCC networks. We then compared patients and HE on FC, gray matter volume and metabolism within each network. In HE, the ventral PCC network involved the hippocampus and posterior occipitotemporal and temporoparietal regions, whereas the dorsal PCC network included mainly frontal, middle temporal and temporoparietal areas. aMCI patients had impaired ventral network FC in the bilateral hippocampus, but dorsal network FC was preserved. In AD, the ventral network FC disruption had spread to the left parahippocampal and angular regions, while the dorsal network FC was also affected in the right middle temporal cortex. The ventral network was atrophied in the bilateral hippocampus in aMCI patients, and in the vPCC and angular regions as well in AD patients. The dorsal network was only atrophied in AD patients, in the dPCC, bilateral supramarginal and temporal regions. By contrast, hypometabolism was already present in both the vPCC and dPCC networks in aMCI patients, and further extended to include the whole networks in AD patients. The vPCC and dPCC connectivity networks were differentially sensitive to AD. Atrophy and FC disruption were only present in the vPCC network in aMCI patients, and extended to the dPCC network in AD patients, suggesting that the pathology

  12. Pharmacological Treatment of Glutamate Excitotoxicity Following Traumatic Brain Injury

    DTIC Science & Technology

    2009-01-14

    Finally, cell 13 death following injury can result from “slow excitotoxicity” ( Albin 92), in which cells are rendered vulnerable to physiologic...Janigro D. Traumatic brain injury and its effects on synaptic plasticity. Brain Inj. 2003 Aug;17(8):653-63. Albin RL, Greenamyre JT

  13. GPCR Mediated Regulation of Synaptic Transmission

    PubMed Central

    Betke, Katherine M.; Wells, Christopher A.; Hamm, Heidi E.

    2012-01-01

    Synaptic transmission is a finely regulated mechanism of neuronal communication. The release of neurotransmitter at the synapse is not only the reflection of membrane depolarization events, but rather, is the summation of interactions between ion channels, G protein coupled receptors, second messengers, and the exocytotic machinery itself which exposes the components within a synaptic vesicle to the synaptic cleft. The focus of this review is to explore the role of G protein signaling as it relates to neurotransmission, as well as to discuss the recently determined inhibitory mechanism of Gβγ dimers acting directly on the exocytotic machinery proteins to inhibit neurotransmitter release. PMID:22307060

  14. Molecular events in skeletal muscle during disuse atrophy

    NASA Technical Reports Server (NTRS)

    Kandarian, Susan C.; Stevenson, Eric J.

    2002-01-01

    This review summarizes the current knowledge of the molecular processes underlying skeletal muscle atrophy due to disuse. Because the processes involved with muscle wasting due to illness are similar to disuse, this literature is used for comparison. Areas that are ripe for further study and that will advance our understanding of muscle atrophy are suggested.

  15. Active components from Siberian ginseng (Eleutherococcus senticosus) for protection of amyloid β(25-35)-induced neuritic atrophy in cultured rat cortical neurons.

    PubMed

    Bai, Yanjing; Tohda, Chihiro; Zhu, Shu; Hattori, Masao; Komatsu, Katsuko

    2011-07-01

    Not only neuronal death but also neuritic atrophy and synaptic loss underlie the pathogenesis of Alzheimer's disease as direct causes of the memory deficit. Extracts of Siberian ginseng (the rhizome of Eleutherococcus senticosus) were shown to have protective effects on the regeneration of neurites and the reconstruction of synapses in rat cultured cortical neurons damaged by amyloid β (Aβ)(25-35), and eleutheroside B was one of the active constituents. In this study, a comprehensive evaluation of constituents was conducted to explore active components from Siberian ginseng which can protect against neuritic atrophy induced by Aβ(25-35) in cultured rat cortical neurons. The ethyl acetate, n-butanol and water fractions from the methanol extract of Siberian ginseng showed protective effects against Aβ-induced neuritic atrophy. Twelve compounds were isolated from the active fractions and identified. Among them, eleutheroside B, eleutheroside E and isofraxidin showed obvious protective effects against Aβ(25-35)-induced atrophies of axons and dendrites at 1 and 10 μM.

  16. Neuroinflammation and brain atrophy in former NFL players: An in vivo multimodal imaging pilot study.

    PubMed

    Coughlin, Jennifer M; Wang, Yuchuan; Munro, Cynthia A; Ma, Shuangchao; Yue, Chen; Chen, Shaojie; Airan, Raag; Kim, Pearl K; Adams, Ashley V; Garcia, Cinthya; Higgs, Cecilia; Sair, Haris I; Sawa, Akira; Smith, Gwenn; Lyketsos, Constantine G; Caffo, Brian; Kassiou, Michael; Guilarte, Tomas R; Pomper, Martin G

    2015-02-01

    There are growing concerns about potential delayed, neuropsychiatric consequences (e.g, cognitive decline, mood or anxiety disorders) of sports-related traumatic brain injury (TBI). Autopsy studies of brains from a limited number of former athletes have described characteristic, pathologic changes of chronic traumatic encephalopathy (CTE) leading to questions about the relationship between these pathologic and the neuropsychiatric disturbances seen in former athletes. Research in this area will depend on in vivo methods that characterize molecular changes in the brain, linking CTE and other sports-related pathologies with delayed emergence of neuropsychiatric symptoms. In this pilot project we studied former National Football League (NFL) players using new neuroimaging techniques and clinical measures of cognitive functioning. We hypothesized that former NFL players would show molecular and structural changes in medial temporal and parietal lobe structures as well as specific cognitive deficits, namely those of verbal learning and memory. We observed a significant increase in binding of [(11)C]DPA-713 to the translocator protein (TSPO), a marker of brain injury and repair, in several brain regions, such as the supramarginal gyrus and right amygdala, in 9 former NFL players compared to 9 age-matched, healthy controls. We also observed significant atrophy of the right hippocampus. Finally, we report that these same former players had varied performance on a test of verbal learning and memory, suggesting that these molecular and pathologic changes may play a role in cognitive decline. These results suggest that localized brain injury and repair, indicated by increased [(11)C]DPA-713 binding to TSPO, may be linked to history of NFL play. [(11)C]DPA-713 PET is a promising new tool that can be used in future study design to examine further the relationship between TSPO expression in brain injury and repair, selective regional brain atrophy, and the potential link to

  17. Insulin-like growth factor-I gene transfer by electroporation prevents skeletal muscle atrophy in glucocorticoid-treated rats.

    PubMed

    Schakman, O; Gilson, H; de Coninck, V; Lause, P; Verniers, J; Havaux, X; Ketelslegers, J M; Thissen, J P

    2005-04-01

    Catabolic states caused by injury are characterized by a loss of skeletal muscle. The anabolic action of IGF-I on muscle and the reduction of its muscle content in response to injury suggest that restoration of muscle IGF-I content might prevent skeletal muscle loss caused by injury. We investigated whether local overexpression of IGF-I protein by gene transfer could prevent skeletal muscle atrophy induced by glucocorticoids, a crucial mediator of muscle atrophy in catabolic states. Localized overexpression of IGF-I in tibialis anterior (TA) muscle was performed by injection of IGF-I cDNA followed by electroporation 3 d before starting dexamethasone injections (0.1 mg/kg.d sc). A control plasmid was electroporated in the contralateral TA muscle. Dexamethasone induced atrophy of the TA muscle as illustrated by reduction in muscle mass (403 +/- 11 vs. 461 +/- 19 mg, P < 0.05) and fiber cross-sectional area (1759 +/- 131 vs. 2517 +/- 93 mum(2), P < 0.05). This muscle atrophy was paralleled by a decrease in the IGF-I muscle content (7.2 +/- 0.9 vs. 15.7 +/- 1.4 ng/g of muscle, P < 0.001). As the result of IGF-I gene transfer, the IGF-I muscle content increased 2-fold (15.8 +/- 1.2 vs. 7.2 +/- 0.9 ng/g of muscle, P < 0.001). In addition, the muscle mass (437 +/- 8 vs. 403 +/- 11 mg, P < 0.01) and the fiber cross-sectional area (2269 +/- 129 vs. 1759 +/- 131 mum(2), P < 0.05) were increased in the TA muscle electroporated with IGF-I DNA, compared with the contralateral muscle electroporated with a control plasmid. Our results show therefore that IGF-I gene transfer by electroporation prevents muscle atrophy in glucocorticoid-treated rats. Our observation supports the important role of decreased muscle IGF-I in the muscle atrophy caused by glucocorticoids.

  18. Indices of Regional Brain Atrophy: Formulae and Nomenclature

    PubMed Central

    Arias-Carrión, Oscar

    2015-01-01

    The pattern of brain atrophy helps to discriminate normal age-related changes from neurodegenerative diseases. Albeit indices of regional brain atrophy have proven to be a parameter useful in the early diagnosis and differential diagnosis of some neurodegenerative diseases, indices of absolute regional atrophy still have some important limitations. We propose using indices of relative atrophy for representing how the volume of a given region of interest (ROI) changes over time in comparison to changes in global brain measures over the same time. A second problem in morphometric studies is terminology. There is a lack of systematization naming indices and the same measure can be named with different terms by different research groups or imaging softwares. This limits the understanding and discussion of studies. In this technological report, we provide a general description on how to compute indices of absolute and relative regional brain atrophy and propose a standardized nomenclature. PMID:26261753

  19. Bone and muscle atrophy with suspension of the rat

    NASA Technical Reports Server (NTRS)

    Leblanc, A.; Marsh, C.; Evans, H.; Johnson, P.; Schneider, V.; Jhingran, S.

    1985-01-01

    In order to identify a suitable model for the study of muscle atrophy due to suspension in space, a modified version of the Morey tail suspension model was used to measure the atrophic responses of rat bone and muscle to 14-30 days of unloading of the hindlimbs. The progress of atrophy was measured by increases in methylene diphosphonate (MDP) uptake. It is found that bone uptake of methylene diphosphonate followed a phasic pattern similar to changes in the bone formation rate of immobilized dogs and cats. Increased MDP uptake after a period of 60 days indicated an accelerated bone metabolism. Maximum muscle atrophy in the suspended rats was distinctly different from immobilization atrophy. On the basis of the experimental results, it is concluded that the tail suspension model is an adequate simulation of bone atrophy due to suspension.

  20. Effectiveness of Cortical Atrophy Scale and Indirect Indices of Brain Atrophy to Predict Chronic Subdural Hematoma in Older Patients

    PubMed Central

    Jeong, Eun-Oh; Lim, Jeong-Wook; Kwon, Hyon-Jo; Kim, Seon-Hwan; Koh, Hyeon-Song; Youm, Jin-Young; Song, Shi-Hun

    2016-01-01

    Objective To determine whether baseline cerebral atrophy can predict the rate of future chronic subdural hematoma (CSDH) after head trauma and compare indirect markers of brain atrophy with volumetric analysis of computed tomography (CT). Methods Single institution case-control study involving 1,476 patients who visited our hospital after head trauma from January 2009 to December 2014. Forty-one patients with delayed CSDH were identified and age, gender matched 41 patients were selected as control group. Both volumetric analyze on CT and Evans index, frontal horn index, bicaudate ratio, sylvian fissure ratio and cortical atrophy scale of 82 patients were estimated by different raters and relationship of those factors with CSDH was analyzed. Results Every indirect indices except cortical atrophy scale were not enough to give a good estimate of CSDH. Brain atrophy and cortical atrophy scale were predisposing factors of CSDH on multivariate analysis with statistical significance. Conclusion Brain atrophy was a potential prognostic factor of CSDH after trauma. In practice, patients with a value of cortical atrophy scale over moderate grade needed more attention for CSDH. PMID:27857918

  1. AMPA receptor inhibition by synaptically released zinc

    PubMed Central

    Kalappa, Bopanna I.; Anderson, Charles T.; Lippard, Stephen J.; Tzounopoulos, Thanos

    2015-01-01

    The vast amount of fast excitatory neurotransmission in the mammalian central nervous system is mediated by AMPA-subtype glutamate receptors (AMPARs). As a result, AMPAR-mediated synaptic transmission is implicated in nearly all aspects of brain development, function, and plasticity. Despite the central role of AMPARs in neurobiology, the fine-tuning of synaptic AMPA responses by endogenous modulators remains poorly understood. Here we provide evidence that endogenous zinc, released by single presynaptic action potentials, inhibits synaptic AMPA currents in the dorsal cochlear nucleus (DCN) and hippocampus. Exposure to loud sound reduces presynaptic zinc levels in the DCN and abolishes zinc inhibition, implicating zinc in experience-dependent AMPAR synaptic plasticity. Our results establish zinc as an activity-dependent, endogenous modulator of AMPARs that tunes fast excitatory neurotransmission and plasticity in glutamatergic synapses. PMID:26647187

  2. Molecular mechanisms of synaptic remodeling in alcoholism.

    PubMed

    Kyzar, Evan J; Pandey, Subhash C

    2015-08-05

    Alcohol use and alcohol addiction represent dysfunctional brain circuits resulting from neuroadaptive changes during protracted alcohol exposure and its withdrawal. Alcohol exerts a potent effect on synaptic plasticity and dendritic spine formation in specific brain regions, providing a neuroanatomical substrate for the pathophysiology of alcoholism. Epigenetics has recently emerged as a critical regulator of gene expression and synaptic plasticity-related events in the brain. Alcohol exposure and withdrawal induce changes in crucial epigenetic processes in the emotional brain circuitry (amygdala) that may be relevant to the negative affective state defined as the "dark side" of addiction. Here, we review the literature concerning synaptic plasticity and epigenetics, with a particular focus on molecular events related to dendritic remodeling during alcohol abuse and alcoholism. Targeting epigenetic processes that modulate synaptic plasticity may yield novel treatments for alcoholism.

  3. Programmable synaptic devices for electronic neural nets

    NASA Technical Reports Server (NTRS)

    Moopenn, A.; Thakoor, A. P.

    1990-01-01

    The architecture, design, and operational characteristics of custom VLSI and thin film synaptic devices are described. The devices include CMOS-based synaptic chips containing 1024 reprogrammable synapses with a 6-bit dynamic range, and nonvolatile, write-once, binary synaptic arrays based on memory switching in hydrogenated amorphous silicon films. Their suitability for embodiment of fully parallel and analog neural hardware is discussed. Specifically, a neural network solution to an assignment problem of combinatorial global optimization, implemented in fully parallel hardware using the synaptic chips, is described. The network's ability to provide optimal and near optimal solutions over a time scale of few neuron time constants has been demonstrated and suggests a speedup improvement of several orders of magnitude over conventional search methods.

  4. Neuroimmune regulation of homeostatic synaptic plasticity.

    PubMed

    Pribiag, Horia; Stellwagen, David

    2014-03-01

    Homeostatic synaptic plasticity refers to a set of negative-feedback mechanisms that are used by neurons to maintain activity within a functional range. While it is becoming increasingly clear that homeostatic regulation of synapse function is a key principle in the nervous system, the molecular details of this regulation are only beginning to be uncovered. Recent evidence implicates molecules classically associated with the peripheral immune system in the modulation of homeostatic synaptic plasticity. In particular, the pro-inflammatory cytokine TNFα, class I major histocompatibility complex, and neuronal pentraxin 2 are essential in the regulation of the compensatory synaptic response that occurs in response to prolonged neuronal inactivity. This review will present and discuss current evidence implicating neuroimmune molecules in the homeostatic regulation of synapse function. This article is part of the Special Issue entitled 'Homeostatic Synaptic Plasticity'.

  5. Synaptic Release at Mammalian Bipolar Cell Terminals

    PubMed Central

    Wan, Qun-Fang; Heidelberger, Ruth

    2011-01-01

    Bipolar cells play a vital role in the transfer of visual information across the vertebrate retina. The synaptic output of these neurons is regulated by factors that are extrinsic and intrinsic. Relatively little is known about the intrinsic factors that regulate neurotransmitter exocytosis. Much of what we know about intrinsic presynaptic mechanisms that regulate glutamate release has come from the study of the unusually large and accessible synaptic terminal of the goldfish rod-dominant bipolar cell, the Mb1 bipolar cell. However, over the past several years, examination of presynaptic mechanisms governing neurotransmitter release has been extended to the mammalian rod bipolar cell. In this review, we discuss the recent advances in our understanding of synaptic vesicle dynamics and neurotransmitter release in rodent rod bipolar cells and consider how these properties help shape the synaptic output of the mammalian retina. PMID:21272392

  6. Quantitative proteomics of synaptic and nonsynaptic mitochondria: insights for synaptic mitochondrial vulnerability.

    PubMed

    Stauch, Kelly L; Purnell, Phillip R; Fox, Howard S

    2014-05-02

    Synaptic mitochondria are essential for maintaining calcium homeostasis and producing ATP, processes vital for neuronal integrity and synaptic transmission. Synaptic mitochondria exhibit increased oxidative damage during aging and are more vulnerable to calcium insult than nonsynaptic mitochondria. Why synaptic mitochondria are specifically more susceptible to cumulative damage remains to be determined. In this study, the generation of a super-SILAC mix that served as an appropriate internal standard for mouse brain mitochondria mass spectrometry based analysis allowed for the quantification of the proteomic differences between synaptic and nonsynaptic mitochondria isolated from 10-month-old mice. We identified a total of 2260 common proteins between synaptic and nonsynaptic mitochondria of which 1629 were annotated as mitochondrial. Quantitative proteomic analysis of the proteins common between synaptic and nonsynaptic mitochondria revealed significant differential expression of 522 proteins involved in several pathways including oxidative phosphorylation, mitochondrial fission/fusion, calcium transport, and mitochondrial DNA replication and maintenance. In comparison to nonsynaptic mitochondria, synaptic mitochondria exhibited increased age-associated mitochondrial DNA deletions and decreased bioenergetic function. These findings provide insights into synaptic mitochondrial susceptibility to damage.

  7. Assessing atrophy measurement techniques in dementia: Results from the MIRIAD atrophy challenge

    PubMed Central

    Cash, David M.; Frost, Chris; Iheme, Leonardo O.; Ünay, Devrim; Kandemir, Melek; Fripp, Jurgen; Salvado, Olivier; Bourgeat, Pierrick; Reuter, Martin; Fischl, Bruce; Lorenzi, Marco; Frisoni, Giovanni B.; Pennec, Xavier; Pierson, Ronald K.; Gunter, Jeffrey L.; Senjem, Matthew L.; Jack, Clifford R.; Guizard, Nicolas; Fonov, Vladimir S.; Collins, D. Louis; Modat, Marc; Cardoso, M. Jorge; Leung, Kelvin K.; Wang, Hongzhi; Das, Sandhitsu R.; Yushkevich, Paul A.; Malone, Ian B.; Fox, Nick C.; Schott, Jonathan M.; Ourselin, Sebastien

    2015-01-01

    Structural MRI is widely used for investigating brain atrophy in many neurodegenerative disorders, with several research groups developing and publishing techniques to provide quantitative assessments of this longitudinal change. Often techniques are compared through computation of required sample size estimates for future clinical trials. However interpretation of such comparisons is rendered complex because, despite using the same publicly available cohorts, the various techniques have been assessed with different data exclusions and different statistical analysis models. We created the MIRIAD atrophy challenge in order to test various capabilities of atrophy measurement techniques. The data consisted of 69 subjects (46 Alzheimer's disease, 23 control) who were scanned multiple (up to twelve) times at nine visits over a follow-up period of one to two years, resulting in 708 total image sets. Nine participating groups from 6 countries completed the challenge by providing volumetric measurements of key structures (whole brain, lateral ventricle, left and right hippocampi) for each dataset and atrophy measurements of these structures for each time point pair (both forward and backward) of a given subject. From these results, we formally compared techniques using exactly the same dataset. First, we assessed the repeatability of each technique using rates obtained from short intervals where no measurable atrophy is expected. For those measures that provided direct measures of atrophy between pairs of images, we also assessed symmetry and transitivity. Then, we performed a statistical analysis in a consistent manner using linear mixed effect models. The models, one for repeated measures of volume made at multiple time-points and a second for repeated “direct” measures of change in brain volume, appropriately allowed for the correlation between measures made on the same subject and were shown to fit the data well. From these models, we obtained estimates of the

  8. Assessing atrophy measurement techniques in dementia: Results from the MIRIAD atrophy challenge.

    PubMed

    Cash, David M; Frost, Chris; Iheme, Leonardo O; Ünay, Devrim; Kandemir, Melek; Fripp, Jurgen; Salvado, Olivier; Bourgeat, Pierrick; Reuter, Martin; Fischl, Bruce; Lorenzi, Marco; Frisoni, Giovanni B; Pennec, Xavier; Pierson, Ronald K; Gunter, Jeffrey L; Senjem, Matthew L; Jack, Clifford R; Guizard, Nicolas; Fonov, Vladimir S; Collins, D Louis; Modat, Marc; Cardoso, M Jorge; Leung, Kelvin K; Wang, Hongzhi; Das, Sandhitsu R; Yushkevich, Paul A; Malone, Ian B; Fox, Nick C; Schott, Jonathan M; Ourselin, Sebastien

    2015-12-01

    Structural MRI is widely used for investigating brain atrophy in many neurodegenerative disorders, with several research groups developing and publishing techniques to provide quantitative assessments of this longitudinal change. Often techniques are compared through computation of required sample size estimates for future clinical trials. However interpretation of such comparisons is rendered complex because, despite using the same publicly available cohorts, the various techniques have been assessed with different data exclusions and different statistical analysis models. We created the MIRIAD atrophy challenge in order to test various capabilities of atrophy measurement techniques. The data consisted of 69 subjects (46 Alzheimer's disease, 23 control) who were scanned multiple (up to twelve) times at nine visits over a follow-up period of one to two years, resulting in 708 total image sets. Nine participating groups from 6 countries completed the challenge by providing volumetric measurements of key structures (whole brain, lateral ventricle, left and right hippocampi) for each dataset and atrophy measurements of these structures for each time point pair (both forward and backward) of a given subject. From these results, we formally compared techniques using exactly the same dataset. First, we assessed the repeatability of each technique using rates obtained from short intervals where no measurable atrophy is expected. For those measures that provided direct measures of atrophy between pairs of images, we also assessed symmetry and transitivity. Then, we performed a statistical analysis in a consistent manner using linear mixed effect models. The models, one for repeated measures of volume made at multiple time-points and a second for repeated "direct" measures of change in brain volume, appropriately allowed for the correlation between measures made on the same subject and were shown to fit the data well. From these models, we obtained estimates of the

  9. In vitro models of multiple system atrophy.

    PubMed

    Stefanova, Nadia; Reindl, Markus; Poewe, Werner; Wenning, Gregor K

    2005-08-01

    alpha-Synuclein represents the major constituent of oligodendroglial cytoplasmic inclusions, the hallmark lesion of multiple system atrophy (MSA), a progressive disorder that is associated with selective degenerative cell loss in basal ganglia, cerebellum, brainstem, and spinal cord. The role of abnormal alpha-synuclein aggregation in oligodendroglial cells is still obscure, in particular, whether alpha-synuclein might impair oligodendroglial and, secondarily, neuronal integrity of those cells in the diseased brain. In an attempt to answer some of these questions, we have developed an "in vitro model of MSA" by expressing the wild-type or C-terminally truncated form of alpha-synuclein in glial cell cultures. With this simplified system, we have demonstrated that alpha-synuclein significantly affects the survival of glia and its vulnerability to environmental stress, which might represent a major step in the pathogenesis of MSA.

  10. Hippocampal atrophy in recurrent major depression.

    PubMed Central

    Sheline, Y I; Wang, P W; Gado, M H; Csernansky, J G; Vannier, M W

    1996-01-01

    Hippocampal volumes of subjects with a history of major depressive episodes but currently in remission and with no known medical comorbidity were compared to matched normal controls by using volumetric magnetic resonance images. Subjects with a history of major depression had significantly smaller left and right hippocampal volumes with no differences in total cerebral volumes. The degree of hippocampal volume reduction correlated with total duration of major depression. In addition, large (diameter > or = 4.5 mm)-hippocampal low signal foci (LSF) were found within the hippocampus, and their number also correlated with the total number of days depressed. These results suggest that depression is associated with hippocampal atrophy, perhaps due to a progressive process mediated by glucocorticoid neurotoxicity. Images Fig. 1 Fig. 4 PMID:8632988

  11. Choroidal Round Hyporeflectivities in Geographic Atrophy

    PubMed Central

    De Vitis, Luigi Antonio; Carnevali, Adriano; Rabiolo, Alessandro; Querques, Lea; Bandello, Francesco; Querques, Giuseppe

    2016-01-01

    Purpose In geographic atrophy (GA), choroidal vessels typically appear on structural optical coherence tomography (OCT) as hyperreflective round areas with highly reflective borders. We observed that some GA eyes show choroidal round hyporeflectivities with highly reflective borders beneath the atrophy, and futher investigated the charcteristcs by comparing structural OCT, indocyanine green angiography (ICGA) and OCT angiography (OCT-A). Methods Round hyporeflectivities were individuated from a pool of patients with GA secondary to non-neovascular age-related macular degeneration consecutively presenting between October 2015 and March 2016 at the Medical Retina & Imaging Unit of the University Vita-Salute San Raffaele. Patients underwent a complete ophthalmologic examination including ICGA, structural OCT and OCT-A. The correspondence between choroidal round hyporeflectivities beneath GA on structural OCT and ICGA and OCT-A imaging were analyzed. Results Fifty eyes of 26 consecutive patients (17 females and 9 males; mean age 76.8±6.2 years) with GA were included. Twenty-nine round hyporeflectivities have been found by OCT in choroidal layers in 21 eyes of 21 patients (42.0%; estimated prevalence of 57.7%). All 29 round hyporeflectivities showed constantly a hyperreflective border and a backscattering on structural OCT, and appeared as hypofluorescent in late phase ICGA and as dark foci with non detectable flow in the choroidal segmentation of OCT-A. Interestingly, the GA area was greater in eyes with compared to eyes without round hyporeflectivities (9.30±5.74 and 5.57±4.48mm2, respectively; p = 0.01). Conclusions Our results suggest that most round hyporeflectivities beneath GA may represent non-perfused or hypo-perfused choroidal vessels with non-detectable flow. PMID:27880806

  12. Lateral regulation of synaptic transmission by astrocytes.

    PubMed

    Covelo, A; Araque, A

    2016-05-26

    Fifteen years ago the concept of the "tripartite synapse" was proposed to conceptualize the functional view that astrocytes are integral elements of synapses. The signaling exchange between astrocytes and neurons within the tripartite synapse results in the synaptic regulation of synaptic transmission and plasticity through an autocrine form of communication. However, recent evidence indicates that the astrocyte synaptic regulation is not restricted to the active tripartite synapse but can be manifested through astrocyte signaling at synapses relatively distant from active synapses, a process termed lateral astrocyte synaptic regulation. This phenomenon resembles the classical heterosynaptic modulation but is mechanistically different because it involves astrocytes and its properties critically depend on the morphological and functional features of astrocytes. Therefore, the functional concept of the tripartite synapse as a fundamental unit must be expanded to include the interaction between tripartite synapses. Through lateral synaptic regulation, astrocytes serve as an active processing bridge for synaptic interaction and crosstalk between synapses with no direct neuronal connectivity, supporting the idea that neural network function results from the coordinated activity of astrocytes and neurons.

  13. Back Injuries

    MedlinePlus

    ... extending from your neck to your pelvis. Back injuries can result from sports injuries, work around the house or in the garden, ... back is the most common site of back injuries and back pain. Common back injuries include Sprains ...

  14. Head Injuries

    MedlinePlus

    ... before. Often, the injury is minor because your skull is hard and it protects your brain. But ... injuries can be more severe, such as a skull fracture, concussion, or traumatic brain injury. Head injuries ...

  15. Defects in Neuromuscular Transmission May Underlie Motor Dysfunction in Spinal and Bulbar Muscular Atrophy

    PubMed Central

    Xu, Youfen; Halievski, Katherine; Henley, Casey; Atchison, William D.; Katsuno, Masahisa; Adachi, Hiroaki; Sobue, Gen; Breedlove, S. Marc

    2016-01-01

    Spinal and bulbar muscular atrophy (SBMA) in men is an androgen-dependent neuromuscular disease caused by expanded CAG repeats in the androgen receptor (AR). Whether muscle or motor neuron dysfunction or both underlies motor impairment in SBMA is unknown. Muscles of SBMA mice show significant contractile dysfunction, implicating them as a likely source of motor dysfunction, but whether disease also impairs neuromuscular transmission is an open question. Thus, we examined synaptic function in three well-studied SBMA mouse models—the AR97Q, knock-in (KI), and myogenic141 models—by recording in vitro miniature and evoked end-plate potentials (MEPPs and EPPs, respectively) intracellularly from adult muscle fibers. We found striking defects in neuromuscular transmission suggesting that toxic AR in SBMA impairs both presynaptic and postsynaptic mechanisms. Notably, SBMA causes neuromuscular synapses to become weak and muscles to become hyperexcitable in all three models. Presynaptic defects included deficits in quantal content, reduced size of the readily releasable pool, and impaired short-term facilitation. Postsynaptic defects included prolonged decay times for both MEPPs and EPPs, marked resistance to μ-conotoxin (a sodium channel blocker), and enhanced membrane excitability. Quantitative PCR revealed robust upregulation of mRNAs encoding neonatal isoforms of the AChR (γ-subunit) and the voltage-gated sodium channel (NaV1.5) in diseased adult muscles of all three models, consistent with the observed slowing of synaptic potentials and resistance to μ-conotoxin. These findings suggest that muscles of SBMA patients regress to an immature state that impairs neuromuscular function. SIGNIFICANCE STATEMENT We have discovered that SBMA is accompanied by marked defects in neuromuscular synaptic transmission involving both presynaptic and postsynaptic mechanisms. For three different mouse models, we find that diseased synapses are weak, having reduced quantal content

  16. Transcriptional profile of a myotube starvation model of atrophy

    NASA Technical Reports Server (NTRS)

    Stevenson, Eric J.; Koncarevic, Alan; Giresi, Paul G.; Jackman, Robert W.; Kandarian, Susan C.

    2005-01-01

    Skeletal muscle wasting is a pervasive phenomenon that can result from a wide range of pathological conditions as well as from habitual muscular inactivity. The present work describes a cell-culture condition that induces significant atrophy in skeletal muscle C2C12 myotubes. The failure to replenish differentiation media in mature myotubes leads to rapid atrophy (53% in diameter), which is referred to here as starvation. Affymetrix microarrays were used to develop a transcriptional profile of control (fed) vs. atrophied (nonfed) myotubes. Myotube starvation was characterized by an upregulation of genes involved in translational inhibition, amino acid biosynthesis and transport, and cell cycle arrest/apoptosis, among others. Downregulated genes included several structural and regulatory elements of the extracellular matrix as well as several elements of Wnt/frizzled and TGF-beta signaling pathways. Interestingly, the characteristic transcriptional upregulation of the ubiquitin-proteasome system, calpains, and cathepsins known to occur in multiple in vivo models of atrophy were not seen during myotube starvation. With the exception of the downregulation of extracellular matrix genes, serine protease inhibitor genes, and the upregulation of the translation initiation factor PHAS-I, this model of atrophy in cell culture has a transcriptional profile quite distinct from any study published to date with atrophy in whole muscle. These data show that, although the gross morphology of atrophied muscle fibers may be similar in whole muscle vs. myotube culture, the processes by which this phenotype is achieved differ markedly.

  17. Radiologic correlates of reaction time measurements in olivopontocerebellar atrophy.

    PubMed

    Botez, M I; Pedraza, O L; Botez-Marquard, T; Vézina, J L; Elie, R

    1993-01-01

    We measured simple visual and auditory reaction time (RT) and movement time (MT) in 32 patients with olivopontocerebellar atrophy (OPCA) in comparison to 32 control subjects. In addition, we followed 2 approaches to radiologic assessment by computed tomographic scans: subjective (by inspection of films) and objective (by measurement of 4 radiologic ratios at the level of the posterior fossa and 1 ratio at the supratentorial level). All OPCA patients had various degrees of cerebellar atrophy and lengthened RT and MT in comparison to their controls. There were no significant differences in RT and MT performances in patients with mild-moderate versus those with severe cerebellar atrophy as assessed by inspection of their films. OPCA patients with severe versus mild-moderate atrophy evaluated by 3 measures, i.e., brainstem, brachium pontis and fourth ventricle ratios, presented few significantly lengthened RT and MT performances. In contrast, patients with severe atrophy revealed by the midbrain ratio had significantly lengthened RT and MT performances compared to those with mild-moderate atrophy assessed by this ratio on 7 of 8 measures; the 8th measure showed a borderline significant difference. This could be explained by the fact that atrophy at the midbrain level is the only one which involves dopaminergic, noradrenergic and glutamatergic structures and pathways.

  18. White matter hyperintensities are associated with disproportionate progressive hippocampal atrophy

    PubMed Central

    Manning, Emily N.; Bartlett, Jonathan W.; Cash, David M.; Malone, Ian B.; Ridgway, Gerard R.; Lehmann, Manja; Leung, Kelvin K.; Sudre, Carole H.; Ourselin, Sebastien; Biessels, Geert Jan; Carmichael, Owen T.; Fox, Nick C.; Cardoso, M. Jorge; Barnes, Josephine

    2017-01-01

    ABSTRACT This study investigates relationships between white matter hyperintensity (WMH) volume, cerebrospinal fluid (CSF) Alzheimer's disease (AD) pathology markers, and brain and hippocampal volume loss. Subjects included 198 controls, 345 mild cognitive impairment (MCI), and 154 AD subjects with serial volumetric 1.5‐T MRI. CSF Aβ42 and total tau were measured (n = 353). Brain and hippocampal loss were quantified from serial MRI using the boundary shift integral (BSI). Multiple linear regression models assessed the relationships between WMHs and hippocampal and brain atrophy rates. Models were refitted adjusting for (a) concurrent brain/hippocampal atrophy rates and (b) CSF Aβ42 and tau in subjects with CSF data. WMH burden was positively associated with hippocampal atrophy rate in controls (P = 0.002) and MCI subjects (P = 0.03), and with brain atrophy rate in controls (P = 0.03). The associations with hippocampal atrophy rate remained following adjustment for concurrent brain atrophy rate in controls and MCIs, and for CSF biomarkers in controls (P = 0.007). These novel results suggest that vascular damage alongside AD pathology is associated with disproportionately greater hippocampal atrophy in nondemented older adults. © 2016 The Authors Hippocampus Published by Wiley Periodicals, Inc. PMID:27933676

  19. White matter hyperintensities are associated with disproportionate progressive hippocampal atrophy.

    PubMed

    Fiford, Cassidy M; Manning, Emily N; Bartlett, Jonathan W; Cash, David M; Malone, Ian B; Ridgway, Gerard R; Lehmann, Manja; Leung, Kelvin K; Sudre, Carole H; Ourselin, Sebastien; Biessels, Geert Jan; Carmichael, Owen T; Fox, Nick C; Cardoso, M Jorge; Barnes, Josephine

    2017-03-01

    This study investigates relationships between white matter hyperintensity (WMH) volume, cerebrospinal fluid (CSF) Alzheimer's disease (AD) pathology markers, and brain and hippocampal volume loss. Subjects included 198 controls, 345 mild cognitive impairment (MCI), and 154 AD subjects with serial volumetric 1.5-T MRI. CSF Aβ42 and total tau were measured (n = 353). Brain and hippocampal loss were quantified from serial MRI using the boundary shift integral (BSI). Multiple linear regression models assessed the relationships between WMHs and hippocampal and brain atrophy rates. Models were refitted adjusting for (a) concurrent brain/hippocampal atrophy rates and (b) CSF Aβ42 and tau in subjects with CSF data. WMH burden was positively associated with hippocampal atrophy rate in controls (P = 0.002) and MCI subjects (P = 0.03), and with brain atrophy rate in controls (P = 0.03). The associations with hippocampal atrophy rate remained following adjustment for concurrent brain atrophy rate in controls and MCIs, and for CSF biomarkers in controls (P = 0.007). These novel results suggest that vascular damage alongside AD pathology is associated with disproportionately greater hippocampal atrophy in nondemented older adults. © 2016 The Authors Hippocampus Published by Wiley Periodicals, Inc.

  20. Botulinum Toxin and Muscle Atrophy: A Wanted or Unwanted Effect.

    PubMed

    Durand, Paul D; Couto, Rafael A; Isakov, Raymond; Yoo, Donald B; Azizzadeh, Babak; Guyuron, Bahman; Zins, James E

    2016-04-01

    While the facial rejuvenating effect of botulinum toxin type A is well known and widespread, its use in body and facial contouring is less common. We first describe its use for deliberate muscle volume reduction, and then document instances of unanticipated and undesirable muscle atrophy. Finally, we investigate the potential long-term adverse effects of botulinum toxin-induced muscle atrophy. Although the use of botulinum toxin type A in the cosmetic patient has been extensively studied, there are several questions yet to be addressed. Does prolonged botulinum toxin treatment increase its duration of action? What is the mechanism of muscle atrophy and what is the cause of its reversibility once treatment has stopped? We proceed to examine how prolonged chemodenervation with botulinum toxin can increase its duration of effect and potentially contribute to muscle atrophy. Instances of inadvertent botulinum toxin-induced atrophy are also described. These include the "hourglass deformity" secondary to botulinum toxin type A treatment for migraine headaches, and a patient with atrophy of multiple facial muscles from injections for hemifacial spasm. Numerous reports demonstrate that muscle atrophy after botulinum toxin type A treatment occurs and is both reversible and temporary, with current literature supporting the notion that repeated chemodenervation with botulinum toxin likely responsible for both therapeutic and incidental temporary muscle atrophy. Furthermore, duration of response may be increased with subsequent treatments, thus minimizing frequency of reinjection. Practitioners should be aware of the temporary and reversible effect of botulinum toxin-induced muscle atrophy and be prepared to reassure patients on this matter.

  1. Early changes in muscle atrophy and muscle fiber type conversion after spinal cord transection and peripheral nerve transection in rats

    PubMed Central

    2013-01-01

    Background Spinal cord transection and peripheral nerve transection cause muscle atrophy and muscle fiber type conversion. It is still unknown how spinal cord transection and peripheral nerve transection each affect the differentiation of muscle fiber type conversion mechanism and muscle atrophy. The aim of our study was to evaluate the difference of muscle weight change, muscle fiber type conversion, and Peroxisome proliferator-activated receptor-γ coactivatior-1α (PGC-1α) expression brought about by spinal cord transection and by peripheral nerve transection. Methods Twenty-four Wistar rats underwent surgery, the control rats underwent a laminectomy; the spinal cord injury group underwent a spinal cord transection; the denervation group underwent a sciatic nerve transection. The rats were harvested of the soleus muscle and the TA muscle at 0 week, 1 week and 2 weeks after surgery. Histological examination was assessed using hematoxylin and eosin (H&E) staining and immunofluorescent staing. Western blot was performed with 3 groups. Results Both sciatic nerve transection and spinal cord transection caused muscle atrophy with the effect being more severe after sciatic nerve transection. Spinal cord transection caused a reduction in the expression of both sMHC protein and PGC-1α protein in the soleus muscle. On the other hand, sciatic nerve transection produced an increase in expression of sMHC protein and PGC-1α protein in the soleus muscle. The results of the expression of PGC-1α were expected in other words muscle atrophy after sciatic nerve transection is less than after spinal cord transection, however muscle atrophy after sciatic nerve transection was more severe than after spinal cord transection. Conclusion In the conclusion, spinal cord transection diminished the expression of sMHC protein and PGC-1α protein in the soleus muscle. On the other hand, sciatic nerve transection enhanced the expression of sMHC protein and PGC-1α protein in the soleus

  2. Testicular atrophy as a consequence of inguinal hernia repair.

    PubMed

    Reid, I; Devlin, H B

    1994-01-01

    Testicular atrophy is an uncommon but well recognized complication of inguinal hernia repair and one that frequently results in litigation. A series of ten cases of testicular atrophy occurring after hernia repair in nine patients is presented. Identifiable risk factors were present in eight instances. Surgeons should make careful enquiries as to previous groin or scrotal surgery and, when indicated, warn the patient before surgery of the increased risk of testicular atrophy. Overzealous dissection of a distal hernia sac, dislocation of the testis from the scrotum into the wound and concomitant scrotal surgery should all be avoided.

  3. Prodromal Posterior Cortical Atrophy: Clinical, Neuropsychological and Radiological Correlation

    PubMed Central

    Chan, Lung Tat Andrew; Lynch, Whitney; De May, Mary; Horton, Jonathan C.; Miller, Bruce L.

    2015-01-01

    We present longitudinal clinical, cognitive and neuroimaging data from a 63-year-old woman who enrolled in research as a normal control and evolved posterior cortical atrophy (PCA) over five year follow-up. At baseline she reported only subtle difficulty driving and performed normally on cognitive tests, but already demonstrated atrophy in left visual association cortex. With follow-up she developed insidiously progressive visuospatial and visuoperceptual deficits, correlating with progressive atrophy in bilateral visual areas. Amyloid PET was positive. This case tracks the evolution of PCA from the prodromal stage, and illustrates challenges to early diagnosis as well as the utility of imaging biomarkers. PMID:24308559

  4. Posterior cortical atrophy: an atypical variant of Alzheimer disease.

    PubMed

    Suárez-González, Aida; Henley, Susie M; Walton, Jill; Crutch, Sebastian J

    2015-06-01

    Posterior cortical atrophy (PCA) is a neurodegenerative syndrome characterized by striking progressive visual impairment and a pattern of atrophy mainly involving posterior cortices. PCA is the most frequent atypical presentation of Alzheimer disease. The purpose of this article is to provide a summary of PCA's neuropsychiatric manifestations. Emotional and psychotic symptoms are discussed in the context of signal characteristic features of the PCA syndrome (the early onset, focal loss of visual perception, focal posterior brain atrophy) and the underlying cause of the disease. The authors' experience with psychotherapeutic intervention and PCA support groups is shared in detail.

  5. Synaptic adhesion molecule IgSF11 regulates synaptic transmission and plasticity

    PubMed Central

    Shin, Hyewon; van Riesen, Christoph; Whitcomb, Daniel; Warburton, Julia M.; Jo, Jihoon; Kim, Doyoun; Kim, Sun Gyun; Um, Seung Min; Kwon, Seok-kyu; Kim, Myoung-Hwan; Roh, Junyeop Daniel; Woo, Jooyeon; Jun, Heejung; Lee, Dongmin; Mah, Won; Kim, Hyun; Kaang, Bong-Kiun; Cho, Kwangwook; Rhee, Jeong-Seop; Choquet, Daniel; Kim, Eunjoon

    2016-01-01

    Summary Synaptic adhesion molecules regulate synapse development and plasticity through mechanisms including trans-synaptic adhesion and recruitment of diverse synaptic proteins. We report here that the immunoglobulin superfamily member 11 (IgSF11), a homophilic adhesion molecule preferentially expressed in the brain, is a novel and dual-binding partner of the postsynaptic scaffolding protein PSD-95 and AMPAR glutamate receptors (AMPARs). IgSF11 requires PSD-95 binding for its excitatory synaptic localization. In addition, IgSF11 stabilizes synaptic AMPARs, as shown by IgSF11 knockdown-induced suppression of AMPAR-mediated synaptic transmission and increased surface mobility of AMPARs, measured by high-throughput, single-molecule tracking. IgSF11 deletion in mice leads to suppression of AMPAR-mediated synaptic transmission in the dentate gyrus and long-term potentiation in the CA1 region of the hippocampus. IgSF11 does not regulate the functional characteristics of AMPARs, including desensitization, deactivation, or recovery. These results suggest that IgSF11 regulates excitatory synaptic transmission and plasticity through its tripartite interactions with PSD-95 and AMPARs. PMID:26595655

  6. Neonatal tissue damage facilitates nociceptive synaptic input to the developing superficial dorsal horn via NGF-dependent mechanisms

    PubMed Central

    Li, Jie; Baccei, Mark L.

    2011-01-01

    Tissue injury during a critical period of early life can facilitate spontaneous glutamatergic transmission within developing pain circuits in the superficial dorsal horn (SDH) of the spinal cord. However, the extent to which neonatal tissue damage strengthens nociceptive synaptic input to specific subpopulations of SDH neurons, as well as the mechanisms underlying this distinct form of synaptic plasticity, remains unclear. Here we use in vitro whole-cell patch clamp recordings from rodent spinal cord slices to demonstrate that neonatal surgical injury selectively potentiates high-threshold primary afferent input to immature lamina II neurons. In addition, the increase in the frequency of miniature excitatory postsynaptic currents (mEPSCs) after hindpaw incision was prevented by neonatal capsaicin treatment, suggesting that early tissue injury enhances glutamate release from nociceptive synapses. This occurs in a widespread manner within the developing SDH, as incision elevated mEPSC frequency in both GABAergic and presumed glutamatergic lamina II neurons of Gad-GFP transgenic mice. The administration of exogenous nerve growth factor (NGF) into the rat hindpaw mimicked the effects of early tissue damage on excitatory synaptic function, while blocking trkA receptors in vivo abolished the changes in both spontaneous and primary afferent-evoked glutamatergic transmission following incision. These findings illustrate that neonatal tissue damage can alter the gain of developing pain pathways by activating NGF-dependent signaling cascades which modify synaptic efficacy at the first site of nociceptive processing within the CNS. PMID:21550171

  7. Short term synaptic depression imposes a frequency dependent filter on synaptic information transfer.

    PubMed

    Rosenbaum, Robert; Rubin, Jonathan; Doiron, Brent

    2012-01-01

    Depletion of synaptic neurotransmitter vesicles induces a form of short term depression in synapses throughout the nervous system. This plasticity affects how synapses filter presynaptic spike trains. The filtering properties of short term depression are often studied using a deterministic synapse model that predicts the mean synaptic response to a presynaptic spike train, but ignores variability introduced by the probabilistic nature of vesicle release and stochasticity in synaptic recovery time. We show that this additional variability has important consequences for the synaptic filtering of presynaptic information. In particular, a synapse model with stochastic vesicle dynamics suppresses information encoded at lower frequencies more than information encoded at higher frequencies, while a model that ignores this stochasticity transfers information encoded at any frequency equally well. This distinction between the two models persists even when large numbers of synaptic contacts are considered. Our study provides strong evidence that the stochastic nature neurotransmitter vesicle dynamics must be considered when analyzing the information flow across a synapse.

  8. Diacylglycerol Kinases in the Coordination of Synaptic Plasticity

    PubMed Central

    Lee, Dongwon; Kim, Eunjoon; Tanaka-Yamamoto, Keiko

    2016-01-01

    Synaptic plasticity is activity-dependent modification of the efficacy of synaptic transmission. Although, detailed mechanisms underlying synaptic plasticity are diverse and vary at different types of synapses, diacylglycerol (DAG)-associated signaling has been considered as an important regulator of many forms of synaptic plasticity, including long-term potentiation (LTP) and long-term depression (LTD). Recent evidences indicate that DAG kinases (DGKs), which phosphorylate DAG to phosphatidic acid to terminate DAG signaling, are important regulators of LTP and LTD, as supported by the results from mice lacking specific DGK isoforms. This review will summarize these studies and discuss how specific DGK isoforms distinctly regulate different forms of synaptic plasticity at pre- and postsynaptic sites. In addition, we propose a general role of DGKs as coordinators of synaptic plasticity that make local synaptic environments more permissive for synaptic plasticity by regulating DAG concentration and interacting with other synaptic proteins. PMID:27630986

  9. Mechanisms of cisplatin-induced muscle atrophy

    SciTech Connect

    Sakai, Hiroyasu; Sagara, Atsunobu; Arakawa, Kazuhiko; Sugiyama, Ryoto; Hirosaki, Akiko; Takase, Kazuhide; Jo, Ara; Sato, Ken; Chiba, Yoshihiko; Yamazaki, Mitsuaki; Matoba, Motohiro; Narita, Minoru

    2014-07-15

    Fatigue is the most common side effect of chemotherapy. However, the mechanisms of “muscle fatigue” induced by anti-cancer drugs are not fully understood. We therefore investigated the muscle-atrophic effect of cisplatin, a platinum-based anti-cancer drug, in mice. C57BL/6J mice were treated with cisplatin (3 mg/kg, i.p.) or saline for 4 consecutive days. On Day 5, hindlimb and quadriceps muscles were isolated from mice. The loss of body weight and food intake under the administration of cisplatin was the same as those in a dietary restriction (DR) group. Under the present conditions, the administration of cisplatin significantly decreased not only the muscle mass of the hindlimb and quadriceps but also the myofiber diameter, compared to those in the DR group. The mRNA expression levels of muscle atrophy F-box (MAFbx), muscle RING finger-1 (MuRF1) and forkhead box O3 (FOXO3) were significantly and further increased by cisplatin treated group, compared to DR. Furthermore, the mRNA levels of myostatin and p21 were significantly upregulated by the administration of cisplatin, compared to DR. On the other hand, the phosphorylation of Akt and FOXO3a, which leads to the blockade of the upregulation of MuRF1 and MAFbx, was significantly and dramatically decreased by cisplatin. These findings suggest that the administration of cisplatin increases atrophic gene expression, and may lead to an imbalance between protein synthesis and protein degradation pathways, which would lead to muscle atrophy. This phenomenon could, at least in part, explain the mechanism of cisplatin-induced muscle fatigue. - Highlights: • Cisplatin decreased mass and myofiber diameter in quadriceps muscle. • The mRNA of MAFbx, MuRF1 and FOXO3 were increased by the cisplatin. • The mRNA of myostatin and p21 were upregulated by cisplatin. • The phosphorylation of Akt and FOXO3a was decreased by cisplatin.

  10. NR2B-dependent Cyclophilin D translocation suppresses the recovery of synaptic transmission after oxygen-glucose deprivation

    PubMed Central

    Yan, Shijun; Du, Fang; Yan, Shirley Shidu

    2016-01-01

    N-methyl D-aspartate receptor (NMDA) subunit 2B (NR2B)-containing NMDA receptors and mitochondrial protein cyclophilin D (CypD) are well characterized in mediating neuronal death after ischemia, respectively. However, whether and how NR2B and CypD work together in mediating synaptic injury after ischemia remains elusive. Using a de novo ischemia model of oxygen-glucose deprivation (OGD) in hippocampal slices, we identified a NR2B-dependent mechanism for CypD translocation onto the mitochondrial inner membrane. CypD depletion (CypD null mice) prevented OGD-induced impairment in synaptic transmission recovery. Overexpression of neuronal CypD mice (CypD+) exacerbated OGD-induced loss of synaptic transmission. Inhibition of CypD-dependent mitochondrial permeability transition pore (mPTP) opening by cyclosporine A (CSA) attenuated ischemia-induced synaptic perturbation in CypD+ and non-transgenic (nonTg) mice. The treatment of antioxidant EUK134 to suppress mitochondrial oxidative stress rescued CypD-mediated synaptic dysfunction following OGD in CypD+ slices. Furthermore, OGD provoked the interaction of CypD with P53, which was enhanced in slices overexpressing CypD but was diminished in CypD-null slices Inhibition of p53 using a specific inhibitor of p53 (pifithrin-μ) attenuated the CypD/p53 interaction following OGD, along with a restored synaptic transmission in both nonTg and CypD+ hippocampal slices. Our results indicate that OGD-induced CypD translocation potentiates CypD/P53 interaction in a NR2B dependent manner, promoting oxidative stress and loss of synaptic transmission. We also evaluate a new ex-vivo chronic OGD-induced ischemia model for studying the effect of oxidative stress on synaptic damage. PMID:26232180

  11. NR2B-dependent cyclophilin D translocation suppresses the recovery of synaptic transmission after oxygen-glucose deprivation.

    PubMed

    Zhang, Zhihua; Wang, Yongfu; Yan, Shijun; Du, Fang; Yan, Shirley Shidu

    2015-10-01

    N-methyl d-aspartate receptor (NMDA) subunit 2B (NR2B)-containing NMDA receptors and mitochondrial protein cyclophilin D (CypD) are well characterized in mediating neuronal death after ischemia, respectively. However, whether and how NR2B and CypD work together in mediating synaptic injury after ischemia remains elusive. Using an ex vivo ischemia model of oxygen-glucose deprivation (OGD) in hippocampal slices, we identified a NR2B-dependent mechanism for CypD translocation onto the mitochondrial inner membrane. CypD depletion (CypD null mice) prevented OGD-induced impairment in synaptic transmission recovery. Overexpression of neuronal CypD mice (CypD+) exacerbated OGD-induced loss of synaptic transmission. Inhibition of CypD-dependent mitochondrial permeability transition pore (mPTP) opening by cyclosporine A (CSA) attenuated ischemia-induced synaptic perturbation in CypD+ and non-transgenic (non-Tg) mice. The treatment of antioxidant EUK134 to suppress mitochondrial oxidative stress rescued CypD-mediated synaptic dysfunction following OGD in CypD+ slices. Furthermore, OGD provoked the interaction of CypD with P53, which was enhanced in slices overexpressing CypD but was diminished in CypD-null slices. Inhibition of p53 using a specific inhibitor of p53 (pifithrin-μ) attenuated the CypD/p53 interaction following OGD, along with a restored synaptic transmission in both non-Tg and CypD+ hippocampal slices. Our results indicate that OGD-induced CypD translocation potentiates CypD/P53 interaction in a NR2B dependent manner, promoting oxidative stress and loss of synaptic transmission. We also evaluate a new ex vivo chronic OGD-induced ischemia model for studying the effect of oxidative stress on synaptic damage.

  12. Modeling synaptic transmission of the tripartite synapse

    NASA Astrophysics Data System (ADS)

    Nadkarni, Suhita; Jung, Peter

    2007-03-01

    The tripartite synapse denotes the junction of a pre- and postsynaptic neuron modulated by a synaptic astrocyte. Enhanced transmission probability and frequency of the postsynaptic current-events are among the significant effects of the astrocyte on the synapse as experimentally characterized by several groups. In this paper we provide a mathematical framework for the relevant synaptic interactions between neurons and astrocytes that can account quantitatively for both the astrocytic effects on the synaptic transmission and the spontaneous postsynaptic events. Inferred from experiments, the model assumes that glutamate released by the astrocytes in response to synaptic activity regulates store-operated calcium in the presynaptic terminal. This source of calcium is distinct from voltage-gated calcium influx and accounts for the long timescale of facilitation at the synapse seen in correlation with calcium activity in the astrocytes. Our model predicts the inter-event interval distribution of spontaneous current activity mediated by a synaptic astrocyte and provides an additional insight into a novel mechanism for plasticity in which a low fidelity synapse gets transformed into a high fidelity synapse via astrocytic coupling.

  13. Synaptic connectivity in engineered neuronal networks.

    PubMed

    Molnar, Peter; Kang, Jung-Fong; Bhargava, Neelima; Das, Mainak; Hickman, James J

    2014-01-01

    We have developed a method to organize cells in dissociated cultures using engineered chemical clues on a culture surface and determined their connectivity patterns. Although almost all elements of the synaptic transmission machinery can be studied separately in single cell models in dissociated cultures, the complex physiological interactions between these elements are usually lost. Thus, factors affecting synaptic transmission are generally studied in organotypic cultures, brain slices, or in vivo where the cellular architecture generally remains intact. However, by utilizing engineered neuronal networks complex phenomenon such as synaptic transmission or synaptic plasticity can be studied in a simple, functional, cell culture-based system. We have utilized self-assembled monolayers and photolithography to create the surface templates. Embryonic hippocampal cells, plated on the resultant patterns in serum-free medium, followed the surface clues and formed the engineered neuronal networks. Basic whole-cell patch-clamp electrophysiology was applied to characterize the synaptic connectivity in these engineered two-cell networks. The same technology has been used to pattern other cell types such as cardiomyocytes or skeletal muscle fibers.

  14. Cerebral atrophy in myotonic dystrophy: a voxel based morphometric study.

    PubMed

    Antonini, G; Mainero, C; Romano, A; Giubilei, F; Ceschin, V; Gragnani, F; Morino, S; Fiorelli, M; Soscia, F; Di Pasquale, A; Caramia, F

    2004-11-01

    Brain involvement in myotonic dystrophy type 1 (DM1) is characterised by cortical atrophy and white matter lesions. We compared the magnetic resonance imaging derived grey matter maps of 22 DM1 patients with those of matched, healthy controls using voxel based morphometry to evaluate the extension of global and regional cortical atrophy in DM1, as well as its relationships with clinical and genetic features. Patients had significantly reduced brain tissue volumes. Grey matter volume was inversely correlated with age; this inverse correlation was significantly stronger in DM1 than in controls. Neither the clinical and genetic characteristics nor white matter lesions were correlated with cortical atrophy. Grey matter atrophy was located mainly in the bilateral frontal and parietal lobes, in the bilateral middle temporal gyrus, and in the left superior temporal and occipital gyrus.

  15. Biochemical adaptations of antigravity muscle fibers to disuse atrophy

    NASA Technical Reports Server (NTRS)

    Booth, F. W.

    1978-01-01

    Studies are presented in four parts of this report. The four parts include; (1) studies to gain information on the molecular basis of atrophy by antigravity muscle; (2) studies on the work capacity of antigravity muscles during atrophy and during recovery from atrophy; (3) studies on recovery of degenerated antigravity fibers after removal of hind-limb casts; and (4) studies on the atrophy and recovery of bone. The philosophy of these studies was to identify the time sequence of events in the soleus muscle of the rat following immobilization of the hind limbs, so that the length of the soleus muscle within the fixed limb is less than its resting length. In two separate studies, no decline in the weight of the soleus muscle could be detected during the first 72 hours of limb immobilization.

  16. The Journey of "Geographic Atrophy" through Past, Present, and Future.

    PubMed

    Schmitz-Valckenberg, Steffen

    2017-01-01

    "Geographic atrophy" is a concise term that has been firmly established for the description of the end-stage manifestation of nonexudative age-related macular degeneration (AMD). "Geographic lesions" resembling sharply demarcated continents on a map have been originally described in the German literature in 1854 (landkartenartiger/inselförmiger Zungenfratt) for a manifestation later called "geographic tongue" in English. In 1970, Gass was the first to describe "geographic areas of atrophy" in "senile macular choroidal degeneration." Within a decade, the disease itself was named "geographic atrophy." Today, various meanings of the term are used in parallel both in research and in routine clinical care. Currently, we are on the verge of better understanding the different forms of atrophy development, manifestation, and progression in AMD, which will pave the way for a more rational approach to their nomenclature and classification.

  17. Age effects on atrophy rates of entorhinal cortex and hippocampus

    PubMed Central

    Du, An-Tao; Schuff, Norbert; Chao, Linda L.; Kornak, John; Jagust, William J.; Kramer, Joel H.; Reed, Bruce R.; Miller, Bruce L.; Norman, David; Chui, Helena C.; Weiner, Michael W.

    2007-01-01

    The effects of age, subcortical vascular disease, apolipoprotein E (APOE) ɛ4 allele and hypertension on entorhinal cortex (ERC) and hippocampal atrophy rates were explored in a longitudinal MRI study with 42 cognitively normal (CN) elderly subjects from 58 to 87 years old. The volumes of the ERC, hippocampus, and white matter hyperintensities (WMH) and the presence of lacunes were assessed on MR images. Age was significantly associated with increased atrophy rates of 0.04 ± 0.02% per year for ERC and 0.05 ± 0.02% per year for hippocampus. Atrophy rates of hippocampus, but not that of ERC increased with presence of lacunes, in addition to age. WMH, APOE ɛ4 and hypertension had no significant effect on atrophy rates. In conclusion, age and presence of lacunes should be taken into consideration in imaging studies of CN subjects and AD patients to predict AD progression and assess the response to treatment trials. PMID:15961190

  18. Circulating micrornas as potential biomarkers of muscle atrophy

    NASA Astrophysics Data System (ADS)

    Wang, Fei

    2016-07-01

    Noninvasive biomarkers with diagnostic value and prognostic applications have long been desired to replace muscle biopsy for muscle atrophy patients. Growing evidence indicates that circulating microRNAs are biomarkers to assess pathophysiological status. Here, we show that the medium levels of six muscle-specific miRNAs (miR-1/23a/206/133/499/208b, also known as myomiRs) were all elevated in the medium of starved C2C12 cell (P < 0.01). And, the level of miR-1 and miR-23a were all elevated in the serum of hindlimb unloaded mice (P < 0.01). miR-23a levels were negatively correlated with both muscle mass and muscle fiber cross section area in muscle atrophy patients, indicating that they might represent the degree of muscle atrophy. Collectively, our data indicated that circulating myomiRs could serve as promising biomarkers for muscle atrophy.

  19. Abnormalities of fixation, saccade and pursuit in posterior cortical atrophy.

    PubMed

    Shakespeare, Timothy J; Kaski, Diego; Yong, Keir X X; Paterson, Ross W; Slattery, Catherine F; Ryan, Natalie S; Schott, Jonathan M; Crutch, Sebastian J

    2015-07-01

    The clinico-neuroradiological syndrome posterior cortical atrophy is the cardinal 'visual dementia' and most common atypical Alzheimer's disease phenotype, offering insights into mechanisms underlying clinical heterogeneity, pathological propagation and basic visual phenomena (e.g. visual crowding). Given the extensive attention paid to patients' (higher order) perceptual function, it is surprising that there have been no systematic analyses of basic oculomotor function in this population. Here 20 patients with posterior cortical atrophy, 17 patients with typical Alzheimer's disease and 22 healthy controls completed tests of fixation, saccade (including fixation/target gap and overlap conditions) and smooth pursuit eye movements using an infrared pupil-tracking system. Participants underwent detailed neuropsychological and neurological examinations, with a proportion also undertaking brain imaging and analysis of molecular pathology. In contrast to informal clinical evaluations of oculomotor dysfunction frequency (previous studies: 38%, current clinical examination: 33%), detailed eyetracking investigations revealed eye movement abnormalities in 80% of patients with posterior cortical atrophy (compared to 17% typical Alzheimer's disease, 5% controls). The greatest differences between posterior cortical atrophy and typical Alzheimer's disease were seen in saccadic performance. Patients with posterior cortical atrophy made significantly shorter saccades especially for distant targets. They also exhibited a significant exacerbation of the normal gap/overlap effect, consistent with 'sticky fixation'. Time to reach saccadic targets was significantly associated with parietal and occipital cortical thickness measures. On fixation stability tasks, patients with typical Alzheimer's disease showed more square wave jerks whose frequency was associated with lower cerebellar grey matter volume, while patients with posterior cortical atrophy showed large saccadic intrusions

  20. Abnormalities of fixation, saccade and pursuit in posterior cortical atrophy

    PubMed Central

    Kaski, Diego; Yong, Keir X. X.; Paterson, Ross W.; Slattery, Catherine F.; Ryan, Natalie S.; Schott, Jonathan M.; Crutch, Sebastian J.

    2015-01-01

    The clinico-neuroradiological syndrome posterior cortical atrophy is the cardinal ‘visual dementia’ and most common atypical Alzheimer’s disease phenotype, offering insights into mechanisms underlying clinical heterogeneity, pathological propagation and basic visual phenomena (e.g. visual crowding). Given the extensive attention paid to patients’ (higher order) perceptual function, it is surprising that there have been no systematic analyses of basic oculomotor function in this population. Here 20 patients with posterior cortical atrophy, 17 patients with typical Alzheimer’s disease and 22 healthy controls completed tests of fixation, saccade (including fixation/target gap and overlap conditions) and smooth pursuit eye movements using an infrared pupil-tracking system. Participants underwent detailed neuropsychological and neurological examinations, with a proportion also undertaking brain imaging and analysis of molecular pathology. In contrast to informal clinical evaluations of oculomotor dysfunction frequency (previous studies: 38%, current clinical examination: 33%), detailed eyetracking investigations revealed eye movement abnormalities in 80% of patients with posterior cortical atrophy (compared to 17% typical Alzheimer’s disease, 5% controls). The greatest differences between posterior cortical atrophy and typical Alzheimer’s disease were seen in saccadic performance. Patients with posterior cortical atrophy made significantly shorter saccades especially for distant targets. They also exhibited a significant exacerbation of the normal gap/overlap effect, consistent with ‘sticky fixation’. Time to reach saccadic targets was significantly associated with parietal and occipital cortical thickness measures. On fixation stability tasks, patients with typical Alzheimer’s disease showed more square wave jerks whose frequency was associated with lower cerebellar grey matter volume, while patients with posterior cortical atrophy showed large

  1. Calculation of brain atrophy using computed tomography and a new atrophy measurement tool

    NASA Astrophysics Data System (ADS)

    Bin Zahid, Abdullah; Mikheev, Artem; Yang, Andrew Il; Samadani, Uzma; Rusinek, Henry

    2015-03-01

    Purpose: To determine if brain atrophy can be calculated by performing volumetric analysis on conventional computed tomography (CT) scans in spite of relatively low contrast for this modality. Materials & Method: CTs for 73 patients from the local Veteran Affairs database were selected. Exclusion criteria: AD, NPH, tumor, and alcohol abuse. Protocol: conventional clinical acquisition (Toshiba; helical, 120 kVp, X-ray tube current 300mA, slice thickness 3-5mm). Locally developed, automatic algorithm was used to segment intracranial cavity (ICC) using (a) white matter seed (b) constrained growth, limited by inner skull layer and (c) topological connectivity. ICC was further segmented into CSF and brain parenchyma using a threshold of 16 Hu. Results: Age distribution: 25-95yrs; (Mean 67+/-17.5yrs.). Significant correlation was found between age and CSF/ICC(r=0.695, p<0.01 2-tailed). A quadratic model (y=0.06-0.001x+2.56x10-5x2 ; where y=CSF/ICC and x=age) was a better fit to data (r=0.716, p < 0.01). This is in agreement with MRI literature. For example, Smith et al. found annual CSF/ICC increase in 58 - 94.5 y.o. individuals to be 0.2%/year, whereas our data, restricted to the same age group yield 0.3%/year(0.2-0.4%/yrs. 95%C.I.). Slightly increased atrophy among elderly VA patients is attributable to the presence of other comorbidities. Conclusion: Brain atrophy can be reliably calculated using automated software and conventional CT. Compared to MRI, CT is more widely available, cheaper, and less affected by head motion due to ~100 times shorter scan time. Work is in progress to improve the precision of the measurements, possibly leading to assessment of longitudinal changes within the patient.

  2. Premorbid effects of APOE on synaptic proteins in human temporal neocortex.

    PubMed

    Love, Seth; Siew, L Khai; Dawbarn, David; Wilcock, Gordon K; Ben-Shlomo, Yoav; Allen, Shelley J

    2006-06-01

    APOE affects the risk of Alzheimer's disease (AD) and course of several other neurologic diseases. Experimental studies suggest that APOE influences synaptogenesis. We measured the concentration of two presynaptic proteins, synaptophysin and syntaxin 1, and also postsynaptic density-95 (PSD95), in superior temporal cortex from 42 AD and 160 normal brains, and determined the APOE genotypes. The concentration of both presynaptic proteins was approximately two-thirds lower in AD than normal brains and that of PSD95 one-third lower. No effect of APOE on synaptic proteins was found in advanced AD. However, in normal brain, epsilon4 was associated with lower concentrations of all three synaptic proteins and epsilon2 with significantly elevated PSD95 (p=0.03). A combined measure of synaptic proteins showed a significant linear decrease from epsilon2 through epsilon3 to varepsilon4 (p=0.01). APOE influences the concentration of synaptic proteins in normal superior temporal cortex and may thereby affect the response to injury, and the risk and outcome of a range of neurologic diseases.

  3. Early β-Amyloid-induced Synaptic Dysfunction Is Counteracted by Estrogen in Organotypic Hippocampal Cultures.

    PubMed

    Merlo, Sara; Spampinato, Simona Federica; Capani, Francisco; Sortino, Maria Angela

    2016-01-01

    In the present study we set up a model of slow progression of neuronal injury by exposing organotypic hippocampal cultures to a low concentration of Amyloid β (25-35) peptide (Aβ, 2 μM) to analyze the time-related effects of 17-β estradiol (17β-E2, 10 nM). Neuronal death occurs after 7 d and is prevented by addition of 17β-E2 24 h prior to, together with or 48 h after exposure to Aβ. This effect is mimicked by selective ERα agonist PPT (100 nM). Treatment with Aβ leads to early and transient (16-72 h) increase of pre- and post-synaptic proteins synaptophysin and PSD95, followed by a decrease coincident with neuronal death (7d), all prevented by 17β-E2. At 72 h of Aβ exposure, synaptic activity is increased, as by higher levels of glutamate and increased loading and unloading of FM 1-43-labeled synaptic vesicles. All these effects are also prevented by 17β-E2. These data point out beneficial effects of estrogen on early Aβ-induced synaptic disruption.

  4. Facilitating text reading in posterior cortical atrophy

    PubMed Central

    Rajdev, Kishan; Shakespeare, Timothy J.; Leff, Alexander P.; Crutch, Sebastian J.

    2015-01-01

    Objective: We report (1) the quantitative investigation of text reading in posterior cortical atrophy (PCA), and (2) the effects of 2 novel software-based reading aids that result in dramatic improvements in the reading ability of patients with PCA. Methods: Reading performance, eye movements, and fixations were assessed in patients with PCA and typical Alzheimer disease and in healthy controls (experiment 1). Two reading aids (single- and double-word) were evaluated based on the notion that reducing the spatial and oculomotor demands of text reading might support reading in PCA (experiment 2). Results: Mean reading accuracy in patients with PCA was significantly worse (57%) compared with both patients with typical Alzheimer disease (98%) and healthy controls (99%); spatial aspects of passages were the primary determinants of text reading ability in PCA. Both aids led to considerable gains in reading accuracy (PCA mean reading accuracy: single-word reading aid = 96%; individual patient improvement range: 6%–270%) and self-rated measures of reading. Data suggest a greater efficiency of fixations and eye movements under the single-word reading aid in patients with PCA. Conclusions: These findings demonstrate how neurologic characterization of a neurodegenerative syndrome (PCA) and detailed cognitive analysis of an important everyday skill (reading) can combine to yield aids capable of supporting important everyday functional abilities. Classification of evidence: This study provides Class III evidence that for patients with PCA, 2 software-based reading aids (single-word and double-word) improve reading accuracy. PMID:26138948

  5. Towards translational therapies for multiple system atrophy

    PubMed Central

    Kuzdas-Wood, Daniela; Stefanova, Nadia; Jellinger, Kurt A.; Seppi, Klaus; Schlossmacher, Michael G.; Poewe, Werner; Wenning, Gregor K.

    2014-01-01

    Multiple system atrophy (MSA) is a fatal adult-onset neurodegenerative disorder of uncertain etiopathogenesis manifesting with autonomic failure, parkinsonism, and ataxia in any combination. The underlying neuropathology affects central autonomic, striatonigral and olivopontocerebellar pathways and it is associated with distinctive glial cytoplasmic inclusions (GCIs, Papp-Lantos bodies) that contain aggregates of α-synuclein. Current treatment options are very limited and mainly focused on symptomatic relief, whereas disease modifying options are lacking. Despite extensive testing, no neuroprotective drug treatment has been identified up to now; however, a neurorestorative approach utilizing autologous mesenchymal stem cells has shown remarkable beneficial effects in the cerebellar variant of MSA. Here, we review the progress made over the last decade in defining pathogenic targets in MSA and summarize insights gained from candidate disease-modifying interventions that have utilized a variety of well-established preclinical MSA models. We also discuss the current limitations that our field faces and suggest solutions for possible approaches in cause-directed therapies of MSA. PMID:24598411

  6. Novel Therapeutic Approaches in Multiple System Atrophy

    PubMed Central

    Palma, Jose-Alberto; Kaufmann, Horacio

    2014-01-01

    Multiple system atrophy (MSA) is a sporadic, adult onset, relentlessly, progressive neurodegenerative disease characterized by autonomic abnormalities associated with parkinsonism, cerebellar dysfunction, pyramidal signs, or combinations thereof. Treatments that can halt or reverse the progression of MSA have not yet been identified. MSA is neuropathologically defined by the presence of α-synuclein–containing inclusions, particularly in the cytoplasm of oligodendrocytes (glial cytoplasmic inclusions, GCIs), which are associated with neurodegeneration. The mechanisms by which oligodendrocytic α-synuclein inclusions cause neuronal death in MSA are not completely understood. The MSA neurodegenerative process likely comprise cell-to-cell transmission of α-synuclein in a prion-like manner, α-synuclein aggregation, increased oxidative stress, abnormal expression of tubulin proteins, decreased expression of neurotrophic factors, excitotoxicity and microglial activation, and neuroinflammation. In an attempt to block each of these pathogenic mechanisms, several pharmacologic approaches have been tried and shown to exert neuroprotective effects in transgenic mouse or cellular models of MSA. These include sertraline, paroxetine, and lithium, which hamper arrival of α-synuclein to oligodendroglia; rifampicin, lithium, and non-steroidal anti-inflamatory drugs, which inhibit α-synuclein aggregation in oligodendrocytes; riluzole, rasagiline, fluoxetine and mesenchimal stem cells, which exert neuroprotective actions; and minocycline and intravenous immunoglobulins, which reduce neuroinflammation and microglial activation. These and other potential therapeutic strategies for MSA are summarized in this review. PMID:24928797

  7. Spinal Muscular Atrophy: Current Therapeutic Strategies

    NASA Astrophysics Data System (ADS)

    Kiselyov, Alex S.; Gurney, Mark E.

    Proximal spinal muscular atrophy (SMA) is an autosomal recessive disorder characterized by death of motor neurons in the spinal cord. SMA is caused by deletion and/or mutation of the survival motor neuron gene (SMN1) on chromosome 5q13. There are variable numbers of copies of a second, related gene named SMN2 located in the proximity to SMN1. Both genes encode the same protein (Smn). Loss of SMN1 and incorrect splicing of SMN2 affect cellular levels of Smn triggering death of motor neurons. The severity of SMA is directly related to the normal number of copies of SMN2 carried by the patient. A considerable effort has been dedicated to identifying modalities including both biological and small molecule agents that increase SMN2 promoter activity to upregulate gene transcription and produce increased quantities of full-length Smn protein. This review summarizes recent progress in the area and suggests potential target product profile for an SMA therapeutic.

  8. Effects of exercise training on neuromuscular junction morphology and pre- to post-synaptic coupling in young and aged rats.

    PubMed

    Deschenes, M R; Kressin, K A; Garratt, R N; Leathrum, C M; Shaffrey, E C

    2016-03-01

    The objective of this study was to determine whether pre- to post-synaptic coupling of the neuromuscular junction (NMJ) could be maintained in the face of significant morphological remodeling brought about by exercise training, and whether aging altered this capacity. Eighteen young adult (8 mo) and eighteen aged (24 mo) Fischer 344 rats were randomly assigned to either endurance trained (treadmill running) or untrained control conditions resulting in four groups (N=9/group). After the 10-week intervention rats were euthanized and hindlimb muscles were surgically removed, quickly frozen at approximate resting length and stored at -85°C. The plantaris and EDL muscles were selected for study as they have different functions (ankle extensor and ankle flexor, respectively) but both are similarly and overwhelmingly comprised of fast-twitch myofibers. NMJs were stained with immunofluorescent procedures and images were collected with confocal microscopy. Each variable of interest was analyzed with a 2-way ANOVA with main effects of age and endurance training; in all cases significance was set at P⩽0.05. Results showed that no main effects of aging were detected in NMJs of either the plantaris or the EDL. Similarly, endurance training failed to alter any synaptic parameters of EDL muscles. The same exercise stimulus in the plantaris however, resulted in significant pre- and post-synaptic remodeling, but without altering pre- to post-synaptic coupling of the NMJs. Myofiber profiles of the same plantaris and EDL muscles were also analyzed. Unlike NMJs, myofibers displayed significant age-related atrophy in both the plantaris and EDL muscles. Overall, these results confirm that despite significant training-induced reconfiguration of NMJs, pre- to post-synaptic coupling remains intact underscoring the importance of maintaining proper apposition of neurotransmitter release and binding sites so that effective nerve to muscle communication is assured.

  9. Effects of Exercise Training on Neuromuscular Junction Morphology and Pre- to Post-synaptic Coupling in Young and Aged Rats

    PubMed Central

    Deschenes, Michael R.; Kressin, Kaitlyn A.; Garratt, Robyn N.; Leathrum, Colleen M.; Shaffrey, Ellen C.

    2015-01-01

    The objective of this study was to determine whether pre- to post-synaptic coupling of the neuromuscular junction (NMJ) could be maintained in the face of significant morphological remodeling brought about by exercise training, and whether aging altered this capacity. Eighteen young adult (8 mo) and eighteen aged (24 mo) Fischer 344 rats were randomly assigned to either endurance trained (treadmill running) or untrained control conditions resulting in four groups (N=9/group). After the 10 week intervention rats were euthanized and hindlimb muscles were surgically removed, quickly frozen at approximate resting length and stored at −85°C. The plantaris and EDL muscles were selected for study as they have different functions (ankle extensor and ankle flexor, respectively) but both are similarly and overwhelmingly comprised of fast-twitch myofibers. NMJs were stained with immunofluorescent procedures and images were collected with confocal microscopy. Each variable of interest was analyzed with 2-way ANOVA with main effects of age and endurance training; in all cases significance was set at P ≤ 0.05. Results showed that no main effects of aging were detected in NMJs of either the plantaris or the EDL. Similarly, endurance training failed to alter any synaptic parameters of EDL muscles. The same exercise stimulus in the plantaris however, resulted in significant pre- and post-synaptic remodeling, but without altering pre- to post-synaptic coupling of the NMJs. Myofiber profiles of the same plantaris and EDL muscles were also analyzed. Unlike NMJs, myofibers displayed significant age-related atrophy in both the plantaris and EDL muscles. Overall, these results confirm that despite significant training-induced reconfiguration of NMJs, pre- to post-synaptic coupling remains intact underscoring the importance of maintaining proper apposition of neurotransmitter release and binding sites so that effective nerve to muscle communication is assured. PMID:26711679

  10. Actin Out: Regulation of the Synaptic Cytoskeleton

    PubMed Central

    Spence, Erin F.; Soderling, Scott H.

    2015-01-01

    The small size of dendritic spines belies the elaborate role they play in excitatory synaptic transmission and ultimately complex behaviors. The cytoskeletal architecture of the spine is predominately composed of actin filaments. These filaments, which at first glance might appear simple, are also surprisingly complex. They dynamically assemble into different structures and serve as a platform for orchestrating the elaborate responses of the spine during spinogenesis and experience-dependent plasticity. Multiple mutations associated with human neurodevelopmental and psychiatric disorders involve genes that encode regulators of the synaptic cytoskeleton. A major, unresolved question is how the disruption of specific actin filament structures leads to the onset and progression of complex synaptic and behavioral phenotypes. This review will cover established and emerging mechanisms of actin cytoskeletal remodeling and how this influences specific aspects of spine biology that are implicated in disease. PMID:26453304

  11. Astrocytes Optimize the Synaptic Transmission of Information

    PubMed Central

    Nadkarni, Suhita; Jung, Peter; Levine, Herbert

    2008-01-01

    Chemical synapses transmit information via the release of neurotransmitter-filled vesicles from the presynaptic terminal. Using computational modeling, we predict that the limited availability of neurotransmitter resources in combination with the spontaneous release of vesicles limits the maximum degree of enhancement of synaptic transmission. This gives rise to an optimal tuning that depends on the number of active zones. There is strong experimental evidence that astrocytes that enwrap synapses can modulate the probabilities of vesicle release through bidirectional signaling and hence regulate synaptic transmission. For low-fidelity hippocampal synapses, which typically have only one or two active zones, the predicted optimal values lie close to those determined by experimentally measured astrocytic feedback, suggesting that astrocytes optimize synaptic transmission of information. PMID:18516277

  12. Synaptic integration by NG2 cells

    PubMed Central

    Sun, Wenjing; Dietrich, Dirk

    2013-01-01

    NG2 expressing oligodendrocyte precursor cells stand out from other types of glial cells by receiving classical synaptic contacts from many neurons. This unconventional form of signaling between neurons and glial cells enables NG2 cells to receive information about the activity of presynaptic neurons with high temporal and spatial precision and has been postulated to be involved in activity-dependent myelination. While this still unproven concept is generally compelling, how NG2 cells may integrate synaptic input has hardly been addressed to date. Here we review the biophysical characteristics of synaptic currents and membrane properties of NG2 cells and discuss their capabilities to perform complex temporal and spatial signal integration and how this may be important for activity-dependent myelination. PMID:24391539

  13. Astroglial Metabolic Networks Sustain Hippocampal Synaptic Transmission

    NASA Astrophysics Data System (ADS)

    Rouach, Nathalie; Koulakoff, Annette; Abudara, Veronica; Willecke, Klaus; Giaume, Christian

    2008-12-01

    Astrocytes provide metabolic substrates to neurons in an activity-dependent manner. However, the molecular mechanisms involved in this function, as well as its role in synaptic transmission, remain unclear. Here, we show that the gap-junction subunit proteins connexin 43 and 30 allow intercellular trafficking of glucose and its metabolites through astroglial networks. This trafficking is regulated by glutamatergic synaptic activity mediated by AMPA receptors. In the absence of extracellular glucose, the delivery of glucose or lactate to astrocytes sustains glutamatergic synaptic transmission and epileptiform activity only when they are connected by gap junctions. These results indicate that astroglial gap junctions provide an activity-dependent intercellular pathway for the delivery of energetic metabolites from blood vessels to distal neurons.

  14. Synaptic activity: An emerging player in schizophrenia.

    PubMed

    Sarkar, Anindita; Marchetto, Maria C; Gage, Fred H

    2017-02-01

    Schizophrenia is a polygenic disorder with a complex etiology. While the genetic and molecular underpinnings of the disease are poorly understood, variations in genes encoding synaptic pathways are consistently implicated. Although its impact is still an open question, a deficit in synaptic activity provides an attractive model to explain the cognitive etiology of schizophrenia. Recent advances in high-throughput imaging and functional studies bring new hope for the application of in vitro disease modeling with patient-derived neurons to empirically ascertain the extent to which these synaptic pathways are involved in the disease. In addition, the emergent avenue of research targeted to probe neuronal connections is revealing critical insight into circuitry and may influence how we think about psychiatric disorders in the near future. This article is part of a Special Issue entitled SI: Exploiting human neurons.

  15. NMDA Receptors Mediate Synaptic Competition in Culture

    PubMed Central

    She, Kevin; Craig, Ann Marie

    2011-01-01

    Background Activity through NMDA type glutamate receptors sculpts connectivity in the developing nervous system. This topic is typically studied in the visual system in vivo, where activity of inputs can be differentially regulated, but in which individual synapses are difficult to visualize and mechanisms governing synaptic competition can be difficult to ascertain. Here, we develop a model of NMDA-receptor dependent synaptic competition in dissociated cultured hippocampal neurons. Methodology/Principal Findings GluN1 -/- (KO) mouse hippocampal neurons lacking the essential NMDA receptor subunit were cultured alone or cultured in defined ratios with wild type (WT) neurons. The absence of functional NMDA receptors did not alter neuron survival. Synapse development was assessed by immunofluorescence for postsynaptic PSD-95 family scaffold and apposed presynaptic vesicular glutamate transporter VGlut1. Synapse density was specifically enhanced onto minority wild type neurons co-cultured with a majority of GluN1 -/- neighbour neurons, both relative to the GluN1 -/- neighbours and relative to sister pure wild type cultures. This form of synaptic competition was dependent on NMDA receptor activity and not conferred by the mere physical presence of GluN1. In contrast to these results in 10% WT and 90% KO co-cultures, synapse density did not differ by genotype in 50% WT and 50% KO co-cultures or in 90% WT and 10% KO co-cultures. Conclusions/Significance The enhanced synaptic density onto NMDA receptor-competent neurons in minority coculture with GluN1 -/- neurons represents a cell culture paradigm for studying synaptic competition. Mechanisms involved may include a retrograde ‘reward’ signal generated by WT neurons, although in this paradigm there was no ‘punishment’ signal against GluN1 -/- neurons. Cell culture assays involving such defined circuits may help uncover the rules and mechanisms of activity-dependent synaptic competition in the developing nervous

  16. Synaptic transmission at retinal ribbon synapses

    PubMed Central

    Heidelberger, Ruth; Thoreson, Wallace B.; Witkovsky, Paul

    2006-01-01

    The molecular organization of ribbon synapses in photoreceptors and ON bipolar cells is reviewed in relation to the process of neurotransmitter release. The interactions between ribbon synapse-associated proteins, synaptic vesicle fusion machinery and the voltage-gated calcium channels that gate transmitter release at ribbon synapses are discussed in relation to the process of synaptic vesicle exocytosis. We describe structural and mechanistic specializations that permit the ON bipolar cell to release transmitter at a much higher rate than the photoreceptor does, under in vivo conditions. We also consider the modulation of exocytosis at photoreceptor synapses, with an emphasis on the regulation of calcium channels. PMID:16027025

  17. Extracellular ATP Hydrolysis Inhibits Synaptic Transmission by Increasing pH Buffering in the Synaptic Cleft

    PubMed Central

    Vroman, Rozan; Klaassen, Lauw J.; Howlett, Marcus H.C.; Cenedese, Valentina; Klooster, Jan; Sjoerdsma, Trijntje; Kamermans, Maarten

    2014-01-01

    Neuronal computations strongly depend on inhibitory interactions. One such example occurs at the first retinal synapse, where horizontal cells inhibit photoreceptors. This interaction generates the center/surround organization of bipolar cell receptive fields and is crucial for contrast enhancement. Despite its essential role in vision, the underlying synaptic mechanism has puzzled the neuroscience community for decades. Two competing hypotheses are currently considered: an ephaptic and a proton-mediated mechanism. Here we show that horizontal cells feed back to photoreceptors via an unexpected synthesis of the two. The first one is a very fast ephaptic mechanism that has no synaptic delay, making it one of the fastest inhibitory synapses known. The second one is a relatively slow (τ≈200 ms), highly intriguing mechanism. It depends on ATP release via Pannexin 1 channels located on horizontal cell dendrites invaginating the cone synaptic terminal. The ecto-ATPase NTPDase1 hydrolyses extracellular ATP to AMP, phosphate groups, and protons. The phosphate groups and protons form a pH buffer with a pKa of 7.2, which keeps the pH in the synaptic cleft relatively acidic. This inhibits the cone Ca2+ channels and consequently reduces the glutamate release by the cones. When horizontal cells hyperpolarize, the pannexin 1 channels decrease their conductance, the ATP release decreases, and the formation of the pH buffer reduces. The resulting alkalization in the synaptic cleft consequently increases cone glutamate release. Surprisingly, the hydrolysis of ATP instead of ATP itself mediates the synaptic modulation. Our results not only solve longstanding issues regarding horizontal cell to photoreceptor feedback, they also demonstrate a new form of synaptic modulation. Because pannexin 1 channels and ecto-ATPases are strongly expressed in the nervous system and pannexin 1 function is implicated in synaptic plasticity, we anticipate that this novel form of synaptic modulation

  18. Satellite cell dysfunction and impaired IGF-1 signaling cause CKD-induced muscle atrophy.

    PubMed

    Zhang, Liping; Wang, Xiaonan H; Wang, Huiling; Du, Jie; Mitch, William E

    2010-03-01

    Muscle wasting in chronic kidney disease (CKD) begins with impaired insulin/IGF-1 signaling, causing abnormal protein metabolism. In certain models of muscle atrophy, reduced satellite cell function contributes to atrophy, but how CKD affects satellite cell function is unknown. Here, we found that isolated satellite cells from mice with CKD had less MyoD, the master switch of satellite cell activation, and suppressed myotube formation compared with control mice. In vivo, CKD delayed the regeneration of injured muscle and decreased MyoD and myogenin expression, suggesting that CKD impairs proliferation and differentiation of satellite cells. In isolated satellite cells from control mice, IGF-1 increased the expression of myogenic genes through an Akt-dependent pathway. CKD impaired Akt phosphorylation in satellite cells after muscle injury. To test whether impaired IGF-1 signaling could be responsible for decreased satellite cell function in CKD, we created an inducible IGF-1 receptor knockout mouse and found impaired satellite cell function and muscle regeneration. In addition, both CKD and IGF-1 receptor knockout mice developed fibrosis in regenerating muscles. Taken together, impaired IGF-1 signaling in CKD not only leads to abnormal protein metabolism in muscle but also impairs satellite cell function and promotes fibrosis in regenerating muscle. These signaling pathways may hold potential therapeutic targets to reduce CKD-related muscle wasting.

  19. Muscle Atrophy Reversed by Growth Factor Activation of Satellite Cells in a Mouse Muscle Atrophy Model

    PubMed Central

    Hauerslev, Simon; Vissing, John; Krag, Thomas O.

    2014-01-01

    Muscular dystrophies comprise a large group of inherited disorders that lead to progressive muscle wasting. We wanted to investigate if targeting satellite cells can enhance muscle regeneration and thus increase muscle mass. We treated mice with hepatocyte growth factor and leukemia inhibitory factor under three conditions: normoxia, hypoxia and during myostatin deficiency. We found that hepatocyte growth factor treatment led to activation of the Akt/mTOR/p70S6K protein synthesis pathway, up-regulation of the myognic transcription factors MyoD and myogenin, and subsequently the negative growth control factor, myostatin and atrophy markers MAFbx and MuRF1. Hypoxia-induced atrophy was partially restored by hepatocyte growth factor combined with leukemia inhibitory factor treatment. Dividing satellite cells were three-fold increased in the treatment group compared to control. Finally, we demonstrated that myostatin regulates satellite cell activation and myogenesis in vivo following treatment, consistent with previous findings in vitro. Our results suggest, not only a novel in vivo pharmacological treatment directed specifically at activating the satellite cells, but also a myostatin dependent mechanism that may contribute to the progressive muscle wasting seen in severely affected patients with muscular dystrophy and significant on-going regeneration. This treatment could potentially be applied to many conditions that feature muscle wasting to increase muscle bulk and strength. PMID:24963862

  20. Muscle atrophy reversed by growth factor activation of satellite cells in a mouse muscle atrophy model.

    PubMed

    Hauerslev, Simon; Vissing, John; Krag, Thomas O

    2014-01-01

    Muscular dystrophies comprise a large group of inherited disorders that lead to progressive muscle wasting. We wanted to investigate if targeting satellite cells can enhance muscle regeneration and thus increase muscle mass. We treated mice with hepatocyte growth factor and leukemia inhibitory factor under three conditions: normoxia, hypoxia and during myostatin deficiency. We found that hepatocyte growth factor treatment led to activation of the Akt/mTOR/p70S6K protein synthesis pathway, up-regulation of the myognic transcription factors MyoD and myogenin, and subsequently the negative growth control factor, myostatin and atrophy markers MAFbx and MuRF1. Hypoxia-induced atrophy was partially restored by hepatocyte growth factor combined with leukemia inhibitory factor treatment. Dividing satellite cells were three-fold increased in the treatment group compared to control. Finally, we demonstrated that myostatin regulates satellite cell activation and myogenesis in vivo following treatment, consistent with previous findings in vitro. Our results suggest, not only a novel in vivo pharmacological treatment directed specifically at activating the satellite cells, but also a myostatin dependent mechanism that may contribute to the progressive muscle wasting seen in severely affected patients with muscular dystrophy and significant on-going regeneration. This treatment could potentially be applied to many conditions that feature muscle wasting to increase muscle bulk and strength.

  1. TRiC subunits enhance BDNF axonal transport and rescue striatal atrophy in Huntington’s disease

    PubMed Central

    Zhao, Xiaobei; Chen, Xu-Qiao; Han, Eugene; Hu, Yue; Paik, Paul; Ding, Zhiyong; Overman, Julia; Lau, Alice L.; Shahmoradian, Sarah H.; Chiu, Wah; Thompson, Leslie M.; Wu, Chengbiao; Mobley, William C.

    2016-01-01

    Corticostriatal atrophy is a cardinal manifestation of Huntington’s disease (HD). However, the mechanism(s) by which mutant huntingtin (mHTT) protein contributes to the degeneration of the corticostriatal circuit is not well understood. We recreated the corticostriatal circuit in microfluidic chambers, pairing cortical and striatal neurons from the BACHD model of HD and its WT control. There were reduced synaptic connectivity and atrophy of striatal neurons in cultures in which BACHD cortical and striatal neurons were paired. However, these changes were prevented if WT cortical neurons were paired with BACHD striatal neurons; synthesis and release of brain-derived neurotrophic factor (BDNF) from WT cortical axons were responsible. Consistent with these findings, there was a marked reduction in anterograde transport of BDNF in BACHD cortical neurons. Subunits of the cytosolic chaperonin T-complex 1 (TCP-1) ring complex (TRiC or CCT for chaperonin containing TCP-1) have been shown to reduce mHTT levels. Both CCT3 and the apical domain of CCT1 (ApiCCT1) decreased the level of mHTT in BACHD cortical neurons. In cortical axons, they normalized anterograde BDNF transport, restored retrograde BDNF transport, and normalized lysosomal transport. Importantly, treating BACHD cortical neurons with ApiCCT1 prevented BACHD striatal neuronal atrophy by enhancing release of BDNF that subsequently acts through tyrosine receptor kinase B (TrkB) receptor on striatal neurons. Our findings are evidence that TRiC reagent-mediated reductions in mHTT enhanced BDNF delivery to restore the trophic status of BACHD striatal neurons. PMID:27601642

  2. Knee Injuries

    MedlinePlus

    ... injuries. Try weightlifting to strengthen your muscles and stretching, Pilates, and yoga to improve your flexibility because ... lead to injuries and inflammation from overuse. Regular stretching can help. After an injury or surgery has ...

  3. Eye Injuries

    MedlinePlus

    The structure of your face helps protect your eyes from injury. Still, injuries can damage your eye, sometimes severely enough that you could lose your vision. Most eye injuries are preventable. If you play sports or ...

  4. Sports Injuries

    MedlinePlus

    ... sometimes you can injure yourself when you play sports or exercise. Accidents, poor training practices, or improper ... can also lead to injuries. The most common sports injuries are Sprains and strains Knee injuries Swollen ...

  5. The language profile of Posterior Cortical Atrophy

    PubMed Central

    Crutch, Sebastian J.; Lehmann, Manja; Warren, Jason D.; Rohrer, Jonathan D.

    2015-01-01

    Background Posterior Cortical Atrophy (PCA) is typically considered to be a visual syndrome, primarily characterised by progressive impairment of visuoperceptual and visuospatial skills. However patients commonly describe early difficulties with word retrieval. This paper details the first systematic analysis of linguistic function in PCA. Characterising and quantifying the aphasia associated with PCA is important for clarifying diagnostic and selection criteria for clinical and research studies. Methods Fifteen patients with PCA, 7 patients with logopenic/phonological aphasia (LPA) and 18 age-matched healthy participants completed a detailed battery of linguistic tests evaluating auditory input processing, repetition and working memory, lexical and grammatical comprehension, single word retrieval and fluency, and spontaneous speech. Results Relative to healthy controls, PCA patients exhibited language impairments across all the domains examined, but with anomia, reduced phonemic fluency and slowed speech rate the most prominent deficits. PCA performance most closely resembled that of LPA patients on tests of auditory input processing, repetition and digit span, but was relatively stronger on tasks of comprehension and spontaneous speech. Conclusions The study demonstrates that in addition to the well-reported degradation of vision, literacy and numeracy, PCA is characterised by a progressive oral language dysfunction with prominent word retrieval difficulties. Overlap in the linguistic profiles of PCA and LPA, which are both most commonly caused by Alzheimer’s disease, further emphasises the notion of a phenotypic continuum between typical and atypical manifestations of the disease. Clarifying the boundaries between AD phenotypes has important implications for diagnosis, clinical trial recruitment and investigations into biological factors driving phenotypic heterogeneity in AD. Rehabilitation strategies to ameliorate the phonological deficit in PCA are required

  6. Impact of Synaptic Neurotransmitter Concentration Time Course on the Kinetics and Pharmacological Modulation of Inhibitory Synaptic Currents

    PubMed Central

    Barberis, Andrea; Petrini, Enrica Maria; Mozrzymas, Jerzy W.

    2011-01-01

    The time course of synaptic currents is a crucial determinant of rapid signaling between neurons. Traditionally, the mechanisms underlying the shape of synaptic signals are classified as pre- and post-synaptic. Over the last two decades, an extensive body of evidence indicated that synaptic signals are critically shaped by the neurotransmitter time course which encompasses several phenomena including pre- and post-synaptic ones. The agonist transient depends on neurotransmitter release mechanisms, diffusion within the synaptic cleft, spill-over to the extra-synaptic space, uptake, and binding to post-synaptic receptors. Most estimates indicate that the neurotransmitter transient is very brief, lasting between one hundred up to several hundreds of microseconds, implying that post-synaptic activation is characterized by a high degree of non-equilibrium. Moreover, pharmacological studies provide evidence that the kinetics of agonist transient plays a crucial role in setting the susceptibility of synaptic currents to modulation by a variety of compounds of physiological or clinical relevance. More recently, the role of the neurotransmitter time course has been emphasized by studies carried out on brain slice models that revealed a striking, cell-dependent variability of synaptic agonist waveforms ranging from rapid pulses to slow volume transmission. In the present paper we review the advances on studies addressing the impact of synaptic neurotransmitter transient on kinetics and pharmacological modulation of synaptic currents at inhibitory synapses. PMID:21734864

  7. P2Y Receptors in Synaptic Transmission and Plasticity: Therapeutic Potential in Cognitive Dysfunction

    PubMed Central

    Guzman, Segundo J.; Gerevich, Zoltan

    2016-01-01

    ATP released from neurons and astrocytes during neuronal activity or under pathophysiological circumstances is able to influence information flow in neuronal circuits by activation of ionotropic P2X and metabotropic P2Y receptors and subsequent modulation of cellular excitability, synaptic strength, and plasticity. In the present paper we review cellular and network effects of P2Y receptors in the brain. We show that P2Y receptors inhibit the release of neurotransmitters, modulate voltage- and ligand-gated ion channels, and differentially influence the induction of synaptic plasticity in the prefrontal cortex, hippocampus, and cerebellum. The findings discussed here may explain how P2Y1 receptor activation during brain injury, hypoxia, inflammation, schizophrenia, or Alzheimer's disease leads to an impairment of cognitive processes. Hence, it is suggested that the blockade of P2Y1 receptors may have therapeutic potential against cognitive disturbances in these states. PMID:27069691

  8. P2Y Receptors in Synaptic Transmission and Plasticity: Therapeutic Potential in Cognitive Dysfunction.

    PubMed

    Guzman, Segundo J; Gerevich, Zoltan

    2016-01-01

    ATP released from neurons and astrocytes during neuronal activity or under pathophysiological circumstances is able to influence information flow in neuronal circuits by activation of ionotropic P2X and metabotropic P2Y receptors and subsequent modulation of cellular excitability, synaptic strength, and plasticity. In the present paper we review cellular and network effects of P2Y receptors in the brain. We show that P2Y receptors inhibit the release of neurotransmitters, modulate voltage- and ligand-gated ion channels, and differentially influence the induction of synaptic plasticity in the prefrontal cortex, hippocampus, and cerebellum. The findings discussed here may explain how P2Y1 receptor activation during brain injury, hypoxia, inflammation, schizophrenia, or Alzheimer's disease leads to an impairment of cognitive processes. Hence, it is suggested that the blockade of P2Y1 receptors may have therapeutic potential against cognitive disturbances in these states.

  9. Direct optical activation of skeletal muscle fibres efficiently controls muscle contraction and attenuates denervation atrophy.

    PubMed

    Magown, Philippe; Shettar, Basavaraj; Zhang, Ying; Rafuse, Victor F

    2015-10-13

    Neural prostheses can restore meaningful function to paralysed muscles by electrically stimulating innervating motor axons, but fail when muscles are completely denervated, as seen in amyotrophic lateral sclerosis, or after a peripheral nerve or spinal cord injury. Here we show that channelrhodopsin-2 is expressed within the sarcolemma and T-tubules of skeletal muscle fibres in transgenic mice. This expression pattern allows for optical control of muscle contraction with comparable forces to nerve stimulation. Force can be controlled by varying light pulse intensity, duration or frequency. Light-stimulated muscle fibres depolarize proportionally to light intensity and duration. Denervated triceps surae muscles transcutaneously stimulated optically on a daily basis for 10 days show a significant attenuation in atrophy resulting in significantly greater contractile forces compared with chronically denervated muscles. Together, this study shows that channelrhodopsin-2/H134R can be used to restore function to permanently denervated muscles and reduce pathophysiological changes associated with denervation pathologies.

  10. Functional Synaptic Integration of Forebrain GABAergic Precursors into the Adult Spinal Cord

    PubMed Central

    Etlin, Alex; Bráz, Joao M.; Kuhn, Julia A.; Wang, Xidao; Hamel, Katherine A.; Llewellyn-Smith, Ida J.

    2016-01-01

    Spinal cord transplants of embryonic cortical GABAergic progenitor cells derived from the medial ganglionic eminence (MGE) can reverse mechanical hypersensitivity in the mouse models of peripheral nerve injury- and paclitaxel-induced neuropathic pain. Here, we used electrophysiology, immunohistochemistry, and electron microscopy to examine the extent to which MGE cells integrate into host circuitry and recapitulate endogenous inhibitory circuits. Whether the transplants were performed before or after nerve injury, the MGE cells developed into mature neurons and exhibited firing patterns characteristic of subpopulations of cortical and spinal cord inhibitory interneurons. Conversely, the transplanted cells preserved cortical morphological and neurochemical properties. We also observed a robust anatomical and functional synaptic integration of the transplanted cells into host circuitry in both injured and uninjured animals. The MGE cells were activated by primary afferents, including TRPV1-expressing nociceptors, and formed GABAergic, bicuculline-sensitive, synapses onto host neurons. Unexpectedly, MGE cells transplanted before injury prevented the development of mechanical hypersensitivity. Together, our findings provide direct confirmation of an extensive, functional synaptic integration of MGE cells into host spinal cord circuits. This integration underlies normalization of the dorsal horn inhibitory tone after injury and may be responsible for the prophylactic effect of preinjury transplants. SIGNIFICANCE STATEMENT Spinal cord transplants of embryonic cortical GABAergic interneuron progenitors from the medial ganglionic eminence (MGE), can overcome the mechanical hypersensitivity produced in different neuropathic pain models in adult mice. Here, we examined the properties of transplanted MGE cells and the extent to which they integrate into spinal cord circuitry. Using electrophysiology, immunohistochemistry, and electron microscopy, we demonstrate that MGE cells

  11. Neural correlates of cognitive impairment in posterior cortical atrophy.

    PubMed

    Kas, Aurélie; de Souza, Leonardo Cruz; Samri, Dalila; Bartolomeo, Paolo; Lacomblez, Lucette; Kalafat, Michel; Migliaccio, Raffaella; Thiebaut de Schotten, Michel; Cohen, Laurent; Dubois, Bruno; Habert, Marie-Odile; Sarazin, Marie

    2011-05-01

    With the prospect of disease-modifying drugs that will target the physiopathological process of Alzheimer's disease, it is now crucial to increase the understanding of the atypical focal presentations of Alzheimer's disease, such as posterior cortical atrophy. This study aimed to (i) characterize the brain perfusion profile in posterior cortical atrophy using regions of interest and a voxel-based approach; (ii) study the influence of the disease duration on the clinical and imaging profiles; and (iii) explore the correlations between brain perfusion and cognitive deficits. Thirty-nine patients with posterior cortical atrophy underwent a specific battery of neuropsychological tests, mainly targeting visuospatial functions, and a brain perfusion scintigraphy with 99mTc-ethyl cysteinate dimer. The imaging analysis included a comparison with a group of 24 patients with Alzheimer's disease, matched for age, disease duration and Mini-Mental State Examination, and 24 healthy controls. The single-photon emission computed tomography profile in patients with posterior cortical atrophy was characterized by extensive and severe hypoperfusion in the occipital, parietal, posterior temporal cortices and in a smaller cortical area corresponding to the frontal eye fields (Brodmann areas 6/8). Compared with patients with Alzheimer's disease, the group with posterior cortical atrophy showed more severe occipitoparietal hypoperfusion and higher perfusion in the frontal, anterior cingulate and mesiotemporal regions. When considering the disease duration, the functional changes began and remained centred on the posterior lobes, even in the late stage. Correlation analyses of brain perfusion and neuropsychological scores in posterior cortical atrophy highlighted the prominent role of left inferior parietal damage in acalculia, Gerstmann's syndrome, left-right indistinction and limb apraxia, whereas damage to the bilateral dorsal occipitoparietal regions appeared to be involved in B

  12. Molecular mechanisms of synaptic plasticity and memory.

    PubMed

    Elgersma, Y; Silva, A J

    1999-04-01

    To unravel the molecular and cellular bases of learning and memory is one of the most ambitious goals of modern science. The progress of recent years has not only brought us closer to understanding the molecular mechanisms underlying stable, long-lasting changes in synaptic strength, but it has also provided further evidence that these mechanisms are required for memory formation.

  13. Targeting synaptic dysfunction in Alzheimer's disease therapy.

    PubMed

    Nisticò, Robert; Pignatelli, Marco; Piccinin, Sonia; Mercuri, Nicola B; Collingridge, Graham

    2012-12-01

    In the past years, major efforts have been made to understand the genetics and molecular pathogenesis of Alzheimer's disease (AD), which has been translated into extensive experimental approaches aimed at slowing down or halting disease progression. Advances in transgenic (Tg) technologies allowed the engineering of different mouse models of AD recapitulating a range of AD-like features. These Tg models provided excellent opportunities to analyze the bases for the temporal evolution of the disease. Several lines of evidence point to synaptic dysfunction as a cause of AD and that synapse loss is a pathological correlate associated with cognitive decline. Therefore, the phenotypic characterization of these animals has included electrophysiological studies to analyze hippocampal synaptic transmission and long-term potentiation, a widely recognized cellular model for learning and memory. Transgenic mice, along with non-Tg models derived mainly from exogenous application of Aβ, have also been useful experimental tools to test the various therapeutic approaches. As a result, numerous pharmacological interventions have been reported to attenuate synaptic dysfunction and improve behavior in the different AD models. To date, however, very few of these findings have resulted in target validation or successful translation into disease-modifying compounds in humans. Here, we will briefly review the synaptic alterations across the different animal models and we will recapitulate the pharmacological strategies aimed at rescuing hippocampal plasticity phenotypes. Finally, we will highlight intrinsic limitations in the use of experimental systems and related challenges in translating preclinical studies into human clinical trials.

  14. A synaptic mechanism for network synchrony

    PubMed Central

    Alford, Simon T.; Alpert, Michael H.

    2014-01-01

    Within neural networks, synchronization of activity is dependent upon the synaptic connectivity of embedded microcircuits and the intrinsic membrane properties of their constituent neurons. Synaptic integration, dendritic Ca2+ signaling, and non-linear interactions are crucial cellular attributes that dictate single neuron computation, but their roles promoting synchrony and the generation of network oscillations are not well understood, especially within the context of a defined behavior. In this regard, the lamprey spinal central pattern generator (CPG) stands out as a well-characterized, conserved vertebrate model of a neural network (Smith et al., 2013a), which produces synchronized oscillations in which neural elements from the systems to cellular level that control rhythmic locomotion have been determined. We review the current evidence for the synaptic basis of oscillation generation with a particular emphasis on the linkage between synaptic communication and its cellular coupling to membrane processes that control oscillatory behavior of neurons within the locomotor network. We seek to relate dendritic function found in many vertebrate systems to the accessible lamprey central nervous system in which the relationship between neural network activity and behavior is well understood. This enables us to address how Ca2+ signaling in spinal neuron dendrites orchestrate oscillations that drive network behavior. PMID:25278839

  15. Retinal synaptic regeneration via microfluidic guiding channels

    PubMed Central

    Su, Ping-Jung; Liu, Zongbin; Zhang, Kai; Han, Xin; Saito, Yuki; Xia, Xiaojun; Yokoi, Kenji; Shen, Haifa; Qin, Lidong

    2015-01-01

    In vitro culture of dissociated retinal neurons is an important model for investigating retinal synaptic regeneration (RSR) and exploring potentials in artificial retina. Here, retinal precursor cells were cultured in a microfluidic chip with multiple arrays of microchannels in order to reconstruct the retinal neuronal synapse. The cultured retinal cells were physically connected through microchannels. Activation of electric signal transduction by the cells through the microchannels was demonstrated by administration of glycinergic factors. In addition, an image-based analytical method was used to quantify the synaptic connections and to assess the kinetics of synaptic regeneration. The rate of RSR decreased significantly below 100 μM of inhibitor glycine and then approached to a relatively constant level at higher concentrations. Furthermore, RSR was enhanced by chemical stimulation with potassium chloride. Collectively, the microfluidic synaptic regeneration chip provides a novel tool for high-throughput investigation of RSR at the cellular level and may be useful in quality control of retinal precursor cell transplantation. PMID:26314276

  16. Nanoscale analysis of structural synaptic plasticity

    PubMed Central

    Bourne, Jennifer N.; Harris, Kristen M.

    2011-01-01

    In the 1950’s, transmission electron microscopy was first used to reveal the diversity in synaptic structure and composition in the central nervous system [1;2]. Since then, visualization and reconstruction of serial thin sections have provided three-dimensional contexts in which to understand how synapses are modified with plasticity, learning, and sensory input [3–17]. Three-dimensional reconstruction from serial section electron microscopy (ssEM) has proven invaluable for the comprehensive analysis of structural synaptic plasticity. It has provided the needed nanometer resolution to localize and measure key subcellular structures, such as the postsynaptic density (PSD) and presynaptic vesicles which define a synapse, polyribosomes as sites of local protein synthesis, smooth endoplasmic reticulum (SER) for local regulation of calcium and trafficking of membrane proteins, endosomes for recycling, and fine astroglial processes at the perimeter of some synapses. Thus, ssEM is an essential tool for nanoscale analysis of the cell biological and anatomical modifications that underlie changes in synaptic strength. Here we discuss several important issues associated with interpreting the functional significance of structural synaptic plasticity, especially during long-term potentiation, a widely studied cellular model of learning and memory. PMID:22088391

  17. Synaptic ribbon. Conveyor belt or safety belt?

    PubMed

    Parsons, T D; Sterling, P

    2003-02-06

    The synaptic ribbon in neurons that release transmitter via graded potentials has been considered as a conveyor belt that actively moves vesicles toward their release sites. But evidence has accumulated to the contrary, and it now seems plausible that the ribbon serves instead as a safety belt to tether vesicles stably in mutual contact and thus facilitate multivesicular release by compound exocytosis.

  18. Differences in Dopaminergic Modulation to Motor Cortical Plasticity between Parkinson's Disease and Multiple System Atrophy

    PubMed Central

    Kawashima, Shoji; Ueki, Yoshino; Mima, Tatsuya; Fukuyama, Hidenao; Ojika, Kosei; Matsukawa, Noriyuki

    2013-01-01

    Dopamine modulates the synaptic plasticity in the primary motor cortex (M1). To evaluate whether the functioning of the cortico-striatal circuit is necessary for this modulation, we applied a paired associative stimulation (PAS) protocol that comprised an electric stimulus to the right median nerve at the wrist and subsequent transcranial magnetic stimulation of the left M1, to 10 patients with Parkinson's disease (PD) and 10 with multiple system atrophy of the parkinsonian type (MSA-P) with and without dopamine replacement therapy (-on/off). To investigate the M1 function, motor-evoked potentials (MEPs) were measured before and after the PAS. In both patient groups without medication, the PAS protocol failed to increase the averaged amplitude of MEPs. The dopamine replacement therapy in PD, but not in MSA-P effectively restored the PAS-induced MEP increase. This suggests that not the existence of dopamine itself but the activation of cortico-striatal circuit might play an important role for cortical plasticity in the human M1. PMID:23658735

  19. Differences in dopaminergic modulation to motor cortical plasticity between Parkinson's disease and multiple system atrophy.

    PubMed

    Kawashima, Shoji; Ueki, Yoshino; Mima, Tatsuya; Fukuyama, Hidenao; Ojika, Kosei; Matsukawa, Noriyuki

    2013-01-01

    Dopamine modulates the synaptic plasticity in the primary motor cortex (M1). To evaluate whether the functioning of the cortico-striatal circuit is necessary for this modulation, we applied a paired associative stimulation (PAS) protocol that comprised an electric stimulus to the right median nerve at the wrist and subsequent transcranial magnetic stimulation of the left M1, to 10 patients with Parkinson's disease (PD) and 10 with multiple system atrophy of the parkinsonian type (MSA-P) with and without dopamine replacement therapy (-on/off). To investigate the M1 function, motor-evoked potentials (MEPs) were measured before and after the PAS. In both patient groups without medication, the PAS protocol failed to increase the averaged amplitude of MEPs. The dopamine replacement therapy in PD, but not in MSA-P effectively restored the PAS-induced MEP increase. This suggests that not the existence of dopamine itself but the activation of cortico-striatal circuit might play an important role for cortical plasticity in the human M1.

  20. Multimodal Discrimination of Alzheimer's Disease Based on Regional Cortical Atrophy and Hypometabolism.

    PubMed

    Yun, Hyuk Jin; Kwak, Kichang; Lee, Jong-Min

    2015-01-01

    Structural MR image (MRI) and 18F-Fluorodeoxyglucose-positron emission tomography (FDG-PET) have been widely employed in diagnosis of both Alzheimer's disease (AD) and mild cognitive impairment (MCI) pathology, which has led to the development of methods to distinguish AD and MCI from normal controls (NC). Synaptic dysfunction leads to a reduction in the rate of metabolism of glucose in the brain and is thought to represent AD progression. FDG-PET has the unique ability to estimate glucose metabolism, providing information on the distribution of hypometabolism. In addition, patients with AD exhibit significant neuronal loss in cerebral regions, and previous AD research has shown that structural MRI can be used to sensitively measure cortical atrophy. In this paper, we introduced a new method to discriminate AD from NC based on complementary information obtained by FDG and MRI. For accurate classification, surface-based features were employed and 12 predefined regions were selected from previous studies based on both MRI and FDG-PET. Partial least square linear discriminant analysis was employed for making diagnoses. We obtained 93.6% classification accuracy, 90.1% sensitivity, and 96.5% specificity in discriminating AD from NC. The classification scheme had an accuracy of 76.5% and sensitivity and specificity of 46.5% and 89.6%, respectively, for discriminating MCI from AD. Our method exhibited a superior classification performance compared with single modal approaches and yielded parallel accuracy to previous multimodal classification studies using MRI and FDG-PET.

  1. Shoulder position sense in volleyball players with infraspinatus atrophy secondary to suprascapular nerve neuropathy.

    PubMed

    Contemori, Samuele; Biscarini, Andrea

    2017-03-29

    Isolated infraspinatus atrophy (IIA) is a common condition among overhead-activity athletes, which affects the hitting shoulder and is caused by suprascapular nerve injury. Since the suprascapular nerve is a mixed nerve, such damage could lead to reduced afferent proprioceptive information and impaired shoulder sensorimotor control. This study aims to evaluate the proprioception of the shoulder with IIA, through the assessment of shoulder position sense. The shoulder position sense was assessed in 24 professional volleyball players (12 players with IIA, and 12 healthy players) with a blind dynamic shoulder repositioning test (all participants were blindfolded during the test). Three functional glenohumeral movements were tested: abduction, forward flexion, and a combination of abduction and external rotation. In all three tested movements, the affected shoulder of players with isolated infraspinatus atrophy showed significantly higher hand position error than the healthy contralateral (P<10(-3) , for all movements) and the healthy control group hitting shoulder (P<10(-3) , for abduction and flexion; P=0.02, for combined movement of abduction and external rotation). The study highlights a reduced sense of position of the hitting shoulder in professional volleyball players with IIA secondary to suprascapular nerve palsy. The higher hand position error of the pathologic shoulder suggests an impairment of the shoulder sensorimotor control system, which likely results from reduced afferent proprioceptive information. Deficient afferent proprioceptive information may result in poor accuracy in descending motor commands and impairment of the shoulder neuromuscular function, leading to reduced shoulder functional stability and increased risk of injury. This article is protected by copyright. All rights reserved.

  2. Active dendrites, potassium channels and synaptic plasticity.

    PubMed Central

    Johnston, Daniel; Christie, Brian R; Frick, Andreas; Gray, Richard; Hoffman, Dax A; Schexnayder, Lalania K; Watanabe, Shigeo; Yuan, Li-Lian

    2003-01-01

    The dendrites of CA1 pyramidal neurons in the hippocampus express numerous types of voltage-gated ion channel, but the distributions or densities of many of these channels are very non-uniform. Sodium channels in the dendrites are responsible for action potential (AP) propagation from the axon into the dendrites (back-propagation); calcium channels are responsible for local changes in dendritic calcium concentrations following back-propagating APs and synaptic potentials; and potassium channels help regulate overall dendritic excitability. Several lines of evidence are presented here to suggest that back-propagating APs, when coincident with excitatory synaptic input, can lead to the induction of either long-term depression (LTD) or long-term potentiation (LTP). The induction of LTD or LTP is correlated with the magnitude of the rise in intracellular calcium. When brief bursts of synaptic potentials are paired with postsynaptic APs in a theta-burst pairing paradigm, the induction of LTP is dependent on the invasion of the AP into the dendritic tree. The amplitude of the AP in the dendrites is dependent, in part, on the activity of a transient, A-type potassium channel that is expressed at high density in the dendrites and correlates with the induction of the LTP. Furthermore, during the expression phase of the LTP, there are local changes in dendritic excitability that may result from modulation of the functioning of this transient potassium channel. The results support the view that the active properties of dendrites play important roles in synaptic integration and synaptic plasticity of these neurons. PMID:12740112

  3. Endocannabinoids in Synaptic Plasticity and Neuroprotection

    PubMed Central

    Xu, Jian-Yi; Chen, Chu

    2014-01-01

    Endocannabinoids (eCBs) are endogenous lipid mediators involved in a variety of physiological, pharmacological, and pathological processes. While activation of the eCB system primarily induces inhibitory effects on both GABAergic and glutamatergic synaptic transmission and plasticity through acting on presynaptically-expressed CB1 receptors in the brain, accumulated information suggests that eCB signaling is also capable of facilitating or potentiating excitatory synaptic transmission in the hippocampus. Recent studies show that a long-lasting potentiation of excitatory synaptic transmission at Schaffer collateral (SC)-CA1 synapses is induced by spatiotemporally primed inputs, accompanying with a long-term depression of inhibitory synaptic transmission (I-LTD) in hippocampal CA1 pyramidal neurons. This input-timing-dependent long-lasting synaptic potentiation at SC-CA1 synapses is mediated by 2-arachidonoylglycerol (2-AG) signaling triggered by activation of postsynaptic NMDA receptors, group I metabotropic glutamate receptors (mGluRs), and a concurrent rise in intracellular Ca2+. Emerging evidence now also indicates that 2-AG is an important signaling mediator keeping brain homeostasis by exerting its anti-inflammatory and neuroprotective effects in response to harmful insults through CB1/2 receptor-dependent and/or independent mechanisms. Activation of the nuclear receptor protein peroxisome proliferator-activated receptor-γ (PPARγ) apparently is one of the important mechanisms in resolving neuroinflammation and protecting neurons produced by 2-AG signaling. Thus, the information summarized in this review suggests that the role of eCB signaling in maintaining integrity of brain function is greater than what we thought previously. PMID:24571856

  4. Ceramidase Regulates Synaptic Vesicle Exocytosis and Trafficking

    PubMed Central

    Rohrbough, Jeffrey; Rushton, Emma; Palanker, Laura; Woodruff, Elvin; Matthies, Heinrich J. G.; Acharya, Usha; Acharya, Jairaj K.; Broadie, Kendal

    2009-01-01

    A screen for Drosophila synaptic dysfunction mutants identified slug-a-bed (slab). The slab gene encodes ceramidase, a central enzyme in sphingolipid metabolism and regulation. Sphingolipids are major constituents of lipid rafts, membrane domains with roles in vesicle trafficking, and signaling pathways. Null slab mutants arrest as fully developed embryos with severely reduced movement. The SLAB protein is widely expressed in different tissues but enriched in neurons at all stages of development. Targeted neuronal expression of slab rescues mutant lethality, demonstrating the essential neuronal function of the protein. C5-ceramide applied to living preparations is rapidly accumulated at neuromuscular junction (NMJ) synapses dependent on the SLAB expression level, indicating that synaptic sphingolipid trafficking and distribution is regulated by SLAB function. Evoked synaptic currents at slab mutant NMJs are reduced by 50–70%, whereas postsynaptic glutamate-gated currents are normal, demonstrating a specific presynaptic impairment. Hypertonic saline-evoked synaptic vesicle fusion is similarly impaired by 50–70%, demonstrating a loss of readily releasable vesicles. In addition, FM1-43 dye uptake is reduced in slab mutant presynaptic terminals, indicating a smaller cycling vesicle pool. Ultrastructural analyses of mutants reveal a normal vesicle distribution clustered and docked at active zones, but fewer vesicles in reserve regions, and a twofold to threefold increased incidence of vesicles linked together and tethered at the plasma membrane. These results indicate that SLAB ceramidase function controls presynaptic terminal sphingolipid composition to regulate vesicle fusion and trafficking, and thus the strength and reliability of synaptic transmission. PMID:15356190

  5. Synaptic plasticity with discrete state synapses

    NASA Astrophysics Data System (ADS)

    Abarbanel, Henry D. I.; Talathi, Sachin S.; Gibb, Leif; Rabinovich, M. I.

    2005-09-01

    Experimental observations on synaptic plasticity at individual glutamatergic synapses from the CA3 Shaffer collateral pathway onto CA1 pyramidal cells in the hippocampus suggest that the transitions in synaptic strength occur among discrete levels at individual synapses [C. C. H. Petersen , Proc. Natl. Acad. Sci. USA 85, 4732 (1998); O’Connor, Wittenberg, and Wang, D. H. O’Connor , Proc. Natl. Acad. Sci. USA (to be published); J. M. Montgomery and D. V. Madison, Trends Neurosci. 27, 744 (2004)]. This happens for both long term potentiation (LTP) and long term depression (LTD) induction protocols. O’Connor, Wittenberg, and Wang have argued that three states would account for their observations on individual synapses in the CA3-CA1 pathway. We develop a quantitative model of this three-state system with transitions among the states determined by a competition between kinases and phosphatases shown by D. H. O’Connor , to be determinant of LTP and LTD, respectively. Specific predictions for various plasticity protocols are given by coupling this description of discrete synaptic α -amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor ligand gated ion channel conductance changes to a model of postsynaptic membrane potential and associated intracellular calcium fluxes to yield the transition rates among the states. We then present various LTP and LTD induction protocols to the model system and report the resulting whole cell changes in AMPA conductance. We also examine the effect of our discrete state synaptic plasticity model on the synchronization of realistic oscillating neurons. We show that one-to-one synchronization is enhanced by the plasticity we discuss here and the presynaptic and postsynaptic oscillations are in phase. Synaptic strength saturates naturally in this model and does not require artificial upper or lower cutoffs, in contrast to earlier models of plasticity.

  6. Predictive modeling of neuroanatomic structures for brain atrophy detection

    NASA Astrophysics Data System (ADS)

    Hu, Xintao; Guo, Lei; Nie, Jingxin; Li, Kaiming; Liu, Tianming

    2010-03-01

    In this paper, we present an approach of predictive modeling of neuroanatomic structures for the detection of brain atrophy based on cross-sectional MRI image. The underlying premise of applying predictive modeling for atrophy detection is that brain atrophy is defined as significant deviation of part of the anatomy from what the remaining normal anatomy predicts for that part. The steps of predictive modeling are as follows. The central cortical surface under consideration is reconstructed from brain tissue map and Regions of Interests (ROI) on it are predicted from other reliable anatomies. The vertex pair-wise distance between the predicted vertex and the true one within the abnormal region is expected to be larger than that of the vertex in normal brain region. Change of white matter/gray matter ratio within a spherical region is used to identify the direction of vertex displacement. In this way, the severity of brain atrophy can be defined quantitatively by the displacements of those vertices. The proposed predictive modeling method has been evaluated by using both simulated atrophies and MRI images of Alzheimer's disease.

  7. Intrathecal Injections in Children With Spinal Muscular Atrophy

    PubMed Central

    Swoboda, Kathryn J.; Sethna, Navil; Farrow-Gillespie, Alan; Khandji, Alexander; Xia, Shuting; Bishop, Kathie M.

    2016-01-01

    Nusinersen (ISIS-SMNRx or ISIS 396443) is an antisense oligonucleotide drug administered intrathecally to treat spinal muscular atrophy. We summarize lumbar puncture experience in children with spinal muscular atrophy during a phase 1 open-label study of nusinersen and its extension. During the studies, 73 lumbar punctures were performed in 28 patients 2 to 14 years of age with type 2/3 spinal muscular atrophy. No complications occurred in 50 (68%) lumbar punctures; in 23 (32%) procedures, adverse events were attributed to lumbar puncture. Most common adverse events were headache (n = 9), back pain (n = 9), and post–lumbar puncture syndrome (n = 8). In a subgroup analysis, adverse events were more frequent in older children, children with type 3 spinal muscular atrophy, and with a 21- or 22-gauge needle compared to a 24-gauge needle or smaller. Lumbar punctures were successfully performed in children with spinal muscular atrophy; lumbar puncture–related adverse event frequency was similar to that previously reported in children. PMID:26823478

  8. Early and Degressive Putamen Atrophy in Multiple Sclerosis.

    PubMed

    Krämer, Julia; Meuth, Sven G; Tenberge, Jan-Gerd; Schiffler, Patrick; Wiendl, Heinz; Deppe, Michael

    2015-09-25

    Putamen atrophy and its long-term progress during disease course were recently shown in patients with multiple sclerosis (MS). Here we investigated retrospectively the time point of atrophy onset in patients with relapsing-remitting MS (RRMS). 68 patients with RRMS and 26 healthy controls (HC) were admitted to 3T MRI in a cross-sectional study. We quantitatively analyzed the putamen volume of individual patients in relation to disease duration by correcting for age and intracranial volume (ICV). Patient's relative putamen volume (RPV), expressed in percent of ICV, was significantly reduced compared to HC. Based on the correlation between RPV and age, we computed the age-corrected RPV deviation (ΔRPV) from HC. Patients showed significantly negative ΔRPV. Interestingly, the age-corrected ΔRPV depended logarithmically on disease duration: Directly after first symptom manifestation, patients already showed a reduced RPV followed by a further degressive volumetric decline. This means that atrophy progression was stronger in the first than in later years of disease. Putamen atrophy starts directly after initial symptom manifestation or even years before, and progresses in a degressive manner. Due to its important role in neurological functions, early detection of putamen atrophy seems necessary. High-resolution structural MRI allows monitoring of disease course.

  9. Stochastic single-molecule dynamics of synaptic membrane protein domains

    NASA Astrophysics Data System (ADS)

    Kahraman, Osman; Li, Yiwei; Haselwandter, Christoph A.

    2016-09-01

    Motivated by single-molecule experiments on synaptic membrane protein domains, we use a stochastic lattice model to study protein reaction and diffusion processes in crowded membranes. We find that the stochastic reaction-diffusion dynamics of synaptic proteins provide a simple physical mechanism for collective fluctuations in synaptic domains, the molecular turnover observed at synaptic domains, key features of the single-molecule trajectories observed for synaptic proteins, and spatially inhomogeneous protein lifetimes at the cell membrane. Our results suggest that central aspects of the single-molecule and collective dynamics observed for membrane protein domains can be understood in terms of stochastic reaction-diffusion processes at the cell membrane.

  10. Progressive Hemifacial Atrophy With Contralateral Uveitis: A Case Report

    PubMed Central

    Ayyildiz, Onder; Ayyildiz, Simel; Durukan, Ali Hakan; Sobaci, Gungor

    2015-01-01

    Introduction: Progressive hemifacial atrophy, known as Parry-Romberg syndrome (PRS), was first described by Parry in 1825. There is a progressive atrophy of facial tissues including skin, bones and muscles. Ophthalmic disorders are common and include keratitis, uveitis, cataract, ipsilateral enophthalmos, optic neuritis, retinal vasculitis and scleral melting. Case Presentation: We describe a patient with progressive hemifacial atrophy at right facial side who developed granulomatous uveitis and periferic retinal vasculitis in his left eye. We started topical and systemic steroid therapy. Uveitic reaction had regressed almost entirely after a 3-month steroid treatment. Conclusions: The individuals should have multidisciplinary approach for the variety of disorders to maintain the appropriate treatment for a better appearance of the patients. PMID:26473067

  11. Primary ileal villous atrophy is often associated with microscopic colitis

    PubMed Central

    Marteau, P; Lavergne-Slove, A; Lemann, M; Bouhnik, Y; Bertheau, P; Becheur, H; Galian, A; Rambaud, J

    1997-01-01

    Three cases of apparent primary villous atrophy of the terminal ileum in women with chronic diarrhoea are reported. Eight cases have previously been reported in the literature. Clinical characteristics are the presence of severe chronic secretory diarrhoea with episodes of hypokalaemia combined with signs of ileal malabsorption and/or efficacy of cholestyramine. Diagnosis is based on ileoscopy and histology. An association with microscopic colitis was present in the three patients and in four cases in the literature. The pathogenesis of primary ileal villous atrophy remains unknown and may involve dysimmunity. Its association with microscopic colitis may indicate a common pathogenesis or support the hypothesis that the faecal stream or bile salts play a role in the pathogenesis of microscopic colitis. 

 Keywords: intestinal villous atrophy; ileum; secretory diarrhoea; bile acid malabsorption; microscopic colitis PMID:9391260

  12. Hypocupremia: A Possible Association with Late Cortical Cerebellar Atrophy

    PubMed Central

    Mittal, Shivam Om; Machado, Duarte G.

    2014-01-01

    Background We report a patient, diagnosed with late cortical cerebellar atrophy, who had persistent low serum copper levels. Case report A 48-year-old male developed progressive difficulty with balance, frequent falls, and dysarthric speech, which worsened over a short time span. He had an extensive ataxia work-up, which was unremarkable except for persistent low serum copper levels despite adequate supplementation. Magnetic resonance imaging of the brain showed marked cerebellar atrophy. The patient experienced progressive worsening of symptoms, which did not improve with either oral or parenteral copper supplementation. Discussion To our knowledge, ours is the first case report of late cortical cerebellar atrophy in the setting of low serum copper levels. The current report should trigger further research in mechanisms leading to copper deficiency and its possible role in cerebellar disease. PMID:25247109

  13. Receiver operating characteristic (ROC) analysis for characterizing synaptic efficacy.

    PubMed

    Chance, Frances S

    2007-02-01

    The role of background synaptic activity in cortical processing has recently received much attention. How do individual neurons extract information when embedded in a noisy background? When examining the impact of a synaptic input on postsynaptic firing, it is important to distinguish a change in overall firing probability from a true change in neuronal sensitivity to a particular input (synaptic efficacy) that corresponds to a change in detection performance. Here we study the impact of background synaptic input on neuronal sensitivity to individual synaptic inputs using receiver operating characteristic (ROC) analysis. We use the area under the ROC curve as a measure of synaptic efficacy, here defined as the ability of a postsynaptic action potential to identify a particular synaptic input event. An advantage of using ROC analysis to measure synaptic efficacy is that it provides a measure that is independent of postsynaptic firing rate. Furthermore, changes in mean excitation or inhibition, although affecting overall firing probability, do not modulate synaptic efficacy when measured in this way. Changes in overall conductance also affect firing probability but not this form of synaptic efficacy. Input noise, here defined as the variance of the input current, does modulate synaptic efficacy, however. This effect persists when the change in input variance is coupled with a change in conductance (as would result from changing background activity).

  14. Carbon Nanotube Synaptic Transistor Network for Pattern Recognition.

    PubMed

    Kim, Sungho; Yoon, Jinsu; Kim, Hee-Dong; Choi, Sung-Jin

    2015-11-18

    Inspired by the human brain, a neuromorphic system combining complementary metal-oxide semiconductor (CMOS) and adjustable synaptic devices may offer new computing paradigms by enabling massive neural-network parallelism. In particular, synaptic devices, which are capable of emulating the functions of biological synapses, are used as the essential building blocks for an information storage and processing system. However, previous synaptic devices based on two-terminal resistive devices remain challenging because of their variability and specific physical mechanisms of resistance change, which lead to a bottleneck in the implementation of a high-density synaptic device network. Here we report that a three-terminal synaptic transistor based on carbon nanotubes can provide reliable synaptic functions that encode relative timing and regulate weight change. In addition, using system-level simulations, the developed synaptic transistor network associated with CMOS circuits can perform unsupervised learning for pattern recognition using a simplified spike-timing-dependent plasticity scheme.

  15. Multiple personalities: synaptic target cells as introverts and extroverts.

    PubMed

    Ritzenthaler, S; Chiba, A

    2001-10-01

    The intricate process of wiring a neuronetwork requires a high degree of accuracy in the communication between pre- and post-synaptic cells. While presynaptic cells have been widely recognized for their dynamic role in synaptic matchmaking, post-synaptic cells have historically been overlooked as passive targets. Recent studies in the Drosophila embryonic neuromuscular system provide compelling evidence that post-synaptic cells participate actively in the synaptogenic process. Endocytosis allows them to quickly modify the array of molecular cues they provide on their surfaces and the extension of dynamic filopodia allows post-synaptic cells to engage in direct long-distance communication. By making use of familiar cellular mechanisms such as endocytosis and filopodia formation, post-synaptic cells may be able to communicate more effectively with potential synaptic partners.

  16. Natural patterns of activity and long-term synaptic plasticity

    PubMed Central

    Paulsen, Ole; Sejnowski, Terrence J

    2010-01-01

    Long-term potentiation (LTP) of synaptic transmission is traditionally elicited by massively synchronous, high-frequency inputs, which rarely occur naturally. Recent in vitro experiments have revealed that both LTP and long-term depression (LTD) can arise by appropriately pairing weak synaptic inputs with action potentials in the postsynaptic cell. This discovery has generated new insights into the conditions under which synaptic modification may occur in pyramidal neurons in vivo. First, it has been shown that the temporal order of the synaptic input and the postsynaptic spike within a narrow temporal window determines whether LTP or LTD is elicited, according to a temporally asymmetric Hebbian learning rule. Second, backpropagating action potentials are able to serve as a global signal for synaptic plasticity in a neuron compared with local associative interactions between synaptic inputs on dendrites. Third, a specific temporal pattern of activity — postsynaptic bursting — accompanies synaptic potentiation in adults. PMID:10753798

  17. A Dynamical Role for Acetylcholine in Synaptic Renormalization

    PubMed Central

    Fink, Christian G.; Murphy, Geoffrey G.; Zochowski, Michal; Booth, Victoria

    2013-01-01

    Although sleep is a fundamental behavior observed in virtually all animal species, its functions remain unclear. One leading proposal, known as the synaptic renormalization hypothesis, suggests that sleep is necessary to counteract a global strengthening of synapses that occurs during wakefulness. Evidence for sleep-dependent synaptic downscaling (or synaptic renormalization) has been observed experimentally, but the physiological mechanisms which generate this phenomenon are unknown. In this study, we propose that changes in neuronal membrane excitability induced by acetylcholine may provide a dynamical mechanism for both wake-dependent synaptic upscaling and sleep-dependent downscaling. We show in silico that cholinergically-induced changes in network firing patterns alter overall network synaptic potentiation when synaptic strengths evolve through spike-timing dependent plasticity mechanisms. Specifically, network synaptic potentiation increases dramatically with high cholinergic concentration and decreases dramatically with low levels of acetylcholine. We demonstrate that this phenomenon is robust across variation of many different network parameters. PMID:23516342

  18. Spinal cord gray matter atrophy correlates with multiple sclerosis disability

    PubMed Central

    Schlaeger, Regina; Papinutto, Nico; Panara, Valentina; Bevan, Carolyn; Lobach, Iryna V.; Bucci, Monica; Caverzasi, Eduardo; Gelfand, Jeffrey M.; Green, Ari J.; Jordan, Kesshi M.; Stern, William A.; von Büdingen, H.-Christian; Waubant, Emmanuelle; Zhu, Alyssa H.; Goodin, Douglas S.; Cree, Bruce A. C.; Hauser, Stephen L.; Henry, Roland G.

    2015-01-01

    Objective In multiple sclerosis (MS) cerebral gray matter (GM) atrophy correlates more strongly than white matter (WM) atrophy with disability. The corresponding relationships in the spinal cord (SC) are unknown due to technical limitations in assessing SCGM atrophy. Using phase sensitive inversion recovery (PSIR) MRI, we determined the association of the SCGM and SCWM areas with MS disability and disease type. Methods 113 MS patients and 20 healthy controls were examined at 3T with a PSIR sequence acquired at the C2/C3 disc level. Two independent, clinically-masked readers measured the cord WM and GM areas. Correlations between cord areas and Expanded Disability Status Score (EDSS) were determined. Differences in areas between groups were assessed with age and sex as covariates. Results Relapsing (R) MS patients showed smaller SCGM areas than age and sex matched controls (p=0.008) without significant differences in SCWM areas. Progressive MS patients showed smaller SCGM and SCWM areas compared to RMS patients (all p≤0.004). SCGM, SCWM, and whole cord areas inversely correlated with EDSS (rho: −0.60, −0.32, −0.42, respectively; all p≤0.001). SCGM area was the strongest correlate of disability in multivariate models including brain GM and WM volumes, FLAIR lesion load, T1-lesion load, SCWM area, number of spinal cord T2 lesions, age, sex, disease duration. Brain and spinal GM independently contributed to EDSS. Interpretation SCGM atrophy is detectable in-vivo in absence of WM atrophy in RMS. It is more pronounced in progressive than RMS and contributes more to patient disability than spinal cord WM or brain GM atrophy. PMID:25087920

  19. Progressive Retinal Structure Abnormalities in Multiple System Atrophy

    PubMed Central

    Mendoza-Santiesteban, Carlos E.; Palma, Jose-Alberto; Martinez, Jose; Norcliffe-Kaufmann, Lucy; Hedges, Thomas R.; Kaufmann, Horacio

    2015-01-01

    Background Objective measures of disease progression that can be used as end-points in clinical trials of multiple system atrophy are necessary. We studied retinal thickness in patients with multiple system atrophy, and assessed changes over time to determine its usefulness as imaging biomarker of disease progression. Methods Cross sectional study including 24 patients with multiple system atrophy, 20 patients with Parkinson disease (PD) and 35 controls; followed by a longitudinal study of 13 multiple system atrophy (MSA) patients. Patients were evaluated with high definition-optical coherence tomography and the Unified Multiple System Atrophy Rating Scale. Evaluations were performed at baseline and at consecutive follow-up visits for up to 26 months. Results MSA subjects had normal visual acuity and color discrimination. Compared to controls, retinal nerve fiber layer (p=0.008 and p=0.001) and ganglion cell complex (p=0.013 and p=0.001) thicknesses were reduced in multiple system atrophy and in PD. No significant differences between MSA and PD were found. Over time, in patients with MSA, there was a significant reduction of the retinal nerve fiber layer and ganglion cell complex thicknesses, with estimated annual average losses of 3.7 μm and 1.8 μm respectively. Conclusions Visually asymptomatic MSA patients exhibit progressive reductions in the thickness of the retinal nerve fiber layer and, to a lesser extent, in the macular ganglion cell complex, which can be quantified by high-definition optical coherence tomography. Specific patterns of retinal nerve fiber damage could be a useful imaging biomarker of disease progression in future clinical trials. PMID:26359930

  20. Muscle atrophy and metal-on-metal hip implants

    PubMed Central

    Berber, Reshid; Khoo, Michael; Cook, Erica; Guppy, Andrew; Hua, Jia; Miles, Jonathan; Carrington, Richard; Skinner, John; Hart, Alister

    2015-01-01

    Background and purpose Muscle atrophy is seen in patients with metal-on-metal (MOM) hip implants, probably because of inflammatory destruction of the musculo-tendon junction. However, like pseudotumors, it is unclear when atrophy occurs and whether it progresses with time. Our objective was to determine whether muscle atrophy associated with MOM hip implants progresses with time. Patients and methods We retrospectively reviewed 74 hips in 56 patients (32 of them women) using serial MRI. Median age was 59 (23–83) years. The median time post-implantation was 83 (35–142) months, and the median interval between scans was 11 months. Hip muscles were scored using the Pfirrmann system. The mean scores for muscle atrophy were compared between the first and second MRI scans. Blood cobalt and chromium concentrations were determined. Results The median blood cobalt was 6.84 (0.24–90) ppb and median chromium level was 4.42 (0.20–45) ppb. The median Oxford hip score was 34 (5–48). The change in the gluteus minimus mean atrophy score between first and second MRI was 0.12 (p = 0.002). Mean change in the gluteus medius posterior portion (unaffected by surgical approach) was 0.08 (p = 0.01) and mean change in the inferior portion was 0.10 (p = 0.05). Mean pseudotumor grade increased by 0.18 (p = 0.02). Interpretation Worsening muscle atrophy and worsening pseudotumor grade occur over a 1-year period in a substantial proportion of patients with MOM hip implants. Serial MRI helps to identify those patients who are at risk of developing worsening soft-tissue pathology. These patients should be considered for revision surgery before irreversible muscle destruction occurs. PMID:25588091

  1. Rates of cerebral atrophy differ in different degenerative pathologies

    PubMed Central

    Whitwell, Jennifer L; Jack, Clifford R.; Parisi, Joseph E.; Knopman, David S.; Boeve, Bradley F.; Petersen, Ronald C.; Ferman, Tanis J.; Dickson, Dennis W.; Josephs, Keith A.

    2009-01-01

    SUMMARY Neurodegenerative disorders are pathologically characterized by the deposition of abnormal proteins in the brain. It is likely that future treatment trials will target the underlying protein biochemistry and it is therefore increasingly important to be able to distinguish between different pathologies during life. The aim of this study was to determine whether rates of brain atrophy differ in neurodegenerative dementias that vary by pathological diagnoses and characteristic protein biochemistry. Fifty-six autopsied subjects were identified with a clinical diagnosis of dementia and two serial head MRI. Subjects were subdivided based on pathological diagnoses into Alzheimer's disease (AD), dementia with Lewy bodies (DLB), mixed AD/DLB, frontotemporal lobar degeneration with ubiquitin-only-immunoreactive changes (FTLD-U), corticobasal degeneration (CBD) and progressive supranuclear palsy (PSP). Twenty-five controls were matched by age, gender, and scan interval, to the study cohort. The boundary-shift integral was used to calculate change over time in whole brain (BBSI) and ventricular volume (VBSI). All BSI results were annualized by adjusting for scan interval. The rates of whole brain atrophy and ventricular expansion were significantly increased compared to controls in the AD, mixed AD/DLB, FTLD-U, CBD and PSP groups. However, atrophy rates in the DLB group were not significantly different from control rates of atrophy. The largest rates of atrophy were observed in the CBD group which had a BBSI of 2.3% and VBSI of 16.2%. The CBD group had significantly greater rates of BBSI and VBSI than the DLB, mixed AD/DLB, AD and PSP groups, with a similar trend observed when compared to the FTLD-U group. The FTLD-U group showed the next largest rates with a BBSI of 1.7% and VBSI of 9.6% which were both significantly greater than the DLB group. There was no significant difference in the rates of atrophy between the AD, mixed AD/DLB and PSP groups, which all showed

  2. Vulvar and Vaginal Atrophy: Physiology, Clinical Presentation, and Treatment Considerations.

    PubMed

    Lev-Sagie, Ahinoam

    2015-09-01

    Vulvovaginal atrophy is a common condition associated with decreased estrogenization of the vaginal tissue. Symptoms include vaginal dryness, irritation, itching, soreness, burning, dyspareunia, discharge, urinary frequency, and urgency. It can occur at any time in a woman's life cycle, although more commonly in the postmenopausal phase, during which the prevalence is approximately 50%. Despite the high prevalence and the substantial effect on quality of life, vulvovaginal atrophy often remains underreported and undertreated. This article aims to review the physiology, clinical presentation, assessment, and current recommendations for treatment, including aspects of effectiveness and safety of local vaginal estrogen therapies.

  3. From alveolar diffuse atrophy to aggressive periodontitis: a brief history.

    PubMed

    Guzeldemir, Esra; Toygar, Hilal Uslu

    2006-01-01

    Technologic advances in mechanics, electronics, physics, chemistry, and computer science have contributed to advances in dental medicine. Periodontology is not only a clinical science but is also directly related to the basic sciences. Research is conducted in laboratories rather than in clinics now. During the last century, aggressive periodontitis has received attention from numerous researchers because of its multifactorial features. This paper explores the long scientific journey of aggressive periodontitis, beginning with its first definition as alveolar diffuse atrophy. Perhaps in the future, "alveolar diffuse atrophy" will be referred to by another name or term. However, this journey will never end.

  4. Congenital contractural arachnodactyly with neurogenic muscular atrophy: case report.

    PubMed

    Scola, R H; Werneck, L C; Iwamoto, F M; Ribas, L C; Raskin, S; Correa Neto, Y

    2001-06-01

    We report the case of a 3-(1/2)-year-old girl with hypotonia, multiple joint contractures, hip luxation, arachnodactyly, adducted thumbs, dolichostenomelia, and abnormal external ears suggesting the diagnosis of congenital contractural arachnodactyly (CCA). The serum muscle enzymes were normal and the needle electromyography showed active and chronic denervation. The muscle biopsy demonstrated active and chronic denervation compatible with spinal muscular atrophy. Analysis of exons 7 and 8 of survival motor neuron gene through polymerase chain reaction did not show deletions. Neurogenic muscular atrophy is a new abnormality associated with CCA, suggesting that CCA is clinically heterogeneous.

  5. Control of neural chaos by synaptic noise.

    PubMed

    Cortes, J M; Torres, J J; Marro, J

    2007-02-01

    We study neural automata - or neurobiologically inspired cellular automata - which exhibits chaotic itinerancy among the different stored patterns or memories. This is a consequence of activity-dependent synaptic fluctuations, which continuously destabilize the attractor and induce irregular hopping to other possible attractors. The nature of these irregularities depends on the dynamic details, namely, on the intensity of the synaptic noise and the number of sites of the network, which are synchronously updated at each time step. Varying these factors, different regimes occur, ranging from regular to chaotic dynamics. As a result, and in absence of external agents, the chaotic behavior may turn regular after tuning the noise intensity. It is argued that a similar mechanism might be on the basis of self-controlling chaos in natural systems.

  6. Novel synaptic memory device for neuromorphic computing

    PubMed Central

    Mandal, Saptarshi; El-Amin, Ammaarah; Alexander, Kaitlyn; Rajendran, Bipin; Jha, Rashmi

    2014-01-01

    This report discusses the electrical characteristics of two-terminal synaptic memory devices capable of demonstrating an analog change in conductance in response to the varying amplitude and pulse-width of the applied signal. The devices are based on Mn doped HfO2 material. The mechanism behind reconfiguration was studied and a unified model is presented to explain the underlying device physics. The model was then utilized to show the application of these devices in speech recognition. A comparison between a 20 nm × 20 nm sized synaptic memory device with that of a state-of-the-art VLSI SRAM synapse showed ~10× reduction in area and >106 times reduction in the power consumption per learning cycle. PMID:24939247

  7. Synaptic devices based on purely electronic memristors

    SciTech Connect

    Pan, Ruobing; Li, Jun; Zhuge, Fei E-mail: h-cao@nimte.ac.cn; Zhu, Liqiang; Liang, Lingyan; Zhang, Hongliang; Gao, Junhua; Cao, Hongtao E-mail: h-cao@nimte.ac.cn; Fu, Bing; Li, Kang

    2016-01-04

    Memristive devices have been widely employed to emulate biological synaptic behavior. In these cases, the memristive switching generally originates from electrical field induced ion migration or Joule heating induced phase change. In this letter, the Ti/ZnO/Pt structure was found to show memristive switching ascribed to a carrier trapping/detrapping of the trap sites (e.g., oxygen vacancies or zinc interstitials) in ZnO. The carrier trapping/detrapping level can be controllably adjusted by regulating the current compliance level or voltage amplitude. Multi-level conductance states can, therefore, be realized in such memristive device. The spike-timing-dependent plasticity, an important Hebbian learning rule, has been implemented in this type of synaptic device. Compared with filamentary-type memristive devices, purely electronic memristors have potential to reduce their energy consumption and work more stably and reliably, since no structural distortion occurs.

  8. Spontaneous network activity and synaptic development

    PubMed Central

    Kerschensteiner, Daniel

    2014-01-01

    Throughout development, the nervous system produces patterned spontaneous activity. Research over the last two decades has revealed a core group of mechanisms that mediate spontaneous activity in diverse circuits. Many circuits engage several of these mechanisms sequentially to accommodate developmental changes in connectivity. In addition to shared mechanisms, activity propagates through developing circuits and neuronal pathways (i.e. linked circuits in different brain areas) in stereotypic patterns. Increasing evidence suggests that spontaneous network activity shapes synaptic development in vivo. Variations in activity-dependent plasticity may explain how similar mechanisms and patterns of activity can be employed to establish diverse circuits. Here, I will review common mechanisms and patterns of spontaneous activity in emerging neural networks and discuss recent insights into their contribution to synaptic development. PMID:24280071

  9. Magnetic skyrmion-based synaptic devices.

    PubMed

    Huang, Yangqi; Kang, Wang; Zhang, Xichao; Zhou, Yan; Zhao, Weisheng

    2017-02-24

    Magnetic skyrmions are promising candidates for next-generation information carriers, owing to their small size, topological stability, and ultralow depinning current density. A wide variety of skyrmionic device concepts and prototypes have recently been proposed, highlighting their potential applications. Furthermore, the intrinsic properties of skyrmions enable new functionalities that may be inaccessible to conventional electronic devices. Here, we report on a skyrmion-based artificial synapse device for neuromorphic systems. The synaptic weight of the proposed device can be strengthened/weakened by positive/negative stimuli, mimicking the potentiation/depression process of a biological synapse. Both short-term plasticity and long-term potentiation functionalities have been demonstrated with micromagnetic simulations. This proposal suggests new possibilities for synaptic devices in neuromorphic systems with adaptive learning function.

  10. Synaptic Plasticity as a Cortical Coding Scheme

    PubMed Central

    Froemke, Robert C.; Schreiner, Christoph E.

    2015-01-01

    Processing of auditory information requires constant adjustment due to alterations of the environment and changing conditions in the nervous system with age, health, and experience. Consequently, patterns of activity in cortical networks have complex dynamics over a wide range of timescales, from milliseconds to days and longer. In the primary auditory cortex (AI), multiple forms of adaptation and plasticity shape synaptic input and action potential output. However, the variance of neuronal responses has made it difficult to characterize AI receptive fields and to determine the function of AI in processing auditory information such as vocalizations. Here we describe recent studies on the temporal modulation of cortical responses and consider the relation of synaptic plasticity to neural coding. PMID:26497430

  11. Stochastic fluctuations of the synaptic function.

    PubMed

    Ventriglia, Francesco; Di Maio, Vito

    2002-01-01

    The peak amplitudes of the quantal Excitatory Post Synaptic Currents in single hippocampal synapses show a large variability. Here, we present the results of a mathematical, computational investigation on the main sources of this variability. A detailed description of the synaptic cleft, rigorously based on empirically-derived parameters, was used. By using a Brownian motion model of neurotransmitter molecule diffusion, quantal EPSCs were computed by a simple kinetic schema of AMPA receptor dynamics. Our results show that the lack of saturation of AMPA receptors obtained in these conditions, combined with stochastic variations in basic presynaptic elements, such as the vesicle volume, the vesicle docking position, and the vesicle neurotransmitter concentration can explain almost the entire range of EPSC variability experimentally observed.

  12. Magnetic skyrmion-based synaptic devices

    NASA Astrophysics Data System (ADS)

    Huang, Yangqi; Kang, Wang; Zhang, Xichao; Zhou, Yan; Zhao, Weisheng

    2017-02-01

    Magnetic skyrmions are promising candidates for next-generation information carriers, owing to their small size, topological stability, and ultralow depinning current density. A wide variety of skyrmionic device concepts and prototypes have recently been proposed, highlighting their potential applications. Furthermore, the intrinsic properties of skyrmions enable new functionalities that may be inaccessible to conventional electronic devices. Here, we report on a skyrmion-based artificial synapse device for neuromorphic systems. The synaptic weight of the proposed device can be strengthened/weakened by positive/negative stimuli, mimicking the potentiation/depression process of a biological synapse. Both short-term plasticity and long-term potentiation functionalities have been demonstrated with micromagnetic simulations. This proposal suggests new possibilities for synaptic devices in neuromorphic systems with adaptive learning function.

  13. Gray matter abnormalities in pediatric mild traumatic brain injury.

    PubMed

    Mayer, Andrew R; Hanlon, Faith M; Ling, Josef M

    2015-05-15

    Pediatric mild traumatic brain injury (pmTBI) is the most prevalent neurological insult in children and is associated with both acute and chronic neuropsychiatric sequelae. However, little is known about underlying pathophysiology changes in gray matter diffusion and atrophy from a prospective stand-point. Fifteen semi-acute pmTBI patients and 15 well-matched healthy controls were evaluated with a clinical and neuroimaging battery, with a subset of participants returning for a second visit. Clinical measures included tests of attention, processing speed, executive function, working memory, memory, and self-reported post-concussive symptoms. Measures of diffusion (fractional anisotropy [FA]) and atrophy were also obtained for cortical and subcortical gray matter structures to characterize effects of injury as a function of time. Patients exhibited decreased scores in the domains of attention and processing speed relative to controls during the semi-acute injury stage, in conjunction with increased anisotropic diffusion in the left superior temporal gyrus and right thalamus. Evidence of increased diffusion in these regions was also present at four months post-injury, with performance on cognitive tests partially normalizing. In contrast, signs of cortical atrophy in bilateral frontal areas and other left-hemisphere cortical areas only emerged at four months post-injury for patients. Current results suggest potentially differential time-courses of recovery for neurobehavioral markers, anisotropic diffusion and atrophy following pmTBI. Importantly, these data suggest that relying on patient self-report or standard clinical assessments may underestimate the time for true injury recovery.

  14. Naltrexone treatment reverses astrocyte atrophy and immune dysfunction in self-harming macaques.

    PubMed

    Lee, Kim M; Chiu, Kevin B; Didier, Peter J; Baker, Kate C; MacLean, Andrew G

    2015-11-01

    The role of glia in the development and treatment of behavioral abnormalities is understudied. Recent reports have observed glial activation in several disorders, including depression, autism spectrum disorders and self-injurious behaviors (SIB). In the current study, we examined SIB in the physiologically and anatomically relevant nonhuman primate (NHP) model. At the Tulane National Primate Research Center (TNPRC), approximately 5% of singly housed macaques develop symptoms of SIB. We have previously demonstrated that naltrexone hydrochloride can be effective in reducing SIB. We have also demonstrated that the astrocytes of animals with SIB are distinctly atrophic and display heightened innate immune activation compared with control animals. We have added a third group of animals (five macaques identified with SIB and treated with oral naltrexone at a dose of 3.2mg/kg) to the previous cohort (six macaques with a history of SIB but not treated, and nine animals with no history of SIB) for this study. Gray and white matter astrocytes from frontal cortical tissue were examined following necropsy. Innate immune activation of astrocytes, which was increased in SIB animals, was markedly decreased in animals receiving naltrexone, as was atrophy of both grey and white matter astrocytes. This was concomitant with improved behavioral correlates. Preventing astrocyte activation in select areas of the brain to reduce injurious behavior is an innovative concept with implications for mental health studies. Differences in multiple areas of primate brain would help determine how self-injurious behavior develops. These studies suggest a stronger role for astrocytes in the cellular events associated with self-injurious behaviors.

  15. Synaptic and nonsynaptic plasticity approximating probabilistic inference

    PubMed Central

    Tully, Philip J.; Hennig, Matthias H.; Lansner, Anders

    2014-01-01

    Learning and memory operations in neural circuits are believed to involve molecular cascades of synaptic and nonsynaptic changes that lead to a diverse repertoire of dynamical phenomena at higher levels of processing. Hebbian and homeostatic plasticity, neuromodulation, and intrinsic excitability all conspire to form and maintain memories. But it is still unclear how these seemingly redundant mechanisms could jointly orchestrate learning in a more unified system. To this end, a Hebbian learning rule for spiking neurons inspired by Bayesian statistics is proposed. In this model, synaptic weights and intrinsic currents are adapted on-line upon arrival of single spikes, which initiate a cascade of temporally interacting memory traces that locally estimate probabilities associated with relative neuronal activation levels. Trace dynamics enable synaptic learning to readily demonstrate a spike-timing dependence, stably return to a set-point over long time scales, and remain competitive despite this stability. Beyond unsupervised learning, linking the traces with an external plasticity-modulating signal enables spike-based reinforcement learning. At the postsynaptic neuron, the traces are represented by an activity-dependent ion channel that is shown to regulate the input received by a postsynaptic cell and generate intrinsic graded persistent firing levels. We show how spike-based Hebbian-Bayesian learning can be performed in a simulated inference task using integrate-and-fire (IAF) neurons that are Poisson-firing and background-driven, similar to the preferred regime of cortical neurons. Our results support the view that neurons can represent information in the form of probability distributions, and that probabilistic inference could be a functional by-product of coupled synaptic and nonsynaptic mechanisms operating over several timescales. The model provides a biophysical realization of Bayesian computation by reconciling several observed neural phenomena whose

  16. Non-synaptic dendritic spines in neocortex.

    PubMed

    Arellano, J I; Espinosa, A; Fairén, A; Yuste, R; DeFelipe, J

    2007-03-16

    A long-held assumption states that each dendritic spine in the cerebral cortex forms a synapse, although this issue has not been systematically investigated. We performed complete ultrastructural reconstructions of a large (n=144) population of identified spines in adult mouse neocortex finding that only 3.6% of the spines clearly lacked synapses. Nonsynaptic spines were small and had no clear head, resembling dendritic filopodia, and could represent a source of new synaptic connections in the adult cerebral cortex.

  17. Intraoperative peripheral nerve injury in colorectal surgery. An update.

    PubMed

    Colsa Gutiérrez, Pablo; Viadero Cervera, Raquel; Morales-García, Dieter; Ingelmo Setién, Alfredo

    2016-03-01

    Intraoperative peripheral nerve injury during colorectal surgery procedures is a potentially serious complication that is often underestimated. The Trendelenburg position, use of inappropriately padded armboards and excessive shoulder abduction may encourage the development of brachial plexopathy during laparoscopic procedures. In open colorectal surgery, nerve injuries are less common. It usually involves the femoral plexus associated with lithotomy position and self-retaining retractor systems. Although in most cases the recovery is mostly complete, treatment consists of physical therapy to prevent muscular atrophy, protection of hypoesthesic skin areas and analgesics for neuropathic pain. The aim of the present study is to review the incidence, prevention and management of intraoperative peripheral nerve injury.

  18. Endocannabinoids and synaptic function in the CNS.

    PubMed

    Hashimotodani, Yuki; Ohno-Shosaku, Takako; Kano, Masanobu

    2007-04-01

    Marijuana affects neural functions through the binding of its active component (Delta(9)-THC) to cannabinoid receptors in the CNS. Recent studies have elucidated that endogenous ligands for cannabinoid receptors, endocannabinoids, serve as retrograde messengers at central synapses. Endocannabinoids are produced on demand in activity-dependent manners and released from postsynaptic neurons. The released endocannabinoids travel backward across the synapse, activate presynaptic CB1 cannabinoid receptors, and modulate presynaptic functions. Retrograde endocannabinoid signaling is crucial for certain forms of short-term and long-term synaptic plasticity at excitatory or inhibitory synapses in many brain regions, and thereby contributes to various aspects of brain function including learning and memory. Molecular identities of the CB1 receptor and enzymes involved in production and degradation of endocannabinoids have been elucidated. Anatomical studies have demonstrated unique distributions of these molecules around synapses, which provide morphological bases for the roles of endocannabinoids as retrograde messengers. CB1-knockout mice exhibit various behavioral abnormalities and multiple defects in synaptic plasticity, supporting the notion that endocannabinoid signaling is involved in various aspects of neural function. In this review article, the authors describe molecular mechanisms of the endocannabinoid-mediated synaptic modulation and its possible physiological significance.

  19. The developmental stages of synaptic plasticity

    PubMed Central

    Lohmann, Christian; Kessels, Helmut W

    2014-01-01

    Abstract The brain is programmed to drive behaviour by precisely wiring the appropriate neuronal circuits. Wiring and rewiring of neuronal circuits largely depends on the orchestrated changes in the strengths of synaptic contacts. Here, we review how the rules of synaptic plasticity change during development of the brain, from birth to independence. We focus on the changes that occur at the postsynaptic side of excitatory glutamatergic synapses in the rodent hippocampus and neocortex. First we summarize the current data on the structure of synapses and the developmental expression patterns of the key molecular players of synaptic plasticity, N-methyl-d-aspartate (NMDA) and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors, as well as pivotal kinases (Ca2+/calmodulin-dependent protein kinase II, protein kinase A, protein kinase C) and phosphatases (PP1, PP2A, PP2B). In the second part we relate these findings to important characteristics of the emerging network. We argue that the concerted and gradual shifts in the usage of plasticity molecules comply with the changing need for (re)wiring neuronal circuits. PMID:24144877

  20. CDK5 downregulation enhances synaptic plasticity.

    PubMed

    Posada-Duque, Rafael Andrés; Ramirez, Omar; Härtel, Steffen; Inestrosa, Nibaldo C; Bodaleo, Felipe; González-Billault, Christian; Kirkwood, Alfredo; Cardona-Gómez, Gloria Patricia

    2017-01-01

    CDK5 is a serine/threonine kinase that is involved in the normal function of the adult brain and plays a role in neurotransmission and synaptic plasticity. However, its over-regulation has been associated with Tau hyperphosphorylation and cognitive deficits. Our previous studies have demonstrated that CDK5 targeting using shRNA-miR provides neuroprotection and prevents cognitive deficits. Dendritic spine morphogenesis and forms of long-term synaptic plasticity-such as long-term potentiation (LTP)-have been proposed as essential processes of neuroplasticity. However, whether CDK5 participates in these processes remains controversial and depends on the experimental model. Using wild-type mice that received injections of CDK5 shRNA-miR in CA1 showed an increased LTP and recovered the PPF in deficient LTP of APPswe/PS1Δ9 transgenic mice. On mature hippocampal neurons CDK5, shRNA-miR for 12 days induced increased dendritic protrusion morphogenesis, which was dependent on Rac activity. In addition, silencing of CDK5 increased BDNF expression, temporarily increased phosphorylation of CaMKII, ERK, and CREB; and facilitated calcium signaling in neurites. Together, our data suggest that CDK5 downregulation induces synaptic plasticity in mature neurons involving Ca(2+) signaling and BDNF/CREB activation.

  1. Pathogenesis of Abeta oligomers in synaptic failure.

    PubMed

    Sivanesan, Senthilkumar; Tan, Aaron; Rajadas, Jayakumar

    2013-03-01

    The soluble Abeta oligomers in brain are highly correlated with memory related synaptic dysfunctions in Alzheimer's disease (AD). However, more recent studies implicate the involvement of Abeta dimers and trimers in memory related AD pathology. Apparently, Abeta oligomers can bind with cellular prion protein at the membrane receptors, forming annular amyloid pores and membrane ion channels to induce aberrant spine cytoskeletal changes. Hence synapse targeting of Abeta oligomers involves activation of many receptors such as N-Methyl-D-aspartate (NMDA), alpha-amino-3- hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA), nicotinic acetylcholine (nAChRs), p75 neurotrophin (p75NTR) following aberrant clustering of metabotropic glutamate receptors (mGluR5) leading to neuronal loss and LTP failure. In particular, NMDA and AMPA receptor activation by soluble amyloid oligomers involves calcium mediated mitochondrial dysfunction, decreased Ca((2+))/calmodulin-dependent protein kinase II (CaMKII) levels at the synapses accompanying dramatic loss of synaptic proteins such as postsynaptic density-95 (PSD-95), dynamin-1 and synaptophysin. This kind of receptor-Abeta oligomer interaction might eventually affect the neuronal membrane integrity by altering dielectric barrier, various synaptic proteins, spine morphology and density and P/Q calcium currents that might provoke a cascade of events leading to neuronal loss and memory failure. In this review, we try to explain in detail the various possible mechanisms that connect Abeta oligomers with synapse damage and memory failure.

  2. Synaptic kainate currents reset interneuron firing phase

    PubMed Central

    Yang, Ellen J; Harris, Alexander Z; Pettit, Diana L

    2007-01-01

    Hippocampal interneuron activity has been linked to epileptogenesis, seizures and the oscillatory synaptic activity detected in behaving rats. Interneurons fire at specific times in the rhythmic cycles that comprise these oscillations; however, the mechanisms controlling these firing patterns remain unclear. We have examined the role of synaptic input in modulating the firing of spontaneously active rat hippocampal interneurons. We find that synaptic glutamate receptor currents of 20–30 pA increase instantaneous firing frequency and reset the phase of spontaneously firing CA1 stratum oriens interneurons. Kainate receptor (KAR)-mediated currents are particularly effective at producing this phase reset, while AMPA receptor currents are relatively ineffective. The efficacy of KAR-mediated currents is probably due to their 3-fold longer decay. Given the small amplitude of the currents needed for this phase reset, coincident activation of only a few KAR-containing synapses could synchronize firing in groups of interneurons. These data suggest that KARs are potent modulators of circuit behaviour and their activation alters hippocampal interneuron output. PMID:17068102

  3. Characterization and extraction of the synaptic apposition surface for synaptic geometry analysis

    PubMed Central

    Morales, Juan; Rodríguez, Angel; Rodríguez, José-Rodrigo; DeFelipe, Javier; Merchán-Pérez, Angel

    2013-01-01

    Geometrical features of chemical synapses are relevant to their function. Two critical components of the synaptic junction are the active zone (AZ) and the postsynaptic density (PSD), as they are related to the probability of synaptic release and the number of postsynaptic receptors, respectively. Morphological studies of these structures are greatly facilitated by the use of recent electron microscopy techniques, such as combined focused ion beam milling and scanning electron microscopy (FIB/SEM), and software tools that permit reconstruction of large numbers of synapses in three dimensions. Since the AZ and the PSD are in close apposition and have a similar surface area, they can be represented by a single surface—the synaptic apposition surface (SAS). We have developed an efficient computational technique to automatically extract this surface from synaptic junctions that have previously been three-dimensionally reconstructed from actual tissue samples imaged by automated FIB/SEM. Given its relationship with the release probability and the number of postsynaptic receptors, the surface area of the SAS is a functionally relevant measure of the size of a synapse that can complement other geometrical features like the volume of the reconstructed synaptic junction, the equivalent ellipsoid size and the Feret's diameter. PMID:23847474

  4. Context-Dependent Modulation of Excitatory Synaptic Strength by Synaptically Released Zinc

    PubMed Central

    Kalappa, Bopanna I.

    2017-01-01

    Abstract Synaptically released zinc inhibits baseline excitatory neurotransmission; however, the role of this neuromodulator on short-term plasticity during different levels of synaptic activity remains largely unknown. This lack of knowledge prevents our understanding of information transfer across zinc-releasing synapses, including 50% of excitatory synapses in cortical areas. We used in vitro electrophysiology in mouse brain slices and discovered that the effects of zinc on excitatory postsynaptic current (EPSC) amplitudes are context-dependent. At lower frequencies of activity, synaptically released zinc reduces EPSC amplitudes. In contrast, at higher stimulation frequencies and vesicular release probability (Pr), zinc inhibits EPSC amplitudes during the first few stimuli but leads to enhanced steady-state EPSC amplitudes during subsequent stimuli. This paradoxical enhancement is due to zinc-dependent potentiation of synaptic facilitation via the recruitment of endocannabinoid signaling. Together, these findings demonstrate that synaptically released zinc is a modulator of excitatory short-term plasticity, which shapes information transfer among excitatory synapses. PMID:28275718

  5. Dynamic Control of Synaptic Adhesion and Organizing Molecules in Synaptic Plasticity

    SciTech Connect

    Rudenko, Gabby

    2017-01-01

    Synapses play a critical role in establishing and maintaining neural circuits, permitting targeted information transfer throughout the brain. A large portfolio of synaptic adhesion/organizing molecules (SAMs) exists in the mammalian brain involved in synapse development and maintenance. SAMs bind protein partners, formingtrans-complexes spanning the synaptic cleft orcis-complexes attached to the same synaptic membrane. SAMs play key roles in cell adhesion and in organizing protein interaction networks; they can also provide mechanisms of recognition, generate scaffolds onto which partners can dock, and likely take part in signaling processes as well. SAMs are regulated through a portfolio of different mechanisms that affect their protein levels, precise localization, stability, and the availability of their partners at synapses. Interaction of SAMs with their partners can further be strengthened or weakened through alternative splicing, competing protein partners, ectodomain shedding, or astrocytically secreted factors. Given that numerous SAMs appear altered by synaptic activity, in vivo, these molecules may be used to dynamically scale up or scale down synaptic communication. Many SAMs, including neurexins, neuroligins, cadherins, and contactins, are now implicated in neuropsychiatric and neurodevelopmental diseases, such as autism spectrum disorder, schizophrenia, and bipolar disorder and studying their molecular mechanisms holds promise for developing novel therapeutics.

  6. Dynamic Control of Synaptic Adhesion and Organizing Molecules in Synaptic Plasticity

    PubMed Central

    2017-01-01

    Synapses play a critical role in establishing and maintaining neural circuits, permitting targeted information transfer throughout the brain. A large portfolio of synaptic adhesion/organizing molecules (SAMs) exists in the mammalian brain involved in synapse development and maintenance. SAMs bind protein partners, forming trans-complexes spanning the synaptic cleft or cis-complexes attached to the same synaptic membrane. SAMs play key roles in cell adhesion and in organizing protein interaction networks; they can also provide mechanisms of recognition, generate scaffolds onto which partners can dock, and likely take part in signaling processes as well. SAMs are regulated through a portfolio of different mechanisms that affect their protein levels, precise localization, stability, and the availability of their partners at synapses. Interaction of SAMs with their partners can further be strengthened or weakened through alternative splicing, competing protein partners, ectodomain shedding, or astrocytically secreted factors. Given that numerous SAMs appear altered by synaptic activity, in vivo, these molecules may be used to dynamically scale up or scale down synaptic communication. Many SAMs, including neurexins, neuroligins, cadherins, and contactins, are now implicated in neuropsychiatric and neurodevelopmental diseases, such as autism spectrum disorder, schizophrenia, and bipolar disorder and studying their molecular mechanisms holds promise for developing novel therapeutics. PMID:28255461

  7. Snowboard injuries.

    PubMed

    Pino, E C; Colville, M R

    1989-01-01

    A retrospective survey of 267 snowboarders was undertaken to determine the population at risk and types and mechanisms of injuries sustained in this sport. Snowboarders are young (average age, 21 years), male (greater than 90%), view themselves in average or above average physical condition (96%), and have varied sports interests. One hundred ten injuries that resulted in a physician visit were reported. Ligament sprains, fractures, and contusions were the most frequent types of injury. Fifty percent of all injuries occurred in the lower extremities, with ankle injuries being the most common. Snowboard riders using equipment with increased ankle support seem to be more protected from lower extremity injuries. The lower extremity injuries were concentrated in the forward limb of the snowboarder, where the rider's weight is disproportionately distributed. Differences in the mechanism and spectrum of injury between snowboarding and skiing injuries were noted, including: impact rather than torsion as the major mechanism of injury, a significant lack of thumb injuries, comparative increase in ankle injuries, a decrease in knee injuries, and a higher percentage of upper extremity injuries.

  8. Acid-sensing ion channels: trafficking and synaptic function

    PubMed Central

    2013-01-01

    Extracellular acidification occurs in the brain with elevated neural activity, increased metabolism, and neuronal injury. This reduction in pH can have profound effects on brain function because pH regulates essentially every single biochemical reaction. Therefore, it is not surprising to see that Nature evolves a family of proteins, the acid-sensing ion channels (ASICs), to sense extracellular pH reduction. ASICs are proton-gated cation channels that are mainly expressed in the nervous system. In recent years, a growing body of literature has shown that acidosis, through activating ASICs, contributes to multiple diseases, including ischemia, multiple sclerosis, and seizures. In addition, ASICs play a key role in fear and anxiety related psychiatric disorders. Several recent reviews have summarized the importance and therapeutic potential of ASICs in neurological diseases, as well as the structure-function relationship of ASICs. However, there is little focused coverage on either the basic biology of ASICs or their contribution to neural plasticity. This review will center on these topics, with an emphasis on the synaptic role of ASICs and molecular mechanisms regulating the spatial distribution and function of these ion channels. PMID:23281934

  9. Cellular and molecular bases of memory: synaptic and neuronal plasticity.

    PubMed

    Wang, J H; Ko, G Y; Kelly, P T

    1997-07-01

    Discoveries made during the past decade have greatly improved our understanding of how the nervous system functions. This review article examines the relation between memory and the cellular mechanisms of neuronal and synaptic plasticity in the central nervous system. Evidence indicating that activity-dependent short- and long-term changes in strength of synaptic transmission are important for memory processes is examined. Focus is placed on one model of synaptic plasticity called long-term potentiation, and its similarities with memory processes are illustrated. Recent studies show that the regulation of synaptic strength is bidirectional (e.g., synaptic potentiation or depression). Mechanisms involving intracellular signaling pathways that regulate synaptic strength are described, and the specific roles of calcium, protein kinases, protein phosphatases, and retrograde messengers are emphasized. Evidence suggests that changes in synaptic ultrastructure, dendritic ultrastructure, and neuronal gene expression may also contribute to mechanisms of synaptic plasticity. Also discussed are recent findings about postsynaptic mechanisms that regulate short-term synaptic facilitation and neuronal burst-pattern activity, as well as evidence about the subcellular location (presynaptic or postsynaptic) of mechanisms involved in long-term synaptic plasticity.

  10. Snowboarding injuries.

    PubMed

    Sachtleben, Thomas R

    2011-01-01

    Snowboarding has gained immense popularity during the past 30 years and continues to appeal to many young participants. Injury patterns and characteristics of injuries seen commonly in snowboarders have rapidly evolved during this time. Risk factors have emerged, and various methods of reducing injuries to snowboarders have been investigated. It is important that medical providers are knowledgeable about this growing sport and are prepared to adequately evaluate and treat snowboarding injuries. This article will review the issues and discuss diagnostic and treatment principles regarding injuries seen commonly in snowboarders. Injury prevention should be emphasized, particularly with young riders and beginners.

  11. Calcineurin mediates homeostatic synaptic plasticity by regulating retinoic acid synthesis

    PubMed Central

    Arendt, Kristin L.; Zhang, Zhenjie; Ganesan, Subhashree; Hintze, Maik; Shin, Maggie M.; Tang, Yitai; Cho, Ahryon; Graef, Isabella A.; Chen, Lu

    2015-01-01

    Homeostatic synaptic plasticity is a form of non-Hebbian plasticity that maintains stability of the network and fidelity for information processing in response to prolonged perturbation of network and synaptic activity. Prolonged blockade of synaptic activity decreases resting Ca2+ levels in neurons, thereby inducing retinoic acid (RA) synthesis and RA-dependent homeostatic synaptic plasticity; however, the signal transduction pathway that links reduced Ca2+-levels to RA synthesis remains unknown. Here we identify the Ca2+-dependent protein phosphatase calcineurin (CaN) as a key regulator for RA synthesis and homeostatic synaptic plasticity. Prolonged inhibition of CaN activity promotes RA synthesis in neurons, and leads to increased excitatory and decreased inhibitory synaptic transmission. These effects of CaN inhibitors on synaptic transmission are blocked by pharmacological inhibitors of RA synthesis or acute genetic deletion of the RA receptor RARα. Thus, CaN, acting upstream of RA, plays a critical role in gating RA signaling pathway in response to synaptic activity. Moreover, activity blockade-induced homeostatic synaptic plasticity is absent in CaN knockout neurons, demonstrating the essential role of CaN in RA-dependent homeostatic synaptic plasticity. Interestingly, in GluA1 S831A and S845A knockin mice, CaN inhibitor- and RA-induced regulation of synaptic transmission is intact, suggesting that phosphorylation of GluA1 C-terminal serine residues S831 and S845 is not required for CaN inhibitor- or RA-induced homeostatic synaptic plasticity. Thus, our study uncovers an unforeseen role of CaN in postsynaptic signaling, and defines CaN as the Ca2+-sensing signaling molecule that mediates RA-dependent homeostatic synaptic plasticity. PMID:26443861

  12. Synaptic plasticity by antidromic firing during hippocampal network oscillations.

    PubMed

    Bukalo, Olena; Campanac, Emilie; Hoffman, Dax A; Fields, R Douglas

    2013-03-26

    Learning and other cognitive tasks require integrating new experiences into context. In contrast to sensory-evoked synaptic plasticity, comparatively little is known of how synaptic plasticity may be regulated by intrinsic activity in the brain, much of which can involve nonclassical modes of neuronal firing and integration. Coherent high-frequency oscillations of electrical activity in CA1 hippocampal neurons [sharp-wave ripple complexes (SPW-Rs)] functionally couple neurons into transient ensembles. These oscillations occur during slow-wave sleep or at rest. Neurons that participate in SPW-Rs are distinguished from adjacent nonparticipating neurons by firing action potentials that are initiated ectopically in the distal region of axons and propagate antidromically to the cell body. This activity is facilitated by GABA(A)-mediated depolarization of axons and electrotonic coupling. The possible effects of antidromic firing on synaptic strength are unknown. We find that facilitation of spontaneous SPW-Rs in hippocampal slices by increasing gap-junction coupling or by GABA(A)-mediated axon depolarization resulted in a reduction of synaptic strength, and electrical stimulation of axons evoked a widespread, long-lasting synaptic depression. Unlike other forms of synaptic plasticity, this synaptic depression is not dependent upon synaptic input or glutamate receptor activation, but rather requires L-type calcium channel activation and functional gap junctions. Synaptic stimulation delivered after antidromic firing, which was otherwise too weak to induce synaptic potentiation, triggered a long-lasting increase in synaptic strength. Rescaling synaptic weights in subsets of neurons firing antidromically during SPW-Rs might contribute to memory consolidation by sharpening specificity of subsequent synaptic input and promoting incorporation of novel information.

  13. Gastrodin protects against chronic inflammatory pain by inhibiting spinal synaptic potentiation

    PubMed Central

    Xiao, Mei-Mei; Zhang, Yu-Qi; Wang, Wen-Ting; Han, Wen-Juan; Lin, Zhen; Xie, Rou-Gang; Cao, Zhi; Lu, Na; Hu, San-Jue; Wu, Sheng-Xi; Dong, Hui; Luo, Ceng

    2016-01-01

    Tissue injury is known to produce inflammation and pain. Synaptic potentiation between peripheral nociceptors and spinal lamina I neurons has been proposed to serve as a trigger for chronic inflammatory pain. Gastrodin is a main bioactive constituent of the traditional Chinese herbal medicine Gastrodia elata Blume, which has been widely used as an analgesic since ancient times. However, its underlying cellular mechanisms have remained elusive. The present study demonstrated for the first time that gastrodin exhibits an analgesic effect at the spinal level on spontaneous pain, mechanical and thermal pain hypersensitivity induced by peripheral inflammation, which is not dependent on opioid receptors and without tolerance. This analgesia by gastrodin is at least in part mediated by depressing spinal synaptic potentiation via blockade of acid-sensing ion channels. Further studies with miniature EPSCs and paired-pulse ratio analysis revealed the presynaptic origin of the action of gastrodin, which involves a decrease in transmitter release probability. In contrast, neither basal nociception nor basal synaptic transmission was altered. This study revealed a dramatic analgesic action of gastrodin on inflammatory pain and uncovered a novel spinal mechanism that could underlie the analgesia by gastrodin, pointing the way to a new analgesic for treating chronic inflammatory pain. PMID:27853254

  14. Protease-activated receptor-1 modulates hippocampal memory formation and synaptic plasticity.

    PubMed

    Almonte, Antoine G; Qadri, Laura H; Sultan, Faraz A; Watson, Jennifer A; Mount, Daniel J; Rumbaugh, Gavin; Sweatt, J David

    2013-01-01

    Protease-activated receptor-1 (PAR1) is an unusual G-protein coupled receptor (GPCR) that is activated through proteolytic cleavage by extracellular serine proteases. Although previous work has shown that inhibiting PAR1 activation is neuroprotective in models of ischemia, traumatic injury, and neurotoxicity, surprisingly little is known about PAR1's contribution to normal brain function. Here, we used PAR1-/- mice to investigate the contribution of PAR1 function to memory formation and synaptic function. We demonstrate that PAR1-/- mice have deficits in hippocampus-dependent memory. We also show that while PAR1-/- mice have normal baseline synaptic transmission at Schaffer collateral-CA1 synapses, they exhibit severe deficits in N-methyl-d-aspartate receptor (NMDAR)-dependent long-term potentiation (LTP). Mounting evidence indicates that activation of PAR1 leads to potentiation of NMDAR-mediated responses in CA1 pyramidal cells. Taken together, this evidence and our data suggest an important role for PAR1 function in NMDAR-dependent processes subserving memory formation and synaptic plasticity.

  15. Anemoside A3 Enhances Cognition through the Regulation of Synaptic Function and Neuroprotection

    PubMed Central

    Ip, Fanny CF; Fu, Wing-Yu; Cheng, Elaine YL; Tong, Estella PS; Lok, Ka-Chun; Liang, Yan; Ye, Wen-Cai; Ip, Nancy Y

    2015-01-01

    Compounds that have the ability to both strengthen synaptic function and facilitate neuroprotection are valuable cognitive enhancers that may improve health and quality of life, as well as retard age-related cognitive deterioration. Medicinal plants are an abundant source of potential cognitive enhancers. Here we report that anemoside A3 (AA3) isolated from Pulsatilla chinensis modulates synaptic connectivity in circuits central to memory enhancement. AA3 specifically modulates the function of AMPA-type glutamate receptors (AMPARs) by increasing serine phosphorylation within the GluA1 subunit, which is a modification required for the trafficking of GluA1-containing AMPARs to synapses. Furthermore, AA3 administration activates several synaptic signaling molecules and increases protein expressions of the neurotrophin brain-derived neurotrophic factor and monoamine neurotransmitters in the mouse hippocampus. In addition to acting through AMPARs, AA3 also acts as a non-competitive NMDA receptor (NMDAR) modulator with a neuroprotective capacity against ischemic brain injury and overexcitation in rats. These findings collectively suggest that AA3 possesses a unique ability to modulate the functions of both AMPARs and NMDARs. Concordantly, behavioral studies indicate that AA3 not only facilitates hippocampal long-term potentiation but also enhances spatial reference memory formation in mice. These multifaceted roles suggest that AA3 is an attractive candidate for further development as a cognitive enhancer capable of alleviating memory dysfunctions associated with aging and neurodegenerative diseases. PMID:25649278

  16. Progressive biparietal atrophy: an atypical presentation of Alzheimer's disease.

    PubMed Central

    Ross, S J; Graham, N; Stuart-Green, L; Prins, M; Xuereb, J; Patterson, K; Hodges, J R

    1996-01-01

    OBJECTIVES: To define the clinical, neuropsychological, and radiological features of bilateral parietal lobe atrophy. METHODS: Four patients underwent a comprehensive longitudinal neuropsychological assessment, as well as MRI and HMPAO-SPECT. RESULTS: The consistent findings in the patients were early visuospatial problems, agraphia of a predominantly peripheral (or apraxic) type, and difficulty with bimanual tasks, all of which outweighted deficits in memory and language until later in the course of the illness. As the disease progressed, impairments in the phonological aspects of language and in auditory-verbal short term memory were often striking, perhaps reflecting spread from the parietal lobe to perisylvian language areas. Three patients went on to develop a global dementia and fulfilled the criteria for a clinical diagnosis of probable Alzheimer's disease; the fourth patient has only recently been identified. Neuroimaging disclosed bilateral parietal lobe atrophy (MRI) and hypoperfusion (SPECT), which was out of proportion to that seen elsewhere in the brain. One patient has died and had pathologically confirmed Alzheimer's disease with particular concentration in both superior parietal lobes. CONCLUSIONS: Bilateral biparietal atrophy is a recognisable clinical syndrome which can be the presenting feature of Alzheimer's disease. Although the label "posterior cortical atrophy" has been applied to such cases, review of the medical literature suggests that this broad rubric actually consists of two main clinical syndromes with features reflecting involvement of the occipitotemporal (ventral) and biparietal (dorsal) cortical areas respectively. Images PMID:8890778

  17. Benefits of Laser Therapy in Postmenopausal Vaginal Atrophy

    NASA Astrophysics Data System (ADS)

    Brînzan, Daniela; Pǎiuşan, Lucian; Daşcǎu, Voicu; Furǎu, Gheorghe

    2011-08-01

    Maybe the worst aspect of menopause is the decline of the quality of the sexual life. The aim of the study is to demonstrate the beneficial effects of laser therapy in comparison with topical application of estrogen preparations, for the treatment of vaginal atrophy and sexual dysfunctions induced by menopause. A total of 50 menopausal patients were examined during a one year period. The methods used for objectifying vaginal atrophy and sexual dysfunctions were history taking, local clinical exam and PAP smear. From this group, 40 patients had vaginal atrophy with sexual dysfunctions. They have been treated differently, being included in four groups: patients treated with local estrogens, patients treated with intravaginal laser therapy, patients treated with both laser therapy and estrogens, patients treated with estrogens and placebo laser therapy. Therapeutic benefit, improvement of vaginal atrophy and quality of sexual life, were objectified by anamnesis (questionnaire), local and general clinical examination and PAP smear. The best results have been obtained, by far, in the 3rd group, followed by the women treated only with laser. In conclusion, we can say that laser therapy is the best way for solving the sexual inconveniences of menopause.

  18. Atrophy of the Parietal Lobe in Preclinical Dementia

    ERIC Educational Resources Information Center

    Jacobs, Heidi I. L.; Van Boxtel, Martin P. J.; Uylings, Harry B. M.; Gronenschild, Ed H. B. M.; Verhey, Frans R.; Jolles, Jelle

    2011-01-01

    Cortical grey matter atrophy patterns have been reported in healthy ageing and Alzheimer disease (AD), but less consistently in the parietal regions of the brain. We investigated cortical grey matter volume patterns in parietal areas. The grey matter of the somatosensory cortex, superior and inferior parietal lobule was measured in 75 older adults…

  19. Acylated and unacylated ghrelin impair skeletal muscle atrophy in mice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cachexia is a wasting syndrome associated with cancer, AIDS, multiple sclerosis, and several other disease states. It is characterized by weight loss, fatigue, loss of appetite, and skeletal muscle atrophy and is associated with poor patient prognosis, making it an important treatment target. Ghreli...

  20. Characterization of disuse skeletal muscle atrophy and the efficacy of a novel muscle atrophy countermeasure during spaceflight and simulated microgravity

    NASA Astrophysics Data System (ADS)

    Hanson, Andrea Marie

    Humans are an integral part of the engineered systems that will enable return to the Moon and eventually travel to Mars. Major advancements in countermeasure development addressing deleterious effects of microgravity and reduced gravity on the musculoskeletal system need to be made to ensure mission safety and success. The primary objectives of this dissertation are to advance the knowledge and understanding of skeletal muscle atrophy, and support development of novel countermeasures for disuse atrophy to enable healthy long-duration human spaceflight. Models simulating microgravity and actual spaceflight were used to examine the musculoskeletal adaptations during periods of unloading. Myostatin inhibition, a novel anti-atrophy drug therapy, and exercise were examined as a means of preventing and recovering from disuse atrophy. A combination of assays was used to quantify adaptation responses to unloading and examine efficacy of the countermeasures. Body and muscle masses were collected to analyze systemic changes due to treatments. Hindlimb strength and individual muscle forces were measured to demonstrate functional adaptations to treatments. Muscle fiber morphology and myosin heavy chain (MHC) expression was examined to identify adaptations at the cellular level. Protein synthesis signals insulin-like growth factor-1 (IGF-1), Akt, and p70s6 kinase; and the degradation signals Atrogin-1 and MuRF-1 were examined to identify adaptations at the molecular level that ultimately lead to muscle hypertrophy and atrophy. A time course study provided a thorough characterization of the adaptation of skeletal muscle during unloading in C57BL/6 mice, and baseline data for comparison to and evaluation of subsequent studies. Time points defining the on-set and endpoints of disuse muscle atrophy were identified to enable characterization of rapid vs. long-term responses of skeletal muscle to hindlimb suspension. Unloading-induced atrophy primarily resulted from increased protein

  1. [Liver Atrophy and Failure Associated with Paclitaxel and Bevacizumab Combination Therapy for Metastatic Breast Cancer].

    PubMed

    Yamamoto, Mari; Ikeda, Masahiko; Kubo, Shinichiro; Tsukioki, Takahiro; Nakamoto, Shougo

    2016-07-01

    We managed 6 cases of severe liver atrophy and failure associated with paclitaxel and bevacizumab combination therapy (PB therapy)for HER2-negative metastatic breast cancer. In this case-controlstudy, we examined the records of these 6 patients to investigate past treatment, medication history, and degree of atrophy, and compared their data with that of 67 patients without liver atrophy. The degree of the liver atrophy used SYNAPSE VINCENT®of the image analysis software. The results showed that patients with liver atrophy had a longer pretreatment period than those without liver atrophy(33.5 months vs 15.5 months), and they also experienced a longer median time to treatment failure with PB therapy than other patients(11 months vs 6 months). The ratio of individuals presenting with diffuse liver metastasis among patients with liver metastasis was 80% with liver atrophy, compared to 8% without liver atrophy. The degree of liver atrophy was an average of 67%in terms of volume ratio before/after PB therapy(57-82%). The individualwith the greatest extent of liver atrophy died of liver failure, not as a result of breast cancer progression. The direct causal link between bevacizumab and liver atrophy and failure is unclear, but the individuals in this study had a long previous history of treatment, and diffuse liver metastases may develop in patients undergoing long periods of PB therapy, which may also cause liver atrophy; therefore, the possibility of liver failure should be considered in such cases.

  2. Is the Supraspinatus Muscle Atrophy Truly Irreversible after Surgical Repair of Rotator Cuff Tears?

    PubMed Central

    Chung, Seok Won; Kim, Sae Hoon; Tae, Suk-Kee; Yoon, Jong Pil; Choi, Jung-Ah

    2013-01-01

    Background Atrophy of rotator cuff muscles has been considered an irreversible phenomenon. The purpose of this study is to evaluate whether atrophy is truly irreversible after rotator cuff repair. Methods We measured supraspinatus muscle atrophy of 191 patients with full-thickness rotator cuff tears on preoperative magnetic resonance imaging and postoperative multidetector computed tomography images, taken at least 1 year after operation. The occupation ratio was calculated using Photoshop CS3 software. We compared the change between pre- and postoperative occupation ratios after modifying the preoperative occupation ratio. In addition, possible relationship between various clinical factors and the change of atrophy, and between the change of atrophy and cuff integrity after surgical repair were evaluated. Results The mean occupation ratio was significantly increased postoperatively from 0.44 ± 0.17 to 0.52 ± 0.17 (p < 0.001). Among 191 patients, 81 (42.4%) showed improvement of atrophy (more than a 10% increase in occupation ratio) and 33 (17.3%) worsening (more than a 10% decrease). Various clinical factors such as age tear size, or initial degree of atrophy did not affect the change of atrophy. However, the change of atrophy was related to repair integrity: cuff healing failure rate of 48.5% (16 of 33) in worsened atrophy; and 22.2% (18 of 81) in improved atrophy (p = 0.007). Conclusions The supraspinatus muscle atrophy as measured by occupation ratio could be improved postoperatively in case of successful cuff repair. PMID:23467404

  3. Renal Atrophy Secondary to Chemoradiotherapy of Abdominal Malignancies

    SciTech Connect

    Yang, Gary Y.; May, Kilian Salerno; Iyer, Renuka V.; Chandrasekhar, Rameela M.A.; Wilding, Gregory E.; McCloskey, Susan A.; Khushalani, Nikhil I.; Yendamuri, Saikrishna S.; Gibbs, John F.; Fakih, Marwan; Thomas, Charles R.

    2010-10-01

    Purpose: To identify factors predictive of renal atrophy after chemoradiotherapy of gastrointestinal malignancies. Methods and Materials: Patients who received chemotherapy and abdominal radiotherapy (RT) between 2002 and 2008 were identified for this study evaluating change in kidney size and function after RT. Imaging and biochemical data were obtained before and after RT in 6-month intervals. Kidney size was defined by craniocaudal measurement on CT images. The primarily irradiated kidney (PK) was defined as the kidney that received the greater mean kidney dose. Receiver operating characteristic (ROC) curves were generated to predict risk for renal atrophy. Results: Of 130 patients, median age was 64 years, and 51.5% were male. Most primary disease sites were pancreas and periampullary tumors (77.7%). Median follow-up was 9.4 months. Creatinine clearance declined 20.89%, and size of the PK decreased 4.67% 1 year after completion of chemoradiation. Compensatory hypertrophy of the non-PK was not seen. Percentage volumes of the PK receiving {>=}10 Gy (V{sub 10}), 15 Gy (V{sub 15}), and 20 Gy (V{sub 20}) were significantly associated with renal atrophy 1 year after RT (p = 0.0030, 0.0029, and 0.0028, respectively). Areas under the ROC curves for V{sub 10}, V{sub 15}, and V{sub 20} to predict >5% decrease in PK size were 0.760, 0.760, and 0.762, respectively. Conclusions: Significant detriments in PK size and renal function were seen after abdominal RT. The V{sub 10}, V{sub 15}, and V{sub 20} were predictive of risk for PK atrophy 1 year after RT. Analyses suggest the association of lower-dose renal irradiation with subsequent development of renal atrophy.

  4. Membrane palmitoylated protein 2 is a synaptic scaffold protein required for synaptic SK2-containing channel function

    PubMed Central

    Kim, Gukhan; Luján, Rafael; Schwenk, Jochen; Kelley, Melissa H; Aguado, Carolina; Watanabe, Masahiko; Fakler, Bernd; Maylie, James; Adelman, John P

    2016-01-01

    Mouse CA1 pyramidal neurons express apamin-sensitive SK2-containing channels in the post-synaptic membrane, positioned close to NMDA-type (N-methyl-D-aspartate) glutamate receptors. Activated by synaptically evoked NMDAR-dependent Ca2+ influx, the synaptic SK2-containing channels modulate excitatory post-synaptic responses and the induction of synaptic plasticity. In addition, their activity- and protein kinase A-dependent trafficking contributes to expression of long-term potentiation (LTP). We have identified a novel synaptic scaffold, MPP2 (membrane palmitoylated protein 2; p55), a member of the membrane-associated guanylate kinase (MAGUK) family that interacts with SK2-containing channels. MPP2 and SK2 co-immunopurified from mouse brain, and co-immunoprecipitated when they were co-expressed in HEK293 cells. MPP2 is highly expressed in the post-synaptic density of dendritic spines on CA1 pyramidal neurons. Knocking down MPP2 expression selectively abolished the SK2-containing channel contribution to synaptic responses and decreased LTP. Thus, MPP2 is a novel synaptic scaffold that is required for proper synaptic localization and function of SK2-containing channels. DOI: http://dx.doi.org/10.7554/eLife.12637.001 PMID:26880549

  5. Corneal injury

    MedlinePlus

    ... as sand or dust Ultraviolet injuries: Caused by sunlight, sun lamps, snow or water reflections, or arc- ... a corneal injury if you: Are exposed to sunlight or artificial ultraviolet light for long periods of ...

  6. Inhalation Injuries

    MedlinePlus

    ... you can inhale that can cause acute internal injuries. Particles in the air from fires and toxic ... and lung diseases worse. Symptoms of acute inhalation injuries may include Coughing and phlegm A scratchy throat ...

  7. ACL Injuries

    MedlinePlus

    ... Diet Plans Nutrients and Nutritional Info Sugar and Sugar Substitutes Exercise and Fitness Exercise Basics Sports Safety Injury ... Diet Plans Nutrients and Nutritional Info Sugar and Sugar Substitutes Exercise and Fitness Exercise Basics Sports Safety Injury ...

  8. Head Injuries

    MedlinePlus

    ... scalp internal head injuries, which may involve the skull, the blood vessels within the skull, or the brain Fortunately, most childhood falls or ... knock the brain into the side of the skull or tear blood vessels. Some internal head injuries ...

  9. Urethral Injuries

    MedlinePlus

    ... and Related Injuries (Video) Rotator Cuff Injury (News) Violent Video Games May Not 'Desensitize' Players, Brain Scans ... Comfort Am I Correct? More Videos News HealthDay Violent Video Games May Not 'Desensitize' Players, Brain Scans ...

  10. Synaptic efficacy cluster formation across the dendrite via STDP.

    PubMed

    Iannella, Nicolangelo; Tanaka, Shigeru

    2006-07-31

    The role of spike-timing-dependent plasticity (STDP) in shaping the strength of a synapse located on the dendritic tree has gained recent interest. Previous theoretical studies using STDP have mostly used simplified integrate-and-fire models to investigate the evolution of synaptic efficacy with time. Such studies usually show that the final weight distribution is unimodal or bimodal resulting from a multiplicative or additive STDP rule, respectively. However, very little is known about how STDP shapes the spatial organization of synaptic efficacies. Here, for the first time, we demonstrate that spatial clustering of synaptic efficacies can occur on the dendrite via STDP, where changes in synaptic efficacy are driven by timing differences between synaptic inputs and the generation of local dendritic spikes. Specifically, when the model neuron is stimulated by two independent groups of correlated afferent inputs, the synaptic efficacies from each group, are not only spatially clustered on the dendrite but also spatially complementary to each other.

  11. On the Teneurin track: a new synaptic organization molecule emerges

    PubMed Central

    Mosca, Timothy J.

    2015-01-01

    To achieve proper synaptic development and function, coordinated signals must pass between the pre- and postsynaptic membranes. Such transsynaptic signals can be comprised of receptors and secreted ligands, membrane associated receptors, and also pairs of synaptic cell adhesion molecules. A critical open question bridging neuroscience, developmental biology, and cell biology involves identifying those signals and elucidating how they function. Recent work in Drosophila and vertebrate systems has implicated a family of proteins, the Teneurins, as a new transsynaptic signal in both the peripheral and central nervous systems. The Teneurins have established roles in neuronal wiring, but studies now show their involvement in regulating synaptic connections between neurons and bridging the synaptic membrane and the cytoskeleton. This review will examine the Teneurins as synaptic cell adhesion molecules, explore how they regulate synaptic organization, and consider how some consequences of human Teneurin mutations may have synaptopathic origins. PMID:26074772

  12. Regulation of NMDA-receptor synaptic transmission by Wnt signaling

    PubMed Central

    Cerpa, Waldo; Gambrill, Abigail; Inestrosa, Nibaldo C.; Barria, Andres

    2011-01-01

    Wnt ligands are secreted glycoproteins controlling gene expression and cytoskeleton reorganization involved in embryonic development of the nervous system. However, their role in later stages of brain development, particularly in the regulation of established synaptic connections is not known. We found that Wnt-5a acutely and specifically up-regulates synaptic NMDAR currents in rat hippocampal slices facilitating induction of LTP, a cellular model of learning and memory. This effect requires an increase in postsynaptic Ca2+ and activation of non-canonical downstream effectors of the Wnt signaling pathway. In contrast, Wnt-7a, an activator of the canonical Wnt signaling pathway, has no effect on NMDAR mediated synaptic transmission. Moreover, endogenous Wnt ligands are necessary to maintain basal NMDAR synaptic transmission adjusting the threshold for synaptic potentiation. This novel role for Wnt ligands provides a mechanism for Wnt signaling to acutely modulate synaptic plasticity and brain function in later stages of development and in the mature organism. PMID:21715611

  13. LTD-like molecular pathways in developmental synaptic pruning

    PubMed Central

    Piochon, Claire; Kano, Masanobu; Hansel, Christian

    2016-01-01

    In long-term depression (LTD) at synapses in the adult brain, synaptic strength is reduced in an experience-dependent manner. LTD thus provides a cellular mechanism for information storage in some forms of learning. A similar activity-dependent reduction in synaptic strength also occurs in the developing brain and there provides an essential step in synaptic pruning and the postnatal development of neural circuits. Here we review evidence suggesting that LTD and synaptic pruning share components of their underlying molecular machinery and may thus represent two developmental stages of the same type of synaptic modulation that serve different, but related, functions in neural circuit plasticity. We also assess the relationship between LTD and synaptic pruning in the context of recent findings of LTD dysregulation in several mouse models of autism spectrum disorder (ASD) and discuss whether LTD deficits can indicate impaired pruning processes that are required for proper brain development. PMID:27669991

  14. On the Teneurin track: a new synaptic organization molecule emerges.

    PubMed

    Mosca, Timothy J

    2015-01-01

    To achieve proper synaptic development and function, coordinated signals must pass between the pre- and postsynaptic membranes. Such transsynaptic signals can be comprised of receptors and secreted ligands, membrane associated receptors, and also pairs of synaptic cell adhesion molecules. A critical open question bridging neuroscience, developmental biology, and cell biology involves identifying those signals and elucidating how they function. Recent work in Drosophila and vertebrate systems has implicated a family of proteins, the Teneurins, as a new transsynaptic signal in both the peripheral and central nervous systems. The Teneurins have established roles in neuronal wiring, but studies now show their involvement in regulating synaptic connections between neurons and bridging the synaptic membrane and the cytoskeleton. This review will examine the Teneurins as synaptic cell adhesion molecules, explore how they regulate synaptic organization, and consider how some consequences of human Teneurin mutations may have synaptopathic origins.

  15. Sleep, synaptic connectivity, and hippocampal memory during early development.

    PubMed

    Huber, Reto; Born, Jan

    2014-03-01

    Sleep, specifically sleep slow-wave activity (SWA), contributes to global synaptic homeostasis in neocortical networks by downscaling synaptic connections that were potentiated during prior wakefulness. In parallel, SWA supports the consolidation of hippocampus-dependent episodic memory, a process linked to local increases in synaptic connectivity. During development, both SWA and episodic memory show parallel time courses: distinct SWA and capabilities to form episodic memory become established during infancy and then profoundly increase across childhood until puberty. We propose that the parallel increases across childhood reflect an imbalance in the underlying regulation of synaptic connectivity during sleep; although memory consolidation favoring synaptic potentiation is enhanced, global synaptic downscaling during sleep SWA does not attain complete recovery of homeostatic baseline levels.

  16. Synaptic Contacts Enhance Cell-to-Cell Tau Pathology Propagation.

    PubMed

    Calafate, Sara; Buist, Arjan; Miskiewicz, Katarzyna; Vijayan, Vinoy; Daneels, Guy; de Strooper, Bart; de Wit, Joris; Verstreken, Patrik; Moechars, Diederik

    2015-05-26

    Accumulation of insoluble Tau protein aggregates and stereotypical propagation of Tau pathology through the brain are common hallmarks of tauopathies, including Alzheimer's disease (AD). Propagation of Tau pathology appears to occur along connected neurons, but whether synaptic contacts between neurons are facilitating propagation has not been demonstrated. Using quantitative in vitro models, we demonstrate that, in parallel to non-synaptic mechanisms, synapses, but not merely the close distance between the cells, enhance the propagation of Tau pathology between acceptor hippocampal neurons and Tau donor cells. Similarly, in an artificial neuronal network using microfluidic devices, synapses and synaptic activity are promoting neuronal Tau pathology propagation in parallel to the non-synaptic mechanisms. Our work indicates that the physical presence of synaptic contacts between neurons facilitate Tau pathology propagation. These findings can have implications for synaptic repair therapies, which may turn out to have adverse effects by promoting propagation of Tau pathology.

  17. Traumatic Intracranial Hemorrhage Correlates with Preinjury Brain Atrophy, but Not with Antithrombotic Agent Use: A Retrospective Study

    PubMed Central

    Dunham, C. Michael; Hoffman, David A.; Huang, Gregory S.; Omert, Laurel A.; Gemmel, David J.; Merrell, Renee

    2014-01-01

    Background The impact of antithrombotic agents (warfarin, clopidogrel, ASA) on traumatic brain injury outcomes is highly controversial. Although cerebral atrophy is speculated as a risk for acute intracranial hemorrhage, there is no objective literature evidence. Materials and Methods This is a retrospective, consecutive investigation of patients with signs of external head trauma and age ≥60 years. Outcomes were correlated with antithrombotic-agent status, coagulation test results, admission neurologic function, and CT-based cerebral atrophy dimensions. Results Of 198 consecutive patients, 36% were antithrombotic-negative and 64% antithrombotic-positive. ASA patients had higher arachidonic acid inhibition (p = 0.04) and warfarin patients had higher INR (p<0.001), compared to antithrombotic-negative patients. Antithrombotic-positive intracranial hemorrhage rate (38.9%) was similar to the antithrombotic-negative rate (31.9%; p = 0.3285). Coagulopathy was not present on the ten standard coagulation, thromboelastography, and platelet mapping tests with intracranial hemorrhage and results were similar to those without hemorrhage (p≥0.1354). Hemorrhagic-neurologic complication (intracranial hemorrhage progression, need for craniotomy, neurologic deterioration, or death) rates were similar for antithrombotic-negative (6.9%) and antithrombotic-positive (8.7%; p = 0.6574) patients. The hemorrhagic-neurologic complication rate was increased when admission major neurologic dysfunction was present (63.2% versus 2.2%; RR = 28.3; p<0.001). Age correlated inversely with brain parenchymal width (p<0.001) and positively with lateral ventricular width (p = 0.047) and cortical atrophy (p<0.001). Intracranial hemorrhage correlated with cortical atrophy (p<0.001) and ventricular width (p<0.001). Conclusions Intracranial hemorrhage is not associated with antithrombotic agent use. Intracranial hemorrhage patients have no demonstrable coagulopathy. The association

  18. Cycling injuries.

    PubMed Central

    Cohen, G. C.

    1993-01-01

    Bicycle-related injuries have increased as cycling has become more popular. Most injuries to recreational riders are associated with overuse or improper fit of the bicycle. Injuries to racers often result from high speeds, which predispose riders to muscle strains, collisions, and falls. Cyclists contact bicycles at the pedals, seat, and handlebars. Each is associated with particular cycling injuries. Images Figure 1 Figure 3 Figure 4 Figure 5 PMID:8471908

  19. Orienteering injuries

    PubMed Central

    Folan, Jean M.

    1982-01-01

    At the Irish National Orienteering Championships in 1981 a survey of the injuries occurring over the two days of competition was carried out. Of 285 individual competitors there was a percentage injury rate of 5.26%. The article discusses the injuries and aspects of safety in orienteering. Imagesp236-ap237-ap237-bp238-ap239-ap240-a PMID:7159815

  20. Mechanisms of Synaptic Alterations in a Neuroinflammation Model of Autism

    DTIC Science & Technology

    2015-10-01

    chemokines in the brain results in impaired synaptic development and altered behavior . We employed the MIA mouse model and so far found that in...offspring there is a reduction in the number of synaptic structures in vivo as well as reduced motility. Behavioral impairments relevant to ASD are also...impaired synaptic development and altered behavior . To test this hypothesis, we employed the MIA mouse model using the viral mimic poly (I:C) to

  1. Wolfram Syndrome presenting with optic atrophy and diabetes mellitus: two case reports.

    PubMed

    Manaviat, Masoud Reza; Rashidi, Maryam; Mohammadi, Seyed Mohammad

    2009-12-19

    Wolfram syndrome is the constellation of juvenile onset diabetes mellitus and optic atrophy, known as DIDMOAD (Diabetes Insipidus, Diabetes Mellitus, Optic Atrophy, and Deafness).Patients demonstrate diabetes mellitus followed by optic atrophy in the first decade, diabetes insipidus and sensorineural deafness in the second decade, dilated renal outflow tracts early in the third decade, and multiple neurological abnormalities early in the fourth decade.This study reports two siblings with late diagnosed wolfram syndrome with diabetes insipidus, diabetes mellitus, optic atrophy, deafness and severe urological abnormalities.In conclusion, cases having early onset insulin-dependent diabetes mellitus and optic atrophy together need to be evaluated with respect to Wolfram.

  2. Aberrant Synaptic Integration in Adult Lamina I Projection Neurons Following Neonatal Tissue Damage

    PubMed Central

    Li, Jie; Kritzer, Elizabeth; Craig, Paige E.

    2015-01-01

    Mounting evidence suggests that neonatal tissue damage evokes alterations in spinal pain reflexes which persist into adulthood. However, less is known about potential concomitant effects on the transmission of nociceptive information to the brain, as the degree to which early injury modulates synaptic integration and membrane excitability in mature spinal projection neurons remains unclear. Here we demonstrate that neonatal surgical injury leads to a significant shift in the balance between synaptic excitation and inhibition onto identified lamina I projection neurons of the adult mouse spinal cord. The strength of direct primary afferent input to mature spino-parabrachial neurons was enhanced following neonatal tissue damage, whereas the efficacy of both GABAergic and glycinergic inhibition onto the same population was compromised. This was accompanied by reorganization in the pattern of sensory input to adult projection neurons, which included a greater prevalence of monosynaptic input from low-threshold A-fibers when preceded by early tissue damage. In addition, neonatal incision resulted in greater primary afferent-evoked action potential discharge in mature projection neurons. Overall, these results demonstrate that tissue damage during early life causes a long-term increase in the gain of spinal nociceptive circuits, and suggest that the prolonged consequences of neonatal trauma may not be restricted to the spinal cord but rather include excessive ascending signaling to supraspinal pain centers. PMID:25673839

  3. The cell biology of synaptic specificity during development.

    PubMed

    Christensen, Ryan; Shao, Zhiyong; Colón-Ramos, Daniel A

    2013-12-01

    Proper circuit connectivity is critical for nervous system function. Connectivity derives from the interaction of two interdependent modules: synaptic specificity and synaptic assembly. Specificity involves both targeting of neurons to specific laminar regions and the formation of synapses onto defined subcellular areas. In this review, we focus discussion on recently elucidated molecular mechanisms that control synaptic specificity and link them to synapse assembly. We use these molecular pathways to underscore fundamental cell biological concepts that underpin, and help explain, the rules governing synaptic specificity.

  4. Experimental implementation of a biometric laser synaptic sensor.

    PubMed

    Pisarchik, Alexander N; Sevilla-Escoboza, Ricardo; Jaimes-Reátegui, Rider; Huerta-Cuellar, Guillermo; García-Lopez, J Hugo; Kazantsev, Victor B

    2013-12-16

    We fabricate a biometric laser fiber synaptic sensor to transmit information from one neuron cell to the other by an optical way. The optical synapse is constructed on the base of an erbium-doped fiber laser, whose pumped diode current is driven by a pre-synaptic FitzHugh-Nagumo electronic neuron, and the laser output controls a post-synaptic FitzHugh-Nagumo electronic neuron. The implemented laser synapse displays very rich dynamics, including fixed points, periodic orbits with different frequency-locking ratios and chaos. These regimes can be beneficial for efficient biorobotics, where behavioral flexibility subserved by synaptic connectivity is a challenge.

  5. Biochemical mechanisms for translational regulation in synaptic plasticity.

    PubMed

    Klann, Eric; Dever, Thomas E

    2004-12-01

    Changes in gene expression are required for long-lasting synaptic plasticity and long-term memory in both invertebrates and vertebrates. Regulation of local protein synthesis allows synapses to control synaptic strength independently of messenger RNA synthesis in the cell body. Recent reports indicate that several biochemical signalling cascades couple neurotransmitter and neurotrophin receptors to translational regulatory factors in protein synthesis-dependent forms of synaptic plasticity and memory. In this review, we highlight these translational regulatory mechanisms and the signalling pathways that govern the expression of synaptic plasticity in response to specific types of neuronal stimulation.

  6. Mild hypoxia affects synaptic connectivity in cultured neuronal networks.

    PubMed

    Hofmeijer, Jeannette; Mulder, Alex T B; Farinha, Ana C; van Putten, Michel J A M; le Feber, Joost

    2014-04-04

    Eighty percent of patients with chronic mild cerebral ischemia/hypoxia resulting from chronic heart failure or pulmonary disease have cognitive impairment. Overt structural neuronal damage is lacking and the precise cause of neuronal damage is unclear. As almost half of the cerebral energy consumption is used for synaptic transmission, and synaptic failure is the first abrupt consequence of acute complete anoxia, synaptic dysfunction is a candidate mechanism for the cognitive deterioration in chronic mild ischemia/hypoxia. Because measurement of synaptic functioning in patients is problematic, we use cultured networks of cortical neurons from new born rats, grown over a multi-electrode array, as a model system. These were exposed to partial hypoxia (partial oxygen pressure of 150Torr lowered to 40-50Torr) during 3 (n=14) or 6 (n=8) hours. Synaptic functioning was assessed before, during, and after hypoxia by assessment of spontaneous network activity, functional connectivity, and synaptically driven network responses to electrical stimulation. Action potential heights and shapes and non-synaptic stimulus responses were used as measures of individual neuronal integrity. During hypoxia of 3 and 6h, there was a statistically significant decrease of spontaneous network activity, functional connectivity, and synaptically driven network responses, whereas direct responses and action potentials remained unchanged. These changes were largely reversible. Our results indicate that in cultured neuronal networks, partial hypoxia during 3 or 6h causes isolated disturbances of synaptic connectivity.

  7. Computational Neuroscience: Modeling the Systems Biology of Synaptic Plasticity

    PubMed Central

    Kotaleski, Jeanette Hellgren; Blackwell, Kim T.

    2016-01-01

    Preface Synaptic plasticity is a mechanism proposed to underlie learning and memory. The complexity of the interactions between ion channels, enzymes, and genes involved in synaptic plasticity impedes a deep understanding of this phenomenon. Computer modeling is an approach to investigate the information processing that is performed by signaling pathways underlying synaptic plasticity. In the past few years, new software developments that blend computational neuroscience techniques with systems biology techniques have allowed large-scale, quantitative modeling of synaptic plasticity in neurons. We highlight significant advancements produced by these modeling efforts and introduce promising approaches that utilize advancements in live cell imaging. PMID:20300102

  8. Experimental Implementation of a Biometric Laser Synaptic Sensor

    PubMed Central

    Pisarchik, Alexander N.; Sevilla-Escoboza, Ricardo; Jaimes-Reátegui, Rider; Huerta-Cuellar, Guillermo; García-Lopez, J. Hugo; Kazantsev, Victor B.

    2013-01-01

    We fabricate a biometric laser fiber synaptic sensor to transmit information from one neuron cell to the other by an optical way. The optical synapse is constructed on the base of an erbium-doped fiber laser, whose pumped diode current is driven by a pre-synaptic FitzHugh–Nagumo electronic neuron, and the laser output controls a post-synaptic FitzHugh–Nagumo electronic neuron. The implemented laser synapse displays very rich dynamics, including fixed points, periodic orbits with different frequency-locking ratios and chaos. These regimes can be beneficial for efficient biorobotics, where behavioral flexibility subserved by synaptic connectivity is a challenge. PMID:24351638

  9. Modeling of Age-Dependent Epileptogenesis by Differential Homeostatic Synaptic Scaling.

    PubMed

    González, Oscar C; Krishnan, Giri P; Chauvette, Sylvain; Timofeev, Igor; Sejnowski, Terrence; Bazhenov, Maxim

    2015-09-30

    Homeostatic synaptic plasticity (HSP) has been implicated in the development of hyperexcitability and epileptic seizures following traumatic brain injury (TBI). Our in vivo experimental studies in cats revealed that the severity of TBI-mediated epileptogenesis depends on the age of the animal. To characterize mechanisms of these differences, we studied the properties of the TBI-induced epileptogenesis in a biophysically realistic cortical network model with dynamic ion concentrations. After deafferentation, which was induced by dissection of the afferent inputs, there was a reduction of the network activity and upregulation of excitatory connections leading to spontaneous spike-and-wave type seizures. When axonal sprouting was implemented, the seizure threshold increased in the model of young but not the older animals, which had slower or unidirectional homeostatic processes. Our study suggests that age-related changes in the HSP mechanisms are sufficient to explain the difference in the likelihood of seizure onset in young versus older animals. Significance statement: Traumatic brain injury (TBI) is one of the leading causes of intractable epilepsy. Likelihood of developing epilepsy and seizures following severe brain trauma has been shown to increase with age. Specific mechanisms of TBI-related epileptogenesis and how these mechanisms are affected by age remain to be understood. We test a hypothesis that the failure of homeostatic synaptic regulation, a slow negative feedback mechanism that maintains neural activity within a physiological range through activity-dependent modulation of synaptic strength, in older animals may augment TBI-induced epileptogenesis. Our results provide new insight into understanding this debilitating disorder and may lead to novel avenues for the development of effective treatments of TBI-induced epilepsy.

  10. Modeling of Age-Dependent Epileptogenesis by Differential Homeostatic Synaptic Scaling

    PubMed Central

    González, Oscar C.; Krishnan, Giri P.; Chauvette, Sylvain; Timofeev, Igor; Sejnowski, Terrence

    2015-01-01

    Homeostatic synaptic plasticity (HSP) has been implicated in the development of hyperexcitability and epileptic seizures following traumatic brain injury (TBI). Our in vivo experimental studies in cats revealed that the severity of TBI-mediated epileptogenesis depends on the age of the animal. To characterize mechanisms of these differences, we studied the properties of the TBI-induced epileptogenesis in a biophysically realistic cortical network model with dynamic ion concentrations. After deafferentation, which was induced by dissection of the afferent inputs, there was a reduction of the network activity and upregulation of excitatory connections leading to spontaneous spike-and-wave type seizures. When axonal sprouting was implemented, the seizure threshold increased in the model of young but not the older animals, which had slower or unidirectional homeostatic processes. Our study suggests that age-related changes in the HSP mechanisms are sufficient to explain the difference in the likelihood of seizure onset in young versus older animals. SIGNIFICANCE STATEMENT Traumatic brain injury (TBI) is one of the leading causes of intractable epilepsy. Likelihood of developing epilepsy and seizures following severe brain trauma has been shown to increase with age. Specific mechanisms of TBI-related epileptogenesis and how these mechanisms are affected by age remain to be understood. We test a hypothesis that the failure of homeostatic synaptic regulation, a slow negative feedback mechanism that maintains neural activity within a physiological range through activity-dependent modulation of synaptic strength, in older animals may augment TBI-induced epileptogenesis. Our results provide new insight into understanding this debilitating disorder and may lead to novel avenues for the development of effective treatments of TBI-induced epilepsy. PMID:26424890

  11. Theoretical models of synaptic short term plasticity

    PubMed Central

    Hennig, Matthias H.

    2013-01-01

    Short term plasticity is a highly abundant form of rapid, activity-dependent modulation of synaptic efficacy. A shared set of mechanisms can cause both depression and enhancement of the postsynaptic response at different synapses, with important consequences for information processing. Mathematical models have been extensively used to study the mechanisms and roles of short term plasticity. This review provides an overview of existing models and their biological basis, and of their main properties. Special attention will be given to slow processes such as calcium channel inactivation and the effect of activation of presynaptic autoreceptors. PMID:23626536

  12. Waterbike injuries.

    PubMed Central

    Jeffery, R S; Caiach, S

    1991-01-01

    Jet skiing is a rapidly growing sport. The craft incorporate safety features and the manufacturers issue detailed safety instructions. Racing is conducted with adequate attention to clothing, safety and insurance. However, casual use is widespread and is sometimes irresponsible. Serious injuries to riders are uncommon: dental and knee injuries are described. A case of renal contusion and a head injury were caused by other riders and two potentially fatal injuries illustrate the risk for other water users. The number of injuries associated with the use of personal watercraft is likely to increase and may be influenced by appropriate organization or regulation. Images Figure 2 Figure 3 Figure 4 PMID:1810620

  13. Synaptic microRNAs Coordinately Regulate Synaptic mRNAs: Perturbation by Chronic Alcohol Consumption

    PubMed Central

    Most, Dana; Leiter, Courtney; Blednov, Yuri A; Harris, R Adron; Mayfield, R Dayne

    2016-01-01

    Local translation of mRNAs in the synapse has a major role in synaptic structure and function. Chronic alcohol use causes persistent changes in synaptic mRNA expression, possibly mediated by microRNAs localized in the synapse. We profiled the transcriptome of synaptoneurosomes (SN) obtained from the amygdala of mice that consumed 20% ethanol (alcohol) in a 30-day continuous two-bottle choice test to identify the microRNAs that target alcohol-induced mRNAs. SN are membrane vesicles containing pre- and post-synaptic compartments of neurons and astroglia and are a unique model for studying the synaptic transcriptome. We previously showed that chronic alcohol regulates mRNA expression in a coordinated manner. Here, we examine microRNAs and mRNAs from the same samples to define alcohol-responsive synaptic microRNAs and their predicted interactions with targeted mRNAs. The aim of the study was to identify the microRNA–mRNA synaptic interactions that are altered by alcohol. This was accomplished by comparing the effect of alcohol in SN and total homogenate preparations from the same samples. We used a combination of unbiased bioinformatic methods (differential expression, correlation, co-expression, microRNA-mRNA target prediction, co-targeting, and cell type-specific analyses) to identify key alcohol-sensitive microRNAs. Prediction analysis showed that a subset of alcohol-responsive microRNAs was predicted to target many alcohol-responsive mRNAs, providing a bidirectional analysis for identifying microRNA–mRNA interactions. We found microRNAs and mRNAs with overlapping patterns of expression that correlated with alcohol consumption. Cell type-specific analysis revealed that a significant number of alcohol-responsive mRNAs and microRNAs were unique to glutamate neurons and were predicted to target each other. Chronic alcohol consumption appears to perturb the coordinated microRNA regulation of mRNAs in SN, a mechanism that may explain the aberrations in synaptic

  14. Synaptic microRNAs Coordinately Regulate Synaptic mRNAs: Perturbation by Chronic Alcohol Consumption.

    PubMed

    Most, Dana; Leiter, Courtney; Blednov, Yuri A; Harris, R Adron; Mayfield, R Dayne

    2016-01-01

    Local translation of mRNAs in the synapse has a major role in synaptic structure and function. Chronic alcohol use causes persistent changes in synaptic mRNA expression, possibly mediated by microRNAs localized in the synapse. We profiled the transcriptome of synaptoneurosomes (SN) obtained from the amygdala of mice that consumed 20% ethanol (alcohol) in a 30-day continuous two-bottle choice test to identify the microRNAs that target alcohol-induced mRNAs. SN are membrane vesicles containing pre- and post-synaptic compartments of neurons and astroglia and are a unique model for studying the synaptic transcriptome. We previously showed that chronic alcohol regulates mRNA expression in a coordinated manner. Here, we examine microRNAs and mRNAs from the same samples to define alcohol-responsive synaptic microRNAs and their predicted interactions with targeted mRNAs. The aim of the study was to identify the microRNA-mRNA synaptic interactions that are altered by alcohol. This was accomplished by comparing the effect of alcohol in SN and total homogenate preparations from the same samples. We used a combination of unbiased bioinformatic methods (differential expression, correlation, co-expression, microRNA-mRNA target prediction, co-targeting, and cell type-specific analyses) to identify key alcohol-sensitive microRNAs. Prediction analysis showed that a subset of alcohol-responsive microRNAs was predicted to target many alcohol-responsive mRNAs, providing a bidirectional analysis for identifying microRNA-mRNA interactions. We found microRNAs and mRNAs with overlapping patterns of expression that correlated with alcohol consumption. Cell type-specific analysis revealed that a significant number of alcohol-responsive mRNAs and microRNAs were unique to glutamate neurons and were predicted to target each other. Chronic alcohol consumption appears to perturb the coordinated microRNA regulation of mRNAs in SN, a mechanism that may explain the aberrations in synaptic

  15. Dynamic Foot Pressure as a Countermeasure to Muscle Atrophy

    NASA Astrophysics Data System (ADS)

    Kyparos, A.; Layne, C. S.; Martinez, D. A.; Clarke, M. S. F.; Feeback, D. L.

    2002-01-01

    Mechanical unloading of skeletal muscle (SKM) as a consequence of space flight or ground-based analogues, such as human bedrest and rodent hindlimb suspension (HLS) models, induces SKM atrophy particularly affecting the anti-gravity musculature of the lower limbs. In the context of manned space flight, the subsequent loss of muscle strength and functionality will pose operational implications jeopardizing mission success. Exercise, currently the primary muscle degradation countermeasure, has not proven completely effective in preventing muscle atrophy. It is therefore imperative that some other forms of in- flight countermeasure be also developed to supplement the prescribed exercise regimen the astronauts follow during spaceflight. Previous work in both humans and rats has shown that mechanical stimulation of the soles of the feet increases neuromuscular activation in the lower limb musculature and that such stimulation results in the limited prevention of atrophy in the soleus muscle of unloaded rats. This study was designed to investigate the effect of cutaneous mechanoreceptor stimulation on hindlimb unloading- induced SKM atrophy in rats. It was hypothesized that mechanical stimulation of the plantar surface of the rat foot during hindlimb suspension (HLS), utilizing a novel stimulation paradigm known as Dynamic Foot Pressure (DFP), would attenuate unloading-induced SKM atrophy. Mature adult male Wistar rats were randomly assigned to four groups of 10 rats each as follows: sedentary controls (Ctrl), hindlimb suspended only (HLS), hindlimb suspended wearing an inflatable boot (HLS-IFL) and hindlimb suspended rats wearing a non-inflatable boot (HLS-NIFL). The stimulation of mechanoreceptors was achieved by applying pressure to the plantar surface of the foot during the 10-day period of HLS using a custom-built boot. The anti-atrophic effects of DFP application was quantified directly by morphological (muscle wet weight, myofiber cross-sectional area

  16. Expanding the spectrum of neuronal pathology in multiple system atrophy.

    PubMed

    Cykowski, Matthew D; Coon, Elizabeth A; Powell, Suzanne Z; Jenkins, Sarah M; Benarroch, Eduardo E; Low, Phillip A; Schmeichel, Ann M; Parisi, Joseph E

    2015-08-01

    Multiple system atrophy is a sporadic alpha-synucleinopathy that typically affects patients in their sixth decade of life and beyond. The defining clinical features of the disease include progressive autonomic failure, parkinsonism, and cerebellar ataxia leading to significant disability. Pathologically, multiple system atrophy is characterized by glial cytoplasmic inclusions containing filamentous alpha-synuclein. Neuronal inclusions also have been reported but remain less well defined. This study aimed to further define the spectrum of neuronal pathology in 35 patients with multiple system atrophy (20 male, 15 female; mean age at death 64.7 years; median disease duration 6.5 years, range 2.2 to 15.6 years). The morphologic type, topography, and frequencies of neuronal inclusions, including globular cytoplasmic (Lewy body-like) neuronal inclusions, were determined across a wide spectrum of brain regions. A correlation matrix of pathologic severity also was calculated between distinct anatomic regions of involvement (striatum, substantia nigra, olivary and pontine nuclei, hippocampus, forebrain and thalamus, anterior cingulate and neocortex, and white matter of cerebrum, cerebellum, and corpus callosum). The major finding was the identification of widespread neuronal inclusions in the majority of patients, not only in typical disease-associated regions (striatum, substantia nigra), but also within anterior cingulate cortex, amygdala, entorhinal cortex, basal forebrain and hypothalamus. Neuronal inclusion pathology appeared to follow a hierarchy of region-specific susceptibility, independent of the clinical phenotype, and the severity of pathology was duration-dependent. Neuronal inclusions also were identified in regions not previously implicated in the disease, such as within cerebellar roof nuclei. Lewy body-like inclusions in multiple system atrophy followed the stepwise anatomic progression of Lewy body-spectrum disease inclusion pathology in 25.7% of patients

  17. Pharmacological Inhibitors of the Proteosome in Atrophying Muscles

    NASA Technical Reports Server (NTRS)

    Goldberg, Alfred

    1999-01-01

    It is now clear that the marked loss of muscle mass that occurs with disuse, denervation or in many systemic diseases (cancer cachexia, sepsis, acidosis, various endocrine disorders) is due primarily to accelerated degradation of muscle proteins, especially myofibrillar components. Recent work primarily in Dr. Goldberg's laboratory had suggested that in these diverse conditions, the enhancement of muscle proteolysis results mainly from activation of the Ub-proteasome degradative pathway. In various experimental models of atrophy, rat muscles show a common series of changes indicative of activation of this pathway, including increases in MRNA for Ub and proteasome subunits, content of ubiquitinated proteins, and sensitivity to inhibitors of the proteasome. In order to understand the muscle atrophy seen in weightlessness, Dr. Goldberg's laboratory is collaborating with Dr. Baldwin in studies to define the changes in these parameters upon hind-limb suspension. Related experiments will explore the effects on this degradative system of exercise regimens and also of glucocorticoids, which are known to rise in space personnel and to promote muscle, especially in inactive muscles. The main goals will be: (A) to define the enzymatic changes leading to enhanced activity of the Ub-proteasome pathway in inactive muscles upon hind-limb suspension, and the effects on this system of exposure to glucocorticoids or exercise; and (B) to learn whether inhibitors of the Ub-proteasome pathway may be useful in retarding the excessive proteolysis in atrophying muscles. Using muscle extracts, Dr. Goldberg's group hopes to define the rate-limiting, enzymatic changes that lead to the accelerated Ub-conjugation and protein degradation. They have recently developed cell-free preparations from atrophying rat muscles, in which Ub-conjugation to muscle proteins is increased above control levels. Because these new preparations seem to reproduce the changes occurring in vivo, they will analyze in

  18. Multimodal Discrimination of Alzheimer’s Disease Based on Regional Cortical Atrophy and Hypometabolism

    PubMed Central

    Yun, Hyuk Jin; Kwak, Kichang; Lee, Jong-Min

    2015-01-01

    Structural MR image (MRI) and 18F-Fluorodeoxyglucose-positron emission tomography (FDG-PET) have been widely employed in diagnosis of both Alzheimer’s disease (AD) and mild cognitive impairment (MCI) pathology, which has led to the development of methods to distinguish AD and MCI from normal controls (NC). Synaptic dysfunction leads to a reduction in the rate of metabolism of glucose in the brain and is thought to represent AD progression. FDG-PET has the unique ability to estimate glucose metabolism, providing information on the distribution of hypometabolism. In addition, patients with AD exhibit significant neuronal loss in cerebral regions, and previous AD research has shown that structural MRI can be used to sensitively measure cortical atrophy. In this paper, we introduced a new method to discriminate AD from NC based on complementary information obtained by FDG and MRI. For accurate classification, surface-based features were employed and 12 predefined regions were selected from previous studies based on both MRI and FDG-PET. Partial least square linear discriminant analysis was employed for making diagnoses. We obtained 93.6% classification accuracy, 90.1% sensitivity, and 96.5% specificity in discriminating AD from NC. The classification scheme had an accuracy of 76.5% and sensitivity and specificity of 46.5% and 89.6%, respectively, for discriminating MCI from AD. Our method exhibited a superior classification performance compared with single modal approaches and yielded parallel accuracy to previous multimodal classification studies using MRI and FDG-PET. PMID:26061669

  19. Bicycling injuries.

    PubMed

    Silberman, Marc R

    2013-01-01

    Bicycling injuries can be classified into bicycle contact, traumatic, and overuse injuries. Despite the popularity of cycling, there are few scientific studies regarding injuries. Epidemiological studies are difficult to compare due to different methodologies and the diverse population of cyclists studied. There are only three studies conducted on top level professionals. Ninety-four percent of professionals in 1 year have experienced at least one overuse injury. Most overuse injuries are mild with limited time off the bike. The most common site of overuse injury is the knee, and the most common site of traumatic injury is the shoulder, with the clavicle having the most common fracture. Many overuse and bicycle contact ailments are relieved with simple bike adjustments.

  20. Differential Modulation of Synaptic Strength and Timing Regulate Synaptic Efficacy in a Motor Network

    PubMed Central

    Brown, Jessica M.; Kvarta, Mark D.; Lu, Jay Y. J.; Schneider, Lauren R.; Nadim, Farzan; Harris-Warrick, Ronald M.

    2011-01-01

    Neuromodulators modify network output by altering neuronal firing properties and synaptic strength at multiple sites; however, the functional importance of each site is often unclear. We determined the importance of monoamine modulation of a single synapse for regulation of network cycle frequency in the oscillatory pyloric network of the lobster. The pacemaker kernel of the pyloric network receives only one chemical synaptic feedback, an inhibitory synapse from the lateral pyloric (LP) neuron to the pyloric dilator (PD) neurons, which can limit cycle frequency. We measured the effects of dopamine (DA), octopamine (Oct), and serotonin (5HT) on the strength of the LP→PD synapse and the ability of the modified synapse to regulate pyloric cycle frequency. DA and Oct strengthened, whereas 5HT weakened, LP→PD inhibition. Surprisingly, the DA-strengthened LP→PD synapse lost its ability to slow the pyloric oscillations, whereas the 5HT-weakened LP→PD synapse gained a greater influence on the oscillations. These results are explained by monoamine modulation of factors that determine the firing phase of the LP neuron in each cycle. DA acts via multiple mechanisms to phase-advance the LP neuron into the pacemaker's refractory period, where the strengthened synapse has little effect. In contrast, 5HT phase-delays LP activity into a region of greater pacemaker sensitivity to LP synaptic input. Only Oct enhanced LP regulation of cycle period simply by enhancing LP→PD synaptic strength. These results show that modulation of the strength and timing of a synaptic input can differentially affect the synapse's efficacy in the network. PMID:21047938

  1. Chronic stress-induced disruption of the astrocyte network is driven by structural atrophy and not loss of astrocytes.

    PubMed

    Tynan, Ross J; Beynon, Sarah B; Hinwood, Madeleine; Johnson, Sarah J; Nilsson, Michael; Woods, Jason J; Walker, Frederick R

    2013-07-01

    Chronic stress is well recognized to decrease the number of GFAP⁺ astrocytes within the prefrontal cortex (PFC). Recent research, however, has suggested that our understanding of how stress alters astrocytes may be incomplete. Specifically, chronic stress has been shown to induce a unique form of microglial remodelling, but it is not yet clear whether astrocytes also undergo similar structural modifications. Such alterations may be significant given the role of astrocytes in modulating synaptic function. Accordingly, in the current study we have examined changes in astrocyte morphology following exposure to chronic stress in adult rats, using three-dimensional digital reconstructions of astrocytes. Our analysis indicated that chronic stress produced profound atrophy of astrocyte process length, branching and volume. We additionally examined changes in astrocyte-specific S100β, which are both a putative astrocyte marker and a protein whose expression is associated with astrocyte distress. While we found that S100β levels were increased by stress, this increase was not correlated with atrophy. We further established that while chronic stress was associated with a decrease in astrocyte numbers when GFAP labelling was used as a marker, we could find no evidence of a decrease in the total number of cells, based on Nissl staining, or in the number of S100β⁺ cells. This finding suggests that chronic stress may not actually reduce astrocyte numbers and may instead selectively decrease GFAP expression. The results of the current study are significant as they indicate stress-induced astrocyte-mediated disturbances may not be due to a loss of cells but rather due to significant remodeling of the astrocyte network.

  2. Activity-dependent synaptic GRIP1 accumulation drives synaptic scaling up in response to action potential blockade.

    PubMed

    Gainey, Melanie A; Tatavarty, Vedakumar; Nahmani, Marc; Lin, Heather; Turrigiano, Gina G

    2015-07-07

    Synaptic scaling is a form of homeostatic plasticity that stabilizes neuronal firing in response to changes in synapse number and strength. Scaling up in response to action-potential blockade is accomplished through increased synaptic accumulation of GluA2-containing AMPA receptors (AMPAR), but the receptor trafficking steps that drive this process remain largely obscure. Here, we show that the AMPAR-binding protein glutamate receptor-interacting protein-1 (GRIP1) is essential for regulated synaptic AMPAR accumulation during scaling up. Synaptic abundance of GRIP1 was enhanced by activity deprivation, directly increasing synaptic GRIP1 abundance through overexpression increased the amplitude of AMPA miniature excitatory postsynaptic currents (mEPSCs), and shRNA-mediated GRIP1 knockdown prevented scaling up of AMPA mEPSCs. Furthermore, knockdown and replace experiments targeting either GRIP1 or GluA2 revealed that scaling up requires the interaction between GRIP1 and GluA2. Finally, GRIP1 synaptic accumulation during scaling up did not require GluA2 binding. Taken together, our data support a model in which activity-dependent trafficking of GRIP1 to synaptic sites drives the forward trafficking and enhanced synaptic accumulation of GluA2-containing AMPAR during synaptic scaling up.

  3. Injury - kidney and ureter

    MedlinePlus

    Kidney damage; Toxic injury of the kidney; Kidney injury; Traumatic injury of the kidney; Fractured kidney; Inflammatory injury of the kidney; Bruised kidney; Ureteral injury; Pre-renal failure - injury, ...

  4. Synaptic Democracy and Vesicular Transport in Axons

    NASA Astrophysics Data System (ADS)

    Bressloff, Paul C.; Levien, Ethan

    2015-04-01

    Synaptic democracy concerns the general problem of how regions of an axon or dendrite far from the cell body (soma) of a neuron can play an effective role in neuronal function. For example, stimulated synapses far from the soma are unlikely to influence the firing of a neuron unless some sort of active dendritic processing occurs. Analogously, the motor-driven transport of newly synthesized proteins from the soma to presynaptic targets along the axon tends to favor the delivery of resources to proximal synapses. Both of these phenomena reflect fundamental limitations of transport processes based on a localized source. In this Letter, we show that a more democratic distribution of proteins along an axon can be achieved by making the transport process less efficient. This involves two components: bidirectional or "stop-and-go" motor transport (which can be modeled in terms of advection-diffusion), and reversible interactions between motor-cargo complexes and synaptic targets. Both of these features have recently been observed experimentally. Our model suggests that, just as in human societies, there needs to be a balance between "efficiency" and "equality".

  5. Ultrafast Synaptic Events in a Chalcogenide Memristor

    PubMed Central

    Li, Yi; Zhong, Yingpeng; Xu, Lei; Zhang, Jinjian; Xu, Xiaohua; Sun, Huajun; Miao, Xiangshui

    2013-01-01

    Compact and power-efficient plastic electronic synapses are of fundamental importance to overcoming the bottlenecks of developing a neuromorphic chip. Memristor is a strong contender among the various electronic synapses in existence today. However, the speeds of synaptic events are relatively slow in most attempts at emulating synapses due to the material-related mechanism. Here we revealed the intrinsic memristance of stoichiometric crystalline Ge2Sb2Te5 that originates from the charge trapping and releasing by the defects. The device resistance states, representing synaptic weights, were precisely modulated by 30 ns potentiating/depressing electrical pulses. We demonstrated four spike-timing-dependent plasticity (STDP) forms by applying programmed pre- and postsynaptic spiking pulse pairs in different time windows ranging from 50 ms down to 500 ns, the latter of which is 105 times faster than the speed of STDP in human brain. This study provides new opportunities for building ultrafast neuromorphic computing systems and surpassing Von Neumann architecture. PMID:23563810

  6. The classic cadherins in synaptic specificity

    PubMed Central

    Basu, Raunak; Taylor, Matthew R; Williams, Megan E

    2015-01-01

    During brain development, billions of neurons organize into highly specific circuits. To form specific circuits, neurons must build the appropriate types of synapses with appropriate types of synaptic partners while avoiding incorrect partners in a dense cellular environment. Defining the cellular and molecular rules that govern specific circuit formation has significant scientific and clinical relevance because fine scale connectivity defects are thought to underlie many cognitive and psychiatric disorders. Organizing specific neural circuits is an enormously complicated developmental process that requires the concerted action of many molecules, neural activity, and temporal events. This review focuses on one class of molecules postulated to play an important role in target selection and specific synapse formation: the classic cadherins. Cadherins have a well-established role in epithelial cell adhesion, and although it has long been appreciated that most cadherins are expressed in the brain, their role in synaptic specificity is just beginning to be unraveled. Here, we review past and present studies implicating cadherins as active participants in the formation, function, and dysfunction of specific neural circuits and pose some of the major remaining questions. PMID:25837840

  7. Transient ECM protease activity promotes synaptic plasticity

    PubMed Central

    Magnowska, Marta; Gorkiewicz, Tomasz; Suska, Anna; Wawrzyniak, Marcin; Rutkowska-Wlodarczyk, Izabela; Kaczmarek, Leszek; Wlodarczyk, Jakub

    2016-01-01

    Activity-dependent proteolysis at a synapse has been recognized as a pivotal factor in controlling dynamic changes in dendritic spine shape and function; however, excessive proteolytic activity is detrimental to the cells. The exact mechanism of control of these seemingly contradictory outcomes of protease activity remains unknown. Here, we reveal that dendritic spine maturation is strictly controlled by the proteolytic activity, and its inhibition by the endogenous inhibitor (Tissue inhibitor of matrix metalloproteinases-1 – TIMP-1). Excessive proteolytic activity impairs long-term potentiation of the synaptic efficacy (LTP), and this impairment could be rescued by inhibition of protease activity. Moreover LTP is altered persistently when the ability of TIMP-1 to inhibit protease activity is abrogated, further demonstrating the role of such inhibition in the promotion of synaptic plasticity under well-defined conditions. We also show that dendritic spine maturation involves an intermediate formation of elongated spines, followed by their conversion into mushroom shape. The formation of mushroom-shaped spines is accompanied by increase in AMPA/NMDA ratio of glutamate receptors. Altogether, our results identify inhibition of protease activity as a critical regulatory mechanism for dendritic spines maturation. PMID:27282248

  8. Synaptic Structure Quantification in Cultured Neurons

    PubMed Central

    Guizzetti, Marina; Costa, Lucio G.

    2014-01-01

    Behavioral problems (e.g. learning and memory) following developmental exposure to toxicants suggests that dysregulation of the process of synapse formation and function may occur. The ability to assess these changes is thus of value. This protocol describes a method to investigate toxicant-induced changes to synaptic structure formation in primary hippocampal neurons using immunocytochemical labeling of the pre- and post-synaptic markers synaptophysin and PSD-95, confocal imaging, and three-dimensional object analysis. Protocols for the long-term culturing of primary hippocampal neurons and of primary cortical astrocytes, as well as their co-culture are included. While the described methods focus on how astrocytes influence synapse formation and how toxicants may interfere in this process, modifications to the experimental plan can easily be implemented. This would allow for the investigation of the effects of toxicants after treating neurons alone, or both astrocytes and neurons in co-culture. With the common endpoint of synapse structure formation, differences between varying treatment paradigms can expand our understanding of the influence of particular toxicants on these diverse cell types and provide insight into potential mechanisms of effect and the contributions of each to synapse formation. PMID:24865645

  9. Synaptic filtering of rate-coded information.

    PubMed

    Merkel, Matthias; Lindner, Benjamin

    2010-04-01

    In this paper, we analytically examine the influence of synaptic short-term plasticity (STP) on the transfer of rate-coded information through synapses. STP endows each presynaptic input spike with an amplitude that depends on previous input spikes. We develop a method to calculate the spectral statistics of this amplitude modulated spike train (postsynaptic input) for the case of an inhomogeneous Poisson process. We derive in particular analytical approximations for cross-spectra, power spectra, and for the coherence function between the postsynaptic input and the time-dependent rate modulation for a specific model. We give simple expressions for the coherence in the limiting cases of pure facilitation and pure depression. Using our analytical results and extensive numerical simulations, we study the spectral coherence function for postsynaptic input resulting from a single synapse or from a group of synapses. For a single synapse, we find that the synaptic coherence function is largely independent of frequency indicating broadband information transmission. This effect is even more pronounced for a large number of synapses. However, additional noise gives rise to frequency-dependent information filtering.

  10. Synaptic filtering of rate-coded information

    NASA Astrophysics Data System (ADS)

    Merkel, Matthias; Lindner, Benjamin

    2010-04-01

    In this paper, we analytically examine the influence of synaptic short-term plasticity (STP) on the transfer of rate-coded information through synapses. STP endows each presynaptic input spike with an amplitude that depends on previous input spikes. We develop a method to calculate the spectral statistics of this amplitude modulated spike train (postsynaptic input) for the case of an inhomogeneous Poisson process. We derive in particular analytical approximations for cross-spectra, power spectra, and for the coherence function between the postsynaptic input and the time-dependent rate modulation for a specific model. We give simple expressions for the coherence in the limiting cases of pure facilitation and pure depression. Using our analytical results and extensive numerical simulations, we study the spectral coherence function for postsynaptic input resulting from a single synapse or from a group of synapses. For a single synapse, we find that the synaptic coherence function is largely independent of frequency indicating broadband information transmission. This effect is even more pronounced for a large number of synapses. However, additional noise gives rise to frequency-dependent information filtering.

  11. Caffeine, adenosine receptors, and synaptic plasticity.

    PubMed

    Costenla, Ana Rita; Cunha, Rodrigo A; de Mendonça, Alexandre

    2010-01-01

    Few studies to date have looked at the effects of caffeine on synaptic plasticity, and those that did used very high concentrations of caffeine, whereas the brain concentrations attained by regular coffee consumption in humans should be in the low micromolar range, where caffeine exerts pharmacological actions mainly by antagonizing adenosine receptors. Accordingly, rats drinking caffeine (1 g/L) for 3 weeks, displayed a concentration of caffeine of circa 22 microM in the hippocampus. It is known that selective adenosine A1 receptor antagonists facilitate, whereas selective adenosine A2A receptor antagonists attenuate, long term potentiation (LTP) in the hippocampus. Although caffeine is a non-selective antagonist of adenosine receptors, it attenuates frequency-induced LTP in hippocampal slices in a manner similar to selective adenosine A2A receptor antagonists. These effects of low micromolar concentration of caffeine (30 microM) are maintained in aged animals, which is important when a possible beneficial effect for caffeine in age-related cognitive decline is proposed. Future studies will still be required to confirm and detail the involvement of A1 and A2A receptors in the effects of caffeine on hippocampal synaptic plasticity, using both pharmacological and genetic approaches.

  12. Crustaceans as a model for microgravity-induced muscle atrophy

    NASA Technical Reports Server (NTRS)

    Mykles, D. L.

    1996-01-01

    Atrophy of skeletal muscles is a serious problem in a microgravity environment. It is hypothesized that the unloading of postural muscles, which no longer must resist gravity force, causes an accelerated breakdown of contractile proteins, resulting in reduction in muscle mass and strength. A crustacean model using the land crab, Gecarcinus lateralis, to assess the effects of spaceflight on protein meatabolism is presented. The model is compared to a developmentally-regulated atrophy in which a premolt reduction in muscle mass allows the withdrawal of the large claws at molt. The biochemical mechanisms underlying protein breakdown involves both Ca2(+) -dependent and multicatalytic proteolytic enzymes. Crustacean claw muscle can be used to determine the interactions between shortening and unloading at the molecular level.

  13. Age effects on rat hindlimb muscle atrophy during suspension unloading

    NASA Technical Reports Server (NTRS)

    Steffen, Joseph M.; Fell, Ronald D.; Geoghegan, Thomas E.; Ringel, Lisa C.; Musacchia, X. J.

    1990-01-01

    The effects of hindlimb unloading on muscle mass and biochemical responses were examined and compared in adult (450-g) and juvenile (200-g) rats after 1, 7, or 14 days of whole-body suspension. Quantitatively and qualitatively the soleus, gastrocnemius, plantaris, and extensor digitorum longus (EDL) muscles of the hindlimb exhibited a differential sensitivity to suspension and weightlessness unloading in both adults and juveniles. The red slow-twitch soleus exhibited the most pronounced atrophy under both conditions, with juvenile responses being greater than adult. In contrast, the fast-twitch EDL hypertrophied during suspension and atrophied during weightlessness, with no significant difference between adults and juveniles. Determination of biochemical parameters (total protein, RNA, and DNA) indicates a less rapid rate of response in adult muscles.

  14. [Effectiveness of magnetotherapy in optic nerve atrophy. A preliminary study].

    PubMed

    Zobina, L V; Orlovskaia, L S; Sokov, S L; Sabaeva, G F; Kondé, L A; Iakovlev, A A

    1990-01-01

    Magnetotherapy effects on visual functions (vision acuity and field), on retinal bioelectric activity, on conductive vision system, and on intraocular circulation were studied in 88 patients (160 eyes) with optic nerve atrophy. A Soviet Polyus-1 low-frequency magnetotherapy apparatus was employed with magnetic induction of about 10 mT, exposure 7-10 min, 10-15 sessions per course. Vision acuity of patients with its low (below 0.04 diopters) values improved in 50 percent of cases. The number of patients with vision acuity of 0.2 diopters has increased from 46 before treatment to 75. Magnetotherapy improved ocular hemodynamics in patients with optic nerve atrophy, it reduced the time of stimulation conduction along the vision routes and stimulated the retinal ganglia cells. The maximal effect was achieved after 10 magnetotherapy sessions. A repeated course carried out in 6-8 months promoted a stabilization of the process.

  15. Spinal muscular atrophy: development and implementation of potential treatments.

    PubMed

    Arnold, W David; Burghes, Arthur H M

    2013-09-01

    In neurodegenerative disorders, effective treatments are urgently needed, along with methods to determine whether treatment worked. In this review, we discuss the rapid progress in the understanding of recessive proximal spinal muscular atrophy and how this is leading to exciting potential treatments of the disease. Spinal muscular atrophy is caused by loss of the survival motor neuron 1 (SMN1) gene and reduced levels of SMN protein. The critical downstream targets of SMN deficiency that result in motor neuron loss are not known. However, increasing SMN levels has a marked impact in mouse models, and these therapeutics are rapidly moving toward clinical trials. Promising preclinical therapies, the varying degree of impact on the mouse models, and potential measures of treatment effect are reviewed. One key issue discussed is the variable outcome of increasing SMN at different stages of disease progression.

  16. [Surgery of the thymus gland, normal, atrophied or cancerous].

    PubMed

    Limet, R; Rogister, B

    2000-10-01

    Thymoma is the most frequently resected mediastinal tumor. Its malignancy is related more to macroscopical findings than to microscopical analysis. All thymomas should be resected, in order to prevent malignant degeneration. Furthermore, for the treatment of myasthenia, several centers recommend resection of the thymus, either tumoral (thymoma) or atrophied. Although the role of surgery in this regard is controversial, all authors unanimously stress that complete resection of all thymic remnants is essential to achieve adequate results.

  17. [Laryngeal paralysis and olivopontocerebellar atrophy. Apropos of a case].

    PubMed

    Sánchez Segura, A; Ramos Pérez, P L; Rodríguez Sánchez, A; Aguirre Sánchez, J J; Gutiérrez Díez, J A; Alvarez Domínguez, J

    1990-01-01

    We display the study performed to a female patient affected of laryngeal paralysis to become, based in clinical and radiologic criteria, to diagnose her cerebellar atrophy. We justify our work because of how infrequently this illness heredodegenerative of the central nervous system begins with cranial pairs paralysis. We emphasize the importance that the new methods of explorations specially TAC and IRM, have to guess the possible etiologies of central originated paralysis.

  18. MR imaging of psychosurgery: rostral atrophy following stereotacic subcaudate tractotomy.

    PubMed

    Cauley, K A; Waheed, W; Salmela, M; Filippi, C G

    2010-11-01

    There are few reports of MR imaging findings following psychosurgery. Here, we report the findings of 3T MR imaging of the sequelae of stereotactic subcaudate tractotomy (SST). Rostral atrophy is noted on conventional imaging. Diffusion tensor (DT) tractography demonstrated no communicating white matter tracts between the inferior frontal lobes, which appeared normally as thick fibre bundles in age-matched controls. DT tractography provides a unique tool for the evaluation of sequelae of ablative psychosurgical procedures.

  19. Intermittent acceleration as a countermeasure to soleus muscle atrophy

    NASA Technical Reports Server (NTRS)

    D'Aunno, Dominick S.; Robinson, Ronald R.; Smith, Gregory S.; Thomason, Donald B.; Booth, Frank W.

    1992-01-01

    The effectiveness of using intermittent acceleration as a countermeasure to muscle atrophy was investigated in rats subjected to 7 days of hindlimb suspension interrupted by daily periods of 1.2 g acceleration, for 15-min periods evenly spaced over 12-hr interval. It was found that this regimen, when repeated for 7 days, failed to completely maintain the mass of soleus muscle, which was 84 percent of control.

  20. Differentiation between cortical atrophy and hydrocephalus using 1H MRS.

    PubMed

    Bluml, S; McComb, J G; Ross, B D

    1997-03-01

    Quantitative 1H MRS to determine cerebral metabolite patterns and MRI to determine CSF flow were applied to 12 patients with ventricular dilation-Group A, cortical atrophy (N = 5); or Group B, hydrocephalus (N = 7)- and in 9 normal controls. While mean brain water (Group A = 80% +/- 6; Group B = 86% +/- 5; normal = 85% +/- 4) did not differ between the two groups of patients and controls, 1H MRS distinguished those patients with cortical atrophy (Group A) (N-acetylaspartate/ creatine (NAA/Cr) = 0.69 +/- 0.17, versus normal = 1.06 +/- 0.16; P < 0.002; [NAA] = 5.9 +/- 1.3 mmoles/kg, versus normal 8.0 +/- 1.4; P < 0.02) from those with hydrocephalus (Group B) (NAA/Cr = 1.16 +/- 0.11; [NAA] = 9.2 +/- 1.2; P > 0.13 and P > 0.07). Lactate levels were elevated in 3/5 patients with cortical atrophy, but in 0/7 of those with hydrocephalus. Mean absolute concentrations (mmoles/kg) of the five major cerebral osmolytes were 41 +/- 4 (Group A), 43 +/- 6 (Group B), and 42 +/- 4 (normal), so that despite massive brain deformation, constant osmolality was maintained. 1H MRS may directly benefit surgical planning in hydrocephalus infants by clearly identifying those with cortical atrophy who do not require CSF diversion. Thinning of the cortical mantle in hydrocephalus may result from osmotically driven reduction in individual cell volumes, (shrinkage), rather than brain-compression.

  1. Subretinal Glial Membranes in Eyes With Geographic Atrophy

    PubMed Central

    Edwards, Malia M.; McLeod, D. Scott; Bhutto, Imran A.; Grebe, Rhonda; Duffy, Maeve; Lutty, Gerard A.

    2017-01-01

    Purpose Müller cells create the external limiting membrane (ELM) by forming junctions with photoreceptor cells. This study evaluated the relationship between focal photoreceptors and RPE loss in geographic atrophy (GA) and Müller cell extension into the subretinal space. Methods Human donor eyes with no retinal disease or geographic atrophy (GA) were fixed and the eye cups imaged. The retinal posterior pole was stained for glial fibrillary acidic protein (GFAP; astrocytes and activated Müller cells) and vimentin (Müller cells) while the submacular choroids were labeled with Ulex Europaeus Agglutinin lectin (blood vessels). Choroids and retinas were imaged using a Zeiss 710 confocal microscope. Additional eyes were cryopreserved or processed for transmission electron microscopy (TEM) to better visualize the Müller cells. Results Vimentin staining of aged control retinas (n = 4) revealed a panretinal cobblestone-like ELM. While this pattern was also observed in the GA retinas (n = 7), each also had a distinct area in which vimentin+ and vimentin+/GFAP+ processes created a subretinal membrane. Subretinal glial membranes closely matched areas of RPE atrophy in the gross photos. Choroidal vascular loss was also evident in these atrophic areas. Smaller glial projections were noted, which correlated with drusen in gross photos. The presence of glia in the subretinal space was confirmed by TEM and cross cross-section immunohistochemistry. Conclusions In eyes with GA, subretinal Müller cell membranes present in areas of RPE atrophy may be a Müller cell attempt to replace the ELM. These membranes could interfere with treatments such as stem cell therapy. PMID:28249091

  2. [Association of post-radiation focal muscular atrophy and hypertrophy].

    PubMed

    Serratrice, G; Sangla, I; Pouget, J; Azulay, J P

    1993-01-01

    We report a 48 year old woman who had radiotherapy for uterine carcinoma and who developed amyotrophy and muscle hypertrophy in one lower limb. Very few cases of post-radiation monomelic amyotrophy have been reported. On the other hand denervation hypertrophy was presumed to be well known. The seat of the lesions was presumed to be radicular and spinal. The mechanism of atrophy and hypertrophy is discussed.

  3. Regulation of muscle atrophy in aging and disease.

    PubMed

    Vinciguerra, Manlio; Musaro, Antonio; Rosenthal, Nadia

    2010-01-01

    Muscle aging is characterized by a decline in functional performance and restriction of adaptability, due to progressive loss of muscle tissue coupled with a decrease in strength and force output. Together with selective activation ofapoptotic pathways, a hallmark of age-related muscle loss or sarcopenia is the progressive incapacity of regeneration machinery to replace damaged muscle. These characteristics are shared by pathologies involving muscle wasting, such as muscular dystrophies or amyotrophic lateral sclerosis, cancer and AIDS, all characterized by alterations in metabolic and physiological parameters, progressive weakness in specific muscle groups. Modulation ofextracellular agonists, receptors, protein kinases, intermediate molecules, transcription factors and tissue-specific gene expression collectively compromise the functionality of skeletal muscle tissue, leading to muscle degeneration and persistent protein degradation through activation ofproteolytic systems, such as calpain, ubiquitin-proteasome and caspase. Additional decrements in muscle growth factors compromise skeletal muscle growth, differentiation, survival and regeneration. A better understanding of the mechanisms underlying the pathogenesis of muscle atrophy and wasting associated with different diseases has been the objective of numerous studies and represents an important first step for the development of therapeutic approaches. Among these, insulin-like growth factor-1 (IGF-1) has emerged as a growth factor with a remarkably wide range of actions and a tremendous potential as a therapeutic in attenuating the atrophy and frailty associated with muscle aging and diseases. In this chapter we provide an overview of current concepts in muscle atrophy, focusing specifically on the molecular basis of IGF-1 action and survey current gene and cell therapeutic approaches to rescue muscle atrophy in aging and disease.

  4. A Case of Solitary Kidney Atrophy Due to Primary Hyperparathyroidism

    PubMed Central

    Lin, Yu-Ting; Jiang, Jiunn-Song; Fang, Yu-Wei; Tsai, Ming-Hsien

    2016-01-01

    Abstract Although primary hyperparathyroidism (PHPT) is asymptomatic in most patients, its main clinical manifestation is nephrolithiasis. In general, hypercalcemia would lead to unilateral renal stones, which may become bilateral over time. We present a rare case of a large unilateral asymptomatic ureteral stone in a patient with hypercalcemia secondary to PHPT, which eventually led to renal atrophy. The diagnosis of PHPT should be considered in patients with hypercalcemia and renal stones, as asymptomatic PHPT may result in a devastating renal outcome. PMID:26765435

  5. Masticatory muscles of mouse do not undergo atrophy in space

    PubMed Central

    Philippou, Anastassios; Minozzo, Fabio C.; Spinazzola, Janelle M.; Smith, Lucas R.; Lei, Hanqin; Rassier, Dilson E.; Barton, Elisabeth R.

    2015-01-01

    Muscle loading is important for maintaining muscle mass; when load is removed, atrophy is inevitable. However, in clinical situations such as critical care myopathy, masticatory muscles do not lose mass. Thus, their properties may be harnessed to preserve mass. We compared masticatory and appendicular muscles responses to microgravity, using mice aboard the space shuttle Space Transportation System-135. Age- and sex-matched controls remained on the ground. After 13 days of space flight, 1 masseter (MA) and tibialis anterior (TA) were frozen rapidly for biochemical and functional measurements, and the contralateral MA was processed for morphologic measurements. Flight TA muscles exhibited 20 ± 3% decreased muscle mass, 2-fold decreased phosphorylated (P)-Akt, and 4- to 12-fold increased atrogene expression. In contrast, MAs had no significant change in mass but a 3-fold increase in P-focal adhesion kinase, 1.5-fold increase in P-Akt, and 50–90% lower atrogene expression compared with limb muscles, which were unaltered in microgravity. Myofibril force measurements revealed that microgravity caused a 3-fold decrease in specific force and maximal shortening velocity in TA muscles. It is surprising that myofibril-specific force from both control and flight MAs were similar to flight TA muscles, yet power was compromised by 40% following flight. Continued loading in microgravity prevents atrophy, but masticatory muscles have a different set point that mimics disuse atrophy in the appendicular muscle.—Philippou, A., Minozzo, F. C., Spinazzola, J. M., Smith, L. R., Lei, H., Rassier, D. E., Barton, E. R. Masticatory muscles of mouse do not undergo atrophy in space. PMID:25795455

  6. Synaptic vesicle glycoprotein 2C (SV2C) modulates dopamine release and is disrupted in Parkinson disease.

    PubMed

    Dunn, Amy R; Stout, Kristen A; Ozawa, Minagi; Lohr, Kelly M; Hoffman, Carlie A; Bernstein, Alison I; Li, Yingjie; Wang, Minzheng; Sgobio, Carmelo; Sastry, Namratha; Cai, Huaibin; Caudle, W Michael; Miller, Gary W

    2017-03-14

    Members of the synaptic vesicle glycoprotein 2 (SV2) family of proteins are involved in synaptic function throughout the brain. The ubiquitously expressed SV2A has been widely implicated in epilepsy, although SV2C with its restricted basal ganglia distribution is poorly characterized. SV2C is emerging as a potentially relevant protein in Parkinson disease (PD), because it is a genetic modifier of sensitivity to l-DOPA and of nicotine neuroprotection in PD. Here we identify SV2C as a mediator of dopamine homeostasis and report that disrupted expression of SV2C within the basal ganglia is a pathological feature of PD. Genetic deletion of SV2C leads to reduced dopamine release in the dorsal striatum as measured by fast-scan cyclic voltammetry, reduced striatal dopamine content, disrupted α-synuclein expression, deficits in motor function, and alterations in neurochemical effects of nicotine. Furthermore, SV2C expression is dramatically altered in postmortem brain tissue from PD cases but not in Alzheimer disease, progressive supranuclear palsy, or multiple system atrophy. This disruption was paralleled in mice overexpressing mutated α-synuclein. These data establish SV2C as a mediator of dopamine neuron function and suggest that SV2C disruption is a unique feature of PD that likely contributes to dopaminergic dysfunction.

  7. Synaptic vesicle glycoprotein 2C (SV2C) modulates dopamine release and is disrupted in Parkinson disease

    PubMed Central

    Stout, Kristen A.; Ozawa, Minagi; Lohr, Kelly M.; Hoffman, Carlie A.; Bernstein, Alison I.; Li, Yingjie; Wang, Minzheng; Sgobio, Carmelo; Sastry, Namratha; Cai, Huaibin; Caudle, W. Michael

    2017-01-01

    Members of the synaptic vesicle glycoprotein 2 (SV2) family of proteins are involved in synaptic function throughout the brain. The ubiquitously expressed SV2A has been widely implicated in epilepsy, although SV2C with its restricted basal ganglia distribution is poorly characterized. SV2C is emerging as a potentially relevant protein in Parkinson disease (PD), because it is a genetic modifier of sensitivity to l-DOPA and of nicotine neuroprotection in PD. Here we identify SV2C as a mediator of dopamine homeostasis and report that disrupted expression of SV2C within the basal ganglia is a pathological feature of PD. Genetic deletion of SV2C leads to reduced dopamine release in the dorsal striatum as measured by fast-scan cyclic voltammetry, reduced striatal dopamine content, disrupted α-synuclein expression, deficits in motor function, and alterations in neurochemical effects of nicotine. Furthermore, SV2C expression is dramatically altered in postmortem brain tissue from PD cases but not in Alzheimer disease, progressive supranuclear palsy, or multiple system atrophy. This disruption was paralleled in mice overexpressing mutated α-synuclein. These data establish SV2C as a mediator of dopamine neuron function and suggest that SV2C disruption is a unique feature of PD that likely contributes to dopaminergic dysfunction. PMID:28246328

  8. Chronic blockade of extrasynaptic NMDA receptors ameliorates synaptic dysfunction and pro-death signaling in Huntington disease transgenic mice.

    PubMed

    Dau, Alejandro; Gladding, Clare M; Sepers, Marja D; Raymond, Lynn A

    2014-02-01

    In the YAC128 mouse model of Huntington disease (HD), elevated extrasynaptic NMDA receptor (Ex-NMDAR) expression contributes to the onset of striatal dysfunction and atrophy. A shift in the balance of synaptic-extrasynaptic NMDAR signaling and localization is paralleled by early stage dysregulation of intracellular calcium signaling pathways, including calpain and p38 MAPK activation, that couple to pro-death cascades. However, whether aberrant calcium signaling is a consequence of elevated Ex-NMDAR expression in HD is unknown. Here, we aimed to identify calcium-dependent pathways downstream of Ex-NMDARs in HD. Chronic (2-month) treatment of YAC128 and WT mice with memantine (1 and 10mg/kg/day), which at a low dose selectively blocks Ex-NMDARs, reduced striatal Ex-NMDAR expression and current in 4-month old YAC128 mice without altering synaptic NMDAR levels. In contrast, calpain activity was not affected by memantine treatment, and was elevated in untreated YAC128 mice at 1.5months but not 4months of age. In YAC128 mice, memantine at 1mg/kg/day rescued CREB shut-off, while both doses suppressed p38 MAPK activation to WT levels. Taken together, our results indicate that Ex-NMDAR activity perpetuates increased extrasynaptic NMDAR expression and drives dysregulated p38 MAPK and CREB signaling in YAC128 mice. Elucidation of the pathways downstream of Ex-NMDARs in HD could help provide novel therapeutic targets for this disease.

  9. Stroke injury, cognitive impairment and vascular dementia☆

    PubMed Central

    Kalaria, Raj N.; Akinyemi, Rufus; Ihara, Masafumi

    2016-01-01

    The global burden of ischaemic strokes is almost 4-fold greater than haemorrhagic strokes. Current evidence suggests that 25–30% of ischaemic stroke survivors develop immediate or delayed vascular cognitive impairment (VCI) or vascular dementia (VaD). Dementia after stroke injury may encompass all types of cognitive disorders. States of cognitive dysfunction before the index stroke are described under the umbrella of pre-stroke dementia, which may entail vascular changes as well as insidious neurodegenerative processes. Risk factors for cognitive impairment and dementia after stroke are multifactorial including older age, family history, genetic variants, low educational status, vascular comorbidities, prior transient ischaemic attack or recurrent stroke and depressive illness. Neuroimaging determinants of dementia after stroke comprise silent brain infarcts, white matter changes, lacunar infarcts and medial temporal lobe atrophy. Until recently, the neuropathology of dementia after stroke was poorly defined. Most of post-stroke dementia is consistent with VaD involving multiple substrates. Microinfarction, microvascular changes related to blood–brain barrier damage, focal neuronal atrophy and low burden of co-existing neurodegenerative pathology appear key substrates of dementia after stroke injury. The elucidation of mechanisms of dementia after stroke injury will enable establishment of effective strategy for symptomatic relief and prevention. Controlling vascular disease risk factors is essential to reduce the burden of cognitive dysfunction after stroke. This article is part of a Special Issue entitled: Vascular Contributions to Cognitive Impairment and Dementia edited by M. Paul Murphy, Roderick A. Corriveau and Donna M. Wilcock. PMID:26806700

  10. Motor features in posterior cortical atrophy and their imaging correlates☆

    PubMed Central

    Ryan, Natalie S.; Shakespeare, Timothy J.; Lehmann, Manja; Keihaninejad, Shiva; Nicholas, Jennifer M.; Leung, Kelvin K.; Fox, Nick C.; Crutch, Sebastian J.

    2014-01-01

    Posterior cortical atrophy (PCA) is a neurodegenerative syndrome characterized by impaired higher visual processing skills; however, motor features more commonly associated with corticobasal syndrome may also occur. We investigated the frequency and clinical characteristics of motor features in 44 PCA patients and, with 30 controls, conducted voxel-based morphometry, cortical thickness, and subcortical volumetric analyses of their magnetic resonance imaging. Prominent limb rigidity was used to define a PCA-motor subgroup. A total of 30% (13) had PCA-motor; all demonstrating asymmetrical left upper limb rigidity. Limb apraxia was more frequent and asymmetrical in PCA-motor, as was myoclonus. Tremor and alien limb phenomena only occurred in this subgroup. The subgroups did not differ in neuropsychological test performance or apolipoprotein E4 allele frequency. Greater asymmetry of atrophy occurred in PCA-motor, particularly involving right frontoparietal and peri-rolandic cortices, putamen, and thalamus. The 9 patients (including 4 PCA-motor) with pathology or cerebrospinal fluid all showed evidence of Alzheimer's disease. Our data suggest that PCA patients with motor features have greater atrophy of contralateral sensorimotor areas but are still likely to have underlying Alzheimer's disease. PMID:25086839

  11. Counteracting Muscle Atrophy using Galvanic Stimulation of the Vestibular System

    NASA Technical Reports Server (NTRS)

    Fox, Robert A.; Polyakov, Igor

    1999-01-01

    The unloading of weight bearing from antigravity muscles during space flight produces significant muscle atrophy and is one of the most serious health problems facing the space program. Various exercise regimens have been developed and used either alone or in combination with pharmacological techniques to ameliorate this atrophy, but no effective countermeasure exists for this problem. The research in this project was conducted to evaluate the potential use of vestibular galvanic stimulation (VGS) to prevent muscle atrophy resulting from unloading of weight bearing from antigravity muscles. This approach was developed based on two concepts related to the process of maintaining the status of the anti-gravity neuromuscular system. These two premises are: (1) The "tone," or bias on spinal motorneurons is affected by vestibular projections that contribute importantly to maintaining muscle health and status. (2) VGS can be used to modify the excitability, or 'tone' of motorneuron of antigravity muscles. Thus, the strategy is to use VGS to modify the gain of vestibular projections to antigravity muscles and thereby change the general status of these muscles.

  12. Masticatory muscles of mouse do not undergo atrophy in space.

    PubMed

    Philippou, Anastassios; Minozzo, Fabio C; Spinazzola, Janelle M; Smith, Lucas R; Lei, Hanqin; Rassier, Dilson E; Barton, Elisabeth R

    2015-07-01

    Muscle loading is important for maintaining muscle mass; when load is removed, atrophy is inevitable. However, in clinical situations such as critical care myopathy, masticatory muscles do not lose mass. Thus, their properties may be harnessed to preserve mass. We compared masticatory and appendicular muscles responses to microgravity, using mice aboard the space shuttle Space Transportation System-135. Age- and sex-matched controls remained on the ground. After 13 days of space flight, 1 masseter (MA) and tibialis anterior (TA) were frozen rapidly for biochemical and functional measurements, and the contralateral MA was processed for morphologic measurements. Flight TA muscles exhibited 20 ± 3% decreased muscle mass, 2-fold decreased phosphorylated (P)-Akt, and 4- to 12-fold increased atrogene expression. In contrast, MAs had no significant change in mass but a 3-fold increase in P-focal adhesion kinase, 1.5-fold increase in P-Akt, and 50-90% lower atrogene expression compared with limb muscles, which were unaltered in microgravity. Myofibril force measurements revealed that microgravity caused a 3-fold decrease in specific force and maximal shortening velocity in TA muscles. It is surprising that myofibril-specific force from both control and flight MAs were similar to flight TA muscles, yet power was compromised by 40% following flight. Continued loading in microgravity prevents atrophy, but masticatory muscles have a different set point that mimics disuse atrophy in the appendicular muscle.

  13. Role of MicroRNA in Governing Synaptic Plasticity

    PubMed Central

    2016-01-01

    Although synaptic plasticity in neural circuits is orchestrated by an ocean of genes, molecules, and proteins, the underlying mechanisms remain poorly understood. Recently, it is well acknowledged that miRNA exerts widespread regulation over the translation and degradation of target gene in nervous system. Increasing evidence suggests that quite a few specific miRNAs play important roles in various respects of synaptic plasticity including synaptogenesis, synaptic morphology alteration, and synaptic function modification. More importantly, the miRNA-mediated regulation of synaptic plasticity is not only responsible for synapse development and function but also involved in the pathophysiology of plasticity-related diseases. A review is made here on the function of miRNAs in governing synaptic plasticity, emphasizing the emerging regulatory role of individual miRNAs in synaptic morphological and functional plasticity, as well as their implications in neurological disorders. Understanding of the way in which miRNAs contribute to synaptic plasticity provides rational clues in establishing the novel therapeutic strategy for plasticity-related diseases. PMID:27034846

  14. Glutamatergic synaptic plasticity in the mesocorticolimbic system in addiction

    PubMed Central

    van Huijstee, Aile N.; Mansvelder, Huibert D.

    2015-01-01

    Addictive drugs remodel the brain’s reward circuitry, the mesocorticolimbic dopamine (DA) system, by inducing widespread adaptations of glutamatergic synapses. This drug-induced synaptic plasticity is thought to contribute to both the development and the persistence of addiction. This review highlights the synaptic modifications that are induced by in vivo exposure to addictive drugs and describes how these drug-induced synaptic changes may contribute to the different components of addictive behavior, such as compulsive drug use despite negative consequences and relapse. Initially, exposure to an addictive drug induces synaptic changes in the ventral tegmental area (VTA). This drug-induced synaptic potentiation in the VTA subsequently triggers synaptic changes in downstream areas of the mesocorticolimbic system, such as the nucleus accumbens (NAc) and the prefrontal cortex (PFC), with further drug exposure. These glutamatergic synaptic alterations are then thought to mediate many of the behavioral symptoms that characterize addiction. The later stages of glutamatergic synaptic plasticity in the NAc and in particular in the PFC play a role in maintaining addiction and drive relapse to drug-taking induced by drug-associated cues. Remodeling of PFC glutamatergic circuits can persist into adulthood, causing a lasting vulnerability to relapse. We will discuss how these neurobiological changes produced by drugs of abuse may provide novel targets for potential treatment strategies for addiction. PMID:25653591

  15. Ubiquitination-dependent mechanisms regulate synaptic growth and function.

    PubMed

    DiAntonio, A; Haghighi, A P; Portman, S L; Lee, J D; Amaranto, A M; Goodman, C S

    2001-07-26

    The covalent attachment of ubiquitin to cellular proteins is a powerful mechanism for controlling protein activity and localization. Ubiquitination is a reversible modification promoted by ubiquitin ligases and antagonized by deubiquitinating proteases. Ubiquitin-dependent mechanisms regulate many important processes including cell-cycle progression, apoptosis and transcriptional regulation. Here we show that ubiquitin-dependent mechanisms regulate synaptic development at the Drosophila neuromuscular junction (NMJ). Neuronal overexpression of the deubiquitinating protease fat facets leads to a profound disruption of synaptic growth control; there is a large increase in the number of synaptic boutons, an elaboration of the synaptic branching pattern, and a disruption of synaptic function. Antagonizing the ubiquitination pathway in neurons by expression of the yeast deubiquitinating protease UBP2 (ref. 5) also produces synaptic overgrowth and dysfunction. Genetic interactions between fat facets and highwire, a negative regulator of synaptic growth that has structural homology to a family of ubiquitin ligases, suggest that synaptic development may be controlled by the balance between positive and negative regulators of ubiquitination.

  16. Epsin1 modulates synaptic vesicle retrieval capacity at CNS synapses

    PubMed Central

    Kyung, Jae Won; Bae, Jae Ryul; Kim, Dae-Hwan; Song, Woo Keun; Kim, Sung Hyun

    2016-01-01

    Synaptic vesicle retrieval is an essential process for continuous maintenance of neural information flow after synaptic transmission. Epsin1, originally identified as an EPS15-interacting protein, is a major component of clathrin-mediated endocytosis. However, the role of Epsin1 in synaptic vesicle endocytosis at CNS synapses remains elusive. Here, we showed significantly altered synaptic vesicle endocytosis in neurons transfected with shRNA targeting Epsin1 during/after neural activity. Endocytosis was effectively restored by introducing shRNA-insensitive Epsin1 into Epsin1-depleted neurons. Domain studies performed on neurons in which domain deletion mutants of Epsin1 were introduced after Epsin1 knockdown revealed that ENTH, CLAP, and NPFs are essential for synaptic vesicle endocytosis, whereas UIMs are not. Strikingly, the efficacy of the rate of synaptic vesicle retrieval (the “endocytic capacity”) was significantly decreased in the absence of Epsin1. Thus, Epsin1 is required for proper synaptic vesicle retrieval and modulates the endocytic capacity of synaptic vesicles. PMID:27557559

  17. Phosphodiesterase Inhibition to Target the Synaptic Dysfunction in Alzheimer's Disease

    NASA Astrophysics Data System (ADS)

    Bales, Kelly R.; Plath, Niels; Svenstrup, Niels; Menniti, Frank S.

    Alzheimer's Disease (AD) is a disease of synaptic dysfunction that ultimately proceeds to neuronal death. There is a wealth of evidence that indicates the final common mediator of this neurotoxic process is the formation and actions on synaptotoxic b-amyloid (Aβ). The premise in this review is that synaptic dysfunction may also be an initiating factor in for AD and promote synaptotoxic Aβ formation. This latter hypothesis is consistent with the fact that the most common risk factors for AD, apolipoprotein E (ApoE) allele status, age, education, and fitness, encompass suboptimal synaptic function. Thus, the synaptic dysfunction in AD may be both cause and effect, and remediating synaptic dysfunction in AD may have acute effects on the symptoms present at the initiation of therapy and also slow disease progression. The cyclic nucleotide (cAMP and cGMP) signaling systems are intimately involved in the regulation of synaptic homeostasis. The phosphodiesterases (PDEs) are a superfamily of enzymes that critically regulate spatial and temporal aspects of cyclic nucleotide signaling through metabolic inactivation of cAMP and cGMP. Thus, targeting the PDEs to promote improved synaptic function, or 'synaptic resilience', may be an effective and facile approach to new symptomatic and disease modifying therapies for AD. There continues to be a significant drug discovery effort aimed at discovering PDE inhibitors to treat a variety of neuropsychiatric disorders. Here we review the current status of those efforts as they relate to potential new therapies for AD.

  18. Synaptic Tagging, Evaluation of Memories, and the Distal Reward Problem

    ERIC Educational Resources Information Center

    Papper, Marc; Kempter, Richard; Leibold, Christian

    2011-01-01

    Long-term synaptic plasticity exhibits distinct phases. The synaptic tagging hypothesis suggests an early phase in which synapses are prepared, or "tagged," for protein capture, and a late phase in which those proteins are integrated into the synapses to achieve memory consolidation. The synapse specificity of the tags is consistent with…

  19. BMP signaling and microtubule organization regulate synaptic strength

    PubMed Central

    Ball, Robin W.; Peled, Einat; Guerrero, Giovanna; Isacoff, Ehud Y.

    2015-01-01

    The strength of synaptic transmission between a neuron and multiple postsynaptic partners can vary considerably. We have studied synaptic heterogeneity using the glutamatergic Drosophila neuromuscular junction (NMJ), which contains multiple synaptic connections of varying strength between a motor axon and muscle fiber. In larval NMJs, there is a gradient of synaptic transmission from weak proximal to strong distal boutons. We imaged synaptic transmission with the postsynaptically targeted fluorescent calcium sensor SynapCam, to investigate the molecular pathways that determine synaptic strength and set up this gradient. We discovered that mutations in the Bone Morphogenetic Protein (BMP) signaling pathway disrupt production of strong distal boutons. We find that strong connections contain unbundled microtubules in the boutons, suggesting a role for microtubule organization in transmission strength. The spastin mutation, which disorganizes microtubules, disrupted the transmission gradient, supporting this interpretation. We propose that the BMP pathway, shown previously to function in the homeostatic regulation of synaptic growth, also boosts synaptic transmission in a spatially selective manner that depends on the microtubule system. PMID:25681521

  20. The Ubiquitin-Proteasome Pathway and Synaptic Plasticity

    ERIC Educational Resources Information Center

    Hegde, Ashok N.

    2010-01-01

    Proteolysis by the ubiquitin-proteasome pathway (UPP) has emerged as a new molecular mechanism that controls wide-ranging functions in the nervous system, including fine-tuning of synaptic connections during development and synaptic plasticity in the adult organism. In the UPP, attachment of a small protein, ubiquitin, tags the substrates for…

  1. Dynamic DNA methylation controls glutamate receptor trafficking and synaptic scaling.

    PubMed

    Sweatt, J David

    2016-05-01

    Hebbian plasticity, including long-term potentiation and long-term depression, has long been regarded as important for local circuit refinement in the context of memory formation and stabilization. However, circuit development and stabilization additionally relies on non-Hebbian, homeostatic, forms of plasticity such as synaptic scaling. Synaptic scaling is induced by chronic increases or decreases in neuronal activity. Synaptic scaling is associated with cell-wide adjustments in postsynaptic receptor density, and can occur in a multiplicative manner resulting in preservation of relative synaptic strengths across the entire neuron's population of synapses. Both active DNA methylation and demethylation have been validated as crucial regulators of gene transcription during learning, and synaptic scaling is known to be transcriptionally dependent. However, it has been unclear whether homeostatic forms of plasticity such as synaptic scaling are regulated via epigenetic mechanisms. This review describes exciting recent work that has demonstrated a role for active changes in neuronal DNA methylation and demethylation as a controller of synaptic scaling and glutamate receptor trafficking. These findings bring together three major categories of memory-associated mechanisms that were previously largely considered separately: DNA methylation, homeostatic plasticity, and glutamate receptor trafficking. This review describes exciting recent work that has demonstrated a role for active changes in neuronal DNA methylation and demethylation as a controller of synaptic scaling and glutamate receptor trafficking. These findings bring together three major categories of memory-associated mechanisms that were previously considered separately: glutamate receptor trafficking, DNA methylation, and homeostatic plasticity.

  2. Modulation of synaptic plasticity by stress hormone associates with plastic alteration of synaptic NMDA receptor in the adult hippocampus.

    PubMed

    Tse, Yiu Chung; Bagot, Rosemary C; Hutter, Juliana A; Wong, Alice S; Wong, Tak Pan

    2011-01-01

    Stress exerts a profound impact on learning and memory, in part, through the actions of adrenal corticosterone (CORT) on synaptic plasticity, a cellular model of learning and memory. Increasing findings suggest that CORT exerts its impact on synaptic plasticity by altering the functional properties of glutamate receptors, which include changes in the motility and function of α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid subtype of glutamate receptor (AMPAR) that are responsible for the expression of synaptic plasticity. Here we provide evidence that CORT could also regulate synaptic plasticity by modulating the function of synaptic N-methyl-D-aspartate receptors (NMDARs), which mediate the induction of synaptic plasticity. We found that stress level CORT applied to adult rat hippocampal slices potentiated evoked NMDAR-mediated synaptic responses within 30 min. Surprisingly, following this fast-onset change, we observed a slow-onset (>1 hour after termination of CORT exposure) increase in synaptic expression of GluN2A-containing NMDARs. To investigate the consequences of the distinct fast- and slow-onset modulation of NMDARs for synaptic plasticity, we examined the formation of long-term potentiation (LTP) and long-term depression (LTD) within relevant time windows. Paralleling the increased NMDAR function, both LTP and LTD were facilitated during CORT treatment. However, 1-2 hours after CORT treatment when synaptic expression of GluN2A-containing NMDARs is increased, bidirectional plasticity was no longer facilitated. Our findings reveal the remarkable plasticity of NMDARs in the adult hippocampus in response to CORT. CORT-mediated slow-onset increase in GluN2A in hippocampal synapses could be a homeostatic mechanism to normalize synaptic plasticity following fast-onset stress-induced facilitation.

  3. MPTP-meditated hippocampal dopamine deprivation modulates synaptic transmission and activity-dependent synaptic plasticity

    SciTech Connect

    Zhu Guoqi; Chen Ying; Huang Yuying; Li Qinglin; Behnisch, Thomas

    2011-08-01

    Parkinson's disease (PD)-like symptoms including learning deficits are inducible by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Therefore, it is possible that MPTP may disturb hippocampal memory processing by modulation of dopamine (DA)- and activity-dependent synaptic plasticity. We demonstrate here that intraperitoneal (i.p.) MPTP injection reduces the number of tyrosine hydroxylase (TH)-positive neurons in the substantia nigra (SN) within 7 days. Subsequently, the TH expression level in SN and hippocampus and the amount of DA and its metabolite DOPAC in striatum and hippocampus decrease. DA depletion does not alter basal synaptic transmission and changes pair-pulse facilitation (PPF) of field excitatory postsynaptic potentials (fEPSPs) only at the 30 ms inter-pulse interval. In addition, the induction of long-term potentiation (LTP) is impaired whereas the duration of long-term depression (LTD) becomes prolonged. Since both LTP and LTD depend critically on activation of NMDA and DA receptors, we also tested the effect of DA depletion on NMDA receptor-mediated synaptic transmission. Seven days after MPTP injection, the NMDA receptor-mediated fEPSPs are decreased by about 23%. Blocking the NMDA receptor-mediated fEPSP does not mimic the MPTP-LTP. Only co-application of D1/D5 and NMDA receptor antagonists during tetanization resembled the time course of fEPSP potentiation as observed 7 days after i.p. MPTP injection. Together, our data demonstrate that MPTP-induced degeneration of DA neurons and the subsequent hippocampal DA depletion alter NMDA receptor-mediated synaptic transmission and activity-dependent synaptic plasticity. - Highlights: > I.p. MPTP-injection mediates death of dopaminergic neurons. > I.p. MPTP-injection depletes DA and DOPAC in striatum and hippocampus. > I.p. MPTP-injection does not alter basal synaptic transmission. > Reduction of LTP and enhancement of LTD after i.p. MPTP-injection. > Attenuation of NMDA-receptors mediated f

  4. Differential effects of rapamycin treatment on tonic and phasic GABAergic inhibition in dentate granule cells after focal brain injury in mice.

    PubMed

    Butler, Corwin R; Boychuk, Jeffery A; Smith, Bret N

    2016-06-01

    The cascade of events leading to post-traumatic epilepsy (PTE) after traumatic brain injury (TBI) remains unclear. Altered inhibition in the hippocampal formation and dentate gyrus is a hallmark of several neurological disorders, including TBI and PTE. Inhibitory synaptic signaling in the hippocampus is predominately driven by γ-aminobutyric acid (GABA) neurotransmission, and is prominently mediated by postsynaptic type A GABA receptors (GABAAR's). Subsets of these receptors involved in tonic inhibition of neuronal membranes serve a fundamental role in maintenance of inhibitory state, and GABAAR-mediated tonic inhibition is altered functionally in animal models of both TBI and epilepsy. In this study, we assessed the effect of mTOR inhibition on hippocampal hilar inhibitory interneuron loss and synaptic and tonic GABAergic inhibition of dentate gyrus granule cells (DGCs) after controlled cortical impact (CCI) to determine if mTOR activation after TBI modulates GABAAR function. Hilar inhibitory interneuron density was significantly reduced 72h after CCI injury in the dorsal two-thirds of the hemisphere ipsilateral to injury compared with the contralateral hemisphere and sham controls. Rapamycin treatment did not alter this reduction in cell density. Synaptic and tonic current measurements made in DGCs at both 1-2 and 8-13weeks post-injury indicated reduced synaptic inhibition and THIP-induced tonic current density in DGCs ipsilateral to CCI injury at both time points post-injury, with no change in resting tonic GABAAR-mediated currents. Rapamycin treatment did not alter the reduced synaptic inhibition observed in ipsilateral DGCs 1-2weeks post-CCI injury, but further reduced synaptic inhibition of ipsilateral DGCs at 8-13weeks post-injury. The reduction in THIP-induced tonic current after injury, however, was prevented by rapamycin treatment at both time points. Rapamycin treatment thus differentially modifies CCI-induced changes in synaptic and tonic GABAAR

  5. Synaptic Plasticity onto Dopamine Neurons Shapes Fear Learning.

    PubMed

    Pignatelli, Marco; Umanah, George Kwabena Essien; Ribeiro, Sissi Palma; Chen, Rong; Karuppagounder, Senthilkumar Senthil; Yau, Hau-Jie; Eacker, Stephen; Dawson, Valina Lynn; Dawson, Ted Murray; Bonci, Antonello

    2017-01-18

    Fear learning is a fundamental behavioral process that requires dopamine (DA) release. Experience-dependent synaptic plasticity occurs on DA neurons while an organism is engaged in aversive experiences. However, whether synaptic plasticity onto DA neurons is causally involved in aversion learning is unknown. Here, we show that a stress priming procedure enhances fear learning by engaging VTA synaptic plasticity. Moreover, we took advantage of the ability of the ATPase Thorase to regulate the internalization of AMPA receptors (AMPARs) in order to selectively manipulate glutamatergic synaptic plasticity on DA neurons. Genetic ablation of Thorase in DAT(+) neurons produced increased AMPAR surface expression and function that lead to impaired induction of both long-term depression (LTD) and long-term potentiation (LTP). Strikingly, animals lacking Thorase in DAT(+) neurons expressed greater associative learning in a fear conditioning paradigm. In conclusion, our data provide a novel, causal link between synaptic plasticity onto DA neurons and fear learning.

  6. Sleep and synaptic plasticity in the developing and adult brain.

    PubMed

    Frank, Marcos G

    2015-01-01

    Sleep is hypothesized to play an integral role in brain plasticity. This has traditionally been investigated using behavioral assays. In the last 10-15 years, studies combining sleep measurements with in vitro and in vivo models of synaptic plasticity have provided exciting new insights into how sleep alters synaptic strength. In addition, new theories have been proposed that integrate older ideas about sleep function and recent discoveries in the field of synaptic plasticity. There remain, however, important challenges and unanswered questions. For example, sleep does not appear to have a single effect on synaptic strength. An unbiased review of the literature indicates that the effects of sleep vary widely depending on ontogenetic stage, the type of waking experience (or stimulation protocols) that precede sleep and the type of neuronal synapse under examination. In this review, I discuss these key findings in the context of current theories that posit different roles for sleep in synaptic plasticity.

  7. Excitability and synaptic communication within the oligodendrocyte lineage.

    PubMed

    De Biase, Lindsay M; Nishiyama, Akiko; Bergles, Dwight E

    2010-03-10

    The mammalian CNS contains an abundant, widely distributed population of glial cells that serve as oligodendrocyte progenitors. It has been reported that these NG2-immunoreactive cells (NG2(+) cells) form synapses and generate action potentials, suggesting that neural-evoked excitation of these progenitors may regulate oligodendrogenesis. However, recent studies also suggest that NG2(+) cells are comprised of functionally distinct groups that differ in their ability to respond to neuronal activity, undergo differentiation, and experience injury following ischemia. To better define the physiological properties of NG2(+) cells, we used transgenic mice that allowed an unbiased sampling of this population and unambiguous identification of cells in discrete states of differentiation. Using acute brain slices prepared from developing and mature mice, we found that NG2(+) cells in diverse brain regions share a core set of physiological properties, including expression of voltage-gated Na(+) (NaV) channels and ionotropic glutamate receptors, and formation of synapses with glutamatergic neurons. Although small amplitude Na(+) spikes could be elicited in some NG2(+) cells during the first postnatal week, they were not capable of generating action potentials. Transition of these progenitors to the premyelinating stage was accompanied by the rapid removal of synaptic input, as well as downregulation of AMPA and NMDA receptors and NaV channels. Thus, prior reports of physiological heterogeneity among NG2(+) cells may reflect analysis of cells in later stages of maturation. These results suggest that NG2(+) cells are uniquely positioned within the oligodendrocyte lineage to monitor the firing patterns of surrounding neurons.

  8. Regressive language in severe head injury.

    PubMed

    Thomsen, I V; Skinhoj, E

    1976-09-01

    In a follow-up study of 50 patients with severe head injuries three patients had echolalia. One patient with initially global aphasia had echolalia for some weeks when he started talking. Another patient with severe diffuse brain damage, dementia, and emotional regression had echolalia. The dysfunction was considered a detour performance. In the third patient echolalia and palilalia were details in a total pattern of regression lasting for months. The patient, who had extensive frontal atrophy secondary to a very severe head trauma, presented an extreme state of regression returning to a foetal-body pattern and behaving like a baby.

  9. Progressive Brain Damage, Synaptic Reorganization and NMDA Activation in a Model of Epileptogenic Cortical Dysplasia

    PubMed Central

    Colciaghi, Francesca; Finardi, Adele; Nobili, Paola; Locatelli, Denise; Spigolon, Giada; Battaglia, Giorgio Stefano

    2014-01-01

    Whether severe epilepsy could be a progressive disorder remains as yet unresolved. We previously demonstrated in a rat model of acquired focal cortical dysplasia, the methylazoxymethanol/pilocarpine - MAM/pilocarpine - rats, that the occurrence of status epilepticus (SE) and subsequent seizures fostered a pathologic process capable of modifying the morphology of cortical pyramidal neurons and NMDA receptor expression/localization. We have here extended our analysis by evaluating neocortical and hippocampal changes in MAM/pilocarpine rats at different epilepsy stages, from few days after onset up to six months of chronic epilepsy. Our findings indicate that the process triggered by SE and subsequent seizures in the malformed brain i) is steadily progressive, deeply altering neocortical and hippocampal morphology, with atrophy of neocortex and CA regions and progressive increase of granule cell layer dispersion; ii) changes dramatically the fine morphology of neurons in neocortex and hippocampus, by increasing cell size and decreasing both dendrite arborization and spine density; iii) induces reorganization of glutamatergic and GABAergic networks in both neocortex and hippocampus, favoring excitatory vs inhibitory input; iv) activates NMDA regulatory subunits. Taken together, our data indicate that, at least in experimental models of brain malformations, severe seizure activity, i.e., SE plus recurrent seizures, may lead to a widespread, steadily progressive architectural, neuronal and synaptic reorganization in the brain. They also suggest the mechanistic relevance of glutamate/NMDA hyper-activation in the seizure-related brain pathologic plasticity. PMID:24587109

  10. Disrupted Dentate Granule Cell Chloride Regulation Enhances Synaptic Excitability during Development of Temporal Lobe Epilepsy

    PubMed Central

    Pathak, Hemal R.; Weissinger, Florian; Terunuma, Miho; Carlson, Gregory C.; Hsu, Fu-Chun; Moss, Stephen J.; Coulter, Douglas A.

    2008-01-01

    GABAA receptor-mediated inhibition depends on the maintenance of intracellular Cl− concentration ([Cl−]in ) at low levels. In neurons in the developing CNS, [Cl−]in is elevated, EGABA is depolarizing, and GABA consequently is excitatory. Depolarizing GABAergic synaptic responses may be recapitulated in various neuropathological conditions, including epilepsy. In the present study, rat hippocampal dentate granule cells were recorded using gramicidin perforated patch techniques at varying times (1–60 d) after an epileptogenic injury, pilocarpine-induced status epilepticus (STEP). In normal, non-epileptic animals, these strongly inhibited dentate granule cells act as a gate, regulating hippocampal excitation, controlling seizure initiation and/or propagation. For 2 weeks after STEP, we found that EGABA was positively shifted in granule cells. This shift in EGABA altered synaptic integration, increased granule cell excitability, and resulted in compromised “gate” function of the dentate gyrus. EGABA recovered to control values at longer latencies post-STEP (2–8 weeks), when animals had developed epilepsy. During this period of shifted EGABA, expression of the Cl− extruding K+/Cl− cotransporter, KCC2 was decreased. Application of the KCC2 blocker, furosemide, to control neurons mimicked EGABA shifts evident in granule cells post-STEP. Furthermore, post-STEP and furosemide effects interacted occlusively, both on EGABA in granule cells, and on gatekeeper function of the dentate gyrus. This suggests a shared mechanism, reduced KCC2 function. These findings demonstrate that decreased expression of KCC2 persists for weeks after an epileptogenic injury, reducing inhibitory efficacy and enhancing dentate granule cell excitability. This pathophysiological process may constitute a significant mechanism linking injury to the subsequent development of epilepsy. PMID:18094240

  11. Synaptic Homeostasis and Restructuring across the Sleep-Wake Cycle.

    PubMed

    Blanco, Wilfredo; Pereira, Catia M; Cota, Vinicius R; Souza, Annie C; Rennó-Costa, César; Santos, Sharlene; Dias, Gabriella; Guerreiro, Ana M G; Tort, Adriano B L; Neto, Adrião D; Ribeiro, Sidarta

    2015-05-01

    Sleep is critical for hippocampus-dependent memory consolidation. However, the underlying mechanisms of synaptic plasticity are poorly understood. The central controversy is on whether long-term potentiation (LTP) takes a role during sleep and which would be its specific effect on memory. To address this question, we used immunohistochemistry to measure phosphorylation of Ca2+/calmodulin-dependent protein kinase II (pCaMKIIα) in the rat hippocampus immediately after specific sleep-wake states were interrupted. Control animals not exposed to novel objects during waking (WK) showed stable pCaMKIIα levels across the sleep-wake cycle, but animals exposed to novel objects showed a decrease during subsequent slow-wave sleep (SWS) followed by a rebound during rapid-eye-movement sleep (REM). The levels of pCaMKIIα during REM were proportional to cortical spindles near SWS/REM transitions. Based on these results, we modeled sleep-dependent LTP on a network of fully connected excitatory neurons fed with spikes recorded from the rat hippocampus across WK, SWS and REM. Sleep without LTP orderly rescaled synaptic weights to a narrow range of intermediate values. In contrast, LTP triggered near the SWS/REM transition led to marked swaps in synaptic weight ranking. To better understand the interaction between rescaling and restructuring during sleep, we implemented synaptic homeostasis and embossing in a detailed hippocampal-cortical model with both excitatory and inhibitory neurons. Synaptic homeostasis was implemented by weakening potentiation and strengthening depression, while synaptic embossing was simulated by evoking LTP on selected synapses. We observed that synaptic homeostasis facilitates controlled synaptic restructuring. The results imply a mechanism for a cognitive synergy between SWS and REM, and suggest that LTP at the SWS/REM transition critically influences the effect of sleep: Its lack determines synaptic homeostasis, its presence causes synaptic

  12. Synaptic Homeostasis and Restructuring across the Sleep-Wake Cycle

    PubMed Central

    Rennó-Costa, César; Santos, Sharlene; Dias, Gabriella; Guerreiro, Ana M. G.; Tort, Adriano B. L.; Neto, Adrião D.; Ribeiro, Sidarta

    2015-01-01

    Sleep is critical for hippocampus-dependent memory consolidation. However, the underlying mechanisms of synaptic plasticity are poorly understood. The central controversy is on whether long-term potentiation (LTP) takes a role during sleep and which would be its specific effect on memory. To address this question, we used immunohistochemistry to measure phosphorylation of Ca2+/calmodulin-dependent protein kinase II (pCaMKIIα) in the rat hippocampus immediately after specific sleep-wake states were interrupted. Control animals not exposed to novel objects during waking (WK) showed stable pCaMKIIα levels across the sleep-wake cycle, but animals exposed to novel objects showed a decrease during subsequent slow-wave sleep (SWS) followed by a rebound during rapid-eye-movement sleep (REM). The levels of pCaMKIIα during REM were proportional to cortical spindles near SWS/REM transitions. Based on these results, we modeled sleep-dependent LTP on a network of fully connected excitatory neurons fed with spikes recorded from the rat hippocampus across WK, SWS and REM. Sleep without LTP orderly rescaled synaptic weights to a narrow range of intermediate values. In contrast, LTP triggered near the SWS/REM transition led to marked swaps in synaptic weight ranking. To better understand the interaction between rescaling and restructuring during sleep, we implemented synaptic homeostasis and embossing in a detailed hippocampal-cortical model with both excitatory and inhibitory neurons. Synaptic homeostasis was implemented by weakening potentiation and strengthening depression, while synaptic embossing was simulated by evoking LTP on selected synapses. We observed that synaptic homeostasis facilitates controlled synaptic restructuring. The results imply a mechanism for a cognitive synergy between SWS and REM, and suggest that LTP at the SWS/REM transition critically influences the effect of sleep: Its lack determines synaptic homeostasis, its presence causes synaptic

  13. Environmental injuries.

    PubMed

    Leikin, J B; Aks, S E; Andrews, S; Auerbach, P S; Cooper, M A; Jacobsen, T D; Krenzelok, E P; Shicker, L; Weiner, S L

    1997-12-01

    Environmental injuries and illnesses can happen in home, work, or recreational settings. The variety and severity of these injuries might require the clinician to call on skills from internal medicine, emergency medicine, and toxicology. Diseases of thermoregulation are hypothermia and hyperthermia. In each instance, treatment is based on the need to restore the patient's core temperature to normal and on monitoring for complications. The victim of a fire might suffer inhalation injury in addition to burns, and it is more likely that the inhalation injury will be fatal. Oxygen deprivation and inhalation of irritant or asphyxiant chemicals contribute to injury. Toxic plants can be the source of poisoning emergencies, especially in children. Misinformation and myths that surround common plants can create diagnostic problems (i.e., which plants really are toxic and require emergency measures). Venomous marine organisms can cause a wide range of injury, from cutaneous eruption to fatal envenomation. Most are encountered in a recreational setting, such as water sports, but keepers of home aquariums are subject to stings from venomous fish. Lightning injury can present many diagnostic and treatment dilemmas. An important point in this regard is that lightning injury and high-voltage electrical injury are different in pathology and require different approaches for treatment. A discussion of electrical, chemical, and thermal burns makes such differences apparent.

  14. Paragliding injuries.

    PubMed Central

    Krüger-Franke, M; Siebert, C H; Pförringer, W

    1991-01-01

    Regulations controlling the sport of paragliding were issued in April 1987 by the German Department of Transportation. The growing popularity of this sport has led to a steady increase in the number of associated injuries. This study presents the incidence, localization and degree of injuries associated with paragliding documented in Germany, Austria and Switzerland. The 283 injuries suffered by 218 paragliders were documented in the period 1987-1989: 181 occurred during landing, 28 during starting procedures and nine during flight. The mean patient age was 29.6 years. There were 34.9% spinal injuries, 13.4% upper extremity injuries and 41.3% lower limb injuries. Over half of these injuries were treated surgically and in 54 instances permanent disability remained. In paragliding the lower extremities are at greatest risk of injury during landing. Proper equipment, especially sturdy footwear, exact training in landing techniques as well as improved instruction in procedures during aborted or crash landings is required to reduce the frequency of these injuries. Images p99-a p100-a p100-b p100-c PMID:1751899

  15. Paragliding injuries.

    PubMed

    Krüger-Franke, M; Siebert, C H; Pförringer, W

    1991-06-01

    Regulations controlling the sport of paragliding were issued in April 1987 by the German Department of Transportation. The growing popularity of this sport has led to a steady increase in the number of associated injuries. This study presents the incidence, localization and degree of injuries associated with paragliding documented in Germany, Austria and Switzerland. The 283 injuries suffered by 218 paragliders were documented in the period 1987-1989: 181 occurred during landing, 28 during starting procedures and nine during flight. The mean patient age was 29.6 years. There were 34.9% spinal injuries, 13.4% upper extremity injuries and 41.3% lower limb injuries. Over half of these injuries were treated surgically and in 54 instances permanent disability remained. In paragliding the lower extremities are at greatest risk of injury during landing. Proper equipment, especially sturdy footwear, exact training in landing techniques as well as improved instruction in procedures during aborted or crash landings is required to reduce the frequency of these injuries.

  16. Head Injuries

    MedlinePlus

    ... injury, cerebral contusion, cerebral laceration, coma, head trauma, hematoma, impaired consciousness, postconcussion syndrome, skull fracture, skull penetration, stupor, vegetative state Family Health, Infants ...

  17. Hamstring Injury

    MedlinePlus

    ... result. Hamstring injury risk factors include: Sports participation. Sports that require sprinting or running, or other activities such as dancing that might require extreme stretching, make a hamstring ...

  18. Vesicular Glutamate Transporter 1 Orchestrates Recruitment of Other Synaptic Vesicle Cargo Proteins during Synaptic Vesicle Recycling*

    PubMed Central

    Pan, Ping-Yue; Marrs, Julia; Ryan, Timothy A.

    2015-01-01

    A long standing question in synaptic physiology is how neurotransmitter-filled vesicles are rebuilt after exocytosis. Among the first steps in this process is the endocytic retrieval of the transmembrane proteins that are enriched in synaptic vesicles (SVs). At least six types of transmembrane proteins must be recovered, but the rules for how this multiple cargo selection is accomplished are poorly understood. Among these SV cargos is the vesicular glutamate transporter (vGlut). We show here that vGlut1 has a strong influence on the kinetics of retrieval of half of the known SV cargos and that specifically impairing the endocytosis of vGlut1 in turn slows down other SV cargos, demonstrating that cargo retrieval is a collective cargo-driven process. Finally, we demonstrate that different cargos can be retrieved in the same synapse with different kinetics, suggesting that additional post-endocytic sorting steps likely occur in the nerve terminal. PMID:26224632

  19. Cascade models of synaptically stored memories.

    PubMed

    Fusi, Stefano; Drew, Patrick J; Abbott, L F

    2005-02-17

    Storing memories of ongoing, everyday experiences requires a high degree of plasticity, but retaining these memories demands protection against changes induced by further activity and experience. Models in which memories are stored through switch-like transitions in synaptic efficacy are good at storing but bad at retaining memories if these transitions are likely, and they are poor at storage but good at retention if they are unlikely. We construct and study a model in which each synapse has a cascade of states with different levels of plasticity, connected by metaplastic transitions. This cascade model combines high levels of memory storage with long retention times and significantly outperforms alternative models. As a result, we suggest that memory storage requires synapses with multiple states exhibiting dynamics over a wide range of timescales, and we suggest experimental tests of this hypothesis.

  20. The initiation of post-synaptic protrusions

    PubMed Central

    Hotulainen, Pirta; Saarikangas, Juha

    2016-01-01

    ABSTRACT The post-synaptic spines of neuronal dendrites are highly elaborate membrane protrusions. Their anatomy, stability and density are intimately linked to cognitive performance. The morphological transitions of spines are powered by coordinated polymerization of actin filaments against the plasma membrane, but how the membrane-associated polymerization is spatially and temporally regulated has remained ill defined. Here, we discuss our recent findings showing that dendritic spines can be initiated by direct membrane bending by the I-BAR protein MIM/Mtss1. This lipid phosphatidylinositol (PI(4,5)P2) signaling-activated membrane bending coordinated spatial actin assembly and promoted spine formation. From recent advances, we formulate a general model to discuss how spatially concentrated protein-lipid microdomains formed by multivalent interactions between lipids and actin/membrane regulatory proteins might launch cell protrusions. PMID:27489575

  1. Sumoylation in Synaptic Function and Dysfunction.

    PubMed

    Schorova, Lenka; Martin, Stéphane

    2016-01-01

    Sumoylation has recently emerged as a key post-translational modification involved in many, if not all, biological processes. Small Ubiquitin-like Modifier (SUMO) polypeptides are covalently attached to specific lysine residues of target proteins through a dedicated enzymatic pathway. Disruption of the SUMO enzymatic pathway in the developing brain leads to lethality indicating that this process exerts a central role during embryonic and post-natal development. However, little is still known regarding how this highly dynamic protein modification is regulated in the mammalian brain despite an increasing number of data implicating sumoylated substrates in synapse formation, synaptic communication and plasticity. The aim of this review is therefore to briefly describe the enzymatic SUMO pathway and to give an overview of our current knowledge on the function and dysfunction of protein sumoylation at the mammalian synapse.

  2. The low synaptic release probability in vivo.

    PubMed

    Borst, J Gerard G

    2010-06-01

    The release probability, the average probability that an active zone of a presynaptic terminal releases one or more vesicles following an action potential, is tightly regulated. Measurements in cultured neurons or in slices indicate that this probability can vary greatly between synapses, but on average it is estimated to be as high as 0.5. In vivo, however, the size of synaptic potentials is relatively independent of recent history, suggesting that release probability is much lower. Possible causes for this discrepancy include maturational differences, a higher spontaneous activity, a lower extracellular calcium concentration and more prominent tonic inhibition by ambient neurotransmitters during in vivo recordings. Existing evidence thus suggests that under physiological conditions in vivo, presynaptic action potentials trigger the release of neurotransmitter much less frequently than what is observed in in vitro preparations.

  3. Sumoylation in Synaptic Function and Dysfunction

    PubMed Central

    Schorova, Lenka; Martin, Stéphane

    2016-01-01

    Sumoylation has recently emerged as a key post-translational modification involved in many, if not all, biological processes. Small Ubiquitin-like Modifier (SUMO) polypeptides are covalently attached to specific lysine residues of target proteins through a dedicated enzymatic pathway. Disruption of the SUMO enzymatic pathway in the developing brain leads to lethality indicating that this process exerts a central role during embryonic and post-natal development. However, little is still known regarding how this highly dynamic protein modification is regulated in the mammalian brain despite an increasing number of data implicating sumoylated substrates in synapse formation, synaptic communication and plasticity. The aim of this review is therefore to briefly describe the enzymatic SUMO pathway and to give an overview of our current knowledge on the function and dysfunction of protein sumoylation at the mammalian synapse. PMID:27199730

  4. Optogenetic Acidification of Synaptic Vesicles and Lysosomes

    PubMed Central

    Grauel, M. Katharina; Wozny, Christian; Bentz, Claudia; Blessing, Anja; Rosenmund, Tanja; Jentsch, Thomas J.; Schmitz, Dietmar; Hegemann, Peter; Rosenmund, Christian

    2016-01-01

    Acidification is required for the function of many intracellular organelles, but methods to acutely manipulate their intraluminal pH have not been available. Here we present a targeting strategy to selectively express the light-driven proton pump Arch3 on synaptic vesicles. Our new tool, pHoenix, can functionally replace endogenous proton pumps, enabling optogenetic control of vesicular acidification and neurotransmitter accumulation. Under physiological conditions, glutamatergic vesicles are nearly full, as additional vesicle acidification with pHoenix only slightly increased the quantal size. By contrast, we found that incompletely filled vesicles exhibited a lower release probability than full vesicles, suggesting preferential exocytosis of vesicles with high transmitter content. Our subcellular targeting approach can be transferred to other organelles, as demonstrated for a pHoenix variant that allows light-activated acidification of lysosomes. PMID:26551543

  5. Man versus machine: comparison of radiologists' interpretations and NeuroQuant® volumetric analyses of brain MRIs in patients with traumatic brain injury.

    PubMed

    Ross, David E; Ochs, Alfred L; Seabaugh, Jan M; Shrader, Carole R

    2013-01-01

    NeuroQuant® is a recently developed, FDA-approved software program for measuring brain MRI volume in clinical settings. The purpose of this study was to compare NeuroQuant with the radiologist's traditional approach, based on visual inspection, in 20 outpatients with mild or moderate traumatic brain injury (TBI). Each MRI was analyzed with NeuroQuant, and the resulting volumetric analyses were compared with the attending radiologist's interpretation. The radiologist's traditional approach found atrophy in 10.0% of patients; NeuroQuant found atrophy in 50.0% of patients. NeuroQuant was more sensitive for detecting brain atrophy than the traditional radiologist's approach.

  6. Variable priming of a docked synaptic vesicle

    PubMed Central

    Jung, Jae Hoon; Szule, Joseph A.; Marshall, Robert M.; McMahan, Uel J.

    2016-01-01

    The priming of a docked synaptic vesicle determines the probability of its membrane (VM) fusing with the presynaptic membrane (PM) when a nerve impulse arrives. To gain insight into the nature of priming, we searched by electron tomography for structural relationships correlated with fusion probability at active zones of axon terminals at frog neuromuscular junctions. For terminals fixed at rest, the contact area between the VM of docked vesicles and PM varied >10-fold with a normal distribution. There was no merging of the membranes. For terminals fixed during repetitive evoked synaptic transmission, the normal distribution of contact areas was shifted to the left, due in part to a decreased number of large contact areas, and there was a subpopulation of large contact areas where the membranes were hemifused, an intermediate preceding complete fusion. Thus, fusion probability of a docked vesicle is related to the extent of its VM–PM contact area. For terminals fixed 1 h after activity, the distribution of contact areas recovered to that at rest, indicating the extent of a VM–PM contact area is dynamic and in equilibrium. The extent of VM–PM contact areas in resting terminals correlated with eccentricity in vesicle shape caused by force toward the PM and with shortness of active zone material macromolecules linking vesicles to PM components, some thought to include Ca2+ channels. We propose that priming is a variable continuum of events imposing variable fusion probability on each vesicle and is regulated by force-generating shortening of active zone material macromolecules in dynamic equilibrium. PMID:26858418

  7. Neurodegeneration in the somatosensory cortex after experimental diffuse brain injury

    PubMed Central

    Lisembee, Amanda M.

    2012-01-01

    Disruption and consequent reorganization of central nervous system circuits following traumatic brain injury may manifest as functional deficits and behavioral morbidities. We previously reported axotomy and neuronal atrophy in the ventral basal (VB) complex of the thalamus, without gross degeneration after experimental diffuse brain injury in adult rats. Pathology in VB coincided with the development of late-onset aberrant behavioral responses to whisker stimulation, which lead to the current hypothesis that neurodegeneration after experimental diffuse brain injury includes the primary somatosensory barrel cortex (S1BF), which receives projection of VB neurons and mediates whisker somatosensation. Over 28 days after midline fluid percussion brain injury, argyrophilic reaction product within superficial layers and layer IV barrels at 1 day progresses into the cortex to subcortical white matter by 7 days, and selective inter-barrel septa and subcortical white matter labeling at 28 days. Cellular consequences were determined by stereological estimates of neuronal nuclear volumes and number. In all cortical layers, neuronal nuclear volumes significantly atrophied by 42–49% at 7 days compared to sham, which marginally attenuated by 28 days. Concomitantly, the number of healthy neurons was reduced by 34–45% at 7 days compared to sham, returning to control levels by 28 days. Progressive neurodegeneration, including argyrophilic reaction product and neuronal nuclear atrophy, indicates injury-induced damage and reorganization of the reciprocal thalamocortical projections that mediate whisker somatosensation. The rodent whisker barrel circuit may serve as a discrete model to evaluate the causes and consequences of circuit reorganization after diffuse brain injury. PMID:21597967

  8. Alterations in hippocampal excitability, synaptic transmission and synaptic plasticity in a neurodevelopmental model of schizophrenia.

    PubMed

    Sanderson, Thomas M; Cotel, Marie-Caroline; O'Neill, Michael J; Tricklebank, Mark D; Collingridge, Graham L; Sher, Emanuele

    2012-03-01

    The risk of developing schizophrenia has been linked to perturbations in embryonic development, but the physiological alterations that result from such insults are incompletely understood. Here, we have investigated aspects of hippocampal physiology in a proposed neurodevelopmental model of schizophrenia, induced during gestation in rats by injection of the antimitotic agent methylazoxymethanol acetate (MAM) at embryonic day 17 (MAM(E17)). We observed a reduction in synaptic innervation and synaptic transmission in the dorsal hippocampus of MAM(E17) treated rats, accompanied by a pronounced increase in CA1 pyramidal neuron excitability. Pharmacological investigations suggested that a deficit in GABAergic inhibition could account for the increase in excitability; furthermore, some aspects of the hyper-excitability could be normalised by the GABA(A) receptor (GABA(A)R) potentiator diazepam. Despite these alterations, two major forms of synaptic plasticity, long-term potentiation (LTP) and long-term depression (LTD) could be readily induced. In contrast, there was a substantial deficit in the reversal of LTP, depotentiation. These findings suggest that delivering neurodevelopmental insults at E17 may offer insights into some of the physiological alterations that underlie behavioural and cognitive symptoms observed in schizophrenia.

  9. From synaptic spines to nuclear signaling: nuclear and synaptic actions of the amyloid precursor protein.

    PubMed

    Octave, Jean-Noël; Pierrot, Nathalie; Ferao Santos, Susana; Nalivaeva, Natalia N; Turner, Anthony J

    2013-07-01

    Despite intensive studies of the secretase-mediated processing of the amyloid precursor protein (APP) to form the amyloid β-peptide (Aβ), in relation to Alzheimer's disease (AD), no new therapeutic agents have reached the clinics based on reducing Aβ levels through the use of secretase inhibitors or immunotherapy. Furthermore, the normal neuronal functions of APP and its various metabolites still remain under-investigated and unclear. Here, we highlight emerging areas of APP function that may provide new insights into synaptic development, cognition, and gene regulation. By modulating expression levels of endogenous APP in primary cortical neurons, the frequency and amplitude of calcium oscillations is modified, implying a key role for APP in maintaining neuronal calcium homeostasis essential for synaptic transmission. Disruption of this homeostatic mechanism predisposes to aging and AD. Synaptic spine loss is a feature of neurogeneration resulting in learning and memory deficits, and emerging evidence indicates a role for APP, probably mediated via one or more of its metabolites, in spine structure and functions. The intracellular domain of APP (AICD) has also emerged as a key epigenetic regulator of gene expression controlling a diverse range of genes, including APP itself, the amyloid-degrading enzyme neprilysin, and aquaporin-1. A fuller understanding of the physiological and pathological actions of APP and its metabolic network could provide new opportunities for therapeutic intervention in AD.

  10. Post-Injury Treatment with Rolipram Increases Hemorrhage After Traumatic Brain Injury

    PubMed Central

    Atkins, C.M.; Kang, Y.; Furones, C.; Truettner, J.S.; Alonso, O.F.; Dietrich, W.D.

    2012-01-01

    The pathology caused by traumatic brain injury (TBI) is exacerbated by the inflammatory response of the injured brain. Two pro-inflammatory cytokines that contribute to inflammation after TBI are tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β). In previous studies using the parasagittal fluid-percussion brain injury model, we reported that the anti-inflammatory drug rolipram, a phosphodiesterase 4 inhibitor, reduced TNF-α and IL-1β levels and improved histopathological outcome when administered 30 min prior to injury. We now report that treatment with (±)-rolipram given 30 min after injury significantly reduced TNF-α levels in the cortex and hippocampus. However, post-injury administration of (±)-rolipram significantly increased cortical contusion volume and increased atrophy of the cortex as compared to vehicle-treated animals at 10 days post-injury. Thus, despite the reduction in pro-inflammatory cytokine levels, histopathological outcome was worsened with post-TBI (±)-rolipram treatment. Further histological analysis of (±)-rolipram-treated TBI animals revealed significant hemorrhage in the contused brain. Given the well known role of (±)-rolipram to increase vasodilation, it is likely that (±)-rolipram worsened outcome after fluid-percussion brain injury by causing increased bleeding. PMID:22535545

  11. Spine Calcium Transients Induced by Synaptically-Evoked Action Potentials Can Predict Synapse Location and Establish Synaptic Democracy

    PubMed Central

    Meredith, Rhiannon M.; van Ooyen, Arjen

    2012-01-01

    CA1 pyramidal neurons receive hundreds of synaptic inputs at different distances from the soma. Distance-dependent synaptic scaling enables distal and proximal synapses to influence the somatic membrane equally, a phenomenon called “synaptic democracy”. How this is established is unclear. The backpropagating action potential (BAP) is hypothesised to provide distance-dependent information to synapses, allowing synaptic strengths to scale accordingly. Experimental measurements show that a BAP evoked by current injection at the soma causes calcium currents in the apical shaft whose amplitudes decay with distance from the soma. However, in vivo action potentials are not induced by somatic current injection but by synaptic inputs along the dendrites, which creates a different excitable state of the dendrites. Due to technical limitations, it is not possible to study experimentally whether distance information can also be provided by synaptically-evoked BAPs. Therefore we adapted a realistic morphological and electrophysiological model to measure BAP-induced voltage and calcium signals in spines after Schaffer collateral synapse stimulation. We show that peak calcium concentration is highly correlated with soma-synapse distance under a number of physiologically-realistic suprathreshold stimulation regimes and for a range of dendritic morphologies. Peak calcium levels also predicted the attenuation of the EPSP across the dendritic tree. Furthermore, we show that peak calcium can be used to set up a synaptic democracy in a homeostatic manner, whereby synapses regulate their synaptic strength on the basis of the difference between peak calcium and a uniform target value. We conclude that information derived from synaptically-generated BAPs can indicate synapse location and can subsequently be utilised to implement a synaptic democracy. PMID:22719238

  12. Systems-based discovery of tomatidine as a natural small molecule inhibitor of skeletal muscle atrophy.

    PubMed

    Dyle, Michael C; Ebert, Scott M; Cook, Daniel P; Kunkel, Steven D; Fox, Daniel K; Bongers, Kale S; Bullard, Steven A; Dierdorff, Jason M; Adams, Christopher M

    2014-05-23

    Skeletal muscle atrophy is a common and debilitating condition that lacks an effective therapy. To address this problem, we used a systems-based discovery strategy to search for a small molecule whose mRNA expression signature negatively correlates to mRNA expression signatures of human skeletal muscle atrophy. This strategy identified a natural small molecule from tomato plants, tomatidine. Using cultured skeletal myotubes from both humans and mice, we found that tomatidine stimulated mTORC1 signaling and anabolism, leading to accumulation of protein and mitochondria, and ultimately, cell growth. Furthermore, in mice, tomatidine increased skeletal muscle mTORC1 signaling, reduced skeletal muscle atrophy, enhanced recovery from skeletal muscle atrophy, stimulated skeletal muscle hypertrophy, and increased strength and exercise capacity. Collectively, these results identify tomatidine as a novel small molecule inhibitor of muscle atrophy. Tomatidine may have utility as a therapeutic agent or lead compound for skeletal muscle atrophy.

  13. β-amyloid, hippocampal atrophy and their relation to longitudinal brain change in cognitively normal individuals

    PubMed Central

    Fletcher, Evan; Villeneuve, Sylvia; Maillard, Pauline; Harvey, Danielle; Reed, Bruce; Jagust, William; DeCarli, Charles

    2016-01-01

    Recent literature has examined baseline hippocampal volume and extent of brain amyloidosis to test potential synergistic effects on worsening cognition and extent of brain atrophy. Use of hippocampal volume in prior studies was based on the notion that limbic circuit degeneration is an early manifestation of the Alzheimer's Disease (AD) pathophysiology. To clarify these interactions early in the AD process, we tested the effects of amyloid and baseline normalized hippocampal volume on longitudinal brain atrophy rates in a group of cognitively normal individuals. Results showed that the combination of elevated β-amyloid and baseline hippocampal atrophy is associated with increased rates specific to the limbic circuit and splenium. Importantly, this atrophy pattern emerged from a voxelwise analysis, corroborated by regression models over ROIs in native space. The results are broadly consistent with previous studies of the effects of amyloid and baseline hippocampal atrophy in normals, while pointing to accelerated atrophy of AD-vulnerable regions detectable at the preclinical stage. PMID:26973117

  14. Systems-based Discovery of Tomatidine as a Natural Small Molecule Inhibitor of Skeletal Muscle Atrophy*

    PubMed Central

    Dyle, Michael C.; Ebert, Scott M.; Cook, Daniel P.; Kunkel, Steven D.; Fox, Daniel K.; Bongers, Kale S.; Bullard, Steven A.; Dierdorff, Jason M.; Adams, Christopher M.

    2014-01-01

    Skeletal muscle atrophy is a common and debilitating condition that lacks an effective therapy. To address this problem, we used a systems-based discovery strategy to search for a small molecule whose mRNA expression signature negatively correlates to mRNA expression signatures of human skeletal muscle atrophy. This strategy identified a natural small molecule from tomato plants, tomatidine. Using cultured skeletal myotubes from both humans and mice, we found that tomatidine stimulated mTORC1 signaling and anabolism, leading to accumulation of protein and mitochondria, and ultimately, cell growth. Furthermore, in mice, tomatidine increased skeletal muscle mTORC1 signaling, reduced skeletal muscle atrophy, enhanced recovery from skeletal muscle atrophy, stimulated skeletal muscle hypertrophy, and increased strength and exercise capacity. Collectively, these results identify tomatidine as a novel small molecule inhibitor of muscle atrophy. Tomatidine may have utility as a therapeutic agent or lead compound for skeletal muscle atrophy. PMID:24719321

  15. Cerebral blood flow and brain atrophy correlated by xenon contrast CT scanning

    SciTech Connect

    Kitagawa, Y.; Meyer, J.S.; Tanahashi, N.; Rogers, R.L.; Tachibana, H.; Kandula, P.; Dowell, R.E.; Mortel, K.F.

    1985-11-01

    Correlations between cerebral blood flow (CBF) measured during stable xenon contrast CT scanning and standard CT indices of brain atrophy were investigated in the patients with senile dementia of Alzheimer type, multi-infarct dementia and idiopathic Parkinson's disease. Compared to age-matched normal volunteers, significant correlations were found in patients with idiopathic Parkinson's disease between cortical and subcortical gray matter blood flow and brain atrophy estimated by the ventricular body ratio, and mild to moderate brain atrophy were correlated with stepwise CBF reductions. However, in patients with senile dementia of Alzheimer type and multi-infarct dementia, brain atrophy was not associated with stepwise CBF reductions. Overall correlations between brain atrophy and reduced CBF were weak. Mild degrees of brain atrophy are not always associated with reduced CBF.

  16. Contribution of apoptotic cell death to renal injury.

    PubMed

    Ortiz, A; Lorz, C; Justo, P; Catalán, M P; Egido, J

    2001-01-01

    Cell number abnormalities are frequent in renal diseases, and range from the hypercellularity of postinfectious glomerulonephritis to the cell depletion of chronic renal atrophy. Recent research has shown that apoptosis and its regulatory mechanisms contribute to cell number regulation in the kidney. The role of apoptosis ranges from induction to repair and progression of renal injury. Death ligands and receptors, such as TNF and FasL, proapoptotic and antiapoptotic Bcl-2 family members and caspases have all been shown to participate in apoptosis regulation in the course of renal injury. These proteins represent potential therapeutic targets, which should be further explored.

  17. Whiplash injuries.

    PubMed

    Malanga, Gerard; Peter, Jason

    2005-10-01

    Whiplash injuries are very common and usually are associated with rear-end collisions. However, a whiplash injury can be caused by any event that results in hyperextension and flexion of the cervical spine. These injuries are of serious concern to all consumers due to escalating cost of diagnosis, treatment, insurance, and litigation. Most acute whiplash injury cases respond well to conservative treatments, which result in resolution of symptoms usually within weeks to a few months after the injury occurred. Chronic whiplash injuries often are harder to diagnose and treat and often result in poor outcomes. Current research shows that various structures in the cervical spine receive nociceptive innervation and potentially may be the cause of chronic pain symptoms. One potential pain generator showing promise is the facet or zygapophyseal joints. Various researchers have proven that these joints are injured during whiplash injuries and that diagnosis and temporary pain relief can be obtained with facet joint injections. The initial evaluation of any patient should follow an organized and stepwise approach, and more serious causes of neck pain must first be ruled out through the history, physical examination, and diagnostic testing. Treatment regimens should be evidence-based, focusing on treatments that have proven to be effective in treating acute and chronic whiplash injuries.

  18. Mechanical Vibrations Reduce the Intervertebral Disc Swelling and Muscle Atrophy from Bed Rest

    NASA Technical Reports Server (NTRS)

    Holguin, Nilsson; Muir, Jesse; Evans, Harlan J.; Qin, Yi-Xian; Rubin, Clinton; Wagshul, Mark; Judex, Stefan

    2007-01-01

    Loss of functional weight bearing, such as experienced during space flight or bed rest (BR), distorts intervertebral disc (IVD) and muscle morphology. IVDs are avascular structures consisting of cells that may derive their nutrition and waste removal from the load induced fluid flow into and out of the disc. A diurnal cycle is produced by forces related to weight bearing and muscular activity, and comprised of a supine and erect posture over a 24 hr period. A diurnal cycle will include a disc volume change of approx. 10-13%. However, in space there are little or no diurnal changes because of the microgravity, which removes the gravitational load and compressive forces to the back muscles. The BR model and the etiology of the disc swelling and muscle atrophy could provide insight into those subjects confined to bed for chronic disease/injury and aging. We hypothesize that extremely low-magnitude, high frequency mechanical vibrations will abate the disc degeneration and muscle loss associated with long-term BR.

  19. Spinal Cord Lesion by Minor Trauma as an Early Sign of Multiple System Atrophy

    PubMed Central

    Brum, Marisa; Reimão, Sofia; Sousa, Djalma; de Carvalho, Rui; Ferreira, Joaquim J.

    2016-01-01

    Multiple system atrophy (MSA) is characterized clinically by parkinsonism, cerebellar, autonomic, and corticospinal features of variable severity. When the presentation is only parkinsonism, the disease might be difficult to differentiate from Parkinson’s disease (PD). We present a case of an 80-year-old man with previous diagnosis of PD. One year after the diagnosis, he had a whiplash cervical trauma due to a tricycle accident caused by a hole in the road. This low-energy trauma caused an unstable C4–C5 cervical fracture with spinal cord injury, which required surgical decompression and stabilization. Neurological examination showed marked postural instability, no rest and postural tremor, finger tapping slowed on the right, spastic tetraparesis (ASIA D) – predominantly on the left side, brisk deep tendon reflexes in the upper and lower extremities, and bilateral extensor plantar response. He also presented with vertical gaze restriction, mild hypometria in horizontal saccades, moderate dysphagia, and dysphonia. As atypical parkinsonism was suspected, he underwent an MRI that revealed conjunction of findings suggestive of parkinsonian-type MSA. In our case, we hypothesize that the loss of postural reflexes, as an early manifestation of MSA, did not allow the patient to have an effective reaction response to a low-energy trauma, resulting in a more severe injury. With this case report, we speculate that the severe spinal lesions caused by minor accidents can be an early sign of postural instability, which may lead to clinical suspicion of neurodegenerative disorder manifested by postural reflexes impairment. PMID:27014185

  20. Berberine chloride improved synaptic plasticity in STZ induced diabetic rats.

    PubMed

    Moghaddam, Hamid Kalalian; Baluchnejadmojarad, Tourandokht; Roghani, Mehrdad; Goshadrou, Fatemeh; Ronaghi, Abdolaziz

    2013-09-01

    Previous studies indicated that diabetes affects synaptic transmission in the hippocampus, leading to impairments of synaptic plasticity and defects in learning and memory. Although berberine treatment ameliorates memory impairment and improves synaptic plasticity in streptozotocin (STZ) induced diabetic rats, it is not clear if the effects are pre- or post-synaptic or both. The aim of this study was to evaluate the effects of berberine chloride on short-term plasticity in inhibitory interneurons in the dentate gyrus of STZ-induced diabetic rats. Experimental groups included: The control, control berberine treated (100 mg/kg), diabetic and diabetic berberine treated (50,100 mg/kg/day for 12 weeks) groups. The paired pulse paradigm was used to stimulate the perforant pathway and field excitatory post-synaptic potentials (fEPSP) were recorded in dentate gyrus (DG). In comparison with control, paired pulse facilitation in the diabetic group was significantly increased (P < 0.01) and this effect prevented by chronic berberine treatment (50,100 mg/kg). However, there were no differences between responses of the control berberine 100 mg/kg treated and diabetes berberine treated (50 and 100 mg/kg) groups as compared to the control group. The present results suggest that the pre-synaptic component of synaptic plasticity in the dentate gyrus is affected under diabetic conditions and that berberine prevents this effect.

  1. Distribution of vestibulospinal synaptic input to cat triceps surae motoneurons.

    PubMed

    Westcott, S L; Powers, R K; Robinson, F R; Binder, M D

    1995-01-01

    We applied supramaximal, repetitive stimulation to the lateral vestibular nucleus (Deiters' nucleus, DN) at 200 Hz to evoke stead-state synaptic potentials in ipsilateral triceps surae motoneurons of the cat. The effective synaptic currents underlying these potentials were measured using a modified voltage-clamp technique. The steady-state effective synaptic currents evoked by activating DN were generally small and depolarizing (mean 2.5 +/- 2.6 nA). DN stimulation generated hyperpolarizing synaptic currents in 2 of the 34 triceps motoneurons studied. The effective synaptic currents from DN tended to be larger in putative type F motoneurons than in putative type S cells (type F mean 3.0 +/- 3.1 nA; type S mean 1.8 +/- 1.0 nA). There was a statistically significant difference between the inputs to putative type FF and putative type S motoneurons (mean difference 2.8 nA, t = 2.87, P < 0.01). The synaptic input from DN to medial gastrocnemius motoneurons had approximately the same amplitude as that from homonymous Ia afferent fibers. However, the distribution of DN input with respect to putative motor unit type was the opposite of that previously reported for Ia afferent input. Thus, the synaptic input from DN might act to compress the range of recruitment thresholds within the motoneuron pool and thereby increase the gain of its input-output function.

  2. Stem cell-based treatment in geographic atrophy: promises and pitfalls.

    PubMed

    Kvanta, Anders; Grudzinska, Monika K

    2014-02-01

    Geographic atrophy is a common and untreatable form of advanced age-related macular degeneration. The degeneration primarily affects the retinal pigment epithelium and photoreceptors of the retina and their restoration by cell transplantation seems attractive. Recently, a patient with geographic atrophy was the first human to receive cells derived from human embryonic stem cells. In this short review, the rationale, potential and obstacles for stem cell-derived therapy in geographic atrophy are discussed.

  3. Defective Acetylcholine Receptor Subunit Switch Precedes Atrophy of Slow-Twitch Skeletal Muscle Fibers Lacking ERK1/2 Kinases in Soleus Muscle

    PubMed Central

    Wang, Shuo; Seaberg, Bonnie; Paez-Colasante, Ximena; Rimer, Mendell

    2016-01-01

    To test the role of extracellular-signal regulated kinases 1 and 2 (ERK1/2) in slow-twitch, type 1 skeletal muscle fibers, we studied the soleus muscle in mice genetically deficient for myofiber ERK1/2. Young adult mutant soleus was drastically wasted, with highly atrophied type 1 fibers, denervation at most synaptic sites, induction of “fetal” acetylcholine receptor gamma subunit (AChRγ), reduction of “adult” AChRε, and impaired mitochondrial biogenesis and function. In weanlings, fiber morphology and mitochondrial markers were mostly normal, yet AChRγ upregulation and AChRε downregulation were observed. Synaptic sites with fetal AChRs in weanling muscle were ~3% in control and ~40% in mutants, with most of the latter on type 1 fibers. These results suggest that: (1) ERK1/2 are critical for slow-twitch fiber growth; (2) a defective γ/ε-AChR subunit switch, preferentially at synapses on slow fibers, precedes wasting of mutant soleus; (3) denervation is likely to drive this wasting, and (4) the neuromuscular synapse is a primary subcellular target for muscle ERK1/2 function in vivo. PMID:27934942

  4. Impaired sprouting and axonal atrophy in cerebellar climbing fibres following in vivo silencing of the growth-associated protein GAP-43.

    PubMed

    Grasselli, Giorgio; Mandolesi, Georgia; Strata, Piergiorgio; Cesare, Paolo

    2011-01-01

    The adult mammalian central nervous system has a limited ability to establish new connections and to recover from traumatic or degenerative events. The olivo-cerebellar network represents an excellent model to investigate neuroprotection and repair in the brain during adulthood, due to its high plasticity and ordered synaptic organization. To shed light on the molecular mechanisms involved in these events, we focused on the growth-associated protein GAP-43 (also known as B-50 or neuromodulin). During development, this protein plays a crucial role in growth and in branch formation of neurites, while in the adult it is only expressed in a few brain regions, including the inferior olive (IO) where climbing fibres (CFs) originate. Following axotomy GAP-43 is usually up-regulated in association with regeneration. Here we describe an in vivo lentiviral-mediated gene silencing approach, used for the first time in the olivo-cerebellar system, to efficiently and specifically downregulate GAP-43 in rodents CFs. We show that lack of GAP-43 causes an atrophy of the CF in non-traumatic conditions, consisting in a decrease of its length, branching and number of synaptic boutons. We also investigated CF regenerative ability by inducing a subtotal lesion of the IO. Noteworthy, surviving CFs lacking GAP-43 were largely unable to sprout on surrounding Purkinje cells. Collectively, our results demonstrate that GAP-43 is essential both to maintain CFs structure in non-traumatic condition and to promote sprouting after partial lesion of the IO.

  5. Head injuries.

    PubMed

    Yanko, J

    1984-08-01

    In summary, the broad term "head injury" represents a large variety of more specific injuries. In order to anticipate and plan appropriate patient care, nurses need information regarding the cause of injury, the impact site, and the patient's clinical course in addition to current assessment findings. The nurse must also anticipate sequelae from secondary brain injury due to hypoxia, edema, increased intracranial pressure, changes in regional blood flows, or hypovolemic shock due to internal bleeding in another body system or cavity. The head-injured patient is a complex patient requiring intensive nursing care, observation, and assessment. By incorporating knowledge of the mechanisms of injury into nursing observations and assessments, nurses can provide more effective nursing interventions.

  6. Synaptic Mechanisms of Memory Consolidation during Sleep Slow Oscillations

    PubMed Central

    Wei, Yina; Krishnan, Giri P.

    2016-01-01

    Sleep is critical for regulation of synaptic efficacy, memories, and learning. However, the underlying mechanisms of how sleep rhythms contribute to consolidating memories acquired during wakefulness remain unclear. Here we studied the role of slow oscillations, 0.2–1 Hz rhythmic transitions between Up and Down states during stage 3/4 sleep, on dynamics of synaptic connectivity in the thalamocortical network model implementing spike-timing-dependent synaptic plasticity. We found that the spatiotemporal pattern of Up-state propagation determines the changes of synaptic strengths between neurons. Furthermore, an external input, mimicking hippocampal ripples, delivered to the cortical network results in input-specific changes of synaptic weights, which persisted after stimulation was removed. These synaptic changes promoted replay of specific firing sequences of the cortical neurons. Our study proposes a neuronal mechanism on how an interaction between hippocampal input, such as mediated by sharp wave-ripple events, cortical slow oscillations, and synaptic plasticity, may lead to consolidation of memories through preferential replay of cortical cell spike sequences during slow-wave sleep. SIGNIFICANCE STATEMENT Sleep is critical for memory and learning. Replay during sleep of temporally ordered spike sequences related to a recent experience was proposed to be a neuronal substrate of memory consolidation. However, specific mechanisms of replay or how spike sequence replay leads to synaptic changes that underlie memory consolidation are still poorly understood. Here we used a detailed computational model of the thalamocortical system to report that interaction between slow cortical oscillations and synaptic plasticity during deep sleep can underlie mapping hippocampal memory traces to persistent cortical representation. This study provided, for the first time, a mechanistic explanation of how slow-wave sleep may promote consolidation of recent memory events. PMID

  7. Effect of Oenothera odorata Root Extract on Microgravity and Disuse-Induced Muscle Atrophy

    PubMed Central

    Lee, Yong-Hyeon; Seo, Dong-Hyun; Park, Ji-Hyung; Kabayama, Kazuya; Opitz, Joerg; Lee, Kwang Ho; Kim, Han-Sung; Kim, Tack-Joong

    2015-01-01

    Muscle atrophy, a reduction of muscle mass, strength, and volume, results from reduced muscle use and plays a key role in various muscular diseases. In the microgravity environment of space especially, muscle atrophy is induced by muscle inactivity. Exposure to microgravity induces muscle atrophy through several biological effects, including associations with reactive oxygen species (ROS). This study used 3D-clinostat to investigate muscle atrophy caused by oxidative stress in vitro, and sciatic denervation was used to investigate muscle atrophy in vivo. We assessed the effect of Oenothera odorata root extract (EVP) on muscle atrophy. EVP helped recover cell viability in C2C12 myoblasts exposed to microgravity for 24 h and delayed muscle atrophy in sciatic denervated mice. However, the expressions of HSP70, SOD1, and ceramide in microgravity-exposed C2C12 myoblasts and in sciatic denervated mice were either decreased or completely inhibited. These results suggested that EVP can be expected to have a positive effect on muscle atrophy by disuse and microgravity. In addition, EVP helped characterize the antioxidant function in muscle atrophy. PMID:25945103

  8. Mitochondrial Dysfunction Launches Dexamethasone-Induced Skeletal Muscle Atrophy via AMPK/FOXO3 Signaling.

    PubMed

    Liu, Jing; Peng, Yunhua; Wang, Xun; Fan, Yingying; Qin, Chuan; Shi, Le; Tang, Ying; Cao, Ke; Li, Hua; Long, Jiangang; Liu, Jiankang

    2016-01-04

    Muscle atrophy occurs in several pathologic conditions such as diabetes and chronic obstructive pulmonary disease (COPD), as well as after long-term clinical administration of synthesized glucocorticoid, where increased circulating glucocorticoid accounts for the pathogenesis of muscle atrophy. Others and we previously reported mitochondrial dysfunction in muscle atrophy-related conditions and that mitochondria-targeting nutrients efficiently prevent kinds of muscle atrophy. However, whether and how mitochondrial dysfunction involves glucocorticoid-induced muscle atrophy remains unclear. Therefore, in the present study, we measured mitochondrial function in dexamethasone-induced muscle atrophy in vivo and in vitro, and we found that mitochondrial respiration was compromised on the 3rd day following after dexamethasone administration, earlier than the increases of MuRF1 and Fbx32, and dexamethasone-induced loss of mitochondrial components and key mitochondrial dynamics proteins. Furthermore, dexamethasone treatment caused intracellular ATP deprivation and robust AMPK activation, which further activated the FOXO3/Atrogenes pathway. By directly impairing mitochondrial respiration, FCCP leads to similar readouts in C2C12 myotubes as dexamethasone does. On the contrary, resveratrol, a mitochondrial nutrient, efficiently reversed dexamethasone-induced mitochondrial dysfunction and muscle atrophy in both C2C12 myotubes and mice, by improving mitochondrial function and blocking AMPK/FOXO3 signaling. These results indicate that mitochondrial dysfunction acts as a central role in dexamethasone-induced skeletal muscle atrophy and that nutrients or drugs targeting mitochondria might be beneficial in preventing or curing muscle atrophy.

  9. Neuroblastoma in a Patient With Spinal Muscular Atrophy Type I: Is It Just a Coincidence?

    PubMed

    Sag, Erdal; Sen, Hilal Susam; Haliloglu, Goknur; Yalcin, Bilgehan; Kutluk, Tezer

    2015-07-01

    Spinal muscular atrophy is an autosomal recessive disorder characterized by progressive degeneration of anterior horn cells of the spinal cord resulting in hypotonia, skeletal muscle atrophy, and weakness. Herein, we report a 4-month-old male infant who presented to our hospital with an abdominal mass that was diagnosed as neuroblastoma and spinal muscular atrophy type I. We would like to discuss the course and differential diagnosis with an algorithm leading to the diagnosis in this peculiar patient. To our knowledge, coexistence of spinal muscular atrophy type I and neuroblastoma is defined for the first time in the literature.

  10. Smad2/3 Proteins Are Required for Immobilization-induced Skeletal Muscle Atrophy.

    PubMed

    Tando, Toshimi; Hirayama, Akiyoshi; Furukawa, Mitsuru; Sato, Yuiko; Kobayashi, Tami; Funayama, Atsushi; Kanaji, Arihiko; Hao, Wu; Watanabe, Ryuichi; Morita, Mayu; Oike, Takatsugu; Miyamoto, Kana; Soga, Tomoyoshi; Nomura, Masatoshi; Yoshimura, Akihiko; Tomita, Masaru; Matsumoto, Morio; Nakamura, Masaya; Toyama, Yoshiaki; Miyamoto, Takeshi

    2016-06-03

    Skeletal muscle atrophy promotes muscle weakness, limiting activities of daily living. However, mechanisms underlying atrophy remain unclear. Here, we show that skeletal muscle immobilization elevates Smad2/3 protein but not mRNA levels in muscle, promoting atrophy. Furthermore, we demonstrate that myostatin, which negatively regulates muscle hypertrophy, is dispensable for denervation-induced muscle atrophy and Smad2/3 protein accumulation. Moreover, muscle-specific Smad2/3-deficient mice exhibited significant resistance to denervation-induced muscle atrophy. In addition, expression of the atrogenes Atrogin-1 and MuRF1, which underlie muscle atrophy, did not increase in muscles of Smad2/3-deficient mice following denervation. We also demonstrate that serum starvation promotes Smad2/3 protein accumulation in C2C12 myogenic cells, an in vitro muscle atrophy model, an effect inhibited by IGF1 treatment. In vivo, we observed IGF1 receptor deactivation in immobilized muscle, even in the presence of normal levels of circulating IGF1. Denervation-induced muscle atrophy was accompanied by reduced glucose intake and elevated levels of branched-chain amino acids, effects that were Smad2/3-dependent. Thus, muscle immobilization attenuates IGF1 signals at the receptor rather than the ligand level, leading to Smad2/3 protein accumulation, muscle atrophy, and accompanying metabolic changes.

  11. A case of extensive left-sided facial atrophy of Romberg

    PubMed Central

    Verma, Rajesh; Ram, Hari; Gupta, Mani; Vidhate, Mukund R

    2013-01-01

    Progressive facial atrophy or Parry-Romberg syndrome is characterized by slowly progressive facial atrophy involving skin, subcutaneous tissue, cartilage and bony structures. Apart from facial atrophy, it can be associated with diverse clinical manifes